WorldWideScience

Sample records for zirconia ceramic crowns

  1. Evaluation of marginal fit of 2 CAD-CAM anatomic contour zirconia crown systems and lithium disilicate glass-ceramic crown.

    Science.gov (United States)

    Ji, Min-Kyung; Park, Ji-Hee; Park, Sang-Won; Yun, Kwi-Dug; Oh, Gye-Jeong; Lim, Hyun-Pil

    2015-08-01

    This study was to evaluate the marginal fit of two CAD-CAM anatomic contour zirconia crown systems compared to lithium disilicate glass-ceramic crowns. Shoulder and deep chamfer margin were formed on each acrylic resin tooth model of a maxillary first premolar. Two CAD-CAM systems (Prettau®Zirconia and ZENOSTAR®ZR translucent) and lithium disilicate glass ceramic (IPS e.max®press) crowns were made (n=16). Each crown was bonded to stone dies with resin cement (Rely X Unicem). Marginal gap and absolute marginal discrepancy of crowns were measured using a light microscope equipped with a digital camera (Leica DFC295) magnified by a factor of 100. Two-way analysis of variance (ANOVA) and post-hoc Tukey's HSD test were conducted to analyze the significance of crown marginal fit regarding the finish line configuration and the fabrication system. The mean marginal gap of lithium disilicate glass ceramic crowns (IPS e.max®press) was significantly lower than that of the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia) (Pmarginal discrepancy (Pmarginal gap than the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia). In terms of absolute marginal discrepancy, the CAD-CAM anatomic contour zirconia crown system (ZENOSTAR®ZR translucent) had under-extended margin, whereas the CAD-CAM anatomic contour zirconia crown system (Prettau®Zirconia) and lithium disilicate glass ceramic crowns (IPS e.max®press) had overextended margins.

  2. CAD/CAM Zirconia vs. slip-cast glass-infiltrated Alumina/Zirconia all-ceramic crowns: 2-year results of a randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Murat Cavit Çehreli

    2009-02-01

    Full Text Available The aim of this randomized controlled clinical trial was to compare the early clinical outcome of slip-cast glass-infiltrated Alumina/Zirconia and CAD/CAM Zirconia all-ceramic crowns. A total of 30 InCeram® Zirconia and Cercon® Zirconia crowns were fabricated and cemented with a glass ionomer cement in 20 patients. At baseline, 6-month, 1-year, and 2-year recall appointments, Californian Dental Association (CDA quality evaluation system was used to evaluate the prosthetic replacements, and plaque and gingival index scores were used to explore the periodontal outcome of the treatments. No clinical sign of marginal discoloration, persistent pain and secondary caries was detected in any of the restorations. All InCeram® Zirconia crowns survived during the 2-year period, although one nonvital tooth experienced root fracture coupled with the fracture of the veneering porcelain of the restoration. One Cercon® Zirconia restoration fractured and was replaced. According to the CDA criteria, marginal integrity was rated excellent for InCeram® Zirconia (73% and Cercon® Zirconia (80% restorations, respectively. Slight color mismatch rate was higher for InCeram® Zirconia restorations (66% than Cercon® Zirconia (26% restorations. Plaque and gingival index scores were mostly zero and almost constant over time. Time-dependent changes in plaque and gingival index scores within and between groups were statistically similar (p>0.05. This clinical study demonstrates that single-tooth InCeram® Zirconia and Cercon® Zirconia crowns have comparable early clinical outcome, both seem as acceptable treatment modalities, and most importantly, all-ceramic alumina crowns strengthened by 25% zirconia can sufficiently withstand functional load in the posterior zone.

  3. Effect of the shades of background substructures on the overall color of zirconia-based all-ceramic crowns

    Science.gov (United States)

    Tulapornchai, Chantana; Mamani, Jatuphol; Kamchatphai, Wannaporn; Thongpun, Noparat

    2013-01-01

    PURPOSE The objective of this study was to determine the effect of the color of a background substructure on the overall color of a zirconia-based all-ceramic crown. MATERIALS AND METHODS Twenty one posterior zirconia crowns were made for twenty subjects. Seven premolar crowns and six molar crowns were cemented onto abutments with metal post and core in the first and second group. In the third group, eight molar crowns were cemented onto abutments with a prefabricated post and composite core build-up. The color measurements of all-ceramic crowns were made before try-in, before and after cementation. A repeated measure ANOVA was used for a statistical analysis of a color change of all-ceramic crowns at α=.05. Twenty four zirconia specimens, with different core thicknesses (0.4-1 mm) were also prepared to obtain the contrast ratio of zirconia materials after veneering. RESULTS L*, a*, and b* values of all-ceramic crowns cemented either on a metal cast post and core or on a prefabricated post did not show significant changes (P>.05). However, the slight color changes of zirconia crowns were detected and represented by ΔE*ab values, ranging from 1.2 to 3.1. The contrast ratios of zirconia specimens were 0.92-0.95 after veneering. CONCLUSION No significant differences were observed between the L*, a*, and b* values of zirconia crowns cemented either on a metal cast post and core or a prefabricated post and composite core. However, the color of a background substructure could affect the overall color of posterior zirconia restorations with clinically recommended core thickness according to ΔE*ab values. PMID:24049574

  4. Effect of Lithium Disilicate Reinforced Liner Treatment on Bond and Fracture Strengths of Bilayered Zirconia All-Ceramic Crown

    Directory of Open Access Journals (Sweden)

    Yong-Seok Jang

    2018-01-01

    Full Text Available This study was performed to evaluate the effect of a lithium-disilicate spray-liner application on both the bond strength between zirconia cores and heat-pressed lithium-disilicate glass-ceramic veneers, and the fracture strength of all-ceramic zirconia crowns. A lithium-disilicate reinforced liner was applied on the surface of a zirconia core and lithium-disilicate glass-ceramic was veneered on zirconia through heat press forming. Microtensile and crown fracture tests were conducted in order to evaluate, respectively, the bonding strength between the zirconia cores and heat pressed lithium-disilicate glass-ceramic veneers, and the fracture strength of bilayered zirconia all-ceramic crowns. The role of lithium-disilicate spray-liner at the interface between zirconia and lithium-disilicate glass-ceramic veneers was investigated through surface and cross-sectional analyses. We confirmed that both the mean bonding strength between the zirconia ceramics and lithium-disilicate glass-ceramic veneers and the fracture strength of the liner-treated groups were significantly higher than those of the untreated groups, which resulted, on the one hand, from the chemical bonding at the interface of the zirconia and lithium-disilicate liner, and, on the other, from the existence of a microgap in the group not treated with liner.

  5. Fracture toughness of zirconia ceramic crowns made by feather-edge tooth preparation design

    Directory of Open Access Journals (Sweden)

    Mirković Nemanja

    2012-01-01

    Full Text Available Background/Aim. Fracture toughness determines functional crown strenght and prevents damages on ceramics during mastication. There is a lack of relevant literature data about fracture toughness of crowns made by feather-edge preparation. Mechanical testing of ceramic samples is supposed to show if feather-edge tooth preparation is a successful method for making ceramic crowns without any risk of reduction of their mechanical properties. This research was done to establish effects of feather-edge tooth preparation on fracture toughness of single zirconia ceramic crowns. Methods. The research was performed as an experimental study. Sixty (60 ceramic crowns were made on non-carious extracted human premolars. Thirty (30 crowns were made on the basis of feather-edge preparation (experimental group I. The group II included 30 crowns made on 1 mm rounded shoulder. Crowns fabrication was executed on a copy mill production system “Zirkonzahn” (Zirkonzahn GMBH, Gais, Germany. The spherical compression test was used to determine fracture toughness, using 6 mm diameter ceramic ball. Fracture load for damaging ceramic crown was recorded on a universal testing machine - Zwick, type 1464, with the speed of 0.05 mm/min. Results. The results of this research introduced significant differences between fracture toughness of ceramic samples in every examined group. However, fracture toughness of crowns from both group was above 2 000 N, what was double beyond a recommended value. The mean value of fracture toughness in the feather-edge group was 2 090 N, and in shoulder group it was 2 214 N. Conclusion. This research showed a high fracture toughness of zirconia crowns made on feather-edge preparation. The examined crowns showed a fracture resistance at a sufficient distance in relation to the minimum values of functional loads. Further research of functional loads of these crown is necessary, as well as research of marginal adaptation of cemented crowns and

  6. Marginal and Internal Discrepancies of Posterior Zirconia-Based Crowns Fabricated with Three Different CAD/CAM Systems Versus Metal-Ceramic.

    Science.gov (United States)

    Ortega, Rocio; Gonzalo, Esther; Gomez-Polo, Miguel; Suárez, María J

    2015-01-01

    The aim of this study was to analyze the marginal and internal fit of metalceramic and zirconia-based crowns. Forty standardized steel specimens were prepared to receive posterior crowns and randomly divided into four groups (n = 10): (1) metal-ceramic, (2) NobelProcera Zirconia, (3) Lava Zirconia, and (4) VITA In-Ceram YZ. All crowns were cemented with glass-ionomer agent and sectioned buccolingually. A scanning electron microscope was used for measurements. Kruskal-Wallis and Wilcoxon signed rank test (α = .05) statistical analyses were conducted. Significant differences (P < .0001) in marginal discrepancies were observed between metal-ceramic and zirconia groups. No differences were found for the axial wall fit (P = .057). Significant differences were shown among the groups in discrepancies at the occlusal cusp (P = .0012) and at the fossa (P = .0062). No differences were observed between surfaces. All zirconia groups showed better values of marginal discrepancies than the metal-ceramic group. Procera Zirconia showed the lowest gaps.

  7. Zirconia- versus metal-based, implant-supported abutments and crowns

    DEFF Research Database (Denmark)

    Hosseini, Mandana

    , the selection of restoration materials should be based on proper optical characteristics in addition to biocompatibility and sufficient strength of materials. Abutments and crowns based on zirconia are one of the most recent alternatives to metal abutments and metal-ceramic crowns. To date, only few comparative...... and to estimate long-term biomechanical results of zirconia-based versus metal-based restorations. The aim of study I was to analyse the mode of fracture and number of cyclic loadings until veneering fracture of zirconia-based all-ceramic restorations compared to metal-ceramic restorations. The aim of study II...... was to test the reliability and validity of six aesthetic parameters used at the Copenhagen Dental School to assess the aesthetic outcome of implant-supported restorations. The aims of study III and IV were to compare the influence of different abutment and crown materials on biological, biomechanical...

  8. [Influence of coping material selection and porcelain firing on marginal and internal fit of computer-aided design/computer- aided manufacturing of zirconia and titanium ceramic implant-supported crowns].

    Science.gov (United States)

    Cuiling, Liu; Liyuan, Yang; Xu, Gao; Hong, Shang

    2016-06-01

    This study aimed to investigate the influence of coping material and porcelain firing on the marginal and internal fit of computer-aided design/computer-aided manufacturing (CAD/CAM) of zirconia ceramic implant- and titanium ceramic implant-supported crowns. Zirconia ceramic implant (group A, n = 8) and titanium metal ceramic implant-supported crowns (group B, n = 8) were produced from copings using the CAD/CAM system. The marginal and internal gaps of the copings and crowns were measured by using a light-body silicone replica technique combined with micro-computed tomography scanning to obtain a three-dimensional image. Marginal gap (MG), horizontal marginal discrepancy (HMD), and axial wall (AW) were measured. Statistical analyses were performed using SPSS 17.0. Prior to porcelain firing, the measurements for MG, HMD, and AW of copings in group A were significantly larger than those in group B (P 0.05). Porcelain firing significantly reduced MG (P 0.05). The marginal fits of CAD/CAM zirconia ceramic implant-supported crowns were superior to those of CAD/CAM titanium ceramic-supported crowns. The fits of both the CAD/CAM zirconia ceramic implant- and titanium ceramic implant-supported crowns were obviously influenced by porcelain firing.

  9. Influence of coping design on the cervical color of ceramic crowns.

    Science.gov (United States)

    Paniz, Gianluca; Kang, Ki-Ho; Kim, Yongjeong; Kumagai, Naota; Hirayama, Hiroshi

    2013-12-01

    The replication of natural teeth, especially with single-tooth restorations, represents a challenge. Similar to metal ceramic crowns, different designs of zirconia substructures have been suggested to improve the esthetic results of zirconia ceramic crowns. The purpose of the study was to analyze the color of the cervical portion of single zirconia ceramic crowns fabricated with different zirconia coping designs. The color, measured on the CIELAB color scale, of 3 different groups of restorations (n=10) fabricated with zirconia coping (Lava) and feldspathic porcelain (Noritake Super Porcelain) was analyzed with a spectrophotometer. Conventional zirconia crowns with zirconia facial margins were compared with ceramic crowns with porcelain facial margins and either a horizontal reduction of the zirconia coping (1.0 mm reduction) or an additional vertical reduction (1.0 mm additional reduction). The 3 groups, each with a different coping extension, were examined with a 1-way ANOVA and the Fisher exact test, and the differences of the groups were evaluated by applying ΔE thresholds (α=.05). The mean color difference among all the groups was not clinically significant (ΔEcolor differences were present between the 2 porcelain butt margin groups of crowns (ΔE=1.06, between group H and V). Increased differences were present between the zirconia margin group and the porcelain butt margin group (ΔE=2.54 between group C and H; ΔE=2.41 between group C and V). Lab* values were examined in all the groups of crowns to determine the clinical implications. Within the limitation of the study, no significant differences were present among the tested groups of crowns. Nevertheless, although some differences were present between the zirconia margin group and the porcelain butt margin group, reduced differences were present between the 2 different cutback designs. Copyright © 2013 Editorial Council for the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights

  10. Effect of air-abrasion on the retention of zirconia ceramic crowns luted with different cements before and after artificial aging.

    Science.gov (United States)

    Shahin, Ramez; Kern, Matthias

    2010-09-01

    The purpose of this in vitro study was to evaluate the effect of intaglio surface air-abrasion on the retention of CAD/CAM produced zirconia ceramic crowns cemented with three different types of cement. In addition the influence of artificial aging in masticatory simulator and thermocycling was tested. Extracted human premolars were prepared for all-ceramic crowns (12 degrees taper, 3 mm axial length). CAD/CAM zirconia crowns were manufactured. Half of the crowns were air-abraded with 50 microm alumina particles at 0.25 MPa, the rest was left as machined. The crowns were luted with zinc phosphate cement (Hoffmann), glass ionomer cement (Ketac Cem), or composite resin (Panavia 21), subgroups were either stored for 3 days in 37 degrees water bath or stored for 150 days in 37 degrees water bath, with additional 37,500 thermal cycles (5-55 degrees) and 300,000 cycles dynamic loading with 5 kg in a masticatory simulator. Then crown retention was measured in tension at a crosshead speed of 2 mm/min using a universal testing machine. Statistical analysis was performed with three-way ANOVA. Mean retention values were ranged from 2.8 to 7.1 MPa after 3 days and from 1.6 to 6.1 MPa after artificial aging. Air-abrasion significantly increased crown retention (partificial aging decreased retention (p=0.017). In addition, the luting material had a significant influence on retention (p<0.001) with the adhesive luting resin providing the highest retention. The use of phosphate monomer containing composite resin on air-abraded zirconia ceramic can be recommended as most retentive luting method. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Antagonist wear of monolithic zirconia crowns after 2 years.

    Science.gov (United States)

    Lohbauer, Ulrich; Reich, Sven

    2017-05-01

    The aim of this study was to evaluate the amount of wear on the antagonist occlusal surfaces of clinically placed monolithic zirconia premolar and molar crowns (LAVA Plus, 3M ESPE). Fourteen in situ monolithic zirconia crowns and their opposing antagonists (n = 26) are the subject of an ongoing clinical trial and have been clinically examined at baseline and after 24 months. Silicone impressions were taken and epoxy replicas produced for qualitative SEM analysis and quantitative analysis using optical profilometry. Based on the baseline replicas, the follow-up situation has been scanned and digitally matched with the initial topography in order to calculate the mean volume loss (in mm 3 ) as well as the mean maximum vertical loss (in mm) after 2 years in service. The mean volume loss for enamel antagonist contacts (n = 7) was measured to 0.361 mm 3 and the mean of the maximum vertical loss to 0.204 mm. The mean volume loss for pure ceramic contacts (n = 10) was measured to 0.333 mm 3 and the mean of the maximum vertical loss to 0.145 mm. The wear rates on enamel contacts were not significantly different from those measured on ceramic antagonists. Based on the limitations of this study, it can be concluded for the monolithic zirconia material LAVA Plus that the measured wear rates are in consensus with other in vivo studies on ceramic restorations. Further, that no significant difference was found between natural enamel antagonists and ceramic restorations as antagonists. The monolithic zirconia restorations do not seem to be affected by wear within the first 2 years. The monolithic zirconia crowns (LAVA Plus) show acceptable antagonist wear rates after 2 years in situ, regardless of natural enamel or ceramics as antagonist materials.

  12. A 3 years retrospective study of survival for zirconia-based single crowns fabricated from intraoral digital impressions.

    Science.gov (United States)

    Gherlone, Enrico; Mandelli, Federico; Capparè, Paolo; Pantaleo, Giuseppe; Traini, Tonino; Ferrini, Francesco

    2014-09-01

    To evaluate the clinical performance of glass-ceramic/zirconia crowns fabricated using intraoral digital impressions - a retrospective study with a three-year follow-up. 70 consecutive patients with a total of 86 glass-ceramic/zirconia crowns were treated by a single clinician using standardized clinical and laboratory protocols. A complete digital workflow was adopted for the purpose except for the veneering procedure for the glass-ceramic crowns. Occlusal adjustments were made before the ceramic glazing procedure. Before cementation, all abutments where carefully cleaned with a 70% alcoholic solution and air dried. Cementation was performed using dual-curing, self-adhesive resin cement. Patients were re-examined after 12, 24 and 36 months, to assess crown chipping/fractures. After the three-year follow-up, none of the zirconia-based restoration was lost ("apparent" survival rate 100%) otherwise, the chipping rate of the veneering material increased from 9.3% after 12 months, to 14% after 24 months to 30.2% after 36 months. As a consequence, the "real" success rate after 3 years was 69.8%. After 3 years the success rate of zirconia-based crowns was 69.8%, while the incidence of the chipping was 30.2%. Assuming an exponential increase in chipping rate between 12 and 36 months it can be argued that, among others, the fatigue-mechanism could be advocated as the main factor for the failure of glass-ceramic veneered zirconia especially after 24 months. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Fracture load of different crown systems on zirconia implant abutments.

    Science.gov (United States)

    Albrecht, T; Kirsten, A; Kappert, H F; Fischer, H

    2011-03-01

    The purpose of this study was to evaluate the fracture load of single zirconia abutment restorations using different veneering techniques and materials. The abutment restorations were divided into 6 groups with 20 samples each: test abutments (control group A), lithium disilicate ceramic crowns bonded on incisor abutments (group B), leucite ceramic crowns bonded on incisor abutments (group C), premolar abutments directly veneered with a fluor apatite ceramic (group D (layered) and group E (pressed)) and premolar abutments bonded with lithium disilicate ceramic crowns (group F). The fracture load of the restorations was evaluated using a universal testing machine. Half of each group was artificially aged (chewing simulation and thermocycling) before evaluating the fracture load with the exception of the test abutments. The fracture load of the test abutments was 705 ± 43N. Incisor abutments bonded with lithium disilicate or leucite ceramic crowns (groups B and C) showed fracture loads of about 580N. Premolar restorations directly veneered with fluor apatite ceramic (groups D and E) showed fracture loads of about 850N. Premolar restorations bonded with lithium disilicate ceramic crowns (group F) showed fracture loads of about 1850N. The artificial ageing showed no significant influence on the strength of the examined restorations. All ceramic crowns made of lithium disilicate glass-ceramic, adhesively bonded to premolar abutments showed the highest fracture loads in this study. However, all tested groups can withstand physiological bite forces. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. Ceramic molar crown reproducibility by digital workflow manufacturing: An in vitro study.

    Science.gov (United States)

    Jeong, Ii-Do; Kim, Woong-Chul; Park, Jinyoung; Kim, Chong-Myeong; Kim, Ji-Hwan

    2017-08-01

    This in vitro study aimed to analyze and compare the reproducibility of zirconia and lithium disilicate crowns manufactured by digital workflow. A typodont model with a prepped upper first molar was set in a phantom head, and a digital impression was obtained with a video intraoral scanner (CEREC Omnicam; Sirona GmbH), from which a single crown was designed and manufactured with CAD/CAM into a zirconia crown and lithium disilicate crown (n=12). Reproducibility of each crown was quantitatively retrieved by superimposing the digitized data of the crown in 3D inspection software, and differences were graphically mapped in color. Areas with large differences were analyzed with digital microscopy. Mean quadratic deviations (RMS) quantitatively obtained from each ceramic group were statistically analyzed with Student's t-test (α=.05). The RMS value of lithium disilicate crown was 29.2 (4.1) µm and 17.6 (5.5) µm on the outer and inner surfaces, respectively, whereas these values were 18.6 (2.0) µm and 20.6 (5.1) µm for the zirconia crown. Reproducibility of zirconia and lithium disilicate crowns had a statistically significant difference only on the outer surface ( P <.001). The outer surface of lithium disilicate crown showed over-contouring on the buccal surface and under-contouring on the inner occlusal surface. The outer surface of zirconia crown showed both over- and under-contouring on the buccal surface, and the inner surface showed under-contouring in the marginal areas. Restoration manufacturing by digital workflow will enhance the reproducibility of zirconia single crowns more than that of lithium disilicate single crowns.

  15. Clinical performance - a reflection of damage accumulation in ceramic dental crowns

    Energy Technology Data Exchange (ETDEWEB)

    Rekow, D.E. [Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). Dept. of Orthodontics; Thompson, V.P. [Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). New Jersey Dental School

    2001-07-01

    All-ceramic dental crowns have tremendous appeal for patients - their esthetics nearly match those of natural teeth. Unfortunately, the most esthetic materials are brittle and, consequently, are vulnerable to damage relating to shaping which is exacerbated during cyclic loading during normal chewing. Clinical performance of all-ceramic dental prostheses are directly dependent on damage introduced during fabrication and during fatigue loading associated with function. The accumulation of damage results in unacceptably high failure rates (where failure is defined as a complete fracture requiring replacement of the prosthesis). The relation between shaping damage and fatigue damage on clinical performance of all-ceramic dental crowns was investigated. Materials used commercially for all-ceramic crowns and investigated in this study included a series of different microstructures of machinable glass ceramics (Corning), aluminas and porcelains (Vita Zahnfabrik), and zirconia (Norton). As monolithic materials, strong, tough, fatigue-resistant materials are not sufficiently esthetic for crowns. Crowns fabricated from monolithic esthetic materials have high failure rates. Layering ceramics could provide acceptable strength through management of damage accumulation. (orig.)

  16. Three-Point Bending Tests of Zirconia Core/Veneer Ceramics for Dental Restorations

    Directory of Open Access Journals (Sweden)

    Massimo Marrelli

    2013-01-01

    Full Text Available Introduction. The mechanical strength and the surface hardness of commercially available yttrium-doped zirconia were investigated. Furthermore, a comparative study of eight different ceramic veneers, to be used for the production of two-layered all-ceramic restorative systems, was carried out. Materials and Methods. Four types of zirconia specimens were analyzed, according to a standard ISO procedure (ISO 6872. Besides, two-layered zirconia-veneer specimens were prepared for three-point bending tests. Results. A strong effect of the surface roughness on the mechanical strength of zirconia specimens was observed. Finally, a comparative study of eight commercially available veneering ceramics shows different modes of failure between the selected veneers. Conclusion. The results indicate that close attention should be paid to the preparation of zirconia-based crowns and bridges by CAD/CAM process, because surface roughness has an important effect on the mechanical strength of the material. Finally, the results of the mechanical tests on two-layered specimens represent an important support to the choice of the veneering ceramic.

  17. All-Ceramic Single Crown Restauration of Zirconia Oral Implants and Its Influence on Fracture Resistance: An Investigation in the Artificial Mouth

    Directory of Open Access Journals (Sweden)

    Ralf-Joachim Kohal

    2015-04-01

    Full Text Available The aim of the current investigation was to evaluate the fracture resistance of one-piece zirconia oral implants with and without all-ceramic incisor crowns after long-term thermomechanical cycling. A total of 48 implants were evaluated. The groups with crowns (C, 24 samples and without crowns (N, 24 samples were subdivided according to the loading protocol, resulting in three groups of 8 samples each: Group “0” was not exposed to cyclic loading, whereas groups “5” and “10” were loaded with 5 and 10 million chewing cycles, respectively. This resulted in 6 different groups: C0/N0, C5/N5 and C10/N10. Subsequently, all 48 implants were statically loaded to fracture and bending moments were calculated. All implants survived the artificial aging. For the static loading the following average bending moments were calculated: C0: 326 Ncm; C5: 339 Ncm; C10: 369 Ncm; N0: 339 Ncm; N5: 398 Ncm and N10: 355 Ncm. To a certain extent, thermomechanical cycling resulted in an increase of fracture resistance which did not prove to be statistically significant. Regarding its fracture resistance, the evaluated ceramic implant system made of Y-TZP seems to be able to resist physiological chewing forces long-term. Restauration with all-ceramic single crowns showed no negative influence on fracture resistance.

  18. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns

    Directory of Open Access Journals (Sweden)

    Deborah Pacheco Lameira

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the effect of design and surface finishing on fracture strength of yttria-tetragonal zirconia polycrystal (Y-TZP crowns in monolithic (1.5 mm thickness and bilayer (0.8 mm zirconia coping and 0.7 mm porcelain veneer configuration after artificial aging. Bovine incisors received crown preparation and Y-TZP crowns were manufactured using CAD/CAM technique, according to the following groups (n=10: Polished monolithic zirconia crowns (PM; Glazed monolithic zirconia crowns (GM; Bi-layer crowns (BL. Crowns were cemented with resin cement, submitted to artificial aging in a chewing simulator (2.5 million cycles/80 N/artificial saliva/37°C, and tested for fracture strength. Two remaining crowns referring to PM and GM groups were submitted to a chemical composition analysis to measure the level of yttrium after aging. One-way ANOVA and Tukey’s test (P=.05 indicated that monolithic zirconia crowns presented similar fracture strength (PM=3476.2 N ± 791.7; GM=3561.5 N ± 991.6, which was higher than bilayer crowns (2060.4 N ± 810.6. There was no difference in the yttrium content among the three surfaces evaluated in the monolithic crowns. Thus, monolithic zirconia crowns present higher fracture strength than bilayer veneered zirconia after artificial aging and surface finishing does not affect their fracture strength.

  19. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs).

    Science.gov (United States)

    Sailer, Irena; Makarov, Nikolay Alexandrovich; Thoma, Daniel Stefan; Zwahlen, Marcel; Pjetursson, Bjarni Elvar

    2015-06-01

    To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported single crowns (SCs) and to describe the incidence of biological, technical and esthetic complications. Medline (PubMed), Embase, Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported fixed dental prostheses (FDPs) with a mean follow-up of at least 3 years. This was complimented by an additional hand search and the inclusion of 34 studies from a previous systematic review [1,2]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. Sixty-seven studies reporting on 4663 metal-ceramic and 9434 all-ceramic SCs fulfilled the inclusion criteria. Seventeen studies reported on metal-ceramic crowns, and 54 studies reported on all-ceramic crowns. Meta-analysis of the included studies indicated an estimated survival rate of metal-ceramic SCs of 94.7% (95% CI: 94.1-96.9%) after 5 years. This was similar to the estimated 5-year survival rate of leucit or lithium-disilicate reinforced glass ceramic SCs (96.6%; 95% CI: 94.9-96.7%), of glass infiltrated alumina SCs (94.6%; 95% CI: 92.7-96%) and densely sintered alumina and zirconia SCs (96%; 95% CI: 93.8-97.5%; 92.1%; 95% CI: 82.8-95.6%). In contrast, the 5-year survival rates of feldspathic/silica-based ceramic crowns were lower (pceramic and zirconia crowns exhibited significantly lower survival rates in the posterior region (pceramic fractures than metal-ceramic SCs (pceramic SCs than for metal-ceramic SCs. Survival rates of most types of all-ceramic SCs were similar to those reported for metal-ceramic SCs, both in anterior and posterior regions. Weaker feldspathic/silica-based ceramics should be limited to applications in the anterior region. Zirconia-based SCs should not be considered as primary option due to their high incidence of technical problems. Copyright © 2015 Academy

  20. Fractographic features of glass-ceramic and zirconia-based dental restorations fractured during clinical function.

    Science.gov (United States)

    Oilo, Marit; Hardang, Anne D; Ulsund, Amanda H; Gjerdet, Nils R

    2014-06-01

    Fractures during clinical function have been reported as the major concern associated with all-ceramic dental restorations. The aim of this study was to analyze the fracture features of glass-ceramic and zirconia-based restorations fractured during clinical use. Twenty-seven crowns and onlays were supplied by dentists and dental technicians with information about type of cement and time in function, if available. Fourteen lithium disilicate glass-ceramic restorations and 13 zirconia-based restorations were retrieved and analyzed. Fractographic features were examined using optical microscopy to determine crack initiation and crack propagation of the restorations. The material comprised fractured restorations from one canine, 10 incisors, four premolars, and 11 molars. One crown was not categorized because of difficulty in orientation of the fragments. The results revealed that all core and veneer fractures initiated in the cervical margin and usually from the approximal area close to the most coronally placed curvature of the margin. Three cases of occlusal chipping were found. The margin of dental all-ceramic single-tooth restorations was the area of fracture origin. The fracture features were similar for zirconia, glass-ceramic, and alumina single-tooth restorations. Design features seem to be of great importance for fracture initiation. © 2014 Eur J Oral Sci.

  1. Twenty-nine-month follow-up of a paediatric zirconia dental crown.

    Science.gov (United States)

    Lopez Cazaux, Serena; Hyon, Isabelle; Prud'homme, Tony; Dajean Trutaud, Sylvie

    2017-06-14

    The aim of this paper is to present the long-term follow-up of one paediatric zirconia crown on a deciduous molar. Preformed crowns are part of the armamentarium in paediatric dentistry. In recent years, aesthetic alternatives to preformed metal crowns have been developed, first preveneered crowns and then zirconia crowns. This paper describes the restoration of a primary molar with a zirconia crown (EZ-Pedo, Loomis, California, USA) in an 8-year-old boy. In this clinical case, the protocol for the implementation and maintenance of zirconia crowns is detailed. The patient was followed up for 29 months until the natural exfoliation of his primary molar. The adaptation of the zirconia crown, the gingival health and the wear on the opposing tooth were considered. In this case, the paediatric zirconia crown allowed sustainable functional restoration while restoring a natural appearance of the tooth. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Esthetic and Clinical Performance of Implant-Supported All-Ceramic Crowns Made with Prefabricated or CAD/CAM Zirconia Abutments: A Randomized, Multicenter Clinical Trial.

    Science.gov (United States)

    Wittneben, J G; Gavric, J; Belser, U C; Bornstein, M M; Joda, T; Chappuis, V; Sailer, I; Brägger, U

    2017-02-01

    Patients' esthetic expectations are increasing, and the options of the prosthetic pathways are currently evolving. The objective of this randomized multicenter clinical trial was to assess and compare the esthetic outcome and clinical performance of anterior maxillary all-ceramic implant crowns (ICs) based either on prefabricated zirconia abutments veneered with pressed ceramics or on CAD/CAM zirconia abutments veneered with hand buildup technique. The null hypothesis was that there is no statistically significant difference between the 2 groups. Forty implants were inserted in sites 14 to 24 (FDI) in 40 patients in 2 centers, the Universities of Bern and Geneva, Switzerland. After final impression, 20 patients were randomized into group A, restored with a 1-piece screw-retained single crown made of a prefabricated zirconia abutment with pressed ceramic as the veneering material using the cut-back technique, or group B using an individualized CAD/CAM zirconia abutment (CARES abutment; Institut Straumann AG) with a hand buildup technique. At baseline, 6 mo, and 1 y clinical, esthetic and radiographic parameters were assessed. Group A exhibited 1 dropout patient and 1 failure, resulting in a survival rate of 94.7% after 1 y, in comparison to 100% for group B. No other complications occurred. Clinical parameters presented stable and healthy peri-implant soft tissues. Overall, no or only minimal crestal bone changes were observed with a mean DIB (distance from the implant shoulder to the first bone-to-implant contact) of -0.15 mm (group A) and 0.12 mm (group B) at 1 y. There were no significant differences at baseline, 6 mo, and 1 y for DIB values between the 2 groups. Pink esthetic score (PES) and white esthetic score (WES) values at all 3 examinations indicated stability over time for both groups and pleasing esthetic outcomes. Both implant-supported prosthetic pathways represent a valuable treatment option for the restoration of single ICs in the anterior maxilla

  3. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications.

    Science.gov (United States)

    Gautam, Chandkiram; Joyner, Jarin; Gautam, Amarendra; Rao, Jitendra; Vajtai, Robert

    2016-12-06

    Zirconia (ZrO 2 ) based dental ceramics have been considered to be advantageous materials with adequate mechanical properties for the manufacturing of medical devices. Due to its very high compression strength of 2000 MPa, ZrO 2 can resist differing mechanical environments. During the crack propagation on the application of stress on the surface of ZrO 2 , a crystalline modification diminishes the propagation of cracks. In addition, zirconia's biocompatibility has been studied in vivo, leading to the observation of no adverse response upon the insertion of ZrO 2 samples into the bone or muscle. In vitro experimentation has exhibited the absence of mutations and good viability of cells cultured on this material leading to the use of ZrO 2 in the manufacturing of hip head prostheses. The mechanical properties of zirconia fixed partial dentures (FPDs) have proven to be superior to other ceramic/composite restorations and hence leading to their significant applications in implant supported rehabilitations. Recent developments were focused on the synthesis of zirconia based dental materials. More recently, zirconia has been introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures in combination with computer aided design/computer aided manufacturing (CAD/CAM) techniques. This systematic review covers the results of past as well as recent scientific studies on the properties of zirconia based ceramics such as their specific compositions, microstructures, mechanical strength, biocompatibility and other applications in dentistry.

  4. Digital evaluation of the fit of zirconia-reinforced lithium silicate crowns with a new three-dimensional approach.

    Science.gov (United States)

    Zimmermann, Moritz; Valcanaia, Andre; Neiva, Gisele; Mehl, Albert; Fasbinder, Dennis

    2017-11-30

    Several methods for the evaluation of fit of computer-aided design/computer-assisted manufacture (CAD/CAM)-fabricated restorations have been described. In the study, digital models were recorded with an intraoral scanning device and were measured using a new three-dimensional (3D) computer technique to evaluate restoration internal fit. The aim of the study was to evaluate the internal adaptation and fit of chairside CAD/CAM-fabricated zirconia-reinforced lithium silicate ceramic crowns fabricated with different post-milling protocols. The null hypothesis was that different post-milling protocols did not influence the fitting accuracy of zirconia-reinforced lithium silicate restorations. A master all-ceramic crown preparation was completed on a maxillary right first molar on a typodont. Twenty zirconia-reinforced lithium silicate ceramic crowns (Celtra Duo, Dentsply Sirona) were designed and milled using a chairside CAD/CAM system (CEREC Omnicam, Dentsply Sirona). The 20 crowns were randomly divided into two groups based on post-milling protocols: no manipulation after milling (Group MI) and oven fired-glazing after milling (Group FG). A 3D computer method was used to evaluate the internal adaptation of the crowns. This was based on a subtractive analysis of a digital scan of the crown preparation and a digital scan of the thickness of the cement space over the crown preparation as recorded by a polyvinylsiloxane (PVS) impression material. The preparation scan and PVS scan were matched in 3D and a 3D difference analysis was performed with a software program (OraCheck, Cyfex). Three areas of internal adaptation and fit were selected for analysis: margin (MA), axial wall (AX), and occlusal surface (OC). Statistical analysis was performed using 80% percentile and one-way ANOVA with post-hoc Scheffé test (P = .05). The closest internal adaptation of the crowns was measured at the axial wall with 102.0 ± 11.7 µm for group MI-AX and 106.3 ± 29.3 µm for group FG

  5. An investigation of heat transfer to the implant-bone interface when drilling through a zirconia crown attached to a titanium or zirconia abutment.

    Science.gov (United States)

    Mason, Amy G; Sutton, Alan; Turkyilmaz, Ilser

    2014-11-01

    Thermal injury to the implant-bone interface may lead to bone necrosis and loss of osseointegration. This is a concern during manipulation of the implant throughout the restorative phase of treatment. The risk of heat transfer to the implant-bone interface during abutment preparation or prosthesis removal should be considered. The purpose of the study was to examine the amount of heat transferred to the implant-bone interface when a zirconia crown is drilled to access the screw channel or section a crown with a high-speed dental handpiece. Of the 64 ceramic-veneered zirconia crowns fabricated, 32 had a coping thickness of 0.5 mm and 32 had a coping thickness of 1.0 mm. The crowns were cemented on either titanium stock abutments or zirconia stock abutments. Each group was further subdivided to evaluate heat transfer when the screw channel was accessed or the crown was sectioned with a high-speed handpiece with or without irrigation. Temperature change was recorded for each specimen at the cervical and apical aspect of the implant with thermocouples and a logging thermometer. ANOVA was used to assess the statistical significance in temperature change between the test combinations, and nonparametric Mann-Whitney U tests were used to evaluate the findings. The use of irrigation during both crown removal processes yielded an average temperature increase of 3.59 ±0.35°C. Crown removal in the absence of irrigation yielded an average temperature increase of 18.76 ±3.09°C. When all parameter combinations in the presence of irrigation were evaluated, the maximum temperature change was below the threshold of thermal injury to bone. The maximum temperature change was above the threshold for thermal injury at the coronal aspect of the implant and below the threshold at the apical aspect in the absence of irrigation. Within the limitations of this investigation, the use of irrigation with a high-speed dental handpiece to remove a ceramic-veneered zirconia crown results in

  6. In vitro fracture resistance of three commercially available zirconia crowns for primary molars.

    Science.gov (United States)

    Townsend, Janice A; Knoell, Patrick; Yu, Qingzhao; Zhang, Jian-Feng; Wang, Yapin; Zhu, Han; Beattie, Sean; Xu, Xiaoming

    2014-01-01

    The purpose of this study was to measure the fracture resistance of primary mandibular first molar zirconia crowns from three different manufacturers-EZ Pedo (EZP), NuSmile (NSZ), and Kinder Krowns (KK)-and compare it with the thickness of the zirconia crowns and the measured fracture resistance of preveneered stainless steel crowns (SSCs). The thickness of 20 zirconia crowns from three manufacturers were measured. The mean force required to fracture the crowns was determined. Preveneered NuSmile (NSW) SSCs were tested as a control. EZP crowns were significantly thicker in three of the six measured locations. The force required to fracture the EZP crown was significantly higher than that required for NSZ and KK. There was a positive correlation between fracture resistance and crown thickness in the mesial, distal, mesioocclusal, and distoocclusal dimensions. None of the zirconia crowns proved to be as resistant to fracture as the preveneered SSCs. Statistically significant differences were found among the forces required to fracture zirconia crowns by three different manufacturers. The increase in force correlated with crown thickness. The forces required to fracture the preveneered stainless steel crowns were greater than the forces required to fracture all manufacturers' zirconia crowns.

  7. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    Science.gov (United States)

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical

  8. Zirconia crowns for rehabilitation of decayed primary incisors: an esthetic alternative.

    Science.gov (United States)

    Ashima, G; Sarabjot, K Bhatia; Gauba, K; Mittal, H C

    2014-01-01

    Esthetic management of extensively decayed primary maxillary anterior teeth requiring full coronal coverage restoration is usually challenging to the pediatric dentists especially in very young children. Many esthetic options have been tried over the years each having its own advantages, disadvantages and associated technical, functional or esthetic limitations. Zirconia crowns have provided a treatment alternative to address the esthetic concerns and ease of placement of extra-coronal restorations on primary anterior teeth. The present article presents a case where grossly decayed maxillary primary incisors were restored esthetically and functionally with ready made zirconia crowns (ZIRKIZ, HASS Corp; Korea). After endodontic treatment the decayed teeth were restored with zirconia crowns. Over a 30 months period, the crowns have demonstrated good retention and esthetic results. Dealing with esthetic needs in children with extensive loss of tooth structure, using Zirconia crowns would be practical and successful. The treatment described is simple and effective and represents a promising alternative for rehabilitation of decayed primary teeth.

  9. Tribological properties of toughened zirconia-based ceramics

    International Nuclear Information System (INIS)

    Stachowiak, G.W.; Stachowiak, G.B.

    1991-01-01

    The physical and mechanical properties of toughened zirconia ceramics are briefly characterized and described with a special emphasis on their tribological behaviour. The wear and friction properties of PSZ and TZP ceramics at room and elevated temperatures are described. The influence of the environment on the tribological characteristics of zirconia ceramics is discussed. Both lubricated and unlubricated conditions for ceramic/ceramic and metal/ceramic sliding contacts are analysed. One of the main, and as yet unresolved problems, lubrication of ceramic at elevated temperatures and/or space environment, is addressed and the possible solutions to the problem are suggested. The critical needs in the research and development area of improving the tribological properties of zirconia ceramics are defined and its future market potentials stated. 30 refs., 2 tabs., 4 figs

  10. Effect of metal opaquer on the final color of 3 ceramic crown types on 3 abutment configurations.

    Science.gov (United States)

    Arif, Rabia; Yilmaz, Burak; Mortazavi, Aras; Ozcelik, Tuncer B; Johnston, William M

    2018-04-30

    The effect of a recently introduced metal opaquer when used to mask the color of a titanium abutment under ceramic crown systems is unknown. The purpose of this study was to compare the color coordinates of 3 ceramic crown types-characterized monolithic lithium disilicate (LDC) (IPS e.max; Ivoclar Vivadent AG), layered lithium disilicate (LDL) (IPS e.max; Ivoclar Vivadent AG), and layered zirconia (ZL) (H.C. Starck)-on 3 abutment configurations, nonopaqued titanium (Ti), resin opaqued titanium (Op), and zirconia (Zir). In addition, the color differences (CIEDE2000) were evaluated among the 3 crown types on 3 different abutment substrates. Ten Ti disks (10×1 mm) were fabricated with computer-aided design and computer-aided manufacturing (CAD-CAM) to represent the Ti abutments. Five Ti specimens were opaqued (Op) (whiteMetal Opaquer wMO; Blue Sky Bio), and 5 were not opaqued (Ti). Ten zirconia disks were fabricated with CAD-CAM and sintered (10×1.2 mm). Five disks were used as backings to represent Zir abutments, and 5 disks were layered with 1 mm of porcelain (B1, IPS e.Max Ceram; Ivoclar Vivadent AG) to represent layered zirconia crowns (ZL). Ten lithium disilicate plates (14×14×1.2 mm) were sectioned from CAD blocks (B1 IPS e.Max CAD; Ivoclar Vivadent AG). Five plates were layered with the same porcelain (B1, 1 mm), and 5 plates were surface characterized and glazed. An LDL crown on a Zir abutment configuration was used as the control. The 3 simulated crown types (n=5) were optically connected to each of the 3 abutment types, and the color of the 9 groups was measured using a spectroradiometer. Measured data were reported in CIELab coordinates. CIELab data were used to calculate color differences between the control and the 8 experimental groups. Color data were summarized for each group, and analyzed by repeated-measures ANOVA. For pairwise comparisons, a Bonferroni correction of t tests was used, and for interpretive analysis of resulting color difference

  11. Marginal gap, cement thickness, and microleakage of 2 zirconia crown systems luted with glass ionomer and MDP-based cements.

    Science.gov (United States)

    Sener, Isil; Turker, Begum; Valandro, Luiz Felipe; Ozcan, Mutlu

    2014-01-01

    This in vitro study evaluated the marginal gap, cement thickness, and microleakage of glass-ionomer cement (GIC) and phosphate monomer-containing resin cement (MDP-RC) under 2 zirconia crown systems (Cercon and DC-Zirkon). Forty human premolars were prepared for all-ceramic zirconia crowns with a 1 mm circumferential finish line and a 1.5 mm occlusal reduction. The crowns (n = 10 per group) from each zirconia system were randomly divided into 2 groups and cemented either with GIC (Vivaglass CEM) or MDP-RC (Panavia F 2.0) cement. The cemented crowns were thermocycled 5000 times (5°-55°C). The crowns were immersed in 0.5% basic fuchsine dye solution for 24 hours and sectioned buccolingually and mesiodistally. Specimens were examined under optical microscope (100X). Data were analyzed using Student t-test and chi-square tests (α = 0.05). Mean marginal gap values for Cercon (85 ± 11.4 μm) were significantly higher than for DC-Zircon (75.3 ± 13.2 μm) (P = 0.018). The mean cement thickness values of GIC (81.7 ± 13.9 μm) and MDP-RC (78.5 ± 12.5 μm) were not significantly different (P = 0.447). Microleakage scores did not demonstrate significant difference between GIC (P = 0.385) and MDP-RC (P = 0.631) under Cercon or DC-Zircon. Considering the cement thickness values and microleakage scores obtained, both zirconia crown systems could be cemented in combination with either GIC or MDP-RC.

  12. Comparison of Marginal Fit and Fracture Strength of a CAD/CAM Zirconia Crown with Two Preparation Designs

    Directory of Open Access Journals (Sweden)

    Hamid Jalali

    2016-08-01

    Full Text Available Objectives: The purpose of this in vitro study was to compare the marginal adaptation and fracture resistance of a zirconia-based all-ceramic restoration with two preparation designs.Materials and Methods: Twenty-four mandibular premolars were randomly divided into two groups (n=12; the conventional group received a peripheral shoulder preparation and the modified group received a buccal shoulder and proximal/lingual chamfer preparation. The marginal fit of the zirconia crowns (Cercon was evaluated using a stereomicroscope. After cementation, load was applied to the crowns. The mean fracture load and the mean marginal gap for each group were analyzed using t-test (P=0.05.Results: The mean marginal gap was 71±16µm in the conventional group and 80±10µm in the modified group, with no significant difference (P=0.161. The mean fracture strength was 830±153N for the conventional group and 775±125N for the modified group, with no significant difference (P=0.396. All but one fracture occurred in the veneering ceramic.Conclusion: Less aggressive preparation of proximal and lingual finish lines for the preservation of tooth structure in all-ceramic restorations does not adversely affect the marginal adaptation or fracture strength of the final restoration.

  13. [The study of the colorimetric characteristics of the cobalt-chrome alloys abutments covered by four different all-ceramic crowns by using dental spectrophotometer].

    Science.gov (United States)

    Chen, Yifan; Liu, Hongchun; Meng, Yukun; Chao, Yonglie; Liu, Changhong

    2015-06-01

    This study aims to evaluate the optical data of the different sites of the cobalt-chrome (Co-Cr) alloy abutments covered by four different all-ceramic crowns and the color difference between the crowns and target tab using a digital dental spectrophotometer. Ten Co-Cr alloy abutments were made and tried in four different groups of all-ceramic crowns, namely, Procera aluminia, Procera zirconia, Lava zirconia (Lava-Zir), and IPS E.max glass-ceramic lithium disilicate-reinforced monolithic. The color data of the cervical, body, and incisal sites of the samples were recorded and analyzed by dental spectrophotometer. The CIE L*, a*, b* values were again measured after veneering. The color difference between the abutments covered by all-ceramic crowns and A2 dentine shade tab was evaluated. The L* and b* values of the abutments can be increased by all of the four groups of all-ceramic copings, but a* values were decreased in most groups. A statistical difference was observed among four groups. After being veneered, the L* values of all the copings declined slightly, and the values of a*, b* increased significantly. When compared with A2 dentine shade tab, the ΔE of the crowns was below 4. Four ceramic copings were demonstrated to promote the lightness and hue of the alloy abutments effecttively. Though the colorimetric baseline of these copings was uneven, veneer porcelain can efficiently decrease the color difference between the samples and thee target.

  14. All-ceramic crowns: bonding or cementing?

    Science.gov (United States)

    Pospiech, Peter

    2002-12-01

    Despite the wide variety of all-ceramic systems available today, the majority of dental practitioners hesitate to recommend and insert all-ceramic crowns. This article regards the nature of the ceramic materials, the principles of bonding and adhesion, and the clinical problems of the acid-etch technique for crowns. Advantages and disadvantages are discussed, and the influences of different factors on the strength of all-ceramic crowns are presented. Finally, the conclusion is drawn that conventional cementing of all-ceramic crowns is possible when the specific properties of the ceramics are taken into consideration.

  15. Fracture Resistance and Mode of Failure of Ceramic versus Titanium Implant Abutments and Single Implant-Supported Restorations.

    Science.gov (United States)

    Sghaireen, Mohd G

    2015-06-01

    The material of choice for implant-supported restorations is affected by esthetic requirements and type of abutment. This study compares the fracture resistance of different types of implant abutments and implant-supported restorations and their mode of failure. Forty-five Oraltronics Pitt-Easy implants (Oraltronics Dental Implant Technology GmbH, Bremen, Germany) (4 mm diameter, 10 mm length) were embedded in clear autopolymerizing acrylic resin. The implants were randomly divided into three groups, A, B and C, of 15 implants each. In group A, titanium abutments and metal-ceramic crowns were used. In group B, zirconia ceramic abutments and In-Ceram Alumina crowns were used. In group C, zirconia ceramic abutments and IPS Empress Esthetic crowns were used. Specimens were tested to failure by applying load at 130° from horizontal plane using an Instron Universal Testing Machine. Subsequently, the mode of failure of each specimen was identified. Fracture resistance was significantly different between groups (p Empress crowns supported by zirconia abutments had the lowest fracture loads (p = .000). Fracture modes of metal-ceramic crowns supported by titanium abutments included screw fracture and screw bending. Fracture of both crown and abutment was the dominant mode of failure of In-Ceram/IPS Empress crowns supported by zirconia abutments. Metal-ceramic crowns supported by titanium abutments were more resistant to fracture than In-Ceram crowns supported by zirconia abutments, which in turn were more resistant to fracture than IPS Empress crowns supported by zirconia abutments. In addition, failure modes of restorations supported by zirconia abutments were more catastrophic than those for restorations supported by titanium abutments. © 2013 Wiley Periodicals, Inc.

  16. Influence of implant abutment material on the color of different ceramic crown systems.

    Science.gov (United States)

    Dede, Doğu Ömür; Armağanci, Arzu; Ceylan, Gözlem; Celik, Ersan; Cankaya, Soner; Yilmaz, Burak

    2016-11-01

    Ceramics are widely used for anterior restorations; however, clinical color reproduction still constitutes a challenge particularly when the ceramic crowns are used on titanium implant abutments. The purpose of this in vitro study was to investigate the effect of implant abutment material on the color of different ceramic material systems. Forty disks (11×1.5 mm, shade A2) were fabricated from medium-opacity (mo) and high-translucency (ht) lithium disilicate (IPS e.max) blocks, an aluminous ceramic (VITA In-Ceram Alumina), and a zirconia (Zirkonzahn) ceramic system. Disks were fabricated to represent 3 different implant abutments (zirconia, gold-palladium, and titanium) and dentin (composite resin, A2 shade) as background (11×2 mm). Disk-shaped composite resin specimens in A2 shade were fabricated to represent the cement layer. The color measurements of ceramic specimens were made on composite resin abutment materials using a spectrophotometer. CIELab color coordinates were recorded, and the color coordinates measured on composite resin background served as the control group. Color differences (ΔE 00 ) between the control and test groups were calculated. The data were analyzed with 2-way analysis of variance (ANOVA) and compared with the Tukey HSD test (α=.05). The ceramics system, abutment material, and their interaction were significant for ΔE 00 values (P2.25) were observed for lithium disilicate ceramics on titanium abutments (2.46-2.50). The ΔE 00 values of lithium disilicate ceramics for gold-palladium and titanium abutments were significantly higher than for other groups (P2.25) of an implant-supported lithium disilicate ceramic restoration may be clinically unacceptable if it is fabricated over a titanium abutment. Zirconia may be a more suitable abutment material for implant-supported ceramic restorations. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Phase composition of yttrium-doped zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Christoph; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures; Weiss, Stephan [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements; Gumeniuk, R. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Experimentelle Physik

    2017-06-01

    Ceramic material might be an alternative to borosilicate glass for the immobilization of nuclear waste. The crystallinity of ceramic material increases the corrosion resistance over several magnitudes in relation to amorphous glasses. The stability of such ceramics depend on several parameters, among them the crystal phase composition. A reliable quantitative phase analysis is necessary to correlate the macroscopic material properties with structure parameters. We performed a feasibility study based on yttrium-doped zirconia ceramics as analogue for trivalent actinides to ascertain that the nanosized crystal phases in zirconia ceramics can be reliably determined.

  18. Randomized, Controlled Clinical Trial of Bilayer Ceramic and Metal-Ceramic Crown Performance

    Science.gov (United States)

    Esquivel-Upshaw, Josephine; Rose, William; Oliveira, Erica; Yang, Mark; Clark, Arthur E.; Anusavice, Kenneth

    2013-01-01

    Purpose Analyzing the clinical performance of restorative materials is important, as there is an expectation that these materials and procedures will restore teeth and do no harm. The objective of this research study was to characterize the clinical performance of metal-ceramic crowns, core ceramic crowns, and core ceramic/veneer ceramic crowns based on 11 clinical criteria. Materials and Methods An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study. The following three types of full crowns were fabricated: (1) metal-ceramic crown (MC) made from a Pd-Au-Ag-Sn-In alloy (Argedent 62) and a glass-ceramic veneer (IPS d.SIGN veneer); (2) non-veneered (glazed) lithium disilicate glass-ceramic crown (LDC) (IPS e.max Press core and e.max Ceram Glaze); and (3) veneered lithia disilicate glass-ceramic crown (LDC/V) with glass-ceramic veneer (IPS Empress 2 core and IPS Eris). Single-unit crowns were randomly assigned. Patients were recalled for each of 3 years and were evaluated by two calibrated clinicians. Thirty-six crowns were placed in 31 patients. A total of 12 crowns of each of the three crown types were studied. Eleven criteria were evaluated: tissue health, marginal integrity, secondary caries, proximal contact, anatomic contour, occlusion, surface texture, cracks/chips (fractures), color match, tooth sensitivity, and wear (of crowns and opposing enamel). Numerical rankings ranged from 1 to 4, with 4 being excellent, and 1 indicating a need for immediate replacement. Statistical analysis of the numerical rankings was performed using a Fisher’s exact test. Results There was no statistically significant difference between performance of the core ceramic crowns and the two veneered crowns at year 1 and year 2 (p > 0.05). All crowns were rated either as excellent or good for each of the clinical criteria; however, between years 2 and 3, gradual roughening of the occlusal surface occurred in some of the ceramic-ceramic crowns

  19. Anelasticity and strength in zirconia ceramics

    International Nuclear Information System (INIS)

    Matsuzawa, M.; Horibe, S.; Sakai, J.

    2005-01-01

    Non-elastic strain behavior was investigated for several different zirconia ceramics and a possible mechanism for anelasticity was discussed. Anelastic strain was detected in zirconia ceramics irrespective of the crystallographic phase and its productivity depended on the particular kind of dopant additive. It was found that the anelastic properties could be significantly influenced by the level of oxygen vacancy in the matrix, and that the anelastic strain might be produced by a light shift of ionic species. In order to investigate the effect of anelasticity on mechanical properties on zirconia ceramics, the tensile strength was investigated for a wide range of strain rates. The obviously unique strain rate dependence was observed only in the materials having anelastic properties. It was assumed that anelasticity could be efficient at improving the tensile strength. (orig.)

  20. Optical properties of pre-colored dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun

    2016-12-01

    The purposes of this study were to evaluate the optical properties of recently marketed pre-colored monolithic zirconia ceramics and to compare with those of veneered zirconia and lithium disilicate glass ceramics. Various shades of pre-colored monolithic zirconia, veneered zirconia, and lithium disilicate glass ceramic specimens were tested (17.0×17.0×1.5mm, n=5). CIELab color coordinates were obtained against white, black, and grey backgrounds with a spectrophotometer. Color differences of the specimen pairs were calculated by using the CIEDE2000 (ΔE 00 ) formula. The translucency parameter (TP) was derived from ΔE 00 of the specimen against a white and a black background. X-ray diffraction was used to determine the crystalline phases of monolithic zirconia specimens. Data were analyzed with 1-way ANOVA, Scheffé post hoc, and Pearson correlation testing (α=0.05). For different shades of the same ceramic brand, there were significant differences in L * , a * , b * , and TP values in most ceramic brands. With the same nominal shade (A2), statistically significant differences were observed in L * , a * , b * , and TP values among different ceramic brands and systems (Pceramics of the corresponding nominal shades ranged beyond the acceptability threshold. Due to the high L * values and low a * and b * values, pre-colored monolithic zirconia ceramics can be used with additional staining to match neighboring restorations or natural teeth. Due to their high value and low chroma, unacceptable color mismatch with adjacent ceramic restorations might be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effects of framework design and layering material on fracture strength of implant-supported zirconia-based molar crowns.

    Science.gov (United States)

    Kamio, Shingo; Komine, Futoshi; Taguchi, Kohei; Iwasaki, Taro; Blatz, Markus B; Matsumura, Hideo

    2015-12-01

    To evaluate the effects of framework design and layering material on the fracture strength of implant-supported zirconia-based molar crowns. Sixty-six titanium abutments (GingiHue Post) were tightened onto dental implants (Implant Lab Analog). These abutment-implant complexes were randomly divided into three groups (n = 22) according to the design of the zirconia framework (Katana), namely, uniform-thickness (UNI), anatomic (ANA), and supported anatomic (SUP) designs. The specimens in each design group were further divided into two subgroups (n = 11): zirconia-based all-ceramic restorations (ZAC group) and zirconia-based restorations with an indirect composite material (Estenia C&B) layered onto the zirconia framework (ZIC group). All crowns were cemented on implant abutments, after which the specimens were tested for fracture resistance. The data were analyzed with the Kruskal-Wallis test and the Mann-Whitney U-test with the Bonferroni correction (α = 0.05). The following mean fracture strength values (kN) were obtained in UNI design, ANA design, and SUP design, respectively: Group ZAC, 3.78, 6.01, 6.50 and Group ZIC, 3.15, 5.65, 5.83. In both the ZAC and ZIC groups, fracture strength was significantly lower for the UNI design than the other two framework designs (P = 0.001). Fracture strength did not significantly differ (P > 0.420) between identical framework designs in the ZAC and ZIC groups. A framework design with standardized layer thickness and adequate support of veneer by zirconia frameworks, as in the ANA and SUP designs, increases fracture resistance in implant-supported zirconia-based restorations under conditions of chewing attrition. Indirect composite material and porcelain perform similarly as layering materials on zirconia frameworks. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Zirconia toughened ceramics for heat engine applications

    International Nuclear Information System (INIS)

    Rossi, G.A.; Blum, J.B.; Manwiller, K.E.; Knapp, C.E.

    1986-01-01

    Three classes of zirconia toughened ceramics (ZTC) were studied, i.e. Mg-PSZ (MgO-partially stabilized zirconia), Y-TZP (Y/sub 2/O/sub 3/-tetragonal zirconia polycrystals) and ZTA (zirconia toughened alumina). The main objective was to improve the high temperature strength and toughness, which are not satisfactory in the ''state of the art'' ZTC materials. Powders prepared by melting/rapid solidification and by chemical routes were used. The green parts were made by both dry and wet shape forming methods. Fine grained Mg-PSZ ceramics with unique microstructures were produced using the rapidly solidified powders. The Y-TZP materials were improved mainly through microstructure control and by addition of alpha alumina as a dispersed phase. Preliminary results on ZTA ceramics made with the rapidly solidified powders were also obtained. It is concluded that the Al/sub 2/O/sub 3//Y-TZP composites offer a good chance of meeting the program objectives

  3. Modern trends in engineering ceramics: review of transformation toughening in zirconia based ceramics

    International Nuclear Information System (INIS)

    Khan, A.A.

    1998-01-01

    The investigation of zirconia has continued to attract the interest of ever increasing number of scientists and solid evidence of commercial applications for the engineering ceramic is now available. To use zirconia to its full potential, the properties of the oxide have been modified extensively by the addition of cubic stabilizing oxides. These can be added in amounts sufficient to form a partially stabilized zirconia (PSZ) or to form a fully stabilized zirconia, which has a cubic structure at room temperature. The addition of varying amounts of cubic oxides, particularly MgO, CaO, Y sub 2 O sub 3, has allowed the development of novel and innovative ceramic materials. In this article an overview of the recent advances in zirconia based engineering materials is presented. It is shown that intelligent control of the composition and microstructure can lead the the production of extremely though ceramic materials, a property which is generally thought to be the major weak point of ceramics vis a vis other class of materials. (author)

  4. All-ceramic posts and cores: the state of the art.

    Science.gov (United States)

    Koutayas, S O; Kern, M

    1999-06-01

    Metal posts used to restore endodontically treated teeth may shine through all-ceramic crowns and thin gingival tissue. When nonprecious alloys are used, corrosion products may lead to discoloration. All-ceramic posts and cores can be used in combination with all-ceramic crowns to prevent these problems. All-ceramic posts and cores are highly biocompatible and will almost always increase the translucency of an all-ceramic restoration. The purpose of this article is to describe the fabrication of all-ceramic posts and cores, using high-toughness ceramic materials such as alumina or zirconia ceramics, through 4 different techniques: the slip-casting technique; the copy-milling technique; the 2-piece technique, which involves a prefabricated zirconia ceramic post and a copy-milled alumina or zirconia ceramic core; and the heat-press technique, which involves a prefabricated zirconia ceramic post and a heat-pressed glass-ceramic core. Indications, contraindications, advantages, and disadvantages of the different techniques are compared.

  5. FIB/SEM and SEM/EDS microstructural analysis of metal-ceramic and zirconia-ceramic interfaces.

    Science.gov (United States)

    Massimi, F; Merlati, G; Sebastiani, M; Battaini, P; Menghini, P; Bemporad, E

    2012-01-10

    Recently introduced FIB/SEM analysis in microscopy seems to provide a high-resolution characterization of the samples by 3D (FIB) cross-sectioning and (SEM) high resolution imaging. The aim of this study was to apply the FIB/SEM and SEM/EDS analysis to the interfaces of a metal-ceramic vs. two zirconia-ceramic systems. Plate samples of three different prosthetic systems were prepared in the dental lab following the manufacturers' instructions, where metal-ceramic was the result of a ceramic veneering (porcelain-fused-to-metal) and the two zirconia-ceramic systems were produced by the dedicated CAD-CAM procedures of the zirconia cores (both with final sintering) and then veneered by layered or heat pressed ceramics. In a FIB/SEM equipment (also called DualBeam), a thin layer of platinum (1 μm) was deposited on samples surface crossing the interfaces, in order to protect them during milling. Then, increasingly deeper trenches were milled by a focused ion beam, first using a relatively higher and later using a lower ion current (from 9 nA to 0.28 nA, 30KV). Finally, FEG-SEM (5KV) micrographs (1000-50,000X) were acquired. In a SEM the analysis of the morphology and internal microstructure was performed by 13KV secondary and backscattered electrons signals (in all the samples). The compositional maps were then performed by EDS probe only in the metal-ceramic system (20kV). Despite the presence of many voids in all the ceramic layers, it was possible to identify: (1) the grain structures of the metallic and zirconia substrates, (2) the thin oxide layer at the metal-ceramic interface and its interactions with the first ceramic layer (wash technique), (3) the roughness of the two different zirconia cores and their interactions with the ceramic interface, where the presence of zirconia grains in the ceramic layer was reported in two system possibly due to sandblasting before ceramic firing.

  6. Formulation of nano-ceramic filters used in separation of heavy metals . Part II: Zirconia ceramic filters

    International Nuclear Information System (INIS)

    Khalil, T.; Labib, Sh.; Abou EI-Nour, F.H.; Abdel-Kbalik, M.

    2007-01-01

    Zirconia ceramic filters are prepared using polymeric sol-gel process. An optimization of synthesis parameters was studied to give cracked free coated nano porous film with high performance quality. Zirconia ceramic filters are characterized to select tbe optimized conditions that give tbe suitable zirconia filter used in heavy metal separation. The ceramic filters were characterized using BET method for surface measurements, mercury porosimeter for pore size distribution analysis and coating thickness measurements, SEM for microstructural studies and atomic absorption spectrophotometer (AAS) for metal analysis. The results indicated that zirconia ceramic filters. show high separation performance for cadmium, cupper, iron, manganese and lead

  7. Natural radioactivity in zirconia-based dental ceramics

    International Nuclear Information System (INIS)

    Giussani, Augusto; Gerstmann, Udo; La Porta, Caterina; Cantone, Marie C.; Veronese, Ivan

    2008-01-01

    Zirconia-based ceramics are being increasingly used in dental prosthetics in substitution of metal cores, which are known to induce local toxic reactions and delayed allergic responses in the oral tissues. Some concerns have been however raised about the use of zirconia, since it is known that unpurified zirconia materials may contain non negligible levels of natural radionuclides of the U/Th series. Combined measurements of alpha and gamma spectrometry as well as beta dosimetry were conducted on zirconia samples used for dental applications. Samples were available in form of powder and/or solid blocks. The results showed that the beta dose rate in zirconia ceramics was on average only slightly higher than the levels measured in natural teeth, and generally lower than the values measured in feldspatic and glass ceramics. These materials are indeed known to deliver a beta dose significantly higher than that measured from natural teeth, due to the relatively high levels of 40 K (between 2 and 3 kBq·kg -1 ). The content of radionuclides of the U/Th series in the zirconia sample was estimated to be lower than 15 Bq·kg -1 , i.e. doubtlessly below the exclusion level of 1 kBq·kg -1 recommended by IAEA in the Safety Standard Series. Beta dosimetry measurements, however, gave indications of possible inhomogeneous clusters of radioactivity, which might give rise to local doses above the background. (author)

  8. Fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites

    International Nuclear Information System (INIS)

    Lyubushkin, R.A.; Ivanov, O.N.; Chuev, V.P.; Buzov, A.A.

    2011-01-01

    At present, zirconia-based ceramics are gaining popularity in dentistry, particularly in fixed prosthodontics. clinically, it is important that ceramic restorations reproduce the translucency and color of natural teeth. Zirconia based ceramics is a high performance material with excellent biocompatibility and mechanical properties, which suggest its suitability for posterior fixed partial dentures. Y 2 O 3 -stabilized tetragonal zirconia polycrystalline (YTZ/Al 2 O 3 ) and CeO 2 -stabilized tetragonal zirconia polycrystalline (CZA) ceramics with high-performance were prepared for dental application by use the wet chemical route, consolidated by cold isostatic pressing, and two-step sintering method. Physical and mechanical properties test results show that the bending strength, fracture toughness, and the density of full sintered ceramics suggest that the material is relatively suitable for dental restoration.

  9. Zirconia toughened mica glass ceramics for dental restorations.

    Science.gov (United States)

    Gali, Sivaranjani; K, Ravikumar; Murthy, B V S; Basu, Bikramjit

    2018-03-01

    The objective of the present study is to understand the role of yttria stabilized zirconia (YSZ) in achieving the desired spectrum of clinically relevant mechanical properties (hardness, elastic modulus, fracture toughness and brittleness index) and chemical solubility of mica glass ceramics. The glass-zirconia mixtures with varying amounts of YSZ (0, 5, 10, 15 and 20wt.%) were ball milled, compacted and sintered to obtain pellets of glass ceramic-YSZ composites. Phase analysis was carried out using X-ray diffraction and microstructural characterization with SEM revealed the crystal morphology of the composites. Mechanical properties such as Vickers hardness, elastic modulus, indentation fracture toughness and chemical solubility were assessed. Phase analysis of sintered pellets of glass ceramic-YSZ composites revealed the characteristic peaks of fluorophlogopite (FPP) and tetragonal zirconia. Microstructural investigation showed plate and lath-like interlocking mica crystals with embedded zirconia. Vickers hardness of 9.2GPa, elastic modulus of 125GPa, indentation toughness of 3.6MPa·m 1/2 , and chemical solubility of 30μg/cm 2 (well below the permissible limit) were recorded with mica glass ceramics containing 20wt.% YSZ. An increase in hardness and toughness of the glass ceramic-YSZ composites with no compromise on their brittleness index and chemical solubility has been observed. Such spectrum of properties can be utilised for developing a machinable ceramic for low stress bearing inlays, onlays and veneers. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. An In Vivo Evaluation of the Fit of Zirconium-Oxide Based, Ceramic Single Crowns with Vertical and Horizontal Finish Line Preparations.

    Science.gov (United States)

    Vigolo, Paolo; Mutinelli, Sabrina; Biscaro, Leonello; Stellini, Edoardo

    2015-12-01

    Different types of tooth preparations influence the marginal precision of zirconium-oxide based ceramic single crowns. In this in vivo study, the marginal fits of zirconium-oxide based ceramic single crowns with vertical and horizontal finish lines were compared. Forty-six teeth were chosen in eight patients indicated for extraction for implant placement. CAD/CAM technology was used for the production of 46 zirconium-oxide-based ceramic single crowns: 23 teeth were prepared with vertical finishing lines, 23 with horizontal finishing lines. One operator accomplished all clinical procedures. The zirconia crowns were cemented with glass ionomer cement. The teeth were extracted 1 month later. Marginal gaps along vertical planes were measured for each crown, using a total of four landmarks for each tooth by means of a microscope at 50× magnification. On conclusion of microscopic assessment, ESEM evaluation was completed on all specimens. The comparison of the gap between the two types of preparation was performed with a nonparametric test (two-sample Wilcoxon rank-sum test) with a level of significance fixed at p zirconium-oxide-based ceramic CAD/CAM crowns with vertical and horizontal finish line preparations were not different. © 2015 by the American College of Prosthodontists.

  11. Niobia and tantala codoped orthorhombic zirconia ceramics

    International Nuclear Information System (INIS)

    Hoeftberger, M.; Gritzner, G.

    1995-01-01

    During recent studies it was found that codoping of zirconia with niobia and tantala yielded very corrosion resistant, orthorhombic zirconia ceramics. The powders for those novel ceramics were made via the sol-gel technique by hydrolysis of the respective metal propoxides; a method which required dry-box techniques during the preparation of the alkoxides. In these studies the authors investigated the fabrication of precursor material from aqueous solutions. The preparation of aqueous solutions of salts of zirconium, niobium and tantalum is hampered by rapid hydrolysis. Premature hydrolysis of the chlorides and oxichlorides of niobium, tantalum and zirconium can be, however, prevented in aqueous solutions of oxalic acid. Thus the authors investigated the coprecipitation of hydroxides as precursors by reacting oxalic acid solutions of the respective cations with aqueous ammonia. In addition they studied the effects of calcination and of hydrothermal conversion of the hydroxides to oxides on the powder characteristics and on the mechanical properties of the niobia and tantala codoped zirconia ceramics

  12. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic.

    Science.gov (United States)

    Elsaka, Shaymaa E; Elnaghy, Amr M

    2016-07-01

    The aim of this study was to assess the mechanical properties of recently introduced zirconia reinforced lithium silicate glass-ceramic. Two types of CAD/CAM glass-ceramics (Vita Suprinity (VS); zirconia reinforced lithium silicate and IPS e.max CAD (IC); lithium disilicate) were used. Fracture toughness, flexural strength, elastic modulus, hardness, brittleness index, and microstructures were evaluated. Data were analyzed using independent t tests. Weibull analysis of flexural strength data was also performed. VS had significantly higher fracture toughness (2.31±0.17MPam(0.5)), flexural strength (443.63±38.90MPa), elastic modulus (70.44±1.97GPa), and hardness (6.53±0.49GPa) than IC (Pglass-ceramic revealed significantly a higher brittleness index (2.84±0.26μm(-1/2)) (lower machinability) than IC glass-ceramic (Pglass-ceramic revealed a lower probability of failure and a higher strength than IC glass-ceramic according to Weibull analysis. The VS zirconia reinforced lithium silicate glass-ceramic revealed higher mechanical properties compared with IC lithium disilicate glass-ceramic. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Zirconia in biomedical applications.

    Science.gov (United States)

    Chen, Yen-Wei; Moussi, Joelle; Drury, Jeanie L; Wataha, John C

    2016-10-01

    The use of zirconia in medicine and dentistry has rapidly expanded over the past decade, driven by its advantageous physical, biological, esthetic, and corrosion properties. Zirconia orthopedic hip replacements have shown superior wear-resistance over other systems; however, risk of catastrophic fracture remains a concern. In dentistry, zirconia has been widely adopted for endosseous implants, implant abutments, and all-ceramic crowns. Because of an increasing demand for esthetically pleasing dental restorations, zirconia-based ceramic restorations have become one of the dominant restorative choices. Areas covered: This review provides an updated overview of the applications of zirconia in medicine and dentistry with a focus on dental applications. The MEDLINE electronic database (via PubMed) was searched, and relevant original and review articles from 2010 to 2016 were included. Expert commentary: Recent data suggest that zirconia performs favorably in both orthopedic and dental applications, but quality long-term clinical data remain scarce. Concerns about the effects of wear, crystalline degradation, crack propagation, and catastrophic fracture are still debated. The future of zirconia in biomedical applications will depend on the generation of these data to resolve concerns.

  14. Comparison of Amount of Primary Tooth Reduction Required for Anterior and Posterior Zirconia and Stainless Steel Crowns.

    Science.gov (United States)

    Clark, Larkin; Wells, Martha H; Harris, Edward F; Lou, Jennifer

    2016-01-01

    To determine if aggressiveness of primary tooth preparation varied among different brands of zirconia and stainless steel (SSC) crowns. One hundred primary typodont teeth were divided into five groups (10 posterior and 10 anterior) and assigned to: Cheng Crowns (CC); EZ Pedo (EZP); Kinder Krowns (KKZ); NuSmile (NSZ); and SSC. Teeth were prepared, and assigned crowns were fitted. Teeth were weighed prior to and after preparation. Weight changes served as a surrogate measure of tooth reduction. Analysis of variance showed a significant difference in tooth reduction among brand/type for both the anterior and posterior. Tukey's honest significant difference test (HSD), when applied to anterior data, revealed that SSCs required significantly less tooth removal compared to the composite of the four zirconia brands, which showed no significant difference among them. Tukey's HSD test, applied to posterior data, revealed that CC required significantly greater removal of crown structure, while EZP, KKZ, and NSZ were statistically equivalent, and SSCs required significantly less removal. Zirconia crowns required more tooth reduction than stainless steel crowns for primary anterior and posterior teeth. Tooth reduction for anterior zirconia crowns was equivalent among brands. For posterior teeth, reduction for three brands (EZ Pedo, Kinder Krowns, NuSmile) did not differ, while Cheng Crowns required more reduction.

  15. Effect of various veneering techniques on mechanical strength of computer-controlled zirconia framework designs.

    Science.gov (United States)

    Kanat, Burcu; Cömlekoğlu, Erhan M; Dündar-Çömlekoğlu, Mine; Hakan Sen, Bilge; Ozcan, Mutlu; Ali Güngör, Mehmet

    2014-08-01

    The objectives of this study were to evaluate the fracture resistance (FR), flexural strength (FS), and shear bond strength (SBS) of zirconia framework material veneered with different methods and to assess the stress distributions using finite element analysis (FEA). Zirconia frameworks fabricated in the forms of crowns for FR, bars for FS, and disks for SBS (N = 90, n = 10) were veneered with either (a) file splitting (CAD-on) (CD), (b) layering (L), or (c) overpressing (P) methods. For crown specimens, stainless steel dies (N = 30; 1 mm chamfer) were scanned using the labside contrast spray. A bilayered design was produced for CD, whereas a reduced design (1 mm) was used for L and P to support the veneer by computer-aided design and manufacturing. For bar (1.5 × 5 × 25 mm(3) ) and disk (2.5 mm diameter, 2.5 mm height) specimens, zirconia blocks were sectioned under water cooling with a low-speed diamond saw and sintered. To prepare the suprastructures in the appropriate shapes for the three mechanical tests, nano-fluorapatite ceramic was layered and fired for L, fluorapatite-ceramic was pressed for P, and the milled lithium-disilicate ceramics were fused with zirconia by a thixotropic glass ceramic for CD and then sintered for crystallization of veneering ceramic. Crowns were then cemented to the metal dies. All specimens were stored at 37°C, 100% humidity for 48 hours. Mechanical tests were performed, and data were statistically analyzed (ANOVA, Tukey's, α = 0.05). Stereomicroscopy and scanning electron microscopy (SEM) were used to evaluate the failure modes and surface structure. FEA modeling of the crowns was obtained. Mean FR values (N ± SD) of CD (4408 ± 608) and L (4323 ± 462) were higher than P (2507 ± 594) (p mechanical tests, whereas a layering technique increased the FR when an anatomical core design was employed. File splitting (CAD-on) or layering veneering ceramic on zirconia with a reduced framework design may reduce ceramic chipping

  16. A 3-year prospective study of implant-supported, single-tooth restorations of all-ceramic and metal-ceramic materials in patients with tooth agenesis.

    Science.gov (United States)

    Hosseini, Mandana; Worsaae, Nils; Schiødt, Morten; Gotfredsen, Klaus

    2013-10-01

    The purpose of this clinical study was to describe outcome variables of all-ceramic and metal-ceramic implant-supported, single-tooth restorations. A total of 59 patients (mean age: 27.9 years) with tooth agenesis and treated with 98 implant-supported single-tooth restorations were included in this study. Two patients did not attend baseline examination, but all patients were followed for 3 years. The implants supported 52 zirconia, 21 titanium and 25 gold alloy abutments, which retained 64 all-ceramic and 34 metal-ceramic crowns. At baseline and 3-year follow-up examinations, the biological outcome variables such as survival rate of implants, marginal bone level, modified Plaque Index (mPlI), modified Sulcus Bleeding Index (mBI) and biological complications were registered. The technical outcome variables included abutment and crown survival rate, marginal adaptation of crowns, cement excess and technical complications. The aesthetic outcome was assessed by using the Copenhagen Index Score, and the patient-reported outcomes were recorded using the OHIP-49 questionnaire. The statistical analyses were mainly performed by using mixed model of ANOVA for quantitative data and PROC NLMIXED for ordinal categorical data. The 3-year survival rate was 100% for implants and 97% for abutments and crowns. Significantly more marginal bone loss was registered at gold-alloy compared to zirconia abutments (P = 0.040). The mPlI and mBI were not significantly different at three abutment materials. The frequency of biological complications was higher at restorations with all-ceramic restorations than metal-ceramic crowns. Loss of retention, which was only observed at metal-ceramic crowns, was the most frequent technical complication, and the marginal adaptations of all-ceramic crowns were significantly less optimal than metal-ceramic crowns (P = 0.020). The professional-reported aesthetic outcome demonstrated significantly superior colour match of all-ceramic over metal-ceramic

  17. [Study on the effect of different impression methods on the marginal fit of all-ceramic crowns].

    Science.gov (United States)

    Zhan, Lilin; Zeng, Liwei; Chen, Ping; Liao, Lan; Li, Shiyue; Liu, Renying

    2015-08-01

    To investigate the effect of three different impression methods on the marginal fit of all-ceramic crowns. The three methods include scanning silicone rubber impression, cast models, and direct optical impression. The polymethyl methacrylate (PMMA) material of a mandibular first molar in standard model was prepared with 16 models duplicated. The all-ceramic crowns were prepared using three different impression methods. Accurate impressions were made using silicone rubber, and the cast models were obtained. The PMMA models, silicone rubber impressions, and cast models were scanned, and digital models of three groups were obtained to produce 48 zirconia all-ceramic crowns with computer aided design/computer aided manufacture. The marginal fit of these groups was measured by silicone rubber gap impression. Statistical analysis was performed with SPSS 17.0 software. The marginal fit of direct optical impression groups, silicone rubber impression groups, cast model groups was (69.18±9.47), (81.04±10.88), (84.42±9.96) µm. A significant difference was observed in the marginal fit of the direct optical impression groups and the other groups (Pimpression groups and the cast model groups (P>0.05). All marginal measurement sites are clinically acceptable by the three different impression scanning methods. The silicone rubber impression scanning method can be used for all-ceramic restorations.

  18. Effects of multiple firings on the microstructure of zirconia and veneering ceramics.

    Science.gov (United States)

    Alkurt, Murat; Yeşil Duymus, Zeynep; Gundogdu, Mustafa

    2016-01-01

    The aim of study was to evaluate the effects of multiple firings on the microstructures of zirconia and two ceramics. Vita VM9 (VMZ) and Cerabien ZR (C-Z) ceramics on a zirconia framework and zirconia without veneering ceramic (WO-Z) were evaluated. Firing methods included firing two, five, and ten times (n=10). The effects of multiple firings on the surface hardness of the materials were evaluated using a Vickers hardness (HV) tester. Data were analyzed by two-way ANOVA and Tukey's test (α=0.05). After firing five and ten times, the hardness of VM-Z and C-Z increased significantly (p0.05). In the XRD analysis, zirconia had similar tetragonal (t)-monoclinic (m) phase transformations of Y-TZP after the different firing times. Clinically, multiple firings did not affect the microstructure of zirconia, but the structures of the two ceramics were affected.

  19. Glass ceramic toughened with tetragonal zirconia

    Science.gov (United States)

    Keefer, Keith D.; Michalske, Terry A.

