WorldWideScience

Sample records for zirconia electrolyte layers

  1. Granular nanocrystalline zirconia electrolyte layers deposited on porous SOFC cathode substrates

    International Nuclear Information System (INIS)

    Seydel, Johannes; Becker, Michael; Ivers-Tiffee, Ellen; Hahn, Horst

    2009-01-01

    Thin granular yttria-stabilized zirconia (YSZ) electrolyte layers were prepared by chemical vapor synthesis and deposition (CVD/CVS) on a porous substoichiometric lanthanum-strontium-manganite (ULSM) solid oxide fuel cell cathode substrate. The substrate porosity was optimized with a screen printed fine porous buffer layer. Structural analysis by scanning electron microscopy showed a homogeneous, granular nanocrystalline layer with a microstructure that was controlled via reactor settings. The CVD/CVS gas-phase process enabled the deposition of crack-free granular YSZ films on porous ULSM substrates. The electrolyte layers characterized with impedance spectroscopy exhibited enhanced grain boundary conductivity.

  2. AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles

    International Nuclear Information System (INIS)

    Arrabal, R.; Matykina, E.; Viejo, F.; Skeldon, P.; Thompson, G.E.; Merino, M.C.

    2008-01-01

    The incorporation of monoclinic zirconia nanoparticles and their subsequent transformation is examined for coatings formed on magnesium by plasma electrolytic oxidation under AC conditions in silicate electrolyte. The coatings are shown to comprise two main layers, with nanoparticles entering the coating at the coating surface and through short-circuit paths to the region of the interface between the inner and outer coating layers. Under local heating of microdischarges, the zirconia reacts with magnesium species to form Mg 2 Zr 5 O 12 in the outer coating layer. Relatively little zirconium is present in the inner coating layer. In contrast, silicon species are present in both coating layers, with reduced amounts in the inner layer

  3. Effect of ionic conductivity of zirconia electrolytes on polarization properties of various electrodes in SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Masahiro; Uchida, Hiroyuki; Yoshida, Manabu [Yamanashi Univ., Kofu (Japan)

    1996-12-31

    Solid oxide fuel cells (SOFCs) have been intensively investigated because, in principle, their energy conversion efficiency is fairly high. Lowering the operating temperature of SOFCs from 1000{degrees}C to around 800{degrees}C is desirable for reducing serious problems such as physical and chemical degradation of the constructing materials. The object of a series of the studies is to find a clue for achieving higher electrode performances at a low operating temperature than those of the present level. Although the polarization loss at electrodes can be reduced by using mixed-conducting ceria electrolytes, or introducing the mixed-conducting (reduced zirconia or ceria) laver on the conventional zirconia electrolyte surface, no reports are available on the effect of such an ionic conductivity of electrolytes on electrode polarizations. High ionic conductivity of the electrolyte, of course, reduces the ohmic loss. However, we have found that the IR-free polarization of a platinum anode attached to zirconia electrolytes is greatly influenced by the ionic conductivity, {sigma}{sub ion}, of the electrolytes used. The higher the {sigma}{sub ion}, the higher the exchange current density, j{sub 0}, for the Pt anode in H{sub 2} at 800 {approximately} 1000{degrees}C. It was indicated that the H{sub 2} oxidation reaction rate was controlled by the supply rate of oxide ions through the Pt/zirconia interface which is proportional to the {sigma}{sub ion}. Recently, we have proposed a new concept of the catalyzed-reaction layers which realizes both high-performances of anodes and cathodes for medium-temperature operating SOFCs. We present the interesting dependence of the polarization properties of various electrodes (the SDC anodes with and without Ru microcatalysts, Pt cathode, La(Sr)MnO{sub 3} cathodes with and without Pt microcatalysts) on the {sigma}{sub ion} of various zirconia electrolytes at 800 {approximately} 1000{degrees}C.

  4. Stability of zirconia sol in the presence of various inorganic electrolytes

    Directory of Open Access Journals (Sweden)

    Marković Jelena P.

    2013-01-01

    Full Text Available Zirconia sol was prepared from zirconium oxychloride solutions by forced hydrolysis at 102ºC. The prepared sol consisted of almost spherical, monoclinic, hydrated zirconia particles 61 nm in diameter. The stability of zirconia sol in the presence of various inorganic electrolytes (LiCl, NaCl, KCl, CsCl, KBr, KI, KNO3, and K2SO4 was studied by potentiometric titration method. Dependence of the critical concentration of coagulation (CCC on the dispersion pH was determined for all studied electrolytes. The critical coagulation concentration values, for all investigated electrolytes, are lower at higher pH. These values for all 1:1 electrolytes are equal in the range of experimental error. For a given pH value, CCCs of K2SO4 are 3-4 orders of magnitude lower than the corresponding values for 1:1 electrolytes. [Projekat Ministarstva nauke republike Srbije, br. III 45012

  5. Application of sol gel spin coated yttria-stabilized zirconia layers for the improvement of solid oxide fuel cell electrolytes produced by atmospheric plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Lars [University of British Columbia, Department of Materials Engineering, 309-6350 Stores Road, Vancouver, British Columbia, V6T 1Z4 (Canada); National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, British Columbia, V6T 1W5 (Canada); Kesler, Olivera [National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, British Columbia, V6T 1W5 (Canada); University of British Columbia, Department of Mechanical Engineering, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4 (Canada); Tang, Zhaolin; Burgess, Alan [Northwest Mettech Corp., 467 Mountain Hwy, North Vancouver, British Columbia, V7J 2L3 (Canada)

    2007-05-15

    Due to its high thermal stability and purely oxide ionic conductivity, yttria-stabilized zirconia (YSZ) is the most commonly used electrolyte material for solid oxide fuel cells (SOFCs). Standard electrolyte fabrication techniques for planar SOFCs involve wet ceramic techniques such as tape-casting or screen printing, requiring sintering steps at temperatures above 1300 C. Plasma spraying (PS) may provide a more rapid and cost efficient method to produce SOFCs without sintering. High-temperature sintering requires long processing times and can lead to oxidation of metal alloys used as mechanical supports, or to detrimental interreactions between the electrolyte and adjacent electrode layers. This study investigates the use of spin coated sol gel derived YSZ precursor solutions to fill the pores present in plasma sprayed YSZ layers, and to enhance the surface area for reaction at the electrolyte-cathode interface, without the use of high-temperature firing steps. The effects of different plasma conditions and sol concentrations and solid loadings on the gas permeability and fuel cell performance have been investigated. (author)

  6. Deposition of yttria stabilized zirconia layer for solid oxide fuel cell by chemical vapor infiltration

    International Nuclear Information System (INIS)

    John, John T.; Dubey, Vivekanand; Kain, Vivekanand; Dey, Gautham Kumar; Prakash, Deep

    2011-01-01

    Free energy associated with a chemical reaction can be converted into electricity, if we can split the reaction into an anodic reaction and a cathodic reaction and carry out the reactions in an electrochemical cell using electrodes that will catalyze the reactions. We also have to use a suitable electrolyte, that serves to isolate the chemical species in the two compartments from getting mixed directly but allow an ion produced in one of the reactions to proceed to the other side and complete the reaction. For this reason cracks and porosity are not tolerated in the electrolyte. First generation solid oxide fuel cell (SOFC) uses yttria stabilized zirconia (YSZ) as the electrolyte. In spite of the fact that several solid electrolytes with higher conductivities at lower temperature are being investigated and developed, 8 mol% yttria stabilized zirconia (8YSZ) is considered to be the most favored electrolyte for the SOFC today. The electrolyte should be present as a thin, impervious layer of uniform thickness with good adherence, chemical and mechanical stability, in between the porous cathode and anode. Efforts to produce the 8YSZ coatings on porous lanthanum strontium manganite tubes by electrochemical vapor deposition (ECVD) have met with unexpected difficulties such as impurity pick up and chemical and mechanical instability of the LSM tubes in the ECVD environment. It was also difficult to keep the chemical composition of the YSZ coating at exactly 8 mol% Yttria in zirconia and to control the coating thickness in tight control. These problems were overcome by a two step deposition process where a YSZ layer of required thickness was produced by electrophoretic coating from an acetyl acetone bath at a voltage of 30-300V DC and sintered at 1300 deg C. The resulting porous YSZ layer was made impervious by chemical vapor infiltration (CVI) by the reaction between a mixture of vapors of YCl 3 and ZrCl 4 and steam at 1300 deg C as in the case of ECVD for a short

  7. Ab initio investigation of ground-states and ionic motion in particular in zirconia-based solid-oxide electrolytes

    International Nuclear Information System (INIS)

    Hirschfeld, Julian Arndt

    2012-01-01

    transport the ionic conductivity in SOFC electrolytes is required to be high. Using a layering of zirconium and yttrium in the fluorite structure and applying DFT and NEB again, a high vacancy concentration and a very low migration barrier in two dimensions is observed, while the mobility in the third direction is sacrificed. The ionic conductivity of this new structure at 500 C surpasses that of the state of the art electrolyte Yttrium Stabilized Zirconia (YSZ) at 800 C. Throughout the process of searching for augmented ionic conductivity, the NEB method has particularly been used extensively and has been examined in detail. This method has been applied to quite different systems to gain a better understanding of it. While NEB has been applied, it has been found that a certain modification of the NEB, the Minimum search Nudged Elastic Band (MsNEB), is able to find global minima in a complex phase space. Furthermore, the MsNEB turns out to be complementary to simulated annealing and the genetic algorithm. This new scheme has not been applied to electrolyte materials, yet. However, its capabilities have been demonstrated by detecting the most stable isomers of the phosphorus P 4 , P 8 molecules and the corresponding molecules of As n , Sb n , Bi n , (n=4,8). In the case of P 8 , the new MsNEB has led to a hitherto unknown configuration, being more stable than the previously assumed ground state.

  8. Suspension chemistry and electrophoretic deposition of zirconia electrolyte on conducting and non-conducting substrates

    International Nuclear Information System (INIS)

    Das, Debasish; Basu, Rajendra N.

    2013-01-01

    Graphical abstract: - Highlights: • Stable suspension of yttria stabilized zirconia (YSZ) obtained in isopropanol medium. • Suspension chemistry and process parameters for electrophoretic deposition optimized. • Deposited film quality changed with iodine and water (dispersants) concentration. • Dense YSZ film (∼5 μm) fabricated onto non-conducting porous NiO-YSZ anode substrate. - Abstract: Suspensions of 8 mol% yttria stabilized zirconia (YSZ) particulates in isopropanol medium are prepared using acetylacetone, iodine and water as dispersants. The effect of dispersants concentration on suspension stability, particle size distribution, electrical conductivity and pH of the suspensions are studied in detail to optimize the suspension chemistry. Electrophoretic deposition (EPD) has been conducted to produce thin and dense YSZ electrolyte films. Deposition kinetics have been studied in depth and good quality films on conducting substrate are obtained at an applied voltage of 15 V for 3 min. YSZ films are also fabricated on non-conducting NiO-YSZ anode substrate using a steel plate on the reverse side of the substrate. Upon co-firing at 1400 °C for 6 h a dense YSZ film of thickness ∼5 μm is obtained. Such a half cell (anode + electrolyte) can be used to fabricate a solid oxide fuel cell on applying a suitable cathode layer

  9. Ab initio investigation of ground-states and ionic motion in particular in zirconia-based solid-oxide electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Hirschfeld, Julian Arndt

    2012-12-11

    transport the ionic conductivity in SOFC electrolytes is required to be high. Using a layering of zirconium and yttrium in the fluorite structure and applying DFT and NEB again, a high vacancy concentration and a very low migration barrier in two dimensions is observed, while the mobility in the third direction is sacrificed. The ionic conductivity of this new structure at 500 C surpasses that of the state of the art electrolyte Yttrium Stabilized Zirconia (YSZ) at 800 C. Throughout the process of searching for augmented ionic conductivity, the NEB method has particularly been used extensively and has been examined in detail. This method has been applied to quite different systems to gain a better understanding of it. While NEB has been applied, it has been found that a certain modification of the NEB, the Minimum search Nudged Elastic Band (MsNEB), is able to find global minima in a complex phase space. Furthermore, the MsNEB turns out to be complementary to simulated annealing and the genetic algorithm. This new scheme has not been applied to electrolyte materials, yet. However, its capabilities have been demonstrated by detecting the most stable isomers of the phosphorus P{sub 4}, P{sub 8} molecules and the corresponding molecules of As{sub n}, Sb{sub n}, Bi{sub n}, (n=4,8). In the case of P{sub 8}, the new MsNEB has led to a hitherto unknown configuration, being more stable than the previously assumed ground state.

  10. Asymmetric diffusion of Zr, Sc and Ce, Gd at the interface between zirconia electrolyte and ceria interlayer for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Bo, E-mail: Liangbo@gdut.edu.cn; Tao, Tao; Zhang, Silong; Huang, Yongan; Cai, Zhihong; Lu, Shenguo, E-mail: sglu@gdut.edu.cn

    2016-09-15

    The microstructures of cathode interlayer and elemental diffusion behaviors across the interfacial region (electrolyte/interlayer) have been characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and scanning TEM combined with energy dispersive X-ray spectroscopy (STEM-EDS). A densified film about 100 nm is locally formed at the interface of electrolyte/interlayer as the interlayer using dip-coating method and being sintered at 1200 °C. It is observed that the compositional distribution curves across the interface are asymmetric. More amount of the Zr, Sc component is detected in gadolinium-doped ceria (GDC) than that of the Ce, Gd component is detected in scandia-stabilized-zirconia (SSZ). XRD and EDS results show that the densified layer might consist of (Zr, Ce)O{sub 2}-based solid solution. The high open circuit voltage of the cell is related to the dense structure of electrolyte, while the increased activation energy in overpotential resistance is attributed to the porous structure of interlayer as well as the high resistance phases locally formed at its interface. - Highlights: • The (Ce−Zr)O{sub 2} based solid solution was locally formed at 1200 °C. • More Zr, Sc elements were detected in GDC than Ce, Gd elements in SSZ. • Zirconia nanodomain was embedded in GDC beside grain boundary. • High OCVs were achieved due to the highly dense electrolyte layer.

  11. Development of oxygen sensors using zirconia solid electrolyte for fuel rods

    International Nuclear Information System (INIS)

    Hiura, Nobuo; Endou, Yasuichi; Yamaura, Takayuki; Matui, Yoshinori; Niimi, Motoji; Hoshiya, Taiji; Kobiyama, Mamoru; Motohashi, Yoshinobu

    1999-01-01

    The oxygen potential in oxide fuel pellet is an important parameter to understand behavior of high burn up fuel and its integrity. Zirconia solid electrolyte which is durable under irradiation and high temperature is considered as candidate material for the oxygen potential. Combined use of solid electrolyte and Ni/NiO as a solid standard electrode will realize small size oxygen sensor which can be easily loaded in the fuel rod. Prototypes of the oxygen sensor made of these materials were irradiated with neutrons the Japan Materials Testing Reactor (JMTR), and characteristics of electromotive force (EMF) by sensors were examined under irradiation. For a prototype using zirconia solid electrolyte stabilized by Y 2 O 3 (YSZ), measured EMF under irradiation was nearly equivalent to the value under unirradiated condition, and very stable within a range of neutron fluence (E>1 MeV) up to 1.52 x 10 23 m -2 and for the time of 600 h. However, the measured EMFs were slightly smaller than the theoretical values. The reason for this decrease of the EMF was thought as due to insufficient adhesion forces between solid electrolyte and standard electrode. After modification of the sensor to increase adhesion force, EMF was measured again under irradiation. The results showed improvement of the characteristics of the sensor in which measured EMFs were almost equivalent to the theoretical values. (author)

  12. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes

    International Nuclear Information System (INIS)

    Garcia, Rafael Henrique Lazzari

    2007-01-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  13. Yttria-doped zirconia as solid electrolyte for fuel-cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Butz, Benjamin

    2009-11-27

    7.3-10 mol% yttria-doped zirconia (YDZ) was studied with emphasis on its long-term stability as solid electrolyte. The decomposition of common 8.5YDZ (950 C) was detected by analytical TEM. As second issue, the microstructural and chemical properties of nanocrystalline 7.3YDZ thin films were investigated. Metastable t''-YDZ was found to precipitate in nanoscaled regions in YDZ up to 10 mol% yttria. Furthermore, a revised boundary of the c+t phase field, in which YDZ decomposes, is presented. (orig.)

  14. Yttria-doped zirconia as solid electrolyte for fuel-cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Butz, Benjamin

    2009-11-27

    7.3-10 mol% yttria-doped zirconia (YDZ) was studied with emphasis on its long-term stability as solid electrolyte. The decomposition of common 8.5YDZ (950 C) was detected by analytical TEM. As second issue, the microstructural and chemical properties of nanocrystalline 7.3YDZ thin films were investigated. Metastable t''-YDZ was found to precipitate in nanoscaled regions in YDZ up to 10 mol% yttria. Furthermore, a revised boundary of the c+t phase field, in which YDZ decomposes, is presented. (orig.)

  15. Electrophoretic deposition of thin film zirconia electrolyte on non-conducting NiO-YSZ substrate

    International Nuclear Information System (INIS)

    Das, Debasish; Basu, Rajendra N.

    2014-01-01

    Eight (8) mol% yttria stabilized zirconia (YSZ), an electrolyte material for solid oxide fuel cell (SOFC), has been deposited onto porous non-conducting NiO-YSZ substrate using electrophoretic deposition technique (EPD) from a stable non-aqueous suspension of YSZ. Normally, EPD cannot be performed on a non-conducting substrate, but, in this present study, YSZ particulate film has been successfully deposited on a non-conducting NiO-YSZ substrate following two different EPD approaches:(a) using a conducting metallic plate on the reverse side of the porous NiO-YSZ anode substrate and (b) using a conducting polymer coated NiO-YSZ substrate. The deposited films are then formed dense coatings of 5-15 μm after sintering at 1400℃ for 6 h in air. Surface and cross-sectional morphologies of green and sintered films deposited by different EPD approaches are investigated using SEM. La 0.65 Sr 0.3 MnO 3 (LSM), a cathode for SOFC, is then screen-printed onto the electrolyte layer of such sintered half cells (anode+electrolyte) prepared by both the above approaches to construct SOFC single cells. A maximum output power density of 0.37 W.cm -2 is obtained using single cells prepared by conducting metallic plate assisted EPD compared to that of 0.73 W.cm -2 for polymer coated at 800℃ using H 2 as fuel and O 2 as oxidant. (author)

  16. Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films

    OpenAIRE

    Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom

    2017-01-01

    Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite cr...

  17. Fabrication of Coatings on the Surface of Magnesium Alloy by Plasma Electrolytic Oxidation Using ZrO2 and SiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    S. V. Gnedenkov

    2015-01-01

    Full Text Available Results of investigation of the incorporation of zirconia and silica nanoparticles into the coatings formed on magnesium alloy by plasma electrolytic oxidation are presented. Comprehensive research of electrochemical and mechanical properties of obtained coatings was carried out. It was established that the polarization resistance of the samples with a coating containing zirconia nanoparticles is two times higher than that for the sample with base PEO layer. One of the important reasons for improving the protective properties of coatings formed in electrolytes containing nanoparticles consists in enhanced morphological characteristics, in particular, the porosity decrease and increase of thickness and resistivity (up to two orders of magnitude for ZrO2-containing coating of porousless sublayer in comparison with base PEO layer. Incorporation of silica and zirconia particles into the coating increases the mechanical performances. The layers containing nanoparticles have greater hardness and are more wear resistant in comparison with the coatings formed in the base electrolyte.

  18. Using Dark Field X-Ray Microscopy To Study In-Operando Yttria Stabilized Zirconia Electrolyte Supported Solid Oxide Cell

    DEFF Research Database (Denmark)

    Sierra, J. X.; Poulsen, H. F.; Jørgensen, P. S.

    Dark Field X-Ray Microscopy is a promising technique to study the structure of materials in nanometer length scale. In combination with x-ray diffraction technique, the microstructure evolution of Yttria Stabilized Zirconia electrolyte based solid oxide cell was studied running at extreme operating...

  19. Influence of framework color and layering technique on the final color of zirconia veneered restorations

    NARCIS (Netherlands)

    Aboushelib, M.N.; Dozic, A.; Liem, J.K.

    2010-01-01

    Objective: To investigate the influence of colored zirconia frameworks on the overall color match of zirconia- veneered restorations. Method and Materials: Identical natural and colored zirconia frameworks (Cercon Base, Degudent) were layered using a veneer ceramic (IPS e.max Ceram Dentin, Ivoclar

  20. In vitro comparison of fracture load of implant-supported, zirconia-based, porcelain- and composite-layered restorations after artificial aging.

    Science.gov (United States)

    Komine, Futoshi; Taguchi, Kohei; Fushiki, Ryosuke; Kamio, Shingo; Iwasaki, Taro; Matsumura, Hideo

    2014-01-01

    This study evaluated fracture load of single-tooth, implant-supported, zirconia-based, porcelain- and indirect composite-layered restorations after artificial aging. Forty-four zirconia-based molar restorations were fabricated on implant abutments and divided into four groups, namely, zirconia-based all-ceramic restorations (ZAC group) and three types of zirconia-based composite-layered restorations (ZIC-P, ZIC-E, and ZIC groups). Before layering an indirect composite material, the zirconia copings in the ZIC-P and ZIC-E groups were primed with Clearfil Photo Bond and Estenia Opaque Primer, respectively. All restorations were cemented on the abutments with glass-ionomer cement and then subjected to thermal cycling and cyclic loading. All specimens survived thermal cycling and cyclic loading. The fracture load of the ZIC-P group (2.72 kN) was not significantly different from that of the ZAC group (3.05 kN). The fracture load of the zirconia-based composite-layered restoration primed with Clearfil Photo Bond (ZIC-P) was comparable to that of the zirconia-based all-ceramic restoration (ZAC) after artificial aging.

  1. Corrosion of pure magnesium under thin electrolyte layers

    International Nuclear Information System (INIS)

    Zhang Tao; Chen Chongmu; Shao Yawei; Meng Guozhe; Wang Fuhui; Li Xiaogang; Dong Chaofang

    2008-01-01

    The corrosion behavior of pure magnesium was investigated by means of cathodic polarization curve, electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) under aerated and deaerated thin electrolyte layers (TEL) with various thicknesses. Based on shot noise theory and stochastic theory, the EN results were quantitatively analyzed by using the Weibull and Gumbel distribution function, respectively. The results show that the cathodic process of pure magnesium under thin electrolyte layer was dominated by hydrogen reduction. With the decreasing of thin electrolyte layer thickness, cathodic process was retarded slightly while the anodic process was inhibited significantly, which indicated that both the cathodic and anodic process were inhibited in the presence of oxygen. The absence of oxygen decreased the corrosion resistance of pure magnesium in case of thin electrolyte layer. The corrosion was more localized under thin electrolyte layer than that in bulk solution. The results also demonstrate that there exist two kinds of effects for thin electrolyte layer on the corrosion behavior of pure magnesium: (1) the rate of pit initiation was evidently retarded compared to that in bulk solution; (2) the probability of pit growth oppositely increased. The corrosion model of pure magnesium under thin electrolyte layer was suggested in the paper

  2. Electric-double-layer potential distribution in multiple-layer immiscible electrolytes

    NARCIS (Netherlands)

    Das, S.; Hardt, Steffen

    2011-01-01

    In this Brief Report, we calculate the electric-double-layer (EDL) electrostatic potential in a system of several layers of immiscible electrolytes. Verwey-Niessen theory predicts that at the interface between two immiscible electrolytes back-to-back EDLs are formed. The present analysis extends

  3. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes; Sintese e processamento de compositos de zirconia-alumina para aplicacao como eletrolito em celulas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Rafael Henrique Lazzari

    2007-07-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  4. High temperature mechanical properties of zirconia tapes used for electrolyte supported solid oxide fuel cells

    Science.gov (United States)

    Fleischhauer, Felix; Bermejo, Raul; Danzer, Robert; Mai, Andreas; Graule, Thomas; Kuebler, Jakob

    2015-01-01

    Solid-Oxide-Fuel-Cell systems are efficient devices to convert the chemical energy stored in fuels into electricity. The functionality of the cell is related to the structural integrity of the ceramic electrolyte, since its failure can lead to drastic performance losses. The mechanical property which is of most interest is the strength distribution at all relevant temperatures and how it is affected with time due to the environment. This study investigates the impact of the temperature on the strength and the fracture toughness of different zirconia electrolytes as well as the change of the elastic constants. 3YSZ and 6ScSZ materials are characterised regarding the influence of sub critical crack growth (SCCG) as one of the main lifetime limiting effects for ceramics at elevated temperatures. In addition, the reliability of different zirconia tapes is assessed with respect to temperature and SCCG. It was found that the strength is only influenced by temperature through the change in fracture toughness. SCCG has a large influence on the strength and the lifetime for intermediate temperature, while its impact becomes limited at temperatures higher than 650 °C. In this context the tetragonal 3YSZ and 6ScSZ behave quite different than the cubic 10Sc1CeSZ, so that at 850 °C it can be regarded as competitive compared to the tetragonal compounds.

  5. Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films.

    Science.gov (United States)

    Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom

    2017-09-29

    Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite crystalline phases and good ionic conductivity were developed during the second annealing step. These films showed properties comparable to those of thermally annealed films. This process is much faster than conventional annealing processes (e.g. halogen furnaces); a few seconds compared to tens of hours, respectively. The significance of this work includes the treatment of solid-state electrolyte oxides for SOFCs and the demonstration of the feasibility of other oxide components for solid-state energy devices.

  6. MultiLayer solid electrolyte for lithium thin film batteries

    Science.gov (United States)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  7. Effects of framework design and layering material on fracture strength of implant-supported zirconia-based molar crowns.

    Science.gov (United States)

    Kamio, Shingo; Komine, Futoshi; Taguchi, Kohei; Iwasaki, Taro; Blatz, Markus B; Matsumura, Hideo

    2015-12-01

    To evaluate the effects of framework design and layering material on the fracture strength of implant-supported zirconia-based molar crowns. Sixty-six titanium abutments (GingiHue Post) were tightened onto dental implants (Implant Lab Analog). These abutment-implant complexes were randomly divided into three groups (n = 22) according to the design of the zirconia framework (Katana), namely, uniform-thickness (UNI), anatomic (ANA), and supported anatomic (SUP) designs. The specimens in each design group were further divided into two subgroups (n = 11): zirconia-based all-ceramic restorations (ZAC group) and zirconia-based restorations with an indirect composite material (Estenia C&B) layered onto the zirconia framework (ZIC group). All crowns were cemented on implant abutments, after which the specimens were tested for fracture resistance. The data were analyzed with the Kruskal-Wallis test and the Mann-Whitney U-test with the Bonferroni correction (α = 0.05). The following mean fracture strength values (kN) were obtained in UNI design, ANA design, and SUP design, respectively: Group ZAC, 3.78, 6.01, 6.50 and Group ZIC, 3.15, 5.65, 5.83. In both the ZAC and ZIC groups, fracture strength was significantly lower for the UNI design than the other two framework designs (P = 0.001). Fracture strength did not significantly differ (P > 0.420) between identical framework designs in the ZAC and ZIC groups. A framework design with standardized layer thickness and adequate support of veneer by zirconia frameworks, as in the ANA and SUP designs, increases fracture resistance in implant-supported zirconia-based restorations under conditions of chewing attrition. Indirect composite material and porcelain perform similarly as layering materials on zirconia frameworks. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Investigations of a zirconia solid electrolyte oxygen sensor in liquid lead

    Energy Technology Data Exchange (ETDEWEB)

    Rivai, Abu Khalid, E-mail: rivai.abukhalid@jaea.go.j [Department of Nuclear Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, N1-18, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Takahashi, Minoru, E-mail: mtakahas@nr.titech.ac.j [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, N1-18, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2010-03-15

    Investigations of a magnesia-stabilized zirconia solid electrolyte oxygen sensor for oxygen control measurement in liquid lead were carried out. The fluid of Bi/Bi{sub 2}O{sub 3} as a reference electrode and a molybdenum wire as a working electrode to detect the output signal of the sensor were used. The Nernst equation was used to estimate the electromotive force (EMF) values theoretically. The temperatures of liquid lead were 500, 550 and 600 deg. C. The results showed that the injection gas temperatures did not affect the detected EMF, the sensor responded well to quick changes of oxygen activity in liquid lead, and the discrepancy between the measured and theoretical EMF of the oxygen sensor output signal was higher at 500 deg. C than at 550 and 600 deg. C.

  9. Synthesis, processing and characterization of the solid oxide half-cells cathode/electrolyte of strontium-doped lanthanum manganite/Yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Chiba, Rubens

    2010-01-01

    The ceramic films of strontium-doped lanthanum manganite (LSM) and strontium doped lanthanum manganite/Yttria-stabilized zirconia (LSM/YSZ) are used as cathodes of the high temperature solid oxide fuel cells (HTSOFC). These porous ceramic films had been deposited on the YSZ dense ceramic substrate, used as electrolyte, structural component of the module, thus conferring a configuration of half-cell called auto-support. The study of the half-cell it is basic, therefore in the interface cathode/electrolyte occurs the oxygen reduction reaction, consequently influencing in the performance of the HTSOFC. In this direction, the present work contributes for the processing of thin films, using the wet powder spraying technique, adopted for the conformation of the ceramic films for allowing the attainment of porous layers with thicknesses varied in the order of micrometers. The LSM powders were synthesized by the citrate technique and the LSM/YSZ powders synthesized by the solid mixture technique. In the stage of formation were prepared organic suspensions of LSM and LSM/YSZ fed by gravity in a manual aerograph. For the formation of the YSZ substrate was used a hydraulic uniaxial press. The attainment of solid oxide half-cells cathode/electrolyte was possible of crystalline structures hexagonal for phase LSM and cubic for phase YSZ. The half-cells micrographs show that the YSZ substrate is dense, enough to be used as solid electrolyte, and the LSM and LSM/YSZ films are presented porous with approximately 30 μm of thickness and good adherence between the cathodes and the electrolyte. The presence of composite cathode between the LSM cathode and YSZ substrate, presented an increase in the electrochemical performance in the oxygen reduction reaction. (author)

  10. Reactivity and interdiffusion of alternative SOFC cathodes with yttria stabilized zirconia, gadolinia doped ceria and doped lanthanum gallate solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kostogloudis, G.C.; Tsiniarakis, G.; Riza, F.; Ftikos, C. [National Tech. Univ. of Athens (Greece)

    2000-07-01

    The chemical compatibility between the cathode composition Pr{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} and the electrolyte compositions yttria stabilized zirconia (YSZ), Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} (CGO) and La{sub 0.8}Sr{sub 0.2}Ga{sub 0.9}Mg{sub 0.1}O{sub 3-{delta}} (LSGM) was investigated. Also, the influence of the substitution of Al for Fe on the reactivity of the cathode with YSZ was examined. All oxides were single-phase materials except for LSGM, which contained two additional phases, namely LaSrGa{sub 3}O{sub 7} and LaSrGaO{sub 4}. Two types of experiments were performed: (a) reactivity experiments by XRD in cathode/electrolyte powder mixtures and (b) diffusion experiments by SEM/EDX analysis in cathode/electrolyte double-layer pellets. Pr{sub 2}Zr{sub 2}O{sub 7}, SrZrO{sub 3} and CoFe{sub 2}O{sub 4} were formed by the interaction of the cathode materials with YSZ. Substitution by Al at the B-site of the perovskite cathode led to a decrease of its reactivity with YSZ. No reaction products were formed for powder mixtures of Pr{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} and CGO or LSGM electrolytes. High Co and Fe diffusion into LSGM was identified. Pr, La and Ga show a smaller tendency for diffusion. The diffusion of transition metal cations into LSGM electrolyte caused the destabilisation and disappearance of the second phases in the interdiffusion zone. (orig.)

  11. A determination, using solid zirconia electrolytes, of the activities of chromium oxide in ferrochromium alloys and slags at 1650 degrees Celsius

    International Nuclear Information System (INIS)

    Wellbeloved, D.B.; Finn, C.W.P.

    1982-01-01

    This report describes the development of a method in which solid zirconia electrolytes are used in the determination of the activities of chromium and chromium oxide in ferrochromium alloys and slags at 1650 degrees Celsius. Problems related to the cracking of electrolytes as a result of thermal shock, the dissolution of electrolytes in slags, and electrical contacts are discussed. Results for the iron-chromium system at 1650 degrees Celsius are found to be in good agreement with published findings. A limited number of results are reported for slag, but these are inconclusive because there was contamination from container materials. A 'gas-phase' cell is described that overcomes most of the problems encountered

  12. Solid oxide fuel cells with bi-layered electrolyte structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, B.C. V6T 1W5 (Canada)

    2008-01-10

    In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 {mu}m SSZ and 4 {mu}m SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm{sup -2} at 650 C and 0.85 W cm{sup -2} at 700 C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (R{sub el}) and electrode polarization resistance (R{sub p,a+c}) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O{sub 2-x} during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the R{sub el} value (0.32 {omega} cm{sup 2}) at 650 C, which is almost one order of magnitude higher than the calculated value. (author)

  13. The defect structure of the double layer in yttria-stabilised zirconia

    NARCIS (Netherlands)

    Hendriks, M.G.H.M.; ten Elshof, Johan E.; Bouwmeester, Henricus J.M.; Verweij, H.

    2002-01-01

    The space charge density of 2–10 mol% yttria-stabilised zirconia (YSZ) at the interface with a gold electrode was determined from differential capacity measurements at 748–848 K. The oxygen vacancy fraction in the space charge layer was calculated as function of bias potential, temperature and

  14. Shear bond strengths of an indirect composite layering material to a tribochemically silica-coated zirconia framework material.

    Science.gov (United States)

    Iwasaki, Taro; Komine, Futoshi; Fushiki, Ryosuke; Kubochi, Kei; Shinohara, Mitsuyo; Matsumura, Hideo

    2016-01-01

    This study evaluated shear bond strengths of a layering indirect composite material to a zirconia framework material treated with tribochemical silica coating. Zirconia disks were divided into two groups: ZR-PRE (airborne-particle abrasion) and ZR-PLU (tribochemical silica coating). Indirect composite was bonded to zirconia treated with one of the following primers: Clearfil Ceramic Primer (CCP), Clearfil Mega Bond Primer with Clearfil Porcelain Bond Activator (MGP+Act), ESPE-Sil (SIL), Estenia Opaque Primer, MR. Bond, Super-Bond PZ Primer Liquid A with Liquid B (PZA+PZB), and Super-Bond PZ Primer Liquid B (PZB), or no treatment. Shear bond testing was performed at 0 and 20,000 thermocycles. Post-thermocycling shear bond strengths of ZR-PLU were higher than those of ZR-PRE in CCP, MGP+Act, SIL, PZA+PZB, and PZB groups. Application of silane yielded better durable bond strengths of a layering indirect composite material to a tribochemically silica-coated zirconia framework material.

  15. Lithium-ion batteries having conformal solid electrolyte layers

    Science.gov (United States)

    Kim, Gi-Heon; Jung, Yoon Seok

    2014-05-27

    Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

  16. Effect of substrate and cathode parameters on the properties of suspension plasma sprayed solid oxide fuel cell electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Waldbillig, D.; Tang, Z.; Burgess, A. [British Columbia Univ., Vancouver, BC (Canada); Kesler, O. [Toronto Univ., ON (Canada)

    2008-07-01

    An axial injection suspension plasma spray system has been used to produce layers of fully stabilized yttriastabilized zirconia (YSZ) that could be used as solid oxide fuel cell (SOFC) electrolytes. Suspension plasma spraying is a promising technique for the rapid production of coatings with fine microstructures and controlled porosity without requiring a post-deposition heat treatment. This new manufacturing technique to produce SOFC active layers requires the build up of a number of different plasma sprayed SOFC functional layers (cathode, electrolyte and anode) sequentially on top of each other. To understand the influence of the substrate and previouslydeposited coating layers on subsequent coating layer properties, YSZ layers were deposited on top of plasma sprayed composite lanthanum strontium manganite (LSM)/YSZ cathode layers that were first deposited on porous ferritic stainless steel substrates. Three layer half cells consisting of the porous steel substrate, composite cathode, and suspension plasma sprayed electrolyte layer were then characterized. A systematic study was performed in order to investigate the effect of parameters such as substrate and cathode layer roughness, substrate surface pore size, and cathode microstructure and thickness on electrolyte deposition efficiency, cathode and electrolyte permeability, and layer microstructure. (orig.)

  17. Shear bond strength between an indirect composite layering material and feldspathic porcelain-coated zirconia ceramics.

    Science.gov (United States)

    Fushiki, Ryosuke; Komine, Futoshi; Blatz, Markus B; Koizuka, Mai; Taguchi, Kohei; Matsumura, Hideo

    2012-10-01

    This study aims to evaluate the effect of both feldspathic porcelain coating of zirconia frameworks and priming agents on shear bond strength between an indirect composite material and zirconia frameworks. A total of 462 airborne-particle-abraded zirconia disks were divided into three groups: untreated disks (ZR-AB), airborne-particle-abraded zirconia disks coated with feldspathic porcelain, (ZR-PO-AB), and hydrofluoric acid-etched zirconia disks coated with feldspathic porcelain (ZR-PO-HF). Indirect composite (Estenia C&B) was bonded to zirconia specimens with no (CON) or one of four priming agents--Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + activator), Estenia Opaque primer, or Porcelain Liner M Liquid B (PLB)--with or without an opaque material (Estenia C&B Opaque). All specimens were tested for shear bond strength before and after 20,000 thermocycles. The Steel-Dwass test and Mann-Whitney U test were used to compare shear bond strength. In ZR-AB specimens, the initial bond strength of the CPB and CPB + Activator groups was significantly higher as compared with the other three groups (P material, bond strength was significantly lower in ZR-AB specimens than in ZR-PO-AB and ZR-PO-HF specimens (P composite to zirconia independent of surface treatment. The use of a silane coupling agent and opaque material yields durable bond strength between the indirect composite and feldspathic-porcelain-coated zirconia. The results of the present study suggest that feldspathic porcelain coating of zirconia frameworks is an effective method to obtain clinically acceptable bond strengths of a layering indirect composite material to a zirconia framework.

  18. Effects of electrolytes variation on formation of oxide layers of 6061 Al alloys by plasma electrolytic oxidation

    Institute of Scientific and Technical Information of China (English)

    Kai WANG; Bon-Heun KOO; Chan-Gyu LEE; Young-Joo KIM; Sung-Hun LEE; Eungsun BYON

    2009-01-01

    Plasma electrolytic oxidation(PEO) processes were carried out to produce ceramic layers on 6061 aluminum substrates in four kinds of electrolytes such as silicate and aluminate solution with and without sodium fluorosilicate. The PEO processes were carried out under a hybrid voltage (260 V DC combined with 200 V, 60 Hz AC amplitude) at room temperature for 5 min. The composition, microstructure and element distribution analyses of the PEO-treated layers were carried out by XRD and SEM & EDS. The effect of the electrolyte contents on the growth mechanism, element distribution and properties of oxide layers were studied. It is obvious that the layers generated in aluminate solutions show smoother surfaces than those in silicate solutions. Moreover, an addition of fluorine ion can effectively control the layer porosity; therefore, it can enhance the properties of the layers.

  19. Nature and strength of defect interactions in cubic stabilized zirconia

    International Nuclear Information System (INIS)

    Bogicevic, A.; Wolverton, C.

    2003-01-01

    The intrinsic ordering tendencies that limit ionic conduction in doped zirconia electrolytes are fully elucidated using first-principles calculations. A detailed analysis of nearly 300 yttria- and scandia-stabilized cubic-zirconia-ordered vacancy compounds reveals a delicate balance between competing elastic and electrostatic interactions. These results explain several outstanding experimental observations and provide substantial insight needed for improving ionic conduction and enabling low-temperature operation of zirconia-based electrolytes. We show that the surprising vacancy ordering in dilute solid solutions is a consequence of repulsive electrostatic and attractive elastic interactions that balance at third-neighbor vacancy separations. In contrast, repulsive elastic vacancy-dopant interactions prevail over electrostatic attraction at all probed defect separations in YSZ and lead to very weak ordering preferences in ScSZ. The total electronic contribution to the defect interactions is shown to be strongly dominated by simple point-charge electrostatics, leaving speciation of defect ordering for a given class of aliovalent dopants to the elastic term. Thus, ion size becomes a critical parameter in controlling the ionic conductivity of doped oxide electrolytes

  20. Synthesis of Ceria Zirconia Oxides using Solvothermal Treatment

    Directory of Open Access Journals (Sweden)

    Machmudah Siti

    2018-01-01

    Full Text Available Ceria oxide (CeO2 is widely used as catalyst with high oxygen storage capacity at low temperature. The addition of zirconia oxide (ZrO2 to CeO2 can enhance oxygen storage capacity as well as thermal stability. In this work, ceria zirconia oxides has been synthesized via a low temperature solvothermal treatment in order to produce ceria zirconia oxides composite with high oxygen storage capacity as electrolyte of solid oxide fuel cells (SOFC. Under solvothermal conditions, solvent may control the direction of crystal growth, morphology, particle size and size distribution, because of the controllability of thermodynamics and transport properties by pressure and temperature. Water, mixed of water and ethanol (70/30 vol/vol, and mixed of water and ethylene glycol (70/30 vol/vol were used as solvent, while Ce(NO33 and ZrO(NO32 with 0.06 M concentration were used as precursor. The experiments were conducted at temperature of 150 °C and pressure for 2 h in a Teflon-lined autoclave of 100 mL volume. The synthesized products were dried at 60 °C for 6 and 12 h and then calcined at 900 °C for 6 h. The particle products were characterized using SEM, XRD, TG/DTA, and Potentiostat. The results showed that the morphology of particles formed were affected by the solvent. Solid plate shaped particles were produced in water, and tend to be pore with the addition of ethylene glycol. The addition of ethanol decreased the size of particles with sphere shaped. The XRD pattern indicated that ceria-zirconia oxides particles are uniformly distributed in the structure to form a homogeneous solid solution. Based on the electrochemical analysis, ceria zirconia oxides produced via solvothermal synthesis had high conductivity ion of 0.5594 S/cm, which is higher than minimum conductivity ion requirement of 0.01 S/cm for SOFC electrolyte. It indicated that ceria zirconia oxides produced via solvothermal synthesis is suitable for SOFC electrolyte.

  1. Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells

    Science.gov (United States)

    Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert

    2014-06-01

    A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.

  2. Improved performance of LaNi0.6Fe0.4O3 solid oxide fuel cell cathode by application of a thin interface cathode functional layer

    DEFF Research Database (Denmark)

    Molin, Sebastian; Jasinski, Piotr Z.

    2017-01-01

    In this work, novel functional layers were prepared by a low temperature spray pyrolysis method on the oxygen side of the solid oxide cells. Thin layers of Ce0.8Gd0.2O2 and LaNi0.6Fe0.4O3 are prepared between the electrolyte and the porous oxygen electrode. Additionally the influence of the sprayed...... ceria barrier layer on the zirconia based electrolyte with the new layers is evaluated. Impedance spectroscopy results show improvement in contact between the electrolyte and the porous cathode electrode. Additionally, electrochemical performance of the cathode is improved, as evidenced by a lowered...

  3. Neutron irradiation characteristic tests of oxygen sensors using zirconia solid electrolyte

    International Nuclear Information System (INIS)

    Hiura, Nobuo; Endou, Yasuichi; Yamaura, Takayuki; Niimi, Motoji; Hoshiya, Taiji; Saito, Junichi; Souzawa, Shizuo; Ooka, Norikazu; Kobiyama, Mamoru.

    1997-03-01

    In the Department of JMTR of Japan Atomic Energy Research Institute (JAERI), the in-situ measuring technique of oxygen potential has been being developed to study the chemical behavior of high burn-up fuel base-irradiated in the Light Water Reactor. In this test for development of the technique, oxygen sensors using zirconia solid electrolyte stabilized by MgO, CaO and Y 2 O 3 , named MSZ, CSZ and YSZ, respectively, were irradiated by neutrons in the Japan Materials Testing Reactor (JMTR) of JAERI and the characteristics of electromotive force of these sensors under and after irradiation were discussed. From the experimental results, the electromotive force of YSZ sample under irradiation decreased with an increase in irradiation fluence within a range of neutron fluence (E>1 MeV) up to 1 x 10 23 m -2 . The electromotive force of MSZ sensor irradiated with neutron fluences (E>1 MeV) up to 9 x 10 21 m -2 was almost equal to the theoretical value of the electromotive force. It was shown that after irradiation, a decrease in the electromotive force of CSZ sensor was smaller than those of MSZ and YSZ sensors, although the electromotive forces of MSZ, CSZ and YSZ sensors were smaller than the theoretical value. (author)

  4. A Tri-Layer Proton-Conducting Electrolyte for Chemically Stable Operation in Solid Oxide Fuel Cells

    KAUST Repository

    Bi, Lei

    2013-10-07

    Two BaZr0.7Pr0.1Y0.2O3-δ (BZPY) layers were used to sandwich a BaCe0.8Y0.2O3-δ (BCY) layer to produce a tri-layer electrolyte consisting of BZPY/BCY/BZPY. The BZPY layers significantly improved the chemical stability of the BCY electrolyte layer, which was not stable when tested alone, suggesting that the BZPY layer effectively protected the BCY layer from CO2 reaction, which is the major problem of BCY-based materials. A fuel cell with this sandwiched electrolyte supported on a Ni-based composite anode showed a reasonable cell performance, reaching 185 mW cm-2 at 700 oC, in spite of the relatively large electrolyte thickness (about 65 µm).

  5. A Tri-Layer Proton-Conducting Electrolyte for Chemically Stable Operation in Solid Oxide Fuel Cells

    KAUST Repository

    Bi, Lei; Traversa, Enrico

    2013-01-01

    Two BaZr0.7Pr0.1Y0.2O3-δ (BZPY) layers were used to sandwich a BaCe0.8Y0.2O3-δ (BCY) layer to produce a tri-layer electrolyte consisting of BZPY/BCY/BZPY. The BZPY layers significantly improved the chemical stability of the BCY electrolyte layer, which was not stable when tested alone, suggesting that the BZPY layer effectively protected the BCY layer from CO2 reaction, which is the major problem of BCY-based materials. A fuel cell with this sandwiched electrolyte supported on a Ni-based composite anode showed a reasonable cell performance, reaching 185 mW cm-2 at 700 oC, in spite of the relatively large electrolyte thickness (about 65 µm).

  6. Evolution of the nickel/zirconia interface

    International Nuclear Information System (INIS)

    Shinde, S.L.; Olson, D.A.; De Jonghe, L.C.; Miller, R.A.

    1986-01-01

    The changes taking place at the nickel zirconia interface during oxidation in air at 900 0 C were studied using analytical electron microscopy (AEM). The nickel oxide layer growing at the interface and the stabilizers used in zirconia interact, giving different interface morphologies

  7. Stability of yttria-stabilized zirconia during pyroprocessing tests

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young, E-mail: eychoi@kaeri.re.kr; Lee, Jeong; Lee, Sung-Jai; Kim, Sung-Wook; Jeon, Sang-Chae; Cho, Soo Haeng; Oh, Seung Chul; Jeon, Min Ku; Lee, Sang Kwon; Kang, Hyun Woo; Hur, Jin-Mok

    2016-07-15

    In this study, the feasibility of yttria-stabilized zirconia (YSZ) was investigated for use as a ceramic material, which can be commonly used for both electrolytic reduction and electrorefining. First, the stability of YSZ in salts for electrolytic reduction and electrorefining was examined. Then, its stability was demonstrated by a series of pyroprocessing tests, such as electrolytic reduction, LiCl distillation, electrorefining, and LiCl−KCl distillation, using a single stainless steel wire mesh basket containing fuel and YSZ. A single basket was used by its transportation from one test to subsequent tests without the requirements for unloading.

  8. Permeability and Microstructure of Suspension Plasma-Sprayed YSZ Electrolytes for SOFCs on Various Substrates

    Science.gov (United States)

    Marr, Michael; Kesler, Olivera

    2012-12-01

    Yttria-stabilized zirconia electrolyte coatings for solid oxide fuel cells were deposited by suspension plasma spraying using a range of spray conditions and a variety of substrates, including finely structured porous stainless steel disks and cathode layers on stainless steel supports. Electrolyte permeability values and trends were found to be highly dependent on which substrate was used. The most gas-tight electrolyte coatings were those deposited directly on the porous metal disks. With this substrate, permeability was reduced by increasing the torch power and reducing the stand-off distance to produce dense coating microstructures. On the substrates with cathodes, electrolyte permeability was reduced by increasing the stand-off distance, which reduced the formation of segmentation cracks and regions of aligned and concentrated porosity. The formation mechanisms of the various permeability-related coating features are discussed and strategies for reducing permeability are presented. The dependences of electrolyte deposition efficiency and surface roughness on process conditions and substrate properties are also presented.

  9. Newly developed EMF cell with zirconia solid electrolyte for measurement of low oxygen potentials in liquid Cu-Cr and Cu-Zr alloys

    Directory of Open Access Journals (Sweden)

    Katayama I.

    2012-01-01

    Full Text Available In order to measure the very low oxygen potential by use of stabilized zirconia solid electrolyte emf method, a new cell construction was devised. The idea was based on Janke but a zirconia rod was used instead of the zirconia crucible which contacts liquid alloy electrode. The cell was used for determination of the oxygen potentials in liquid dilute Cu-Cr and Cu-Zr alloys. The reference electrode was Cr,Cr2O3. Emf measurements were performed in the temperature range of 1400-1580K and composition range of 0.198-3.10at%Cr-Cu alloys, and 1380-1465K, 0.085-0.761at%Zr-Cu alloys. The composition of liquid alloys were determined by picking up from the liquid alloys and ICP analysis. By use of the newly devised cell construction in this study, stable emf values were obtained at each temperature and alloy composition. Emf values were corrected by using the parameter for electronic contribution of the YSZ. Activity of Cr obeys Henry’s law and activity coefficient at infinitely dilute alloys of Cr in Cu-Cr alloys are: lng0 Cr =(3.80 at 1423K, (3.57 at 1473K, (3.38 at 1523K and (3.20 at 1573K. At 1423 K activity coefficient of Zr at infinitely diluted alloy is lnγo Zr = -4.0.

  10. Manufacturing of Electrolyte and Cathode Layers SOFC Using Atmospheric Spraying Method and Its Characterization

    Directory of Open Access Journals (Sweden)

    S. Sulistyo

    2012-12-01

    Full Text Available The use of Solid Oxide Fuel Cell (SOFC has created various interest in many parties, due to its capability to convert gases into electricity. The main requirement of SOFC cell components is to be produced as thin as possible to minimize the losses of electrical resistance, as well as able to support internal and external loads. This paper discusses the procedure of making a thin electrolyte layer, as well as a porous thin layer cathode using atmospheric spraying technique. The procedure of spraying was in room temperature with the process of sintering at temperature of 13500 C held for 3 hours. The SOFC characterization of electrolyte and cathode microstructure was determined by using the SEM, FESEM, XRD and impedance spectroscopy, to measure the impedance of SOFC cells. The results show that the thickness of thin layer electrolyte and porous cathode obtained of about 20 µm and 4 µm, respectively. Also the SOFC cell impedance was measured of 2.3726 x 106 Ω at room temperature. The finding also demonstrated that although the materials (anode, cathode and electrolyte possess different coefficient thermal expansion, there was no evidence of flaking layers which seen the materials remain intact. Thus, the atmospheric spraying method can offer an alternative method to manufacturing of SOFC thin layer electrolyte and cathode. [Key words: SOFC; spraying method; electrolyte; cathode

  11. Densification of zirconia films by coevaporation with silica

    International Nuclear Information System (INIS)

    Feldman, A.; Farabaugh, E.N.

    1985-04-01

    Optical films of zirconia have been receiving considerable attention because of their potential use as the high-index layer in multilayer optical coatings for the ultraviolet portion of the spectrum. Several problems are associated with electron-beam deposited zirconia films, including index instability and index inhomogeneity. The index instability is caused by the adsorption and the desorption of water in the porous columnar structure of the zirconia films. Index inhomogeneity is due to the inhomogeneous structure in the films. Recent work has shown that the first several tens of nanometers of a film possess a cubic structure, whereas the outmost layers possess a monoclinic structure. One approach for producing bulk-like zirzonia films that is receiving considerable attention at present is ion-assisted electron-beam deposition. This is because the method has successfully produced zirconia films having bulk-like densities and refractive indices that show insignificant sensitivity to water adsorption. In this paper a similar effect is demonstrated when mixed zirconia:silica films are produced by coevaporation from independent electron-beam sources, and, in particular, it is shown that the admixture of a small amount of silica with the zirconia produces a film possessing a higher refractive index than a pure zirconia film

  12. Shear bond strength of veneering porcelain to zirconia: Effect of surface treatment by CNC-milling and composite layer deposition on zirconia.

    Science.gov (United States)

    Santos, R L P; Silva, F S; Nascimento, R M; Souza, J C M; Motta, F V; Carvalho, O; Henriques, B

    2016-07-01

    The purpose of this study was to evaluate the shear bond strength of veneering feldspathic porcelain to zirconia substrates modified by CNC-milling process or by coating zirconia with a composite interlayer. Four types of zirconia-porcelain interface configurations were tested: RZ - porcelain bonded to rough zirconia substrate (n=16); PZ - porcelain bonded to zirconia substrate with surface holes (n=16); RZI - application of a composite interlayer between the veneering porcelain and the rough zirconia substrate (n=16); PZI - application of a composite interlayer between the porcelain and the zirconia substrate treated by CNC-milling (n=16). The composite interlayer was composed of zirconia particles reinforced porcelain (30%, vol%). The mechanical properties of the ceramic composite have been determined. The shear bond strength test was performed at 0.5mm/min using a universal testing machine. The interfaces of fractured and untested specimens were examined by FEG-SEM/EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The one-way ANOVA followed by Tukey HSD multiple comparison test was used to compare shear bond strength results (α=0.05). The shear bond strength of PZ (100±15MPa) and RZI (96±11MPa) specimens were higher than that recorded for RZ (control group) specimens (89±15MPa), although not significantly (p>0.05). The highest shear bond strength values were recorded for PZI specimens (138±19MPa), yielding a significant improvement of 55% relative to RZ specimens (p<0.05). This study shows that it is possible to highly enhance the zirconia-porcelain bond strength - even by ~55% - by combining surface holes in zirconia frameworks and the application of a proper ceramic composite interlayer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Effect of various intermediate ceramic layers on the interfacial stability of zirconia core and veneering ceramics.

    Science.gov (United States)

    Yoon, Hyung-In; Yeo, In-Sung; Yi, Yang-Jin; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk

    2015-01-01

    The purposes of this study were to evaluate the effects of intermediate ceramics on the adhesion between the zirconia core and veneer ceramics. The polished surfaces of fully sintered Y-TZP blocks received three different treatments: (1) connector (C), (2) liner (L) or (3) wash layer (W). All the treated zirconia blocks were veneered with either (a) fluorapatite glass-ceramic (E) or (b) feldspathic porcelain (V) and divided into four groups (CE, CV, LE and WV). For the control group, the testing surfaces of metal blocks were veneered with feldspathic porcelain (VM). A half of the samples in each group (n = 21) were exposed to thermocycling, while the other half of the specimens were stored at room temperature under dry conditions. All specimens were subjected to the shear test and the failed surfaces were microscopically examined. The elemental distribution at the zirconia core/veneer interface was analyzed. The specimens in Groups CE and CV exhibited significantly greater mean bond strength values than those in Groups LE and WV, respectively (p ceramic substances into the zirconia surface. A glass-ceramic based connector is significantly more favorable to core/veneer adhesion than the other intermediate ceramics evaluated in the study. However, thermal cycling affected the bond strength at the core/veneer interface differently according to the intermediate ceramics.

  14. Internal-reference solid-electrolyte oxygen sensor

    International Nuclear Information System (INIS)

    Haaland, D.M.

    1977-01-01

    A new solid-electrolyte oxygen sensor has been developed that eliminates the conventional oxygen reference in previous solid-electrolyte oxygen sensor designs and is, therefore, ideally suited as an insertion device for remote oxygen monitoring applications. It is constructed with two cells of stabilized zirconia sealed into a small unit using a new high-temperature platinum-zirconia seal. One electrochemical cell monitors the ratio of oxygen partial pressures inside and outside the sensor while the other solid-electrolyte cell is used for quantitative electrochemical pumping of oxygen. The internal oxygen reference is generated by initially pumping all oxygen out of the known internal volume of the sensor and then quantitatively pumping oxygen back in until oxygen partial pressures are equal inside and out. This information is used with the ideal gas law to calculate oxygen partial pressures. Tests were conducted from 400 to 1000 0 C in mixtures of oxygen and nitrogen spanning approximately 0.2 to 21 percent oxygen concentration range. Sensors with sputtered platinum and porous platinum paste electrodes were compared

  15. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    Science.gov (United States)

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical

  16. On the interfacial fracture of porcelain/zirconia and graded zirconia dental structures.

    Science.gov (United States)

    Chai, Herzl; Lee, James J-W; Mieleszko, Adam J; Chu, Stephen J; Zhang, Yu

    2014-08-01

    Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their susceptibility to fracture remains a practical problem. The failure of PFZ prostheses often involves crack initiation and growth in the porcelain, which may be followed by fracture along the porcelain/zirconia (P/Z) interface. In this work, we characterized the process of fracture in two PFZ systems, as well as a newly developed graded glass-zirconia structure with emphases placed on resistance to interfacial cracking. Thin porcelain layers were fused onto Y-TZP plates with or without the presence of a glass binder. The specimens were loaded in a four-point-bending fixture with the thin porcelain veneer in tension, simulating the lower portion of the connectors and marginal areas of a fixed dental prosthesis (FDP) during occlusal loading. The evolution of damage was observed by a video camera. The fracture was characterized by unstable growth of cracks perpendicular to the P/Z interface (channel cracks) in the porcelain layer, which was followed by stable cracking along the P/Z interface. The interfacial fracture energy GC was determined by a finite-element analysis taking into account stress-shielding effects due to the presence of adjacent channel cracks. The resulting GC was considerably less than commonly reported values for similar systems. Fracture in the graded Y-TZP samples occurred via a single channel crack at a much greater stress than for PFZ. No delamination between the residual glass layer and graded zirconia occurred in any of the tests. Combined with its enhanced resistance to edge chipping and good esthetic quality, graded Y-TZP emerges as a viable material concept for dental restorations. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  17. Effects of grain boundaries at the electrolyte/cathode interfaces on oxygen reduction reaction kinetics of solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Min Gi; Koo, Ja Yang; Ahn, Min Woo; Lee, Won Young [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2017-04-15

    We systematically investigated the effects of grain boundaries (GBs) at the electrolyte/cathode interface of two conventional electrolyte materials, i.e., yttria-stabilized zirconia (YSZ) and gadolinia-doped ceria (GDC). We deposited additional layers by pulsed laser deposition to control the GB density on top of the polycrystalline substrates, obtaining significant improvements in peak power density (two-fold for YSZ and three-fold for GDC). The enhanced performance at high GB density in the additional layer could be ascribed to the accumulation of oxygen vacancies, which are known to be more active sites for oxygen reduction reactions (ORR) than grain cores. GDC exhibited a higher enhancement than YSZ, due to the easier formation, and thus higher concentration, of oxygen vacancies for ORR. The strong relation between the concentration of oxygen vacancies and the surface exchange characteristics substantiated the role of GBs at electrolyte/cathode interfaces on ORR kinetics, providing new design parameters for highly performing solid oxide fuel cells.

  18. Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes

    International Nuclear Information System (INIS)

    Liao, C.-S.; Ye, W.-B.

    2004-01-01

    The oligo(ethylene oxide) modified layered double hydroxide (LDH) prepared by template method was added as a nanoscale nucleating agent into poly(ethylene oxide) (PEO) to form PEO/OLDH nanocomposite electrolytes. The effects of OLDH addition on morphology and conductivities of nanocomposite electrolytes were studied using wide-angle X-ray diffractometer, polarized optical microscopy, differential scanning calorimetry and ionic conductivity measurement. The results show that the exfoliated morphology of nanocomposites is formed due to the surface modification of LDH layers with PEO matrix compatible oligo(ethylene oxide)s. The nanoscale dispersed OLDH layers inhibit the crystal growth of PEO crystallites and result in a plenty amount of intercrystalline grain boundary within PEO/OLDH nanocomposites. The ionic conductivities of nanocomposite electrolytes are enhanced by three orders of magnitude compared to the pure PEO polymer electrolytes at ambient temperature. It can be attributed to the ease transport of Li + along intercrystalline amorphous phase. This novel nanocomposite electrolytes system with high conductivities will be benefited to fabricate the thin-film type of Li-polymer secondary battery

  19. Shear bond strength of indirect composite material to monolithic zirconia.

    Science.gov (United States)

    Sari, Fatih; Secilmis, Asli; Simsek, Irfan; Ozsevik, Semih

    2016-08-01

    This study aimed to evaluate the effect of surface treatments on bond strength of indirect composite material (Tescera Indirect Composite System) to monolithic zirconia (inCoris TZI). Partially stabilized monolithic zirconia blocks were cut into with 2.0 mm thickness. Sintered zirconia specimens were divided into different surface treatment groups: no treatment (control), sandblasting, glaze layer & hydrofluoric acid application, and sandblasting + glaze layer & hydrofluoric acid application. The indirect composite material was applied to the surface of the monolithic zirconia specimens. Shear bond strength value of each specimen was evaluated after thermocycling. The fractured surface of each specimen was examined with a stereomicroscope and a scanning electron microscope to assess the failure types. The data were analyzed using one-way analysis of variance (ANOVA) and Tukey LSD tests (α=.05). Bond strength was significantly lower in untreated specimens than in sandblasted specimens (Pcomposite material and monolithic zirconia.

  20. Development of layered anode structures supported over Apatite-type Solid Electrolytes

    Directory of Open Access Journals (Sweden)

    Pandis P.

    2016-01-01

    Full Text Available Apatite-type lanthanum silicates (ATLS materials have attracted interest in recent literature as solid electrolytes for SOFCs. The fabrication of an ATLS based fuel cell with the state-of-art electrodes (NiO/YSZ as anode and LSCF or LSM as cathode can show degradation after long operation hours due to Si diffusion mainly towards the anode. In this work, we report a “layer-by-layer anodic electrodes” fabrication by means of spin coating and physical spraying. The overall aim of this work is the successful fabrication of such a layered structure including suitable blocking layers towards the inhibition of Si interdiffusion from the apatite electrolyte to the anode. The results showed that the deposition of 3 layers of LFSO/GDC (3μm, NiO/GDC (4μm and the final NiO/YSZ anode layer provided a stable half-cell, with no solid state reaction occurring among the electrodes and no Si diffusion observed towards the anode after thermal treatment at 800°C for 120h.

  1. Spray pyrolysis of doped-ceria barrier layers for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Szymczewska, Dagmara; Chrzan, Aleksander; Karczewski, Jakub

    2017-01-01

    Gadolinium doped ceria (Ce0.8Gd0.2O2 − x-CGO) layer fabricated by spray pyrolysis is investigated as the diffusion barrier for solid oxide fuel cell. It is deposited between the La0.6Sr0.4FeO3 − δ cathode and the yttria stabilized zirconia electrolyte to mitigate harmful interdiffusion...

  2. Fabrication of thin yttria-stabilized-zirconia dense electrolyte layers by inkjet printing for high performing solid oxide fuel cells

    DEFF Research Database (Denmark)

    Esposito, Vincenzo; Gadea, Christophe; Hjelm, Johan

    2015-01-01

    In this work, we present how a low-cost HP Deskjet 1000 inkjet printer was used to fabricate a 1.2 mm thin, dense and gas tight 16 cm2 solid oxide fuel cells (SOFC) electrolyte. The electrolyte was printed using an ink made of highly diluted (

  3. Correlation between Thermal Treatment and Phase Transformation in Nanocrystalline Stabilized Zirconia

    Directory of Open Access Journals (Sweden)

    Tajudeen Oladele AHMED

    2013-06-01

    Full Text Available Stabilized zirconia produced via wet chemistry has chemically higher uniformity and purity. However, the grain size, particle shape, agglomerate size and specific surface area can be modified within certain degree by controlling the precipitation and sintering conditions. Generally, any physical or chemical difference between phases or effect occurring on the appearance or disappearance of a phase can be determined via thermal analysis and X-ray Diffractometry coupled with electron microscopy. In the last few decades, these materials have received tremendous attention globally in the field of defect solid-state devices. However, the challenge in this field of research has been to study thermal behaviour of these electrolytes during phase transformations and develop improved electrolytes with low activation temperature in the range of 600°C-800°C. In this paper, we report the wet chemistry of bismuth oxide stabilized zirconia having high experimental yield and low transformation temperature. Thus, the phase transformation from amorphous Zirconia to monoclinic is reported to begin above 600oC to an optimum temperature of 700oC. After calcination at 800oC for 4h, the powder have narrow particle size distribution in the range of 63-101µm. The average crystallite sizes of the synthesized powders range from 8-33nm.

  4. Sol–gel zirconia nanopowders with α-cyclodextrin as organic additive

    International Nuclear Information System (INIS)

    Răileanu, M.; Todan, L.; Crişan, D.; Drăgan, N.; Crişan, M.; Stan, C.; Andronescu, C.; Voicescu, M.; Vasile, B.S.; Ianculescu, A.

    2012-01-01

    Highlights: ► The sol–gel synthesis of a zirconia powder has been performed, in the presence of α-cyclodextrin as organic additive. ► A crystalline powder consisting from a mixture of monoclinic and tetragonal zirconia phases has resulted after the thermal treatment. ► The organic additive acted the role of metal oxides used as doppants for zirconia powders, avoiding phase transformations. ► The α-cyclodextrin made particles to assume spherical shape and reach fairly uniform size and prevented their agglomeration. ► The organic additive led to a certain porous morphology of the zirconia particles that is pores embedded within grains. - Abstract: Nanomaterials present unique structural and physicochemical properties due to their ultra fine size of particles that make them very useful in many domains. The most spectacular applications of nanosized zirconia include ceramics, piezoelectrics, refractories, pigments, solid electrolytes, oxygen sensors, catalysts, ultrafiltration membranes, and chromatography packing materials. Nanostructured zirconia powders can be prepared using various methods, such as sol–gel process, coprecipitation, hydrothermal synthesis, and reverse micelle method. The aim of the present work was to prepare zirconia nanopowders through the sol–gel method, using α-cyclodextrin as organic additive and to establish its influence on the structural and textural properties of the obtained product. A white, amorphous ZrO 2 powder containing α-cyclodextrin was prepared, which became a crystalline, stable one, after removing the organic matter by thermal treatment. The resulted nanocrystalline powder contains both monoclinic and tetragonal zirconia phases and is very stable. It presents a relatively reduced tendency of agglomeration of particles and contains closed pores which are embedded in the zirconia matrix. The zirconia powders were characterized using the following methods: thermal analysis, IR spectroscopy, UV–vis spectroscopy

  5. Zirconia-based solid state chemical gas sensors

    CERN Document Server

    Zhuiykov, S

    2000-01-01

    This paper presents an overview of chemical gas sensors, based on solid state technology, that are sensitive to environmental gases, such as O sub 2 , SO sub x , NO sub x , CO sub 2 and hydrocarbons. The paper is focussed on performance of electrochemical gas sensors that are based on zirconia as a solid electrolyte. The paper considers sensor structures and selection of electrode materials. Impact of interfaces on sensor performance is discussed. This paper also provides a brief overview of electrochemical properties of zirconia and their effect on sensor performance. Impact of auxiliary materials on sensors performance characteristics, such as sensitivity, selectivity, response time and recovery time, is also discussed. Dual gas sensors that can be applied for simultaneous monitoring of the concentration of both oxygen and other gas phase components, are briefly considered

  6. Three-Point Bending Tests of Zirconia Core/Veneer Ceramics for Dental Restorations

    Directory of Open Access Journals (Sweden)

    Massimo Marrelli

    2013-01-01

    Full Text Available Introduction. The mechanical strength and the surface hardness of commercially available yttrium-doped zirconia were investigated. Furthermore, a comparative study of eight different ceramic veneers, to be used for the production of two-layered all-ceramic restorative systems, was carried out. Materials and Methods. Four types of zirconia specimens were analyzed, according to a standard ISO procedure (ISO 6872. Besides, two-layered zirconia-veneer specimens were prepared for three-point bending tests. Results. A strong effect of the surface roughness on the mechanical strength of zirconia specimens was observed. Finally, a comparative study of eight commercially available veneering ceramics shows different modes of failure between the selected veneers. Conclusion. The results indicate that close attention should be paid to the preparation of zirconia-based crowns and bridges by CAD/CAM process, because surface roughness has an important effect on the mechanical strength of the material. Finally, the results of the mechanical tests on two-layered specimens represent an important support to the choice of the veneering ceramic.

  7. Synthesis and characterization of Yttria-stabilized-zirconia by spray pyrolysis

    International Nuclear Information System (INIS)

    Melo Halmenschlager, Cibele; Vieira, Ramaugusto; Shigueaki Takimi, Antonio; Lima da Silva, Aline; De Fraga Malfatti, Celia; Perez Bergmann, Carlos

    2003-01-01

    Yttria-stabilized-zirconia (YSZ) has been object of many studies due to its great chemical stability and excellent ionic conduction in high temperature. One of the applications of YSZ films is the use as electrolyte in solid oxide fuel cells (SOFC). The great challenge of the SOFC is the development of a intermediary temperature solid oxide fuel cell (ITSOFC) to work in a temperature around 700 o C with the same efficiency of high temperature SOFC, with this aim fuel cells utilizing thin electrolyte films ha been developed. Traditional techniques of thin films deposition as Combustion Vapour Deposition (CVD) and Sputtering are very expensive, the reagents must be very pure and it is necessary to use a system of vacuum. Spray pyrolysis is a good alternative to deposit dense films with thickness between 0,1 and 10 . This technique has a lot of advantages front to classic methods of deposition because of the simplicity of the process and the equipment, low cost, and minimal waste production. In this process, when the parameters are very well controlled, it is possible to obtain oxide films with high quality. In the present work, amorphous films consisted of a layer of 8 mol% Yttria-stabilized zirconia were produced by spray pyrolysis and heat treated to obtain crystalline films. The film was prepared with zirconium acetylacetonate (Zr(C 6 H 7 O 2 ) 4 ) and yttrium chloride (YCl 3 .6H 2 O), dissolved in ethanol (C 2 H 6 O) and diethylene glycol butyl ether (C 8 H 18 O 3 ) mixed in the volume ratio of 1:1, and a disk of steel 316L was used as substrate. The amorphous film was deposited in the substrate heat until 280 o C ± 50 o C and after deposition from thermal treatment at 700 o C, the amorphous film was changed into Yttria-stabilized-zirconia crystalline film. The precursor solution was characterized for the Differential Thermal Analysis (DTA). The morphology and crystallinity of the films was investigated by scanning electron microscopy (SEM) and X-ray diffraction

  8. Atomic Layer Deposition Alumina-Passivated Silicon Nanowires: Probing the Transition from Electrochemical Double-Layer Capacitor to Electrolytic Capacitor.

    Science.gov (United States)

    Gaboriau, Dorian; Boniface, Maxime; Valero, Anthony; Aldakov, Dmitry; Brousse, Thierry; Gentile, Pascal; Sadki, Said

    2017-04-19

    Silicon nanowires were coated by a 1-5 nm thin alumina layer by atomic layer deposition (ALD) in order to replace poorly reproducible and unstable native silicon oxide by a highly conformal passivating alumina layer. The surface coating enabled probing the behavior of symmetric devices using such electrodes in the EMI-TFSI electrolyte, allowing us to attain a large cell voltage up to 6 V in ionic liquid, together with very high cyclability with less than 4% capacitance fade after 10 6 charge/discharge cycles. These results yielded fruitful insights into the transition between an electrochemical double-layer capacitor behavior and an electrolytic capacitor behavior. Ultimately, thin ALD dielectric coatings can be used to obtain hybrid devices exhibiting large cell voltage and excellent cycle life of dielectric capacitors, while retaining energy and power densities close to the ones displayed by supercapacitors.

