WorldWideScience

Sample records for zirconate titanate pzt

  1. Pyroelectricity versus conductivity in soft lead zirconate titanate (PZT) ceramics

    NARCIS (Netherlands)

    Kamel, T.M.; With, de G.

    2007-01-01

    The electrical behavior of modified soft lead zirconate titanate (PZT) ceramics has been studied as a function of temperature at different direct current (dc) electric fields and grain sizes. As ferroelectrics, such as PZT, are highly polarizable materials, poling, depolarization, and electric

  2. Ferroelectric devices using lead zirconate titanate (PZT) nanoparticles.

    Science.gov (United States)

    Paik, Young Hun; Kojori, Hossein Shokri; Kim, Sung Jin

    2016-02-19

    We successfully demonstrate the synthesis of lead zirconate titanate nanoparticles (PZT NPs) and a ferroelectric device using the synthesized PZT NPs. The crystalline structure and the size of the nanocrystals are studied using x-ray diffraction and transmission electron microscopy, respectively. We observe PZT NPs and this result matches dynamic light scattering measurements. A solution-based low-temperature process is used to fabricate PZT NP-based devices on an indium tin oxide substrate. The fabricated ferroelectric devices are characterized using various optical and electrical measurements and we verify ferroelectric properties including ferroelectric hysteresis and the ferroelectric photovoltaic effect. Our approach enables low-temperature solution-based processes that could be used for various applications. To the best of our knowledge, this low-temperature solution processed ferroelectric device using PZT NPs is the first successful demonstration of its kind.

  3. Structural Contribution to the Ferroelectric Fatigue in Lead Zirconate Titanate (PZT) Ceramics

    OpenAIRE

    Hinterstein , Manuel; Rouquette , Jerome; Haines , J; Papet , Ph; Glaum , Julia; Knapp , Michael; Eckert , J; Hoffman , M

    2014-01-01

    International audience; Many ferroelectric devices are based on doped lead zirconate titanate (PZT) ceramics with compositions near the morphotropic phase boundary (MPB), at which the relevant material's properties approach their maximum. Based on a synchrotron x-ray diffraction study of MPB PZT, bulk fatigue is unambiguously found to arise from a less effective field induced tetragonal-to-monoclinic transformation, at which the degradation of the polarization flipping is detected by a less i...

  4. Characterization of lead zirconate titanate (PZT)--indium tin oxide (ITO) thin film interface

    International Nuclear Information System (INIS)

    Sreenivas, K.; Sayer, M.; Laursen, T.; Whitton, J.L.; Pascual, R.; Johnson, D.J.; Amm, D.T.

    1990-01-01

    In this paper the interface between ultrathin sputtered lead zirconate titanate (PZT) films and a conductive electrode (indium tin oxide-ITO) is investigated. Structural and compositional changes at the PZT-ITO interface have been examined by surface analysis and depth profiling techniques of glancing angle x-ray diffraction, Rutherford backscattering (RBS), SIMS, Auger electron spectroscopy (AES), and elastic recoil detection analysis (ERDA). Studies indicate significant interdiffusion of lead into the underlying ITP layer and glass substrate with a large amount of residual stress at the interface. Influence of such compositional deviations at the interface is correlated to an observed thickness dependence in the dielectric properties of PZT films

  5. Extrusion and properties of lead zirconate titanate piezoelectric ceramics

    DEFF Research Database (Denmark)

    Cai, S.; Millar, C.E.; Pedersen, L.

    1997-01-01

    The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates was investi......The purpose of this work was to develop a procedure for fabricating electroceramic actuators with good piezoelectric properties. The preparation of lead zirconate titanate (PZT) piezoelectric ceramic rods and tubes by extrusion processing is described. The microstructure of extrudates...

  6. Electrophoretic growth of lead zirconate titanate nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, S.J.; Seraji, S.; Forbess, M.J.; Wu Yun; Chou, T.P.; Nguyen, C.; Cao Guozhong [Washington Univ., Seattle, WA (United States). Dept. of Materials Science and Engineering

    2001-08-16

    Nanorods of lead zirconate titanate (PZT)-a ferro- and piezoelectric material-up to 10 {mu}m in length and 70 to 150 nm in diameter are produced by sol-gel electrophoresis of PZT in a track-etched polycarbonate membrane, which is used as a template. (orig.)