    1986-01-01

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat-treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nucleating agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200.degree. to 1700.degree. C. and is then heat-treated at a temperature within the range of 800.degree. to 1200.degree. C. in order to precipitate tetragonal ZrO.sub.2. The composition, as well as the length and temperature of the heat-treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  20. Dentin-bonded all-ceramic crowns: current status.

    Science.gov (United States)

    Burke, F J; Qualtrough, A J; Hale, R W

    1998-04-01

    Dentin-bonded all-ceramic crowns employ contemporary techniques to lute the crown to the tooth using a resin luting material and dentin-bonding system. The advantages of these crowns are that they provide good esthetics and fracture resistance and can be used in cases of substantial tooth loss. Their principal disadvantages are that the luting procedure is more time-consuming and that these crowns should not be used where margins are subgingival. Dentin-bonded all-ceramic crowns may be a useful addition to the dentist's armamentarium, but long-term clinical studies are needed to fully assess their performance.

  1. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns.

    Science.gov (United States)

    Mitov, Gergo; Anastassova-Yoshida, Yana; Nothdurft, Frank Phillip; von See, Constantin; Pospiech, Peter

    2016-02-01

    The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling 5℃-55℃ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at 137℃, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.

  2. Effect of various intermediate ceramic layers on the interfacial stability of zirconia core and veneering ceramics.

    Science.gov (United States)

    Yoon, Hyung-In; Yeo, In-Sung; Yi, Yang-Jin; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk

    2015-01-01

    The purposes of this study were to evaluate the effects of intermediate ceramics on the adhesion between the zirconia core and veneer ceramics. The polished surfaces of fully sintered Y-TZP blocks received three different treatments: (1) connector (C), (2) liner (L) or (3) wash layer (W). All the treated zirconia blocks were veneered with either (a) fluorapatite glass-ceramic (E) or (b) feldspathic porcelain (V) and divided into four groups (CE, CV, LE and WV). For the control group, the testing surfaces of metal blocks were veneered with feldspathic porcelain (VM). A half of the samples in each group (n = 21) were exposed to thermocycling, while the other half of the specimens were stored at room temperature under dry conditions. All specimens were subjected to the shear test and the failed surfaces were microscopically examined. The elemental distribution at the zirconia core/veneer interface was analyzed. The specimens in Groups CE and CV exhibited significantly greater mean bond strength values than those in Groups LE and WV, respectively (p ceramic substances into the zirconia surface. A glass-ceramic based connector is significantly more favorable to core/veneer adhesion than the other intermediate ceramics evaluated in the study. However, thermal cycling affected the bond strength at the core/veneer interface differently according to the intermediate ceramics.

  3. Thermo-mechanical properties of mullite/zirconia reinforced alumina ceramic composites

    International Nuclear Information System (INIS)

    Wahsh, M.M.S.; Khattab, R.M.; Awaad, M.

    2012-01-01

    Highlights: ► Alumina–mullite–zirconia ceramic composites were prepared from alumina and zircon. ► Constant amount of magnesia was added as a sintering aid. ► Mechanical properties were enhanced with increasing of zircon up to 30.52 mass%. ► All of ceramic composites were achieved excellent thermal shock resistance. -- Abstract: Alumina–mullite–zirconia ceramic composites were prepared by reaction bonding of alumina and zircon mixtures after firing at different temperatures 1300°, 1400° and 1500 °C. Constant amount of magnesia was added as a sintering aid. The technological parameters of the sintered ceramic composites, i.e. the mechanical properties and densification parameter as well as thermal shock resistance, have been investigated. The phase compositions and microstructure of the sintered ceramic composites were detected by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results indicated that alumina–mullite–zirconia ceramic composites fired at 1500 °C for 2 h were achieved a good densification parameters and mechanical properties as well as excellent thermal shock resistance. In addition, these ceramic composites were showed enhancement in Vickers’ microhardness and fracture toughness values.

  4. Grinding model and material removal mechanism of medical nanometer zirconia ceramics.

    Science.gov (United States)

    Zhang, Dongkun; Li, Changhe; Jia, Dongzhou; Wang, Sheng; Li, Runze; Qi, Xiaoxiao

    2014-01-01

    Many patents have been devoted to developing medical nanometer zirconia ceramic grinding techniques that can significantly improve both workpiece surface integrity and grinding quality. Among these patents is a process for preparing ceramic dental implants with a surface for improving osseo-integration by sand abrasive finishing under a jet pressure of 1.5 bar to 8.0 bar and with a grain size of 30 µm to 250 µm. Compared with other materials, nano-zirconia ceramics exhibit unmatched biomedical performance and excellent mechanical properties as medical bone tissue and dentures. The removal mechanism of nano-zirconia materials includes brittle fracture and plastic removal. Brittle fracture involves crack formation, extension, peeling, and chipping to completely remove debris. Plastic removal is similar to chip formation in metal grinding, including rubbing, ploughing, and the formation of grinding debris. The materials are removed in shearing and chipping. During brittle fracture, the grinding-led transverse and radial extension of cracks further generate local peeling of blocks of the material. In material peeling and removal, the mechanical strength and surface quality of the workpiece are also greatly reduced because of crack extension. When grinding occurs in the plastic region, plastic removal is performed, and surface grinding does not generate grinding fissures and surface fracture, producing clinically satisfactory grinding quality. With certain grinding conditions, medical nanometer zirconia ceramics can be removed through plastic flow in ductile regime. In this study, we analyzed the critical conditions for the transfer of brittle and plastic removal in nano-zirconia ceramic grinding as well as the high-quality surface grinding of medical nanometer zirconia ceramics by ELID grinding.

  5. Zirconia based ceramics

    International Nuclear Information System (INIS)

    Bressiani, J.C.; Bressiani, A.H.A.

    1989-05-01

    Within the new generation of ceramic materials, zirconia continues to attract ever increasing attention of scients, technologists and users by virtue of its singular combination of properties and being able to perform thermo-mechanical, electroeletronic, chemico-biological functions. Nevertheless, in order to obtain these properties, a through understanding of the phase transformation mechanisms and microstructural changes is necessary. This paper discusses the main parameters that require control during fabrication of these materials to obtain desired properties for a specific application. (author) [pt

  6. Influence of full-contour zirconia surface roughness on wear of glass-ceramics.

    Science.gov (United States)

    Luangruangrong, Palika; Cook, N Blaine; Sabrah, Alaa H; Hara, Anderson T; Bottino, Marco C

    2014-04-01

    The purpose of this study was to evaluate the influence of full-contour (Y-TZP) zirconia surface roughness (glazed vs. as-machined) on the wear behavior of glass-ceramics. Thirty-two full contour Y-TZP (Diazir®) specimens (hereafter referred to as zirconia sliders) (ϕ = 2 mm, 1.5 mm in height) were fabricated using CAD/CAM and sintered according to the manufacturer's instructions. Zirconia sliders were embedded in brass holders using acrylic resin and then randomly assigned (n = 16) according to the surface treatment received, that is, as-machined or glazed. Glass-ceramic antagonists, Empress/EMP and e.max/EX, were cut into tabs (13 × 13 × 2 mm(3) ), wet-finished, and similarly embedded in brass holders. Two-body pin-on-disk wear testing was performed at 1.2 Hz for 25,000 cycles under a 3 kg load. Noncontact profilometry was used to measure antagonist height (μm) and volume loss (mm(3) ). Qualitative data of the zirconia testing surfaces and wear tracks were obtained using SEM. Statistics were performed using ANOVA with a significance level of 0.05. As-machined yielded significantly higher mean roughness values (Ra = 0.83 μm, Rq = 1.09 μm) than glazed zirconia (Ra = 0.53 μm, Rq = 0.78 μm). Regarding glass-ceramic antagonist loss, as-machined zirconia caused significantly less mean height and volume loss (68.4 μm, 7.6 mm(3) ) for EMP than the glazed group (84.9 μm, 9.9 mm(3) ), while no significant differences were found for EX. Moreover, EMP showed significantly lower mean height and volume loss than EX (p glass-ceramics tested. e.max wear was not affected by zirconia surface roughness; however, Empress wear was greater when opposing glazed zirconia. Overall, surface glazing on full-contour zirconia did not minimize glass-ceramic wear when compared with as-machined zirconia. © 2013 by the American College of Prosthodontists.

  7. EFFECTIVE ELASTIC PROPERTIES OF ALUMINA-ZIRCONIA COMPOSITE CERAMICS - PART 4. TENSILE MODULUS OF POROUS ALUMINA AND ZIRCONIA

    Directory of Open Access Journals (Sweden)

    W. Pabst

    2004-12-01

    Full Text Available In this fourth paper of a series on the effective elastic properties of alumina-zirconia composite ceramics the influence of porosity on the effective tensile modulus of alumina and zirconia ceramics is discussed. The examples investigated are alumina and zirconia ceramics prepared from submicron powders by starch consolidation casting using two different types of starch, potato starch (median size D50 =47.2 µm and corn starch (median size D50 =13.7 µm. The dependence of effective tensile moduli E, on the porosity f, measured for porosities in the ranges of approx. 19-55 vol.% and 10-42 vol.% for alumina and zirconia, respectively, using a resonant frequency technique, was evaluated by fitting with various model relations, including newly developed ones. A detailed comparison of the fitting results suggests the superiority of the new relation E/E0 = (1 - f·(1 - f/fC, developed by the authors (with the tensile modulus of the dense ceramic material E0 and the critical porosity fC, over most other existing fit models. Only for special purposes and well-behaved data sets the recently proposed exponential relation E/E0 = exp [-Bf/(1 - f] and the well-known Phani-Niyogi relation E/E0 = (1 - f/fCN might be preferable.

  8. Survival of anterior cantilevered all-ceramic resin-bonded fixed dental prostheses made from zirconia ceramic.

    Science.gov (United States)

    Sasse, Martin; Kern, Matthias

    2014-06-01

    This study evaluated the clinical outcome of all-ceramic resin-bonded fixed dental prostheses (RBFDPs) with a cantilevered single-retainer design made from zirconia ceramic. Forty-two anterior RBFDPs with a cantilevered single-retainer design were made from yttrium oxide-stabilized zirconium oxide ceramic. RBFDPs were inserted using Panavia 21 TC as luting agent after air-abrasion of the ceramic bonding surface. During a mean observation time of 61.8 months two debondings occurred. Both RBFDPs were rebonded using Panavia 21 TC and are still in function. A caries lesion was detected at one abutment tooth during recall and was treated with a composite filling. Therefore, the overall six-year failure-free rate according to Kaplan-Meier was 91.1%. If only debonding was defined as failure the survival rate increased to 95.2%. Since all RBFDPs are still in function the overall survival rate was 100% after six years. Cantilevered zirconia ceramic RBFDPs showed promising results within the observation period. Single-retainer resin-bonded fixed dental prostheses made from zirconia ceramic show very good mid-term clinical survival rates. They should therefore be considered as a viable treatment alternative for the replacement of single missing anterior teeth especially as compared to an implant therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Studies on zirconia-mullite ceramic

    International Nuclear Information System (INIS)

    Virkar, Alka N.

    2014-01-01

    Zirconia Toughened Alumina (ZTA) ceramics with much improved Fracture Toughness and Strength have been used as a front material to fabricate composite Armour-Applications, Al 2 O 3 has very different fluxing ability with silica by sufficiently lowering the melting point. Addition of small amount of Fe 2 O 3 , TiO 2 , in an Al 2 O 3 -SiO 2 mixture enhances needle shaped Mullite crystal growth and also assist Liquid phase Sintering. In the present investigation, Zircon was used as a source of ZrO 2 and SiO 2 . Zircon (ZrSiO 4 ) has a low coefficient of Thermal Expansion and good Thermal Shock Resistance. Densification in terms of Relative Density and App. Porosity, Tetragonal ZrO 2 , phases, Thermal Expansion Coefficient, Hardness etc. were studied on Zirconia-Mullite system with and without additives. Z-M system with Y 2 O 3 additives show improved properties owing to the partial stabilization of Zirconia phase (PSZ). (author)

  10. Survival of resin infiltrated ceramics under influence of fatigue.

    Science.gov (United States)

    Aboushelib, Moustafa N; Elsafi, Mohamed H

    2016-04-01

    to evaluate influence of cyclic fatigue on two resin infiltrated ceramics and three all-ceramic crowns manufactured using CAD/CAM technology. CAD/CAM anatomically shaped crowns were manufactured using two resin infiltrated ceramics (Lava Ultimate and Vita Enamic), two reinforced glass ceramic milling blocks ((IPS)Empress CAD and (IPS)e.max CAD) and a veneered zirconia core ((IPS)Zir CAD). (IPS)e.max CAD and (IPS)Zir CAD were milled into 0.5mm thick anatomically shaped core structure which received standardized press-on veneer ceramic. The manufactured crowns were cemented on standardized resin dies using a resin adhesive (Panavia F2.0). Initial fracture strength of half of the specimens was calculated using one cycle load to failure in a universal testing machine. The remaining crowns were subjected to 3.7 million chewing cycles (load range 50-200N at 3s interval) in a custom made pneumatic fatigue tester. Survival statistics were calculated and Weibull modulus was measured from fitted load-cycle-failure diagrams. Scanning electron microscopy was performed to fractographically analyze fractured surfaces. Data were analyzed using two way analysis of variance and Bonferroni post hoc tests (α=0.05). Dynamic fatigue resulted in significant reduction (F=7.54, Pceramics and (IPS)Empress demonstrated the highest percent of fracture incidences under the influence of fatigue (35-45% splitting). None of the tested veneered zirconia restorations were fractured during testing, however, chipping of the veneer ceramics was observed in 6 crowns. The lowest percent of failure was observed for (IPS)e.max crowns manifested as 3 cases of minor chipping in addition to two complete fracture incidences. SEM images demonstrated the internal structure of the tested materials and detected location and size of the critical crack. The internal structure of the tested materials significantly influenced their fatigue behavior. Resin infiltrated ceramics were least influenced by fatigue while

  11. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic: The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R.; Ozcan, M.; Bottino, M.A.; Valandro, L.F.

    2006-01-01

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  12. Microtensile bond strength of a resin cement to glass infiltrated zirconia-reinforced ceramic : The effect of surface conditioning

    NARCIS (Netherlands)

    Amaral, R; Ozcan, M; Bottino, MA; Valandro, LF

    Objectives. This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Methods. Thirty blocks (5 x 5 x 4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR,

  13. Prospective assessment of CAD/CAM zirconia abutment and lithium disilicate crown restorations: 2.4 year results.

    Science.gov (United States)

    Cooper, Lyndon F; Stanford, Clark; Feine, Jocelyne; McGuire, Michael

    2016-07-01

    Single-tooth implant restorations are commonly used to replace anterior maxillary teeth. The esthetic, functional, and biologic outcomes are, in part, a function of the abutment and crown. The purpose of this clinical study was to describe the implant, abutment, and crown survival and complication rates for CAD/CAM zirconia abutment and lithium disilicate crown restorations for single-tooth implants. As part of a broader prospective investigation that enrolled and treated 141 participants comparing tissue responses at the conical interface (CI; AstraTech OsseoSpeed), flat-to-flat interface (FI; NobelSpeedy), and platform-switch interface (PS; NanoTite Certain Prevail) of single-tooth implants, computer-aided design and computer-aided manufacturing (CAD/CAM) zirconia abutments (ATLANTIS Abutment) and cemented lithium disilicate (e.max) crowns were used in the restoration of all implants. After 2.4 years in function (3 years after implant placement), the implant, abutment, and crown of 110 participants were evaluated. Technical and biologic complications were recorded. Demographic results were tabulated as percentages with mean values and standard deviations. Abutment survival was calculated with the Kaplan-Meier method. After 2.4 years, no abutments or crowns had been lost. Abutment complications (screw loosening, screw fracture, fracture) were absent for all 3 implant groups. Crown complications were limited to 2 crowns debonding and 1 with excess cement (2.5%). Five biological complications (4.0%) were recorded. The overall complication rate was 6.5%. CAD/CAM zirconia abutments restored with cemented lithium disilicate crowns demonstrated high survival on 3 different implant-abutment interface designs. No abutment or abutment screw fracture occurred. The technical complications observed after 2.4 years were minor and reversible. The use of CAD/CAM zirconia abutments with cemented lithium disilicate crowns is associated with high technical and biologic success at 2

  14. Wear properties of alumina/zirconia composite ceramics for joint prostheses measured with an end-face apparatus.

    Science.gov (United States)

    Morita, Yusuke; Nakata, Kenichi; Kim, Yoon-Ho; Sekino, Tohru; Niihara, Koichi; Ikeuchi, Ken

    2004-01-01

    While only alumina is applied to all-ceramic joint prostheses at present, a stronger ceramic is required to prevent fracture and chipping due to impingement and stress concentration. Zirconia could be a potential substitute for alumina because it has high strength and fracture toughness. However, the wear of zirconia/zirconia combination is too high for clinical use. Although some investigations on composite ceramics revealed that mixing of different ceramics was able to improve the mechanical properties of ceramics, there are few reports about wear properties of composite ceramics for joint prosthesis. Since acetabular cup and femoral head of artificial hip joint are finished precisely, they indicate high geometric conformity. Therefore, wear test under flat contact was carried out with an end-face wear testing apparatus for four kinds of ceramics: alumina monolith, zirconia monolith, alumina-based composite ceramic, and zirconia based composite ceramic. Mean contact pressure was 10 MPa and sliding velocity was 40 mm/s. The wear test continued for 72 hours and total sliding distance was 10 km. After the test, the wear factor was calculated. Worn surfaces were observed with a scanning electron micrograph (SEM). The results of this wear test show that the wear factors of the both composite ceramics are similarly low and their mechanical properties are much better than those of the alumina monolith and the zirconia monolith. According to these results, it is predicted that joint prostheses of the composite ceramics are safer against break down and have longer lifetime compared with alumina/alumina joint prostheses.

  15. The effect of zirconia on flexural strength of IPS Empress 2 ceramic

    Directory of Open Access Journals (Sweden)

    Kermanshah H

    2007-06-01

    Full Text Available Background and Aim: All ceramic, inlay-retained resin bonded fixed partial denture is a conservative method for replacement of missing teeth, because of minimal tooth reduction. The connector between the retainer and the pontic is the weak point of these bridges. Reinforcement of ceramic core will increase the clinical longevity. The aim of this study was to determine the effect of zirconia on flexural strength of IPS Empress 2 core ceramic.Materials and Methods: In this experimental in vitro study, twenty eight bar shape specimens (17´3.1´3.1 mm were made of four different materials: (1 Slip casting in-ceram alumina core (control group (2 Hot-pressed lithium disilicate core ceramic (IPS Empress 2 (3 IPS Empress 2 with cosmopost (zirconia post inserted longitudinally in the center of the bar (4 IPS Empress 2 with cosmopost (zirconia post inserted longitudinally in bottom of the bar. Specimens were subjected to three-point flexure loading with the span of 15mm, at a cross-head speed of 0.5 mm/min. Failure loads were recorded and analyzed using one-way ANOVA and Tomhane Post-hoc tests and p<0.05 was set as the level of significance. Fractured surfaces were then observed by scanning electron microscope (SEM. Four additional samples were made as the third group, and zirconia-IPS interface was observed by SEM before fracture.Results: Mean values and standard deviations of three point flexural strengths of groups 1 to 4, were: 378.4±44.6, 258.6±27.5, 144.3±51.7, 230±22.3 MPa respectively. All the groups were statistically different from each other (P<0.05, except groups 2 and 4. The flexural strengths of groups 2, 3, 4 were significantly lower than group 1. Group 3 had the lowest flexural strength. SEM analysis showed that the initiated cracks propagated in the interface of zirconia post and IPS Empress 2 ceramic.Conclusion: Based on the results of this study, inserting zirconia post (cosmopost in IPS Empress 2 ceramic does not reinforce all-ceramic

  16. Optical effects of different colors of artificial gingiva on ceramic crowns.

    Science.gov (United States)

    Wang, Jian; Lin, Jin; Gil, Mindy; Da Silva, John D; Wright, Robert; Ishikawa-Nagai, Shigemi

    2013-08-01

    The interaction between gingival color and the shade of ceramic restorations has never been fully studied. The purpose of this study is to investigate the optical effects of altering artificial gingival color on the ceramic crown shade in the cervical area. Thirty-one all-ceramic crowns of different shades were used in this study with six different artificial gingival colors. Using a spectrophotometer (Crystaleye(®) Olympus, Japan), we measured the shade of crowns in cervical areas with each of six different artificial gingiva. The crown color measured in the presence of pink artificial gingiva (control) was compared with the crown color with five other artificial gingiva. color difference values ΔE* were calculated and compared between the control group and test groups and the correlation of the artificial gingival color with the crown color was also assessed. Significant differences were found in the mean L* and a* values of all-ceramic crowns at the cervical regions in all six gingival color groups (pcolors of artificial gingiva generated clinically detectable shade differences in the cervical region of ceramic crowns. Copyright © 2013. Published by Elsevier Ltd.

  17. Zirconia implants and peek restorations for the replacement of upper molars

    Directory of Open Access Journals (Sweden)

    José María Parmigiani-Izquierdo

    2017-02-01

    Full Text Available Abstract Background One of the disadvantages of the zirconia implants is the lack of elasticity, which is increased with the use of ceramic or zirconia crowns. The consequences that could result from this lack of elasticity have led to the search for new materials with improved mechanical properties. Case presentation A patient who is a 45-year-old woman, non-smoker and has no medical record of interest with a longitudinal fracture in the palatal root of molar tooth 1.7 and absence of tooth 1.6 was selected in order to receive a zirconia implant with a PEEK-based restoration and a composite coating. The following case report describes and analyses treatment with zirconia implants in molars following a flapless surgical technique. Zirconia implants are an alternative to titanium implants in patients with allergies or who are sensitive to metal alloys. However, one of the disadvantages that they have is their lack of elasticity, which increases with the use of ceramic or zirconia crowns. The consequences that can arise from this lack of elasticity have led to the search for new materials with better mechanical properties to cushion occlusal loads. PEEK-based restoration in implant prosthetics can compensate these occlusal forces, facilitating cushioning while chewing. Conclusion This procedure provides excellent elasticity and resembles natural tooth structure. This clinical case suggests that PEEK restorations can be used in zirconia implants in dentistry.

  18. Translucency of Zirconia Ceramics before and after Artificial Aging.

    Science.gov (United States)

    Walczak, Katarzyna; Meißner, Heike; Range, Ursula; Sakkas, Andreas; Boening, Klaus; Wieckiewicz, Mieszko; Konstantinidis, Ioannis

    2018-03-11

    The aging of zirconia ceramics (Y-TZP) is associated with tetragonal to monoclinic phase transformation. This change in microstructure may affect the optical properties of the ceramic. This study examines the effect of aging on the translucency of different zirconia materials. 120 disc-shaped specimens were fabricated from four zirconia materials: Cercon ht white, BruxZir Solid Zirconia, Zenostar T0, Lava Plus (n = 30 per group). Accelerated aging was performed in a steam autoclave (134°C, 0.2 MPa, 5 hours). CIELab coordinates (L*, a*, b*) and luminous reflectance (Y) were measured with a spectrophotometer before and after aging. Contrast ratio (CR) and translucency parameter (TP) were calculated from the L*, a*, b*, and Y tristimulus values. The general linear model (Bonferroni adjusted) was used to compare both parameters before and after aging, as well as between the different zirconia materials (p ≤ 0.05). CR and TP differed significantly before and after aging in all groups tested. Before aging, Zenostar T showed the highest and Lava Plus showed the lowest translucency. After aging, Cercon ht and Zenostar T showed the highest and BruxZir and Lava Plus the lowest translucency. Aging reduced the translucency in all specimens tested. Furthermore, translucency differed between the zirconia brands tested. Nevertheless, the differences were below the detectability threshold of the human eye. The aging process can influence the translucency and thus the esthetic outcome of zirconia restorations; however, the changes in translucency were minimal and probably undetectable by the human eye. © 2018 by the American College of Prosthodontists.

  19. Effect of screw access hole preparation on fracture load of implant-supported zirconia-based crowns: an in vitro study

    Directory of Open Access Journals (Sweden)

    Hadi Mokhtarpour

    2016-07-01

    Full Text Available Background. Fracture load of implant-supported restorations is an important factor in clinical success. This study evaluated the effect of two techniques for screw access hole preparation on the fracture load of cement-screw-retained implant-supported zirconia-based crowns. Methods. Thirty similar cement-screw-retained implant-supported zirconia-based maxillary central incisor crowns were evaluated in three groups of 10. Group NH: with no screw access holes for the control; Group HBS: with screw access holes prepared with a machine before zirconia sintering; Group HAS: with screw access holes prepared manually after zirconia sintering. In group HBS, the access holes were virtually designed and prepared by a computer-assisted design/computer-assisted manufacturing system. In group HAS, the access holes were manually prepared after zirconia sintering using a diamond bur. The dimensions of the screw access holes were equal in both groups. The crowns were cemented onto same-size abutments and were then subjected to thermocycling. The fracture load values of the crowns were measured using a universal testing machine. Data were analyzed with ANOVA and Tukey test (P < 0.05. Results. The mean fracture load value for the group NH was 888.37 ± 228.92 N, which was the highest among the groups, with a significant difference (P < 0.0001. The fracture load values were 610.48 ± 125.02 N and 496.74 ± 104.10 Nin the HBS and HAS groups, respectively, with no significant differences (P = 0.44. Conclusion. Both techniques used for preparation of screw access holes in implant-supported zirconia-based crowns de-creased the fracture load.

  20. Production of defect-poor nanostructured ceramics of yttria-zirconia

    NARCIS (Netherlands)

    Sagel-Ransijn, C.D.; Sagel-Ransijn, C.D.; Winnubst, Aloysius J.A.; Kerkwijk, B.; Burggraaf, Anthonie; Burggraaf, A.J.; Verweij, H.

    1997-01-01

    For the production of nanostructured ceramics of yttria-zirconia four powders differing in agglomerate strength, agglomerate size and crystallite size are compared. An ultra-fine-grained ceramic with a final density of 98% and a grain size of 0.18 μm could be produced from a hydrothermally

  1. [Fractographic analysis of clinically failed anterior all ceramic crowns].

    Science.gov (United States)

    DU, Qian; Zhou, Min-bo; Zhang, Xin-ping; Zhao, Ke

    2012-04-01

    To identify the site of crack initiation and propagation path of clinically failed all ceramic crowns by fractographic analysis. Three clinically failed anterior IPS Empress II crowns and two anterior In-Ceram alumina crowns were retrieved. Fracture surfaces were examined using both optical stereo and scanning electron microscopy. Fractographic theory and fracture mechanics principles were applied to disclose the damage characteristics and fracture mode. All the crowns failed by cohesive failure within the veneer on the labial surface. Critical crack originated at the incisal contact area and propagated gingivally. Porosity was found within the veneer because of slurry preparation and the sintering of veneer powder. Cohesive failure within the veneer is the main failure mode of all ceramic crown. Veneer becomes vulnerable when flaws are present. To reduce the chances of chipping, multi-point occlusal contacts are recommended, and layering and sintering technique of veneering layer should also be improved.

  2. In vitro Evaluation of the Marginal Fit and Internal Adaptation of Zirconia and Lithium Disilicate Single Crowns: Micro-CT Comparison Between Different Manufacturing Procedures.

    Science.gov (United States)

    Riccitiello, Francesco; Amato, Massimo; Leone, Renato; Spagnuolo, Gianrico; Sorrentino, Roberto

    2018-01-01

    Prosthetic precision can be affected by several variables, such as restorative materials, manufacturing procedures, framework design, cementation techniques and aging. Marginal adaptation is critical for long-term longevity and clinical success of dental restorations. Marginal misfit may lead to cement exposure to oral fluids, resulting in microleakage and cement dissolution. As a consequence, marginal discrepancies enhance percolation of bacteria, food and oral debris, potentially causing secondary caries, endodontic inflammation and periodontal disease. The aim of the present in vitro study was to evaluate the marginal and internal adaptation of zirconia and lithium disilicate single crowns, produced with different manufacturing procedures. Forty-five intact human maxillary premolars were prepared for single crowns by means of standardized preparations. All-ceramic crowns were fabricated with either CAD-CAM or heat-pressing procedures (CAD-CAM zirconia, CAD-CAM lithium disilicate, heat-pressed lithium disilicate) and cemented onto the teeth with a universal resin cement. Non-destructive micro-CT scanning was used to achieve the marginal and internal gaps in the coronal and sagittal planes; then, precision of fit measurements were calculated in a dedicated software and the results were statistically analyzed. The heat-pressed lithium disilicate crowns were significantly less accurate at the prosthetic margins (p0.05); nevertheless CAD-CAM zirconia copings presented the best marginal fit among the experimental groups. As to the thickness of the cement layer, reduced amounts of luting agent were noticed at the finishing line, whereas a thicker layer was reported at the occlusal level. Within the limitations of the present in vitro investigation, the following conclusions can be drawn: the recorded marginal gaps were within the clinical acceptability irrespective of both the restorative material and the manufacturing procedures; the CAD-CAM processing techniques for

  3. CAD/CAM glass ceramics for single-tooth implant crowns: a finite element analysis.

    Science.gov (United States)

    Akça, Kvanç; Cavusoglu, Yeliz; Sagirkaya, Elcin; Aybar, Buket; Cehreli, Murat Cavit

    2013-12-01

    To evaluate the load distribution of CAD/CAM mono-ceramic crowns supported with single-tooth implants in functional area. A 3-dimensional numerical model of a soft tissue-level implant was constructed with cement-retained abutment to support glass ceramic machinable crown. Implant-abutment complex and the retained crown were embedded in a Ø 1.5 × 1.5 cm geometric matrix for evaluation of mechanical behavior of mono-ceramic CAD/CAM aluminosilicate and leucite glass crown materials. Laterally positioned axial load of 300 N was applied on the crowns. Resulting principal stresses in the mono-ceramic crowns were evaluated in relation to different glass ceramic materials. The highest compressive stresses were observed at the cervical region of the buccal aspect of the crowns and were 89.98 and 89.99 MPa, for aluminosilicate and leucite glass ceramics, respectively. The highest tensile stresses were observed at the collar of the lingual part of the crowns and were 24.54 and 25.39 MPa, respectively. Stresses induced upon 300 N static loading of CAD/CAM aluminosalicate and leucite glass ceramics are below the compressive strength of the materials. Impact loads may actuate the progress to end failure of mono-ceramic crowns supported by metallic implant abutments.

  4. Short-Term Prospective Clinical Evaluation of Monolithic and Partially Veneered Zirconia Single Crowns.

    Science.gov (United States)

    Bömicke, Wolfgang; Rammelsberg, Peter; Stober, Thomas; Schmitter, Marc

    2017-02-01

    The purpose of this study was to prospectively evaluate the short-term clinical performance and esthetics of monolithic and partially (i.e., facially) veneered zirconia single crowns (MZC and PZC, respectively). Between September 2011 and June 2013, 68 participants received 90 MZCs and 72 PZCs. Clinical study documentation was performed at crown cementation (baseline), at the 6-month follow-up, and then yearly thereafter using standardized report forms. Eight participants with 14 single crowns (eight MZCs and six PZCs) dropped out during clinical follow-up. Thus, 60 participants (28 male, mean age 62.5 ± 13.1 years) fitted with 82 MZCs and 66 PZCs were analyzed in February 2016 (Kaplan-Meier survival; mean observation time for the restorations 35.1 ± 6.3 months). Descriptive statistics were calculated for participants' and dentists' esthetic ratings on a numerical rating scale from 0 to 10 (0 = unacceptable color and shape; 10 = excellent color and shape). Complications were predominantly biological in nature. One PZC was affected by minor chipping. Cumulative 3-year failure-free survival was 98.5% (standard error (SE), 1.5%) for both MZCs and PZCs. Three-year cumulative complication-free survival (success) was 93.6% (SE 2.8%) for MZCs and 95.5% (SE 2.6%) for PZCs. Three-year cumulative fracture-free survival was 100% for MZCs and 98.5% (SE 1.5%) for PZCs. Crowns of both types were awarded high esthetic scores by participants and dentists. Monolithic and partially veneered zirconia crowns can be used clinically with excellent short-term survival and success and without compromising esthetic appearance. Longer-term follow-up is, however, desirable. During the observation time, both monolithic and partially veneered zirconia crowns showed an outstanding low technical complication rate: only one minor chipping and three losses of retention were observed. Additionally, esthetics was excellent. Based on these results the clinical use of this kind of

  5. Zirconia-based colors for ceramic glazes

    International Nuclear Information System (INIS)

    Eppler, R.A.

    1977-01-01

    The history of color development for use in ceramic glazes is outlined. The most significant modern development is based on zirconia and zircon. These materials have gained increasing acceptance in the industry since their introduction in the late 1950's and early 1960's, due to their superior stability during firing of the glaze

  6. Fracture and shear bond strength analyses of different dental veneering ceramics to zirconia

    International Nuclear Information System (INIS)

    Diniz, Alexandre C.; Nascimento, Rubens M.; Souza, Julio C.M.; Henriques, Bruno B.; Carreiro, Adriana F.P.

    2014-01-01

    The purpose of this work was to evaluate the interaction of different layering porcelains with zirconia via shear bond strength test and microscopy. Four different groups of dental veneering porcelains (VM9, Zirkonzanh, Ceramco, IPS) were fused onto forty zirconia-based cylindrical substrates (8 mm in diameter and 12 mm in height) (n = 10), according to the manufacturer's recommendations. Additionally, layered dental porcelain (D-sign, Ivoclar) was fired on ten Ni–Cr cylindrical substrates Shear bond strength tests of the veneering porcelain to zirconia or Ni–Cr were carried out at a crosshead speed of 0.5 mm/min. After the shear bond tests, the interfaces were analyzed by scanning electron microscopy (SEM). The fracture type exhibited by the different systems was also assessed. The results were statistically analyzed by ANOVA at a significant level of p < .05. The shear bond strength values of the porcelain-to-NiCr interfaces (25.3 ± 7.1 MPa) were significantly higher than those recorded for the following porcelain-to-zirconia systems: Zirkonzanh (18.8 ± 1 MPa), Ceramco (18.2 ± 4.7 MPa), and IPS (16 ± 4.5 MPa). However, no significant differences were found in the shear bond strength values between the porcelain-to-NiCr and porcelain (VM9)-to-zirconia (23.2 ± 5.1 MPa) groups (p > .05). All-ceramic interfaces revealed mixed failure type, cohesive in the porcelain and adhesive at the interface. This study demonstrated that all-ceramic systems do not attain yet the same bond strength standards equivalent to metal–ceramic systems. Therefore, despite the esthetic appeal of all-ceramic restorations, the adhesion between the porcelain and zirconia framework is still an issue considering the long term success of the restoration. - Highlights: • This study assessed the shear bond strength of different porcelains to zirconia. • The porcelain Vita VM9 showed a high shear bond strength to zirconia. • The fracture surface of all-ceramic systems revealed

  7. Fracture and shear bond strength analyses of different dental veneering ceramics to zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Alexandre C. [School of Dentistry (DOD), Division of Prosthodontics, Universidade Federal do Rio Grande do Norte -UFRN, 59056-000, Natal (Brazil); Nascimento, Rubens M. [Materials Engineering Department, Universidade Federal do Rio Grande do Norte - UFRN, Natal (Brazil); Souza, Julio C.M. [Centre for Mechanics and Materials Technologies - CT2M, Department of Mechanical Engineering (DEM), Universidade do Minho, Campus Azurém, 4800-058, Guimarães (Portugal); Henriques, Bruno B. [Materials Engineering Department, Universidade Federal do Rio Grande do Norte - UFRN, Natal (Brazil); Centre for Mechanics and Materials Technologies - CT2M, Department of Mechanical Engineering (DEM), Universidade do Minho, Campus Azurém, 4800-058, Guimarães (Portugal); Carreiro, Adriana F.P., E-mail: adrianadafonte@hotmail.com [School of Dentistry (DOD), Division of Prosthodontics, Universidade Federal do Rio Grande do Norte -UFRN, 59056-000, Natal (Brazil)

    2014-05-01

    The purpose of this work was to evaluate the interaction of different layering porcelains with zirconia via shear bond strength test and microscopy. Four different groups of dental veneering porcelains (VM9, Zirkonzanh, Ceramco, IPS) were fused onto forty zirconia-based cylindrical substrates (8 mm in diameter and 12 mm in height) (n = 10), according to the manufacturer's recommendations. Additionally, layered dental porcelain (D-sign, Ivoclar) was fired on ten Ni–Cr cylindrical substrates Shear bond strength tests of the veneering porcelain to zirconia or Ni–Cr were carried out at a crosshead speed of 0.5 mm/min. After the shear bond tests, the interfaces were analyzed by scanning electron microscopy (SEM). The fracture type exhibited by the different systems was also assessed. The results were statistically analyzed by ANOVA at a significant level of p < .05. The shear bond strength values of the porcelain-to-NiCr interfaces (25.3 ± 7.1 MPa) were significantly higher than those recorded for the following porcelain-to-zirconia systems: Zirkonzanh (18.8 ± 1 MPa), Ceramco (18.2 ± 4.7 MPa), and IPS (16 ± 4.5 MPa). However, no significant differences were found in the shear bond strength values between the porcelain-to-NiCr and porcelain (VM9)-to-zirconia (23.2 ± 5.1 MPa) groups (p > .05). All-ceramic interfaces revealed mixed failure type, cohesive in the porcelain and adhesive at the interface. This study demonstrated that all-ceramic systems do not attain yet the same bond strength standards equivalent to metal–ceramic systems. Therefore, despite the esthetic appeal of all-ceramic restorations, the adhesion between the porcelain and zirconia framework is still an issue considering the long term success of the restoration. - Highlights: • This study assessed the shear bond strength of different porcelains to zirconia. • The porcelain Vita VM9 showed a high shear bond strength to zirconia. • The fracture surface of all-ceramic systems revealed

  8. SEM evaluation of human gingival fibroblasts growth onto CAD/CAM zirconia and veneering ceramic for zirconia

    Science.gov (United States)

    Zizzari, Vincenzo; Borelli, Bruna; De Colli, Marianna; Tumedei, Margherita; Di Iorio, Donato; Zara, Susi; Sorrentino, Roberto; Cataldi, Amelia; Gherlone, Enrico Felice; Zarone, Fernando; Tetè, Stefano

    2013-01-01

    Summary Aim To evaluate the growth of Human Gingival Fibroblasts (HGFs) cultured onto sample discs of CAD/CAM zirconia and veneering ceramic for zirconia by means of Scanning Electron Microscope (SEM) analysis at different experimental times. Methods A total of 26 experimental discs, divided into 2 groups, were used: Group A) CAD/CAM zirconia (3Y-TZP) discs (n=13); Group B) veneering ceramic for zirconia discs (n=13). HGFs were obtained from human gingival biopsies, isolated and placed in culture plates. Subsequently, cells were seeded on experimental discs at 7,5×103/cm2 concentration and cultured for a total of 7 days. Discs were processed for SEM observation at 3h, 24h, 72h and 7 days. Results In Group A, after 3h, HGFs were adherent to the surface and showed a flattened profile. The disc surface covered by HGFs resulted to be wider in Group A than in Group B samples. At SEM observation, after 24h and 72h, differences in cell attachment were slightly noticeable between the groups, with an evident flattening of HGFs on both surfaces. All differences between Group A and group B became less significant after 7 days of culture in vitro. Conclusions SEM analysis of HGFs showed differences in terms of cell adhesion and proliferation, especially in the early hours of culture. Results showed a better adhesion and cell growth in Group A than in Group B, especially up to 72h in vitro. Differences decreased after 7 days, probably because of the rougher surface of CAD/CAM zirconia, promoting better cell adhesion, compared to the smoother surface of veneering ceramic. PMID:24611089

  9. [Study on friction and wear properties of dental zirconia ceramics processed by microwave and conventional sintering methods].

    Science.gov (United States)

    Guoxin, Hu; Ying, Yang; Yuemei, Jiang; Wenjing, Xia

    2017-04-01

    This study evaluated the wear of an antagonist and friction and wear properties of dental zirconia ceramic that was subjected to microwave and conventional sintering methods. Ten specimens were fabricated from Lava brand zirconia and randomly assigned to microwave and conventional sintering groups. A profile tester for surface roughness was used to measure roughness of the specimens. Wear test was performed, and steatite ceramic was used as antagonist. Friction coefficient curves were recorded, and wear volume were calculated. Finally, optical microscope was used to observe the surface morphology of zirconia and steatite ceramics. Field emission scanning electron microscopy was used to observe the microstructure of zirconia. Wear volumes of microwave and conventionally sintered zirconia were (6.940±1.382)×10⁻², (7.952±1.815) ×10⁻² mm³, respectively. Moreover, wear volumes of antagonist after sintering by the considered methods were (14.189±4.745)×10⁻², (15.813±3.481)×10⁻² mm³, correspondingly. Statistically significant difference was not observed in the wear resistance of zirconia and wear volume of steatite ceramic upon exposure to two kinds of sintering methods. Optical microscopy showed that ploughed surfaces were apparent in zirconia. The wear surface of steatite ceramic against had craze, accompanied by plough. Scanning electron microscopy showed that zirconia was sintered compactly when subjected to both conventional sintering and microwave methods, whereas grains of zirconia sintered by microwave alone were smaller and more uniform. Two kinds of sintering methods are successfully used to produce dental zirconia ceramics with similar friction and wear properties.
.

  10. [Clinical application of IPS-empress 2 pressable all-ceramic crowns].

    Science.gov (United States)

    Wang, Ai-jun; He, Xiao-ming; Liu, Li-xia; Zhang, Chao-biao; Zhang, Min; Shen, Bei-yong

    2007-02-01

    To evaluate the clinical prosthetic effect of IPS-Empress 2 pressahie ceramic crowns. 198 teeth of 70 patients were restored with IPS-Empress 2 pressahie ceramic crowns. The patients were asked to return in one week and every half year. The clinical prosthetic effect was evaluated. Through follow-up of 3-38 months, the veneer porcelain crowns of 3 teeth were broken. 2 crowns fall off due to teeth fracture, gingivitis occurred in 2 teeth, pulpitis or periapical periodontitis occurred in 3 teeth. The shades of 3 crowns were darkening. The prosthetic effect of 185 teeth was satisfied. The rate of satisfaction was 93.4%. IPS-Empress 2 pressable all-ceramic crown has the advantages of aesthetic effect, good hiocompatihility and simple fabrication. But its strength is not enough for posterior teeth and it can not cover the deep color of non-vital teeth and metal materials.

  11. Fatigue resistance and microleakage of CAD/CAM ceramic and composite molar crowns.

    Science.gov (United States)

    Kassem, Amr S; Atta, Osama; El-Mowafy, Omar

    2012-01-01

    The aim of this study was to determine effect of compressive cyclic loading on fatigue resistance and microleakage of monolithic CAD/CAM molar ceramic and composite crowns. Thirty-two extracted molars were prepared to receive CEREC crowns according to manufacturer's guidelines using a special paralleling device (Parallel-A-Prep). Sixteen feldspathic ceramic crowns (VITABLOCS Mark II) (VMII) and 16 resin-composite crowns (Paradigm-MZ100 blocks) (PMZ) were milled using a CEREC-3D machine. Eight crowns of each group were cemented to their respective teeth using self-etching resin cement (Panavia-F-2.0) (PAN), and eight were cemented using self-adhesive resin cement (RelyX-Unicem-Clicker) (RXU). Following storage for 1 week in water, specimens were subjected to uniaxial compressive cyclic loading in an Instron testing machine at 12 Hz for 1,000,000 cycles. Load was applied at the central fossa, and the cycle range was 60-600 N. Specimens were then subjected to microleakage testing. Data were statistically analyzed using factorial ANOVA and Post Hoc (Tukey HSD) tests. All composite crowns survived compressive cyclic loading without fracture, while three ceramic crowns from the subgroup cemented with RXU developed surface cracks at the center of occlusal surfaces, extending laterally. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other three subgroups (p < 0.05). After 1,000,000 cycles of compressive cyclic loading, PMZ composite molar crowns were more fatigue-resistant than VMII ceramic crowns. Cement type had a significant effect on fatigue resistance of the ceramic crowns but not the composite ones. Microleakage scores of ceramic crowns cemented with PAN were significantly lower than those of the other subgroups (p < 0.05). © 2011 by The American College of Prosthodontists.

  12. Characterization of the alumina-zirconia ceramic system by ultrasonic velocity measurements

    International Nuclear Information System (INIS)

    Carreon, Hector; Ruiz, Alberto; Medina, Ariosto; Barrera, Gerardo; Zarate, Juan

    2009-01-01

    In this work an alumina-zirconia ceramic composites have been prepared with α-Al 2 O 3 contents from 10 to 95 wt.%. The alumina-zirconia ceramic system was characterized by means of precise ultrasonic velocity measurements. In order to find out the factors affecting the variation in wave velocity, the ceramic composite have been examined by X-ray diffraction (XRD) and (SEM) scanning electron microscopy. It was found that the ultrasonic velocity measurements changed considerably with respect to the ceramic composite composition. In particular, we studied the behavior of the physical material property hardness, an important parameter of the ceramic composite mechanical properties, with respect to the variation in the longitudinal and shear wave velocities. Shear wave velocities exhibited a stronger interaction with microstructural and sub-structural features as compared to that of longitudinal waves. In particular, this phenomena was observed for the highest α-Al 2 O 3 content composite. Interestingly, an excellent correlation between ultrasonic velocity measurements and ceramic composite hardness was observed.

  13. Dentist Material Selection for Single-Unit Crowns: Findings from The National Dental Practice-Based Research Network

    Science.gov (United States)

    Makhija, Sonia K.; Lawson, Nathaniel C.; Gilbert, Gregg H.; Litaker, Mark S.; McClelland, Jocelyn A.; Louis, David R.; Gordan, Valeria V.; Pihlstrom, Daniel J.; Meyerowitz, Cyril; Mungia, Rahma; McCracken, Michael S.

    2016-01-01

    Objectives Dentists enrolled in the National Dental Practice-Based Research Network completed a study questionnaire about techniques and materials used for single-unit crowns and an enrollment questionnaire about dentist/practice characteristics. The objectives were to quantify dentists’ material recommendations and test the hypothesis that dentist’s and practice’s characteristics are significantly associated with these recommendations. Methods Surveyed dentists responded to a contextual scenario asking what material they would use for a single-unit crown on an anterior and posterior tooth. Material choices included: full metal, porcelain-fused-to-metal (PFM), all-zirconia, layered zirconia, lithium disilicate, leucite-reinforced ceramic, or other. Results 1,777 of 2,132 eligible dentists responded (83%). The top 3 choices for anterior crowns were lithium disilicate (54%), layered zirconia (17%), and leucite-reinforced glass ceramic (13%). There were significant differences (p<0.05) by dentist’s gender, race, years since graduation, practice type, region, practice busyness, hours worked/week, and location type. The top 3 choices for posterior crowns were all-zirconia (32%), PFM (31%), and lithium disilicate (21%). There were significant differences (p<0.05) by dentist’s gender, practice type, region, practice busyness, insurance coverage, hours worked/week, and location type. Conclusions Network dentists use a broad range of materials for single-unit crowns for anterior and posterior teeth, adopting newer materials into their practices as they become available. Material choices are significantly associated with dentist’s and practice’s characteristics. Clinical Significance Decisions for crown material may be influenced by factors unrelated to tooth and patient variables. Dentists should be cognizant of this when developing an evidence-based approach to selecting crown material. PMID:27693778

  14. Stress and Reliability Analysis of a Metal-Ceramic Dental Crown

    Science.gov (United States)

    Anusavice, Kenneth J; Sokolowski, Todd M.; Hojjatie, Barry; Nemeth, Noel N.

    1996-01-01

    Interaction of mechanical and thermal stresses with the flaws and microcracks within the ceramic region of metal-ceramic dental crowns can result in catastrophic or delayed failure of these restorations. The objective of this study was to determine the combined influence of induced functional stresses and pre-existing flaws and microcracks on the time-dependent probability of failure of a metal-ceramic molar crown. A three-dimensional finite element model of a porcelain fused-to-metal (PFM) molar crown was developed using the ANSYS finite element program. The crown consisted of a body porcelain, opaque porcelain, and a metal substrate. The model had a 300 Newton load applied perpendicular to one cusp, a load of 30ON applied at 30 degrees from the perpendicular load case, directed toward the center, and a 600 Newton vertical load. Ceramic specimens were subjected to a biaxial flexure test and the load-to-failure of each specimen was measured. The results of the finite element stress analysis and the flexure tests were incorporated in the NASA developed CARES/LIFE program to determine the Weibull and fatigue parameters and time-dependent fracture reliability of the PFM crown. CARES/LIFE calculates the time-dependent reliability of monolithic ceramic components subjected to thermomechanical and/Or proof test loading. This program is an extension of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) computer program.

  15. Crown and bridge cements: clinical applications.

    Science.gov (United States)

    Bunek, Sabiha S; Powers, John M

    2012-12-01

    Cement selection can be confusing because factors such as substrate, the type of restoration, and patient needs must be considered. Some substrates require additional treatment before cementation. This article describes the most commonly used traditional crown and bridge cements (GI and RMGI) used for metal and metal-ceramic restorations, and resin cements used for all-ceramic restorations. Advantages, disadvantages, indications, and contraindications of cements have been reviewed. Recommended uses of cements for metal, ceramic, and laboratory composite restorations have been presented. General guidelines for surface treatment ot silica- and zirconia-based restorations when using resin cements have been discussed.

  16. Fracture Strength of Titanium based Lithium Disilicate and Zirconia Abutment Crowns

    Science.gov (United States)

    2017-06-12

    zirconia abutment/lithium-disilicate crown. INTRODUCTION Dental implants and the use of esthetic abutments are widely practiced procedures for dentists...first implant abutments were fabricated from metals of mostly gold or titanium alloy. The downside of these materials, especially in esthetic areas...abutments presented esthetic complications. Because dentists and patients desire more naturally appearing restorations, the dental manufacturers

  17. Bond strength of resin cement to CO2 and Er:YAG laser-treated zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Shahin Kasraei

    2014-11-01

    Full Text Available Objectives It is difficult to achieve adhesion between resin cement and zirconia ceramics using routine surface preparation methods. The aim of this study was to evaluate the effects of CO2 and Er:YAG laser treatment on the bond strength of resin cement to zirconia ceramics. Materials and Methods In this in-vitro study 45 zirconia disks (6 mm in diameter and 2 mm in thickness were assigned to 3 groups (n = 15. In control group (CNT no laser treatment was used. In groups COL and EYL, CO2 and Er:YAG lasers were used for pretreatment of zirconia surface, respectively. Composite resin disks were cemented on zirconia disk using dual-curing resin cement. Shear bond strength tests were performed at a crosshead speed of 0.5 mm/min after 24 hr distilled water storage. Data were analyzed by one-way ANOVA and post hoc Tukey's HSD tests. Results The means and standard deviations of shear bond strength values in the EYL, COL and CNT groups were 8.65 ± 1.75, 12.12 ± 3.02, and 5.97 ± 1.14 MPa, respectively. Data showed that application of CO2 and Er:YAG lasers resulted in a significant higher shear bond strength of resin cement to zirconia ceramics (p < 0.0001. The highest bond strength was recorded in the COL group (p < 0.0001. In the CNT group all the failures were adhesive. However, in the laser groups, 80% of the failures were of the adhesive type. Conclusions Pretreatment of zirconia ceramic via CO2 and Er:YAG laser improves the bond strength of resin cement to zirconia ceramic, with higher bond strength values in the CO2 laser treated samples.

  18. Effect of Er:YAG laser irradiation on bonding property of zirconia ceramics to resin cement.

    Science.gov (United States)

    Lin, Yihua; Song, Xiaomeng; Chen, Yaming; Zhu, Qingping; Zhang, Wei

    2013-12-01

    This study aimed to investigate whether or not an erbium: yttrium-aluminum-garnet (Er:YAG) laser could improve the bonding property of zirconia ceramics to resin cement. Surface treatments can improve the bonding properties of dental ceramics. However, little is known about the effect of Er:YAG laser irradiated on zirconia ceramics. Specimens of zirconia ceramic pieces were made, and randomly divided into 11 groups according to surface treatments, including one control group (no treatment), one air abrasion group, and nine Er:YAG laser groups. The laser groups were subdivided by applying different energy intensities (100, 200, or 300 mJ) and irradiation times (5, 10, or 15 sec). After surface treatments, ceramic pieces had their surface morphology observed, and their surface roughness was measured. All specimens were bonded to resin cement. Shear bond strength was measured after the bonded specimens were stored in water for 24 h, and additionally aged by thermocycling. Statistical analyses were performed using one way analysis of variance (ANOVA) and Tukey's test for shear bond strength, and Dunnett's t test for surface roughness, with α=0.05. Er:YAG laser irradiation changed the morphological characteristics of zirconia ceramics. Higher energy intensities (200, 300 mJ) could roughen the ceramics, but also caused surface cracks. There were no significant differences in the bond strength between the control group and the laser groups treated with different energy intensities or irradiation times. Air abrasion with alumina particles induced highest surface roughness and shear bond strength. Er:YAG laser irradiation cannot improve the bonding property of zirconia ceramics to resin cement. Enhancing irradiation intensities and extending irradiation time have no benefit on the bond of the ceramics, and might cause material defect.

  19. Porous Alumina and Zirconia Ceramics With Tailored Thermal Conductivity

    Czech Academy of Sciences Publication Activity Database

    Gregorová, E.; Pabst, W.; Sofer, Z.; Jankovský, O.; Matějíček, Jiří

    2012-01-01

    Roč. 395, č. 1 (2012), 012022-012022 ISSN 1742-6588. [European Thermal Sciences Conference (Eurotherm)/6./. Poitiers, 04.09.2012-07.09.2012] Institutional support: RVO:61389021 Keywords : Ceramics * alumina * zirconia * porosity * thermal conductivity * pore-forming agent * oxide ceramics * starch * porosity Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://iopscience.iop.org/1742-6596/395/1/012022/pdf/1742-6596_395_1_012022.pdf

  20. Dual-scan technique for the customization of zirconia computer-aided design/computer-aided manufacturing frameworks.

    Science.gov (United States)

    Andreiuolo, Rafael Ferrone; Sabrosa, Carlos Eduardo; Dias, Katia Regina H Cervantes

    2013-09-01

    The use of bi-layered all-ceramic crowns has continuously grown since the introduction of computer-aided design/computer-aided manufacturing (CAD/CAM) zirconia cores. Unfortunately, despite the outstanding mechanical properties of zirconia, problems related to porcelain cracking or chipping remain. One of the reasons for this is that ceramic copings are usually milled to uniform thicknesses of 0.3-0.6 mm around the whole tooth preparation. This may not provide uniform thickness or appropriate support for the veneering porcelain. To prevent these problems, the dual-scan technique demonstrates an alternative that allows the restorative team to customize zirconia CAD/CAM frameworks with adequate porcelain thickness and support in a simple manner.

  1. A 3-year prospective study of implant-supported, single-tooth restorations of all-ceramic and metal-ceramic materials in patients with tooth agenesis

    DEFF Research Database (Denmark)

    Hosseini, Mandana; Worsaae, Nils; Schiødt, Morten

    2013-01-01

    -tooth restorations were included in this study. Two patients did not attend baseline examination, but all patients were followed for 3 years. The implants supported 52 zirconia, 21 titanium and 25 gold alloy abutments, which retained 64 all-ceramic and 34 metal-ceramic crowns. At baseline and 3-year follow......-up examinations, the biological outcome variables such as survival rate of implants, marginal bone level, modified Plaque Index (mPlI), modified Sulcus Bleeding Index (mBI) and biological complications were registered. The technical outcome variables included abutment and crown survival rate, marginal adaptation...... and PROC NLMIXED for ordinal categorical data. RESULTS: The 3-year survival rate was 100% for implants and 97% for abutments and crowns. Significantly more marginal bone loss was registered at gold-alloy compared to zirconia abutments (P = 0.040). The mPlI and mBI were not significantly different at three...

  2. [Effect of compaction pressure on the properties of dental machinable zirconia ceramic].

    Science.gov (United States)

    Huang, Hui; Wei, Bin; Zhang, Fu-qiang; Sun, Jing; Gao, Lian

    2010-10-01

    To investigate the effect of compaction pressure on the linear shrinkage, sintering property and machinability of the dental zirconia ceramic. The nano-size zirconia powder was compacted at different isostatic pressure and sintered at different temperature. The linear shrinkage of sintered body was measured and the relative density was tested using the Archimedes method. The cylindrical surface of pre-sintering blanks was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. The sintering behaviour depended on the compaction pressure. Increasing compaction pressure led to higher sintering rate and lower sintering temperature. Increasing compaction pressure also led to decreasing linear shrinkage of the sintered bodies, from 24.54% of 50 MPa to 20.9% of 400 MPa. Compaction pressure showed only a weak influence on machinability of zirconia blanks, but the higher compaction pressure resulted in the poor surface quality. The better sintering property and machinability of dental zirconia ceramic is found for 200-300 MPa compaction pressure.

  3. An harmonic smile resulted from the use of ceramic prosthesis with zirconia structure: a case report.

    Science.gov (United States)

    Tavarez, Rudys Rodolfo de Jesus; Goncalves, Leticia Machado; Dias, Ana Paula; Dias, Anna Claudia Pereira; Malheiros, Adriana Santos; Silva, Alice Carvalho; Bandeca, Matheus Coelho

    2014-06-01

    The rehabilitation of patients requiring an esthetic smile demands a multidisciplinary approach. This clinical report describes a treatment plan for recovery aesthetics' smile of anterior teeth using ceramic prosthesis with zirconia structure. Initially, a review of aesthetic parameters, diagnostic waxing, mock-up and provisional restorations was performed. A contextual assessment of aesthetic, proportion and shape of teeth was done to recreate a natural looking for teeth in consonance with the smile line. Subsequently, based on these parameters, fixed prostheses of the upper anterior teeth using ceramic restorations with zirconia infrastructures were performed. The use of ceramic restorations with zirconia structures associated with a careful treatment plan allows the professional to integrate esthetic and function for satisfactory clinical results. How to cite the article: Tavarez RR, Gonçalves LM, Dias AP, Dias AC, Malheiros AS, Silva AC, Bandeca MC. An harmonic smile resulted from the use of ceramic prosthesis with zirconia structure: A case report. J Int Oral Health 2014;6(3):90-2.

  4. Mechanical behaviour of new zirconia-hydroxyapatite ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, J.A.; Morejon, L. [La Habana Univ. (Cuba). Centro de Biomateriales; Martinez, S. [Barcelona Univ. (Spain). Dept. Cristallografia, Mineralogia; Ginebra, M.P.; Carlsson, N.; Fernandez, E.; Planell, J.A. [Universidad Politecnica de Cataluna, Barcelona (Spain). CREB; Clavaguera-Mora, M.T.; Rodriguez-Viejo, J. [Universitat Autonoma de Barcelona (Spain). Dept. de Fisica

    2001-07-01

    In this work a new zirconia-hydroxyapatite ceramic material was obtained by uniaxial pressing and sintering in humid environment. The powder X-ray diffraction (XRD) patterns and infrared spectra (FT-IR) showed that the hydroxyapatite (HA) is the only calcium phosphate phase present. The fracture toughness for HA with 20 wt.% of magnesia partially stabilised zirconia (Mg-PSZ) was around 2.5 times higher than those obtained for HA pure, also the highest value of bending strength (160 MPa) was obtained for material reinforced with Mg-PSZ. For the MgPSZ-HA (20%) the fracture mechanism seems to be less transgranular. (orig.)

  5. Crown color match of implant-supported zirconia and Porcelain-Fused-to-Metal restorations:

    DEFF Research Database (Denmark)

    Peng, Min; Fei, Wei; Hosseini, Mandana

    2014-01-01

    ShadeTM, Micro Dental) in CIEL¿a¿b¿ coordinates. Subjective crown color match scores were evaluated. Independent sample t test of SPSS17.0 was used to compare the difference between zirconia restoration and PFM restoration. Spearman correlation was used to analyze the relationship between the spectrophotometric...

  6. Finite Element Analysis of IPS Empress II Ceramic Bridge Reinforced by Zirconia Bar.

    Science.gov (United States)

    Kermanshah, H; Bitaraf, T; Geramy, A

    2012-01-01

    The aim of this study was to determine the effect of trenched zirconia bar on the von Mises stress distribution of IPS -Empress II core ceramics. The three-dimensional model including a three-unit bridge from the second premolar to the second molar was designed. The model was reinforced with zirconia bar (ZB), zirconia bar with vertical trench (VZB) and zirconia bar with horizontal trench (HZB) (cross sections of these bars were circular). The model without zirconia bar was designed as the control. The bridges were loaded by 200 N and 500 N on the occlusal surface at the middle of the pontic component and von Mises stresses were evaluated along a defined path. IN THE CONNECTOR AREA, VON MISES STRESS IN MPA WERE APPROXIMATELY IDENTICAL IN THE SPECIMENS WITH ZB (AT MOLAR CONNECTOR (MC): 4.75 and at premolar connector (PC): 6.40) and without ZB (MC: 5.50, PC: 6.68), and considerable differences were not recognized. Whereas, Von-Mises stress (MPa) in the specimens with horizontal trenched Zirconia bar (HZB) (MC: 3.91, PC: 2.44) and Vertical trenched Zirconia bar (VZB) (MC: 2.53, PC: 2.56) was decreased considerably. Embeded trenched zirconia bar could reinforce IPS-Empress II at the connector area which is a main failure region in all ceramic fixed partial dentures.

  7. Effects of Ceramic Density and Sintering Temperature on the Mechanical Properties of a Novel Polymer-Infiltrated Ceramic-Network Zirconia Dental Restorative (Filling) Material.

    Science.gov (United States)

    Li, Weiyan; Sun, Jian

    2018-05-10

    BACKGROUND Polymer-infiltrated ceramic-network (PICN) dental material is a new and practical development in orthodontics. Sintering is the process of forming a stable solid mass from a powder by heating without melting. The aim of this study was to evaluate the effects of sintering temperature on the mechanical properties of a PICN zirconia dental material. MATERIAL AND METHODS A dense zirconia ceramic and four PICN zirconia dental materials, with varying porosities, were sintered at three different temperatures; 12 PICN zirconia dental materials based on these porous ceramics were prepared, as well as a pure polymer. After the specimen preparation, flexural strength and elastic modulus values were measured using the three-point bending test, and fracture toughness were determined by the single-edge notched beam (SENB) method. The Vickers hardness test method was used with an indentation strength (IS) test. Scanning electron microscopy (SEM) was used to examine the microstructure of the ceramic surface and the fracture surface. RESULTS Mechanical properties of the PICN dental materials, including flexural strength, elastic modulus, fracture toughness, and hardness, were more similar to the properties of natural teeth when compared with traditional dental ceramic materials, and were affected by the density and sintering temperature. SEM showed that the porous ceramic network became cohesive and that the length of cracks in the PICN dental material was reduced. CONCLUSIONS PICN zirconia dental materials were characterized by similar mechanical properties to natural dental tissues, but further studies are required continue to improve the similarities with natural human enamel and dentin.

  8. In vivo evaluation of zirconia ceramic in the DexAide right ventricular assist device journal bearing.

    Science.gov (United States)

    Saeed, Diyar; Shalli, Shanaz; Fumoto, Hideyuki; Ootaki, Yoshio; Horai, Tetsuya; Anzai, Tomohiro; Zahr, Roula; Horvath, David J; Massiello, Alex L; Chen, Ji-Feng; Dessoffy, Raymond; Catanese, Jacquelyn; Benefit, Stephen; Golding, Leonard A R; Fukamachi, Kiyotaka

    2010-06-01

    Zirconia is a ceramic with material properties ideal for journal bearing applications. The purpose of this study was to evaluate the use of zirconium oxide (zirconia) as a blood journal bearing material in the DexAide right ventricular assist device. Zirconia ceramic was used instead of titanium to manufacture the DexAide stator housing without changing the stator geometry or the remaining pump hardware components. Pump hydraulic performance, journal bearing reliability, biocompatibility, and motor efficiency data of the zirconia stator were evaluated in six chronic bovine experiments for 14-91 days and compared with data from chronic experiments using the titanium stator. Pump performance data including average in vivo pump flows and speeds using a zirconia stator showed no statistically significant difference to the average values for 16 prior titanium stator in vivo studies, with the exception of a 19% reduction in power consumption. Indices of hemolysis were comparable for both stator types. Results of coagulation assays and platelet aggregation tests for the zirconia stator implants showed no device-induced increase in platelet activation. Postexplant evaluation of the zirconia journal bearing surfaces showed no biologic deposition in any of the implants. In conclusion, zirconia ceramic can be used as a hemocompatible material to improve motor efficiency while maintaining hydraulic performance in a blood journal bearing application.

  9. An atomic-scale and high efficiency finishing method of zirconia ceramics by using magnetorheological finishing

    Science.gov (United States)

    Luo, Hu; Guo, Meijian; Yin, Shaohui; Chen, Fengjun; Huang, Shuai; Lu, Ange; Guo, Yuanfan

    2018-06-01

    Zirconia ceramics is a valuable crucial material for fabricating functional components applied in aerospace, biology, precision machinery, military industry and other fields. However, the properties of its high brittleness and high hardness could seriously reduce its finishing efficiency and surface quality by conventional processing technology. In this work, we present a high efficiency and high-quality finishing process by using magnetorheological finishing (MRF), which employs the permanent magnetic yoke with straight air gap as excitation unit. The sub-nanoscale surface roughness and damage free surface can be obtained after magnetorheological finishing. The XRD results and SEM morphologies confirmed that the mechanical shear removal with ductile modes are the dominant material removal mechanism for the magnetorheological finishing of zirconia ceramic. With the developed experimental apparatus, the effects of workpiece speed, trough speed and work gap on material removal rate and surface roughness were systematically investigated. Zirconia ceramics finished to ultra-smooth surface with surface roughness less than Ra 1 nm was repeatedly achieved during the parametric experiments. Additionally, the highest material removal rate exceeded 1 mg/min when using diamond as an abrasive particle. Magnetorheological finishing promises to be an adaptable and efficient method for zirconia ceramics finishing.

  10. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics

    International Nuclear Information System (INIS)

    Aguiar, Amanda Abati

    2007-01-01

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation of

  11. Failure analysis of various monolithic posterior aesthetic dental crowns using finite element method

    Science.gov (United States)

    Porojan, Liliana; Topală, Florin

    2017-08-01

    The aim of the study was to assess the effect of material stiffness and load on the biomechanical performance of the monolithic full-coverage posterior aesthetic dental crowns using finite element analysis. Three restorative materials for monolithic dental crowns were selected for the study: zirconia; lithium disilicate glass-ceramic, and resin-based composite. Stresses were calculated in the crowns for all materials and in the teeth structures, under different load values. The experiments show that dental crowns made from all this new aesthetic materials processed by CAD/CAM technologies would be indicated as monolithic dental crowns for posterior areas.

  12. Translucency of zirconia copings made with different CAD/CAM systems.

    Science.gov (United States)

    Baldissara, Paolo; Llukacej, Altin; Ciocca, Leonardo; Valandro, Felipe L; Scotti, Roberto

    2010-07-01

    Zirconia cores are reported to be less translucent than glass, lithium disilicate, or alumina cores. This could affect the esthetic appearance and the clinical choices made when using zirconia-based restorations. The purpose of this in vitro study was to evaluate the translucency of zirconia copings for single crowns fabricated using different CAD/CAM systems, using lithium disilicate glass ceramic as a control. Using impressions made from a stainless steel complete-crown master die, 9 stone cast replicas were fabricated, numbered, and distributed into 8 ceramic ZrO(2) CAD/CAM system groups (Lava Frame 0.3 and 0.5, IPS e.max ZirCAD, VITA YZ, Procera AllZircon, Digizon, DC Zircon, and Cercon Base) and to a lithium disilicate glass-ceramic control group (IPS e.max Press) using a simple computer-generated randomization method. From each die, the manufacturer's authorized milling centers supplied 5 copings per group without applying any dying technique to the ceramic base material. The copings were prepared to allow for a 40-mum cement layer and were of different thicknesses according to system specifications. Translucency was measured by the direct transmission method with a digital photoradiometer mounted in a dark chamber. The light source was a 150-W halogen lamp beam. Measurements were repeated 3 times for each specimen. Data obtained were analyzed using 1-way ANOVA and the Bonferroni multiple comparison test (alpha=.05). Among ZrO(2) copings, Lava (0.3 mm and 0.5 mm thick) showed the highest (Plight flow units (3.572 + or - 018 x 10(3) lx and 3.181 + or - 0.13 x 10(3) lx, respectively). These values represent 71.7% and 63.9%, respectively, of the glass-ceramic control group (4.98 x 10(3) lx). All ZrO(2) copings demonstrated different levels of light transmission, with the 2 Lava specimens showing the highest values. Translucency of zirconia copings was significantly lower (P=.001) than that of the lithium disilicate glass-ceramic control. Copyright 2010 The

  13. Marginal Vertical Discrepancies of Monolithic and Veneered Zirconia and Metal-Ceramic Three-Unit Posterior Fixed Dental Prostheses.

    Science.gov (United States)

    Lopez-Suarez, Carlos; Gonzalo, Esther; Pelaez, Jesus; Serrano, Benjamin; Suarez, Maria J

    2016-01-01

    The aim of this study was to investigate and compare the marginal fit of posterior fixed dental prostheses (FDPs) made of monolithic and veneered computer-aided design/computer-assisted manufacture (CAD/CAM) zirconia ceramic with metal-ceramic posterior FDPs. Thirty standardized steel dies were prepared to receive posterior three-unit FDPs. Specimens were randomly divided into three groups (n = 10): (1) metal-ceramic (control group), (2) veneered zirconia, and (3) monolithic zirconia. All FDPs were cemented using a glass-ionomer cement. The specimens were subjected to thermal cycling (5°C to 55°C). A scanning electron microscope (SEM) with a magnification of ×500 was used for measurements. The data were statistically analyzed using one-way analysis of variance and paired t test. Both zirconia groups showed similar vertical marginal discrepancies, and no significant differences (P = .661) in marginal adaptation were observed among the groups. No differences were observed in either group in marginal discrepancies between surfaces or abutments. Monolithic zirconia posterior FDPs exhibit similar vertical marginal discrepancies to veneered zirconia posterior FDPs. No influence of localization measurements was observed.

  14. Effect of LASER Irradiation on the Shear Bond Strength of Zirconia Ceramic Surface to Dentin

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2012-09-01

    Full Text Available Background and Aims: Reliable bonding between tooth substrate and zirconia-based ceramic restorations is always of great importance. The laser might be useful for treatment of ceramic surfaces. The aim of the present study was to investigate the effect of laser irradiation on the shear bond strength of zirconia ceramic surface to dentin. Materials and Methods: In this experimental in vitro study, 40 Cercon zirconia ceramic blocks were fabricated. The surface treatment was performed using sandblasting with 50-micrometer Al2O3, CO2 laser, or Nd:YAG laser in each test groups. After that, the specimens were cemented to human dentin with resin cement. The shear bond strength of ceramics to dentin was determined and failure mode of each specimen was analyzed by stereo-microscope and SEM investigations. The data were statistically analyzed by one-way analysis of variance and Tukey multiple comparisons. The surface morphology of one specimen from each group was investigated under SEM. Results: The mean shear bond strength of zirconia ceramic to dentin was 7.79±3.03, 9.85±4.69, 14.92±4.48 MPa for CO2 irradiated, Nd:YAG irradiated, and sandblasted specimens, respectively. Significant differences were noted between CO2 (P=0.001 and Nd:YAG laser (P=0.017 irradiated specimens with sandblasted specimens. No significant differences were observed between two laser methods (P=0.47. The mode of bond failure was predominantly adhesive in test groups (CO2 irradiated specimens: 75%, Nd:YAG irradiated: 66.7%, and sandblasting: 41.7%. Conclusion: Under the limitations of the present study, surface treatment of zirconia ceramics using CO2 and Nd:YAG lasers was not able to produce adequate bond strength with dentin surfaces in comparison to sandblasting technique. Therefore, the use of lasers with the mentioned parameters may not be recommended for the surface treatment of Cercon ceramics.

  15. Surface treatment of zirconia ceramics

    International Nuclear Information System (INIS)

    1980-01-01

    A method of chemically micropitting and/or microcratering at least a portion of a smooth surface of an impervious zirconia-base ceramic is described, comprising (a) contacting the smooth surface with a liquid leachant selected from concentrated sulphuric acid, ammonium bisulphate, alkali metal bisulphates and mixtures thereof at a temperature of at least 250 0 C for a period of time sufficient to effect micropitting and/or microcratering generally uniformly distributed throughout the microstructure of the resultant leached surface; (b) removing the leached surface from contact with the leachant; (c) contacting the leached surface with hydrochloric acid to effect removal from the leached surface of a residue thereon comprising sulphate of metal elements including zirconium in the ceramic; (d) removing the leached surface from contact with the hydrochloric acid; and (e) rinsing the leached surface with water to effect removal of acid residue from that surface. (author)

  16. Effect of core ceramic grinding on fracture behaviour of bilayered zirconia veneering ceramic systems under two loading schemes.

    Science.gov (United States)

    Jian, Yu-Tao; Tang, Tian-Yu; Swain, Michael V; Wang, Xiao-Dong; Zhao, Ke

    2016-12-01

    The aim of this in vitro study was to evaluate the effect of core ceramic grinding on the fracture behaviour of bilayered zirconia under two loading schemes. Interfacial surfaces of sandblasted zirconia disks (A) were ground with 80 (B), 120 (C) and 220 (D) grit diamond discs, respectively. Surface roughness and topographic analysis were performed using a confocal scanning laser microscope (CSLM) and a scanning electron microscopy (SEM). Relative monoclinic content was evaluated using X-ray diffraction analysis (XRD) then reevaluated after simulated veneer firing. Biaxial fracture strength (σ) and Weibull modulus (m) were calculated either with core in compression (subgroup Ac-Dc) or in tension (subgroup At-Dt). Facture surfaces were examined by SEM and energy dispersive X-ray spectroscopy (EDS). Maximum tensile stress at fracture was estimated by finite element analysis. Statistical data analysis was performed using Kruskal-Wallis and one-way ANOVA at a significance level of 0.05. As grit size of the diamond disc increased, zirconia surface roughness decreased (pgrinding. No difference in initial (p=0.519 for subgroups Ac-Dc) and final fracture strength (p=0.699 for subgroups Ac-Dc; p=0.328 for subgroups At-Dt) was found among the four groups for both loading schemes. While coarse grinding slightly increased final fracture strength reliability (m) for subgroups Ac-Dc. Two different modes of fracture were observed according to which material was on the bottom surface. Components of the liner porcelain remained on the zirconia surface after fracture for all groups. Technician grinding changed surface topography of zirconia ceramic material, but was not detrimental to the bilayered system strength after veneer application. Coarse grinding slightly improved the fracture strength reliability of the bilayered system tested with core in compression. It is recommended that veneering porcelain be applied directly after routine lab grinding of zirconia ceramic, and its

  17. Clinical performance of IPS-Empress 2 ceramic crowns inserted by general dental practitioners.

    Science.gov (United States)

    Mansour, Yasar F; Al-Omiri, Mahmoud K; Khader, Yousef Saleh; Al-Wahadni, Ahed

    2008-05-01

    The aim of this study was to evaluate the clinical performance of IPS-Empress 2(R) all-ceramic crowns placed by general dental practitioners. Eighty-two IPS-Empress 2 crowns placed in 64 patients (27 females and 37 males) were evaluated. These crowns had been in place for 15.2 to 57.2 months (mean 25.3 months, SD=9.3). Survival analysis was conducted using the Kaplan-Meier method. Of the 82 crowns 93.9% were rated satisfactory. In terms of the integrity of the restorations, fracture was observed in three crowns and two showed a crack upon transillumination. Five crowns were rated unsatisfactory for color match; one for marginal adaptation; and none for discoloration, secondary caries, or sensitivity. IPS-Empress 2(R) is a suitable material to fabricate all-ceramic crowns; when these all-ceramic crowns were inserted by general dental practitioners, they functioned satisfactorily with low failure rates during an observation period ranging between 15.2 to 57.2 months.

  18. Clinical study on the success of posterior monolithic zirconia crowns and fixed dental prostheses: preliminary report

    Directory of Open Access Journals (Sweden)

    Merve Bankoğlu Güngör

    2017-09-01

    Full Text Available Objective: The purpose of this report was to present preliminary clinical results regarding the success rates and technical outcomes of posterior monolithic zirconia single tooth crowns (STs and fixed dental prostheses (FDPs. Materials and Method: Thirty-four patients received 43 posterior monolithic zirconia restorations as single tooth crowns (STs and/or fixed dental prostheses (FDPs, which were fabricated using a CAD-CAM (Computer Aided Design - Computer Aided Manufacturing system. At baseline and every 6 months, the restorations were examined for survival and technical outcomes. Success of the restorations was defined as the restoration remaining in situ, with no need for removal or replacement at follow-up visits. Technical outcomes were evaluated with a modified version of the United States Public Health Services criteria. Survival of restorations was estimated by using the Kaplan-Meier survival analysis. For each restoration, duration of follow-up was calculated from the time of placement to the date of its first failure. Results: After a mean observation period of 18.6 ± 3.9 months (between 8-24 months, cumulative survival rates were 86.7% and 92.3% for STs and FDPs, respectively. Technical evaluation revealed good marginal adaptation and crown contours; however, modifications were needed for shade and occlusion of restorations. Conclusion: These preliminary results revealed high survival rate and generally successful technical outcomes for posterior monolithic zirconia STs and FDPs.

  19. Effect of abutment shade, ceramic thickness, and coping type on the final shade of zirconia all-ceramic restorations: in vitro study of color masking ability.

    Science.gov (United States)

    Oh, Seon-Hee; Kim, Seok-Gyu

    2015-10-01

    The aim of the study was to evaluate the effect of abutment shade, ceramic thickness, and coping type on the final shade of zirconia all-ceramic restorations. Three different types of disk-shaped zirconia coping specimens (Lava, Cercon, Zirkonzahn: ø10 mm × 0.4 mm) were fabricated and veneered with IPS e.max Press Ceram (shade A2), for total thicknesses of 1 and 1.5 mm. A total of sixty zirconia restoration specimens were divided into six groups based on their coping types and thicknesses. The abutment specimens (ø10 mm × 7 mm) were prepared with gold alloy, base metal (nickel-chromium) alloy, and four different shades (A1, A2, A3, A4) of composite resins. The average L*, a*, b* values of the zirconia specimens on the six abutment specimens were measured with a dental colorimeter, and the statistical significance in the effects of three variables was analyzed by using repeated measures analysis of variance (α=.05).The average shade difference (ΔE) values of the zirconia specimens between the A2 composite resin abutment and other abutments were also evaluated. The effects of zirconia specimen thickness (Pabutment shade (Pabutments was higher (close to the acceptability threshold of 5.5 ΔE) than th ose between the A2 composite resin and other abutments. This in-vitro study demonstrated that abutment shade, ceramic thickness, and coping type affected the resulting shade of zirconia restorations.

  20. Color stability of CAD/CAM Zirconia ceramics following exposure to acidic and staining drinks.

    Science.gov (United States)

    Colombo, Marco; Cavallo, Marco; Miegge, Matteo; Dagna, Alberto; Beltrami, Riccardo; Chiesa, Marco; Poggio, Claudio

    2017-11-01

    The aim of this in vitro study was to evaluate the color stability of CAD/CAM Zirconia ceramics following exposure to acidic drink (Coca Cola) and after exposure to staining solution (coffee). All the samples were immersed in different staining solutions over a 28-day test period. A colorimetric evaluation according to the CIE L*a*b* system was performed by a blind trained operator at 7, 14, 21, 28 days of the staining process. Shapiro Wilk test and Kruskal-Wallis ANOVA were applied to assess significant differences among restorative materials. Paired t-test was applied to test which CIE L*a*b* parameters significantly changed after immersion in staining solutions. One week immersion in acidic drink did not cause a perceivable discoloration for all restorative materials (ΔE < 3.3). Subsequent immersion in coffee affected color stability of all Zirconia samples, even if Kruskal-Wallis ANOVA found significant differences among the various restorative materials. The ∆Es of CAD/CAM Zirconia ceramics after immersion in coffee varied among the products, but color integrity is not affected by contact with acidic drinks. Key words: CAD/CAM restorative materials, CIE Lab, Zirconia ceramics.

  1. Finite Element Analysis of IPS –Empress II Ceramic Bridge Reinforced by Zirconia Bar

    Directory of Open Access Journals (Sweden)

    Allahyar Geramy

    2012-01-01

    Full Text Available Objective: The aim of this study was to determine the effect of trenched zirconia bar on the von Mises stress distribution of IPS –Empress II core ceramics.Material and Methods: The three-dimensional model including a three-unit bridge from the second premolar to the second molar was designed. The model was reinforced with zirconia bar (ZB, zirconia bar with vertical trench (VZB, and zirconia bar with horizontal trench (HZB (cross sections of these bars were circular. The model without zirconia bar was designed as the control. The bridges were loaded by 200 N and 500 N on the occlusal surface at the middle of the pontic component, and Von-Mises stresses were evaluated along a defined path.Result: In the connector area, VonMises stress in MPa were approximately identical in the specimens with ZB (at molar connector (MC: 4.75, and at premolar connector (PC: 6.40 and without ZB (MC: 5.50, PC: 6.68, and considerable differences were not recognized. Whereas, Von-Mises stress (MPa in the specimens with horizontal trenched Zirconia bar (HZB (MC: 3.91, PC: 2.44 and Vertical trenched Zirconia bar (VZB (MC: 2.53, PC: 2.56 was decreased considerably.Conclusion: Embeded trenched zirconia bar could reinforce IPS-Empress II at the connector area which is a main failure region in all ceramic fixed partial dentures.