  9. Diffuse layer effects on the current in galvanic cells containing supporting electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Soestbergen, M. van, E-mail: m.vansoestbergen@tudelft.n [Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Department of Precision and Microsystems Engineering, University of Technology Delft, Mekelweg 2, 2628 CD Delft (Netherlands)

    2010-02-01

    We study the effect of an inert supporting electrolyte on the steady-state ionic current through galvanic cells by solving the full Poisson-Nernst-Planck transport equation coupled to the generalized Frumkin-Butler-Volmer boundary equation for the electrochemical charge transfer at the electrodes. Consequently, the model presented here allows for non-zero space charge densities locally at the electrodes, thus extending the frequently used models based on the local electroneutrality condition by including diffuse layer (DL) effects. This extension is necessary since the DLs determine the ion concentration and electrical field at the reaction planes, which uniquely determine the charge transfer at the electrodes. In this work we present numerical results for systems which contain added inert supporting electrolyte using finite element discretization and compare those with semi-analytical results obtained using singular perturbation theory (limit of negligibly thin DLs). In case of negligibly thin DLs the presence of supporting electrolyte will introduce a limiting current below the classical diffusion-limiting current. Just as for systems without supporting electrolyte, the supporting electrolyte induced limiting current formally does not occur for systems having non-negligibly thin double DLs. For thin, however still finite, double layers this limit can still be seen as a steepening of the polarization curve for current vs. voltage.

  10. Diffuse layer effects on the current in galvanic cells containing supporting electrolyte

    International Nuclear Information System (INIS)

    Soestbergen, M. van

    2010-01-01

    We study the effect of an inert supporting electrolyte on the steady-state ionic current through galvanic cells by solving the full Poisson-Nernst-Planck transport equation coupled to the generalized Frumkin-Butler-Volmer boundary equation for the electrochemical charge transfer at the electrodes. Consequently, the model presented here allows for non-zero space charge densities locally at the electrodes, thus extending the frequently used models based on the local electroneutrality condition by including diffuse layer (DL) effects. This extension is necessary since the DLs determine the ion concentration and electrical field at the reaction planes, which uniquely determine the charge transfer at the electrodes. In this work we present numerical results for systems which contain added inert supporting electrolyte using finite element discretization and compare those with semi-analytical results obtained using singular perturbation theory (limit of negligibly thin DLs). In case of negligibly thin DLs the presence of supporting electrolyte will introduce a limiting current below the classical diffusion-limiting current. Just as for systems without supporting electrolyte, the supporting electrolyte induced limiting current formally does not occur for systems having non-negligibly thin double DLs. For thin, however still finite, double layers this limit can still be seen as a steepening of the polarization curve for current vs. voltage.

  11. Bi-layered zirconia/fluor-apatite bridges supported by ceramic dental implants: a prospective case series after thirty months of observation.

    Science.gov (United States)

    Spies, Benedikt Christopher; Witkowski, Siegbert; Butz, Frank; Vach, Kirstin; Kohal, Ralf-Joachim

    2016-10-01

    The aim of this study was to determine the success and survival rate of all-ceramic bi-layered implant-supported three-unit fixed dental prostheses (IS-FDPs) 3 years after implant placement. Thirteen patients (seven males, six females; age: 41-78 years) received two one-piece ceramic implants (alumina-toughened zirconia) each in the region of the premolars or the first molar and were finally restored with adhesively cemented bi-layered zirconia-based IS-FDPs (3 in the maxilla, 10 in the mandible) composed of CAD/CAM-fabricated zirconia frameworks pressed-over with fluor-apatite glass-ceramic ingots. At prosthetic delivery and the follow-ups after 1, 2 and 3 years, the restorations were evaluated using modified United States Public Health Service (USPHS) criteria. Restorations with minor veneer chippings, a small-area occlusal roughness, slightly soundable restoration margins, minimal contour deficiencies and tolerable color deviations were regarded as success. In case of more distinct defects that could, however, be repaired to a clinically acceptable level, IS-FDPs were regarded as surviving. Kaplan-Meier plots were used for the success/survival analyses. To verify an impact on subjective patients' perceptions, satisfaction was evaluated by visual analog scales (VAS). All patients were seen 3 years after implant installation. No IS-FDP had to be replaced, resulting in 100% survival after a mean observation period of 29.5 months (median: 30.7). At the 3-year follow-up, 7/13 IS-FDPs showed a veneer chipping, 13/13 an occlusal roughness and 12/13 minimal deficiencies of contour/color. Since six restorations showed a major chipping and/or a major occlusal roughness, the Kaplan-Meier success rate was 53.8%. However, patients' significantly improved perceptions of function, esthetics, sense, and speech at prosthetic delivery remained stable over time. Bi-layered zirconia/fluor-apatite IS-FDPs entirely survived the observation period but showed a high frequency of

  12. Electrolyte for batteries with regenerative solid electrolyte interface

    Science.gov (United States)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan; Bennett, Wendy D.; Graff, Gordon L.; Liu, Jun; Zhang, Ji-Guang

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  13. Nickel/Yttria-stabilised zirconia cermet anodes for solid oxide fuel cells

    NARCIS (Netherlands)

    Primdahl, Søren

    1999-01-01

    This thesis deals with the porous Ni/yttria-stabilized zirconia (YSZ) cermet anode on a YSZ electrolyte for solid oxide fuel cells (SOFC). Such anodes are predominantly operated in moist hydrogen at 700°C to 1000°C, and the most important technological parameters are the polarization resistance and

  14. Yield stress of alumina-zirconia suspensions

    International Nuclear Information System (INIS)

    Ramakrishnan, V.; Pradip; Malghan, S.G.

    1996-01-01

    The yield stress of concentrated suspensions of alumina, zirconia, and mixed alumina-zirconia powders was measured by the vane technique as a function of solids loading, relative amounts of alumina and zirconia, and pH. At the isoelectric point (IEP), the yield stress varied as the fourth power of the solids loading. The relative ratio of alumina and zirconia particles was important in determining the yield stress of the suspension at the IEP. The yield stress of single and mixed suspensions showed a marked variation with pH. The maximum value occurred at or near the IEP of the suspension. The effect of electrical double-layer forces on the yield stress can be described on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. A normalized yield stress--that is, the ratio of the yield stress at a given pH to the yield stress at the IEP predicted by this model--showed good correlation with experimental data

  15. Co-extrusion of electrolyte/anode functional layer/anode triple-layer ceramic hollow fibres for micro-tubular solid oxide fuel cells-electrochemical performance study

    Science.gov (United States)

    Li, Tao; Wu, Zhentao; Li, K.

    2015-01-01

    In this study, the effects of an anode functional layer (AFL) with controlled thickness on physical and electrochemical properties of a micro-tubular SOFC have been systematically studied. A series of electrolyte/AFL/anode triple-layer hollow fibres with controllable AFL thicknesses (16.9-52.7 μm) have been fabricated via a single-step phase-inversion assisted co-extrusion technique. Both robustness of the cell and gas-tightness of the electrolyte layer are considerably improved by introducing the AFL of this type. The fracture force of the sample with the thickest AFL (9.67 N) almost doubles when compared to the electrolyte/anode dual-layer counterpart (5.24 N). Gas-tightness of the electrolyte layer is also considerably increased as AFL contributes to better-matched sintering behaviours between different components. Moreover, the formation of an AFL simultaneously with electrolyte and anode significantly improves the cell performances. The sample with the thinnest AFL (approximately 16.9 μm, 6% of the total anode thickness) leads to a 30% (from 0.89 to 1.21 W cm-2) increase in maximum power density, due to increased triple-phase boundaries (TPB). However, further increase in TPB from a thicker AFL is less effective for improving the cell performance, due to the substantially increased fuel diffusion resistance and subsequently higher concentration polarization. This indicates that the control over the AFL thickness is critically important in avoiding offsetting the benefits of extended TPB and consequently decreased cell performances.

  16. Yttria and ceria doped zirconia thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Saporiti, F.; Juarez, R. E., E-mail: cididi@fi.uba.ar [Grupo de Materiales Avanzados, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Audebert, F. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Boudard, M. [Laboratoire des Materiaux et du Genie Physique (CNRS), Grenoble (France)

    2013-11-01

    The Yttria stabilized Zirconia (YSZ) is a standard electrolyte for solid oxide fuel cells (SOFCs), which are potential candidates for next generation portable and mobile power sources. YSZ electrolyte thin films having a cubic single phase allow reducing the SOFC operating temperature without diminishing the electrochemical power density. Films of 8 mol% Yttria stabilized Zirconia (8YSZ) and films with addition of 4 weight% Ceria (8YSZ + 4CeO{sub 2}) were grown by pulsed laser deposition (PLD) technique using 8YSZ and 8YSZ + 4CeO{sub 2} targets and a Nd-YAG laser (355 nm). Films have been deposited on Soda-Calcia-Silica glass and Si(100) substrates at room temperature. The morphology and structural characteristics of the samples have been studied by means of X-ray diffraction and scanning electron microscopy. Films of a cubic-YSZ single phase with thickness in the range of 1-3 Micro-Sign m were grown on different substrates (author)

  17. Method of making a cermet fuel electrode containing an inert additive

    Science.gov (United States)

    Jensen, Russel R.

    1992-01-01

    An electrode is attached to a solid electrolyte material by: (1) mixing a metallic nickel component and 1 wt% to 10 wt% of yttria stabilized zirconia having particle diameters up to 3 micrometers with an organic binder solution to form a slurry, (2) applying the slurry to a solid zirconia electrolyte material, (3) heating the slurry to drive off the organic binder and form a porous layer of metallic nickel substantially surrounded and separated by the zirconia particles, and (4) electro-chemical vapor depositing a skeletal structure between and around the metallic nickel and the zirconia particles where the metallic nickel components do not substantially sinter to each other, yet the layer remains porous.

  18. Increased cathode performance using a thin film LSM layer on a structured 8YSZ electrolyte surface

    Energy Technology Data Exchange (ETDEWEB)

    Herbstritt, D.; Weber, A.; Ivers-Tiffee, E. [Karlsruhe Univ. (T.H.) (DE). Inst. fuer Werkstoffkunde der Elektrotechnik (IWE); Guntow, U.; Mueller, G. [Fraunhofer-Institut fuer Silicatforschung (ISC), Wuerzburg (Germany)

    2000-07-01

    A considerable part of the power losses in a SOFC single cell occurs due to the polarization resistance of the cathode/electrolyte interface. The resulting high cathodic overvoltage corresponds to an enhanced degradation of the cell. In case of a screen printed LSM cathode layer (LSM: La{sub 1-x}Sr{sub x}MnO{sub 3}) on a YSZ electrolyte substrate (YSZ: Y{sub 2}O{sub 3} stabilised ZrO{sub 2}) the cathodic reaction is generally assumed to be restricted to the three phase boundary (tpb) between cathode, oxidant and the electrolyte surface. The electrochemical active area was increased by a modification of the cathode/electrolyte interface. Single cells with a thin film LSM layer on a structured 8YSZ electrolyte showed a power output of about 0.95 W/cm{sup 2} at 0.7 V cell voltage (950 C; oxidant: air, 0.7 1/min; fuel: hydrogen, 0.5 1/min, 15% fuel utilization). (orig.)

  19. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface

    Science.gov (United States)

    Brown, Matthew A.; Abbas, Zareen; Kleibert, Armin; Green, Richard G.; Goel, Alok; May, Sylvio; Squires, Todd M.

    2016-01-01

    The structure of the electrical double layer has been debated for well over a century, since it mediates colloidal interactions, regulates surface structure, controls reactivity, sets capacitance, and represents the central element of electrochemical supercapacitors. The surface potential of such surfaces generally exceeds the electrokinetic potential, often substantially. Traditionally, a Stern layer of nonspecifically adsorbed ions has been invoked to rationalize the difference between these two potentials; however, the inability to directly measure the surface potential of dispersed systems has rendered quantitative measurements of the Stern layer potential, and other quantities associated with the outer Helmholtz plane, impossible. Here, we use x-ray photoelectron spectroscopy from a liquid microjet to measure the absolute surface potentials of silica nanoparticles dispersed in aqueous electrolytes. We quantitatively determine the impact of specific cations (Li+ , Na+ , K+ , and Cs+ ) in chloride electrolytes on the surface potential, the location of the shear plane, and the capacitance of the Stern layer. We find that the magnitude of the surface potential increases linearly with the hydrated-cation radius. Interpreting our data using the simplest assumptions and most straightforward understanding of Gouy-Chapman-Stern theory reveals a Stern layer whose thickness corresponds to a single layer of water molecules hydrating the silica surface, plus the radius of the hydrated cation. These results subject electrical double-layer theories to direct and falsifiable tests to reveal a physically intuitive and quantitatively verified picture of the Stern layer that is consistent across multiple electrolytes and solution conditions.

  20. Interaction between two parallel plates covered with a polyelectrolyte brush layer in an electrolyte solution.

    Science.gov (United States)

    Ohshima, Hiroyuki

    An approximate analytic expression is derived for the interaction energy between two parallel plates covered with a polyelectrolyte brush layer in an electrolyte solution. The interaction energy has three components: electrostatic interaction energy between two brush layers before and after their contact, steric interaction energy between two brush layers after their contact, and the van der Waals interaction energy between the cores of the plates. It is shown that these three components are of the same order of magnitude and contribute equally to the total interaction energy between two polyelectrolyte-coated plates in an electrolyte solution. On the basis of Derjaguin's approximation, an approximate expression for the interaction energy between two spherical particles covered with polyelectrolyte brush layers is also derived.

  1. Zinc-air cell with KOH-treated agar layer between electrode and electrolyte containing hydroponics gel

    Energy Technology Data Exchange (ETDEWEB)

    Otham, R. [International Islamic University, Kuala Lumpur (Malaysia); Yahaya, A. H. [University of Malaya, Dept. of Chemistry, Kuala Lumpur (Malaysia); Arof, A. K. [University of Malaya, Dept. of Physics, Kuala Lumpur (Malaysia)

    2002-07-01

    Zinc-air electrochemical power sources possess the highest density compared to other zinc anode batteries, due their free and unlimited supply from the ambient air. In this experiment zinc-air cells have been fabricated employing hydroponics gel as an alternative alkaline electrolyte gelling agent. Thin KOH-treated agar layer was applied between the electrode-electrolyte interfaces which produced significant enhancement of the cells' capacities, indicating that the application of thin agar layer will improve the electrode-gelled electrolyte interfaces. Promising results have been achieved with porous zinc anode prepared from dried zinc-graphite-gelatinized agar paste; e g. a zinc-air cell employing a porous zinc anode has demonstrated a capacity of 1470 mAh rated at 0.1 A continuous discharge. 32 refs., 9 figs.

  2. Effects of surface treatment on bond strength between dental resin agent and zirconia ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Moradabadi, Ashkan [Department of Electrochemistry, Universität Ulm, Ulm (Germany); Roudsari, Sareh Esmaeily Sabet [Department of Optoelectonics, Universität Ulm, Ulm (Germany); Yekta, Bijan Eftekhari [School of Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Rahbar, Nima, E-mail: nrahbar@wpi.edu [Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 (United States)

    2014-01-01

    This paper presents the results of an experimental study to understand the dominant mechanism in bond strength between dental resin agent and zirconia ceramic by investigating the effects of different surface treatments. Effects of two major mechanisms of chemical and micromechanical adhesion were evaluated on bond strength of zirconia to luting agent. Specimens of yttrium-oxide-partially-stabilized zirconia blocks were fabricated. Seven groups of specimens with different surface treatment were prepared. 1) zirconia specimens after airborne particle abrasion (SZ), 2) zirconia specimens after etching (ZH), 3) zirconia specimens after airborne particle abrasion and simultaneous etching (HSZ), 4) zirconia specimens coated with a layer of a Fluorapatite-Leucite glaze (GZ), 5) GZ specimens with additional acid etching (HGZ), 6) zirconia specimens coated with a layer of salt glaze (SGZ) and 7) SGZ specimens after etching with 2% HCl (HSGZ). Composite cylinders were bonded to airborne-particle-abraded surfaces of ZirkonZahn specimens with Panavia F2 resin luting agent. Failure modes were examined under 30 × magnification and the effect of surface treatments was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SZ and HSZ groups had the highest and GZ and SGZ groups had the lowest mean shear bond strengths among all groups. Mean shear bond strengths were significantly decreased by applying a glaze layer on zirconia surfaces in GZ and SGZ groups. However, bond strengths were improved after etching process. Airborne particle abrasion resulted in higher shear bond strengths compared to etching treatment. Modes of failure varied among different groups. Finally, it is concluded that micromechanical adhesion was a more effective mechanism than chemical adhesion and airborne particle abrasion significantly increased mean shear bond strengths compared with another surface treatments. - Highlights: • Understanding the dominant mechanism of bonding

  3. Solid state electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  4. Bulk Concentration Dependence of Electrolyte Resistance Within Mesopores of Carbon Electrodes in Electric Double-Layer Capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaekwang; Kim, Daeun; Lee, Ilbok; Son, Hyungbin; Lee, Donghyun; Yoon, Songhun [Chung-Ang University, Seoul (Korea, Republic of); Shim, Hyewon [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of); Lee, Jinwoo [POSTECH, Pohang (Korea, Republic of)

    2016-02-15

    Hexagonally ordered mesoporous carbon materials were prepared and used as electrode materials in an electric double-layer capacitor. Using this electrode, the change of electrolyte resistance within the mesopores was investigated according to the bulk electrolyte concentration. Using three different electrochemical transient experiments-imaginary capacitance analysis, chronoamperometry, and hronopotentiometry-the time constant associated with electrolyte transport was determined, which was then used to obtain the electrolyte resistance within the mesopores. With decreasing electrolyte concentration, the increase in electrolyte resistance was smaller than the increase in the resistivity of the bulk electrolyte, which is indicative of a different environment for ionic transport within the mesopores. On using the confinement effect within the mesopores, the predicted higher concentration within mesopore probably results in lower electrolyte resistance, especially under low bulk concentrations.

  5. Determination of Surface Potential and Electrical Double-Layer Structure at the Aqueous Electrolyte-Nanoparticle Interface

    Directory of Open Access Journals (Sweden)

    Matthew A. Brown

    2016-01-01

    Full Text Available The structure of the electrical double layer has been debated for well over a century, since it mediates colloidal interactions, regulates surface structure, controls reactivity, sets capacitance, and represents the central element of electrochemical supercapacitors. The surface potential of such surfaces generally exceeds the electrokinetic potential, often substantially. Traditionally, a Stern layer of nonspecifically adsorbed ions has been invoked to rationalize the difference between these two potentials; however, the inability to directly measure the surface potential of dispersed systems has rendered quantitative measurements of the Stern layer potential, and other quantities associated with the outer Helmholtz plane, impossible. Here, we use x-ray photoelectron spectroscopy from a liquid microjet to measure the absolute surface potentials of silica nanoparticles dispersed in aqueous electrolytes. We quantitatively determine the impact of specific cations (Li^{+}, Na^{+}, K^{+}, and Cs^{+} in chloride electrolytes on the surface potential, the location of the shear plane, and the capacitance of the Stern layer. We find that the magnitude of the surface potential increases linearly with the hydrated-cation radius. Interpreting our data using the simplest assumptions and most straightforward understanding of Gouy-Chapman-Stern theory reveals a Stern layer whose thickness corresponds to a single layer of water molecules hydrating the silica surface, plus the radius of the hydrated cation. These results subject electrical double-layer theories to direct and falsifiable tests to reveal a physically intuitive and quantitatively verified picture of the Stern layer that is consistent across multiple electrolytes and solution conditions.

  6. Electrochemical characterization of pulsed layer deposited hydroxyapatite-zirconia layers on Ti-21Nb-15Ta-6Zr alloy for biomedical application

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Javier [Department of Chemistry, Universidad de La Laguna, P.O. Box 456, E-38200 La Laguna, Tenerife (Spain); Bolat, Georgiana [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Cimpoesu, Nicanor [“Gheorghe Asachi” Technical University of Iasi, Faculty of Materials Science, 61-63 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Trinca, Lucia Carmen [Science Department, University of Agricultural Sciences and Veterinary Medicine, M. Sadoveanu Alley 3, 700490 Iasi (Romania); Mareci, Daniel, E-mail: danmareci@yahoo.com [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. Dr. Doc. D. Mangeron Street, 700050 Iasi (Romania); Souto, Ricardo Manuel, E-mail: rsouto@ull.es [Department of Chemistry, Universidad de La Laguna, P.O. Box 456, E-38200 La Laguna, Tenerife (Spain); Institute of Material Science and Nanotechnology, Universidad de La Laguna, E-38200 La Laguna, Tenerife (Spain)

    2016-11-01

    Highlights: • New quarternary Ti-based alloy for biomaterial application. • Combined hydroxyapatite-zirconia coating produced by pulsed laser deposition. • Porous layer formed on the coated alloy blocks electron transfer reactions. • Electrochemical behaviour consistent with passive film with duplex structure. • HA–ZrO{sub 2} coated Ti-21Nb-15Ta-6Zr exhibits high potential for osseointegration. - Abstract: A new titanium base Ti-21Nb-15Ta-6Zr alloy covered with hydroxyapatite-zirconia (HA–ZrO{sub 2}) by pulsed laser deposition (PLD) technique was characterized regarding its corrosion resistance in simulated physiological Ringer’s solution at 37 °C. For the sake of comparison, Ti-6Al-4V standard implant alloy, with and without hydroxyapatite-zirconia coating, was also characterized. Multiscale electrochemical analysis using both conventional averaging electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization, and spatially-resolved microelectrochemical techniques (scanning electrochemical microscopy, SECM) were used to investigate the electrochemical behaviour of the materials. In addition, scanning electron microscopy evidenced that no relevant surface morphology changes occurred on the materials upon immersion in the simulated physiological solution, despite variations in their electrochemical behaviour. Although uncoated metals appear to show better performances during conventional corrosion tests, the response is still quite similar for the HA–ZrO{sub 2} coated materials while providing superior resistance towards electron transfer due to the formation of a more dense film on the surface, thus effectively behaving as a passive material. It is believed corrosion of the HA–ZrO{sub 2} coated Ti-21Nb-15Ta-6Zr alloy will have negligible effect upon biochemical and cellular events at the bone-implant interface and could facilitate osseointegration.

  7. FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.

    Science.gov (United States)

    Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E

    2012-01-10

    Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.

  8. Growth and micro structural studies on Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, S.; Bhatnagar, A.K. [Univ. of Hyderabad (India); Pinto, R. [Solid State Electronics Group, Bombay (India)] [and others

    1994-12-31

    Microstructure of Yittria Stabilized Zirconia (YSZ) and Strontium Titanate (STO) of radio frequency magnetron sputtered buffer layers was studied at various sputtering conditions on Si<100>, Sapphire and LaAlO{sub 3} <100> substrates. The effect of substrate temperatures upto 800 C and sputtering gas pressures in the range of 50 mTorr. of growth conditions was studied. The buffer layers of YSZ and STO showed a strong tendency for columnar structure with variation growth conditions. The buffer layers of YSZ and STO showed orientation. The tendency for columnar growth was observed above 15 mTorr sputtering gas pressure and at high substrate temperatures. Post annealing of these films in oxygen atmosphere reduced the oxygen deficiency and strain generated during growth of the films. Strong c-axis oriented superconducting YBa{sub 2}Cu{sub 9}O{sub 7-x} (YBCO) thin films were obtained on these buffer layers using pulsed laser ablation technique. YBCO films deposited on multilayers of YSZ and STO were shown to have better superconducting properties.

  9. Ni-YSZ cermet substrate supported thin SDC and YSZ+SDC bi-layer SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Robertson, M.; Deces-Petit, C.; Xie, Y.; Hui, R.; Yick, S.; Styles, E.; Roller, J.; Kesler, O.; Qu, W.; Jankovic, J.; Tang, Z.; Perednis, D.; Maric, R.; Ghosh, D. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2005-07-01

    One of the disadvantages of a ceria-based electrolyte is that it becomes a mixed conductor at anode conditions, which causes cell voltage loss and fuel efficiency loss due to internal shorting. Chemical and mechanical stability is another concern for long-term service. To lower manufacturing costs, efforts have been made to bring proven semiconductor manufacturing technology to Solid Oxide Fuel Cells (SOFCs). This study employed Tape casting of cermet substrates, Screen-printing of functional layers and Co-firing of cell components (TSC) to fabricate nickel (Ni)-cermet supported cells with mainly ceria-based thin electrolytes. Ni-Yttria-Stabilized Zirconia (YSZ) cermet supported cell with Samaria Doped Ceria (SDC) single layer electrolytes and YSZ+SDC bi-layer electrolytes were successfully developed for low-temperature performance characterization. The elemental distribution at the cell interface was mapped and the electrochemical performance of the cells was recorded. Many high-Zr-content micro-islands were found on the thin SDC surface. The influence of co-firing temperature and thin-film preparation methods on the Zr-islands' appearance was also investigated. Using in-situ sintered cathodes, high performance of the SDC cells was obtained. It was concluded that the bi-layer cells did show higher Open Circuit Voltage (OCV) values, with 1180 mW/cm{sup 2} at 650 degrees C, as well as good performance at 700-800 degrees C, with near OCV value. However, their performance was much lower than those of the SDC cells at low operating temperature. Zr-micro-islands formation on the SDC electrolyte was observed and investigated. 6 refs., 5 tabs., 7 figs.

  10. Accelerated ceria–zirconia solubilization by cationic diffusion inversion at low oxygen activity

    DEFF Research Database (Denmark)

    Esposito, Vincenzo; Ni, De Wei; Marani, Debora

    2016-01-01

    Fast elemental diffusion at the Gd-doped ceria/Y-stabilized zirconia interface occurs under reducing conditions at low oxygen activity (pO2 < 10−12 atm) and high temperature (1400 °C). This effect leads to formation of thick ceria–zirconia solid solution reaction layers in the micro-range vs. thi...

  11. Characterization of metal-supported axial injection plasma sprayed solid oxide fuel cells with aqueous suspension plasma sprayed electrolyte layers

    Science.gov (United States)

    Waldbillig, D.; Kesler, O.

    A method for manufacturing metal-supported SOFCs with atmospheric plasma spraying (APS) is presented, making use of aqueous suspension feedstock for the electrolyte layer and dry powder feedstock for the anode and cathode layers. The cathode layer was deposited first directly onto a metal support, in order to minimize contact resistance, and to allow the introduction of added porosity. The electrolyte layers produced by suspension plasma spraying (SPS) were characterized in terms of thickness, permeability, and microstructure, and the impact of substrate morphology on electrolyte properties was investigated. Fuel cells produced by APS were electrochemically tested at temperatures ranging from 650 to 750 °C. The substrate morphology had little effect on open circuit voltage, but substrates with finer porosity resulted in lower kinetic losses in the fuel cell polarization.

  12. Characterization of metal-supported axial injection plasma sprayed solid oxide fuel cells with aqueous suspension plasma sprayed electrolyte layers

    Energy Technology Data Exchange (ETDEWEB)

    Waldbillig, D. [University of British Columbia, Department of Materials Engineering, 309-6350 Stores Road, Vancouver, BC (Canada); Kesler, O. [University of Toronto, Department of Mechanical and Industrial Engineering, 5 King' s College Road, Toronto, Ontario (Canada)

    2009-06-15

    A method for manufacturing metal-supported SOFCs with atmospheric plasma spraying (APS) is presented, making use of aqueous suspension feedstock for the electrolyte layer and dry powder feedstock for the anode and cathode layers. The cathode layer was deposited first directly onto a metal support, in order to minimize contact resistance, and to allow the introduction of added porosity. The electrolyte layers produced by suspension plasma spraying (SPS) were characterized in terms of thickness, permeability, and microstructure, and the impact of substrate morphology on electrolyte properties was investigated. Fuel cells produced by APS were electrochemically tested at temperatures ranging from 650 to 750 C. The substrate morphology had little effect on open circuit voltage, but substrates with finer porosity resulted in lower kinetic losses in the fuel cell polarization. (author)

  13. Hot corrosion behavior of plasma-sprayed partially stabilized zirconia coatings in a lithium molten salt

    International Nuclear Information System (INIS)

    Cho, Soo Haeng; Hong, Sun Seok; Kang, Dae Seong; Park, Byung Heong; Hur, Jin Mok; Lee, Han Soo

    2008-01-01

    The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. It is essential to choose the optimum material for the process equipment handling molten salt. IN713LC is one of the candidate materials proposed for application in electrolytic reduction process. In this study, Yttria-Stabilized Zirconia (YSZ) top coat was applied to a surface of IN713LC with an aluminized metallic bond coat by an optimized plasma spray process, and were investigated the corrosion behavior at 675 .deg. C for 216 hours in the molten salt LiCl-Li 2 O under an oxidizing atmosphere. The as-coated and tested specimens were examined by OM, SEM/EDS and XRD, respectively. The bare superalloy reveals obvious weight loss, and the corrosion layer formed on the surface of the bare superalloy was spalled due to the rapid scale growth and thermal stress. The top coatings showed a much better hot-corrosion resistance in the presence of LiCl-Li 2 O molten salt when compared to those of the uncoated superalloy and the aluminized bond coatings. These coatings have been found to be beneficial for increasing to the hot-corrosion resistance of the structural materials for handling high temperature lithium molten salts

  14. Influence of Electrode Design and Contacting Layers on Performance of Electrolyte Supported SOFC/SOEC Single Cells

    Directory of Open Access Journals (Sweden)

    Mihails Kusnezoff

    2016-11-01

    Full Text Available The solid oxide cell is a basis for highly efficient and reversible electrochemical energy conversion. A single cell based on a planar electrolyte substrate as support (ESC is often utilized for SOFC/SOEC stack manufacturing and fulfills necessary requirements for application in small, medium and large scale fuel cell and electrolysis systems. Thickness of the electrolyte substrate, and its ionic conductivity limits the power density of the ESC. To improve the performance of this cell type in SOFC/SOEC mode, alternative fuel electrodes, on the basis of Ni/CGO as well as electrolytes with reduced thickness, have been applied. Furthermore, different interlayers on the air side have been tested to avoid the electrode delamination and to reduce the cell degradation in electrolysis mode. Finally, the influence of the contacting layer on cell performance, especially for cells with an ultrathin electrolyte and thin electrode layers, has been investigated. It has been found that Ni/CGO outperform traditional Ni/8YSZ electrodes and the introduction of a ScSZ interlayer substantially reduces the degradation rate of ESC in electrolysis mode. Furthermore, it was demonstrated that, for thin electrodes, the application of contacting layers with good conductivity and adhesion to current collectors improves performance significantly.

  15. Influence of Electrode Design and Contacting Layers on Performance of Electrolyte Supported SOFC/SOEC Single Cells.

    Science.gov (United States)

    Kusnezoff, Mihails; Trofimenko, Nikolai; Müller, Martin; Michaelis, Alexander

    2016-11-08

    The solid oxide cell is a basis for highly efficient and reversible electrochemical energy conversion. A single cell based on a planar electrolyte substrate as support (ESC) is often utilized for SOFC/SOEC stack manufacturing and fulfills necessary requirements for application in small, medium and large scale fuel cell and electrolysis systems. Thickness of the electrolyte substrate, and its ionic conductivity limits the power density of the ESC. To improve the performance of this cell type in SOFC/SOEC mode, alternative fuel electrodes, on the basis of Ni/CGO as well as electrolytes with reduced thickness, have been applied. Furthermore, different interlayers on the air side have been tested to avoid the electrode delamination and to reduce the cell degradation in electrolysis mode. Finally, the influence of the contacting layer on cell performance, especially for cells with an ultrathin electrolyte and thin electrode layers, has been investigated. It has been found that Ni/CGO outperform traditional Ni/8YSZ electrodes and the introduction of a ScSZ interlayer substantially reduces the degradation rate of ESC in electrolysis mode. Furthermore, it was demonstrated that, for thin electrodes, the application of contacting layers with good conductivity and adhesion to current collectors improves performance significantly.

  16. Long-term Bond Strength between Layering Indirect Composite Material and Zirconia Coated with Silicabased Ceramics.

    Science.gov (United States)

    Fushiki, Ryosuke; Komine, Futoshi; Honda, Junichi; Kamio, Shingo; Blatz, Markus B; Matsumura, Hideo

    2015-06-01

    This study evaluated the long-term shear bond strength between an indirect composite material and a zirconia framework coated with silica-based ceramics, taking the effect of different primers into account. A total of 165 airborne-particle abraded zirconia disks were subjected to one of three pretreatments: no pretreatment (ZR-AB), airborne-particle abrasion of zirconia coated with feldspathic porcelain (ZR-PO-AB), and 9.5% hydrofluoric acid etching of zirconia coated with feldspathic porcelain (ZR-PO-HF). An indirect composite material (Estenia C&B) was then bonded to the zirconia disks after they were treated with one of the following primers: Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + Activator), Estenia Opaque Primer (EOP), Porcelain Liner M Liquid B (PLB), or no priming (CON, control group). Shear bond strength was tested after 100,000 thermocycles, and the data were analyzed using the Steel-Dwass U-test (α = 0.05). For ZR-PO-AB and ZR-PO-HF specimens, bond strength was highest in the CPB+Activator group (25.8 MPa and 22.4 MPa, respectively). Bond strengths were significantly lower for ZR-AB specimens in the CON and PLB groups and for ZR-PO-AB specimens in the CON, CPB, and EOP groups. Combined application of a hydrophobic phosphate monomer (MDP) and silane coupling agent enhanced the long-term bond strength of indirect composite material to a zirconia coated with silica-based ceramics.

  17. Characterization of cubic yttria-stabilized zirconia obtained by spray pyrolysis

    International Nuclear Information System (INIS)

    Halmenschlager, Cibele M.; Nunes, Marilia; Vieira, Ramaugusto; Bergmann, Carlos Perez; Falcade, Tiago; Malfatti, Celia de Fraga

    2009-01-01

    Yttria-stabilized-zirconia (YSZ) has been the object of many studies as a SOFC electrolyte. The aim of this work is to produce, by spray pyrolysis process, thin and dense films of YSZ. A disk of steel 316L, previously heated, was used as substrate. The film was obtained with zirconium acetylacetonate (Zr(C 6 H 7 O 2 ) 4 ) and yttrium chloride (YCl 3.6 H 2 O), dissolved in a mixture of ethanol + butyl carbitol with volume ratio (1:1). ZrO 2 amorphous films were deposited in the substrate heated at many temperatures. After thermal treatment at 700 deg C the films were changed into cubic yttria-stabilized-zirconia structure. The thin films obtained were characterized by thermal analysis, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and micro-Raman spectroscopy. (author)

  18. Pore-Network Modeling of Water and Vapor Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    NARCIS (Netherlands)

    Qin, C.; Hassanizadeh, S.M.; van Oosterhout, L.M.

    2016-01-01

    In the cathode side of a polymer electrolyte fuel cell (PEFC), a micro porous layer (MPL) added between the catalyst layer (CL) and the gas diffusion layer (GDL) plays an important role in water management. In this work, by using both quasi-static and dynamic pore-network models, water and vapor

  19. Stability study of cermet-supported solid oxide fuel cells with bi-layered electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Gazzarri, Javier; Robertson, Mark; Deces-Petit, Cyrille [National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, BC (Canada); Kesler, Olivera [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, ON (Canada)

    2008-12-01

    Performance and stability of five cermet-supported button-type solid oxide fuel cells featuring a bi-layered electrolyte (SSZ/SDC), an SSC cathode, and a Ni-SSZ anode, were analyzed using polarization curves, impedance spectroscopy, and post-mortem SEM observation. The cell performance degradation at 650 C in H{sub 2}/air both with and without DC bias conditions was manifested primarily as an increase in polarization resistance, approximately at a rate of 2.3 m{omega} cm{sup 2} h{sup -1} at OCV, suggesting a decrease in electrochemical kinetics as the main phenomenon responsible for the performance decay. In addition, the initial series resistance was about ten times higher than the calculated resistance corresponding to the electrolyte, reflecting a possible inter-reaction between the electrolyte layers that occurred during the sintering stage. In situ and ex situ sintered cathodes showed no obvious difference in cell performance or decay rate. The stability of the cells with and without electrical load was also investigated and no significant influence of DC bias was recorded. Based on the experimental results presented, we preliminarily attribute the performance degradation to electrochemical and microstructural degradation of the cathode. (author)

  20. Stability study of cermet-supported solid oxide fuel cells with bi-layered electrolyte

    Science.gov (United States)

    Zhang, Xinge; Gazzarri, Javier; Robertson, Mark; Decès-Petit, Cyrille; Kesler, Olivera

    Performance and stability of five cermet-supported button-type solid oxide fuel cells featuring a bi-layered electrolyte (SSZ/SDC), an SSC cathode, and a Ni-SSZ anode, were analyzed using polarization curves, impedance spectroscopy, and post-mortem SEM observation. The cell performance degradation at 650 °C in H 2/air both with and without DC bias conditions was manifested primarily as an increase in polarization resistance, approximately at a rate of 2.3 mΩ cm 2 h -1 at OCV, suggesting a decrease in electrochemical kinetics as the main phenomenon responsible for the performance decay. In addition, the initial series resistance was about ten times higher than the calculated resistance corresponding to the electrolyte, reflecting a possible inter-reaction between the electrolyte layers that occurred during the sintering stage. In situ and ex situ sintered cathodes showed no obvious difference in cell performance or decay rate. The stability of the cells with and without electrical load was also investigated and no significant influence of DC bias was recorded. Based on the experimental results presented, we preliminarily attribute the performance degradation to electrochemical and microstructural degradation of the cathode.

  1. Three-unit posterior zirconia-ceramic fixed dental prostheses (FDPs) veneered with layered and milled (CAD-on) veneering ceramics: 1-year follow-up of a randomized controlled clinical trial.

    Science.gov (United States)

    Grohmann, Philipp; Bindl, Andreas; Hämmerle, Christoph; Mehl, Albert; Sailer, Irena

    2015-01-01

    The aim of this multicenter randomized controlled clinical trial was to test posterior zirconia-ceramic fixed dental prostheses (FDPs) veneered with a computer-aided design/computer- assisted manufacture (CAD/CAM) lithium disilicate veneering ceramic (CAD-on) and manually layered zirconia veneering ceramic with respect to survival of the FDPs, and technical and biologic outcomes. Sixty patients in need of one posterior three-unit FDP were included. The zirconia frameworks were produced with a CAD/CAM system (Cerec inLab 3D/Cerec inEOS inLab). Thirty FDPs were veneered with a CAD/CAM lithium disilicate veneering ceramic (Cad-on) (test) and 30 were veneered with a layered zirconia veneering ceramic (control). For the clinical evaluation at baseline, 6, and 12 months, the United States Public Health Service (USPHS) criteria were used. The biologic outcome was judged by comparing the plaque control record (PCR), bleeding on probing (BOP), and probing pocket depth (PPD). Data were statistically analyzed. Fifty-six patients were examined at a mean follow-up of 13.9 months. At the 1-year follow-up the survival rate was 100% in the test and in the control group. No significant differences of the technical outcomes occurred. Major chipping occurred in the control group (n = 3) and predominantly minor chipping in the test group (minor n = 2, major n = 1). No biologic problems or differences were found. Both types of zirconia-ceramic FDPs exhibited very good clinical outcomes without differences between groups. Chipping occurred in both types of FDPs at small amounts, yet the extension of the chippings differed. The test FDPs predominantly exhibited minor chipping, the control FDPs major chipping.

  2. Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields.

    Science.gov (United States)

    König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen

    2013-03-19

    To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.

  3. Corrosion resistance of ZrTi alloys with hydroxyapatite-zirconia-silver layer in simulated physiological solution containing proteins for biomaterial applications

    Energy Technology Data Exchange (ETDEWEB)

    Mareci, D., E-mail: danmareci@yahoo.com [Technical University “Gheorghe Asachi” of Iasi, Faculty of Chemical Engineering and Environmental Protection, D. Mangeron, Iasi, 700050 (Romania); Trincă, L.C. [“Ion Ionescu de la Brad” University of Agricultural Science and Veterinary Medicine, Faculty of Horticulture, Science Department, 3, Mihail Sadoveanu Alley, Iaşi, 700490 (Romania); Căilean, D. [Technical University “Gheorghe Asachi” of Iasi, Faculty of Chemical Engineering and Environmental Protection, D. Mangeron, Iasi, 700050 (Romania); Souto, R.M., E-mail: rsouto@ull.es [Department of Chemistry, Universidad de La Laguna, E-38200 La Laguna (Tenerife, Canary Islands) (Spain); Institute of Material Science and Nanotechnology, Universidad de La Laguna, E-38200 La Laguna (Tenerife, Canary Islands) (Spain)

    2016-12-15

    Highlights: • Hydroxyapatite-zirconia coated ZrTi alloys were characterized for biocompatibility. • Silver nanoparticles added for antimicrobial activity. • Electrochemical behaviour consistent with surface layer of duplex structure. • Porous coating forms on passivating oxide layer. • HA-ZrO{sub 2}-Ag coated Zr45Ti exhibits high potential for implant application. - Abstract: The degradation characteristics of hydroxyapatite-zirconia-silver films (HA-ZrO{sub 2}-Ag) coatings on three ZrTi alloys were investigated in Ringer’s solution containing 10% human albumin protein at 37 °C. Samples were immersed for 7 days while monitored by electrochemical impedance spectroscopy (EIS) and linear potentiodynamic polarization (LPP). The electrochemical analysis in combination with surface analytical characterization by scanning electron microscopy (SEM/EDX) reveals the stability and corrosion resistance of the HA-ZrO{sub 2}-Ag coated ZrTi alloys. The characteristic feature that describes the electrochemical behaviour of the coated alloys is the coexistence of large areas of the coating presenting pores in which the ZrTi alloy substrate is exposed to the simulated physiological environment. The EIS interpretation of results was thus performed using a two-layer model of the surface film. The blocking effect in the presence the human albumin protein produces an enhancement of the corrosion resistance. The results disclose that the Zr45Ti alloy is a promising material for biomedical devices, since electrochemical stability is directly associated to biocompatibility.

  4. A high performance ceria based interdiffusion barrier layer prepared by spin-coating

    DEFF Research Database (Denmark)

    Plonczak, Pawel; Joost, Mario; Hjelm, Johan

    2011-01-01

    A multiple spin-coating deposition procedure of Ce0.9Gd0.1O1.95 (CGO) for application in solid oxide fuel cells (SOFCs) was developed. The thin and dense CGO layer can be employed as a barrier layer between yttria stabilised zirconia (YSZ) electrolyte and a (La, Sr)(Co, Fe)O3 based cathode....... The decomposition of the polymer precursor used in the spin-coating process was studied. The depositions were performed on anode supported half cells. By controlling the sintering temperature between each spin-coating process, dense and crack-free CGO films with a thickness of approximately 1 μm were obtained....... The successive steps of dense layer production was investigated by scanning electron microscopy. X-ray diffraction was employed to monitor the crystal structure of the CGO layer sintered at different temperatures. The described spin coated barrier layer was evaluated using an anode supported cell...

  5. Long-term Steam Electrolysis with Electrolyte-Supported Solid Oxide Cells

    International Nuclear Information System (INIS)

    Schefold, Josef; Brisse, Annabelle; Poepke, Hendrik

    2015-01-01

    Steam electrolysis over 11000 h with an electrolyte-supported solid oxide cell is discussed. The cell of 45 cm"2 area consists of a scandia/ceria doped zirconia electrolyte (6Sc1CeSZ), CGO diffusion-barrier/adhesion layers, a lanthanum strontium cobaltite ferrite (LSCF) oxygen electrode, and a nickel steam/hydrogen electrode. After initial 2500 h operation with lower current-density magnitude, the current density was set to j = -0.9 A cm"−"2 and the steam conversion rate to 51%. This led to a cell voltage of 1.185 V at 847 °C cell temperature. Average voltage degradation was 7.3 mV/1000 h ( 100% throughout the test (with an external heat source for evaporation). Impedance spectroscopic measurements revealed a degradation almost entirely due to increasing ohmic resistance. The rate of resistance increase was initially faster (up to 40 mΩ cm"2/1000 h) and stabilised after several 1000 h operation. After 9000 h a small (non-ohmic) electrode degradation became detectable (<2 mV/1000 h), superimposed to ohmic degradation. The small electrode degradation is understood as indication for largely reversible (electrolysis cell/fuel cell) behaviour.

  6. Electrolytes for solid oxide fuel cells

    Science.gov (United States)

    Fergus, Jeffrey W.

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed.

  7. Electrolytes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2006-11-08

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed. (author)

  8. Fracture and Fatigue Resistance of Cemented versus Fused CAD-on Veneers over Customized Zirconia Implant Abutments.

    Science.gov (United States)

    Nossair, Shereen Ahmed; Aboushelib, Moustafa N; Morsi, Tarek Salah

    2015-01-05

    To evaluate the fracture mechanics of cemented versus fused CAD-on veneers on customized zirconia implant abutments. Forty-five identical customized CAD/CAM zirconia implant abutments (0.5 mm thick) were prepared and seated on short titanium implant abutments (Ti base). A second scan was made to fabricate 45 CAD-on veneers (IPS Empress CAD, A2). Fifteen CAD-on veneers were cemented on the zirconia abutments (Panavia F2.0). Another 15 were fused to the zirconia abutments using low-fusing glass, while manually layered veneers served as control (n = 15). The restorations were subjected to artificial aging (3.2 million cycles between 5 and 10 kg in a water bath at 37°C) before being axially loaded to failure. Fractured specimens were examined using scanning electron microscopy to detect fracture origin, location, and size of critical crack. Stress at failure was calculated using fractography principles (alpha = 0.05). Cemented CAD-on restorations demonstrated significantly higher (F = 72, p CAD-on and manually layered restorations. Fractographic analysis of fractured specimens indicated that cemented CAD-on veneers failed due to radial cracks originating from the veneer/resin interface. Branching of the critical crack was observed in the bulk of the veneer. Fused CAD-on veneers demonstrated cohesive fracture originating at the thickest part of the veneer ceramic, while manually layered veneers failed due to interfacial fracture at the zirconia/veneer interface. Within the limitations of this study, cemented CAD-on veneers on customized zirconia implant abutments demonstrated higher fracture than fused and manually layered veneers. © 2014 by the American College of Prosthodontists.

  9. Yttria-stabilized zirconia as membrane material for electrolytic deoxidation of CaO-CaCl{sub 2} melts

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Poignet, J. C.; Fouletier, J. [Univ Grenoble, LEPMI, CNRS, INPG, UJF, F-38402 St Martin Dheres (France); Allibert, M. [LPSC, F-38026 Grenoble 1 (France); Lambertin, D. [SPDE, CEA Marcoule, F-30207 Bagnols Sur Ceze (France); Bourges, G. [SRPU, CEA Valduc, F-21120 Is Sur Tille (France)

    2010-07-01

    This article is devoted to the study of the stability of an yttria-stabilized zirconia membrane used in the electrolysis of molten CaCl{sub 2}-CaO mixtures at 850 degrees C. Intentiostatic and potentiostatic electrolysis were carried for periods ranging from 10 to 20 h. Post-mortem composition profiles across the zirconia membrane were determined using Raman spectroscopy and microprobe analysis. The membrane degradation was analyzed in terms of synergetic parameters, i. e., chemical, electrochemical, and thermomechanical effects. (authors)

  10. Tris(trimethylsilyl)phosphate as electrolyte additive for self-discharge suppression of layered nickel cobalt manganese oxide

    International Nuclear Information System (INIS)

    Liao, Xiaolin; Zheng, Xiongwen; Chen, Jiawei; Huang, Ziyu; Xu, Mengqing; Xing, Lidan; Liao, Youhao; Lu, Qilun; Li, Xiangfeng; Li, Weishan

    2016-01-01

    Highlights: • TMSP is effective for self-discharge suppression of the charged NCM under 4.5 V. • TMSP oxidizes preferentially forming protective cathode interface film on NCM. • The film suppresses electrolyte decomposition and prevents NCM destruction. - Abstract: Application of layered nickel cobalt manganese oxide as cathode under higher potential than conventional 4.2 V yields a significant improvement in energy density of lithium ion battery. However, the cathode fully charged under high potential suffers serious self-discharge, in which the interaction between the cathode and electrolyte proceeds without potential limitation. In this work, we use tris(trimethylsilyl)phosphate (TMSP) as an electrolyte additive to solve this problem. A representative layered nickel cobalt manganese oxide, LiNi 1/3 Co 1/3 Mn 1/3 O 2 , is considered. The effect of TMSP on self-discharge behavior of LiNi 1/3 Co 1/3 Mn 1/3 O 2 is evaluated by physical and electrochemical methods. It is found that the self-discharge of charged LiNi 1/3 Co 1/3 Mn 1/3 O 2 can be suppressed significantly by using TMSP. TMSP is oxidized preferentially in comparison with the standard electrolyte during initial charging process forming a protective cathode interface film, which avoids the interaction between cathode and electrolyte at any potential and thus prevents electrolyte decomposition and protects LiNi 1/3 Co 1/3 Mn 1/3 O 2 from structure destruction.

  11. A randomized controlled clinical trial of 3-unit posterior zirconia-ceramic fixed dental prostheses (FDP) with layered or pressed veneering ceramics: 3-year results.

    Science.gov (United States)

    Naenni, Nadja; Bindl, Andreas; Sax, Caroline; Hämmerle, Christoph; Sailer, Irena

    2015-11-01

    The aim of the present pilot study was to test whether or not posterior zirconia-ceramic fixed dental prostheses (FDPs) with pressed veneering ceramic exhibit less chipping than FDPs with layered veneering ceramics. Forty patients (13 female, 27 male; mean age 54 years (range 26.1-80.7 years) in need of one maxillary or mandibular three-unit FDP in the second premolar or molar region were recruited and treated at two separate centers at the University of Zurich according to the same study protocol. The frameworks were made out of zirconia using a CAD/CAM system (Cerec Sirona, Bensheim, Germany). The patients were randomly assigned to either the test group (zirconia frameworks veneered with pressed ceramic; IPS e.max ZirPress, Ivoclar Vivadent AG, Schaan, Liechtenstein; n=20) or the control group (layered veneering ceramic; IPS e.max Ceram, Ivoclar Vivadent AG, Schaan, Liechtenstein; n=20). All FDPs were adhesively cemented and evaluated at baseline (i.e., cementation), at 6 months and at 1 and 3 years of clinical service. The survival of the reconstruction was recorded. The technical outcome was assessed using modified United States Public Health Services (USPHS) criteria. The biologic parameters analyzed at abutment teeth and analogous non-restored teeth included probing pocket depth (PPD), plaque control record (PCR), bleeding on probing (BOP), and tooth vitality (CO2). Data was descriptively analyzed and survival was calculated using Kaplan-Meier statistics. 36 patients (25 female, 11 male; mean age 52.3 years) with 18 test and 18 control FDPs were examined after a mean follow-up of 36 months (95% CI: 32.6-39.1 months). Comparison of groups was done by Crosstabulation showing even distribution of the respective restored teeth amidst the groups. Survival rate was 100% for both test and control FDPs. Chipping of the veneering ceramic tended to occur more frequently in test (n=8; 40%) than in control (n=4; 20%) FDPs, albeit not significantly (p=0.3). No further

  12. Optical and structural properties of colloidal zirconia nanoparticles prepared by arc discharge in liquid

    Science.gov (United States)

    Peymani forooshani, Reza; Poursalehi, Reza; Yourdkhani, Amin

    2018-01-01

    Zirconia is one of the important ceramic materials with unique properties such as high melting point, high ionic conductivity, high mechanical properties and low thermal conductivity. Therefore, zirconia is one of the useful materials in refractories, thermal barriers, cutting tools, oxygen sensors electrolytes, catalysis, catalyst supports and solid oxide fuel cells. Recently, direct current (DC) arc discharge is extensively employed to synthesis of metal oxide nanostructures in liquid environments. The aim of this work is the synthesis of colloidal zirconia nanoparticles by DC arc discharge method in water as a medium. Arc discharge was ignited between two pure zirconium electrodes in water. Optical and structural properties of prepared colloidal nanoparticles were investigated. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and UV-visible spectroscopy, were employed for characterization of particle size, morphology, crystal structure and optical properties, respectively. SEM images demonstrate that the nanoparticles are spherical in shape with an average size lower than 38 nm. The XRD patterns of the nanoparticles were consistent with tetragonal and monoclinic zirconia crystal structures. The optical transmission spectra of the colloidal solution show optical characteristic of zirconia nanoparticles as a wide band gap semiconductor with no absorption peak in visible wavelength with the considerable amount of oxygen deficiency. Oxidation of colloidal nanoparticles in water could be explained via reaction with either dissociated oxygen from water in hot plasma region or with dissolved oxygen in water. The results provide a simple and flexible method for preparation of zirconia nanoparticles with a capability of mass production without environmental footprints.

  13. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns

    Directory of Open Access Journals (Sweden)

    Deborah Pacheco Lameira

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the effect of design and surface finishing on fracture strength of yttria-tetragonal zirconia polycrystal (Y-TZP crowns in monolithic (1.5 mm thickness and bilayer (0.8 mm zirconia coping and 0.7 mm porcelain veneer configuration after artificial aging. Bovine incisors received crown preparation and Y-TZP crowns were manufactured using CAD/CAM technique, according to the following groups (n=10: Polished monolithic zirconia crowns (PM; Glazed monolithic zirconia crowns (GM; Bi-layer crowns (BL. Crowns were cemented with resin cement, submitted to artificial aging in a chewing simulator (2.5 million cycles/80 N/artificial saliva/37°C, and tested for fracture strength. Two remaining crowns referring to PM and GM groups were submitted to a chemical composition analysis to measure the level of yttrium after aging. One-way ANOVA and Tukey’s test (P=.05 indicated that monolithic zirconia crowns presented similar fracture strength (PM=3476.2 N ± 791.7; GM=3561.5 N ± 991.6, which was higher than bilayer crowns (2060.4 N ± 810.6. There was no difference in the yttrium content among the three surfaces evaluated in the monolithic crowns. Thus, monolithic zirconia crowns present higher fracture strength than bilayer veneered zirconia after artificial aging and surface finishing does not affect their fracture strength.

  14. Effects of Al2O3 and/or CaO on properties of yttria stabilized zirconia electrolyte doped with multi-elements

    International Nuclear Information System (INIS)

    Lv Zhengang; Guo Ruisong; Yao Pei; Dai Fengying

    2007-01-01

    Yttria stabilized zirconia (YSZ) has a high oxide ion conductivity at high temperatures. Some rare earth elements (e.g., Yb, Sc, Dy) with similar cation radii to Zr 4+ can dissolve into ZrO 2 , increasing its vacancy concentration and crystal lattice distortion, and therefore enhancing its conductivity and lowering the activation energy. It is expected this material could be used as intermediate temperature electrolyte. In the present work, YSZ electrolyte materials doped by multi-elements (Sc 2 O 3 or Dy 2 O 3 and Yb 2 O 3 ) were prepared by high temperature solid-state method. The high temperature conductivity was improved obviously, reaching 0.18 S/cm at 1000 deg. C, but the density and mechanical properties of sintered materials were not sufficiently high. It is found that sinterability and mechanical properties could be improved by inclusion of a small amount of Al 2 O 3 and/or CaO into the multi-elements doped YSZ materials and our results proved it. The results showed density and bending strength of sintered bodies were enhanced by Al 2 O 3 addition by 4.6% and 30%, respectively, while the conductivity did not degrade remarkably. But the degradation in bending strength and conductivity resulting from the CaO addition happened due to the second phase formed at the grain boundary. XRD patterns showed that all samples had cubic fluorite structure and crystalline lattice parameter was increased. SEM photographs obviously revealed the grain growth for the samples with CaO inclusion

  15. Fermi Potential across Working Solid Oxide Cells with Zirconia or Ceria Electrolytes

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    A solid electrolyte will always possess a finite electronic conductivity, in particular electrolytes like doped ceria that easily get reduced and become mixed ionic and electronic conductors. This given rise too high leak currents through the solid oxide cell (SOC). Especially, problems have been...... driving the O2-ions is not the Fermi potential, which is the potential of the electrons, but the Galvani potential (or inner potential) (1). The concepts of potentials describing the electrical situation of a solid electrolyte is shown i Fig. 1, and an example of the Fermi potential (π) and Galvani...

  16. Osseointegration of zirconia implants: an SEM observation of the bone-implant interface.

    Science.gov (United States)

    Depprich, Rita; Zipprich, Holger; Ommerborn, Michelle; Mahn, Eduardo; Lammers, Lydia; Handschel, Jörg; Naujoks, Christian; Wiesmann, Hans-Peter; Kübler, Norbert R; Meyer, Ulrich

    2008-11-06

    The successful use of zirconia ceramics in orthopedic surgery led to a demand for dental zirconium-based implant systems. Because of its excellent biomechanical characteristics, biocompatibility, and bright tooth-like color, zirconia (zirconium dioxide, ZrO2) has the potential to become a substitute for titanium as dental implant material. The present study aimed at investigating the osseointegration of zirconia implants with modified ablative surface at an ultrastructural level. A total of 24 zirconia implants with modified ablative surfaces and 24 titanium implants all of similar shape and surface structure were inserted into the tibia of 12 Göttinger minipigs. Block biopsies were harvested 1 week, 4 weeks or 12 weeks (four animals each) after surgery. Scanning electron microscopy (SEM) analysis was performed at the bone implant interface. Remarkable bone attachment was already seen after 1 week which increased further to intimate bone contact after 4 weeks, observed on both zirconia and titanium implant surfaces. After 12 weeks, osseointegration without interposition of an interfacial layer was detected. At the ultrastructural level, there was no obvious difference between the osseointegration of zirconia implants with modified ablative surfaces and titanium implants with a similar surface topography. The results of this study indicate similar osseointegration of zirconia and titanium implants at the ultrastructural level.

  17. Electrolyte loss mechanism of molten carbonate fuel cells. 2.; Application to the cell with matrix electrolyte layer; Yoyu tansan`engata nenryo denchi ni okeru denkaishitsu loss kiko ni tsuite. 2.; Matrix gata denkaishitsuso wo yusuru denchi eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Sonai, A; Murata, K [Toshiba Research and Development Center, Kawasaki (Japan)

    1993-11-01

    A single cell of molten carbonate fuel cell using a matrix electrolyte layer fabricated by using the doctor blade process has been operated for several thousand hours, measured of electrolyte loss amount, and analyzed by using a new electrolyte loss mechanism. The result may be summarized as follows: according to a result of measuring the matrix layer pore distribution, the average pore size has increased little by little; pores with diameters greater than 2 {mu}m at which no electrolyte retention becomes possible remain at nearly constant ratio up to 1800 hours, but increased after 2500 hours; the pore capacity in ports with the largest electrolyte retaining diameter of 2 {mu}m or less showed slight decrease with time in the anode, and an initial decrease followed by flatness, and then a sharp decrease after 1800 hours in the matrix layer; the electrolyte loss measurement values have remained nearly constant for 25 hours to 1800 hours, but increased sharply thereafter; and the electrolyte loss in this single cell due to pore capacity decrease in pores as power generating parts with diameters smaller than 2 {mu}m was explained quantitatively by a new electrolyte loss mechanism. 11 refs., 6 figs.

  18. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    International Nuclear Information System (INIS)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A.

    2015-01-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m 2 g −1 ) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10 −3 S cm −1 at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g −1 , ∼39 Wh kg −1 and ∼19 kW kg −1 , respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10 4 charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better performance over LiTFSI-based gel.

  19. Solid-state electric double layer capacitors fabricated with plastic crystal based flexible gel polymer electrolytes: Effective role of electrolyte anions

    Energy Technology Data Exchange (ETDEWEB)

    Suleman, Mohd; Kumar, Yogesh; Hashmi, S.A., E-mail: sahashmi@physics.du.ac.in

    2015-08-01

    Flexible gel polymer electrolyte (GPE) thick films incorporated with solutions of lithium trifluoromethanesulfonate (Li-triflate or LiTf) and lithium bis trifluoromethane-sulfonimide (LiTFSI) in a plastic crystal succinonitrile (SN), entrapped in poly(vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP) have been prepared and characterized. The films have been used as electrolytes in the electrical double layer capacitors (EDLCs). Coconut-shell derived activated carbon with high specific surface area (∼2100 m{sup 2} g{sup −1}) and mixed (micro- and meso-) porosity has been used as EDLC electrodes. The structural, thermal, and electrochemical characterization of the GPEs have been performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impedance measurements and cyclic voltammetry. The high ionic conductivity (∼10{sup −3} S cm{sup −1} at 25 °C), good electrochemical stability window (>4.0 V) and flexible nature of the free-standing films of GPEs show their competence in the fabrication of EDLCs. The EDLCs have been tested using electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge studies. The EDLCs using LiTf based electrolyte have been found to give higher values of specific capacitance, specific energy, power density (240–280 F g{sup −1}, ∼39 Wh kg{sup −1} and ∼19 kW kg{sup −1}, respectively) than the EDLC cell with LiTFSI based gel electrolyte. EDLCs have been found to show stable performance for ∼10{sup 4} charge–discharge cycles. The comparative studies indicate the effective role of electrolyte anions on the capacitive performance of the solid-state EDLCs. - Graphical abstract: Display Omitted - Highlights: • Flexible EDLCs with succinonitrile based gel electrolyte membranes are reported. • Anionic size of salts in gel electrolytes plays important role on capacitive performance. • Li-triflate incorporated gel electrolyte shows better

  20. Nb and Pd co-doped La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ as a stable, high performance electrode for barrier-layer-free Y2O3-ZrO2 electrolyte of solid oxide fuel cells

    Science.gov (United States)

    Chen, Kongfa; He, Shuai; Li, Na; Cheng, Yi; Ai, Na; Chen, Minle; Rickard, William D. A.; Zhang, Teng; Jiang, San Ping

    2018-02-01

    La0.6Sr0.2Co0.2Fe0.8O3-δ (LSCF) is the most intensively investigated high performance cathode for intermediate temperature solid oxide fuel cells (IT-SOFCs), but strontium segregation and migration at the electrode/electrolyte interface is a critical issue limiting the electrocatalytic activity and stability of LSCF based cathodes. Herein, we report a Nb and Pd co-doped LSCF (La0.57Sr0.38Co0.19Fe0.665Nb0.095Pd0.05O3-δ, LSCFNPd) perovskite as stable and active cathode on a barrier-layer-free anode-supported yttria-stabilized zirconia (YSZ) electrolyte cell using direct assembly method without pre-sintering at high temperatures. The cell exhibits a peak power density of 1.3 W cm-2 at 750 °C and excellent stability with no degradation during polarization at 500 mA cm-2 and 750 °C for 175 h. Microscopic and spectroscopic analysis show that the electrochemical polarization promotes the formation of electrode/electrolyte interface in operando and exsolution of Pd/PdO nanoparticles. The Nb doping in the B-site of LSCF significantly reduces the Sr surface segregation, enhancing the stability of the cathode, while the exsoluted Pd/PdO nanoparticles increases the electrocatalytic activity for the oxygen reduction reaction. The present study opens up a new route for the development of cobaltite-based perovskite cathodes with high activity and stability for barrier-layer-free YSZ electrolyte based IT-SOFCs.

  1. Hydrothermal crystallization of zirconia and zirconia solid solutions

    International Nuclear Information System (INIS)

    Pyda, W.; Haberko, K.; Bucko, M.M.

    1991-01-01

    Zirconia as well as yttria-zirconia and calcia-zirconia solid-solution powders were crystallized under hydrothermal conditions from (co)precipitated hydroxides. The morphology of the power particles is strongly dependent on the crystallization conditions. The powders crystallized in a water solution of Na, K, and Li hydroxides show elongated particles of much larger sizes than those which result from the process carried out in pure water or a water solution of Na, K, or Li chlorides. The shapes of the latter particles are isometric. In this paper the growth mechanism of the elongated particles is suggested

  2. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    Science.gov (United States)

    Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.

    2015-10-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal τ = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 и 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.

  3. Developing Cost-Effective Dense Continuous SDC Barrier Layers for SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Hoang Viet P.; Hardy, John S.; Coyle, Christopher A.; LU, Zigui; Stevenson, Jeffry W.

    2017-12-04

    Significantly improved performance during electrochemical testing of a cell with a dense continuous pulsed laser deposited (PLD) samarium doped ceria (SDC) layer spurred investigations into the fabrication of dense continuous SDC barrier layers by means of cost-effective deposition using screen printing which is amenable to industrial production of SOFCs. Many approaches to improve the SDC density have been explored including the use of powder with reduced particle sizes, inks with increased solids loading, and doping with sintering aids (1). In terms of sintering aids, dopants like Mo or binary systems of Mo+Cu or Fe+Co greatly enhance SDC sinterability. In fact, adding dopants to a screen printed, prefired, porous SDC layer made it possible to achieve a dense continuous barrier layer atop the YSZ electrolyte without sintering above 1200°C. Although the objective of fabricating a dense continuous layer was achieved, additional studies have been initiated to improve the cell performance. Underlying issues with constrained sintering and dopant-enhanced ceria-zirconia solid solubility are also addressed in this paper.

  4. Zirconium oxide based ceramic solid electrolytes for oxygen detection

    International Nuclear Information System (INIS)

    Caproni, Erica

    2007-01-01

    Taking advantage of the high thermal shock resistance of zirconia-magnesia ceramics and the high oxide ion conductivity of zirconia-yttria ceramics, composites of these ceramics were prepared by mixing, pressing and sintering different relative concentrations of ZrO 2 : 8.6 mol% MgO and ZrO 2 : 3 mol% Y 2 O 3 solid electrolytes. Microstructural analysis of the composites was carried out by X-ray diffraction and scanning electron microscopy analyses. The thermal behavior was studied by dilatometric analysis. The electrical behavior was evaluated by the impedance spectroscopy technique. An experimental setup was designed for measurement the electrical signal generated as a function of the amount of oxygen at high temperatures. The main results show that these composites are partially stabilized (monoclinic, cubic and tetragonal) and the thermal behavior is similar to that of ZrO 2 : 8.6 mol% MgO materials used in disposable high temperature oxygen sensors. Moreover, the results of analysis of impedance spectroscopy show that the electrical conductivity of zirconia:magnesia is improved with zirconia-yttria addition and that the electrical signal depends on the amount of oxygen at 1000 deg C, showing that the ceramic composites can be used in oxygen sensors. (author)

  5. Surface modification of yttria stabilized zirconia by ion implantation

    International Nuclear Information System (INIS)

    Scholten, D.

    1987-01-01

    The results of investigations of surface modification by ion implantation in zirconia are described. As dopant material, iron was investigated thoroughly. The depth distribution of implanted ions depends on implantation parameters and the dopant-matrix system. The investigations of thermal stability of some implanted iron profiles by RBS and AES are described. Special interest lies in the thermal stability under working conditions of the zirconia material (400-1000 0 C). Radiation damage introduced in the implanted layer was investigated using transmission electron microscopy on polycrystalline material and channeling experiments on a single crystal implanted with iron. 179 refs.; 87 figs.; 20 tabs

  6. Fracture and shear bond strength analyses of different dental veneering ceramics to zirconia

    International Nuclear Information System (INIS)

    Diniz, Alexandre C.; Nascimento, Rubens M.; Souza, Julio C.M.; Henriques, Bruno B.; Carreiro, Adriana F.P.

    2014-01-01

    The purpose of this work was to evaluate the interaction of different layering porcelains with zirconia via shear bond strength test and microscopy. Four different groups of dental veneering porcelains (VM9, Zirkonzanh, Ceramco, IPS) were fused onto forty zirconia-based cylindrical substrates (8 mm in diameter and 12 mm in height) (n = 10), according to the manufacturer's recommendations. Additionally, layered dental porcelain (D-sign, Ivoclar) was fired on ten Ni–Cr cylindrical substrates Shear bond strength tests of the veneering porcelain to zirconia or Ni–Cr were carried out at a crosshead speed of 0.5 mm/min. After the shear bond tests, the interfaces were analyzed by scanning electron microscopy (SEM). The fracture type exhibited by the different systems was also assessed. The results were statistically analyzed by ANOVA at a significant level of p < .05. The shear bond strength values of the porcelain-to-NiCr interfaces (25.3 ± 7.1 MPa) were significantly higher than those recorded for the following porcelain-to-zirconia systems: Zirkonzanh (18.8 ± 1 MPa), Ceramco (18.2 ± 4.7 MPa), and IPS (16 ± 4.5 MPa). However, no significant differences were found in the shear bond strength values between the porcelain-to-NiCr and porcelain (VM9)-to-zirconia (23.2 ± 5.1 MPa) groups (p > .05). All-ceramic interfaces revealed mixed failure type, cohesive in the porcelain and adhesive at the interface. This study demonstrated that all-ceramic systems do not attain yet the same bond strength standards equivalent to metal–ceramic systems. Therefore, despite the esthetic appeal of all-ceramic restorations, the adhesion between the porcelain and zirconia framework is still an issue considering the long term success of the restoration. - Highlights: • This study assessed the shear bond strength of different porcelains to zirconia. • The porcelain Vita VM9 showed a high shear bond strength to zirconia. • The fracture surface of all-ceramic systems revealed

  7. Fracture and shear bond strength analyses of different dental veneering ceramics to zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Alexandre C. [School of Dentistry (DOD), Division of Prosthodontics, Universidade Federal do Rio Grande do Norte -UFRN, 59056-000, Natal (Brazil); Nascimento, Rubens M. [Materials Engineering Department, Universidade Federal do Rio Grande do Norte - UFRN, Natal (Brazil); Souza, Julio C.M. [Centre for Mechanics and Materials Technologies - CT2M, Department of Mechanical Engineering (DEM), Universidade do Minho, Campus Azurém, 4800-058, Guimarães (Portugal); Henriques, Bruno B. [Materials Engineering Department, Universidade Federal do Rio Grande do Norte - UFRN, Natal (Brazil); Centre for Mechanics and Materials Technologies - CT2M, Department of Mechanical Engineering (DEM), Universidade do Minho, Campus Azurém, 4800-058, Guimarães (Portugal); Carreiro, Adriana F.P., E-mail: adrianadafonte@hotmail.com [School of Dentistry (DOD), Division of Prosthodontics, Universidade Federal do Rio Grande do Norte -UFRN, 59056-000, Natal (Brazil)

    2014-05-01

    The purpose of this work was to evaluate the interaction of different layering porcelains with zirconia via shear bond strength test and microscopy. Four different groups of dental veneering porcelains (VM9, Zirkonzanh, Ceramco, IPS) were fused onto forty zirconia-based cylindrical substrates (8 mm in diameter and 12 mm in height) (n = 10), according to the manufacturer's recommendations. Additionally, layered dental porcelain (D-sign, Ivoclar) was fired on ten Ni–Cr cylindrical substrates Shear bond strength tests of the veneering porcelain to zirconia or Ni–Cr were carried out at a crosshead speed of 0.5 mm/min. After the shear bond tests, the interfaces were analyzed by scanning electron microscopy (SEM). The fracture type exhibited by the different systems was also assessed. The results were statistically analyzed by ANOVA at a significant level of p < .05. The shear bond strength values of the porcelain-to-NiCr interfaces (25.3 ± 7.1 MPa) were significantly higher than those recorded for the following porcelain-to-zirconia systems: Zirkonzanh (18.8 ± 1 MPa), Ceramco (18.2 ± 4.7 MPa), and IPS (16 ± 4.5 MPa). However, no significant differences were found in the shear bond strength values between the porcelain-to-NiCr and porcelain (VM9)-to-zirconia (23.2 ± 5.1 MPa) groups (p > .05). All-ceramic interfaces revealed mixed failure type, cohesive in the porcelain and adhesive at the interface. This study demonstrated that all-ceramic systems do not attain yet the same bond strength standards equivalent to metal–ceramic systems. Therefore, despite the esthetic appeal of all-ceramic restorations, the adhesion between the porcelain and zirconia framework is still an issue considering the long term success of the restoration. - Highlights: • This study assessed the shear bond strength of different porcelains to zirconia. • The porcelain Vita VM9 showed a high shear bond strength to zirconia. • The fracture surface of all-ceramic systems revealed

  8. Effect of dysprosia doping on structural and electrical property of stabilized zirconia for intermediate- temperature SOFCs

    International Nuclear Information System (INIS)

    Pastor, M.; Maiti, S.; Pandey, A.; Biswas, K.; Manna, I.