  7. Mechanical and dielectric characterization of lead zirconate titanate(PZT)/polyurethane(PU) thin film composite for energy harvesting

    Science.gov (United States)

    Aboubakr, S.; Rguiti, M.; Hajjaji, A.; Eddiai, A.; Courtois, C.; d'Astorg, S.

    2014-04-01

    The Lead Zirconate titanate (PZT) ceramic is known by its piezoelectric feature, but also by its stiffness, the use of a composite based on a polyurethane (PU) matrix charged by a piezoelectric material, enable to generate a large deformation of the material, therefore harvesting more energy. This new material will provide a competitive alternative and low cost manufacturing technology of autonomous systems (smart clothes, car seat, boat sail, flag ...). A thin film of the PZT/PU composite was prepared using up to 80 vol. % of ceramic. Due to the dielectric nature of the PZT, inclusions of this one in a PU matrix raises the permittivity of the composite, on other hand this latter seems to decline at high frequencies.

  8. Real-Time Salmonella Detection Using Lead Zirconate Titanate-Titanium Microcantilevers

    National Research Council Canada - National Science Library

    McGovern, John-Paul; Shih, Wan Y; Shih, Wei-Heng; Sergi, Mauro; Chaiken, Irwin

    2005-01-01

    .... We have developed and investigated the use of a lead zirconate titanate - titanium (PZT-Ti) microcantilever for in situ detection of the common food- and water-born pathogen, Salmonella typhimurium...

  9. Preparation of lead titanate zirconate from metal citrates

    International Nuclear Information System (INIS)

    Bastos, C.M.R.

    1994-01-01

    Lead titanate zirconate (PZT) preparation from its metal constituent citrates have been investigated. Metal citrates were obtained by forced precipitation using a dehydration alcohol mixture. Salt solutions of lead nitrate and octahydrated zirconyl chloride, and titanium tetrachloride were treated separately with citric acid and ammonium hydroxide. Zirconium, titanium and lead oxides resulted from thermal decomposition of corresponding citrates at 500 0 C, 450 0 C and 250 0 C, respectively. Lead titanate (PT) and lead zirconate (P Z) were obtained by calcining at 450 0 C and 500 0 C, respectively, after adequate heating of citrates mechanically mixed in ethyl ether. PZT samples were obtained with different starting stoichiometry. Rhombohedral PZT-1 53/47 sample was prepared from co precipitating zirconyl ammonium and ammonium lead citrates in presence of ethanolic titanium oxide dispersion, and calcinating at 800 0 C. Rhombohedral PZT-q 52/48 sample was obtained from heating at 500 0 C for 2 hours a mixture of metal citrates coprecipitated by dehydration mixture of acetone-ethanol-formic acid (2:1:0,06). Tetragonal PZT-m stoichiometry 53/47 sample were obtained by calcining at after 600 0 C for 2 hours after heating a mechanically mixed metal citrates. PT phase arose at 400 0 C. PZT-m powders obtained in a range of 400 0 C-800 0 C were isostatically pressed, and sintered at 1100 0 C and 1200 0 C in saturated Pb O atmosphere. Rhombohedral sintered PZT was obtained with 7,78 g.cm -3 at 1200 0 C. (author). 123 refs, 53 figs, 32 tabs

  10. Using the methods of radiospectroscopy (EPR, NMR) to study the nature of the defect structure of solid solutions based on lead zirconate titanate (PZT)

    Czech Academy of Sciences Publication Activity Database

    Bykov, I. P.; Zagorodniy, A.Y.; Yurchenko, L.P.; Korduban, A.M.; Nejezchleb, K.; Trachevsky, V.V.; Dimza, V.; Jastrabík, Lubomír; Dejneka, Alexandr

    2014-01-01

    Roč. 61, č. 8 (2014), 1379-1385 ISSN 0885-3010 R&D Projects: GA TA ČR TA01010517; GA ČR GAP108/12/1941 Institutional support: RVO:68378271 Keywords : lead zirconate titanate ( PZT ) * EPR * NMR * XPS spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.512, year: 2014

  11. Ionic and electronic conductivity in lead-zirconate-titanate (PZT)

    NARCIS (Netherlands)

    Boukamp, Bernard A.; Pham thi ngoc mai, P.T.N.M.; Blank, David H.A.; Bouwmeester, Henricus J.M.