  2. Comparison of bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and a universal adhesive.

    Science.gov (United States)

    Lee, Ji-Yeon; Ahn, Jaechan; An, Sang In; Park, Jeong-Won

    2018-02-01

    The aim of this study is to compare the shear bond strengths of ceramic brackets bonded to zirconia surfaces using different zirconia primers and universal adhesive. Fifty zirconia blocks (15 × 15 × 10 mm, Zpex, Tosoh Corporation) were polished with 1,000 grit sand paper and air-abraded with 50 µm Al 2 O 3 for 10 seconds (40 psi). They were divided into 5 groups: control (CO), Metal/Zirconia primer (MZ, Ivoclar Vivadent), Z-PRIME Plus (ZP, Bisco), Zirconia Liner (ZL, Sun Medical), and Scotchbond Universal adhesive (SU, 3M ESPE). Transbond XT Primer (used for CO, MZ, ZP, and ZL) and Transbond XT Paste was used for bracket bonding (Gemini clear ceramic brackets, 3M Unitek). After 24 hours at 37°C storage, specimens underwent 2,000 thermocycles, and then, shear bond strengths were measured (1 mm/min). An adhesive remnant index (ARI) score was calculated. The data were analyzed using one-way analysis of variance and the Bonferroni test ( p = 0.05). Surface treatment with primers resulted in increased shear bond strength. The SU group showed the highest shear bond strength followed by the ZP, ZL, MZ, and CO groups, in that order. The median ARI scores were as follows: CO = 0, MZ = 0, ZP = 0, ZL = 0, and SU = 3 ( p < 0.05). Within this experiment, zirconia primer can increase the shear bond strength of bracket bonding. The highest shear bond strength is observed in SU group, even when no primer is used.

  3. Effect of in vitro aging on the flexural strength and probability to fracture of Y-TZP zirconia ceramics for all-ceramic restorations.

    Science.gov (United States)

    Siarampi, Eleni; Kontonasaki, Eleana; Andrikopoulos, Konstantinos S; Kantiranis, Nikolaos; Voyiatzis, George A; Zorba, Triantafillia; Paraskevopoulos, Konstantinos M; Koidis, Petros

    2014-12-01

    Dental zirconia restorations should present long-term clinical survival and be in service within the oral environment for many years. However, low temperature degradation could affect their mechanical properties and survival. The aim of this study was to investigate the effect of in vitro aging on the flexural strength of yttrium-stabilized (Y-TZP) zirconia ceramics for ceramic restorations. One hundred twenty bar-shaped specimens were prepared from two ceramics (ZENO Zr (WI) and IPS e.max(®) ZirCAD (IV)), and loaded until fracture according to ISO 6872. The specimens from each ceramic (nx=60) were divided in three groups (control, aged for 5h, aged for 10h). One-way ANOVA was used to assess statistically significant differences among flexural strength values (Pceramics, however statistically significant was for the WI group (Pceramics presented a t→m phase transformation, with the m-phase increasing from 4 to 5% at 5h to around 15% after 10h. The significant reduction of the flexural strength after 10h of in vitro aging, suggests high fracture probability for one of the zirconia ceramics tested. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Clinical marginal fit of zirconia crowns and patients' preferences for impression techniques using intraoral digital scanner versus polyvinyl siloxane material.

    Science.gov (United States)

    Sakornwimon, Nawapat; Leevailoj, Chalermpol

    2017-09-01

    The use of digital intraoral scanners is increasing; however, evidence of its precision in making crown impressions clinically remains scarce. Patients should also feel more comfortable with digital impressions, but only a few studies evaluating this subject have been performed. The purpose of this clinical study was to evaluate the marginal fit of monolithic zirconia crowns and patients' preferences for digital impressions versus polyvinyl siloxane (PVS) impressions. Sixteen participants with indications for single molar crowns were included. After crown preparation, digital impressions by intraoral scanner and PVS impressions were made. The participants were asked to complete a 6-item questionnaire with a visual analog scale related to perceptions of each of the following topics: time involved, taste/smell, occlusal registration, size of impression tray/scanner, gag reflex, and overall preference. Computer-aided design and computer-aided manufacturing monolithic zirconia crowns were fabricated from both impressions. The crowns were evaluated intraorally, and a blinded examiner measured the marginal discrepancy of silicone replicas under a stereomicroscope. Intraexaminer reliability was evaluated by calculating the intraclass correlation coefficient. Data for patients' preferences and marginal discrepancies were analyzed using the paired t test (α=.05). Visual analog scale scores for digital impressions were statistically significantly higher than those for PVS impressions in every topic (Pdigital group on all sides (P>.05). No differences were found in the clinical marginal fit of zirconia crowns fabricated from either digital impressions compared with PVS impressions. Furthermore, patients' satisfaction with digital impressions was significantly higher than with conventional impressions. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Effect of surface modifications on the bond strength of zirconia ceramic with resin cement resin.

    Science.gov (United States)

    Hallmann, Lubica; Ulmer, Peter; Lehmann, Frank; Wille, Sebastian; Polonskyi, Oleksander; Johannes, Martina; Köbel, Stefan; Trottenberg, Thomas; Bornholdt, Sven; Haase, Fabian; Kersten, Holger; Kern, Matthias

    2016-05-01

    Purpose of this in vitro study was to evaluate the effect of surface modifications on the tensile bond strength between zirconia ceramic and resin. Zirconia ceramic surfaces were treated with 150-μm abrasive alumina particles, 150-μm abrasive zirconia particles, argon-ion bombardment, gas plasma, and piranha solution (H2SO4:H2O2=3:1). In addition, slip casting surfaces were examined. Untreated surfaces were used as the control group. Tensile bond strengths (TBS) were measured after water storage for 3 days or 150 days with additional 37,500 thermal cycling for artificial aging. Statistical analyses were performed with 1-way and 3-way ANOVA, followed by comparison of means with the Tukey HSD test. After storage in distilled water for three days at 37 °C, the highest mean tensile bond strengths (TBS) were observed for zirconia ceramic surfaces abraded with 150-μm abrasive alumina particles (TBS(AAP)=37.3 MPa, TBS(CAAP)=40.4 MPa), and 150-μm abrasive zirconia particles (TBS(AZP)=34.8 MPa, TBS(CAZP)=35.8 MPa). Also a high TBS was observed for specimens treated with argon-ion bombardment (TBS(BAI)=37.8 MPa). After 150 days of storage, specimens abraded with 150-μm abrasive alumina particles and 150-μm abrasive zirconia particles revealed high TBS (TBS(AAP)=37.6 MPa, TBS(CAAP)=33.0 MPa, TBS(AZP)=22.1 MPa and TBS(CAZP)=22.8 MPa). A high TBS was observed also for specimens prepared with slip casting (TBS(SC)=30.0 MPa). A decrease of TBS was observed for control specimens (TBS(UNT)=12.5 MPa, TBS(CUNT)=9.0 MPa), specimens treated with argon-ion bombardment (TBS(BAI)=10.3 MPa) and gas plasma (TBS(GP)=11.0 MPa). A decrease of TBS was observed also for specimens treated with piranha solution (TBS(PS)=3.9 MPa, TBS(CPS)=4.1 MPa). A significant difference in TBS after three days storage was observed for specimens treated with different methods (p0.05), CAAP(p>0.05) and SC(p>0.05). However, the failure patterns of debonded specimens prepared with 150-μm abrasive zirconia

  6. In vitro evaluation of the marginal fit of different all-ceramic crowns

    Directory of Open Access Journals (Sweden)

    Munir Tolga Yucel

    2013-09-01

    Conclusion: In-Ceram all-ceramic crowns showed the largest marginal gap, and Celay crowns showed the smallest marginal gap in both die groups. The marginal discrepancies found in this study were all within the clinically acceptable standard of 120 μm.

  7. Color stability of CAD/CAM Zirconia ceramics following exposure to acidic and staining drinks

    Science.gov (United States)

    Colombo, Marco; Cavallo, Marco; Miegge, Matteo; Dagna, Alberto; Beltrami, Riccardo; Chiesa, Marco

    2017-01-01

    Background The aim of this in vitro study was to evaluate the color stability of CAD/CAM Zirconia ceramics following exposure to acidic drink (Coca Cola) and after exposure to staining solution (coffee). Material and Methods All the samples were immersed in different staining solutions over a 28-day test period. A colorimetric evaluation according to the CIE L*a*b* system was performed by a blind trained operator at 7, 14, 21, 28 days of the staining process. Shapiro Wilk test and Kruskal-Wallis ANOVA were applied to assess significant differences among restorative materials. Paired t-test was applied to test which CIE L*a*b* parameters significantly changed after immersion in staining solutions. Results One week immersion in acidic drink did not cause a perceivable discoloration for all restorative materials (ΔE < 3.3). Subsequent immersion in coffee affected color stability of all Zirconia samples, even if Kruskal-Wallis ANOVA found significant differences among the various restorative materials. Conclusions The ∆Es of CAD/CAM Zirconia ceramics after immersion in coffee varied among the products, but color integrity is not affected by contact with acidic drinks. Key words:CAD/CAM restorative materials, CIE Lab, Zirconia ceramics. PMID:29302281

  8. Flexural strength and the probability of failure of cold isostatic pressed zirconia core ceramics.

    Science.gov (United States)

    Siarampi, Eleni; Kontonasaki, Eleana; Papadopoulou, Lambrini; Kantiranis, Nikolaos; Zorba, Triantafillia; Paraskevopoulos, Konstantinos M; Koidis, Petros

    2012-08-01

    The flexural strength of zirconia core ceramics must predictably withstand the high stresses developed during oral function. The in-depth interpretation of strength parameters and the probability of failure during clinical performance could assist the clinician in selecting the optimum materials while planning treatment. The purpose of this study was to evaluate the flexural strength based on survival probability and Weibull statistical analysis of 2 zirconia cores for ceramic restorations. Twenty bar-shaped specimens were milled from 2 core ceramics, IPS e.max ZirCAD and Wieland ZENO Zr, and were loaded until fracture according to ISO 6872 (3-point bending test). An independent samples t test was used to assess significant differences of fracture strength (α=.05). Weibull statistical analysis of the flexural strength data provided 2 parameter estimates: Weibull modulus (m) and characteristic strength (σ(0)). The fractured surfaces of the specimens were evaluated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The investigation of the crystallographic state of the materials was performed with x-ray diffraction analysis (XRD) and Fourier transform infrared (FTIR) spectroscopy. Higher mean flexural strength (Plines zones). Both groups primarily sustained the tetragonal phase of zirconia and a negligible amount of the monoclinic phase. Although both zirconia ceramics presented similar fractographic and crystallographic properties, the higher flexural strength of WZ ceramics was associated with a lower m and more voids in their microstructure. These findings suggest a greater scattering of strength values and a flaw distribution that are expected to increase failure probability. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  9. Zirconia - the cinderella transformation

    International Nuclear Information System (INIS)

    Hannink, R.H.J.

    1999-01-01

    Zirconia and its alloys have formed a turning point in mechanical property developments of engineering ceramics. This can be stated primarily because zirconia alloys were one of the first ceramic systems in which it was demonstrated that the mechanical properties could be tailored using careful control of composition, powder processing and thermal treatment. For the improved mechanical properties to be captured in zirconia-based or containing ceramics, control of the tetragonal to monoclinic transformation is required. Through microstructural control, zirconia-based ceramics can be tailored to form some of the strongest and toughest ceramics yet developed. By carefully controlling the use of various dopants (alloying additions), a variety of microstructures can be produced all of which may exhibit transformation toughening. While success in capturing the benefits of transformation toughening relies on adequate powder processing techniques, this review is restricted to outlining the phase control and behaviour that make zirconia and its alloys such a scientifically fascinating and rewarding system for study and a commercially appealing ceramic material

  10. Synthesis and ceramic processing of alumina and zirconia based composites infiltrated with glass phase for dental applications

    International Nuclear Information System (INIS)

    Duarte, Daniel Gomes

    2009-01-01

    The interest for the use of ceramic materials for dental applications started due to the good aesthetic appearance promoted by the similarity to natural teeth. However, the fragility of traditional ceramics was a limitation for their use in stress conditions. The development of alumina and zirconia based materials, that associate aesthetic results, biocompatibility and good mechanical behaviour, makes possible the employment of ceramics for fabrication of dental restorations. The incorporation of vitreous phase in these ceramics is an alternative to minimize the ceramic retraction and to improve the adhesion to resin-based cements, necessary for the union of ceramic frameworks to the remaining dental structure. In the dentistry field, alumina and zirconia ceramic infiltrated with glassy phase are represented commercially by the In-Ceram systems. Considering that the improvement of powder's synthesis routes and of techniques of ceramic processing contributes for good performance of these materials, the goal of the present work is the study of processing conditions of alumina and/or 3 mol% yttria-stabilized zirconia ceramics infiltrated with aluminum borosilicate lanthanum glass. The powders, synthesized by hydroxide coprecipitation route, were pressed by uniaxial compaction and pre-sintered at temperature range between 950 and 1650 degree C in order to obtain porous ceramics bodies. Vitreous phase incorporation was performed by impregnation of aluminum borosilicate lanthanum powder, also prepared in this work, followed by heat treatment between 1200 and 1400 degree C .Ceramic powders were characterized by thermogravimetry, X-ray diffraction, scanning and transmission electron microscopy, gaseous adsorption (BET) and laser diffraction. Sinterability of alumina and /or stabilized zirconia green pellets was evaluated by dilatometry. Pre-sintered ceramics were characterized by apparent density measurements (Archimedes method), X-ray diffraction and scanning electron

  11. Influence of different post core materials on the color of Empress 2 full ceramic crowns.

    Science.gov (United States)

    Ge, Jing; Wang, Xin-zhi; Feng, Hai-lan

    2006-10-20

    For esthetic consideration, dentin color post core materials were normally used for all-ceramic crown restorations. However, in some cases, clinicians have to consider combining a full ceramic crown with a metal post core. Therefore, this experiment was conducted to test the esthetical possibility of applying cast metal post core in a full ceramic crown restoration. The color of full ceramic crowns on gold and Nickel-Chrome post cores was compared with the color of the same crowns on tooth colored post cores. Different try-in pastes were used to imitate the influence of a composite cementation on the color of different restorative combinations. The majority of patients could not detect any color difference less than DeltaE 1.8 between the two ceramic samples. So, DeltaE 1.8 was taken as the objective evaluative criterion for the evaluation of color matching and patients' satisfaction. When the Empress 2 crown was combined with the gold alloy post core, the color of the resulting material was similar to that of a glass fiber reinforced resin post core (DeltaE = 0.3). The gold alloy post core and the try-in paste did not show a perceptible color change in the full ceramic crowns, which indicated that the color of the crowns might not be susceptible to change between lab and clinic as well as during the process of composite cementation. Without an opaque covering the Ni-Cr post core would cause an unacceptable color effect on the crown (DeltaE = 2.0), but with opaque covering, the color effect became more clinically satisfactory (DeltaE = 1.8). It may be possible to apply a gold alloy post core in the Empress 2 full ceramic crown restoration when necessary. If a non-extractible Ni-Cr post core exists in the root canal, it might be possible to restore the tooth with an Empress 2 crown after covering the labial surface of the core with one layer of opaque resin cement.

  12. In vivo biofilm formation on different dental ceramics.

    Science.gov (United States)

    Bremer, Felicia; Grade, Sebastian; Kohorst, Philipp; Stiesch, Meike

    2011-01-01

    To investigate the formation of oral biofilm on various dental ceramics in vivo. Five different ceramic materials were included: a veneering glass- ceramic, a lithium disilicate glass-ceramic, a yttrium-stabilized zirconia (Y-TZP), a hot isostatically pressed (HIP) Y-TZP ceramic, and an HIP Y-TZP ceramic with 25% alumina. Test specimens were attached to individually designed acrylic appliances; five volunteers wore these appliances for 24 hours in the maxillary arch. After intraoral exposure, the samples were removed from the appliances and the adhering biofilms vitally stained. Then, the two-dimensional surface coating and thickness of the adhering biofilm were determined by confocal laser scanning microscopy. Statistical analysis was performed using one-way ANOVA with the level of significance set at .05. Significant differences (P ceramic materials. The lowest surface coating (19.0%) and biofilm thickness (1.9 Μm) were determined on the HIP Y-TZP ceramic; the highest mean values were identified with the lithium disilicate glass-ceramic (46.8%, 12.6 Μm). Biofilm formation on various types of dental ceramics differed significantly; in particular, zirconia exhibited low plaque accumulation. In addition to its high strength, low plaque accumulation makes zirconia a promising material for various indications (including implant abutments and telescopic crowns) that previously were met only with metal-based materials.

  13. A comparison of the marginal fit of In-Ceram, IPS Empress, and Procera crowns.

    Science.gov (United States)

    Sulaiman, F; Chai, J; Jameson, L M; Wozniak, W T

    1997-01-01

    The in vitro marginal fit of three all-ceramic crown systems (In-Ceram, Procera, and IPS Empress) was compared. All crown systems were significantly different from each other at P = 0.05. In-Ceram exhibited the greatest marginal discrepancy (161 microns), followed by Procera (83 microns), and IPS Empress (63 microns). There were no significant differences among the various stages of the crown fabrication: core fabrication, porcelain veneering, and glazing. The facial and lingual margins exhibited significantly larger marginal discrepancies than the mesial and distal margins.

  14. [Evaluation of alumina effects on the mechanical property and translucency of nano-zirconia all-ceramics].

    Science.gov (United States)

    Jiang, Li; Zhao, Yong-qi; Zhang, Jing-chao; Liao, Yun-mao; Li, Wei

    2010-06-01

    To study the effects of alumina content on sintered density, mechanical property and translucency of zirconia nanocomposite all-ceramics. Specimens of zirconia nanocomposite all-ceramics were divided into five groups based on their alumina content which are 0% (control group), 2.5%, 5.0%, 7.5% and 10.0% respectively. The sintered densities were measured using Archimedes' method. Specimens' bending strengths were measured with three-point bending test (ISO 6872). The visible light transmittances were measured with spectrophotometric arrangements and the fractured surfaces were observed using scanning electron microscope (SEM). The control group of pure zirconia could be sintered to the theoretical density under pressure-less sintering condition. The bending strength was (1100.27 ± 54.82) MPa, the fracture toughness was (4.96 ± 0.35) MPa×m(1/2) and the transmittance could reach 17.03%. The sintered density and transmittance decreased as alumina content increased from 2.5% to 10%. However, the fracture toughness only increased slightly. In all four alumina groups, the additions of alumina had no significant effect on samples' bending strengths (P > 0.05). When the content of alumina was 10%, fracture toughness of specimens reached (6.13 ± 0.44) MPa×m(1/2) while samples' transmittance declined to 6.21%. SEM results showed that alumina particles had no significant effect on the grain size and distribution of tetragonal zirconia polycrystals. Additions of alumina to yttria-tetragonal zirconia polycrystals could influence its mechanical property and translucency. Additions of the other phase to zirconia ceramics should meet the clinical demands of strength and esthetics.

  15. PEEK Primary Crowns with Cobalt-Chromium, Zirconia and Galvanic Secondary Crowns with Different Tapers—A Comparison of Retention Forces

    Directory of Open Access Journals (Sweden)

    Veronika Stock

    2016-03-01

    Full Text Available In prosthetic dentistry, double crown systems have proved their suitability as retainers for removable partial dentures. However, investigations in this context, regarding polyetheretherketone, are scarce. Therefore, the aim of this study was to test the retention force (RF between polyetheretherketone (PEEK primary and cobalt-chromium (CoCr, zirconia (ZrO2 and galvanic (GAL secondary crowns with three different tapers. Primary PEEK-crowns were milled with the tapers 0°, 1°, and 2° (n = 10/taper, respectively. Afterwards, 90 secondary crowns were fabricated: (i 30 CoCr-crowns milled from Ceramill Sintron (AmannGirrbach, Koblach, Austria (n = 10/taper, (ii 30 ZrO2-crowns milled from Ceramill ZI (AmannGirrbach, Koblach, Austria (n = 10/taper, and (iii 30 GAL-crowns made using electroforming (n = 10/taper. RF was measured in a pull-off test (20 pull-offs/specimen and data were analyzed using 2-/1-way Analysis of Variance (ANOVA followed by the Tukey-Honestly Significant Difference (HSD post hoc test and linear regression analyses (p < 0.05. The measured mean RF values ranged between 9.6 and 38.2 N. With regard to the 0°, 1°, and 2° tapered crowns, no statistically significant differences between CoCr and ZrO2 were observed (p > 0.141. At 0° taper, no differences in retention forces between GAL, CrCr, and ZrO2 crowns were found (p = 0.075. However, at 1° and 2° taper, lower RF for GAL-crowns were observed (p < 0.009, p < 0.001, respectively. According to this laboratory study, PEEK might be a suitable material for primary crowns, regardless of the taper and the material of secondary crown. Long-term results, however, are still necessary.

  16. Surface roughness of zirconia for full-contour crowns after clinically simulated grinding and polishing.

    Science.gov (United States)

    Hmaidouch, Rim; Müller, Wolf-Dieter; Lauer, Hans-Christoph; Weigl, Paul

    2014-12-01

    The aim of this study was to evaluate the effect of controlled intraoral grinding and polishing on the roughness of full-contour zirconia compared to classical veneered zirconia. Thirty bar-shaped zirconia specimens were fabricated and divided into two groups (n=15). Fifteen specimens (group 1) were glazed and 15 specimens (group 2) were veneered with feldspathic ceramic and then glazed. Prior to grinding, maximum roughness depth (Rmax) values were measured using a profilometer, 5 times per specimen. Simulated clinical grinding and polishing were performed on the specimens under water coolant for 15 s and 2 N pressure. For grinding, NTI diamonds burs with grain sizes of 20 µm, 10 µm, and 7.5 µm were used sequentially. The ground surfaces were polished using NTI kits with coarse, medium and fine polishers. After each step, Rmax values were determined. Differences between groups were examined using one-way analysis of variance (ANOVA). The roughness of group 1 was significantly lower than that of group 2. The roughness increased significantly after coarse grinding in both groups. The results after glazing were similar to those obtained after fine grinding for non-veneered zirconia. However, fine-ground veneered zirconia had significantly higher roughness than venerred, glazed zirconia. No significant difference was found between fine-polished and glazed zirconia, but after the fine polishing of veneered zirconia, the roughness was significantly higher than after glazing. It can be concluded that for full-contour zirconia, fewer defects and lower roughness values resulted after grinding and polishing compared to veneered zirconia. After polishing zirconia, lower roughness values were achieved compared to glazing; more interesting was that the grinding of glazed zirconia using the NTI three-step system could deliver smooth surfaces comparable to untreated glazed zirconia surfaces.

  17. The development of Zirconia and Copper toughened Alumina ceramic insert

    Science.gov (United States)

    Amalina Sabuan, Nur; Zolkafli, Nurfatini; Mebrahitom, A.; Azhari, Azmir; Mamat, Othman

    2018-04-01

    Ceramic cutting tools have been utilized in industry for over a century for its productivity and efficiency in machine tools and cutting tool material. However, due to the brittleness property the application has been limited. In order to manufacture high strength ceramic cutting tools, there is a need for suitable reinforcement to improve its toughness. In this case, copper (Cu) and zirconia (ZrO2) powders were added to investigate the hardness and physical properties of the developed composite insert. A uniaxial pre-forming process of the mix powder was done prior to densification by sintering at 1000 and 1300°C. The effect of the composition of the reinforcement on the hardness, density, shrinkage and microstructure of the inserts was investigated. It was found that an optimum density of 3.26 % and hardness 1385HV was obtained for composite of 10wt % zirconia and 10wt% copper at temperature 1000 °C.

  18. Viscoelastic finite element analysis of residual stresses in porcelain-veneered zirconia dental crowns.

    Science.gov (United States)

    Kim, Jeongho; Dhital, Sukirti; Zhivago, Paul; Kaizer, Marina R; Zhang, Yu

    2018-06-01

    The main problem of porcelain-veneered zirconia (PVZ) dental restorations is chipping and delamination of veneering porcelain owing to the development of deleterious residual stresses during the cooling phase of veneer firing. The aim of this study is to elucidate the effects of cooling rate, thermal contraction coefficient and elastic modulus on residual stresses developed in PVZ dental crowns using viscoelastic finite element methods (VFEM). A three-dimensional VFEM model has been developed to predict residual stresses in PVZ structures using ABAQUS finite element software and user subroutines. First, the newly established model was validated with experimentally measured residual stress profiles using Vickers indentation on flat PVZ specimens. An excellent agreement between the model prediction and experimental data was found. Then, the model was used to predict residual stresses in more complex anatomically-correct crown systems. Two PVZ crown systems with different thermal contraction coefficients and porcelain moduli were studied: VM9/Y-TZP and LAVA/Y-TZP. A sequential dual-step finite element analysis was performed: heat transfer analysis and viscoelastic stress analysis. Controlled and bench convection cooling rates were simulated by applying different convective heat transfer coefficients 1.7E-5 W/mm 2 °C (controlled cooling) and 0.6E-4 W/mm 2 °C (bench cooling) on the crown surfaces exposed to the air. Rigorous viscoelastic finite element analysis revealed that controlled cooling results in lower maximum stresses in both veneer and core layers for the two PVZ systems relative to bench cooling. Better compatibility of thermal contraction coefficients between porcelain and zirconia and a lower porcelain modulus reduce residual stresses in both layers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Fatigue resistance of 2 different CAD/CAM glass-ceramic materials used for single-tooth implant crowns.

    Science.gov (United States)

    Çavuşoğlu, Yeliz; Sahin, Erdal; Gürbüz, Riza; Akça, Kivanç

    2011-10-01

    To evaluate the fatigue resistance of 2 different CAD/CAM in-office monoceramic materials with single-tooth implant-supported crowns in functional area. A metal experimental model with a dental implant was designed to receive in-office CAD/CAM-generated monoceramic crowns. Laterally positioned axial dynamic loading of 300 N at 2 Hz was applied to implant-supported crowns machined from 2 different glass materials for 100,000 cycle. Failures in terms of fracture, crack formation, and chipping were macroscopically recorded and microscopically evaluated. Four of 10 aluminasilicate glass-ceramic crowns fractured at early loading cycles, the rest completed loading with a visible crack formation. Crack formation was recorded for 2 of 10 leucite glass-ceramic crowns. Others completed test without visible damage but fractured upon removal. Lack in chemical adhesion between titanium abutment and dental cement likely reduces the fatigue resistance of machinable glass-ceramic materials. However, relatively better fractural strength of leucite glass-ceramics could be taken into consideration. Accordingly, progress on developmental changes in filler composition of glass-ceramics may be promising. Machinable glass-ceramics do not possess sufficient fatigue resistance for single-tooth implant crowns in functional area.

  20. [A ten-year clinical study of cracked teeth restored with glass ceramic crowns].

    Science.gov (United States)

    Luo, X P; Yuan, Y; Shi, Y J; Qian, D D

    2016-10-09

    Objective: To evaluate the clinic performance of high strength glass ceramic crowns for the painful cracked teeth during a 10-year observation period. Methods: Forty-two posterior teeth from 36 patients were diagnosed as having a crack, biting painful and sensitivity to cold were selected in the Department of Prosthodontic, Institute and Hospital of Stomatology, Nanjing University Medical School. The lost-wax hot pressed glass ceramic crowns were bonded on the minimally invasive prepared teeth by modern adhesive technology. Patients were interviewed and went through clinic examination after one week, one month, and every six months. Results: The effectiveness of 42 glass ceramic crowns for cracked teeth was evaluated for a mean observation time over 10-year. At the first week, 29(81%) patients were free of pain, three still had sensitivity to cold and chewing pain, three still had sensitivity to cold, one had painful to cold and hot. After one month, two patients still had chewing pain, and one tooth needed endodontic treatment after six months. In 10 years, 2(5%) all ceramic crowns were broken, the other 40 restorations kept good clinical performances with a 10-year survival rate of 95%. Conclusions: The high strength glass ceramic crowns are very effective and successful in treating the cracked teeth and then keep the good mastication function and appearance.

  1. Effect of conditioning methods on the microtensile bond strength of phosphate monomer-based cement on zirconia ceramic in dry and aged conditions

    NARCIS (Netherlands)

    Amaral, Regina; Ozcan, Mutlu; Valandro, Luiz Felipe; Balducci, Ivan; Bottino, Marco Antonio

    The objective of this study was to evaluate the durability of bond strength between a resin cement and aluminous ceramic submitted to various surface conditioning methods. Twenty-four blocks (5 X 5 X 4 mm 3) of a glass-in filtrated zirconia-alumina ceramic (inCeram Zirconia Classic) were randomly

  2. Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia.

    Science.gov (United States)

    García-Sanz, Verónica; Paredes-Gallardo, Vanessa; Bellot-Arcís, Carlos; Mendoza-Yero, Omel; Doñate-Buendía, Carlos; Montero, Javier; Albaladejo, Alberto

    2017-01-01

    Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond laser-treated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irradiation. Each group was divided into 2 subgroups (metallic vs ceramic brackets). SBS was evaluated using a universal testing machine. The adhesive remnant index (ARI) was registered and surfaces were observed under SEM. Surface treatment and bracket type significantly affected the bracket-zirconia bond strength. SBS was significantly higher (pbrackets in all groups (APA+FS > APA > FS > SC > control) than metallic brackets (APA+FS > FS > SC > APA > control). For metallic brackets, groups SC (5.99 ± 1.86 MPa), FS (6.72 ± 2.30 MPa) and APA+FS (7.22 ± 2.73 MPa) reported significantly higher bond strengths than other groups (p brackets, the highest bond strength values were obtained in groups APA (25.01 ± 4.45 MPa), FS (23.18 ± 6.51 MPa) and APA+FS (29.22 ± 8.20 MPa).Femtosecond laser enhances bond strength of ceramic and metallic brackets to zirconia. Ceramic brackets provide significantly stronger adhesion than metallic brackets regardless of the surface treatment method.

  3. Rugometric and microtopographic non-invasive inspection in dental-resin composites and zirconia ceramics

    Science.gov (United States)

    Fernández-Oliveras, Alicia; Costa, Manuel F. M.; Pecho, Oscar E.; Rubiño, Manuel; Pérez, María. M.

    2013-11-01

    Surface properties are essential for a complete characterization of biomaterials. In restorative dentistry, the study of the surface properties of materials meant to replace dental tissues in an irreversibly diseased tooth is important to avoid harmful changes in future treatments. We have experimentally analyzed the surface characterization parameters of two different types of dental-resin composites and pre-sintered and sintered zirconia ceramics. We studied two shades of both composite types and two sintered zirconia ceramics: colored and uncolored. Moreover, a surface treatment was applied to one specimen of each dental-resin. All the samples were submitted to rugometric and microtopographic non-invasive inspection with the MICROTOP.06.MFC laser microtopographer in order to gather meaningful statistical parameters such as the average roughness (Ra), the root-mean-square deviation (Rq), the skewness (Rsk), and the kurtosis of the surface height distribution (Rku). For a comparison of the different biomaterials, the uncertainties associated to the surface parameters were also determined. With respect to Ra and Rq, significant differences between the composite shades were found. Among the dental resins, the nanocomposite presented the highest values and, for the zirconia ceramics, the pre-sintered sample registered the lowest ones. The composite performance may have been due to cluster-formation variations. Except for the composites with the surface treatment, the sample surfaces had approximately a normal distribution of heights. The surface treatment applied to the composites increased the average roughness and moved the height distribution farther away from the normal distribution. The zirconia-sintering process resulted in higher average roughness without affecting the height distribution.

  4. A randomized controlled clinical trial of 3-unit posterior zirconia-ceramic fixed dental prostheses (FDP) with layered or pressed veneering ceramics: 3-year results.

    Science.gov (United States)

    Naenni, Nadja; Bindl, Andreas; Sax, Caroline; Hämmerle, Christoph; Sailer, Irena

    2015-11-01

    The aim of the present pilot study was to test whether or not posterior zirconia-ceramic fixed dental prostheses (FDPs) with pressed veneering ceramic exhibit less chipping than FDPs with layered veneering ceramics. Forty patients (13 female, 27 male; mean age 54 years (range 26.1-80.7 years) in need of one maxillary or mandibular three-unit FDP in the second premolar or molar region were recruited and treated at two separate centers at the University of Zurich according to the same study protocol. The frameworks were made out of zirconia using a CAD/CAM system (Cerec Sirona, Bensheim, Germany). The patients were randomly assigned to either the test group (zirconia frameworks veneered with pressed ceramic; IPS e.max ZirPress, Ivoclar Vivadent AG, Schaan, Liechtenstein; n=20) or the control group (layered veneering ceramic; IPS e.max Ceram, Ivoclar Vivadent AG, Schaan, Liechtenstein; n=20). All FDPs were adhesively cemented and evaluated at baseline (i.e., cementation), at 6 months and at 1 and 3 years of clinical service. The survival of the reconstruction was recorded. The technical outcome was assessed using modified United States Public Health Services (USPHS) criteria. The biologic parameters analyzed at abutment teeth and analogous non-restored teeth included probing pocket depth (PPD), plaque control record (PCR), bleeding on probing (BOP), and tooth vitality (CO2). Data was descriptively analyzed and survival was calculated using Kaplan-Meier statistics. 36 patients (25 female, 11 male; mean age 52.3 years) with 18 test and 18 control FDPs were examined after a mean follow-up of 36 months (95% CI: 32.6-39.1 months). Comparison of groups was done by Crosstabulation showing even distribution of the respective restored teeth amidst the groups. Survival rate was 100% for both test and control FDPs. Chipping of the veneering ceramic tended to occur more frequently in test (n=8; 40%) than in control (n=4; 20%) FDPs, albeit not significantly (p=0.3). No further

  5. The role of powder preparation method in enhancing fracture toughness of zirconia ceramics with low alumina amount

    International Nuclear Information System (INIS)

    Danilenko, I.; Konstantinova, T.; Volkova, G.; Burkhovetski, V.; Glazunova, V.

    2015-01-01

    In most cases zirconia-alumina composites for scientific investigations and industry are prepared by means of mechanical mixing of powders, compaction and sintering. In our opinion, this is one of the reasons for the low values for fracture toughness of the sintered materials. In this study, we investigated the effect of nanopowder synthesis methods on the structure and mechanical properties of 3Y-TZP/alumina ceramic composites and determined the mechanisms involved in composite toughening. We show that the addition of a small amount of alumina (1 - 2 wt%) to zirconia ceramics has the potential to increase the fracture toughness of zirconia ceramics. The starting powders were obtained by means of co-precipitation and ball milling. It turned out that at equal density, bending strength and hardness values, the fracture toughness in ceramic composites sintered from co-precipitated nanopowders is higher in comparison with fracture toughness values in matrix material and traditional 3Y-TZP/alumina composites. We believed that the role of the crack deflection process in ceramic composites sintered from co-precipitated nanopowders increased significantly. This can be conditioned by means of a series of processes for composite structure formation during precipitation, crystallization, and sintering of nanopowders.

  6. The role of powder preparation method in enhancing fracture toughness of zirconia ceramics with low alumina amount

    Energy Technology Data Exchange (ETDEWEB)

    Danilenko, I.; Konstantinova, T.; Volkova, G.; Burkhovetski, V.; Glazunova, V. [NAS of Ukraine, Donetsk (Ukraine). Donetsk Inst. for Physics and Engineering

    2015-07-01

    In most cases zirconia-alumina composites for scientific investigations and industry are prepared by means of mechanical mixing of powders, compaction and sintering. In our opinion, this is one of the reasons for the low values for fracture toughness of the sintered materials. In this study, we investigated the effect of nanopowder synthesis methods on the structure and mechanical properties of 3Y-TZP/alumina ceramic composites and determined the mechanisms involved in composite toughening. We show that the addition of a small amount of alumina (1 - 2 wt%) to zirconia ceramics has the potential to increase the fracture toughness of zirconia ceramics. The starting powders were obtained by means of co-precipitation and ball milling. It turned out that at equal density, bending strength and hardness values, the fracture toughness in ceramic composites sintered from co-precipitated nanopowders is higher in comparison with fracture toughness values in matrix material and traditional 3Y-TZP/alumina composites. We believed that the role of the crack deflection process in ceramic composites sintered from co-precipitated nanopowders increased significantly. This can be conditioned by means of a series of processes for composite structure formation during precipitation, crystallization, and sintering of nanopowders.

  7. Digital evaluation of absolute marginal discrepancy: A comparison of ceramic crowns fabricated with conventional and digital techniques.

    Science.gov (United States)

    Liang, Shanshan; Yuan, Fusong; Luo, Xu; Yu, Zhuoren; Tang, Zhihui

    2018-04-05

    Marginal discrepancy is key to evaluating the accuracy of fixed dental prostheses. An improved method of evaluating marginal discrepancy is needed. The purpose of this in vitro study was to evaluate the absolute marginal discrepancy of ceramic crowns fabricated using conventional and digital methods with a digital method for the quantitative evaluation of absolute marginal discrepancy. The novel method was based on 3-dimensional scanning, iterative closest point registration techniques, and reverse engineering theory. Six standard tooth preparations for the right maxillary central incisor, right maxillary second premolar, right maxillary second molar, left mandibular lateral incisor, left mandibular first premolar, and left mandibular first molar were selected. Ten conventional ceramic crowns and 10 CEREC crowns were fabricated for each tooth preparation. A dental cast scanner was used to obtain 3-dimensional data of the preparations and ceramic crowns, and the data were compared with the "virtual seating" iterative closest point technique. Reverse engineering software used edge sharpening and other functional modules to extract the margins of the preparations and crowns. Finally, quantitative evaluation of the absolute marginal discrepancy of the ceramic crowns was obtained from the 2-dimensional cross-sectional straight-line distance between points on the margin of the ceramic crowns and the standard preparations based on the circumferential function module along the long axis. The absolute marginal discrepancy of the ceramic crowns fabricated using conventional methods was 115 ±15.2 μm, and 110 ±14.3 μm for those fabricated using the digital technique was. ANOVA showed no statistical difference between the 2 methods or among ceramic crowns for different teeth (P>.05). The digital quantitative evaluation method for the absolute marginal discrepancy of ceramic crowns was established. The evaluations determined that the absolute marginal discrepancies were

  8. Radiation effects in cubic zirconia: A model system for ceramic oxides

    Science.gov (United States)

    Thomé, L.; Moll, S.; Sattonnay, G.; Vincent, L.; Garrido, F.; Jagielski, J.

    2009-06-01

    Ceramics are key engineering materials for electronic, space and nuclear industry. Some of them are promising matrices for the immobilization and/or transmutation of radioactive waste. Cubic zirconia is a model system for the study of radiation effects in ceramic oxides. Ion beams are very efficient tools for the simulation of the radiations produced in nuclear reactors or in storage form. In this article, we summarize the work made by combining advanced techniques (RBS/C, XRD, TEM, AFM) to study the structural modifications produced in ion-irradiated cubic zirconia single crystals. Ions with energies in the MeV-GeV range allow exploring the nuclear collision and electronic excitation regimes. At low energy, where ballistic effects dominate, the damage exhibits a peak around the ion projected range; it accumulates with a double-step process by the formation of a dislocation network. At high energy, where electronic excitations are favored, the damage profiles are rather flat up to several micrometers; the damage accumulation is monotonous (one step) and occurs through the creation and overlap of ion tracks. These results may be generalized to many nuclear ceramics.

  9. Influence of surface treatment of yttrium-stabilized tetragonal zirconium oxides and cement type on crown retention after artificial aging.

    Science.gov (United States)

    Karimipour-Saryazdi, Mehdi; Sadid-Zadeh, Ramtin; Givan, Daniel; Burgess, John O; Ramp, Lance C; Liu, Perng-Ru

    2014-05-01

    Information about the influence of zirconia crown surface treatment and cement type on the retention of zirconia crowns is limited. It is unclear whether zirconia crowns require surface treatment to enhance their retention. The purpose of this in vitro study was to evaluate the effect of surface treatment on the retention of zirconia crowns cemented with 3 different adhesive resin cements after artificial aging. Ninety extracted human molars were prepared for ceramic crowns (approximately 20-degree taper, approximately 4-mm axial length) and were divided into 3 groups (n=30). Computer-aided design and computer-aided manufacturing zirconia copings were fabricated. Three surface treatments were applied to the intaglio surface of the copings. The control group received no treatment, the second group was airborne-particle abraded with 50 μm Al2O3, and the third group was treated with 30 μm silica-modified Al2O3, The copings were luted with a self-etch (RelyX Unicem 2), a total-etch (Duo-Link), or a self-etch primer (Panavia F 2.0) adhesive cement. They were stored for 24 hours at 37°C before being artificially aged with 5000 (5°C-55°C) thermal cycles and 100,000 cycles of 70 N dynamic loading. Retention was measured on a universal testing machine under tension, with a crosshead speed of 0.5 mm/min. Statistical analysis was performed with 1-way and 2-way ANOVA. Mean retention values ranged from 0.72 to 3.7 MPa. Surface treatment increased crown retention, but the difference was not statistically significant (P>.05), except for the Duo-Link cement group (P<.05). Analysis of the adhesives revealed that the Duo-Link cement resulted in significantly lower crown retention (P<.05) than the other 2 cements. For zirconia crowns, retention seems to be dependent on cement type rather than surface treatment. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. The effect of porcelain firing and type of finish line on the marginal fit of zirconia copings.

    Science.gov (United States)

    Vojdani, Mahroo; Safari, Anahita; Mohaghegh, Mina; Pardis, Soheil; Mahdavi, Farideh

    2015-06-01

    Although all-ceramic restorations are broadly used, there is a lack of information concerning how their fit is affected by fabrication procedure and marginal configuration. The purpose of this study was to evaluate the marginal fit of zirconia CAD/CAM ceramic crowns before and after porcelain firing. The influence of finish line configuration on the marginal fit was also evaluated. Twenty standardized zirconia CAD/CAM copings were fabricated for chamfer and shoulder finish line designs (n=10). The marginal fit of specimens was measured on 18 points, marked on the master metal die by using a digital microscope. After the crowns were finalized by porcelain veneering, the measurements of marginal fit were performed again. The means and standard deviations were calculated and data were analyzed using student's t-test and paired t-test (α=0.05). There were significant differences between marginal fit of chamfer and shoulder finish line groups before and after porcelain firing (p= 0.014 and p= 0.000, respectively). The marginal gap of copings with shoulder finish line was significantly smaller than those with chamfer configuration (p= 0.000), but there were no significant differences between the two marginal designs, after porcelain firing (p= 0.341). Porcelain veneering was found to have a statistically significant influence on the marginal fit of zirconia CAD/CAM crowns. Both margin configurations showed marginal gaps that were within a reported clinically acceptable range of marginal discrepancy.

  11. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    Science.gov (United States)

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  12. Effects of surface treatment on bond strength between dental resin agent and zirconia ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Moradabadi, Ashkan [Department of Electrochemistry, Universität Ulm, Ulm (Germany); Roudsari, Sareh Esmaeily Sabet [Department of Optoelectonics, Universität Ulm, Ulm (Germany); Yekta, Bijan Eftekhari [School of Materials Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Rahbar, Nima, E-mail: nrahbar@wpi.edu [Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 (United States)

    2014-01-01

    This paper presents the results of an experimental study to understand the dominant mechanism in bond strength between dental resin agent and zirconia ceramic by investigating the effects of different surface treatments. Effects of two major mechanisms of chemical and micromechanical adhesion were evaluated on bond strength of zirconia to luting agent. Specimens of yttrium-oxide-partially-stabilized zirconia blocks were fabricated. Seven groups of specimens with different surface treatment were prepared. 1) zirconia specimens after airborne particle abrasion (SZ), 2) zirconia specimens after etching (ZH), 3) zirconia specimens after airborne particle abrasion and simultaneous etching (HSZ), 4) zirconia specimens coated with a layer of a Fluorapatite-Leucite glaze (GZ), 5) GZ specimens with additional acid etching (HGZ), 6) zirconia specimens coated with a layer of salt glaze (SGZ) and 7) SGZ specimens after etching with 2% HCl (HSGZ). Composite cylinders were bonded to airborne-particle-abraded surfaces of ZirkonZahn specimens with Panavia F2 resin luting agent. Failure modes were examined under 30 × magnification and the effect of surface treatments was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SZ and HSZ groups had the highest and GZ and SGZ groups had the lowest mean shear bond strengths among all groups. Mean shear bond strengths were significantly decreased by applying a glaze layer on zirconia surfaces in GZ and SGZ groups. However, bond strengths were improved after etching process. Airborne particle abrasion resulted in higher shear bond strengths compared to etching treatment. Modes of failure varied among different groups. Finally, it is concluded that micromechanical adhesion was a more effective mechanism than chemical adhesion and airborne particle abrasion significantly increased mean shear bond strengths compared with another surface treatments. - Highlights: • Understanding the dominant mechanism of bonding

  13. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun; Lee, Jai-Bong; Ha, Seung-Ryong

    2016-06-01

    Surface polishing or glazing may increase the appearance of depth of monolithic zirconia restorations. The purpose of this in vitro study was to investigate the effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. Forty-five monolithic zirconia specimens (16.3×16.4×2.0 mm) were divided into groups I to V, according to the number of colorings each received. Each group was then divided into 3 subgroups (n=3) according to the surface treatment: N=no treatment; P=polished; and G=glazed. CIElab color coordinates were obtained relative to D65 on a reflection spectrophotometer. The translucency parameter (TP) and opalescence parameter (OP) were calculated. One specimen per subgroups I and V was selected for evaluation of surface roughness (Ra) and was examined with scanning electron microscopy (SEM). Data were analyzed with 2-way ANOVA and pairwise comparisons (α=.05). Statistical powers were verified to evaluate results (α=.05). The interaction effects of surface treatments combined with the number of colorings were significant for TP, OP, and Ra (P.05), whereas glazing significantly decreased OP and Ra in most groups. SEM images demonstrated that surface treatments affected the surface texture of monolithic zirconia ceramics. Surface treatments combined with coloring strongly affect the surface texture of dental monolithic zirconia ceramics. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Joining Dental Ceramic Layers With Glass

    Science.gov (United States)

    Saied, MA; Lloyd, IK; Haller, WK; Lawn, BR

    2011-01-01

    Objective Test the hypothesis that glass-bonding of free-form veneer and core ceramic layers can produce robust interfaces, chemically durable and aesthetic in appearance and, above all, resistant to delamination. Methods Layers of independently produced porcelains (NobelRondo™ Press porcelain, Nobel BioCare AB and Sagkura Interaction porcelain, Elephant Dental) and matching alumina or zirconia core ceramics (Procera alumina, Nobel BioCare AB, BioZyram yttria stabilized tetragonal zirconia polycrystal, Cyrtina Dental) were joined with designed glasses, tailored to match thermal expansion coefficients of the components and free of toxic elements. Scanning electron microprobe analysis was used to characterize the chemistry of the joined interfaces, specifically to confirm interdiffusion of ions. Vickers indentations were used to drive controlled corner cracks into the glass interlayers to evaluate the toughness of the interfaces. Results The glass-bonded interfaces were found to have robust integrity relative to interfaces fused without glass, or those fused with a resin-based adhesive. Significance The structural integrity of the interfaces between porcelain veneers and alumina or zirconia cores is a critical factor in the longevity of all-ceramic dental crowns and fixed dental prostheses. PMID:21802131

  15. Three-unit posterior zirconia-ceramic fixed dental prostheses (FDPs) veneered with layered and milled (CAD-on) veneering ceramics: 1-year follow-up of a randomized controlled clinical trial.

    Science.gov (United States)

    Grohmann, Philipp; Bindl, Andreas; Hämmerle, Christoph; Mehl, Albert; Sailer, Irena

    2015-01-01

    The aim of this multicenter randomized controlled clinical trial was to test posterior zirconia-ceramic fixed dental prostheses (FDPs) veneered with a computer-aided design/computer- assisted manufacture (CAD/CAM) lithium disilicate veneering ceramic (CAD-on) and manually layered zirconia veneering ceramic with respect to survival of the FDPs, and technical and biologic outcomes. Sixty patients in need of one posterior three-unit FDP were included. The zirconia frameworks were produced with a CAD/CAM system (Cerec inLab 3D/Cerec inEOS inLab). Thirty FDPs were veneered with a CAD/CAM lithium disilicate veneering ceramic (Cad-on) (test) and 30 were veneered with a layered zirconia veneering ceramic (control). For the clinical evaluation at baseline, 6, and 12 months, the United States Public Health Service (USPHS) criteria were used. The biologic outcome was judged by comparing the plaque control record (PCR), bleeding on probing (BOP), and probing pocket depth (PPD). Data were statistically analyzed. Fifty-six patients were examined at a mean follow-up of 13.9 months. At the 1-year follow-up the survival rate was 100% in the test and in the control group. No significant differences of the technical outcomes occurred. Major chipping occurred in the control group (n = 3) and predominantly minor chipping in the test group (minor n = 2, major n = 1). No biologic problems or differences were found. Both types of zirconia-ceramic FDPs exhibited very good clinical outcomes without differences between groups. Chipping occurred in both types of FDPs at small amounts, yet the extension of the chippings differed. The test FDPs predominantly exhibited minor chipping, the control FDPs major chipping.

  16. Plastic damage induced fracture behaviors of dental ceramic layer structures subjected to monotonic load.

    Science.gov (United States)

    Wang, Raorao; Lu, Chenglin; Arola, Dwayne; Zhang, Dongsheng

    2013-08-01

    The aim of this study was to compare failure modes and fracture strength of ceramic structures using a combination of experimental and numerical methods. Twelve specimens with flat layer structures were fabricated from two types of ceramic systems (IPS e.max ceram/e.max press-CP and Vita VM9/Lava zirconia-VZ) and subjected to monotonic load to fracture with a tungsten carbide sphere. Digital image correlation (DIC) and fractography technology were used to analyze fracture behaviors of specimens. Numerical simulation was also applied to analyze the stress distribution in these two types of dental ceramics. Quasi-plastic damage occurred beneath the indenter in porcelain in all cases. In general, the fracture strength of VZ specimens was greater than that of CP specimens. The crack initiation loads of VZ and CP were determined as 958 ± 50 N and 724 ± 36 N, respectively. Cracks were induced by plastic damage and were subsequently driven by tensile stress at the elastic/plastic boundary and extended downward toward to the veneer/core interface from the observation of DIC at the specimen surface. Cracks penetrated into e.max press core, which led to a serious bulk fracture in CP crowns, while in VZ specimens, cracks were deflected and extended along the porcelain/zirconia core interface without penetration into the zirconia core. The rupture loads for VZ and CP ceramics were determined as 1150 ± 170 N and 857 ± 66 N, respectively. Quasi-plastic deformation (damage) is responsible for crack initiation within porcelain in both types of crowns. Due to the intrinsic mechanical properties, the fracture behaviors of these two types of ceramics are different. The zirconia core with high strength and high elastic modulus has better resistance to fracture than the e.max core. © 2013 by the American College of Prosthodontists.

  17. Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study

    Science.gov (United States)

    Brondani, Lucas Pradebon; Pereira-Cenci, Tatiana; Wandsher, Vinicius Felipe; Pereira, Gabriel Kalil; Valandro, Luis Felipe; Bergoli, César Dalmolin

    2017-04-10

    Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding) and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding), resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation) for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.

  18. OCT evaluation of single ceramic crowns: comparison between conventional and chair-side CAD/CAM technologies

    Science.gov (United States)

    Gabor, A.; Jivanescu, A.; Zaharia, C.; Hategan, S.; Topala, F. I.; Levai, C. M.; Negrutiu, M. L.; Sinescu, C.; Duma, V.-F.; Bradu, A.; Podoleanu, A. Gh.

    2016-03-01

    Digital impressions were introduced to overcome some of the obstacles due to traditional impression materials and techniques. The aim of this in vitro study is to compare the accuracy of all ceramic crowns obtained with digital impression and CAD-CAM technology with the accuracy of those obtained with conventional impression techniques. Two groups of 10 crowns each have been considered. The digital data obtained from Group 1 have been processed and the all-ceramic crowns were milled with a CAD/CAM technology (CEREC MCX, Sirona). The all ceramic crowns in Group 2 were obtained with the classical technique of pressing (emax, Ivoclar, Vivadent). The evaluation of the marginal adaptation was performed with Time Domain Optical Coherence Tomography (TD OCT), working at a wavelength of 1300 nm. Tri-dimensional (3D) reconstructions of the selected areas were obtained. Based on the findings in this study, one may conclude that the marginal accuracy of all ceramic crowns fabricated with digital impression and the CAD/CAM technique is superior to the conventional impression technique.

  19. Impact of Gluma Desensitizer on the tensile strength of zirconia crowns bonded to dentin: an in vitro study.

    Science.gov (United States)

    Stawarczyk, Bogna; Hartmann, Leonie; Hartmann, Rahel; Roos, Malgorzata; Ender, Andreas; Ozcan, Mutlu; Sailer, Irena; Hämmerle, Christoph H F

    2012-02-01

    This study tested the impact of Gluma Desensitizer on the tensile strength of zirconia crowns bonded to dentin. Human teeth were prepared and randomly divided into six groups (N = 144, n = 24 per group). For each tooth, a zirconia crown was manufactured. The zirconia crowns were cemented with: (1) Panavia21 (PAN), (2) Panavia21 combined with Gluma Desensitizer (PAN-G), (3) RelyX Unicem (RXU), (4) RelyX Unicem combined with Gluma Desensitizer (RXU-G), (5) G-Cem (GCM) and (6) G-Cem combined with Gluma Desensitizer (GCM-G). The initial tensile strength was measured in half (n = 12) of each group and the other half (n = 12) subjected to a chewing machine (1.2 Mio, 49 N, 5°C/50°C). The cemented crowns were pulled in a Universal Testing Machine (1 mm/min, Zwick Z010) until failure occurred and tensile strength was calculated. Data were analyzed with one-way and two-way ANOVA followed by a post hoc Scheffé test, t test and Kaplan-Meier analysis with a Breslow-Gehan analysis test (α = 0.05). After the chewing simulation, the self-adhesive resin cements combined with Gluma Desensitizer showed significantly higher tensile strength (RXU-G, 12.8 ± 4.3 MPa; GCM-G, 13.4 ± 6.2 MPa) than PAN (7.3 ± 1.7 MPa) and PAN-G (0.9 ± 0.6). Within the groups, PAN, PAN-G and RXU resulted in significantly lower values when compared to the initial tensile strength; the values of all other test groups were stable. In this study, self-adhesive resin cements combined with Gluma Desensitizer reached better long-term stability compared to PAN and PAN-G after chewing simulation.

  20. Influence of heat treatment and veneering on the storage modulus and surface of zirconia ceramic

    NARCIS (Netherlands)

    Siavikis, G.; Behr, M.; van der Zel, J.M.; Feilzer, A.J.; Rosentritt, M.

    2011-01-01

    Objectives: Glass-ceramic veneered zirconia is used for the application as fixed partial dentures. The aim of this investigation was to evaluate whether the heat treatment during veneering, the application of glass-ceramic for veneering or long term storage has an influence on the storage modulus of

  1. Effect of coping thickness and background type on the masking ability of a zirconia ceramic.

    Science.gov (United States)

    Tabatabaian, Farhad; Taghizade, Fateme; Namdari, Mahshid

    2018-01-01

    The masking ability of zirconia ceramics as copings is unclear. The purpose of this in vitro study was to evaluate the effect of coping thickness and background type on the masking ability of a zirconia ceramic and to determine zirconia coping thickness cut offs for masking the backgrounds investigated. Thirty zirconia disks in 3 thickness groups of 0.4, 0.6, and 0.8 mm were placed on 9 backgrounds to measure CIELab color attributes using a spectrophotometer. The backgrounds included A1, A2, and A3.5 shade composite resin, A3 shade zirconia, nickel-chromium alloy, nonprecious gold-colored alloy, amalgam, black, and white. ΔE values were measured to determine color differences between the specimens on the A2 shade composite resin background and the same specimens on the other backgrounds. The color change (ΔE) values were compared with threshold values for acceptability (ΔE=5.5) and perceptibility (ΔE=2.6). Repeated measures ANOVA, the Bonferroni test, and 1-sample t tests were used to analyze data (α=.05). Mean ΔE values ranged between 1.44 and 7.88. The zirconia coping thickness, the background type, and their interaction affected the CIELab and ΔE values (Pmasking, the minimum thickness of a zirconia coping should be 0.4 mm for A1 and A3.5 shade composite resin, A3 shade zirconia, and nonprecious gold-colored alloy, 0.6 mm for amalgam, and 0.8 mm for nickel-chromium alloy. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Microstructural evolution of alumina-zirconia nanocomposites; Evolucao microestrutural de nanocompositos alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L. [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Pallone, E.M.J.A., E-mail: christianelago@yahoo.com.br [Universidade de Sao Paulo (USP), Pirassununga, Sao Paulo, SP (Brazil). Faculdade de Zootecnia e Engenharia de Alimentos

    2012-07-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  3. Comparison of Shade of Ceramic with Three Different Zirconia Substructures using Spectrophotometer.

    Science.gov (United States)

    Habib, Syed Rashid; Shiddi, Ibraheem F Al

    2015-02-01

    This study assessed how changing the Zirconia (Zr) substructure affected the color samples after they have been overlaid by the same shade of veneering ceramic. Three commercial Zr materials were tested in this study: Prettau(®) Zirconia (ZirKonZahn, Italy), Cercon (Dentsply, Germany) and InCoris ZI (Sirona, Germany). For each system, 15 disk-shaped specimens (10 × 1 mm) were fabricated. Three shades of A1, A2 and A3.5 of porcelain (IPS e.MaxCeram, IvoclarVivadent, USA) were used for layering the specimens. Five specimens from each type of Zr were layered with same shade of ceramic. Color measurements were recorderd by a spectrophotometer Color-Eye(®) 7000A (X-Rite, Grand Rapids, MI). Mean values of L, a, b color coordinates and ΔE were recorded and comparisons were made. Differences in the ΔE were recorded for the same porcelain shade with different Zr substructures and affected the color of the specimens (p < 0.01, ANOVA). The maximum difference between the ΔE values for the A1, A2 and A3.5 shades with three types of Zr substructures was found to be 1.59, 1.69 and 1.45 respectively. Multiple comparisons of the ΔE with PostHoc Tukey test revealed a statistically significant difference (p < 0.05) between the three types of Zr, except between Type 2 Zr and Type 3 Zr for the Shade A1. The mean values of L, a, b and ΔE for the Prettau(®) Zirconia substructure were found to be the least among the three types. The brand of Zr used influences the final color of the all ceramic Zr based restorations and this has clinical significance.

  4. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics; Avaliacao de tratamentos quimicos e recobrimento biomimetico em ceramicas de alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Amanda Abati

    2007-07-01

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation

  5. Long-term Bond Strength between Layering Indirect Composite Material and Zirconia Coated with Silicabased Ceramics.

    Science.gov (United States)

    Fushiki, Ryosuke; Komine, Futoshi; Honda, Junichi; Kamio, Shingo; Blatz, Markus B; Matsumura, Hideo

    2015-06-01

    This study evaluated the long-term shear bond strength between an indirect composite material and a zirconia framework coated with silica-based ceramics, taking the effect of different primers into account. A total of 165 airborne-particle abraded zirconia disks were subjected to one of three pretreatments: no pretreatment (ZR-AB), airborne-particle abrasion of zirconia coated with feldspathic porcelain (ZR-PO-AB), and 9.5% hydrofluoric acid etching of zirconia coated with feldspathic porcelain (ZR-PO-HF). An indirect composite material (Estenia C&B) was then bonded to the zirconia disks after they were treated with one of the following primers: Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + Activator), Estenia Opaque Primer (EOP), Porcelain Liner M Liquid B (PLB), or no priming (CON, control group). Shear bond strength was tested after 100,000 thermocycles, and the data were analyzed using the Steel-Dwass U-test (α = 0.05). For ZR-PO-AB and ZR-PO-HF specimens, bond strength was highest in the CPB+Activator group (25.8 MPa and 22.4 MPa, respectively). Bond strengths were significantly lower for ZR-AB specimens in the CON and PLB groups and for ZR-PO-AB specimens in the CON, CPB, and EOP groups. Combined application of a hydrophobic phosphate monomer (MDP) and silane coupling agent enhanced the long-term bond strength of indirect composite material to a zirconia coated with silica-based ceramics.

  6. Dilemmas in zirconia bonding: A review

    Directory of Open Access Journals (Sweden)

    Obradović-Đuričić Kosovka

    2013-01-01

    Full Text Available This article presents a literature review on the resin bond to zirconia ceramic. Modern esthetic dentistry has highly recognized zirconia, among other ceramic materials. Biocompatibility of zirconia, chemical and dimensional stability, excellent mechanical properties, all together could guarantee optimal therapeutical results in complex prosthodontic reconstruction. On the other hand, low thermal degradation, aging of zirconia as well as problematic bonding of zirconia framework to dental luting cements and tooth structures, opened the room for discussion concerning their clinical durability. The well known methods of mechanical and chemical bonding used on glass-ceramics are not applicable for use with zirconia. Therefore, under critical clinical situations, selection of the bonding mechanism should be focused on two important points: high initial bond strength value and long term bond strength between zirconia-resin interface. Also, this paper emphases the use of phosphate monomer luting cements on freshly air-abraded zirconia as the simplest and most effective way for zirconia cementation procedure today.

  7. Effect of elasticity on stress distribution in CAD/CAM dental crowns: Glass ceramic vs. polymer-matrix composite.

    Science.gov (United States)

    Duan, Yuanyuan; Griggs, Jason A

    2015-06-01

    Further investigations are required to evaluate the mechanical behaviour of newly developed polymer-matrix composite (PMC) blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The purpose of this study was to investigate the effect of elasticity on the stress distribution in dental crowns made of glass-ceramic and PMC materials using finite element (FE) analysis. Elastic constants of two materials were determined by ultrasonic pulse velocity using an acoustic thickness gauge. Three-dimensional solid models of a full-coverage dental crown on a first mandibular molar were generated based on X-ray micro-CT scanning images. A variety of load case-material property combinations were simulated and conducted using FE analysis. The first principal stress distribution in the crown and luting agent was plotted and analyzed. The glass-ceramic crown had stress concentrations on the occlusal surface surrounding the area of loading and the cemented surface underneath the area of loading, while the PMC crown had only stress concentration on the occlusal surface. The PMC crown had lower maximum stress than the glass-ceramic crown in all load cases, but this difference was not substantial when the loading had a lateral component. Eccentric loading did not substantially increase the maximum stress in the prosthesis. Both materials are resistant to fracture with physiological occlusal load. The PMC crown had lower maximum stress than the glass-ceramic crown, but the effect of a lateral loading component was more pronounced for a PMC crown than for a glass-ceramic crown. Knowledge of the stress distribution in dental crowns with low modulus of elasticity will aid clinicians in planning treatments that include such restorations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study

    Directory of Open Access Journals (Sweden)

    Lucas Pradebon BRONDANI

    2017-04-01

    Full Text Available Abstract Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding, resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.

  9. Comparison of three and four point bending evaluation of two adhesive bonding systems for glass-ceramic zirconia bi-layered ceramics.

    Science.gov (United States)

    Gee, C; Weddell, J N; Swain, M V

    2017-09-01

    To quantify the adhesion of two bonding approaches of zirconia to more aesthetic glass-ceramic materials using the Schwickerath (ISO 9693-2:2016) three point bend (3PB) [1] test to determine the fracture initiation strength and strain energy release rate associated with stable crack extension with this test and the Charalamabides et al. (1989) [2] four point bend (4PB) test. Two glass-ceramic materials (VITABLOCS Triluxe forte, Vita Zahnfabrik, Germany and IPS.emax CAD, Ivoclar Vivadent, Liechtenstein) were bonded to sintered zirconia (VITA InCeram YZ). The former was resin bonded using a dual-cure composite resin (Panavia F 2.0, Kuraray Medical Inc., Osaka, Japan) following etching and silane conditioning, while the IPS.emax CAD was glass bonded (IPS e.max CAD Crystall/Connect) during crystallization of the IPS.emax CAD. Specimens (30) of the appropriate dimensions were fabricated for the Schwickerath 3PB and 4PB tests. Strength values were determined from crack initiation while strain energy release rate values were determined from the minima in the force-displacement curves with the 3PB test (Schneider and Swain, 2015) [3] and for 4PB test from the plateau region of stable crack extension. Strength values for the resin and glass bonded glass ceramics to zirconia were 22.20±6.72MPa and 27.02±3.49MPa respectively. The strain energy release rates for the two methods used were very similar and for the glass bonding, (4PB) 15.14±5.06N/m (or J/m 2 ) and (3PB) 16.83±3.91N/m and resin bonding (4PB) 8.34±1.93N/m and (3PB) 8.44±2.81N/m respectively. The differences in strength and strain energy release rate for the two bonding approaches were statistically significant (pceramics to zirconia. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology.

    Science.gov (United States)

    Huang, Zhuoli; Zhang, Lu; Zhu, Jingwei; Zhang, Xiuyin

    2015-06-01

    Selective laser melting (SLM) technology has been introduced to fabricate dental restorations. However, the fit of these restorations still needs further study. The purpose of this in vivo investigation was to compare the marginal and internal fit of SLM metal ceramic crowns with 2 lost-wax cast metal ceramic crowns and to evaluate the influence of tooth type on the marginal and internal fit of these crowns. A total of 330 metal ceramic crowns were evaluated. The metal copings were fabricated with SLM Co-Cr, cast Au-Pt, and cast Co-Cr alloy (n=110). The marginal and internal gaps of crowns were recorded by using a replica technique. The anterior and premolar replicas were sectioned 2 times, and molar replicas were sectioned 4 times. The marginal and internal gap width of each cross section was examined by stereomicroscope at ×30 magnification. Two-way analysis of variance was performed to identify the statistical difference among the groups. The marginal fit of the SLM Co-Cr group (75.6 ±32.6 μm) was not different from the cast Au-Pt group (76.8 ±32.1 μm) (P>.05) but was better than the cast Co-Cr group (91.0 ±36.3 μm) (P.05). The mean occlusal gap width of the SLM Co-Cr group (309.8 ±106.6 μm) was significantly higher than that of the cast Au-Pt group (254.6 ±109.6 μm) and the cast Co-Cr group (249.6 ±110.4 μm) (P.05). Also, no significant difference was found in the axial fit among the anterior group (138.3 ±52.5 μm), the premolar group (132.9 ±50.4 μm), and the molar group (134.4 ±52.5 μm) (P>.05). The anterior group (267.6 ±110.2 μm) did not differ from the premolar group (270.2 ±112.8 μm) and the molar group (268.6 ±110.5 μm) in occlusal fit (P>.05). The marginal fit of SLM Co-Cr metal ceramic crowns was similar to that of the cast Au-Pt metal ceramic crowns and was better than that of the cast Co-Cr metal ceramic crowns. The SLM Co-Cr metal ceramic crowns were not significantly different from the 2 cast metal ceramic crowns in axial

  11. Comparative analysis of two measurement methods for marginal fit in metal-ceramic and zirconia posterior FPDs.

    Science.gov (United States)

    Gonzalo, Esther; Suárez, María J; Serrano, Benjamin; Lozano, José F L

    2009-01-01

    The purpose of this study was to compare two measurement methods for the external marginal fit of zirconia posterior fixed partial dentures (FPDs) fabricated using computer-aided design/manufacturing technology and metal-ceramic posterior FPDs fabricated using the conventional lost-wax technique. The null hypothesis was that there would be no differences between the measurement methods. Forty standardized steel specimens were prepared to receive posterior three-unit FPDs. Specimens were divided into four groups (n = 10): (1) metal-ceramic, (2) Procera Bridge Zirconia, (3) Lava AllCeramic System, and (4) Vita In-Ceram YZ 2000. All FPDs were luted with glass-ionomer cement (Ketac Cem EasyMix, 3M ESPE). Two measurement methods were used to analyze marginal fit: an image analysis (IA) program and a scanning electron microscope (SEM) (JEOL JSM-6400) with magnifications of 340 and 31,000, respectively. Marginal fit was measured at the same point on each abutment. Significant interaction was observed between measurement method and material (P = .0019). Therefore, the measurement method is not independent of the restoration material. Differences among groups were observed for IA (P = .0001) and SEM (P = .0013). Significant differences were observed for the Procera (P = .0050) and metal-ceramic (P = .0039) specimen groups when both measurement methods were evaluated separately. Accuracy of fit achieved by the four groups analyzed was within the range of clinical acceptance, yielding Procera Bridge Zirconia to have the best marginal fit using both measurement methods.

  12. The isothermal conductivity improvement in zirconia-based ceramics under 24 GHz microwave heating

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Ayano, Keiko; Teranishi, Takashi; Hayashi, Hidetaka

    2014-01-01

    Abstract Under 24-GHz millimetre-wave irradiation heating ionic conductivity of zirconia base ceramics was up to 20 times higher than that of a conventionally-heated sample at the same temperature of 400 °C. The degree of enhancement could be altered by changing the stabilising atom from Y to Yb. Enhancement of ionic conduction was prominent in the setup condition of larger self-heating ratio and larger MMW absorbing materials. The isothermal improvement of ionic conductivity under MMW irradiation would be ascribed to the non-thermal effect. - Highlights: • Under millimetre-wave irradiation heating ionic conductivity of zirconia ceramics was examined. • It was up to 20 times higher than that of a conventionally heating condition. • The activation process was examined in relation to the non-thermal effects. • The operation temperature could be lowered while maintaining the ionic conductivity

  13. Numerical fatigue analysis of premolars restored by CAD/CAM ceramic crowns.

    Science.gov (United States)

    Homaei, Ehsan; Jin, Xiao-Zhuang; Pow, Edmond Ho Nang; Matinlinna, Jukka Pekka; Tsoi, James Kit-Hon; Farhangdoost, Khalil

    2018-04-10

    The purpose of this study was to estimate the fatigue life of premolars restored with two dental ceramics, lithium disilicate (LD) and polymer infiltrated ceramic (PIC) using the numerical method and compare it with the published in vitro data. A premolar restored with full-coverage crown was digitized. The volumetric shape of tooth tissues and crowns were created in Mimics ® . They were transferred to IA-FEMesh for mesh generation and the model was analyzed with Abaqus. By combining the stress distribution results with fatigue stress-life (S-N) approach, the lifetime of restored premolars was predicted. The predicted lifetime was 1,231,318 cycles for LD with fatigue load of 1400N, while the one for PIC was 475,063 cycles with the load of 870N. The peak value of maximum principal stress occurred at the contact area (LD: 172MPa and PIC: 96MPa) and central fossa (LD: 100MPa and PIC: 64MPa) for both ceramics which were the most seen failure areas in the experiment. In the adhesive layer, the maximum shear stress was observed at the shoulder area (LD: 53.6MPa and PIC: 29MPa). The fatigue life and failure modes of all-ceramic crown determined by the numerical method seem to correlate well with the previous experimental study. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  14. Influence of cooling rate on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2011-09-01

    The manufacture of dental crowns and bridges generates residual stresses within the veneering ceramic and framework during the cooling process. Residual stress is an important factor that control the mechanical behavior of restorations. Knowing the stress distribution within the veneering ceramic as a function of depth can help the understanding of failures, particularly chipping, a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the cooling rate dependence of the stress profile in veneering ceramic layered on metal and zirconia frameworks. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples 20 mm in diameter, with a 0.7 mm thick metal or Yttria-tetragonal-zirconia-polycrystal framework and a 1.5mm thick veneering ceramic. Three different cooling procedures were investigated. The magnitude of the stresses in the surface of the veneering ceramic was found to increase with cooling rate, while the interior stresses decreased. At the surface, compressive stresses were observed in all samples. In the interior, compressive stresses were observed in metal samples and tensile in zirconia samples. Cooling rate influences the magnitude of residual stresses. These can significantly influence the mechanical behavior of metal-and zirconia-based bilayered systems. The framework material influenced the nature of the interior stresses, with zirconia samples showing a less favorable stress profile than metal. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Evaluation of surface topography of zirconia ceramic after Er:YAG laser etching.

    Science.gov (United States)

    Turp, Volkan; Akgungor, Gokhan; Sen, Deniz; Tuncelli, Betul

    2014-10-01

    The aim of this study is to evaluate the effect of Erbium: yttrium-aluminum-garnet (Er:YAG) laser with different pulse lengths on the surface roughness of zirconia ceramic and airborne particle abrasion. Er:YAG laser treatment is expected to be an alternative surface treatment method for zirconia ceramics; however, the parameters and success of the application are not clear. One hundred and forty zirconia discs (diameter, 10 mm; thickness, 1.2 mm) were prepared by a computer-aided design and computer-aided manufacturing (CAD/CAM) system according to the manufacturer's instructions. Specimens were divided into 14 groups (n=10). One group was left as polished control, one group was air-particle abraded with Al2O3 particles. For the laser treatment groups, laser irradiation was applied at three different pulse energy levels (100, 200, and 300 mJ) and for each energy level at four different pulse lengths; 50, 100, 300, and 600 μs. Surface roughness was evaluated with an optical profilometer and specimens were evaluated with scanning electron microscopy (SEM). Data was analyzed with one way ANOVA and Tukey multiple comparison tests (α=0.05). For the 100 and 200 mJ laser etching groups, 50 and 100 μs laser duration resulted in significantly higher surface roughness compared with air-particle abrasion (p0.05). For the 300 mJ laser etching groups; there was no statistically significant difference among the Ra values of 50 μs, 100 μs, 300 μs, 600 μs, and air-particle abrasion groups (p>0.05). In order to increase surface roughness and promote better bonding to resin luting agents, Er:YAG laser etching may be an alternative to air-particle abrasion for zirconia ceramics. However, high levels of pulse energy and longer pulse length may have an adverse effect on micromechanical locking properties, because of a decrease in surface roughness.

  16. Improvement of the steel quality through zirconia base ceramic filter

    International Nuclear Information System (INIS)

    Santos, Benedito M.; Foschini, Cesar R.; Santos, Ieda M.G.; Pinheiro, Adriano S.; Paskocimas, Carlos A.; Leite, Edson R.; Longo, Elson

    1997-01-01

    At the end of production, the steel presents inclusions own to the making process. Ceramics filters, with controlled porosity, are being produced to eliminate the impurities, so as to increase the good quality steel production. This work studies the optimization of the zirconia filters composition and production for siderurgical processes application. The study was done through the granulometric control, using BET, XRD and Hg Porosimetry. (author)

  17. Effect of testing methods on the bond strength of resin to zirconia-alumina ceramic : microtensile versus shear test

    NARCIS (Netherlands)

    Valandro, Luiz F.; Ozcan, Mutlu; Amaral, Regina; Vanderlei, Aleska; Bottino, Marco A.

    2008-01-01

    This study tested the bond strength of a resin cement to a glass-infiltrated zirconia-alumina ceramic after three conditioning methods and using two test methods (shear-SBS versus microtensile-MTBS). Ceramic blocks for MTBS and ceramic disks for SBS were fabricated. Three surface conditioning (SC)

  18. Zirconia toughened alumina ceramic foams for potential bone graft applications: fabrication, bioactivation, and cellular responses.

    Science.gov (United States)

    He, X; Zhang, Y Z; Mansell, J P; Su, B

    2008-07-01

    Zirconia toughened alumina (ZTA) has been regarded as the next generation orthopedic graft material due to its excellent mechanical properties and biocompatibility. Porous ZTA ceramics with good interconnectivity can potentially be used as bone grafts for load-bearing applications. In this work, three-dimensional (3D) interconnected porous ZTA ceramics were fabricated using a direct foaming method with egg white protein as binder and foaming agent. The results showed that the porous ZTA ceramics possessed a bimodal pore size distribution. Their mechanical properties were comparable to those of cancellous bone. Due to the bio-inertness of alumina and zirconia ceramics, surface bioactivation of the ZTA foams was carried out in order to improve their bioactivity. A simple NaOH soaking method was employed to change the surface chemistry of ZTA through hydroxylation. Treated samples were tested by conducting osteoblast-like cell culture in vitro. Improvement on cells response was observed and the strength of porous ZTA has not been deteriorated after the NaOH treatment. The porous 'bioactivated' ZTA ceramics produced here could be potentially used as non-degradable bone grafts for load-bearing applications.

  19. The effect of various primers on shear bond strength of zirconia ceramic and resin composite.

    Science.gov (United States)

    Sanohkan, Sasiwimol; Kukiattrakoon, Boonlert; Larpboonphol, Narongrit; Sae-Yib, Taewalit; Jampa, Thibet; Manoppan, Satawat

    2013-11-01

    To determine the in vitro shear bond strengths (SBS) of zirconia ceramic to resin composite after various primer treatments. Forty zirconia ceramic (Zeno, Wieland Dental) specimens (10 mm in diameter and 2 mm thick) were prepared, sandblasted with 50 μm alumina, and divided into four groups (n = 10). Three experimental groups were surface treated with three primers; CP (RelyX Ceramic Primer, 3M ESPE), AP (Alloy Primer, Kuraray Medical), and MP (Monobond Plus, Ivoclar Vivadent AG). One group was not treated and served as the control. All specimens were bonded to a resin composite (Filtek Supreme XT, 3M ESPE) cylinder with an adhesive system (Adper Scotchbond Multi-Purpose Plus Adhesive, 3M ESPE) and then stored in 100% humidity at 37°C for 24 h before SBS testing in a universal testing machine. Mean SBS (MPa) were analyzed with one-way analysis of variance (ANOVA) and the Tukey's Honestly Significant Difference (HSD) test (α = 0.05). Group AP yielded the highest mean and standard deviation (SD) value of SBS (16.8 ± 2.5 MPa) and Group C presented the lowest mean and SD value (15.4 ± 1.6 MPa). The SBS did not differ significantly among the groups (P = 0.079). Within the limitations of this study, the SBS values between zirconia ceramic to resin composite using various primers and untreated surface were not significantly different.

  20. [Chromatic study of all-ceramic crown--IPS Empress: difference of color by manufacturing technique and cements].

    Science.gov (United States)

    Hata, Utako; Sadamitsu, Kenichiro; Yamamura, Osamu; Kawauchi, Daisuke; Fujii, Teruhisa

    2004-12-01

    In recent years,aesthetic appearance and function are called for and all-ceramic crowns are spreading. By choosing an all-ceramic crown the problem of metal ceramics is avoided. There are difficulties of color tone reproducibility of cervical margin and darkness of gingival margin. We examined IPS Empress also in various all-ceramic crowns. IPS Empress has high permeability a ceramic ingot of various color tones and excellent color tone reproducibility of natural teeth. Generally a layering technique is used for an anterior tooth and the staining technique is used for a molar. However the details are unknown We examined how differences of manufacturing method and cement affect the color tone of all ceramics clinically. Two kinds of Empress crown were fabricated for a 27 year-old woman's upper left-side central incisors:the staining technique of IPS Empress and the layering technique of IPS Empress II. Various try-in pastes(transparent opaque white white and yellow) of VariolinkII of the IPS Empress System were used for cementing. Color was measured using a spectrophotometer CMS 35FS. The L*a*b* color system was used for showing a color. The right-side central incisors on the opposite side of the same name teeth were used for comparison. We analyzed the color difference (DeltaE* ab)with a natural tooth. Consequently when it had no cement of staining technique and was tranceparent small values were obtained. It is considered that the color tone can be adjusted by color cement. It is effective to use the staining technique for an anterior tooth crown depending on the case. The crown manufactured using the layering technique is not easily influenced by cement. The crown manufactured by the staining technique tends to be influenced by cement.

  1. Influence of Surface Conditioning Protocols on Reparability of CAD/CAM Zirconia-reinforced Lithium Silicate Ceramic.

    Science.gov (United States)

    Al-Thagafi, Rana; Al-Zordk, Walid; Saker, Samah

    2016-01-01

    To test the effect of surface conditioning protocols on the reparability of CAD/CAM zirconia-reinforced lithium silicate ceramic compared to lithium-disilicate glass ceramic. Zirconia-reinforced lithium silicate ceramic (Vita Suprinity) and lithium disilicate glass-ceramic blocks (IPS e.max CAD) were categorized into four groups based on the surface conditioning protocol used. Group C: no treatment (control); group HF: 5% hydrofluoric acid etching for 60 s, silane (Monobond-S) application for 60 s, air drying; group HF-H: 5% HF acid etching for 60 s, application of silane for 60 s, air drying, application of Heliobond, light curing for 20 s; group CO: sandblasting with CoJet sand followed by silanization. Composite resin (Tetric EvoCeram) was built up into 4 x 6 x 3 mm blocks using teflon molds. All specimens were subjected to thermocycling (5000x, 5°C to 55°C). The microtensile bond strength test was employed at a crosshead speed of 1 mm/min. SEM was employed for evaluation of all the debonded microbars, the failure type was categorized as either adhesive (failure at adhesive layer), cohesive (failure at ceramic or composite resin), or mixed (failure between adhesive layer and substrate). Two-way ANOVA and the Tukey's HSD post-hoc test were applied to test for significant differences in bond strength values in relation to different materials and surface pretreatment (p ceramic types used (p ceramics and lithium-disilicate glass ceramic could be improved when ceramic surfaces are sandblasted with CoJet sand followed by silanization.