    2011-01-01

    Present work deals with structural, micro-structural and electrical properties of dysprosia stabilized zirconia electrolyte, which have been evaluated by means of X-ray diffraction (XRD) and scanning (SEM), and complex impedance analysis respectively. The amount of dysprosia was varied from 2 to 12 mol% in zirconia. The addition of dysprosia (8-12 mol%) stabilized the cubic zirconia phase, which was analyzed from XRD analysis. SEM micrographs clearly showed the improvement in sinterability with increase in dysprosia concentration up to 6 mol% disprosia. Complex impedance analysis was performed in the temperature range from 250 to 600 deg. C. The results indicated a gradual decrease in impedance of both bulk and grain boundary and increase in conductivity with dysprosia doping up to 6 mol% and thereafter showing a reverse trend. The activation energies for oxygen ion migration were also found to decrease with increase in dysprosia doping which was in the range of 0.99 - 1.28 eV. The average thermal expansion coefficient increases linearly.

  9. Improved Composite Gel Electrolyte by Layered Vermiculite for Quasi-Solid-State Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Hongcai He

    2014-01-01

    Full Text Available A composite quasisolid electrolyte is prepared by adding a layered vermiculite (VMT into the iodide/triiodide electrolyte including 4-tert-butylpyridine, which obviously improves the photovoltaic properties of quasisolid dye-sensitized solar cells (DSSCs. When adding 6 wt% VMT, the maximum photovoltaic conversion efficiency of 3.89% is obtained, which reaches more than two times greater than that without VMT. This enhancement effect is primarily explained by studying the Nyquist spectra, dark currents, and photovoltaic conversion efficiency.

  10. Electrocatalytic reactivity of hydrocarbons on a zirconia electrolyte surface

    International Nuclear Information System (INIS)

    Nguyen, B.C.; Lin, T.A.; Mason, D.M.

    1986-01-01

    An experimental survey of the electrochemical reactivity of five common fuel species was made employing a solid oxide electrolyte galvanic cell with porous Au and Pt electrodes in the temperature range 700 0 -850 0 C. The electrolyte used was Sc/sub 2/O/sub 3/-stabilized ZrO/sub 2/(SSZ). The fuel species electro-oxidized at the anode were: H/sub 2/ CO, CH/sub 4/, CH/sub 3/OH, and C/sub 2/H/sub 5/OH. Rates of reaction were determined coulometrically so that species other than H/sub 2/ could have undergone an undetermined amount of thermal dissociation during electro-oxidation. The concomitant reactivity of O/sub 2/, which is reduced at the cathode, was also investigated. The current-overpotential behavior at both the cathode and anode was found to be similar whether Au or Pt was used to form the porous electrodes. In the low overpotential range, the rate of charge transfer is found to be rate determining for both the cathodic and anodic reactions

  11. Gel electrolytes and electrodes

    Science.gov (United States)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  12. Effect of surface states of layered double hydroxides on conductive and transport properties of nanocomposite polymer electrolytes

    International Nuclear Information System (INIS)

    Liao, C.-S.; Ye, W.-B.

    2004-01-01

    All solid-state poly(ethylene oxide) (PEO) nanocomposite electrolytes were made containing nanoscale fillers of layered double hydroxides (LDHs). Two kinds of LDHs with different surface states were prepared by aqueous co-precipitation method. The LDHs were added into PEO matrix to study the structures, conductivities and ionic transport properties of nanocomposite electrolytes. The structures of LDHs were characterized by infrared spectra, thermogravimetric analysis and wide-angle X-ray diffraction. With enhanced compatibility of LDH sheets by oligo(ethylene oxide) surface modification, the PEO/OMLDH nanocomposite electrolyte exhibits an amorphous morphology and an enhancement of conductivity by three orders of magnitude as compared to pure PEO electrolyte. The lithium ion transference number T Li + of PEO/LDH nanocomposite electrolyte measured with a value of 0.42 is two times higher than the one of pure PEO electrolyte, which can be attributed to the Lewis acid-base interaction between surface states of metal hydroxides and counter anions of lithium salts

  13. Electrolyte materials - Issues and challenges

    International Nuclear Information System (INIS)

    Balbuena, Perla B.

    2014-01-01

    Electrolytes are vital components of an electrochemical energy storage device. They are usually composed of a solvent or mixture of solvents and a salt or a mixture of salts which provide the appropriate environment for ionic conduction. One of the main issues associated with the selection of a proper electrolyte is that its electronic properties have to be such that allow a wide electrochemical window - defined as the voltage range in which the electrolyte is not oxidized or reduced - suitable to the battery operating voltage. In addition, electrolytes must have high ionic conductivity and negligible electronic conductivity, be chemically stable with respect to the other battery components, have low flammability, and low cost. Weak stability of the electrolyte against oxidation or reduction leads to the formation of a solid-electrolyte interphase (SEI) layer at the surface of the cathode and anode respectively. Depending on the materials of the electrolyte and those of the electrode, the SEI layer may be composed by combinations of organic and inorganic species, and it may exert a passivating role. In this paper we discuss the current status of knowledge about electrolyte materials, including non-aqueous liquids, ionic liquids, solid ceramic and polymer electrolytes. We also review the basic knowledge about the SEI layer formation, and challenges for a rational design of stable electrolytes

  14. 3D-characterization of the veneer-zirconia interface using FIB nano-tomography.

    Science.gov (United States)

    Mainjot, Amélie K; Douillard, Thierry; Gremillard, Laurent; Sadoun, Michaël J; Chevalier, Jérôme

    2013-02-01

    The phenomena occurring during zirconia frameworks veneering process are not yet fully understood. In particular the study of zirconia behavior at the interface with the veneer remains a challenge. However this interface has been reported to act on residual stress in the veneering ceramic, which plays a significant role in clinical failures such as chipping. The objective of this study was thus to investigate the veneer-zirconia interface using a recent 3D-analysis tool and to confront these observations to residual stress measurements in the veneering ceramic. Two cross-sectioned bilayered disc samples (veneer on zirconia), exhibiting different residual stress profiles in the veneering ceramic, were investigated using 2D and 3D imaging (respectively Scanning Electron Microscopy (SEM) and Focused Ion Beam nanotomography (FIB-nt), associated with chemical analysis by Energy Dispersive X-ray Spectroscopy (EDS). The observations did not reveal any structural change in the bulk of zirconia layer of both samples. However the presence of structural alterations and sub-surface microcracks were highlighted in the first micrometer of zirconia surface, exclusively for the sample exhibiting interior tensile stress in the veneering ceramic. No interdiffusion phenomena were observed. FIB nanotomography was proven to be a powerful technique to study the veneer-zirconia interface. The determination of the origin and the nature of zirconia alterations need to be further studied. The results of the present study support the hypothesis that zirconia surface property changes could be involved in the development of tensile stress in the veneering ceramic, increasing the risk of chipping. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Outstanding features of alginate-based gel electrolyte with ionic liquid for electric double layer capacitors

    Science.gov (United States)

    Soeda, Kazunari; Yamagata, Masaki; Ishikawa, Masashi

    2015-04-01

    An alginate-based gel electrolyte with an ionic liquid (Alg/IL) is investigated for electric double-layer capacitors (EDLCs) by using physicochemical and electrochemical measurements. The Alg/EMImBF4 (EMImBF4 = 1-ethyl-3-methylimidazolium tetrafluoroborate) gel electrolyte is thermally stable up to 280 °C, where EMImBF4 decomposes. Furthermore, the EDLC with the gel electrolyte can be operated even at high temperature. The cell containing Alg/EMImBF4 is also electrochemically stable even under high voltage (∼3.5 V) operation. Thus, the alginate is a suitable host polymer for the gel electrolyte for EDLCs. According to the result of charge-discharge characteristics, the voltage drop in the charge-discharge curve for the cell with Alg/EMImBF4 gel electrolyte is considerably smaller than that with liquid-phase EMImBF4 electrolyte. To clarify the effect of Alg in contact with the activated carbon electrode, we also prepared an Alg-containing ACFC electrode (Alg + ACFC), and evaluated its EDLC characteristics in liquid EMImBF4. The results prove that the presence of Alg close to the active materials significantly reduces the internal resistance of the EDLC cell, which may be attributed to the high affinity of Alg to activated carbon.

  16. Zirconia in biomedical applications.

    Science.gov (United States)

    Chen, Yen-Wei; Moussi, Joelle; Drury, Jeanie L; Wataha, John C

    2016-10-01

    The use of zirconia in medicine and dentistry has rapidly expanded over the past decade, driven by its advantageous physical, biological, esthetic, and corrosion properties. Zirconia orthopedic hip replacements have shown superior wear-resistance over other systems; however, risk of catastrophic fracture remains a concern. In dentistry, zirconia has been widely adopted for endosseous implants, implant abutments, and all-ceramic crowns. Because of an increasing demand for esthetically pleasing dental restorations, zirconia-based ceramic restorations have become one of the dominant restorative choices. Areas covered: This review provides an updated overview of the applications of zirconia in medicine and dentistry with a focus on dental applications. The MEDLINE electronic database (via PubMed) was searched, and relevant original and review articles from 2010 to 2016 were included. Expert commentary: Recent data suggest that zirconia performs favorably in both orthopedic and dental applications, but quality long-term clinical data remain scarce. Concerns about the effects of wear, crystalline degradation, crack propagation, and catastrophic fracture are still debated. The future of zirconia in biomedical applications will depend on the generation of these data to resolve concerns.

  17. Suppressed Sr segregation and performance of directly assembled La0.6Sr0.4Co0.2Fe0.8O3-δ oxygen electrode on Y2O3-ZrO2 electrolyte of solid oxide electrolysis cells

    Science.gov (United States)

    Ai, Na; He, Shuai; Li, Na; Zhang, Qi; Rickard, William D. A.; Chen, Kongfa; Zhang, Teng; Jiang, San Ping

    2018-04-01

    Active and stable oxygen electrode is probably the most important in the development of solid oxide electrolysis cells (SOECs) technologies. Herein, we report the successful development of mixed ionic and electronic conducting (MIEC) La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) perovskite oxides directly assembled on barrier-layer-free yttria-stabilized zirconia (YSZ) electrolyte as highly active and stable oxygen electrodes of SOECs. Electrolysis polarization effectively induces the formation of electrode/electrolyte interface, similar to that observed under solid oxide fuel cell (SOFC) operation conditions. However, in contrast to the significant performance decay under SOFC operation conditions, the cell with directly assembled LSCF oxygen electrodes shows excellent stability, tested for 300 h at 0.5 A cm-2 and 750 °C under SOEC operation conditions. Detailed microstructure and phase analysis reveal that Sr segregation is inevitable for LSCF electrode, but anodic polarization substantially suppresses Sr segregation and migration to the electrode/electrolyte interface, leading to the formation of stable and efficient electrode/electrolyte interface for water and CO2 electrolysis under SOECs operation conditions. The present study demonstrates the feasibility of using directly assembled MIEC cobaltite based oxygen electrodes on barrier-layer-free YSZ electrolyte of SOECs.

  18. Fabrication of a zirconia MEMS-based microthruster by gel casting on PDMS soft molds

    International Nuclear Information System (INIS)

    Cheah, K H; Khiew, P S; Chin, J K

    2012-01-01

    A zirconia microelectromechanical-system-based microthruster was fabricated through a newly developed fabrication route. Gel casting of homogenously dispersed zirconia suspension on polydimethylsiloxane soft mold was utilized to replicate the geometries of microthruster design onto a ceramic layer of about 1.2 mm thick. Lamination of the patterned ceramic layer to another flat ceramic layer and subsequent sintering produced the microthruster. Characterizations on the fabricated prototype showed good shape retention on the replicated geometries and good quality of lamination. Shrinkage of about 10–15% was noted after sintering. The current fabrication route is particularly promising for the development of high-performance micropropulsion systems which require their structural material to survive in an extreme environment which is corrosive, of high temperature and highly oxidative. (paper)

  19. Effect of various veneering techniques on mechanical strength of computer-controlled zirconia framework designs.

    Science.gov (United States)

    Kanat, Burcu; Cömlekoğlu, Erhan M; Dündar-Çömlekoğlu, Mine; Hakan Sen, Bilge; Ozcan, Mutlu; Ali Güngör, Mehmet

    2014-08-01

    The objectives of this study were to evaluate the fracture resistance (FR), flexural strength (FS), and shear bond strength (SBS) of zirconia framework material veneered with different methods and to assess the stress distributions using finite element analysis (FEA). Zirconia frameworks fabricated in the forms of crowns for FR, bars for FS, and disks for SBS (N = 90, n = 10) were veneered with either (a) file splitting (CAD-on) (CD), (b) layering (L), or (c) overpressing (P) methods. For crown specimens, stainless steel dies (N = 30; 1 mm chamfer) were scanned using the labside contrast spray. A bilayered design was produced for CD, whereas a reduced design (1 mm) was used for L and P to support the veneer by computer-aided design and manufacturing. For bar (1.5 × 5 × 25 mm(3) ) and disk (2.5 mm diameter, 2.5 mm height) specimens, zirconia blocks were sectioned under water cooling with a low-speed diamond saw and sintered. To prepare the suprastructures in the appropriate shapes for the three mechanical tests, nano-fluorapatite ceramic was layered and fired for L, fluorapatite-ceramic was pressed for P, and the milled lithium-disilicate ceramics were fused with zirconia by a thixotropic glass ceramic for CD and then sintered for crystallization of veneering ceramic. Crowns were then cemented to the metal dies. All specimens were stored at 37°C, 100% humidity for 48 hours. Mechanical tests were performed, and data were statistically analyzed (ANOVA, Tukey's, α = 0.05). Stereomicroscopy and scanning electron microscopy (SEM) were used to evaluate the failure modes and surface structure. FEA modeling of the crowns was obtained. Mean FR values (N ± SD) of CD (4408 ± 608) and L (4323 ± 462) were higher than P (2507 ± 594) (p mechanical tests, whereas a layering technique increased the FR when an anatomical core design was employed. File splitting (CAD-on) or layering veneering ceramic on zirconia with a reduced framework design may reduce ceramic chipping

  20. Electrolyte bi-layering strategy to improve the performance of an intermediate temperature solid oxide fuel cell: A review

    Science.gov (United States)

    Shri Prakash, B.; Pavitra, R.; Senthil Kumar, S.; Aruna, S. T.

    2018-03-01

    Lowering of operation temperature has become one of the primary goals of solid oxide fuel (SOFC) research as reduced temperature improves the prospects for widespread commercialization of this energy system. Reduced operational temperature also mitigates the issues associated with high temperature SOFCs and paves way not only for the large scale stationary power generation but also makes SOFCs viable for portable and transport applications. However, there are issues with electrolyte and cathode materials at low temperatures, individually as well as in association with other components, which makes the performance of the SOFCs less satisfactory than expected at lowered temperatures. Bi-layering of electrolytes and impregnation of cathodes have emerged as two important strategies to overcome these issues and achieve higher performance at low temperatures. This review article provides the perspective on the strategy of bi-layering of electrolyte to achieve the desired high performance from SOFC at low to intermediate temperatures.

  1. Electric double layer capacitance on hierarchical porous carbons in an organic electrolyte

    OpenAIRE

    Yamada, Hirotoshi; Moriguchi, Isamu; Kudo, Tetsuichi

    2008-01-01

    Nanoporous carbons were prepared by using colloidal crystal as a template. Nitrogen adsorption/desorption isotherms and transmission electron microscope images revealed that the porous carbons exhibit hierarchical porous structures with meso/macropores and micropores. Electric double layer capacitor performance of the porous carbons was investigated in an organic electrolyte of 1 M LiClO4 in propylene carbonate and dimethoxy ethane. The hierarchical porous carbons exhibited large specific dou...

  2. Irradiation and lithium presence influence on the crystallographic nature of zirconia in the framework of PWR zircaloy 4 fuel cladding corrosion study

    International Nuclear Information System (INIS)

    Gibert, C.

    1999-01-01

    The-increasing deterioration of the initially protective zirconia layer is one of the hypotheses which can explain the impairment with time of PWR fuel cladding corrosion. This deterioration could be worsened by irradiation or lithium presence in the oxidizing medium. The aim of this thesis was to underline the influence of those two parameters on zirconia crystallographic nature. We first studied the impact of ionic irradiation on pure, powdery, monoclinic zirconia and oxidation formed zirconia, mainly with X-ray diffraction and Raman microscopy. The high or low energy particles used (Kr n+- , Ar n+ ) respectively favored electronic or atomic defaults production. The crystallographic analyses showed that these irradiation have a significant effect on zirconia by inducing nucleation or growth of tetragonal phase. The extent depends on sample nature and particles energy. In all cases, phase transformation is correlated with crystalline parameters, grain size and especially micro-stress changes. The results are consistent with those obtained with 1 to 5 cycles PWR claddings. Therefore, the corrosion acceleration observed in reactor can partly be explained by the stress fields appearance under irradiation, which is particularly detrimental to zirconia layer cohesion. Last, we have underlined that the presence of considerable amounts of lithium in the oxidizing medium ((> 700 ppm) induces the disappearance of the tetragonal zirconia located at the metal/oxide interface and the appearance of a porosity of the dense under layer, which looses its protectiveness. (author)

  3. Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kellogg, Isaiah D. [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 290A Toomey Hall, 400 West 13th Street, Rolla, MO 65409 (United States); Department of Materials Science and Engineering, Missouri University of Science and Technology, 223 McNutt Hall, 1400 N. Bishop, Rolla, MO 65409 (United States); Koylu, Umit O. [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 290A Toomey Hall, 400 West 13th Street, Rolla, MO 65409 (United States); Dogan, Fatih [Department of Materials Science and Engineering, Missouri University of Science and Technology, 223 McNutt Hall, 1400 N. Bishop, Rolla, MO 65409 (United States)

    2010-11-01

    Pyrolytic carbon was used as fuel in a solid oxide fuel cell (SOFC) with a yttria-stabilized zirconia (YSZ) electrolyte and a bi-layer anode composed of nickel oxide gadolinia-doped ceria (NiO-GDC) and NiO-YSZ. The common problems of bulk shrinkage and emergent porosity in the YSZ layer adjacent to the GDC/YSZ interface were avoided by using an interlayer of porous NiO-YSZ as a buffer anode layer between the electrolyte and the NiO-GDC primary anode. Cells were fabricated from commercially available component powders so that unconventional production methods suggested in the literature were avoided, that is, the necessity of glycine-nitrate combustion synthesis, specialty multicomponent oxide powders, sputtering, or chemical vapor deposition. The easily-fabricated cell was successfully utilized with hydrogen and propane fuels as well as carbon deposited on the anode during the cyclic operation with the propane. A cell of similar construction could be used in the exhaust stream of a diesel engine to capture and utilize soot for secondary power generation and decreased particulate pollution without the need for filter regeneration. (author)

  4. Solid state double layer capacitor based on a polyether polymer electrolyte blend and nanostructured carbon black electrode composites

    Energy Technology Data Exchange (ETDEWEB)

    Lavall, Rodrigo L.; Borges, Raquel S.; Calado, Hallen D.R.; Welter, Cezar; Trigueiro, Joao P.C.; Silva, Glaura G. [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Rieumont, Jacques [Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil); Facultad de Quimica, Universidad de La Habana, Habana 10400 (Cuba); Neves, Bernardo R.A. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais, CEP 31270-901, Belo Horizonte (Brazil)

    2008-03-01

    An all solid double layer capacitor was assembled by using poly(ethylene oxide)/poly(propylene glycol)-b-poly(ethylene glycol)-b-poly(propylene glycol)-bis(2-aminopropyl ether) blend (PEO-NPPP) and LiClO{sub 4} as polymer electrolyte layer and PEO-NPPP-carbon black (CB) as electrode film. High molecular weight PEO and the block copolymer NPPP with molecular mass of 2000 Da were employed, which means that the design is safe from the point of view of solvent or plasticizer leakage and thus, a separator is not necessary. Highly conductive with large surface area nanostructured carbon black was dispersed in the polymer blend to produce the electrode composite. The electrolyte and electrode multilayers prepared by spray were studied by differential scanning calorimetry, atomic force microscopy (AFM) and impedance spectroscopy. The ionic conductivity as a function of temperature was fitted with the Williams-Landel-Ferry equation, which indicates a conductivity mechanism typical of solid polymer electrolyte. AFM images of the nanocomposite electrode showed carbon black particles of approximately 60 nm in size well distributed in a semicrystalline and porous polymer blend coating. The solid double layer capacitor with 10 wt.% CB was designed with final thickness of approximately 130 {mu}m and delivered a capacitance of 17 F g{sup -1} with a cyclability of more than 1000 cycles. These characteristics make possible the construction of a miniature device in complete solid state which will avoid electrolyte leakage and present a performance superior to other similar electric double layer capacitors (EDLCs) presented in literature, as assessed in specific capacitance by total carbon mass. (author)

  5. Dilemmas in zirconia bonding: A review

    Directory of Open Access Journals (Sweden)

    Obradović-Đuričić Kosovka

    2013-01-01

    Full Text Available This article presents a literature review on the resin bond to zirconia ceramic. Modern esthetic dentistry has highly recognized zirconia, among other ceramic materials. Biocompatibility of zirconia, chemical and dimensional stability, excellent mechanical properties, all together could guarantee optimal therapeutical results in complex prosthodontic reconstruction. On the other hand, low thermal degradation, aging of zirconia as well as problematic bonding of zirconia framework to dental luting cements and tooth structures, opened the room for discussion concerning their clinical durability. The well known methods of mechanical and chemical bonding used on glass-ceramics are not applicable for use with zirconia. Therefore, under critical clinical situations, selection of the bonding mechanism should be focused on two important points: high initial bond strength value and long term bond strength between zirconia-resin interface. Also, this paper emphases the use of phosphate monomer luting cements on freshly air-abraded zirconia as the simplest and most effective way for zirconia cementation procedure today.

  6. Quantitative characterization of water transport and flooding in the diffusion layers of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Casalegno, A.; Colombo, L.; Galbiati, S.; Marchesi, R. [Department of Energy, Politecnico di Milano, via Lambruschini 4, 20156 Milano (Italy)

    2010-07-01

    Optimization of water management in polymer electrolyte membrane fuel cells (PEMFC) and in direct methanol fuel cells (DMFC) is a very important factor for the achievement of high performances and long lifetime. A good hydration of the electrolyte membrane is essential for high proton conductivity; on the contrary water in excess may lead to electrode flooding and severe reduction in performances. Many studies on water transport across the gas diffusion layer (GDL) have been carried out to improve these components; anyway efforts in this field are affected by lack of effective experimental methods. The present work reports an experimental investigation with the purpose to determine the global coefficient of water transport across different diffusion layers under real operating conditions. An appropriate and accurate experimental apparatus has been designed and built to test the single GDL under a wide range of operating conditions. Data analysis has allowed quantification of both the water vapor transport across different diffusion layers, and the effects of micro-porous layers; furthermore flooding onset and its consequences on the mass transport coefficient have been characterized by means of suitably defined parameters. (author)

  7. Analysis of the Deposit Layer from Electrolyte Side Reaction on the Anode of the Pouch Type Lithium Ion Polymer Batteries: The Effect of State of Charge and Charge Rate

    International Nuclear Information System (INIS)

    Agubra, Victor A.; Fergus, Jeffrey W.; Fu, Rujian; Choe, Song-yul

    2014-01-01

    Highlights: • Raising the battery cycling potential increased the rate of side reaction. • Growth of deposit layer thickness at the electrode/electrolyte interface at high SOC. • A significant amount of lithium was consumed in forming the deposit layer. • Some of the lithium were “trapped” in the graphite after the discharge cycle. - Abstract: The formation of the solid electrolyte interface (SEI) layer on the surface of the anode electrode of a lithium ion battery prevents further electrolyte decomposition reaction. However, at certain battery operating conditions, the SEI breakdown leading to more electrolyte decomposition reactions that form several species on the anode electrode surface. This paper focuses on the effect of battery potential and charge rate on the decomposition side reaction on the anode electrode of a lithium ion polymer battery, as a result of the breakdown of the SEI layer. The results from this study indicate that raising the state of charge (SOC) increases the rate of the electrolyte decomposition side reaction that resulted in formation of a thick deposit layer at the electrolyte/electrolyte interface. This deposit layer contains lithium that can no longer participate in the reversible electrochemical reaction. In addition, at high cycling potential and charge rates the amount of lithium in the graphite after complete cell discharge increased due to the entrapment of lithium in the graphite. The amount of irreversible capacity loss for the batteries cycled at high potential and current correlates with the amount of trapped lithium in the graphite and the growth of the deposit layer thickness at the electrode/electrolyte interface

  8. Crystalline structure and microstructural characteristics of the cathode/electrolyte solid oxide half-cells

    International Nuclear Information System (INIS)

    Chiba, Rubens; Vargas, Reinaldo Azevedo; Andreoli, Marco; Santoro, Thais Aranha de Barros; Seo, Emilia Satoshi Miyamaru

    2009-01-01

    The solid oxide fuel cell (SOFC) is an electrochemical device generating of electric energy, constituted of cathode, electrolyte and anode; that together they form a unity cell. The study of the solid oxide half-cells consisting of cathode and electrolyte it is very important, in way that is the responsible interface for the reduction reaction of the oxygen. These half-cells are ceramic materials constituted of strontium-doped lanthanum manganite (LSM) for the cathode and yttria-stabilized zirconia (YSZ) for the electrolyte. In this work, two solid oxide half-cells have been manufactured, one constituted of LSM cathode thin film on YSZ electrolyte substrate (LSM - YSZ half-cell), and another constituted of LSM cathode and LSM/YSZ composite cathode thin films on YSZ electrolyte substrate (LSM - LSM/YSZ - YSZ half cell). The cathode/electrolyte solid oxide half-cells were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results have been presented with good adherence between cathode and electrolyte and, LSM and YSZ phases were identified. (author)

  9. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  10. Modifying zirconia solid electrolyte surface property to enhance oxide transport

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, B.Y.; Song, S.Y. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-12-31

    Bismuth-strontium-calcium-copper oxide (Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, BSCCO) is known for its high T{sub c} superconducting behavior and mixed conducting property. The applicability of similar high T{sub c} cuprates for intermediate-temperature solid oxide fuel cell (SOFC) application has been studied recently. We investigated the electrochemical behavior of several Ag{vert_bar}BSCCO{vert_bar}10 mol% yttria-stabilized zirconia (YSZ){vert_bar}Ag and Ag{vert_bar}YSZ{vert_bar}Ag cells using complex impedance spectroscopy. A highly uniform and porous microstructure was observed at the interface of the YSZ and BSCCO. The ionic conductivity determined from the Nyquest plots in the temperature range of 200-700{degrees}C agrees with the values reported in the literature. The specific resistance of the BSCCO{vert_bar}YSZ interface was also determined to be lower than those of the conventional manganite electrode, suggesting that BSCCO seems attractive for cathode applications in SOFC.

  11. Positron annihilation studies of zirconia doped with metal cations of different valence

    Science.gov (United States)

    Prochazka, I.; Cizek, J.; Melikhova, O.; Konstantinova, T. E.; Danilenko, I. A.; Yashchishyn, I. A.; Anwand, W.; Brauer, G.

    2013-06-01

    New results obtained by applying positron annihilation spectroscopy to the investigation of zirconia-based nanomaterials doped with metal cations of different valence are reported. The slow-positron implantation spectroscopy combined with Doppler broadening measurements was employed to study the sintering of pressure-compacted nanopowders of tetragonal yttria-stabilised zirconia (t-YSZ) and t-YSZ with chromia additive. Positronium (Ps) formation in t-YSZ was proven by detecting 3γ-annihilations of ortho-Ps and was found to gradually decrease with increasing sintering temperature. A subsurface layer with enhanced 3γ-annihilations, compared to the deeper regions, could be identified. Addition of chromia was found to inhibit Ps formation. In addition, first results of positron lifetime measurements on nanopowders of zirconia phase-stabilised with MgO and CeO2 are presented.

  12. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    International Nuclear Information System (INIS)

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    Highlights: • Gel electrolyte is prepared and used in electric double layer capacitor. • Insertion of boron crosslinks into GO agglomerates opens channels for ion migration. • Solid supercapacitors show excellent specific capacitance and cycle stability. • Nanocomposite electrolyte shows better thermal stability and mechanical properties. - Abstract: A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs

  13. Effect upon biocompatibility and biocorrosion properties of plasma electrolytic oxidation in trisodium phosphate electrolytes.

    Science.gov (United States)

    Kim, Yu-Kyoung; Park, Il-Song; Lee, Kwang-Bok; Bae, Tae-Sung; Jang, Yong-Seok; Oh, Young-Min; Lee, Min-Ho

    2016-03-01

    Surface modification to improve the corrosion resistance and biocompatibility of the Mg-Al-Zn-Ca alloy was conducted via plasma electrolytic oxidation (PEO) in an electrolyte that included phosphate. Calcium phosphate can be easily induced on the surface of a PEO coating that includes phosphate in a physiological environment because Ca(2+) ions in body fluids can be combined with PO4 (3-). Cytotoxicity of the PEO coating formed in electrolytes with various amounts of Na3PO4 was identified. In particular, the effects that PEO films have upon oxidative stress and differentiation of osteoblast activity were studied. As the concentration of Na3PO4 in the electrolyte increased, the oxide layer was found to become thicker, which increased corrosion resistance. However, the PEO coating formed in electrolytes with over 0.2 M of added Na3PO4 exhibited more microcracks and larger pores than those formed in smaller Na3PO4 concentrations owing to a large spark discharge. A nonuniform oxide film that included more phosphate caused more cytotoxicity and oxidative stress, and overabundant phosphate content in the oxide layer interrupted the differentiation of osteoblasts. The corrosion resistance of the magnesium alloy and the thickness of the oxide layer were increased by the addition of Na3PO4 in the electrolyte for PEO treatment. However, excessive phosphate content in the oxide layer led to oxidative stress, which resulted in reduced cell viability and activity.

  14. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dongping; Tao, Jinhui; Yan, Pengfei; Henderson, Wesley A.; Li, Qiuyan; Shao, Yuyan; Helm, Monte L.; Borodin, Oleg; Graff, Gordon L.; Polzin, Bryant; Wang, Chong-Min; Engelhard, Mark; Zhang, Ji-Guang; De Yoreo, James J.; Liu, Jun; Xiao, Jie

    2017-02-10

    Interfacial phenomena have always been key determinants for the performance of energy storage technologies. The solid electrolyte interfacial (SEI) layer, pervasive on the surfaces of battery electrodes for numerous chemical couples, directly affects the ion transport, charge transfer and lifespan of the entire energy system. Almost all SEI layers, however, are unstable resulting in the continuous consumption of the electrolyte. Typically, this leads to the accumulation of degradation products on/restructuring of the electrode surface and thus increased cell impedance, which largely limits the long-term operation of the electrochemical reactions. Herein, a completely new SEI formation mechanism has been discovered, in which the electrolyte components reversibly self-assemble into a protective surface coating on a graphite electrode upon changing the potential. In contrast to the established wisdom regarding the necessity of employing the solvent ethylene carbonate (EC) to form a protective SEI layer on graphite, a wide range of EC-free electrolytes are demonstrated for the reversible intercalation/deintercalation of Li+ cations within a graphite lattice, thereby providing tremendous flexibility in electrolyte tailoring for battery couples. This novel finding is broadly applicable and provides guidance for how to control interfacial reactions through the relationship between ion aggregation and solvent decomposition at polarized interfaces.

  15. Role of electrolyte composition on structural, morphological and in-vitro biological properties of plasma electrolytic oxidation films formed on zirconium

    International Nuclear Information System (INIS)

    M, Sandhyarani; T, Prasadrao; N, Rameshbabu

    2014-01-01

    Highlights: • Uniform oxide films were formed on zirconium by plasma electrolytic oxidation. • Silicate in electrolyte alter the growth of m-ZrO 2 from (1 ¯ 11) to (2 0 0) orientation. • Addition of KOH to electrolyte improved the corrosion resistance of oxide films. • Silicon incorporated oxide films showed higher surface roughness and wettability. • Human osteosarcoma cells were strongly adhered and spreaded on all the oxide films. - Abstract: Development of oxide films on metallic implants with a good combination of corrosion resistance, bioactivity and cell adhesion can greatly improve its biocompatibility and functionality. Thus, the present work is aimed to fabricate oxide films on metallic Zr by plasma electrolytic oxidation (PEO) in methodically varied concentrations of phosphate, silicate and KOH based electrolyte systems using a pulsed DC power source. The oxide films fabricated on Zr are characterized for its phase composition, surface morphology, chemical composition, roughness, wettability, surface energy, corrosion resistance, apatite forming ability and osteoblast cell adhesion. Uniform films with thickness varying from 6 to 11 μm are formed. XRD patterns of all the PEO films showed the predominance of monoclinic zirconia phase. The film formed in phosphate + KOH electrolyte showed superior corrosion resistance, which can be ascribed to its pore free morphology. The films formed in silicate electrolyte showed higher apatite forming ability with good cell adhesion and spreading over its surface which is attributed to its superior surface roughness and wettability characteristics. Among the five different electrolyte systems employed in the present study, the PEO film formed in an electrolyte system with phosphate + silicate + KOH showed optimum corrosion resistance, apatite forming ability and biocompatibility

  16. Computational study of structures of yttria-stabilised zirconia/strontium titanate multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheah, Wei Li; Finnis, Mike [Imperial College London (United Kingdom)

    2012-07-01

    Growing interest in the field of functional oxide multilayered nano-heterostructures may be attributed to their unusual interfacial properties that are not yet fully understood. For instance, the nature of the unexpectedly high conductivity reported in a trilayer of 1-nm thick epitaxial yttria-stabilised zirconia (YSZ) film sandwiched between strontium titanate (STO) layers still remains controversial. In an effort to investigate the source of conductivity in this system, we first establish an unexpected YSZ lattice within such hetero-system using a combination of techniques - a genetic algorithm in which the interatomic forces are described by classical pair potentials, and a pseudo-potential-based DFT method as implemented in the plane-wave code CASTEP. We find this structure to be more stable than an anatase zirconia epitaxial lattice on STO which has been previously found as the most stable structure if yttrium dopants were not incorporated within the zirconia layer. Analysis of charge density of this new structure reveals not localised vacancies, but several small pockets of low charge densities for each expected vacancy. We examine the mobility of oxide ions in the hetero-system using classical molecular dynamics simulation and attempt to relate the results to experimental conductivity values.

  17. High temperature fuel cell with ceria-based solid electrolyte

    International Nuclear Information System (INIS)

    Arai, H.; Eguchi, K.; Yahiro, H.; Baba, Y.

    1987-01-01

    Cation-doped ceria is investigated as an electrolyte for the solid oxide fuel cell. As for application to the fuel cells, the electrolyte are desired to have high ionic conductivity in deriving a large electrical power. A series of cation-doped ceria has higher ionic conductivity than zirconia-based oxides. In the present study, the basic electrochemical properties of cation-doped ceria were studied in relation to the application of fuel cells. The performance of fuel cell with yttria-doped ceria electrolyte was evaluated. Ceria-based oxides were prepared by calcination of oxide mixtures of the components or calcination of co-precipitated hydroxide mixtures from the metal nitrate solution. The oxide mixtures thus obtained were sintered at 1650 0 C for 15 hr in air into disks. Ionic transference number, t/sub i/, was estimated from emf of oxygen concentration cell. Electrical conductivities were measured by dc-4 probe method by varying the oxygen partial pressure. The fuel cell was operated by oxygen and hydrogen

  18. Zirconia - the cinderella transformation

    International Nuclear Information System (INIS)

    Hannink, R.H.J.

    1999-01-01

    Zirconia and its alloys have formed a turning point in mechanical property developments of engineering ceramics. This can be stated primarily because zirconia alloys were one of the first ceramic systems in which it was demonstrated that the mechanical properties could be tailored using careful control of composition, powder processing and thermal treatment. For the improved mechanical properties to be captured in zirconia-based or containing ceramics, control of the tetragonal to monoclinic transformation is required. Through microstructural control, zirconia-based ceramics can be tailored to form some of the strongest and toughest ceramics yet developed. By carefully controlling the use of various dopants (alloying additions), a variety of microstructures can be produced all of which may exhibit transformation toughening. While success in capturing the benefits of transformation toughening relies on adequate powder processing techniques, this review is restricted to outlining the phase control and behaviour that make zirconia and its alloys such a scientifically fascinating and rewarding system for study and a commercially appealing ceramic material

  19. Formation and properties of composite nanostructured PEO-coatings on metals and alloys

    Directory of Open Access Journals (Sweden)

    Mashtalyar Dmitry V.

    2017-01-01

    Full Text Available Results of investigation of the incorporation of zirconia and titanium nitride nanoparticles into the coatings formed on magnesium alloy by plasma electrolytic oxidation are presented. Comprehensive research of electrochemical and mechanical properties of obtained coatings was carried out. It was established that the polarization resistance of the samples with a coating containing zirconia nanoparticles is in two fold higher than for the sample with base PEO-coating. One of the important reasons for improving the protective properties of coatings formed in electrolytes containing nanoparticles consists in enhanced morphological characteristics, in particular, the porosity decrease and increase of thickness and resistivity of porousless sublayer in comparison with base PEO-layer. Incorporation of zirconia and titanium nitride particles into the coating increases the mechanical performances. The coating containing nanoparticles have greater hardness and are more wear resistant in comparison with the coatings formed in the electrolyte without nanoparticle.

  20. Preparation of functional layers for anode-supported solid oxide fuel cells by the reverse roll coating process

    Science.gov (United States)

    Mücke, R.; Büchler, O.; Bram, M.; Leonide, A.; Ivers-Tiffée, E.; Buchkremer, H. P.

    The roll coating technique represents a novel method for applying functional layers to solid oxide fuel cells (SOFCs). This fast process is already used for mass production in other branches of industry and offers a high degree of automation. It was utilized for coating specially developed anode (NiO + 8YSZ, 8YSZ: 8 mol% yttria-stabilized zirconia) and electrolyte (8YSZ) suspensions on green and pre-sintered tape-cast anode supports (NiO + 8YSZ). The layers formed were co-fired in a single step at 1400 °C for 5 h. As a result, the electrolyte exhibited a thickness of 14-18 μm and sufficient gas tightness. Complete cells with a screen-printed and sintered La 0.65Sr 0.3MnO 3- δ (LSM)/8YSZ cathode yielded a current density of 0.9-1.1 A cm -2 at 800 °C and 0.7 V, which is lower than the performance of non-co-fired slip-cast or screen-printed Jülich standard cells with thinner anode and electrolyte layers. The contribution of the cell components to the total area-specific resistance (ASR) was calculated by analyzing the distribution function of the relaxation times (DRTs) of measured electrochemical impedance spectra (EIS) and indicates the potential improvement in the cell performance achievable by reducing the thickness of the roll-coated layers. The results show that the anode-supported planar half-cells can be fabricated cost-effectively by combining roll coating with subsequent co-firing.

  1. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Ryong; Kim, Yeon Sung; Kim, Gye Won [Department of Materials Science and Engineering, Hanyang University, Ansan 425-791 (Korea, Republic of); Yang, Hae Woong [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Ko, Young Gun, E-mail: younggun@ynu.ac.kr [School of Materials Science and Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Shin, Dong Hyuk, E-mail: dhshin@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Ansan 425-791 (Korea, Republic of)

    2015-08-30

    Highlights: • Ag nanoparticles were embedded into the oxide surface without any compositional changes. • Oxide layer from the electrolyte with 0.1 g/l Ag nanoparticles could disinfect all bacteria. • With increasing Ag nanoparticles, bone-forming ability and cell proliferation rate decrease. - Abstract: This study was to investigate how Ag nanoparticles with various concentrations affect the surface structure and in vitro biological properties of oxide layers on the pure titanium produced by a plasma electrolytic oxidation (PEO) process. For this aim, PEO processes were carried out at an AC current density of 100 mA/cm{sup 2} for 300 s in potassium pyrophosphate (K{sub 4}P{sub 2}O{sub 7}) electrolytes containing 0, 0.1, 0.3 and 0.5 g/l Ag nanoparticles. Structural investigations using scanning electron microscopy evidenced that the oxide layers showed the successful incorporation of Ag nanoparticles, and the topographical deformation of the porous surface was found when the concentration of Ag nanoparticles was more than 0.1 g/l. Based on the anti-bacterial activity of all oxide layers, the Ag nanoparticles uniformly spread were of considerable importance in triggering the disinfection of E. coli bacteria. The bone forming abilities and cell (MC3T3-E1) proliferation rates of oxide layers produced in electrolytes containing 0 and 0.1 g/l Ag nanoparticles were higher than those containing 0.3 and 0.5 g/l Ag nanoparticles. Consequently, the oxide layer on pure titanium via PEO process in the electrolyte with 0.1 g/l Ag nanoparticles exhibited better the bioactivity accompanying the anti-bacterial activity.

  2. Electrical characterization of zirconia-niobium and zirconia-titanium composites; Caracterizacao eletrica dos compositos zirconia-niobio e zirconia-titanio

    Energy Technology Data Exchange (ETDEWEB)

    Reis, S.T. dos

    1994-12-31

    Zirconia-niobium and zirconia-titanium composites were made by powder mixing, cold pressing, and vacuum sintering at 1600{sup 0} C. The metallic particles were added in the proportion of 0-50% by volume. Electrical resistivity measurements were performed by the two probes and the four probes d.c. method as a function of metallic particle concentration. Electrical resistivity of these composites decreased sharply in the region of 30-40 vol% Nb or Ti, in agreement with the percolation theory. Tests in an induction furnace were performed to check the self-heating response of these composites. (author). 33 refs, 40 figs, 11 tabs.

  3. Synthesis and characterization of zirconia electrolytes for potential use in energy conversion

    International Nuclear Information System (INIS)

    Wheat, T.A.

    1978-11-01

    The present work is part of a program to develop ionically conducting materials for potential use in energy storage and conversion systems. With applications in high energy-density batteries, magneto-hydrodynamic (MHD) generators, fuel cells and sensors, they ae playing an increasinly important role in developing more efficient energy storage and conversion devices. Using a wet-chemical procedure, a series of compostions having between 0 and 22.2 mol percent CaO in zirconia, was prepared and subsequently formed into sintered samples having a relative density from 95 to 98 percent. Sintered samples were prepared of each composition with a geometry appropriate for determining the thermal, electrical or microstructural characteristics. This report covers only the microstructural aspects of powder synthesis and the development of sintered materials. Using the reactive, homogeneous, chemically prepared powders, it has been shown that cubic and monoclinic zirconia can coexist in compositions containing up to 10 mol percent CaO. From 10 to 20 mol percent CaO, only the cubic phase is formed, whereas at higher CaO concentrations the cubic phase coexits with CaZro 3 . The change from a two-phase to single-phase system as the CaO concentration is increased above 10 mol percent, increases the grain size nearly an order of magnitude. It has been found that 5 and 7.6 mol percent CaO materials develop considerable stress during the cooling stage of the firing cycle. As a result, they undergo a progressive and irreversible expansion with each thermal shock cycle: the magnitude of the expansion is proportional to the severity of the thermal shock. The microstructural texture of these partially stablilized materials was also shown to be dependent on the thermal history and hence a strong dependence of the electrical and thermal properties can be anticipated. (auth)

  4. Using glass-graded zirconia to increase delamination growth resistance in porcelain/zirconia dental structures.

    Science.gov (United States)

    Chai, Herzl; Mieleszko, Adam J; Chu, Stephen J; Zhang, Yu

    2018-01-01

    Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their tendency to delaminate along the P/Z interface remains a practical problem so that assessing and improving the interfacial strength are important design aspects. This work examines the effect of modifying the zirconia veneering surface with an in-house felspathic glass on the interfacial fracture resistance of fused P/Z. Three material systems are studied: porcelain fused to zirconia (control) and porcelain fused to glass-graded zirconia with and without the presence of a glass interlayer. The specimens were loaded in a four-point-bend fixture with the porcelain veneer in tension. The evolution of damage is followed with the aid of a video camera. The interfacial fracture energy G C was determined with the aid of a FEA, taking into account the stress shielding effects due to the presence of adjacent channel cracks. Similarly to a previous study on PFZ specimens, the fracture sequence consisted of unstable growth of channel cracks in the veneer followed by stable cracking along the P/Z interface. However, the value of GC for the graded zirconia was approximately 3 times that of the control zirconia, which is due to the good adhesion between porcelain and the glass network structure on the zirconia surface. Combined with its improved bonding to resin-based cements, increased resistance to surface damage and good esthetic quality, graded zirconia emerges as a viable material concept for dental restorations. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Synthesis and characterization of scandia ceria stabilized zirconia powders prepared by polymeric precursor method for integration into anode-supported solid oxide fuel cells

    Science.gov (United States)

    Tu, Hengyong; Liu, Xin; Yu, Qingchun

    2011-03-01

    Scandia ceria stabilized zirconia (10Sc1CeSZ) powders are synthesized by polymeric precursor method for use as the electrolyte of anode-supported solid oxide fuel cell (SOFC). The synthesized powders are characterized in terms of crystalline structure, particle shape and size distribution by X-ray diffraction (XRD), transmission electron microscopy (TEM) and photon correlation spectroscopy (PCS). 10Sc1CeSZ electrolyte films are deposited on green anode substrate by screen-printing method. Effects of 10Sc1CeSZ powder characteristics on sintered films are investigated regarding the integration process for application as the electrolytes in anode-supported SOFCs. It is found that the 10Sc1CeSZ films made from nano-sized powders with average size of 655 nm are very porous with many open pores. In comparison, the 10Sc1CeSZ films made from micron-sized powders with average size of 2.5 μm, which are obtained by calcination of nano-sized powders at higher temperatures, are much denser with a few closed pinholes. The cell performances are 911 mW cm-2 at the current density of 1.25 A cm-2 and 800 °C by application of Ce0.8Gd0.2O2 (CGO) barrier layer and La0.6Sr0.4CoO3 (LSC) cathode.

  6. Dynamic behaviour of the silica-water-bio electrical double layer in the presence of a divalent electrolyte.

    Science.gov (United States)

    Lowe, B M; Maekawa, Y; Shibuta, Y; Sakata, T; Skylaris, C-K; Green, N G

    2017-01-25

    Electronic devices are becoming increasingly used in chemical- and bio-sensing applications and therefore understanding the silica-electrolyte interface at the atomic scale is becoming increasingly important. For example, field-effect biosensors (BioFETs) operate by measuring perturbations in the electric field produced by the electrical double layer due to biomolecules binding on the surface. In this paper, explicit-solvent atomistic calculations of this electric field are presented and the structure and dynamics of the interface are investigated in different ionic strengths using molecular dynamics simulations. Novel results from simulation of the addition of DNA molecules and divalent ions are also presented, the latter of particular importance in both physiological solutions and biosensing experiments. The simulations demonstrated evidence of charge inversion, which is known to occur experimentally for divalent electrolyte systems. A strong interaction between ions and DNA phosphate groups was demonstrated in mixed electrolyte solutions, which are relevant to experimental observations of device sensitivity in the literature. The bound DNA resulted in local changes to the electric field at the surface; however, the spatial- and temporal-mean electric field showed no significant change. This result is explained by strong screening resulting from a combination of strongly polarised water and a compact layer of counterions around the DNA and silica surface. This work suggests that the saturation of the Stern layer is an important factor in determining BioFET response to increased salt concentration and provides novel insight into the interplay between ions and the EDL.

  7. Dual-scan technique for the customization of zirconia computer-aided design/computer-aided manufacturing frameworks.

    Science.gov (United States)

    Andreiuolo, Rafael Ferrone; Sabrosa, Carlos Eduardo; Dias, Katia Regina H Cervantes

    2013-09-01

    The use of bi-layered all-ceramic crowns has continuously grown since the introduction of computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia cores. Unfortunately, despite the outstanding mechanical properties of zirconia, problems related to porcelain cracking or chipping remain. One of the reasons for this is that ceramic copings are usually milled to uniform thicknesses of 0.3-0.6 mm around the whole tooth preparation. This may not provide uniform thickness or appropriate support for the veneering porcelain. To prevent these problems, the dual-scan technique demonstrates an alternative that allows the restorative team to customize zirconia CAD/CAM frameworks with adequate porcelain thickness and support in a simple manner.

  8. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives

    Science.gov (United States)

    Huang, Shiqiang; Wang, Shuwei; Hu, Guohong; Cheong, Ling-Zhi; Shen, Cai

    2018-05-01

    Solid-electrolyte interphase (SEI) layer is an organic-inorganic composite layer that allows Li+ transport across but blocks electron flow across and prevents solvent diffusing to electrode surface. Morphology, thickness, mechanical and chemical properties of SEI are important for safety and cycling performance of lithium-ion batteries. Herein, we employ a combination of in-situ AFM and XPS to investigate the effects of two electrolyte additives namely lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalato)borate (LiBOB) on SEI layer. LiDFOB is found to result in a thin but hard SEI layer containing more inorganic species (LiF and LiCO3); meanwhile LiBOB promotes formation of a thick but soft SEI layer containing more organic species such as ROCO2Li. Findings from present study will help development of electrolyte additives that promote formation of good SEI layer.

  9. Ultrastructural Analysis and Long-term Evaluation of Composite-Zirconia Bond Strength.

    Science.gov (United States)

    Aboushelib, Moustafa N; Ragab, Hala; Arnaot, Mohamed

    2018-01-01

    To evaluate the influence of different aging techniques on zirconia-composite microtensile bond strength using different surface treatments over a 5-year follow-up period. Zirconia disks received three surface treatments: airborne-particle abrasion with 50-μm aluminum oxide particles, selective infiltration etching (SIE), or fusion sputtering (FS). The specimens were bonded to pre-aged composite disks using a composite cement containing phosphate monomers (Panavia F2.0). Bonded specimens were sectioned into microbars (1 x 1 x 6 mm) using a precision cutting machine, and all microbars received thermocycling (15,000 cycles between 5°C and 55°C). Initial microtensile bond strength was evaluated, and the test was repeated after storage in the following media for five years (artificial saliva, 20% ethanol, 5% NaOH, 4% acetic acid, and 5% phosphoric acid). The test was repeated every 12 months for 5 years. Scanning electron microscopic images were used to analyze the zirconia-composite interface. A repeated measures ANOVA and Bonferroni post-hoc tests were used to analyze the data (n = 20, α = 0.05). Significantly higher microtensile bond strength was observed for SIE compared to fusion sputtering and airborne particle abrasion. Five years of artificial aging resulted in significant reduction of zirconia-composite bond strength for all tested specimens. Zirconia-composite bond strength was more sensitive to storage in sodium hydroxide and phosphoric acid, while it was least affected when stored under saliva. These changes were related to the mechanism of ultra-structural interaction between surface treatment and adhesive, as deterioration of the hybrid layer (composite-infiltrated ceramic) was responsible for bond degeneration. Zirconia-composite bond strength was influenced by 5 years of artificial aging.

  10. Diffusion complex layers of TiC-Ni-Mo type produced on steel during vacuum titanizing process combined with the electrolytic deposition

    International Nuclear Information System (INIS)

    Kasprzycka, E.; Krolikowski, A.

    1999-01-01

    Diffusion carbide layers produced on steel surface by means of vacuum titanizing process have been studied. A new technological process combining a vacuum titanizing with an electrolytic deposition of Ni-Mo alloy has been proposed to increase of corrosion resistance of carbide layers. The effect of preliminary electrolytic deposition of Ni-Mo alloy on the NC10 steel surface on the titanized layer structure and its corrosion resistance has ben investigated. As a result, diffusion complex layers of TiC-Ni-Mo type on NC10 steel surface have been obtained. An X-ray structural analysis of titanized surfaces on NC10 steel precovered with an electrolytic Ni-Mo alloy coating (70%Ni+30%Mo) revealed a presence of titanium carbide TiC, NiTi, MoTi and trace quantity of austenite. The image of the TiC-Ni-Mo complex layer on NC10 steel surface obtained by means of joined SEM+TEM method and diagrams of elements distribution in the layer diffusion zone have been shown. Concentration of depth profiles of Ti, Ni, Mo, Cr and Fe in the layer diffusion zone obtained by means of the joined EDS+TEM method are shown. Concentration depth profiles of Ti, Ni, Mo, Cr and Fe in the layer diffusion zone obtained by means of the X r ay microanalysis and microhardness of the layer are shown. An X-ray structural analysis of titanized surfaces on the NC10 steel, without Ni-Mo alloy layer, revealed only a substantial presence of titanium carbide TiC. For corrosion resistance tests the steel samples with various diffusion layers and without layers were used: (i) the TiC-Ni-Mo titanized complex layers on NC10 steel, (ii) the TiC titanized carbide layers on the NC10 steel, (iii) the NC10 steel without layers. Corrosion measurements of sample under test have been performed in 0.1 M H 2 SO 4 by means of potentiodynamic polarization and electrochemical impedance tests. It has been found that the corrosion resistance of titanized steel samples with the TiC and TiC-Ni-Mo layers is higher than for the steel

  11. Study of the cubic - to - monoclinic transformation in magnesia partially stabilized zirconia

    International Nuclear Information System (INIS)

    Muccillo, R.

    1988-01-01

    The transformation of the cubic phase to the stable monoclinic phase in ZrO 2 : 3%MgO quenched from 1450 0 C to RT has been studied by X-ray diffractometry in order to explain the thermal hysteresis in the electrical conductivity. The monoclinic-to-cubic ratio has been measured for samples annealed in the 500 0 C-1000 0 C temperature range. The results show that the decrease in the cubic phase content is the main responsible for the thermal hysteresis in the electrical conductivity of the magnesia partially stabilized zirconia solid electrolytes. (author) [pt

  12. Effects of electrolytic composition on the electric double-layer capacitance at smooth-surface carbon electrodes in organic media

    International Nuclear Information System (INIS)

    Kim, In-Tae; Egashira, Minato; Yoshimoto, Nobuko; Morita, Masayuki

    2010-01-01

    As a fundamental research on the optimization of electrolyte composition in practical electrochemical capacitor device, double-layer capacitance at Glassy Carbon (GC) and Boron-doped Diamond (BDD), as typical smooth-surface carbon electrodes, has been studied as a function of the electrolyte composition in organic media. Specific capacitance (differential capacitance: F cm -2 ) determined by an AC impedance method, in which no contribution of mass-transport effects is included, corresponded well to integrated capacitance evaluated by conventional cyclic voltammetry. The specific capacitance at the GC electrode varied with polarized potential and showed clear PZC (potential of zero charge), while the potential dependence of the capacitance at BDD was very small. The effects of the solvent and the electrolytic salt on the capacitance behavior were common for both electrodes. That is, the sizes of the solvent molecule and the electrolytic ion (cation) strongly affected the capacitance at these smooth-surface carbon electrodes.

  13. The Chemical Composition and Structure of Supported Sulfated Zirconia with Regulated Size Nanoparticles

    International Nuclear Information System (INIS)

    Kanazhevskiy, V. V.; Shmachkova, V. P.; Kotsarenko, N. S.; Kochubey, D. I.; Vedrine, J. C.

    2007-01-01

    A set of model skeletal isomerization catalysts - sulfated zirconia nanoparticles of controlled thickness anchored on different supports - was prepared using colloidal solutions of Zr salt on titania as support. The nanoparticles of zirconia (1-5 nm) are epitaxially connected to the support surface, with S/Zr ratio equals to 1.3-1.5. It was shown by EXAFS that nanoparticles of non-stoichiometric zirconium sulfate Zr(SO4)1+x, where x<0.5, are formed on the support surface. Its structure looks like half-period shifted counterdirected chains built-up by zirconium atoms linked by triangle pyramids of sulfate groups. Considering catalytic data of skeletal n-butane isomerisation at 150 deg. C, one can suggest that these species behave as the active component of sulfated zirconia. They are formed in subsurface layers as zirconium hydroxide undergoes sulfation followed by thermal treatment

  14. Oxidation of mullite-zirconia-alumina-silicon carbide composites

    International Nuclear Information System (INIS)

    Baudin, C.; Moya, J.S.

    1990-01-01

    This paper reports the isothermal oxidation of mullite-alumina-zirconia-silicon carbide composites obtained by reaction sintering studied in the temperature interval 800 degrees to 1400 degrees C. The kinetics of the oxidation process was related to the viscosity of the surface glassy layer as well as to the crystallization of the surface film. The oxidation kinetics was halted to T ≤ 1300 degrees C, presumably because of crystallization

  15. Theoretical studies of zirconia and defects in zirconia. Final report

    International Nuclear Information System (INIS)

    Jansen, H.J.F.

    1995-01-01

    Supported by this grant the author has performed total energy electronic structure calculations for cubic, tetragonal, and monoclinic zirconia. The results of these calculations agree with the observed ordering of structures in the phase diagram. He has developed model potentials based on the total energy results. Molecular dynamics calculations using these model potentials give a good description of the phase transitions in and the thermal properties of zirconia

  16. Electrochemical performance of solid oxide fuel cells having electrolytes made by suspension and solution precursor plasma spraying

    Science.gov (United States)

    Marr, M.; Kuhn, J.; Metcalfe, C.; Harris, J.; Kesler, O.

    2014-01-01

    Yttria-stabilized zirconia (YSZ) electrolytes were deposited by suspension plasma spraying (SPS) and solution precursor plasma spraying (SPPS). The electrolytes were evaluated for permeability, microstructure, and electrochemical performance. With SPS, three different suspensions were tested to explore the influence of powder size distribution and liquid properties. Electrolytes made from suspensions of a powder with d50 = 2.6 μm were more gas-tight than those made from suspensions of a powder with d50 = 0.6 μm. A peak open circuit voltage of 1.00 V was measured at 750 °C with a cell with an electrolyte made from a suspension of d50 = 2.6 μm powder. The use of a flammable suspension liquid was beneficial for improving electrolyte conductivity when using lower energy plasmas, but the choice of liquid was less important when using higher energy plasmas. With SPPS, peak electrolyte conductivities were comparable to the peak conductivities of the SPS electrolytes. However, leak rates through the SPPS electrolytes were higher than those through the electrolytes made from suspensions of d50 = 2.6 μm powder. The electrochemical test data on SPPS electrolytes are the first reported in the literature.

  17. Electron transfer through solid-electrolyte-interphase layers formed on Si anodes of Li-ion batteries

    International Nuclear Information System (INIS)

    Benitez, L.; Cristancho, D.; Seminario, J.M.; Martinez de la Hoz, J.M.; Balbuena, P.B.

    2014-01-01

    Solid-electrolyte interphase (SEI) films are formed on the electrode surfaces due to aggregation of products of reduction or oxidation of the electrolyte. These films may grow to thicknesses in the order of 50-100 nm and contain a variety of organic and inorganic products but their structure is not well defined. Although in some cases the films exert a passivating role, this is not always the case, and these phenomena are particularly more complex on Silicon anodes due to swelling and cracking of the electrode during lithiation and delithiation. Since the driving force for SEI growth is electron transfer, it is important to understand how electron transfer may keep occurring through the heterogeneous film once the bare electron surface is covered. Here we introduce a novel approach for studying electron transfer through model films and show preliminary results for the analysis of electron transfer through model composite interfacial systems integrated by electrode/SEI layer/electrolyte. Ab initio molecular dynamics simulations are used to identify deposition of SEI components, and a density functional theory/Green's function approach is utilized for characterizing electron transfer. Three degrees of lithiation are modeled for the electrodes, the SEI film is composed by LiF or Li 2 O, and the ethylene carbonate reduction is studied. An applied potential is used as driving force for the leakage current, which is evaluated as a function of the applied potential. Comparative analyses are done for LiF and Li 2 O model SEI layers

  18. Phase characterization of precipitated zirconia

    International Nuclear Information System (INIS)

    Gutzov, S.; Ponahlo, J.; Lengauer, C.L.; Beran, A.

    1994-01-01

    The phase compositions of undoped and europium-doped zirconia samples, obtained by precipitation and thermal treatment from 350 to 1,000 C, have been investigated by powder X-ray diffractometry, infrared spectroscopy, and cathodoluminescence spectroscopy. The low-temperature stabilization of tetragonal zirconia is mainly controlled by the presence of anion additives, such as ammonium chloride. The influences of the crystallite size is less important. Cathodoluminescence spectra show a structural similarity between tetragonal and amorphous zirconia

  19. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics; Avaliacao de tratamentos quimicos e recobrimento biomimetico em ceramicas de alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Amanda Abati

    2007-07-01

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation

  20. Zirconia based ceramic coating on a metal with plasma electrolytic oxidation

    Science.gov (United States)

    Akatsu, T.; Kato, T.; Shinoda, Y.; Wakai, F.

    2011-10-01

    We challenge to fabricate a thermal barrier coating (TBC) made of ZrO2 based ceramics on a Ni based single crystal superalloy with plasma electrolytic oxidation (PEO) by incorporating metal species from electrolyte into the coating. The PEO process is carried out on the superalloy galvanized with aluminium for 15min in Na4O7P4 solution for an oxygen barrier coating (OBC) and is followed by PEO in K2[Zr(CO3)2(OH)2] solution for TBC. We obtained the following results; (1) Monoclinic-, tetragonal-, cubic-ZrO2 crystals were detected in TBC. (2) High porosity with large pores was observed near the interface between OBC and TBC. The fine grain structure with a grain size of about 300nm was typically observed. (3) The adhesion strength between PEO coatings and substrate was evaluated to be 26.8±6.6MPa. At the adhesion strength test, PEO coatings fractured around the interface between OBC and TBC. The effect of coating structure on adhesion strength is explained through the change in spark discharge during PEO process.

  1. Plasma electrolytic oxidation of Titanium Aluminides

    International Nuclear Information System (INIS)

    Morgenstern, R; Sieber, M; Lampke, T; Grund, T; Wielage, B

    2016-01-01

    Due to their outstanding specific mechanical and high-temperature properties, titanium aluminides exhibit a high potential for lightweight components exposed to high temperatures. However, their application is limited through their low wear resistance and the increasing high-temperature oxidation starting from about 750 °C. By the use of oxide ceramic coatings, these constraints can be set aside and the possible applications of titanium aluminides can be extended. The plasma electrolytic oxidation (PEO) represents a process for the generation of oxide ceramic conversion coatings with high thickness. The current work aims at the clarification of different electrolyte components’ influences on the oxide layer evolution on alloy TNM-B1 (Ti43.5Al4Nb1Mo0.1B) and the creation of compact and wear resistant coatings. Model experiments were applied using a ramp-wise increase of the anodic potential in order to show the influence of electrolyte components on the discharge initiation and the early stage of the oxide layer growth. The production of PEO layers with technically relevant thicknesses close to 100 μm was conducted in alkaline electrolytes with varying amounts of Na 2 SiO 3 ·5H 2 O and K 4 P 2 O 7 under symmetrically pulsed current conditions. Coating properties were evaluated with regard to morphology, chemical composition, hardness and wear resistance. The addition of phosphates and silicates leads to an increasing substrate passivation and the growth of compact oxide layers with higher thicknesses. Optimal electrolyte compositions for maximum coating hardness and thickness were identified by statistical analysis. Under these conditions, a homogeneous inner layer with low porosity can be achieved. The frictional wear behavior of the compact coating layer is superior to a hard anodized layer on aluminum. (paper)

  2. Electrochemical properties of composite cathodes using Sm doped layered perovskite for intermediate temperature-operating solid oxide fuel cell

    Science.gov (United States)

    Baek, Seung-Wook; Azad, Abul K.; Irvine, John T. S.; Choi, Won Seok; Kang, Hyunil; Kim, Jung Hyun

    2018-02-01

    SmBaCo2O5+d (SBCO) showed the lowest observed Area Specific Resistance (ASR) value in the LnBaCo2O5+d (Ln: Pr, Nd, Sm, and Gd) oxide system for the overall temperature ranges tested. The ASR of a composite cathode (mixture of SBCO and Ce0.9Gd0.1O2-d) on a Ce0.9Gd0.1O2-d (CGO91) electrolyte decreased with respect to the CGO91 content; the percolation limit was also achieved for a 50 wt% SBCO and 50 wt% CGO91 (SBCO50) composite cathode. The ASRs of SBCO50 on the dense CGO91 electrolyte in the overall temperature range of 500-750 °C were relatively lower than those of SBCO50 on the CGO91 coated dense 8 mol% yttria-stabilized zirconia (8YSZ) electrolyte for the same temperature range. From 750 °C and for all higher temperatures tested, however, the ASRs of SBCO50 on the CGO91 coated dense 8YSZ electrolyte were lower than those of the CGO91 electrolyte. The maximum power densities of SBCO50 on the Ni-8YSZ/8YSZ/CGO91 buffer layer were 1.034 W cm-2 and 0.611 W cm-2 at 800 °C and 700 °C.

  3. Microstructural evolution of alumina-zirconia nanocomposites; Evolucao microestrutural de nanocompositos alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L. [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Pallone, E.M.J.A., E-mail: christianelago@yahoo.com.br [Universidade de Sao Paulo (USP), Pirassununga, Sao Paulo, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos

    2012-07-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  4. Solid oxide fuel cells with apatite-type lanthanum silicate-based electrolyte films deposited by radio frequency magnetron sputtering

    Science.gov (United States)

    Liu, Yi-Xin; Wang, Sea-Fue; Hsu, Yung-Fu; Wang, Chi-Hua

    2018-03-01

    In this study, solid oxide fuel cells (SOFCs) containing high-quality apatite-type magnesium doped lanthanum silicate-based electrolyte films (LSMO) deposited by RF magnetron sputtering are successfully fabricated. The LSMO film deposited at an Ar:O2 ratio of 6:4 on an anode supported NiO/Sm0.2Ce0·8O2-δ (SDC) substrate followed by post-annealing at 1000 °C reveals a uniform and dense c-axis oriented polycrystalline structure, which is well adhered to the anode substrate. A composite SDC/La0·6Sr0·4Co0·2Fe0·8O3-δ cathode layer is subsequently screen-printed on the LSMO deposited anode substrate and fired. The SOFC fabricated with the LSMO film exhibits good mechanical integrity. The single cell with the LSMO layer of ≈2.8 μm thickness reports a total cell resistance of 1.156 and 0.163 Ωcm2, open circuit voltage of 1.051 and 0.982 V, and maximum power densities of 0.212 and 1.490 Wcm-2 at measurement temperatures of 700 and 850 °C, respectively, which are comparable or superior to those of previously reported SOFCs with yttria stabilized zirconia electrolyte films. The results of the present study demonstrate the feasibility of deposition of high-quality LSMO films by RF magnetron sputtering on NiO-SDC anode substrates for the fabrication of SOFCs with good cell performance.

  5. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?

    International Nuclear Information System (INIS)

    Lian, Cheng; University of California, Riverside, CA; Liu, Honglai; Henderson, Douglas; Wu, Jianzhong

    2016-01-01

    The ionophobicity effect of nanoporous electrodes on the capacitance and the energy storage capacity of nonaqueous-electrolyte supercapacitors is studied by means of the classical density functional theory (DFT). It has been hypothesized that ionophobic nanopores may create obstacles in charging, but they store energy much more efficiently than ionophilic pores. In this paper, we find that, for both ionic liquids and organic electrolytes, an ionophobic pore exhibits a charging behavior different from that of an ionophilic pore, and that the capacitance–voltage curve changes from a bell shape to a two-hump camel shape when the pore ionophobicity increases. For electric-double-layer capacitors containing organic electrolytes, an increase in the ionophobicity of the nanopores leads to a higher capacity for energy storage. Without taking into account the effects of background screening, the DFT predicts that an ionophobic pore containing an ionic liquid does not enhance the supercapacitor performance within the practical voltage ranges. However, by using an effective dielectric constant to account for ion polarizability, the DFT predicts that, like an organic electrolyte, an ionophobic pore with an ionic liquid is also able to increase the energy stored when the electrode voltage is beyond a certain value. We find that the critical voltage for an enhanced capacitance in an ionic liquid is larger than that in an organic electrolyte. Finally, our theoretical predictions provide further understanding of how chemical modification of porous electrodes affects the performance of supercapacitors.

  6. CURING EFFICIENCY OF DUAL-CURE RESIN CEMENT UNDER ZIRCONIA WITH TWO DIFFERENT LIGHT CURING UNITS

    Directory of Open Access Journals (Sweden)

    Pınar GÜLTEKİN

    2015-04-01

    Full Text Available Purpose: Adequate polymerization is a crucial factor in obtaining optimal physical properties and a satisfying clinical performance from composite resin materials. The aim of this study was to evaluate the polymerization efficiency of dual-cure resin cement cured with two different light curing units under zirconia structures having differing thicknesses. Materials and Methods: 4 zirconia discs framework in 4 mm diameter and in 0.5 mm, 1 mm and 1.5 mm thickness were prepared using computer-aided design system. One of the 0.5 mm-thick substructures was left as mono-layered whereas others were layered with feldspathic porcelain of same thickness and ceramic samples with 4 different thicknesses (0.5, 1, 1.5 and 2.0 mm were prepared. For each group (n=12 resin cement was light cured in polytetrafluoroethylene molds using Light Emitting Diode (LED or Quartz-Tungsten Halogen (QHT light curing units under each of 4 zirconia based discs (n=96. The values of depth of cure (in mm and the Vickers Hardness Number values (VHN were evaluated for each specimen. Results: The use of LED curing unit produced a greater depth of cure compared to QTH under ceramic discs with 0.5 and 1 mm thickness (p<0.05.At 100μm and 300 μm depth, the LED unit produced significantly greater VHN values compared to the QTH unit (p<0.05. At 500 μm depth, the difference between the VHN values of LED and QTH groups were not statistically significant. Conclusion: Light curing may not result in adequate resin cement polymerization under thick zirconia structures. LED light sources should be preferred over QTH for curing dual-cure resin cements, especially for those under thicker zirconia restorations.

  7. Mesoporous yttria-zirconia and metal-yttria-zirconia solid solutions for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mamak, M.; Coombs, N.; Ozin, G. [Toronto Univ., ON (Canada). Dept. of Chemistry

    2000-02-03

    A new class of binary mesoporous yttria-zirconia (YZ) and ternary mesoporous metal-YZ materials (M = electroactive Ni/Pt) is presented here that displays the highest surface area of any known form of yttria-stabilized zirconia. These mesoporous materials form as solid solutions and retain their structural integrity to 800 C, which bodes well for their possible utilization in fuel cells. (orig.)

  8. An all-solid-state electrochemical double-layer capacitor based on a plastic crystal electrolyte

    Directory of Open Access Journals (Sweden)

    Ali eaabouimrane

    2015-08-01

    Full Text Available A plastic crystal, solid electrolyte was prepared by mixing tetrabutylammonium hexafluorophosphate salt, (C4H94NPF6, (10 molar % with succinonitrile, SCN, (N C−CH2−CH2−C N, [SCN-10%TBA-PF6]. The resultant waxy material shows a plastic crystalline phase that extend from -36 °C up to its melting at 23 °C. It shows a high ionic conductivity reaching 4 × 10−5 S/cm in the plastic crystal phase (15 °C and ~ 3 × 10−3 S/cm in the molten state (25 °C. These properties along with the high electrochemical stability rendered the use of this material as an electrolyte in an electrochemical double-layer capacitor (EDLC. The EDLC was assembled and its performance was tested by cyclic voltammetry, AC impedance spectroscopy and galvanostatic charge-discharge methods. Specific capacitance values in the range of 4-7 F/g. (of electrode active material were obtained in the plastic crystal phase at 15 °C, that although compare well with those reported for some polymer electrolytes, can be still enhanced with further development of the device and its components, and only demonstrate their great potential use for capacitors as a new application.