  2. Grinding mechanism of zirconia toughened alumina

    International Nuclear Information System (INIS)

    Tsukuda, A.; Kondo, Y.; Yokota, K.

    1998-01-01

    In the grinding process, physical properties of ceramics affect both grinding mechanism and quality of ground surface. In this study we focused on fracture toughness of ceramics and the effect on grinding. A grinding test was carried out by single point grinding for ten different zirconia toughened alumina ceramics with different monoclinic zirconia contents. Effects of zirconia contents on the grinding mechanism and crack initiation were discussed. Copyright (1998) AD-TECH - International Foundation for the Advancement of Technology Ltd

  3. Effect of an experimental zirconia-silica coating technique on micro tensile bond strength of zirconia in different priming conditions

    NARCIS (Netherlands)

    Chen, C.; Kleverlaan, C.J.; Feilzer, A.J.

    2012-01-01

    Objectives This study aimed to evaluate the adhesive properties of a MDP-containing resin cement to a colored zirconia ceramic, using an experimental zirconia-silica coating technique with different priming conditions. Methods 18 zirconia ceramic discs (Cercon base colored) were divided into two

  4. [Effects of repeated firing on microleakage of selective laser melting ceramic crowns].

    Science.gov (United States)

    Zhong, Qun; Peng, Yan; Wu, Xue-Ying; Weng, Jia-Wei

    2016-12-01

    To investigate the effects of repeated firing on microleakage of selective laser melting ceramic crowns. Fifty molars were randomly divided into 2 groups (25 teeth in each group). Teeth in group A received a chamfer finish line preparation, whereas teeth in group B received a shoulder finish line. After SLM metal crowns were fabricated, all the crowns received initial oxidation step, opaque firing, dentin firing and glaze firing, then crowns in each group were randomly divided into 5 sub-groups according to different time of clinical firings. Glass ionomer was applied for bonding. After 5000 thermocycles ranging from 5degrees centigrade to 55degrees centigrade, all the specimens was evaluated by dye penetration and then microleakage was examined under light microscopy. The data were analyzed with SPSS 20.0 software package. Microleakage between all specimens of group A were not statistically significant (P>0.05) whereas that of group B were statistically significant (P<0.05); After the fifth time of clinical firing, microleakage of specimens in group B(B5) were significantly higher than that of group A(A5). Repeated firings had no significant influence on marginal microleakage of SLM ceramic crowns whereas the crowns of chamfer finish lines result in better clinical performance after repeated firings.

  5. Fracture Resistance of Zirconia Restorations with a Modified Framework Design

    Directory of Open Access Journals (Sweden)

    sakineh Nikzadjamnani

    2017-12-01

    Full Text Available Objectives: Chipping is one of the concerns related to zirconia crowns. The reasons of chipping have not been completely understood. This in-vitro study aimed to assess the effect of coping design on the fracture resistance of all-ceramic single crowns with zirconia frameworks. Materials and Methods: Two types of zirconia copings were designed (n=12: (1 a standard coping (SC with a 0.5mm uniform thickness and (2 a modified coping (MC consisted of a lingual margin of 1mm thickness and 2mm height connected to a proximal strut of 4mm height and a 0.3mm-wide facial collar. After veneer porcelain firing, the crowns were cemented to metal dies. Afterwards, a static vertical load was applied until failure. The modes of failure were determined. Data were calculated and statistically analyzed by independent samples T-test. P<0.05 was considered statistically significant.Results: The mean and standard deviation (SD of the final fracture resistance equaled to 3519.42±1154.96 N and 3570.01±1224.33 N in SC and MC groups, respectively; the difference was not statistically significant (P=0.9. Also, the mean and SD of the initial fracture resistance equaled to 3345.34±1190.93 N and 3471.52±1228.93 N in SC and MC groups, respectively (P=0.8. Most of the specimens in both groups showed the mixed failure mode. Conclusions: Based on the results, the modified core design may not significantly improve the fracture resistance.

  6. Comparison of 3D displacements of screw-retained zirconia implant crowns into implants with different internal connections with respect to screw tightening.

    Science.gov (United States)

    Rebeeah, Hanadi A; Yilmaz, Burak; Seidt, Jeremy D; McGlumphy, Edwin; Clelland, Nancy; Brantley, William

    2018-01-01

    Internal conical implant-abutment connections without horizontal platforms may lead to crown displacement during screw tightening and torque application. This displacement may affect the proximal contacts and occlusion of the definitive prosthesis. The purpose of this in vitro study was to evaluate the displacement of custom screw-retained zirconia single crowns into a recently introduced internal conical seal implant-abutment connection in 3D during hand and torque driver screw tightening. Stereolithic acrylic resin models were printed using computed tomography data from a patient missing the maxillary right central incisor. Two different internal connection implant systems (both ∼11.5 mm) were placed in the edentulous site in each model using a surgical guide. Five screw-retained single zirconia computer-aided design and computer-aided manufacturing (CAD-CAM) crowns were fabricated for each system. A pair of high-resolution digital cameras was used to record the relationship of the crown to the model. The crowns were tightened according to the manufacturers' specifications using a torque driver, and the cameras recorded their relative position again. Three-dimensional image correlation was used to measure and compare crown positions, first hand tightened and then torque driven. The displacement test was repeated 3 times for each crown. Commercial image correlation software was used to extract the data and compare the amount of displacement vertically, mesiodistally, and buccolingually. Repeated-measures ANOVA calculated the relative displacements for all 5 specimens for each implant for both crown screw hand tightening and after applied torque. A Student t test with Bonferroni correction was used for pairwise comparison of interest to determine statistical differences between the 2 implants (α=.05). The mean vertical displacements were statistically higher than the mean displacements in the mesiodistal and buccolingual directions for both implants

  7. Towards long lasting zirconia-based composites for dental implants: Transformation induced plasticity and its consequence on ceramic reliability.

    Science.gov (United States)

    Reveron, Helen; Fornabaio, Marta; Palmero, Paola; Fürderer, Tobias; Adolfsson, Erik; Lughi, Vanni; Bonifacio, Alois; Sergo, Valter; Montanaro, Laura; Chevalier, Jérôme

    2017-01-15

    Zirconia-based composites were developed through an innovative processing route able to tune compositional and microstructural features very precisely. Fully-dense ceria-stabilized zirconia ceramics (84vol% Ce-TZP) containing equiaxed alumina (8vol%Al 2 O 3 ) and elongated strontium hexa-aluminate (8vol% SrAl 12 O 19 ) second phases were obtained by conventional sintering. This work deals with the effect of the zirconia stabilization degree (CeO 2 in the range 10.0-11.5mol%) on the transformability and mechanical properties of Ce-TZP-Al 2 O 3 -SrAl 12 O 19 materials. Vickers hardness, biaxial flexural strength and Single-edge V-notched beam tests revealed a strong influence of ceria content on the mechanical properties. Composites with 11.0mol% CeO 2 or above exhibited the classical behaviour of brittle ceramics, with no apparent plasticity and very low strain to failure. On the contrary, composites with 10.5mol% CeO 2 or less showed large transformation-induced plasticity and almost no dispersion in strength data. Materials with 10.5mol% of ceria showed the highest values in terms of biaxial bending strength (up to 1.1GPa) and fracture toughness (>10MPa√m). In these ceramics, as zirconia transformation precedes failure, the Weibull modulus was exceptionally high and reached a value of 60, which is in the range typically reported for metals. The results achieved demonstrate the high potential of using these new strong, tough and stable zirconia-based composites in structural biomedical applications. Yttria-stabilized (Y-TZP) zirconia ceramics are increasingly used for developing metal-free restorations and dental implants. Despite their success related to their excellent mechanical resistance, Y-TZP can undergo Low Temperature Degradation which could be responsible for restoration damage or even worst the failure of the implant. Current research is focusing on strategies to improve the LTD resistance of Y-TZP or to develop alternative composites with better

  8. Laser all-ceramic crown removal and pulpal temperature--a laboratory proof-of-principle study.

    Science.gov (United States)

    Rechmann, P; Buu, N C H; Rechmann, B M T; Finzen, F C

    2015-11-01

    The objective of this proof-of-principle laboratory pilot study was to evaluate the temperature increase in the pulp chamber in a worst case scenario during Er:YAG laser debonding of all-ceramic crowns. Twenty extracted molars were prepared to receive all-ceramic IPS E.max CAD full contour crowns. The crowns were bonded to the teeth with Ivoclar Multilink Automix. Times for laser debonding and temperature rise in the pulp chamber using micro-thermocouples were measured. The Er:YAG was used with 560 mJ/pulse. The irradiation was applied at a distance of 5 mm from the crown surface. Additional air-water spray for cooling was utilized. Each all-ceramic crown was successfully laser debonded with an average debonding time of 135 ± 35 s. No crown fractured, and no damage to the underlying dentin was detected. The bonding cement deteriorated, but no carbonization at the dentin/cement interface occurred. The temperature rise in the pulp chamber averaged 5.4° ± 2.2 °C. During 8 out of the 20 crown removals, the temperature rise exceeded 5.5 °C, lasting 5 to 43 s (average 18.8 ± 11.6 s). A temperature rise of 11.5 °C occurred only once, while seven times the temperature rise was limited to 6.8 ± 0.5 °C. Temperature rises above 5.5 °C occurred only when the laser was applied from one side and additional cooling from the side opposite the irradiation. Er:YAG laser energy can successfully be used to efficiently debond all-ceramic crowns from natural teeth. Temperature rises exceeding 5.5 °C only occur when an additional air/water cooling from a dental syringe is inaccurately directed. To avoid possible thermal damage and to allow further heat diffusion, clinically temperature-reduced water might be applied.

  9. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: an in vitro study.

    Science.gov (United States)

    Sripetchdanond, Jeerapa; Leevailoj, Chalermpol

    2014-11-01

    Demand is increasing for ceramic and composite resin posterior restorations. However, ceramics are recognized for their high abrasiveness to opposing dental structure. The purpose of this study was to investigate the wear of enamel as opposed to dental ceramics and composite resin. Twenty-four test specimens (antagonists), 6 each of monolithic zirconia, glass ceramic, composite resin, and enamel, were prepared into cylindrical rods. Enamel specimens were prepared from 24 extracted human permanent molar teeth. Enamel specimens were abraded against each type of antagonist with a pin-on-disk wear tester under a constant load of 25 N at 20 rpm for 4800 cycles. The maximum depth of wear (Dmax), mean depth of wear (Da), and mean surface roughness (Ra) of the enamel specimens were measured with a profilometer. All data were statistically analyzed by 1-way ANOVA, followed by the Tukey test (α=.05). A paired t test was used to compare the Ra of enamel at baseline and after testing. The wear of both the enamel and antagonists was evaluated qualitatively with scanning electron microscopic images. No significant differences were found in enamel wear depth (Dmax, Da) between monolithic zirconia (2.17 ±0.80, 1.83 ±0.75 μm) and composite resin (1.70 ±0.92, 1.37 ±0.81 μm) or between glass ceramic (8.54 ±2.31, 7.32 ±2.06 μm) and enamel (10.72 ±6.31, 8.81 ±5.16 μm). Significant differences were found when the enamel wear depth caused by monolithic zirconia and composite resin was compared with that of glass ceramic and enamel (Pglass ceramic, and enamel (Pglass ceramic and enamel. All test materials except composite resin similarly increased the enamel surface roughness after wear testing. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. [Survival rate of IPS-Empress 2 all-ceramic crowns and bridges: three year's results].

    Science.gov (United States)

    Zimmer, Doris; Gerds, Thomas; Strub, Jörg R

    2004-01-01

    The objective of this prospective clinical study was to calculate the survival rate of IPS-Empress2 crowns and fixed partial dentures (FPD) over a three-year period. In 43 patients 27 IPS-Empress2 crowns and 31 fixed partial dentures were adhesively luted. Crowns were placed on premolars and molars and FPDs were inserted in the anterior and premolar area. Abutments were prepared with a circular 1.2 mm wide shoulder. The clinical follow-up examination took place after 6, 12, 24, 36 and 48 months. After a mean of 38 months, the survival rate (Kaplan-Meier) of all-ceramic crowns was 100% and of the three unit FDP 72.4%. There were a total of six complete failures which occurred only with the three-unit IPS-Empress2 FPDs. Three FPDs exhibited fractures of the framework for which the manufacturer's instructions of connector-dimension was not satisfied, and one FPD exhibited an irreparable incomplete veneer fracture. Further two FPDs showed biological failures. The accuracy of fit and esthetics were clinically satisfactory. The three-year results showed the IPS-Empress2-ceramic as an adequate all-ceramic material for single crowns. The use for FPD needs further critical consideration.

  11. Effects of different lasers and particle abrasion on surface characteristics of zirconia ceramics.

    Directory of Open Access Journals (Sweden)

    Sakineh Arami

    2014-04-01

    Full Text Available The aim of this study was to assess the surface of yttrium-stabilized tetragonal zirconia (Y-TZP after surface treatment with lasers and airborne-particle abrasion.First, 77 samples of presintered zirconia blocks measuring 10 × 10 × 2 mm were made, sintered and polished. Then, they were randomly divided into 11 groups (n=7 and received surface treatments namely, Er:YAG laser irradiation with output power of 1.5, 2 and 2.5 W, Nd:YAG laser with output power of 1.5, 2 and 2.5 W, CO2 laser with output power of 3, 4 and 5 W, AL2O3 airborne-particle abrasion (50μ and no treatment (controls. Following treatment, the parameters of surface roughness such as Ra, Rku and Rsk were evaluated using a digital profilometer and surface examination was done by SEM.According to ANOVA and Tukey's test, the mean surface roughness (Ra after Nd:YAG laser irradiation at 2 and 2.5 W was significantly higher than other groups. Roughness increased with increasing output power of Nd:YAG and CO2 lasers. Treated surfaces by Er:YAG laser and air abrasion showed similar surface roughness. SEM micrographs showed small microcracks in specimens irradiated with Nd:YAG and CO2 lasers.Nd:YAG laser created a rough surface on the zirconia ceramic with many microcracks; therefore, its use is not recommended. Air abrasion method can be used with Er:YAG laser irradiation for the treatment of zirconia ceramic.

  12. Influence of zirconia framework thickness on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2012-04-01

    Framework design is reported to influence chipping in zirconia-based restorations, which is an important cause of failure of such restorations. Residual stress profile in the veneering ceramic after the manufacturing process is an important predictive factor of the mechanical behavior of the material. The objective of this study is to investigate the influence of framework thickness on the stress profile measured in zirconia-based structures. The stress profile was measured with the hole-drilling method in bilayered disc samples of 20mm diameter with a 1.5 mm thick veneering ceramic layer. Six different framework thicknesses from 0.5 mm to 3 mm were studied. Two different cooling procedures were also investigated. Compressive stresses were observed in the surface, and tensile stresses in the depth of most of the samples. The slow cooling procedure was found to promote the development of interior tensile stresses, except for the sample with a 3mm thick framework. With the tempering procedure, samples with a 1.5 mm thick framework exhibited the most favorable stress profile, while thicker and thinner frameworks exhibited respectively in surface or interior tensile stresses. The measurements performed highlight the importance of framework thickness, which determine the nature of stresses and can explain clinical failures encountered, especially with thin frameworks. The adequate ratio between veneering ceramic and zirconia is hard to define, restricting the range of indications of zirconia-based restorations until a better understanding of such a delicate veneering process is achieved. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. A wear-resistant zirconia ceramic for low friction application

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.; Ran, S.; Wiratha, K.W.; Blank, D.H.A.; Pasaribu, H.R.; Sloetjes, J.W.; Schipper, D.J.

    2004-01-01

    A high wear-resistant ceramic/ceramic couple is described associated with low friction. By adding a small amount CuO to yttria-doped tetragonal zirconia (Y-TZP) the (dry) coefficient of friction against alumina is only 0.2 during a sliding distance of 3-5 km after which the coefficient drastically increases and a transition from mild to sever wear occurs. Pure Y-TZP exhibits a coefficient of friction of 0.7 under the same experimental conditions but wear remains mild during the test (upto 10 km of sliding distance). These small amounts of CuO also strongly influence the densification behaviour. Sintering of this system occurs in several steps where among other things dissolution of CuO in the Y-TZP matrix as well as liquid phase sintering takes place. Non-uniform shrinkage of the CuO-doped system resulting in relative large microcracks in the ceramic can explain its sudden drastic increase in coefficient of friction and wear rate after 3-5 km of operation. (orig.)

  14. Production of mullite-zirconia ceramics composites by 'In situ' reaction

    International Nuclear Information System (INIS)

    Melo, F.C.L. de; Cairo, C.A.A.; Piorino Neto, F.; Devezas, T.C.

    1987-01-01

    Mullita-zirconia ceramic composites were produced by 'In situ' reaction of alumina and brazilian zircon. The ideal curve of thermal treatment (reaction + sinterization) was determined for the obtention of composites of maximum mechanical resistence. The retained fraction of tetragonal fase was evaluated by X-ray difraction and correlated with the values of mechanical resistence obtained by different treatment curves. The performance of the developed composites under corrosion and thermal shock was evaluated by glass casting. (Author) [pt

  15. Microstructural evolution of alumina-zirconia nanocomposites

    International Nuclear Information System (INIS)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L.; Pallone, E.M.J.A.

    2012-01-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  16. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Zeinab R. El-Shrkawy

    2016-06-01

    Conclusions: (1 Surface treatments of Y-TZP ceramic together with MDP primer and silane-coupling agent application improve the bond strength to resin cement. (2 Plasma-Silica coating and plasma-oxygen treatment, both are valuable methods that improve the bond strength of resin cement to Y-TZP ceramic. (3 Silica coating by plasma technology provides durable bond strength and can be a promising alternative pretreatment before silane application to enhance bonding with zirconia ceramic. (4 Tetragonal-monoclinic phase transformation had occurred in Y-TZP samples received both types of plasma treatment.

  17. Effect of different materials of all-ceramic crowns on viability of fibroblasts and preliminary exploration of possible molecular mechanisms

    Directory of Open Access Journals (Sweden)

    Ju Li

    2016-02-01

    Full Text Available Objective: To study the effect of different materials of all-ceramic crowns on viability of fibroblasts and the possible molecular mechanisms. Methods: Fibroblast cell lines L929 were cultured, extracting solution of diatomite ceramic, casting ceramic, heat-pressed ceramic, infiltrated ceramic and Ni-Cr alloy porcelain was prepared and used to process L929 cells, and then cell apoptosis, percentages of cell cycle as well as expression levels of Bcl-2, Bax, Caspase-3, Caspase-8 and Caspase-9 were detected. Results: Cell apoptosis indexes, number of early apoptosis, number of aponecrosis, percentages of G1 phase, S phase and G2 phase cells as well as expression levels of Bcl-2, Bax, Caspase-3, Caspase-8 and Caspase-9 of diatomite ceramic group, casting ceramic group, heat-pressed ceramic group and infiltrated ceramic group had no differences from those of control group; cell apoptosis indexes, number of early apoptosis, number of aponecrosis, percentages of G2 phase cells as well as expression levels of Bax, Caspase-3, Caspase-8 and Caspase-9 of diatomite ceramic group, casting ceramic group, heat-pressed ceramic group and infiltrated ceramic group were lower than those of Ni-Cr alloy porcelain group, and percentages of G1 phase and S phase cells as well as expression levels of Bcl-2 were significantly higher than those of Ni-Cr alloy porcelain group. Conclusion: The effect of different materials of all-ceramic crowns on viability of fibroblasts has no differences and is weaker than that of Ni-Cr alloy porcelain crown, and biocompatibility of diatomite ceramic is equivalent to that of casting ceramic, heat-pressed ceramic, infiltrated ceramic and Ni-Cr alloy porcelain; mechanisms of different materials of all-ceramic crowns to regulate cell viability include Bcl-2/Bax pathway and Caspase pathway.

  18. Comparison of shear test methods for evaluating the bond strength of resin cement to zirconia ceramic.

    Science.gov (United States)

    Kim, Jae-Hoon; Chae, Soyeon; Lee, Yunhee; Han, Geum-Jun; Cho, Byeong-Hoon

    2014-11-01

    This study compared the sensitivity of three shear test methods for measuring the shear bond strength (SBS) of resin cement to zirconia ceramic and evaluated the effects of surface treatment methods on the bonding. Polished zirconia ceramic (Cercon base, DeguDent) discs were randomly divided into four surface treatment groups: no treatment (C), airborne-particle abrasion (A), conditioning with Alloy primer (Kuraray Medical Co.) (P) and conditioning with Alloy primer after airborne-particle abrasion (AP). The bond strengths of the resin cement (Multilink N, Ivoclar Vivadent) to the zirconia specimens of each surface treatment group were determined by three SBS test methods: the conventional SBS test with direct filling of the mold (Ø 4 mm × 3 mm) with resin cement (Method 1), the conventional SBS test with cementation of composite cylinders (Ø 4 mm × 3 mm) using resin cement (Method 2) and the microshear bond strength (μSBS) test with cementation of composite cylinders (Ø 0.8 mm × 1 mm) using resin cement (Method 3). Both the test method and the surface treatment significantly influenced the SBS values. In Method 3, as the SBS values increased, the coefficients of variation decreased and the Weibull parameters increased. The AP groups showed the highest SBS in all of the test methods. Only in Method 3 did the P group show a higher SBS than the A group. The μSBS test was more sensitive to differentiating the effects of surface treatment methods than the conventional SBS tests. Primer conditioning was a stronger contributing factor for the resin bond to zirconia ceramic than was airborne-particle abrasion.

  19. Effects of grinding on properties of Mg-PSZ ceramics prepared by the surface enrichment of zirconia powders

    International Nuclear Information System (INIS)

    Deb, S.; Das, S.R.

    1995-01-01

    Commercial grade zirconia powders of mean particle size of 3.21 microns were super-ground in wet condition in alcoholic medium in a Planetary Ball-Mill for 12-hours using a zirconia pot as well as balls, in order to avoid contaminations from the grinding media. Sedigraph analysis data show the mean particle sizes within the range of 0.4 to 0.2 micron. The super-ground zirconia powders were then treated with appropriate acid and alkali solutions in order to enrich the surfaces of zirconia powders. The chemical analysis reports depict the enrichment phenomena of the processed zirconia powders. Magnesium oxide of different mole percentages (3 to 9%) have been incorporated to the above super-ground and enriched zirconia powder and green specimens were prepared by pressing with a suitable pressure of 200 MPa to yield the green compaction density of 3.06 gm/cm 3 . The compacted green specimens were sintered without pressure at 1,480 C in air followed by normal cooling. X-ray diffraction patterns of the above sintered and cooled specimens have confirmed the formation of Mg-PSZ ceramics with 40% tetragonal phase. The sintered PSZ-products have shown very good surface properties but at the cost of transverse rupture strength. The effects of grinding were observed on the above Mg-PSZ ceramics which exhibit very little change in the tetragonal phase even after 30-minutes of grinding with a 60-mesh diamond wheel at a normal pressure of 4 kg/cm 2

  20. Performance of zirconia ceramic cantilever fixed dental prostheses: 3-year results from a prospective, randomized, controlled pilot study.

    Science.gov (United States)

    Zenthöfer, Andreas; Ohlmann, Brigitte; Rammelsberg, Peter; Bömicke, Wolfgang

    2015-07-01

    Little is known about the clinical performance of ceramic cantilever fixed dental prostheses on natural teeth. The purpose of this randomized controlled pilot study was to evaluate the clinical performance of ceramic and metal ceramic cantilever fixed dental prostheses (CFDPs) after 3 years of service. Twenty-one participants were randomly allocated to 2 treatment groups. Participants in the ceramic (ZC) group (n=11) each received 1 CFDP made of yttria-stabilized, tetragonal zirconia polycrystal; the others (n=10) were fitted with a metal ceramic (MC) CFDP. All CFDPs were retained by 2 complete crown abutments and replaced 1 tooth. The clinical target variables were survival, incidence of complications, probing pocket depth (PPD), probing attachment level (PAL), plaque index (PI), gingival index (GI), and esthetic performance as rated by the participants. The United States Public Health Service (USPHS) criteria were used to evaluate chipping, retention, color, marginal integrity, and secondary caries. Descriptive statistics and nonparametric analyses were applied to the target variables in the 2 groups. The esthetic performance of the CFDPs was also visualized by using a pyramid comparison. The overall survival of the CFDPs was 100% in both groups. During the 3-year study, 6 clinically relevant complications requiring aftercare were observed among 5 participants (4 in the ZC group and 2 in the MC group). Changes in the PI, GI, PPD, and PAL of the abutment teeth were similar for both groups (P>.05). The participants regarded the esthetic performance of ZC-CFDPs and MC-CFDPs as satisfactory. Within the 3-year observation period, the clinical performance of MC-FDPs and ZC-FDPs was acceptable. More extensive research with larger sample sizes is encouraged, however, to confirm the evaluation of the survival of Y-TZP hand-veneered cantilever FPDs. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Attachment and growth behaviour of human gingival fibroblasts on titanium and zirconia ceramic surfaces

    International Nuclear Information System (INIS)

    Pae, Ahran; Kim, Hyeong-Seob; Woo, Yi-Hyung; Lee, Heesu; Kwon, Yong-Dae

    2009-01-01

    The attachment, growth behaviour and the genetic effect of human gingival fibroblasts (HGF) cultured on titanium and different zirconia surfaces were investigated. HGF cells were cultured on (1) titanium discs with a machined surface, (2) yttrium-stabilized tetragonal zirconia polycrystals (Y-TZP) with a smooth surface and (3) Y-TZP with 100 μm grooves. The cell proliferation activity was evaluated through a MTT assay at 24 h and 48 h, and the cell morphology was examined by SEM. The mRNA expression of integrin-β1, type I and III collagen, laminin and fibronectin in HGF were evaluated by RT-PCR after 24 h. From the MTT assay, the mean optical density values for the titanium and grooved zirconia surfaces after 48 h of HGF adhesion were greater than the values obtained for the smooth zirconia surfaces. SEM images showed that more cells were attached to the grooves, and the cells appeared to follow the direction of the grooves. The results of RT-PCR suggest that all groups showed comparable fibroblast-specific gene expression. A zirconia ceramic surface with grooves showed biological responses that were comparable to those obtained with HGF on a titanium surface.

  2. Evaluation of the effect of heavy rare earth elements on the microstructure and mechanical and electrical properties of zirconia - Yttria ceramics

    International Nuclear Information System (INIS)

    Lazar, Dolores Ribeiro Ricci

    2002-01-01

    The use of Yttria concentrates for synthesis and processing of zirconia based ceramics, applied as structural and solid electrolyte materials, was investigated in this work. Terbium, dysprosium, holmium, erbium and ytterbium are chemical elements, classified as heavy rare earths, that can be found in those concentrates due to their association with yttrium ores. The ceramic characteristics were compared to zirconia - Yttria and zirconia - Yttria - rare earth oxide systems. The dopant content was 3 and 9 mol%. The raw materials were prepared by the coprecipitation route using solutions from the chemical processing of zircon and monazite ores and obtained by dissolution of high purity rare earth oxides. In the first part of this work, calcination, milling and ceramic processing were studied to produce ceramics with densities up to 95% TD. Samples were prepared in optimized conditions for the evaluation of the effect of each heavy rare earth element. Powders were characterized by chemical analysis. X-ray diffraction, scanning and transmission electron microscopy, gas adsorption (BET) and laser diffraction for the determination of the agglomerate size distributions. Green pellets were characterized by mercury porosimetry and the sintering kinetic was studied by dilatometry. The characterization of the as-sintered pellets was performed by the apparent density measurement (Archimedes method). X-ray diffraction, microstructure analysis by scanning and transmission electron microscopy, Vickers indentation tests for hardness and fracture toughness determination, dynamic mechanical analysis for the elastic modulus measurement, and impedance spectroscopy for electrical resistivity measurement. It was observed that the presence of heavy rare earths in a concentrate containing 85 wt% of Yttria has no significant influence on the properties of zirconia based ceramics. TZP ceramics, containing 3 mol% of dopants, have grain size smaller than 0.4μm, and Vickers hardness and

  3. Effect of phototherapy on shear bond strength of resin cements to zirconia ceramics: a systematic review and meta-analysis of in-vitro studies.

    Science.gov (United States)

    Al-Aali, Khulud Abdulrahman

    2018-05-11

    The present study systematically reviewed the literature to investigate the effect of phototherapy on the shear bond strength (SBS) of resin cement to zirconia ceramic. electronic databases including MEDLINE (PubMed), ISI Web of Science, Scopus, ScIELO, LILACS and EMBASE until April 2018. The addressed focused question was: Does phototherapy increase the SBS of resin cement to zirconia ceramics?" A total of 8 in-vitro studies were included in the qualitative and quantitative analysis. The mean SBS for phototherapy ranged from 4.1 to 18.95 MPa while mean SBS for sandblasted zirconia-composite specimens ranged from 3.98 to 23.35 MPa in the included studies. Qualitative analysis showed 3 studies favoured application of phototherapy in significantly increasing SBS, while 4 studies indicated sandblasting showed significantly greater SBS of resin cement to zirconia ceramics. Considering the effects of phototherapy, significant heterogeneity for SBS (Q value = 136.37, p<0.0001, I 2  = 94.87%) was noticed among both the groups. The overall mean difference for SBS (SMD = -0.59, 95% CI = -1.99 to -0.80, p = 0.402) was not significant between phototherapy and sandblast (control) groups. Whether the effect of phototherapy on increasing the SBS of resin cement to zirconia ceramic is debatable. Further in-vitro studies should be performed in order to obtain strong conclusions. Copyright © 2018. Published by Elsevier B.V.

  4. [In vitro evaluation of low-temperature aging effects of Y2O3 stabilized tetragonal zirconia polycrystals dental ceramics].

    Science.gov (United States)

    Yi, Yuan-fu; Liu, Hong-chen; Wang, Chen; Tian, Jie-mo; Wen, Ning

    2008-03-01

    To investigate the influence of in vitro low-temperature degradation (LTD) treatment on the structural stability of 5 kinds of Y2O3 stabilized tetragonal zirconia polycrystals (Y-TZP) dental ceramics. TZ-3YS powder was compacted at 200 MPa using cold isostatic pressure and pre-sintered at 1050 degrees C for 2 h forming presintered blocks. Specimens were sectioned into 15 mm x 15 mm x 1.5 mm slices from blocks of TZ-3YS, Vita In-Ceram YZ, Ivoclar, Cercon Smart, and Kavo Y-TZP presintered blocks, 18 slices for each brand, and then densely sintered. Specimens were divided into 6 groups and subjected to an accelerated aging test carried out in an autoclave in steam at 134 degrees C, 0.2 MPa, for 0, 1, 2, 3, 4, and 5 h. X-ray diffraction (XRD) was used to identify crystal phases and relative content of monoclinic phase was calculated. Specimens for three-point bending test were fabricated using TZ-3YS ceramics according to the ISO 6872 standard and bending strength was tested before and after aging. The polished and aging specimens of TZ-3YS and Cercon Smart zirconia ceramics were observed by atomic force microscopy (AFM) to evaluate surface microstructure. Tetragonal-to-monoclinic phase transformation was detected for specimens of TZ-3YS, Vita In-Ceram YZ, Ivoclar, and Kavo zirconia ceramics except for Cercon Smart ceramics after aging, and the relative content of monoclinic phase was increasing with the prolonged aging time. TZ-3YS was the most affected material, Kavo took the second, and Vita and Ivoclar were similar. Aging had no significant negative effects on flexural strength of TZ-3YS with average bending strength being over 1100 MPa. The nucleation and growth of monoclinic phase were detected by AFM in surface of Cercon Smart zirconia in which monoclinic phase was not detected by XRD. The results suggest that LTD of dental Y-TZP is time dependent, but the aging test does not reduce the flexural strength of TZ-3YS. The long-term clinical serviceability of dental

  5. Reliability Estimation for Single-unit Ceramic Crown Restorations

    Science.gov (United States)

    Lekesiz, H.

    2014-01-01

    The objective of this study was to evaluate the potential of a survival prediction method for the assessment of ceramic dental restorations. For this purpose, fast-fracture and fatigue reliabilities for 2 bilayer (metal ceramic alloy core veneered with fluorapatite leucite glass-ceramic, d.Sign/d.Sign-67, by Ivoclar; glass-infiltrated alumina core veneered with feldspathic porcelain, VM7/In-Ceram Alumina, by Vita) and 3 monolithic (leucite-reinforced glass-ceramic, Empress, and ProCAD, by Ivoclar; lithium-disilicate glass-ceramic, Empress 2, by Ivoclar) single posterior crown restorations were predicted, and fatigue predictions were compared with the long-term clinical data presented in the literature. Both perfectly bonded and completely debonded cases were analyzed for evaluation of the influence of the adhesive/restoration bonding quality on estimations. Material constants and stress distributions required for predictions were calculated from biaxial tests and finite element analysis, respectively. Based on the predictions, In-Ceram Alumina presents the best fast-fracture resistance, and ProCAD presents a comparable resistance for perfect bonding; however, ProCAD shows a significant reduction of resistance in case of complete debonding. Nevertheless, it is still better than Empress and comparable with Empress 2. In-Ceram Alumina and d.Sign have the highest long-term reliability, with almost 100% survivability even after 10 years. When compared with clinical failure rates reported in the literature, predictions show a promising match with clinical data, and this indicates the soundness of the settings used in the proposed predictions. PMID:25048249

  6. Influence of Different CAM Strategies on the Fit of Partial Crown Restorations: A Digital Three-dimensional Evaluation.

    Science.gov (United States)

    Zimmermann, M; Valcanaia, A; Neiva, G; Mehl, A; Fasbinder, D

    2018-04-09

    CAM fabrication is an important step within the CAD/CAM process. The internal fit of restorations is influenced by the accuracy of the subtractive CAM procedure. Little is known about how CAM strategies might influence the fit of CAD/CAM fabricated restorations. The aim of this study was to three-dimensionally evaluate the fit of CAD/CAM fabricated zirconia-reinforced lithium silicate ceramic partial crowns fabricated with three different CAM strategies. The null hypothesis was that different CAM strategies did not influence the fitting accuracy of CAD/CAM fabricated zirconia-reinforced lithium silicate ceramic partial crowns. Preparation for a partial crown was performed on a maxillary right first molar on a typodont. A chairside CAD/CAM system with the intraoral scanning device CEREC Omnicam (Dentsply Sirona, York, PA, USA) and the 3+1 axis milling unit CEREC MCXL was used. There were three groups with different CAM strategies: step bur 12 (12), step bur 12S (12S), and two step-mode (12TWO). The zirconia-reinforced lithium silicate ceramic Celtra Duo (Dentsply Sirona) was used as the CAD/CAM material. A new 3D method for evaluating the fit was applied, consisting of the quadrant scan with the intraoral scanning device CEREC Omnicam. The scan of the PVS material adherent to the preparation and the preparation scan were matched, and the difference analysis was performed with special software OraCheck (Cyfex AG, Zurich, Switzerland). Three areas were selected for analysis: margin (MA), axial (AX), and occlusal (OC). Statistical analysis was performed using 80% percentile, one-way ANOVA, and the post hoc Scheffé test with α=0.05. Statistically significant differences were found both within and between the test groups. The aspect axial fit results varied from 90.5 ± 20.1 μm for the two-step milling mode (12TWO_AX) to 122.8 ± 12.2 μm for the milling with step bur 12S (12S_AX). The worst result in all groups was found for the aspect occlusal fit with the highest

  7. Synthesis and surface characterization of alumina-silica-zirconia nanocomposite ceramic fibres on aluminium at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Mubarak Ali, M., E-mail: masterscience2003@yahoo.co.in [Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Omalur Main Road, Salem 636 011, Tamil Nadu (India); Raj, V., E-mail: alaguraj2@rediffmail.com [Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Omalur Main Road, Salem 636 011, Tamil Nadu (India)

    2010-04-01

    Alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres were synthesized by conventional anodization route. Scanning Electron Microscopy (SEM), Atomic Force microscopy (AFM), X-Ray Diffraction (XRD) and Energy Dispersive X-Ray spectroscopy (EDAX) were used to characterize the morphology and crystalloid structure of ASZNC fibres. Current density (DC) is one of the important parameters to get the alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres by this route. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity. The root mean square roughness of the sample observed from atomic force microscopic analysis is about 71.5 nm which is comparable to the average grain size of the coatings which is about 72 nm obtained from X-Ray diffraction. The results indicate that, the ASZNC fibres are arranged well in the nanostructure. The thickness of the coating increased with the anodizing time, but the coatings turned rougher and more porous. At the initial stage the growth of ceramic coating increases inwards to the metal substrate and outwards to the coating surface simultaneously. Subsequently, it mainly grows towards the metal substrate and the density of the ceramic coating increases gradually, which results in the decrease of the total thickness as anodizing time increases. This new approach of preparing ASZNC ceramic fibres may be important in applications ranging from gas sensors to various engineering materials.

  8. Fracture Strength of Three-Unit Implant Supported Fixed Partial Dentures with Excessive Crown Height Fabricated from Different Materials

    Directory of Open Access Journals (Sweden)

    Vahideh Nazari

    2017-01-01

    Full Text Available Objectives: Fracture strength is an important factor influencing the clinical long-term success of implant-supported prostheses especially in high stress situations like excessive crown height space (CHS. The purpose of this study was to compare the fracture strength of implant-supported fixed partial dentures (FPDs with excessive crown height, fabricated from three different materials.Materials and Methods: Two implants with corresponding abutments were mounted in a metal model that simulated mandibular second premolar and second molar. Thirty 3-unit frameworks with supportive anatomical design were fabricated using zirconia, nickel-chromium alloy (Ni-Cr, and polyetheretherketone (PEEK (n=10. After veneering, the CHS was equal to 15mm. Then; samples were axially loaded on the center of pontics until fracture in a universal testing machine at a crosshead speed of 0.5 mm/minute. The failure load data were analyzed by one-way ANOVA and Games-Howell tests at significance level of 0.05.Results: The mean failure loads for zirconia, Ni-Cr and PEEK restorations were 2086±362N, 5591±1200N and 1430±262N, respectively. There were significant differences in the mean failure loads of the three groups (P<0.001. The fracture modes in zirconia, metal ceramic and PEEK restorations were cohesive, mixed and adhesive type, respectively.Conclusions: According to the findings of this study, all implant supported three-unit FPDs fabricated of zirconia, metal ceramic and PEEK materials are capable to withstand bite force (even para-functions in the molar region with excessive CHS.Keywords: Dental Implants; Polyetheretherketone; Zirconium oxide; Dental Restoration Failure; Dental Porcelain

  9. Fracture rates of IPS Empress all-ceramic crowns--a systematic review.

    Science.gov (United States)

    Heintze, Siegward D; Rousson, Valentin

    2010-01-01

    The aim of this study was to evaluate the clinical fracture rate of crowns fabricated with the pressable, leucite-reinforced ceramic IPS Empress, and relate the results to the type of tooth restored. The database SCOPUS was searched for clinical studies involving full-coverage crowns made of IPS Empress. To assess the fracture rate of the crowns in relation to the type of restored tooth and study, Poisson regression analysis was used. Seven clinical studies were identified involving 1,487 adhesively luted crowns (mean observation time: 4.5+/-1.7 years) and 81 crowns cemented with zinc-phosphate cement (mean observation time: 1.6+/-0.8 years). Fifty-seven of the adhesively luted crowns fractured (3.8%). The majority of fractures (62%) occurred between the third and sixth year after placement. There was no significant influence regarding the test center on fracture rate, but the restored tooth type played a significant role. The hazard rate (per year) for crowns was estimated to be 5 in every 1,000 crowns for incisors, 7 in every 1,000 crowns for premolars, 12 in every 1,000 crowns for canines, and 16 in every 1,000 crowns for molars. One molar crown in the zinc-phosphate group fractured after 1.2 years. Adhesively luted IPS Empress crowns showed a low fracture rate for incisors and premolars and a somewhat higher rate for molars and canines. The sample size of the conventionally luted crowns was too small and the observation period too short to draw meaningful conclusions.

  10. Shear Bond Strengths between Three Different Yttria-Stabilized Zirconia Dental Materials and Veneering Ceramic and Their Susceptibility to Autoclave Induced Low-Temperature Degradation

    Directory of Open Access Journals (Sweden)

    Manoti Sehgal

    2016-01-01

    Full Text Available A study was undertaken to evaluate the effect of artificial aging through steam and thermal treatment as influencing the shear bond strength between three different commercially available zirconia core materials, namely, Upcera, Ziecon, and Cercon, layered with VITA VM9 veneering ceramic using Universal Testing Machine. The mode of failure between zirconia and ceramic was further analyzed as adhesive, cohesive, or mixed using stereomicroscope. X-ray diffraction and SEM (scanning electron microscope analysis were done to estimate the phase transformation (m-phase fraction and surface grain size of zirconia particles, respectively. The purpose of this study was to simulate the clinical environment by artificial aging through steam and thermal treatment so as the clinical function and nature of the bond between zirconia and veneering material as in a clinical trial of 15 years could be evaluated.

  11. Periodontal response to all-ceramic crowns (IPS Empress) in general practice.

    Science.gov (United States)

    Al-Wahadni, A M; Mansour, Y; Khader, Y

    2006-02-01

    The purpose of this study was to investigate the periodontal response to the presence of all-ceramic crowns (IPS Empress) in general practice patients. The convenience sample included 82 IPS Empress crowns placed in 64 patients. These crowns had been in place for an average of 16.27 (SD 9.26) months and ranged from 6.2 to 48.87 months at the time of clinical examination. Periodontal health status (as determined by dental plaque, gingival health status, periodontal pockets) was assessed around all crowned teeth and around matched contralateral teeth by one calibrated examiner. Periodontal indices utilized included the Plaque Index (PI), Gingival Index (GI) and pocket depth (PD) with calibrated probes graduated in millimetres. Plaque, gingival and PD values for crowned teeth were compared with those for control teeth using Wilcoxon signed-rank test for each clinical parameters. Chi-square was used to test the significance of the difference in their distribution between crowns and control teeth. Statistically, PI (0.35), GI (0.41) and mean PD scores (1.42) of IPS Empress crowned teeth compared less favourably with scores of the control teeth (0.27, 0.23 and 0.86 respectively). Teeth with IPS Empress crowns had poorer periodontal health and more clinically evident plaque than uncrowned teeth.

  12. CO2 and Nd:YAP laser interaction with lithium disilicate and Zirconia dental ceramics: A preliminary study

    Science.gov (United States)

    Rocca, Jean-Paul; Fornaini, Carlo; Brulat-Bouchard, Nathalie; Bassel Seif, Samy; Darque-Ceretti, Evelyne

    2014-04-01

    Lithium disilicate and Zirconia ceramics offer a high level of accuracy when used in prosthetic dentistry. Their bonding using different resins is highly dependent on micro-mechanical interlocking and adhesive chemical bonding. Investigation of the performances of high strength ceramics when their surface is modified for chemical and mechanical bonding is then required. The aim of this study is to investigate the possibility of using laser for surface treatment of different high strength CAD/CAM ceramics and thus to improve their mechanical and chemical properties. Thirty two CAD/CAM ceramic discs were divided into two different groups: lithium disilicate ceramics (IPS e.max CAD®, Ivoclar, Vivadent, Italy) and Zirconia ceramics (IPS e.max ZirCAD®, Ivoclar, Vivadent, Italy). The Laser surface treatment was performed by Carbon Dioxide laser (Dream Pulse Laser®, Daeshin Enterprise Corp., Korea) at 20 W, 25 W and 30 W CW and by Neodymium Yttrium Aluminum Perovskite laser (Nd:YAP Lokki®, Lobel Medical, France) at 10 W and 30 Hz. Physical modifications of the irradiated ceramic discs were observed by scanning electron microscopy (SEM) and chemically analyzed by Energy-Dispersive Spectroscopy (EDS). Surface wettability was tested using the water drop test and the crystalline structure was investigated using X-ray diffraction (XRD). The macroscopic observation showed a shinier structure in all the groups, while at the SEM observation only CO2 25 W and 30 W treated groups showed cracks and fissures. In the conditions of this study, CO2 laser and Nd:YAP laser with the parameters used create chemical and physical surface modifications of the ceramics, indicating the possibility of an improvement in adhesion of the tested ceramics.

  13. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics.

    Science.gov (United States)

    Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A

    2008-12-01

    (1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (pceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (pceramics (pceramic processing conditions led to ceramics with mechanical properties comparable to commercially available reinforced ceramic materials.

  14. Time-dependent fracture probability of bilayer, lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation

    Science.gov (United States)

    Anusavice, Kenneth J.; Jadaan, Osama M.; Esquivel–Upshaw, Josephine

    2013-01-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. Objective The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6 mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Materials and methods Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Results Predicted fracture probabilities (Pf) for centrally-loaded 1,6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8 mm/0.8 mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4 mm/1.2 mm). Conclusion CARES/Life results support the proposed crown design and load orientation hypotheses. Significance The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. PMID:24060349

  15. Time-dependent fracture probability of bilayer, lithium-disilicate-based, glass-ceramic, molar crowns as a function of core/veneer thickness ratio and load orientation.

    Science.gov (United States)

    Anusavice, Kenneth J; Jadaan, Osama M; Esquivel-Upshaw, Josephine F

    2013-11-01

    Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Predicted fracture probabilities (Pf) for centrally loaded 1.6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8mm/0.8mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4mm/1.2mm). CARES/Life results support the proposed crown design and load orientation hypotheses. The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. Copyright © 2013 Academy of Dental Materials. All rights reserved.

  16. Fracture mode during cyclic loading of implant-supported single-tooth restorations

    DEFF Research Database (Denmark)

    Hosseini, Mandana; Kleven, Erik; Gotfredsen, Klaus

    2012-01-01

    restorations of zirconia abutment-retained crowns with zirconia copings veneered with glass-ceramics (n=8) and feldspathic ceramics (n=8). The control group was composed of 16 metal ceramic restorations of titanium abutment-retained crowns with gold alloy copings veneered with glass (n=8) and feldspathic...... ceramics (n=8). The palatal surfaces of the crowns were exposed to cyclic loading of 800 N with a frequency of 2 Hz, which continued to 4.2 million cycles or until fracture of the copings, abutments, or implants. The number of cycles and the fracture modes were recorded. The fracture modes were analyzed...

  17. Clinical Marginal and Internal Adaptation of Maxillary Anterior Single All-Ceramic Crowns and 2-year Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Akın, Aslı; Toksavul, Suna; Toman, Muhittin

    2015-07-01

    The aims of this randomized-controlled clinical trial were to compare marginal and internal adaptation of all-ceramic crowns fabricated with CAD/CAM and heat-pressed (HP) techniques before luting and to evaluate the clinical outcomes at baseline and at 6, 12, and 24 months after luting. Fifteen CAD/CAM (CC) and 15 HP all-ceramic crowns were placed in 15 patients. A silicone replica was obtained to measure marginal and internal adaptation of each all-ceramic crown before luting, and they were sectioned buccolingually and mesiodistally. Marginal and internal adaptations were measured using computerized light microscope at 40× magnification. Clinical evaluations took place at baseline (2 days after luting) and at 6, 12, and 24 months after luting. Replica scores were analyzed with Mann-Whitney U and Student's t-test (α = 0.05). Survival rate of crowns was determined using Kaplan-Meier statistical analysis. The median marginal gap for the CC group was 132.2 μm and was 130.2 μm for the HP group. The mean internal adaptation for the CC group was 220.3 ± 51.3 μm and 210.5 ± 31 μm for the HP group. There were no statistically significant differences with respect to marginal opening (Mann-Whitney U test; p = 0.95) and internal adaptation (Student's t-test; p = 0.535) between the 2 groups. Based on modified Ryge criteria, 100% of the crowns were rated satisfactory during the 2-year period. In this in vivo study, CAD/CAM and HP all-ceramic crowns exhibited similar marginal and internal adaptations. A 100% success rate was recorded for the 15 CAD/CAM and for the 15 HP all-ceramic crowns during the 2-year period. © 2014 by the American College of Prosthodontists.

  18. [Influence of compaction pressure and pre-sintering temperature on the machinability of zirconia ceramic].

    Science.gov (United States)

    Huang, Huil; Li, Jing; Zhang, Fuqiang; Sun, Jing; Gao, Lian

    2011-10-01

    In order to make certain the compaction pressure as well as pre-sintering temperature on the machinability of the zirconia ceramic. 3 mol nano-size 3 mol yttria partially stabilized zirconia (3Y-TZP) powder were compacted at different isostatic pressure and sintered at different temperature. The cylindrical surface was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. Pre-sintering temperature had the obviously influence on the machinability of 3Y-TZP. The cutting surface was smooth, and the integrality of edge was better when the pre-sintering temperature was chosen between 800 degrees C to 900 degrees C. Compaction pressure showed only a weak influence on machinability of 3Y-TZP blanks, but the higher compaction pressure result in the poor surface quality. The best machinability of pre-sintered zirconia body was found for 800-900 degrees C pre-sintering temperature, and 200-300 MPa compaction pressure.

  19. Clinical evaluation comparing the fit of all-ceramic crowns obtained from silicone and digital intraoral impressions based on wavefront sampling technology.

    Science.gov (United States)

    Pradíes, Guillermo; Zarauz, Cristina; Valverde, Arelhys; Ferreiroa, Alberto; Martínez-Rus, Francisco

    2015-02-01

    The aim of this study was to compare the fit of ceramic crowns fabricated from conventional silicone impressions with the fit of ceramic crowns fabricated from intraoral digital impressions. Twenty-five participants with 30 posterior teeth with a prosthetic demand were selected for the study. Two crowns were made for each preparation. One crown was fabricated from an intraoral digital impression system (IDI group) and the other crown was fabricated from a conventional two-step silicone impression (CI group). To replicate the interface between the crown and the preparation, each crown was cemented on its corresponding clinical preparation with ultra-flow silicone. Each crown was embedded in acrylic resin to stabilise the registered interface and then cut in 2mm thick slices in a buco-lingual orientation. The internal gap was determined as the vertical distance from the internal surface of the crown to the prepared tooth surface at four points (marginal gap, axial gap, crest gap, and occlusal fossa gap) using stereomicroscopy with a magnification of 40×. Data was analysed by using Wilcoxon signed rank test (α=0.05). Internal adaptation values were significantly affected by the impression technique (p=0.001). Mean marginal gap was 76.33 ± 65.32 μm for the crowns of the IDI group and 91.46 ± 72.17 μm for the CI group. All-ceramic crowns fabricated from intraoral digital impressions with wavefront sampling technology demonstrated better internal fit than crowns manufactured from silicone impressions. Impressions obtained from an intraoral digital scanner based on wavefront sampling technology can be used for manufacturing ceramic crowns in the normal clinical practice with better results than conventional impressions with elastomers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Quantitative Evaluation of Contamination on Dental Zirconia Ceramic by Silicone Disclosing Agents after Different Cleaning Procedures

    Directory of Open Access Journals (Sweden)

    Sebastian Wille

    2015-05-01

    Full Text Available The aim of this study was to evaluate the effectiveness of cleaning procedures for air-abraded zirconia after contamination with two silicone disclosing agents. Air-abraded zirconia ceramic specimens (IPS e.max ZirCAD were contaminated with either GC Fit Checker white or GC Fit Checker II. Untreated zirconia specimens were used as control. Afterwards the surfaces were cleaned either with waterspray or ultrasonically in 99% isopropanol or using a newly developed cleaning paste (Ivoclean. After cleaning X-ray photoelectron spectroscopy (XPS was performed and the relative peak intensities of Zr, C and Si were used for a qualitative comparison of the residuals. There was no significant difference between the two different silicone disclosing agents. An additional cleaning step with isopropanol led to a significantly lower amount of residuals on the surface, but an additional cleaning process with Ivoclean did not reduce the amount of carbon residuals in comparison to the isopropanol cleaning. Just the silicone amount on the surface was reduced. None of the investigated cleaning processes removed all residuals from the contaminated surface. Standard cleaning processes do not remove all residuals of the silicone disclosing agent from the surface. This may lead to a failure of the resin-ceramic bonding.

  1. Bonding effectiveness to different chemically pre-treated dental zirconia.

    Science.gov (United States)

    Inokoshi, Masanao; Poitevin, André; De Munck, Jan; Minakuchi, Shunsuke; Van Meerbeek, Bart

    2014-09-01

    The objective of this study was to evaluate the effect of different chemical pre-treatments on the bond durability to dental zirconia. Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were subjected to tribochemical silica sandblasting (CoJet, 3M ESPE). The zirconia samples were additionally pre-treated using one of four zirconia primers/adhesives (Clearfil Ceramic Primer, Kuraray Noritake; Monobond Plus, Ivoclar Vivadent; Scotchbond Universal, 3M ESPE; Z-PRIME Plus, Bisco). Finally, two identically pre-treated zirconia blocks were bonded together using composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass and stored in distilled water (7 days, 37 °C), after which they were randomly tested as is or subjected to mechanical ageing involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the micro-tensile bond strength was determined, and SEM fractographic analysis performed. Weibull analysis revealed the highest Weibull scale and shape parameters for the 'Clearfil Ceramic Primer/mechanical ageing' combination. Chemical pre-treatment of CoJet (3M ESPE) sandblasted zirconia using Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) revealed a significantly higher bond strength than when Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco) were used. After ageing, Clearfil Ceramic Primer (Kuraray Noritake) revealed the most stable bond durability. Combined mechanical/chemical pre-treatment, the latter with either Clearfil Ceramic Primer (Kuraray Noritake) or Monobond Plus (Ivoclar Vivadent), resulted in the most durable bond to zirconia. As a standard procedure to durably bond zirconia to tooth tissue, the application of a combined 10-methacryloyloxydecyl dihydrogen phosphate/silane ceramic primer to zirconia is clinically highly recommended.

  2. Enhanced ionic transport in fine-grained scandia-stabilized zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Abdala, Paula M.; Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CONICET-CITEFA, J.B. de La Salle 4397 (B1603ALO) Villa Martelli, Pcia. de Buenos Aires (Argentina); Custo, Graciela S. [Gerencia de Area Seguridad Nuclear y Ambiente, Gerencia Quimica, Departamento Quimica Analitica, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica, Av. Constituyentes 1499 (B1650KNA) San Martin, Pcia. de Buenos Aires (Argentina)

    2010-06-01

    In this work, the transport properties of fine-grained scandia-stabilized zirconia ceramics with low Si content have been investigated. These materials were prepared from ZrO{sub 2}-6 mol% Sc{sub 2}O{sub 3} nanopowders synthesized by a nitrate-lysine gel-combustion route. High relative densities and excellent electrical properties were obtained, even for sintering temperatures as low as 1350 C. Our electrochemical impedance spectroscopy study showed that both the volume fraction of grain boundaries and the specific grain-boundary conductivity are significantly enhanced with decreasing grain size, resulting in a higher total ionic conductivity. (author)

  3. Inlay-Retained Fixed Dental Prosthesis: A Clinical Option Using Monolithic Zirconia

    Directory of Open Access Journals (Sweden)

    Davide Augusti

    2014-01-01

    Full Text Available Different indirect restorations to replace a single missing tooth in the posterior region are available in dentistry: traditional full-coverage fixed dental prostheses (FDPs, implant-supported crowns (ISC, and inlay-retained FDPs (IRFDP. Resin bonded FDPs represent a minimally invasive procedure; preexisting fillings can minimize tooth structure removal and give retention to the IRFDP, transforming it into an ultraconservative option. New high strength zirconia ceramics, with their stiffness and high mechanical properties, could be considered a right choice for an IRFDP rehabilitation. The case report presented describes an IRFDP treatment using a CAD/CAM monolithic zirconia IRFDP; clinical and laboratory steps are illustrated, according to the most recent scientific protocols. Adhesive procedures are focused on the Y-TZP and tooth substrate conditioning methods. Nice esthetic and functional integration of indirect restoration at two-year follow-up confirmed the success of this conservative approach.

  4. Translucent zirconia in the ceramic scenario for monolithic restorations: A flexural strength and translucency comparison test.

    Science.gov (United States)

    Carrabba, Michele; Keeling, Andrew J; Aziz, Aziz; Vichi, Alessandro; Fabian Fonzar, Riccardo; Wood, David; Ferrari, Marco

    2017-05-01

    To compare three different compositions of Yttria-Tetragonal Zirconia Polycrystal (Y-TZP) ceramic and a lithium disilicate ceramic in terms of flexural strength and translucency. Three zirconia materials of different composition and translucency, Aadva ST [ST], Aadva EI [EI] and Aadva NT [NT](GC Tech, Leuven, Belgium) were cut with a slow speed diamond saw into beams and tabs in order to obtain, after sintering, dimensions of 1.2×4.0×15.0mm and 15.0×15.0×1.0mm respectively. Blocks of IPS e.max CAD LT were cut and crystallized in the same shapes and dimensions and used as a reference group [LD]. Beams (n=15) were tested in a universal testing machine for three-point bending strength. Critical fracture load was recorded in N, flexural strength (σ in MPa), Weibull modulus (m) and Weibull characteristic strength (σ 0 in MPa) were then calculated. Tabs (n=10) were measured with a spectrophotometer equipped with an integrating sphere. Contrast Ratios were calculated as CR=Yb/Yw. SEM of thermally etched samples coupled with lineal line analysis (n=6) was used to measure the tested zirconia grain size. Data were statistically analyzed. Differences in translucency, flexural strength and grain size were found to be statistically significant. CR increased and flexural strength decreased in the following order ST(σ 1215±190MPa, CR 0.74±0.01)>EI(σ 983±182MPa, CR 0.69±0.01)>NT(σ 539±66MPa, CR 0.65±0.01)>LD (σ 377±39Mpa, CR 0.56±0.02). The average grain size was different for the three zirconia samples with NT(558±38nm)>ST(445±34nm)>EI(284±11nm). The zirconia composition heavily influenced both the flexural strength and the translucency. Different percentages of Yittria and Alumina result in new materials with intermediate properties in between the conventional zirconia and lithium disilicate. Clinical indications for Zirconia Aadva NT should be limited up to three-unit span bridges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Microstructure-electrical properties relation of zirconia based ceramic composites

    International Nuclear Information System (INIS)

    Fonseca, Fabio Coral

    2001-01-01

    The electrical properties of zirconia based ceramic composites were studied by impedance spectroscopy. Three materials were prepared with different relative compositions of the conducting and insulating phases: (ZrO 2 :8 mol% Y 2 ) 3 ) + MgO, (ZrO 2 :8 mol% Y 2 O 3 ) + Y 2 O 3 and ZrO 2 + 8 mol% Y 2 O 3 . All specimens were analyzed by X-ray diffraction and scanning electron microscopy for microstructural characterization and for correlation of microstructural aspects with electrical properties. For (ZrO 2 :8 mol% Y 2 O 3 ) + MgO the main results show that the dependence of the different (microstructural constituents) contributions to the electrical resistivity on the magnesia content follows two stages: one below and another above the solubility limit of magnesia in Yttria-stabilized zirconia. The same dependence is found for the lattice parameter determined by X-ray diffraction measurements. The impedance diagrams of the composites have been resolved allowing the identification of contributions due to the presence of each microstructural constituent in both stages. Magnesia as a second phase is found to inhibit grain growth in Yttria-stabilized zirconia and the solubility limit for magnesia in the zirconia matrix is around 10 mol%. For (ZrO 2 :8 mol% Y 2 O 3 ) + Y 2 O 3 the main results show that: Yttria is present as a second phase for 1350 deg C /0.1 h sintering; the addition of 2 mol% of Yttria does not modify significantly the electrical properties; the solubility limit for Yttria is around 2 mol% according to electrical measurements. Similarly to magnesia, Yttria inhibits grain growth on Yttria-stabilized zirconia. The general effective medium theory was used to analyze the percolation of the insulating phase; the percolation threshold is different if one considers separately the total, bulk and grain boundary contributions to the electrical conductivity: 32.0, 38.5 and 27.8 vol% for total, intra and intergranular contributions, respectively. The increase of

  6. Fatigue failure load of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics: Effect of ceramic thickness.

    Science.gov (United States)

    Monteiro, Jaiane Bandoli; Riquieri, Hilton; Prochnow, Catina; Guilardi, Luís Felipe; Pereira, Gabriel Kalil Rocha; Borges, Alexandre Luiz Souto; de Melo, Renata Marques; Valandro, Luiz Felipe

    2018-06-01

    To evaluate the effect of ceramic thickness on the fatigue failure load of two zirconia-reinforced lithium silicate (ZLS) glass-ceramics, adhesively cemented to a dentin analogue material. Disc-shaped specimens were allocated into 8 groups (n=25) considering two study factors: ZLS ceramic type (Vita Suprinity - VS; and Celtra Duo - CD), and ceramic thickness (1.0; 1.5; 2.0; and 2.5mm). A trilayer assembly (ϕ=10mm; thickness=3.5mm) was designed to mimic a bonded monolithic restoration. The ceramic discs were etched, silanized and luted (Variolink N) into a dentin analogue material. Fatigue failure load was determined using the Staircase method (100,000 cycles at 20Hz; initial fatigue load ∼60% of the mean monotonic load-to-failure; step size ∼5% of the initial fatigue load). A stainless-steel piston (ϕ=40mm) applied the load into the center of the specimens submerged in water. Fractographic analysis and Finite Element Analysis (FEA) were also performed. The ceramic thickness influenced the fatigue failure load for both ZLS materials: Suprinity (716N up to 1119N); Celtra (404N up to 1126N). FEA showed that decreasing ceramic thickness led to higher stress concentration on the cementing interface. Different ZLS glass-ceramic thicknesses influenced the fatigue failure load of the bonded system (i.e. the thicker the glass ceramic is, the higher the fatigue failure load will be). Different microstructures of the ZLS glass-ceramics might affect the fatigue behavior. FEA showed that the thicker the glass ceramic is, the lower the stress concentration at the tensile surface will be. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  7. Veneered zirconia inlay-retained fixed dental prostheses: 10-Year results from a prospective clinical study.

    Science.gov (United States)

    Rathmann, Friederike; Bömicke, Wolfgang; Rammelsberg, Peter; Ohlmann, Brigitte

    2017-09-01

    The purpose of this study was to evaluate the 10-year clinical performance of zirconia-based inlay-retained fixed dental prostheses (IRFDP). For replacement of a molar in 27 patients, 30 IRFDP were luted by use of different cements, Panavia F (Kuraray Europe GmbH) or Multilink Automix (Ivoclar Vivadent GmbH), with use of inlay/inlay, inlay/full-crown, or inlay/partial-crown retainers for anchorage. Frameworks were milled from yttria-stabilized zirconia (IPS e.maxZirCAD; Ivoclar Vivadent GmbH) and fully veneered with pressable ceramic (IPS e.max ZirPress; Ivoclar Vivadent GmbH). Before luting, the IRFDP were silica-coated (Rocatec; 3M Espe) and silanized (Monobond S; Ivoclar Vivadent GmbH). Complications (for example, chipping or delamination of the veneering ceramic, debonding, secondary caries, endodontic treatment, and abutment tooth fracture) and failure were reported, by use of standardized report forms, 2 weeks, 6 months, and 1, 2, and 10 years after cementation. Statistical analysis included Kaplan-Meier survival and success (complication-free survival) and Cox regression analysis (α=0.05 for all). During the 10-year observation period, the complications most often observed were chipping of the veneer and debonding. Twenty-five restorations failed and one participant dropped out. Cumulative 10-year survival and success were 12.1% and 0%, respectively. The design of the retainer, use of a dental dam, choice of cement, and location in the dental arch had no statistically significant effect on the occurrence of complications. Use of fully veneered zirconia-based IRFDP with this technique cannot be recommended. A large incidence of complications and poor survival were observed for fully veneered zirconia-based IRFDP, revealing an urgent need for further design improvements for this type of restoration. This, again, emphasizes the need for testing of new restoration designs in clinical trials before implementation in general dental practice. Copyright © 2017

  8. Evaluation of Surface Treatment Methods on the Bond Strength of Zirconia Ceramics Systems, Resin Cements and Tooth Surface

    Directory of Open Access Journals (Sweden)

    Akkuş Emek

    2015-07-01

    Full Text Available Objectives: To compare the effects of airborne-particle abrasion (APA and tribochemical silica coating (TSC surface treatment methods on the shear bond strength of zirconia ceramics systems, resin cements and tooth surface

  9. Performance of ceramic coatings on diesel engines

    International Nuclear Information System (INIS)

    MacAdam, S.; Levy, A.

    1986-01-01

    Partially stabilized zirconia ceramic thermal barrier coatings were plasma sprayed on the valve faces and tulips and the piston crowns and cylinder heads of a locomotive size diesel engine at a designated thickness of 375μm (0.015''). They were tested over a range of throttle settings for 500 hours using No. 2 diesel oil fuel. Properly applied coatings performed with no change in composition, morphology or thickness. Improperly applied coatings underwent spalling durability was dependent on quality control of the plasma spray process

  10. Fracture-resistant monolithic dental crowns.

    Science.gov (United States)

    Zhang, Yu; Mai, Zhisong; Barani, Amir; Bush, Mark; Lawn, Brian

    2016-03-01

    To quantify the splitting resistance of monolithic zirconia, lithium disilicate and nanoparticle-composite dental crowns. Fracture experiments were conducted on anatomically-correct monolithic crown structures cemented to standard dental composite dies, by axial loading of a hard sphere placed between the cusps. The structures were observed in situ during fracture testing, and critical loads to split the structures were measured. Extended finite element modeling (XFEM), with provision for step-by-step extension of embedded cracks, was employed to simulate full failure evolution. Experimental measurements and XFEM predictions were self-consistent within data scatter. In conjunction with a fracture mechanics equation for critical splitting load, the data were used to predict load-sustaining capacity for crowns on actual dentin substrates and for loading with a sphere of different size. Stages of crack propagation within the crown and support substrate were quantified. Zirconia crowns showed the highest fracture loads, lithium disilicate intermediate, and dental nanocomposite lowest. Dental nanocomposite crowns have comparable fracture resistance to natural enamel. The results confirm that monolithic crowns are able to sustain high bite forces. The analysis indicates what material and geometrical properties are important in optimizing crown performance and longevity. Copyright © 2015 Academy of Dental Materials. All rights reserved.

  11. Effect of grinding and heat treatment on the mechanical behavior of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Gabriela Freitas RAMOS

    2016-01-01

    Full Text Available Abstract The present study investigated the effect of grinding on roughness, flexural strength, and reliability of a zirconia ceramic before and after heat treatment. Seven groups were tested (n = 15: a control group (labeled CG, untreated, and six groups of samples ground with diamond discs, simulating diamond burs, with grits of 200 µm (G80; 160 µm (G120, and 25 µm (G600, either untreated or heat-treated at 1200°C for 2 h (labeled A. Yttria tetragonal zirconia polycrystal discs were manufactured, ground, and submitted to roughness and crystalline phase analyses before the biaxial flexural strength test. There was no correlation between roughness (Ra and Rz and flexural strength. The reliability of the materials was not affected by grinding or heat treatment, but the characteristic strength was higher after abrasion with diamond discs, irrespective of grit size. The X-ray diffraction data showed that grinding leads to a higher monoclinic (m phase content, whereas heat treatment produces reverse transformation, leading to a fraction of m-phase in ground samples similar to that observed in the control group. However, after heat treatment, only the G80A samples presented strength similar to that of the control group, while the other groups showed higher strength values. When zirconia pieces must be adjusted for clinical use, a smoother surface can be obtained by employing finer-grit diamond burs. Moreover, when the amount of monoclinic phase is related to the degradation of zirconia, the laboratory heat treatment of ground pieces is indicated for the reverse transformation of zirconia crystals.

  12. Lifetime estimation of zirconia ceramics by linear ageing kinetics

    International Nuclear Information System (INIS)

    Zhang, Fei; Inokoshi, Masanao; Vanmeensel, Kim; Van Meerbeek, Bart; Naert, Ignace; Vleugels, Jef

    2015-01-01

    Up to now, the ageing kinetics of zirconia ceramics were mainly derived from the sigmoidal evolution of the surface phase transformation as a function of time, as quantified by means of X-ray diffraction (XRD). However, the transformation propagation into the material should be better to monitor the ageing kinetics. In this work, μ-Raman spectroscopy was used to quantitatively measure the transformation profiles in depth as a function of ageing time at 160 °C, 140 °C, 134 °C and 110 °C. A linear relationship between the transformed depth and the ageing time was observed for all investigated yttria stabilized tetragonal zirconia polycrystals (3Y-TZP). Furthermore, the μ-Raman investigation of residual stresses in the subsurface of aged 3Y-TZPs showed that the highest tensile stress was located just ahead of the transformation front, indicating the key responsibility of stress accumulation for transformation front propagating into the material. Moreover, the linear kinetics of the transformation propagation were more accurate to calculate the apparent activation energy of the ageing process and allowed a more straightforward estimation of the lifetime of 3Y-TZP at body temperature, as compared to the conventional ageing kinetic parameters obtained from the surface transformation analysis by XRD

  13. [An experimental study on the effect of different optical impression methods on marginal and internal fit of all-ceramic crowns].

    Science.gov (United States)

    Tan, Fa-Bing; Wang, Lu; Fu, Gang; Wu, Shu-Hong; Jin, Ping

    2010-02-01

    To study the effect of different optical impression methods in Cerec 3D/Inlab MC XL system on marginal and internal fit of all-ceramic crowns. A right mandibular first molar in the standard model was used to prepare full crown and replicated into thirty-two plaster casts. Sixteen of them were selected randomly for bonding crown and the others were used for taking optical impression, in half of which the direct optical impression taking method were used and the others were used for the indirect method, and then eight Cerec Blocs all-ceramic crowns were manufactured respectively. The fit of all-ceramic crowns were evaluated by modified United States Public Health Service (USPHS) criteria and scanning electron microscope (SEM) imaging, and the data were statistically analyzed with SAS 9.1 software. The clinically acceptable rate for all marginal measurement sites was 87.5% according to USPHS criteria. There was no statistically significant difference in marginal fit between direct and indirect method group (P > 0.05). With SEM imaging, all marginal measurement sites were less than 120 microm and no statistically significant difference was found between direct and indirect method group in terms of marginal or internal fit (P > 0.05). But the direct method group showed better fit than indirect method group in terms of mesial surface, lingual surface, buccal surface and occlusal surface (P impression method had no significant effect on marginal fit of Cerec Blocs crowns, but it had certain effect on internal fit. Overall all-ceramic crowns appeared to have clinically acceptable marginal fit.

  14. Low Friction in CuO-Doped Yttria-Stabilized Tetragonal Zirconia Ceramics: A Complementary Macro- and Nanotribology Study

    NARCIS (Netherlands)

    Tocha, E.; Pasaribu, H.R.; Schipper, Dirk J.; Schönherr, Holger; Vancso, Gyula J.

    2008-01-01

    The tribological behavior of CuO-doped yttria-stabilized tetragonal zirconia (3Y-TZP) ceramics in the absence of additional lubricants was characterized by macroscale pin-on-disk measurements and nanoscale atomic force microscopy (AFM) for a broad range of velocities. The previously observed low

  15. Selective etching of injection molded zirconia-toughened alumina: Towards osseointegrated and antibacterial ceramic implants.

    Science.gov (United States)

    Flamant, Quentin; Caravaca, Carlos; Meille, Sylvain; Gremillard, Laurent; Chevalier, Jérôme; Biotteau-Deheuvels, Katia; Kuntz, Meinhard; Chandrawati, Rona; Herrmann, Inge K; Spicer, Christopher D; Stevens, Molly M; Anglada, Marc

    2016-12-01

    Due to their outstanding mechanical properties and excellent biocompatibility, zirconia-toughened alumina (ZTA) ceramics have become the gold standard in orthopedics for the fabrication of ceramic bearing components over the last decade. However, ZTA is bioinert, which hampers its implantation in direct contact with bone. Furthermore, periprosthetic joint infections are now the leading cause of failure for joint arthroplasty prostheses. To address both issues, an improved surface design is required: a controlled micro- and nano-roughness can promote osseointegration and limit bacterial adhesion whereas surface porosity allows loading and delivery of antibacterial compounds. In this work, we developed an integrated strategy aiming to provide both osseointegrative and antibacterial properties to ZTA surfaces. The micro-topography was controlled by injection molding. Meanwhile a novel process involving the selective dissolution of zirconia (selective etching) was used to produce nano-roughness and interconnected nanoporosity. Potential utilization of the porosity for loading and delivery of antibiotic molecules was demonstrated, and the impact of selective etching on mechanical properties and hydrothermal stability was shown to be limited. The combination of injection molding and selective etching thus appears promising for fabricating a new generation of ZTA components implantable in direct contact with bone. Zirconia-toughened alumina (ZTA) is the current gold standard for the fabrication of orthopedic ceramic components. In the present work, we propose an innovative strategy to provide both osseointegrative and antibacterial properties to ZTA surfaces: we demonstrate that injection molding allows a flexible design of surface micro-topography and can be combined with selective etching, a novel process that induces nano-roughness and surface interconnected porosity without the need for coating, avoiding reliability issues. These surface modifications have the

  16. Retention of metal-ceramic crowns with contemporary dental cements.

    Science.gov (United States)

    Johnson, Glen H; Lepe, Xavier; Zhang, Hai; Wataha, John C

    2009-09-01

    New types of crown and bridge cement are in use by practitioners, and independent studies are needed to assess their effectiveness. The authors conducted a study in three parts (study A, study B, and study C) and to determine how well these new cements retain metal-ceramic crowns. The authors prepared teeth with a 20-degree taper and a 4-millimeter length. They cast high-noble metal-ceramic copings, then fitted and cemented them with a force of 196 newtons. The types of cements they used were zinc phosphate, resin-modified glass ionomer, conventional resin and self-adhesive modified resin. They thermally cycled the cemented copings, then removed them. They recorded the removal force and calculated the stress of dislodgment by using the surface area of each preparation. They used a single-factor analysis of variance to analyze the data (alpha = .05). The mean stresses necessary to remove crowns, in megapascals, were 8.0 for RelyX Luting (3M ESPE, St. Paul, Minn.), 7.3 for RelyX Unicem (3M ESPE), 5.7 for Panavia F (Kuraray America, New York) and 4.0 for Fuji Plus (GC America, Alsip, Ill.) in study A; 8.1 for RelyX Luting, 2.6 for RelyX Luting Plus (3M ESPE) and 2.8 for Fuji CEM (GC America) in study B; and 4.9 for Maxcem (Kerr, Orange, Calif.), 4.0 for BisCem (Bisco, Schaumburg, Ill.), 3.7 for RelyX Unicem Clicker (3M ESPE), 2.9 for iCEM (Heraeus Kulzer, Armonk, N.Y.) and 2.3 for Fleck's Zinc Cement (Keystone Industries, Cherry Hill, N.J.) in study C. Powder-liquid versions of new cements were significantly more retentive than were paste-paste versions of the same cements. The mean value of crown removal stress for the new self-adhesive modified-resin cements varied appreciably among the four cements tested. All cements retained castings as well as or better than did zinc phosphate cement. Powder-liquid versions of cements, although less convenient to mix, may be a better clinical choice when crown retention is an issue. All cements tested will retain castings

  17. Effect of Three Different Core Materials on Masking Ability of a Zirconia Ceramic

    Directory of Open Access Journals (Sweden)

    Farhad Tabatabaian

    2016-12-01

    Full Text Available Objectives: Masking ability of a restorative material plays a role in hiding colored substructures; however, the masking ability of zirconia ceramic (ZRC has not yet been clearly understood in zirconia-based restorations. This study evaluated the effect of three different core materials on masking ability of a ZRC.Materials and Methods: Ten zirconia disc samples, 0.5mm in thickness and 10mm in diameter, were fabricated. A white (W substrate (control and three substrates of nickel-chromium alloy (NCA, non-precious gold alloy (NPGA, and ZRC were prepared. The zirconia discs were placed on the four types of substrates for spectrophotometry. The L*, a*, and b* values of the specimens were measured by a spectrophotometer and color change (ΔE values were calculated to determine color differences between the test and control groups and were then compared with the perceptual threshold. Randomized block ANOVA and Bonferroni test analyzed the data. A significance level of 0.05 was considered.Results: The mean and standard deviation values of ΔE for NCA, NPGA, and ZRC groups were 10.26±2.43, 9.45±1.74, and 6.70±1.91 units, respectively. Significant differences were found in the ΔE values between ZRC and the other two experimental groups (NCA and NPGA; P<0.0001 and P=0.001, respectively. The ΔE values for the groups were more than the predetermined perceptual threshold.Conclusions: Within the limitations of this study, it was concluded that the tested ZRC could not well mask the examined core materials.Keywords: Color; Spectrophotometry; Visual Perception; Yttria Stabilized Tetragonal Zirconia

  18. An investigation of neutron irradiation test on superplastic zirconia-ceramic materials

    International Nuclear Information System (INIS)

    Shibata, Taiju; Ishihara, Masahiro; Baba, Shinichi; Hayashi, Kimio

    2000-05-01

    A neutron irradiation test on superplastic ceramic materials at high temperature has been proposed as an innovative basic research on high-temperature engineering using the High Temperature Engineering Test Reactor (HTTR). For the effective execution of the test, we reviewed the superplastic deformation mechanism of ceramic materials and discussed neutron irradiation effects on the superplastic deformation process of stabilized Tetragonal Zirconia Polycrystal (TZP), which is a representative superplastic ceramic material. As a result, we pointed out that the decrease in the activation energy for superplastic deformation is expected by the radiation-enhanced diffusion. We selected a fast neutron fluence of 5x10 20 n/cm 2 and an irradiation temperature of about 600degC as test conditions for the first irradiation test on TZP and decided to perform a preliminary irradiation test by the Japan Materials Testing Reactor (JMTR). Moreover, we estimated the radioactivity of irradiated TZP and indicated that it is in the order of 10 10 Bq/g (about 0.3 Ci/g) immediately after irradiation to a thermal neutron fluence of 3x10 20 n/cm 2 and that it decays to about 1/100 in a year. (author)

  19. A Passive Pressure Sensor Fabricated by Post-Fire Metallization on Zirconia Ceramic for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Tao Luo

    2014-09-01

    Full Text Available A high-temperature pressure sensor realized by the post-fire metallization on zirconia ceramic is presented. The pressure signal can be read out wirelessly through the magnetic coupling between the reader antenna and the sensor due to that the sensor is equivalent to an inductive-capacitive (LC resonance circuit which has a pressure-sensitive resonance frequency. Considering the excellent mechanical properties in high-temperature environment, multilayered zirconia ceramic tapes were used to fabricate the pressure-sensitive structure. Owing to its low resistivity, sliver paste was chosen to form the electrical circuit via post-fire metallization, thereby enhancing the quality factor compared to sensors fabricated by cofiring with a high-melting-point metal such as platinum, tungsten or manganese. The design, fabrication, and experiments are demonstrated and discussed in detail. Experimental results showed that the sensor can operate at 600 °C with quite good coupling. Furthermore, the average sensitivity is as high as 790 kHz/bar within the measurement range between 0 and 1 Bar.

  20. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes

    International Nuclear Information System (INIS)

    Garcia, Rafael Henrique Lazzari

    2007-01-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  1. Clinical marginal and internal adaptation of CAD/CAM milling, laser sintering, and cast metal ceramic crowns.

    Science.gov (United States)

    Tamac, Ece; Toksavul, Suna; Toman, Muhittin

    2014-10-01

    Metal ceramic crowns are widely used in clinical practice, but comparisons of the clinical adaptation of restorations made with different processing techniques are lacking. The purpose of this study was to compare the clinical marginal and internal adaptation of metal ceramic crowns fabricated with 3 different techniques: computer-aided design and computer-aided manufacturing (CAD/CAM) milling (CCM), direct metal laser sintering (DMLS), and traditional casting (TC). Twenty CCM, 20 DMLS, and 20 TC metal ceramic crowns were fabricated for 42 patients. Before luting the crowns, silicone replicas were obtained to measure marginal gap and internal adaptation that was evaluated at 3 regions: axial wall, axio-occlusal angle, and occlusal surface. Measurements were made with a reflected light binocular stereomicroscope at 20× magnification and analyzed with 1-way analysis of variance (ANOVA) and the Bonferroni post hoc test (α=.05). The mean marginal gap values were 86.64 μm for CCM, 96.23 μm for DMLS, and 75.92 μm for TC. The means at the axial wall region were 117.5 μm for the CCM group, 139.02 μm for the DMLS group, and 121.38 μm for the TC group. One-way ANOVA revealed no statistically significant differences among the groups for measurements at the marginal gap (P=.082) and the axial wall region (P=.114). The means at the axio-occlusal region were 142.1 μm for CCM, 188.12 μm for DMLS, and 140.63 μm for TC, and those at the occlusal surface region were 265.73 μm for CCM, 290.39 μm for DMLS, and 201.09 μm for TC. The mean values of group DMLS were significantly higher at the axio-occlusal region and the occlusal surface region than those of other groups (Pmetal ceramic crowns performed similarly in terms of clinical marginal and axial wall adaptation. The cement film thickness at the occlusal region and axio-occlusal region were higher for DMLS crowns. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc

  2. Zirconia based inert matrix fuel: fabrication concepts and feasibility studies

    International Nuclear Information System (INIS)

    Ingold, F.; Burghartz, M.; Ledergerber, G.