  9. An All-Solid-State Electrochemical Double-Layer Capacitor Based on a Plastic Crystal Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Abouimrane, Ali; Belharouak, Ilias [Qatar Environment and Energy Research Institute, Qatar Foundation, Doha (Qatar); Abu-Lebdeh, Yaser A., E-mail: yaser.abu-lebdeh@nrc.gc.ca [Energy, Mining and Environment Portfolio and Automotive and Surface Transportation Portfolio, National Research Council of Canada, Ottawa, ON (Canada)

    2015-08-18

    A plastic crystal, solid electrolyte was prepared by mixing tetrabutylammonium hexafluorophosphate salt, (C{sub 4}H{sub 9}){sub 4}-NPF{sub 6}, (10 molar %) with succinonitrile, SCN, (N≡C−CH{sub 2}−CH{sub 2}−C≡N), [SCN-10%TBA-PF{sub 6}]. The resultant waxy material shows a plastic crystalline phase that extends from −36°C up to its melting at 23°C. It shows a high ionic conductivity reaching 4 × 10{sup -5} S/cm in the plastic crystal phase (15°C) and ~ 3 × 10{sup -3} S/cm in the molten state (25°C). These properties along with the high electrochemical stability rendered the use of this material as an electrolyte in an electrochemical double-layer capacitor (EDLC). The EDLC was assembled, and its performance was tested by cyclic voltammetry, AC impedance spectroscopy, and galvanostatic charge–discharge methods. Specific capacitance values in the range of 4–7 F/g (of electrode active material) were obtained in the plastic crystal phase at 15°C, that although compare well with those reported for some polymer electrolytes, can be still enhanced with further development of the device and its components, and only demonstrate their great potential use for capacitors as a new application.

  10. An All-Solid-State Electrochemical Double-Layer Capacitor Based on a Plastic Crystal Electrolyte

    International Nuclear Information System (INIS)

    Abouimrane, Ali; Belharouak, Ilias; Abu-Lebdeh, Yaser A.

    2015-01-01

    A plastic crystal, solid electrolyte was prepared by mixing tetrabutylammonium hexafluorophosphate salt, (C 4 H 9 ) 4 -NPF 6 , (10 molar %) with succinonitrile, SCN, (N≡C−CH 2 −CH 2 −C≡N), [SCN-10%TBA-PF 6 ]. The resultant waxy material shows a plastic crystalline phase that extends from −36°C up to its melting at 23°C. It shows a high ionic conductivity reaching 4 × 10 -5 S/cm in the plastic crystal phase (15°C) and ~ 3 × 10 -3 S/cm in the molten state (25°C). These properties along with the high electrochemical stability rendered the use of this material as an electrolyte in an electrochemical double-layer capacitor (EDLC). The EDLC was assembled, and its performance was tested by cyclic voltammetry, AC impedance spectroscopy, and galvanostatic charge–discharge methods. Specific capacitance values in the range of 4–7 F/g (of electrode active material) were obtained in the plastic crystal phase at 15°C, that although compare well with those reported for some polymer electrolytes, can be still enhanced with further development of the device and its components, and only demonstrate their great potential use for capacitors as a new application.

  11. CHARACTERIZATION OF YTTRIA AND MAGNESIA PARTIALLY STABILIZED ZIRCONIA BIOCOMPATIBLE COATINGS DEPOSITED BY PLASMA SPRAYING

    Directory of Open Access Journals (Sweden)

    Roşu R. A.

    2013-09-01

    Full Text Available Zirconia (ZrO2 is a biocompatible ceramic material which is successfully used in medicine to cover the metallic implants by various methods. In order to avoid the inconvenients related to structural changes which may appear because of the temperature treatment while depositing the zirconia layer over the metallic implant, certain oxides are added, the most used being Y2O3, MgO and CaO. This paper presents the experimental results regarding the deposition of yttria (Y2O3 and magnesia (MgO partially stabilized zirconia layers onto titanium alloy substrate by plasma spraying method. X ray diffraction investigations carried out both on the initial powders and the coatings evidenced the fact that during the thermal spraying process the structure has not been significantly modified, consisting primarily of zirconium oxide with tetragonal structure. Electronic microscopy analyses show that the coatings are dense, uniform and cracks-free. Adherence tests performed on samples whose thickness ranges between 160 and 220 μm showed that the highest value (23.5 MPa was obtained for the coating of ZrO2 - 8 wt. % Y2O3 with 160 μm thickness. The roughness values present an increasing tendency with increasing the coatings thickness.

  12. Electrical characterization of zirconia-niobium and zirconia-titanium composites

    International Nuclear Information System (INIS)

    Reis, S.T. dos.

    1993-01-01

    Zirconia-niobium and zirconia-titanium composites were made by powder mixing, cold pressing, and vacuum sintering at 1600 0 C. The metallic particles were added in the proportion of 0-50% by volume. Electrical resistivity measurements were performed by the two probes and the four probes d.c. method as a function of metallic particle concentration. Electrical resistivity of these composites decreased sharply in the region of 30-40 vol% Nb or Ti, in agreement with the percolation theory. Tests in an induction furnace were performed to check the self-heating response of these composites. (author). 33 refs, 40 figs, 11 tabs

  13. Evaluation of technological properties of alumina refractory systems-zirconia and zirconia-silica-alumina; Avaliacao das propriedades tecnologicas de refratarios dos sistemas alumina-zirconia e alumina-zirconia-silica

    Energy Technology Data Exchange (ETDEWEB)

    Marinho, A.R.O.; Carvalho, T.U.S.; Fagury Neto, E.; Rabelo, A.A., E-mail: adriano@unifesspa.edu.br [Universidade Federal do Sul e Sudeste do Para (UFSSPA), Maraba, PA (Brazil)

    2014-07-01

    Alumina-zirconia refractories are noted for being products of excellent cost-effective, however, zirconia may limit its use due to decreasing resistance to thermal shock. This study aims to evaluate these refractories with the addition of microsilica, which can greatly improve their properties. Were used the following starting materials: calcined alumina, zirconia (stabilized and monoclinic) in amounts of 2%, 4% and 6% by weight, plus microsilica (5%w.). The powders were milled together with binder and lubricant for conformation bodies by uniaxial pressing. The samples were dried, calcined and sintered at 1400 °C/2h were characterized using the methods of Archimedes, and scanning electron microscopy (SEM), chemical analysis using energy dispersive X-ray (EDS), and mechanical flexural strength tests at room temperature. Formulations with the presence of microsilica showed satisfactory results and optimized properties. (author)

  14. Design of high quality doped CeO2 solid electrolytes with nanohetero structure

    International Nuclear Information System (INIS)

    Mori, T.; Ou, D.R.; Ye, F.; Drennan, J.

    2006-01-01

    Doped cerium (CeO 2 ) compounds are fluorite related oxides which show oxide ionic conductivity higher than yttria-stabilized zirconia in oxidizing atmosphere. As a consequence of this, a considerable interest has been shown in application of these materials for low (400-650 o C) temperature operation of solid oxide fuel cells (SOFCs). In this paper, our experimental data about the influence of microstructure at the atomic level on electrochemical properties were reviewed in order to develop high quality doped CeO 2 electrolytes in fuel cell applications. Using this data in the present paper, our original idea for a design of nanodomain structure in doped CeO 2 electrolytes was suggested. The nanosized powders and dense sintered bodies of M doped CeO 2 (M:Sm,Gd,La,Y,Yb, and Dy) compounds were fabricated. Also nanostructural features in these specimens were introduced for conclusion of relationship between electrolytic properties and domain structure in doped CeO 2 . It is essential that the electrolytic properties in doped CeO 2 solid electrolytes reflect in changes of microstructure even down to the atomic scale. Accordingly, a combined approach of nanostructure fabrication, electrical measurement and structure characterization was required to develop superior quality doped CeO 2 electrolytes in the fuel cells. (author)

  15. Anti-corrosion layer prepared by plasma electrolytic carbonitriding on pure aluminum

    International Nuclear Information System (INIS)

    Wu, Jie; Zhang, Yifan; Liu, Run; Wang, Bin; Hua, Ming; Xue, Wenbin

    2015-01-01

    Highlights: • PEC/N can be applied to low melting point metal. • The spectroscopic characterization of plasma discharge is investigated. • Electron concentration and electron temperature are evaluated for PEC/N. • Phase composition of the carbonitrided layer is determined. • PEC/N improves the corrosion resistance of aluminum greatly. - Abstract: In this paper, plasma electrolytic carbonitriding (PEC/N) method was applied to pure aluminum for the first time. The spectroscopic characterization of plasma discharge during PEC/N process was analyzed and the electron temperature was calculated in terms of optical emission spectroscopy. The results showed the discharge plasma was in local thermal equilibrium (LTE) state. Electron concentration and electron temperature were about 6 × 10 21 m −3 and 4000 K, respectively. The carbonitrided layer contained Al 4 C 3 , AlN and Al 7 C 3 N 3 phases. After PEC/N treatment, the corrosion resistance of pure aluminum was significantly improved, which was related to the formation of nitride phases. This work expands the application of plasma electrolysis technology on the surface modification of low melting point metal

  16. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    Energy Technology Data Exchange (ETDEWEB)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  17. CAD/CAM Zirconia vs. slip-cast glass-infiltrated Alumina/Zirconia all-ceramic crowns: 2-year results of a randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Murat Cavit Çehreli

    2009-02-01

    Full Text Available The aim of this randomized controlled clinical trial was to compare the early clinical outcome of slip-cast glass-infiltrated Alumina/Zirconia and CAD/CAM Zirconia all-ceramic crowns. A total of 30 InCeram® Zirconia and Cercon® Zirconia crowns were fabricated and cemented with a glass ionomer cement in 20 patients. At baseline, 6-month, 1-year, and 2-year recall appointments, Californian Dental Association (CDA quality evaluation system was used to evaluate the prosthetic replacements, and plaque and gingival index scores were used to explore the periodontal outcome of the treatments. No clinical sign of marginal discoloration, persistent pain and secondary caries was detected in any of the restorations. All InCeram® Zirconia crowns survived during the 2-year period, although one nonvital tooth experienced root fracture coupled with the fracture of the veneering porcelain of the restoration. One Cercon® Zirconia restoration fractured and was replaced. According to the CDA criteria, marginal integrity was rated excellent for InCeram® Zirconia (73% and Cercon® Zirconia (80% restorations, respectively. Slight color mismatch rate was higher for InCeram® Zirconia restorations (66% than Cercon® Zirconia (26% restorations. Plaque and gingival index scores were mostly zero and almost constant over time. Time-dependent changes in plaque and gingival index scores within and between groups were statistically similar (p>0.05. This clinical study demonstrates that single-tooth InCeram® Zirconia and Cercon® Zirconia crowns have comparable early clinical outcome, both seem as acceptable treatment modalities, and most importantly, all-ceramic alumina crowns strengthened by 25% zirconia can sufficiently withstand functional load in the posterior zone.

  18. Effect of an experimental zirconia-silica coating technique on micro tensile bond strength of zirconia in different priming conditions

    NARCIS (Netherlands)

    Chen, C.; Kleverlaan, C.J.; Feilzer, A.J.

    2012-01-01

    Objectives This study aimed to evaluate the adhesive properties of a MDP-containing resin cement to a colored zirconia ceramic, using an experimental zirconia-silica coating technique with different priming conditions. Methods 18 zirconia ceramic discs (Cercon base colored) were divided into two

  19. Composition of highly concentrated silicate electrolytes and ultrasound influencing the plasma electrolytic oxidation of magnesium

    Science.gov (United States)

    Simchen, F.; Rymer, L.-M.; Sieber, M.; Lampke, T.

    2017-03-01

    Magnesium and its alloys are increasingly in use as lightweight construction materials. However, their inappropriate corrosion and wear resistance often prevent their direct practical use. The plasma electrolytic oxidation (PEO) is a promising, environmentally friendly method to improve the surface characteristics of magnesium materials by the formation of oxide coatings. These PEO layers contain components of the applied electrolyte and can be shifted in their composition by increasing the concentration of the electrolyte constituents. Therefore, in contrast to the use of conventional low concentrated electrolytes, the process results in more stable protective coatings, in which electrolyte species are the dominating constitutes. In the present work, the influence of the composition of highly concentrated alkaline silicate electrolytes with additives of phosphate and glycerol on the quality of PEO layers on the magnesium alloy AZ31 was examined. The effect of ultrasound coupled into the electrolyte bath was also considered. The process was monitored by recording the electrical process variables with a transient recorder and by observation of the discharge phenomena on the sample surface with a camera. The study was conducted on the basis of a design of experiments. The effects of the process parameter variation are considered with regard to the coatings thickness, hardness and corrosion resistance. Information about the statistical significance of the effects of the parameters on the considered properties is obtained by an analysis of variance (ANOVA).

  20. Bilayer electrolyte-anode for solid oxide fuel cell; Obtencao de bicamadas eletrolito-anodo para pilhas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Crochemore, G.B.; Marcomini, R.F.; Souza, D.P.F. de [Universidade Federal de Sao Carlos (GEMM/UFSCAR), Sao Carlos, SP (Brazil). Programa de Pos Graduacao em Ciencia e Engenharia de Materiais], Email: dulcina@ufscar.br; Rabelo, A.A. [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Fac. de Engenharia de Materiais

    2010-07-01

    Solid oxide fuel cell is a high efficient device hence it plays a very important role in the hydrogen economy. However, the cell operation temperature must be lower than 800 deg C, what is attainable for thin Yttria stabilized zirconia (YSZ) electrolytes. The tape casting process is the most used technique because it allows a very fine tuning of the tape thickness. In this work it were investigated the processing conditions for obtaining electrolyte-anode (YSZ/ YSZ-NiO) bilayers with no lamination after the sintering process. (author)

  1. An overview of monolithic zirconia in dentistry

    Directory of Open Access Journals (Sweden)

    Özlem Malkondu

    2016-07-01

    Full Text Available Zirconia restorations have been used successfully for years in dentistry owing to their biocompatibility and good mechanical properties. Because of their lack of translucency, zirconia cores are generally veneered with porcelain, which makes restorations weaker due to failure of the adhesion between the two materials. In recent years, all-ceramic zirconia restorations have been introduced in the dental sector with the intent to solve this problem. Besides the elimination of chipping, the reduced occlusal space requirement seems to be a clear advantage of monolithic zirconia restorations. However, scientific evidence is needed to recommend this relatively new application for clinical use. This mini-review discusses the current scientific literature on monolithic zirconia restorations. The results of in vitro studies suggested that monolithic zirconia may be the best choice for posterior fixed partial dentures in the presence of high occlusal loads and minimal occlusal restoration space. The results should be supported with much more in vitro and particularly in vivo studies to obtain a final conclusion.

  2. Characterization of ion implanted silicon by the electrolytic reverse current

    International Nuclear Information System (INIS)

    Hueller, J.; Pham, M.T.

    1977-01-01

    The current voltage behaviour of ion implanted silicon electrodes in HF electrolyte is investigated. The electrolytic reverse current, i.e. the reaction rate of the minority carrier limited reactions is found to increase. The current increase depends on the implanted dose and layer stripping. Reason for the increased reverse current can be referred to radiation damage acting as generation centres for minority carriers. Measurement of the electrolytic reverse current can be used for determining damage profiles. Layer stripping is carried out by anodic dissolution in the same electrolyte. The sensitivity of this new method for characterizing ion implanted silicon layers lies at 10 11 to 10 12 atoms/cm 2 . (author)

  3. Effect of spherical porosity on co-fired dense/porous zirconia bi-layers cambering

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Marani, Debora; Kiebach, Wolff-Ragnar

    2018-01-01

    analyze the model case of dense taped of 8 mol% Y2O3-stabilized ZrO2 laminated on ca. 400 μ thick 3 mol% Y2O3 doped zirconia porous tapes, with homogenous spherical porosity of 13 vol%, 46 vol%, and 54 vol%. Sintering stress during densification is evaluated from the shrinkage rates and viscoelastic...

  4. Study on Ablation Behavior of Phenolic Composites Prepared with Different Amounts of Zirconia and Asbestos Fiber

    Directory of Open Access Journals (Sweden)

    Mir Asad Mirzapour

    2012-12-01

    Full Text Available Ablative materials play a strategic role in aerospace industry. These materialsproduce a thermal protection system which protects the structure, theaerodynamic surfaces and the payload of vehicles and probes duringhypersonic flight through a planetary atmosphere. In this work, we investigated the effect of refractory zirconium oxide on mechanical, heat stability and ablation properties of asbestos/phenolic/zirconia composites. The asbestos/phenolic/zirconia composites were produced with different percentages of zirconia filler from 7 to 21% with average size of 7 μm and different number of layers of asbestos, say 3 to 6 layers. These ablative composites were made by an autoclave curing cycle process.The densities of the composites were in the range of 1.68 to 1.88 g/cm3. Ablation properties of composites were determined by oxy-acetylene torch environment and burn-through time, erosion rates and back surface temperature in the first required 20 seconds. Thermal stability of the produced materials was estimated by means of thermal gravimetric analysis, in both air and nitrogen which consisted of dynamic scans at a heating rate of 10°C/min from 30 to 1000°C with bulk samples of about 20±1 mg. The results showed that when the amount of zirconia was raised from 7% to 21%, the erosion rate and the back surface temperature of composites increased byabout 24% and 26% respectively, and the heat capacity of the composites increased by about 85%. Also, the result showed that when the thickness of composites of 4.2 mm was increased to 10.1mm the burn-through time raised by about 226% and erosion rate dropped by about 41%. These composites displayed the maximum flexural strength when the amount of zirconia was about 14%.

  5. Complications and Clinical Considerations of the Implant-Retained Zirconia Complete-Arch Prosthesis with Various Opposing Dentitions.

    Science.gov (United States)

    Gonzalez, Jorge; Triplett, Robert G

    To evaluate the performance of the implant-retained zirconia complete-arch prosthesis with various opposing dentitions. The 40 patients included in this retrospective case series study were treated with one or two implant-retained zirconia complete-arch prostheses (ZIRCAP) using the Zirkonzahn protocol. Prettau zirconia frames were created with strategic cutbacks in the structure to extend zirconia incisal coverage of the esthetic anterior sextants and complete monolithic zirconia in the molar areas; subsequent layers of porcelain were applied to nonfunctional and esthetic areas. Patients had three possible occlusal scenarios: (1) maxillary ZIRCAP and mandibular ZIRCAP, (2) maxillary ZIRCAP and mandibular natural dentition, and (3) maxillary ZIRCAP and mandibular conventional hybrid prosthesis. Complications were recorded during follow-up appointments 3, 6, and 12 months after definitive prosthesis delivery. The mean treatment observation period was 33 months. Eight prosthetic complications were noted for the 40 implant-retained zirconia complete-arch prostheses (18.18%), including six cases of minor porcelain chipping and two cases of debonding of the metal insert from the zirconia framework. Maxillary ZIRCAP opposing mandibular ZIRCAP and maxillary ZIRCAP opposing mandibular natural dentition occlusal scenarios presented the same complication ratio of 4. No complications were seen in the maxillary ZIRCAP opposing mandibular conventional hybrid prosthesis group, yet 16 complications were found as denture tooth fractures in 12 mandibular conventional hybrid prostheses (ratio of 0.75). The results indicate that the implant-retained zirconia complete-arch prosthesis offers acceptable performance for use as an alternative to the conventional titanium framework acrylic veneer prosthesis for complete edentulism with a lower incidence of prosthetic complications and fewer maintenance appointments. Chipping of veneering porcelain was the most common complication, but a

  6. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics

    International Nuclear Information System (INIS)

    Aguiar, Amanda Abati

    2007-01-01

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation of

  7. In operando studies of ScYSZ electrolyte supported symmetric solid oxide cell by X-ray Diffraction at ESRF, ID06 Beamline

    DEFF Research Database (Denmark)

    Sierra, J. X.; Poulsen, H. F.; Jørgensen, P. S.

    Solid Oxide Cells are becoming a promising solution for sustainable and renewable power generation. Scandium doped Yttria Stabilized Zirconia is considered one of the best materials used as electrolyte because of its high ionic conductivity and great mechanical and chemical stability under operat...... evolution at different depths of the cell during operation....

  8. SISGR: Improved Electrical Energy Storage with Electrochemical Double Layer Capacitance Based on Novel Carbon Electrodes, New Electrolytes, and Thorough Development of a Strong Science Base

    Energy Technology Data Exchange (ETDEWEB)

    Ruoff, Rodney S. [PI; Alam, Todd M. [co-PI; Bielawski, Christopher W. [co-PI; Chabal, Yves [co-PI; Hwang, Gyeong [co-PI; Ishii, Yoshitaka [co-PI; Rogers, Robin [co-PI

    2014-07-23

    The broad objective of the SISGR program is to advance the fundamental scientific understanding of electrochemical double layer capacitance (EDLC) and thus of ultracapacitor systems composed of a new type of electrode based on chemically modified graphene (CMG) and (primarily) with ionic liquids (ILs) as the electrolyte. Our team has studied the interplay between graphene-based and graphene-derived carbons as the electrode materials in electrochemical double layer capacitors (EDLC) systems on the one hand, and electrolytes including novel ionic liquids (ILs), on the other, based on prior work on the subject.

  9. Grinding mechanism of zirconia toughened alumina

    International Nuclear Information System (INIS)

    Tsukuda, A.; Kondo, Y.; Yokota, K.

    1998-01-01

    In the grinding process, physical properties of ceramics affect both grinding mechanism and quality of ground surface. In this study we focused on fracture toughness of ceramics and the effect on grinding. A grinding test was carried out by single point grinding for ten different zirconia toughened alumina ceramics with different monoclinic zirconia contents. Effects of zirconia contents on the grinding mechanism and crack initiation were discussed. Copyright (1998) AD-TECH - International Foundation for the Advancement of Technology Ltd

  10. Effects of small-grit grinding and glazing on mechanical behaviors and ageing resistance of a super-translucent dental zirconia.

    Science.gov (United States)

    Lai, Xuan; Si, Wenjie; Jiang, Danyu; Sun, Ting; Shao, Longquan; Deng, Bin

    2017-11-01

    The purpose of this study is to elucidate the effects of small-grit grinding on the mechanical behaviors and ageing resistance of a super-translucent dental zirconia and to investigate the necessity of glazing for the small-grit ground zirconia. Small-grit grinding was performed using two kinds of silicon carbide abrasive papers. The control group received no grinding. The unground surfaces and the ground surfaces were glazed by an experienced dental technician. Finally, the zirconia materials were thermally aged in water at 134°C for 5h. After aforementioned treatments, we observed the surface topography and the microstructures, and measured the extent of monoclinic phase, the nano-hardness and nano-modulus of the possible transformed zone and the flexural strength. Small-grit grinding changed the surface topography. The zirconia microstructure did not change obviously after surface treatments and thermal ageing; however, the glaze in contact with zirconia showed cracks after thermal ageing. Small-grit grinding did not induce a phase transformation but improved the flexural strength and ageing resistance. Glazing prevented zirconia from thermal ageing but severely diminished the flexural strength. The nano-hardness and nano-modulus of the surface layer were increased by ultrafine grinding. The results suggest that small-grit grinding is beneficial to the strength and ageing resistance of the super-translucent dental zirconia; however, glazing is not necessary and even impairs the strength for the super-translucent dental zirconia. This study is helpful to the researches about dental grinding tools and maybe useful for dentists to choose reasonable zirconia surface treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of accelerated degradation on metal supported thin film-based solid oxide fuel cell

    DEFF Research Database (Denmark)

    Reolon, R. P.; Sanna, S.; Xu, Yu

    2018-01-01

    A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte and nanostruct......A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte......, electrochemical performances are steady, indicating the stability of the cell. Under electrical load, a progressive degradation is activated. Post-test analysis reveals both mechanical and chemical degradation of the cell. Cracks and delamination of the thin films promote a significant nickel diffusion and new...

  12. The buffer effect in neutral electrolyte supercapacitors

    DEFF Research Database (Denmark)

    Thrane Vindt, Steffen; Skou, Eivind M.

    2016-01-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading...... potassium nitrate as the electrolyte and potassium phosphates as the buffer system....

  13. One-dimensional conduction through supporting electrolytes: two-scale cathodic Debye layer.

    Science.gov (United States)

    Almog, Yaniv; Yariv, Ehud

    2011-10-01

    Supporting-electrolyte solutions comprise chemically inert cations and anions, produced by salt dissolution, together with a reactive ionic species that may be consumed and generated on bounding ion-selective surfaces (e.g., electrodes or membranes). Upon application of an external voltage, a Faraday current is thereby established. It is natural to analyze this ternary-system process through a one-dimensional transport problem, employing the thin Debye-layer limit. Using a simple model of ideal ion-selective membranes, we have recently addressed this problem for moderate voltages [Yariv and Almog, Phys. Rev. Lett. 105, 176101 (2010)], predicting currents that scale as a fractional power of Debye thickness. We address herein the complementary problem of moderate currents. We employ matched asymptotic expansions, separately analyzing the two inner thin Debye layers adjacent to the ion-selective surfaces and the outer electroneutral region outside them. A straightforward calculation following comparable singular-perturbation analyses of binary systems is frustrated by the prediction of negative ionic concentrations near the cathode. Accompanying numerical simulations, performed for small values of Debye thickness, indicate a number unconventional features occurring at that region, such as inert-cation concentration amplification and electric-field intensification. The current-voltage correlation data of the electrochemical cell, obtained from compilation of these simulations, does not approach a limit as the Debye thickness vanishes. Resolution of these puzzles reveals a transformation of the asymptotic structure of the cathodic Debye layer. This reflects the emergence of an internal boundary layer, adjacent to the cathode, wherein field and concentration scaling differs from those of the Gouy-Chapman theory. The two-scale feature of the cathodic Debye layer is manifested through a logarithmic voltage scaling with Debye thickness. Accounting for this scaling, the

  14. Anti-corrosion layer prepared by plasma electrolytic carbonitriding on pure aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jie; Zhang, Yifan; Liu, Run; Wang, Bin; Hua, Ming [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Xue, Wenbin, E-mail: xuewb@bnu.edu.cn [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-08-30

    Highlights: • PEC/N can be applied to low melting point metal. • The spectroscopic characterization of plasma discharge is investigated. • Electron concentration and electron temperature are evaluated for PEC/N. • Phase composition of the carbonitrided layer is determined. • PEC/N improves the corrosion resistance of aluminum greatly. - Abstract: In this paper, plasma electrolytic carbonitriding (PEC/N) method was applied to pure aluminum for the first time. The spectroscopic characterization of plasma discharge during PEC/N process was analyzed and the electron temperature was calculated in terms of optical emission spectroscopy. The results showed the discharge plasma was in local thermal equilibrium (LTE) state. Electron concentration and electron temperature were about 6 × 10{sup 21} m{sup −3} and 4000 K, respectively. The carbonitrided layer contained Al{sub 4}C{sub 3}, AlN and Al{sub 7}C{sub 3}N{sub 3} phases. After PEC/N treatment, the corrosion resistance of pure aluminum was significantly improved, which was related to the formation of nitride phases. This work expands the application of plasma electrolysis technology on the surface modification of low melting point metal.

  15. Temperature dependence of bending strength for plasma sprayed zirconia coating; Plasuma yosha zirconia himaku no magetsuyosa no ondo izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M.; Sakuma, T. [Central Research Inst. of Electric Power Industry, Tokyo (Japan)] Mizutani, T. [Tokyo Inst. of Tech. (Japan)] Kishimoto, K. [Tokyo Inst. of Tech. (Japan). Faculty of Engineering] Saito, M. [Toshiba Corp. (Japan). Heavy Apparatus Engineering Lab.

    1998-02-01

    Plasma sprayed zirconia applying to the thermal barrier coating in gas turbine has been developing for protecting the hot parts such as blades and nozzles from high-temperature enviroments. In this paper, four point bending tests under various temperature conditions are conducted on plasma sprayed zirconia and its mechanical properties are examined. Results show that the bending strength at room temperature for plasma sprayed zirconia is much lower than that of sintered zirconia and is decreased with the increase in temperature. However, Weibull modulus at each temperature is relatively large and the dispersion of bending strength is very small in comparison with that of sintered zirconia. It is also clarified by the SEM observations of fracture surface that many defects such as debonding and microcrack are responsible for the lower bending strength. 9 refs., 8 figs., 1 tab.

  16. Zirconia coated titanium for implants and their interactions with osteoblast cells

    International Nuclear Information System (INIS)

    Kaluđerović, Milena R.; Schreckenbach, Joachim P.; Graf, Hans-Ludwig

    2014-01-01

    The anodic plasma-electrochemical oxidation in aqueous electrolytes of Zr(SO 4 ) 2 was used to prepare new zirconia/titania-based surfaces M1 (Ti, Zr and O: 7–10, 22–27 and 65–69 at.%) and M2 (Ti, Zr and O: 11–13, 20–23 and 64–69 at.%). The chemical composition and the microstructure of these coatings were characterized by surface and solid state techniques such as scanning electron microscopy, electron probe microanalysis, Raman spectroscopy and X-ray diffraction. These mixed oxides of ZrO 2 /TiO 2 surfaces consist up to 84% (m/m) of ZrO 2 and 16% (m/m) of TiO 2 . Monoclinic zirconia was detected as the dominant microcrystalline phase. In vitro studies were conducted on primary human osteoblast cells. MTT and DAPI assays were used for assessment on cell proliferation. Immunohistochemical analyses of morphology, cell cluster formation and expression of bone sialoprotein (BSP) and osteocalcin (OC) were performed. Novel surfaces M1 and M2 induced proliferation and expression of OC and BSP similarly to Ticer, used in clinical practice. Furthermore, the presence of zirconia on titanium surface has a higher beneficial effect on the osteoblast morphological changes and cell cluster formation. - Highlights: • Surfaces M1 and M2 (up to 84% (m/m) ZrO 2 and 16% (m/m) TiO 2 ) were prepared. • Novel materials promote proliferation of human osteoblasts similarly to Ticer. • Morphological changes and cell cluster formation are induced faster on M1 and M2. • Higher expression of OC and BSP is caused by M1 and M2. • M1 and M2 may influence the rate of bone formation

  17. Ultra-thin zirconia films on Zr-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joong Il Jake; Mayr-Schmoelzer, Wernfried; Mittendorfer, Florian; Redinger, Josef; Diebold, Ulrike; Schmid, Michael [Institute of Applied Physics, Vienna University of Technology (Austria); Li, Hao; Rupprechter, Guenther [Institute of Materials Chemistry, Vienna University of Technology (Austria)

    2014-07-01

    Zirconia ultra-thin films have been prepared by oxidation of Pt{sub 3}Zr(0001) and showed a structure equivalent to (111) of cubic zirconia. Following previous work, we have prepared ultra-thin zirconia by oxidation of a different alloy, Pd{sub 3}Zr(0001), which resulted in a similar structure with a slightly different lattice parameter, 351.2 ±0.4 pm. Unlike the oxide on Pt{sub 3}Zr, where Zr of the oxide binds to Pt in the substrate, here the oxide binds to substrate Zr via oxygen. This causes stronger distortion of the oxide structure, i.e. a stronger buckling of Zr in the oxide. After additional oxidation of ZrO{sub 2}/Pt{sub 3}Zr, a different ultra-thin zirconia phase is observed. A preliminary structure model for this film is based on (113)-oriented cubic zirconia. 3D oxide clusters are also present after growing ultra-thin zirconia films. They occur at the step edges, and the density is higher on Pd{sub 3}Zr. These clusters also appear on terraces after additional oxidation. XPS reveals different core level shifts of the oxide films, bulk, and oxide clusters.

  18. Fabrication of porous zirconia using filter paper template

    International Nuclear Information System (INIS)

    Deng Yuhua; Wei Pan

    2005-01-01

    In this work, porous zirconia ceramic was synthesized using filter papers as a template. Special attention is paid to whether the structural of the filter paper can be transferred to the zirconia structure. Microstructure of so synthesized porous zirconia was observed with SEM and the phase was determined by XRD. The surface area and the pore were investigated with an automatic volumetric sorption analyzer. It has been found that the morphology of the template transmit to the porous zirconia quite well. (orig.)

  19. A Study on the Effect of Electrolyte Thickness on Atmospheric Corrosion of Carbon Steel

    International Nuclear Information System (INIS)

    Chung, Kyeong Woo; Kim, Kwang Bum

    1998-01-01

    Effect of electrolyte layer thickness and increase in concentration of electrolyte during electrolyte thining on the atmospheric corrosion of carbon steel were investigated using EIS and cathodic polarization technique. The electrolyte layer thickness was controlled via two methods : one is mechanical method with microsyringe applying a different amount of electrolyte onto the metal surface to give different electrolyte thickness with the same electrolyte concentration. The other is drying method in which water layer thickness decreases through drying, causing increase in concentration of electrolyte during electrolyte thinning. In the region whose corrosion rate is controlled by cathodic reaction, corrosion rate for mechanical method is larger than that for drying method. However, for the electrolyte layers thinner than 20 ∼ 30 m, increase in concentration of electrolyte cause a higher corrosion rate for the case of the mechanical method compared with that of drying method. For a carbon steel covered with 0.1M Na 2 SO 4 , maximum corrosion rate is found at an electrolyte thickness of 45 ∼ 55 μm for mechanical method. However, maximum corrosion rate is found at an electrolyte thickness of 20 ∼ 35 μm for drying method. The limiting current is inversely proportional to electrolyte thickness for electrolyte thicker than 20 ∼ 30 μm. However, further decrease of the electrolyte thickness leads to an electrolyte thickness-independent limiting current reagion, where the oxygen rate is controlled by the solvation of oxygen at the electrolyte/gas interface. Diffusion limiting current for drying method is smaller compared with that for mechanica control. This can be attributed to decreasing in O 2 solubility caused by increase in concentration of electrolyte during electrolyte thining

  20. Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications

    Science.gov (United States)

    Bao, Lei; Liu, Jingxiao; Shi, Fei; Jiang, Yanyan; Liu, Guishan

    2014-01-01

    In order to prevent the low temperature degradation and improve the bioactivity of zirconia ceramic implants, TiO2 and Si-doped octacalcium phosphate composite coating was prepared on zirconia substrate. The preventive effect on low temperature degradation and surface morphology of the TiO2 layer were studied. Meanwhile, the structure and property changes of the bioactive coating after doping Si were discussed. The results indicate that the dense TiO2 layer, in spite of some microcracks, inhibited the direct contact of the water vapor with the sample's surface and thus prevented the low temperature degradation of zirconia substrates. The acceleration aging test shows that the ratio of the monoclinic phase transition decreased from 10% for the original zirconia substrate to 4% for the TiO2-coated substrate. As to the Si-doped octacalcium phosphate coating prepared by biomimetic method, the main phase composition of the coating was octacalcium phosphate. The morphology of the coating was lamellar-like, and the surface was uniform and continuous with no cracks being observed. It is suggested that Si was added into the coating both through substituting for PO43- and doping as NaSiO3.

  1. Energize Electrochemical Double Layer Capacitor by Introducing an Ambipolar Organic Redox Radical in Electrolyte.

    Science.gov (United States)

    Wang, Yonggang; Hu, Lintong; Zhang, Yue; Shi, Chao; Guo, Kai; Zhai, Tianyou; Li, Huiqiao

    2018-05-24

    Carbon based electrochemical double layer capacitors (EDLCs) generally exhibit high power and long life, but low energy density/capacitance. Pore/morphology optimization and pseudocapacitive materials modification of carbon materials have been used to improve electrode capacitance, but leading to the consumption of tap density, conductivity and stability. Introducing soluble redox mediators into electrolyte is a promising alternative to improve the capacitance of electrode. However, it is difficult to find one redox mediator that can provide additional capacitance for both positive and negative electrodes simultaneously. Here, an ambipolar organic radical, 2, 2, 6, 6-tetramethylpiperidinyloxyl (TEMPO) is first introduced to the electrolyte, which can substantially contribute additional pseudocapacitance by oxidation at the positive electrode and reduction at the negative electrode simultaneously. The EDLC with TEMPO mediator delivers an energy density as high as 51 Wh kg-1, 2.4 times of the capacitor without TEMPO, and a long cycle stability over 4000 cycles. The achieved results potentially point a new way to improve the energy density of EDLCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Poly(Acrylic acid–Based Hybrid Inorganic–Organic Electrolytes Membrane for Electrical Double Layer Capacitors Application

    Directory of Open Access Journals (Sweden)

    Chiam-Wen Liew

    2016-05-01

    Full Text Available Nanocomposite polymer electrolyte membranes (NCPEMs based on poly(acrylic acid(PAA and titania (TiO2 are prepared by a solution casting technique. The ionic conductivity of NCPEMs increases with the weight ratio of TiO2.The highest ionic conductivity of (8.36 ± 0.01 × 10−4 S·cm−1 is obtained with addition of 6 wt % of TiO2 at ambient temperature. The complexation between PAA, LiTFSI and TiO2 is discussed in Attenuated total reflectance-Fourier Transform Infrared (ATR-FTIR studies. Electrical double layer capacitors (EDLCs are fabricated using the filler-free polymer electrolyte or the most conducting NCPEM and carbon-based electrodes. The electrochemical performances of fabricated EDLCs are studied through cyclic voltammetry (CV and galvanostatic charge-discharge studies. EDLC comprising NCPEM shows the specific capacitance of 28.56 F·g−1 (or equivalent to 29.54 mF·cm−2 with excellent electrochemical stability.

  3. Evaluation of technological properties of alumina refractory systems-zirconia and zirconia-silica-alumina

    International Nuclear Information System (INIS)

    Marinho, A.R.O.; Carvalho, T.U.S.; Fagury Neto, E.; Rabelo, A.A.

    2014-01-01

    Alumina-zirconia refractories are noted for being products of excellent cost-effective, however, zirconia may limit its use due to decreasing resistance to thermal shock. This study aims to evaluate these refractories with the addition of microsilica, which can greatly improve their properties. Were used the following starting materials: calcined alumina, zirconia (stabilized and monoclinic) in amounts of 2%, 4% and 6% by weight, plus microsilica (5%w.). The powders were milled together with binder and lubricant for conformation bodies by uniaxial pressing. The samples were dried, calcined and sintered at 1400 °C/2h were characterized using the methods of Archimedes, and scanning electron microscopy (SEM), chemical analysis using energy dispersive X-ray (EDS), and mechanical flexural strength tests at room temperature. Formulations with the presence of microsilica showed satisfactory results and optimized properties. (author)

  4. Eco friendly nitration of toluene using modified zirconia

    Directory of Open Access Journals (Sweden)

    K.R. Sunaja Devi

    2013-03-01

    Full Text Available Nitration of toluene has been studied in the liquid phase over a series of modified zirconia catalysts.  Zirconia, zirconia- ceria (Zr0.98Ce0.02O2, sulfated zirconia and sulfated zirconia- ceria were synthesised by co precipitation method and were characterised by X-ray diffraction, BET surface area, Infra red spectroscopy analysis (FTIR, Thermogravimetric analysis (TGA, Scanning Electron Microscopy (SEM and Energy Dispersive X ray analysis (EDAX. The acidity of the prepared catalysts was determined by FTIR pyridine adsorption study. X-ray diffraction studies reveal that the catalysts prepared mainly consist of tetragonal phase with the crystallite size in the nano range and the tetragonal phase of zirconia is stabilized by the addition of ceria. The modified zirconia samples have higher surface area and exhibits uniform pore size distribution aggregated by zirconia nanoparticles. The onset of sulfate decomposition was observed around 723 K for sulfated samples. The catalytic performance was determined for the liquid phase nitration of toluene to ortho-, meta- and para- nitro toluene. The effect of reaction temperature, concentration of nitric acid, catalyst reusability and reaction time was also investigated. © 2013 BCREC UNDIP. All rights reservedReceived: 20th November 2012; Revised: 8th December 2012; Accepted: 7th January 2013[How to Cite: K. R. S. Devi, S. Jayashree, (2013. Eco friendly nitration of toluene using modified zirconia. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 205-214. (doi:10.9767/bcrec.7.3.4154.205-214][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4154.205-214 ] View in  |

  5. Experimental studies on poly methyl methacrylate based gel polymer electrolytes for application in electrical double layer capacitors

    International Nuclear Information System (INIS)

    Hashmi, S A; Kumar, Ashok; Tripathi, S K

    2007-01-01

    Studies have been carried out on gel polymer electrolytes comprising poly methyl methacrylate (PMMA)-ethylene carbonate (EC)-propylene carbonate (PC)-salts, LiClO 4 , NaClO 4 and (C 2 H 5 ) 4 NClO 4 (TEAClO 4 ) with a view to using them as electrolytes in electrical double layer capacitors (EDLCs) based on activated charcoal powder electrodes. The optimum composition of gel electrolytes, PMMA (20 wt%)-EC : PC (1 : 1 v/v)-1.0 M salts exhibit high ionic conductivity of the order of ∼10 -3 S cm -1 at room temperature with good mechanical/dimensional stability, suitable for their application in EDLCs. The EDLCs have been characterized using linear sweep cyclic voltammetry, galvanostatic charge-discharge tests and ac impedance spectroscopy. The values of capacitance of 68-151 mF cm -2 (equivalent to single electrode specific capacitance of 38-78 Fg -1 of activated charcoal powder) have been observed. These values correspond to a specific energy of 5.3-10.8 Wh kg -1 and a power density of 0.19-0.22 kW kg -1 . The capacitance values have been observed to be stable up to 5000 voltammetric cycles or even more. A comparison of studies shows the predominant role of anions of the gel electrolytes in the capacitive behaviour of EDLCs

  6. High power density thin film SOFCs with YSZ/GDC bilayer electrolyte

    International Nuclear Information System (INIS)

    Cho, Sungmee; Kim, YoungNam; Kim, Jung-Hyun; Manthiram, Arumugam; Wang Haiyan

    2011-01-01

    Graphical abstract: . A: Cross-sectional TEM images show a GDC single layer and YSZ/GDC bilayer electrolyte structures. As clearly observed from TEM images, the YSZ interlayer thickness varies from ∼330 nm to ∼1 μm. B: The cell with the bilayer electrolyte (YSZ ∼330 nm) doubles the overall power output at 750 deg. C compared to that achieved in the GDC single layer cell. Display Omitted Highlights: → YSZ/ GDC bilayer thin film electrolytes were deposited by a pulsed laser deposition (PLD) technique. → Thin YSZ film as a blocking layer effectively suppresses the cell voltage drop without reducing the ionic conductivity of the electrolyte layer. → The YSZ/ GDC bilayer structure presents a feasible architecture for enhancing the overall power density and enabling chemical, mechanical, and structural stability in the cells. - Abstract: Bilayer electrolytes composed of a gadolinium-doped CeO 2 (GDC) layer (∼6 μm thickness) and an yttria-stabilized ZrO 2 (YSZ) layer with various thicknesses (∼330 nm, ∼440 nm, and ∼1 μm) were deposited by a pulsed laser deposition (PLD) technique for thin film solid oxide fuel cells (TFSOFCs). The bilayer electrolytes were prepared between a NiO-YSZ (60:40 wt.% with 7.5 wt.% carbon) anode and La 0.5 Sr 0.5 CoO 3 -Ce 0.9 Gd 0.1 O 1.95 (50:50 wt.%) composite cathode for anode-supported single cells. Significantly enhanced maximum power density was achieved, i.e., a maximum power density of 188, 430, and 587 mW cm -2 was measured in a bilayer electrolyte single cell with ∼330 nm thin YSZ at 650, 700, and 750 deg. C, respectively. The cell with the bilayer electrolyte (YSZ ∼330 nm) doubles the overall power output at 750 deg. C compared to that achieved in the GDC single layer cell. This signifies that the YSZ thin film serves as a blocking layer for preventing electrical current leakage in the GDC layer and also provides chemical, mechanical, and structural integrity in the cell, which leads to the overall enhanced

  7. Performance enhancement of polymer electrolyte membrane fuel cells by dual-layered membrane electrode assembly structures with carbon nanotubes.

    Science.gov (United States)

    Jung, Dong-Won; Kim, Jun-Ho; Kim, Se-Hoon; Kim, Jun-Bom; Oh, Eun-Suok

    2013-05-01

    The effect of dual-layered membrane electrode assemblies (d-MEAs) on the performance of a polymer electrolyte membrane fuel cell (PEMFC) was investigated using the following characterization techniques: single cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). It has been shown that the PEMFC with d-MEAs has better cell performance than that with typical mono-layered MEAs (m-MEAs). In particular, the d-MEA whose inner layer is composed of multi-walled carbon nanotubes (MWCNTs) showed the best fuel cell performance. This is due to the fact that the d-MEAs with MWCNTs have the highest electrochemical surface area and the lowest activation polarization, as observed from the CV and EIS test.

  8. Diffusion welding of ZrO2 solid electrolyte cells

    International Nuclear Information System (INIS)

    Schaefer, W.; Schmidberger, R.

    1980-01-01

    Zirconia based solid-electrolyte-cells can be applied as electrolysis-cells or fuel cells at high temperatures. Scaling up to technical aggregates must be realized by a gastight electrical series-connection of many tubular single cells. A suitable process for connecting single cells is diffusion welding. Starting materials were sintered zirconia-tubes (16 mm diameter, 10 mm length) and gastight interconnecting rings (16 mm diameter, 0.5-2mm length) from gold, platinum or electrically conducting mixed oxides. ZrO 2 -tubes and interconnecting rings were mounted in alternating sequence and diffusion welded under axial pressure at high temperatures. From economic reasons noble metals cannot be used for technical aggregates. The developments were therefore concentrated on the connection with mixed oxides. Optimized welding parameters are: 1400-1500 0 C welding temperature, 2 hours welding time and an axial pressure of approximately 1 Nmm 2 . Up to now gastight tubes consisting of 20 single cells were preparated by diffusion-welding in one step. The process will be further developed for the production of 50-cell-tubes with a total length of about 60 cm. (orig.) [de

  9. On the determination of the stress-free temperature for alumina–zirconia multilayer structures

    Czech Academy of Sciences Publication Activity Database

    Chlup, Zdeněk; Hadraba, Hynek; Drdlík, D.; Maca, K.; Dlouhý, Ivo; Bermejo, R.

    2014-01-01

    Roč. 40, č. 4 (2014), s. 5787-5793 ISSN 0272-8842 R&D Projects: GA ČR(CZ) GAP108/11/1644; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Sintering * Thermal expansion * Zirconia * Alumina * Layered Ceramics Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.605, year: 2014

  10. Lithium and sodium batteries with polysulfide electrolyte

    KAUST Repository

    Li, Mengliu

    2017-12-28

    A battery comprising: at least one cathode, at least one anode, at least one battery separator, and at least one electrolyte disposed in the separator, wherein the anode is a lithium metal or lithium alloy anode or an anode adapted for intercalation of lithium ion, wherein the cathode comprises material adapted for reversible lithium extraction from and insertion into the cathode, and wherein the separator comprises at least one porous, electronically conductive layer and at least one insulating layer, and wherein the electrolyte comprises at least one polysulfide anion. The battery provides for high energy density and capacity. A redox species is introduced into the electrolyte which creates a hybrid battery. Sodium metal and sodium-ion batteries also provided.

  11. Effect of the sintering temperature and time on phase assemblage and electrical conductivity of zirconia-scandia-ceria

    International Nuclear Information System (INIS)

    Grosso, R.L.; Muccillo, E.N.S.

    2012-01-01

    ZrO 2 -based solid electrolytes have been extensively studied over the last decades for application in solid oxide fuel cells (SOFCs). Zirconia containing scandia and ceria solid electrolyte is a potential candidate in SOFCs operating at intermediate temperatures (600 - 800 deg C). In this work, commercial ZrO 2 containing 10 mol% Sc 2 O 3 and 1 mol% CeO 2 was sintered by the conventional and two-step methods. Several sintering conditions were evaluated by varying the temperature as well as the residence time. High values of sintered density (> 98%) were obtained. A careful selection of the sintering conditions is necessary in order to obtain a single cubic phase, as revealed by X-ray diffraction results. The grain growth can be controlled in specimens sintered by the two-step method. The electrical conductivity show similar behavior for the grain component independent on the sintering method. (author)

  12. Application of the SRISM approach to the study of the capacitance of the double layer of a high density primitive model electrolyte

    Directory of Open Access Journals (Sweden)

    S. Woelki

    2011-12-01

    Full Text Available In this study the Singlet Reference Interaction Site Model (SRISM is employed to the study of the electrode charge dependence of the capacitance of a planar electric double layer using the primitive model of the double layer for a high density electrolyte that mimics an ionic liquid. The ions are represented by charged hard spheres and the electrode is a uniformly charged flat surface. The capacitance of this model fluid is calculated with the SRISM approach with closures based on the hypernetted chain (HNC and Kovalenko-Hirata (KH closures and compared with simulations. As long as the magnitude of the electrode charge is not too great, the HNC closure shows the most promise. The KH results are reasonably good for a high density electrolyte but are poor when applied at low densities.

  13. Influence of additives on phase stabilization of scandia-doped zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Muccillo, Eliana Navarro dos Santos; Grosso, Robson Lopes; Reis, Shirley Leite dos; Muccillo, Reginaldo, E-mail: enavarro@usp.br, E-mail: roblopeg@usp.br, E-mail: shirley.reis@usp.br, E-mail: muccillo@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-04-15

    The effects of small additions of tin, zinc, calcium and boron oxides on phase composition and electrical conductivity of zirconia-10 mol% scandia were investigated. Compounds containing 1 mol% zinc, tin and calcium oxides and 1, 3 and 5 wt.% boron oxide were prepared by solid state reaction and characterized by X-ray diffraction, density measurements, scanning electron microscopy and impedance spectroscopy. Full stabilization of the cubic structure at room temperature was obtained with additions of 1 mol% calcium oxide and 2 wt.% boron oxide. Partially stabilized compounds exhibit herringbone structure, characteristic of the β- rhombohedric phase. Specimens with calcium as additive show total conductivity of 23.8 mS.cm{sup -1} at 750 deg C with activation energy of 1.13 eV. Liquid phase sintering by boron oxide addition is effective to enhance the densification of the solid electrolyte. (author)

  14. Electrolytes for high voltage electrochemical double layer capacitors: A perspective article

    Science.gov (United States)

    Balducci, A.

    2016-09-01

    The development of innovative electrolyte components is nowadays considered one of the most important aspects for the realization of high energy electrochemical double capacitors (EDLCs). Consequently, in the last years many investigations have been dedicated towards new solvents, new salts and ionic liquids able to replace the current electrolytes. This perspective article aims to supply a critical analysis about the results obtained so far on the development of new electrolytes for high energy EDLCs and to outline the advantages as well as the limits related to the use of these innovative components. Furthermore, this article aims to give indications about the strategies could be used in the future for a further development of advanced electrolytes.

  15. Surface characterization and corrosion behavior of calcium phosphate-base composite layer on titanium and its alloys via plasma electrolytic oxidation: A review paper.

    Science.gov (United States)

    Rafieerad, A R; Ashra, M R; Mahmoodian, R; Bushroa, A R

    2015-12-01

    In recent years, calcium phosphate-base composites, such as hydroxyapatite (HA) and carbonate apatite (CA) have been considered desirable and biocompatible coating layers in clinical and biomedical applications such as implants because of the high resistance of the composites. This review focuses on the effects of voltage, time and electrolytes on a calcium phosphate-base composite layer in case of pure titanium and other biomedical grade titanium alloys via the plasma electrolytic oxidation (PEO) method. Remarkably, these parameters changed the structure, morphology, pH, thickness and crystallinity of the obtained coating for various engineering and biomedical applications. Hence, the structured layer caused improvement of the biocompatibility, corrosion resistance and assignment of extra benefits for Osseo integration. The fabricated layer with a thickness range of 10 to 20 μm was evaluated for physical, chemical, mechanical and tribological characteristics via XRD, FESEM, EDS, EIS and corrosion analysis respectively, to determine the effects of the applied parameters and various electrolytes on morphology and phase transition. Moreover, it was observed that during PEO, the concentration of calcium, phosphor and titanium shifts upward, which leads to an enhanced bioactivity by altering the thickness. The results confirm that the crystallinity, thickness and contents of composite layer can be changed by applying thermal treatments. The corrosion behavior was investigated via the potentiodynamic polarization test in a body-simulated environment. Here, the optimum corrosion resistance was obtained for the coating process condition at 500 V for 15 min in Ringer solution. This review has been summarized, aiming at the further development of PEO by producing more adequate titanium-base implants along with desired mechanical and biomedical features. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The preparation and properties of a novel electrolyte of electrochemical double layer capacitors based on LiPF6 and acetamide

    International Nuclear Information System (INIS)

    Li Qi; Zuo Xiaoxi; Liu Jiansheng; Xiao Xin; Shu Dong; Nan Junmin

    2011-01-01

    A novel electrolyte applied in electrochemical double-layer capacitors (EDLCs) has been prepared based on lithium hexafluorophosphate (LiPF 6 ) and acetamide and subsequently characterized by differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), electrochemical techniques and so on. The mixtures of LiPF 6 and acetamide at the molar ratios of 1:4 to 1:6 exist as liquids below 25 °C, which is attributed to the melting point depression of mixture and the coordination of the polar groups (C=O and NH groups) of acetamide with Li + and PF 6 − ions. The strong interaction between LiPF 6 and acetamide results in the rupture of the electrovalent bond of LiPF 6 and the breakage of hydrogen bonds among the acetamide molecules, leading to the formation of a liquid electrolyte. The LiPF 6 /acetamide electrolyte with a molar ratio of 1:5.5 exhibits a 5.2 V electrochemical window and suitable ionic conductivity at room temperature. In particular, the coin-type cells with carbon electrodes and LiPF 6 /acetamide electrolyte possess high thermal stability and electrochemical properties, showing that the as-prepared LiPF 6 /acetamide electrolyte is a promising candidate for EDLCs.

  17. Effect of accelerated aging on translucency of monolithic zirconia

    Directory of Open Access Journals (Sweden)

    O. Abdelbary

    2016-12-01

    Conclusion: Thickness of zirconia has significant effect on translucency. Aging has significant effect on thinner sections of zirconia. More research is required on zirconia towards making the material more translucent for its potential use as esthetic monolithic restoration.

  18. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    KAUST Repository

    Huang, Yi-Fu; Wu, Peng-Fei; Zhang, Ming-Qiu; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2014-01-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  19. Boron cross-linked graphene oxide/polyvinyl alcohol nanocomposite gel electrolyte for flexible solid-state electric double layer capacitor with high performance

    KAUST Repository

    Huang, Yi-Fu

    2014-06-01

    A new family of boron cross-linked graphene oxide/polyvinyl alcohol (GO-B-PVA) nanocomposite gels is prepared by freeze-thaw/boron cross-linking method. Then the gel electrolytes saturated with KOH solution are assembled into electric double layer capacitors (EDLCs). Structure, thermal and mechanical properties of GO-B-PVA are explored. The electrochemical properties of EDLCs using GO-B-PVA/KOH are investigated, and compared with those using GO-PVA/KOH gel or KOH solution electrolyte. FTIR shows that boron cross-links are introduced into GO-PVA, while the boronic structure inserted into agglomerated GO sheets is demonstrated by DMA analysis. The synergy effect of the GO and the boron crosslinking benefits for ionic conductivity due to unblocking ion channels, and for improvement of thermal stability and mechanical properties of the electrolytes. Higher specific capacitance and better cycle stability of EDLCs are obtained by using the GO-B-PVA/KOH electrolyte, especially the one at higher GO content. The nanocomposite gel electrolytes with excellent electrochemical properties and solid-like character are candidates for the industrial application in high-performance flexible solid-state EDLCs. © 2014 Elsevier Ltd.

  20. Two step sintering of zirconia-escandia-ceria

    International Nuclear Information System (INIS)

    Grosso, R.L.; Muccillo, E.N.S.

    2011-01-01

    Recent reports show that the ceramic system based on zirconia-scandia-ceria is a good candidate to act as solid electrolyte in solid oxide fuel cells operating at intermediate temperatures (600-800 °C). In this work, commercial ZrO_2 containing 10 mol% scandium oxide and 1 mol% cerium oxide was sintered by the two stage method. This technique was proposed to in order to obtain ceramic materials with high density along with fine grain sizes, because it avoids the grain growth occurring in the last stage of sintering. A number of experimental conditions were fully exploited by varying the dwell temperature (T_2) and the dwell time. The peak temperature (T_1) was chosen from linear shrinkage results. High (>98%) density values were obtained using this method. The medium grain size was evaluated for selected sintered samples. X-ray diffraction patterns reveal a secondary (rhombohedral) phase in sintered samples. The intensity of the secondary phase is a function of T_1 being small for relatively higher peak temperatures. (author)

  1. Transpassive electrodissolution of depleted uranium in alkaline electrolytes

    International Nuclear Information System (INIS)

    Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

    1998-03-01

    To aid in removal of oralloy from the nuclear weapons stockpile, scientists at the Los Alamos National Laboratory Plutonium Facility are decontaminating oralloy parts by electrodissolution in neutral to alkaline electrolytes composed of sodium nitrate and sodium sulfate. To improve the process, electrodissolution experiments were performed with depleted uranium to understand the effects of various operating parameters. Sufficient precipitate was also produced to evaluate the feasibility of using ultrafiltration to separate the uranium oxide precipitates from the electrolyte before it enters the decontamination fixture. In preparation for the experiments, a potential-pH diagram for uranium was constructed from thermodynamic data for fully hydrated species. Electrodissolution in unstirred solutions showed that uranium dissolution forms two layers, an acidic bottom layer rich in uranium and an alkaline upper layer. Under stirred conditions results are consistent with the formation of a yellow precipitate of composition UO 3 ·2H 2 O, a six electron process. Amperometric experiments showed that current efficiency remained near 100% over a wide range of electrolytes, electrolyte concentrations, pH, and stirring conditions

  2. Damage Maps of Veneered Zirconia under Simulated Mastication

    Science.gov (United States)

    Kim, Jae-Won; Kim, Joo-Hyung; Janal, Malvin N.; Zhang, Yu

    2016-01-01

    Zirconia based restorations often fracture from chipping and/or delamination of the porcelain veneers. We hypothesize that veneer chipping/delamination is a result of the propagation of near-contact induced partial cone cracks on the occlusal surface under mastication. Masticatory loading involves the opposing tooth sliding along the cuspal inner incline surface with an applied biting force. To test this hypothesis, flat porcelain veneered zirconia plates were cemented to dental composites and cyclically loaded (contact–slide–liftoff) at an inclination angle as a simplified model of zirconia based restorations under occlusion. In the light of in-situ observation of damage evolution in a transparent glass/zirconia/polycarbonate trilayer, postmortem damage evaluation of porcelain/zirconia/composite trilayers using a sectioning technique revealed that deep penetrating occlusal surface partial cone fracture is the predominant fracture mode of porcelain veneers. Clinical relevance is discussed. PMID:19029080

  3. Influence of Ar-ion implantation on the structural and mechanical properties of zirconia as studied by Raman spectroscopy and nanoindentation techniques

    Science.gov (United States)

    Kurpaska, L.; Jasinski, J.; Wyszkowska, E.; Nowakowska-Langier, K.; Sitarz, M.

    2018-04-01

    In this study, structural and nanomechanical properties of zirconia polymorphs induced by ion irradiation were investigated by means of Raman spectroscopy and nanoindentation techniques. The zirconia layer have been produced by high temperature oxidation of pure zirconium at 600 °C for 5 h at normal atmospheric pressure. In order to distinguish between the internal and external parts of zirconia, the spherical metallographic sections have been prepared. The samples were irradiated at room temperature with 150 keV Ar+ ions at fluences ranging from 1 × 1015 to 1 × 1017 ions/cm2. The main objective of this study was to distinguish and confirm different structural and mechanical properties between the interface layer and fully developed scale in the internal/external part of the oxide. Conducted studies suggest that increasing ion fluence impacts Raman bands positions (especially characteristic for tetragonal phase) and increases the nanohardness and Young's modulus of individual phases. This phenomenon has been examined from the point of view of stress-induced hardening effect and classical monoclinic → tetragonal (m → t) martensitic phase transformation.

  4. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    Directory of Open Access Journals (Sweden)

    Taku Tsuneishi

    2014-06-01

    Full Text Available Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as a hydroxide ion conductive electrolyte for all-solid-state Fe–air batteries. The cell performance of the Fe–air batteries was examined using a mixture of KOH–LDH and iron-oxide-supported carbon as the negative electrode.

  5. Characterization of electrolytic HA/ZrO{sub 2} double layers coatings on Ti-6Al-4V implant alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yen, S.K. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China)]. E-mail: skyen@dragon.nchu.edu.tw; Chiou, S.H. [Graduate Institute of Veterinary Microbiology, National Chung Hsing University, Taichung 40227, Taiwan (China); Wu, S.J. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Chang, C.C. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Lin, S.P. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China); Lin, C.M. [Department of Materials Engineering, National Chung Hsing University, Taichung 40227, Taiwan (China)

    2006-01-15

    Hydroxyapatite (HA) coating was proved having bioactive property and hence improving the bonding strength on bone tissue without inducing the growth of fiber tissue. However, the weak adhesion between HA and metal implants is still the major problem. In this study, a novel method of electrolytic HA/ZrO{sub 2} double layers coating was successfully conducted on F-136 Ti-6Al-4V implant alloy in ZrO{sub 2}(NO{sub 3}){sub 2} aqueous solution and subsequently in the mixed solution of Ca(NO{sub 3}){sub 2} and NH{sub 4}H{sub 2}PO{sub 4}. After annealing at 400 deg. C, 500 deg. C and 600 deg. C for 4 h in air, the coated specimens were evaluated by X-ray diffraction analyses, surface morphology observations, scratch tests, dynamic polarization tests, immersion tests and cell culture assays. In addition to corrosion resistance, the adhesion strength of electrolytic deposited HA on Ti alloy was dramatically improved from the critical scratch load 2 N to 32 N by adding the intermediate electrolytic deposition of ZrO{sub 2}, which showed the strong bonding effects between Ti alloy substrate and HA coating. Based on the cell morphology and cell proliferation data, HA/ZrO{sub 2} double layers coating revealed the better substrate for the adhesion and proliferation of osteoblasts than the others. It was also found that the crystallization of HA had positive effect on the proliferation of osteoblasts.

  6. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ Powder

    Directory of Open Access Journals (Sweden)

    Chen Barad

    2017-12-01

    Full Text Available Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives.

  7. Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes

    Science.gov (United States)

    Zhang, Shuo; Bo, Zheng; Yang, Huachao; Yang, Jinyuan; Duan, Liangping; Yan, Jianhua; Cen, Kefa

    2016-12-01

    Organic electrolytes are widely used in electric double-layer capacitors (EDLCs). In this work, the microstructure of planar graphene-based EDLCs with different organic solvents are investigated with molecular dynamics simulations. Results show that an increase of solvent polarity could weaken the accumulation of counter-ions nearby the electrode surface, due to the screen of electrode charges and relatively lower ionic desolvation. It thus suggests that solvents with low polarity could be preferable to yield high EDL capacitance. Meanwhile, the significant effects of the size and structure of solvent molecules are reflected by non-electrostatic molecule-electrode interactions, further influencing the adsorption of solvent molecules on electrode surface. Compared with dimethyl carbonate, γ-butyrolactone, and propylene carbonate, acetonitrile with relatively small-size and linear structure owns weak non-electrostatic interactions, which favors the easy re-orientation of solvent molecules. Moreover, the shift of solvent orientation in surface layer, from parallel orientation to perpendicular orientation relative to the electrode surface, deciphers the solvent twin-peak behavior near negative electrode. The as-obtained insights into the roles of solvent properties on the interplays among particles and electrodes elucidate the solvent influences on the microstructure and capacitive behavior of EDLCs using organic electrolytes.

  8. Shear Bond Strengths between Three Different Yttria-Stabilized Zirconia Dental Materials and Veneering Ceramic and Their Susceptibility to Autoclave Induced Low-Temperature Degradation

    Directory of Open Access Journals (Sweden)

    Manoti Sehgal

    2016-01-01

    Full Text Available A study was undertaken to evaluate the effect of artificial aging through steam and thermal treatment as influencing the shear bond strength between three different commercially available zirconia core materials, namely, Upcera, Ziecon, and Cercon, layered with VITA VM9 veneering ceramic using Universal Testing Machine. The mode of failure between zirconia and ceramic was further analyzed as adhesive, cohesive, or mixed using stereomicroscope. X-ray diffraction and SEM (scanning electron microscope analysis were done to estimate the phase transformation (m-phase fraction and surface grain size of zirconia particles, respectively. The purpose of this study was to simulate the clinical environment by artificial aging through steam and thermal treatment so as the clinical function and nature of the bond between zirconia and veneering material as in a clinical trial of 15 years could be evaluated.

  9. Sintered stabilized zirconia microstructure and conductivity

    International Nuclear Information System (INIS)

    Bernard, Herve.

    1981-04-01

    The elaboration of a stabilized zirconia powder which sinters at 1300 0 C and the influence of the sintered polycristal microstructure on its ionic conductivity have been studied. Among three investigated powder preparation processes, coprecipitation in an ammoniacal solution was chosen. After sintering at 1300 0 C, the pellet density was higher than 93% of the theoretical density. It even approached up to 98% TD with addition of less than 0,5 mole % Al 2 O 3 to the initial powder. The overall electrolyte conductivity and the inter and intragranular contributions have been determined by complex impedance spectroscopy. ZrO 2 -Y 2 O 3 solid solution conductivity was scarcely improved by Y 2 O 3 exchange with Yb 2 O 3 or Gd 2 O 3 . This conductivity greatly increases with grain size, its improvement with decreasing porosity, which has been quantified, is less sensible. Moreover, two original properties were noticed: small amounts of Al 2 O 3 and quenching greatly enhanced the overall conductivity. At temperatures below 500 0 C, grain boundaries only insured a partial migration of conductive ions. A parallel type electrical equivalent circuit suited well with this blocking effect [fr

  10. Modeling Electrolytically Top-Gated Graphene

    Directory of Open Access Journals (Sweden)

    Mišković ZL

    2010-01-01

    Full Text Available Abstract We investigate doping of a single-layer graphene in the presence of electrolytic top gating. The interfacial phenomenon is modeled using a modified Poisson–Boltzmann equation for an aqueous solution of simple salt. We demonstrate both the sensitivity of graphene’s doping levels to the salt concentration and the importance of quantum capacitance that arises due to the smallness of the Debye screening length in the electrolyte.

  11. Morphological evolution of carbon nanofibers encapsulating SnCo alloys and its effect on growth of the solid electrolyte interphase layer.

    Science.gov (United States)

    Shin, Jungwoo; Ryu, Won-Hee; Park, Kyu-Sung; Kim, Il-Doo

    2013-08-27

    Two distinctive one-dimensional (1-D) carbon nanofibers (CNFs) encapsulating irregularly and homogeneously segregated SnCo nanoparticles were synthesized via electrospinning of polyvinylpyrrolidone (PVP) and polyacrylonitrile (PAN) polymers containing Sn-Co acetate precursors and subsequent calcination in reducing atmosphere. CNFs synthesized with PVP, which undergoes structural degradation of the polymer during carbonization processes, exhibited irregular segregation of heterogeneous alloy particles composed of SnCo, Co3Sn2, and SnO with a size distribution of 30-100 nm. Large and exposed multiphase SnCo particles in PVP-driven amorphous CNFs (SnCo/PVP-CNFs) kept decomposing liquid electrolyte and were partly detached from CNFs during cycling, leading to a capacity fading at the earlier cycles. The closer study of solid electrolyte interphase (SEI) layers formed on the CNFs reveals that the gradual growth of fiber radius due to continuous increment of SEI layer thickness led to capacity fading. In contrast, SnCo particles in PAN-driven CNFs (SnCo/PAN-CNFs) showed dramatically reduced crystallite sizes (<10 nm) of single phase SnCo nanoparticles which were entirely embedded in dense, semicrystalline, and highly conducting 1-D carbon matrix. The growth of SEI layer was limited and saturated during cycling. As a result, SnCo/PAN-CNFs showed much improved cyclability (97.9% capacity retention) and lower SEI layer thickness (86 nm) after 100 cycles compared to SnCo/PVP-CNFs (capacity retention, 71.9%; SEI layer thickness, 593 nm). This work verifies that the thermal behavior of carbon precursor is highly responsible for the growth mechanism of SEI layer accompanied with particles detachment and cyclability of alloy particle embedded CNFs.

  12. Orthodontic bracket bonding to glazed full-contour zirconia

    Directory of Open Access Journals (Sweden)

    Ji-Young Kwak

    2016-05-01

    Full Text Available Objectives This study evaluated the effects of different surface conditioning methods on the bond strength of orthodontic brackets to glazed full-zirconia surfaces. Materials and Methods Glazed zirconia (except for the control, Zirkonzahn Prettau disc surfaces were pre-treated: PO (control, polishing; BR, bur roughening; PP, cleaning with a prophy cup and pumice; HF, hydrofluoric acid etching; AA, air abrasion with aluminum oxide; CJ, CoJet-Sand. The surfaces were examined using profilometry, scanning electron microscopy, and electron dispersive spectroscopy. A zirconia primer (Z-Prime Plus, Z or a silane primer (Monobond-S, S was then applied to the surfaces, yielding 7 groups (PO-Z, BR-Z, PP-S, HF-S, AA-S, AA-Z, and CJ-S. Metal bracket-bonded specimens were stored in water for 24 hr at 37℃, and thermocycled for 1,000 cycles. Their bond strengths were measured using the wire loop method (n = 10. Results Except for BR, the surface pre-treatments failed to expose the zirconia substructure. A significant difference in bond strengths was found between AA-Z (4.60 ± 1.08 MPa and all other groups (13.38 ± 2.57 - 15.78 ± 2.39 MPa, p < 0.05. For AA-Z, most of the adhesive remained on the bracket. Conclusions For bracket bonding to glazed zirconia, a simple application of silane to the cleaned surface is recommended. A zirconia primer should be used only when the zirconia substructure is definitely exposed.

  13. Achievement report for 1st phase (fiscal 1974-80) Sunshine Program research and development - Hydrogen energy. Research on fuel cell (Research on high-temperature solid electrolyte fuel cell); 1974-1980 nendo suiso energy seika hokokusho. Nenryo denchi no kenkyu (koon kotai denkaishitsu nenryo denchi no kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    Relative to the research and development of technologies for fabricating, and assessing, materials for the constitution of high-temperature solid electrolyte fuel cells, stabilized zirconia solid electrolyte fuel cell manufacturing technologies are developed by use of thin film formation techniques such as high-frequency sputtering, plasma CVD (chemical vapor deposition), and the thermolysis of organic zirconia compound coating. As the result, it is found that high-frequency sputtering produces thin film which is satisfying in terms of cost efficiency. Furthermore, it is found that defects in solid electrolytic thin film formed by the high-frequency sputtering method, that is, pinholes and cracks, will be remedied when the coating thermolysis method is jointly applied. In the research on fuel cell power systems, column-type high-temperature solid electrolyte fuel cells are built, and a power generation test is conducted. The test is successfully completed when the output of a fuel cell of the 9-column module structure gradually increases until a maximum output of 110W is achieved. (NEDO)

  14. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    1999-01-19

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  15. Natural radioactivity in zirconia-based dental ceramics

    International Nuclear Information System (INIS)

    Giussani, Augusto; Gerstmann, Udo; La Porta, Caterina; Cantone, Marie C.; Veronese, Ivan

    2008-01-01

    Zirconia-based ceramics are being increasingly used in dental prosthetics in substitution of metal cores, which are known to induce local toxic reactions and delayed allergic responses in the oral tissues. Some concerns have been however raised about the use of zirconia, since it is known that unpurified zirconia materials may contain non negligible levels of natural radionuclides of the U/Th series. Combined measurements of alpha and gamma spectrometry as well as beta dosimetry were conducted on zirconia samples used for dental applications. Samples were available in form of powder and/or solid blocks. The results showed that the beta dose rate in zirconia ceramics was on average only slightly higher than the levels measured in natural teeth, and generally lower than the values measured in feldspatic and glass ceramics. These materials are indeed known to deliver a beta dose significantly higher than that measured from natural teeth, due to the relatively high levels of 40 K (between 2 and 3 kBq·kg -1 ). The content of radionuclides of the U/Th series in the zirconia sample was estimated to be lower than 15 Bq·kg -1 , i.e. doubtlessly below the exclusion level of 1 kBq·kg -1 recommended by IAEA in the Safety Standard Series. Beta dosimetry measurements, however, gave indications of possible inhomogeneous clusters of radioactivity, which might give rise to local doses above the background. (author)

  16. Joining Dental Ceramic Layers With Glass

    Science.gov (United States)

    Saied, MA; Lloyd, IK; Haller, WK; Lawn, BR

    2011-01-01

    Objective Test the hypothesis that glass-bonding of free-form veneer and core ceramic layers can produce robust interfaces, chemically durable and aesthetic in appearance and, above all, resistant to delamination. Methods Layers of independently produced porcelains (NobelRondo™ Press porcelain, Nobel BioCare AB and Sagkura Interaction porcelain, Elephant Dental) and matching alumina or zirconia core ceramics (Procera alumina, Nobel BioCare AB, BioZyram yttria stabilized tetragonal zirconia polycrystal, Cyrtina Dental) were joined with designed glasses, tailored to match thermal expansion coefficients of the components and free of toxic elements. Scanning electron microprobe analysis was used to characterize the chemistry of the joined interfaces, specifically to confirm interdiffusion of ions. Vickers indentations were used to drive controlled corner cracks into the glass interlayers to evaluate the toughness of the interfaces. Results The glass-bonded interfaces were found to have robust integrity relative to interfaces fused without glass, or those fused with a resin-based adhesive. Significance The structural integrity of the interfaces between porcelain veneers and alumina or zirconia cores is a critical factor in the longevity of all-ceramic dental crowns and fixed dental prostheses. PMID:21802131

  17. Properties of nanostructured undoped ZrO{sub 2} thin film electrolytes by plasma enhanced atomic layer deposition for thin film solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gu Young; Noh, Seungtak; Lee, Yoon Ho; Cha, Suk Won, E-mail: ybkim@hanyang.ac.kr, E-mail: swcha@snu.ac.kr [Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Ji, Sanghoon [Graduate School of Convergence Science and Technology, Seoul National University, Iui-dong, Yeongtong-gu, Suwon 443-270 (Korea, Republic of); Hong, Soon Wook; Koo, Bongjun; Kim, Young-Beom, E-mail: ybkim@hanyang.ac.kr, E-mail: swcha@snu.ac.kr [Department of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); An, Jihwan [Manufacturing Systems and Design Engineering Programme, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of)

    2016-01-15

    Nanostructured ZrO{sub 2} thin films were prepared by thermal atomic layer deposition (ALD) and by plasma-enhanced atomic layer deposition (PEALD). The effects of the deposition conditions of temperature, reactant, plasma power, and duration upon the physical and chemical properties of ZrO{sub 2} films were investigated. The ZrO{sub 2} films by PEALD were polycrystalline and had low contamination, rough surfaces, and relatively large grains. Increasing the plasma power and duration led to a clear polycrystalline structure with relatively large grains due to the additional energy imparted by the plasma. After characterization, the films were incorporated as electrolytes in thin film solid oxide fuel cells, and the performance was measured at 500 °C. Despite similar structure and cathode morphology of the cells studied, the thin film solid oxide fuel cell with the ZrO{sub 2} thin film electrolyte by the thermal ALD at 250 °C exhibited the highest power density (38 mW/cm{sup 2}) because of the lowest average grain size at cathode/electrolyte interface.

  18. Relationship between structural properties and electrochemical characteristics of monolithic carbon xerogel-based electrochemical double-layer electrodes in aqueous and organic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, Mario [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Institute of Radiology, University Clinic, University of Wuerzburg (Germany); Lorrmann, Volker; Reichenauer, Gudrun; Wiener, Matthias [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Pflaum, Jens [Bavarian Center for Applied Energy Research e.V. (ZAE Bayern), Wuerzburg (Germany); Department of Experimental Physics VI, Julius-Maximilians-University of Wuerzburg (Germany)

    2012-05-15

    The impact of the micropore width, external surface area, and meso-/macropore size on the charging performance of electrochemical double-layer capacitor (EDLC) electrodes is systematically investigated. Nonactivated carbon xerogels are used as model electrodes in aqueous and organic electrolytes. Monolithic porous model carbons with different structural parameters are prepared using a resorcinol-formaldehyde-based sol-gel process and subsequent pyrolysis of the organic precursors. Electrochemical properties are characterized by utilizing them as EDLC half-cells operated in aqueous and organic electrolytes, respectively. Experimental data derived for organic electrolytes reveals that the respective ions cannot enter the micropores within the skeleton of the meso- and macroporous carbons. Therefore the total capacitance is limited by the external surface formed by the interface between the meso-/macropores and the microporous carbon particles forming the xerogel skeleton. In contrast, for aqueous electrolytes the total capacitance solely depends on the total surface area, including interfaces at the micropore scale. For both types of electrolytes the charging rate of the electrodes is systematically enhanced when increasing the diameter of the carbon xerogel particles from 10 to 75 nm and the meso-/macropore size from 10 to 121 nm. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Microstructural evolution of alumina-zirconia nanocomposites

    International Nuclear Information System (INIS)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L.; Pallone, E.M.J.A.

    2012-01-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  20. Surface degradation of nanocrystalline zirconia dental implants

    NARCIS (Netherlands)

    Ocelík, Václav; Schepke, Ulf; Rasoul, Hamid Haji; Cune, Marco S.; De Hosson, Jeff Th M.

    2017-01-01

    Yttria-stabilized zirconia prepared by hot isostatic pressing represents attractive material for biomedical applications. In this work the degradation of yttria-stabilized zirconia dental implants abutments due to the tetragonal to monoclinic phase transformation after one year of clinical use was

  1. Effect of Co3O4 addition on densification of 8 mil% Yttria stabilized zirconia

    International Nuclear Information System (INIS)

    Grilo, J.P.F.; Neto, P.P.B.; Souza, G.L.; Macedo, D.A.; Paskocimas, C.A.; Nascimento, R.M.

    2012-01-01

    8 mol% Yttria stabilized zirconia (8YSZ) is the most common material used as electrolyte in solid oxide fuel cells (SOFC). In recent years, many research efforts have been focused on trying to reduce its sintering temperature with a view of the possibility of co-sintering of the anode/electrolyte interface. In this context, the use of sintering aids is a major technological routes used to enhance the densification of YSZ. In this work, Co 3 O 4 powders obtained by the Pechini method were used as sintering aids for 8YSZ. The effect of the addition of Co 3 O 4' (between 0.075 and 1 wt.%) in the densification of 8YSZ was investigated by X-ray diffraction, electron microscopy and density measurements. The results indicated that the optimum temperature sintering decreases with increasing content of Co 3 O 4 . The best content of the sintering aid was 0.25 wt.%, for this content was obtained value of relative density above 90% after sintering at temperatures as low as 1350 deg C. (author)

  2. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?

    Science.gov (United States)

    Lian, Cheng; Liu, Honglai; Henderson, Douglas; Wu, Jianzhong

    2016-10-01

    The ionophobicity effect of nanoporous electrodes on the capacitance and the energy storage capacity of nonaqueous-electrolyte supercapacitors is studied by means of the classical density functional theory (DFT). It has been hypothesized that ionophobic nanopores may create obstacles in charging, but they store energy much more efficiently than ionophilic pores. In this study, we find that, for both ionic liquids and organic electrolytes, an ionophobic pore exhibits a charging behavior different from that of an ionophilic pore, and that the capacitance-voltage curve changes from a bell shape to a two-hump camel shape when the pore ionophobicity increases. For electric-double-layer capacitors containing organic electrolytes, an increase in the ionophobicity of the nanopores leads to a higher capacity for energy storage. Without taking into account the effects of background screening, the DFT predicts that an ionophobic pore containing an ionic liquid does not enhance the supercapacitor performance within the practical voltage ranges. However, by using an effective dielectric constant to account for ion polarizability, the DFT predicts that, like an organic electrolyte, an ionophobic pore with an ionic liquid is also able to increase the energy stored when the electrode voltage is beyond a certain value. We find that the critical voltage for an enhanced capacitance in an ionic liquid is larger than that in an organic electrolyte. Our theoretical predictions provide further understanding of how chemical modification of porous electrodes affects the performance of supercapacitors. The authors are saddened by the passing of George Stell but are pleased to contribute this article in his memory. Some years ago, DH gave a talk at a Gordon Conference that contained an approximation that George had demonstrated previously to be in error in one of his publications. Rather than making this point loudly in the discussion, George politely, quietly, and privately pointed this out

  3. Joining of yttria-tetragonal zirconia polycrystal with an aluminum-zirconium alloy

    International Nuclear Information System (INIS)

    Rathner, R.C.; Green, D.J.

    1990-01-01

    Specimens of yttria-tetragonal zirconia polycrystal (Y-TZP) have been joined with an Al-5.8 wt% Zr alloy at temperatures of 900 degrees C and above. The braze alloy contained large needlelike precipitates of the intermetallic phase Al 3 Sr. It is shown that these large precipitates can aid in strengthening of the joint, especially if they are close to the interface. With decreasing layer thickness, the strengths increased with values as high as 420 MPa

  4. Preparation and Characterization of Anode-Supported YSZ Thin Film Electrolyte by Co-Tape Casting and Co-Sintering Process

    International Nuclear Information System (INIS)

    Liu, Q L; Fu, C J; Chan, S H; Pasciak, G

    2011-01-01

    In this study, a co-tape casting and co-sintering process has been developed to prepare yttria-stabilized zirconia (YSZ) electrolyte films supported on Ni-YSZ anode substrates in order to substantially reduce the fabrication cost of solid oxide fuel cells (SOFC). Through proper control of the process, the anode/electrolyte bilayer structures with a size of 7.8cm x 7.8cm were achieved with good flatness. Scanning electron microscopy (SEM) observation indicated that the YSZ electrolyte film was about 16 μm in thickness, highly dense, crack free and well-bonded to the anode support. The electrochemical properties of the prepared anode-supported electrolyte film was evaluated in a button cell mode incorporating a (LaSr)MnO 3 -YSZ composite cathode. With humidified hydrogen as the fuel and stationary air as the oxidant, the cell demonstrated an open-circuit voltage of 1.081 V and a maximum power density of 1.01 W/cm 2 at 800 deg. C. The obtained results represent the important progress in the development of anode-supported intermediate temperature SOFC with reduced fabrication cost.

  5. Preparation and Characterization of Anode-Supported YSZ Thin Film Electrolyte by Co-Tape Casting and Co-Sintering Process

    Science.gov (United States)

    Liu, Q. L.; Fu, C. J.; Chan, S. H.; Pasciak, G.

    2011-06-01

    In this study, a co-tape casting and co-sintering process has been developed to prepare yttria-stabilized zirconia (YSZ) electrolyte films supported on Ni-YSZ anode substrates in order to substantially reduce the fabrication cost of solid oxide fuel cells (SOFC). Through proper control of the process, the anode/electrolyte bilayer structures with a size of 7.8cm × 7.8cm were achieved with good flatness. Scanning electron microscopy (SEM) observation indicated that the YSZ electrolyte film was about 16 μm in thickness, highly dense, crack free and well-bonded to the anode support. The electrochemical properties of the prepared anode-supported electrolyte film was evaluated in a button cell mode incorporating a (LaSr)MnO3-YSZ composite cathode. With humidified hydrogen as the fuel and stationary air as the oxidant, the cell demonstrated an open-circuit voltage of 1.081 V and a maximum power density of 1.01 W/cm2 at 800°C. The obtained results represent the important progress in the development of anode-supported intermediate temperature SOFC with reduced fabrication cost.

  6. Comparison of Shade of Ceramic with Three Different Zirconia Substructures using Spectrophotometer.

    Science.gov (United States)

    Habib, Syed Rashid; Shiddi, Ibraheem F Al

    2015-02-01

    This study assessed how changing the Zirconia (Zr) substructure affected the color samples after they have been overlaid by the same shade of veneering ceramic. Three commercial Zr materials were tested in this study: Prettau(®) Zirconia (ZirKonZahn, Italy), Cercon (Dentsply, Germany) and InCoris ZI (Sirona, Germany). For each system, 15 disk-shaped specimens (10 × 1 mm) were fabricated. Three shades of A1, A2 and A3.5 of porcelain (IPS e.MaxCeram, IvoclarVivadent, USA) were used for layering the specimens. Five specimens from each type of Zr were layered with same shade of ceramic. Color measurements were recorderd by a spectrophotometer Color-Eye(®) 7000A (X-Rite, Grand Rapids, MI). Mean values of L, a, b color coordinates and ΔE were recorded and comparisons were made. Differences in the ΔE were recorded for the same porcelain shade with different Zr substructures and affected the color of the specimens (p < 0.01, ANOVA). The maximum difference between the ΔE values for the A1, A2 and A3.5 shades with three types of Zr substructures was found to be 1.59, 1.69 and 1.45 respectively. Multiple comparisons of the ΔE with PostHoc Tukey test revealed a statistically significant difference (p < 0.05) between the three types of Zr, except between Type 2 Zr and Type 3 Zr for the Shade A1. The mean values of L, a, b and ΔE for the Prettau(®) Zirconia substructure were found to be the least among the three types. The brand of Zr used influences the final color of the all ceramic Zr based restorations and this has clinical significance.

  7. Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive.

    Science.gov (United States)

    Lee, Ji-Yeon; Ahn, Jaechan; An, Sang In; Park, Jeong-Won

    2018-02-01

    The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Fifty zirconia blocks (15 × 15 × 10 mm, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with 50 µm Al 2 O 3 for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at 37°C storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test ( p = 0.05). Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 ( p < 0.05). Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used.

  8. Effect of hydrothermal treatment on light transmission of translucent zirconias.

    Science.gov (United States)

    Putra, Armand; Chung, Kwok-Hung; Flinn, Brian D; Kuykendall, Tuesday; Zheng, Cheng; Harada, Kosuke; Raigrodski, Ariel J

    2017-09-01

    Studies of the light transmission of translucent zirconias after hydrothermal treatment are limited. The purpose of this in vitro study was to evaluate the effect of hydrothermal treatment on the light transmission of translucent zirconias for monolithic restorations. Four commercially available zirconia products, BruxZir Anterior Solid Zirconia (BruxAnt, BA), Lava Plus High Translucency (LPHT), Katana Zirconia Super Translucent (KST), and Katana Zirconia Ultra Translucent (KUT) were assessed and 1 type of lithium disilicate, e.max Press LT (LDLT) was used as a control. Plate specimens, 20×20×1 mm (n=80) for the translucency assessment were sectioned from postsintered zirconia bulk materials and ground with a #400-grit diamond wheel and coolant. The specimens were placed under hydrothermal conditions of 134°C at 0.2 MPa (n=5 per group at 0, 5, 50, and 100 hours). Percentage of total transmittance of light (T t %) of each specimen was measured using a spectrophotometer with an integrating sphere. X-ray diffraction analyses were used to measure tetragonal-monoclinic phase transformation. Surfaces were examined by scanning electron microscopy and energy dispersive spectrometry. Data were analyzed using 2-way ANOVA followed by the Tukey test (α=.05). The T t % ranged from 6.5% to 28.3%. Group LDLT obtained significantly higher transmittance than other tested groups, whereas groups KST and KUT had significantly higher T t % than groups BA and LPHT (Phydrothermal treatment for all tested translucent zirconias and a lithium disilicate glass-ceramic control. Hydrothermal treatment had minimal effects on the translucency of translucent zirconias. The tetragonal-monoclinic phase transformation rate of translucent zirconias was found to be low, except in group LPHT. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Study of the creep of lime-stabilised zirconia

    International Nuclear Information System (INIS)

    Saint-Jacques, Robert G.

    1971-09-01

    This research thesis reports the study of creep of stabilised zirconia containing between 13 and 20 per cent of lime, at temperatures between 1.200 and 1.400 C, and under compression stresses between 500 and 4.000 pounds by square inch. Specimens are polycrystalline with an average grain diameter between 7 and 29 microns. The author notably shows that the creep rate of lime-stabilised zirconia is directly proportional to the applied stress, and that the creep apparent activation energy is close to activation energy of volume self-diffusion of calcium and zirconium in lime-stabilised zirconia. Results of creep tests show that, in the studied conditions, the creep rate is directly proportional to the inverse of the grain average diameter, and this is in compliance with the Gifkins and Snowden theory of creep by sliding at grain boundaries. The author also shows that the creep rate of the lime stabilised zirconia varies with lime content, and reaches a maximum when zirconia contains about 15 per cent of lime. Lower creep rates obtained for higher and lower lime contents are explained [fr

  10. Characteristics of porous zirconia coated with hydroxyapatite

    Indian Academy of Sciences (India)

    However, porous hydroxyapatite bodies are mechanically weak and brittle, which makes shaping and implantation difficult. One way to solve this problem is to introduce a strong porous network onto which hydroxyapatite coating is applied. In this study, porous zirconia and alumina-added zirconia ceramics were prepared ...

  11. Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach.

    Science.gov (United States)

    Nath, Soumav; Biswas, Ashik; Kour, Prachi P; Sarma, Loka S; Sur, Ujjal Kumar; Ankamwar, Balaprasad G

    2018-08-01

    In this paper, we have reported the chemical synthesis of thermally stable mesoporous nanocrystalline zirconia with high surface area using a surfactant-assisted hydrothermal approach. We have employed different type of surfactants such as CTAB, SDS and Triton X-100 in our synthesis. The synthesized nanocrystalline zirconia multistructures exhibit various morphologies such as rod, mortar-pestle with different particle sizes. We have characterized the zirconia multistructures by X-ray diffraction study, Field emission scanning electron microscopy, Attenuated total refection infrared spectroscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The thermal stability of as synthesized zirconia multistructures was studied by thermo gravimetric analysis, which shows the high thermal stability of nanocrystalline zirconia around 900 °C temperature.

  12. Fabrication of hollow silica–zirconia composite spheres and their activity for hydrolytic dehydrogenation of ammonia borane

    Energy Technology Data Exchange (ETDEWEB)

    Umegaki, Tetsuo, E-mail: umegaki.tetsuo@nihon-u.ac.jp [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Hosoya, Tatsuya; Toyama, Naoki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan); Xu, Qiang [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Kojima, Yoshiyuki [Department of Materials and Applied Chemistry, College of Science and Engineering, Nihon University, 1-8-14, Kanda-Surugadai, Chiyoda-Ku, Tokyo 101-8308 (Japan)

    2014-09-01

    the initial NH{sub 3}BH{sub 3} in the presence of the hollow spheres with wall thicknesses of 17.5, 15.0, 10.0, and 2.0 nm are 0.5, 0.8, 1.4, and 2.0, respectively. The results indicate that the activity of hollow silica–zirconia composite spheres for hydrolytic dehydrogenation of NH{sub 3}BH{sub 3} improves with decrease of wall thickness of the hollow spheres. From the results of BET adsorption measurements, specific surface area of the hollow spheres increases with decrease of wall thickness of the hollow spheres. The results of activity, specific surface area, and XRD profiles suggest that the primary particles form layer-like structure in the wall of hollow silica–zirconia composite spheres and the number of the layers depends on the wall thickness.

  13. Synthesis, mechanical properties and bioactivity of nanostructured zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Debasish, E-mail: dsarkar@nitrkl.ac.in; Swain, Sanjaya Kumar; Adhikari, Sangeeta; Reddy, B. Sambi; Maiti, Himadri Sekhar, E-mail: hsmaiti2009@gmail.com

    2013-08-01

    Yttria stabilized zirconia 3Y – TZP nanopowders (10–30 nm) are prepared through direct precursor calcination of mixed zirconium oxychloride and yttrium nitrate solutions at 600 °C for 2 h. Cuboid(50 × 25 × 20 mm{sup 3}) zirconia blanks are fabricated through centrifuge casting and followed by sintering at 1350 °C for 2 h. Sintered zirconia blanks exhibit 24% volume shrinkage and 98% relative density with average grain size of 250 nm. Vickers hardness and indented fracture toughness of sintered blanks are measured as 13.5 GPa and 3.5 MPa.m{sup 1/2}, respectively. Bioactivity of nanostructured zirconia originates after four weeks incubation in simulated body fluid solution. An optimum time is required for the deposition of hydroxyapatite nanoparticles on stress-induced nucleation site of nanostructured zirconia. - Highlights: • A new technique has been proposed to prepare 10–30 nm 3Y – TZP nanopowders. • Cuboid zirconia blanks are fabricated through centrifuge casting. • Average grain size varies from 100 to 400 nm after sintering at 1350 °C for 2 h. • Hardness and fracture toughness are found as 13.5 GPa and 3.5 MPa.m{sup 1/2}, respectively. • Nanoscale hydroxyapatite deposits on stress-induced nucleation site of ZrO{sub 2} after optimum time.

  14. Performance of solid electrolyte type oxygen sensor in flowing lead bismuth

    International Nuclear Information System (INIS)

    Kondo, Masatoshi; Takahashi, Minoru

    2005-01-01

    A solid electrolyte type oxygen sensor for liquid 45%lead-55%bismuth (Pb-Bi) was developed. The performance of the oxygen sensor in the flowing lead-bismuth (Pb-Bi) was investigated. The initial performance of the sensor was not reliable, since the reference fluid of the oxygen saturated bismuth in the sensor cell was not compact initially. The electromotive force (EMF) obtained from the yttria stabilized zirconia (YSZ) cell was the same as that from the magnesia stabilized zirconia (MSZ) cell in the flowing Pb-Bi. The EMF of the sensor in the flowing Pb-Bi was lower than that in the stagnant Pb-Bi. However, the difference was small. The sensor showed repeatability after the long term interruption and the Pb-Bi drain/charge operation. After the performance tests, the corrosion of the sensor cells were investigated metallurgically. The YSZ cell was eroded around the free surface of the flowing Pb-Bi after 3500 hour-exposure in the flowing Pb-Bi. The MSZ cell showed smooth surface without the erosion. Although the YSZ cell worked more stably than the MSZ cell, the mechanical strength of the YSZ cell is weaker than that of the MSZ cell. (author)

  15. Zirconia toughened ceramics for heat engine applications

    International Nuclear Information System (INIS)

    Rossi, G.A.; Blum, J.B.; Manwiller, K.E.; Knapp, C.E.

    1986-01-01

    Three classes of zirconia toughened ceramics (ZTC) were studied, i.e. Mg-PSZ (MgO-partially stabilized zirconia), Y-TZP (Y/sub 2/O/sub 3/-tetragonal zirconia polycrystals) and ZTA (zirconia toughened alumina). The main objective was to improve the high temperature strength and toughness, which are not satisfactory in the ''state of the art'' ZTC materials. Powders prepared by melting/rapid solidification and by chemical routes were used. The green parts were made by both dry and wet shape forming methods. Fine grained Mg-PSZ ceramics with unique microstructures were produced using the rapidly solidified powders. The Y-TZP materials were improved mainly through microstructure control and by addition of alpha alumina as a dispersed phase. Preliminary results on ZTA ceramics made with the rapidly solidified powders were also obtained. It is concluded that the Al/sub 2/O/sub 3//Y-TZP composites offer a good chance of meeting the program objectives

  16. Photoelectrical stimulation of neuronal cells by an organic semiconductor-electrolyte Interface

    DEFF Research Database (Denmark)

    Abdullaeva, Oliya S.; Schulz, Matthias; Balzer, Frank

    2016-01-01

    As a step toward the realization of neuroprosthetics for vision restoration, we follow an electrophysiological patch-clamp approach to study the fundamental photoelectrical stimulation mechanism of neuronal model cells by an organic semiconductor–electrolyte interface. Our photoactive layer...... consisting of an anilino-squaraine donor blended with a fullerene acceptor is supporting the growth of the neuronal model cell line (N2A cells) without an adhesion layer on it and is not impairing cell viability. The transient photocurrent signal upon illumination from the semiconductor–electrolyte layer....... Furthermore, we characterize the morphology of the semiconductor–electrolyte interface by atomic force microscopy and study the stability of the interface in dark and under illuminated conditions....

  17. Potential-specific structure at the hematite-electrolyte interface

    Energy Technology Data Exchange (ETDEWEB)

    McBriarty, Martin E.; Stubbs, Joanne; Eng, Peter; Rosso, Kevin M.

    2018-02-21

    The atomic-scale structure of interfaces between metal oxides and aqueous electrolytes controls their catalytic, geochemical, and corrosion behavior. Measurements that probe these interfaces in situ provide important details of ion and solvent arrangements, but atomically precise structural models do not exist for common oxide-electrolyte interfaces far from equilibrium. Using a novel cell, we measured the structure of the hematite (a-Fe2O3) (110$\\bar{2}$)-electrolyte interface under controlled electrochemical bias using synchrotron crystal truncation rod X ray scattering. At increasingly cathodic potentials, charge-compensating protonation of surface oxygen groups increases the coverage of specifically bound water while adjacent water layers displace outwardly and became disordered. Returning to open circuit potential leaves the surface in a persistent metastable protonation state. The flux of current and ions at applied potential is thus regulated by a unique interfacial electrolyte environment, suggesting that electrical double layer models should be adapted to the dynamically changing interfacial structure far from equilibrium.

  18. Zirconia based inert matrix fuel: fabrication concepts and feasibility studies

    International Nuclear Information System (INIS)

    Ingold, F.; Burghartz, M.; Ledergerber, G.

    1999-01-01

    The internal gelation process has traditionally been applied to fabricate standard fuel based on uranium, typically UO2 and MOX. To meet the recent aim to destroy plutonium in the most effective way, a uranium free fuel was evaluated. The fuel development programme at PSI has been redirected toward a fuel based on zirconium oxide or a mixture of zirconia and a conducting material to form ceramic/metal (CERMET) or ceramic/ceramic (CERCER) combinations. A feasibility study was carried out to demonstrate that microspheres based on zirconia and spinel can be fabricated with the required properties. The gelation parameters were investigated to optimise compositions of the starting solutions. Studies to fabricate a composite material (from zirconia and spinel) are ongoing. If the zirconia/spinel ratio is chosen appropriately, the low thermal conductivity of pure zirconia can be compensated by the higher thermal conductivity of spinel. Another solution to offset the low thermal conductivity of zirconia is the development of a CERMET, which consists of fine particles bearing plutonium in a cubic zirconia lattice dispersed in a metallic matrix. The fabrication of such a CERMET is also being studied. (author)

  19. In vitro corrosion of pure magnesium and AZ91 alloy?the influence of thin electrolyte layer thickness

    OpenAIRE

    Zeng, Rong-Chang; Qi, Wei-Chen; Zhang, Fen; Li, Shuo-Qi

    2016-01-01

    In vivo degradation predication faces a huge challenge via in vitro corrosion test due to the difficulty for mimicking the complicated microenvironment with various influencing factors. A thin electrolyte layer (TEL) cell for in vitro corrosion of pure magnesium and AZ91 alloy was presented to stimulate the in vivo corrosion in the micro-environment built by the interface of the implant and its neighboring tissue. The results demonstrated that the in vivo corrosion of pure Mg and the AZ91 all...

  20. Studies on zirconia-mullite ceramic

    International Nuclear Information System (INIS)

    Virkar, Alka N.

    2014-01-01

    Zirconia Toughened Alumina (ZTA) ceramics with much improved Fracture Toughness and Strength have been used as a front material to fabricate composite Armour-Applications, Al 2 O 3 has very different fluxing ability with silica by sufficiently lowering the melting point. Addition of small amount of Fe 2 O 3 , TiO 2 , in an Al 2 O 3 -SiO 2 mixture enhances needle shaped Mullite crystal growth and also assist Liquid phase Sintering. In the present investigation, Zircon was used as a source of ZrO 2 and SiO 2 . Zircon (ZrSiO 4 ) has a low coefficient of Thermal Expansion and good Thermal Shock Resistance. Densification in terms of Relative Density and App. Porosity, Tetragonal ZrO 2 , phases, Thermal Expansion Coefficient, Hardness etc. were studied on Zirconia-Mullite system with and without additives. Z-M system with Y 2 O 3 additives show improved properties owing to the partial stabilization of Zirconia phase (PSZ). (author)

  1. SEM evaluation of human gingival fibroblasts growth onto CAD/CAM zirconia and veneering ceramic for zirconia

    Science.gov (United States)

    Zizzari, Vincenzo; Borelli, Bruna; De Colli, Marianna; Tumedei, Margherita; Di Iorio, Donato; Zara, Susi; Sorrentino, Roberto; Cataldi, Amelia; Gherlone, Enrico Felice; Zarone, Fernando; Tetè, Stefano

    2013-01-01

    Summary Aim To evaluate the growth of Human Gingival Fibroblasts (HGFs) cultured onto sample discs of CAD/CAM zirconia and veneering ceramic for zirconia by means of Scanning Electron Microscope (SEM) analysis at different experimental times. Methods A total of 26 experimental discs, divided into 2 groups, were used: Group A) CAD/CAM zirconia (3Y-TZP) discs (n=13); Group B) veneering ceramic for zirconia discs (n=13). HGFs were obtained from human gingival biopsies, isolated and placed in culture plates. Subsequently, cells were seeded on experimental discs at 7,5×103/cm2 concentration and cultured for a total of 7 days. Discs were processed for SEM observation at 3h, 24h, 72h and 7 days. Results In Group A, after 3h, HGFs were adherent to the surface and showed a flattened profile. The disc surface covered by HGFs resulted to be wider in Group A than in Group B samples. At SEM observation, after 24h and 72h, differences in cell attachment were slightly noticeable between the groups, with an evident flattening of HGFs on both surfaces. All differences between Group A and group B became less significant after 7 days of culture in vitro. Conclusions SEM analysis of HGFs showed differences in terms of cell adhesion and proliferation, especially in the early hours of culture. Results showed a better adhesion and cell growth in Group A than in Group B, especially up to 72h in vitro. Differences decreased after 7 days, probably because of the rougher surface of CAD/CAM zirconia, promoting better cell adhesion, compared to the smoother surface of veneering ceramic. PMID:24611089

  2. Fabrication of Yttria stabilized zirconia thin films on poroussubstrates for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Leming, Andres [Univ. of California, Berkeley, CA (United States)

    2003-06-16

    A process for the deposition of yttria stabilized zirconia (YSZ) films, on porous substrates, has been developed. These films have possible applications as electrolyte membranes in fuel cells. The films were deposited from colloidal suspensions through the vacuum infiltration technique. Films were deposited on both fully sintered and partially sintered substrates. A critical cracking thickness for the films was identified and strategies are presented to overcome this barrier. Green film density was also examined, and a method for improving green density by changing suspension pH and surfactant was developed. A dependence of film density on film thickness was observed, and materials interactions are suggested as a possible cause. Non-shorted YSZ films were obtained on co-fired substrates, and a cathode supported solid oxide fuel cell was constructed and characterized.

  3. A chemically stable electrolyte with a novel sandwiched structure for proton-conducting solid oxide fuel cells (SOFCs)

    KAUST Repository

    Bi, Lei

    2013-11-01

    A chemically stable electrolyte structure was developed for proton-conducting SOFCs by using two layers of stable BaZr0.7Pr 0.1Y0.2O3 -δ to sandwich a highly-conductive but unstable BaCe0.8Y0.2O 3 -δ electrolyte layer. The sandwiched electrolyte structure showed good chemical stability in both CO2 and H2O atmosphere, indicating that the BZPY layers effectively protect the inner BCY electrolyte, while the BCY electrolyte alone decomposed completely under the same conditions. Fuel cell prototypes fabricated with the sandwiched electrolyte achieved a relatively high performance of 185 mW cm- 2 at 700 C, with a high electrolyte film conductivity of 4 × 10- 3 S cm- 1 at 600 C. © 2013 Elsevier B.V.

  4. Anelasticity and strength in zirconia ceramics

    International Nuclear Information System (INIS)

    Matsuzawa, M.; Horibe, S.; Sakai, J.

    2005-01-01

    Non-elastic strain behavior was investigated for several different zirconia ceramics and a possible mechanism for anelasticity was discussed. Anelastic strain was detected in zirconia ceramics irrespective of the crystallographic phase and its productivity depended on the particular kind of dopant additive. It was found that the anelastic properties could be significantly influenced by the level of oxygen vacancy in the matrix, and that the anelastic strain might be produced by a light shift of ionic species. In order to investigate the effect of anelasticity on mechanical properties on zirconia ceramics, the tensile strength was investigated for a wide range of strain rates. The obviously unique strain rate dependence was observed only in the materials having anelastic properties. It was assumed that anelasticity could be efficient at improving the tensile strength. (orig.)

  5. Effect of autoclave induced low-temperature degradation on the adhesion energy between yttria-stabilized zirconia veneered with porcelain.

    Science.gov (United States)

    Li, Kai Chun; Waddell, J Neil; Prior, David J; Ting, Stephanie; Girvan, Liz; van Vuuren, Ludwig Jansen; Swain, Michael V

    2013-11-01

    To investigate the effect of autoclave induced low-temperature degradation on the adhesion energy between yttria-stabilized zirconia veneered with porcelain. The strain energy release rate using a four-point bending stable fracture test was evaluated for two different porcelains [leucite containing (VM9) and glass (Zirox) porcelain] veneered to zirconia. Prior to veneering the zirconia had been subjected to 0 (control), 1, 5, 10 and 20 autoclave cycles. The specimens were manufactured to a total bi-layer dimension of 30 mm × 8 mm × 3 mm. Subsequent scanning electron microscopy/energy dispersive spectrometry, electron backscatter diffraction and X-ray diffraction analysis were performed to identify the phase transformation and fracture behavior. The strain energy release rate for debonding of the VM9 specimens were significantly higher (pautoclave cycles lowered the strain energy release rate significantly (pautoclave cycles between 5 and 20. The monoclinic phase reverted back to tetragonal phase after undergoing conventional porcelain firing cycles. EBSD data showed significant changes of the grain size distribution between the control and autoclaved specimen (cycle 20). Increasing autoclave cycles only significantly decreased the adhesion of the VM9 layered specimens. In addition, a conventional porcelain firing schedule completely reverted the monoclinic phase back to tetragonal. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Potentiometric NO2 Sensors Based on Thin Stabilized Zirconia Electrolytes and Asymmetric (La0.8Sr0.20.95MnO3 Electrodes

    Directory of Open Access Journals (Sweden)

    Jie Zou

    2015-07-01

    Full Text Available Here we report on a new architecture for potentiometric NO2 sensors that features thin 8YSZ electrolytes sandwiched between two porous (La0.8Sr0.20.95MnO3 (LSM95 layers—one thick and the other thin—fabricated by the tape casting and co-firing techniques. Measurements of their sensing characteristics show that reducing the porosity of the supporting LSM95 reference electrodes can increase the response voltages. In the meanwhile, thin LSM95 layers perform better than Pt as the sensing electrode since the former can provide higher response voltages and better linear relationship between the sensitivities and the NO2 concentrations over 40–1000 ppm. The best linear coefficient can be as high as 0.99 with a sensitivity value of 52 mV/decade as obtained at 500 °C. Analysis of the sensing mechanism suggests that the gas phase reactions within the porous LSM95 layers are critically important in determining the response voltages.

  7. Are zirconia corrosion films a form of partially stabilised zirconia (PSZ)?

    International Nuclear Information System (INIS)

    Cox, B.

    1987-03-01

    The problem of understanding the development of porosity in a zirconium oxide film still under biaxial compression is discussed. The oxide film is compared with partially stabilised zirconia (PSZ) where stress induced transformation of tetragonal zirconia has been observed to lead to microcracking of the structure. The similarities between PSZ and the thermal oxide films formed on zirconium alloys are enumerated, and an hypothesis is proposed that can both explain the penetration of pores or microcracks in oxides on Zircaloy-2 to a point very close to the oxide/metal interface, and explain the observation that such a phenomenon does not occur in oxide films on Zr-2.5%Nb. This hypothesis could be tested by laser Raman spectroscopy on oxide films during growth at elevated temperatures. 87 refs

  8. Ionic conductivity and thermal stability of magnetron-sputtered nanocrystalline yttria-stabilized zirconia

    DEFF Research Database (Denmark)

    Sillassen, M.; Eklund, P.; Sridharan, M.

    2009-01-01

    Thermally stable, stoichiometric, cubic yttria-stabilized zirconia (YSZ) thin-film electrolytes have been synthesized by reactive pulsed dc magnetron sputtering from a Zr–Y (80/20 at. %) alloy target. Films deposited at floating potential had a texture. Single-line profile analysis of the 111 x.......5% at bias voltages of −175 and −200 V with additional incorporation of argon. The films were thermally stable; very limited grain coarsening was observed up to an annealing temperature of 800 °C. Temperature-dependent impedance spectroscopy analysis of the YSZ films with Ag electrodes showed that the in......-plane ionic conductivity was within one order of magnitude higher in films deposited with substrate bias corresponding to a decrease in grain size compared to films deposited at floating potential. This suggests that there is a significant contribution to the ionic conductivity from grain boundaries...

  9. Study of crystallite size of yttria-stabilized zirconia powders by Rietveld method

    International Nuclear Information System (INIS)

    Leite, Wellington Claiton; Brinatti, Andre Mauricio; Ribeiro, Mauricio Aparecido; Andrade, Andre Vitor Chaves de; Chinelatto, Adriana Scoton Antonio; Chinelatto, Adilson Luiz

    2009-01-01

    The yttria-stabilized zirconia (YSZ) is used in a great variety of applications, for example, electrolytes of solid oxide fuel cells and oxygen sensors. In the study of YSZ, the particle size powders and sintering processes are important to define the final properties of the zirconia products. The objectives of this work were to determine the phases and the crystalline size using X-Ray Diffraction (XRD) data and the Rietveld Method (RM) of the YSZ powders obtained by chemical synthesis based on the Pechini method. It was used ZrOCl 2.8 H 2 O and Y(NO 3 ) 3.5 H 2 O as precursors reagents. After calcination at 550 deg C during 24 hours, the powder was analyzed by XRD and scanning electronic microscopy (SEM). From XRD and using Rietveld method were verified that there is only cubic phase with lattice parameter a = 5.1307(1) Å and the space group Fm3m. Due to substitution of the Zr atoms in the Y atoms sites, there were vacancies in 17.72 % of O atoms sites. However, the percentage of substitution of Zr atoms in Y atoms sites in the structure not was determinate because the curves of atomic scattering of them are very similar. Using Scherrer equation and considering anisotropy effect, the average crystalline size was determinate: 10,43 nm (c axis) and 10,39 (b axis). This spherical symmetry also observed for SEM. (author)

  10. Bonding effectiveness to different chemically pre-treated dental zirconia.

    Science.gov (United States)

    Inokoshi, Masanao; Poitevin, André; De Munck, Jan; Minakuchi, Shunsuke; Van Meerbeek, Bart

    2014-09-01

    The objective of this study was to evaluate the effect of different chemical pre-treatments on the bond durability to dental zirconia. Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were subjected to tribochemical silica sandblasting (CoJet, 3M ESPE). The zirconia samples were additionally pre-treated using one of four zirconia primers/adhesives (Clearfil Ceramic Primer, Kuraray Noritake; Monobond Plus, Ivoclar Vivadent; Scotchbond Universal, 3M ESPE; Z-PRIME Plus, Bisco). Finally, two identically pre-treated zirconia blocks were bonded together using composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass and stored in distilled water (7 days, 37 °C), after which they were randomly tested as is or subjected to mechanical ageing involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the micro-tensile bond strength was determined, and SEM fractographic analysis performed. Weibull analysis revealed the highest Weibull scale and shape parameters for the 'Clearfil Ceramic Primer/mechanical ageing' combination. Chemical pre-treatment of CoJet (3M ESPE) sandblasted zirconia using Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) revealed a significantly higher bond strength than when Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco) were used. After ageing, Clearfil Ceramic Primer (Kuraray Noritake) revealed the most stable bond durability. Combined mechanical/chemical pre-treatment, the latter with either Clearfil Ceramic Primer (Kuraray Noritake) or Monobond Plus (Ivoclar Vivadent), resulted in the most durable bond to zirconia. As a standard procedure to durably bond zirconia to tooth tissue, the application of a combined 10-methacryloyloxydecyl dihydrogen phosphate/silane ceramic primer to zirconia is clinically highly recommended.

  11. Influence of electrolyte nature on steel membrane hydrogen permeability

    International Nuclear Information System (INIS)

    Lisovskij, A.P.; Nazarov, A.P.; Mikhajlovskij, Yu.N.

    1993-01-01

    Effect of electrolyte nature on hydrogen absorption of carbonic steel membrane at its cathode polarization is studied. Electrolyte buffering by anions of subdissociated acids is shown to increase hydrogen flow though the membrane in acid electrolytes. Mechanisms covering dissociation of proton-bearing anion in the electrolyte near-the-electron layer or dissociative adsorption on steel surface are suggested. Effect of proton-bearing bases forming stable complex compounds with iron, is studied. Activation of anode process of iron solution is shown to increase the rate of hydrogen penetration

  12. Low temperature electrochemistry at normal conductor/frozen electrolyte interface

    International Nuclear Information System (INIS)

    Borkowska, Z.; Stimming, U.

    1991-01-01

    The frozen electrolyte technique (FREECE = FRozen Electrolyte ElectroChEmistry) is based on the experimental result that frozen electrolytes are suitable for electrochemical studies. This technique has been used in our laboratory and also by others to investigate interfacial electrochemical behavior. An argument will be given as to why the FREECE technique is advantageous in a number of respects and what kind of electrolyte systems can be used. Reference is made to electrochemical results such as interfacial reactions and double layer properties. 26 refs

  13. Application of the electrophoretic deposition technique for obtaining Yttria-stabilized zirconia tubes; Aplicacao da tecnica de deposicao eletroforetica para a obtencao de tubos ceramicos de zirconia-itria

    Energy Technology Data Exchange (ETDEWEB)

    Caproni, E.; Muccillo, R., E-mail: ecaproni@gmail.com, E-mail: muccillo@usp.br [Centro de Ciencia e Tecnologia de Materiais, Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-01-15

    The electrophoretic deposition (EPD) is recognized as the most versatile technique for processing particulate materials, due to low cost, deposition in minutes and forming of pieces with complex geometry shapes. In this work an experimental setup for the simultaneous conformation of 16 ceramic tubes by EPD was built. Bimodal submicron Yttria-stabilized zirconia particles were deposited into graphite electrodes, after suitably adjusting the rheological characteristics of the suspension in isopropanol. After graphite burning and YSZ sintering at 1500 deg C, the ceramic tubes were characterized by X-ray diffraction, scanning probe microscope, impedance spectroscopy and electrical response as a function of oxygen content. Small dense one end-closed ceramic tubes, fully stabilized in the cubic phase, were successfully obtained by the EPD technique, showing the ability of that technique for processing large quantities of tubular solid electrolytes with electrical response to different amounts of oxygen according to the Nernst law (author)

  14. Poisoning of Solid Oxide Electrolysis Cells by Impurities

    DEFF Research Database (Denmark)

    Ebbesen, Sune; Graves, Christopher R.; Hauch, Anne

    2010-01-01

    Electrolysis of H2O, CO2, and co-electrolysis of H2O and CO2 was studied in Ni/yttria-stabilized zirconia (YSZ) electrode supported solid oxide electrolysis cells (SOECs) consisting of a Ni/YSZ support, a Ni/YSZ electrode layer, a YSZ electrolyte, and an lanthanum strontium manganite (LSM)/YSZ ox...

  15. Brazing of zirconia to titanium using Ag-Cu and Au-Ni filler alloys

    Directory of Open Access Journals (Sweden)

    Jean S. Pimenta

    2013-12-01

    Full Text Available Advanced ceramic is usually joined to metal by the well-known direct brazing process, where costly active filler alloys can be considered a limitation. Brazing using active-metal-free filler alloy as insert between the joint components is an attempt to overcome it. The active metal diffusion from the titanium member through the bulk of molten filler to the ceramic was responsible to produce an active filler alloy in loco and promote reduction of the zirconium oxide to improve wetting on the ceramic surface. Unalloyed titanium was joined in a high-vacuum furnace (<3x10-5 mbar to yttria-tetragonal zirconia polycristals (Y-TZP and zirconia partially stabilized with magnesia (Mg-PSZ, where commercial fillers Ag-28Cu and Au-18Ni with respective thermal cycles were evaluated. Helium gas leak detection test was performed at the ceramic/metal interface at room temperature; samples from reliable vacuum tight joints were examined by microstructural analysis techniques and energy dispersive X-ray analysis at the joint cross-section. Tight joints were produced with eutectic Ag-Cu filler, revealing an intermetallic layer and a dark reaction layer near the ceramic surface; titanium diffusion was efficient for superficial chemical interactions between individual components. Brazing joints were also tested using three-point flexure testing.

  16. Bond strength and Raman analysis of the zirconia-feldspathic porcelain interface.

    Science.gov (United States)

    Ramos, Carla Müller; Cesar, Paulo Francisco; Lia Mondelli, Rafael Francisco; Tabata, Americo Sheitiro; de Souza Santos, Juliete; Sanches Borges, Ana Flávia

    2014-10-01

    Zirconia has the best mechanical properties of the available ceramic systems. However, the stability of the zirconia-feldspathic porcelain interface may be jeopardized by the presence of the chipping and debonding of the feldspathic porcelain. The purpose of this study is to evaluate the shear bond strength of 3 cold isostatic pressed zirconia materials and a feldspathic veneer by analyzing their interface with micro-Raman spectroscopy. The test groups were experimental zirconia, Zirkonzahn zirconia, and Schuetz zirconia. Blocks of partially sintered zirconia were cut into disks (n=20) and then veneered with a feldspathic porcelain. Half of the specimens from each group (n=10) were incubated in 37°C water for 24 hours, and the other half were thermocycled. All the specimens were then subjected to shear testing. The fractured areas were analyzed with optical stereomicroscopy and classified as adhesive, cohesive, or an adhesive-cohesive failure. Spectral patterns were examined to detect bands related to the zirconia and feldspathic porcelain phases. The shear strength data were submitted to 2-way ANOVA. No significant differences in shear bond strength were observed among the 3 groups, regardless of whether or not the specimens were thermocycled. Adhesive failures were the most prevalent types of failure (70%). Raman spectra were clearly distinguished for all the materials, which showed the presence of tetragonal and monoclinic phases. The controlled production of the experimental zirconia did not influence the results of the bond strength. Raman analysis suggested a process of interdiffusion by the presence of peaks associated with the zirconia and feldspathic ceramics. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Influence of Specimen Preparation and Test Methods on the Flexural Strength Results of Monolithic Zirconia Materials.

    Science.gov (United States)

    Schatz, Christine; Strickstrock, Monika; Roos, Malgorzata; Edelhoff, Daniel; Eichberger, Marlis; Zylla, Isabella-Maria; Stawarczyk, Bogna

    2016-03-09

    The aim of this work was to evaluate the influence of specimen preparation and test method on the flexural strength results of monolithic zirconia. Different monolithic zirconia materials (Ceramill Zolid (Amann Girrbach, Koblach, Austria), Zenostar ZrTranslucent (Wieland Dental, Pforzheim, Germany), and DD Bio zx² (Dental Direkt, Spenge, Germany)) were tested with three different methods: 3-point, 4-point, and biaxial flexural strength. Additionally, different specimen preparation methods were applied: either dry polishing before sintering or wet polishing after sintering. Each subgroup included 40 specimens. The surface roughness was assessed using scanning electron microscopy (SEM) and a profilometer whereas monoclinic phase transformation was investigated with X-ray diffraction. The data were analyzed using a three-way Analysis of Variance (ANOVA) with respect to the three factors: zirconia, specimen preparation, and test method. One-way ANOVA was conducted for the test method and zirconia factors within the combination of two other factors. A 2-parameter Weibull distribution assumption was applied to analyze the reliability under different testing conditions. In general, values measured using the 4-point test method presented the lowest flexural strength values. The flexural strength findings can be grouped in the following order: 4-point strength values than prepared before sintering. The Weibull moduli ranged from 5.1 to 16.5. Specimens polished before sintering showed higher surface roughness values than specimens polished after sintering. In contrast, no strong impact of the polishing procedures on the monoclinic surface layer was observed. No impact of zirconia material on flexural strength was found. The test method and the preparation method significantly influenced the flexural strength values.

  18. Facile preparation, optical and electrochemical properties of layer-by-layer V{sub 2}O{sub 5} quadrate structures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yifu, E-mail: yfzhang@dlut.edu.cn; Zheng, Jiqi; Wang, Qiushi; Hu, Tao; Tian, Fuping; Meng, Changgong

    2017-03-31

    Highlights: • Layer-by-layer V{sub 2}O{sub 5} structures self-assembly by quadrate sheets like “multilayer cake” were synthesized. • Carbon spheres is as the structure-directing reagent like adhesive to guide the formation of layer-by-layer structures. • UV–vis spectrum shows two major absorption bands at about 340 and 478 nm and PL spectrum exhibits the emission peak at 545 nm for V{sub 2}O{sub 5} layer-by-layer structures. • The electrochemical properties of layer-by-layer V{sub 2}O{sub 5} structures are significantly improved in organic electrolyte. - Abstract: Layer-by-layer V{sub 2}O{sub 5} structures self-assembly by quadrate sheets like “multilayer cake” were successfully synthesized using NH{sub 4}VO{sub 3} as the vanadium sources by a facile hydrothermal route and combination of the calcination. The structure and composition were characterized by field emission scanning electron microscopy, energy-dispersive X-ray spectrometer, X-ray powder diffraction, Raman and Fourier transform infrared spectroscopy. The optical properties of the as-obtained V{sub 2}O{sub 5} layer-by-layer structures were investigated by the Ultraviolet–visible spectroscopy and photoluminescence spectrum. The electrochemical properties of the as-obtained V{sub 2}O{sub 5} layer-by-layer structures as electrodes in supercapacitor device were measured by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) both in the aqueous and organic electrolyte. The specific capacitance is 347 F g{sup −1} at 1 A g{sup −1} in organic electrolyte, which is improved by 46% compared with 238 F g{sup −1} in aqueous electrolyte. During the cycle performance, the specific capacitances of V{sub 2}O{sub 5} layer-by-layer structures after 100 cycles are 30% and 82% of the initial discharge capacity in the aqueous and organic electrolyte, respectively, indicating the cycle performance is significantly improved in organic electrolyte. Our results turn out that layer-by-layer

  19. A novel ethanol templating synthesis of ordered lamellar superstructured crystalline zirconia

    International Nuclear Information System (INIS)

    Liu Chao; Wang Bin; Ji Xiujie; Zhao Shanshan; Wu Jie; Jia Jianlong; Ma Dongxia

    2012-01-01

    Soft template technique has attracted great interest, because it is a facile, inexpensive and efficient synthesis strategy for ordered superstructural systems. Here, a novel ethanol template was used to synthesize the ordered lamellar superstructured crystalline zirconia (Lα-ZrO 2 ) without post-treatments and surfactants. ZrOCl 2 and NaOH were served as Zr source and precipitant, respectively. XRD analysis showed that Lα-ZrO 2 is crystalline. XPS spectra indicated the physical adsorption of ethanol molecules in Lα-ZrO 2 . TEM further observed and proved the 1.36-nm period of superstructure detected and calculated by SAXRD (1.35 nm), which is composed of 0.68-nm thick ZrO 2 and pore alternatively. In contrast, the template-free ZrO 2 (TF-ZrO 2 ) presents no superstructure and is poorly crystallized. As a soft template, ethanol presents the roles of (i) inducing the growth of zirconia layers, (ii) directing the self-assembly of ordered lamellar superstructure, and (iii) decreasing the crystallization temperature. The possible mechanism of ethanol serving as a soft template was proposed and discussed in thermodynamics.

  20. Li-Doped Ionic Liquid Electrolytes: From Bulk Phase to Interfacial Behavior

    Science.gov (United States)

    Haskins, Justin B.; Lawson, John W.

    2016-01-01

    Ionic liquids have been proposed as candidate electrolytes for high-energy density, rechargeable batteries. We present an extensive computational analysis supported by experimental comparisons of the bulk and interfacial properties of a representative set of these electrolytes as a function of Li-salt doping. We begin by investigating the bulk electrolyte using quantum chemistry and ab initio molecular dynamics to elucidate the solvation structure of Li(+). MD simulations using the polarizable force field of Borodin and coworkers were then performed, from which we obtain an array of thermodynamic and transport properties. Excellent agreement is found with experiments for diffusion, ionic conductivity, and viscosity. Combining MD simulations with electronic structure computations, we computed the electrochemical window of the electrolytes across a range of Li(+)-doping levels and comment on the role of the liquid environment. Finally, we performed a suite of simulations of these Li-doped electrolytes at ideal electrified interfaces to evaluate the differential capacitance and the equilibrium Li(+) distribution in the double layer. The magnitude of differential capacitance is in good agreement with our experiments and exhibits the characteristic camel-shaped profile. In addition, the simulations reveal Li(+) to be highly localized to the second molecular layer of the double layer, which is supported by additional computations that find this layer to be a free energy minimum with respect to Li(+) translation.

  1. Translucency of Zirconia Ceramics before and after Artificial Aging.

    Science.gov (United States)

    Walczak, Katarzyna; Meißner, Heike; Range, Ursula; Sakkas, Andreas; Boening, Klaus; Wieckiewicz, Mieszko; Konstantinidis, Ioannis

    2018-03-11

    The aging of zirconia ceramics (Y-TZP) is associated with tetragonal to monoclinic phase transformation. This change in microstructure may affect the optical properties of the ceramic. This study examines the effect of aging on the translucency of different zirconia materials. 120 disc-shaped specimens were fabricated from four zirconia materials: Cercon ht white, BruxZir Solid Zirconia, Zenostar T0, Lava Plus (n = 30 per group). Accelerated aging was performed in a steam autoclave (134°C, 0.2 MPa, 5 hours). CIELab coordinates (L*, a*, b*) and luminous reflectance (Y) were measured with a spectrophotometer before and after aging. Contrast ratio (CR) and translucency parameter (TP) were calculated from the L*, a*, b*, and Y tristimulus values. The general linear model (Bonferroni adjusted) was used to compare both parameters before and after aging, as well as between the different zirconia materials (p ≤ 0.05). CR and TP differed significantly before and after aging in all groups tested. Before aging, Zenostar T showed the highest and Lava Plus showed the lowest translucency. After aging, Cercon ht and Zenostar T showed the highest and BruxZir and Lava Plus the lowest translucency. Aging reduced the translucency in all specimens tested. Furthermore, translucency differed between the zirconia brands tested. Nevertheless, the differences were below the detectability threshold of the human eye. The aging process can influence the translucency and thus the esthetic outcome of zirconia restorations; however, the changes in translucency were minimal and probably undetectable by the human eye. © 2018 by the American College of Prosthodontists.

  2. Pore development in anodic alumina in sulphuric acid and borax electrolytes

    International Nuclear Information System (INIS)

    Garcia-Vergara, S.J.; Skeldon, P.; Thompson, G.E.; Habakaki, H.

    2007-01-01

    The formation of porous anodic films on an Al-3.5 at.%W alloy is compared in sulphuric acid and borax electrolytes in order to investigate pore development processes. The findings disclose that for anodizing in sulphuric acid, the pores develop mainly due to the influences of field-induced plasticity of the film and growth stresses; in borax, field-assisted dissolution dominates. The films formed in sulphuric acid are consequently much thicker than the layer of oxidized alloy and tungsten species are retained in the film. In contrast, with borax, the films and oxidized alloy layers are of similar thickness and tungsten species are lost to the electrolyte. Efficiencies of film growth are also significantly different, about 65% in sulphuric acid and about 52% in borax. The retention of tungsten species during anodizing in sulphuric acid is due to the localization of tungsten in the inner regions of the barrier layer and cell walls, with a layer of anodic alumina separating the tungsten-containing regions from the electrolyte. For borax, the tungsten is distributed more uniformly through the film material, enabling loss of tungsten species to the electrolyte from the pore base

  3. EFFECTIVE ELASTIC PROPERTIES OF ALUMINA-ZIRCONIA COMPOSITE CERAMICS - PART 4. TENSILE MODULUS OF POROUS ALUMINA AND ZIRCONIA

    Directory of Open Access Journals (Sweden)

    W. Pabst

    2004-12-01

    Full Text Available In this fourth paper of a series on the effective elastic properties of alumina-zirconia composite ceramics the influence of porosity on the effective tensile modulus of alumina and zirconia ceramics is discussed. The examples investigated are alumina and zirconia ceramics prepared from submicron powders by starch consolidation casting using two different types of starch, potato starch (median size D50 =47.2 µm and corn starch (median size D50 =13.7 µm. The dependence of effective tensile moduli E, on the porosity f, measured for porosities in the ranges of approx. 19-55 vol.% and 10-42 vol.% for alumina and zirconia, respectively, using a resonant frequency technique, was evaluated by fitting with various model relations, including newly developed ones. A detailed comparison of the fitting results suggests the superiority of the new relation E/E0 = (1 - f·(1 - f/fC, developed by the authors (with the tensile modulus of the dense ceramic material E0 and the critical porosity fC, over most other existing fit models. Only for special purposes and well-behaved data sets the recently proposed exponential relation E/E0 = exp [-Bf/(1 - f] and the well-known Phani-Niyogi relation E/E0 = (1 - f/fCN might be preferable.

  4. Characterization of positive electrode/electrolyte interphase in lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dupre, N.; Martin, J.F.; Soudan, P.; Guyomard, D. [Inst.des Materiaux Jean Rouxel, Nantes (France)

    2008-07-01

    Lithium batteries appear to be the most viable energy source for portable electronic devices because of their energy density. The solid electrolyte interphase (SEI) between the negative electrode and the electrolyte of a Li-ion battery monitors the overall battery behaviour in terms of irreversible capacity loss, charge transfer kinetics and storage properties. This paper reported on a study that examined the influence of the storage atmosphere and the formation of a protective surface layer on the electrochemical performance. The objective was to better understand the interfacial problems controlling the long term life duration and cyclability. The positive/electrolyte interphase evolution was followed upon aging/cycling using 7Li MAS NMR, XPS and impedance spectroscopy. This very novel and uncommon technique was used to characterize the growth and evolution of the surface of some electrode materials for lithium batteries, due to contact with the ambient atmosphere or electrolyte or along electrochemical cycling. LiFePO4 and LiMn0.5Ni0.5O2 were chosen for the studies because they are among the most promising candidates for positive electrodes for future lithium batteries. The reaction of LiMn0.5Ni0.5O2 with the ambient atmosphere or LiPF6 electrolyte is extremely fast and leads to an important amount of lithium-containing diamagnetic species. The NMR spectra provided valuable structural information on the interaction between the interphase and the active material after contact with electrolyte or along electrochemical cycling. MAS NMR was shown to be a very promising tool to monitor phenomena taking place at the interface between electrode and electrolyte in lithium batteries. The study showed the affect of the potential on the strength of the interaction between the surface layer and the active material and the partial removal of this layer along the electrochemical cycling. 11 refs.

  5. An interface-reconstruction effect for rechargeable aluminum battery in ionic liquid electrolyte to enhance cycling performances

    Directory of Open Access Journals (Sweden)

    Feng Wu

    2018-01-01

    Full Text Available Aluminum (Al metal has been regarded as a promising anode for rechargeable batteries because of its natural abundance and high theoretical specific capacity. However, rechargeable aluminum batteries (RABs using Al metal as anode display poor cycling performances owing to interface problems between anode and electrolyte. The solid-electrolyte interphase (SEI layer on the anode has been confirmed to be essential for improving cycling performances of rechargeable batteries. Therefore, we immerse the Al metal in ionic liquid electrolyte for some time before it is used as anode to remove the passive film and expose fresh Al to the electrolyte. Then the reactions of exposed Al, acid, oxygen and water in electrolyte are occurred to form an SEI layer in the cycle. Al/electrolyte/V2O5 full batteries with the thin, uniform and stable SEI layer on Al metal anode perform high discharge capacity and coulombic efficiency (CE. This work illustrates that an SEI layer is formed on Al metal anode in the cycle using a simple and effective pretreatment process and results in superior cycling performances for RABs.

  6. Mechanical properties of Al2 O3 Zr O2 layered ceramic composite and finite element application

    International Nuclear Information System (INIS)

    Ahmed, Kh.; Meriani, S.

    1997-01-01

    A three-layered structure has been fabricated using colloidal techniques combined with sequential centrifuging of the slurries to consolidate the layers. The outer layers are of alumina containing various amounts of zirconia while the inner layer contains mainly zirconia with small amount of alumina. The same technique could be also used in the coating of the spherical fuel of the high temperature gas cooled reactor (HTR). Periodic parallel cracks in the inner layer, orthogonal to the layer interface have been observed in the specimens after cooling from 1550 degree C. The finite element method (FEM) have been used to analyze this phenomenon which could be established as a result of the thermal expansion mismatch between the three layers. The general finite element package ALGOR have been used in the analysis. 5 figs., 1 tab

  7. Corrosion behavior of zirconia in acidulated phosphate fluoride

    Directory of Open Access Journals (Sweden)

    Anie Thomas

    2016-02-01

    Full Text Available ABSTRACT Objective The corrosion behavior of zirconia in acidulated phosphate fluoride (APF representing acidic environments and fluoride treatments was studied. Material and Methods Zirconia rods were immersed in 1.23% and 0.123% APF solutions and maintained at 37°C for determined periods of time. Surfaces of all specimens were imaged using digital microscopy and scanning electron microscopy (SEM. Sample mass and dimensions were measured for mass loss determination. Samples were characterized by powder X-ray diffraction (XRD to detect changes in crystallinity. A biosensor based on electrochemical impedance spectroscopy (EIS was used to detect ion dissolution of material into the immersion media. Results Digital microscopy revealed diminishing luster of the materials and SEM showed increased superficial corrosion of zirconia submerged in 1.23% APF. Although no structural change was found, the absorption of salts (sodium phosphate onto the surface of the materials bathed in 0.123% APF was significant. EIS indicated a greater change of impedance for the immersion solutions with increasing bathing time. Conclusion Immersion of zirconia in APF solutions showed deterioration limited to the surface, not extending to the bulk of the material. Inferences on zirconia performance in acidic oral environment can be elucidated from the study.

  8. Highly Stable Operation of Lithium Metal Batteries Enabled by the Formation of a Transient High Concentration Electrolyte Layer

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Mei, Donghai; Engelhard, Mark H.; Cartmell, Samuel S.; Polzin, Bryant; Wang, Chong M.; Zhang, Jiguang; Xu, Wu

    2016-02-08

    Lithium (Li) metal has been extensively investigated as an anode for rechargeable battery applications due to its ultrahigh specific capacity and the lowest redox potential. However, significant challenges including dendrite growth and low Coulombic efficiency are still hindering the practical applications of rechargeable Li metal batteries. Here, we demonstrate that long-term cycling of Li metal batteries can be realized by the formation of a transient high concentration electrolyte layer near the surface of Li metal anode during high rate discharge process. The highly concentrated Li+ ions in this transient layer will immediately solvate with the available solvent molecules and facilitate the formation of a stable and flexible SEI layer composed of a poly(ethylene carbonate) framework integrated with other organic/inorganic lithium salts. This SEI layer largely suppresses the corrosion of Li metal anode by free organic solvents and enables the long-term operation of Li metal batteries. The fundamental findings in this work provide a new direction for the development and operation of Li metal batteries that could be operated at high current densities for a wide range of applications.

  9. Fabrication and Microstructure of Hydroxyapatite Coatings on Zirconia by Room Temperature Spray Process.

    Science.gov (United States)

    Seo, Dong Seok; Chae, Hak Cheol; Lee, Jong Kook

    2015-08-01

    Hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process and were investigated with regards to their microstructure, composition and dissolution in water. An initial hydroxyapatite powder was prepared by heat treatment of bovine-bone derived powder at 1100 °C for 2 h, while dense zirconia substrates were fabricated by pressing 3Y-TZP powder and sintering it at 1350 °C for 2 h. Room temperature spray coating was performed using a slit nozzle in a low pressure-chamber with a controlled coating time. The phase composition of the resultant hydroxyapatite coatings was similar to that of the starting powder, however, the grain size of the hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. All areas of the coating had a similar morphology, consisting of reticulated structure with a high surface roughness. The hydroxyapatite coating layer exhibited biostability in a stimulated body fluid, with no severe dissolution being observed during in vitro experimentation.

  10. Fluency over the monoclinic zirconia indentation

    International Nuclear Information System (INIS)

    Pereira, A.S.; Jornada, J.A.H. da

    1992-01-01

    It was investigated the environment and the time dependence of the Vickers microhardness of monoclinic zirconia single-crystals. The samples were kept at room temperature and the identifications were performed for different environments (air, toluene and water). An indentation creep process was observed for the samples indented is moist media, indicating for a water activated plastic relaxation mechanism. The possible influence of such effect in the fatigue and phase transformations mechanisms of zirconia based ceramics is discussed. (author)

  11. A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes.

    Science.gov (United States)

    Li, Nian-Wu; Shi, Yang; Yin, Ya-Xia; Zeng, Xian-Xiang; Li, Jin-Yi; Li, Cong-Ju; Wan, Li-Jun; Wen, Rui; Guo, Yu-Guo

    2018-02-05

    Lithium (Li) metal is a promising anode material for high-energy density batteries. However, the unstable and static solid electrolyte interphase (SEI) can be destroyed by the dynamic Li plating/stripping behavior on the Li anode surface, leading to side reactions and Li dendrites growth. Herein, we design a smart Li polyacrylic acid (LiPAA) SEI layer high elasticity to address the dynamic Li plating/stripping processes by self-adapting interface regulation, which is demonstrated by in situ AFM. With the high binding ability and excellent stability of the LiPAA polymer, the smart SEI can significantly reduce the side reactions and improve battery safety markedly. Stable cycling of 700 h is achieved in the LiPAA-Li/LiPAA-Li symmetrical cell. The innovative strategy of self-adapting SEI design is broadly applicable, providing opportunities for use in Li metal anodes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Sintering and thermal ageing studies of zirconia - yttria ceramics by impedance spectroscopy; Estudos de sinterizacao e de envelhecimento termico de ceramicas de zirconia - itria por espectroscopia de impedancia

    Energy Technology Data Exchange (ETDEWEB)

    Florio, Daniel Zanetti de

    1998-07-01

    ZrO{sub 2}:8 mol %Y{sub 2}O{sub 3} solid electrolyte ceramic pellets have been prepared with powders of three different origins: a Nissan (Japan) commercial powder, a powder obtained by the coprecipitation technique at IPEN, and the mixing of powder oxides (ZrO{sub 2} produced at a Pilot Plant at IPEN and 99.9% pure Y{sub 2}O{sub 3} of USA origin). These starting powders have been analysed by the following techniques: X-ray fluorescence for yttrium content, X-ray diffraction for structural phase content, sedimentation for particle size distribution, gas adsorption (BET) for surface area determination, and transmission electron microscopy for average particle size determination. Pressed ceramic pellets have been analysed by dilatometry to evaluate the sintering stages. Sintered pellets have been characterized by X-ray diffraction for phase analysis and scanning electron microscopy for grain morphology analysis. Impedance spectroscopy analysis have been carried out to follow thermal ageing of zirconia-yttria solid electrolyte at 600 deg C, the working temperature of permanent oxygen sensor, and to study sintering kinetics. The main results show that ageing at 600 deg C decreases the emf sensor response in the first 100 h to a steady value. Moreover, sintering studies by impedance spectroscopy allowed for finding correlations between electrical parameters, sintering kinetics and grain growth mechanisms. (author)

  13. The platinum catalyst layer in polymer-electrolyte fuel cells[Dissertation 17127]; Die Platinkatalysatorschicht in Polymerelektrolyt-Brennstoffzellen. Beitraege zum Verstaendnis und zur Optimierung

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, A.

    2007-07-01

    This illustrated, comprehensive dissertation by Dr. Andreas Reiner presents an in-depth analysis of polymer electrolyte fuel cells (PEFC) and in particular, their platinum catalyst layer. First of all, the thermodynamics and kinetics involved are reviewed, along with components, their efficiencies and the catalyst layer. The methods used, including scanning electron microscope, x-ray and Rutherford spectroscopy are discussed. The structure and composition of co-sputtered catalyst layers and their production are described. Electro-chemical activation and the electro-chemical properties of the layers are discussed. The second part of the dissertation deals with the principle of hydrogen under-potential deposition. This method provides information about the electrochemically active platinum surface fraction. The results of investigations made are presented and discussed.

  14. Evaluation of participants' perception and taste thresholds with a zirconia palatal plate.

    Science.gov (United States)

    Wada, Takeshi; Takano, Tomofumi; Tasaka, Akinori; Ueda, Takayuki; Sakurai, Kaoru

    2016-10-01

    Zirconia and cobalt-chromium can withstand a similar degree of loading. Therefore, using a zirconia base for removable dentures could allow the thickness of the palatal area to be reduced similarly to metal base dentures. We hypothesized that zirconia palatal plate for removable dentures provides a high level of participants' perception without influencing taste thresholds. The purpose of this study was to evaluate the participants' perception and taste thresholds of zirconia palatal plate. Palatal plates fabricated using acrylic resin, zirconia, and cobalt-chromium alloy were inserted into healthy individuals. Taste thresholds were investigated using the whole-mouth gustatory test, and participants' perception was evaluated using the 100-mm visual analog scale to assess the ease of pronunciation, ease of swallowing, sensation of temperature, metallic taste, sensation of foreign body, subjective sensory about weight, adhesiveness of chewing gum, and general satisfaction. For the taste thresholds, no significant differences were noted in sweet, salty, sour, bitter, or umami tastes among participants wearing no plate, or the resin, zirconia, and metal plates. Speech was easier and foreign body sensation was lower with the zirconia plate than with the resin plate. Evaluation of the adhesiveness of chewing gum showed that chewing gum does not readily adhere to the zirconia plate in comparison with the metal plate. The comprehensive participants' perception of the zirconia plate was evaluated as being superior to the resin plate. A zirconia palatal plate provides a high level of participants' perception without influencing taste thresholds. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  15. Analysis of the zirconia structure by `ab initio` and Rietveld methods; Analise da estrutura da zirconia por metodos `Ab initio` e de Rietveld

    Energy Technology Data Exchange (ETDEWEB)

    Bechepeche, A.P.; Nasar, R.S.; Longo, E. [Sao Carlos Univ., SP (Brazil). Dept. de Quimica; Treu Junior, O.; Varela, J.A. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica

    1995-12-31

    The zirconia was doped with 0,113 mol of Mg O e 0,005 mol of Ti O{sub 2}, and it was calcined in 1550{sup d}eg C and it was analyzed by XRD. The results shows that pure zirconia contains 96,19% of monoclinic phase and 3,18% of cubic. However, the doping magnesia stabilizes the zirconia in 17,24 of monoclinic; 29,63 of tetragonal and 53,13% of cubic phase. The addition of titanium in zirconia gives 25,85% of tetragonal phase and 37,66% of cubic, and this shows the no stabilizing action of this transition metal. By the other side, the results with ab-initio calculating shows the same tendency resulting in the next values of total energy: pure zirconia - monoclinic -11.316,86ua; tetragonal -8742,09 ua and cubic -8742,80 ua and Zr O{sub 2} Ti O{sub 2} system - monoclinic -9463,02 ua, tetragonal -9459,39 ua and cubic -9459,97 ua (author) 3 figs., 2 tabs.