    1999-01-01

    The internal gelation process has traditionally been applied to fabricate standard fuel based on uranium, typically UO2 and MOX. To meet the recent aim to destroy plutonium in the most effective way, a uranium free fuel was evaluated. The fuel development programme at PSI has been redirected toward a fuel based on zirconium oxide or a mixture of zirconia and a conducting material to form ceramic/metal (CERMET) or ceramic/ceramic (CERCER) combinations. A feasibility study was carried out to demonstrate that microspheres based on zirconia and spinel can be fabricated with the required properties. The gelation parameters were investigated to optimise compositions of the starting solutions. Studies to fabricate a composite material (from zirconia and spinel) are ongoing. If the zirconia/spinel ratio is chosen appropriately, the low thermal conductivity of pure zirconia can be compensated by the higher thermal conductivity of spinel. Another solution to offset the low thermal conductivity of zirconia is the development of a CERMET, which consists of fine particles bearing plutonium in a cubic zirconia lattice dispersed in a metallic matrix. The fabrication of such a CERMET is also being studied. (author)

  3. Fracture strength of three all-ceramic systems: Top-Ceram compared with IPS-Empress and In-Ceram.

    Science.gov (United States)

    Quran, Firas Al; Haj-Ali, Reem

    2012-03-01

    The purpose of this study was to investigate the fracture loads and mode of failure of all-ceramic crowns fabricated using Top-Ceram and compare it with all-ceramic crowns fabricated from well-established systems: IPS-Empress II, In-Ceram. Thirty all-ceramic crowns were fabricated; 10 IPS-Empress II, 10 In-Ceram alumina and 10 Top-Ceram. Instron testing machine was used to measure the loads required to introduce fracture of each crown. Mean fracture load for In-Ceram alumina [941.8 (± 221.66) N] was significantly (p > 0.05) higher than those of Top-Ceram and IPS-Empress II. There was no statistically significant difference between Top-Ceram and IPS-Empress II mean fracture loads; 696.20 (+222.20) and 534 (+110.84) N respectively. Core fracture pattern was highest seen in Top- Ceram specimens.

  4. The Impact of Plasma Treatment of Cercon® Zirconia Ceramics on Adhesion to Resin Composite Cements and Surface Properties.

    Science.gov (United States)

    Tabari, Kasra; Hosseinpour, Sepanta; Mohammad-Rahimi, Hossein

    2017-01-01

    Introduction: In recent years, the use of ceramic base zirconia is considered in dentistry for all ceramic restorations because of its chemical stability, biocompatibility, and good compressive as well as flexural strength. However, due to its chemical stability, there is a challenge with dental bonding. Several studies have been done to improve zirconia bonding but they are not reliable. The purpose of this research is to study the effect of plasma treatment on bonding strength of zirconia. Methods: In this in vitro study, 180 zirconia discs' (thickness was 0.85-0.9 mm) surfaces were processed with plasma of oxygen, argon, air and oxygen-argon combination with 90-10 and 80-20 ratio (n=30 for each group) after being polished by sandblast. Surface modifications were assessed by measuring the contact angle, surface roughness, and topographical evaluations. Cylindrical Panavia f2 resin-cement and Diafill were used for microshear strength bond measurements. The data analysis was performed by SPSS 20.0 software and one-way analysis of variance (ANOVA) and Tukey test as the post hoc. Results: Plasma treatment in all groups significantly reduces contact angle compare with control ( P =0.001). Topographic evaluations revealed coarseness promotion occurred in all plasma treated groups which was significant when compared to control ( P <0.05), except argon plasma treated group that significantly decreased surface roughness ( P <0.05). In all treated groups, microshear bond strength increased, except oxygen treated plasma group which decreased this strength. Air and argon-oxygen combination (both groups) significantly increased microshear bond strength ( P <0.05). Conclusion: According to this research, plasmatic processing with dielectric barrier method in atmospheric pressure can increase zirconia bonding strength.

  5. Bond strength of three luting agents to zirconia ceramic - influence of surface treatment and thermocycling

    Directory of Open Access Journals (Sweden)

    Ahmed Attia

    2011-08-01

    Full Text Available OBJECTIVE: This in vitro study aimed to evaluate the influence of different surface treatments, 3 luting agents and thermocycling on microtensile bond strength (µTBS to zirconia ceramic. Material and METHODS: A total of 18 blocks (5x5x4 mm were fabricated from zirconia ceramic (ICE Zirkonia and duplicated into composite blocks (Alphadent. Ceramic blocks were divided into 3 groups (n=6 according to the following surface treatments: airborne-particle abrasion (AA, silica-coating, (SC (CoJet and silica coating followed by silane application (SCSI (ESPE Sil. Each group was divided into 3 subgroups (n=2 according to the 3 luting agents used. Resin-modified glass-ionomer cement (RMGIC, Ketac Cem Plus, self-adhesive resin cement (UN, RelyX Unicem and adhesive resin cement (ML, MultiLink Automix were used for bonding composite and zirconia blocks. Each bonding assembly was cut into microbars (10 mm long and 1±0.1 mm². Seven specimens of each subgroup were stored in water bath at 37ºC for 1 week. The other 7 specimens were stored in water bath at 37ºC for 30 days then thermocycled (TC for 7,500 cycles. µTBS values were recorded for each specimen using a universal testing machine. Statistical analyses were performed using a 3-way ANOVA model followed by serial 1-way ANOVAs. Comparison of means was performed with Tukey's HSD test at (α=0.05. RESULTS: µTBS ranged from 16.8 to 31.8 MPa after 1 week and from 7.3 to 16.4 MPa after 30 days of storage in water and thermocycling. Artificial aging significantly decreased µTBS (p<0.05. Considering surface treatment, SCSI significantly increased µTBS (p<0.05 compared to SC and AA. Resin cements (UN and ML demonstrated significantly higher µTBS (p<0.05 compared to RMGIC cement. CONCLUSIONS: Silica coating followed by silane application together with adhesive resin cements significantly increased µTBS, while thermocycling significantly decreased µTBS.

  6. Influence of abutment type and esthetic veneering on preload maintenance of abutment screw of implant-supported crowns.

    Science.gov (United States)

    Delben, Juliana Aparecida; Barão, Valentim Adelino Ricardo; Dos Santos, Paulo Henrique; Assunção, Wirley Gonçalves

    2014-02-01

    The effect of veneering materials on screw joint stability remains inconclusive. Thus, this study evaluated the preload maintenance of abutment screws of single crowns fabricated with different abutments and veneering materials. Sixty crowns were divided into five groups (n = 12): UCLA abutment in gold alloy with ceramic (group GC) and resin (group GR) veneering, UCLA abutment in titanium with ceramic (group TiC) and resin (group TiR) veneering, and zirconia abutment with ceramic veneering (group ZiC). Abutment screws made of gold were used with a 35 Ncm insertion torque. Detorque measurements were obtained initially and after mechanical cycling. Data were analyzed by ANOVA and Fisher's exact test at a significance level of 5%. For the initial detorque means (in Ncm), group TiC (21.4 ± 1.78) exhibited statistically lower torque maintenance than groups GC (23.9 ± 0.91), GR (24.1 ± 1.34), and TiR (23.2 ± 1.33) (p abutment type and veneering material. More irregular surfaces in the hexagon area of the castable abutments were observed. The superiority of any veneering material concerning preload maintenance was not established. © 2013 by the American College of Prosthodontists.

  7. 3D-characterization of the veneer-zirconia interface using FIB nano-tomography.

    Science.gov (United States)

    Mainjot, Amélie K; Douillard, Thierry; Gremillard, Laurent; Sadoun, Michaël J; Chevalier, Jérôme

    2013-02-01

    The phenomena occurring during zirconia frameworks veneering process are not yet fully understood. In particular the study of zirconia behavior at the interface with the veneer remains a challenge. However this interface has been reported to act on residual stress in the veneering ceramic, which plays a significant role in clinical failures such as chipping. The objective of this study was thus to investigate the veneer-zirconia interface using a recent 3D-analysis tool and to confront these observations to residual stress measurements in the veneering ceramic. Two cross-sectioned bilayered disc samples (veneer on zirconia), exhibiting different residual stress profiles in the veneering ceramic, were investigated using 2D and 3D imaging (respectively Scanning Electron Microscopy (SEM) and Focused Ion Beam nanotomography (FIB-nt), associated with chemical analysis by Energy Dispersive X-ray Spectroscopy (EDS). The observations did not reveal any structural change in the bulk of zirconia layer of both samples. However the presence of structural alterations and sub-surface microcracks were highlighted in the first micrometer of zirconia surface, exclusively for the sample exhibiting interior tensile stress in the veneering ceramic. No interdiffusion phenomena were observed. FIB nanotomography was proven to be a powerful technique to study the veneer-zirconia interface. The determination of the origin and the nature of zirconia alterations need to be further studied. The results of the present study support the hypothesis that zirconia surface property changes could be involved in the development of tensile stress in the veneering ceramic, increasing the risk of chipping. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    OpenAIRE

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia-ceramic and metal-ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia-ceramic systems occurred more frequently than those in metal-ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis

  9. Prestresses in bilayered all-ceramic restorations.

    Science.gov (United States)

    Aboushelib, Moustafa N; Feilzer, Albert J; de Jager, Niek; Kleverlaan, Cornelis J

    2008-10-01

    A general trend in all ceramic systems is to use veneering ceramics of slightly lower thermal expansion coefficients compared with that of the framework resulting in a positive mismatch in thermal expansion coefficient (+DeltaTEC). The concept behind this TEC mismatch is to generate compressive stresses in the weaker veneering ceramic and thus enhance the overall strength of the restoration. This technique had excellent results with porcelain fused to metal restorations (PFM). However, there are concerns to apply this concept to all-ceramic restorations. The aim of this research was to determine the stresses in bilayered all-ceramic restorations due to the mismatch in TEC. Two commercial veneering ceramics with a TEC lower than that of zirconia (+DeltaTEC); NobelRondo zirconiatrade mark and Lava Ceramtrade mark, plus one experimental veneering ceramic with an identical TEC that matches that of zirconia (DeltaTEC = 0) were used to veneer zirconia discs. The specimens were loaded in biaxial flexure test setup with the veneer ceramic in tension. The stresses due to load application and TEC mismatch were calculated using fractography, engineering mathematics, and finite element analysis (FEA). In this study, the highest load at failure (64 N) was obtained with the experimental veneer where the thermal mismatch between zirconia and veneering ceramic was minimal. For the two commercial veneer ceramics the magnitude of the thermal mismatch localized at the zirconia veneer interface (42 MPa) exceeded the bond strength between the two materials and resulted in delamination failure during testing (ca. 50 MPa). For all-ceramic zirconia veneered restorations it is recommended to minimize the thermal mismatch as much as possible. (c) 2008 Wiley Periodicals, Inc.

  10. On the comparison of the ballistic performance of 10% zirconia toughened alumina and 95% alumina ceramic target

    International Nuclear Information System (INIS)

    Zhang, X.F.; Li, Y.C.

    2010-01-01

    Ballistic performance of different type of ceramic materials subjected to high velocity impact was investigated in many theoretical, experimental and numerical studies. In this study, a comparison of ballistic performance of 95% alumina ceramic and 10% zirconia toughened alumina (ZTA) ceramic tiles was analyzed theoretically and experimentally. Spherical cavity model based on the concepts of mechanics of compressible porous media of Galanov was used to analyze the relation of target resistance and static mechanical properties. Experimental studies were carried out on the ballistic performance of above two types of ceramic tiles based on the depth of penetration (DOP) method, when subjected to normal impact of tungsten long rod projectiles. Typical damaged targets were presented. The residual depth of penetration on after-effect target was measured in all experiments, and the ballistic efficiency factor of above two types ceramic plates were determined. Both theoretical and experimental results show that the improvement on ballistic resistance was clearly observed by increasing fracture toughness in ZTA ceramics.

  11. Internal fit of pressed and computer-aided design/computer-aided manufacturing ceramic crowns made from digital and conventional impressions.

    Science.gov (United States)

    Anadioti, Evanthia; Aquilino, Steven A; Gratton, David G; Holloway, Julie A; Denry, Isabelle L; Thomas, Geb W; Qian, Fang

    2015-04-01

    No studies have evaluated the internal adaptation of pressed and milled ceramic crowns made from digital impressions. The purpose of this in vitro study was to evaluate the internal fit of pressed and milled ceramic crowns made from digital and conventional impressions. Thirty polyvinyl siloxane (PVS) impressions and 30 Lava COS impressions made of a prepared dentoform tooth (master die) were fabricated. Thirty crowns were pressed in lithium disilicate (IPS e.max Press), and 30 crowns were milled from lithium disilicate blocks (IPS e.max CAD) (15/impression technique) with the E4D scanner and milling engine. The master die and the intaglio of the crowns were digitized with a 3-dimensional laser coordinate measurement machine. The digital master die and intaglio of each crown were merged. The distance between the die and the intaglio surface of the crown was measured at 3 standardized points. One-way ANOVA was used for statistical analysis (α=.05). One-way ANOVA revealed that the internal gap obtained from the Lava/press group (0.211 mm, ±SD 0.041) was significantly greater than that obtained from the other groups (Pdigital impression and pressed crown produced the least accurate internal fit. Copyright © 2015. Published by Elsevier Inc.

  12. Clinical evaluation of all-ceramic crowns fabricated from intraoral digital impressions based on the principle of active wavefront sampling.

    Science.gov (United States)

    Syrek, Andreas; Reich, Gunnar; Ranftl, Dieter; Klein, Christoph; Cerny, Barbara; Brodesser, Jutta

    2010-07-01

    The aim of the present study was to compare the fit of all-ceramic crowns fabricated from intraoral digital impressions with the fit of all-ceramic crowns fabricated from silicone impressions. Twenty patients agreed to take part in the study to receive two Lava crowns each for the same preparation. One crown was fabricated from intraoral scans using the Lava Chairside Oral Scanner (Lava C.O.S.), and the other crown from a two-step silicone impression. Prior to cementation the fit of both crowns was clinically evaluated by two calibrated and blinded examiners; the marginal fit was also scored from replicas. Data from the replica scores were analysed by Anderson-Darling test, Levene's test and Mann-Whitney test. All tests were performed with alpha-level of 0.05. Median marginal gap in the conventional impression group was 71microm (Q1:45microm; Q3:98microm), and in the digital impression group 49microm (Q1:32microm; Q3:65microm). Mann-Whitney test revealed a significant difference between the groups (pdigitally fabricated crowns. 1. Crowns from intraoral scans revealed significantly better marginal fit than crowns from silicone impressions. 2. Marginal discrepancies in both groups were within the limits of clinical acceptability. 3. Crowns from intraoral scans tended to show better interproximal contact area quality. 4. Crowns from both groups performed equally well with regard to occlusion. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Influence of framework color and layering technique on the final color of zirconia veneered restorations

    NARCIS (Netherlands)

    Aboushelib, M.N.; Dozic, A.; Liem, J.K.

    2010-01-01

    Objective: To investigate the influence of colored zirconia frameworks on the overall color match of zirconia- veneered restorations. Method and Materials: Identical natural and colored zirconia frameworks (Cercon Base, Degudent) were layered using a veneer ceramic (IPS e.max Ceram Dentin, Ivoclar

  14. Enhancement of ionic conductivity in stabilized zirconia ceramics under millimeter-wave irradiation heating

    International Nuclear Information System (INIS)

    Kishimoto, Akira; Ayano, Keiko; Hayashi, Hidetaka

    2011-01-01

    Ionic conductivity in yttria-stabilized zirconia ceramics under millimeter-wave irradiation heating was compared with that obtained using conventional heating. The former was found to result in higher conductivity than the latter. Enhancement of the ionic conductivity and the reduction in activation energy seemed to depend on self-heating resulting from the millimeter-wave irradiation. Millimeter-wave irradiation heating restricted the degradation in conductivity accompanying over-substitution, suggesting the optimum structure that provided the maximum conductivity could be different between the two heating methods.

  15. Durability of feldspathic veneering ceramic on glass-infiltrated alumina ceramics after long-term thermocycling.

    Science.gov (United States)

    Mesquita, A M M; Ozcan, M; Souza, R O A; Kojima, A N; Nishioka, R S; Kimpara, E T; Bottino, M A

    2010-01-01

    This study compared the bond strength durability of a feldspathic veneering ceramic to glass-infiltrated reinforced ceramics in dry and aged conditions. Disc shaped (thickness: 4 mm, diameter: 4 mm) of glass-infiltrated alumina (In-Ceram Alumina) and glass-infiltrated alumina reinforced by zirconia (In-Ceram Zirconia) core ceramic specimens (N=48, N=12 per groups) were constructed according to the manufacturers' recommendations. Veneering ceramic (VITA VM7) was fired onto the core ceramics using a mold. The core-veneering ceramic assemblies were randomly divided into two conditions and tested either immediately after specimen preparation (Dry) or following 30000 thermocycling (5-55 ºC±1; dwell time: 30 seconds). Shear bond strength test was performed in a universal testing machine (cross-head speed: 1 mm/min). Failure modes were analyzed using optical microscope (x20). The bond strength data (MPa) were analyzed using ANOVA (α=0.05). Thermocycling did not decrease the bond strength results for both In-Ceram Alumina (30.6±8.2 MPa; P=0.2053) and In-Ceram zirconia (32.6±9 MPa; P=0.3987) core ceramic-feldspathic veneering ceramic combinations when compared to non-aged conditions (28.1±6.4 MPa, 29.7±7.3 MPa, respectively). There were also no significant differences between adhesion of the veneering ceramic to either In-Ceram Alumina or In-Ceram Zirconia ceramics (P=0.3289). Failure types were predominantly a mixture of adhesive failure between the veneering and the core ceramic together with cohesive fracture of the veneering ceramic. Long-term thermocycling aging conditions did not impair the adhesion of the veneering ceramic to the glass-infiltrated alumina core ceramics tested.

  16. Monoclinic phase transformation and mechanical durability of zirconia ceramic after fatigue and autoclave aging.

    Science.gov (United States)

    Mota, Yasmine A; Cotes, Caroline; Carvalho, Rodrigo F; Machado, João P B; Leite, Fabíola P P; Souza, Rodrigo O A; Özcan, Mutlu

    2017-10-01

    This study evaluated the influence of two aging procedures on the biaxial flexural strength of yttria-stabilized tetragonal zirconia ceramics. Disc-shaped zirconia specimens and (ZE: E.max ZirCAD, Ivoclar; ZT: Zirkon Translucent, Zirkonzahn) (N = 80) (∅:12 mm; thickness:1.2 mm, ISO 6872) were prepared and randomly divided into four groups (n = 10 per group) according to the aging procedures: C: Control, no aging; M: mechanical cycling (2 × 10 6 cycles/3.8 Hz/200 N); AUT: Aging in autoclave at 134°C, 2 bar for 24 h; AUT + M: Autoclave aging followed by mechanical cycling. After aging, the transformed monoclinic zirconia (%) were evaluated using X-ray diffraction and surface roughness was measured using atomic force microscopy. The average grain size was measured by scanning electron microscopy and the specimens were submitted to biaxial flexural strength testing (1 mm/min, 1000 kgf in water). Data (MPa) were statistically analyzed using 2-way analysis of variance and Tukey's test (α = 0.05). Aging procedures significantly affected (p = 0.000) the flexural strength data but the effect of zirconia type was not significant (p = 0.657). AUT ZT (936.4 ± 120.9 b ) and AUT + M ZE (867.2 ± 49.3 b ) groups presented significantly higher values (p autoclave aging alone or with mechanical aging increased the flexure strength but also induced higher transformation from tetragonal to monoclinic phase in both zirconia materials tested. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1972-1977, 2017. © 2016 Wiley Periodicals, Inc.

  17. Utilization of niobium pentoxide as additive for reducing the ''in situ'' reaction temperature of ceramic composites in the system mullite-zirconia

    International Nuclear Information System (INIS)

    Melo, F.C.L. de; Cairo, C.A.A.; Piorino Neto, F.; Cunha, P.A.; Devezas, T.C.

    1988-01-01

    Ceramics Composites of the system mullite-zirconia were produced trough reaction sintering, following the equation: 2ZrSiO 4 +3Al 2 O 3 +x(Al 2 O 3 +Nb 2 O 5 )--> 2ZrO 2 +Al 6 Si 2 O 13 +2xAlNbO 4 , with different x values (0.05,0.1 e 0.25), trying to investigate the role of niobia as sintering aid. Through x-ray diffraction was evaluated the fraction of zirconia tetragonal phase retained in the ceramic matrix, and the produced composites were caracterized as to the apparent porosity and density, sintering shrinkage and rupture strenght. The reaction sintering temperature was reduced from 1600 0 C (x=0) to 1400 0 C (with x=0.1). (author) [pt

  18. Efficacy of ceramic repair material on the bond strength of composite resin to zirconia ceramic.

    Science.gov (United States)

    Kirmali, Omer; Kapdan, Alper; Harorli, Osman Tolga; Barutcugil, Cagatay; Ozarslan, Mehmet Mustafa

    2015-01-01

    The aim of this study was to evaluate the shear bond strength of composite resin in five different repair systems. Sixty specimens (7 mm in diameter and 3 mm in height) of zirconia ceramic were fabricated. All specimen surfaces were prepared with a 30 µm fine diamond rotary cutting instrument with water irrigation for 10 s and dried with oil-free air. Specimens were then randomly divided into six groups for the following different intra-oral repair systems (n = 10): Group 1, control group; Group 2, Cojet system (3M ESPE, Seefeld, Germany); Group 3, Cimara® System (Voco, Cuxhaven, Germany); Group 4, Z-Prime Plus System (Bisco Inc., Schaumburg, IL); Group 5, Clearfil™ System (Kuraray, Osaka, Japan); and Group 6, Z-Bond System (Danville, CA). After surface conditioning, a composite resin Grandio (Voco, Cuxhaven, Germany) was applied to the zirconia surface using a cylindrical mold (5 mm in diameter and 3 mm in length) and incrementally filled up, according to the manufacturer's instructions of each intra-oral system. Each specimen was subjected to a shear load at a crosshead speed of 1 mm/min until fracture. One-way analysis of variance (ANOVA) and Tukey post-hoc tests were used to analyze the bond strength values. There were significant differences between Groups 2-6 and Group 1. The highest bond strength values were obtained with Group 2 (17.26 ± 3.22) and Group 3 (17.31 ± 3.62), while the lowest values were observed with Group 1 (8.96 ± 1.62) and Group 6 (12.85 ± 3.95). All repair systems tested increased the bond strength values between zirconia and composite resin that used surface grinding with a diamond bur.

  19. Zirconia powders production by precipitation: state-of-art review; Producao de pos de zirconia por precipitacao - revisao do estado da arte

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Ana Paula Almeida de; Torem, Mauricio Leonardo [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia

    1994-12-31

    The important role played by zirconia in advanced ceramics can be attributed to its excellent wear and corrosion resistance and refractory character. The polymorphic nature of zirconia made the controlled addition of stabilizing oxides or the constraining effect of a dense ceramics matrix necessary to maintain high parameters had a significant influence on powder properties and on compacted powder behaviour in sintering. Particle shape and size, purity and crystalline structure were specially influenced by precipitation parameters. Therefore, this work presented a review of the state of the art in zirconia powder production and in the recent research on precipitation of that powder. (author) 15 refs., 5 figs., 2 tabs.

  20. Y-TZP ceramic processing from coprecipitated powders : A comparative study with three commercial dental ceramics

    NARCIS (Netherlands)

    Lazar, Dolores R. R.; Bottino, Marco C.; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H. A.

    2008-01-01

    Objectives. (1) To synthesize 3 mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. Methods.

  1. A comparison of the fabrication times of all-ceramic partial crowns: Cerec 3D vs IPS Empress.

    Science.gov (United States)

    Gozdowski, S; Reich, S

    2009-01-01

    Apart from precision, the time factor plays a decisive role in the fabrication of all-ceramic dental restorations. Therefore, the aim of this study was to compare two all-ceramic systems with regard to the time required for the fabrication of partial crowns [MODB]. The null hypothesis tested was that the fabrication times of CAD/CAM generated partial crowns are shorter than the fabrication times of partial crowns manufactured in the laboratory. In sixteen model pairs mounted in the articulator, which corresponded to different clinical situations, tooth 36 was prepared for an all-ceramic partial crown [MODB]. With the Cerec3D method [CHAIR], the fabrication of the restoration was simulated directly on the "phantom patient". The IPS Empress system [LAB] was used forthe indirectfabrication method via an impression of the phantom patient. Both methods were used for each preparation. The adhesive luting procedure was not simulated and, therefore, not measured. The mean processing times [hh:mm:ss] were 00:35:05 (SD +/- 03:27 min) for the Cerec method and 04:17:54 (SD +/- 26:01 min) for the Empress method. The mean time on the phantom patient for process-induced activities was 11:47 minutes (SD +/- 02:08 min) for the Cerec method and 03:58 minutes (SD +/- 02:50 min) for the Empress method. Time expenditure for fabrication is only one aspect in order to assess the suitability of a restoration system. Both methods enable the dentist to provide high quality all ceramic restorations. Although the Empress method showed a time advantage of 65% during the fitting phase and occlusal grinding-in on the phantom patient in comparison to the Cerec method, the time spent during the laboratory phase has to be considered as well.

  2. Zirconia powders production by precipitation: state-of-art review

    International Nuclear Information System (INIS)

    Oliveira, Ana Paula Almeida de; Torem, Mauricio Leonardo

    1994-01-01

    The important role played by zirconia in advanced ceramics can be attributed to its excellent wear and corrosion resistance and refractory character. The polymorphic nature of zirconia made the controlled addition of stabilizing oxides or the constraining effect of a dense ceramics matrix necessary to maintain high parameters had a significant influence on powder properties and on compacted powder behaviour in sintering. Particle shape and size, purity and crystalline structure were specially influenced by precipitation parameters. Therefore, this work presented a review of the state of the art in zirconia powder production and in the recent research on precipitation of that powder. (author)

  3. Evaluation of marginal and internal gaps of metal ceramic crowns obtained from conventional impressions and casting techniques with those obtained from digital techniques.

    Science.gov (United States)

    Rai, Rathika; Kumar, S Arun; Prabhu, R; Govindan, Ranjani Thillai; Tanveer, Faiz Mohamed

    2017-01-01

    Accuracy in fit of cast metal restoration has always remained as one of the primary factors in determining the success of the restoration. A well-fitting restoration needs to be accurate both along its margin and with regard to its internal surface. The aim of the study is to evaluate the marginal fit of metal ceramic crowns obtained by conventional inlay casting wax pattern using conventional impression with the metal ceramic crowns obtained by computer-aided design and computer-aided manufacturing (CAD/CAM) technique using direct and indirect optical scanning. This in vitro study on preformed custom-made stainless steel models with former assembly that resembles prepared tooth surfaces of standardized dimensions comprised three groups: the first group included ten samples of metal ceramic crowns fabricated with conventional technique, the second group included CAD/CAM-milled direct metal laser sintering (DMLS) crowns using indirect scanning, and the third group included DMLS crowns fabricated by direct scanning of the stainless steel model. The vertical marginal gap and the internal gap were evaluated with the stereomicroscope (Zoomstar 4); post hoc Turkey's test was used for statistical analysis. One-way analysis of variance method was used to compare the mean values. Metal ceramic crowns obtained from direct optical scanning showed the least marginal and internal gap when compared to the castings obtained from inlay casting wax and indirect optical scanning. Indirect and direct optical scanning had yielded results within clinically acceptable range.

  4. Comparison of Chamfer and Deep Chamfer Preparation Designs on the Fracture Resistance of Zirconia Core Restorations

    Directory of Open Access Journals (Sweden)

    Ezatollah Jalalian

    2011-06-01

    Full Text Available Background and aims. One of the major problems of all-ceramic restorations is their probable fracture under occlusal force. The aim of the present in vitro study was to compare the effect of two marginal designs (chamfer and deep chamfer on the fracture resistance of all-ceramic restorations, CERCON. Materials and methods. This in vitro study was carried out with single-blind experimental technique. One stainless steel die with 50’ chamfer finish line design (0.8 mm deep was prepared using a milling machine. Ten epoxy resin dies were prepared. The same die was retrieved and 50' chamfer was converted into a deep chamfer design (1 mm. Again ten epoxy resin dies were prepared from the deep chamfer die. Zirconia cores with 0.4 mm thickness and 35 µm cement space were fabricated on the epoxy resin dies (10 chamfer and 10 deep chamfer samples. The zirconia cores were cemented on the epoxy resin dies and underwent a fracture test with a universal testing machine and the samples were investigated from the point of view of the origin of the failure. Results. The mean values of fracture resistance for deep chamfer and chamfer samples were 1426.10±182.60 and 991.75±112.00 N, respectively. Student’s t-test revealed statistically significant differences between the groups. Conclusion. The results indicated a relationship between the marginal design of zirconia cores and their fracture resistance. A deep chamfer margin improved the biomechanical performance of posterior single zirconia crown restorations, which might be attributed to greater thickness and rounded internal angles in deep chamfer margins.

  5. Characteristics of porous zirconia coated with hydroxyapatite

    Indian Academy of Sciences (India)

    However, porous hydroxyapatite bodies are mechanically weak and brittle, which makes shaping and implantation difficult. One way to solve this problem is to introduce a strong porous network onto which hydroxyapatite coating is applied. In this study, porous zirconia and alumina-added zirconia ceramics were prepared ...

  6. Fracture toughness measurements on zirconia toughened ceramics

    International Nuclear Information System (INIS)

    El Sayed Ali, M.; Toft Soerensen, O.

    1986-12-01

    Three techniques for fracture toughness measurements on zirconia toughened ceramics were evaluated: the notched beam (NB) technique, the indentation fracture (IF) technique and the indentation strength in bending (ISB) technique. Using these techniques comparative measurements were performed on samples prepared by pressing (uniaxial) and sintering of four commercially available powder types. These were: Toya Soda (Japan) powders with the designations TZ3Y (2.86 mole% Y 2 O 3 ), TZ3YA (2.77 mole% Y 2 O 3 , 0.1 wt% Al 2 O 3 ) and TZ3Y20A (2.88 mole% Y 2 O 3 , 20 wt.% Al 2 O 3 ) and a powder supplied by Viking Chemicals (Denmark) designated as YP5Z-2.5 (2.5 mole% Y 2 O 3 ). The measurements showed that similar K Ic values were obtained with the IF- and ISB-techniques, which therefore are recommended for K Ic measurements. Too high values were, however, obtained with the NB-technique which therefore cannot be recommended. Finally, the measurements showed that a high temperature annealing is recommended prior to testing for the IF-technique. (author)

  7. Bi-layered zirconia/fluor-apatite bridges supported by ceramic dental implants: a prospective case series after thirty months of observation.

    Science.gov (United States)

    Spies, Benedikt Christopher; Witkowski, Siegbert; Butz, Frank; Vach, Kirstin; Kohal, Ralf-Joachim

    2016-10-01

    The aim of this study was to determine the success and survival rate of all-ceramic bi-layered implant-supported three-unit fixed dental prostheses (IS-FDPs) 3 years after implant placement. Thirteen patients (seven males, six females; age: 41-78 years) received two one-piece ceramic implants (alumina-toughened zirconia) each in the region of the premolars or the first molar and were finally restored with adhesively cemented bi-layered zirconia-based IS-FDPs (3 in the maxilla, 10 in the mandible) composed of CAD/CAM-fabricated zirconia frameworks pressed-over with fluor-apatite glass-ceramic ingots. At prosthetic delivery and the follow-ups after 1, 2 and 3 years, the restorations were evaluated using modified United States Public Health Service (USPHS) criteria. Restorations with minor veneer chippings, a small-area occlusal roughness, slightly soundable restoration margins, minimal contour deficiencies and tolerable color deviations were regarded as success. In case of more distinct defects that could, however, be repaired to a clinically acceptable level, IS-FDPs were regarded as surviving. Kaplan-Meier plots were used for the success/survival analyses. To verify an impact on subjective patients' perceptions, satisfaction was evaluated by visual analog scales (VAS). All patients were seen 3 years after implant installation. No IS-FDP had to be replaced, resulting in 100% survival after a mean observation period of 29.5 months (median: 30.7). At the 3-year follow-up, 7/13 IS-FDPs showed a veneer chipping, 13/13 an occlusal roughness and 12/13 minimal deficiencies of contour/color. Since six restorations showed a major chipping and/or a major occlusal roughness, the Kaplan-Meier success rate was 53.8%. However, patients' significantly improved perceptions of function, esthetics, sense, and speech at prosthetic delivery remained stable over time. Bi-layered zirconia/fluor-apatite IS-FDPs entirely survived the observation period but showed a high frequency of

  8. Translucence in dental prosthesis based on zirconia ceramics: effect of the sintering parameters

    International Nuclear Information System (INIS)

    Santos, C.

    2011-01-01

    In this work the translucence of Zirconia dental ceramics was evaluated as function of sintering conditions (temperature and isothermal holding time). Samples with 15x15x1mm, were sintered at 1450 to 1600 deg C, with holding of 2h or 4h. Sintered samples were characterized by relative density, crystalline phases and microstructural aspects. Full density was obtained in samples sintered at 1530 and 1600 deg C, which presented higher grain sizes. Na increasing of translucence was observed in samples sintered at 1530 and 1600, correlating these properties with increasing of density and grain size of the samples. (author)

  9. Evaluation of marginal and internal gaps of metal ceramic crowns obtained from conventional impressions and casting techniques with those obtained from digital techniques

    Directory of Open Access Journals (Sweden)

    Rathika Rai

    2017-01-01

    Full Text Available Background: Accuracy in fit of cast metal restoration has always remained as one of the primary factors in determining the success of the restoration. A well-fitting restoration needs to be accurate both along its margin and with regard to its internal surface. Aim: The aim of the study is to evaluate the marginal fit of metal ceramic crowns obtained by conventional inlay casting wax pattern using conventional impression with the metal ceramic crowns obtained by computer-aided design and computer-aided manufacturing (CAD/CAM technique using direct and indirect optical scanning. Materials and Methods: This in vitro study on preformed custom-made stainless steel models with former assembly that resembles prepared tooth surfaces of standardized dimensions comprised three groups: the first group included ten samples of metal ceramic crowns fabricated with conventional technique, the second group included CAD/CAM-milled direct metal laser sintering (DMLS crowns using indirect scanning, and the third group included DMLS crowns fabricated by direct scanning of the stainless steel model. The vertical marginal gap and the internal gap were evaluated with the stereomicroscope (Zoomstar 4; post hoc Turkey's test was used for statistical analysis. One-way analysis of variance method was used to compare the mean values. Results and Conclusion: Metal ceramic crowns obtained from direct optical scanning showed the least marginal and internal gap when compared to the castings obtained from inlay casting wax and indirect optical scanning. Indirect and direct optical scanning had yielded results within clinically acceptable range.

  10. Fabrication of porous zirconia using filter paper template

    International Nuclear Information System (INIS)

    Deng Yuhua; Wei Pan

    2005-01-01

    In this work, porous zirconia ceramic was synthesized using filter papers as a template. Special attention is paid to whether the structural of the filter paper can be transferred to the zirconia structure. Microstructure of so synthesized porous zirconia was observed with SEM and the phase was determined by XRD. The surface area and the pore were investigated with an automatic volumetric sorption analyzer. It has been found that the morphology of the template transmit to the porous zirconia quite well. (orig.)

  11. Factors affecting the shear bond strength of metal and ceramic brackets bonded to different ceramic surfaces.

    Science.gov (United States)

    Abu Alhaija, Elham S J; Abu AlReesh, Issam A; AlWahadni, Ahed M S

    2010-06-01

    The aims of this study were to evaluate the shear bond strength (SBS) of metal and ceramic brackets bonded to two different all-ceramic crowns, IPS Empress 2 and In-Ceram Alumina, to compare the SBS between hydrofluoric acid (HFA), phosphoric acid etched, and sandblasted, non-etched all-ceramic surfaces. Ninety-six all-ceramic crowns were fabricated resembling a maxillary left first premolar. The crowns were divided into eight groups: (1) metal brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (2) metal brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (3) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched IPS Empress 2 crowns; (4) ceramic brackets bonded to sandblasted 9.6 per cent HFA-etched In-Ceram crowns; (5) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched IPS Empress 2 crowns; (6) metal brackets bonded to sandblasted 37 per cent phosphoric acid-etched In-Ceram crowns; (7) metal brackets bonded to sandblasted, non-etched IPS Empress 2 crowns; and (8) metal brackets bonded to sandblasted, non-etched In-Ceram crowns. Metal and ceramic orthodontic brackets were bonded using a conventional light polymerizing adhesive resin. An Instron universal testing machine was used to determine the SBS at a crosshead speed of 0.1 mm/minute. Comparison between groups was performed using a univariate general linear model and chi-squared tests. The highest mean SBS was found in group 3 (120.15 +/- 45.05 N) and the lowest in group 8 (57.86 +/- 26.20 N). Of all the variables studied, surface treatment was the only factor that significantly affected SBS (P Empress 2 and In-Ceram groups.

  12. INTERFACE RESIDUAL STRESSES IN DENTAL ZIRCONIA USING LAUE MICRO-DIFFRACTION

    International Nuclear Information System (INIS)

    Bale, H. A.; Tamura, N.; Coelho, P.G.; Hanan, J. C.

    2009-01-01

    Due to their aesthetic value and high compressive strength, dentists have recently employed ceramics for restoration materials. Among the ceramic materials, zirconia provides high toughness and crack resistant characteristics. Residual stresses develop in processing due to factors including grain anisotropy and thermal coefficient mismatch. In the present study, polychromatic X-ray (Laue) micro-diffraction provided grain orientation and residual stresses on a clinically relevant zirconia model ceramic disk. A 0.5 mm x 0.024 mm region on zirconia was examined on a 500 nm scale for residual stresses using a focused poly-chromatic synchrotron X-ray beam. Large stresses ranging from - to + 1GPa were observed at some grains. On average, the method suggests a relatively small compressive stress at the surface between 47 and 75 MPa depending on direction

  13. Translucency of dental ceramics with different thicknesses.

    Science.gov (United States)

    Wang, Fu; Takahashi, Hidekazu; Iwasaki, Naohiko

    2013-07-01

    The increased use of esthetic restorations requires an improved understanding of the translucent characteristics of ceramic materials. Ceramic translucency has been considered to be dependent on composition and thickness, but less information is available about the translucent characteristics of these materials, especially at different thicknesses. The purpose of this study was to investigate the relationship between translucency and the thickness of different dental ceramics. Six disk-shaped specimens of 8 glass ceramics (IPS e.max Press HO, MO, LT, HT, IPS e.max CAD LT, MO, AvanteZ Dentin, and Trans) and 5 specimens of 5 zirconia ceramics (Cercon Base, Zenotec Zr Bridge, Lava Standard, Lava Standard FS3, and Lava Plus High Translucency) were prepared following the manufacturers' instructions and ground to a predetermined thickness with a grinding machine. A spectrophotometer was used to measure the translucency parameters (TP) of the glass ceramics, which ranged from 2.0 to 0.6 mm, and of the zirconia ceramics, which ranged from 1.0 to 0.4 mm. The relationship between the thickness and TP of each material was evaluated using a regression analysis (α=.05). The TP values of the glass ceramics ranged from 2.2 to 25.3 and the zirconia ceramics from 5.5 to 15.1. There was an increase in the TP with a decrease in thickness, but the amount of change was material dependent. An exponential relationship with statistical significance (Pceramics and zirconia ceramics. The translucency of dental ceramics was significantly influenced by both material and thickness. The translucency of all materials increased exponentially as the thickness decreased. All of the zirconia ceramics evaluated in the present study showed some degree of translucency, which was less sensitive to thickness compared to that of the glass ceramics. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  14. Effect of simulated mastication on the surface roughness of three ceramic systems.

    Science.gov (United States)

    Amer, Rafat; Kürklü, Duygu; Johnston, William

    2015-08-01

    Zirconia complete coverage crowns are being widely used as restorations because of their high strength and improved esthetics. Data are sparse about the change in surface roughness of this ceramic material after repeated mastication cycles of opposing enamel. The purpose of this study was to investigate changes in the surface roughness after being subjected to 3-body wear-opposing human enamel of 3 types of ceramics: dense sintered yttrium-stabilized zirconia (Z); lithium disilicate (L); and a conventional low-fusing feldspathic porcelain (P) treated to impart a rough, smooth, or glazed surface. Twenty-four specimens of each of the Z and L ceramic were sectioned from computer-aided design and computer-aided manufacturing blocks into rectangular plates (15×12×2 mm). Twenty-four specimens of the feldspathic porcelain were formed into disks (12-mm diameter) from powders compressed in a silicone mold. All specimens (n=72) were prepared according to the manufacturers' recommendations. Specimens of each ceramic group were placed into 1 of 3 groups: group R, rough surface finish; group S, smooth surface finish; and group G, glazed surface finish. A total of 72 specimens (9 groups with 8 specimens each) was placed in a 3-body wear simulator, with standardized enamel specimens (n=72) acting as the substrate. The changes in surface roughness of the ceramic specimens were evaluated after 50,000 cycles. Data were analyzed by a repeated measures 3-way ANOVA mixed procedure with the Satterthwaite method for degrees of freedom and maximum likelihood estimation of the covariance parameters (α=.05). Data showed that the PS group exhibited the largest change in surface roughness, becoming significantly rougher (P<.004). The LR group became significantly smoother (P=.012). The surfaces of monolithic zirconia ceramic and lithium disilicate did not become as rough as the surface of conventional feldspathic porcelain after enamel wear. Copyright © 2015 Editorial Council for the

  15. Design and Fabrication of Porous Yttria-Stabilized Zirconia Ceramics for Hot Gas Filtration Applications

    Science.gov (United States)

    Shahini, Shayan

    Hot gas filtration has received growing attention in a variety of applications over the past few years. Yttria-stabilized zirconia (YSZ) is a promising candidate for such an application. In this study, we fabricated disk-type porous YSZ filters using the pore forming procedure, in which poly methyl methacrylate (PMMA) was used as the pore-forming agent. After fabricating the pellets, we characterized them to determine their potential for application as gas filters. We investigated the effect of sintering temperature, polymer particle size, and polymer-to-ceramic ratio on the porosity, pore size, gas permeability, and Vickers hardness of the sintered pellets. Furthermore, we designed two sets of experiments to investigate the robustness of the fabricated pellets--i.e., cyclic heating/cooling and high temperature exposure. This study ushers in a robust technique to fabricate such porous ceramics, which have the potential to be utilized in hot gas filtration.

  16. Clinical examination of leucite-reinforced glass-ceramic crowns (Empress) in general practice: a retrospective study.

    Science.gov (United States)

    Sjögren, G; Lantto, R; Granberg, A; Sundström, B O; Tillberg, A

    1999-01-01

    The purpose of this study was to retrospectively evaluate leucite reinforced-glass ceramic crowns (Empress) placed in patients who regularly visit general practices. One hundred ten Empress crowns, placed in 29 patients who visited a general practice on a regular basis, were evaluated according to the California Dental Association's (CDA) quality evaluation system. In addition, the occurrence of plaque and certain gingival conditions was evaluated. All crowns were luted with resin composite cement. The mean and median years in function for the crowns were 3.6 and 3.9 years, respectively. Based on the CDA criteria, 92% of the 110 crowns were rated "satisfactory." Eighty-six percent were given the CDA rating "excellent" for margin integrity. Fracture was registered in 6% of the 110 crowns. Of the remaining 103 crowns, the CDA rating excellent was given to 74% for anatomic form, 86% for color, and 90% for surface. No significant differences (P > 0.05) were observed regarding fracture rates between anterior and posterior crowns. With regard to the occurrence of plaque and bleeding on probing, no significant differences (P > 0.05) were observed between the Empress crowns and the controls. Most of the fractured crowns had been placed on molars or premolars. Although the difference between anterior and posterior teeth was not statistically significant with respect to the fracture rates obtained, the number of fractured crowns placed on posterior teeth exceeded that of those placed on anterior teeth. The difference between the fracture rates may have clinical significance, and the risk of fracture has to be taken into consideration when placing crowns on teeth that are likely to be subjected to high stress levels.

  17. Effects of the presence of heavy rare earths on the stabilization of the zirconia ceramics - Yttria; Efeito da presenca de terras raras pesadas na estabilizacao das fases de ceramicas de zirconia - itria

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, D.R.R.; Fancio, E.; Menezes, C.A.B.; Ussui, V.; Bressiani, A.H.A.; Lima, N.B.; Paschoal, J.O.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: drlazar@net.ipen.br

    2000-07-01

    The use of Yttria concentrates has been proposed to substitute the high purity Yttria in the zirconia stabilization. The elements terbium, dysprosium, holmium, erbium and ytterbium, classified as heavy rare earths, are the main impurities in these concentrates, due to their presence in yttrium ores. Besides that, the chemical similarities of these elements need the utilization of complex purification techniques. Considering the importance of the employed dopant on zirconia crystallization, this work shows the quantitative phases analysis of powders and ceramics of stabilized zirconia doped with 3 and 9 mol % of high purity Yttria and with a 85 wt % Yttria concentrate. This determination was performed using the Rietveld refinement of the X-ray diffraction data. The powders were synthesized by the hydroxides coprecipitation route, which includes treatments with ethanol and butanol, drying, calcination at 800 deg C for 1 hour and milling in a ball mill and in an attrition mill. The ceramics pellets were pressed uniaxially and sintered at 1550 deg C for 1 hour. The powders and sintered pellets were also characterized by X-ray fluorescence analysis, laser diffraction, gas adsorption (B.E.T.), scanning electron microscopy and determination of apparent density by the Archimedes method. The results showed the same stabilization behavior when it was employed high purity Yttria and a concentrate of this oxide. It was also observed the predominating formation of tetragonal and cubic phases when the dopant concentration is 3 and 9 mol %, respectively. (author)

  18. Experimental study of stress-induced localized transformation plastic zones in tetragonal zirconia polycrystalline ceramics

    International Nuclear Information System (INIS)

    Sun, Q.; Zhao, Z.; Chen, W.; Qing, X.; Xu, X.; Dai, F.

    1994-01-01

    Stress-induced martensitic transformation plastic zones in ceria-stabilized tetragonal zirconia polycrystalline ceramics (Ce-TZP), under loading conditions of uniaxial tension, compression, and three-point bending, are studied by experiments. The transformed monoclinic phase volume fraction distribution and the corresponding plastic strain distribution and the surface morphology (surface uplift) are measured by means of moire interferometry, Raman microprobe spectroscopy, and the surface measurement system. The experimental results from the above three kinds of specimens and methods consistently show that the stress-induced transformation at room temperature of the above specimen is not uniform within the transformation zone and that the plastic deformation is concentrated in some narrow band; i.e., macroscopic plastic flow localization proceeds during the initial stage of plastic deformation. Flow localization phenomena are all observed in uniaxial tension, compression, and three-point bending specimens. Some implications of the flow localization to the constitutive modeling and toughening of transforming thermoelastic polycrystalline ceramics are explored

  19. Effect of ceramic thickness, grinding, and aging on the mechanical behavior of a polycrystalline zirconia.

    Science.gov (United States)

    Prado, Rodrigo Diniz; Pereira, Gabriel Kalil Rocha; Bottino, Marco Antonio; Melo, Renata Marques de; Valandro, Luiz Felipe

    2017-11-06

    Monolithic restorations of Y-TZP have been recommended as a restorative alternative on prosthetic dentistry as it allows a substantial reduction of ceramic thickness, which means a greater preservation of tooth structure. However, the influence of grinding and aging when using a thinner layer of the material is unclear. This investigation aimed to evaluate and compare the effects of ceramic thickness (0.5 mm and 1.0 mm), grinding and aging (low-temperature degradation) on the mechanical behavior and surface characteristics of a full-contour Y-TZP ceramic. Y-TZP disc-shaped specimens (15 mm diameter) were manufactured with both thicknesses and randomly assigned into 4 groups considering the factors 'grinding with diamond bur' and 'aging in autoclave'. Surface topography (roughness, 3D profilometry and SEM), phase transformation, flexural strength and structural reliability (Weibull) analyses were executed. Grinding affected the surface topography, while aging did not promote any effect. An increase in m-phase content was observed after grinding and aging, although different susceptibilities were observed. Regardless of zirconia's thickness, no deleterious effect of grinding or aging on the mechanical properties was observed. Thus, in our testing assembly, reducing the thickness of the Y-TZP ceramic did not alter its response to grinding and low temperature degradation and did not impair its mechanical performance.

  20. Wear characteristics of polished and glazed lithium disilicate ceramics opposed to three ceramic materials.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Akazawa, Nobutaka; Kodaira, Akihisa; Okamura, Kentaro; Matsumura, Hideo

    2016-01-01

    This study compared the wear characteristics of a heat-pressed lithium disilicate ceramic material opposed to feldspathic porcelain, a lithium disilicate glass ceramic, and zirconia materials. Ceramic plate specimens were prepared from feldspathic porcelain (EX-3 nA1B), lithium disilicate glass ceramics (e.max CAD MO1/C14), and zirconia (Katana KT 10) and then ground or polished. Rounded rod specimens were fabricated from heat-pressed lithium disilicate glass ceramic (e.max press LT A3) and then glazed or polished. A sliding wear testing apparatus was used for wear testing. Wear of glazed rods was greater than that of polished rods when they were abraded with ground zirconia, ground porcelain, polished porcelain, or polished lithium disilicate ceramics. For both glazed and polished rods, wear was greater when the rods were abraded with ground plates. The findings indicate that application of a polished surface rather than a glazed surface is recommended for single restorations made of heat-pressed lithium disilicate material. In addition, care must be taken when polishing opposing materials, especially those used in occlusal contact areas. (J Oral Sci 58, 117-123, 2016).

  1. Shear bond strength of veneering porcelain to zirconia: Effect of surface treatment by CNC-milling and composite layer deposition on zirconia.

    Science.gov (United States)

    Santos, R L P; Silva, F S; Nascimento, R M; Souza, J C M; Motta, F V; Carvalho, O; Henriques, B

    2016-07-01

    The purpose of this study was to evaluate the shear bond strength of veneering feldspathic porcelain to zirconia substrates modified by CNC-milling process or by coating zirconia with a composite interlayer. Four types of zirconia-porcelain interface configurations were tested: RZ - porcelain bonded to rough zirconia substrate (n=16); PZ - porcelain bonded to zirconia substrate with surface holes (n=16); RZI - application of a composite interlayer between the veneering porcelain and the rough zirconia substrate (n=16); PZI - application of a composite interlayer between the porcelain and the zirconia substrate treated by CNC-milling (n=16). The composite interlayer was composed of zirconia particles reinforced porcelain (30%, vol%). The mechanical properties of the ceramic composite have been determined. The shear bond strength test was performed at 0.5mm/min using a universal testing machine. The interfaces of fractured and untested specimens were examined by FEG-SEM/EDS. Data was analyzed with Shapiro-Wilk test to test the assumption of normality. The one-way ANOVA followed by Tukey HSD multiple comparison test was used to compare shear bond strength results (α=0.05). The shear bond strength of PZ (100±15MPa) and RZI (96±11MPa) specimens were higher than that recorded for RZ (control group) specimens (89±15MPa), although not significantly (p>0.05). The highest shear bond strength values were recorded for PZI specimens (138±19MPa), yielding a significant improvement of 55% relative to RZ specimens (p<0.05). This study shows that it is possible to highly enhance the zirconia-porcelain bond strength - even by ~55% - by combining surface holes in zirconia frameworks and the application of a proper ceramic composite interlayer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Microstructure and mechanical properties of TiAl castings produced by zirconia ceramic mould

    Directory of Open Access Journals (Sweden)

    Tian Jing

    2011-11-01

    Full Text Available Owing to their low density and attractive high-temperature properties, gamma titanium aluminide alloys (TiAl alloys, hereafter have significant potential application in the aerospace and automobile industries, in which these materials may replace the heavier nickel-based superalloys at service temperatures of 600 – 900℃. Investment casting of TiAl alloys has become the most promising cost-effective technique for the manufacturing of TiAl components. Ceramic moulds are fundamental to fabricating the TiAl casting components. In the present work, ceramic mould with a zirconia primary coat was designed and fabricated successfully. Investment casting of TiAl blades and tensile test of specimens was carried out to verify the correctness and feasibility of the proposed method. The tensile test results indicate that, at room temperature, the tensile strength and the elongation are about 450 MPa and 0.8%, respectively. At 700℃, the tensile strength decreases to about 410 MPa and the elongation increases to 2.7%. Microstructure and mechanical properties of investment cast TiAl alloy are discussed.

  3. Fit of single tooth zirconia copings: comparison between various manufacturing processes.

    Science.gov (United States)

    Grenade, Charlotte; Mainjot, Amélie; Vanheusden, Alain

    2011-04-01

    Various CAD/CAM processes are commercially available to manufacture zirconia copings. Comparative data on their performance in terms of fit are needed. The purpose of this in vitro study was to compare the internal and marginal fit of single tooth zirconia copings manufactured with a CAD/CAM process (Procera; Nobel Biocare) and a mechanized manufacturing process (Ceramill; Amann Girrbach). Abutments (n=20) prepared in vivo for ceramic crowns served as a template for manufacturing both Procera and Ceramill zirconia copings. Copings were manufactured and cemented (Clearfil Esthetic Cement; Kuraray) on epoxy replicas of stone cast abutments. Specimens were sectioned. Nine measurements were performed for each coping. Over- and under-extended margins were evaluated. Comparisons between the 2 processes were performed with a generalized linear mixed model (α=.05). Internal gap values between Procera and Ceramill groups were not significantly different (P=.13). The mean marginal gap (SD) for Procera copings (51(50) μm) was significantly smaller than for Ceramill (81(66) μm) (P<.005). The percentages of over- and under-extended margins were 43% and 57% for Procera respectively, and 71% and 29% for Ceramill. Within the limitations of this in vitro study, the marginal fit of Procera copings was significantly better than that of Ceramill copings. Furthermore, Procera copings showed a smaller percentage of over-extended margins than did Ceramill copings. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  4. Shear bond strength of a denture base acrylic resin and gingiva-colored indirect composite material to zirconia ceramics.

    Science.gov (United States)

    Kubochi, Kei; Komine, Futoshi; Fushiki, Ryosuke; Yagawa, Shogo; Mori, Serina; Matsumura, Hideo

    2017-04-01

    To evaluate the shear bond strengths of two gingiva-colored materials (an indirect composite material and a denture base acrylic resin) to zirconia ceramics and determine the effects of surface treatment with various priming agents. A gingiva-colored indirect composite material (CER) or denture base acrylic resin (PAL) was bonded to zirconia disks with unpriming (UP) or one of seven priming agents (n=11 each), namely, Alloy Primer (ALP), Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB+Act), Metal Link (MEL), Meta Fast Bonding Liner (MFB), MR. bond (MRB), and V-Primer (VPR). Shear bond strength was determined before and after 5000 thermocycles. The data were analyzed with the Kruskal-Wallis test and Steel-Dwass test. The mean pre-/post-thermalcycling bond strengths were 1.0-14.1MPa/0.1-12.1MPa for the CER specimen and 0.9-30.2MPa/0.1-11.1MPa for the PAL specimen. For the CER specimen, the ALP, CPB, and CPB+Act groups had significantly higher bond strengths among the eight groups, at both 0 and 5000 thermocycles. For the PAL specimen, shear bond strength was significantly lower after thermalcycling in all groups tested. After 5000 thermocycles, bond strengths were significantly higher in the CPB and CPB+Act groups than in the other groups. For the PAL specimens, bond strengths were significantly lower after thermalcycling in all groups tested. The MDP functional monomer improved bonding of a gingiva-colored indirect composite material and denture base acrylic resin to zirconia ceramics. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  5. Effect of electric arc, gas oxygen torch and induction melting techniques on the marginal accuracy of cast base-metal and noble metal-ceramic crowns.

    Science.gov (United States)

    Gómez-Cogolludo, Pablo; Castillo-Oyagüe, Raquel; Lynch, Christopher D; Suárez-García, María-Jesús

    2013-09-01

    The aim of this study was to identify the most appropriate alloy composition and melting technique by evaluating the marginal accuracy of cast metal-ceramic crowns. Seventy standardised stainless-steel abutments were prepared to receive metal-ceramic crowns and were randomly divided into four alloy groups: Group 1: palladium-gold (Pd-Au), Group 2: nickel-chromium-titanium (Ni-Cr-Ti), Group 3: nickel-chromium (Ni-Cr) and Group 4: titanium (Ti). Groups 1, 2 and 3 were in turn subdivided to be melted and cast using: (a) gas oxygen torch and centrifugal casting machine (TC) or (b) induction and centrifugal casting machine (IC). Group 4 was melted and cast using electric arc and vacuum/pressure machine (EV). All of the metal-ceramic crowns were luted with glass-ionomer cement. The marginal fit was measured under an optical microscope before and after cementation using image analysis software. All data was subjected to two-way analysis of variance (ANOVA). Duncan's multiple range test was run for post-hoc comparisons. The Student's t-test was used to investigate the influence of cementation (α=0.05). Uncemented Pd-Au/TC samples achieved the best marginal adaptation, while the worst fit corresponded to the luted Ti/EV crowns. Pd-Au/TC, Ni-Cr and Ti restorations demonstrated significantly increased misfit after cementation. The Ni-Cr-Ti alloy was the most predictable in terms of differences in misfit when either torch or induction was applied before or after cementation. Cemented titanium crowns exceeded the clinically acceptable limit of 120μm. The combination of alloy composition, melting technique, casting method and luting process influences the vertical seal of cast metal-ceramic crowns. An accurate use of the gas oxygen torch may overcome the results attained with the induction system concerning the marginal adaptation of fixed dental prostheses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The reproducibility and accuracy of internal fit of Cerec 3D CAD/CAM all ceramic crowns.

    LENUS (Irish Health Repository)

    D'Arcy, Brian L

    2009-06-01

    The objective of this study was to evaluate the reproducibility and accuracy of internal fit using Cerec 3D CAD\\/CAM (computer aided design\\/computer aided manufacturing) all-ceramic crowns and to investigate the proximal contact point areas between the crowns and neighbouring teeth, in terms of location and the presence or absence of contact. A total of 48 crowns were milled and divided into two groups of twenty-four each. One group consisted of testing a Control die and the other group consisted of testing single Replica stone die duplicates of the Control die. The Internal Marginal Gap, Axio-Occlusal Transition Gap and Occlusal Gap were measured on each crown in both groups. No significant differences were identified between the mean thickness of the Marginal Gap, the Axio-Occlusal Transition Gap and the Occlusal Gap of the Control die when compared with the Replica dies indicating uniformity and consistency of the accuracy of fit and therefore die replication.

  7. Fracture resistance of computer-aided design and computer-aided manufacturing ceramic crowns cemented on solid abutments.

    Science.gov (United States)

    Stona, Deborah; Burnett, Luiz Henrique; Mota, Eduardo Gonçalves; Spohr, Ana Maria

    2015-07-01

    Because no information was found in the dental literature regarding the fracture resistance of all-ceramic crowns using CEREC (Sirona) computer-aided design and computer-aided manufacturing (CAD-CAM) system on solid abutments, the authors conducted a study. Sixty synOcta (Straumann) implant replicas and regular neck solid abutments were embedded in acrylic resin and randomly assigned (n = 20 per group). Three types of ceramics were used: feldspathic, CEREC VITABLOCS Mark II (VITA); leucite, IPS Empress CAD (Ivoclar Vivadent); and lithium disilicate, IPS e.max CAD (Ivoclar Vivadent). The crowns were fabricated by the CEREC CAD-CAM system. After receiving glaze, the crowns were cemented with RelyX U200 (3M ESPE) resin cement under load of 1 kilogram. For each ceramic, one-half of the specimens were subjected to the fracture resistance testing in a universal testing machine with a crosshead speed of 1 millimeter per minute, and the other half were subjected to the fractured resistance testing after 1,000,000 cyclic fatigue loading at 100 newtons. According to a 2-way analysis of variance, the interaction between the material and mechanical cycling was significant (P = .0001). According to a Tukey test (α = .05), the fracture resistance findings with or without cyclic fatigue loading were as follows, respectively: CEREC VITABLOCKS Mark II (405 N/454 N) was statistically lower than IPS Empress CAD (1169 N/1240 N) and IPS e.max CAD (1378 N/1025 N) (P Empress CAD and IPS e.max CAD did not differ statistically (P > .05). According to a t test, there was no statistical difference in the fracture resistance with and without cyclic fatigue loading for CEREC VITABLOCS Mark II and IPS Empress CAD (P > .05). For IPS e.max CAD, the fracture resistance without cyclic fatigue loading was statistically superior to that obtained with cyclic fatigue loading (P Empress CAD and IPS e.max CAD showed higher fracture resistance compared with CEREC VITABLOCS Mark II. The cyclic

  8. Marginal and internal fit of CAD-CAM-fabricated composite resin and ceramic crowns scanned by 2 intraoral cameras.

    Science.gov (United States)

    de Paula Silveira, Alessandra C; Chaves, Sacha B; Hilgert, Leandro A; Ribeiro, Ana Paula D

    2017-03-01

    The precision of fit of chairside computer-aided design and computer-aided manufacturing (CAD-CAM) complete crowns is affected by digital impression and restorative material. The purpose of this in vitro study was to evaluate by microcomputed tomography (μCT) the marginal and internal adaptation of composite resin and ceramic complete crowns fabricated with 2 different intraoral cameras and 2 restorative materials. Ten extracted human third molars received crown preparations. For each prepared molar, 2 digital impressions were made with different intraoral cameras of the CEREC system, Bluecam and Omnicam. Four groups were formed: LB (Lava Ultimate+Bluecam), EB (Emax+Bluecam), LO (Lava Ultimate+Omnicam), and EO (Emax+Omnicam). Before measuring the precision of fit, all crowns were stabilized with a silicone material. Each unit (crown + prepared tooth) was imaged with μCT, and marginal and internal discrepancies were analyzed. For the 2D analysis, 120 measurements were made of each crown for marginal adaptation, 20 for marginal discrepancy (MD), and 20 for absolute marginal discrepancy (AMD); and for internal adaptation, 40 for axial space (AS) and 40 for occlusal space (OS). After reconstructing the 3D images, the average internal space (AIS) was calculated by dividing the total volume of the internal space by the contact surface. Data were analyzed with 2-way ANOVA and quantile regression. Regarding marginal adaptation, no significant differences were observed among groups. For internal adaptation measured in the 2D evaluation, a significant difference was observed between LO and EO for the AS variable (Mann-Whitney test; POmnicam, and composite resin crowns showed less discrepancy than did ceramic crowns. The marginal adaptations assessed in all groups showed values within the clinically accepted range. Moreover, the composite resin blocks associated with the Bluecam intraoral camera demonstrated the best results for AIS compared with those of the other groups

  9. Wear mechanisms of toughened zirconias

    International Nuclear Information System (INIS)

    Becker, P.C.; Libsch, T.A.; Rhee, S.K.

    1985-01-01

    The dry friction and wear behavior of toughened zirconias against hardened steel was studied using the falex ring and block technique. Three experimental ZrO 2 -Y 2 O 3 ceramics and two commerical ZrO 2 -MgO ceramics were investigated. Each ceramic was tested at 500 and 2000 rpm at normal loads in the range 2.3 to 40.8 kg. Significant trends in the friction and wear data were found correlating composition, test speeds, and loads. Microstructural examination of the ring, ceramic block, and wear debris has shown that the wear process is very complex and incorporates a number of mechanisms

  10. To Evaluate Effect of Airborne Particle Abrasion using Different Abrasives Particles and Compare Two Commercial Available Zirconia on Flexural Strength on Heat Treatment

    Science.gov (United States)

    Prasad, Hari A.; Pasha, Naveed; Hilal, Mohammed; Amarnath, G. S.; Kundapur, Vinaya; Anand, M; Singh, Sumeet

    2017-01-01

    Background and objective: The popularity of ceramic restorations can be attributed to its life-like appearance, durability and biocompatibility and therefore ceramic restorations have been widely used for anterior and posterior teeth. Ceramic restorations have esthetic and biocompatible advantages but low fracture resistance. Since it has high flexural strength and fracture resistance, yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) is the dental material most commonly used for the core of ceramic crowns and fixed dental prosthesis. In spite of improved mechanical properties, acceptable marginal adaptation and biocompatibility the whitish opacity of zirconia is an obvious esthetic disadvantage. The zirconia framework is often veneered with conventional feldspathic porcelain to achieve a natural appearance. However it is difficult to achieve sufficient bond strength between zirconia and the veneering material. Achieving sufficient bond strength between the veneering ceramic and the zirconia core is a major challenge in the long term clinical success of veneered zirconia restorations. The main objective of this study is to evaluate the effect of different surface treatments on the fracture strength of the two commercially available Zirconia namely Ceramill and ZR-White (AMANNGIRRBACH and UPCERA) respectively. Method: Two commercially available pre-sinteredyttrium stabilized Zirconia blanks (ZR-White and Ceramill) from AMANNGIRRBACH and UPCERA respectively are used to produce the disc shaped specimens of size (15.2 ± 0.03 mm in diameter and 1.2 ± 0.03 mm thick) from each Zirconia blank. All disc shaped specimens are heated at 1200°C in a furnace for 2 hours to form homogenous tetragonal ZrO2. The dimensions of the specimens are measured with a digital caliper (aerospace). The thickness and diameter of each specimen are calculated as the means of 3 measurements made at random sites. 80 discs from each Zirconia blank are divided into ten groups of 8

  11. Fluency over the monoclinic zirconia indentation

    International Nuclear Information System (INIS)

    Pereira, A.S.; Jornada, J.A.H. da

    1992-01-01

    It was investigated the environment and the time dependence of the Vickers microhardness of monoclinic zirconia single-crystals. The samples were kept at room temperature and the identifications were performed for different environments (air, toluene and water). An indentation creep process was observed for the samples indented is moist media, indicating for a water activated plastic relaxation mechanism. The possible influence of such effect in the fatigue and phase transformations mechanisms of zirconia based ceramics is discussed. (author)

  12. Effect of adhesive luting on the fracture resistance of zirconia compared to that of composite resin and lithium disilicate glass ceramic

    Directory of Open Access Journals (Sweden)

    Myung-Jin Lim

    2017-02-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of adhesive luting on the fracture resistance of zirconia compared to that of a composite resin and a lithium disilicate glass ceramic. Materials and Methods The specimens (dimension: 2 mm × 2 mm × 25 mm of the composite resin, lithium disilicate glass ceramic, and yttria-stabilized tetragonal zirconia polycrystal (Y-TZP were prepared. These were then divided into nine groups: three non-luting groups, three non-adhesive luting groups, and three adhesive luting groups, for each restorative material. In the non-luting groups, specimens were placed on the bovine tooth without any luting agents. In the non-adhesive luting groups, only zinc phosphate cement was used for luting the specimen to the bovine tooth. In the adhesive luting groups, specimens were pretreated, and the adhesive luting procedure was performed using a self-adhesive resin cement. For all the groups, a flexural test was performed using universal testing machine, in which the fracture resistance was measured by recording the force at which the specimen was fractured. Results The fracture resistance after adhesive luting increased by approximately 29% in the case of the composite resin, 26% in the case of the lithium disilicate glass ceramic, and only 2% in the case of Y-TZP as compared to non-adhesive luting. Conclusions The fracture resistance of Y-TZP did not increased significantly after adhesive luting as compared to that of the composite resin and the lithium disilicate glass ceramic.

  13. An overview of monolithic zirconia in dentistry

    Directory of Open Access Journals (Sweden)

    Özlem Malkondu

    2016-07-01

    Full Text Available Zirconia restorations have been used successfully for years in dentistry owing to their biocompatibility and good mechanical properties. Because of their lack of translucency, zirconia cores are generally veneered with porcelain, which makes restorations weaker due to failure of the adhesion between the two materials. In recent years, all-ceramic zirconia restorations have been introduced in the dental sector with the intent to solve this problem. Besides the elimination of chipping, the reduced occlusal space requirement seems to be a clear advantage of monolithic zirconia restorations. However, scientific evidence is needed to recommend this relatively new application for clinical use. This mini-review discusses the current scientific literature on monolithic zirconia restorations. The results of in vitro studies suggested that monolithic zirconia may be the best choice for posterior fixed partial dentures in the presence of high occlusal loads and minimal occlusal restoration space. The results should be supported with much more in vitro and particularly in vivo studies to obtain a final conclusion.

  14. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ Powder

    Directory of Open Access Journals (Sweden)

    Chen Barad

    2017-12-01

    Full Text Available Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives.

  15. Synthesis and ceramic processing of zirconia alumina composites for application as solid oxide fuel cell electrolytes; Sintese e processamento de compositos de zirconia-alumina para aplicacao como eletrolito em celulas a combustivel de oxido solido

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Rafael Henrique Lazzari

    2007-07-01

    The global warmness and the necessity to obtain clean energy from alternative methods than petroleum raises the importance of developing cleaner and more efficient systems of energy generation, among then, the solid oxide fuel cell (SOFC). Cubic stabilized zirconia (CSZ) has been the most studied material as electrolyte in SOFC, due to its ionic conductivity and great stability at operation conditions. However, its low fracture toughness difficulties its application as a thin layer, what could lead to an improvement of cell efficiency. In this sense, the alumina addition in CSZ forms a composite, which can shift its mechanical properties, without compromising its electrical properties. In this work, coprecipitation synthesis route and ceramic processing of zirconia-alumina composites were studied, in order to establish optimum conditions to attain high density, homogeneous microstructure, and better mechanical properties than CSZ, without compromising ionic conductivity. For this purpose, composites containing up to 40 wt % of alumina, in a 9 mol % yttria-stabilized zirconia (9Y-CSZ) matrix were evaluated. In order to optimize the synthesis of the composites, a preliminary study of powder obtaining and processing were carried out, at compositions containing 20 wt % of alumina, in 9Y-CSZ. The ceramic powders were characterized by helium picnometry, X-ray diffraction, scanning electronic microscopy, transmission electronic microscopy, thermogravimetry, differential scanning calorimetry, granulometry by laser diffraction and gas adsorption (BET). The characterization of sinterized compacts were performed by X-ray diffraction, scanning electron microscopy, optical microscopy, density measurements, Vickers indentation and impedance spectroscopy. The obtained results show that the alumina addition, in the 9Y-CSZ matrix powders, raises the specific surface area, promotes deagglomeration of powders and elevates the oxides crystallization temperature, requiring higher

  16. Deposition of crystalline hydroxyapatite nano-particle on zirconia ceramic: a potential solution for the poor bonding characteristic of zirconia ceramics to resin cement.

    Science.gov (United States)

    Azari, Abbas; Nikzad, Sakineh; Yazdani, Arash; Atri, Faezeh; Fazel Anvari-Yazdi, Abbas

    2017-07-01

    The poor bonding strength of zirconia to different dental substrates is one of the challenging issues in restorative dentistry. Hydroxyapatite is an excellent biocompatible material with fine bonding properties. In this study, it was hypothesized that hydroxyapatite coating on zirconia would improve its bond strength. Forty-five zirconia blocks were prepared and randomly divided into three groups: hydroxyapatite coating, sandblasting, and no preparation (control). The blocks were bonded to cement and the micro-shear bond strength was measured following load application. The bond strength values were analyzed with the Kruskal-Wallis test in 3 groups and paired comparisons were made using the Mann-Whitney U test. The failure patterns of the specimens were studied by a stereomicroscope and a scanning electron microscope and then analyzed by the chi-square test (significance level = 0.05). Deposition of hydroxyapatite on the zirconia surface significantly improved its bond strength to the resin cement in comparison with the control specimens (p improved the bond strength quality and values.

  17. Marginal and internal fit of zirconia copings obtained using different digital scanning methods

    Directory of Open Access Journals (Sweden)

    Lorena Oliveira PEDROCHE

    Full Text Available Abstract The objective of this study was to evaluate the marginal and internal fit of zirconia copings obtained with different digital scanning methods. A human mandibular first molar was set in a typodont with its adjacent and antagonist teeth and prepared for an all-ceramic crown. Digital impressions were made using an intraoral scanner (3Shape. Polyvinyl siloxane impressions and Type IV gypsum models were also obtained and scanned with a benchtop laboratory scanner (3Shape D700. Ten zirconia copings were fabricated for each group using CAD-CAM technology. The marginal and internal fit of the zirconia copings was assessed by the silicone replica technique. Four sections of each replica were obtained, and each section was evaluated at four points: marginal gap (MG, axial wall (AW, axio-occlusal edge (AO and centro-occlusal wall (CO, using an image analyzing software. The data were submitted to one-way ANOVA and Tukey’s test (α = 0.05. They showed statistically significant differences for MG, AO and CO. Regarding MG, intraoral scanning showed lower gap values, whereas gypsum model scanning showed higher gap values. Regarding AO and CO, intraoral digital scanning showed lower gap values. Polyvinyl siloxane impression scanning and gypsum model scanning showed higher gap values and were statistically similar. It can be concluded that intraoral digital scanning provided a lower mean gap value, in comparison with conventional impressions and gypsum casts scanned with a standard benchtop laboratory scanner.

  18. Effect of different grinding burs on the physical properties of zirconia.

    Science.gov (United States)

    Lee, Kyung-Rok; Choe, Han-Cheol; Heo, Yu-Ri; Lee, Jang-Jae; Son, Mee-Kyoung

    2016-04-01

    Grinding with less stress on 3Y-TZP through proper selection of methods and instruments can lead to a long-term success of prosthesis. The purpose of this study was to compare the phase transformation and physical properties after zirconia surface grinding with 3 different grinding burs. Forty disc-shaped zirconia specimens were fabricated. Each Ten specimens were ground with AllCeramic SuperMax (NTI, Kahla, Germany), Dura-Green DIA (Shofu Inc., Kyoto, Japan), and Dura-Green (Shofu Inc., Kyoto, Japan). Ten specimens were not ground and used as a control group. After the specimen grinding, XRD analysis, surface roughness test, FE-SEM imaging, and biaxial flexural strength test were performed. After surface grinding, small amount of monoclinic phase in all experimental groups was observed. The phase change was higher in specimens, which were ground with Dura-Green DIA and AllCeramic SuperMax burs. The roughness of surfaces increased in specimens, which were ground with Dura-Green DIA and AllCeramic SuperMax burs than control groups and ground with Dura-Green. All experimental groups showed lower flexural strength than control group, but there was no statistically significant difference between control group and ground with Dura-Green DIA and AllCeramic SuperMax burs. The specimens, which were ground with Dura- Green showed the lowest strength. The use of dedicated zirconia-specific grinding burs such as Dura-Green DIA and AllCeramic SuperMax burs decreases the grinding time and did not significantly affect the flexural strength of zirconia, and therefore, they may be recommended. However, a fine polishing process should be accompanied to reduce the surface roughness after grinding.

  19. Properties and clinical application of zirconia bioceramics in medicine

    Directory of Open Access Journals (Sweden)

    Čedomir Oblak

    2014-01-01

    Full Text Available Background: A group of inorganic non-metal biomaterials, that are commonly used in clinical medicine to replace or repair tissues, can be classified as a bioceramics. This group includes bioactive glasses, glass-ceramics, hydroxy-apatite and some other calcium phosphates. In addition, some bio-inert engineering ceramics materials have become increasingly utilised, aluminum oxide, zirconium oxide and their composites being the most popular. With the developement of yttria stabilized tetragonal zirconium oxide ceramics (Y-TZP medical community received a high strength biomaterial that is currently a material of choice for the manufacturing of medical devices. Y-TZP ceramics is becoming also increasingly used in dental medicine, where frameworks are manufactured by the use of computer-assisted technology.Conclusions: The article describes the basic properties of zirconia oxide ceramics important for the use in clinical medicine; high strength and fracture toughness, biocompatibility and negligible radiation. The ageing issue of this particular material, which is attributable to the thermo-dynamical instability of tetragonal zirconium oxide in hydrothermal conditions, is also discussed. When exposed to an aqueous environment over long periods of time, the surface of the Y-TZP ceramic will start transforming spontaneously into the monoclinic structure. The mechanism leading to the t-m transformation is temperature-dependent and is accompanied by extensive micro-cracking, which ultimately leads to strength degradation. The degradation might influence the clinical success rate of medical devices and therefore Y-TZP femoral heads are no longer made of pure zirconium oxide. Composites of zirconium and aluminium oxides are used instead, that are currently the strongest ceramic materials used in clinical medicine. In this work the clinical application of zirconia oxide ceramics in dental medicine is also presented. Conventional porcelain fused to metal

  20. Bond strength and Raman analysis of the zirconia-feldspathic porcelain interface.

    Science.gov (United States)

    Ramos, Carla Müller; Cesar, Paulo Francisco; Lia Mondelli, Rafael Francisco; Tabata, Americo Sheitiro; de Souza Santos, Juliete; Sanches Borges, Ana Flávia

    2014-10-01

    Zirconia has the best mechanical properties of the available ceramic systems. However, the stability of the zirconia-feldspathic porcelain interface may be jeopardized by the presence of the chipping and debonding of the feldspathic porcelain. The purpose of this study is to evaluate the shear bond strength of 3 cold isostatic pressed zirconia materials and a feldspathic veneer by analyzing their interface with micro-Raman spectroscopy. The test groups were experimental zirconia, Zirkonzahn zirconia, and Schuetz zirconia. Blocks of partially sintered zirconia were cut into disks (n=20) and then veneered with a feldspathic porcelain. Half of the specimens from each group (n=10) were incubated in 37°C water for 24 hours, and the other half were thermocycled. All the specimens were then subjected to shear testing. The fractured areas were analyzed with optical stereomicroscopy and classified as adhesive, cohesive, or an adhesive-cohesive failure. Spectral patterns were examined to detect bands related to the zirconia and feldspathic porcelain phases. The shear strength data were submitted to 2-way ANOVA. No significant differences in shear bond strength were observed among the 3 groups, regardless of whether or not the specimens were thermocycled. Adhesive failures were the most prevalent types of failure (70%). Raman spectra were clearly distinguished for all the materials, which showed the presence of tetragonal and monoclinic phases. The controlled production of the experimental zirconia did not influence the results of the bond strength. Raman analysis suggested a process of interdiffusion by the presence of peaks associated with the zirconia and feldspathic ceramics. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    Science.gov (United States)

    Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.

    2015-10-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal τ = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 и 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.

  2. Influence of the supporting die structures on the fracture strength of all-ceramic materials.

    Science.gov (United States)

    Yucel, Munir Tolga; Yondem, Isa; Aykent, Filiz; Eraslan, Oğuz

    2012-08-01

    This study investigated the influence of the elastic modulus of supporting dies on the fracture strengths of all-ceramic materials used in dental crowns. Four different types of supporting die materials (dentin, epoxy resin, brass, and stainless steel) (24 per group) were prepared using a milling machine to simulate a mandibular molar all-ceramic core preparation. A total number of 96 zirconia cores were fabricated using a CAD/CAM system. The specimens were divided into two groups. In the first group, cores were cemented to substructures using a dual-cure resin cement. In the second group, cores were not cemented to the supporting dies. The specimens were loaded using a universal testing machine at a crosshead speed of 0.5 mm/min until fracture occurred. Data were statistically analyzed using two-way analysis of variance and Tukey HSD tests (α = 0.05). The geometric models of cores and supporting die materials were developed using finite element method to obtain the stress distribution of the forces. Cemented groups showed statistically higher fracture strength values than non-cemented groups. While ceramic cores on stainless steel dies showed the highest fracture strength values, ceramic cores on dentin dies showed the lowest fracture strength values among the groups. The elastic modulus of the supporting die structure is a significant factor in determining the fracture resistance of all-ceramic crowns. Using supporting die structures that have a low elastic modulus may be suitable for fracture strength tests, in order to accurately reflect clinical conditions.

  3. Fracture resistance of aluminium oxide and lithium disilicate-based crowns using different luting cements: an in vitro study.

    Science.gov (United States)

    Al-Wahadni, Ahed M; Hussey, David L; Grey, Nicholas; Hatamleh, Muhanad M

    2009-03-01

    The aim of this study was to investigate the fracture resistance of two types of ceramic crowns cemented with two different cements. Forty premolar crowns were fabricated using lithium-disilicate (IPS Empress-2) and glass-infiltrated aluminium-oxide (In-Ceram) ceramic systems. The crowns were divided into four groups (n=10) with Group 1 (IPS Empress-2) and Group 2 (In-Ceram) cemented with glass ionomer cement. Group 3 (IPS Empress-2) and Group 4 (In-Ceram) were cemented with resin cement. Crowns were tested in a universal testing machine at a compressive-load speed of 10 mm/min. Fracture modes were grouped into five categories. One way analysis of variance (ANOVA) and Bonferroni post-hoc tests were used to detect statistical significances (p0.05) on fracture resistance within each ceramic system tested. In-Ceram crowns cemented with either glass ionomer or resin cements exhibited a statistically significantly higher fracture-resistance than IPS Empress-2 crowns (pEmpress-2 and In-Ceram crowns was not affected by the type of cement used for luting. Both In-Ceram and IPS Empress-2 crowns can be successfully luted with the cements tested with In-Ceram exhibiting higher fracture resistance than IPS Empress-2.

  4. Thermal barrier coating by electron beam-physical vapor deposition of zirconia co-doped with yttria and niobia

    Directory of Open Access Journals (Sweden)

    Daniel Soares de Almeida

    2010-08-01

    Full Text Available The most usual ceramic material for coating turbine blades is yttria doped zirconia. Addition of niobia, as a co-dopant in the Y2O3-ZrO2 system, can reduce the thermal conductivity and improve mechanical properties of the coating. The purpose of this work was to evaluate the influence of the addition of niobia on the microstructure and thermal properties of the ceramic coatings. SEM on coatings fractured cross-section shows a columnar structure and the results of XRD show only zirconia tetragonal phase in the ceramic coating for the chemical composition range studied. As the difference NbO2,5-YO1,5 mol percent increases, the tetragonality increases. A significant reduction of the thermal conductivity, measured by laser flash technique in the zirconia coating co-doped with yttria and niobia when compared with zirconia-yttria coating was observed.

  5. Characterization of the Sol-Gel Transition for Zirconia-Toughened Alumina Precursors

    Science.gov (United States)

    Moeti, I.; Karikari, E.; Chen, J.

    1998-01-01

    High purity ZTA ceramic powders with and without yttria were produced using metal alkoxide precursors. ZTA ceramic powders with varying volume percents of zirconia were prepared (7, 15, and 22%). Aluminum tri-sec butoxide, zirconium propoxide, and yttrium isopropoxide were the reagents used. Synthesis conditions were varied to control the hydrolysis and the aging conditions for the sol to gel transition. FTIR analysis and theological characterization were used to follow the structural evolution during the sol to gel transition. The greater extent of hydrolysis and the build-up of structure measured from viscoelastic properties were consistent. Heat treatment was conducted to produce submicron grain fully crystalline ZTA ceramic powders. In all experimental cases a-alumina and tetragonal zirconia phases were confirmed even in the absence of yttria.

  6. [Study of relationship between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite powder].

    Science.gov (United States)

    Chai, Feng; Xu, Ling; Liao, Yun-mao; Chao, Yong-lie

    2003-07-01

    The fabrication of all-ceramic dental restorations is challenged by ceramics' relatively low flexural strength and intrinsic poor resistance to fracture. This paper aimed at investigating the relationships between powder-size gradation and mechanical properties of Zirconia toughened glass infiltrated nanometer-ceramic composite (Al(2)O(3)-nZrO(2)). Al(2)O(3)-nZrO(2) ceramics powder (W) was processed by combination methods of chemical co-precipitation and ball milling with addition of different powder-sized ZrO(2). Field-emission scanning electron microscopy was used to determine the particle size distribution and characterize the particle morphology of powders. The matrix compacts were made by slip-casting technique and sintered to 1,450 degrees C and flexural strength and the fracture toughness of them were measured. 1. The particle distribution of Al(2)O(3)-nZrO(2) ceramics powder ranges from 0.02 - 3.5 micro m and among them the superfine particles almost accounted for 20%. 2. The ceramic matrix samples with addition of nZrO(2) (W) showed much higher flexural strength (115.434 +/- 5.319) MPa and fracture toughness (2.04 +/- 0.10) MPa m(1/2) than those of pure Al(2)O(3) ceramics (62.763 +/- 7.220 MPa; 1.16 +/- 0.02 MPa m(1/2)). The particle size of additive ZrO(2) may impose influences on mechanical properties of Al(2)O(3)-nZrO(2) ceramics matrix. Good homogeneity and reasonable powder-size gradation of ceramic powder can improve the mechanical properties of material.

  7. Sintering and thermal ageing studies of zirconia - yttria ceramics by impedance spectroscopy

    International Nuclear Information System (INIS)

    Florio, Daniel Zanetti de

    1998-01-01

    ZrO 2 :8 mol %Y 2 O 3 solid electrolyte ceramic pellets have been prepared with powders of three different origins: a Nissan (Japan) commercial powder, a powder obtained by the coprecipitation technique at IPEN, and the mixing of powder oxides (ZrO 2 produced at a Pilot Plant at IPEN and 99.9% pure Y 2 O 3 of USA origin). These starting powders have been analysed by the following techniques: X-ray fluorescence for yttrium content, X-ray diffraction for structural phase content, sedimentation for particle size distribution, gas adsorption (BET) for surface area determination, and transmission electron microscopy for average particle size determination. Pressed ceramic pellets have been analysed by dilatometry to evaluate the sintering stages. Sintered pellets have been characterized by X-ray diffraction for phase analysis and scanning electron microscopy for grain morphology analysis. Impedance spectroscopy analysis have been carried out to follow thermal ageing of zirconia-yttria solid electrolyte at 600 deg C, the working temperature of permanent oxygen sensor, and to study sintering kinetics. The main results show that ageing at 600 deg C decreases the emf sensor response in the first 100 h to a steady value. Moreover, sintering studies by impedance spectroscopy allowed for finding correlations between electrical parameters, sintering kinetics and grain growth mechanisms. (author)

  8. Preparation and characterization of TiO2 and Si-doped octacalcium phosphate composite coatings on zirconia ceramics (Y-TZP) for dental implant applications

    Science.gov (United States)

    Bao, Lei; Liu, Jingxiao; Shi, Fei; Jiang, Yanyan; Liu, Guishan

    2014-01-01

    In order to prevent the low temperature degradation and improve the bioactivity of zirconia ceramic implants, TiO2 and Si-doped octacalcium phosphate composite coating was prepared on zirconia substrate. The preventive effect on low temperature degradation and surface morphology of the TiO2 layer were studied. Meanwhile, the structure and property changes of the bioactive coating after doping Si were discussed. The results indicate that the dense TiO2 layer, in spite of some microcracks, inhibited the direct contact of the water vapor with the sample's surface and thus prevented the low temperature degradation of zirconia substrates. The acceleration aging test shows that the ratio of the monoclinic phase transition decreased from 10% for the original zirconia substrate to 4% for the TiO2-coated substrate. As to the Si-doped octacalcium phosphate coating prepared by biomimetic method, the main phase composition of the coating was octacalcium phosphate. The morphology of the coating was lamellar-like, and the surface was uniform and continuous with no cracks being observed. It is suggested that Si was added into the coating both through substituting for PO43- and doping as NaSiO3.

  9. Combined mode I-mode II fracture of 12-mol%-ceria-doped tetragonal zirconia polycrystalline ceramic

    International Nuclear Information System (INIS)

    Tikare, V.; Choi, S.R.

    1997-01-01

    The mode I, mode II, and combined mode I-mode II fracture behavior of ceria-doped tetragonal zirconia polycrystalline (Ce-TZP) ceramic was studied. The single-edge-precracked-beam (SEPB) samples were fractured using the asymmetric four-point-bend geometry. The ratio of mode I to mode II loading was varied by varying the degree of asymmetry in the four-point-bend geometry. The minimum strain energy density theory best described the mixed-mode fracture behavior of Ce-TZP with the mode I fracture toughness, K IC = 8.2 ± 0.6 MPa·m 1/2 , and the mode II fracture toughness, K IIC = 8.6 ± 1.3 MPa·m 1/2

  10. Effect of zirconia content and powder processing mechanical properties of gelcasted ZTA composite

    International Nuclear Information System (INIS)

    Khoshkalam, M.; Faghihi-Sani, M.A.; Nojoomi, A.

    2013-01-01

    Addition of fine zirconia particles in the alumina matrix in order to produce ZTA composite is a well-known method for improving the mechanical properties of alumina ceramics such as flexural strength and fracture toughness. Increasing homogeneity and reducing alumina grain size are two key factors for achieving proper mechanical properties in this ceramic matrix composite. In this work two batches of ZTA powder precursor were prepared through mixing of alumina and zirconia by ball milling and in situ synthesis of ZTA composite via solution combustion method. The bending strength testing samples were fabricated through gel-casting process. The effects of different powder processing methods as well as zirconia contents on microstructural homogeneity and mechanical properties of ZTA composites were investigated. The samples produced by solution combustion synthesized powder yielded higher homogeneity, finer microstructure and higher flexural strength. Results showed an upswing in the fracture toughness for the synthesized samples even up to 20 vol% zirconia, while the mixed samples depicted optimum fracture toughness in 10 vol% zirconia content. (author)

  11. Residual stress measurement in veneering ceramic by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2011-05-01

    Mismatch in thermal expansion properties between veneering ceramic and metallic or high-strength ceramic cores can induce residual stresses and initiate cracks when combined with functional stresses. Knowledge of the stress distribution within the veneering ceramic is a key factor for understanding and predicting chipping failures, which are well-known problems with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objectives of this study are to develop a method for measuring the stress profile in veneering ceramics and to compare ceramic-fused-to-metal compounds to veneered Yttria-tetragonal-zirconia-polycrystal ceramic. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. Because of the high sensitivity needed in comparison with industrial applications, a high sensitivity electrical measurement chain was developed. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth and becoming tensile at 0.5-1.0mm from the surface, and then becoming slightly compressive again. The zirconia samples exhibited a stress depth profile of larger magnitude. The hole drilling method was shown be a practical tool for measuring residual stresses in veneering ceramics. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Characterization and surface treatment effects on topography of a glass-infiltrated alumina/zirconia-reinforced ceramic.

    Science.gov (United States)

    Della Bona, Alvaro; Donassollo, Tiago A; Demarco, Flávio F; Barrett, Allyson A; Mecholsky, John J

    2007-06-01

    Characterize the microstructure, composition and some physical properties of a glass-infiltrated alumina/zirconia-reinforced ceramic (IZ) and the effect of surface treatment on topography. IZ ceramic specimens were fabricated according to ISO6872 instructions and polished through 1 microm alumina abrasive. Quantitative and qualitative analyses were performed using scanning electron microscopy (SEM), backscattered imaging (BSI), electron dispersive spectroscopy (EDS) and stereology. The elastic modulus (E) and Poisson's ratio (nu) were determined using ultrasonic waves, and the density (rho) using a helium pycnometer. The following ceramic surface treatments were used: AP-as-polished; HF-etching with 9.5% hydrofluoric acid for 90 s; SB-sandblasting with 25 microm aluminum oxide particles for 15s and SC-blasting with 30 microm aluminum oxide particles modified by silica (silica coating) for 15s. An optical profilometer was used to examine the surface roughness (Ra) and SEM-EDS were used to measure the amount of silica after all treatments. The IZ mean property values were as follows: rho=4.45+/-0.01 g/cm(3); nu=0.26 and E=245 GPa. Mean Ra values were similar for AP- and HF-treated IZ but significantly increased after either SC or SB treatment (pceramic. Treating IZ with either SB or SC produced greater Ra values and the SC showed a significant increase in the surface concentration of silica, which may enhance bonding to resin via silane coupling.

  13. Influence of ceramic surface texture on the wear of gold alloy and heat-pressed ceramics.

    Science.gov (United States)

    Saiki, Osamu; Koizumi, Hiroyasu; Nogawa, Hiroshi; Hiraba, Haruto; Akazawa, Nobutaka; Matsumura, Hideo

    2014-01-01

    The purpose of this study was to evaluate the influence of ceramic surface texture on the wear of rounded rod specimens. Plate specimens were fabricated from zirconia (ZrO2), feldspathic porcelain, and lithium disilicate glass ceramics (LDG ceramics). Plate surfaces were either ground or polished. Rounded rod specimens with a 2.0-mm-diameter were fabricated from type 4 gold alloy and heat-pressed ceramics (HP ceramics). Wear testing was performed by means of a wear testing apparatus under 5,000 reciprocal strokes of the rod specimen with 5.9 N vertical loading. The results were statistically analyzed with a non-parametric procedure. The gold alloy showed the maximal height loss (90.0 µm) when the rod specimen was abraded with ground porcelain, whereas the HP ceramics exhibited maximal height loss (49.8 µm) when the rod specimen was abraded with ground zirconia. There was a strong correlation between height loss of the rod and surface roughness of the underlying plates, for both the gold alloy and HP ceramics.

  14. Ternary ceramic alloys of Zr-Ce-Hf oxides

    Science.gov (United States)

    Becher, P.F.; Funkenbusch, E.F.

    1990-11-20

    A ternary ceramic alloy is described which produces toughening of zirconia and zirconia composites through the stress transformation from tetragonal phase to monoclinic phase. This alloy, having the general formula Ce[sub x]Hf[sub y]Zr[sub 1[minus]x[minus]y]O[sub 2], is produced through the addition of appropriate amounts of ceria and hafnia to the zirconia. Typically, improved toughness is achieved with about 5 to about 15 mol % ceria and up to about 40 mol % hafnia. The preparation of alloys of these compositions are given together with data as to the densities, tetragonal phase content, hardness and fracture toughness. The alloys are useful in preparing zirconia bodies as well as reinforcing ceramic composites. 1 fig.

  15. Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain.

    Science.gov (United States)

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol-gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia-porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and Pcoating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain.

  16. Effect of Ceramic Surface Treatments After Machine Grinding on the Biaxial Flexural Strength of Different CAD/CAM Dental Ceramics.

    Science.gov (United States)

    Bagheri, Hossein; Hooshmand, Tabassom; Aghajani, Farzaneh

    2015-09-01

    This study aimed to evaluate the effect of different ceramic surface treatments after machining grinding on the biaxial flexural strength (BFS) of machinable dental ceramics with different crystalline phases. Disk-shape specimens (10mm in diameter and 1.3mm in thickness) of machinable ceramic cores (two silica-based and one zirconia-based ceramics) were prepared. Each type of the ceramic surfaces was then randomly treated (n=15) with different treatments as follows: 1) machined finish as control, 2) machined finish and sandblasting with alumina, and 3) machined finish and hydrofluoric acid etching for the leucite and lithium disilicate-based ceramics, and for the zirconia; 1) machined finish and post-sintered as control, 2) machined finish, post-sintered, and sandblasting, and 3) machined finish, post-sintered, and Nd;YAG laser irradiation. The BFS were measured in a universal testing machine. Data based were analyzed by ANOVA and Tukey's multiple comparisons post-hoc test (α=0.05). The mean BFS of machined finish only surfaces for leucite ceramic was significantly higher than that of sandblasted (P=0.001) and acid etched surfaces (P=0.005). A significantly lower BFS was found after sandblasting for lithium disilicate compared with that of other groups (Pceramics was affected by the type of ceramic material and surface treatment method. Sandblasting with alumina was detrimental to the strength of only silica-based ceramics. Nd:YAG laser irradiation may lead to substantial strength degradation of zirconia.

  17. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part II: Multiple-unit FDPs.

    Science.gov (United States)

    Pjetursson, Bjarni Elvar; Sailer, Irena; Makarov, Nikolay Alexandrovich; Zwahlen, Marcel; Thoma, Daniel Stefan

    2015-06-01

    To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported fixed dental prostheses (FDPs) and to describe the incidence of biological, technical and esthetic complications. Medline (PubMed), Embase and Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported FDPs with a mean follow-up of at least 3 years. This was complemented by an additional hand search and the inclusion of 10 studies from a previous systematic review [1]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. Forty studies reporting on 1796 metal-ceramic and 1110 all-ceramic FDPs fulfilled the inclusion criteria. Meta-analysis of the included studies indicated an estimated 5-year survival rate of metal-ceramic FDPs of 94.4% (95% CI: 91.2-96.5%). The estimated survival rate of reinforced glass ceramic FDPs was 89.1% (95% CI: 80.4-94.0%), the survival rate of glass-infiltrated alumina FDPs was 86.2% (95% CI: 69.3-94.2%) and the survival rate of densely sintered zirconia FDPs was 90.4% (95% CI: 84.8-94.0%) in 5 years of function. Even though the survival rate of all-ceramic FDPs was lower than for metal-ceramic FDPs, the differences did not reach statistical significance except for the glass-infiltrated alumina FDPs (p=0.05). A significantly higher incidence of caries in abutment teeth was observed for densely sintered zirconia FDPs compared to metal-ceramic FDPs. Significantly more framework fractures were reported for reinforced glass ceramic FDPs (8.0%) and glass-infiltrated alumina FDPs (12.9%) compared to metal-ceramic FDPs (0.6%) and densely sintered zirconia FDPs (1.9%) in 5 years in function. However, the incidence of ceramic fractures and loss of retention was significantly (p=0.018 and 0.028 respectively) higher for densely sintered zirconia FDPs compared to all other types of FDPs. Survival rates of all

  18. Clinical risk factors related to failures with zirconia-based restorations: an up to 9-year retrospective study.

    Science.gov (United States)

    Koenig, Vinciane; Vanheusden, Alain J; Le Goff, Stéphane O; Mainjot, Amélie K

    2013-12-01

    The first objective of this study was to retrospectively evaluate zirconia-based restorations (ZBR). The second was to correlate failures with clinical parameters and to identify and to analyse chipping failures using fractographic analysis. 147 ZBR (tooth- and implant-supported crowns and fixed partial dentures (FPDs)) were evaluated after a mean observation period of 41.5 ± 31.8 months. Accessorily, zirconia implant abutments (n=46) were also observed. The technical (USPHS criteria) and the biological outcomes of the ZBR were evaluated. Occlusal risk factors were examined: occlusal relationships, parafunctional habits, and the presence of occlusal nightguard. SEM fractographic analysis was performed using the intra-oral replica technique. The survival rate of crowns and FPDs was 93.2%, the success rate was 81.63% and the 9-year Kaplan-Meier estimated success rate was 52.66%. The chipping rate was 15% and the framework fracture rate was 2.7%. Most fractographic analyses revealed that veneer fractures originated from occlusal surface roughness. Several parameters were shown to significantly influence veneer fracture: the absence of occlusal nightguard (p=0.0048), the presence of a ceramic restoration as an antagonist (p=0.013), the presence of parafunctional activity (p=0.018), and the presence of implants as support (p=0.026). The implant abutments success rate was 100%. The results of the present study confirm that chipping is the first cause of ZBR failure. They also underline the importance of clinical parameters in regards to the explanation of this complex problem. This issue should be considered in future prospective clinical studies. Practitioners can reduce chipping failures by taking into account several risk parameters, such as the presence of a ceramic restoration as an antagonist, the presence of parafunctional activity and the presence of implants as support. The use of an occlusal nightguard can also decrease failure rate. Copyright © 2013 Elsevier

  19. Deposition of Crystalline Hydroxyapatite Nanoparticles on Y-TZP Ceramic: A Potential Solution to Enhance Bonding Characteristics of Y-TZP Ceramics

    Directory of Open Access Journals (Sweden)

    Abbas Azari

    2017-08-01

    Full Text Available Objectives: Many advantages have been attributed to dental zirconia ceramics in terms of mechanical and physical properties; however, the bonding ability of this material to dental structure and/or veneering ceramics has always been a matter of concern. On the other hand, hydroxyapatite (HA shows excellent biocompatibility and good bonding ability to tooth structure, with mechanically unstable and brittle characteristics, that make it clinically unacceptable for use in high stress bearing areas. The main purpose of this study was to introduce two simple yet practical methods to deposit the crystalline HA nanoparticles on zirconia ceramics. Materials and Methods: zirconia blocks were treated with HA via two different deposition methods namely thermal coating and air abrasion. Specimens were analyzed by scanning electron microscopy, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD.Results: In both groups, the deposition techniques used were successfully accomplished, while the substrate showed no structural change. However, thermal coating group showed a uniform deposition of crystalline HA but in air abrasion method, there were dispersed thin islands of HA.Conclusions: Thermal coating method has the potential to significantly alter the surface characteristics of zirconia. The simple yet practical nature of the proposed method may be able to shift the bonding paradigm of dental zirconia ceramics. This latter subject needs to be addressed in future investigations.Keywords: Zirconium Oxide; Hydroxyapatites; Dental Bonding; Microscopy, Electron, Scanning; X-Ray Diffraction; Spectrometry, X-Ray Emission

  20. Suitability of Secondary PEEK Telescopic Crowns on Zirconia Primary Crowns: The Influence of Fabrication Method and Taper

    Directory of Open Access Journals (Sweden)

    Susanne Merk

    2016-11-01

    Full Text Available This study investigates the retention load (RL between ZrO2 primary crowns and secondary polyetheretherketone (PEEK crowns made by different fabrication methods with three different tapers. Standardized primary ZrO2 crowns were fabricated with three different tapers: 0°, 1°, and 2° (n = 10/group. Ten secondary crowns were fabricated (i milled from breCam BioHPP blanks (PM; (ii pressed from industrially fabricated PEEK pellets (PP (BioHPP Pellet; or (iii pressed from granular PEEK (PG (BioHPP Granulat. One calibrated operator adjusted all crowns. In total, the RL of 90 secondary crowns were measured in pull-off tests at 50 mm/min, and each specimen was tested 20 times. Two- and one-way ANOVAs followed by a Scheffé’s post-hoc test were used for data analysis (p < 0.05. Within crowns with a 0° taper, the PP group showed significantly higher retention load values compared with the other groups. Among the 1° taper, the PM group presented significantly lower retention loads than the PP group. However, the pressing type had no impact on the results. Within the 2° taper, the fabrication method had no influence on the RL. Within the PM group, the 2° taper showed significantly higher retention load compared with the 1° taper. The taper with 0° was in the same range value as the 1° and 2° tapers. No impact of the taper on the retention value was observed between the PP groups. Within the PG groups, the 0° taper presented significantly lower RL than the 1° taper, whereas the 2° taper showed no differences. The fabrication method of the secondary PEEK crowns and taper angles showed no consistent effect within all tested groups.

  1. Bond strength of the porcelain repair system to all-ceramic copings and porcelain.

    Science.gov (United States)

    Lee, Sang J; Cheong, Chan Wook; Wright, Robert F; Chang, Brian M

    2014-02-01

    The purpose of this study was to investigate the shear bond strength of the porcelain repair system on alumina and zirconia core ceramics, comparing this strength with that of veneering porcelain. Veneering ceramic (n = 12), alumina core (n = 24), and zirconia core (n = 24) blocks measuring 10 × 5 × 5 mm(3) were fabricated. Veneering ceramic blocks were used as the control. Alumina and zirconia core blocks were divided into 2 groups (n = 12 each), and a slot (2 × 2 × 4 mm(3)) filled with veneering ceramics was prepared into one of the alumina and zirconia core groups (n = 12). Followed by surface treatments of micro-abrasion with 30 μm alumina particles, etching with 35% phosphoric acid and silane primer and bond, composite resin blocks (2 × 2 × 2 mm(3)) were built up and light polymerized onto the treated surfaces by 3 configurations: (a) composite blocks bonded onto veneering ceramic surface alone, (b) composite blocks bonded onto alumina core or zirconia core surfaces, (c) a 50% surface area of the composite blocks bonded to veneering ceramics and the other 50% surface area of the composite blocks to alumina core or zirconia core surfaces. The shear bond strength of the composite to each specimen was tested by a universal testing machine at a 0.5 mm/min crosshead speed. The shear bond strength was analyzed by unpaired t-tests for within the configuration groups and ANOVA for among the different configuration groups. When the mean shear bond strength was compared within groups of the same configuration, there were no statistically significant differences. Comparison of the shear bond strength among groups of different configurations revealed statistically significant differences. The mean shear bond strength of composite onto 100% veneering ceramic surface and composite onto 50% veneering 50% all-ceramic cores was statistically higher than that of composite onto 100% all-ceramic cores; however, the differences of the shear bond strength of composite bonded

  2. Survival rates of IPS empress 2 all-ceramic crowns and fixed partial dentures: results of a 5-year prospective clinical study.

    Science.gov (United States)

    Marquardt, Pascal; Strub, Jörg Rudolf

    2006-04-01

    The aim of this prospective clinical study was to evaluate the survival rates of IPS Empress 2 (Ivoclar Vivadent) all-ceramic crowns and fixed partial dentures (FPDs) after an observation period of up to 5 years. Forty-three patients (19 women and 24 men) were included in this study. The patients were treated with a total of 58 adhesive bonded IPS Empress 2 restorations. A total of 27 single crowns were placed on molars and premolars, and 31 three-unit FPDs were placed in the anterior and premolar regions. Clinical follow-up examinations took place at 6, 12, 24, 36, 48, and 60 months after insertion. Statistical analysis of the data was calculated using the Kaplan-Meier method. Results of the 50-month analysis (interquartile range, 33 to 61 months) showed that the survival rate was 100% for crowns and 70% for FPDs. Six failures that occurred exclusively in the three-unit FPDs were observed. Framework fractures were recorded in three FPD units where the connector dimensions did not meet the manufacturer specifications. Only one FPD exhibited an irreparable partial veneer fracture, and 2 FPDs showed evidence of biologic failures. The accuracy of fit and esthetic parameters were clinically satisfactory for crowns and FPDs. The results of this 5-year clinical evaluation suggest that IPS Empress 2 ceramic is an appropriate material for the fabrication of single crowns. Because of the reduced survival rates, strict conditions should be considered before the use of IPS Empress 2 material for the fabrication of three-unit FPDs.

  3. Evaluation of shear bond strength and shear stress on zirconia reinforced lithium silicate and high translucency zirconia.

    Directory of Open Access Journals (Sweden)

    Amanda Maria de Oliveira Dal Piva

    2018-01-01

    Full Text Available This study evaluated the shear stress distribution on the adhesive interface and the bond strength between resin cement and two ceramics. For finite element analysis (FEA, a tridimensional model was made using computer-aided design software. This model consisted of a ceramic slice (10x10x2mm partially embedded on acrylic resin with a resin cement cylinder (Ø=3.4 mm and h=3mm cemented on the external surface. Results of maximum principal stress and maximum principal shear were obtained to evaluate the stress generated on the ceramic and the cylinder surfaces. In order to reproduce the in vitro test, similar samples to the computational model were manufactured according to ceramic material (Zirconia reinforced lithium silicate - ZLS and high translucency Zirconia - YZHT, (N=48, n=12. Half of the specimens were submitted to shear bond test after 24h using a universal testing machine (0.5 mm/min, 50kgf until fracture. The other half was stored (a (180 days, water, 37ºC prior to the test. Bond strength was calculated in MPa and submitted to analysis of variance. The results showed that ceramic material influenced bond strength mean values (p=0.002, while aging did not: YZHT (19.80±6.44a, YZHTa (17.95±7.21a, ZLS (11.88±5.40b, ZLSa (11.76±3.32b. FEA results showed tensile and shear stress on ceramic and cylinder surfaces with more intensity on their periphery. Although the stress distribution was similar for both conditions, YZHT showed higher bond strength values; however, both materials seemed to promote durable bond strength.

  4. FEM and Von Mises Analysis on Prosthetic Crowns Structural Elements: Evaluation of Different Applied Materials.

    Science.gov (United States)

    Bramanti, Ennio; Cervino, Gabriele; Lauritano, Floriana; Fiorillo, Luca; D'Amico, Cesare; Sambataro, Sergio; Denaro, Deborah; Famà, Fausto; Ierardo, Gaetano; Polimeni, Antonella; Cicciù, Marco

    2017-01-01

    The aim of this paper is to underline the mechanical properties of dental single crown prosthodontics materials in order to differentiate the possibility of using each material for typical clinical condition and masticatory load. Objective of the investigation is to highlight the stress distribution over different common dental crowns by using computer-aided design software and a three-dimensional virtual model. By using engineering systems of analyses like FEM and Von Mises investigations it has been highlighted the strength over simulated lower first premolar crowns made by chrome cobalt alloy, golden alloy, dental resin, and zirconia. The prosthodontics crown models have been created and put on simulated chewing stresses. The three-dimensional models were subjected to axial and oblique forces and both guaranteed expected results over simulated masticatory cycle. Dental resin presented the low value of fracture while high values have been recorded for the metal alloy and zirconia. Clinicians should choose the better prosthetic solution for the teeth they want to restore and replace. Both prosthetic dental crowns offer long-term success if applied following the manufacture guide limitations and suggestions.

  5. Ceramic Parts for Turbines

    Science.gov (United States)

    Jones, R. D.; Carpenter, Harry W.; Tellier, Jim; Rollins, Clark; Stormo, Jerry

    1987-01-01

    Abilities of ceramics to serve as turbine blades, stator vanes, and other elements in hot-gas flow of rocket engines discussed in report. Ceramics prime candidates, because of resistance to heat, low density, and tolerance of hostile environments. Ceramics considered in report are silicon nitride, silicon carbide, and new generation of such ceramic composites as transformation-toughened zirconia and alumina and particulate- or whisker-reinforced matrices. Report predicts properly designed ceramic components viable in advanced high-temperature rocket engines and recommends future work.

  6. Suitability of Secondary PEEK Telescopic Crowns on Zirconia Primary Crowns: The Influence of Fabrication Method and Taper.

    Science.gov (United States)

    Merk, Susanne; Wagner, Christina; Stock, Veronika; Eichberger, Marlis; Schmidlin, Patrick R; Roos, Malgorzata; Stawarczyk, Bogna

    2016-11-08

    This study investigates the retention load (RL) between ZrO₂ primary crowns and secondary polyetheretherketone (PEEK) crowns made by different fabrication methods with three different tapers. Standardized primary ZrO₂ crowns were fabricated with three different tapers: 0°, 1°, and 2° ( n = 10/group). Ten secondary crowns were fabricated (i) milled from breCam BioHPP blanks (PM); (ii) pressed from industrially fabricated PEEK pellets (PP) (BioHPP Pellet); or (iii) pressed from granular PEEK (PG) (BioHPP Granulat). One calibrated operator adjusted all crowns. In total, the RL of 90 secondary crowns were measured in pull-off tests at 50 mm/min, and each specimen was tested 20 times. Two- and one-way ANOVAs followed by a Scheffé's post-hoc test were used for data analysis ( p impact on the results. Within the 2° taper, the fabrication method had no influence on the RL. Within the PM group, the 2° taper showed significantly higher retention load compared with the 1° taper. The taper with 0° was in the same range value as the 1° and 2° tapers. No impact of the taper on the retention value was observed between the PP groups. Within the PG groups, the 0° taper presented significantly lower RL than the 1° taper, whereas the 2° taper showed no differences. The fabrication method of the secondary PEEK crowns and taper angles showed no consistent effect within all tested groups.

  7. Production of nano-crystalline zirconia powders and fabrication of high strength ultra-fine-grained ceramics

    International Nuclear Information System (INIS)

    Rajendran, S.

    1993-01-01

    Hydrous zirconia containing 2 and 2.5 mol% Y 2 O 3 was prepared by a hydroxide co-precipitation method and portions were dispersed in ethanol before drying(P2), milled in ethanol after drying (P3) or after calcination at 550 deg C (P4) or milled in iso-propanal after calcination at 1000 deg C (P5). The crystallisation behaviour and sintering characteristics of the materials were investigated. The calcined as dried powder (P1) has strongly bonded hard aggregates and the material reached a density of only about 80% of theoretical after sintering at 1500 deg C. Powder characteristics and the sinterability of the alcohol treated materials depended on the conditions of processing and heat treatment. The sinter-activity of the powders decreased from P2 to P5. Powder P3 was composed of relatively weakly bonded crystallites and could be sintered at 1400 deg C, while the powders P4 and P5 contained hard agglomerates and required a sintering temperature of 1450 and 1550 deg C respectively to achieve similar density. Powder (P2) had zirconium alkoxide species on the particle surface which decomposed at about 300 deg C. The calcined powder had very weak agglomerates composed of fine, uniform zirconia crystals and/or aggregates and sintered to high density at 1150 deg C. The final ceramic had a very uniform microstructure with an average grain size of about 150nm and exhibited fracture strength as high as 1700 MPa. A detailed account of the formation of aggregates of strongly bonded crystallites during calcination of hydrous zirconia, influence of alcohol in producing soft agglomerates and the sintering characteristics of the powders is reported. 46 refs., 2 tabs., 15 figs

  8. Fatigue resistance of CAD/CAM resin composite molar crowns.

    NARCIS (Netherlands)

    Shembish, F.A.; Tong, H.; Kaizer, M.; Janal, M.N.; Thompson, V.P.; Opdam, N.J.M.; Zhang, Y.

    2016-01-01

    OBJECTIVE: To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. METHODS: Fully anatomically shaped monolithic resin composite molar crowns (Lava

  9. The Use of Newer High Translucency Zirconia in Aesthetic Zone

    Directory of Open Access Journals (Sweden)

    Zishan Dangra

    2014-01-01

    Full Text Available Loss of anterior tooth causes aesthetic and functional disharmony. Although no restorative material can approach the appearance of intact tooth enamel, glass ceramic, at the increased risk of brittle fracture, can mimic original tooth color better than the other restorative options. The newest zirconia material comes with unparalleled individualization in aesthetics and optimal physical properties. One of the basic principles of tooth preparation is conservation of tooth structure. This clinical report describes the replacement of maxillary and mandibular incisor with latest generation zirconia adhesive fixed partial denture. The authors have achieved unmatched aesthetics with newer high translucency zirconia.

  10. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  11. Effect of esthetic core shades on the final color of IPS Empress all-ceramic crowns.

    Science.gov (United States)

    Azer, Shereen S; Ayash, Ghada M; Johnston, William M; Khalil, Moustafa F; Rosenstiel, Stephen F

    2006-12-01

    Clinically relevant assessment of all-ceramic crowns supported by esthetic composite resin foundations has not been evaluated with regard to color reproducibility. This in vitro study quantitatively evaluated the influence of different shades of composite resin foundations and resin cement on the final color of a leucite-reinforced all-ceramic material. A total of 128 disks were fabricated; 64 (20 x 1 mm) were made of all-ceramic material (IPS Empress) and 64 (20 x 4 mm) of 4 different shades composite resin (Tetric Ceram). The ceramic and composite resin disks were luted using 2 shades (A3 and Transparent) of resin cement (Variolink II). Color was measured using a colorimeter configured with a diffuse illumination/0-degree viewing geometry, and Commission Internationale de l'Eclairage (CIE) L( *)a( *)b( *) values were directly calculated. Descriptive statistical analysis was performed, and color differences (DeltaE) for the average L( *), a( *) and b( *) color parameters were calculated. Repeated measures analysis of variance (ANOVA) was used to compare mean values and SDs between the different color combinations (alpha=.05). The CIE L( *)a( *)b( *) color coordinate values showed no significant differences for variation in color parameters due to the effect of the different composite resin shades (P=.24) or cement shades (P=.12). The mean color difference (DeltaE) value between the groups was 0.8. Within the limitations of this study, the use of different shades for composite resin cores and resin cements presented no statistically significant effect on the final color of IPS Empress all-ceramic material.

  12. Study of microstructure and mechanical properties of ceramics composites alumina-zirconia reinforced with yttria for inert coating of metal matrices used in the petroleum industry

    International Nuclear Information System (INIS)

    Pontual, J.O.; Silva, N.D.G.; Ferreira, R.A.S.; Yadava, Y.P.

    2014-01-01

    The storage and transportation of crude oil is complicated due to the hostile environment provided by this. Under these conditions, it is imperative to search for alternative solutions, using an inert coating to protect from corrosion caused by crude oil. In this work, alumina-zirconia ceramic composites with 5-20%w zirconia and 1 - 2%w yttria were produced through thermomechanical process. The structural and microstructural characterization of the sintered material was carried out by X-ray diffraction and scanning electron microscopy. Mechanical properties were analyzed by Vickers hardness tests. Currently, the pads are submerged in crude oil and after 30-60 days will be removed and sent for stability test.(author)

  13. Effect of Endodontic Access on the Failure Load of Lithium Disilicate and Resin Nano-ceramic CADCAM Crowns

    Science.gov (United States)

    2017-06-09

    Sabourin et al. described a technique using air abrasion to access ceramic crowns. No cracking , chipping or catastrophic fracture occured, but the...the first drop in axial load and was confirmed with simultaneous visualization of crack formation. The force in newtons (N) was recorded at the time...adhesion-dentin and enamel bonding. Inside Dentistry 2008; 2(1): www.dentalaegis.com/special-issues. 17. Borges GA, Caldas D, Taskonak B

  14. Microwave sintering of zirconia toughened alumina at 28GHz

    International Nuclear Information System (INIS)

    Samandi, M.; Ji, H.; Miyake, S.

    1998-01-01

    Microwave radiation from a 10 kW, CW gyrotron operating at 28 GHz was employed to sinter 10% zirconia toughened alumina (ZTA) ceramic samples. It has been established that the use of millimetre wave radiation circumvents the difficulties encountered during the sintering of ceramics, i e. formation of hot spot, by radiation at industrially permissible frequency of 2.45GHz. Further, careful density measurement and microstructural characterisation of mm- wave and conventionally sintered samples by XRD, SEM and TEM has unequivocally demonstrated the effectiveness of mm-wave radiation for obtaining high density ceramics at lower sintering temperatures. Copyright (1998) Australasian Ceramic Society

  15. Influence of ageing on glass and resin bonding of dental glass-ceramic veneer adhesion to zirconia: A fracture mechanics analysis and interpretation.

    Science.gov (United States)

    Swain, M V; Gee, C; Li, K C

    2018-04-26

    Adhesion plays a major role in the bonding of dental materials. In this study the adhesion of two glass-ceramic systems (IPS e.max and VITABLOCS) to a zirconia sintered substrate using a glass (for IPS e.max) and resin (VITABLOCS) before and after exposure to ageing for 14 days in distilled water at 37 °C are compared using two interfacial fracture mechanics tests, the 3 point bend Schwickerath (Kosyfaki and Swain, 2014; Schneider and Swain, 2015) and 4 point bend (Charalambides et al., 1989) approaches. Both tests result in stable crack extension from which the strain energy release rate (G, N/m or J/m 2 ) can be determined. In the case of the 3 PB test the Work of Fracture was also determined. In addition, the Schwickerath test enables determination of the critical stress for the onset of cracking to occur, which forms the basis of the ISO (ISO9693-2:2016) adhesion test for porcelain ceramic adhesion to zirconia. For the aged samples there was a significant reduction in the resin-bonded strengths (Schwickerath) and strain energy release rate (both 3 and 4 PB tests), which was not evident for the glass bonded specimens. Critical examination of the force-displacement curves showed that ageing of the resin resulted in a major change in the form of the curves, which may be interpreted in terms of a reduction in the critical stress to initiate cracking and also in the development of an R-curve. The extent of the reduction in strain energy release rate following ageing was greater for the Schwickerath test than the Charalambides test. The results are discussed in terms of; the basic mechanics of these two tests, the deterioration of the resin bonding following moisture exposure and the different dimensions of the specimens. These in-vitro results raise concerns regarding resin bonding to zirconia. The present study uses a novel approach to investigate the role of ageing or environmental degradation on the adhesive bonding of two dental ceramics to zirconia

  16. In vitro comparison of fracture load of implant-supported, zirconia-based, porcelain- and composite-layered restorations after artificial aging.

    Science.gov (United States)

    Komine, Futoshi; Taguchi, Kohei; Fushiki, Ryosuke; Kamio, Shingo; Iwasaki, Taro; Matsumura, Hideo

    2014-01-01

    This study evaluated fracture load of single-tooth, implant-supported, zirconia-based, porcelain- and indirect composite-layered restorations after artificial aging. Forty-four zirconia-based molar restorations were fabricated on implant abutments and divided into four groups, namely, zirconia-based all-ceramic restorations (ZAC group) and three types of zirconia-based composite-layered restorations (ZIC-P, ZIC-E, and ZIC groups). Before layering an indirect composite material, the zirconia copings in the ZIC-P and ZIC-E groups were primed with Clearfil Photo Bond and Estenia Opaque Primer, respectively. All restorations were cemented on the abutments with glass-ionomer cement and then subjected to thermal cycling and cyclic loading. All specimens survived thermal cycling and cyclic loading. The fracture load of the ZIC-P group (2.72 kN) was not significantly different from that of the ZAC group (3.05 kN). The fracture load of the zirconia-based composite-layered restoration primed with Clearfil Photo Bond (ZIC-P) was comparable to that of the zirconia-based all-ceramic restoration (ZAC) after artificial aging.

  17. Displacive Transformation in Ceramics

    Science.gov (United States)

    1994-02-28

    PZT ), ceramics have attracted natural abundance. much attention for use in nonvolatile semiconductor mem- We attribute the observed spectra in Fig. I to...near a crack tip in piezoelectric ceramics of lead zirconate titanate ( PZT ) and barium titanate. They reasoned that the poling of ferroelectric... Texture in Ferroelastic Tetragonal Zirconia," J. Am. Ceram . Soc., 73 (1990) no. 6: 1777-1779. 27. J. F. Jue and A. Virkar, "Fabrication, Microstructural

  18. The Metal-Zirconia Implant Fixed Hybrid Full-Arch Prosthesis: An Alternative Technique for Fabrication.

    Science.gov (United States)

    Stumpel, Lambert J; Haechler, Walter

    2018-03-01

    The metal-resin hybrid full-arch prosthesis has been a traditionally used type of restoration for full-arch implant fixed dentures. A newer development has centered around the use of monolithic zirconia or zirconia veneered with porcelain. Being a ceramic, zirconia has the potential for fracture. This article describes a technique that utilizes a metal substructure to support a chemically and mechanically resinbonded shell of zirconia. The workflow is discussed, ranging from in-office master cast fabrication to the CAD/ CAM production of the provisional and the definitive metal-zirconia prosthesis. The article also highlights the advantages and disadvantages of various materials used for hybrid prostheses.

  19. An interdisciplinary approach to reconstruct a fractured tooth under an intact all ceramic crown: Case report with four years follow up

    Directory of Open Access Journals (Sweden)

    Sudhir Bhandari

    2011-01-01

    Full Text Available Trauma causing the fracture of a restored tooth with the extracoronal full coverage prosthesis remaining intact is a common occurrence in dental practice. Reconstruction of the damaged tooth foundation and recementation of the crown can pose quite a challenge for the restorative dentist. This case report describes an innovative interdisciplinary chairside technique for the recementation of an all-ceramic crown on a fractured maxillary central incisor. The course of care described is effective, affordable, and saves time in comparison with other treatment options for such clinical situations.

  20. Zirconium oxide based ceramic solid electrolytes for oxygen detection

    International Nuclear Information System (INIS)

    Caproni, Erica

    2007-01-01

    Taking advantage of the high thermal shock resistance of zirconia-magnesia ceramics and the high oxide ion conductivity of zirconia-yttria ceramics, composites of these ceramics were prepared by mixing, pressing and sintering different relative concentrations of ZrO 2 : 8.6 mol% MgO and ZrO 2 : 3 mol% Y 2 O 3 solid electrolytes. Microstructural analysis of the composites was carried out by X-ray diffraction and scanning electron microscopy analyses. The thermal behavior was studied by dilatometric analysis. The electrical behavior was evaluated by the impedance spectroscopy technique. An experimental setup was designed for measurement the electrical signal generated as a function of the amount of oxygen at high temperatures. The main results show that these composites are partially stabilized (monoclinic, cubic and tetragonal) and the thermal behavior is similar to that of ZrO 2 : 8.6 mol% MgO materials used in disposable high temperature oxygen sensors. Moreover, the results of analysis of impedance spectroscopy show that the electrical conductivity of zirconia:magnesia is improved with zirconia-yttria addition and that the electrical signal depends on the amount of oxygen at 1000 deg C, showing that the ceramic composites can be used in oxygen sensors. (author)

  1. Development of crystalline ceramic for immobilization of TRU wastes in V.G. Khlopin Radium Institute

    International Nuclear Information System (INIS)

    Burakov, B.E.; Anderson, E.B.

    1999-01-01

    This paper discusses the Radium Institute's experience in the synthesis of crystalline ceramics based on two groups of actinide host-phases: 1) Zircon/zirconia-(Zn, Ac)SiO 4 /(Zr, Ac)O 2 , where Ac=Pu, Np, Am, Cm; 2) Garnet/perovskite-(Y, Gd, Ac) 3 (Al, Ga, Ac,..) 5 O 12 /(Y, Gd, Ac)(Al, Ga)O 3 . The zircon/zirconia ceramic was suggested as an universal waste form for the immobilization of TRU as well as weapon-grade Pu. Because the position of the Russian Ministry of Atomic Energy (Minatom) does not consider weapons Pu as a waste', the Radium Institute proposed the use of the same ceramic (mainly monophase zirconia ) as a Pu-fuel. The garnet/perovskite ceramic was suggested for the immobilization of military TRU wastes of complex chemical composition. The advantage of this ceramic is that Garnet and Perovskite host-phases can incorporate in their lattices not only actinides, but also other elements including neutron absorbers in a broad range of concentration and in different valence state. Sample of zircon/zirconia ceramic were prepared by hot uniaxial pressing (at temperature T=1300, 1400, 1500degC and pressure P=25 MPa) and sintering (at T=1450, 1490, 1500, 1600degC) methods using different types of initial precursor. Samples of garnet/perovskite ceramic were synthesized by melting method at T=2000degC. Ce, U, Gd were used as TRU stimulants for both types of ceramic. One sample of zircon/zirconia ceramic was doped with 10 wt.% of Pu 239 . Physico-chemical features of these ceramics are described. In conclusion we propose that the pressureless technology based on sintering or melting methods be used for the synthesis of ceramics for the immobilization of all types of TRU wastes. (author)

  2. A short-term clinical evaluation of IPS Empress 2 crowns.

    Science.gov (United States)

    Toksavul, Suna; Toman, Muhittin

    2007-01-01

    The aim of this study was to evaluate the clinical performance of all-ceramic crowns made with the IPS Empress 2 system after an observation period of 12 to 60 months. Seventy-nine IPS Empress 2 crowns were placed in 21 patients. The all-ceramic crowns were evaluated clinically, radiographically, and using clinical photographs. The evaluations took place at baseline (2 days after cementation) and at 6-month intervals for 12 to 60 months. Survival rate of the crowns was determined using Kaplan-Meier statistical analysis. Based on the US Public Health Service criteria, 95.24% of the crowns were rated satisfactory after a mean follow-up period of 58 months. Fracture was registered in only 1 crown. One endodontically treated tooth failed as a result of fracture at the cervical margin area. In this in vivo study, IPS Empress 2 crowns exhibited a satisfactory clinical performance during an observation period ranging from 12 to 60 months.

  3. FEM and Von Mises Analysis on Prosthetic Crowns Structural Elements: Evaluation of Different Applied Materials

    Directory of Open Access Journals (Sweden)

    Ennio Bramanti

    2017-01-01

    Full Text Available The aim of this paper is to underline the mechanical properties of dental single crown prosthodontics materials in order to differentiate the possibility of using each material for typical clinical condition and masticatory load. Objective of the investigation is to highlight the stress distribution over different common dental crowns by using computer-aided design software and a three-dimensional virtual model. By using engineering systems of analyses like FEM and Von Mises investigations it has been highlighted the strength over simulated lower first premolar crowns made by chrome cobalt alloy, golden alloy, dental resin, and zirconia. The prosthodontics crown models have been created and put on simulated chewing stresses. The three-dimensional models were subjected to axial and oblique forces and both guaranteed expected results over simulated masticatory cycle. Dental resin presented the low value of fracture while high values have been recorded for the metal alloy and zirconia. Clinicians should choose the better prosthetic solution for the teeth they want to restore and replace. Both prosthetic dental crowns offer long-term success if applied following the manufacture guide limitations and suggestions.

  4. Fabrication of a zirconia MEMS-based microthruster by gel casting on PDMS soft molds

    International Nuclear Information System (INIS)

    Cheah, K H; Khiew, P S; Chin, J K

    2012-01-01

    A zirconia microelectromechanical-system-based microthruster was fabricated through a newly developed fabrication route. Gel casting of homogenously dispersed zirconia suspension on polydimethylsiloxane soft mold was utilized to replicate the geometries of microthruster design onto a ceramic layer of about 1.2 mm thick. Lamination of the patterned ceramic layer to another flat ceramic layer and subsequent sintering produced the microthruster. Characterizations on the fabricated prototype showed good shape retention on the replicated geometries and good quality of lamination. Shrinkage of about 10–15% was noted after sintering. The current fabrication route is particularly promising for the development of high-performance micropropulsion systems which require their structural material to survive in an extreme environment which is corrosive, of high temperature and highly oxidative. (paper)

  5. Enhanced Hydrophilicity and Biocompatibility of Dental Zirconia Ceramics by Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Ching-Chou Wu

    2015-02-01

    Full Text Available Surface properties play a critical role in influencing cell responses to a biomaterial. The objectives of this study were (1 to characterize changes in surface properties of zirconia (ZrO2 ceramic after oxygen plasma treatment; and (2 to determine the effect of such changes on biological responses of human osteoblast-like cells (MG63. The results indicated that the surface morphology was not changed by oxygen plasma treatment. In contrast, oxygen plasma treatment to ZrO2 not only resulted in an increase in hydrophilicity, but also it retained surface hydrophilicity after 5-min treatment time. More importantly, surface properties of ZrO2 modified by oxygen plasma treatment were beneficial for cell growth, whereas the surface roughness of the materials did not have a significant efficacy. It is concluded that oxygen plasma treatment was certified to be effective in modifying the surface state of ZrO2 and has the potential in the creation and maintenance of hydrophilic surfaces and the enhancement of cell proliferation and differentiation.

  6. Ceramic on ceramic arthroplasty of the hip: new materials confirm appropriate use in young patients.

    Science.gov (United States)

    Sentuerk, U; von Roth, P; Perka, C

    2016-01-01

    The leading indication for revision total hip arthroplasty (THA) remains aseptic loosening owing to wear. The younger, more active patients currently undergoing THA present unprecedented demands on the bearings. Ceramic-on-ceramic (CoC) bearings have consistently shown the lowest rates of wear. The recent advances, especially involving alumina/zirconia composite ceramic, have led to substantial improvements and good results in vitro. Alumina/zirconia composite ceramics are extremely hard, scratch resistant and biocompatible. They offer a low co-efficient of friction and superior lubrication and lower rates of wear compared with other bearings. The major disadvantage is the risk of fracture of the ceramic. The new composite ceramic has reduced the risk of fracture of the femoral head to 0.002%. The risk of fracture of the liner is slightly higher (0.02%). Assuming that the components are introduced without impingement, CoC bearings have major advantages over other bearings. Owing to the superior hardness, they produce less third body wear and are less vulnerable to intra-operative damage. The improved tribology means that CoC bearings are an excellent choice for young, active patients requiring THA. ©2016 The British Editorial Society of Bone & Joint Surgery.

  7. Effect of Crystallization Firing on Marginal Gap of CAD/CAM Fabricated Lithium Disilicate Crowns.

    Science.gov (United States)

    Gold, Steven A; Ferracane, Jack L; da Costa, Juliana

    2018-01-01

    To evaluate the marginal gaps of CAD/CAM (CEREC 3) produced crowns made from leucite-reinforced glass-ceramic (IPS Empress CAD) blocks (LG), and lithium-disilicate (IPS e.max CAD) blocks before (LD-B), and after (LD-A) crystallization firing. A human molar tooth (#19) was mounted with adjacent teeth on a typodont and prepared for a full-coverage ceramic crown. The typodont was assembled in the mannequin head to simulate clinical conditions. After tooth preparation 15 individual optical impressions were taken by the same operator using titanium dioxide powder and a CEREC 3 camera per manufacturer's instructions. One operator designed and machined the crowns in leucite-reinforced glass-ceramic blocks (n = 5) and lithium-disilicate blocks (n = 10) using the CEREC 3 system. The crowns were rigidly seated on the prepared tooth, and marginal gaps (μm) were measured with an optical microscope (500×) at 12 points, 3 on each of the M, B, D, and L surfaces of the leucite-reinforced glass-ceramic crowns and the lithium-disilicate crowns before and after crystallization firing. Results were analyzed by two-way ANOVA followed by a Tukey's post hoc multiple comparison test (α = 0.05). The overall mean marginal gaps (μm) for the crowns evaluated were: LG = 49.2 ± 5.5, LD-B = 42.9 ± 12.2, and LD-A = 57.2 ± 16.0. The marginal gaps for LG and LD-B were not significantly different, but both were significantly less than for LD-A. The type of ceramic material did not affect the marginal gap of CAD/CAM crowns. The crystallization firing process required for lithium-disilicate crowns resulted in a significant increase in marginal gap size, likely due to shrinkage of the ceramic during the crystallization process. The marginal gap of CAD/CAM-fabricated lithium disilicate crowns increases following crystallization firing. The marginal gap still remains within clinically acceptable parameters. © 2017 by the American College of Prosthodontists.

  8. Influence of implant abutment material and ceramic thickness on optical properties.

    Science.gov (United States)

    Jirajariyavej, Bundhit; Wanapirom, Peeraphorn; Anunmana, Chuchai

    2018-05-01

    Anterior shade matching is an essential factor influencing the esthetics of a ceramic restoration. Dentists face a challenge when the color of an implant abutment creates an unsatisfactory match with the ceramic restoration or neighboring teeth. The purpose of this in vitro study was to evaluate the influence of abutment material and ceramic thickness on the final color of different ceramic systems. Four experimental and control ceramic specimens in shade A3 were cut from IPS e.max CAD, IPS Empress CAD, and VITA Suprinity PC blocks. These specimens had thicknesses of 1.0 mm, 1.5 mm, 2.0 mm, and 2.5 mm, respectively, for the experimental groups, and 4 mm for the controls. Background abutment specimens were fabricated to yield 3 different shades: white zirconia, yellow zirconia, and titanium at a 3-mm thickness. All 3 ceramic specimens in each thickness were placed in succession on different abutment backgrounds with glycerin optical fluid in between, and the color was measured. A digital spectrophotometer was used to record the specimen color value in the Commission Internationale De L'éclairage (CIELab) color coordinates system and to calculate the color difference (ΔE) between the control and experimental groups. The Kruskal-Wallis test was used to analyze the effect of ceramic thickness on different abutments, and the pair-wise test was used to evaluate within the group (α=.05). The color differences between the test groups and the control decreased with increasing ceramic thickness for every background material. In every case, significant differences were found between 1.0- and 2.5-mm ceramic thicknesses. Only certain 2.5-mm e.max CAD, VITA Suprinity PC, and Empress CAD specimens on yellow-shade zirconia or VITA Suprinity PC on titanium were identified as clinically acceptable (ΔEabutment background decreased the color mismatch. Increasing the thickness of ceramic on a yellow-shaded zirconia abutment rather than on titanium or white zirconia yielded a more

  9. One-Piece Zirconia Ceramic versus Titanium Implants in the Jaw and Femur of a Sheep Model: A Pilot Study.

    Science.gov (United States)

    Siddiqi, A; Duncan, W J; De Silva, R K; Zafar, S

    2016-01-01

    Reports have documented titanium (Ti) hypersensitivity after dental implant treatment. Alternative materials have been suggested including zirconia (Zr) ceramics, which have shown predictable osseointegration in animal studies and appear free of immune responses. The aim of the research was to investigate the bone-to-implant contact (BIC) of one-piece Zr, compared with one-piece Ti implants, placed in the jaws and femurs of domestic sheep. Ten New Zealand mixed breed sheep were used. A One-piece prototype Ti (control) and one Zr (test) implant were placed in the mandible, and one of each implant (Ti and Zr) was placed into the femoral epicondyle of each animal. The femur implants were submerged and unloaded; the mandibular implants were placed using a one-stage transgingival protocol and were nonsubmerged. After a healing period of 12 weeks, %BIC was measured. The overall survival rate for mandibular and femur implants combined was 87.5%. %BIC was higher for Zr implants versus Ti implants in the femur (85.5%, versus 78.9%) ( p = 0.002). Zirconia implants in the mandible showed comparable %BIC to titanium implants (72.2%, versus 60.3%) ( p = 0.087). High failure rate of both Zr and Ti one-piece implants in the jaw could be attributed to the one-piece design and surface characteristics of the implant that could have influenced osseointegration. Further clinical trials are recommended to evaluate the performance of zirconia implants under loading conditions.

  10. Forming of superplastic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Lesuer, D.R.; Wadsworth, J.; Nieh, T.G.

    1994-05-01

    Superplasticity in ceramics has now advanced to the stage that technologically viable superplastic deformation processing can be performed. In this paper, examples of superplastic forming and diffusion bonding of ceramic components are given. Recent work in biaxial gas-pressure forming of several ceramics is provided. These include yttria-stabilized, tetragonal zirconia (YTZP), a 20% alumina/YTZP composite, and silicon. In addition, the concurrent superplastic forming and diffusion bonding of a hybrid ceramic-metal structure are presented. These forming processes offer technological advantages of greater dimensional control and increased variety and complexity of shapes than is possible with conventional ceramic shaping technology.

  11. Methods for improving mechanical properties of partially stabilized zirconia and the resulting product

    International Nuclear Information System (INIS)

    Aronov, V.A.

    1987-01-01

    A method for improving mechanical surface properties of a rigid body comprising partially stabilized zirconia as a constituent is described comprising the following steps: (i) providing a rigid body having an exposed surface and an interior volume; (ii) subjecting the exposed surface region of partially stabilized zirconia to external heating to heat the exposed surface region to 1100 0 C-1600 0 C without heating the interior volume above 500 0 C-800 0 C; and (iii) cooling the rigid body to a temperature of less than 500 0 C to cause a portion of the exposed surface region to transform from the tetragonal lattice modification to the monoclinic lattice modification, thereby creating a compressive stress field in the exposed surface region and improving the mechanical surface properties of the exposed surface region. In a ceramic body comprising a first exposed region of a partially stabilized zirconia, and a second region of a partially stabilized zirconia at an interior portion of the ceramic body, the improvement is described comprising the ceramic body having in the first, exposed region a greater percentage of the monoclinic lattice modification than in the second region; having in the first, exposed region 5 percent to 100 percent in the monoclinic lattice modification; and having a molded surface finish in the first, exposed region; the first, exposed region being subjected to a compressive field resulting from the greater percentage of the monoclinic lattice modification

  12. A fractographic study of clinically retrieved zirconia–ceramic and metal–ceramic fixed dental prostheses

    Science.gov (United States)

    Pang, Zhen; Chughtai, Asima; Sailer, Irena; Zhang, Yu

    2015-01-01

    Objectives A recent 3-year randomized controlled trial (RCT) of tooth supported three- to five-unit zirconia–ceramic and metal–ceramic posterior fixed dental prostheses (FDPs) revealed that veneer chipping and fracture in zirconia–ceramic systems occurred more frequently than those in metal–ceramic systems [1]. This study seeks to elucidate the underlying mechanisms responsible for the fracture phenomena observed in this RCT using a descriptive fractographic analysis. Methods Vinyl-polysiloxane impressions of 12 zirconia–ceramic and 6 metal–ceramic FDPs with veneer fractures were taken from the patients at the end of a mean observation of 40.3 ± 2.8 months. Epoxy replicas were produced from these impressions [1]. All replicas were gold coated, and inspected under the optical microscope and scanning electron microscope (SEM) for descriptive fractography. Results Among the 12 zirconia–ceramic FDPs, 2 had small chippings, 9 had large chippings, and 1 exhibited delamination. Out of 6 metal–ceramic FDPs, 5 had small chippings and 1 had large chipping. Descriptive fractographic analysis based on SEM observations revealed that fracture initiated from the wear facet at the occlusal surface in all cases, irrespective of the type of restoration. Significance Zirconia–ceramic and metal–ceramic FDPs all fractured from microcracks that emanated from occlusal wear facets. The relatively low fracture toughness and high residual tensile stress in porcelain veneer of zirconia restorations may contribute to the higher chipping rate and larger chip size in zirconia–ceramic FDPs relative to their metal–ceramic counterparts. The low veneer/core interfacial fracture energy of porcelain-veneered zirconia may result in the occurrence of delamination in zirconia–ceramic FDPs. PMID:26233469

  13. Standardizing Failure, Success, and Survival Decisions in Clinical Studies of Ceramic and Metal-Ceramic Fixed Dental Prostheses

    Science.gov (United States)

    Anusavice, Kenneth J.

    2011-01-01

    “Nothing worthwhile is ever without complications.”– Nora Roberts The recent increase in reports from clinical studies of ceramic chipping has raised the question of which criteria should constitute success or failure of total-ceramic prostheses. Terminology such as minor chipping[1], partial chipping, technical complications[2, 3], and biological complications have crept into the dental terminology and they have complicated our classification of success and failure of these crown and bridge restorations. Some journals have permitted the reporting of fractures as “complications” and they are not necessarily classified as failures in the study. One study has attempted to classify chipping fractures according to their severity and subsequent treatment.[4] This is a promising approach to resolve the challenges to the classification of chipping fracture. The term ‘chipping fracture’ is more descriptive than ‘chipping’ since the latter term tends to imply an event of minor consequence. Two types of statistics are reported routinely in these studies, i.e., percent success, which is a measure of restorations that survive without any adverse effects, and percent survival, which is a measure of all restorations that survive even though they may have exhibited chipping fracture or they may have been repaired. Why has this scenario occurred? One possible explanation is that many of these types of fractures are very small and do not affect function or esthetics. Another reason is that corporate sponsors prefer to use the term chipping since it does not connote failure in the sense that the term fracture does. In any event, we need to be more precise in our scientific observations of fracture and classifications of the various types of fracture including details on the location of fracture and the prosthesis design configuration. Because of the lack of standardized methods for describing chipping fractures, materials scientists are unable to properly analyze

  14. Standardizing failure, success, and survival decisions in clinical studies of ceramic and metal-ceramic fixed dental prostheses.

    Science.gov (United States)

    Anusavice, Kenneth J

    2012-01-01

    The recent increase in reports from clinical studies of ceramic chipping has raised the question of which criteria should constitute success or failure of total-ceramic prostheses. Terminologies such as minor chipping [1], partial chipping, technical complications [2,3], and biological complications have crept into the dental terminology and they have complicated our classification of success and failure of these crown and bridge restorations. Some journals have permitted the reporting of fractures as "complications" and they are not necessarily classified as failures in the study. One study has attempted to classify chipping fractures according to their severity and subsequent treatment [4]. This is a promising approach to resolve the challenges to the classification of chipping fracture. The term 'chipping fracture' is more descriptive than 'chipping' since the latter term tends to imply an event of minor consequence. Two types of statistics are reported routinely in these studies, i.e., percent success, which is a measure of restorations that survive without any adverse effects, and percent survival, which is a measure of all restorations that survive even though they may have exhibited chipping fracture or they may have been repaired. Why has this scenario occurred? One possible explanation is that many of these types of fractures are very small and do not affect function or esthetics. Another reason is that corporate sponsors prefer to use the term chipping since it does not connote failure in the sense that the term fracture does. In any event, we need to be more precise in our scientific observations of fracture and classifications of the various types of fracture including details on the location of fracture and the prosthesis design configuration. Because of the lack of standardized methods for describing chipping fractures, materials scientists are unable to properly analyze the effect of material properties and design factors on the time

  15. New nanostructured ceramics from baddeleyite with improved mechanical properties for biomedical applications

    Science.gov (United States)

    Tyurin, Alexander I.; Zhigachev, Andrey O.; Umrikhin, Alexey V.; Rodaev, Vyacheslav V.; Korenkov, Viktor V.; Pirozhkova, Tatyana S.

    2017-12-01

    A method for the preparation of novel nanostructured zirconia ceramics from natural zirconia mineral—baddeleyite—using CaO as the stabilizer is described in the present work. Optimal synthesis conditions, including calcia content, planetary mill treatment regime, sintering time and temperature, corresponding to the highest values of hardness H, Young modulus E, and fracture toughness KC are found. The values of the mechanical properties H = 10.8 GPa, E = 200 GPa, and KC = 13.3 MPa m1/2 are comparable with or exceed the corresponding properties of commercial yttria-stabilized ceramics prepared from chemically precipitated zirconia.

  16. Interfacial characterization of ceramic core materials with veneering porcelain for all-ceramic bi-layered restorative systems.

    Science.gov (United States)

    Tagmatarchis, Alexander; Tripodakis, Aris-Petros; Filippatos, Gerasimos; Zinelis, Spiros; Eliades, George

    2014-01-01

    The aim of the study was to characterize the elemental distribution at the interface between all-ceramic core and veneering porcelain materials. Three groups of all-ceramic cores were selected: A) Glass-ceramics (Cergo, IPS Empress, IPS Empress 2, e-max Press, Finesse); B) Glass-infiltrated ceramics (Celay Alumina, Celay Zirconia) and C) Densely sintered ceramics (Cercon, Procera Alumina, ZirCAD, Noritake Zirconia). The cores were combined with compatible veneering porcelains and three flat square test specimens were produced for each system. The core-veneer interfaces were examined by scanning electron microscopy and energy dispersive x-ray microanalysis. The glass-ceramic systems showed interfacial zones reach in Si and O, with the presence of K, Ca, Al in core and Ca, Ce, Na, Mg or Al in veneer material, depending on the system tested. IPS Empress and IPS Empress 2 demonstrated distinct transitional phases at the core-veneer interface. In the glassinfiltrated systems, intermixing of core (Ce, La) with veneer (Na, Si) elements occurred, whereas an abrupt drop of the core-veneer elemental concentration was documented at the interfaces of all densely sintered ceramics. The results of the study provided no evidence of elemental interdiffusion at the core-veneer interfaces in densely sintered ceramics, which implies lack of primary chemical bonding. For the glass-containing systems (glassceramics and glass-infiltrated ceramics) interdiffusion of the glass-phase seems to play a critical role in establishing a primary bonding condition between ceramic core and veneering porcelain.

  17. Effect of metal chloride solutions on coloration and biaxial flexural strength of yttria-stabilized zirconia

    Science.gov (United States)

    Oh, Gye-Jeong; Lee, Kwangmin; Lee, Doh-Jae; Lim, Hyun-Pil; Yun, Kwi-Dug; Ban, Jae-Sam; Lee, Kyung-Ku; Fisher, John G.; Park, Sang-Won

    2012-10-01

    The effect of three kinds of transition metal dopants on the color and biaxial flexural strength of zirconia ceramics for dental applications was evaluated. Presintered zirconia discs were colored through immersion in aqueous chromium, molybdenum and vanadium chloride solutions and then sintered at 1450 °C. The color of the doped specimens was measured using a digital spectrophotometer. For biaxial flexural strength measurements, specimens infiltrated with 0.3 wt% of each aqueous chloride solution were used. Uncolored discs were used as a control. Zirconia specimens infiltrated with chromium, molybdenum and vanadium chloride solutions were dark brown, light yellow and dark yellow, respectively. CIE L*, a*, and b* values of all the chromium-doped specimens and the specimens infiltrated with 0.1 wt% molybdenum chloride solution were in the range of values for natural teeth. The biaxial flexural strengths of the three kinds of metal chloride groups were similar to the uncolored group. These results suggest that chromium and molybdenum dopants can be used as colorants to fabricate tooth colored zirconia ceramic restorations.

  18. [Research on the aging of all-ceramics restoration materials].

    Science.gov (United States)

    Zhang, Dongjiao; Chen, Xinmin

    2011-10-01

    All-ceramic crowns and bridges have been widely used for dental restorations owing to their excellent functionality, aesthetics and biocompatibility. However, the premature clinical failure of all-ceramic crowns and bridges may easily occur when they are subjected to the complex environment of oral cavity. In the oral environment, all-ceramic materials are prone to aging. Aging can lead all-ceramic materials to change color, to lower bending strength, and to reduce anti-fracture toughness. There are many factors affecting the aging of the all-ceramic materials, for example, the grain size, the type of stabilizer, the residual stress and the water environment. In order to analyze the aging behavior, to optimize the design of all-ceramic crowns and bridges, and to evaluate the reliability and durability, we review in this paper recent research progress of aging behavior for all-ceramics restoration materials.

  19. Marginal bone-level alterations of loaded zirconia and titanium dental implants: an experimental study in the dog mandible.

    Science.gov (United States)

    Thoma, Daniel S; Benic, Goran I; Muñoz, Fernando; Kohal, Ralf; Sanz Martin, Ignacio; Cantalapiedra, Antonio G; Hämmerle, Christoph H F; Jung, Ronald E

    2016-04-01

    The aim was to test whether or not the marginal bone-level alterations of loaded zirconia implants are similar to the bone-level alterations of a grade 4 titanium one-piece dental implant. In six dogs, all premolars and the first molars were extracted in the mandible. Four months later, three zirconia implants (BPI, VC, ZD) and a control titanium one-piece (STM) implant were randomly placed in each hemimandible and left for transmucosal healing (baseline). Six months later, CAD/CAM crowns were cemented. Sacrifice was scheduled at 6-month postloading. Digital X-rays were taken at implant placement, crowns insertion, and sacrifice. Marginal bone-level alterations were calculated, and intra- and intergroup comparisons performed adjusted by confounding factors. Implants were successfully placed. Until crown insertion, two implants were fractured (one VC, one ZD). At sacrifice, 5 more implants were (partly) fractured (one BPI, four ZD), and one lost osseointegration (VC). No decementation of crowns occurred. All implant systems demonstrated a statistically significant (except VC) loss of marginal bone between baseline and crown insertion ranging from 0.29 mm (VC; P = 0.116) to 0.80 mm (ZD; P = 0.013). The estimated marginal bone loss between baseline and 6 months of loading ranged between 0.19 mm (BPI) and 1.11 mm (VC), being statistically significant for STM and VC only (P implants and control implants (STM vs. BPI P = 0.007; vs. VC P = 0.001; vs. ZD P = 0.011). Zirconia implants were more prone to fracture prior to and after loading with implant-supported crowns compared to titanium implants. Individual differences and variability in the extent of the bone-level changes during the 12-month study period were found between the different implant types and materials. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. In vitro evaluation of marginal discrepancy of monolithic zirconia restorations fabricated with different CAD-CAM systems.

    Science.gov (United States)

    Hamza, Tamer A; Sherif, Rana M

    2017-06-01

    Dental laboratories use different computer-aided design and computer-aided manufacturing (CAD-CAM) systems to fabricate fixed prostheses; however, limited evidence is available concerning which system provides the best marginal discrepancy. The purpose of this in vitro study was to evaluate the marginal fit of 5 different monolithic zirconia restorations milled with different CAD-CAM systems. Thirty monolithic zirconia crowns were fabricated on a custom-designed stainless steel die and were divided into 5 groups according to the type of monolithic zirconia crown and the CAD-CAM system used: group TZ, milled with an MCXL milling machine; group CZ, translucent zirconia milled with a motion milling machine; group ZZ, zirconia milled with a dental milling unit; group PZ, translucent zirconia milled with a zirconia milling unit; and group BZ, solid zirconia milled using an S1 VHF milling machine. The marginal fit was measured with a binocular microscope at an original magnification of ×100. The results were tabulated and statistically analyzed with 1-way ANOVA and post hoc surface range test, and pairwise multiple comparisons were made using Bonferroni correction (α=.05). The type of CAD-CAM used affected the marginal fit of the monolithic restoration. The mean (±SD) highest marginal discrepancy was recorded in group TZI at 39.3 ±2.3 μm, while the least mean marginal discrepancy was recorded in group IZ (22.8 ±8.9 μm). The Bonferroni post hoc test showed that group TZI was significantly different from all other groups tested (Pmarginal discrepancies; however, the CAD-CAM system with the 5-axis milling unit produced the best marginal fit. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  1. Superplasticity in Fine-Grained Ceramics

    Science.gov (United States)

    1994-01-31

    Stabilized, Tetragonal Zirconia," Acta Metall. Mater., 39(12), (1991), pp. 3227-3236. 10. B. Kellett, P. Carry, and A. Mocellin , "Extrusion of Tet-ZrO2...F. Wakai, S. Sakaguchi, and H. Kato, J. Ceram. Soc. Jap., 94, 72 (1986). 8. B. Kellett, P. Carry, and A. Mocellin , J. Amer. Ceram. Soc., 74, 1922

  2. In vitro shear bond strength of Y-TZP ceramics to different core materials with the use of three primer/resin cement systems.

    Science.gov (United States)

    Al-Harbi, Fahad A; Ayad, Neveen M; Khan, Zahid A; Mahrous, Amr A; Morgano, Steven M

    2016-01-01

    Durability of the bond between different core materials and zirconia retainers is an important predictor of the success of a dental prosthesis. Nevertheless, because of its polycrystalline structure, zirconia cannot be etched and bonded to a conventional resin cement. The purpose of this in vitro study was to compare the effects of 3 metal primer/resin cement systems on the shear bond strength (SBS) of 3 core materials bonded to yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramic retainers. Zirconia ceramic (Cercon) disks (5×3 mm) were airborne-particle abraded, rinsed, and air-dried. Disk-shaped core specimens (7×7 mm) that were prepared of composite resin, Ni-Cr, and zirconia were bonded to the zirconia ceramic disks by using one of 3 metal primer/cement systems: (Z-Prime Plus/BisCem, Zirconia Primer/Multilink Automix, or Clearfil Ceramic Primer/Clearfil SA). SBS was tested in a universal testing machine. Stereomicroscopy was used to evaluate the failure mode of debonded specimens. Data were analyzed using 2-way ANOVA and post hoc analysis using the Scheffe procedure (α=.05). Clearfil SA/Clearfil Ceramic Primer system with an Ni-Cr core yielded the highest SBS value (19.03 MPa), whereas the lowest SBS value was obtained when Multilink Automix/Zirconia Primer system was used with the zirconia core group (4.09 MPa). Differences in mean SBS values among the cement/primer groups were statistically significant, except for Clearfil SA and BisCem with both composite resin and zirconia cores. Differences in mean SBS values among the core subgroups were not statistically significant, except for zirconia core with BisCem, Multilink, and Clearfil SA. The predominant failure mode was adhesive, except for Clearfil SA and BisCem luting agents with composite resin cores, which displayed cohesive failure, and Multilink Automix with a composite resin, core as well as Clearfil SA with Ni-Cr cores, where the debonded specimens of each group displayed a mixed

  3. Shear bond strength between an indirect composite layering material and feldspathic porcelain-coated zirconia ceramics.

    Science.gov (United States)

    Fushiki, Ryosuke; Komine, Futoshi; Blatz, Markus B; Koizuka, Mai; Taguchi, Kohei; Matsumura, Hideo

    2012-10-01

    This study aims to evaluate the effect of both feldspathic porcelain coating of zirconia frameworks and priming agents on shear bond strength between an indirect composite material and zirconia frameworks. A total of 462 airborne-particle-abraded zirconia disks were divided into three groups: untreated disks (ZR-AB), airborne-particle-abraded zirconia disks coated with feldspathic porcelain, (ZR-PO-AB), and hydrofluoric acid-etched zirconia disks coated with feldspathic porcelain (ZR-PO-HF). Indirect composite (Estenia C&B) was bonded to zirconia specimens with no (CON) or one of four priming agents--Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB + activator), Estenia Opaque primer, or Porcelain Liner M Liquid B (PLB)--with or without an opaque material (Estenia C&B Opaque). All specimens were tested for shear bond strength before and after 20,000 thermocycles. The Steel-Dwass test and Mann-Whitney U test were used to compare shear bond strength. In ZR-AB specimens, the initial bond strength of the CPB and CPB + Activator groups was significantly higher as compared with the other three groups (P material, bond strength was significantly lower in ZR-AB specimens than in ZR-PO-AB and ZR-PO-HF specimens (P composite to zirconia independent of surface treatment. The use of a silane coupling agent and opaque material yields durable bond strength between the indirect composite and feldspathic-porcelain-coated zirconia. The results of the present study suggest that feldspathic porcelain coating of zirconia frameworks is an effective method to obtain clinically acceptable bond strengths of a layering indirect composite material to a zirconia framework.

  4. Premolar Axial Wall Height Effect on CAD/CAM Crown Retention

    Science.gov (United States)

    2016-05-24

    OC axial wall height was required in a study that involved zirconia copings cemented on stainless steel dies. The results of this study reinforced...surface area was determined using a digital measuring microscope (Hirox). Scanned preparations (CEREC) were fitted with e.max CAD crowns and cemented ...Figure 14. RelyX Unicem Cementation

  5. Esthetic modification of cast dental-ceramic restorations.

    Science.gov (United States)

    Campbell, S D

    1990-01-01

    The advantages and disadvantages of conventional opaque substructures (eg, metal ceramic restorations) used for creating esthetic complete crown restorations are reviewed, and the esthetic advantages of veneering a translucent crown (Dicor) are considered. An appropriate aluminous veneering porcelain was identified (Vitadur Veneer). This veneer porcelain was chosen to match the thermal coefficient of expansion of the cast glass-ceramic substructure. A flexural strength study was then completed and it showed no difference in the strength of the veneered and nonveneered translucent cast glass-ceramic specimens. Scanning electron microscopy revealed that the interface between the porcelain veneer and cast glass-ceramic substructure had no visible porosity and resulted in a continuous-appearing structure. Potential coping designs, as well as the clinical applications and ramifications of this modified crown, are discussed.

  6. Emerging Ceramic-based Materials for Dentistry

    Science.gov (United States)

    Denry, I.; Kelly, J.R.

    2014-01-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. PMID:25274751

  7. Effect of different surface treatments on adhesion of In-Ceram Zirconia to enamel and dentin substrates.

    Science.gov (United States)

    Saker, Samah; Ibrahim, Fatma; Ozcan, Mutlu

    2013-08-01

    Resin bonding of In-Ceram Zirconia (ICZ) ceramics is still a challenge, especially for minimally invasive applications. This study evaluated the adhesion of ICZ to enamel and dentin after different surface treatments of the ceramic. ICZ ceramic specimens (diameter: 6 mm; thickness: 2 mm) (N = 100) were fabricated following the manufacturer's instructions and randomly assigned to 5 groups (n = 20), according to the surface treatment methods applied. The groups were as follows: group C: no treatment; group SB: sandblasting; group SCS-S: CoJet+silane; group SCS-P: CoJet+Alloy Primer; group GE-S: glaze+ hydrofluoric acid etching (9.6%) for 60 s+silane. Each group was randomly divided into two subgroups to be bonded to either enamel or dentin (n = 10 per group) using MDP-based resin cement (Panavia F2.0). All the specimens were subjected to thermocycling (5000x, 5°C-55°C). The specimens were mounted in a universal testing machine and tensile force was applied to the ceramic/cement interface until failure occurred (1 mm/min). After evaluating all the debonded specimens under SEM, the failure types were defined as either "adhesive" with no cement left on the ceramic surface (score 0) or "mixed" with less than 1/2 of the cement left adhered to the surface with no cohesive failure of the substrate (score 1). The data were statistically evaluated using 2-way ANOVA and Tukey's tests (α = 0.05). The highest tensile bond strength for the enamel surfaces was obtained in group GE-S (18.1 ± 2 MPa) and the lowest in group SB (7.1 ± 1.4 MPa). Regarding dentin, group CSC-P showed the highest (12 ± 1.3 MPa) and SB the lowest tensile bond strength (5.7 ± 0.4 MPa). Groups SB, CSC-S, CSC-P, and GE-S did not show significant differences between the different surface treatments on either enamel or dentin surfaces (p enamel and dentin substrates (p enamel substrates, exclusively adhesive failures from ICZ (score 0) were found, on dentin exclusively mixed failures were observed (score

  8. ADVANCED CERAMIC MATERIALS FOR DENTAL APPLICATIONS SINTERED BY MICROWAVE HEATING

    OpenAIRE

    Presenda Barrera, Álvaro

    2016-01-01

    [EN] Zirconia has become a widely utilized structural ceramic material with important applications in dentistry due to its superb mechanical properties, biocompatibility, aesthetic characteristics and durability. Zirconia needs to be stabilized in the t-phase to obtain improved mechanical properties such as hardness and fracture toughness. Fully dense yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) materials are normally consolidated through the energy-intensive processing of po...

  9. Effects of superplastic deformations on thermophysical properties of tetragonal zirconia polycrystals

    International Nuclear Information System (INIS)

    Motohashi, Y.; Wan, C.; Sakuma, T.; Harjo, S.; Shibata, T.; Ishihara, M.; Baba, S.; Hoshiya, T.

    2004-01-01

    Neutron irradiation studies on superplastic zirconia-based ceramics are now in progress as an innovative basic project using the High-temperature Engineering Test Reactor (HTTR) in Japan. The characteristics of the zirconia-based engineering components, made through the formation of superplastic, may be strongly affected by their response to transient or steady-state heat flow. Reliable thermophysical properties such as the coefficients of thermal expansion and thermal conductivity are, therefore, needed to estimate and predict the influence of a high-temperature environment. Accordingly, one of this project's targets is to study the thermophysical properties of superplastic zirconia-based ceramics. The first stage of the research addresses the effects of superplastic deformations on the thermophysical properties of a typical superplastic ceramic, 3 mol% yttria-stabilised tetragonal zirconia polycrystals (3Y-TZP), in its un-irradiated state. First, superplastic tensile deformations were conducted on 3Y-TZP specimens under different conditions in order to obtain specimens with different microstructural characteristics. Afterwards, the following actions were taken: - Specific heat measurements were conducted on the specimens at temperatures ranging from 473 K to 1273 K. - The thermal diffusivity was measured using a laser flash method. The thermal conductivity was then calculated from the measured thermal diffusivity, specific heat and density. - The linear thermal expansion was measured by a push-rod type dilatometer from 300 K to 1473 K. The coefficient of linear thermal expansion (CTE) was estimated from the thermal expansion data. The results obtained from the above measurements are discussed, as is the microstructural evolution caused by the superplastic deformations. It was found that the specific heat was almost independent of microstructural evolution, whereas the thermal diffusivity, thermal conductivity and thermal expansion were quite sensitive to

  10. Dental implant customization using numerical optimization design and 3-dimensional printing fabrication of zirconia ceramic.