  16. Dehydration and crystallization kinetics of zirconia-yttria gels

    International Nuclear Information System (INIS)

    Ramanathan, S.; Muraleedharan, R.V.; Roy, S.K.; Nayar, P.K.K.

    1995-01-01

    Zirconia and zirconia-yttria gels containing 4 and 8 mol% yttria were obtained by coprecipitation and drying at 373 K. The dehydration and crystallization behavior of the dried gels was studied by DSC, TG, and XRD. The gels undergo elimination of water over a wide temperature range of 373--673 K. The peak temperature of the endotherm corresponding to dehydration and the kinetic constants for the process were not influenced by the yttria content of the gel. The enthalpy of dehydration observed was in good agreement with the heat of vaporization data. The dehydration was followed by a sharp exothermic crystallization process. The peak temperature of the exotherm and the activation energy of the process increased with an increase in yttria content, while the enthalpy of crystallization showed a decrease. The ''glow effect'' reduced with increasing yttria content. Pure zirconia crystallizes in the tetragonal form while the zirconia containing 4 and 8 mol% yttria appears to crystallize in the cubic form

  17. Potentiometric NO2 Sensors Based on Thin Stabilized Zirconia Electrolytes and Asymmetric (La0.8Sr0.2)0.95MnO3 Electrodes

    Science.gov (United States)

    Zou, Jie; Zheng, Yangong; Li, Junliang; Zhan, Zhongliang; Jian, Jiawen

    2015-01-01

    Here we report on a new architecture for potentiometric NO2 sensors that features thin 8YSZ electrolytes sandwiched between two porous (La0.8Sr0.2)0.95MnO3 (LSM95) layers—one thick and the other thin—fabricated by the tape casting and co-firing techniques. Measurements of their sensing characteristics show that reducing the porosity of the supporting LSM95 reference electrodes can increase the response voltages. In the meanwhile, thin LSM95 layers perform better than Pt as the sensing electrode since the former can provide higher response voltages and better linear relationship between the sensitivities and the NO2 concentrations over 40–1000 ppm. The best linear coefficient can be as high as 0.99 with a sensitivity value of 52 mV/decade as obtained at 500 °C. Analysis of the sensing mechanism suggests that the gas phase reactions within the porous LSM95 layers are critically important in determining the response voltages. PMID:26205270

  18. A chemically stable electrolyte with a novel sandwiched structure for proton-conducting solid oxide fuel cells (SOFCs)

    KAUST Repository

    Bi, Lei; Traversa, Enrico

    2013-01-01

    A chemically stable electrolyte structure was developed for proton-conducting SOFCs by using two layers of stable BaZr0.7Pr 0.1Y0.2O3 -δ to sandwich a highly-conductive but unstable BaCe0.8Y0.2O 3 -δ electrolyte layer. The sandwiched electrolyte

  19. Peculiarities of structural transformations in zirconia nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Vasilevskaya, A., E-mail: a.k.vasilevskaya@gmail.com [Technical University, Saint-Petersburg State Institute of Technology (Russian Federation); Almjasheva, O. V. [Saint-Petersburg Electrotechnical University “LETI” (Russian Federation); Gusarov, V. V. [Ioffe Physical-Technical Institute of the Russian Academy of Sciences (Russian Federation)

    2016-07-15

    The transitions of metastable tetragonal phase as well as high-temperature tetragonal phase into the low-temperature monoclinic phase upon heating and cooling were thoroughly studied in zirconia nanoparticles. High-temperature X-ray diffraction, thermal analysis and Raman spectroscopy were used to provide the systematic approach to the investigation of zirconia nanoparticles thermal behavior. A phase transformation sequence in the ZrO{sub 2}–H{sub 2}O system was determined, and the mechanisms of tetragonal-to-monoclinic transition upon heating and cooling were suggested. Here, the phenomenon was found and described, which was determined as “self-powdering” of nanoparticles occurring during structural transition. This phenomenon was observed by in situ investigation of the evolution of crystalline nanoparticles from amorphous zirconium hydroxide during thermal treatment in air. The tetragonal-to-monoclinic phase transition, induced by cooling from the temperature of equilibrium of tetragonal zirconia (i.e., above 1170 °C), is accompanied by a significant crystallite size decrease (with corresponding 3–4 times decrease of crystallite volume). The experimental results facilitate applications of zirconia nanoparticles to obtain high-performance nanopowders for nanoceramics.

  20. Osseointegration of a Zirconia Implant : A Histologic Assessment

    NARCIS (Netherlands)

    Schepke, Ulf; Meijer, Gert J; Meijer, Henny Ja; Walboomers, X Frank; Cune, Marco

    2017-01-01

    PURPOSE: The aim of this study was to describe the histologic and histomorphometric features of a retrieved, functional endosseous zirconia implant in a human subject. MATERIALS AND METHODS: A maxillary zirconia implant (ZV3) placed in a 52-year-old man was retrieved after 2 years of uncompromised

  1. Determination of standard Gibbs free energy of formation for Ca2P2O7 and Ca(PO3)2 from solid-state EMF measurements using yttria stabilised zirconia as solid electrolyte

    International Nuclear Information System (INIS)

    Sandstroem, Malin Hannah; Bostroem, Dan; Rosen, Erik

    2006-01-01

    The equilibrium reactions: 3Ca 2 P 2 O 7 (s)+6Ni(s)-bar 2Ca 3 (PO 4 ) 2 (s)+2Ni 3 P(s)+52O 2 (g) and 2Ca(PO 3 ) 2 (s)+6Ni(s)-bar Ca 2 P 2 O 7 (s)+2Ni 3 P(s)+52O 2 (g) were studied in the temperature range 890K to 1140K. The oxygen equilibrium pressures were determined using galvanic cells incorporating yttria stabilized zirconia as solid electrolyte. From the measured data and using the literature values of standard Gibbs free energy of formation for Ca 3 (PO 4 ) 2 and Ni 3 P, the following relationship of the standard Gibbs free energy of formation for Ca 2 P 2 O 7 and Ca(PO 3 ) 2 were calculated:Δ f G o (Ca 2 P 2 O 7 )+/-11/(kJ.mol -1 )=-3475.9+1.5441(T/K)-0.1051(T/K).ln(T/K)andΔ f G o (Ca(PO 3 ) 2 )+/-12/(kJ.mol -1 )=-3334.8+6.1561(T/K)-0.6950(T/K).ln(T/K)

  2. Layering and Ordering in Electrochemical Double Layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yihua [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Kawaguchi, Tomoya [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Pierce, Michael S. [Rochester Institute of Technology, School of Physics and Astronomy, Rochester, New York 14623, United States; Komanicky, Vladimir [Faculty of Science, Safarik University, 041 54 Kosice, Slovakia; You, Hoydoo [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

    2018-02-26

    Electrochemical double layers (EDL) form at electrified interfaces. While Gouy-Chapman model describes moderately charged EDL, formation of Stern layers was predicted for highly charged EDL. Our results provide structural evidence for a Stern layer of cations, at potentials close to hydrogen evolution in alkali fluoride and chloride electrolytes. Layering was observed by x-ray crystal truncation rods and atomic-scale recoil responses of Pt(111) surface layers. Ordering in the layer is confirmed by glancing-incidence in-plane diffraction measurements.

  3. Study and fabrication of solid oxide fuel cells through tape casting and co-sintering; Etude et realisation par coulage en bande et co-frittage de cellules de pile a combustible a oxydes solides

    Energy Technology Data Exchange (ETDEWEB)

    Grosjean, A

    2004-11-15

    This work is dedicated to the devising of a low-cost fabrication process of solid oxide fuel cells (SOFC). Technical requirements impose the shaping method: stripe casting as well as the materials used: Yttria-stabilized zirconia (YSZ), nickel and lanthanum manganite doped with strontium (LSM). In order to comply with environmental requirements the developed process uses an aqueous barbotine solvent. We get electrodes and the electrolyte separately, the use of an absorbent drying process has enabled us to join 3 layers to form an elementary cell with great interfacial homogeneity. The resistance of the cell to sintering has been improved through the symmetrization of the deformations of the cell. In order to interpret the low electrical properties of the cell and its quick damaging, transmission microscopy studies have been performed. These studies have shown 2 facts. First, 2 isolating phases appear at the cathode (at the LSM/YSZ interface) because of a too high sintering temperature and secondly, a quick clustering of nickel grains appears during cell operation that leads to a local loss of the nickel grid percolation. This problem has been solved by increasing the size of nickel oxide grains from 0.5 {mu}m to 3 {mu}m) to stabilize the microstructure. The issue of the reactivity at the LSM/YSZ interfaces was tackled in 2 different ways, we have tried to lower the sintering temperature by using a zirconia nano-powder first and then by replacing zirconia in the electrolyte by gadolinium-doped ceria. The use of zirconia nano-powder has failed to decrease sintering temperature while preserving the electrolyte density and the use of ceria has triggered instabilities that have not yet been solved. Despite all these drawbacks, this process allows the fabrication of an excellent anode/electrolyte interface. (A.C.)

  4. Study and fabrication of solid oxide fuel cells through tape casting and co-sintering

    International Nuclear Information System (INIS)

    Grosjean, A.

    2004-11-01

    This work is dedicated to the devising of a low-cost fabrication process of solid oxide fuel cells (SOFC). Technical requirements impose the shaping method: stripe casting as well as the materials used: Yttria-stabilized zirconia (YSZ), nickel and lanthanum manganite doped with strontium (LSM). In order to comply with environmental requirements the developed process uses an aqueous barbotine solvent. We get electrodes and the electrolyte separately, the use of an absorbent drying process has enabled us to join 3 layers to form an elementary cell with great interfacial homogeneity. The resistance of the cell to sintering has been improved through the symmetrization of the deformations of the cell. In order to interpret the low electrical properties of the cell and its quick damaging, transmission microscopy studies have been performed. These studies have shown 2 facts. First, 2 isolating phases appear at the cathode (at the LSM/YSZ interface) because of a too high sintering temperature and secondly, a quick clustering of nickel grains appears during cell operation that leads to a local loss of the nickel grid percolation. This problem has been solved by increasing the size of nickel oxide grains from 0.5 μm to 3 μm) to stabilize the microstructure. The issue of the reactivity at the LSM/YSZ interfaces was tackled in 2 different ways, we have tried to lower the sintering temperature by using a zirconia nano-powder first and then by replacing zirconia in the electrolyte by gadolinium-doped ceria. The use of zirconia nano-powder has failed to decrease sintering temperature while preserving the electrolyte density and the use of ceria has triggered instabilities that have not yet been solved. Despite all these drawbacks, this process allows the fabrication of an excellent anode/electrolyte interface. (A.C.)

  5. Sintering and thermal ageing studies of zirconia - yttria ceramics by impedance spectroscopy

    International Nuclear Information System (INIS)

    Florio, Daniel Zanetti de

    1998-01-01

    ZrO 2 :8 mol %Y 2 O 3 solid electrolyte ceramic pellets have been prepared with powders of three different origins: a Nissan (Japan) commercial powder, a powder obtained by the coprecipitation technique at IPEN, and the mixing of powder oxides (ZrO 2 produced at a Pilot Plant at IPEN and 99.9% pure Y 2 O 3 of USA origin). These starting powders have been analysed by the following techniques: X-ray fluorescence for yttrium content, X-ray diffraction for structural phase content, sedimentation for particle size distribution, gas adsorption (BET) for surface area determination, and transmission electron microscopy for average particle size determination. Pressed ceramic pellets have been analysed by dilatometry to evaluate the sintering stages. Sintered pellets have been characterized by X-ray diffraction for phase analysis and scanning electron microscopy for grain morphology analysis. Impedance spectroscopy analysis have been carried out to follow thermal ageing of zirconia-yttria solid electrolyte at 600 deg C, the working temperature of permanent oxygen sensor, and to study sintering kinetics. The main results show that ageing at 600 deg C decreases the emf sensor response in the first 100 h to a steady value. Moreover, sintering studies by impedance spectroscopy allowed for finding correlations between electrical parameters, sintering kinetics and grain growth mechanisms. (author)

  6. Comparison of three and four point bending evaluation of two adhesive bonding systems for glass-ceramic zirconia bi-layered ceramics.

    Science.gov (United States)

    Gee, C; Weddell, J N; Swain, M V

    2017-09-01

    To quantify the adhesion of two bonding approaches of zirconia to more aesthetic glass-ceramic materials using the Schwickerath (ISO 9693-2:2016) three point bend (3PB) [1] test to determine the fracture initiation strength and strain energy release rate associated with stable crack extension with this test and the Charalamabides et al. (1989) [2] four point bend (4PB) test. Two glass-ceramic materials (VITABLOCS Triluxe forte, Vita Zahnfabrik, Germany and IPS.emax CAD, Ivoclar Vivadent, Liechtenstein) were bonded to sintered zirconia (VITA InCeram YZ). The former was resin bonded using a dual-cure composite resin (Panavia F 2.0, Kuraray Medical Inc., Osaka, Japan) following etching and silane conditioning, while the IPS.emax CAD was glass bonded (IPS e.max CAD Crystall/Connect) during crystallization of the IPS.emax CAD. Specimens (30) of the appropriate dimensions were fabricated for the Schwickerath 3PB and 4PB tests. Strength values were determined from crack initiation while strain energy release rate values were determined from the minima in the force-displacement curves with the 3PB test (Schneider and Swain, 2015) [3] and for 4PB test from the plateau region of stable crack extension. Strength values for the resin and glass bonded glass ceramics to zirconia were 22.20±6.72MPa and 27.02±3.49MPa respectively. The strain energy release rates for the two methods used were very similar and for the glass bonding, (4PB) 15.14±5.06N/m (or J/m 2 ) and (3PB) 16.83±3.91N/m and resin bonding (4PB) 8.34±1.93N/m and (3PB) 8.44±2.81N/m respectively. The differences in strength and strain energy release rate for the two bonding approaches were statistically significant (pceramics to zirconia. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Tribological properties of toughened zirconia-based ceramics

    International Nuclear Information System (INIS)

    Stachowiak, G.W.; Stachowiak, G.B.

    1991-01-01

    The physical and mechanical properties of toughened zirconia ceramics are briefly characterized and described with a special emphasis on their tribological behaviour. The wear and friction properties of PSZ and TZP ceramics at room and elevated temperatures are described. The influence of the environment on the tribological characteristics of zirconia ceramics is discussed. Both lubricated and unlubricated conditions for ceramic/ceramic and metal/ceramic sliding contacts are analysed. One of the main, and as yet unresolved problems, lubrication of ceramic at elevated temperatures and/or space environment, is addressed and the possible solutions to the problem are suggested. The critical needs in the research and development area of improving the tribological properties of zirconia ceramics are defined and its future market potentials stated. 30 refs., 2 tabs., 4 figs

  8. Zirconia powders production by precipitation: state-of-art review; Producao de pos de zirconia por precipitacao - revisao do estado da arte

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ana Paula Almeida de; Torem, Mauricio Leonardo [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia

    1994-12-31

    The important role played by zirconia in advanced ceramics can be attributed to its excellent wear and corrosion resistance and refractory character. The polymorphic nature of zirconia made the controlled addition of stabilizing oxides or the constraining effect of a dense ceramics matrix necessary to maintain high parameters had a significant influence on powder properties and on compacted powder behaviour in sintering. Particle shape and size, purity and crystalline structure were specially influenced by precipitation parameters. Therefore, this work presented a review of the state of the art in zirconia powder production and in the recent research on precipitation of that powder. (author) 15 refs., 5 figs., 2 tabs.

  9. Electrochemical performances of lithium ion battery using alkoxides of group 13 as electrolyte solvent

    International Nuclear Information System (INIS)

    Kaneko, Fuminari; Masuda, Yuki; Nakayama, Masanobu; Wakihara, Masataka

    2007-01-01

    Tris(methoxy polyethylenglycol) borate ester (B-PEG) and aluminum tris(polyethylenglycoxide) (Al-PEG) were used as electrolyte solvent for lithium ion battery, and the electrochemical property of these electrolytes were investigated. These electrolytes, especially B-PEG, showed poor electrochemical stability, leading to insufficient discharge capacity and rapid degradation with cycling. These observations would be ascribed to the decomposition of electrolyte, causing formation of unstable passive layer on the surface of electrode in lithium ion battery at high voltage. However, significant improvement was observed by the addition of aluminum phosphate (AlPO 4 ) powder into electrolyte solvent. AC impedance technique revealed that the increase of interfacial resistance of electrode/electrolyte during cycling was suppressed by adding AlPO 4 , and this suppression could enhance the cell capabilities. We infer that dissolved AlPO 4 components formed electrochemically stable layer on the surface of electrode

  10. BFR Electrolyte Additive Safety and Flammability Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Allcorn, Eric [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-13

    Lithium-ion battery safety is a critical issue in the adoption of the chemistry to larger scale applications such as transportation and stationary storage. One of the critical components impacting the safety of lithium-ion batteries is their use of highly flammable organic electrolytes. In this work, brominated flame retardants (BFR’s) – an existing class of flame retardant materials – are incorporated as additives to lithium-ion battery electrolytes with the intention to reduce the electrolyte flammability and thereby improve safety. There are a few critical needs for a successful electrolyte additive: solubility in the electrolyte, electrochemical stability over the range of battery operation, and minimal detrimental effects on battery performance. Those detrimental effects can take the form of electrolyte specific impacts, such as a reduction in conductivity, or electrode impacts, such as SEI-layer modification or chemical instability to the active material. In addition to these needs, the electrolyte additive also needs to achieve its intended purpose, which in this case is to reduce the flammability of the electrolyte. For the work conducted as part of this SPP agreement three separate BFR materials were provided by Albemarle to be tested by Sandia as additives in a traditional lithium-ion battery electrolyte. The provided BFR materials were tribromo-neopentyl alcohol, tetrabromo bisphenol A, and tribromoethylene. These materials were incorporated as separate 4 wt.% additives into a traditional lithium-ion battery electrolyte and compared to said traditional electrolyte, designated Gen2.

  11. Process and electrolyte for applying barrier layer anodic coatings

    International Nuclear Information System (INIS)

    Dosch, R.G.; Prevender, T.S.

    1975-01-01

    Various metals may be anodized, and preferably barrier anodized, by anodizing the metal in an electrolyte comprising quaternary ammonium compound having a complex metal anion in a solvent containing water and a polar, water soluble organic material. (U.S.)

  12. Twenty-nine-month follow-up of a paediatric zirconia dental crown.

    Science.gov (United States)

    Lopez Cazaux, Serena; Hyon, Isabelle; Prud'homme, Tony; Dajean Trutaud, Sylvie

    2017-06-14

    The aim of this paper is to present the long-term follow-up of one paediatric zirconia crown on a deciduous molar. Preformed crowns are part of the armamentarium in paediatric dentistry. In recent years, aesthetic alternatives to preformed metal crowns have been developed, first preveneered crowns and then zirconia crowns. This paper describes the restoration of a primary molar with a zirconia crown (EZ-Pedo, Loomis, California, USA) in an 8-year-old boy. In this clinical case, the protocol for the implementation and maintenance of zirconia crowns is detailed. The patient was followed up for 29 months until the natural exfoliation of his primary molar. The adaptation of the zirconia crown, the gingival health and the wear on the opposing tooth were considered. In this case, the paediatric zirconia crown allowed sustainable functional restoration while restoring a natural appearance of the tooth. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Translucency of zirconia copings made with different CAD/CAM systems.

    Science.gov (United States)

    Baldissara, Paolo; Llukacej, Altin; Ciocca, Leonardo; Valandro, Felipe L; Scotti, Roberto

    2010-07-01

    Zirconia cores are reported to be less translucent than glass, lithium disilicate, or alumina cores. This could affect the esthetic appearance and the clinical choices made when using zirconia-based restorations. The purpose of this in vitro study was to evaluate the translucency of zirconia copings for single crowns fabricated using different CAD/CAM systems, using lithium disilicate glass ceramic as a control. Using impressions made from a stainless steel complete-crown master die, 9 stone cast replicas were fabricated, numbered, and distributed into 8 ceramic ZrO(2) CAD/CAM system groups (Lava Frame 0.3 and 0.5, IPS e.max ZirCAD, VITA YZ, Procera AllZircon, Digizon, DC Zircon, and Cercon Base) and to a lithium disilicate glass-ceramic control group (IPS e.max Press) using a simple computer-generated randomization method. From each die, the manufacturer's authorized milling centers supplied 5 copings per group without applying any dying technique to the ceramic base material. The copings were prepared to allow for a 40-mum cement layer and were of different thicknesses according to system specifications. Translucency was measured by the direct transmission method with a digital photoradiometer mounted in a dark chamber. The light source was a 150-W halogen lamp beam. Measurements were repeated 3 times for each specimen. Data obtained were analyzed using 1-way ANOVA and the Bonferroni multiple comparison test (alpha=.05). Among ZrO(2) copings, Lava (0.3 mm and 0.5 mm thick) showed the highest (Plight flow units (3.572 + or - 018 x 10(3) lx and 3.181 + or - 0.13 x 10(3) lx, respectively). These values represent 71.7% and 63.9%, respectively, of the glass-ceramic control group (4.98 x 10(3) lx). All ZrO(2) copings demonstrated different levels of light transmission, with the 2 Lava specimens showing the highest values. Translucency of zirconia copings was significantly lower (P=.001) than that of the lithium disilicate glass-ceramic control. Copyright 2010 The

  14. Energy storage device including a redox-enhanced electrolyte

    Science.gov (United States)

    Stucky, Galen; Evanko, Brian; Parker, Nicholas; Vonlanthen, David; Auston, David; Boettcher, Shannon; Chun, Sang-Eun; Ji, Xiulei; Wang, Bao; Wang, Xingfeng; Chandrabose, Raghu Subash

    2017-08-08

    An electrical double layer capacitor (EDLC) energy storage device is provided that includes at least two electrodes and a redox-enhanced electrolyte including two redox couples such that there is a different one of the redox couples for each of the electrodes. When charged, the charge is stored in Faradaic reactions with the at least two redox couples in the electrolyte and in a double-layer capacitance of a porous carbon material that comprises at least one of the electrodes, and a self-discharge of the energy storage device is mitigated by at least one of electrostatic attraction, adsorption, physisorption, and chemisorption of a redox couple onto the porous carbon material.

  15. Surface roughness of zirconia for full-contour crowns after clinically simulated grinding and polishing.

    Science.gov (United States)

    Hmaidouch, Rim; Müller, Wolf-Dieter; Lauer, Hans-Christoph; Weigl, Paul

    2014-12-01

    The aim of this study was to evaluate the effect of controlled intraoral grinding and polishing on the roughness of full-contour zirconia compared to classical veneered zirconia. Thirty bar-shaped zirconia specimens were fabricated and divided into two groups (n=15). Fifteen specimens (group 1) were glazed and 15 specimens (group 2) were veneered with feldspathic ceramic and then glazed. Prior to grinding, maximum roughness depth (Rmax) values were measured using a profilometer, 5 times per specimen. Simulated clinical grinding and polishing were performed on the specimens under water coolant for 15 s and 2 N pressure. For grinding, NTI diamonds burs with grain sizes of 20 µm, 10 µm, and 7.5 µm were used sequentially. The ground surfaces were polished using NTI kits with coarse, medium and fine polishers. After each step, Rmax values were determined. Differences between groups were examined using one-way analysis of variance (ANOVA). The roughness of group 1 was significantly lower than that of group 2. The roughness increased significantly after coarse grinding in both groups. The results after glazing were similar to those obtained after fine grinding for non-veneered zirconia. However, fine-ground veneered zirconia had significantly higher roughness than venerred, glazed zirconia. No significant difference was found between fine-polished and glazed zirconia, but after the fine polishing of veneered zirconia, the roughness was significantly higher than after glazing. It can be concluded that for full-contour zirconia, fewer defects and lower roughness values resulted after grinding and polishing compared to veneered zirconia. After polishing zirconia, lower roughness values were achieved compared to glazing; more interesting was that the grinding of glazed zirconia using the NTI three-step system could deliver smooth surfaces comparable to untreated glazed zirconia surfaces.

  16. Semi-rechargeable Aluminum-Air Battery with a TiO2 Internal Layer with Plain Salt Water as an Electrolyte

    Science.gov (United States)

    Mori, Ryohei

    2016-07-01

    To develop a semi-rechargeable aluminum-air battery, we attempted to insert various kinds of ceramic oxides between an aqueous NaCl electrolyte and an aluminum anode. From cyclic voltammetry experiments, we found that some of the ceramic oxide materials underwent an oxidation-reduction reaction, which indicates the occurrence of a faradaic electrochemical reaction. Using a TiO2 film as an internal layer, we successfully prepared an aluminum-air battery with secondary battery behavior. However, cell impedance increased as the charge/discharge reactions proceeded probably because of accumulation of byproducts in the cell components and the air cathode. Results of quantum calculations and x-ray photoelectron spectroscopy suggest the possibility of developing an aluminum rechargeable battery using TiO2 as an internal layer.

  17. Study of the distribution of magnesium in zirconia-magnesia ceramic solid electrolytes

    International Nuclear Information System (INIS)

    Muccillo, R.; Nogueira, R.A.

    1988-01-01

    ZrO 2 : 3%MgO ceramic samples have been prepared according to three different experimental procedures in order to find out the best method for processing powders for the conformation of solid electrolytes for disposable oxygen sensors. These procedures were I) simple mechanical mixing, II) homogeneization in liquid medium, and III) homogeneization of the ceramic pellet by grinding, pressing and sintering. All samples have been analysed by electron microprobe and electrical resistivity measurements. The main results show the same degree of homogeneity and electrical resistivity are obtained for the specimens of the 2nd and 3rd group, whereas the specimens of the 1st group have non-homogeneous distribution of magnesium and scattered values of electrical resistivity. (author) [pt

  18. Electrical conductivity of zirconia and yttrium-doped zirconia from Indonesian local zircon as prospective material for fuel cells

    International Nuclear Information System (INIS)

    Apriany, Karima; Permadani, Ita; Rahmawati, Fitria; Syarif, Dani G.; Soepriyanto, Syoni

    2016-01-01

    In this research, zirconium dioxide, ZrO 2 , was synthesized from high-grade zircon sand that was founded from Bangka Island, Sumatra, Indonesia. The zircon sand is a side product of Tin mining plant industry. The synthesis was conducted by caustic fusion method with considering definite stoichiometric mole at every reaction step. Yttrium has been doped into the prepared zirconia by solid state reaction. The prepared materials were then being analyzed by X-ray diffraction equipped with Le Bail refinement to study its crystal structure and cell parameters. Electrical conductivity was studied through impedance measurement at a frequency range of 20 Hz- 5 MHz. Morphological analysis was conducted through Scanning Electron Microscopy (SEM) equipped with Energy Dispersive X-ray (EDX) for elemental analysis. The results show that the prepared yttrium stabilized zirconia, YSZ, was crystallized in the cubic structure with a space group of P42/NMC. The sintered zirconia and yttrium stabilized zirconia at 8 mol% of yttrium ions (8YSZ) show dense surface morphology with a grain size less than 10 pm. Elemental analysis on the sintered zirconia and 8YSZ show that sintering at 1500°C could eliminate the impurities, and the purity became 81.30%. Impedance analysis shows that ZrO 2 provide grain and grain boundary conductivity meanwhile 8YSZ only provide grain mechanism. The yttrium doping enhanced the conductivity up to 1.5 orders. The ionic conductivity of the prepared 8YSZ is categorized as a good material with conductivity reach 7.01 x10 -3 at 700 °C. The ionic conductivities are still lower than commercial 8YSZ at various temperature. It indicates that purity of raw material might significantly contribute to the electrical conductivity. (paper)

  19. Sulfated zirconia modified SBA-15 catalysts for cellobiose hydrolysis

    NARCIS (Netherlands)

    Degirmenci, V.; Uner, D.; Cinlar, B.; Shanks, B.H.; Yilmaz, A.; Santen, van R.A.; Hensen, E.J.M.

    2011-01-01

    Zirconia modified SBA-15 becomes a very active catalyst for the selective hydrolysis of cellobiose to glucose after sulfation. Spectroscopic investigations indicate the presence of Brønsted acid sites with similar properties to those present in conventional sulfated zirconia. Indications are found

  20. A novel ethanol templating synthesis of ordered lamellar superstructured crystalline zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chao, E-mail: liuchao_tj@yahoo.com; Wang Bin [Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology (China); Ji Xiujie, E-mail: jxjchem@yahoo.com [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University (China); Zhao Shanshan; Wu Jie; Jia Jianlong; Ma Dongxia [Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology (China)

    2012-03-15

    Soft template technique has attracted great interest, because it is a facile, inexpensive and efficient synthesis strategy for ordered superstructural systems. Here, a novel ethanol template was used to synthesize the ordered lamellar superstructured crystalline zirconia (L{alpha}-ZrO{sub 2}) without post-treatments and surfactants. ZrOCl{sub 2} and NaOH were served as Zr source and precipitant, respectively. XRD analysis showed that L{alpha}-ZrO{sub 2} is crystalline. XPS spectra indicated the physical adsorption of ethanol molecules in L{alpha}-ZrO{sub 2}. TEM further observed and proved the 1.36-nm period of superstructure detected and calculated by SAXRD (1.35 nm), which is composed of 0.68-nm thick ZrO{sub 2} and pore alternatively. In contrast, the template-free ZrO{sub 2} (TF-ZrO{sub 2}) presents no superstructure and is poorly crystallized. As a soft template, ethanol presents the roles of (i) inducing the growth of zirconia layers, (ii) directing the self-assembly of ordered lamellar superstructure, and (iii) decreasing the crystallization temperature. The possible mechanism of ethanol serving as a soft template was proposed and discussed in thermodynamics.

  1. The Effect of Zirconia in Hydroxyapatite on Staphylococcus epidermidis Growth

    Directory of Open Access Journals (Sweden)

    Widowati Siswomihardjo

    2012-01-01

    . Conclusion. The addition of zirconia into hydroxyapatite affected the growth of S. epidermidis. Hydroxyapatite with 20% zirconia proved to be an effective concentration to inhibit the growth of S. epidermidis colony.

  2. Optical properties of pre-colored dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun

    2016-12-01

    The purposes of this study were to evaluate the optical properties of recently marketed pre-colored monolithic zirconia ceramics and to compare with those of veneered zirconia and lithium disilicate glass ceramics. Various shades of pre-colored monolithic zirconia, veneered zirconia, and lithium disilicate glass ceramic specimens were tested (17.0×17.0×1.5mm, n=5). CIELab color coordinates were obtained against white, black, and grey backgrounds with a spectrophotometer. Color differences of the specimen pairs were calculated by using the CIEDE2000 (ΔE 00 ) formula. The translucency parameter (TP) was derived from ΔE 00 of the specimen against a white and a black background. X-ray diffraction was used to determine the crystalline phases of monolithic zirconia specimens. Data were analyzed with 1-way ANOVA, Scheffé post hoc, and Pearson correlation testing (α=0.05). For different shades of the same ceramic brand, there were significant differences in L * , a * , b * , and TP values in most ceramic brands. With the same nominal shade (A2), statistically significant differences were observed in L * , a * , b * , and TP values among different ceramic brands and systems (Pceramics of the corresponding nominal shades ranged beyond the acceptability threshold. Due to the high L * values and low a * and b * values, pre-colored monolithic zirconia ceramics can be used with additional staining to match neighboring restorations or natural teeth. Due to their high value and low chroma, unacceptable color mismatch with adjacent ceramic restorations might be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Influence of zirconia framework thickness on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2012-04-01

    Framework design is reported to influence chipping in zirconia-based restorations, which is an important cause of failure of such restorations. Residual stress profile in the veneering ceramic after the manufacturing process is an important predictive factor of the mechanical behavior of the material. The objective of this study is to investigate the influence of framework thickness on the stress profile measured in zirconia-based structures. The stress profile was measured with the hole-drilling method in bilayered disc samples of 20mm diameter with a 1.5 mm thick veneering ceramic layer. Six different framework thicknesses from 0.5 mm to 3 mm were studied. Two different cooling procedures were also investigated. Compressive stresses were observed in the surface, and tensile stresses in the depth of most of the samples. The slow cooling procedure was found to promote the development of interior tensile stresses, except for the sample with a 3mm thick framework. With the tempering procedure, samples with a 1.5 mm thick framework exhibited the most favorable stress profile, while thicker and thinner frameworks exhibited respectively in surface or interior tensile stresses. The measurements performed highlight the importance of framework thickness, which determine the nature of stresses and can explain clinical failures encountered, especially with thin frameworks. The adequate ratio between veneering ceramic and zirconia is hard to define, restricting the range of indications of zirconia-based restorations until a better understanding of such a delicate veneering process is achieved. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. NiO-YSZ cermets supported low temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Yick, Sing; Styles, Edward; Roller, Justin; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 3250 East Mall, Vancouver, BC (Canada V6T 1W5)

    2006-10-20

    Solid oxide fuel cells with thin electrolyte of two types, Sm{sub 0.2}Ce{sub 0.8}O{sub 1.9} (SDC) (15{mu}m) single-layer and 8mol% Yttria stabilized zirconia (YSZ) (5{mu}m)+SDC (15{mu}m) bi-layer on NiO-YSZ cermet substrates were fabricated by screen printing and co-firing. A Sm{sub 0.5}Sr{sub 0.5}CoO{sub 3} cathode was printed, and in situ sintered during a cell performance test. The SDC single-layer electrolyte cell showed high electrochemical performance at low temperature, with a 1180mWcm{sup -2} peak power density at 650{sup o}C. The YSZ+SDC bi-layer electrolyte cell generated 340mWcm{sup -2} peak power density at 650{sup o}C, and showed good performance at 700-800{sup o}C, with an open circuit voltage close to theoretical value. Many high Zr-content micro-islands were found on the SDC electrolyte surface prior to the cathode preparation. The influence of co-firing temperature and thin film preparation methods on the Zr-islands' appearance was investigated. (author)

  5. Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Soto, Fernando A. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Yan, Pengfei [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Engelhard, Mark H. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Marzouk, Asma [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Wang, Chongmin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Xu, Guiliang [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Chen, Zonghai [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Amine, Khalil [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue Argonne IL 60439 USA; Liu, Jun [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; Sprenkle, Vincent L. [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA; El-Mellouhi, Fedwa [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825 Doha Qatar; Balbuena, Perla B. [Department of Chemical Engineering, Texas A& M University, College Station TX 77843-3122 USA; Li, Xiaolin [Pacific Northwest National Laboratory, 902 Battelle Boulevard Richland WA 99354 USA

    2017-03-07

    Solid-electrolyte interphase (SEI) films with controllable properties are highly desirable for improving battery performance. In this paper, a combined experimental and theoretical approach is used to study SEI films formed on hard carbon in Li- and Na-ion batteries. It is shown that a stable SEI layer can be designed by precycling an electrode in a desired Li- or Na-based electrolyte, and that ionic transport can be kinetically controlled. Selective Li- and Na-based SEI membranes are produced using Li- or Na-based electrolytes, respectively. The Na-based SEI allows easy transport of Li ions, while the Li-based SEI shuts off Na-ion transport. Na-ion storage can be manipulated by tuning the SEI layer with film-forming electrolyte additives, or by preforming an SEI layer on the electrode surface. The Na specific capacity can be controlled to < 25 mAh g(-1); approximate to 1/10 of the normal capacity (250 mAh g(-1)). Unusual selective/ preferential transport of Li ions is demonstrated by preforming an SEI layer on the electrode surface and corroborated with a mixed electrolyte. This work may provide new guidance for preparing good ion-selective conductors using electrochemical approaches.

  6. Zirconia powders production by precipitation: state-of-art review

    International Nuclear Information System (INIS)

    Oliveira, Ana Paula Almeida de; Torem, Mauricio Leonardo

    1994-01-01

    The important role played by zirconia in advanced ceramics can be attributed to its excellent wear and corrosion resistance and refractory character. The polymorphic nature of zirconia made the controlled addition of stabilizing oxides or the constraining effect of a dense ceramics matrix necessary to maintain high parameters had a significant influence on powder properties and on compacted powder behaviour in sintering. Particle shape and size, purity and crystalline structure were specially influenced by precipitation parameters. Therefore, this work presented a review of the state of the art in zirconia powder production and in the recent research on precipitation of that powder. (author)

  7. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sherly, K. B.; Rakesh, K. [Mahatma Gandhi University Regional Research Center in Chemistry, Department of Chemistry, Mar Athanasius College, Kothamangalam-686666, Kerala (India)

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  8. Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries

    International Nuclear Information System (INIS)

    Wang, Biqiong; Liu, Jian; Sun, Qian; Li, Ruying; Sun, Xueliang; Sham, Tsun-Kong

    2014-01-01

    Atomic layer deposition (ALD) has been shown as a powerful technique to build three-dimensional (3D) all-solid-state microbattery, because of its unique advantages in fabricating uniform and pinhole-free thin films in 3D structures. The development of solid-state electrolyte by ALD is a crucial step to achieve the fabrication of 3D all-solid-state microbattery by ALD. In this work, lithium phosphate solid-state electrolytes were grown by ALD at four different temperatures (250, 275, 300, and 325 °C) using two precursors (lithium tert-butoxide and trimethylphosphate). A linear dependence of film thickness on ALD cycle number was observed and uniform growth was achieved at all four temperatures. The growth rate was 0.57, 0.66, 0.69, and 0.72 Å/cycle at deposition temperatures of 250, 275, 300, and 325 °C, respectively. Furthermore, x-ray photoelectron spectroscopy confirmed the compositions and chemical structures of lithium phosphates deposited by ALD. Moreover, the lithium phosphate thin films deposited at 300 °C presented the highest ionic conductivity of 1.73 × 10 −8 S cm −1 at 323 K with ∼0.51 eV activation energy based on the electrochemical impedance spectroscopy. The ionic conductivity was calculated to be 3.3 × 10 −8 S cm −1 at 26 °C (299 K). (paper)

  9. Polarity control and growth mode of InN on yttria-stabilized zirconia (111) surfaces

    International Nuclear Information System (INIS)

    Kobayashi, Atsushi; Okubo, Kana; Ohta, Jitsuo; Oshima, Masaharu; Fujioka, Hiroshi

    2012-01-01

    We have found that polarity of epitaxial InN layers has been controlled by choice of a capping material during high-temperature annealing of yttria-stabilized zirconia (YSZ) (111) substrates in air. Angle-resolved X-ray photoelectron spectroscopy has revealed that the amount of segregation of Y atoms to the YSZ surface depended on the capping material of the substrates. In-polar and N-polar InN have been reproducibly grown on Y-segregated and Y-segregation-free YSZ surfaces, respectively. We have also found that the growth of the first monolayer (ML) of N-polar InN proceeds in a step-flow mode which then switches to layer-by-layer mode after the coverage by 1-ML-thick InN. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Solvothermal synthesis of gallium-indium-zinc-oxide nanoparticles for electrolyte-gated transistors.

    Science.gov (United States)

    Santos, Lídia; Nunes, Daniela; Calmeiro, Tomás; Branquinho, Rita; Salgueiro, Daniela; Barquinha, Pedro; Pereira, Luís; Martins, Rodrigo; Fortunato, Elvira

    2015-01-14

    Solution-processed field-effect transistors are strategic building blocks when considering low-cost sustainable flexible electronics. Nevertheless, some challenges (e.g., processing temperature, reliability, reproducibility in large areas, and cost effectiveness) are requirements that must be surpassed in order to achieve high-performance transistors. The present work reports electrolyte-gated transistors using as channel layer gallium-indium-zinc-oxide nanoparticles produced by solvothermal synthesis combined with a solid-state electrolyte based on aqueous dispersions of vinyl acetate stabilized with cellulose derivatives, acrylic acid ester in styrene and lithium perchlorate. The devices fabricated using this approach display a ION/IOFF up to 1 × 10(6), threshold voltage (VTh) of 0.3-1.9 V, and mobility up to 1 cm(2)/(V s), as a function of gallium-indium-zinc-oxide ink formulation and two different annealing temperatures. These results validates the usage of electrolyte-gated transistors as a viable and promising alternative for nanoparticle based semiconductor devices as the electrolyte improves the interface and promotes a more efficient step coverage of the channel layer, reducing the operating voltage when compared with conventional dielectrics gating. Moreover, it is shown that by controlling the applied gate potential, the operation mechanism of the electrolyte-gated transistors can be modified from electric double layer to electrochemical doping.

  11. Phase transformation of dental zirconia following artificial aging.

    Science.gov (United States)

    Lucas, Thomas J; Lawson, Nathaniel C; Janowski, Gregg M; Burgess, John O

    2015-10-01

    Low-temperature degradation (LTD) of yttria-stabilized zirconia can produce increased surface roughness with a concomitant decrease in strength. This study determined the effectiveness of artificial aging (prolonged boiling/autoclaving) to induce LTD of Y-TZP (yttria-tetragonal zirconia-polycrystals) and used artificial aging for transformation depth progression analyses. The null hypothesis is aging techniques tested produce the same amount of transformation, transformation is not time/temperature dependent and LTD causes a constant transformation throughout the Y-TZP samples. Dental-grade Y-TZP samples were randomly divided into nine subgroups (n = 5): as received, 3.5 and 7 day boiling, 1 bar autoclave (1, 3, 5 h), and 2 bar autoclave (1, 3, 5 h). A 4-h boil treatment (n = 2) was performed post-experiment for completion of data. Transformation was measured using traditional X-ray diffraction and low-angle X-ray diffraction. The fraction of t → m transformation increased with aging time. The 3.5 day boil and 2 bar 5 h autoclave produced similar transformation results, while the 7 day boiling treatment revealed the greatest transformation. The surface layer of the aged specimen underwent the most transformation while all samples displayed decreasing transformation with depth. Surface transformation was evident, which can lead to rougher surfaces and increased wear of opposing dentition/materials. Therefore, wear studies addressing LTD of Y-TZP are needed utilizing accelerated aging. © 2014 Wiley Periodicals, Inc.

  12. Optical properties and light irradiance of monolithic zirconia at variable thicknesses.

    Science.gov (United States)

    Sulaiman, Taiseer A; Abdulmajeed, Aous A; Donovan, Terrence E; Ritter, André V; Vallittu, Pekka K; Närhi, Timo O; Lassila, Lippo V

    2015-10-01

    The aims of this study were to: (1) estimate the effect of polishing on the surface gloss of monolithic zirconia, (2) measure and compare the translucency of monolithic zirconia at variable thicknesses, and (3) determine the effect of zirconia thickness on irradiance and total irradiant energy. Four monolithic partially stabilized zirconia (PSZ) brands; Prettau® (PRT, Zirkonzahn), Bruxzir® (BRX, Glidewell), Zenostar® (ZEN, Wieland), Katana® (KAT, Noritake), and one fully stabilized zirconia (FSZ); Prettau Anterior® (PRTA, Zirkonzahn) were used to fabricate specimens (n=5/subgroup) with different thicknesses (0.5, 0.7, 1.0, 1.2, 1.5, and 2.0mm). Zirconia core material ICE® Zircon (ICE, Zirkonzahn) was used as a control. Surface gloss and translucency were evaluated using a reflection spectrophotometer. Irradiance and total irradiant energy transmitted through each specimen was quantified using MARC® Resin Calibrator. All specimens were then subjected to a standardized polishing method and the surface gloss, translucency, irradiance, and total irradiant energy measurements were repeated. Statistical analysis was performed using two-way ANOVA and post-hoc Tukey's tests (pgloss was significantly affected by polishing (p<0.05), regardless of brand and thickness. Translucency values ranged from 5.65 to 20.40 before polishing and 5.10 to 19.95 after polishing. The ranking from least to highest translucent (after polish) was: BRX=ICE=PRTzirconia and the amount was brand dependent (p<0.05). Brand selection, thickness, and polishing of monolithic zirconia can affect the ultimate clinical outcome of the optical properties of zirconia restorations. FSZ is relatively more polishable and translucent than PSZ. Copyright © 2015 Academy of Dental Materials

  13. Performance of strontium- and magnesium-doped lanthanum gallate electrolyte with lanthanum-doped ceria as a buffer layer for IT-SOFCs

    Science.gov (United States)

    Lee, Dokyol; Han, Ju-Hyeong; Kim, Eun-Gu; Song, Rak-Hyun; Shin, Dong-Ryul

    La 0.8Sr 0.2Ga 0.8Mg 0.2O 2.8 (LSGM8080) powder, showing the highest electrical conductivity among LSGMs of various compositions, is synthesized using the glycine nitrate process (GNP) and used as the electrolyte for an intermediate-temperature solid oxide fuel cell (IT-SOFC). The LDC (Ce 0.55La 0.45O 1.775) powder is synthesized by a solid-state reaction and employed as the material for a buffer layer to prevent the reaction between the anode and electrolyte materials. The LDC also serves as the skeleton material for the anode. An anode-supported single cell with an active area of 1 cm 2 is constructed for performance evaluation. A single-cell test is performed at 750 and 800 °C. The maximum power density of the cell 459 and 664 mW cm -2 at 750 and 800 °C, respectively.

  14. Effect of microstructure and microhardness on the wear resistance of zirconia-alumina, zirconia-yttria and zirconia-ceria coatings manufactured by atmospheric plasma spraying; fecto de la microestructura y de la microdureza sobre la resistencia al desgaste de recubrimientos elaborados por proyeccion termica por plasma atmosferico a partir de circona-alumina, circona-itria y circona-ceria

    Energy Technology Data Exchange (ETDEWEB)

    Giovanni Gonzalez, A.; Ageorges, H.; Rojas, O.; Lopez, E.; Milena Hurtado, F.; Vargas, F.

    2015-10-01

    The effect of the structure and microhardness on the wear resistance of zirconia-alumina (ATZ), zirconia-yttria (YSZ) and zirconia-ceria (CSZ) coatings manufactured by atmospheric plasma spraying was studied. The microstructure and the fracture on the cross section of the coatings were analyzed using Scanning Electron Microscopy, the phases were identified using X-Ray Diffraction, the microhardness was measured by Vickers indentation and the wear resistance was evaluated by ball on disc test. The results showed that zirconia-alumina coating exhibits the best performance in the wear test. This behavior is closely related to their microstructure and higher microhardness, despite of its significant quantity of the monoclinic zirconia phase, which has lower mechanical properties than tetragonal zirconia phase. Tetragonal zirconia phase was predominant in the zirconia-yttria and zirconia-ceria coatings and despite this behavior; they did not have a good performance in the wear tests. This low wear resistance was mainly influenced by the columnar structure within their lamellae, which caused a greater detachment of particles in the contact surface during the ball-disc tests, increasing its wear. (Author)

  15. Zirconia implants and peek restorations for the replacement of upper molars

    Directory of Open Access Journals (Sweden)

    José María Parmigiani-Izquierdo

    2017-02-01

    Full Text Available Abstract Background One of the disadvantages of the zirconia implants is the lack of elasticity, which is increased with the use of ceramic or zirconia crowns. The consequences that could result from this lack of elasticity have led to the search for new materials with improved mechanical properties. Case presentation A patient who is a 45-year-old woman, non-smoker and has no medical record of interest with a longitudinal fracture in the palatal root of molar tooth 1.7 and absence of tooth 1.6 was selected in order to receive a zirconia implant with a PEEK-based restoration and a composite coating. The following case report describes and analyses treatment with zirconia implants in molars following a flapless surgical technique. Zirconia implants are an alternative to titanium implants in patients with allergies or who are sensitive to metal alloys. However, one of the disadvantages that they have is their lack of elasticity, which increases with the use of ceramic or zirconia crowns. The consequences that can arise from this lack of elasticity have led to the search for new materials with better mechanical properties to cushion occlusal loads. PEEK-based restoration in implant prosthetics can compensate these occlusal forces, facilitating cushioning while chewing. Conclusion This procedure provides excellent elasticity and resembles natural tooth structure. This clinical case suggests that PEEK restorations can be used in zirconia implants in dentistry.

  16. Photoelectrolysis at the oxide-electrolyte interface as interpreted through the 'transition' layer model

    Science.gov (United States)

    Kalia, R. K.; Weber, Michael F.; Schumacher, L.; Dignam, M. J.

    1980-12-01

    A transition layer model of the oxide-electrolyte interface, proposed earlier by one of us, is outlined and then examined in the light of experimental data relating primarily to photoelectrolysis of water at semiconducting oxide electrodes. The model provides useful insight into the behaviour of the system and allows a calculation of thc minimum bias potential needed for photoelectrolysis, thus illuminating the origin of the requirement for such an external bias. In order to electrolyse water without a bias, the model requires an n-type oxide to be sufficiently reduced so that it is thermodynamically capable of chemically reducing water to produce hydrogen at 1 atm pressure. Similarly, for bias-free operation, a p-type metal oxide must be thermodynamically unstable with respect to the release of oxygen at 1 atm pressure. In the face of these requirements it is apparent that oxide stability is bound to be in general a serious problem for nonstoichiometric single metal oxides.

  17. Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages

    International Nuclear Information System (INIS)

    Ruch, P.W.; Cericola, D.; Foelske-Schmitz, A.; Koetz, R.; Wokaun, A.

    2010-01-01

    Laboratory-scale electrochemical capacitor cells with bound activated carbon electrodes and acetonitrile-based electrolyte were aged at various elevated constant cell voltages between 2.75 V and 4.0 V. During the constant voltage tests, the cell capacitance as well as the capacitance and resistance of each electrode was determined. Following each aging experiment, the cells were analyzed by means of electrochemical impedance spectroscopy, and the individual electrodes were characterized by gas adsorption and X-ray photoelectron spectroscopy. At cell voltages above 3.0 V, the positive electrode ages much faster than the negative. Both the capacitance loss and resistance increase of the cell could be totally attributed to the positive electrode. At cell voltages above 3.5 V also the negative electrode aged significantly. X-ray photoelectron spectroscopy indicated the presence of degradation products on the electrode surface with a much thicker layer on the positive electrode. Simultaneously, a significant decrease in electrode porosity could be detected by gas adsorption.

  18. Influence of full-contour zirconia surface roughness on wear of glass-ceramics.

    Science.gov (United States)

    Luangruangrong, Palika; Cook, N Blaine; Sabrah, Alaa H; Hara, Anderson T; Bottino, Marco C

    2014-04-01

    The purpose of this study was to evaluate the influence of full-contour (Y-TZP) zirconia surface roughness (glazed vs. as-machined) on the wear behavior of glass-ceramics. Thirty-two full contour Y-TZP (Diazir®) specimens (hereafter referred to as zirconia sliders) (ϕ = 2 mm, 1.5 mm in height) were fabricated using CAD/CAM and sintered according to the manufacturer's instructions. Zirconia sliders were embedded in brass holders using acrylic resin and then randomly assigned (n = 16) according to the surface treatment received, that is, as-machined or glazed. Glass-ceramic antagonists, Empress/EMP and e.max/EX, were cut into tabs (13 × 13 × 2 mm(3) ), wet-finished, and similarly embedded in brass holders. Two-body pin-on-disk wear testing was performed at 1.2 Hz for 25,000 cycles under a 3 kg load. Noncontact profilometry was used to measure antagonist height (μm) and volume loss (mm(3) ). Qualitative data of the zirconia testing surfaces and wear tracks were obtained using SEM. Statistics were performed using ANOVA with a significance level of 0.05. As-machined yielded significantly higher mean roughness values (Ra = 0.83 μm, Rq = 1.09 μm) than glazed zirconia (Ra = 0.53 μm, Rq = 0.78 μm). Regarding glass-ceramic antagonist loss, as-machined zirconia caused significantly less mean height and volume loss (68.4 μm, 7.6 mm(3) ) for EMP than the glazed group (84.9 μm, 9.9 mm(3) ), while no significant differences were found for EX. Moreover, EMP showed significantly lower mean height and volume loss than EX (p glass-ceramics tested. e.max wear was not affected by zirconia surface roughness; however, Empress wear was greater when opposing glazed zirconia. Overall, surface glazing on full-contour zirconia did not minimize glass-ceramic wear when compared with as-machined zirconia. © 2013 by the American College of Prosthodontists.

  19. A review of electrolyte materials and compositions for electrochemical supercapacitors.

    Science.gov (United States)

    Zhong, Cheng; Deng, Yida; Hu, Wenbin; Qiao, Jinli; Zhang, Lei; Zhang, Jiujun

    2015-11-07

    Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references).

  20. Deposition of crystalline hydroxyapatite nano-particle on zirconia ceramic: a potential solution for the poor bonding characteristic of zirconia ceramics to resin cement.

    Science.gov (United States)

    Azari, Abbas; Nikzad, Sakineh; Yazdani, Arash; Atri, Faezeh; Fazel Anvari-Yazdi, Abbas

    2017-07-01

    The poor bonding strength of zirconia to different dental substrates is one of the challenging issues in restorative dentistry. Hydroxyapatite is an excellent biocompatible material with fine bonding properties. In this study, it was hypothesized that hydroxyapatite coating on zirconia would improve its bond strength. Forty-five zirconia blocks were prepared and randomly divided into three groups: hydroxyapatite coating, sandblasting, and no preparation (control). The blocks were bonded to cement and the micro-shear bond strength was measured following load application. The bond strength values were analyzed with the Kruskal-Wallis test in 3 groups and paired comparisons were made using the Mann-Whitney U test. The failure patterns of the specimens were studied by a stereomicroscope and a scanning electron microscope and then analyzed by the chi-square test (significance level = 0.05). Deposition of hydroxyapatite on the zirconia surface significantly improved its bond strength to the resin cement in comparison with the control specimens (p improved the bond strength quality and values.

  1. Analysis of the zirconia structure by 'ab initio' and Rietveld methods

    International Nuclear Information System (INIS)

    Bechepeche, A.P.; Nasar, R.S.; Longo, E.; Treu Junior, O.; Varela, J.A.

    1995-01-01

    The zirconia was doped with 0,113 mol of Mg O e 0,005 mol of Ti O 2 , and it was calcined in 1550 d eg C and it was analyzed by XRD. The results shows that pure zirconia contains 96,19% of monoclinic phase and 3,18% of cubic. However, the doping magnesia stabilizes the zirconia in 17,24 of monoclinic; 29,63 of tetragonal and 53,13% of cubic phase. The addition of titanium in zirconia gives 25,85% of tetragonal phase and 37,66% of cubic, and this shows the no stabilizing action of this transition metal. By the other side, the results with ab-initio calculating shows the same tendency resulting in the next values of total energy: pure zirconia - monoclinic -11.316,86ua; tetragonal -8742,09 ua and cubic -8742,80 ua and Zr O 2 Ti O 2 system - monoclinic -9463,02 ua, tetragonal -9459,39 ua and cubic -9459,97 ua (author)

  2. Synthesis of ZrO{sub 2} nanoparticles by hydrothermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Machmudah, Siti, E-mail: machmudah@chem-eng.its.ac.id; Widiyastuti, W., E-mail: machmudah@chem-eng.its.ac.id; Prastuti, Okky Putri, E-mail: machmudah@chem-eng.its.ac.id; Nurtono, Tantular, E-mail: machmudah@chem-eng.its.ac.id; Winardi, Sugeng, E-mail: machmudah@chem-eng.its.ac.id [Chemical Engineering Department, Sepuluh Nopember Institute of Technology, Surabaya 60111 (Indonesia); Wahyudiono,; Kanda, Hideki; Goto, Motonobu [Department of Chemical Engineering, Nagoya University, Nagoya 464-8603 (Japan)

    2014-02-24

    Zirconium oxide (zirconia, ZrO{sub 2}) is the most common material used for electrolyte of solid oxide fuel cells (SOFCs). Zirconia has attracted attention for applications in optical coatings, buffer layers for growing superconductors, thermal-shield, corrosion resistant coatings, ionic conductors, and oxygen sensors, and for potential applications including transparent optical devices and electrochemical capacitor electrodes, fuel cells, catalysts, and advanced ceramics. In this work, zirconia particles were synthesized from ZrCl{sub 4} precursor with hydrothermal treatment in a batch reactor. Hydrothermal treatment may allow obtaining nanoparticles and sintered materials with controlled chemical and structural characteristics. Hydrothermal treatment was carried out at temperatures of 150 – 200°C with precursor concentration of 0.1 – 0.5 M. Zirconia particles obtained from this treatment were analyzed by using SEM, PSD and XRD to characterize the morphology, particle size distribution, and crystallinity, respectively. Based on the analysis, the size of zirconia particles were around 200 nm and it became smaller with decreasing precursor concentration. The increasing temperature caused the particles formed having uniform size. Zirconia particles formed by hydrothermal treatment were monoclinic, tetragonal and cubic crystal.

  3. Synthesis of ZrO2 nanoparticles by hydrothermal treatment

    International Nuclear Information System (INIS)

    Machmudah, Siti; Widiyastuti, W.; Prastuti, Okky Putri; Nurtono, Tantular; Winardi, Sugeng; Wahyudiono,; Kanda, Hideki; Goto, Motonobu

    2014-01-01

    Zirconium oxide (zirconia, ZrO 2 ) is the most common material used for electrolyte of solid oxide fuel cells (SOFCs). Zirconia has attracted attention for applications in optical coatings, buffer layers for growing superconductors, thermal-shield, corrosion resistant coatings, ionic conductors, and oxygen sensors, and for potential applications including transparent optical devices and electrochemical capacitor electrodes, fuel cells, catalysts, and advanced ceramics. In this work, zirconia particles were synthesized from ZrCl 4 precursor with hydrothermal treatment in a batch reactor. Hydrothermal treatment may allow obtaining nanoparticles and sintered materials with controlled chemical and structural characteristics. Hydrothermal treatment was carried out at temperatures of 150 – 200°C with precursor concentration of 0.1 – 0.5 M. Zirconia particles obtained from this treatment were analyzed by using SEM, PSD and XRD to characterize the morphology, particle size distribution, and crystallinity, respectively. Based on the analysis, the size of zirconia particles were around 200 nm and it became smaller with decreasing precursor concentration. The increasing temperature caused the particles formed having uniform size. Zirconia particles formed by hydrothermal treatment were monoclinic, tetragonal and cubic crystal

  4. Evaluation of the effect of heavy rare earth elements on the microstructure and mechanical and electrical properties of zirconia - Yttria ceramics

    International Nuclear Information System (INIS)

    Lazar, Dolores Ribeiro Ricci

    2002-01-01

    The use of Yttria concentrates for synthesis and processing of zirconia based ceramics, applied as structural and solid electrolyte materials, was investigated in this work. Terbium, dysprosium, holmium, erbium and ytterbium are chemical elements, classified as heavy rare earths, that can be found in those concentrates due to their association with yttrium ores. The ceramic characteristics were compared to zirconia - Yttria and zirconia - Yttria - rare earth oxide systems. The dopant content was 3 and 9 mol%. The raw materials were prepared by the coprecipitation route using solutions from the chemical processing of zircon and monazite ores and obtained by dissolution of high purity rare earth oxides. In the first part of this work, calcination, milling and ceramic processing were studied to produce ceramics with densities up to 95% TD. Samples were prepared in optimized conditions for the evaluation of the effect of each heavy rare earth element. Powders were characterized by chemical analysis. X-ray diffraction, scanning and transmission electron microscopy, gas adsorption (BET) and laser diffraction for the determination of the agglomerate size distributions. Green pellets were characterized by mercury porosimetry and the sintering kinetic was studied by dilatometry. The characterization of the as-sintered pellets was performed by the apparent density measurement (Archimedes method). X-ray diffraction, microstructure analysis by scanning and transmission electron microscopy, Vickers indentation tests for hardness and fracture toughness determination, dynamic mechanical analysis for the elastic modulus measurement, and impedance spectroscopy for electrical resistivity measurement. It was observed that the presence of heavy rare earths in a concentrate containing 85 wt% of Yttria has no significant influence on the properties of zirconia based ceramics. TZP ceramics, containing 3 mol% of dopants, have grain size smaller than 0.4μm, and Vickers hardness and

  5. Photoelectrical Stimulation of Neuronal Cells by an Organic Semiconductor-Electrolyte Interface.

    Science.gov (United States)

    Abdullaeva, Oliya S; Schulz, Matthias; Balzer, Frank; Parisi, Jürgen; Lützen, Arne; Dedek, Karin; Schiek, Manuela

    2016-08-23

    As a step toward the realization of neuroprosthetics for vision restoration, we follow an electrophysiological patch-clamp approach to study the fundamental photoelectrical stimulation mechanism of neuronal model cells by an organic semiconductor-electrolyte interface. Our photoactive layer consisting of an anilino-squaraine donor blended with a fullerene acceptor is supporting the growth of the neuronal model cell line (N2A cells) without an adhesion layer on it and is not impairing cell viability. The transient photocurrent signal upon illumination from the semiconductor-electrolyte layer is able to trigger a passive response of the neuronal cells under physiological conditions via a capacitive coupling mechanism. We study the dynamics of the capacitive transmembrane currents by patch-clamp recordings and compare them to the dynamics of the photocurrent signal and its spectral responsivity. Furthermore, we characterize the morphology of the semiconductor-electrolyte interface by atomic force microscopy and study the stability of the interface in dark and under illuminated conditions.

  6. Cathode-Electrolyte Interfaces with CGO Barrier Layers in SOFC

    DEFF Research Database (Denmark)

    Knibbe, Ruth; Hjelm, Johan; Menon, Mohan

    2010-01-01

    Electron microscopy characterization across the cathode–electrolyte interface of two different types of intermediate temperature solid oxide fuel cells (IT-SOFC) is performed to understand the origin of the cell performance disparity. One IT-SOFC cell had a sprayed-cosintered Ce0.90Gd0.01O1.95 (CGO...

  7. Degradation of the solid electrolyte interphase induced by the deposition of manganese ions

    Science.gov (United States)

    Shin, Hosop; Park, Jonghyun; Sastry, Ann Marie; Lu, Wei

    2015-06-01

    The deposition of manganese ions dissolved from the cathode onto the interface between the solid electrolyte interphase (SEI) and graphite causes severe capacity fading in manganese oxide-based cells. The evolution of the SEI layer containing these Mn compounds and the corresponding instability of the layer are thoroughly investigated by artificially introducing soluble Mn ions into a 1 mol L-1 LiPF6 electrolyte solution. Deposition of dissolved Mn ions induces an oxygen-rich SEI layer that results from increased electrolyte decomposition, accelerating SEI growth. The spatial distribution of Mn shows that dissolved Mn ions diffuse through the porous layer and are deposited mostly at the inorganic layer/graphite interface. The Mn compound deposited on the anode, identified as MnF2, originates from a metathesis reaction between LiF and dissolved Mn ion. It is confirmed that ion-exchange reaction occurs in the inorganic layer, converting SEI species to Mn compounds. Some of the Mn is observed inside the graphite; this may cause surface structural disordering in the graphite, limiting lithium-ion intercalation. The continuous reaction that occurs at the inorganic layer/graphite interfacial regions and the modification of the original SEI layer in the presence of Mn ions are critically related to capacity fade and impedance rise currently plaguing Li-ion cells.

  8. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications.

    Science.gov (United States)

    Gautam, Chandkiram; Joyner, Jarin; Gautam, Amarendra; Rao, Jitendra; Vajtai, Robert

    2016-12-06

    Zirconia (ZrO 2 ) based dental ceramics have been considered to be advantageous materials with adequate mechanical properties for the manufacturing of medical devices. Due to its very high compression strength of 2000 MPa, ZrO 2 can resist differing mechanical environments. During the crack propagation on the application of stress on the surface of ZrO 2 , a crystalline modification diminishes the propagation of cracks. In addition, zirconia's biocompatibility has been studied in vivo, leading to the observation of no adverse response upon the insertion of ZrO 2 samples into the bone or muscle. In vitro experimentation has exhibited the absence of mutations and good viability of cells cultured on this material leading to the use of ZrO 2 in the manufacturing of hip head prostheses. The mechanical properties of zirconia fixed partial dentures (FPDs) have proven to be superior to other ceramic/composite restorations and hence leading to their significant applications in implant supported rehabilitations. Recent developments were focused on the synthesis of zirconia based dental materials. More recently, zirconia has been introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures in combination with computer aided design/computer aided manufacturing (CAD/CAM) techniques. This systematic review covers the results of past as well as recent scientific studies on the properties of zirconia based ceramics such as their specific compositions, microstructures, mechanical strength, biocompatibility and other applications in dentistry.

  9. In vitro assessment of cutting efficiency and durability of zirconia removal diamond rotary instruments.

    Science.gov (United States)

    Kim, Joon-Soo; Bae, Ji-Hyeon; Yun, Mi-Jung; Huh, Jung-Bo

    2017-06-01

    Recently, zirconia removal diamond rotary instruments have become commercially available for efficient cutting of zirconia. However, research of cutting efficiency and the cutting characteristics of zirconia removal diamond rotary instruments is limited. The purpose of this in vitro study was to assess and compare the cutting efficiency, durability, and diamond rotary instrument wear pattern of zirconia diamond removal rotary instruments with those of conventional diamond rotary instruments. In addition, the surface characteristics of the cut zirconia were assessed. Block specimens of 3 mol% yttrium cation-doped tetragonal zirconia polycrystal were machined 10 times for 1 minute each using a high-speed handpiece with 6 types of diamond rotary instrument from 2 manufacturers at a constant force of 2 N (n=5). An electronic scale was used to measure the lost weight after each cut in order to evaluate the cutting efficiency. Field emission scanning electron microscopy was used to evaluate diamond rotary instrument wear patterns and machined zirconia block surface characteristics. Data were statistically analyzed using the Kruskal-Wallis test, followed by the Mann-Whitney U test (α=.05). Zirconia removal fine grit diamond rotary instruments showed cutting efficiency that was reduced compared with conventional fine grit diamond rotary instruments. Diamond grit fracture was the most dominant diamond rotary instrument wear pattern in all groups. All machined zirconia surfaces were primarily subjected to plastic deformation, which is evidence of ductile cutting. Zirconia blocks machined with zirconia removal fine grit diamond rotary instruments showed the least incidence of surface flaws. Although zirconia removal diamond rotary instruments did not show improved cutting efficiency compared with conventional diamond rotary instruments, the machined zirconia surface showed smoother furrows of plastic deformation and fewer surface flaws. Copyright © 2016 Editorial Council

  10. Bonding of Metal Orthodontic Attachments to Sandblasted Porcelain and Zirconia Surfaces

    Directory of Open Access Journals (Sweden)

    Amitoj S. Mehta

    2016-01-01

    Full Text Available This study evaluates tensile bond strength (TBS of metal orthodontic attachments to sandblasted feldspathic porcelain and zirconia with various bonding protocols. Thirty-six (36 feldspathic and 36 zirconia disc samples were prepared, glazed, embedded in acrylic blocks and sandblasted, and divided into three groups according to one or more of the following treatments: hydrofluoric acid 4% (HF, Porcelain Conditioner silane primer, Reliance Assure® primer, Reliance Assure plus® primer, and Z Prime™ plus zirconia primer. A round traction hook was bonded to each sample. Static tensile bond strength tests were performed in a universal testing machine and adhesive remnant index (ARI scoring was done using a digital camera. One-way ANOVA and Pearson chi-square tests were used to analyze TBS (MPa and ARI scores. No statistically significant mean differences were found in TBS among the different bonding protocols for feldspathic and zirconia, p values = 0.369 and 0.944, respectively. No statistically significant distribution of ARI scores was found among the levels of feldspathic, p value = 0.569. However, statistically significant distribution of ARI scores was found among the levels of zirconia, p value = 0.026. The study concluded that silanization following sandblasting resulted in tensile bond strengths comparable to other bonding protocols for feldspathic and zirconia surface.

  11. Irradiation and lithium presence influence on the crystallographic nature of zirconia in the framework of PWR zircaloy 4 fuel cladding corrosion study; Influence de l'irradiation et de la presence du lithium sur la nature cristallographique de la zircone dans le cadre de l'etude de la corrosion du zircaloy 4 en milieu reacteur a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Gibert, C

    1999-07-01

    The-increasing deterioration of the initially protective zirconia layer is one of the hypotheses which can explain the impairment with time of PWR fuel cladding corrosion. This deterioration could be worsened by irradiation or lithium presence in the oxidizing medium. The aim of this thesis was to underline the influence of those two parameters on zirconia crystallographic nature. We first studied the impact of ionic irradiation on pure, powdery, monoclinic zirconia and oxidation formed zirconia, mainly with X-ray diffraction and Raman microscopy. The high or low energy particles used (Kr{sup n+-}, Ar{sup n+}) respectively favored electronic or atomic defaults production. The crystallographic analyses showed that these irradiation have a significant effect on zirconia by inducing nucleation or growth of tetragonal phase. The extent depends on sample nature and particles energy. In all cases, phase transformation is correlated with crystalline parameters, grain size and especially micro-stress changes. The results are consistent with those obtained with 1 to 5 cycles PWR claddings. Therefore, the corrosion acceleration observed in reactor can partly be explained by the stress fields appearance under irradiation, which is particularly detrimental to zirconia layer cohesion. Last, we have underlined that the presence of considerable amounts of lithium in the oxidizing medium ((> 700 ppm) induces the disappearance of the tetragonal zirconia located at the metal/oxide interface and the appearance of a porosity of the dense under layer, which looses its protectiveness. (author)

  12. Irradiation and lithium presence influence on the crystallographic nature of zirconia in the framework of PWR zircaloy 4 fuel cladding corrosion study; Influence de l'irradiation et de la presence du lithium sur la nature cristallographique de la zircone dans le cadre de l'etude de la corrosion du zircaloy 4 en milieu reacteur a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Gibert, C

    1999-07-01

    The-increasing deterioration of the initially protective zirconia layer is one of the hypotheses which can explain the impairment with time of PWR fuel cladding corrosion. This deterioration could be worsened by irradiation or lithium presence in the oxidizing medium. The aim of this thesis was to underline the influence of those two parameters on zirconia crystallographic nature. We first studied the impact of ionic irradiation on pure, powdery, monoclinic zirconia and oxidation formed zirconia, mainly with X-ray diffraction and Raman microscopy. The high or low energy particles used (Kr{sup n+-}, Ar{sup n+}) respectively favored electronic or atomic defaults production. The crystallographic analyses showed that these irradiation have a significant effect on zirconia by inducing nucleation or growth of tetragonal phase. The extent depends on sample nature and particles energy. In all cases, phase transformation is correlated with crystalline parameters, grain size and especially micro-stress changes. The results are consistent with those obtained with 1 to 5 cycles PWR claddings. Therefore, the corrosion acceleration observed in reactor can partly be explained by the stress fields appearance under irradiation, which is particularly detrimental to zirconia layer cohesion. Last, we have underlined that the presence of considerable amounts of lithium in the oxidizing medium ((> 700 ppm) induces the disappearance of the tetragonal zirconia located at the metal/oxide interface and the appearance of a porosity of the dense under layer, which looses its protectiveness. (author)

  13. Influence of incorporation method of sulfated zirconia in MCM-41 molecular sieve; Influencia do metodo de incorporacao da zirconia sulfatada na peneira molecular MCM-41

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, C.E.; Santos, J.S.B.; Cavalcante, J.N.A.; Andrade, M.R.A.; Sousa, B.V., E-mail: eduardopereira.eq@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Centro de Ciencia e Tecnologia

    2016-07-01

    Sulfated metal oxides and sulfated zirconia have attracted great attention in recent years due to its high catalytic activity. The sulfated zirconia has the function of assigning the acidic material, through the formation of Bronsted acids and Lewis sites. The incorporation of sulfated zirconia in MCM-41 molecular sieve was carried out through the techniques: dry and wet. The wet process involves the use of an excess of solution on the volume of the support pores. Therefore, the concentration of the metal precursor on the support depends on the solution concentration and the pore volume of the support. In the process of incorporating by dry, the volume of the solution containing the precursor does not exceed the pore volume of the support. After either procedure, the impregnated support must be dried in order to allow the precursor compound can be converted into a catalytically active phase. This study aims to evaluate two methods of incorporation of sulfated zirconia in the mesoporous molecular sieve MCM-41. The process of merger took for wet and dry impregnation. Through the XRD patterns it was possible to identify the presence of the hexagonal structure of the molecular sieve, as well as the tetragonal and monoclinic phases of zirconia. From the spectroscopic analysis in the infrared region to the method the wet, it was possible to identify the vibrational frequencies related to the merger of sulfated zirconia in the MCM-41 structure of the molecular sieve. (author)

  14. Finite Element Analysis of IPS Empress II Ceramic Bridge Reinforced by Zirconia Bar.

    Science.gov (United States)

    Kermanshah, H; Bitaraf, T; Geramy, A

    2012-01-01

    The aim of this study was to determine the effect of trenched zirconia bar on the von Mises stress distribution of IPS -Empress II core ceramics. The three-dimensional model including a three-unit bridge from the second premolar to the second molar was designed. The model was reinforced with zirconia bar (ZB), zirconia bar with vertical trench (VZB) and zirconia bar with horizontal trench (HZB) (cross sections of these bars were circular). The model without zirconia bar was designed as the control. The bridges were loaded by 200 N and 500 N on the occlusal surface at the middle of the pontic component and von Mises stresses were evaluated along a defined path. IN THE CONNECTOR AREA, VON MISES STRESS IN MPA WERE APPROXIMATELY IDENTICAL IN THE SPECIMENS WITH ZB (AT MOLAR CONNECTOR (MC): 4.75 and at premolar connector (PC): 6.40) and without ZB (MC: 5.50, PC: 6.68), and considerable differences were not recognized. Whereas, Von-Mises stress (MPa) in the specimens with horizontal trenched Zirconia bar (HZB) (MC: 3.91, PC: 2.44) and Vertical trenched Zirconia bar (VZB) (MC: 2.53, PC: 2.56) was decreased considerably. Embeded trenched zirconia bar could reinforce IPS-Empress II at the connector area which is a main failure region in all ceramic fixed partial dentures.