    Science.gov (United States)

    Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei; Lin, Yuan-Min

    2017-05-01

    This study proposes a new methodology for dental implant customization consisting of numerical geometric optimization and 3-dimensional printing fabrication of zirconia ceramic. In the numerical modeling, exogenous factors for implant shape include the thread pitch, thread depth, maximal diameter of implant neck, and body size. Endogenous factors are bone density, cortical bone thickness, and non-osseointegration. An integration procedure, including uniform design method, Kriging interpolation and genetic algorithm, is applied to optimize the geometry of dental implants. The threshold of minimal micromotion for optimization evaluation was 100 μm. The optimized model is imported to the 3-dimensional slurry printer to fabricate the zirconia green body (powder is bonded by polymer weakly) of the implant. The sintered implant is obtained using a 2-stage sintering process. Twelve models are constructed according to uniform design method and simulated the micromotion behavior using finite element modeling. The result of uniform design models yields a set of exogenous factors that can provide the minimal micromotion (30.61 μm), as a suitable model. Kriging interpolation and genetic algorithm modified the exogenous factor of the suitable model, resulting in 27.11 μm as an optimization model. Experimental results show that the 3-dimensional slurry printer successfully fabricated the green body of the optimization model, but the accuracy of sintered part still needs to be improved. In addition, the scanning electron microscopy morphology is a stabilized t-phase microstructure, and the average compressive strength of the sintered part is 632.1 MPa. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Wonderland of ceramics superplasticity; Ceramics chososei no sekai

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, F. [National Industrial Research Inst. of Nagoya, Nagoya (Japan)

    1995-07-01

    It has been ten years since it was found that ceramics, which is strong and hard at room temperatures and does not deform at all, may exhibit a superplasticity phenomenon at high temperatures that it endlessly elongates when pulled as if it were chewing gum. This phenomenon is one of peculiar behaviours which nano-crystal ceramics, pulverized to an extent that the crystalline particle size is on the order of nanometers, show. The application of superplasticity made the material engineers`s old dream come true that hard ceramics are arbitrarily deformed and machined like metal. Using as models materials such as silicone nitride, alumina and zirconia, this paper describes the history and deformation mechanism of ceramics superplasticity, material design aiming at superplasticization and application of ceramics superplasticity to the machining technology. Furthermore, it describes the trend and future development of international joint researches on the basic surveys on ceramics superplasticity. 25 refs., 11 figs.

  12. The effect of extended aging on the optical properties of different zirconia materials.

    Science.gov (United States)

    Alghazzawi, Tariq F

    2017-07-01

    The purpose of this study was to determine if the optical properties of zirconia and glass-ceramic (e.max) were affected by low-temperature degradation (aging). Experiment samples were fabricated with seven zirconia brands (n=10): Zenostar, Zirlux, Katana, Bruxzir, DD-BioZX 2 , DD-cubeX 2 , NexxZr; and e.max were used as a control. This resulted in a total of 80 samples in the experiment. The L*, a* and b* were measured for each sample, and then the optical properties including translucency parameter (TP), contrast ratio (CR), and opalescence parameter (OP) were calculated. The samples were aged (20, 40, 60, 80, 100h), and the optical properties were calculated after each interval. Most zirconia brands had lower L*, higher a*, higher b* with increased aging, which visually corresponds to darker, redder, and more yellow. Aging also increased CR, lowered TP, and lowered OP. e.max was also affected by aging but still had the highest TP (23.9±2.8), L* (81.7±3.4), and lowest CR (0.41±0.05) compared to any zirconia. The Zenostar had the closest TP (24.1±0.4), and L* (90.2±0.5) values to e.max before aging. However, after 100h of aging, the DD-cubeX 2 was least effected and had the highest TP (22.2±0.6) and lowest CR (0.43±0.01) compared with other zirconia samples and highest OP (11.3±0.2) of all ceramic samples. The optical properties of zirconia and e.max materials were affected by aging with the effects increasing with time. The magnitude of change was affected by seven brands of dental zirconia. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  13. Influence of Abutment Design on Stiffness, Strength, and Failure of Implant-Supported Monolithic Resin Nano Ceramic (RNC) Crowns.

    Science.gov (United States)

    Joda, Tim; Huber, Samuel; Bürki, Alexander; Zysset, Philippe; Brägger, Urs

    2015-12-01

    Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation. © 2014 Wiley Periodicals, Inc.

  14. Influence of Material Selection on the Marginal Accuracy of CAD/CAM-Fabricated Metal- and All-Ceramic Single Crown Copings

    Directory of Open Access Journals (Sweden)

    Matthias Rödiger

    2018-01-01

    Full Text Available This study evaluated the marginal accuracy of CAD/CAM-fabricated crown copings from four different materials within the same processing route. Twenty stone replicas of a metallic master die (prepared upper premolar were scanned and divided into two groups. Group 1 (n=10 was used for a pilot test to determine the design parameters for best marginal accuracy. Group 2 (n=10 was used to fabricate 10 specimens from the following materials with one identical CAD/CAM system (GAMMA 202, Wissner GmbH, Goettingen, Germany: A = commercially pure (cp titanium, B = cobalt-chromium alloy, C = yttria-stabilized zirconia (YSZ, and D = leucite-reinforced glass-ceramics. Copings from group 2 were evaluated for the mean marginal gap size (MeanMG and average maximum marginal gap size (AMaxMG with a light microscope in the “as-machined” state. The effect of the material on the marginal accuracy was analyzed by multiple pairwise comparisons (Mann–Whitney, U-test, α=0.05, adjusted by Bonferroni-Holmes method. MeanMG values were as follows: A: 46.92 ± 23.12 μm, B: 48.37 ± 29.72 μm, C: 68.25 ± 28.54 μm, and D: 58.73 ± 21.15 μm. The differences in the MeanMG values proved to be significant for groups A/C (p=0.0024, A/D (p=0.008, and B/C (p=0.0332. AMaxMG values (A: 91.54 ± 23.39 μm, B: 96.86 ± 24.19 μm, C: 120.66 ± 32.75 μm, and D: 100.22 ± 10.83 μm revealed no significant differences. The material had a significant impact on the marginal accuracy of CAD/CAM-fabricated copings.

  15. Chemistry-driven structural alterations in short-term retrieved ceramic-on-metal hip implants: Evidence for in vivo incompatibility between ceramic and metal counterparts.

    Science.gov (United States)

    Zhu, Wenliang; Pezzotti, Giuseppe; Boffelli, Marco; Chotanaphuti, Thanainit; Khuangsirikul, Saradej; Sugano, Nobuhiko

    2017-08-01

    Ceramic-on-metal (CoM) hip implants were reported to experience lower wear rates in vitro as compared to metal-on-metal (MoM) bearings, thus hinting metal-ion release at lower levels in vivo. In this article, we show a spectroscopic study of two short-term retrieval cases of zirconia-toughened alumina (ZTA) femoral heads belonging to CoM hip prostheses, which instead showed poor wear performances in vivo. Metal contamination and abnormally high fractions of tetragonal-to-monoclinic (t→m) polymorphic transformation of the zirconia phase could be found on both ZTA heads, which contrasted with the optimistic predictions of in vitro experiments. At the molecular scale, incorporation of metal ions into the ceramic lattices could be recognized as due to frictionally assisted phenomena occurring at the ceramic surface. Driven by abnormal friction, diffusion of metal ions induced lattice shrinkage in the zirconia phases, while residual stress fields became stored at the surface of the femoral head. Diffusional alterations destabilized the chemistry of the ceramic surface and resulted in an abnormal increase in t→m phase transformation in vivo. Frictionally driven metal transfer to the ceramic lattice thus hinders the in vivo performance of CoM prostheses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1469-1480, 2017. © 2016 Wiley Periodicals, Inc.

  16. Emerging ceramic-based materials for dentistry.

    Science.gov (United States)

    Denry, I; Kelly, J R

    2014-12-01

    Our goal is to give an overview of a selection of emerging ceramics and issues for dental or biomedical applications, with emphasis on specific challenges associated with full-contour zirconia ceramics, and a brief synopsis on new machinable glass-ceramics and ceramic-based interpenetrating phase composites. Selected fabrication techniques relevant to dental or biomedical applications such as microwave sintering, spark plasma sintering, and additive manufacturing are also reviewed. Where appropriate, the authors have added their opinions and guidance. © International & American Associations for Dental Research.

  17. Influence of veneer thickness on residual stress profile in veneering ceramic: measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Schajer, Gary S; Vanheusden, Alain J; Sadoun, Michaël J

    2012-02-01

    The veneering process of frameworks induces residual stresses and can initiate cracks when combined with functional stresses. The stress distribution within the veneering ceramic as a function of depth is a key factor influencing failure by chipping. This is a well-known problem with Yttria-tetragonal-zirconia-polycrystal based fixed partial dentures. The objective of this study is to investigate the influence of veneer thickness on the stress profile in zirconia- and metal-based structures. The hole-drilling method, often used for engineering measurements, was adapted for use with veneering ceramic. The stress profile was measured in bilayered disc samples of 20 mm diameter, with a 1 mm thick zirconia or metal framework. Different veneering ceramic thicknesses were performed: 1 mm, 1.5 mm, 2 mm, 2.5 mm and 3 mm. All samples exhibited the same type of stress vs. depth profile, starting with compressive at the ceramic surface, decreasing with depth up to 0.5-1.0 mm from the surface, and then becoming compressive again near the framework, except for the 1.5 mm-veneered zirconia samples which exhibited interior tensile stresses. Stresses in the surface of metal samples were not influenced by veneer thickness. Variation of interior stresses at 1.2 mm from the surface in function of veneer thickness was inverted for metal and zirconia samples. Veneer thickness influences in an opposite way the residual stress profile in metal- and in zirconia-based structures. A three-step approach and the hypothesis of the crystalline transformation are discussed to explain the less favorable residual stress development in zirconia samples. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Stability of prototype two-piece zirconia and titanium implants after artificial aging: an in vitro pilot study.

    Science.gov (United States)

    Kohal, Ralf-Joachim; Finke, Hans Christian; Klaus, Gerold

    2009-12-01

    Zirconia oral implants are a new topic in implant dentistry. So far, no data are available on the biomechanical behavior of two-piece zirconia implants. Therefore, the purpose of this pilot investigation was to test in vitro the fracture strength of two-piece cylindrical zirconia implants after aging in a chewing simulator. This laboratory in vitro investigation comprised three different treatment groups. Each group consisted of 16 specimens. In group 1, two-piece zirconia implants were restored with zirconia crowns (zirconia copings veneered with Triceram; Esprident, Ispringen, Germany), and in group 2 zirconia implants received Empress 2 single crowns (Ivoclar Vivadent AG, Schaan, Liechtenstein). The implants, including the abutments, in the two zirconia groups were identical. In group 3, similar titanium implants were reconstructed with porcelain-fused-to-metal crowns. Eight samples of each group were submitted to artificial aging with a long-term load test in the artificial mouth (chewing simulator). Subsequently, all not artificially aged samples and all artificially aged samples that survived the long-term loading of each group were submitted to a fracture strength test in a universal testing machine. For the pairwise comparisons in the different test groups with or without artificial loading and between the different groups at a given artificial loading condition, the Wilcoxon rank-sum test for independent samples was used. The significance level was set at 5%. One sample of group 1 (veneer fracture), none of group 2, and six samples of group 3 (implant abutment screw fractures) failed while exposed to the artificial mouth. The values for the fracture strength after artificial loading with 1.2 million cycles for group 1 were between 45 and 377 N (mean: 275.7 N), in group 2 between 240 and 314 N (mean: 280.7 N), and in the titanium group between 45 and 582 N (mean: 165.7 N). The fracture strength results without artificial load for group 1 amounted to between

  19. Brazing of zirconia to titanium using Ag-Cu and Au-Ni filler alloys

    Directory of Open Access Journals (Sweden)

    Jean S. Pimenta

    2013-12-01

    Full Text Available Advanced ceramic is usually joined to metal by the well-known direct brazing process, where costly active filler alloys can be considered a limitation. Brazing using active-metal-free filler alloy as insert between the joint components is an attempt to overcome it. The active metal diffusion from the titanium member through the bulk of molten filler to the ceramic was responsible to produce an active filler alloy in loco and promote reduction of the zirconium oxide to improve wetting on the ceramic surface. Unalloyed titanium was joined in a high-vacuum furnace (<3x10-5 mbar to yttria-tetragonal zirconia polycristals (Y-TZP and zirconia partially stabilized with magnesia (Mg-PSZ, where commercial fillers Ag-28Cu and Au-18Ni with respective thermal cycles were evaluated. Helium gas leak detection test was performed at the ceramic/metal interface at room temperature; samples from reliable vacuum tight joints were examined by microstructural analysis techniques and energy dispersive X-ray analysis at the joint cross-section. Tight joints were produced with eutectic Ag-Cu filler, revealing an intermetallic layer and a dark reaction layer near the ceramic surface; titanium diffusion was efficient for superficial chemical interactions between individual components. Brazing joints were also tested using three-point flexure testing.

  20. Influence of different restorative materials on the stress distribution in dental implants.

    Science.gov (United States)

    Datte, Carlos-Eduardo; Tribst, João-Paulo-Mendes; Dal Piva, Amanda-Maria-de Oliveira; Nishioka, Renato-Sussumu; Bottino, Marco-Antonio; Evangelhista, Alexandre-Duarte M; Monteiro, Fabrício M de M; Borges, Alexandre-Luiz-Souto

    2018-05-01

    To assist clinicians in deciding the most suitable restorative materials to be used in the crowns and abutment in implant rehabilitation. For finite element analysis (FEA), a regular morse taper implant was created using a computer aided design software. The implant was inserted at the bone model with 3 mm of exposed threads. An anatomic prosthesis representing a first maxillary molar was modeled and cemented on the solid abutment. Considering the crown material (zirconia, chromium-cobalt, lithium disilicate and hybrid ceramic) and abutment (Titanium and zirconia), the geometries were multiplied, totaling eight groups. In order to perform the static analysis, the contacts were considered bonded and each material was assigned as isotropic. An axial load (200 N) was applied on the crown and fixation occurred on the base of the bone. Results using Von-Mises criteria and micro strain values were obtained. A sample identical to the CAD model was made for the Strain Gauge (SG) analysis; four SGs were bonded around the implant to obtain micro strain results in bone tissue. FEA results were 3.83% lower than SG. According to the crown material, it is possible to note that the increase of elastic modulus reduces the stress concentration in all system without difference for bone. Crown materials with high elastic modulus are able to decrease the stress values in the abutments while concentrates the stress in its structure. Zirconia abutments tend to concentrate more stress throughout the prosthetic system and may be more susceptible to mechanical problems than titanium. Key words: Finite element analysis, dental implants, ceramic.

  1. Properties and Clinical Application of Three Types of Dental Glass-Ceramics and Ceramics for CAD-CAM Technologies

    Science.gov (United States)

    Ritzberger, Christian; Apel, Elke; Höland, Wolfram; Peschke, Arnd; Rheinberger, Volker M.

    2010-01-01

    The main properties (mechanical, thermal and chemical) and clinical application for dental restoration are demonstrated for three types of glass-ceramics and sintered polycrystalline ceramic produced by Ivoclar Vivadent AG. Two types of glass-ceramics are derived from the leucite-type and the lithium disilicate-type. The third type of dental materials represents a ZrO2 ceramic. CAD/CAM technology is a procedure to manufacture dental ceramic restoration. Leucite-type glass-ceramics demonstrate high translucency, preferable optical/mechanical properties and an application as dental inlays, onlays and crowns. Based on an improvement of the mechanical parameters, specially the strength and toughness, the lithium disilicate glass-ceramics are used as crowns; applying a procedure to machine an intermediate product and producing the final glass-ceramic by an additional heat treatment. Small dental bridges of lithium disilicate glass-ceramic were fabricated using a molding technology. ZrO2 ceramics show high toughness and strength and were veneered with fluoroapatite glass-ceramic. Machining is possible with a porous intermediate product.

  2. Shear Bond Strength of Metal Brackets to Zirconia Conditioned with Various Primer-Adhesive Systems

    Science.gov (United States)

    2016-07-01

    adhesion to ceramic crowns through chemical bonding presents a risk of prosthesis surface damage at debond (Falkensammer et al., 2013). When bonding...enamel. Traditional protocol associated with attaching brackets to enamel must be altered for ceramic crowns due to the dissimilarity in composition. The...Uniform Services University of the Health Sciences In Partial Fulfillment Of the Requirements For the Degree of MASTER OF SCIENCE By Michael

  3. Fracture toughness improvements of dental ceramic through use of yttria-stabilized zirconia (YSZ) thin-film coatings.

    Science.gov (United States)

    Chan, Ryan N; Stoner, Brian R; Thompson, Jeffrey Y; Scattergood, Ronald O; Piascik, Jeffrey R

    2013-08-01

    The aim of this study was to evaluate strengthening mechanisms of yttria-stabilized zirconia (YSZ) thin film coatings as a viable method for improving fracture toughness of all-ceramic dental restorations. Bars (2mm×2mm×15mm, n=12) were cut from porcelain (ProCAD, Ivoclar-Vivadent) blocks and wet-polished through 1200-grit using SiC abrasive. A Vickers indenter was used to induce flaws with controlled size and geometry. Depositions were performed via radio frequency magnetron sputtering (5mT, 25°C, 30:1 Ar/O2 gas ratio) with varying powers of substrate bias. Film and flaw properties were characterized by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Flexural strength was determined by three-point bending. Fracture toughness values were calculated from flaw size and fracture strength. Data show improvements in fracture strength of up to 57% over unmodified specimens. XRD analysis shows that films deposited with higher substrate bias displayed a high %monoclinic volume fraction (19%) compared to non-biased deposited films (87%), and resulted in increased film stresses and modified YSZ microstructures. SEM analysis shows critical flaw sizes of 67±1μm leading to fracture toughness improvements of 55% over unmodified specimens. Data support surface modification of dental ceramics with YSZ thin film coatings to improve fracture toughness. Increase in construct strength was attributed to increase in compressive film stresses and modified YSZ thin film microstructures. It is believed that this surface modification may lead to significant improvements and overall reliability of all-ceramic dental restorations. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Formation of nanocomposite alumina-zirconia-silica ceramics

    Czech Academy of Sciences Publication Activity Database

    Chráska, Tomáš; Klementová, Mariana; Hostomský, Jiří

    2007-01-01

    Roč. 52, č. 4 (2007), s. 331-341 ISSN 0001-7043 R&D Projects: GA AV ČR KAN300430651 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z40320502 Keywords : TEM * sample preparation * plasma spraying * ceramic s Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass

  5. Study of microstructure and mechanical properties of ceramics composites alumina-zirconia reinforced with yttria for inert coating of metal matrices used in the petroleum industry; Estudo de microestrutura e propriedades mecanicas de compositos ceramicos alumina-zirconia reforcado com itria para revestimento inerte de matrizes metalicas usadas na industria petrolifera

    Energy Technology Data Exchange (ETDEWEB)

    Pontual, J.O.; Silva, N.D.G.; Ferreira, R.A.S.; Yadava, Y.P., E-mail: juliaopontual@hotmail.com, E-mail: yadava@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Engenharia Mecanica

    2014-07-01

    The storage and transportation of crude oil is complicated due to the hostile environment provided by this. Under these conditions, it is imperative to search for alternative solutions, using an inert coating to protect from corrosion caused by crude oil. In this work, alumina-zirconia ceramic composites with 5-20%w zirconia and 1 - 2%w yttria were produced through thermomechanical process. The structural and microstructural characterization of the sintered material was carried out by X-ray diffraction and scanning electron microscopy. Mechanical properties were analyzed by Vickers hardness tests. Currently, the pads are submerged in crude oil and after 30-60 days will be removed and sent for stability test.(author)

  6. Microstructure and durability of zirconia thermal barrier coatings

    International Nuclear Information System (INIS)

    Suhr, D.S.; Mitchell, T.E.; Keller, R.J.

    1983-01-01

    Various combinations of plasma-sprayed bond coatings and zirconia ceramic coatings on a nickel-based superalloy substrate were tested by static thermal exposure at 1200 0 C and cyclic thermal exposure to 1000 0 C. The bond coats were based on Ni-Cr-Al alloys with additions of rare earth elements and Si. The ceramic coats were various ZrO 2 -Y 2 O 3 compositions, of which the optimum was found to be ZrO 2 -8.9 wt% Y 2 O 3 . Microstructural analysis showed that resistance to cracking during thermal exposure is strongly related to deleterious phase changes

  7. Advanced ceramics reinforced with carbon nanotubes for ballistic application

    International Nuclear Information System (INIS)

    Couto, Carlos Alberto de Oliveira; Passador, Fabio Roberto

    2016-01-01

    Full text: The carbon nanotubes have excellent mechanical properties, the elastic modulus is around 1TPa, next to the diamond and the mechanical strength is 10 to 100 times higher than steel, moreover they are self-lubricating, which facilitates the ceramic composites compression process. The insertion of carbon nanotubes tends to improve the fracture toughness of ceramic composites, but is necessary to obtain a good dispersion in the ceramic matrix. The objective of this work is to develop a tough and tenacious ceramics for ballistic application, using structural ceramics of alumina and tetragonal zirconia and evaluate the influence of the addition of carbon nanotubes (multilayer) on the mechanical properties of the composite. The carbon nanotubes were functionalized with carboxylic groups by nitric acid oxidation reaction. To ensure a homogeneous distribution of the carbon nanotubes in the matrix of alumina/zirconia, surfactants were used: sodium dodecyl sulphate + gum arabic in the amount of 50% by mass of carbon nanotubes. Ceramic powders were prepared with pure alumina and alumina + 20% by mass of tetragonal zirconia/yttria, with and without addition of carbon nanotubes at concentrations of 0.1 and 0.5% by mass. The samples were uniaxially and isostatically pressed at 300 MPa and sintered in a conventional oven at 1500 °C for two hours and a heating rate of 5 °C/min, aimed at commercial application. The morphology of ceramic powders were characterized by SEM and XRD. The mechanical properties of the sintered samples were evaluated by flexural bending at three points, Vickers microhardness and fracture toughness by single edge-notched beam (SENB). The use of carbon nanotubes in the ceramic composite caused a decrease in hardness and an increase in fracture toughness, with great potential for ballistic applications. (author)

  8. Advanced ceramics reinforced with carbon nanotubes for ballistic application

    Energy Technology Data Exchange (ETDEWEB)

    Couto, Carlos Alberto de Oliveira; Passador, Fabio Roberto, E-mail: carlos.couto.sjc@gmail.com [Universidade Federal de Sao Paulo (UNIFESP), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: The carbon nanotubes have excellent mechanical properties, the elastic modulus is around 1TPa, next to the diamond and the mechanical strength is 10 to 100 times higher than steel, moreover they are self-lubricating, which facilitates the ceramic composites compression process. The insertion of carbon nanotubes tends to improve the fracture toughness of ceramic composites, but is necessary to obtain a good dispersion in the ceramic matrix. The objective of this work is to develop a tough and tenacious ceramics for ballistic application, using structural ceramics of alumina and tetragonal zirconia and evaluate the influence of the addition of carbon nanotubes (multilayer) on the mechanical properties of the composite. The carbon nanotubes were functionalized with carboxylic groups by nitric acid oxidation reaction. To ensure a homogeneous distribution of the carbon nanotubes in the matrix of alumina/zirconia, surfactants were used: sodium dodecyl sulphate + gum arabic in the amount of 50% by mass of carbon nanotubes. Ceramic powders were prepared with pure alumina and alumina + 20% by mass of tetragonal zirconia/yttria, with and without addition of carbon nanotubes at concentrations of 0.1 and 0.5% by mass. The samples were uniaxially and isostatically pressed at 300 MPa and sintered in a conventional oven at 1500 °C for two hours and a heating rate of 5 °C/min, aimed at commercial application. The morphology of ceramic powders were characterized by SEM and XRD. The mechanical properties of the sintered samples were evaluated by flexural bending at three points, Vickers microhardness and fracture toughness by single edge-notched beam (SENB). The use of carbon nanotubes in the ceramic composite caused a decrease in hardness and an increase in fracture toughness, with great potential for ballistic applications. (author)

  9. High temperature measurements of the microwave dielectric properties of ceramics

    International Nuclear Information System (INIS)

    Baeraky, T.A.

    1999-06-01

    Equipment has been developed for the measurement of dielectric properties at high temperature from 25 to 1700 deg. C in the microwave frequency range 614.97 to 3620.66 MHz using the cavity perturbation technique, to measure the permittivity of a range of ceramic materials. The complex permittivities of the standard materials, water and methanol, were measured at low temperature and compared with the other published data. A statistical analysis was made for the permittivity measurements of water and methanol using sample holders of different diameter. Also the measurements of these materials were used to compare the simple perturbation equation with its modifications and alternation correction methods for sample shape and the holes at the two endplates of the cavity. The dielectric properties of solid materials were investigated from the permittivity measurements on powder materials, shown in table 4.7, using the dielectric mixture equations. Two kinds of ceramics, oxide and nitrides, were selected for the high temperature dielectric measurements in microwave frequency ranges. Pure zirconia, yttria-stabilised zirconia, and Magnesia-stabilised zirconia are the oxide ceramics while aluminium nitride and silicon nitride are the nitride ceramics. A phase transformation from monoclinic to tetragonal was observed in pure zirconia in terms of the complex permittivity measurements, and the conduction mechanism in three regions of temperature was suggested to be ionic in the first region and a mixture of ionic and electronic in the second. The phase transition disappeared with yttria-stabilised zirconia but it was observed with magnesia-stabilised zirconia. Yttria doped zirconia was fully stabilised while magnesia stabilised was partially stabilised zirconia. The dielectric property measurements of aluminium nitride indicated that there is a transition from AIN to AlON, which suggested that the external layer of the AIN which was exposed to the air, contains alumina. It was

  10. Flexural resistance of Cerec CAD/CAM system ceramic blocks. Part 2: Outsourcing materials.

    Science.gov (United States)

    Sedda, Maurizio; Vichi, Alessandro; Del Siena, Francesco; Louca, Chris; Ferrari, Marco

    2014-02-01

    To test different Cerec CAD/CAM system ceramic blocks, comparing mean flexural strength (sigma), Weibull modulus (m), and Weibull characteristic strength (sigma0) in an ISO standardized set-up. Following the recent ISO Standard (ISO 6872:2008), 11 types of ceramic blocks were tested: IPS e.max CAD MO, IPS e.max CAD LT and IPS e.max CAD HT (lithium disilicate glass-ceramic); In-Ceram SPINELL, In-Ceram Alumina and In-Ceram Zirconia (glass-infiltrated materials); inCoris AL and In-Ceram AL (densely sintered alumina); In-Ceram YZ, IPS e.max Zir-CAD and inCoris ZI (densely sintered zirconia). Specimens were cut out from ceramic blocks, finished, crystallized/infiltrated/sintered, polished, and tested in a three-point bending test apparatus. Flexural strength, Weibull characteristic strength, and Weibull modulus were obtained. A statistically significant difference was found (P ceramic (sigma = 272.6 +/- 376.8 MPa, m = 6.2 +/- 11.3, sigma0 = 294.0 +/- 394.1 MPa) and densely sintered alumina (sigma = 441.8 +/- 541.6 MPa, m = 11.9 +/- 19.0, sigma0 = 454.2 +/- 565.2 MPa). No statistically significant difference was found (P = 0.254) in glass infiltrated materials (sigma = 376.9 +/- 405.5 MPa, m = 7.5 +/- 11.5, sigma0 = 393.7 +/- 427.0 MPa). No statistically significant difference was found (P = 0.160) in densely sintered zirconia (sigma = 1,060.8 +/- 1,227.8 MPa, m = 5.8 +/- 7.4, sigma0 = 1,002.4 +/- 1,171.0 MPa). Not all the materials tested fulfilled the requirements for the clinical indications recommended by the manufacturer.

  11. Dilatometric study of anisotropic sintering of alumina/zirconia laminates with controlled fracture behaviour

    Czech Academy of Sciences Publication Activity Database

    Maca, K.; Pouchlý, V.; Drdlík, D.; Hadraba, Hynek; Chlup, Zdeněk

    2017-01-01

    Roč. 37, č. 14 (2017), s. 4287-4295 ISSN 0955-2219 R&D Projects: GA ČR(CZ) GA15-06390S; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Alumina/zirconia laminate * Crack deflection * Master sintering curve * Sintering shrinkage Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass OBOR OECD: Ceramic s Impact factor: 3.411, year: 2016

  12. Evaluation of torque loss value of MAD/MAM zirconia abutments with prefabricated titanium abutments

    OpenAIRE

    Marzieh Alikhasi; Roshanak Baghaie; Nasim khosronejad

    2013-01-01

    Background and Aims: In response to esthetic demand of patients, ceramic abutments have been developed. Despite esthetic of zirconia abutments, machining accuracy of these abutments has always been a question. Any misfit in the abutment-implant interface connection can lead to detorque and screw loosening. The aim of this study was to compare torque loss value of manually aided design/manually aided manufacture (MAD/MAM) zirconia abutments with prefabricated titanium abutments. Materials and ...

  13. Novel Translucent and Strong Submicron Alumina Ceramics for Dental Restorations.

    Science.gov (United States)

    Zhao, M; Sun, Y; Zhang, J; Zhang, Y

    2018-03-01

    An ideal ceramic restorative material should possess excellent aesthetic and mechanical properties. We hypothesize that the high translucency and strength of polycrystalline ceramics can be achieved through microstructural tailoring. The aim of this study is to demonstrate the superior optical and mechanical properties of a new class of submicron grain-sized alumina ceramics relative to the current state-of-the-art dental ceramic materials. The translucency, the in-line transmission ( T IT ) in particular, of these submicron alumina ceramics has been examined with the Rayleigh-Gans-Debye light-scattering model. The theoretical predictions related very well with the measured T IT values. The translucency parameter ( TP) and contrast ratio ( CR) of the newly developed aluminas were measured with a reflectance spectrophotometer on a black-and-white background. For comparison, the T IT , TP, and CR values for a variety of dental ceramics, mostly measured in-house but also cited from the literature, were included. The flexural strength of the aluminas was determined with the 4-point bending test. Our findings have shown that for polycrystalline alumina ceramics, an average grain size ceramic and zirconias, including the most translucent cubic-containing zirconias. The strength of these submicron grain-sized aluminas was significantly higher than that of the cubic-containing zirconia (e.g., Zpex Smile) and lithia-based glass-ceramics (e.g., IPS e.max CAD HT). A coarse-grained alumina could also reach a translucency level comparable to that of dental porcelain. However, the relatively low strength of this material has limited its clinical indications to structurally less demanding applications, such as orthodontic brackets. With a combined high strength and translucency, the newly developed submicron grain-sized alumina may be considered a suitable material for dental restorations.

  14. The effect of some factors on Ms and SME in Ce-TZP ceramics

    International Nuclear Information System (INIS)

    Jiang, B.; Tu, J.; Hsu, T.Y.; Qi, X.; Zheng, X.; Zhong, J.

    1992-01-01

    As known to all, shape memory behaviour has been observed in a variety of metallic alloys. This phenomenon, however, is not only observed in that field but also in other materials recently, such as in polymers, intermetallic compounds and ceramics, especially in zirconia ceramics. Swain observed the shape recovery of a bent magnesia-partially-stabilized zirconia (Mg-PSZ) bar upon heating above a certain temperature. The maximum deflection which was nearly completely recovered on heating is about 300 μm. Chen et al., investigated the pseudoelasticity and shape memory effect (SME) in ceria-stabilized tetragonal zirconia polycrystals (Ce-TZP) containing 12 mol% CeO 2 . Wang et al., also observed the SME in Ce-TZP containing 10 mol% CeO 2 . In this paper, the authors would like to introduce some of results conducted recently in our group on SME in Ce-TZP ceramics

  15. Synthesis of Ca,Y-zirconia/hydroxyapatite nanoparticles and composites

    Czech Academy of Sciences Publication Activity Database

    Částková, K.; Hadraba, Hynek; Matoušek, A.; Roupcová, P.; Chlup, Zdeněk; Novotná, L.; Cihlář, J.

    2016-01-01

    Roč. 36, č. 12 (2016), s. 2903-2912 ISSN 0955-2219 R&D Projects: GA ČR GA14-11234S; GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : Zirconia * Hydroxyapatite * Composite * Bioactivity * Mechanical properties Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass Impact factor: 3.411, year: 2016

  16. Osseointegration of zirconia implants: an SEM observation of the bone-implant interface.

    Science.gov (United States)

    Depprich, Rita; Zipprich, Holger; Ommerborn, Michelle; Mahn, Eduardo; Lammers, Lydia; Handschel, Jörg; Naujoks, Christian; Wiesmann, Hans-Peter; Kübler, Norbert R; Meyer, Ulrich

    2008-11-06

    The successful use of zirconia ceramics in orthopedic surgery led to a demand for dental zirconium-based implant systems. Because of its excellent biomechanical characteristics, biocompatibility, and bright tooth-like color, zirconia (zirconium dioxide, ZrO2) has the potential to become a substitute for titanium as dental implant material. The present study aimed at investigating the osseointegration of zirconia implants with modified ablative surface at an ultrastructural level. A total of 24 zirconia implants with modified ablative surfaces and 24 titanium implants all of similar shape and surface structure were inserted into the tibia of 12 Göttinger minipigs. Block biopsies were harvested 1 week, 4 weeks or 12 weeks (four animals each) after surgery. Scanning electron microscopy (SEM) analysis was performed at the bone implant interface. Remarkable bone attachment was already seen after 1 week which increased further to intimate bone contact after 4 weeks, observed on both zirconia and titanium implant surfaces. After 12 weeks, osseointegration without interposition of an interfacial layer was detected. At the ultrastructural level, there was no obvious difference between the osseointegration of zirconia implants with modified ablative surfaces and titanium implants with a similar surface topography. The results of this study indicate similar osseointegration of zirconia and titanium implants at the ultrastructural level.

  17. Superplasticity and joining of zirconia-based ceramics

    International Nuclear Information System (INIS)

    Dominguez-Rodriguez, A.; Gutierrez-Mora, F.; Jimenez-Melendo, M.; Chaim, R.; Routbort, J. L.

    1999-01-01

    Steady-state creep and joining of alumina/zirconia composites containing alumina volume fractions of 20, 60, and 85% have been investigated between 1,250 and 1,350 C. Superplasticity of these compounds is controlled by grain-boundary sliding and the creep rate is a function of alumina volume fraction, not grain size. Using the principles of superplasticity, pieces of the composite have been joined by applying the stress required to achieve 5 to 10% strain to form a strong interface at temperatures as low as 1,200 C

  18. Superplasticity and joining of zirconia-based ceramics

    International Nuclear Information System (INIS)

    Gutierrez-Mora, F.; Dominguez-Rodriguez, A.; Jimenez-Melendo, M.; Chaim, R.; Ravi, G.B.; Routbort, J.L.

    2000-01-01

    Steady-state creep and joining of alumina/zirconia composites containing alumina volume fractions of 20, 60 and 85% have been investigated between 1,250 and 1,350 C. Superplasticity of these compounds is controlled by grain-boundary sliding and the creep rate is a function of alumina volume fraction, not grain size. Using the principles of superplasticity, pieces of the composite have been joined by applying the stress required to achieve 5 to 10% strain to form a strong interface at temperatures as low as 1,200 C

  19. Effect of hydrothermal treatment on light transmission of translucent zirconias.

    Science.gov (United States)

    Putra, Armand; Chung, Kwok-Hung; Flinn, Brian D; Kuykendall, Tuesday; Zheng, Cheng; Harada, Kosuke; Raigrodski, Ariel J

    2017-09-01

    Studies of the light transmission of translucent zirconias after hydrothermal treatment are limited. The purpose of this in vitro study was to evaluate the effect of hydrothermal treatment on the light transmission of translucent zirconias for monolithic restorations. Four commercially available zirconia products, BruxZir Anterior Solid Zirconia (BruxAnt, BA), Lava Plus High Translucency (LPHT), Katana Zirconia Super Translucent (KST), and Katana Zirconia Ultra Translucent (KUT) were assessed and 1 type of lithium disilicate, e.max Press LT (LDLT) was used as a control. Plate specimens, 20×20×1 mm (n=80) for the translucency assessment were sectioned from postsintered zirconia bulk materials and ground with a #400-grit diamond wheel and coolant. The specimens were placed under hydrothermal conditions of 134°C at 0.2 MPa (n=5 per group at 0, 5, 50, and 100 hours). Percentage of total transmittance of light (T t %) of each specimen was measured using a spectrophotometer with an integrating sphere. X-ray diffraction analyses were used to measure tetragonal-monoclinic phase transformation. Surfaces were examined by scanning electron microscopy and energy dispersive spectrometry. Data were analyzed using 2-way ANOVA followed by the Tukey test (α=.05). The T t % ranged from 6.5% to 28.3%. Group LDLT obtained significantly higher transmittance than other tested groups, whereas groups KST and KUT had significantly higher T t % than groups BA and LPHT (Phydrothermal treatment for all tested translucent zirconias and a lithium disilicate glass-ceramic control. Hydrothermal treatment had minimal effects on the translucency of translucent zirconias. The tetragonal-monoclinic phase transformation rate of translucent zirconias was found to be low, except in group LPHT. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Sol–gel zirconia nanopowders with α-cyclodextrin as organic additive

    International Nuclear Information System (INIS)

    Răileanu, M.; Todan, L.; Crişan, D.; Drăgan, N.; Crişan, M.; Stan, C.; Andronescu, C.; Voicescu, M.; Vasile, B.S.; Ianculescu, A.

    2012-01-01

    Highlights: ► The sol–gel synthesis of a zirconia powder has been performed, in the presence of α-cyclodextrin as organic additive. ► A crystalline powder consisting from a mixture of monoclinic and tetragonal zirconia phases has resulted after the thermal treatment. ► The organic additive acted the role of metal oxides used as doppants for zirconia powders, avoiding phase transformations. ► The α-cyclodextrin made particles to assume spherical shape and reach fairly uniform size and prevented their agglomeration. ► The organic additive led to a certain porous morphology of the zirconia particles that is pores embedded within grains. - Abstract: Nanomaterials present unique structural and physicochemical properties due to their ultra fine size of particles that make them very useful in many domains. The most spectacular applications of nanosized zirconia include ceramics, piezoelectrics, refractories, pigments, solid electrolytes, oxygen sensors, catalysts, ultrafiltration membranes, and chromatography packing materials. Nanostructured zirconia powders can be prepared using various methods, such as sol–gel process, coprecipitation, hydrothermal synthesis, and reverse micelle method. The aim of the present work was to prepare zirconia nanopowders through the sol–gel method, using α-cyclodextrin as organic additive and to establish its influence on the structural and textural properties of the obtained product. A white, amorphous ZrO 2 powder containing α-cyclodextrin was prepared, which became a crystalline, stable one, after removing the organic matter by thermal treatment. The resulted nanocrystalline powder contains both monoclinic and tetragonal zirconia phases and is very stable. It presents a relatively reduced tendency of agglomeration of particles and contains closed pores which are embedded in the zirconia matrix. The zirconia powders were characterized using the following methods: thermal analysis, IR spectroscopy, UV–vis spectroscopy

  1. Stereological observations of platelet-reinforced mullite- and zirconia-matrix composites

    International Nuclear Information System (INIS)

    Cherian, I.K.; Kriven, W.M.; Lehigh, M.D.; Nettleship, I.

    1996-01-01

    Recently, the effect of solid inclusions on the sintering of ceramic powders has been explained in terms of a back-stress that opposes densification. Several analyses have been proposed to describe this problem. However, little quantitative information exists concerning the effect of reinforcement on microstructural evolution. This study compares the microstructural development of zirconia and mullite matrices in the presence of alumina platelets. The effect of platelet loading on density is similar for both composites. Quantitative stereological examinations reveal that the average grain size and pore size are finer for the zirconia-matrix composite. The platelet loading does not have any noticeable effect on the average grain size of the matrix in either composite. However, the average pore size increases as the volume fraction of platelets increases for both materials. Contiguity measurements have detected some aggregation of platelets in the zirconia-matrix composite

  2. OCT and shear-force evaluations of zirconia Fixed Partial Prosthesis processed with a conventional CAD/CAM technology

    Science.gov (United States)

    Zaharia, C.; Gabor, A.; Sinescu, C.; Topala, F. I.; Negrutiu, M. L.; Levai, C. M.; Duma, V. F.; Bradu, A.; Podoleanu, A. Gh.

    2016-03-01

    Introduction. Dental ceramics show better biocompatibility and aesthetic properties in dental constructs with regard to metals. However, they also have an insufficient mechanical stability, as well as low resistance limits due to their fragility. Taking into account these aspects, glass infiltrated with ceramic materials such as alumina (i.e., zirconiareinforced ceramics) is being nowadays considered a better material for full fixed partial prostheses (FPPs) than ceramics: the former has a higher mechanical resistance, which makes it more appropriate for restoration areas, where there is an increased mechanical stress. The interest for zirconia is growing due both to its resistance and to the possibility to develop such prostheses using the CAD/CAM technology. Materials and methods. 24 all ceramic FPPs created with CAD/CAM technology were used. The models were scanned with Zeno Wieland Scanner, a one touch scanning machine which requires between 45-60 s for a full model scan. The scanner provides 3 axis-architecture and automatic data processing. The zirconia infrastructures resulted from milling zirconia green disks in Wieland units, followed by the deposition of ceramic masses and then by burning procedures. All the samples were assessed with a Time Domain Optical Coherence Tomography (TD-OCT) system working at a wavelenght of 1300 nm. Using OCT investigations, material defects were detected in the areas of maximal tension, i.e. the connectors, the oclusal, and the cervical areas. These samples with defects in the above areas have not been considered for the study further on. Finally, the samples were loaded in a MultiTest 5 i Mecmesin system and tested until fracture occurred. The MultiTest 5-i creates tensile and compression forces of up to 5 kN. Results and discussions. All the test samples survived a dynamic load of 1.2 x 107 cycles and a thermal cycle mixer simulator version; signs of failure in terms of fracture lines were observed in all samples. The

  3. Fracture resistance of prepared premolars restored with bonded new lab composite and all-ceramic inlay/onlay restorations: Laboratory study.

    Science.gov (United States)

    Wafaie, Ramy Ahmed; Ibrahim Ali, Ashraf; Mahmoud, Salah Hasab

    2018-01-25

    To assess the influence of new light curing lab composite, lithium-disilicate glass-ceramic and yttrium-stabilized zirconia-based ceramic on the fracture resistance of maxillary premolars with class II inlay and onlay preparations. Seventy sound maxillary premolars were divided randomly into seven main groups. The first group was left intact (control group). The remaining six groups were prepared with inlay and onlay cavities and restored with lab composite (SR Nexco), lithium-disilicate glass-ceramic (IPS e.max Press) and yttrium-stabilized zirconia-based ceramic (ICE Zirkon). The restorations were cemented with luting resin composite (Variolink N). All specimens were thermocycled 5000 cycles between 5°C ± 2°C and 55°C ± 2°C and were then cyclic loaded for 500 000 cycles. The specimens were subjected to a compressive load in a universal testing machine using a metal sphere until fracture occurred. The results were analyzed by 2-way ANOVA and Tukey HSD post hoc tests. The level of significance was set at P  .05). However, statistically significant differences were found among the means of control group and the groups restored with lab composite inlays, lab composite onlays, pressable glass ceramic inlays and pressable glass ceramic onlays (P lab composite is used. Conversely, when a ceramic material being used, the prepared teeth for inlay and onlay restorations showed a comparable strength to the intact teeth especially zirconia ceramic. Premolar teeth restored with zirconia ceramic inlays and onlays exhibited fracture resistance comparable to intact teeth. © 2018 Wiley Periodicals, Inc.

  4. The role of friction in the mechanism of retaining the partial removable dentures with double crown system.

    Science.gov (United States)

    Dąbrowa, Tomasz; Dobrowolska, Anna; Wieleba, Wojciech

    2013-01-01

    Cylindrical telescopic crowns belong to bolt dentures, because their adhesion strength is based on the friction force. The magnitude of static and slide friction forces depends on the strain within the contact area and properties of materials employed. Friction force value between telescope elements declines in the first phase of wearing period and, subsequently, maintains particular constant value of 8 to 10 N. In the telescopic technique, homo and heterogenic joints are used. The following prosthodontic materials have been examined: goldbase alloys (Degudent Kiss, Degulor M), cobalt-base alloy (Brealloy 270), ceramics (Zircon Oxide, Zirconia) during tribological investigations on FGP composite resin. The cooperating surfaces were moistened with synthetic saliva. The research confirmed the dependence of the static friction coefficient on the contact pressure for the analyzed pairs of materials used in prosthodontics. The biggest effect of the contact pressure on the coefficient of friction value occurs when the ceramic rubs on FGP composite resin. The most stable friction coefficient in the context of contact pressure changes as well as life has been found in the case of the cobalt alloy Brealloy 270. An interesting material is a gold alloy Degulor M, for which the coefficient of friction varies only slightly with pressure in the range of 0.6 to 0.9 MPa.

  5. Challenges in reconstructing an isolated anterior tooth with a metal-free crown

    Directory of Open Access Journals (Sweden)

    Max Doria Costa

    2013-01-01

    Full Text Available Introduction: Currently, new esthetic treatments are available to the dentist due to the advent of ceramic-ceramic prostheses. A new option has become part of daily clinical practice, with the promise of esthetic optimization through the elimination of metal in prosthetic crowns. The translucence of these new systems allows the transmission of light through the tooth structure, minimizing gingival darkness and producing a vibrant and natural appearance. Case Report: The patient, 30 years old, female, showed with a fractured tooth crown at the cervical level in the right lateral incisive. It was observed that the tooth had prior adequate endodontic treatment. A metal-free restorative system was selected. A plaster model was obtained for subsequent tooth preparative scanning and manufacture of ceramic framework. After receiving the framework, adjustments were made and the color choice of covering ceramic, following the protocol of choice for a chroma suboptimal aiming further characterization. After the ceramics application, adjustments in shape, texture, and occlusion were made. The crown was characterized by exterior paint, getting a favorable result, restoring esthetics and function. Discussion : The metal-free systems are a viable alternative to the restorative treatment when esthetics is desired, allowing a natural and harmonious smile, combined with the reliability of the restorative material.

  6. Evaluation of hot hardness, creep, fatigue and fracture properties of zirconia ceramics by an indentation technique

    International Nuclear Information System (INIS)

    Kutty, T.R.G.; Ganguly, C.; Upadhyaya, D.D.

    1996-01-01

    Zirconia ceramics have wide range engineering applications at room and elevated temperatures. For understanding the mechanical behaviour, the indentation technique was adapted for quick evaluation of hot hardness, creep, fatigue and fracture properties. A Vicker's diamond indentor with 10 N load was employed for hot hardness and creep measurement up to 1300 deg. The fatigue data were evaluated at room temperature by repeated indentation with a constant load (10-2500N) at the same location for a dwell time of 5s until it resulted in the formation of a lateral chip on the sample surface. Thus, the number of cycles for chip formation at a specific indentation load was obtained. The fracture toughness was evaluated at room temperature with a load of 300N using a Vicker's diamond indentor. The results of hot hardness, creep, fatigue, and fracture data ol 3Y-TZP and Mg-PSZ are discussed along with their microstructural features. (authors)

  7. The effect of abrading and cutting instruments on machinability of dental ceramics.

    Science.gov (United States)

    Sakoda, Satoshi; Nakao, Noriko; Watanabe, Ikuya

    2018-03-16

    The aim was to investigate the effect of machining instruments on machinability of dental ceramics. Four dental ceramics, including two zirconia ceramics were machined by three types (SiC, diamond vitrified, and diamond sintered) of wheels with a hand-piece engine and two types (diamond and carbide) of burs with a high-speed air turbine. The machining conditions used were abrading speeds of 10,000 and 15,000 r.p.m. with abrading force of 100 gf for the hand-piece engine, and a pressure of 200 kPa and a cutting force of 80 gf for the air-turbine hand-piece. The machinability efficiency was evaluated by volume losses after machining the ceramics. A high-abrading speed had high-abrading efficiency (high-volume loss) compared to low-abrading speed in all abrading instruments used. The diamond vitrified wheels demonstrated higher volume loss for two zirconia ceramics than those of SiC and diamond sintered wheels. When the high-speed air-turbine instruments were used, the diamond points showed higher volume losses compared to the carbide burs for one ceramic and two zirconia ceramics with high-mechanical properties. The results of this study indicated that the machinability of dental ceramics depends on the mechanical and physical properties of dental ceramics and machining instruments. The abrading wheels show autogenous action of abrasive grains, in which ground abrasive grains drop out from the binder during abrasion, then the binder follow to wear out, subsequently new abrasive grains come out onto the instrument surface (autogenous action) and increase the grinding amount (volume loss) of grinding materials.

  8. A study of the bending resistance of implant-supported reinforced alumina and machined zirconia abutments and copies.

    Science.gov (United States)

    Sundh, Anders; Sjögren, Göran

    2008-05-01

    The purpose of the present study was to evaluate the bending resistance of implant-supported CAD/CAM-processed restorations made out of zirconia or manually shaped made out of reinforced alumina. Units of abutments and copies made of (i) a prefabricated hot isostatic pressed (HIPed) yttrium oxide partially-stabilized zirconia (Y-TZP) (Denzir), (ii) a prefabricated densely-sintered magnesia partially stabilized zirconia (Mg-PSZ) (Denzir-M) or, copies made of (iii) a prefabricated partially-sintered, porous reinforced alumina ceramic (RN synOcta-In-Ceram) were subjected to static loading perpendicularly at the long axis. The abutments were attached to either stainless steel analogs or titanium implant fixtures. The Y-TZP and Mg-PSZ copies were bonded onto the ceramic abutments with a dual-cured resin composite (Rely-X Unicem). Units of titanium abutment attached to a titanium implant fixtures were used as reference. The units comprising Denzir abutments as delivered (pstainless steel analogs exhibited significantly higher bending resistance than the control. The heat-treated Denzir copies bonded to the heat-treated Denzir M abutments attached to titanium implant fixtures and the In-Ceram specimens attached to stainless steel analogs showed significantly (pstainless steel analogs. No statistically significant (p>0.05) differences were seen among the other groups studied. All the ceramic abutments and copies exhibited values that were equal or superior to that of the control and exceeded the reported value, up to 300 N, for maximum incisal bite forces. To assess the clinical behavior long-term clinical studies should be conducted.

  9. Preparation and Characterization of Nano-structured Ceramic Powders Synthesized by Emulsion Combustion Method

    International Nuclear Information System (INIS)

    Takatori, Kazumasa; Tani, Takao; Watanabe, Naoyoshi; Kamiya, Nobuo

    1999-01-01

    The emulsion combustion method (ECM), a novel powder production process, was originally developed to synthesize nano-structured metal-oxide powders. Metal ions in the aqueous droplets were rapidly oxidized by the combustion of the surrounding flammable liquid. The ECM achieved a small reaction field and a short reaction period to fabricate the submicron-sized hollow ceramic particles with extremely thin wall and chemically homogeneous ceramic powder. Alumina, zirconia, zirconia-ceria solid solutions and barium titanate were synthesized by the ECM process. Alumina and zirconia powders were characterized to be metastable in crystalline phase and hollow structure. The wall thickness of alumina was about 10 nm. The zirconia-ceria powders were found to be single-phase solid solutions for a wide composition range. These powders were characterized as equiaxed-shape, submicron-sized chemically homogeneous materials. The powder formation mechanism was investigated through the synthesis of barium titanate powder with different metal sources

  10. Cutting efficiency of diamond burs operated with electric high-speed dental handpiece on zirconia.

    Science.gov (United States)

    Nakamura, Keisuke; Katsuda, Yusuke; Ankyu, Shuhei; Harada, Akio; Tenkumo, Taichi; Kanno, Taro; Niwano, Yoshimi; Egusa, Hiroshi; Milleding, Percy; Örtengren, Ulf

    2015-10-01

    Zirconia-based dental restorations are becoming used more commonly. However, limited attention has been given to the difficulties experienced, concerning cutting, in removing the restorations when needed. The aim of the present study was to compare the cutting efficiency of diamond burs, operated using an electric high-speed dental handpiece, on zirconia (Zir) with those on lithium disilicate glass-ceramic (LD) and leucite glass-ceramic (L). In addition, evaluation of the cutting efficiency of diamond burs on Zir of different thicknesses was performed. Specimens of Zir were prepared with thicknesses of 0.5, 1.0, 2.0, and 4.0 mm, and specimens of LD and L were prepared with a thickness of 1.0 mm. Cutting tests were performed using diamond burs with super coarse (SC) and coarse (C) grains. The handpiece was operated at 150,000 rpm with a cutting force of 0.9 N. The results demonstrated that cutting of Zir took about 1.5- and 7-fold longer than cutting of LD and L, respectively. The SC grains showed significantly higher cutting efficiency on Zir than the C grains. However, when the thickness of Zir increased, the cutting depth was significantly decreased. As it is suggested that cutting of zirconia is time consuming, this should be taken into consideration in advance when working with zirconia restorations. © 2015 Eur J Oral Sci.

  11. Indirect zirconia-reinforced lithium silicate ceramic CAD/CAM restorations: Preliminary clinical results after 12 months.

    Science.gov (United States)

    Zimmermann, Moritz; Koller, Christina; Mehl, Albert; Hickel, Reinhard

    2017-01-01

    No clinical data are available for the new computer-aided design/computer-assisted manufacture (CAD/CAM) material zirconia-reinforced lithium silicate (ZLS) ceramic. This study describes preliminary clinical results for indirect ZLS CAD/CAM restorations after 12 months. Indirect restorations were fabricated, using the CEREC method and intraoral scanning (CEREC Omnicam, CEREC MCXL). Sixty-seven restorations were seated adhesively (baseline). Sixty restorations were evaluated after 12 months (follow-up), using modified FDI criteria. Two groups were established, according to ZLS restorations' post-processing procedure prior to adhesive seating: group I (three-step polishing, n = 32) and group II (fire glazing, n = 28). Statistical analysis was performed with Mann-Whitney U test and Wilcoxon test (P  .05). Statistically significant differences were found for criteria surface gloss for group I and group II (Mann-Whitney U test, P < .05). This study demonstrates ZLS CAD/CAM restorations have a high clinical success rate after 12 months. A longer clinical evaluation period is necessary to draw further conclusions.

  12. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    Energy Technology Data Exchange (ETDEWEB)

    Wananuruksawong, R; Jinawath, S; Wasanapiarnpong, T [Research Unit of Advanced Ceramic, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok (Thailand); Padipatvuthikul, P, E-mail: raayaa_chula@hotmail.com [Faculty of Dentistry, Srinakharinwirot University, Bangkok (Thailand)

    2011-10-29

    Silicon nitride (Si{sub 3}N{sub 4}) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si{sub 3}N{sub 4} ceramic as a dental core material. The white Si{sub 3}N{sub 4} was prepared by pressureless sintering at relative low sintering temperature of 1650 deg. C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si{sub 3}N{sub 4} ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si{sub 3}N{sub 4} specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder (<150 micrometer, Pyrex) with 5 wt% of zirconia powder (3 wt% Y{sub 2}O{sub 3} - partial stabilized zirconia) and 30 wt% of polyvinyl alcohol (5 wt% solution). After coating the veneer on the Si{sub 3}N{sub 4} specimens, the firing was performed in electric tube furnace between 1000-1200 deg. C. The veneered specimens fired at 1100 deg. C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98x10{sup -6} deg. C{sup -1}, rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  13. Microwave processing for ceramic materials in microsystem technology

    International Nuclear Information System (INIS)

    Rhee, S.

    2002-11-01

    In this study, the applicability of microwaves for sintering of monolithic ceramics and ceramic microcomponents was investigated. Experiments with 2.45 GHz and 30 GHz microwaves were conducted and contrasted to conventional thermal processing. The advantages and disadvantages of microwave processing were then assessed. Nanoscale zirconia and sub-micron lead-zirconate-titanate electroceramics were selected for the evaluation. (orig.)

  14. Nano-oxides to improve the surface properties of ceramic tiles

    International Nuclear Information System (INIS)

    Rambaldi, E.; Tucci, A.; Esposito, L.; Naldi, D.; Timellini, G.

    2010-01-01

    The aim of the present work is to realise ceramic tiles with superior surface mechanical characteristics and chemical resistance, by the addition of nano-oxides, such as zirconia and alumina, since such advanced ceramics oxides are well known for their excellent mechanical properties and good resistance to chemical etching. In order to avoid any dangerousness, the nanoparticles were used in form of aqueous suspension and they were sprayed, by airbrush, directly onto the dried ceramic support, before firing. To observe the distribution of the nanoparticles and to optimise the surface treatment, SEM-EDS analyses were carried out on the fired samples. XRD analysis was conducted to assess the phases evolution of the different materials during the firing step. The surface mechanical characteristics of the samples have been evaluated by Vickers hardness and scratch test. In addition, also chemical resistance tests were performed. Microstructural observations allowed to understand how alumina and zirconia nanoparticles acted to improve the surface performances of the modified ceramic tiles. (Author) 20 refs.

  15. Sintering and thermal ageing studies of zirconia - yttria ceramics by impedance spectroscopy; Estudos de sinterizacao e de envelhecimento termico de ceramicas de zirconia - itria por espectroscopia de impedancia

    Energy Technology Data Exchange (ETDEWEB)

    Florio, Daniel Zanetti de

    1998-07-01

    ZrO{sub 2}:8 mol %Y{sub 2}O{sub 3} solid electrolyte ceramic pellets have been prepared with powders of three different origins: a Nissan (Japan) commercial powder, a powder obtained by the coprecipitation technique at IPEN, and the mixing of powder oxides (ZrO{sub 2} produced at a Pilot Plant at IPEN and 99.9% pure Y{sub 2}O{sub 3} of USA origin). These starting powders have been analysed by the following techniques: X-ray fluorescence for yttrium content, X-ray diffraction for structural phase content, sedimentation for particle size distribution, gas adsorption (BET) for surface area determination, and transmission electron microscopy for average particle size determination. Pressed ceramic pellets have been analysed by dilatometry to evaluate the sintering stages. Sintered pellets have been characterized by X-ray diffraction for phase analysis and scanning electron microscopy for grain morphology analysis. Impedance spectroscopy analysis have been carried out to follow thermal ageing of zirconia-yttria solid electrolyte at 600 deg C, the working temperature of permanent oxygen sensor, and to study sintering kinetics. The main results show that ageing at 600 deg C decreases the emf sensor response in the first 100 h to a steady value. Moreover, sintering studies by impedance spectroscopy allowed for finding correlations between electrical parameters, sintering kinetics and grain growth mechanisms. (author)

  16. Effect of the application of surface treatments before and after sintering on the flexural strength, phase transformation and surface topography of zirconia.

    Science.gov (United States)

    Kurtulmus-Yilmaz, Sevcan; Aktore, Huseyin

    2018-05-01

    To evaluate the effects of airborne-particle abrasion (APA) and Er,Cr:YSGG laser irradiation on 4-point-flexural strength, phase transformation and morphologic changes of zirconia ceramics treated at pre-sintered or post-sintered stage. Three hundred and forty-two bar shaped zirconia specimens were milled with different sizes according to the flexural strength test (n = 10), X-ray diffraction (XRD) (n = 4) and field emission scanning electron microscope (FE-SEM) (n = 4) analyses. For each test protocol, specimens were divided into 4 main groups whether the surface treatments applied before or after sintering and whether the specimens received heat treatment or not as pre-sintered, post-sintered no-heat and post-sintered heat-treated groups, and a group was served as control. Main groups were further divided into 6 equal subgroups according to surface treatment method applied (2 W-, 3 W-, 4 W-, 5 W-, 6 W-laser irradiations and APA). Surface treatments were applied to pre-sintered groups before sintering and to post-sintered groups after sintering. Post-sintered heat-treated groups were subjected to veneer ceramic firing simulation after surface treatments. Flexural strength and flexural modulus values were statistically analysed and monoclinic phase content was calculated. Weibull analysis was used to evaluate strength reliability and fractographic analysis was conducted. Highest flexural strength values were detected at post-sintered no-heat APA and 4W-laser groups (P SEM images pre-sintered groups. Application of surface treatments at pre-sintered stage may be detrimental for zirconia ceramics in terms of flexural strength. Treating the surface of zirconia ceramic before sintering process is not recommended due to significant decrease in flexural strength values. 2 W-4 W Er,Cr:YSGG laser irradiations can be regarded as alternative surface treatment methods when zirconia restoration would be subjected to veneer ceramic firing procedures

  17. Ceramic-Based 4D Components: Additive Manufacturing (AM) of Ceramic-Based Functionally Graded Materials (FGM) by Thermoplastic 3D Printing (T3DP).

    Science.gov (United States)

    Scheithauer, Uwe; Weingarten, Steven; Johne, Robert; Schwarzer, Eric; Abel, Johannes; Richter, Hans-Jürgen; Moritz, Tassilo; Michaelis, Alexander

    2017-11-28

    In our study, we investigated the additive manufacturing (AM) of ceramic-based functionally graded materials (FGM) by the direct AM technology thermoplastic 3D printing (T3DP). Zirconia components with varying microstructures were additively manufactured by using thermoplastic suspensions with different contents of pore-forming agents (PFA), which were co-sintered defect-free. Different materials were investigated concerning their suitability as PFA for the T3DP process. Diverse zirconia-based suspensions were prepared and used for the AM of single- and multi-material test components. All of the samples were sintered defect-free, and in the end, we could realize a brick wall-like component consisting of dense (<1% porosity) and porous (approx. 5% porosity) zirconia areas to combine different properties in one component. T3DP opens the door to the AM of further ceramic-based 4D components, such as multi-color, multi-material, or especially, multi-functional components.

  18. The development of zirconia membrane oxygen separation technology

    International Nuclear Information System (INIS)

    Chiacchi, F.T.; Badwal, S.P.S.; Velizko, V.

    2000-01-01

    The oxygen separation technology based on ceramic membranes constructed from stabilised zirconia is currently under development for applications ranging from oxygen generation or air enrichment for medical use to control of oxygen concentration or oxygen removal from gas streams and enclosures for semiconductor, food packaging and process control instrumentation industries. The technology is based on a rugged tubular design with extensive thermal cycling capability. Several single and three tube devices have been operated for periods up to 5000h. An eight tube module, as a building block for larger scale oxygen production or removal devices, has been constructed and is being evaluated. In this paper, the construction of the device, oxygen generating capacity, life time tests and performance of the ceramic membrane device under development at CSIRO will be discussed. Copyright (2000) The Australian Ceramic Society

  19. Fracture strength of zirconia implant abutments on narrow diameter implants with internal and external implant abutment connections: A study on the titanium resin base concept.

    Science.gov (United States)

    Sailer, Irena; Asgeirsson, Asgeir G; Thoma, Daniel S; Fehmer, Vincent; Aspelund, Thor; Özcan, Mutlu; Pjetursson, Bjarni E

    2018-04-01

    There is limited knowledge regarding the strength of zirconia abutments with internal and external implant abutment connections and zirconia abutments supported by a titanium resin base (Variobase, Straumann) for narrow diameter implants. To compare the fracture strength of narrow diameter abutments with different types of implant abutment connections after chewing simulation. Hundred and twenty identical customized abutments with different materials and implant abutment connections were fabricated for five groups: 1-piece zirconia abutment with internal connection (T1, Cares-abutment-Straumann BL-NC implant, Straumann Switzerland), 1-piece zirconia abutment with external hex connection (T2, Procera abutment-Branemark NP implant, Nobel Biocare, Sweden), 2-piece zirconia abutments with metallic insert for internal connection (T3, Procera abutment-Replace NP implant, Nobel Biocare), 2-piece zirconia abutment on titanium resin base (T4, LavaPlus abutment-VarioBase-Straumann BL-NC implant, 3M ESPE, Germany) and 1-piece titanium abutment with internal connection (C, Cares-abutment-Straumann BL-NC implant, Straumann, Switzerland). All implants had a narrow diameter ranging from 3.3 to 3.5 mm. Sixty un-restored abutments and 60 abutments restored with glass-ceramic crowns were tested. Mean bending moments were compared using ANOVA with p-values adjusted for multiple comparisons using Tukey's procedure. The mean bending moments were 521 ± 33 Ncm (T4), 404 ± 36 Ncm (C), 311 ± 106 Ncm (T1) 265 ± 22 Ncm (T3) and 225 ± 29 (T2) for un-restored abutments and 278 ± 84 Ncm (T4), 302 ± 170 Ncm (C), 190 ± 55 Ncm (T1) 80 ± 102 Ncm (T3) and 125 ± 57 (T2) for restored abutments. For un-restored abutments, C and T4 had similar mean bending moments, significantly higher than those of the three other groups (p internal connection had higher bending moments than zirconia abutments with external connection (T2) (p internal connected zirconia

  20. Mechanical properties of zirconia core-shell rods with porous core and dense shell prepared by thermoplastic co-extrusion

    Czech Academy of Sciences Publication Activity Database

    Kaštyl, J.; Chlup, Zdeněk; Clemen, F.; Trunec, M.

    2017-01-01

    Roč. 37, č. 6 (2017), s. 2439-2447 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : ceramic injection moldings * oxide fuel -cells * electrophoretic deposition * large pores * alumina * fabrication * behavior * tubes * bioceramics * composites * Zirconia * Co-extrusion * Core-shell * Porous structure * Mechanical properties Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 3.411, year: 2016

  1. Stress distribution difference between Lava Ultimate full crowns and IPS e.max CAD full crowns on a natural tooth and on tooth-shaped implant abutments.

    Science.gov (United States)

    Krejci, Ivo; Daher, René

    2017-04-01

    The goal of this short communication is to present finite element analysis comparison of the stress distribution between CAD/CAM full crowns made of Lava Ultimate and of IPS e.max CAD, adhesively luted to natural teeth and to implant abutments with the shape of natural teeth. Six 3D models were prepared using a 3D content-creating software, based on a micro-CT scan of a human mandibular molar. The geometry of the full crown and of the abutment was the same for all models representing Lava Ultimate full crowns (L) and IPS e.max CAD full crowns (E) on three different abutments: prepared natural tooth (n), titanium abutment (t) and zirconia abutment (z). A static load of 400 N was applied on the vestibular and lingual cusps, and fixtures were applied to the base of the models. After running the static linear analysis, the post-processing data we analyzed. The stress values at the interface between the crown and the abutment of the Lt and Lz groups were significantly higher than the stress values at the same interface of all the other models. The high stress concentration in the adhesive at the interface between the crown and the abutment of the Lava Ultimate group on implants might be one of the factors contributing to the reported debondings of crowns.

  2. International Conference on the Science and Technology of Zirconia (ZrO2IV) (4th) Held in Anaheim, California on Nov 1-3, 1989

    Science.gov (United States)

    1990-02-01

    niobia-zirconia powder from freshly precipitated hydrous zirconia and niobium- Different ceria stabilized TZP ceram- ammonium oxalate . Zirconia powders...is mol% Nb205 showed single orthorhombic phase an acid soluble Zr-Y-REE-Nb-Ta-sili- while this phase always coexisted with mono- cate occurring in a...C :1RCONIA, Chen-Feng Kao and Tsu-Meng BY HYDROTHERMAL PRECIPITATION METHOD, S. P Fueng, Dept of Chemical Engineering, Somiya*, Nishi-Tokyo Univ

  3. Stock Versus CAD/CAM Customized Zirconia Implant Abutments - Clinical and Patient-Based Outcomes in a Randomized Controlled Clinical Trial

    NARCIS (Netherlands)

    Schepke, Ulf; Meijer, Henny J. A.; Kerdijk, Wouter; Raghoebar, Gerry M.; Cune, Marco

    BackgroundSingle-tooth replacement often requires a prefabricated dental implant and a customized crown. The benefits of individualization of the abutment remain unclear. PurposeThis randomized controlled clinical trial aims to study potential benefits of individualization of zirconia implant

  4. Edge chipping and flexural resistance of monolithic ceramics☆

    Science.gov (United States)

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  5. Lower sintering temperature of nanostructured dense ceramics compacted from dry nanopowders using powerful ultrasonic action

    Science.gov (United States)

    Khasanov, O.; Reichel, U.; Dvilis, E.; Khasanov, A.

    2011-10-01

    Nanostructured high dense zirconia ceramics have been sintered from dry nanopowders compacted by uniaxial pressing with simultaneous powerful ultrasonic action (PUA). Powerful ultrasound with frequency of 21 kHz was supplied from ultrasonic generator to the mold, which was the ultrasonic wave-guide. Previously the mold was filled by non-agglomerated zirconia nanopowder having average particle size of 40 nm. Any binders or plasticizers were excluded at nanopowder processing. Compaction pressure was 240 MPa, power of ultrasonic generator at PUA was 1 kW and 3 kW. The fully dense zirconia ceramics has been sintered at 1345°C and high-dense ceramics with a density of 99.1%, the most grains of which had the sizes Dgr <= 200 nm, has been sintered at low sintering temperature (1325°C). Applied approach prevents essential grain growth owing to uniform packing of nanoparticles under vibrating PU-action at pressing, which provides the friction forces control during dry nanopowder compaction without contaminating binders or plasticizers.

  6. Synthesis, microstructure and mechanical properties of ceria stabilized tetragonal zirconia prepared by spray drying technique

    International Nuclear Information System (INIS)

    Sharma, S.C.; Gokhale, N.M.; Dayal, Rajiv; Lazl, Ramji

    2002-01-01

    Ceria stabilized zirconia powders with ceria concentration varying from 6 to 16 mol% were synthesized using spray drying technique. Powders were characterized for their particle size distribution and specific surface area. The dense sintered ceramics fabricated using these powders were characterized for their microstructure, crystallite size and phase composition. The flexural strength, fracture toughness and micro-hardness of sintered ceramics were measured. High fracture toughness and flexural strength were obtained for sintered bodies with 12 mol% of CeO 2 . Flexural strength and fracture toughness were dependent on CeO 2 concentration, crystallite size and phase composition of sintered bodies. Correlation of data has indicated that the transformable tetragonal phase is the key factor in controlling the fracture toughness and strength of ceramics. It has been demonstrated that the synthesis method is effective to prepare nanocrystalline tetragonal ceria stabilized zirconia powders with improved mechanical properties. Ce-ZrO 2 with 20 wt% alumina was also prepared with flexural strength, 1200 MPa and fracture toughness 9.2 MPa√m. (author)

  7. Electron beam treatments of electrophoretic ceramic coatings

    International Nuclear Information System (INIS)

    De Riccardis, M.F.; Carbone, D.; Piscopiello, E.; Antisari, M. Vittori

    2008-01-01

    In this work a method to densify ceramic coating obtained by electrophoresis and to improve its adhesion to the substrate is proposed. It consists in irradiating the coating surface by electron beam (EB). Alumina and alumina-zirconia coatings were deposited on stainless steel substrates and treated by low power EB. SEM, XRD and TEM characterizations demonstrated that the sintering occurred. Moreover, it is shown that on alumina-zirconia coating the EB irradiation produced a composite material consisting principally of tetragonal zirconia particles immersed in an amorphous alumina matrix. The adhesion stress of EB treated coating was estimated by stud pull test and it was found to be comparable to that of plasma-sprayed coatings

  8. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    International Nuclear Information System (INIS)

    Wananuruksawong, R; Jinawath, S; Wasanapiarnpong, T; Padipatvuthikul, P

    2011-01-01

    Silicon nitride (Si 3 N 4 ) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si 3 N 4 ceramic as a dental core material. The white Si 3 N 4 was prepared by pressureless sintering at relative low sintering temperature of 1650 deg. C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si 3 N 4 ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si 3 N 4 specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder ( 2 O 3 - partial stabilized zirconia) and 30 wt% of polyvinyl alcohol (5 wt% solution). After coating the veneer on the Si 3 N 4 specimens, the firing was performed in electric tube furnace between 1000-1200 deg. C. The veneered specimens fired at 1100 deg. C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98x10 -6 deg. C -1 , rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  9. Synthesis of nanosized powders of stabilized zirconia

    International Nuclear Information System (INIS)

    Takodoro, Sandra Kiyoko

    2000-01-01

    Zirconia solid solutions containing 3 mol % Yttria or 12 mol % ceria have been prepared by the coprecipitation technique followed by azeotropic distillation. The aim of this work is the synthesis of tetragonal zirconia polycrystals nanosized powders that sinter at comparatively lower temperatures attaining high densification, and without using any milling procedure. The main results show that: 1- the dopant cation has a strong influence on the crystallization behavior of the precipitates; 2- the used techniques allowed for obtaining high values of specific surface area (∼130 m 2 .g -1 ); 3- the optimization of the synthesis and processing parameters are responsible for obtaining high densification (≥97% of the theoretical value), at lower temperatures (∼1200 deg C) with average grain sizes lower than 500 nm; 4- impedance spectroscopy results show a strong correlation between the electrical resistivity and the microstructure of sintered ceramics.(author)

  10. Evaluation of the onset of failure under mechanical and thermal stresses on luting agent for metal-ceramic and metal crowns by finite element analysis

    Directory of Open Access Journals (Sweden)

    Hema Agnihotri

    2010-01-01

    Full Text Available Long-term clinical failures of cemented prosthesis depend, to a large extent, on the integrity of the luting agent. The causative factors that lead to microfracture and, hence, failure of the luting agents are the stresses acting inside the oral cavity. Therefore, the present study was designed to develop an understanding of the relationship between stresses in the tooth and the failure potential of the luting agent. Two-dimensional finite element stress analysis was performed on the mandibular second premolar. The behavior of zinc-phosphate and glass-ionomer were studied under different crowns (metal-ceramic and metal crown and loading conditions (mechanical force of 450 N acting vertically over the occlusal surface, thermal loads of 60° and 0°C. It was observed from the study that failure threshold of the luting agent was influenced both by the elastic modulus of the luting agent and by the type of the crown.

  11. In Vitro Comparison of the Bond Strength between Ceramic Repair Systems and Ceramic Materials and Evaluation of the Wettability.

    Science.gov (United States)

    Kocaağaoğlu, Hasan; Manav, Taha; Albayrak, Haydar

    2017-04-01

    When fracture of an all-ceramic restoration occurs, it can be necessary to repair without removing the restoration. Although there are many studies about the repair of metal-ceramic restorations, there are few about all-ceramic restorations. The aim of this study was to evaluate the shear bond strength between ceramic repair systems and esthetic core materials and to evaluate the wettability of all-ceramic core materials. Disk-like specimens (N = 90) made of three dental ceramic infrastructure materials (zirconia ceramic, alumina ceramic, glass ceramic) were polished with silicon carbide paper, prepared for bonding (abrasion with 30 μm diamond rotary cutting instrument). Thirty specimens of each infrastructure were obtained. Each infrastructure group was divided into three subgroups; they were bonded using 3 repair systems: Bisco Intraoral Repair Kit, Cimara & Cimara Zircon Repair System, and Clearfil Repair System. After 1200 thermocycles, shear bond strength was measured in a universal testing machine at a 0.5 mm/min crosshead speed. In addition, the contact angle values of the infrastructures after surface treatments were examined for wettability. Data were analyzed by using ANOVA and Tukey post hoc tests. Although there were no significant differences among the repair systems (p > 0.05) in the glass ceramic and zirconia groups, a significant difference was found among the repair systems in alumina infrastructure (p 0.05); however, a statistically significant difference was found among the repair systems (p < 0.05). No difference was found among the infrastructures and repair systems in terms of contact angle values. Cimara & Cimara Zircon Repair System had higher bond strength values than the other repair systems. Although no difference was found among the infrastructures and repair systems, contact wettability angle was decreased by surface treatments compared with polished surfaces. © 2015 by the American College of Prosthodontists.

  12. IPS Empress crown system: three-year clinical trial results.

    Science.gov (United States)

    Sorensen, J A; Choi, C; Fanuscu, M I; Mito, W T

    1998-02-01

    The IPS Empress system is a highly esthetic hot pressed glass ceramic material for fabrication of single crowns. Adhesive cementation of the system not only contributes to the esthetics but is necessary for increased strength of the crown. The purpose of this prospective clinical trials was to evaluate the longevity of 75 adhesively cemented Empress full crowns. An additional aim was to assess the adhesive cementation methodology and potential side effects. At the three-year point, one molar crown fractured for a 1.3 percent failure rate. The resin cementation technique that was employed exhibited a low incidence of microleakage with few clinical side effects. There was a 5.6 percent incidence of post-cementation sensitivity, with all symptoms subsiding by eight weeks. None of the crowns in the study required endodontic therapy.

  13. Guided bone augmentation using ceramic space-maintaining devices: the impact of chemistry

    Directory of Open Access Journals (Sweden)

    Anderud J

    2015-03-01

    Full Text Available Jonas Anderud,1,2 Peter Abrahamsson,2 Ryo Jimbo,1 Sten Isaksson,2 Erik Adolfsson,3 Johan Malmström,2 Yoshihito Naito,4 Ann Wennerberg1 1Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden; 2Maxillofacial Unit Halmstad, Region Halland, Halmstad, Sweden; 3Swedish Ceramic Institute, IVF, Mölndal, Sweden; 4Department of Oral and Maxillofacial Prosthodontics and Oral Implantology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan Abstract: The purpose of the study was to evaluate histologically, whether vertical bone augmentation can be achieved using a hollow ceramic space maintaining device in a rabbit calvaria model. Furthermore, the chemistry of microporous hydroxyapatite and zirconia were tested to determine which of these two ceramics are most suitable for guided bone generation. 24 hollow domes in two different ceramic materials were placed subperiosteal on rabbit skull bone. The rabbits were sacrificed after 12 weeks and the histology results were analyzed regarding bone-to-material contact and volume of newly formed bone. The results suggest that the effect of the microporous structure of hydroxyapatite seems to facilitate for the bone cells to adhere to the material and that zirconia enhance a slightly larger volume of newly formed bone. In conclusion, the results of the current study demonstrated that ceramic space maintaining devices permits new bone formation and osteoconduction within the dome. Keywords: hydroxyapatite, zirconia, guided bone regeneration, GBR, histology, membrane

  14. An in-vitro investigation of the accuracy of fit of Procera and Empress crowns.

    Science.gov (United States)

    Fleming, Garry J R; Dobinson, Marie M; Landini, Gabriel; Harris, Jonathan J

    2005-09-01

    The current study aimed to investigate the accuracy of fit and the reproducibility of inner crown profile for two types of high strength ceramics, IPS Empress and Procera. Procera and Empress crowns with four different morphologies were cemented to dies using zinc phosphate dental cement. Vertical and horizontal sections were made through each of the crown/die preparations and images of the vertical sections were compared for curvature reproduction by alignment using image processing. Measurements were made on horizontal sections to determine cement layer thickness. Alignment of the crowns using image analysis identified quantifiable variations in the inner surface profile compared with the outer surface of the die. The largest differences occurred from the cusp tips to the occlusal adaptation area and differences in surface profile were less pronounced for Procera than Empress crowns. Marginal gap varied independently of ceramic or internal crown shape from 7-529 microm for Procera and 26-548 microm for Empress. IPS Empress has a superior ability to reproduce the inner surface profile of the crown morphologies investigated compared with Procera. The reduced reproduction of surface profile was associated with an increased cement thickness at the occlusal contact area that may inadvertently lead to failure of the crowns functional characteristics.

  15. Present status and future trends for ceramic parts and engines

    International Nuclear Information System (INIS)

    Kawamura, H.

    1987-01-01

    The author feels that there have been subtle changes in the direction of ceramic engine research in years. Before then, the emphasis was to develop countermeasures to overcome the disappointing performance of adiabatic engines which were made using partially stabilized zirconia. Current interest focuses on finding appropriate applications, namely those which make effective use of ceramic properties, and developing new materials suitable for adiabatic engines. Partially stabilized zirconia in the adiabatic diesel loses its strength around 800 degrees C. On the other hand, silicon nitride has demonstrated the ability to withstand thermal shock because of its high rupture strength. Other new materials are alumina zirconia and alumina titanium (Al 2 TiO 3 ). The latter has both good thermal and rupture strength properties, making it suitable for adiabatic engines. Also important are new or improved metal-ceramic joining technologies needed for camshafts, pistons, rocker arms and supercharger rotor blades. Another reason for the failure of the previous ceramic adiabatic engine was the inherent inability of the engine design to make use of the excess heat generated in the combustion chamber. In order to overcome this difficulty, a new type of adiabatic turbo-compound engine has been considered. A turbocharger-type energy recovery system is installed at the engine exhaust, and its power output is fed back to the crankshaft through an elaborate generator/motor system in lieu of the traditional gear train system. The generator speed is regulated to achieve the maximum exhaust gas turbine efficiency

  16. Development an efficient calibrated nonlocal plate model for nonlinear axial instability of zirconia nanosheets using molecular dynamics simulation.

    Science.gov (United States)

    Sahmani, S; Fattahi, A M

    2017-08-01

    New ceramic materials containing nanoscaled crystalline phases create a main object of scientific interest due to their attractive advantages such as biocompatibility. Zirconia as a transparent glass ceramic is one of the most useful binary oxides in a wide range of applications. In the present study, a new size-dependent plate model is constructed to predict the nonlinear axial instability characteristics of zirconia nanosheets under axial compressive load. To accomplish this end, the nonlocal continuum elasticity of Eringen is incorporated to a refined exponential shear deformation plate theory. A perturbation-based solving process is put to use to derive explicit expressions for nonlocal equilibrium paths of axial-loaded nanosheets. After that, some molecular dynamics (MD) simulations are performed for axial instability response of square zirconia nanosheets with different side lengths, the results of which are matched with those of the developed nonlocal plate model to capture the proper value of nonlocal parameter. It is demonstrated that the calibrated nonlocal plate model with nonlocal parameter equal to 0.37nm has a very good capability to predict the axial instability characteristics of zirconia nanosheets, the accuracy of which is comparable with that of MD simulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Evaluation of a novel multiple phase veneering ceramic.