  15. Niobia and tantala codoped orthorhombic zirconia ceramics

    International Nuclear Information System (INIS)

    Hoeftberger, M.; Gritzner, G.

    1995-01-01

    During recent studies it was found that codoping of zirconia with niobia and tantala yielded very corrosion resistant, orthorhombic zirconia ceramics. The powders for those novel ceramics were made via the sol-gel technique by hydrolysis of the respective metal propoxides; a method which required dry-box techniques during the preparation of the alkoxides. In these studies the authors investigated the fabrication of precursor material from aqueous solutions. The preparation of aqueous solutions of salts of zirconium, niobium and tantalum is hampered by rapid hydrolysis. Premature hydrolysis of the chlorides and oxichlorides of niobium, tantalum and zirconium can be, however, prevented in aqueous solutions of oxalic acid. Thus the authors investigated the coprecipitation of hydroxides as precursors by reacting oxalic acid solutions of the respective cations with aqueous ammonia. In addition they studied the effects of calcination and of hydrothermal conversion of the hydroxides to oxides on the powder characteristics and on the mechanical properties of the niobia and tantala codoped zirconia ceramics

  16. Stabilized zirconia with cerium and neodymium addition

    International Nuclear Information System (INIS)

    Andrade, I.M. de; Pessoa, R.C.; Nasar, M.C.; Nasar, R.S.; Rodriques, M.K.C.; Oliveira, J.F.

    2006-01-01

    Zr 0,9 Ce 0,05 Nd 0,05 O 1,975 system was synthesized with the use of the Pechini method. The polymeric resin was calcined at 350 deg C/3 h and analysed by FTIR that show bands relative to organic. Radicals esther type. The TGA curve indicated the polymeric decomposition occurring from 30 deg C to 740 deg C. DTA analysis show a exothermic peak in 100 deg C due to loss of water of material. From 500 deg C to 800 deg C was observed a intense peak due to polymer decomposition and the zirconia crystallization. The calcined powder from 350 deg C/3 h e 30 min to 900 deg/3 h were analysed by XRD that show the crystalline phase formation with the increase of temperature. The X-ray diffraction pattern show the presence of two phases, such as tetragonal and cubic of zirconia demonstrating that neodymium and cerium additions led to zirconia stabilization. (author)

  17. Optimization of spin-coated electrodes for electrolyte-supported solid oxide fuel cells

    International Nuclear Information System (INIS)

    Nobrega, Shayenne Diniz da; Monteiro, Natalia Kondo; Tabuti, Francisco; Fonseca, Fabio Coral; Florio, Daniel Zanetti de

    2017-01-01

    Electrodes for electrolyte-supported solid oxide fuel cells (SOFC’s) were fabricated by spin coating. Strontium-doped lanthanum manganite (LSM) cathode and nickel yttria-stabilized zirconia cermet anodes were synthesized and processed for enhanced deposition conditions. The influence of electrode microstructural parameters was investigated by a systematic experimental procedure aiming at optimized electrochemical performance of single cells. Polarization curves showed a strong dependence on both electrode thickness and sintering temperature. By a systematic control of such parameters, the performance of single cells was significantly enhanced due to decreasing of polarization resistance from 26 Ω cm² to 0.6 Ω cm² at 800°C. The results showed that spin-coated electrodes can be optimized for fast and cost effective fabrication of SOFCs. (author)

  18. Optimization of spin-coated electrodes for electrolyte-supported solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nobrega, Shayenne Diniz da; Monteiro, Natalia Kondo; Tabuti, Francisco; Fonseca, Fabio Coral, E-mail: shaynnedn@hotmail.com, E-mail: nataliakm@usp.br, E-mail: fntabuti@ipen.br, E-mail: fabiocf@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil); Florio, Daniel Zanetti de, E-mail: daniel.florio@ufabc.edu.br [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2017-01-15

    Electrodes for electrolyte-supported solid oxide fuel cells (SOFC’s) were fabricated by spin coating. Strontium-doped lanthanum manganite (LSM) cathode and nickel yttria-stabilized zirconia cermet anodes were synthesized and processed for enhanced deposition conditions. The influence of electrode microstructural parameters was investigated by a systematic experimental procedure aiming at optimized electrochemical performance of single cells. Polarization curves showed a strong dependence on both electrode thickness and sintering temperature. By a systematic control of such parameters, the performance of single cells was significantly enhanced due to decreasing of polarization resistance from 26 Ω cm² to 0.6 Ω cm² at 800°C. The results showed that spin-coated electrodes can be optimized for fast and cost effective fabrication of SOFCs. (author)

  19. Light emission from organic single crystals operated by electrolyte doping

    Science.gov (United States)

    Matsuki, Keiichiro; Sakanoue, Tomo; Yomogida, Yohei; Hotta, Shu; Takenobu, Taishi

    2018-03-01

    Light-emitting devices based on electrolytes, such as light-emitting electrochemical cells (LECs) and electric double-layer transistors (EDLTs), are solution-processable devices with a very simple structure. Therefore, it is necessary to apply this device structure into highly fluorescent organic materials for future printed applications. However, owing to compatibility problems between electrolytes and organic crystals, electrolyte-based single-crystal light-emitting devices have not yet been demonstrated. Here, we report on light-emitting devices based on organic single crystals and electrolytes. As the fluorescent materials, α,ω-bis(biphenylyl)terthiophene (BP3T) and 5,6,11,12-tetraphenylnaphthacene (rubrene) single crystals were selected. Using ionic liquids as electrolytes, we observed clear light emission from BP3T LECs and rubrene EDLTs.

  20. Net shape manufacturing of ceramic micro parts with tailored graded layers

    Science.gov (United States)

    Hassanin, H.; Jiang, K.

    2014-01-01

    Presented in this paper is a novel net shape manufacturing technology for making three-dimensional micro parts with functionally graded layers. Alumina/zirconia micro parts with either core-shell or top-bottom functionally graded material (FGM) profiles have been successfully fabricated by altering both the surface characteristics of polydimethylsiloxane (PDMS) micro moulds and ceramic suspensions composition. PDMS surface modifications were performed to achieve moulds with hydrophilic surfaces, which were used to form core/shell FGM green layers. On the other hand, moulds with hydrophobic surfaces were used to form top-bottom green layers. Cracks have been found between consecutive layers in both the green and sintered micro parts. It was found that, at dispersant concentration of about 9.0 mg g-1, the differences in the drying shrinkage between layers is less than 0.5%. In addition, layers of composition of 100% Al2O3-0% YSZ, 20% Al2O3-80% YSZ and 40% Al2O3-60% YSZ were found to produce less shrinkage difference during sintering. After optimization of both green and sintering layers, crack free core/shell and top-bottom alumina/zirconia FGM micro parts were successfully obtained. The proposed process enables the production of micro patterns tailored with functionally graded microstructures to locally enhance properties and performance.

  1. The Electrolyte Factor in O2 Reduction Electrocatalysis

    Science.gov (United States)

    1993-04-23

    molecule thick and does not seem to interfere with 02 and water/proton transport at this interface. This layer resembles a self-ordered Langmuir - Blodgett ... liquid electrolyte from within the polymer is in contact with the catalyst and completes the ionic circuit between the ionic conducting polymer and the...the free energy of adsorption of H2 0 and ionic components because of the lower effective dielectric constant in the electrolyte phase immediately

  2. Performance of strontium- and magnesium-doped lanthanum gallate electrolyte with lanthanum-doped ceria as a buffer layer for IT-SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dokyol; Han, Ju-Hyeong; Kim, Eun-Gu [Department of Materials Science and Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea); Song, Rak-Hyun; Shin, Dong-Ryul [Hydrogen and Fuel Cell Research Department, Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-600 (Korea)

    2008-10-15

    La{sub 0.8}Sr{sub 0.2}Ga{sub 0.8}Mg{sub 0.2}O{sub 2.8} (LSGM8080) powder, showing the highest electrical conductivity among LSGMs of various compositions, is synthesized using the glycine nitrate process (GNP) and used as the electrolyte for an intermediate-temperature solid oxide fuel cell (IT-SOFC). The LDC (Ce{sub 0.55}La{sub 0.45}O{sub 1.775}) powder is synthesized by a solid-state reaction and employed as the material for a buffer layer to prevent the reaction between the anode and electrolyte materials. The LDC also serves as the skeleton material for the anode. An anode-supported single cell with an active area of 1 cm{sup 2} is constructed for performance evaluation. A single-cell test is performed at 750 and 800 C. The maximum power density of the cell 459 and 664 mW cm{sup -2} at 750 and 800 C, respectively. (author)

  3. Effect of surface treatment on flexural strength of zirconia bars

    NARCIS (Netherlands)

    Aboushelib, M.N.; Wang, H.

    2010-01-01

    Statement of problem Clinical and laboratory processing techniques induce damage to the surface of zirconia frameworks, which significantly lessens their strength. Purpose The purpose of this study was to investigate the influence of 3 surface restoration methods on the flexural strength of zirconia

  4. Effects of multiple firings on the microstructure of zirconia and veneering ceramics.

    Science.gov (United States)

    Alkurt, Murat; Yeşil Duymus, Zeynep; Gundogdu, Mustafa

    2016-01-01

    The aim of study was to evaluate the effects of multiple firings on the microstructures of zirconia and two ceramics. Vita VM9 (VMZ) and Cerabien ZR (C-Z) ceramics on a zirconia framework and zirconia without veneering ceramic (WO-Z) were evaluated. Firing methods included firing two, five, and ten times (n=10). The effects of multiple firings on the surface hardness of the materials were evaluated using a Vickers hardness (HV) tester. Data were analyzed by two-way ANOVA and Tukey's test (α=0.05). After firing five and ten times, the hardness of VM-Z and C-Z increased significantly (p0.05). In the XRD analysis, zirconia had similar tetragonal (t)-monoclinic (m) phase transformations of Y-TZP after the different firing times. Clinically, multiple firings did not affect the microstructure of zirconia, but the structures of the two ceramics were affected.

  5. Sulfation of ceria-zirconia model automotive emissions control catalysts

    Science.gov (United States)

    Nelson, Alan Edwin

    Cerium-zirconium mixed metal oxides are used in automotive emissions control catalysts to regulate the partial pressure of oxygen near the catalyst surface. The near surface oxygen partial pressure is regulated through transfer of atomic oxygen from the ceria-zirconia solid matrix to the platinum group metals to form metal oxides capable of oxidizing carbon monoxide and unburned hydrocarbons. Although the addition of zirconium in the cubic lattice of ceria increases the oxygen storage capacity and thermal stability of the ceria matrix, the cerium-zirconium oxide system remains particularly susceptible to deactivation from sulfur compounds. While the overall effect of sulfur on these systems is understood (partially irreversible deactivation), the fundamental and molecular interaction of sulfur with ceria-zirconia remains a challenging problem. Ceria-zirconia metal oxide solid solutions have been prepared through co-precipitation with nitrate precursors. The prepared powders were calcined and subsequently formed into planer wafers and characterized for chemical and physical attributes. The prepared samples were subsequently exposed to a sulfur dioxide based environment and characterized with spectroscopic techniques to characterize the extent of sulfation and the nature of surface sulfur species. The extent of sulfation of the model ceria-zirconia systems was characterized with Auger electron spectroscopy (AES) prior to and after treatment in a microreactor. Strong dependencies were observed between the atomic ratio of ceria to zirconia and the extent of sulfation. In addition, the partial pressure of sulfur dioxide during treatments also correlated to the extent of sulfation, while temperature only slightly effected the extent of sulfation. The AES data suggests the gas phase sulfur dioxide preferentially chemisorbs on surface ceria atoms and the extent of sulfation is heavily dependent on sulfur dioxide concentrations and only slightly dependent on catalyst

  6. Liquid water breakthrough location distances on a gas diffusion layer of polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Yu, Junliang; Froning, Dieter; Reimer, Uwe; Lehnert, Werner

    2018-06-01

    The lattice Boltzmann method is adopted to simulate the three dimensional dynamic process of liquid water breaking through the gas diffusion layer (GDL) in the polymer electrolyte membrane fuel cell. 22 micro-structures of Toray GDL are built based on a stochastic geometry model. It is found that more than one breakthrough locations are formed randomly on the GDL surface. Breakthrough location distance (BLD) are analyzed statistically in two ways. The distribution is evaluated statistically by the Lilliefors test. It is concluded that the BLD can be described by the normal distribution with certain statistic characteristics. Information of the shortest neighbor breakthrough location distance can be the input modeling setups on the cell-scale simulations in the field of fuel cell simulation.

  7. Electric double-layer capacitors with tea waste derived activated carbon electrodes and plastic crystal based flexible gel polymer electrolytes

    Science.gov (United States)

    Suleman, M.; Deraman, M.; Othman, M. A. R.; Omar, R.; Hashim, M. A.; Basri, N. H.; Nor, N. S. M.; Dolah, B. N. M.; Hanappi, M. F. Y. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.; Jasni, M. R. M.

    2016-08-01

    We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible polymer gel electrolyte, incorporated with sodium trifluoromethane sulfonate (NaTf) immobilised in a host polymer poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The cost-effective activated carbon powder possessing a specific surface area (SSA) of ~ 1700 m2g-1 containing a large proportion of meso-porosity has been derived from tea waste to use as supercapacitor electrodes. The high ionic conductivity (~3.6×10-3 S cm-1 at room temperature) and good electrochemical stability render the gel polymer electrolyte film a suitable candidate for the fabrication of EDLCs. The performance of the EDLCs has been tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge studies. The performance of the EDLC cell is found to be promising in terms of high values of specific capacitance (~270 F g-1), specific energy (~ 36 Wh kg-1), and power density (~ 33 kW kg-1).

  8. Electric double-layer capacitors with tea waste derived activated carbon electrodes and plastic crystal based flexible gel polymer electrolytes

    International Nuclear Information System (INIS)

    Suleman, M; Deraman, M; Othman, M A R; Omar, R; Basri, N H; Nor, N S M; Dolah, B N M; Hanappi, M F Y M; Hamdan, E; Sazali, N E S; Tajuddin, N S M; Jasni, M R M; Hashim, M A

    2016-01-01

    We report a novel configuration of symmetrical electric double-layer capacitors (EDLCs) comprising a plastic crystalline succinonitrile (SN) based flexible polymer gel electrolyte, incorporated with sodium trifluoromethane sulfonate (NaTf) immobilised in a host polymer poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP). The cost-effective activated carbon powder possessing a specific surface area (SSA) of ∼ 1700 m 2 g -1 containing a large proportion of meso-porosity has been derived from tea waste to use as supercapacitor electrodes. The high ionic conductivity (∼3.6×10 -3 S cm -1 at room temperature) and good electrochemical stability render the gel polymer electrolyte film a suitable candidate for the fabrication of EDLCs. The performance of the EDLCs has been tested by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge studies. The performance of the EDLC cell is found to be promising in terms of high values of specific capacitance (∼270 F g -1 ), specific energy (∼ 36 Wh kg -1 ), and power density (∼ 33 kW kg -1 ). (paper)

  9. Thermodynamic properties of some metal oxide-zirconia systems

    Science.gov (United States)

    Jacobson, Nathan S.

    1989-01-01

    Metal oxide-zirconia systems are a potential class of materials for use as structural materials at temperatures above 1900 K. These materials must have no destructive phase changes and low vapor pressures. Both alkaline earth oxide (MgO, CaO, SrO, and BaO)-zirconia and some rare earth oxide (Y2O3, Sc2O3, La2O3, CeO2, Sm2O3, Gd2O3, Yb2O3, Dy2O3, Ho2O3, and Er2O3)-zirconia system are examined. For each system, the phase diagram is discussed and the vapor pressure for each vapor species is calculated via a free energy minimization procedure. The available thermodynamic literature on each system is also surveyed. Some of the systems look promising for high temperature structural materials.

  10. Tetragonal zirconia quantum dots in silica matrix prepared by a modified sol-gel protocol

    Science.gov (United States)

    Verma, Surbhi; Rani, Saruchi; Kumar, Sushil

    2018-05-01

    Tetragonal zirconia quantum dots (t-ZrO2 QDs) in silica matrix with different compositions ( x)ZrO2-(100 - x)SiO2 were fabricated by a modified sol-gel protocol. Acetylacetone was added as a chelating agent to zirconium propoxide to avoid precipitation. The powders as well as thin films were given thermal treatment at 650, 875 and 1100 °C for 4 h. The silica matrix remained amorphous after thermal treatment and acted as an inert support for zirconia quantum dots. The tetragonal zirconia embedded in silica matrix transformed into monoclinic form due to thermal treatment ≥ 1100 °C. The stability of tetragonal phase of zirconia is found to enhance with increase in silica content. A homogenous dispersion of t-ZrO2 QDs in silica matrix was indicated by the mapping of Zr, Si and O elements obtained from scanning electron microscope with energy dispersive X-ray analyser. The transmission electron images confirmed the formation of tetragonal zirconia quantum dots embedded in silica. The optical band gap of zirconia QDs (3.65-5.58 eV) was found to increase with increase in zirconia content in silica. The red shift of PL emission has been exhibited with increase in zirconia content in silica.

  11. The Use of Newer High Translucency Zirconia in Aesthetic Zone

    Directory of Open Access Journals (Sweden)

    Zishan Dangra

    2014-01-01

    Full Text Available Loss of anterior tooth causes aesthetic and functional disharmony. Although no restorative material can approach the appearance of intact tooth enamel, glass ceramic, at the increased risk of brittle fracture, can mimic original tooth color better than the other restorative options. The newest zirconia material comes with unparalleled individualization in aesthetics and optimal physical properties. One of the basic principles of tooth preparation is conservation of tooth structure. This clinical report describes the replacement of maxillary and mandibular incisor with latest generation zirconia adhesive fixed partial denture. The authors have achieved unmatched aesthetics with newer high translucency zirconia.

  12. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.

    Science.gov (United States)

    Borodin, Oleg; Ren, Xiaoming; Vatamanu, Jenel; von Wald Cresce, Arthur; Knap, Jaroslaw; Xu, Kang

    2017-12-19

    Electroactive interfaces distinguish electrochemistry from chemistry and enable electrochemical energy devices like batteries, fuel cells, and electric double layer capacitors. In batteries, electrolytes should be either thermodynamically stable at the electrode interfaces or kinetically stable by forming an electronically insulating but ionically conducting interphase. In addition to a traditional optimization of electrolytes by adding cosolvents and sacrificial additives to preferentially reduce or oxidize at the electrode surfaces, knowledge of the local electrolyte composition and structure within the double layer as a function of voltage constitutes the basis of manipulating an interphase and expanding the operating windows of electrochemical devices. In this work, we focus on how the molecular-scale insight into the solvent and ion partitioning in the electrolyte double layer as a function of applied potential could predict changes in electrolyte stability and its initial oxidation and reduction reactions. In molecular dynamics (MD) simulations, highly concentrated lithium aqueous and nonaqueous electrolytes were found to exclude the solvent molecules from directly interacting with the positive electrode surface, which provides an additional mechanism for extending the electrolyte oxidation stability in addition to the well-established simple elimination of "free" solvent at high salt concentrations. We demonstrate that depending on their chemical structures, the anions could be designed to preferentially adsorb or desorb from the positive electrode with increasing electrode potential. This provides additional leverage to dictate the order of anion oxidation and to effectively select a sacrificial anion for decomposition. The opposite electrosorption behaviors of bis(trifluoromethane)sulfonimide (TFSI) and trifluoromethanesulfonate (OTF) as predicted by MD simulation in highly concentrated aqueous electrolytes were confirmed by surface enhanced infrared

  13. Electrolyte effects on the surface chemistry and cellular response of anodized titanium

    International Nuclear Information System (INIS)

    Ohtsu, Naofumi; Kozuka, Taro; Hirano, Mitsuhiro; Arai, Hirofumi

    2015-01-01

    Highlights: • Ti samples were anodized using various electrolytes. • Anodization decreased carbon adsorption, improving hydrophilicity. • Improved hydrophilicity led to improved cellular attachment. • Only one electrolyte showed any heteroatom incorporation into the TiO 2 layer. • Choice of electrolyte played no role on the effects of anodization. - Abstract: Anodic oxidation of titanium (Ti) material is used to enhance biocompatibility, yet the effects of various electrolytes on surface characteristics and cellular behavior have not been completely elucidated. To investigate this topic, oxide layers were produced on Ti substrates by anodizing them in aqueous electrolytes of (NH 4 ) 2 O·5B 2 O 3 , (NH 4 ) 2 SO 4 , or (NH 4 ) 3 PO 4 , after which their surface characteristics and cellular responses were examined. Overall, no surface differences between the electrolytes were visually observed. X-ray photoelectron spectroscopy (XPS) revealed that the anodized surfaces are composed of titanium dioxide (TiO 2 ), while incorporation from electrolyte was only observed for (NH 4 ) 3 PO 4 . Surface adsorption of carbon contaminants during sterilization was suppressed by anodization, leading to lower water contact angles. The attachment of MC3T3-E1 osteoblast-like cells was also improved by anodization, as evidenced by visibly enlarged pseudopods. This improved attachment performance is likely due to TiO 2 formation. Overall, electrolyte selection showed no effect on either surface chemistry or cellular response of Ti materials

  14. Study on electrolytic reduction with controlled oxygen flow for iron from molten oxide slag containing FeO

    Directory of Open Access Journals (Sweden)

    Gao Y.M.

    2013-01-01

    Full Text Available A ZrO2-based solid membrane electrolytic cell with controlled oxygen flow was constructed: graphite rod /[O]Fe+C saturated / ZrO2(MgO/(FeO slag/iron crucible. The feasibility of extraction of iron from molten oxide slag containing FeO at an applied voltage was investigated by means of the electrolytic cell. The effects of some important process factors on the FeO electrolytic reduction with the controlled oxygen flow were discussed. The results show that: solid iron can be extracted from molten oxide slag containing FeO at 1450ºC and an applied potential of 4V. These factors, such as precipitation and growth of solid iron dendrites, change of the cathode active area on the inner wall of the iron crucible and ion diffusion flux in the molten slag may affect the electrochemical reaction rate. The reduction for Fe2+ ions mainly appears on new iron dendrites of the iron crucible cathode, and a very small amount of iron are also formed on the MSZ (2.18% MgO partially stabilized zirconia tube/slag interface due to electronic conductance of MSZ tube. Internal electronic current through MSZ tube may change direction at earlier and later electrolytic reduction stage. It has a role of promoting electrolytic reduction for FeO in the molten slag at the earlier stage, but will lower the current efficiency at the later stage. The final reduction ratio of FeO in the molten slag can achieve 99%. A novel electrolytic method with controlled oxygen flow for iron from the molten oxide slag containing FeO was proposed. The theory of electrolytic reduction with the controlled oxygen flow was developed.

  15. The Metal-Zirconia Implant Fixed Hybrid Full-Arch Prosthesis: An Alternative Technique for Fabrication.

    Science.gov (United States)

    Stumpel, Lambert J; Haechler, Walter

    2018-03-01

    The metal-resin hybrid full-arch prosthesis has been a traditionally used type of restoration for full-arch implant fixed dentures. A newer development has centered around the use of monolithic zirconia or zirconia veneered with porcelain. Being a ceramic, zirconia has the potential for fracture. This article describes a technique that utilizes a metal substructure to support a chemically and mechanically resinbonded shell of zirconia. The workflow is discussed, ranging from in-office master cast fabrication to the CAD/ CAM production of the provisional and the definitive metal-zirconia prosthesis. The article also highlights the advantages and disadvantages of various materials used for hybrid prostheses.

  16. Phase composition of yttrium-doped zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Christoph; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures; Weiss, Stephan [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements; Gumeniuk, R. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Experimentelle Physik

    2017-06-01

    Ceramic material might be an alternative to borosilicate glass for the immobilization of nuclear waste. The crystallinity of ceramic material increases the corrosion resistance over several magnitudes in relation to amorphous glasses. The stability of such ceramics depend on several parameters, among them the crystal phase composition. A reliable quantitative phase analysis is necessary to correlate the macroscopic material properties with structure parameters. We performed a feasibility study based on yttrium-doped zirconia ceramics as analogue for trivalent actinides to ascertain that the nanosized crystal phases in zirconia ceramics can be reliably determined.

  17. Method of making a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    Science.gov (United States)

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    2002-09-17

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  18. Fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites

    International Nuclear Information System (INIS)

    Lyubushkin, R.A.; Ivanov, O.N.; Chuev, V.P.; Buzov, A.A.

    2011-01-01

    At present, zirconia-based ceramics are gaining popularity in dentistry, particularly in fixed prosthodontics. clinically, it is important that ceramic restorations reproduce the translucency and color of natural teeth. Zirconia based ceramics is a high performance material with excellent biocompatibility and mechanical properties, which suggest its suitability for posterior fixed partial dentures. Y 2 O 3 -stabilized tetragonal zirconia polycrystalline (YTZ/Al 2 O 3 ) and CeO 2 -stabilized tetragonal zirconia polycrystalline (CZA) ceramics with high-performance were prepared for dental application by use the wet chemical route, consolidated by cold isostatic pressing, and two-step sintering method. Physical and mechanical properties test results show that the bending strength, fracture toughness, and the density of full sintered ceramics suggest that the material is relatively suitable for dental restoration.

  19. Leveling and thixotropic characteristics of concentrated zirconia inks for screen-printing

    DEFF Research Database (Denmark)

    Phair, John; Lundberg, Mats; Kaiser, Andreas

    2009-01-01

    of ethyl cellulose (binder) content upon the thixotropic and leveling characteristics of zirconia inks. While the yield stress (τ 0), extent of recovery R(%), and rate of recovery (K) increase with increasing binder content, so did the surface roughness and thickness of the screen-printed films. Increasing...... the binder content not only increases the network strength of the thick films but also leads to increased leveling time. As a result, rheological modifiers are proposed to be necessary to improve the leveling characteristics of zirconia inks without losing the green strength of the thick films......Screen-printing is a cost-effective method for the mass manufacture of zirconia-based solid oxide fuel cells (SOFCs) and oxygen separation membranes. The present work outlines an investigation into the leveling, thixotropic, and screen-printing characteristics of concentrated zirconia inks...

  20. Influence of the Ti microstructure on anodic self-organized TiO{sub 2} nanotube layers produced in ethylene glycol electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Macak, J.M., E-mail: jan.macak@upce.cz [Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice (Czech Republic); Jarosova, M. [Laboratory of Nanostructures and Nanomaterials, Institute of Physics of the CAS, v.v.i., Na Slovance 2, 18221 Prague 8 (Czech Republic); Jäger, A. [Department of Structure analysis, Institute of Physics of the CAS, v.v.i., Cukrovarnicka 10, 16200 Prague 6 (Czech Republic); Sopha, H. [Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice (Czech Republic); Klementová, M. [Institute of Inorganic Chemistry of the CAS, v.v.i., Husinec-Rez 1001, Rez 25068 (Czech Republic)

    2016-05-15

    Highlights: • The microstructure of Ti substrates investigated by EBSD. • Comparison of polished vs. unpolished substrates was carried out. • Grain orientation influences the uniformity of self-organized TiO{sub 2} nanotubes. • Tubes with different average diameter grow on grains with different orientation. • Grain size and boundaries influence the number of flaws in the tube layers. - Abstract: The relationship between the microstructure of Ti substrates and the anodic growth of self-organized TiO{sub 2} nanotube layers obtained upon their anodization in the ethylene glycol based electrolytes on these substrates is reported for the first time. Polished Ti sheets with mirror-like surface as well as unpolished Ti foils were considered in this work. Grains with a wide range of crystallographic orientations and sizes were revealed by Electron Backscatter Diffraction (EBSD) and correlated with nanotube growth on both types of substrates. A preferred grain orientation with [0 0 0 1] axis perpendicular to the surface was observed on all substrates. Surfaces of all substrates were anodized for 18 h in ethylene glycol electrolytes containing 88 mM NH{sub 4}F and 1.5% water and thoroughly inspected by SEM. By a precise comparison of Ti substrates before and after anodization, the uniformity of produced self-organized TiO{sub 2} nanotube layers was evaluated in regard to the specific orientation of individual grains. Grains with [0 0 0 1] axis perpendicular to the surface turned out to be the most growth-promoting orientation on polished substrates. No orientation was found to be strictly growth-retarding, but sufficient anodization time (24 h) was needed to obtain uniform nanotube layers on all grains without remnant porous initial oxide. In contrast with polished Ti sheets, no specific orientation was found to significantly promote or retard the nanotube growth in the case of unpolished Ti foils. Finally, the difference between the average nanotube diameters of

  1. Tailoring the electrode-electrolyte interface of Solid Oxide Fuel Cells (SOFC) by laser micro-patterning to improve their electrochemical performance

    Science.gov (United States)

    Cebollero, J. A.; Lahoz, R.; Laguna-Bercero, M. A.; Larrea, A.

    2017-08-01

    Cathode activation polarisation is one of the main contributions to the losses of a Solid Oxide Fuel Cell. To reduce this loss we use a pulsed laser to modify the surface of yttria stabilized zirconia (YSZ) electrolytes to make a corrugated micro-patterning in the mesoscale. The beam of the laser source, 5 ns pulse width and emitting at λ = 532 nm (green region), is computer-controlled to engrave the selected micro-pattern on the electrolyte surface. Several laser scanning procedures and geometries have been tested. Finally, we engrave a square array with 28 μm of lattice parameter and 7 μm in depth on YSZ plates. With these plates we prepare LSM-YSZ/YSZ/LSM-YSZ symmetrical cells (LSM: La1-xSrxMnO3) and determine their activation polarisation by Electrochemical Impedance Spectroscopy (EIS). To get good electrode-electrolyte contact after sintering it is necessary to use pressure-assisted sintering with low loads (about 5 kPa), which do not modify the electrode microstructure. The decrease in polarisation with respect to an unprocessed cell is about 30%. EIS analysis confirms that the reason for this decrease is an improvement in the activation processes at the electrode-electrolyte interface.

  2. Microscopic observation of laser glazed yttria-stabilized zirconia coatings

    Science.gov (United States)

    Morks, M. F.; Berndt, C. C.; Durandet, Y.; Brandt, M.; Wang, J.

    2010-08-01

    Thermal barrier coatings (TBCs) are frequently used as insulation system for hot components in gas-turbine, combustors and power plant industries. The corrosive gases which come from combustion of low grade fuels can penetrate into the TBCs and reach the metallic components and bond coat and cause hot corrosion and erosion damage. Glazing the top coat by laser beam is advanced approach to seal TBCs surface. The laser beam has the advantage of forming a dense thin layer composed of micrograins. Plasma-sprayed yttria-stabilized zirconia (YSZ) coating was glazed with Nd-YAG laser at different operating conditions. The surface morphologies, before and after laser treatment, were investigated by scanning electron microscopy. Laser beam assisted the densification of the surface by remelting a thin layer of the exposed surface. The laser glazing converted the rough surface of TBCs into smooth micron-size grains with size of 2-9 μm and narrow grain boundaries. The glazed surfaces showed higher Vickers hardness compared to as-sprayed coatings. The results revealed that the hardness increases as the grain size decreases.

  3. Biodiesel fuel production with solid amorphous-zirconia catalysis in fixed bed reactor

    International Nuclear Information System (INIS)

    Furuta, Satoshi; Matsuhashi, Hiromi; Arata, Kazushi

    2006-01-01

    Amorphous zirconia catalysts, titanium-, aluminum-, and potassium-doped zirconias, were prepared and evaluated in the transesterification of soybean oil with methanol at 250 deg. C, and the esterification of n-octanoic acid with methanol at 175-200 deg. C. Titanium- and aluminum-doped zirconias are promising solid catalysts for the production of biodiesel fuels from soybean oil because of their high performance, with over 95% conversion in both of the esterifications

  4. Influence of thermal expansion mismatch on residual stress profile in veneering ceramic layered on zirconia: Measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Najjar, Achref; Jakubowicz-Kohen, Boris D; Sadoun, Michaël J

    2015-09-01

    Mismatch in thermal expansion coefficient between core and veneering ceramic (Δα=αcore-αveneer, ppm/°C) is reported as a crucial parameter influencing veneer fractures with Yttria-tetragonal-zirconia-polycrystal (Y-TZP) prostheses, which still constitutes a misunderstood problem. However, the common positive Δα concept remains empirical. The objective of this study is to investigate the Δα dependence of residual stress profiles in veneering ceramic layered on Y-TZP frameworks. The stress profile was measured with the hole-drilling method in bilayered disc samples of 20mm diameter with a 0.7mm thick Y-TZP framework and a 1.5mm thick veneer layer. 3 commercial and 4 experimental veneering ceramics (n=3 per group) were used to obtain different Δα varying from -1.3ppm/°C to +3.2ppm/°C, which were determined by dilatometric analyses. Veneer fractures were observed in samples with Δα≥+2.3 or ≤-0.3ppm/°C. Residual stress profiles measured in other groups showed compressive stresses in the surface, these stresses decreasing with depth and then becoming more compressive again near the interface. Small Δα variations were shown to induce significant changes in residual stress profiles. Compressive stress near the framework was found to decrease inversely to Δα. Veneer CTE close to Y-TZP (+0.2ppm/°C Δα) gived the most favorable stress profile. Yet, near the framework, Δα-induced residual stress varied inversely to predictions. This could be explained by the hypothesis of structural changes occurrence within the Y-TZP surface. Consequently, the optimum Δα value cannot be determined before understanding Y-TZP's particular behavior when veneered. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Performance of molten carbonate fuel cells with the electrolyte molded at low pressure (3) The stability of anode microlayers

    Energy Technology Data Exchange (ETDEWEB)

    Sonai, Atsuo; Suzuki, Nobukazu; Murata, Kenji; Shirogami, Tamotsu

    1987-01-01

    It is known that an addition of organic binder to the electrolyte layer which composes a fuel cell enables to produce a large plate of electrolyte even in low temperature and low pressure conditions. However, when the binder is volatilized, bores remain making poor performance as a sepa-rator plate of the reacting gas. In order to prevent the gas permeation, it is necessary to combine a double layered electrode with microporous layers on the electrode surface ajacent to the electrolyte layer. In this study, stability of microporous layers of the anode electrode was examined, and it was found that the microporous layers made by sintering Ni-powders was unstable and dissoluted, but the impregnation of such second element as Chromium oxide, Yttrium oxide, Aluminum oxide into the layer improved the stability. (10 figs, 1 tab, 6 refs)

  6. Electrochemical testing of suspension plasma sprayed solid oxide fuel cell electrolytes

    Science.gov (United States)

    Waldbillig, D.; Kesler, O.

    Electrochemical performance of metal-supported plasma sprayed (PS) solid oxide fuel cells (SOFCs) was tested for three nominal electrolyte thicknesses and three electrolyte fabrication conditions to determine the effects of electrolyte thickness and microstructure on open circuit voltage (OCV) and series resistance (R s). The measured OCV values were approximately 90% of the Nernst voltages, and electrolyte area specific resistances below 0.1 Ω cm 2 were obtained at 750 °C for electrolyte thicknesses below 20 μm. Least-squares fitting was used to estimate the contributions to R s of the YSZ bulk material, its microstructure, and the contact resistance between the current collectors and the cells. It was found that the 96% dense electrolyte layers produced from high plasma gas flow rate conditions had the lowest permeation rates, the highest OCV values, and the smallest electrolyte-related voltage losses. Optimal electrolyte thicknesses were determined for each electrolyte microstructure that would result in the lowest combination of OCV loss and voltage loss due to series resistance for operating voltages of 0.8 V and 0.7 V.

  7. Finite Element Analysis of IPS –Empress II Ceramic Bridge Reinforced by Zirconia Bar

    Directory of Open Access Journals (Sweden)

    Allahyar Geramy

    2012-01-01

    Full Text Available Objective: The aim of this study was to determine the effect of trenched zirconia bar on the von Mises stress distribution of IPS –Empress II core ceramics.Material and Methods: The three-dimensional model including a three-unit bridge from the second premolar to the second molar was designed. The model was reinforced with zirconia bar (ZB, zirconia bar with vertical trench (VZB, and zirconia bar with horizontal trench (HZB (cross sections of these bars were circular. The model without zirconia bar was designed as the control. The bridges were loaded by 200 N and 500 N on the occlusal surface at the middle of the pontic component, and Von-Mises stresses were evaluated along a defined path.Result: In the connector area, VonMises stress in MPa were approximately identical in the specimens with ZB (at molar connector (MC: 4.75, and at premolar connector (PC: 6.40 and without ZB (MC: 5.50, PC: 6.68, and considerable differences were not recognized. Whereas, Von-Mises stress (MPa in the specimens with horizontal trenched Zirconia bar (HZB (MC: 3.91, PC: 2.44 and Vertical trenched Zirconia bar (VZB (MC: 2.53, PC: 2.56 was decreased considerably.Conclusion: Embeded trenched zirconia bar could reinforce IPS-Empress II at the connector area which is a main failure region in all ceramic fixed partial dentures.

  8. Corrosion behavior of Mg/graphene composite in aqueous electrolyte

    International Nuclear Information System (INIS)

    Selvam, M.; Saminathan, K.; Siva, P.; Saha, P.; Rajendran, V.

    2016-01-01

    In the present work, the electrochemical corrosion behavior of magnesium (Mg) and thin layer graphene coated Mg (Mg/graphene) are studied in different salt electrolyte such as NaCl, KCl and Na_2SO_4. The phase structure, crystallinity, and surface morphology of the samples are investigated using X-ray diffraction (XRD) analysis, scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDAX), and Raman spectroscopy techniques. The electrochemical corrosion behavior of the Mg and graphene coated Mg are also investigated using Electrochemical Impedance Spectroscopy (EIS) analysis. The tafel plot reveals that the corrosion of Mg drastically drops when coated with thin layer graphene (Mg/graphene) compared to Mg in KCl electrolyte. Moreover, the EIS confirms that Mg/graphene sample shows improve corrosion resistance and lower corrosion rate in KCl solution compare to all other electrolytes studied in the present system. - Highlights: • The corrosion behavior of magnesium alloy (AZ91) was investigated in three different electrolyte solution. • To study the anti-corrosion behavior of graphene coated with magnesium alloy. • To improve the corrosion resistance for magnesium alloy. • Nyquist plots confirms that MgG shows better corrosion resistance and lower corrosion rate in KCl solution.

  9. Corrosion behavior of Mg/graphene composite in aqueous electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, M. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Saminathan, K., E-mail: ksaminath@gmail.com [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Siva, P. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India); Saha, P. [Department of Ceramic Engineering, National Institute of Technology, Rourkela, India-769008 (India); Rajendran, V. [Centre for Nano Science and Technology, KS Rangasamy College of Technology, Tiruchengode, 637215, Tamil Nadu (India)

    2016-04-01

    In the present work, the electrochemical corrosion behavior of magnesium (Mg) and thin layer graphene coated Mg (Mg/graphene) are studied in different salt electrolyte such as NaCl, KCl and Na{sub 2}SO{sub 4}. The phase structure, crystallinity, and surface morphology of the samples are investigated using X-ray diffraction (XRD) analysis, scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDAX), and Raman spectroscopy techniques. The electrochemical corrosion behavior of the Mg and graphene coated Mg are also investigated using Electrochemical Impedance Spectroscopy (EIS) analysis. The tafel plot reveals that the corrosion of Mg drastically drops when coated with thin layer graphene (Mg/graphene) compared to Mg in KCl electrolyte. Moreover, the EIS confirms that Mg/graphene sample shows improve corrosion resistance and lower corrosion rate in KCl solution compare to all other electrolytes studied in the present system. - Highlights: • The corrosion behavior of magnesium alloy (AZ91) was investigated in three different electrolyte solution. • To study the anti-corrosion behavior of graphene coated with magnesium alloy. • To improve the corrosion resistance for magnesium alloy. • Nyquist plots confirms that MgG shows better corrosion resistance and lower corrosion rate in KCl solution.

  10. Comparison of shear bond strength of orthodontic brackets using various zirconia primers.

    Science.gov (United States)

    Lee, Ji-Yeon; Kim, Jin-Seok; Hwang, Chung-Ju

    2015-07-01

    The aim of this study was to compare the shear bond strength (SBS) of orthodontic brackets bonded to zirconia surfaces using three different zirconia primers and one silane primer, and subjected to thermocycling. We designed 10 experimental groups following the surface treatment and thermocycling. The surface was treated with one of the following method: no-primer (NP), Porcelain Conditioner (PC), Z-PRIME Plus (ZP), Monobond Plus (MP) and Zirconia Liner Premium (ZL) (n=20). Then each group was subdivided to non-thermocycled and thermocycled groups (NPT, PC, ZPT, MPT, ZLT) (n=10). Orthodontic brackets were bonded to the specimens using Transbond™ XT Paste and light cured for 15 s at 1,100 mW/cm(2). The SBS was measured at a 1 mm/min crosshead speed. The failure mode was assessed by examination with a stereomicroscope and the amount of bonding resin remaining on the zirconia surface was scored using the modified adhesive remnant index (ARI). The SBS of all experimental groups decreased after thermocycling. Before thermocycling, the SBS was ZL, ZP ≥ MP ≥ PC > NP but after thermocycling, the SBS was ZLT ≥ MPT ≥ ZPT > PCT = NPT (p > 0.05). For the ARI score, both of the groups lacking primer (NP and NPT) displayed adhesive failure modes, but the groups with zirconia primers (ZP, ZPT, MP, MPT, ZL, and ZLT) were associated with mixed failure modes. Surface treatment with a zirconia primer increases the SBS relative to no-primer or silane primer application between orthodontic brackets and zirconia prostheses.

  11. Defect ordering in aliovalently doped cubic zirconia from first principles

    International Nuclear Information System (INIS)

    Bogicevic, A.; Wolverton, C.; Crosbie, G.M.; Stechel, E.B.

    2001-01-01

    Defect ordering in aliovalently doped cubic-stabilized zirconia is studied using gradient corrected density-functional calculations. Intra- and intersublattice ordering interactions are investigated for both cation (Zr and dopant ions) and anion (oxygen ions and vacancies) species. For yttria-stabilized zirconia, the crystal structure of the experimentally identified, ordered compound δ-Zr 3 Y 4 O 12 is established, and we predict metastable zirconia-rich ordered phases. Anion vacancies repel each other at short separations, but show an energetic tendency to align as third-nearest neighbors along directions. Calculations with divalent (Be, Mg, Ca, Sr, Ba) and trivalent (Y, Sc, B, Al, Ga, In) oxides show that anion vacancies prefer to be close to the smaller of the cations (Zr or dopant ion). When the dopant cation is close in size to Zr, the vacancies show no particular preference, and are thus less prone to be bound preferentially to any particular cation type when the vacancies traverse such oxides. This ordering tendency offers insight into the observed high conductivity of Y 2 O 3 - and Sc 2 O 3 -stabilized zirconia, as well as recent results using, e.g., lanthanide oxides. The calculations point to In 2 O 3 as a particularly promising stabilizer for high ionic conductivity. Thus we are able to directly link (thermodynamic) defect ordering to (kinetic) ionic conductivity in cubic-stabilized zirconia using first-principles atomistic calculations

  12. Iron on mixed zirconia-titania substrate F-T catalyst

    International Nuclear Information System (INIS)

    Dyer, P.N.; Nordquist, A.F.; Pierantozzi, R.

    1988-01-01

    This patent deals with a Fischer-Tropsch catalyst comprising iron co-deposited with or deposited on particles comprising a mixture of zirconia and titania, preferably formed by co-precipitation of compounds convertible to zirconia and titania, such as zirconium and titanium alkoxide. The invention also comprises the method of making this catalyst and an improved Fischer-Tropsch reaction process in which the catalyst is utilized

  13. Low temperature solid oxide electrolytes (LT-SOE): A review

    Science.gov (United States)

    Singh, B.; Ghosh, S.; Aich, S.; Roy, B.

    2017-01-01

    Low temperature solid oxide fuel cell (LT-SOFC) can be a source of power for vehicles, online grid, and at the same time reduce system cost, offer high reliability, and fast start-up. A huge amount of research work, as evident from the literature has been conducted for the enhancement of the ionic conductivity of LT electrolytes in the last few years. The basic conduction mechanisms, advantages and disadvantages of different LT oxide ion conducting electrolytes {BIMEVOX systems, bilayer systems including doped cerium oxide/stabilised bismuth oxide and YSZ/DCO}, mixed ion conducting electrolytes {doped cerium oxides/alkali metal carbonate composites}, and proton conducting electrolytes {doped and undoped BaCeO3, BaZrO3, etc.} are discussed here based on the recent research articles. Effect of various material aspects (composition, doping, layer thickness, etc.), fabrication methods (to achieve different microstructures and particle size), design related strategies (interlayer, sintering aid etc.), characterization temperature & environment on the conductivity of the electrolytes and performance of the fuel cells made from these electrolytes are shown in tabular form and discussed. The conductivity of the electrolytes and performance of the corresponding fuel cells are compared. Other applications of the electrolytes are mentioned. A few considerations regarding the future prospects are pointed.

  14. Formation of anodic layers on InAs (111)III. Study of the chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Valisheva, N. A., E-mail: valisheva@thermo.isp.nsc.ru; Tereshchenko, O. E. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Prosvirin, I. P.; Kalinkin, A. V. [Russian Academy of Sciences, Boreskov Institute of Catalysis, Siberian Branch (Russian Federation); Goljashov, V. A. [Novosibirsk State University (Russian Federation); Levtzova, T. A. [Russian Academy of Sciences, Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Bukhtiyarov, V. I. [Russian Academy of Sciences, Boreskov Institute of Catalysis, Siberian Branch (Russian Federation)

    2012-04-15

    The chemical composition of {approx}20-nm-thick anodic layers grown on InAs (111)III in alkaline and acid electrolytes containing or not containing NH{sub 4}F is studied by X-ray photoelectron spectroscopy. It is shown that the composition of fluorinated layers is controlled by the relation between the concentrations of fluorine and hydroxide ions in the electrolyte and by diffusion processes in the growing layer. Fluorine accumulates at the (anodic layer)/InAs interface. Oxidation of InAs in an acid electrolyte with a low oxygen content and a high NH{sub 4}F content brings about the formation of anodic layers with a high content of fluorine and elemental arsenic and the formation of an oxygen-free InF{sub x}/InAs interface. Fluorinated layers grown in an alkaline electrolyte with a high content of O{sup 2-} and/or OH{sup -} groups contain approximately three times less fluorine and consist of indium and arsenic oxyfluorides. No distinction between the compositions of the layers grown in both types of fluorine-free electrolytes is established.

  15. Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte

    Science.gov (United States)

    Yang, S.; Aoki, Y.; Habazaki, H.

    2011-07-01

    Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm -3 K 2HPO 4 and 0.2 mol dm -3 K 3PO 4 in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.

  16. Physical properties of a new Deep Eutectic Solvent based on lithium bis[(trifluoromethyl)sulfonyl]imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors

    International Nuclear Information System (INIS)

    Boisset, Aurélien; Jacquemin, Johan; Anouti, Mérièm

    2013-01-01

    Highlights: • Preparation of new Deep Eutectic Solvent (DES) based on N-methylacetamide and TFSI. • Characterization of conductivity, viscosity and thermal properties of DES. • DES presents a superionic character in Walden classification. • DES is suitable electrolyte for lithium ion batteries and electric double layer capacitors. -- Abstract: Herein we present a study on the physical/chemical properties of a new Deep Eutectic Solvent (DES) based on N-methylacetamide (MAc) and lithium bis[(trifluoromethyl)sulfonyl]imide (LiTFSI). Due to its interesting properties, such as wide liquid-phase range from −60 °C to 280 °C, low vapor pressure, and high ionic conductivity up to 28.4 mS cm −1 at 150 °C and at x LiTFSI = 1/4, this solution can be practically used as electrolyte for electrochemical storage systems such as electric double-layer capacitors (EDLCs) and/or lithium ion batteries (LiBs). Firstly, relationships between its transport properties (conductivity and viscosity) as a function of composition and temperature were discussed through Arrhenius’ Law and Vogel–Tamman–Fulcher (VTF) equations, as well as by using the Walden classification. From this investigation, it appears that this complex electrolyte possesses a number of excellent transport properties, like a superionic character for example. Based on which, we then evaluated its electrochemical performances as electrolyte for EDLCs and LiBs applications by using activated carbon (AC) and lithium iron phosphate (LiFePO 4 ) electrodes, respectively. These results demonstrate that this electrolyte has a good compatibility with both electrodes (AC and LiFePO 4 ) in each testing cell driven also by excellent electrochemical properties in specific capacitance, rate and cycling performances, indicating that the LiTFSI/MAc DES can be a promising electrolyte for EDLCs and LiBs applications especially for those requiring high safety and stability

  17. Influence of starting precursors and synthesis methods on the physiochemical properties of zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Gaydhankar, T.R., E-mail: tr.gaydhankar@ncl.res.in [Catalysis Division, National Chemical Laboratory, Pune 411008 (India); Jha, R.K. [Catalysis Division, National Chemical Laboratory, Pune 411008 (India); Nikalje, M.D. [Department of Chemistry, University of Pune, Pune 411 007 (India); Waghmare, K.J. [Catalysis Division, National Chemical Laboratory, Pune 411008 (India)

    2014-07-01

    Graphical abstract: Crystallite size of tetragonal phase of the zirconia samples prepared using different synthesis parameters and precursors as a function of calcination temperature. Surface area values of the zirconia samples calcined at 500 and 700 °C are in given brackets. - Highlights: • Zirconia prepared with modified sol–gel method is less stable compared with zirconia prepared by precipitation method. • Optimized synthesis conditions shifted the glow exotherm to higher temperature range indicating better thermal stability. • Tetragonal-zirconia could be synthesized in cost-effective manner using zirconium oxy-nitrate. • In our studies no co-relation between the surface area and crystallite size was observed. - Abstract: Under identical and judiciously pre-optimized synthesis conditions, the influence of different combinations of zirconium sources and/or post treatment conditions on structural properties, thermal stability, phase composition and morphology of zirconia has been investigated. High surface area tetragonal zirconia could be synthesized in a cost-effective manner from 1 M solution of zirconium oxy-nitrate at pH 11 using aqueous ammonia solution as a precipitant when calcined at 400 °C for 3 h. Irrespective of the preparation method, pH and starting precursor, zirconia samples prepared without digestion contained dominant monoclinic phase with some traces of tetragonal phase when calcined at 700 °C. Even though there is linear decrease in surface area with increase in the crystallite size for each sample as a function of calcination temperature, no co-relation between the surface area and crystallite size could be achieved. SEM images show agglomerated and irregular shape particles between 10 to 20 μm.

  18. Densification of zirconia-hematite nanopowders

    NARCIS (Netherlands)

    Raming, T.P.; Winnubst, Aloysius J.A.; van Zyl, W.E.; Verweij, H.

    2003-01-01

    The densification of dual-phase yttria-doped tetragonal zirconia polycrystals (Y-TZP) and -Fe2O3 (hematite) composite powders is described. Different powder synthesis methods, different forms of dry compaction processes, and two sinter methods (pressureless sintering and sinterforging) were

  19. In vitro fracture resistance of three commercially available zirconia crowns for primary molars.

    Science.gov (United States)

    Townsend, Janice A; Knoell, Patrick; Yu, Qingzhao; Zhang, Jian-Feng; Wang, Yapin; Zhu, Han; Beattie, Sean; Xu, Xiaoming

    2014-01-01

    The purpose of this study was to measure the fracture resistance of primary mandibular first molar zirconia crowns from three different manufacturers-EZ Pedo (EZP), NuSmile (NSZ), and Kinder Krowns (KK)-and compare it with the thickness of the zirconia crowns and the measured fracture resistance of preveneered stainless steel crowns (SSCs). The thickness of 20 zirconia crowns from three manufacturers were measured. The mean force required to fracture the crowns was determined. Preveneered NuSmile (NSW) SSCs were tested as a control. EZP crowns were significantly thicker in three of the six measured locations. The force required to fracture the EZP crown was significantly higher than that required for NSZ and KK. There was a positive correlation between fracture resistance and crown thickness in the mesial, distal, mesioocclusal, and distoocclusal dimensions. None of the zirconia crowns proved to be as resistant to fracture as the preveneered SSCs. Statistically significant differences were found among the forces required to fracture zirconia crowns by three different manufacturers. The increase in force correlated with crown thickness. The forces required to fracture the preveneered stainless steel crowns were greater than the forces required to fracture all manufacturers' zirconia crowns.

  20. Significant improvement of the osseointegration of zirconia dental implants by HS-LEIS analysis

    International Nuclear Information System (INIS)

    Beekmans, H.; Breitenstein, D.; Brongersma, H.H.; Ridder, M. de; Tromp, Th.J.

    2010-01-01

    The use of sintered yttria stabilized zirconia dental implants is a recent development. After initial successes with these new implants a pattern of erratic results emerged. Reliable osseointegration would not always occur. High-sensitivity low energy ion scattering (HS-LEIS) is used to investigate both virgin and rejected implants. The surfaces of the implant are found to be covered with both an organic and inorganic contamination layer. Sterilization does not remove this contamination. Using LEIS as analytic tool a new cleaning process has been developed. Since this cleaning process is in use, the failure rate has dropped to a very low value.

  1. Effect of Polishing Systems on Surface Roughness and Topography of Monolithic Zirconia.

    Science.gov (United States)

    Goo, C L; Yap, Auj; Tan, Kbc; Fawzy, A S

    2016-01-01

    This study evaluated the effect of different chairside polishing systems on the surface roughness and topography of monolithic zirconia. Thirty-five monolithic zirconia specimens (Lava PLUS, 3M ESPE) were fabricated and divided into five groups of seven and polished with the following: Group 1 (WZ)-Dura white stone followed by Shofu zirconia polishing kit; Group 2 (SZ)-Shofu zirconia polishing kit; Group 3 (CE)-Ceramiste porcelain polishers; Group 4 (CM)-Ceramaster porcelain polishers; and Group 5 (KZ)-Komet ZR zirconia polishers. All specimens were ground with a fine-grit diamond bur prior to polishing procedures to simulate clinical finishing. Baseline and post-polishing profilometric readings were recorded and delta Ra values (difference in mean surface roughness before and after polishing) were computed and analyzed using one-way analysis of variance and Scheffe post hoc test (pSEM) images of the ground but unpolished and polished specimens were acquired. Delta Ra values ranged from 0.146 for CE to 0.400 for KZ. Delta Ra values for KZ, WZ, and SZ were significantly greater than for CE. Significant differences in delta Ra values were also observed between KZ and CM. The SEM images obtained were consistent with the profilometric findings. Diamond-impregnated polishing systems were more effective than silica carbide-impregnated ones in reducing the surface roughness of ground monolithic zirconia.

  2. Influence of Zirconia on Hydroxyapatite Coating on Ti-Alloy by Laser Cladding

    Institute of Scientific and Technical Information of China (English)

    杜海燕; 霍伟荣; 高海; 王丽娟; 邱世鹏; 刘家臣

    2003-01-01

    Coating titanium alloy with the bioceramic material hydroxyapatite(HAP) has been used to improve the poor osteoinductive properties of pure titanium alloy. But in clinical applications, the mechanical failure of HAP-coated titanium alloy implant suffered at the interface of the HAP coatings and titanium alloy substrate will be a potential weakness in prosthesis. Yttria-stablized zirconia (YSZ) is expected to enhance the mechanical properties of the HAP coating and reduce the coefficient of thermal expansion difference between the coated layer and the substrate. These may reinforce the bonding strength between the coatings and the substrate. In this paper, HAP/YSZ composite coatings were cladded by laser. The effects of zirconia on the microstructure, mechanical properties and formation of tricalcium phosphate (TCP, Ca3(PO4)2) of the HAP/YSZ composite coatings were evaluated. XRD, SEM and TEM were used to investigate the phase composition, microstructure and morphology of the coatings. The experimental results showed that adding YSZ in coatings was favorable to the composition and stability of HAP, and to the improvement of the adhesion strength, microhardness and microtoughness. A well uniform, crack-free coating of HAP/YSZ composites was formed on Ti-alloy substrate by laser cladding.

  3. Surface modification of steels by electrical discharge treatment in electrolyte

    International Nuclear Information System (INIS)

    Krastev, D.; Paunov, V.; Yordanov, B.; Lazarova, V.

    2013-01-01

    Full text: In this work are discussed some experimental data about the influence of applied electrical discharge treatment in electrolyte on the surface structure of steels. The electrical discharge treatment of steel surface in electrolyte gives a modified structure with specific combination of characteristics in result of nonequilibrium transformations. The modification goes by a high energy thermal process in a very small volume on the metallic surface involving melting, vaporisation, activation and alloying in electrical discharges, and after that cooling of this surface with high rate in the electrolyte. The surface layers obtain a different structure in comparison with the metal matrix and are with higher hardness, wear resistance and corrosion resistance. key words: surface modification, electrical discharge treatment in electrolyte, steels

  4. Operating a redox flow battery with a negative electrolyte imbalance

    Science.gov (United States)

    Pham, Quoc; Chang, On; Durairaj, Sumitha

    2015-03-31

    Loss of flow battery electrode catalyst layers during self-discharge or charge reversal may be prevented by establishing and maintaining a negative electrolyte imbalance during at least parts of a flow battery's operation. Negative imbalance may be established and/or maintained actively, passively or both. Actively establishing a negative imbalance may involve detecting an imbalance that is less negative than a desired threshold, and processing one or both electrolytes until the imbalance reaches a desired negative level. Negative imbalance may be effectively established and maintained passively within a cell by constructing a cell with a negative electrode chamber that is larger than the cell's positive electrode chamber, thereby providing a larger quantity of negative electrolyte for reaction with positive electrolyte.

  5. Long-Term Effects on Graphene Supercapacitors of Using a Zirconia Bowl and Zirconia Balls for Ball-Mill mixing of Active Materials

    Science.gov (United States)

    Song, Dae-Hoon; Kim, Jin-Young; Kahng, Yung Ho; Cho, Hoonsung; Kim, Eung-Sam

    2018-04-01

    Improving the energy storage performance of supercapacitor electrodes based on reduced graphene oxide (RGO) is one of the main subjects in this research field. However, when a zirconia bowl and zirconia balls were used for ball-mill mixing of the active materials for RGO supercapacitors, the energy storage performance deteriorated over time. Our study revealed that the source of the problem was the inclusion of zirconia bits from abrasion of the bowl and the balls during the ballmill mixing, which increased during a period of 1 year. We probed two solutions to this problem: 1) hydrofluoric (HF) acid treatment of the RGO supercapacitors and 2) use of a tempered steel bowl and tempered steel balls for the mixing. For both cases, the energy storage performance was restored to near the initial level, showing a specific capacitance ( C sp ) of 200 F/g. Our results should lead to progress in research on RGO supercapacitors.

  6. Methods for using atomic layer deposition to produce a film for solid state electrolytes and protective electrode coatings for lithium batteries

    Science.gov (United States)

    Elam, Jeffrey W.; Meng, Xiangbo

    2018-03-13

    A method for using atomic layer deposition to produce a film configured for use in an anode, cathode, or solid state electrolyte of a lithium-ion battery or a lithium-sulfur battery. The method includes repeating a cycle for a predetermined number of times in an inert atmosphere. The cycle includes exposing a substrate to a first precursor, purging the substrate with inert gas, exposing the substrate to a second precursor, and purging the substrate with inert gas. The film is a metal sulfide.

  7. The Influence of Carbonate Ions on the Structure of the Electrical Double Layer at the Interface of Hydroxyapatite/Electrolyte Solution

    Directory of Open Access Journals (Sweden)

    Ewa SKWAREK

    2016-05-01

    Full Text Available The aim of the work was to investigate the changes in the double electrical layer at the hydroxyapatite containing different amount of carbonate ions/electrolyte solution. Besides, the main properties of the edl (electrical double layer, i.e. surface charge density and zeta potential were determined by electrophoresis measurements and potentiometer titration, respectively. The synthesized adsorbents were characterized by the following methods: X-ray diffraction, FTIR (Fourier Transform Infrared Spectroscopy, adsorption and desorption of nitrogen and scanning electron microscopy. The analyzed samples had different structures and particle sizes. It was proved that increase in the carbonate groups content is connected with the decrease of apatite grain sizes and crystallinity reduction. The characteristic parameters of the electric double layer were also different: pHpzc (point zero of charge of hydroxyapatite was 6.5 whereas for carbonate apatite was higher – pHpzc = 8. In both cases determination of precise pHIEP (isoelectric point was not possible but it is known that its value is lower than 4.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.7817

  8. Chemical Passivation of Li(exp +)-Conducting Solid Electrolytes

    Science.gov (United States)

    West, William; Whitacre, Jay; Lim, James

    2008-01-01

    Plates of a solid electrolyte that exhibits high conductivity for positive lithium ions can now be passivated to prevent them from reacting with metallic lithium. Such passivation could enable the construction and operation of high-performance, long-life lithium-based rechargeable electrochemical cells containing metallic lithium anodes. The advantage of this approach, in comparison with a possible alternative approach utilizing lithium-ion graphitic anodes, is that metallic lithium anodes could afford significantly greater energy-storage densities. A major impediment to the development of such cells has been the fact that the available solid electrolytes having the requisite high Li(exp +)-ion conductivity are too highly chemically reactive with metallic lithium to be useful, while those solid electrolytes that do not react excessively with metallic lithium have conductivities too low to be useful. The present passivation method exploits the best features of both extremes of the solid-electrolyte spectrum. The basic idea is to coat a higher-conductivity, higher-reactivity solid electrolyte with a lower-conductivity, lower-reactivity solid electrolyte. One can then safely deposit metallic lithium in contact with the lower-reactivity solid electrolyte without incurring the undesired chemical reactions. The thickness of the lower-reactivity electrolyte must be great enough to afford the desired passivation but not so great as to contribute excessively to the electrical resistance of the cell. The feasibility of this method was demonstrated in experiments on plates of a commercial high-performance solid Li(exp +)- conducting electrolyte. Lithium phosphorous oxynitride (LiPON) was the solid electrolyte used for passivation. LiPON-coated solid-electrolyte plates were found to support electrochemical plating and stripping of Li metal. The electrical resistance contributed by the LiPON layers were found to be small relative to overall cell impedances.

  9. Trial production and characterisation of fully calcia-stabilised zirconia

    International Nuclear Information System (INIS)

    George, A.M.; Karkhanavala, M.D.

    1980-01-01

    A process for manufacture of stabilized zirconia powder has been developed. The process is quite versatile since stabilization is achieved at relatively low temperatures (950deg - 1000deg C) and can be used for manufacture of either fully or partially calcia-stabilized zirconia. A 100 Kg trial batch of fully stabilized zirconia powder was produced accordingly at the Indian Rare Earths Ltd. plant and its characteristics were evaluated by XRD, microscopy, surface area and density measurements. The powder on firing at 1400deg C showed considerable volume shrinkage, as expected. On manually compacting with a phosphatic binder and firing for 8-10 hrs at 1300deg-1400deg C sintered shapes having bulk densities around 80-85% T.D. are easily obtained. Details of the measurements and the prospective industrial applications of the material are discussed. (auth.)

  10. Zirconia- versus metal-based, implant-supported abutments and crowns

    DEFF Research Database (Denmark)

    Hosseini, Mandana

    , the selection of restoration materials should be based on proper optical characteristics in addition to biocompatibility and sufficient strength of materials. Abutments and crowns based on zirconia are one of the most recent alternatives to metal abutments and metal-ceramic crowns. To date, only few comparative...... and to estimate long-term biomechanical results of zirconia-based versus metal-based restorations. The aim of study I was to analyse the mode of fracture and number of cyclic loadings until veneering fracture of zirconia-based all-ceramic restorations compared to metal-ceramic restorations. The aim of study II...... was to test the reliability and validity of six aesthetic parameters used at the Copenhagen Dental School to assess the aesthetic outcome of implant-supported restorations. The aims of study III and IV were to compare the influence of different abutment and crown materials on biological, biomechanical...

  11. Stable lithium electrodeposition in salt-reinforced electrolytes

    KAUST Repository

    Lu, Yingying

    2015-04-01

    © 2015 Elsevier B.V. Development of high-energy lithium-based batteries that are safe remains a challenge due to the non-uniform lithium electrodeposition during repeated charge and discharge cycles. We report on the effectiveness of lithium bromide (LiBr) salt additives in a common liquid electrolyte (i.e. propylene carbonate (PC)) on the stability of lithium electrodeposition. From galvanostatic cycling measurements, we find that the presence of LiBr in PC provides more than 20-fold enhancement in cell lifetime over the control LiTFSI/PC electrolyte. Batteries containing 30 mol% LiBr additive in the electrolytes are able to cycle stably for at least 1.8 months with no observations of cell failure. From galvanostatic polarization measurements, an electrolyte containing 30 mol% LiBr shows a maximum improvement in lifetime. The formation of uneven lithium electrodeposits is significantly suppressed by the Br-containing SEI layers, evidenced by impedance spectra, post-mortem SEM and XPS analyses. The study also concludes that good solubility of halogenated salts is not necessary for achieving the observed improvements in cell lifetime.

  12. Aspects of industrial production of solid electrolyte fuel cells (SOFC) by thermal spraying technology; Aspekte industrieller Fertigung von Festelektrolyt-Brennstoffzellen (SOFC) mittels thermischer Beschichtungsverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Weckmann, Hannes

    2010-07-01

    The present thesis deals with measures to optimize the large-volume production of Solid Oxide Fuel Cells (SOFC) based on thermal spraying technology. Based on the well-established Vacuum Plasma Spraying (VPS) at DLR the potential of alternative thermal spraying techniques as well as alternative base materials was investigated in order to deposit SOFC-anode, electrolyte and insulating layers. Production costs, reproducibility and long-term stability of the production process as well as the fuel cell performance were major target criteria. Depending on the parameter set applied when using the cost efficient Atmospheric Plasma Spraying (APS) in combination with Nickel-Graphite as base material a significant improvement of gas permeability and electrical conductivity was achieved in comparison to the VPS sprayed reference anode. The power density of a fuel cell with an APS-Nickel-Graphite anode (184 mW/cm{sup 2}) was slightly better than the performance with a VPS reference anode (159 mW/cm{sup 2}). In comparison to the VPS process, ceramic electrolyte layers of fully stabilized Zirconia (YSZ) with significantly higher gas tightness could be demonstrated when high energy processes such as Low Pressure Plasma Spraying (LPPS). Thin-film Low Pressure Plasma Spraying (LPPS-Thin-film) and High Velocity Oxy Fuel Spraying (HVOF) were applied. The power density of a fuel cell equipped with an HVOF electrolyte was significantly improved to 234 mW/cm{sup 2} as compared to 187 mW/cm{sup 2} with the VPS sprayed reference cell. Further improvement of the power density was achieved with an LPPS-electrolyte (273 mW/cm{sup 2}). HVOF and VPS sprayed layers of pure Spinel in composite with metallic active braze (equivalent to the sealing between individual layers in the fuel cell stack) could exceed the demanded charge transfer resistance of >1 k{omega}cm{sup 2} at 800 C operating temperature only in few cases. When blended base powder of Spinel and Magnesia in combination with the VPS

  13. Zirconia toughened mica glass ceramics for dental restorations.

    Science.gov (United States)

    Gali, Sivaranjani; K, Ravikumar; Murthy, B V S; Basu, Bikramjit

    2018-03-01

    The objective of the present study is to understand the role of yttria stabilized zirconia (YSZ) in achieving the desired spectrum of clinically relevant mechanical properties (hardness, elastic modulus, fracture toughness and brittleness index) and chemical solubility of mica glass ceramics. The glass-zirconia mixtures with varying amounts of YSZ (0, 5, 10, 15 and 20wt.%) were ball milled, compacted and sintered to obtain pellets of glass ceramic-YSZ composites. Phase analysis was carried out using X-ray diffraction and microstructural characterization with SEM revealed the crystal morphology of the composites. Mechanical properties such as Vickers hardness, elastic modulus, indentation fracture toughness and chemical solubility were assessed. Phase analysis of sintered pellets of glass ceramic-YSZ composites revealed the characteristic peaks of fluorophlogopite (FPP) and tetragonal zirconia. Microstructural investigation showed plate and lath-like interlocking mica crystals with embedded zirconia. Vickers hardness of 9.2GPa, elastic modulus of 125GPa, indentation toughness of 3.6MPa·m 1/2 , and chemical solubility of 30μg/cm 2 (well below the permissible limit) were recorded with mica glass ceramics containing 20wt.% YSZ. An increase in hardness and toughness of the glass ceramic-YSZ composites with no compromise on their brittleness index and chemical solubility has been observed. Such spectrum of properties can be utilised for developing a machinable ceramic for low stress bearing inlays, onlays and veneers. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Zirconia crowns for rehabilitation of decayed primary incisors: an esthetic alternative.

    Science.gov (United States)

    Ashima, G; Sarabjot, K Bhatia; Gauba, K; Mittal, H C

    2014-01-01

    Esthetic management of extensively decayed primary maxillary anterior teeth requiring full coronal coverage restoration is usually challenging to the pediatric dentists especially in very young children. Many esthetic options have been tried over the years each having its own advantages, disadvantages and associated technical, functional or esthetic limitations. Zirconia crowns have provided a treatment alternative to address the esthetic concerns and ease of placement of extra-coronal restorations on primary anterior teeth. The present article presents a case where grossly decayed maxillary primary incisors were restored esthetically and functionally with ready made zirconia crowns (ZIRKIZ, HASS Corp; Korea). After endodontic treatment the decayed teeth were restored with zirconia crowns. Over a 30 months period, the crowns have demonstrated good retention and esthetic results. Dealing with esthetic needs in children with extensive loss of tooth structure, using Zirconia crowns would be practical and successful. The treatment described is simple and effective and represents a promising alternative for rehabilitation of decayed primary teeth.

  15. Performance of electrical double layer capacitors fabricated with gel polymer electrolytes containing Li+ and K+-salts: A comparison

    International Nuclear Information System (INIS)

    Singh, Manoj K.; Hashmi, S. A.

    2015-01-01

    The comparative performance of the solid-state electrical double layer capacitors (EDLCs) based on the multiwalled carbon nanotube (MWCNT) electrodes and poly (vinaylidinefluoride-co-hexafluoropropyline) (PVdF-HFP) based gel polymer electrolytes (GPEs) containing potassium and lithium salts have been studied. The room temperature ionic conductivity of the GPEs have been found to be ∼3.8×10 −3 and 5.9×10 −3 S cm −1 for lithium and potassium based systems. The performance of EDLC cells studied by impedance spectroscopy, cyclic voltammetry and constant current charge-discharge techniques, indicate that the EDLC with potassium salt containing GPE shows excellent performance almost equivalent to the EDLC with Li-salt-based GPE

  16. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  17. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  18. Effect of electrolyte temperature on the formation of self-organized anodic niobium oxide microcones in hot phosphate-glycerol electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.; Aoki, Y. [Division of Materials Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Habazaki, H., E-mail: habazaki@eng.hokudai.ac.jp [Division of Materials Chemistry, Faculty of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)

    2011-07-15

    Nanoporous niobium oxide films with microcone-type surface morphology were formed by anodizing at 10 V in glycerol electrolyte containing 0.6 mol dm{sup -3} K{sub 2}HPO{sub 4} and 0.2 mol dm{sup -3} K{sub 3}PO{sub 4} in a temperature range of 428-453 K. The microcones appeared after prolonged anodizing, but the required time was largely reduced by increasing electrolyte temperature. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodizing. The anodic oxide microcones, which were crystalline, appeared on surface as a consequence of preferential chemical dissolution of initially formed amorphous oxide. The chemical dissolution of an initially formed amorphous layer was accelerated by increasing the electrolyte temperature, with negligible influence of the temperature on the morphology of microcones up to 448 K.

  19. Zirconia thin film preparation by wet chemical methods at low temperature

    NARCIS (Netherlands)

    Popovici, M.; Graaf, de J.; Verschuuren, M.A.; Graat, P.C.J.; Verheijen, M.A.

    2010-01-01

    In this study the preparation of zirconia thin films with a high refractive index at low temperature is aimed for. Two non-hydrolytic type approaches of wet chemical synthesis are presented. Both by sol–gel and colloid chemistry, highly transmissive, smooth thin films of zirconia cubic and/or

  20. Synthesis and characterization of novel electrolyte materials for intermediate temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Chaubey, Nityanand; Chattopadhyaya, M.C.; Wani, B.N.; Bharadwaj, S.R.

    2008-01-01

    The high operating temperature of SOFCs using zirconia based electrolyte have several restrictions on materials used as interconnect and sealing and also requires use of expensive ceramics. Lowering the operating temperature of SOFCs to 600-800 deg C will enable to use cheaper materials and reduce the cost of fabrication while keeping the high power density. Lanthanide gallates are considered to be very promising solid electrolytes for intermediate temperature (600-800 deg C) solid oxide fuel cells (IT-SOFCs) due to their high ionic conductivity at lower temperatures. Phase purity of this material is a concern for the researchers for a long time. These materials are prepared at very high temperature (∼1400 deg C), since it is known that at around 1100 deg C, solubilities of Sr and Mg in LaGaO 3 were close to zero. Hence in the present work perovskite oxides of Ln 1-x Sr x Ga 1-y Mg y O 3-δ (Ln= Sm, Gd and x = 0.10, y=0.20) have been prepared by different methods i.e. solid state reaction, gel combustion and co-precipitation methods

  1. Zirconia Dental Implants: Investigation of Clinical Parameters, Patient Satisfaction, and Microbial Contamination.

    Science.gov (United States)

    Holländer, Jens; Lorenz, Jonas; Stübinger, Stefan; Hölscher, Werner; Heidemann, Detlef; Ghanaati, Shahram; Sader, Robert

    2016-01-01

    In recent years, dental implants made from zirconia have been further developed and are considered a reliable treatment method for replacing missing teeth. The aim of this study was to analyze dental implants made from zirconia regarding their clinical performance compared with natural teeth (control). One hundred six zirconia implants in 38 adults were analyzed in a clinical study after 1 year of loading. The plaque index (PI), bleeding on probing (BOP), probing pocket depth (PPD), probing attachment level (PAL), and creeping or recession (CR/REC) of the gingiva were detected and compared with natural control teeth (CT). Furthermore, the papilla index (PAP), Periotest values (PTV), microbial colonization of the implant/dental sulcus fluid, and patient satisfaction were assessed. The survival rate was 100%. No statistical significance was observed between implants and teeth regarding BOP, PPD, and PAL. A statistical significance was detected regarding PI and CR/REC with significantly less plaque accumulation and recession in the study group. Mean PAP was 1.76 ± 0.55, whereas the mean PTV was -1.31 ± 2.24 (range from -5 to +6). A non-statistically significant higher colonization of periodontitis/peri-implantitis bacteria was observed in the implant group. The questionnaire showed that the majority of the patients were satisfied with the overall treatment. One-piece zirconia dental implants exhibited similar clinical results (BOP, PPD, and PAL) compared with natural teeth in regard to adhesion of plaque (PI) and creeping attachment (CR/REC); zirconia implants performed even better. The favorable results for PAL and CR/REC reflect the comparable low affinity of zirconia for plaque adhesion. Patient satisfaction indicated a high level of acceptance for zirconia implants. However, a long-term follow-up is needed to support these findings.

  2. Grinding model and material removal mechanism of medical nanometer zirconia ceramics.

    Science.gov (United States)

    Zhang, Dongkun; Li, Changhe; Jia, Dongzhou; Wang, Sheng; Li, Runze; Qi, Xiaoxiao

    2014-01-01

    Many patents have been devoted to developing medical nanometer zirconia ceramic grinding techniques that can significantly improve both workpiece surface integrity and grinding quality. Among these patents is a process for preparing ceramic dental implants with a surface for improving osseo-integration by sand abrasive finishing under a jet pressure of 1.5 bar to 8.0 bar and with a grain size of 30 µm to 250 µm. Compared with other materials, nano-zirconia ceramics exhibit unmatched biomedical performance and excellent mechanical properties as medical bone tissue and dentures. The removal mechanism of nano-zirconia materials includes brittle fracture and plastic removal. Brittle fracture involves crack formation, extension, peeling, and chipping to completely remove debris. Plastic removal is similar to chip formation in metal grinding, including rubbing, ploughing, and the formation of grinding debris. The materials are removed in shearing and chipping. During brittle fracture, the grinding-led transverse and radial extension of cracks further generate local peeling of blocks of the material. In material peeling and removal, the mechanical strength and surface quality of the workpiece are also greatly reduced because of crack extension. When grinding occurs in the plastic region, plastic removal is performed, and surface grinding does not generate grinding fissures and surface fracture, producing clinically satisfactory grinding quality. With certain grinding conditions, medical nanometer zirconia ceramics can be removed through plastic flow in ductile regime. In this study, we analyzed the critical conditions for the transfer of brittle and plastic removal in nano-zirconia ceramic grinding as well as the high-quality surface grinding of medical nanometer zirconia ceramics by ELID grinding.

  3. Influence of incorporation method of sulfated zirconia in MCM-41 molecular sieve

    International Nuclear Information System (INIS)

    Pereira, C.E.; Santos, J.S.B.; Cavalcante, J.N.A.; Andrade, M.R.A.; Sousa, B.V.

    2016-01-01

    Sulfated metal oxides and sulfated zirconia have attracted great attention in recent years due to its high catalytic activity. The sulfated zirconia has the function of assigning the acidic material, through the formation of Bronsted acids and Lewis sites. The incorporation of sulfated zirconia in MCM-41 molecular sieve was carried out through the techniques: dry and wet. The wet process involves the use of an excess of solution on the volume of the support pores. Therefore, the concentration of the metal precursor on the support depends on the solution concentration and the pore volume of the support. In the process of incorporating by dry, the volume of the solution containing the precursor does not exceed the pore volume of the support. After either procedure, the impregnated support must be dried in order to allow the precursor compound can be converted into a catalytically active phase. This study aims to evaluate two methods of incorporation of sulfated zirconia in the mesoporous molecular sieve MCM-41. The process of merger took for wet and dry impregnation. Through the XRD patterns it was possible to identify the presence of the hexagonal structure of the molecular sieve, as well as the tetragonal and monoclinic phases of zirconia. From the spectroscopic analysis in the infrared region to the method the wet, it was possible to identify the vibrational frequencies related to the merger of sulfated zirconia in the MCM-41 structure of the molecular sieve. (author)

  4. Dual jaw treatment of edentulism using implant-supported monolithic zirconia fixed prostheses.

    Science.gov (United States)

    Altarawneh, Sandra; Limmer, Bryan; Reside, Glenn J; Cooper, Lyndon

    2015-01-01

    This case report describes restoration of the edentulous maxilla and mandible with implant supported fixed prostheses using monolithic zirconia, where the incisal edges and occluding surfaces were made of monolithic zirconia. Edentulism is a debilitating condition that can be treated with either a removable or fixed dental prosthesis. The most common type of implant-supported fixed prosthesis is the metal acrylic (hybrid), with ceramo-metal prostheses being used less commonly in complete edentulism. However, both of these prostheses designs are associated with reported complications of screw loosening or fracture and chipping of acrylic resin and porcelain. Monolithic zirconia implant-supported fixed prostheses have the potential for reduction of such complications. In this case, the CAD/CAM concept was utilized in fabrication of maxillary and mandibular screw-retained implant-supported fixed prostheses using monolithic zirconia. Proper treatment planning and execution coupled with utilizing advanced technologies contributes to highly esthetic results. However, long-term studies are required to guarantee a satisfactory long-term outcome of this modality of treatment. This case report describes the clinical and technical procedures involved in fabrication of maxillary and mandibular implant-supported fixed prostheses using monolithic zirconia as a treatment of edentulism, and proposes the possible advantages associated with using monolithic zirconia in eliminating dissimilar interfaces in such prostheses that are accountable for the most commonly occurring technical complication for these prostheses being chipping and fracture of the veneering material. © 2015 Wiley Periodicals, Inc.

  5. Backscatter factor and absorption ratio of fibrous zirconia media in the visible

    International Nuclear Information System (INIS)

    Njomo, Donatien; Tagne, Herve Thierry Kamdem

    2001-11-01

    Fibrous thermal insulations are widely used to conserve energy in ambient to high temperature applications including buildings, solar collectors, heat exchangers, furnaces and thermal protection systems of reusable launch vehicles. It has long been recognised that zirconia has the lowest thermal conductivity of commercial refractories. The thermal conductivity of a zirconia fibrous medium is strongly dependent of its bulk density; high bulk densities of zirconia fibers provide the most effective insulation at high temperatures. Lee's theory for radiative transfer through fibrous media is used in this paper. The two-flux model is applied to determine the backward and forward parameters of a medium of zirconia fibers oriented in parallel planes. Theoretical calculations of the backscatter factor and absorption ratio of this medium are carried out in the visible spectrum for different size parameters of the fibers and for three different temperatures. Our results show that the backscatter factor of zirconia fibrous insulations is maximum, and therefore the heat transfer by the fibrous medium is the lowest, for a size parameter of 0.45 for all the temperatures studied. We also observed that the backscatter factor decreases with increasing temperature. (author)

  6. Tungstophosphoric acid supported onto hydrous zirconia ...

    Indian Academy of Sciences (India)

    Unknown

    Hydrous zirconia; heteropolyacid; morphology; particle size; acidity. 1. Introduction. Catalysis by .... chemisorbed on the sample in every pulse was detected by a thermal ..... qualitative organic analysis (New York: Longman), Ch. 3,. 4th ed.

  7. Improved performance of diatomite-based dental nanocomposite ceramics using layer-by-layer assembly

    Directory of Open Access Journals (Sweden)

    Lu X

    2012-04-01

    Full Text Available Xiaoli Lu1,2, Yang Xia1, Mei Liu1, Yunzhu Qian3, Xuefeng Zhou4, Ning Gu4, Feimin Zhang1,41Institute of Stomatology, Nanjing Medical University, Nanjing, 2Nantong Stomatological Hospital, Nantong, 3Center of Stomatology, The Second Affiliated Hospital of Suzhou University, Suzhou, 4Suzhou Institute, Southeast University, Suzhou, People's Republic of ChinaAbstract: To fabricate high-strength diatomite-based ceramics for dental applications, the layer-by-layer technique was used to coat diatomite particles with cationic [poly(allylamine hydrochloride] and anionic [poly(sodium 4-styrenesulfonate] polymers to improve the dispersion and adsorption of positively charged nano-ZrO2 (zirconia as a reinforcing agent. The modified diatomite particles had reduced particle size, narrower size distribution, and were well dispersed, with good adsorption of nano-ZrO2. To determine the optimum addition levels for nano-ZrO2, ceramics containing 0, 20, 25, 30, and 35 wt% nano-ZrO2 were sintered and characterized by the three-point bending test and microhardness test. In addition to scanning electron microscopy, propagation phase-contrast synchrotron X-ray microtomography was used to examine the internal structure of the ceramics. The addition of 30 wt% nano-ZrO2 resulted in the highest flexural strength and fracture toughness with reduced porosity. Shear bond strength between the core and veneer of our diatomite ceramics and the most widely used dental ceramics were compared; the shear bond strength value for the diatomite-based ceramics was found to be significantly higher than for other groups (P < 0.05. Our results show that diatomite-based nanocomposite ceramics are good potential candidates for ceramic-based dental materials.Keywords: layer-by-layer, diatomite, nanoceramics, zirconia (ZrO2, dental materials

  8. Note: Electrochemical etching of cylindrical nanoprobes using a vibrating electrolyte

    International Nuclear Information System (INIS)

    Wang, Yufeng; Zeng, Yongbin; Qu, Ningsong; Zhu, Di

    2015-01-01

    An electrochemical etching process using a vibrating electrolyte of potassium hydroxide to prepare tungsten cylindrical nanotips is developed. The vibrating electrolyte eases the effects of a diffusion layer and extends the etching area, which aid in the production of cylindrical nanotips. Larger amplitudes and a vibration frequency of 35 Hz are recommended for producing cylindrical nanotips. Nanotips with a tip radius of approximately 43 nm and a conical angle of arctan 0.0216 are obtained

  9. Europium sorption on zirconia at elevated temperatures: experimental study and modeling

    International Nuclear Information System (INIS)

    Eglizaud, N.; Catalette, H.

    2005-01-01

    Full text of publication follows: Direct disposal of spent nuclear fuel in deep underground repository is being considered by several countries. The waste package maintains an elevated temperature for thousands of years. As sorption is one of the main phenomenon limiting the dispersion of radionuclides in the environment, it has to be studied at elevated temperatures. Zirconia is an oxide produced by cladding oxidation which is suspected in the near field of a nuclear repository. It then could possibly be in contact with waste elements as Europium (III), the sorption of which is therefore studied on zirconia. Experiments were performed by the batch method at a solid/liquid ratio of 10 g.L-1. The sorption edges were recorded in the pH-range from 2 to 10 at 2.10 -5 mol.L -1 Eu(NO 3 ) 3 (I = 0.1 mol.L -1 KNO 3 ). An over-pressure device in an autoclave with an incorporated filtering system allowed the experiments, carbonate free, at 25 deg. C, 50 deg. C, 80 deg. C, 120 deg. C and 150 deg. C and in situ pH measurements. Filtrates were analyzed by the ICP-AES method. Sorption isotherms show an increase in the sorption phenomenon when the temperature raises. The half sorption pH decreases from 7 at 25 deg. C to 3,6 at 150 deg. C. The distribution coefficients that were obtained at elevated temperatures enriched the databases of integrated performance assessment codes. Raw data were modeled with the surface complexation theory using the double layer model (DLM). Several possible surface complexes were examined and discussed, taking into account aqueous hydrolyzed and precipitated species of Europium. A good agreement between experimental values and modeled isotherms was found at all studied temperatures. Results were consistent with a bidentate complex formed by Europium (III) on the zirconia surface. Associated formation constants were then determined with the geochemical computer code CHESS. (authors)

  10. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    Energy Technology Data Exchange (ETDEWEB)

    Zain, Norhidayu Muhamad [Medical Devices and Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Kadir, Mohammed Rafiq Abdul, E-mail: rafiq@biomedical.utm.my [Medical Devices and Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2014-12-15

    Highlights: • Synthesis of functionalized yttria stabilized zirconia using polydopamine. • Improved hydrophilicity of the grafted samples with low contact angle of 44.0 ± 2.3. • Apatite layer with Ca/P ratio of 1.78 formed on the surface of the grafted samples. • Atomic percentage of Ca 2p increased by 2-fold at coating temperature of 37 °C. - Abstract: Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process.

  11. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    International Nuclear Information System (INIS)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Kadir, Mohammed Rafiq Abdul

    2014-01-01

    Highlights: • Synthesis of functionalized yttria stabilized zirconia using polydopamine. • Improved hydrophilicity of the grafted samples with low contact angle of 44.0 ± 2.3. • Apatite layer with Ca/P ratio of 1.78 formed on the surface of the grafted samples. • Atomic percentage of Ca 2p increased by 2-fold at coating temperature of 37 °C. - Abstract: Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process

  12. The effect of Al intermediate layer on thermal resistance of EB-PVD yttria-stabilized zirconia coatings on titanium substrate

    Science.gov (United States)

    Panin, Alexey; Panin, Victor; Kazachenok, Marina; Shugurov, Artur; Sinyakova, Elena; Martynov, Sergey; Rusyaev, Andrey; Kasterov, Artur

    2017-12-01

    The yttria-stabilized zirconia coatings sprayed on titanium substrates by the electron beam physical vapor deposition were subjected to thermal annealing in air at 1000°C for 1, 30 and 60 min. The delamination and fracture of the coatings are studied by the scanning electron microscopy and X-ray diffraction. It is shown that a magnetron sputtered Al interlayer between the coating and the substrate considerably improves the thermal resistance of ceramic coatings.

  13. Effect of zirconia content and powder processing mechanical properties of gelcasted ZTA composite

    International Nuclear Information System (INIS)

    Khoshkalam, M.; Faghihi-Sani, M.A.; Nojoomi, A.

    2013-01-01

    Addition of fine zirconia particles in the alumina matrix in order to produce ZTA composite is a well-known method for improving the mechanical properties of alumina ceramics such as flexural strength and fracture toughness. Increasing homogeneity and reducing alumina grain size are two key factors for achieving proper mechanical properties in this ceramic matrix composite. In this work two batches of ZTA powder precursor were prepared through mixing of alumina and zirconia by ball milling and in situ synthesis of ZTA composite via solution combustion method. The bending strength testing samples were fabricated through gel-casting process. The effects of different powder processing methods as well as zirconia contents on microstructural homogeneity and mechanical properties of ZTA composites were investigated. The samples produced by solution combustion synthesized powder yielded higher homogeneity, finer microstructure and higher flexural strength. Results showed an upswing in the fracture toughness for the synthesized samples even up to 20 vol% zirconia, while the mixed samples depicted optimum fracture toughness in 10 vol% zirconia content. (author)

  14. Modern trends in engineering ceramics: review of transformation toughening in zirconia based ceramics

    International Nuclear Information System (INIS)

    Khan, A.A.

    1998-01-01

    The investigation of zirconia has continued to attract the interest of ever increasing number of scientists and solid evidence of commercial applications for the engineering ceramic is now available. To use zirconia to its full potential, the properties of the oxide have been modified extensively by the addition of cubic stabilizing oxides. These can be added in amounts sufficient to form a partially stabilized zirconia (PSZ) or to form a fully stabilized zirconia, which has a cubic structure at room temperature. The addition of varying amounts of cubic oxides, particularly MgO, CaO, Y sub 2 O sub 3, has allowed the development of novel and innovative ceramic materials. In this article an overview of the recent advances in zirconia based engineering materials is presented. It is shown that intelligent control of the composition and microstructure can lead the the production of extremely though ceramic materials, a property which is generally thought to be the major weak point of ceramics vis a vis other class of materials. (author)

  15. The field theory of symmetrical layered electrolytic systems and the thermal Casimir effect

    International Nuclear Information System (INIS)

    Dean, D S; Horgan, R R

    2005-01-01

    We present a general extension of a field-theoretic approach developed in earlier papers to the calculation of the free energy of symmetrically layered electrolytic systems which is based on the sine-Gordon field theory for the Coulomb gas. The method is to construct the partition function in terms of the Feynman evolution kernel in the Euclidean time variable associated with the coordinate normal to the surfaces defining the layered structure. The theory is applicable to cylindrical systems and its development is motivated by the possibility that a static van der Waals or thermal Casimir force could provide an attractive force stabilizing a dielectric tube formed from a lipid bilayer, an example of which is provided by the t-tubules occurring in certain muscle cells. In this context, we apply the theory to the calculation of the thermal Casimir effect for a dielectric tube of radius R and thickness δ formed from such a membrane in water. In a grand canonical approach we find that the leading contribution to the Casimir energy behaves like -k B TLκ C /R which gives rise to an attractive force which tends to contract the tube radius. We find that κ C ∼0.3 for the case of typical lipid membrane t-tubules. We conclude that except in the case of a very soft membrane this force is insufficient to stabilize such tubes against the bending stress which tends to increase the radius. We briefly discuss the role of the lipid membrane reservoir implicit in the approach and whether its nature in biological systems may possibly lead to a stabilizing mechanism for such lipid tubes

  16. Electrochemical stability of organic electrolytes in supercapacitors: Spectroscopy and gas analysis of decomposition products

    Energy Technology Data Exchange (ETDEWEB)

    Kurzweil, P.; Chwistek, M. [University of Applied Sciences, Kaiser-Wilhelm-Ring 23, D-92224 Amberg (Germany)

    2008-02-01

    The fundamental aging mechanisms in double-layer capacitors based on alkylammonium electrolytes in acetonitrile were clarified for the first time. After abusive testing at cell voltages above 4 V, ultracapacitors cast out a crystalline mass of residual electrolyte, organic acids, acetamide, aromatics, and polymer compounds. The mixture could be reproduced by electrolysis. The decomposition products of active carbon electrodes and electrolyte solution after a heat treatment at 70 C were identified by infrared and ultraviolet spectroscopy, liquid and headspace GC-MS, thermogravimetric analysis, and X-ray diffraction. The alkylammonium cation is destroyed by the elimination of ethene. The fluoroborate anion works as source of fluoride and hydrogenfluoride, and boric acid derivates. Acetonitrile forms acetamide, acetic and fluoroacetic acid, and derivates thereof. Due to the catalytic activity of the electrode, heterocyclic compounds are generated in the liquid phase. The etched aluminium support under the active carbon layer is locally destroyed by fluorination. Exploring novel electrolytes, ionic liquids were characterized by impedance spectroscopy. (author)

  17. Obtention of zirconia films stabilized with Yttria via pyrolysis spray: study of the solvent influence; Obtencao de filmes de zirconia estabilizada com itria via spray pirolise: estudo da influencia do solvente

    Energy Technology Data Exchange (ETDEWEB)

    Halmenschlager, Cibele Melo; Vieira, Ramaugusto da Porciuncula; Takimi, Antonio Shigueaki; Bergmann, Carlos Perez; Silva, Aline Lima da; Malfatti, Celia de Fraga [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais (PPGEM). Lab. de Materiais Ceramicos (LACER)]. E-mail: cibelemh@yahoo.com.br

    2008-07-01

    Yttria-stabilized-zirconia (YSZ) has been object of many studies, due to its great chemical stability and excellent ionic conduction in high temperature. This material has been studies with an intention of to be used with electrolyte of oxide solid fuel cells, which work in high temperature. The aim of the present work was to evaluate the influence of the solvent on the elaboration of crystalline films of YSZ via spray pyrolysis. The film was prepared by spray pyrolysis with zirconium acetylacetonate (Zr(C{sub 6}H{sub 7}O{sub 2}){sub 4}) and yttrium chloride (YCl{sub 3}.6H{sub 2}O), dissolved in different solvents: ethanol (C{sub 2}H{sub 6}O), ethanol (C{sub 2}H{sub 6}O) + propyleneglycol (C{sub 3}H{sub 8}O{sub 2}) with volume ratio (1:1) and ethanol (C{sub 2}H{sub 6}O) + diethylene glycol butyl ether (C{sub 8}H{sub 18}O{sub 3}) with volume ratio of 1:1. A disk of steel 316L was used as substrate. The amorphous film was deposited in the substrate heated at 280 deg C {+-} 50 deg C. After deposition from thermal treatment at 700 deg C the amorphous film was changed into Yttria-stabilized-zirconia film. The thermal behavior of the films has been studied by both (DTA/TGA) thermogravimetric and mass spectroscopy analyses. The morphology and crystalline phase of the films was investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The YSZ film obtained after heat treatment was dense and crystalline, however, the analyses indicate a significant influence of the solvent and of the substrate temperature during the deposition process on the film morphology.(author)

  18. Synthesis of zirconia sol stabilized by trivalent cations (yttrium and neodymium or americium): a precursor for Am-bearing cubic stabilized zirconia.

    Science.gov (United States)

    Lemonnier, Stephane; Grandjean, Stephane; Robisson, Anne-Charlotte; Jolivet, Jean-Pierre

    2010-03-07

    Recent concepts for nuclear fuel and targets for transmuting long-lived radionuclides (minor actinides) and for the development of innovative Gen-IV nuclear fuel cycles imply fabricating host phases for actinide or mixed actinide compounds. Cubic stabilized zirconia (Zr, Y, Am)O(2-x) is one of the mixed phases tested in transmutation experiments. Wet chemical routes as an alternative to the powder metallurgy are being investigated to obtain the required phases while minimizing the handling of contaminating radioactive powder. Hydrolysis of zirconium, neodymium (a typical surrogate for americium) and yttrium in aqueous media in the presence of acetylacetone was firstly investigated. Progressive hydrolysis of zirconium acetylacetonate and sorption of trivalent cations and acacH on the zirconia particles led to a stable dispersion of nanoparticles (5-7 nm) in the 6-7 pH range. This sol gels with time or with temperature. The application to americium-containing solutions was then successfully tested: a stable sol was synthesized, characterized and used to prepare cubic stabilized zirconia (Zr, Y, Am)O(2-x).

  19. A new testing protocol for zirconia dental implants.

    Science.gov (United States)

    Sanon, Clarisse; Chevalier, Jérôme; Douillard, Thierry; Cattani-Lorente, Maria; Scherrer, Susanne S; Gremillard, Laurent

    2015-01-01

    Based on the current lack of standards concerning zirconia dental implants, we aim at developing a protocol to validate their functionality and safety prior their clinical use. The protocol is designed to account for the specific brittle nature of ceramics and the specific behavior of zirconia in terms of phase transformation. Several types of zirconia dental implants with different surface textures (porous, alveolar, rough) were assessed. The implants were first characterized in their as-received state by Scanning Electron Microscopy (SEM), Focused Ion Beam (FIB), X-Ray Diffraction (XRD). Fracture tests following a method adapted from ISO 14801 were conducted to evaluate their initial mechanical properties. Accelerated aging was performed on the implants, and XRD monoclinic content measured directly at their surface instead of using polished samples as in ISO 13356. The implants were then characterized again after aging. Implants with an alveolar surface presented large defects. The protocol shows that such defects compromise the long-term mechanical properties. Implants with a porous surface exhibited sufficient strength but a significant sensitivity to aging. Even if associated to micro cracking clearly observed by FIB, aging did not decrease mechanical strength of the implants. As each dental implant company has its own process, all zirconia implants may behave differently, even if the starting powder is the same. Especially, surface modifications have a large influence on strength and aging resistance, which is not taken into account by the current standards. Protocols adapted from this work could be useful. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Usage of neural network to predict aluminium oxide layer thickness.

    Science.gov (United States)

    Michal, Peter; Vagaská, Alena; Gombár, Miroslav; Kmec, Ján; Spišák, Emil; Kučerka, Daniel

    2015-01-01

    This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A · dm(-2) and 3 A · dm(-2) for creating aluminium oxide layer.

  1. Usage of Neural Network to Predict Aluminium Oxide Layer Thickness

    Directory of Open Access Journals (Sweden)

    Peter Michal

    2015-01-01

    Full Text Available This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A·dm−2 and 3 A·dm−2 for creating aluminium oxide layer.

  2. INTERFACE RESIDUAL STRESSES IN DENTAL ZIRCONIA USING LAUE MICRO-DIFFRACTION

    International Nuclear Information System (INIS)

    Bale, H. A.; Tamura, N.; Coelho, P.G.; Hanan, J. C.

    2009-01-01

    Due to their aesthetic value and high compressive strength, dentists have recently employed ceramics for restoration materials. Among the ceramic materials, zirconia provides high toughness and crack resistant characteristics. Residual stresses develop in processing due to factors including grain anisotropy and thermal coefficient mismatch. In the present study, polychromatic X-ray (Laue) micro-diffraction provided grain orientation and residual stresses on a clinically relevant zirconia model ceramic disk. A 0.5 mm x 0.024 mm region on zirconia was examined on a 500 nm scale for residual stresses using a focused poly-chromatic synchrotron X-ray beam. Large stresses ranging from - to + 1GPa were observed at some grains. On average, the method suggests a relatively small compressive stress at the surface between 47 and 75 MPa depending on direction

  3. Materials system for intermediate temperature solid oxide fuel cells based on doped lanthanum-gallate electrolyte

    Science.gov (United States)

    Gong, Wenquan

    2005-07-01

    The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization

  4. Vapour phase dehydration of glycerol to acrolein over tungstated zirconia catalysts

    Science.gov (United States)

    Rao Ginjupalli, Srinivasa; Mugawar, Sowmya; Rajan N., Pethan; Kumar Balla, Putra; Chary Komandur, V. R.

    2014-08-01

    Tetragonal (TZ) and monoclinic (MZ) polymorphs of zirconia supports were synthesised by sol-gel method followed by variation of the calcination temperature. Tungstated (10 wt% WO3) supported on the zirconia polymorphs were prepared by impregnation method by using ammonium metatungstate precursor. The physico-chemical properties of the calcined catalysts were characterised by X-ray diffraction, UV-vis diffused reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area and pore size distribution measurements to gain insight into the effect of morphology of the catalyst textural properties, and structure. The surface acidic properties have been determined by NH3 TPD method and also with FT-IR spectra of pyridine adsorption. Vapour phase dehydration of glycerol to acrolein was employed to investigate the catalytic functionalities. Glycerol conversion and acrolein selectivity was mainly dependent on the fraction of moderate acid sites with majority of them are due to Brønsted acidic sites. Monoclinic zirconia based catalysts have shown the highest activity and acrolein selectivity compared to the corresponding tetragonal zirconia catalysts.

  5. Vapour phase dehydration of glycerol to acrolein over tungstated zirconia catalysts

    International Nuclear Information System (INIS)

    Rao Ginjupalli, Srinivasa; Mugawar, Sowmya; Rajan, Pethan N.; Kumar Balla, Putra; Chary Komandur, V.R.

    2014-01-01

    Tetragonal (TZ) and monoclinic (MZ) polymorphs of zirconia supports were synthesised by sol–gel method followed by variation of the calcination temperature. Tungstated (10 wt% WO 3 ) supported on the zirconia polymorphs were prepared by impregnation method by using ammonium metatungstate precursor. The physico-chemical properties of the calcined catalysts were characterised by X-ray diffraction, UV–vis diffused reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area and pore size distribution measurements to gain insight into the effect of morphology of the catalyst textural properties, and structure. The surface acidic properties have been determined by NH 3 TPD method and also with FT-IR spectra of pyridine adsorption. Vapour phase dehydration of glycerol to acrolein was employed to investigate the catalytic functionalities. Glycerol conversion and acrolein selectivity was mainly dependent on the fraction of moderate acid sites with majority of them are due to Brønsted acidic sites. Monoclinic zirconia based catalysts have shown the highest activity and acrolein selectivity compared to the corresponding tetragonal zirconia catalysts.

  6. Vapour phase dehydration of glycerol to acrolein over tungstated zirconia catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rao Ginjupalli, Srinivasa; Mugawar, Sowmya; Rajan, Pethan N.; Kumar Balla, Putra; Chary Komandur, V.R., E-mail: kvrchary@iict.res.in

    2014-08-01

    Tetragonal (TZ) and monoclinic (MZ) polymorphs of zirconia supports were synthesised by sol–gel method followed by variation of the calcination temperature. Tungstated (10 wt% WO{sub 3}) supported on the zirconia polymorphs were prepared by impregnation method by using ammonium metatungstate precursor. The physico-chemical properties of the calcined catalysts were characterised by X-ray diffraction, UV–vis diffused reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area and pore size distribution measurements to gain insight into the effect of morphology of the catalyst textural properties, and structure. The surface acidic properties have been determined by NH{sub 3} TPD method and also with FT-IR spectra of pyridine adsorption. Vapour phase dehydration of glycerol to acrolein was employed to investigate the catalytic functionalities. Glycerol conversion and acrolein selectivity was mainly dependent on the fraction of moderate acid sites with majority of them are due to Brønsted acidic sites. Monoclinic zirconia based catalysts have shown the highest activity and acrolein selectivity compared to the corresponding tetragonal zirconia catalysts.

  7. Mechanical behaviour of new zirconia-hydroxyapatite ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, J.A.; Morejon, L. [La Habana Univ. (Cuba). Centro de Biomateriales; Martinez, S. [Barcelona Univ. (Spain). Dept. Cristallografia, Mineralogia; Ginebra, M.P.; Carlsson, N.; Fernandez, E.; Planell, J.A. [Universidad Politecnica de Cataluna, Barcelona (Spain). CREB; Clavaguera-Mora, M.T.; Rodriguez-Viejo, J. [Universitat Autonoma de Barcelona (Spain). Dept. de Fisica

    2001-07-01

    In this work a new zirconia-hydroxyapatite ceramic material was obtained by uniaxial pressing and sintering in humid environment. The powder X-ray diffraction (XRD) patterns and infrared spectra (FT-IR) showed that the hydroxyapatite (HA) is the only calcium phosphate phase present. The fracture toughness for HA with 20 wt.% of magnesia partially stabilised zirconia (Mg-PSZ) was around 2.5 times higher than those obtained for HA pure, also the highest value of bending strength (160 MPa) was obtained for material reinforced with Mg-PSZ. For the MgPSZ-HA (20%) the fracture mechanism seems to be less transgranular. (orig.)

  8. Oxidative stress-mediated cytotoxicity of zirconia nanoparticles on PC12 and N2a cells

    Energy Technology Data Exchange (ETDEWEB)

    Asadpour, Elham [Shiraz University of Medical Sciences, Anesthesiology and Critical Care Research Center (Iran, Islamic Republic of); Sadeghnia, Hamid R. [Mashhad University of Medical Sciences, Department of Pharmacology, Faculty of Medicine (Iran, Islamic Republic of); Ghorbani, Ahmad [Mashhad University of Medical Sciences, Pharmacological Research Center of Medicinal Plants (Iran, Islamic Republic of); Sedaghat, Mehran, E-mail: m-sedaghat81@yahoo.com [Mashhad University of Medical Sciences, Department of Neurosurgery (Iran, Islamic Republic of); Boroushaki, Mohammad T., E-mail: boroushakimt@mums.ac.ir [Mashhad University of Medical Sciences, Department of Pharmacology, Faculty of Medicine (Iran, Islamic Republic of)

    2016-01-15

    In recent years, there is a growing interest in the application of nanoparticles like zirconium dioxide (zirconia <100 nm), for many purposes. Since a comprehensive study on the toxic effects of zirconia has not been done, we decided to investigate the effects of zirconia nanoparticles on cultured PC12 and N2a cells. In this study, cytotoxic effect of different concentrations of zirconia nanoparticles at three different time intervals were evaluated using MTT and ROS (reactive oxygen species) assays. Also, Lipid peroxidation, glutathione (GSH) content changes, and DNA damage were measured. Zirconia nanoparticles caused a significant reduction in cell viability and GSH content of the cells, and induce a significant increase in intracellular ROS and MDA content of PC12 and N2a cells. Moreover, it increases the percentage of DNA tail of treated cells as compared with control group. Zirconia nanoparticles have cytotoxic and genotoxic effects in PC12 and N2a cells in a time and concentration-dependent manner in concentration more than 31 µg/mL.

  9. Electrolyte solutions at curved electrodes. II. Microscopic approach.

    Science.gov (United States)

    Reindl, Andreas; Bier, Markus; Dietrich, S

    2017-04-21

    Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.

  10. Electrical double layer capacitor using poly(methyl methacrylate)–C4BO8Li gel polymer electrolyte and carbonaceous material from shells of mata kucing (Dimocarpus longan) fruit

    International Nuclear Information System (INIS)

    Arof, A.K.; Kufian, M.Z.; Syukur, M.F.; Aziz, M.F.; Abdelrahman, A.E.; Majid, S.R.

    2012-01-01

    Poly(methyl methacrylate), PMMA based gel polymer electrolytes (GPE) containing immobilized lithium bis(oxalato)borate, C 4 BO 8 Li or LiBOB dissolved in a propylene carbonate–ethylene carbonate binary solvent were prepared by heating the cast solution between 70 and 80 °C for 20 min. The electrolyte composition with 5 wt.% PMMA exhibited the highest conductivity of 3.27 and 7.46 mS cm −1 at 298 and 343 K respectively. Cyclic voltammetry studies on the GPE containing 15 wt.% PMMA and 85 wt.% (0.6 M LiBOB) dissolved in equal weight of ethylene and propylene carbonates showed that the electrochemical potential stability window of the electrolyte lies in the range between −1.7 to +1.7 V. Linear sweep voltammetry indicates the gel polymer electrolyte is stable up to 1.7 V. The electrical double layer capacitor (EDLC) using the highest conducting GPE and activated carbon derived from shells of the mata kucing (Dimocarpus longan) fruit has capacitance of ∼685 mF g −1 on the first cycle. The EDLC performance was also characterized using cyclic voltammetry and charge–discharge processes at constant current.

  11. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.

    Science.gov (United States)

    Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei

    2018-04-09

    Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

  12. Hydroponics gel as a new electrolyte gelling agent for alkaline zinc-air cells

    Science.gov (United States)

    Othman, R.; Basirun, W. J.; Yahaya, A. H.; Arof, A. K.

    The viability of hydroponics gel as a new alkaline electrolyte gelling agent is investigated. Zinc-air cells are fabricated employing 12 wt.% KOH electrolyte immobilised with hydroponics gel. The cells are discharged at constant currents of 5, 50 and 100 mA. XRD and SEM analysis of the anode plates after discharge show that the failure mode is due to the formation of zinc oxide insulating layers and not due to any side reactions between the gel and the plate or the electrolyte.

  13. Zirconia concentrate chlorination

    International Nuclear Information System (INIS)

    Costa, N.G.; Albuquerque Brocchi, E. de

    1990-01-01

    Chlorination experiments were conducted in order to study the kinetics of gasification of the zirconium oxide present in the zirconia concentrate. The variables studied are temperature (1173 to 1373 K), percentage of reducing agent (12 to 36%) and porosity (22 to 30%). The results indicated a greater influence of temperature and percentage of reducing agent as well as allowed the conclusion that a balance between the levels of these variables is an important factor in the appropriate chlorination conditions. (author)

  14. Zirconia based ceramics

    International Nuclear Information System (INIS)

    Bressiani, J.C.; Bressiani, A.H.A.

    1989-05-01

    Within the new generation of ceramic materials, zirconia continues to attract ever increasing attention of scients, technologists and users by virtue of its singular combination of properties and being able to perform thermo-mechanical, electroeletronic, chemico-biological functions. Nevertheless, in order to obtain these properties, a through understanding of the phase transformation mechanisms and microstructural changes is necessary. This paper discusses the main parameters that require control during fabrication of these materials to obtain desired properties for a specific application. (author) [pt

  15. In vivo evaluation of zirconia ceramic in the DexAide right ventricular assist device journal bearing.

    Science.gov (United States)

    Saeed, Diyar; Shalli, Shanaz; Fumoto, Hideyuki; Ootaki, Yoshio; Horai, Tetsuya; Anzai, Tomohiro; Zahr, Roula; Horvath, David J; Massiello, Alex L; Chen, Ji-Feng; Dessoffy, Raymond; Catanese, Jacquelyn; Benefit, Stephen; Golding, Leonard A R; Fukamachi, Kiyotaka

    2010-06-01

    Zirconia is a ceramic with material properties ideal for journal bearing applications. The purpose of this study was to evaluate the use of zirconium oxide (zirconia) as a blood journal bearing material in the DexAide right ventricular assist device. Zirconia ceramic was used instead of titanium to manufacture the DexAide stator housing without changing the stator geometry or the remaining pump hardware components. Pump hydraulic performance, journal bearing reliability, biocompatibility, and motor efficiency data of the zirconia stator were evaluated in six chronic bovine experiments for 14-91 days and compared with data from chronic experiments using the titanium stator. Pump performance data including average in vivo pump flows and speeds using a zirconia stator showed no statistically significant difference to the average values for 16 prior titanium stator in vivo studies, with the exception of a 19% reduction in power consumption. Indices of hemolysis were comparable for both stator types. Results of coagulation assays and platelet aggregation tests for the zirconia stator implants showed no device-induced increase in platelet activation. Postexplant evaluation of the zirconia journal bearing surfaces showed no biologic deposition in any of the implants. In conclusion, zirconia ceramic can be used as a hemocompatible material to improve motor efficiency while maintaining hydraulic performance in a blood journal bearing application.

  16. Ionoluminscence of partially-stabilized zirconia for thermal barrier coatings

    International Nuclear Information System (INIS)

    Rebollo, N.R.; Ruvalcaba-Sil, J.L.; Miranda, J.

    2007-01-01

    Ionoluminescence is explored as an alternative technique to study the high temperature phase stability of zirconia-based oxides. The evolution of an initially metastable single tetragonal phase towards de-stabilization is investigated for three single-doped zirconia compositions with Y, Yb and Gd. The differences in de-stabilization paths are identified using X-ray diffraction and ionoluminescence; elemental analysis is also performed using particle-induced X-ray emission. X-ray diffraction studies reveal a different scenario for each of the compositions selected; the differences are strongly influenced by the thermodynamic driving forces associated to the fluorite-to-tetragonal displacive transformation. Ionoluminescence studies indicate a significant increment on the signal intensity for de-stabilized samples, relative to previous annealing stages. There are also more subtle differences in the luminescent response from the samples at intermediate annealing stages also related to phase changes. This study provides a basis to characterize phase evolution in single-doped zirconia compositions for thermal insulation applications using luminescence

  17. Sol-gel derived bioactive coating on zirconia: Effect on flexural strength and cell proliferation.

    Science.gov (United States)

    Shahramian, Khalil; Leminen, Heidi; Meretoja, Ville; Linderbäck, Paula; Kangasniemi, Ilkka; Lassila, Lippo; Abdulmajeed, Aous; Närhi, Timo

    2017-11-01

    The purpose of this study was to evaluate the effect of sol-gel derived bioactive coatings on the biaxial flexural strength and fibroblast proliferation of zirconia, aimed to be used as an implant abutment material. Yttrium stabilized zirconia disc-shaped specimens were cut, ground, sintered, and finally cleansed ultrasonically in each of acetone and ethanol for 5 minutes. Three experimental groups (n = 15) were fabricated, zirconia with sol-gel derived titania (TiO 2 ) coating, zirconia with sol-gel derived zirconia (ZrO 2 ) coating, and non-coated zirconia as a control. The surfaces of the specimens were analyzed through images taken using a scanning electron microscope (SEM), and a non-contact tapping mode atomic force microscope (AFM) was used to record the surface topography and roughness of the coated specimens. Biaxial flexural strength values were determined using the piston-on-three ball technique. Human gingival fibroblast proliferation on the surface of the specimens was evaluated using AlamarBlue assay™. Data were analyzed using a one-way analysis of variance (ANOVA) followed by Tukey's post-hoc test. Additionally, the biaxial flexural strength data was also statistically analyzed with the Weibull distribution. The biaxial flexural strength of zirconia specimens was unaffected (p > 0.05). Weibull modulus of TiO 2 coated and ZrO 2 coated groups (5.7 and 5.4, respectively) were lower than the control (8.0). Specimens coated with ZrO 2 showed significantly lower fibroblast proliferation compared to other groups (p sol-gel derived coatings have no influence on the flexural strength of zirconia. ZrO 2 coated specimens showed significantly lower cell proliferation after 12 days than TiO 2 coated or non-coated control. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2401-2407, 2017. © 2016 Wiley Periodicals, Inc.

  18. Peclet number analysis of cross-flow in porous gas diffusion layer of polymer electrolyte membrane fuel cell (PEMFC).

    Science.gov (United States)

    Suresh, P V; Jayanti, Sreenivas

    2016-10-01

    Adoption of hydrogen economy by means of using hydrogen fuel cells is one possible solution for energy crisis and climate change issues. Polymer electrolyte membrane (PEM) fuel cell, which is an important type of fuel cells, suffers from the problem of water management. Cross-flow is induced in some flow field designs to enhance the water removal. The presence of cross-flow in the serpentine and interdigitated flow fields makes them more effective in proper distribution of the reactants on the reaction layer and evacuation of water from the reaction layer than diffusion-based conventional parallel flow fields. However, too much of cross-flow leads to flow maldistribution in the channels, higher pressure drop, and membrane dehydration. In this study, an attempt has been made to quantify the amount of cross-flow required for effective distribution of reactants and removal of water in the gas diffusion layer. Unit cells containing two adjacent channels with gas diffusion layer (GDL) and catalyst layer at the bottom have been considered for the parallel, interdigitated, and serpentine flow patterns. Computational fluid dynamics-based simulations are carried out to study the reactant transport in under-the-rib area with cross-flow in the GDL. A new criterion based on the Peclet number is presented as a quantitative measure of cross-flow in the GDL. The study shows that a cross-flow Peclet number of the order of 2 is required for effective removal of water from the GDL. Estimates show that this much of cross-flow is not usually produced in the U-bends of Serpentine flow fields, making these areas prone to flooding.

  19. Characteristics of nanosized zirconia prepared by plasma and chemical technique

    International Nuclear Information System (INIS)

    Kuznetsova, L.; Grabis, J.; Heidemane, G.

    2003-01-01

    The studied preparation method of zirconia using the plasma technique, azeotropic distillation and glycine routes ensure obtaining of nano sized powders with close average particle size but different crystallite size and phase composition. The sinterability of nano sized zirconia particles prepared by plasma technique or wet-chemical methods is similar and depends on the green density of pressed powders, improvement of with can be achieved by using of granulated precursors. (authors)

  20. Capacitive behavior studies on electrical double layer capacitor using poly (vinyl alcohol)–lithium perchlorate based polymer electrolyte incorporated with TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chin-Shen; Teoh, K.H.; Liew, Chiam-Wen; Ramesh, S., E-mail: rameshtsubra@gmail.com

    2014-01-15

    Electric double layer capacitors (EDLCs) based on activated carbon electrodes and poly (vinyl alcohol)–lithium perchlorate (PVA–LiClO{sub 4})-nanosized titania (TiO{sub 2}) doped polymer electrolyte have been fabricated. Incorporation of TiO{sub 2} into PVA–LiClO{sub 4} system increases the ionic conductivity. The highest ionic conductivity of 1.3 × 10{sup −4} S cm{sup −1} is achieved at ambient temperature upon inclusion of 8 wt.% of TiO{sub 2}. Differential scanning calorimetry (DSC) analyses reveal that addition of TiO{sub 2} into polymer system increases the flexibility of polymer chain and favors the ion migration. Scanning electron microscopy (SEM) analyses display the surface morphology of the nanocomposite polymer electrolytes. The electrochemical stability window of composite polymer electrolyte is in the range of −2.3 V to 2.3 V as shown in cyclic voltammetry (CV) studies. The performance of EDLC is evaluated by electrochemical impedance spectroscopy (EIS), CV and galvanostatic charge–discharge technique. CV test discloses a nearly rectangular shape, which signifies the capacitive behavior of an ELDC. The EDLC containing composite polymer electrolyte gives higher specific capacitance value of 12.5 F g{sup −1} compared to non-composite polymer electrolyte with capacitance value of 3.0 F g{sup −1} in charge–discharge technique. The obtained specific capacitance of EDLC is in good agreement with each method used in this present work. Inclusion of filler into the polymer electrolyte enhances the electrochemical stability of EDLC. - Highlights: • PVA–LiClO{sub 4}–TiO{sub 2} possesses ionic conductivity value of 1.30 × 10{sup −4} S cm{sup −1}. • CV indicates the electrochemical stability window in the range of −2.3 V to 2.3 V. • The EDLC gives specific capacitance value of 12.5 F g{sup −1}.

  1. Effect of grinding and polishing on roughness and strength of zirconia.

    Science.gov (United States)

    Khayat, Waad; Chebib, Najla; Finkelman, Matthew; Khayat, Samer; Ali, Ala

    2018-04-01

    The clinical applications of high-translucency monolithic zirconia restorations have increased. Chairside and laboratory adjustments of these restorations are inevitable, which may lead to increased roughness and reduced strength. The influence of grinding and polishing on high-translucency zirconia has not been investigated. The purpose of this in vitro study was to compare the roughness averages (Ra) of ground and polished zirconia and investigate whether roughness influenced strength after aging. High-translucency zirconia disks were milled, sintered, and glazed according to the manufacturer's recommendations. Specimens were randomized to 4 equal groups. Group G received only grinding; groups GPB and GPK received grinding and polishing with different polishing systems; and group C was the (unground) control group. All specimens were subjected to hydrothermal aging in an autoclave at 134°C at 200 kPa for 3 hours. Roughness average was measured using a 3-dimensional (3D) optical interferometer at baseline (Ra1), after grinding and polishing (Ra2), and after aging (Ra3). A biaxial flexural strength test was performed at a rate of 0.5 mm/min. Statistical analyses were performed using commercial software (α=.05). Group G showed a significantly higher mean value of Ra3 (1.96 ±0.32 μm) than polished and glazed groups (P.05). Compared with baseline, the roughness of groups G and GPB increased significantly after surface treatments and after aging, whereas aging did not significantly influence the roughness of groups GPK or C. Group G showed the lowest mean value of biaxial flexural strength (879.01 ±157.99 MPa), and the highest value was achieved by group C (962.40 ±113.84 MPa); no statistically significant differences were found among groups (P>.05). Additionally, no significant correlation was detected between the Ra and flexural strength of zirconia. Grinding increased the roughness of zirconia restorations, whereas proper polishing resulted in smoothness

  2. Solid-state electrolyte for supercapacitors

    OpenAIRE

    K.C., Sabin

    2016-01-01

    Renewable energy has become a primary focus for scientific community since last decade. Great interesting investigations and creative works have been carried out to develop technology for powering our society, including disrupt technology for efficient energy storage and power manage. Supercapacitors (SP) also known as electrochemical double layer capacitors uses high surface area active electrode materials and various electrolytes to achieve capacitance of several order magnitude greater tha...

  3. Interaction of oxygen with zirconia surface

    International Nuclear Information System (INIS)

    Ivankiv, L.I.; Ketsman, I.V.

    1999-01-01

    The influence of surface heat treatment, electron (50-800) eV irradiation and UV (180-300) nM illumination of adsorption system on the state of oxygen adsorbed on zirconia surface have been investigated. On the basis of experimental results obtained by investigation of photon emission accompanying oxygen adsorption (AL) and TPD data existence of adsorption sites on the surface is suggested on which irreversible dissociative adsorption of oxygen occurs. These very sites are associated with emission processes Conclusion is made that the only type of adsorption sites connected with anion vacancy is present on zirconia surface and this is its charge state that determines the state of adsorbed oxygen. One of the important mechanisms by which the electron and UV photon excitation affects the adsorption interaction is the change of the charge state of the adsorption site

  4. Process Developed for Generating Ceramic Interconnects With Low Sintering Temperatures for Solid Oxide Fuel Cells

    Science.gov (United States)

    Zhong, Zhi-Min; Goldsby, Jon C.

    2005-01-01

    Solid oxide fuel cells (SOFCs) have been considered as premium future power generation devices because they have demonstrated high energy-conversion efficiency, high power density, and extremely low pollution, and have the flexibility of using hydrocarbon fuel. The Solid-State Energy Conversion Alliance (SECA) initiative, supported by the U.S. Department of Energy and private industries, is leading the development and commercialization of SOFCs for low-cost stationary and automotive markets. The targeted power density for the initiative is rather low, so that the SECA SOFC can be operated at a relatively low temperature (approx. 700 C) and inexpensive metallic interconnects can be utilized in the SOFC stack. As only NASA can, the agency is investigating SOFCs for aerospace applications. Considerable high power density is required for the applications. As a result, the NASA SOFC will be operated at a high temperature (approx. 900 C) and ceramic interconnects will be employed. Lanthanum chromite-based materials have emerged as a leading candidate for the ceramic interconnects. The interconnects are expected to co-sinter with zirconia electrolyte to mitigate the interface electric resistance and to simplify the processing procedure. Lanthanum chromites made by the traditional method are sintered at 1500 C or above. They react with zirconia electrolytes (which typically sinter between 1300 and 1400 C) at the sintering temperature of lanthanum chromites. It has been envisioned that lanthanum chromites with lower sintering temperatures can be co-fired with zirconia electrolyte. Nonstoichiometric lanthanum chromites can be sintered at lower temperatures, but they are unstable and react with zirconia electrolyte during co-sintering. NASA Glenn Research Center s Ceramics Branch investigated a glycine nitrate process to generate fine powder of the lanthanum-chromite-based materials. By simultaneously doping calcium on the lanthanum site, and cobalt and aluminum on the

  5. [Effect of compaction pressure on the properties of dental machinable zirconia ceramic].

    Science.gov (United States)

    Huang, Hui; Wei, Bin; Zhang, Fu-qiang; Sun, Jing; Gao, Lian

    2010-10-01

    To investigate the effect of compaction pressure on the linear shrinkage, sintering property and machinability of the dental zirconia ceramic. The nano-size zirconia powder was compacted at different isostatic pressure and sintered at different temperature. The linear shrinkage of sintered body was measured and the relative density was tested using the Archimedes method. The cylindrical surface of pre-sintering blanks was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. The sintering behaviour depended on the compaction pressure. Increasing compaction pressure led to higher sintering rate and lower sintering temperature. Increasing compaction pressure also led to decreasing linear shrinkage of the sintered bodies, from 24.54% of 50 MPa to 20.9% of 400 MPa. Compaction pressure showed only a weak influence on machinability of zirconia blanks, but the higher compaction pressure resulted in the poor surface quality. The better sintering property and machinability of dental zirconia ceramic is found for 200-300 MPa compaction pressure.

  6. Functionalization of sol-gel zirconia composites with europium complexes

    International Nuclear Information System (INIS)

    Danchova, Nina; Gutzov, Stoyan

    2014-01-01

    Different sol-gel strategies based on functionalization of ZrO 2 :Eu microparticles with 1,10-phenanthroline (phen) and incorporation of colloidal Eu(phen) 2 (NO 3 ) 3 into zirconia have been used to obtain hybrid sol-gel composites with controlled optical properties. The process leads to materials with quantum yields of about 48 % monitoring the 615 nm emission line at 350 nm excitation. Excitation/luminescence spectroscopy, diffuse reflectance spectroscopy and X-ray diffraction have been used to characterize the hybrid zirconia composites. (orig.)

  7. Effect of Lithium Disilicate Reinforced Liner Treatment on Bond and Fracture Strengths of Bilayered Zirconia All-Ceramic Crown

    Directory of Open Access Journals (Sweden)

    Yong-Seok Jang

    2018-01-01

    Full Text Available This study was performed to evaluate the effect of a lithium-disilicate spray-liner application on both the bond strength between zirconia cores and heat-pressed lithium-disilicate glass-ceramic veneers, and the fracture strength of all-ceramic zirconia crowns. A lithium-disilicate reinforced liner was applied on the surface of a zirconia core and lithium-disilicate glass-ceramic was veneered on zirconia through heat press forming. Microtensile and crown fracture tests were conducted in order to evaluate, respectively, the bonding strength between the zirconia cores and heat pressed lithium-disilicate glass-ceramic veneers, and the fracture strength of bilayered zirconia all-ceramic crowns. The role of lithium-disilicate spray-liner at the interface between zirconia and lithium-disilicate glass-ceramic veneers was investigated through surface and cross-sectional analyses. We confirmed that both the mean bonding strength between the zirconia ceramics and lithium-disilicate glass-ceramic veneers and the fracture strength of the liner-treated groups were significantly higher than those of the untreated groups, which resulted, on the one hand, from the chemical bonding at the interface of the zirconia and lithium-disilicate liner, and, on the other, from the existence of a microgap in the group not treated with liner.

  8. Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies

    Science.gov (United States)

    Lewandowski, Andrzej; Świderska-Mocek, Agnieszka

    The paper reviews properties of room temperature ionic liquids (RTILs) as electrolytes for lithium and lithium-ion batteries. It has been shown that the formation of the solid electrolyte interface (SEI) on the anode surface is critical to the correct operation of secondary lithium-ion batteries, including those working with ionic liquids as electrolytes. The SEI layer may be formed by electrochemical transformation of (i) a molecular additive, (ii) RTIL cations or (iii) RTIL anions. Such properties of RTIL electrolytes as viscosity, conductivity, vapour pressure and lithium-ion transport numbers are also discussed from the point of view of their influence on battery performance.

  9. Novel electrospun gas diffusion layers for polymer electrolyte membrane fuel cells: Part I. Fabrication, morphological characterization, and in situ performance

    Science.gov (United States)

    Chevalier, S.; Lavielle, N.; Hatton, B. D.; Bazylak, A.

    2017-06-01

    In this first of a series of two papers, we report an in-depth analysis of the impact of the gas diffusion layer (GDL) structure on the polymer electrolyte membrane (PEM) fuel cell performance through the use of custom GDLs fabricated in-house. Hydrophobic electrospun nanofibrous gas diffusion layers (eGDLs) are fabricated with controlled fibre diameter and alignment. The eGDLs are rendered hydrophobic through direct surface functionalization, and this molecular grafting is achieved in the absence of structural alteration. The fibre diameter, chemical composition, and electrical conductivity of the eGDL are characterized, and the impact of eGDL structure on fuel cell performance is analysed. We observe that the eGDL facilitates higher fuel cell power densities compared to a commercial GDL (Toray TGP-H-60) at highly humidified operating conditions. The ohmic resistance of the fuel cell is found to significantly increase with increasing inter-fiber distance. It is also observed that the addition of a hydrophobic treatment enhances membrane hydration, and fibres perpendicularly aligned to the channel direction may enhance the contact area between the catalyst layer and the GDL.

  10. Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Run [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Zhenjiang Watercraft College, Zhenjiang 212000, Jiangsu (China); Wang, Bin; Wu, Jie [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Xue, Wenbin, E-mail: xuewb@bnu.edu.cn [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Jin, Xiaoyue; Du, Jiancheng; Hua, Ming [Key Laboratory for Beam Technology and Materials Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-12-01

    Highlights: • The plasma discharge behaviors for PEB/C on steels were evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • The decomposition mechanism of electrolyte and was analyzed. - Abstract: A plasma electrolytic borocarburizing process (PEB/C) in borax electrolyte with glycerin additive was employed to fabricate a hardening layer on Q235 low-carbon steel. Optical emission spectroscopy (OES) was utilized to investigate the spectroscopy characteristics of plasma discharge around the steel during PEB/C process. Some plasma parameters were calculated in terms of OES. The electron temperature and electron concentration in plasma discharge zone is about 3000–12,000 K and 2 × 10{sup 22} m{sup −3}–1.4 × 10{sup 23} m{sup −3}. The atomic ionization degrees of iron, carbon and boron are 10{sup −16}–10{sup −3}, and 10{sup −23}–10{sup −6}, 10{sup −19}–10{sup −4}, respectively, which depend on discharge time. The surface morphology and cross-sectional microstructure of PEB/C hardening layer were observed, and the electrolyte decomposition and plasma discharge behaviors were discussed.

  11. Spectroscopic investigation of plasma electrolytic borocarburizing on q235 low-carbon steel

    International Nuclear Information System (INIS)

    Liu, Run; Wang, Bin; Wu, Jie; Xue, Wenbin; Jin, Xiaoyue; Du, Jiancheng; Hua, Ming

    2014-01-01

    Highlights: • The plasma discharge behaviors for PEB/C on steels were evaluated by OES. • Electron temperature, concentration, atomic ionization degree were calculated. • The decomposition mechanism of electrolyte and was analyzed. - Abstract: A plasma electrolytic borocarburizing process (PEB/C) in borax electrolyte with glycerin additive was employed to fabricate a hardening layer on Q235 low-carbon steel. Optical emission spectroscopy (OES) was utilized to investigate the spectroscopy characteristics of plasma discharge around the steel during PEB/C process. Some plasma parameters were calculated in terms of OES. The electron temperature and electron concentration in plasma discharge zone is about 3000–12,000 K and 2 × 10 22 m −3 –1.4 × 10 23 m −3 . The atomic ionization degrees of iron, carbon and boron are 10 −16 –10 −3 , and 10 −23 –10 −6 , 10 −19 –10 −4 , respectively, which depend on discharge time. The surface morphology and cross-sectional microstructure of PEB/C hardening layer were observed, and the electrolyte decomposition and plasma discharge behaviors were discussed

  12. Protection of Lithium (Li) Anodes Using Dual Phase Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mikhaylik, Yuriy [Sion Power Corporation, Tucson, AZ (United States)

    2014-09-30

    Sion Power focused on metallic lithium anode protection, employing the Dual-Phase Electrolyte approach. The objective of this project was to develop a unique electrolyte providing two liquid phases having good Li+ conductivity, self-partitioning and immiscibility, serving separately the cathode and anode electrodes. This Dual-Phase Electrolyte was combined with thin film multi-layer, physical barrier membranes developed partially under a separate ARPA-E funded project. All these protective structures were stabilized by externally applied pressure. This strategy was used for Li-S cells. The development directly addressed cell safety, particularly higher thermal stability, while also allowing higher energies and cycle life. Safety tests showed that 100% of cells with Dual-Phase Electrolyte were intact and did not exhibit thermal runaway up to 178 °C and thus met the project objective of increasing the runaway temperature to >165°C. Cells also passed cycling at USABC Dynamic Stress Test conditions developed for Electric Vehicle applications and generated specific energy > 300 Wh/kg.

  13. Production of Yttria-doped zirconia by hydrothermal synthesis: thermodynamical analysis

    International Nuclear Information System (INIS)

    Nascimento Dias, A.J. do; Ogasawara, T.

    1993-01-01

    After a short review of the literature on Hydrothermal Synthesis of Zirconia, the computation and construction of the Standard Hydrogen Scale Potential versus pH diagrams have been performed starting from data supplied by Thermodynamic Tables. Diagrams have been developed for several temperatures (in the range 298.15 K up to 573.15 K) and for activities of the Y and Zr in the aqueous solution ranging from 0,0001 M up to 1 M. The resultant diagrams have been analyzed and interpreted. The results gotten from the study give good elucidation of the phenomena taking place in the hydrothermal treatment of the Zirconia Powders inside an autoclave at temperatures between 473.15 K and 573.15 K. The conditions for crystallization of the doped zirconia at temperatures lower than 573.15 K are better visualized. (author)

  14. Stereological observations of platelet-reinforced mullite- and zirconia-matrix composites

    International Nuclear Information System (INIS)

    Cherian, I.K.; Kriven, W.M.; Lehigh, M.D.; Nettleship, I.

    1996-01-01

    Recently, the effect of solid inclusions on the sintering of ceramic powders has been explained in terms of a back-stress that opposes densification. Several analyses have been proposed to describe this problem. However, little quantitative information exists concerning the effect of reinforcement on microstructural evolution. This study compares the microstructural development of zirconia and mullite matrices in the presence of alumina platelets. The effect of platelet loading on density is similar for both composites. Quantitative stereological examinations reveal that the average grain size and pore size are finer for the zirconia-matrix composite. The platelet loading does not have any noticeable effect on the average grain size of the matrix in either composite. However, the average pore size increases as the volume fraction of platelets increases for both materials. Contiguity measurements have detected some aggregation of platelets in the zirconia-matrix composite

  15. [Study on friction and wear properties of dental zirconia ceramics processed by microwave and conventional sintering methods].

    Science.gov (United States)

    Guoxin, Hu; Ying, Yang; Yuemei, Jiang; Wenjing, Xia

    2017-04-01

    This study evaluated the wear of an antagonist and friction and wear properties of dental zirconia ceramic that was subjected to microwave and conventional sintering methods. Ten specimens were fabricated from Lava brand zirconia and randomly assigned to microwave and conventional sintering groups. A profile tester for surface roughness was used to measure roughness of the specimens. Wear test was performed, and steatite ceramic was used as antagonist. Friction coefficient curves were recorded, and wear volume were calculated. Finally, optical microscope was used to observe the surface morphology of zirconia and steatite ceramics. Field emission scanning electron microscopy was used to observe the microstructure of zirconia. Wear volumes of microwave and conventionally sintered zirconia were (6.940±1.382)×10⁻², (7.952±1.815) ×10⁻² mm³, respectively. Moreover, wear volumes of antagonist after sintering by the considered methods were (14.189±4.745)×10⁻², (15.813±3.481)×10⁻² mm³, correspondingly. Statistically significant difference was not observed in the wear resistance of zirconia and wear volume of steatite ceramic upon exposure to two kinds of sintering methods. Optical microscopy showed that ploughed surfaces were apparent in zirconia. The wear surface of steatite ceramic against had craze, accompanied by plough. Scanning electron microscopy showed that zirconia was sintered compactly when subjected to both conventional sintering and microwave methods, whereas grains of zirconia sintered by microwave alone were smaller and more uniform. Two kinds of sintering methods are successfully used to produce dental zirconia ceramics with similar friction and wear properties.
.

  16. Stability of the Gel Electrolyte PAN : EC : PC : LICF3SO3 towards Lithium

    DEFF Research Database (Denmark)

    Perera, Kumudu; Dissanayake, M.A.K.L.; Skaarup, Steen

    2006-01-01

    The stability of the gel electrolyte consisting of polyacrylonitrile (PAN), ethylene carbonate (EC), propylene carbonate (PC) and lithium trifluoromethanesulfonate (LiCF3SO3 – LiTF) towards metallic lithium was investigated using the time evolution of impedance plots. Symmetric cells of the form Li...... / PAN : EC : PC: LiTF / Li were assembled and impedance data were collected at room temperature for one week. A clear indication of growth of a resistive layer could be seen. The electrolyte resistance remained constant. The growth of the passivation layer became constant after first two days...

  17. Modelling multiphase flow inside the porous media of a polymer electrolyte membrane fuel cell

    DEFF Research Database (Denmark)

    Berning, Torsten; Kær, Søren Knudsen

    2011-01-01

    Transport processes inside polymer electrolyte membrane fuel cells (PEMFC’s) are highly complex and involve convective and diffusive multiphase, multispecies flow through porous media along with heat and mass transfer and electrochemical reactions in conjunction with water transport through...... an electrolyte membrane. We will present a computational model of a PEMFC with focus on capillary transport of water through the porous layers and phase change and discuss the impact of the liquid phase boundary condition between the porous gas diffusion layer and the flow channels, where water droplets can...

  18. The Influence of the Electrolyte Nature and PEO Process Parameters on Properties of Anodized Ti-15Mo Alloy Intended for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Oksana Banakh

    2018-05-01

    Full Text Available Plasma electrolytic oxidation (PEO of Ti-15Mo alloys conducted in electrolytes containing Ca and P compounds can be an efficient process with which to obtain bioactive coatings. This paper reports on the influence of the nature of the electrolyte, its concentration, and PEO process parameters on the properties of anodized layers on Ti-15Mo. A wide range of Ca- and P-containing alkaline and acidic solutions was employed to incorporate Ca and P ions into the anodized layer. The efficiency of the incorporation was evaluated by the Ca/P ratio in the coating as compared to that in the electrolyte. It was found that alkaline solutions are not suitable electrolytes for the formation of good quality, uniform PEO coatings. Only acidic electrolytes are appropriate for obtaining well-adherent homogeneous layers on Ti-15Mo. However, the maximum Ca/P ratios reached in the coatings were rather low (close to 1. The variation of electrical signal (negative-to-positive current ratio, frequency and time of electrolysis do not result in a substantial change of this value. The processing time, however, did influence the coating thickness. Despite their low Ca/P ratio, the anodized layers demonstrate good biological activity, comparable to pure microrough titanium.

  19. A comparison of fit of CNC-milled titanium and zirconia frameworks to implants.

    Science.gov (United States)

    Abduo, Jaafar; Lyons, Karl; Waddell, Neil; Bennani, Vincent; Swain, Michael

    2012-05-01

    Computer numeric controlled (CNC) milling was proven to be predictable method to fabricate accurately fitting implant titanium frameworks. However, no data are available regarding the fit of CNC-milled implant zirconia frameworks. To compare the precision of fit of implant frameworks milled from titanium and zirconia and relate it to peri-implant strain development after framework fixation. A partially edentulous epoxy resin models received two Branemark implants in the areas of the lower left second premolar and second molar. From this model, 10 identical frameworks were fabricated by mean of CNC milling. Half of them were made from titanium and the other half from zirconia. Strain gauges were mounted close to the implants to qualitatively and quantitatively assess strain development as a result of framework fitting. In addition, the fit of the framework implant interface was measured using an optical microscope, when only one screw was tightened (passive fit) and when all screws were tightened (vertical fit). The data was statistically analyzed using the Mann-Whitney test. All frameworks produced measurable amounts of peri-implant strain. The zirconia frameworks produced significantly less strain than titanium. Combining the qualitative and quantitative information indicates that the implants were under vertical displacement rather than horizontal. The vertical fit was similar for zirconia (3.7 µm) and titanium (3.6 µm) frameworks; however, the zirconia frameworks exhibited a significantly finer passive fit (5.5 µm) than titanium frameworks (13.6 µm). CNC milling produced zirconia and titanium frameworks with high accuracy. The difference between the two materials in terms of fit is expected to be of minimal clinical significance. The strain developed around the implants was more related to the framework fit rather than framework material. © 2011 Wiley Periodicals, Inc.

  20. The effect of extended aging on the optical properties of different zirconia materials.

    Science.gov (United States)

    Alghazzawi, Tariq F

    2017-07-01

    The purpose of this study was to determine if the optical properties of zirconia and glass-ceramic (e.max) were affected by low-temperature degradation (aging). Experiment samples were fabricated with seven zirconia brands (n=10): Zenostar, Zirlux, Katana, Bruxzir, DD-BioZX 2 , DD-cubeX 2 , NexxZr; and e.max were used as a control. This resulted in a total of 80 samples in the experiment. The L*, a* and b* were measured for each sample, and then the optical properties including translucency parameter (TP), contrast ratio (CR), and opalescence parameter (OP) were calculated. The samples were aged (20, 40, 60, 80, 100h), and the optical properties were calculated after each interval. Most zirconia brands had lower L*, higher a*, higher b* with increased aging, which visually corresponds to darker, redder, and more yellow. Aging also increased CR, lowered TP, and lowered OP. e.max was also affected by aging but still had the highest TP (23.9±2.8), L* (81.7±3.4), and lowest CR (0.41±0.05) compared to any zirconia. The Zenostar had the closest TP (24.1±0.4), and L* (90.2±0.5) values to e.max before aging. However, after 100h of aging, the DD-cubeX 2 was least effected and had the highest TP (22.2±0.6) and lowest CR (0.43±0.01) compared with other zirconia samples and highest OP (11.3±0.2) of all ceramic samples. The optical properties of zirconia and e.max materials were affected by aging with the effects increasing with time. The magnitude of change was affected by seven brands of dental zirconia. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.