    Science.gov (United States)

    Sinthuprasirt, Pannapa; van Noort, Richard; Moorehead, Robert; Pollington, Sarah

    2015-04-01

    To produce a new veneering ceramic based on the production of a multiple phase glass-ceramic with improved performance in terms of strength and toughness. A composition of 60% leucite, 20% diopside and 20% feldspathic glass was prepared, blended and a heat treatment schedule of 930°C for 5 min was derived from differential thermal analysis (DTA) of the glasses. X-ray diffraction (XRD) and SEM analysis determined the crystalline phases and microstructure. Chemical solubility, biaxial flexural strength (BFS), fracture toughness, hardness, total transmittance and coefficient of thermal expansion (CTE) were all measured in comparison to a commercial veneering ceramic (VITA VM9). Thermal shock resistance of the leucite-diopside and VITA VM9 veneered onto a commercial high strength zirconia (Vita In-Ceram YZ) was also assessed. Statistical analysis was undertaken using Independent Samples t-test. Weibull analysis was employed to examine the reliability of the strength data. The mean chemical solubility was 6 μg/cm(2) for both ceramics (P=1.00). The mean BFS was 109 ± 8 MPa for leucite-diopside ceramic and 79 ± 11 MPa for VITA VM9 ceramic (P=0.01). Similarly, the leucite-diopside ceramic demonstrated a significantly higher fracture toughness and hardness. The average total transmittance was 46.3% for leucite-diopside ceramic and 39.8% for VITA VM9 (P=0.01). The leucite-diopside outperformed the VITA VM9 in terms of thermal shock resistance. Significance This novel veneering ceramic exhibits significant improvements in terms of mechanical properties, yet retains a high translucency and is the most appropriate choice as a veneering ceramic for a zirconia base core material. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Contrasting the beam interaction characteristics of selected lasers with a partially stabilized zirconia bio-ceramic

    International Nuclear Information System (INIS)

    Lawrence, J.

    2002-01-01

    Differences in the beam interaction characteristics of a CO 2 laser, a Nd:YAG laser, a high power diode laser (HPDL) and an excimer laser with a partially stabilized zirconia bio-ceramic have been studied. A derivative of Beer-Lambert's law was applied and the laser beam absorption lengths of the four lasers were calculated as 33.55x10 -3 cm for the CO 2 laser, 18.22x10 -3 cm for the Nd : YAG laser, 17.17x10 -3 cm for the HPDL and 8.41x10 -6 cm for the excimer laser. It was determined graphically that the fluence threshold values at which significant material removal was effected by the CO 2 laser, the Nd:YAG laser, the HPDL and the excimer laser were 52 J cm -2 , 97 J cm -2 , 115 J cm -2 and 0.48 J cm -2 , respectively. The thermal loading value for the CO 2 laser, the Nd : YAG laser, the HPDL and the excimer laser were calculated as being 1.55 kJ cm -3 , 5.32 kJ cm 3 , 6.69 kJ cm -3 and 57.04 kJ cm -3 , respectively. (author)

  19. Randomized clinical trial of implant-supported ceramic-ceramic and metal-ceramic fixed dental prostheses: preliminary results.

    Science.gov (United States)

    Esquivel-Upshaw, Josephine F; Clark, Arthur E; Shuster, Jonathan J; Anusavice, Kenneth J

    2014-02-01

    The aim of this study was to determine the survival rates over time of implant-supported ceramic-ceramic and metal-ceramic prostheses as a function of core-veneer thickness ratio, gingival connector embrasure design, and connector height. An IRB-approved, randomized, controlled clinical trial was conducted as a single-blind pilot study involving 55 patients missing three teeth in either one or two posterior areas. These patients (34 women; 21 men; age range 52-75 years) were recruited for the study to receive a three-unit implant-supported fixed dental prosthesis (FDP). Two implants were placed for each of the 72 FDPs in the study. The implants (Osseospeed, Astra Tech), which were made of titanium, were grit blasted. A gold-shaded, custom-milled titanium abutment (Atlantis, Astra Tech), was secured to each implant body. Each of the 72 FDPs in 55 patients were randomly assigned based on one of the following options: (1) A. ceramic-ceramic (Yttria-stabilized zirconia core, pressable fluorapatite glass-ceramic, IPS e.max ZirCAD, and ZirPress, Ivoclar Vivadent) B. metal-ceramic (palladium-based noble alloy, Capricorn, Ivoclar Vivadent, with press-on leucite-reinforced glass-ceramic veneer, IPS InLine POM, Ivoclar Vivadent); (2) occlusal veneer thickness (0.5, 1.0, and 1.5 mm); (3) curvature of gingival embrasure (0.25, 0.5, and 0.75 mm diameter); and (4) connector height (3, 4, and 5 mm). FDPs were fabricated and cemented with dual-cure resin cement (RelyX, Universal Cement, 3M ESPE). Patients were recalled at 6 months, 1 year, and 2 years. FDPs were examined for cracks, fracture, and general surface quality. Recall exams of 72 prostheses revealed 10 chipping fractures. No fractures occurred within the connector or embrasure areas. Two-sided Fisher's exact tests showed no significant correlation between fractures and type of material system (p = 0.51), veneer thickness (p = 0.75), radius of curvature of gingival embrasure (p = 0.68), and connector height (p = 0

  20. Resistance to bond degradation between dual-cure resin cements and pre-treated sintered CAD-CAM dental ceramics

    Science.gov (United States)

    Osorio, Raquel; Monticelli, Francesca; Osorio, Estrella; Toledano, Manuel

    2012-01-01

    Objective: To evaluate the bond stability of resin cements when luted to glass-reinforced alumina and zirconia CAD/CAM dental ceramics. Study design: Eighteen glass-infiltrated alumina and eighteen densely sintered zirconia blocks were randomly conditioned as follows: Group 1: No treatment; Group 2: Sandblasting (125 µm Al2O3-particles); and Group 3: Silica-coating (50 µm silica-modified Al2O3-particles). Composite samples were randomly bonded to the pre-treated ceramic surfaces using different resin cements: Subgroup 1: Clearfil Esthetic Cement (CEC); Subgroup 2: RelyX Unicem (RXU); and Subgroup 3: Calibra (CAL). After 24 h, bonded specimens were cut into 1 ± 0.1 mm2 sticks. One-half of the beams were tested for microtensile bond strength (MTBS). The remaining one-half was immersed in 10 % NaOCl aqueous solution (NaOClaq) for 5 h before testing. The fracture pattern and morphology of the debonded surfaces were assessed with a field emission gun scanning electron microscope (FEG-SEM). A multiple ANOVA was conducted to analyze the contributions of ceramic composition, surface treatment, resin cement type, and chemical challenging to MTBS. The Tukey test was run for multiple comparisons (p ceramic interfacial longevity depended on cement selection rather than on surface pre-treatments. The MDP-containing and the self-adhesive resin cements were both suitable for luting CAD/CAM ceramics. Despite both cements being prone to degradation, RXU luted to zirconia or untreated or sandblasted alumina showed the most stable interfaces. CAL experimented spontaneous debonding in all tested groups. Key words:CAD/CAM ceramic, alumina, zirconia, resin cement, surface pre-treatment, sandblasting, silica-coating, chemical aging, bond degradation, microtensile bond strength. PMID:22322517

  1. Cold laser machining of nickel-yttrium stabilised zirconia cermets: Composition dependence

    International Nuclear Information System (INIS)

    Sola, D.; Gurauskis, J.; Pena, J.I.; Orera, V.M.

    2009-01-01

    Cold laser micromachining efficiency in nickel-yttrium stabilised zirconia cermets was studied as a function of cermet composition. Nickel oxide-yttrium stabilised zirconia ceramic plates obtained via tape casting technique were machined using 8-25 ns pulses of a Nd: YAG laser at the fixed wavelength of 1.064 μm and a frequency of 1 kHz. The morphology of the holes, etched volume, drill diameter, shape and depth were evaluated as a function of the processing parameters such as pulse irradiance and of the initial composition. The laser drilling mechanism was evaluated in terms of laser-material interaction parameters such as beam absorptivity, material spallation and the impact on the overall process discussed. By varying the nickel oxide content of the composite the optical absorption (-value is greatly modified and significantly affected the drilling efficiency of the green state ceramic substrates and the morphology of the holes. Higher depth values and improved drilled volume upto 0.2 mm 3 per pulse were obtained for substrates with higher optical transparency (lower optical absorption value). In addition, a laser beam self-focussing effect is observed for the compositions with less nickel oxide content. Holes with average diameter from 60 μm to 110 μm and upto 1 mm in depth were drilled with a high rate of 40 ms per hole while the final microstructure of the cermet obtained by reduction of the nickel oxide-yttrium stabilised zirconia composites remained unchanged.

  2. Zirconia UV-curable colloids for additive manufacturing via hybrid inkjet printing-stereolithography

    DEFF Research Database (Denmark)

    Rosa, Massimo; Barou, C.; Esposito, Vincenzo

    2018-01-01

    Currently, additive manufacturing of ceramics by stereolithography (SLA) is limited to single materials and by a poor thickness resolution that strongly depends on the ceramic particles-UV light interaction. Combining selective laser curing with inkjet printing represents a novel strategy...... to overcome these constrains. Nonetheless, this approach requires UV-curable inks that allow hardening of the printed material and sintering to high density. In this work, we report how to design an ink for inkjet printing of yttria stabilized zirconia (YSZ) which can be impressed by addition of UV...

  3. A short and long range study of mullite-zirconia-zircon composites

    Energy Technology Data Exchange (ETDEWEB)

    Rendtorff, Nicolas M.; Conconi, Maria S.; Aglietti, Esteban F. [Centro de Tecnologia de Recursos Minerales y Ceramica (CETMIC: CONICET-CIC) (Argentina); Chain, Cecilia Y.; Pasquevich, Alberto F. [Universidad Nacional de La Plata, Departamento de Fisica, IFLP, Facultad de Ciencias Exactas (Argentina); Rivas, Patricia C. [CONICET (Argentina); Martinez, Jorge A., E-mail: toto@fisica.unlp.edu.ar; Caracoche, Maria C. [Universidad Nacional de La Plata, Departamento de Fisica, IFLP, Facultad de Ciencias Exactas (Argentina)

    2010-06-15

    In the field of refractory materials, ceramics containing mullite-zirconia are the basis of those most used in the industry of glass and steel. It is known that the addition of zircon improves the behavior of the refractory used in service. Knowing that some mullite-zirconia composites properties as fracture strength and the elastic modulus E are associated with the material microstructure integrity, the eventual thermal decomposition of zircon into zirconia and silica could seriously alter the material elastic properties. In this paper the phase content of a series of mullite-zirconia-zircon (3Al{sub 2}O{sub 3}.2SiO{sub 2}-ZrO{sub 2}-ZrSiO{sub 4}) composites is determined at atomic level via perturbed angular correlations (PAC) and compared with that derived from the long range X-ray diffraction technique. PAC results on the as-prepared materials indicate that all nominal zircon is present and that it involves two types of nanoconfigurations, one of them describing aperiodic regions. The thermomechanical properties already reported for these materials could be related to the crystalline to aperiodic zircon concentrations ratio they exhibit.

  4. Alumina reinforced tetragonal zirconia (TZP) composites. Final technical report, July 1, 1993--December 31, 1996

    International Nuclear Information System (INIS)

    Shetty, D.K.

    1997-01-01

    This final technical report summarizes the significant research results obtained during the period July 1, 1993 through December 31, 1996 in the DOE-supported research project entitled, open-quotes Alumina Reinforced Tetragonal Zirconia (TZP) Compositesclose quotes. The objective of the research was to develop high-strength and high-toughness ceramic composites by combining mechanisms of platelet, whisker or fiber reinforcement with transformation toughening. The approach used included reinforcement of Celia- or yttria-partially-stabilized zirconia (Ce-TZP or Y-TZP) with particulates, platelets, or continuous filaments of alumina

  5. Production of zirconia - hydroxyapatite (Z Ha) by using the co-precipitation method and studies of densification

    International Nuclear Information System (INIS)

    Silva, Viviane V.; Domingues, Rosana Z.

    1997-01-01

    Hydroxyapatite (Ha) is one of the materials most bio compatible with human bones and teeth, but its mechanical properties, especially toughness, are insufficient for hard tissue. Recent studies demonstrated that ceramics can be toughened by zirconium particles disperse in them, due to transformation, microcracking, and/or crack diffraction toughening mechanisms. The objective of this study is to characterize zirconia-toughened hydroxy apatite powders prepared by precipitation method by XRD, IR spectroscopy, TEM, TAG, DTA and BET analysis. The density of their ceramics was determined by mercury picnometry method. It was discussed the influence of addition of zirconium in different compositions and phases (Zr O 2 or Zr(OH) 4 ), compacting pressure and sintering temperature on zirconia - hydroxyapatite composites (ZHA). The results show that there is not any kind of reaction or chemical interaction between both phases of the composite materials. (author)

  6. Chemically bonded ceramic matrix composites: Densification and conversion to diffusion bonding

    International Nuclear Information System (INIS)

    Johnson, B.R.; Guelguen, M.A.; Kriven, W.M.

    1995-01-01

    Chemically bonded ceramics appear to be a promising alternative route for near-net shape fabrication of multi-phase ceramic matrix composites (CMC's). The hydraulic (and refractory) properties of fine mono-calcium aluminate (CaAl 2 O 4 ) powders were used as the chemically bonding matrix phase, while calcia stabilized zirconia powders were the second phase material. Samples containing up to 70 wt% (55 vol%) zirconia have been successfully compacted and sintered. Various processing techniques were evaluated. Processing was optimized based on material properties, dilatometry and simultaneous thermal analysis (DTA/TGA). The physical characteristics of this novel CMC were characterized by hardness, density, and fracture toughness testing. Microstructures were evaluated by SEM and phase identification was verified using XRD

  7. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...

  8. Thickness dependence of light transmittance, translucency and opalescence of a ceria-stabilized zirconia/alumina nanocomposite for dental applications.

    Science.gov (United States)

    Shiraishi, Takanobu; Watanabe, Ikuya

    2016-05-01

    This study was conducted to investigate thickness dependence of light transmittance, translucency and opalescence of a commercially available fully-sintered ceria-stabilized zirconia/alumina nanocomposite for dental all-ceramic restorations. Three disk samples of 16 mm in diameter and thickness ranging from 0.2 to 0.6 mm with 0.1 mm increment each were cut from a fully-sintered rod-shaped Ce-TZP/alumina nanocomposite (NANOZR, Panasonic Healthcare, Japan) and polished flat by using diamond slurry. Spectral light transmittance data under the CIE standard illuminant D65 were recorded at 10nm intervals from 360 to 740 nm using a computer-controlled spectrophotometer. Average transmittance, translucency and opalescence parameters were determined as a function of sample thickness. Optical properties of a fully-sintered yttria-stabilized tetragonal zirconia polycrystals (Cercon(®) base, DeguDent GmbH, Germany) were also investigated as a reference. Two-way ANOVA was performed to determine the significant differences in various optical parameters among types of ceramic and thicknesses at α=0.05. Results of the two-way ANOVA showed that the average transmittance, translucency and opalescence parameters of both ceramic materials were significantly influenced by the type of ceramic and thickness (popalescence parameters exceeding 20 CIE units when the sample thickness was nearly 0.3 mm. The prominent characteristics of high opalescence and low transmittance of light in the NANOZR was considered to be caused by its specific very fine interpenetrated intragranular microstructure and by a large difference of refractive indices of Ce-TZP and alumina components. High opalescence and low transmittance of light of the ceria-stabilized zirconia/alumina nanocomposite (NANOZR) are attractive properties for use as a substructure in fabricating porcelain-veneering-type esthetic all-ceramic restorations. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All

  9. An in vitro comparison of shear bond strength of zirconia to enamel using different surface treatments.

    Science.gov (United States)

    Zandparsa, Roya; Talua, Nayrouz A; Finkelman, Matthew D; Schaus, Scott E

    2014-02-01

    The purpose of this in vitro study was to compare the shear bond strength of an airborne-particle abraded zirconia, an acid-etched zirconia (Piranha solution), an Alloy Primer treated zirconia, and a silaned zirconia to enamel, all bonded with a phosphate-methacrylate resin luting agent. Seventy extracted intact human molars were collected, cleaned, and mounted in autopolymerizing acrylic resin, with the experimental surface of the teeth exposed. The specimens were randomly divided into seven groups of zirconia specimens (4 mm diameter, 2 mm thick). Group 1: Airborne-particle abrasion; group 2: Airborne-particle abrasion and Z-PRIME Plus; group 3: Airborne-particle abrasion and alloy primer; group 4: Piranha solution 7:1; group 5: Piranha solution 7:1 and Z-PRIME Plus; group 6: Piranha solution 7:1 and Alloy primer; group 7: CoJet and silane. All specimens were luted with a phosphate-methacrylate resin luting agent (Panavia F2.0) and stored in distilled water for 1 day, then thermocycled (5°C and 55°C) for 500 cycles and tested for shear bond strength (SBS), measured in MPa, with a universal testing machine at a 0.55 mm/min crosshead speed. All specimens were inspected under a scanning electron microscope to determine mode of failure. The mean values and standard deviations of all specimens were calculated for each group. A one-way ANOVA was performed, and multiple pairwise comparisons were then completed with post hoc Tukey test (alpha = 0.05). The airborne-particle abrasion and Z-PRIME Plus group resulted in a significantly higher SBS than the other groups (21.11 ± 6.32 MPa) (p enamel surfaces; however, groups 4, 5, and 6 showed mostly adhesive failures, which left the zirconia surface free of the adhesive materials. No cohesive failures of the substrates (ceramic, resin, or enamel) were observed. Airborne-particle abrasion followed by the application of a zirconia primer produced the highest bond strength to enamel. Therefore, it can be recommended as a

  10. Bond strength of selected composite resin-cements to zirconium-oxide ceramic

    Science.gov (United States)

    Fons-Font, Antonio; Amigó-Borrás, Vicente; Granell-Ruiz, María; Busquets-Mataix, David; Panadero, Rubén A.; Solá-Ruiz, Maria F.

    2013-01-01

    Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-Wzirconium-oxide ceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer. PMID:22926485

  11. Shear Bond Strength of Orthodontic Brackets Bonded to Zirconium Crowns.

    Science.gov (United States)

    Mehmeti, Blerim; Azizi, Bleron; Kelmendi, Jeta; Iljazi-Shahiqi, Donika; Alar, Željko; Anić-Milošević, Sandra

    2017-06-01

    An increasing demand for esthetic restorations has resulted in an increased use of all-ceramic restorations, such as zirconium. However, one of the challenges the orthodontist must be willing to face is how to increase bond strength between the brackets and various ceramic restorations.Bond strength can beaffected bybracket type, by the material that bracketsaremade of, and their base surface design or retention mode. ​: A im: of this study was to perform a comparative analysis of the shear bond strength (SBS) of metallic and ceramic orthodontic brackets bonded to all-zirconium ceramic surfaces used for prosthetic restorations, and also to evaluate the fracture mode of these two types of orthodontic brackets. Twenty samples/semi-crowns of all-zirconium ceramic, on which orthodontic brackets were bonded, 10 metallic and 10 ceramic polycrystalline brackets, were prepared for this research. SBS has been testedby Universal Testing Machine, with a load applied using a knife edged rod moving at a fixed rate of 1 mm/min, until failure occurred. The force required to debond the brackets was recorded in Newton, then SBS was calculated to MPa. In addition, the samples were analyzed using a digital camera magnifier to determine Adhesive Remnant Index (ARI). Statistical data were processed using t-test, and the level of significance was set at α = 0.05. Higher shear bond strength values were observed in metallic brackets bonded to zirconium crowns compared tothoseof ceramic brackets, with a significant difference. During the test, two of the ceramic brackets were partially or totally damaged. Metallic brackets, compared to ceramic polycrystalline brackets, seemed tocreate stronger adhesion with all-zirconium surfaces due to their better retention mode. Also, ceramic brackets showed higher fragility during debonding.

  12. Superplastic flow of two-phase ceramics containing rigid inclusions-zirconia/mullite composites

    International Nuclear Information System (INIS)

    Yoon, C.K.; Chen, I.W.

    1990-01-01

    A continuum theory for non-newtonian flow of a two-phase composite containing rigid inclusions is presented. It predicts flow suppression by a factor of (1 - V) q , where V is the volume fraction of the rigid inclusion and q depends on the stress exponent and the inclusion shape. Stress concentrations in the rigid inclusion have also been evaluated. As the stress exponent increases, flow suppression is more pronounced even though stress concentration is less severe. To test this theory, superplastic flow of zirconia/mullite composites, in which zirconia is a soft, non-Newtonian super-plastic matrix and mullite is a rigid phase of various size, shape, and amount, is studied. The continuum theory is found to describe the two-phase superplastic flow reasonably well

  13. Evaluating the marginal fit of zirconia copings with digital impressions with an intraoral digital scanner.

    Science.gov (United States)

    An, Shinyoung; Kim, Sungtae; Choi, Hyunmin; Lee, Jae-Hoon; Moon, Hong-Seok

    2014-11-01

    Digital impression systems have been developed to overcome the disadvantages associated with conventional impression methods. The purpose of this study was to compare the marginal fit of zirconia copings designed with the use of an iTero digital scanner with those designed by the conventional impression technique. Thirty identical cast, base-metal dies from 1 maxillary central incisor prepared for a ceramic crown restoration were fabricated. For the conventional impression group (CI), base metal dies (n=10) were replicated as stone dies by means of a conventional impression technique with polyvinyl siloxane material. For the iTero with polyurethane group (iP), base metal dies (n=10) were replicated as polyurethane dies with the iTero digital impression system. For the iTero with no dies group (iNo), base metal dies (n=10) were scanned with the iTero digital impression system, but no dies were fabricated. For each group, 10 zirconia copings were fabricated based on the stone dies (CI group), polyurethane dies (iP group), or stereolithography files (iNo group). The marginal gap of each specimen was measured with a light microscope at ×50 magnification. One-way analysis of variance and the Tukey honestly significant difference test were used for statistical analysis (α=.05). Statistically significant differences were found between the CI group and iP group (Pdigital impression method than in the group that used the conventional impression method. However, the marginal discrepancies of all of the groups were clinically acceptable. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Effect of posterior crown margin placement on gingival health.

    Science.gov (United States)

    Reitemeier, Bernd; Hänsel, Kristina; Walter, Michael H; Kastner, Christian; Toutenburg, Helge

    2002-02-01

    The clinical impact of posterior crown margin placement on gingival health has not been thoroughly quantified. This study evaluated the effect of posterior crown margin placement with multivariate analysis. Ten general dentists reviewed 240 patients with 480 metal-ceramic crowns in a prospective clinical trial. The alloy was randomly selected from 2 high gold, 1 low gold, and 1 palladium alloy. Variables were the alloy used, oral hygiene index score before treatment, location of crown margins at baseline, and plaque index and sulcus bleeding index scores recorded for restored and control teeth after 1 year. The effect of crown margin placement on sulcular bleeding and plaque accumulation was analyzed with regression models (Prisk of bleeding at intrasulcular posterior crown margins was approximately twice that at supragingival margins. Poor oral hygiene before treatment and plaque also were associated with sulcular bleeding. Facial sites exhibited a lower probability of sulcular bleeding than lingual surfaces. Type of alloy did not influence sulcular bleeding. In this study, placement of crown margins was one of several parameters that affected gingival health.

  15. Improving the strength of ceramics by controlling the interparticle forces and rheology of the ceramic suspensions

    International Nuclear Information System (INIS)

    Chou, Yi-Ping

    2001-01-01

    This thesis describes a study of the modification of the interparticle forces of colloidal ceramic particles in aqueous suspensions in order to improve the microstructural homogeneity, and hence the reliability and mechanical performances, of subsequently formed ceramic compacts. A concentrated stable fine ceramic powder suspension has been shown to be able to generate a higher density of a ceramic product with better mechanical, and also electrical, electrochemical and optical, properties of the ceramic body. This is because in a colloidally stable suspension there are no aggregates and so defect formation, which is responsible for the ceramic body performance below its theoretical maximum, is reduced. In order to achieve this, it is necessary to form a well dispersed ceramic suspension by ensuring the interparticle forces between the particles are repulsive, with as a high a loading with particles as possible. By examining the rheological behaviour and the results of Atomic Force Microscope, the dispersion state of the suspensions and hence the interparticle forces can be analysed. In this study, concentrated ceramic suspensions were made from two kinds of zirconia powders, monoclinic (DK1) and yttria partially stabilised (HSY3) zirconia, in the presence of a dispersant, 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt (Tiron), in aqueous system. The optimum dispersant concentrations, where the viscosity and rheological moduli are the entire minimum, for DK1 and HSY3 suspensions, respectively, are 0.625% and 0.1%. The modifications of the interparticle forces were also achieved by pH adjustment and it was found that both of the suspensions at the optimum dispersant concentration were stable over the pH range 7 ∼ 10, which coincide with the results of the electrophoretic mobility measurements. Ceramic compacts have then been made by slip casting the suspensions of different dispersant concentration, followed by firing procedure. Mechanical properties of

  16. All-ceramic restorations: an overview.

    Science.gov (United States)

    Bassi, F; Carossa, S; Pera, P; Preti, G

    1998-09-01

    Advantages and disadvantages of metal-ceramic and all-ceramic restorations are reviewed particularly from the aesthetic point of view. All-ceramic restorations offer the best results because they let the light through optimally. In constructing all-ceramic crowns on teeth which have been endodontically treated, the material used to rebuild the pin-abutments must be taken into consideration if the best aesthetic results are to be achieved. Materials which, because of their translucent characteristics, are the most aesthetic alternatives to metal alloy pin-abutments in rebuilding teeth which have been endodontically treated, are then described.

  17. Wettability and surface free energy of polarised ceramic biomaterials

    International Nuclear Information System (INIS)

    Nakamura, Miho; Hori, Naoko; Namba, Saki; Yamashita, Kimihiro; Toyama, Takeshi; Nishimiya, Nobuyuki

    2015-01-01

    The surface modification of ceramic biomaterials used for medical devices is expected to improve osteoconductivity through control of the interfaces between the materials and living tissues. Polarisation treatment induced surface charges on hydroxyapatite, β-tricalcium phosphate, carbonate-substituted hydroxyapatite and yttria-stabilized zirconia regardless of the differences in the carrier ions participating in the polarisation. Characterization of the surfaces revealed that the wettability of the polarised ceramic biomaterials was improved through the increase in the surface free energies compared with conventional ceramic surfaces. (note)

  18. CURING EFFICIENCY OF DUAL-CURE RESIN CEMENT UNDER ZIRCONIA WITH TWO DIFFERENT LIGHT CURING UNITS

    Directory of Open Access Journals (Sweden)

    Pınar GÜLTEKİN

    2015-04-01

    Full Text Available Purpose: Adequate polymerization is a crucial factor in obtaining optimal physical properties and a satisfying clinical performance from composite resin materials. The aim of this study was to evaluate the polymerization efficiency of dual-cure resin cement cured with two different light curing units under zirconia structures having differing thicknesses. Materials and Methods: 4 zirconia discs framework in 4 mm diameter and in 0.5 mm, 1 mm and 1.5 mm thickness were prepared using computer-aided design system. One of the 0.5 mm-thick substructures was left as mono-layered whereas others were layered with feldspathic porcelain of same thickness and ceramic samples with 4 different thicknesses (0.5, 1, 1.5 and 2.0 mm were prepared. For each group (n=12 resin cement was light cured in polytetrafluoroethylene molds using Light Emitting Diode (LED or Quartz-Tungsten Halogen (QHT light curing units under each of 4 zirconia based discs (n=96. The values of depth of cure (in mm and the Vickers Hardness Number values (VHN were evaluated for each specimen. Results: The use of LED curing unit produced a greater depth of cure compared to QTH under ceramic discs with 0.5 and 1 mm thickness (p<0.05.At 100μm and 300 μm depth, the LED unit produced significantly greater VHN values compared to the QTH unit (p<0.05. At 500 μm depth, the difference between the VHN values of LED and QTH groups were not statistically significant. Conclusion: Light curing may not result in adequate resin cement polymerization under thick zirconia structures. LED light sources should be preferred over QTH for curing dual-cure resin cements, especially for those under thicker zirconia restorations.

  19. Marginal adaptation of lithium disilicate ceramic crowns cemented with three different resin cements.

    Science.gov (United States)

    Peroz, Ingrid; Mitsas, Triantafyllos; Erdelt, Kurt; Kopsahilis, Niko

    2018-04-17

    The cementation process and cementation materials have an influence on the marginal adaptation of restorations. The gap could be affected by thermal and mechanical loading (TCML). The computerized x-ray microtomography (μCT) method offers the possibility of measuring the marginal gap without destruction of the restoration. The aim of this study was to evaluate the marginal gap (MG) and the absolute marginal discrepancy (AMD) before and after TCML. Thirty-nine human premolars were prepared for full ceramic crowns made of lithium disilicate. The crowns were cemented by three different resins-Panavia F 2.0, Variolink II, and Relyx Unicem. The MG and AMD were evaluated by μCT before and after TCML. Panavia F 2.0 had the lowest MG (before 118 μm-after TMCL 124 μm) and AMD (before 145 μm-after TMCL 154 μm), followed by Relyx Unicem (MG: before 164 μm-after TCML 155 μm; AMD: before 213 μm-after TMCL 209 μm) and Variolink II (MG: before 317 μm-after TMCL 320 μm; AMD: before 412 μm-after TMCL 406 μm). The differences were statistically significant before and after TCML. Rather than TCML, it appeared the resin cement was responsible for differences between the MG and AMD before and after TCML. μCT is an accurate technique for assessing cemented restorations. Panavia F 2.0 has the lowest MG and AMD before and after TCML. The resin material that features a three-step protocol (Variolink II) produced higher MG and AMG values than the Panavia or Relyx Unicem varieties with less or no intermediate steps at all.

  20. Relative translucency of six all-ceramic systems. Part I: core materials.

    Science.gov (United States)

    Heffernan, Michael J; Aquilino, Steven A; Diaz-Arnold, Ana M; Haselton, Debra R; Stanford, Clark M; Vargas, Marcos A

    2002-07-01

    All-ceramic restorations have been advocated for superior esthetics. Various materials have been used to improve ceramic core strength, but it is unclear whether they affect the opacity of all-ceramic systems. This study compared the translucency of 6 all-ceramic system core materials at clinically appropriate thicknesses. Disc specimens 13 mm in diameter and 0.49 +/- 0.01 mm in thickness were fabricated from the following materials (n = 5 per group): IPS Empress dentin, IPS Empress 2 dentin, In-Ceram Alumina core, In-Ceram Spinell core, In-Ceram Zirconia core, and Procera AllCeram core. Empress and Empress 2 dentin specimens also were fabricated and tested at a thickness of 0.77 +/- 0.02 mm (the manufacturer's recommended core thickness is 0.8 mm). A high-noble metal-ceramic alloy (Porc. 52 SF) served as the control, and Vitadur Alpha opaque dentin was used as a standard. Sample reflectance (ratio of the intensity of reflected light to that of the incident light) was measured with an integrating sphere attached to a spectrophotometer across the visible spectrum (380 to 700 nm); 0-degree illumination and diffuse viewing geometry were used. Contrast ratios were calculated from the luminous reflectance (Y) of the specimens with a black (Yb) and a white (Yw) backing to give Yb/Yw with CIE illuminant D65 and a 2-degree observer function (0.0 = transparent, 1.0 = opaque). One-way analysis of variance and Tukey's multiple-comparison test were used to analyze the data (P In-Ceram Spinell > Empress, Procera, Empress 2 > In-Ceram Alumina > In-Ceram Zirconia, 52 SF alloy.

  1. [Effects of surface treatment and adhesive application on shear bond strength between zirconia and enamel].

    Science.gov (United States)

    Li, Yinghui; Wu, Buling; Sun, Fengyang

    2013-03-01

    To evaluate the effects of sandblasting and different orthodontic adhesives on shear bond strength between zirconia and enamel. Zirconia ceramic samples were designed and manufactured for 40 extracted human maxillary first premolars with CAD/CAM system. The samples were randomized into 4 groups for surface treatment with sandblasting and non-treated with adhesives of 3M Transbond XT or Jingjin dental enamel bonding resin. After 24 h of bonded fixation, the shear bond strengths were measured by universal mechanical testing machine and analyzed with factorial variance analysis. The shear bond strength was significantly higher in sandblasting group than in untreated group (Padhesives of Transbond XT and dental enamel bonding resin (P>0.05). The shear bond strength between zirconia and enamel is sufficient after sandblasting regardless of the application of either adhesive.

  2. Phase quantification of mullite-zirconia and zircon commercial powders using PAC and XRD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rendtorff, Nicolas M.; Conconi, Maria S.; Aglietti, Esteban F. [Centro de Tecnologia de Recursos Minerales y Ceramica (CETMIC: CONICET-CIC) (Argentina); Chain, Cecilia Y.; Pasquevich, Alberto F. [Universidad Nacional de La Plata, Departamento de Fisica, IFLP, Facultad de Ciencias Exactas (Argentina); Rivas, Patricia C. [CONICET (Argentina); Martinez, Jorge A., E-mail: toto@fisica.unlp.edu.ar; Caracoche, Maria C. [Universidad Nacional de La Plata, Departamento de Fisica, IFLP, Facultad de Ciencias Exactas (Argentina)

    2010-06-15

    The short range technique of the Perturbed Angular Correlation (PAC) and x-ray diffraction (Rietveld) methods have been employed to determine the phase content in commercial mullite-zirconia and zircon raw materials that are ordinarily used to produce ceramic materials. The PAC technique, which probes zirconium-containing compounds at nanoscopic level, showed that zircon contains crystalline ZrSiO{sub 4} and an important amount of a structurally distorted zircon, which is also observed accompanying monoclinic zirconia in mullite-zirconia. This particular zircon phase was not detected by the long range x-ray diffraction-Rietveld technique. After an annealing treatment, important changes in crystalline contents of the powders allow confirming, by the x-ray diffraction-Rietveld method, the preexistence of this particular zircon phase. This fact must be taken into account when preparing multicomposites based on the present raw materials.

  3. Incorporation of TiO2 nanotubes in a polycrystalline zirconia: Synthesis of nanotubes, surface characterization, and bond strength.

    Science.gov (United States)

    Dos Santos, Angélica Feltrin; Sandes de Lucena, Fernanda; Sanches Borges, Ana Flávia; Lisboa-Filho, Paulo Noronha; Furuse, Adilson Yoshio

    2018-04-05

    Despite numerous advantages such as high strength, the bond of yttria-stabilized zirconia polycrystal (Y-TZP) to tooth structure requires improvement. The purpose of this in vitro study was to evaluate the incorporation of TiO 2 nanotubes into zirconia surfaces and the bond strength of resin cement to the modified ceramic. TiO 2 nanotubes were produced by alkaline synthesis, mixed with isopropyl alcohol (50 wt%) and applied on presintered zirconia disks. The ceramics were sintered, and the surfaces were characterized by confocal laser microscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDS) analysis. For bond strength, the following 6 groups (n=16) were evaluated: without TiO 2 and Single Bond Universal; with TiO 2 nanotubes and Single Bond Universal; without TiO 2 nanotubes and Z-prime; with TiO 2 nanotubes and Z-prime; without TiO 2 and Signum Zirconia Bond; with TiO 2 and Signum Zirconia Bond. After sintering, resin cement cylinders, diameter of 1.40 mm and 1 mm in height, were prepared and polymerized for 20 seconds. Specimens were stored in water at 37°C for 30 days and submitted to a shear test. Data were analyzed by 2-way ANOVA and Tukey honest significant difference (α=.05) tests. EDS analysis confirmed that nanoagglomerates were composed of TiO 2 . The shear bond strength showed statistically significant differences among bonding agents (P<.001). No significant differences were found with the application of nanotubes, regardless of the group analyzed (P=.682). The interaction among the bonding agent factors and addition of nanotubes was significant (P=.025). Nanotubes can be incorporated into zirconia surfaces. However, this incorporation did not improve bond strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Fracture strength and bending of all-ceramic and fiber-reinforced composites in inlay-retained fixed partial dentures

    Directory of Open Access Journals (Sweden)

    Serkan Saridag

    2012-06-01

    Conclusions: Zirconia-based ceramic inlay-retained fixed partial dentures demonstrated the highest fracture strength. The fiber-reinforced composite inlay-retained fixed partial dentures demonstrated higher bending values than did the all-ceramic inlay-retained fixed partial dentures.

  5. Performance of ceramics in ring/cylinder applications

    International Nuclear Information System (INIS)

    Dufrane, K.F.; Glaeser, W.A.

    1987-01-01

    In support of the efforts to apply ceramics to advanced heat engines, a study is being performed of the performance of ceramics at the ring/cylinder interface of advanced (low heat rejection) engines. The objective of the study, managed by the Oak Ridge National Laboratory, is to understand the basic mechanisms controlling the wear of ceramics and thereby identify means for applying ceramics effectively. Attempts to operate three different zirconias, silicon carbide, silicon nitride, and plasma-sprayed ceramic coatings without lubrication have not been successful because of excessive friction and high wear rates. Silicon carbide and silicon nitride perform well at ambient temperatures with fully formulated mineral oil lubrication, but are limited to temperatures of 500F because of the lack of suitable liquid lubricants for higher temperatures

  6. Zirconia dental implants: where are we now, and where are we heading?

    Science.gov (United States)

    Cionca, Norbert; Hashim, Dena; Mombelli, Andrea

    2017-02-01

    Despite decades of titanium as the gold standard in oral implantology, the search for alternatives has been growing. High esthetic standards and increasing incidence of titanium allergies, along with a rising demand for metal-free reconstructions, have led to the proposal of ceramics as potential surrogates. Following numerous experimental studies, zirconium dioxide (zirconia) has earned its place as a potential substitute for titanium in implantology. Yet, despite zirconia's excellent biocompatibility and tissue integration, low affinity to plaque and favorable biomechanical properties, early failures were significantly higher for zirconia implants than for titanium implants. Technical failure as a result of fracture of the material is also a major concern. So far, zirconia implants have been mainly manufactured as one-piece implant systems because of the material's limitations. Nevertheless, various two-piece systems have been progressively emerging with promising results. Screw-retained abutments are desirable but present a major technical challenge. Innovation and technical advances will undoubtedly lead to further improvement in the reliability and strength of zirconia implants, allowing for novel designs, connections and reconstructions. Additional clinical studies are required to identify all relevant technical and biological factors affecting implant success and patients' satisfaction. However, the evidence for a final verdict is, at present, still incomplete. © 2016 The Authors. Periodontology 2000 published by John Wiley & Sons Ltd.

  7. Evaluation of torque loss value of MAD/MAM zirconia abutments with prefabricated titanium abutments

    Directory of Open Access Journals (Sweden)

    Marzieh Alikhasi

    2013-04-01

    Full Text Available Background and Aims: In response to esthetic demand of patients, ceramic abutments have been developed. Despite esthetic of zirconia abutments, machining accuracy of these abutments has always been a question. Any misfit in the abutment-implant interface connection can lead to detorque and screw loosening. The aim of this study was to compare torque loss value of manually aided design/manually aided manufacture (MAD/MAM zirconia abutments with prefabricated titanium abutments. Materials and Methods: Seven titanium abutments (Branemark RP, Easy abutment and seven copy milled abutments which were duplicated from the prefabricated Zirkonzhan (ZirkonZahn, Sand in Taufers, Italy were prepared. After sintering process of zirconia abutment, all abutments were fastened with a torque screw under 35 Ncm. Detorque measurements were performed per group pushing the reverse button of the Torque controller soon after screw tightening with values registered. The mean torque loss were calculated and compared using Student's t test. Results: The mean of torque loss was 12.71 Ncm with standard deviation of 1.70 for prefabricated titanium abutments and 15.50 Ncm with standard deviation of 4.67 for MAD-MAM abutments. The difference between the two groups was not statistically significant (P=0.23. Conclusion: Within the limitation of this study, MAD-MAM ceramic abutments could maintain the applied torque comparing to the prefabricated abutments.

  8. Influence of thermal expansion mismatch on residual stress profile in veneering ceramic layered on zirconia: Measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Najjar, Achref; Jakubowicz-Kohen, Boris D; Sadoun, Michaël J

    2015-09-01

    Mismatch in thermal expansion coefficient between core and veneering ceramic (Δα=αcore-αveneer, ppm/°C) is reported as a crucial parameter influencing veneer fractures with Yttria-tetragonal-zirconia-polycrystal (Y-TZP) prostheses, which still constitutes a misunderstood problem. However, the common positive Δα concept remains empirical. The objective of this study is to investigate the Δα dependence of residual stress profiles in veneering ceramic layered on Y-TZP frameworks. The stress profile was measured with the hole-drilling method in bilayered disc samples of 20mm diameter with a 0.7mm thick Y-TZP framework and a 1.5mm thick veneer layer. 3 commercial and 4 experimental veneering ceramics (n=3 per group) were used to obtain different Δα varying from -1.3ppm/°C to +3.2ppm/°C, which were determined by dilatometric analyses. Veneer fractures were observed in samples with Δα≥+2.3 or ≤-0.3ppm/°C. Residual stress profiles measured in other groups showed compressive stresses in the surface, these stresses decreasing with depth and then becoming more compressive again near the interface. Small Δα variations were shown to induce significant changes in residual stress profiles. Compressive stress near the framework was found to decrease inversely to Δα. Veneer CTE close to Y-TZP (+0.2ppm/°C Δα) gived the most favorable stress profile. Yet, near the framework, Δα-induced residual stress varied inversely to predictions. This could be explained by the hypothesis of structural changes occurrence within the Y-TZP surface. Consequently, the optimum Δα value cannot be determined before understanding Y-TZP's particular behavior when veneered. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Fracture-dissociation of ceramic liner.

    Science.gov (United States)

    Hwang, Sung Kwan; Oh, Jin-Rok; Her, Man Seung; Shim, Young Jun; Cho, Tae Yeun; Kwon, Sung Min

    2008-08-01

    The use of BIOLOX delta ceramic (CeramTec AG, Plochingen, Germany) has been increasing. This ceramic prevents cracking by restraining the phase transformation due to the insertion of nano-sized, yttria-stabilized tetragonal zirconia into the alumina matrix. This restrains the progress of cracking through the formation of platelet-like crystal or whiskers due to the addition of an oxide additive. We observed a case of BIOLOX delta ceramic liner (CeramTec AG) rim fracture 4 months postoperatively. Radiographs showed that the ceramic liner was subluxated from the acetabular cup. Scratches on the acetabular cup and femoral neck were seen, and the fracture was visible on the rim of the liner. Under electron microscope, metal particle coatings from the ceramic liner were identified. The ceramic liner, fracture fragments, and adjacent tissues were removed and replaced with a ceramic liner and femoral head of the same size and design. We believe the mechanism of the fracture-dissociation of the ceramic liner in this case is similar to a case of separation of the ceramic liner from the polyethylene shell in a sandwich-type ceramic-ceramic joint. To prevent ceramic liner fracture-dissociation, the diameter of the femoral neck needs to be decreased in a new design, while the diameter of the femoral head needs to be increased to ensure an increase in range of motion.

  10. A new testing protocol for zirconia dental implants.

    Science.gov (United States)

    Sanon, Clarisse; Chevalier, Jérôme; Douillard, Thierry; Cattani-Lorente, Maria; Scherrer, Susanne S; Gremillard, Laurent

    2015-01-01

    Based on the current lack of standards concerning zirconia dental implants, we aim at developing a protocol to validate their functionality and safety prior their clinical use. The protocol is designed to account for the specific brittle nature of ceramics and the specific behavior of zirconia in terms of phase transformation. Several types of zirconia dental implants with different surface textures (porous, alveolar, rough) were assessed. The implants were first characterized in their as-received state by Scanning Electron Microscopy (SEM), Focused Ion Beam (FIB), X-Ray Diffraction (XRD). Fracture tests following a method adapted from ISO 14801 were conducted to evaluate their initial mechanical properties. Accelerated aging was performed on the implants, and XRD monoclinic content measured directly at their surface instead of using polished samples as in ISO 13356. The implants were then characterized again after aging. Implants with an alveolar surface presented large defects. The protocol shows that such defects compromise the long-term mechanical properties. Implants with a porous surface exhibited sufficient strength but a significant sensitivity to aging. Even if associated to micro cracking clearly observed by FIB, aging did not decrease mechanical strength of the implants. As each dental implant company has its own process, all zirconia implants may behave differently, even if the starting powder is the same. Especially, surface modifications have a large influence on strength and aging resistance, which is not taken into account by the current standards. Protocols adapted from this work could be useful. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. On the determination of the stress-free temperature for alumina–zirconia multilayer structures

    Czech Academy of Sciences Publication Activity Database

    Chlup, Zdeněk; Hadraba, Hynek; Drdlík, D.; Maca, K.; Dlouhý, Ivo; Bermejo, R.

    2014-01-01

    Roč. 40, č. 4 (2014), s. 5787-5793 ISSN 0272-8842 R&D Projects: GA ČR(CZ) GAP108/11/1644; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Sintering * Thermal expansion * Zirconia * Alumina * Layered Ceramics Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.605, year: 2014

  12. Toughness determination of zirconia toughened alumina ceramics from growth of indentation-induced cracks

    International Nuclear Information System (INIS)

    Basu, D.; Sarkar, B.K.

    1996-01-01

    Short surface cracks were generated by Vickers indentation on the polished surface of alumina and different zirconia toughened alumina (ZTA) specimens, and their morphology was studied by serial sectioning. These cracks were grown in three-point bend tests under stepwise loading, and variation of toughness with crack extension was plotted to graphically separate the contributions from residual stress intensity and applied stress intensity factors. The plateau toughness determined from the intercept height of the crack extension plots exhibited an upward trend with zirconia content up to 15 vol% ZrO 2 addition in the composition, which was proportional to the fraction of transformable tetragonal grains contributing to transformation toughening. copyright 1996 Materials Research Society

  13. Ultrastructural Analysis and Long-term Evaluation of Composite-Zirconia Bond Strength.

    Science.gov (United States)

    Aboushelib, Moustafa N; Ragab, Hala; Arnaot, Mohamed

    2018-01-01

    To evaluate the influence of different aging techniques on zirconia-composite microtensile bond strength using different surface treatments over a 5-year follow-up period. Zirconia disks received three surface treatments: airborne-particle abrasion with 50-μm aluminum oxide particles, selective infiltration etching (SIE), or fusion sputtering (FS). The specimens were bonded to pre-aged composite disks using a composite cement containing phosphate monomers (Panavia F2.0). Bonded specimens were sectioned into microbars (1 x 1 x 6 mm) using a precision cutting machine, and all microbars received thermocycling (15,000 cycles between 5°C and 55°C). Initial microtensile bond strength was evaluated, and the test was repeated after storage in the following media for five years (artificial saliva, 20% ethanol, 5% NaOH, 4% acetic acid, and 5% phosphoric acid). The test was repeated every 12 months for 5 years. Scanning electron microscopic images were used to analyze the zirconia-composite interface. A repeated measures ANOVA and Bonferroni post-hoc tests were used to analyze the data (n = 20, α = 0.05). Significantly higher microtensile bond strength was observed for SIE compared to fusion sputtering and airborne particle abrasion. Five years of artificial aging resulted in significant reduction of zirconia-composite bond strength for all tested specimens. Zirconia-composite bond strength was more sensitive to storage in sodium hydroxide and phosphoric acid, while it was least affected when stored under saliva. These changes were related to the mechanism of ultra-structural interaction between surface treatment and adhesive, as deterioration of the hybrid layer (composite-infiltrated ceramic) was responsible for bond degeneration. Zirconia-composite bond strength was influenced by 5 years of artificial aging.

  14. Characterisation and fabrication of zirconia and thoria based ceramics for nuclear applications

    International Nuclear Information System (INIS)

    Barrier, D.C.

    2005-11-01

    The reduction of the long term radiotoxicity of nuclear waste during disposal is the aim of the research called ''Partitioning and Transmutation of Minor actinides (MAs)'', which also requires the development of inert ceramic support materials. Moreover, after separation, if the transmutation is not available, the actinides can be conditioned into stable dedicated solid matrices (Partitioning and Conditioning strategy). Yttrium-stabilized zirconia and thoria are discussed in the international nuclear community as candidates for the fixation of long-lived actinides as target material for transmutation and as stable materials for long-term final disposal. The aims of the following work are twofold: determine the impact of the addition of actinides, simulated by cerium on the properties of the matrices and study the possibility of synthesising homogeneous ceramics using simple fabrication routes. Within this framework, (ZrY)O 2-x -CeO 2 and ThO 2 -CeO 2 powders with variable ceria contents (from 0 to 100 %) were synthesised by a co-precipitation method of nitrate solution. The influence of ceria concentration on the powder' properties, such as thermal behaviour and the evolution of material crystallisation during annealing, was investigated in detail by thermogravimetry (TG) coupled with differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Both systems crystallise at high temperature in a stable solid solution, fcc, fluorite type structure and follow the Vegard's law for the complete range of ceria. For both systems a critical concentration of 20 mol% has been established. For ceria concentrations lower than 20%, the properties of the system are mainly controlled by the matrix. Pellets with different ceria concentrations were compacted from these powders by using different technological cycles. In order to obtain materials with reliable properties, the technological parameters of each chosen fabrication route, have been optimised. By employing mild wet

  15. Characterisation and fabrication of zirconia and thoria based ceramics for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Barrier, D C

    2005-11-01

    The reduction of the long term radiotoxicity of nuclear waste during disposal is the aim of the research called ''Partitioning and Transmutation of Minor actinides (MAs)'', which also requires the development of inert ceramic support materials. Moreover, after separation, if the transmutation is not available, the actinides can be conditioned into stable dedicated solid matrices (Partitioning and Conditioning strategy). Yttrium-stabilized zirconia and thoria are discussed in the international nuclear community as candidates for the fixation of long-lived actinides as target material for transmutation and as stable materials for long-term final disposal. The aims of the following work are twofold: determine the impact of the addition of actinides, simulated by cerium on the properties of the matrices and study the possibility of synthesising homogeneous ceramics using simple fabrication routes. Within this framework, (ZrY)O{sub 2-x}-CeO{sub 2} and ThO{sub 2}-CeO{sub 2} powders with variable ceria contents (from 0 to 100 %) were synthesised by a co-precipitation method of nitrate solution. The influence of ceria concentration on the powder' properties, such as thermal behaviour and the evolution of material crystallisation during annealing, was investigated in detail by thermogravimetry (TG) coupled with differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Both systems crystallise at high temperature in a stable solid solution, fcc, fluorite type structure and follow the Vegard's law for the complete range of ceria. For both systems a critical concentration of 20 mol% has been established. For ceria concentrations lower than 20%, the properties of the system are mainly controlled by the matrix. Pellets with different ceria concentrations were compacted from these powders by using different technological cycles. In order to obtain materials with reliable properties, the technological parameters of each chosen fabrication route, have been optimised. By

  16. Characterisation and fabrication of zirconia and thoria based ceramics for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Barrier, D.C.

    2005-11-01

    The reduction of the long term radiotoxicity of nuclear waste during disposal is the aim of the research called ''Partitioning and Transmutation of Minor actinides (MAs)'', which also requires the development of inert ceramic support materials. Moreover, after separation, if the transmutation is not available, the actinides can be conditioned into stable dedicated solid matrices (Partitioning and Conditioning strategy). Yttrium-stabilized zirconia and thoria are discussed in the international nuclear community as candidates for the fixation of long-lived actinides as target material for transmutation and as stable materials for long-term final disposal. The aims of the following work are twofold: determine the impact of the addition of actinides, simulated by cerium on the properties of the matrices and study the possibility of synthesising homogeneous ceramics using simple fabrication routes. Within this framework, (ZrY)O{sub 2-x}-CeO{sub 2} and ThO{sub 2}-CeO{sub 2} powders with variable ceria contents (from 0 to 100 %) were synthesised by a co-precipitation method of nitrate solution. The influence of ceria concentration on the powder' properties, such as thermal behaviour and the evolution of material crystallisation during annealing, was investigated in detail by thermogravimetry (TG) coupled with differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Both systems crystallise at high temperature in a stable solid solution, fcc, fluorite type structure and follow the Vegard's law for the complete range of ceria. For both systems a critical concentration of 20 mol% has been established. For ceria concentrations lower than 20%, the properties of the system are mainly controlled by the matrix. Pellets with different ceria concentrations were compacted from these powders by using different technological cycles. In order to obtain materials with reliable properties, the technological parameters of each chosen fabrication

  17. Proton-conducting cerate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Coffey, G.W.; Bates, J.L.; Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Single-cell solid oxide fuel cells were constructed using strontium cerate as the electrolyte and their performance tested. Like certain zirconates, hafnates, and tantalates, the cerate perovskites are among a class of solid electrolytes that conduct protons at elevated temperatures. Depending on the temperature and chemical environment, these ceramics also support electronic and oxygen ion currents. A maximum power output of {approx}100 mW per cm{sup 2} electrolyte surface area was obtained at 900{degrees}C using 4% hydrogen as the fuel and air as the oxidant. A series of rare earth/ceria/zirconia were prepared and their electrical properties characterized. Rare earth dopants included ytterbia, yttria, terbia, and europia. Ionic conductivities were highest for rare earth/ceria and rare earth zirconia compositions; a minimum in ionic conductivity for all series were found for equimolar mixtures of ceria and zirconia. Cerium oxysulfide is of interest in fossil energy applications because of its high chemical stability and refractory nature. An alternative synthesis route to preparing cerium oxysulfide powders has been developed using combustion techniques.

  18. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    Science.gov (United States)

    Wananuruksawong, R.; Jinawath, S.; Padipatvuthikul, P.; Wasanapiarnpong, T.

    2011-10-01

    Silicon nitride (Si3N4) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si3N4 ceramic as a dental core material. The white Si3N4 was prepared by pressureless sintering at relative low sintering temperature of 1650 °C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si3N4 ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si3N4 specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder (tube furnace between 1000-1200°C. The veneered specimens fired at 1100°C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98×10-6 °C-1, rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  19. The Use of All-Ceramic Resin-Bonded Bridges in the Anterior Aesthetic Zone.

    Science.gov (United States)

    Shah, Rupal; Laverty, Dominic P

    2017-03-01

    For several years, all-ceramic resin-bonded bridges (RBBs) have been considered an aesthetic treatment option for the replacement of missing teeth in the anterior region. With continued developments in technology, various different ceramic materials have been used to fabricate all-ceramic RBBs including zirconia, glass-reinforced, alumina-based ceramics, and lithium disilicate glass ceramics. The aim of this article is to provide an overview of all-ceramic RBBs, the advantages and disadvantages associated with these prostheses, as well as to demonstrate their application in replacing missing anterior teeth. Clinical relevance: To present the current literature and clinical application of all-ceramic resin-bonded bridges for replacing missing anterior teeth.

  20. Fracture of Reduced-Diameter Zirconia Dental Implants Following Repeated Insertion.

    Science.gov (United States)

    Karl, Matthias; Scherg, Stefan; Grobecker-Karl, Tanja

    Achievement of high insertion torque values indicating good primary stability is a goal during dental implant placement. The objective of this study was to evaluate whether or not two-piece implants made from zirconia ceramic may be damaged as a result of torque application. A total of 10 two-piece zirconia implants were repeatedly inserted into polyurethane foam material with increasing density and decreasing osteotomy size. The insertion torque applied was measured, and implants were checked for fractures by applying the fluorescent penetrant method. Weibull probability of failure was calculated based on the recorded insertion torque values. Catastrophic failures could be seen in five of the implants from two different batches at insertion torques ranging from 46.0 to 70.5 Ncm, while the remaining implants (all belonging to one batch) survived. Weibull probability of failure seems to be low at the manufacturer-recommended maximum insertion torque of 35 Ncm. Chipping fractures at the thread tips as well as tool marks were the only otherwise observed irregularities. While high insertion torques may be desirable for immediate loading protocols, zirconia implants may fracture when manufacturer-recommended insertion torques are exceeded. Evaluating bone quality prior to implant insertion may be useful.

  1. Effect of fiber post length and abutment height on fracture resistance of endodontically treated premolars prepared for zirconia crowns.

    Science.gov (United States)

    Lin, Jie; Matinlinna, Jukka Pekka; Shinya, Akikazu; Botelho, Michael George; Zheng, Zhiqiang

    2018-04-01

    The purpose of this study was to compare the fracture resistance, mode of fracture, and stress distribution of endodontically treated teeth prepared with three different fiber post lengths and two different abutment heights, using both experimental and finite element (FE) approaches. Forty-eight human maxillary premolars with two roots were selected and endodontically treated. The teeth were randomly distributed into six equally sized groups (n = 8) with different combinations of post lengths (7.5, 11, and 15 mm) and abutment heights (3 and 5 mm). All the teeth restored with glass fiber post (Rely X Fiber Post, 3M ESPE, USA) and a full zirconia crown. All the specimens were thermocycled and then loaded to failure at an oblique angle of 135°. Statistical analysis was performed for the effects of post length and abutment height on failure loads using ANOVA and Tukey's honestly significant difference test. In addition, corresponding FE models of a premolar restored with a glass fiber post were developed to examine mechanical responses. The factor of post length (P abutment height (P > 0.05) did not have a significant effect on failure load. The highest mean fracture resistance was recorded for the 15 mm post length and 5 mm abutment height test group, which was significantly more resistant to fracture than the 7.5 mm post and 5 mm abutment height group (P abutment heights.

  2. Microcracking in ceramics and acoustic emission

    International Nuclear Information System (INIS)

    Subbarao, E.C.

    1991-01-01

    One of the limitations in the use of ceramics in critical applications is due to the presence of microcracks, which may arise from differential thermal expansion and phase changes, among others. Acoustic emission signals occur when there are abrupt microdeformations in a material and thus offer a convenient means of non-destructive detection of microcracking. Examples of a study of acoustic emission from microcracking due to anisotropic thermal expansion in low thermal expansion single phase ceramics such as niobia and sodium zirconium phosphate ceramics and due to phase changes in zirconia and superconducting YBa 2 Cu 3 Osub(7-x) ceramics are presented, together with the case of lead titanate ceramics, which exhibits both a phase change (paraelectric to ferroelectric) and an anisotropic thermal expansion. The role of grain size on the extent of microcracking is illustrated in the case of niobia ceramics. Some indirect evidence of healing of microcracks on heating niobia and lead titanate ceramics is presented from the acoustic emission results. (author). 69 refs., 9 figs

  3. Shear bond strengths of an indirect composite layering material to a tribochemically silica-coated zirconia framework material.

    Science.gov (United States)

    Iwasaki, Taro; Komine, Futoshi; Fushiki, Ryosuke; Kubochi, Kei; Shinohara, Mitsuyo; Matsumura, Hideo

    2016-01-01

    This study evaluated shear bond strengths of a layering indirect composite material to a zirconia framework material treated with tribochemical silica coating. Zirconia disks were divided into two groups: ZR-PRE (airborne-particle abrasion) and ZR-PLU (tribochemical silica coating). Indirect composite was bonded to zirconia treated with one of the following primers: Clearfil Ceramic Primer (CCP), Clearfil Mega Bond Primer with Clearfil Porcelain Bond Activator (MGP+Act), ESPE-Sil (SIL), Estenia Opaque Primer, MR. Bond, Super-Bond PZ Primer Liquid A with Liquid B (PZA+PZB), and Super-Bond PZ Primer Liquid B (PZB), or no treatment. Shear bond testing was performed at 0 and 20,000 thermocycles. Post-thermocycling shear bond strengths of ZR-PLU were higher than those of ZR-PRE in CCP, MGP+Act, SIL, PZA+PZB, and PZB groups. Application of silane yielded better durable bond strengths of a layering indirect composite material to a tribochemically silica-coated zirconia framework material.

  4. Color related to ceramic and zirconia restorations: a review.

    Science.gov (United States)

    Vichi, Alessandro; Louca, Chris; Corciolani, Gabriele; Ferrari, Marco

    2011-01-01

    The requirement to achieve natural looking restorations is one of the most challenging aspects of dentistry, and the shade matching of dental restorations with the natural dentition is a difficult task due to the complex optical characteristics of natural teeth. Dental porcelain is considered the reference material for prosthetic rehabilitation, but it is not easy to handle and aesthetic excellence is quite difficult to obtain. For these reasons, shade matching with dental porcelain is often considered to be more artistic than scientific. Shade matching is considered unpredictable due to several variables that may influence the final appearance of a restoration. In order to improve this situation, over the last decade new shade guides and instruments have been developed and the aesthetic aspects of dental porcelain have been further investigated. In this review some aspects of color selection and color reproduction have been examined. Color selection has advanced through the development of new shade guides and electronic shade taking devices, although visual assessment has still not been entirely replaced by electronic instruments. Color reproduction with dental porcelain has improved thanks to advances in the performance and knowledge of dental porcelain, but is still not easy to achieve. The difficulties of achieving good aesthetics with PFM restorations and the desire for metal free solutions have resulted in the increased use of zirconia. The unique optical properties of zirconia have introduced new opportunities for achieving superior aesthetics, however further research is required with this material. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. In vitro wear of four ceramic materials and human enamel on enamel antagonist.

    Science.gov (United States)

    Nakashima, Jun; Taira, Yohsuke; Sawase, Takashi

    2016-06-01

    The purpose of the present study was to evaluate the wear of four different ceramics and human enamel. The ceramics used were lithium disilicate glass (e.max Press), leucite-reinforced glass (GN-Ceram), yttria-stabilized zirconia (Aadva Zr), and feldspathic porcelain (Porcelain AAA). Hemispherical styli were fabricated with these ceramics and with tooth enamel. Flattened enamel was used for antagonistic specimens. After 100,000 wear cycles of a two-body wear test, the height and volume losses of the styli and enamel antagonists were determined. The mean and standard deviation for eight specimens were calculated and statistically analyzed using a non-parametric (Steel-Dwass) test (α = 0.05). GN-Ceram exhibited greater stylus height and volume losses than did Porcelain AAA. E.max Press, Porcelain AAA, and enamel styli showed no significant differences, and Aadva Zr exhibited the smallest stylus height and volume losses. The wear of the enamel antagonist was not significantly different among GN-Ceram, e.max Press, Porcelain AAA, and enamel styli. Aadva Zr resulted in significantly lower wear values of the enamel antagonist than did GN-Ceram, Porcelain AAA, and enamel styli. In conclusion, leucite-reinforced glass, lithium disilicate glass, and feldspathic porcelain showed wear values closer to those for human enamel than did yttria-stabilized zirconia. © 2016 Eur J Oral Sci.

  6. Restoration of Endodontically Treated Molars Using All Ceramic Endocrowns

    Directory of Open Access Journals (Sweden)

    Roopak Bose Carlos

    2013-01-01

    Full Text Available Clinical success of endodontically treated posterior teeth is determined by the postendodontic restoration. Several options have been proposed to restore endodontically treated teeth. Endocrowns represent a conservative and esthetic restorative alternative to full coverage crowns. The preparation consists of a circular equigingival butt-joint margin and central retention cavity into the entire pulp chamber constructing both the crown and the core as a single unit. The case reports discussed here are moderately damaged endodontically treated molars restored using all ceramic endocrowns fabricated using two different systems, namely, CAD/CAM and pressed ceramic.

  7. The use of a masticatory robot to analyze the shock absorption capacity of different restorative materials for implant prosthesis

    Directory of Open Access Journals (Sweden)

    M. Menini

    2011-01-01

    Full Text Available The aim of the present research was to measure in vitro the chewing load forces transmitted through crowns made of different prosthetic restorative materials onto the dental implant. A masticatory robot that is able to reproduce the mandibular movements and the forces exerted during mastication was used. The forces transmitted to the simulated periimplant bone during the robot mastication were analysis of variance (ANOVA was used. The zirconia and the ceramic crowns transmitted significantly greater forces (p-value < 0.0001 than the other crowns tested. Dental materials with lower elastic modulus were better able to ansorb shock from acclusal forces than more rigid materials.

  8. Failure analysis of fractured dental zirconia implants.

    Science.gov (United States)

    Gahlert, M; Burtscher, D; Grunert, I; Kniha, H; Steinhauser, E

    2012-03-01

    The purpose of the present study was the macroscopic and microscopic failure analysis of fractured zirconia dental implants. Thirteen fractured one-piece zirconia implants (Z-Look3) out of 170 inserted implants with an average in situ period of 36.75±5.34 months (range from 20 to 56 months, median 38 months) were prepared for macroscopic and microscopic (scanning electron microscopy [SEM]) failure analysis. These 170 implants were inserted in 79 patients. The patient histories were compared with fracture incidences to identify the reasons for the failure of the implants. Twelve of these fractured implants had a diameter of 3.25 mm and one implant had a diameter of 4 mm. All fractured implants were located in the anterior side of the maxilla and mandibula. The patient with the fracture of the 4 mm diameter implant was adversely affected by strong bruxism. By failure analysis (SEM), it could be demonstrated that in all cases, mechanical overloading caused the fracture of the implants. Inhomogeneities and internal defects of the ceramic material could be excluded, but notches and scratches due to sandblasting of the surface led to local stress concentrations that led to the mentioned mechanical overloading by bending loads. The present study identified a fracture rate of nearly 10% within a follow-up period of 36.75 months after prosthetic loading. Ninety-two per cent of the fractured implants were so-called diameter reduced implants (diameter 3.25 mm). These diameter reduced implants cannot be recommended for further clinical use. Improvement of the ceramic material and modification of the implant geometry has to be carried out to reduce the failure rate of small-sized ceramic implants. Nevertheless, due to the lack of appropriate laboratory testing, only clinical studies will demonstrate clearly whether and how far the failure rate can be reduced. © 2011 John Wiley & Sons A/S.

  9. Comparison of different grinding procedures on the flexural strength of zirconia.

    Science.gov (United States)

    Işeri, Ufuk; Ozkurt, Zeynep; Yalnız, Ayşe; Kazazoğlu, Ender

    2012-05-01

    The surface of zirconia ceramic is damaged during grinding, which may affect the mechanical properties of the material. The purpose of this study was to compare the biaxial flexural strength of zirconia after different grinding procedures and to measure the temperature rise from grinding. Forty disk-shaped zirconia specimens (15 × 1.2 mm) with a smaller disk in the center of each disk (1 × 3 mm) were divided into 4 groups (n=10). The specimens were ground with a high-speed handpiece and micromotor with 2 different grinding protocols, continual grinding and periodic grinding (10 seconds grinding with 10 seconds duration), until the smaller disk was removed. Control specimens without the center disk (n=10) were analyzed without grinding. The biaxial flexural strengths of the disks were determined in a universal testing machine at a crosshead speed of 0.5 mm/min. The fracture strength (MPa) was recorded, and the results were analyzed using a 1-way ANOVA, Tukey HSD test, Student's t test, and Pearson correlation test (α=05). All grinding procedures significantly decreased flexural strength (Pmicromotor groups (718 MPa). The temperature values obtained from micromotor grinding (127°C) were significantly higher than those from high-speed handpiece grinding (63°C) (P<.01). Grinding zirconia decreased flexural strength. Zirconia material ground with a high-speed handpiece run continually caused the least reduction in flexural strength. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  10. Hydroxyapatite/zirconia-microfibre composites with controlled microporosity and fracture properties prepared by electrophoretic deposition

    Czech Academy of Sciences Publication Activity Database

    Drdlík, D.; Sláma, M.; Hadraba, Hynek; Cihlář, J.

    2015-01-01

    Roč. 41, č. 9 (2015), s. 11202-11212 ISSN 0272-8842 R&D Projects: GA ČR(CZ) GAP108/11/1644; GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : hydroxyapatite * zirconia * composite * electrophoretic deposition * porosity Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.758, year: 2015

  11. Industrial precipitation of yttrium chloride and zirconyl chloride: Effect of pH on ceramic properties for yttria partially stabilised zirconia

    International Nuclear Information System (INIS)

    Carter, G.A.; Hart, R.D.; Rowles, M.; Ogden, M.I.; Buckley, C.E.

    2009-01-01

    Two 3 mol% partially stabilised zirconia (P-SZ) samples suitable for the SOFC market were manufactured from solutions through to ceramics using a method similar to a known industrial process. The only difference in preparation of the two 3 mol% P-SZ samples was the pH of precipitation which was set at pH 3 or 12. Particle size measurements by dynamic light scattering were used to characterise the precipitate and the filtration rates were investigated. Five point N 2 -BET was used to investigate the specific surface area before and after calcination with the response to temperature tracked. Similarly TGA/DTA investigation was used to determine the calcination point during all of these tests and it was found that both powders behaved similarly. XRD-Rietveld analysis incorporating in situ and ex situ calcination revealed that the pH 3 sample had more monoclinic phase present after calcination and sintering as a ceramic. Ceramic testing incorporating hardness (Vickers), toughness (K 1C ), MOR, density and grain sizing was carried out, all determined that the material produced at pH 12 was superior for SOFC applications than the pH 3 sample. Further investigation using TEM-EDS revealed that the processing of the pH 3 powder had allowed a lower concentration of the yttrium which was incorporated at approximately 2 mol% instead of the required 3. ICP-OES of the after filter liquor indicated that high concentrations of yttrium (797 ppm) were found in the solution with the wash solution having 149 ppm yttrium. In contrast the pH 12 samples had 7 ppm in both the after filter liquor and wash indicating that the yttrium is bound within the matrix more completely at the higher pH.

  12. Effect of translucence of engineering ceramics on heat transfer in diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Wahiduzzaman, S.; Morel, T. (Integral Technologies, Inc., Westmont, IL (United States))

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  13. Improved Internal Reference Oxygen Sensors with Composite Ceramic Electrodes

    DEFF Research Database (Denmark)

    Hu, Qiang; Jacobsen, Torben; Hansen, Karin Vels

    2012-01-01

    Potentiometric oxygen sensors with an internal reference electrode, which uses the equilibrium pO2 of the binary mixture of Ni/NiO as the reference, are demonstrated. The cells employ Pt or composite ceramics as the sensing electrode. The cells are fabricated by a flexible and potentially low cost...... and performance are highly reproducible. The composite ceramics, based on strontium doped manganite and yttria doped zirconia, are proven superior over Pt to serve as the electrode material....

  14. Ceramic inlays and partial ceramic crowns: influence of remaining cusp wall thickness on the marginal integrity and enamel crack formation in vitro.

    Science.gov (United States)

    Krifka, Stephanie; Anthofer, Thomas; Fritzsch, Marcus; Hiller, Karl-Anton; Schmalz, Gottfried; Federlin, Marianne

    2009-01-01

    No information is currently available about what the critical cavity wall thickness is and its influence upon 1) the marginal integrity of ceramic inlays (CI) and partial ceramic crowns (PCC) and 2) the crack formation of dental tissues. This in vitro study of CI and PCC tested the effects of different remaining cusp wall thicknesses on marginal integrity and enamel crack formation. CI (n = 25) and PCC (n = 26) preparations were performed in extracted human molars. Functional cusps of CI and PCC were adjusted to a 2.5 mm thickness; for PCC, the functional cusps were reduced to a thickness of 2.0 mm. Non-functional cusps were adjusted to wall thicknesses of 1) 1.0 mm and 2) 2.0 mm. Ceramic restorations (Vita Mark II, Cerec3 System) were fabricated and adhesively luted to the cavities with Excite/Variolink II. The specimens were exposed to thermocycling and central mechanical loading (TCML: 5000 x 5 degrees C-55 degrees C; 30 seconds/cycle; 500000 x 72.5N, 1.6Hz). Marginal integrity was assessed by evaluating a) dye penetration (fuchsin) on multiple sections after TCML and by using b) quantitative margin analysis in the scanning electron microscope (SEM) before and after TCML. Ceramic- and tooth-luting agent interfaces (LA) were evaluated separately. Enamel cracks were documented under a reflective light microscope. The data were statistically analyzed with the Mann Whitney U-test (alpha = 0.05) and the Error Rates Method (ERM). Crack formation was analyzed with the Chi-Square-test (alpha = 0.05) and ERM. In general, the remaining cusp wall thickness, interface, cavity design and TCML had no statistically significant influence on marginal integrity for both CI and PCC (ERM). Single pairwise comparisons showed that the CI and PCC of Group 2 had a tendency towards less microleakage along the dentin/LA interface than Group 1. Cavity design and location had no statistically significant influence on crack formation, but the specimens with 1.0 mm of remaining wall

  15. Reliability and Failure Modes of a Hybrid Ceramic Abutment Prototype.

    Science.gov (United States)

    Silva, Nelson Rfa; Teixeira, Hellen S; Silveira, Lucas M; Bonfante, Estevam A; Coelho, Paulo G; Thompson, Van P

    2018-01-01

    A ceramic and metal abutment prototype was fatigue tested to determine the probability of survival at various loads. Lithium disilicate CAD-milled abutments (n = 24) were cemented to titanium sleeve inserts and then screw attached to titanium fixtures. The assembly was then embedded at a 30° angle in polymethylmethacrylate. Each (n = 24) was restored with a resin-cemented machined lithium disilicate all-ceramic central incisor crown. Single load (lingual-incisal contact) to failure was determined for three specimens. Fatigue testing (n = 21) was conducted employing the step-stress method with lingual mouth motion loading. Failures were recorded, and reliability calculations were performed using proprietary software. Probability Weibull curves were calculated with 90% confidence bounds. Fracture modes were classified with a stereomicroscope, and representative samples imaged with scanning electron microscopy. Fatigue results indicated that the limiting factor in the current design is the fatigue strength of the abutment screw, where screw fracture often leads to failure of the abutment metal sleeve and/or cracking in the implant fixture. Reliability for completion of a mission at 200 N load for 50K cycles was 0.38 (0.52% to 0.25 90% CI) and for 100K cycles was only 0.12 (0.26 to 0.05)-only 12% predicted to survive. These results are similar to those from previous studies on metal to metal abutment/fixture systems where screw failure is a limitation. No ceramic crown or ceramic abutment initiated fractures occurred, supporting the research hypothesis. The limiting factor in performance was the screw failure in the metal-to-metal connection between the prototyped abutment and the fixture, indicating that this configuration should function clinically with no abutment ceramic complications. The combined ceramic with titanium sleeve abutment prototype performance was limited by the fatigue degradation of the abutment screw. In fatigue, no ceramic crown or ceramic

  16. Phase stability in yttria-stabilized zirconia from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Carbogno, Christian; Scheffler, Matthias [Materials Department, University of California, Santa Barbara, CA (United States); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany); Levi, Carlos G.; Van de Walle, Chris G. [Materials Department, University of California, Santa Barbara, CA (United States)

    2012-07-01

    Zirconia based ceramics are of pivotal importance for a variety of industrial technologies, e.g., for thermal barrier coatings in gas and airplane turbines. Naturally, the stability of such coatings at elevated temperatures plays a critical role in these applications. It is well known that an aliovalent doping of tetragonal ZrO{sub 2} with yttria, which induces oxygen vacancies due to charge conservation, increases its thermodynamic stability. However, the atomistic mechanisms that determine the phase stability of such yttria-stabilized Zirconia (YSZ) coatings are not yet fully understood. In this work, we use density functional theory calculations to assess the electronic structure of the different YSZ polymorphs at various levels of doping. With the help of population analysis schemes, we are able to unravel the intrinsic mechanisms that govern the interaction in YSZ and that can so explain the relative stabilities of the various polymorphs. We critically compare our results to experimental measurements and discuss the implications of our findings with respect to other oxides.

  17. Preparation and properties of yttria doped tetragonal zirconia polycrystal/Sr-doped barium hexaferrite ceramic composites

    International Nuclear Information System (INIS)

    Wang, Shanshan; Zhang, Chao; Guo, Ruisong; Liu, Lan; Yang, Yuexia; Li, Kehang

    2015-01-01

    Highlights: • The 3Y-TZP/Sr-doped barium ferrite composites were prepared. • The saturation magnetization was improved by 15% with Sr-doping. • The dispersion coefficient p could reflect the microscopic lattice variation. • The composite with x = 0.5 had the maximum fracture toughness of 8.3 MPa m 1/2 . - Abstract: The effects of substitution of Ba 2+ by Sr 2+ on the magnetic property of barium ferrite and addition barium ferrite secondary phase to the 3 mol% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) matrix on the mechanical property of composites were investigated. The Sr-doped barium ferrite (Ba 1−x Sr x Fe 12 O 19 , x = 0, 0.25, 0.50 and 0.75) was synthesized by solid-state reaction in advance. Then 3Y-TZP/20 wt% Sr-doped barium ferrite composites were prepared by means of conventional ceramic method. It was found that a moderate amount of Sr added to barium ferrite could boost the saturation magnetization by 15% compared with the composites without Sr-doping. Besides, the composite with x = 0.50 possessed the best mechanical properties, such as 11.5 GPa for Vickers hardness and 8.3 MPa m 1/2 for fracture toughness, respectively. It was demonstrated that magnetic and mechanical properties of the composites could be harmonized by the incorporation of barium ferrite secondary phase

  18. Standards of teeth preparations for anterior resin bonded all-ceramic crowns in private dental practice in Jordan

    Directory of Open Access Journals (Sweden)

    Ziad Nawaf AL-Dwairi

    2011-08-01

    Full Text Available OBJECTIVES: To investigate if general dental practitioners (GDPs in private practice in Jordan follow universal guidelines for preparation of anterior teeth for resin bonded all-ceramic crowns (RBCs. MATERIAL AND METHODS: A sample (n=100 of laboratory models containing 208 tooth preparations for IPS Empress and In Ceram, featuring work from different GDPs, was obtained from 8 commercial dental laboratories. Aspects of preparations were quantified and compared with accepted criteria defined following a review of the literature and recommendations of the manufactures' guidelines. RESULTS: Subgingival margins on the buccal aspect were noticed in 36% of the preparations, 54% demonstrated overpreparation with a tendency to overprepare the teeth on the mesiodistal plane more than buccolingual plane. Twenty percent of samples presented a shoulder finish line while a chamfer margin design was noticed in 39%. Twenty-nine percent and 12% of samples had either a feathered or no clear margin design respectively. Incisal underpreparation was observed in 18% of dies of each type. Only 17% of all preparations were found to follow the recommended anatomical labial preparations while 29% of the RBC preparations were found to have the recommended axial convergence angle. In total, 43% of preparations were found to have the recommended depth of the finish line. CONCLUSIONS: It was found that relevant guidelines for RBC preparations were not being fully adhered to in private practice in Jordan.

  19. Topological design of all-ceramic dental bridges for enhancing fracture resistance.

    Science.gov (United States)

    Zhang, Zhongpu; Chen, Junning; Li, Eric; Li, Wei; Swain, Michael; Li, Qing

    2016-06-01

    Layered all-ceramic systems have been increasingly adopted in major dental prostheses. However, ceramics are inherently brittle, and they often subject to premature failure under high occlusion forces especially in the posterior region. This study aimed to develop mechanically sound novel topological designs for all-ceramic dental bridges by minimizing the fracture incidence under given loading conditions. A bi-directional evolutionary structural optimization (BESO) technique is implemented within the extended finite element method (XFEM) framework. Extended finite element method allows modeling crack initiation and propagation inside all-ceramic restoration systems. Following this, BESO searches the optimum distribution of two different ceramic materials, namely porcelain and zirconia, for minimizing fracture incidence. A performance index, as per a ratio of peak tensile stress to material strength, is used as a design objective. In this study, the novel XFEM based BESO topology optimization significantly improved structural strength by minimizing performance index for suppressing fracture incidence in the structures. As expected, the fracture resistance and factor of safety of fixed partial dentures structure increased upon redistributing zirconia and porcelain in the optimal topological configuration. Dental CAD/CAM systems and the emerging 3D printing technology were commercially available to facilitate implementation of such a computational design, exhibiting considerable potential for clinical application in the future. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Application of the electrophoretic deposition technique for obtaining Yttria-stabilized zirconia tubes; Aplicacao da tecnica de deposicao eletroforetica para a obtencao de tubos ceramicos de zirconia-itria

    Energy Technology Data Exchange (ETDEWEB)

    Caproni, E.; Muccillo, R., E-mail: ecaproni@gmail.com, E-mail: muccillo@usp.br [Centro de Ciencia e Tecnologia de Materiais, Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-01-15

    The electrophoretic deposition (EPD) is recognized as the most versatile technique for processing particulate materials, due to low cost, deposition in minutes and forming of pieces with complex geometry shapes. In this work an experimental setup for the simultaneous conformation of 16 ceramic tubes by EPD was built. Bimodal submicron Yttria-stabilized zirconia particles were deposited into graphite electrodes, after suitably adjusting the rheological characteristics of the suspension in isopropanol. After graphite burning and YSZ sintering at 1500 deg C, the ceramic tubes were characterized by X-ray diffraction, scanning probe microscope, impedance spectroscopy and electrical response as a function of oxygen content. Small dense one end-closed ceramic tubes, fully stabilized in the cubic phase, were successfully obtained by the EPD technique, showing the ability of that technique for processing large quantities of tubular solid electrolytes with electrical response to different amounts of oxygen according to the Nernst law (author)