    2004-01-01

    Accurate impedance measurements on differently sized samples of lead–zirconate–titanate (PbZr0.53Ti0.47O3, PZT) have been analyzed with a CNLS procedure, resulting in the separation of the ionic and electronic conductivities over a temperature range from f150 to 630 jC. At 603 jC the electronic

  12. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT).

    Science.gov (United States)

    Slouka, Christoph; Kainz, Theresa; Navickas, Edvinas; Walch, Gregor; Hutter, Herbert; Reichmann, Klaus; Fleig, Jürgen

    2016-11-22

    The different properties of acceptor-doped (hard) and donor-doped (soft) lead zirconate titanate (PZT) ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La 3+ donor-doped, Fe 3+ acceptor-doped and La 3+ /Fe 3+ -co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  13. The Effect of Acceptor and Donor Doping on Oxygen Vacancy Concentrations in Lead Zirconate Titanate (PZT

    Directory of Open Access Journals (Sweden)

    Christoph Slouka

    2016-11-01

    Full Text Available The different properties of acceptor-doped (hard and donor-doped (soft lead zirconate titanate (PZT ceramics are often attributed to different amounts of oxygen vacancies introduced by the dopant. Acceptor doping is believed to cause high oxygen vacancy concentrations, while donors are expected to strongly suppress their amount. In this study, La3+ donor-doped, Fe3+ acceptor-doped and La3+/Fe3+-co-doped PZT samples were investigated by oxygen tracer exchange and electrochemical impedance spectroscopy in order to analyse the effect of doping on oxygen vacancy concentrations. Relative changes in the tracer diffusion coefficients for different doping and quantitative relations between defect concentrations allowed estimates of oxygen vacancy concentrations. Donor doping does not completely suppress the formation of oxygen vacancies; rather, it concentrates them in the grain boundary region. Acceptor doping enhances the amount of oxygen vacancies but estimates suggest that bulk concentrations are still in the ppm range, even for 1% acceptor doping. Trapped holes might thus considerably contribute to the charge balancing of the acceptor dopants. This could also be of relevance in understanding the properties of hard and soft PZT.

  14. Quantitative analysis method for niobium in lead zirconate titanate

    International Nuclear Information System (INIS)

    Hara, Hideo; Hashimoto, Toshio

    1986-01-01

    Lead zirconate titanate (PZT) is a strong dielectric ceramic having piezoelectric and pyroelectric properties, and is used most as a piezoelectric material. Also it is a main component of lead lanthanum zirconate titanate (PLZT), which is a typical electrical-optical conversion element. Since these have been developed, the various electronic parts utilizing the piezoelectric characteristics have been put in practical use. The characteristics can be set up by changing the composition of PZT and the kinds and amount of additives. Among the additives, niobium has the action to make metallic ion vacancy in crystals, and by the formation of this vacancy, to ease the movement of domain walls in crystal grains, and to increase resistivity. Accordingly, it is necessary to accurately determine the niobium content for the research and development, quality control and process control. The quantitative analysis methods for niobium used so far have respective demerits, therefore, the authors examined the quantitative analysis of niobium in PZT by using an inductively coupled plasma emission spectro-analysis apparatus which has remarkably developed recently. As the result, the method of dissolving a specimen with hydrochloric acid and hydrofluoric acid, and masking unstable lead with ethylene diamine tetraacetic acid 2 sodium and fluoride ions with boric acid was established. The apparatus, reagents, the experiment and the results are reported. (Kako, I.)

  15. Dielectric behaviors of lead zirconate titanate ceramics with coplanar electrodes

    International Nuclear Information System (INIS)

    Wang, Y.; Cheng, Y.L.; Zhang, Y.W.; Chan, H.L.W.; Choy, C.L.

    2003-01-01

    This paper reports on the dielectric behaviors of lead zirconate titanate (PZT) capacitors with coplanar electrodes. Usually a ferroelectric device has a metal-ferroelectric-metal configuration (parallel plate capacitor); when both the electrodes are on one side of a ceramic to form a coplanar capacitor, different dielectric behaviors will be anticipated because of the change in the distribution of the test field inside the dielectrics. This paper describes how the capacitance and dielectric loss of PZT-based coplanar capacitors change with electrode distance, area and test frequency

  16. Fatigue-free lead zirconate titanate-based capacitors for nonvolatile memories

    International Nuclear Information System (INIS)

    Shannigrahi, S. R.; Jang, Hyun M.

    2001-01-01

    The development of lead zirconate titanate (PZT)-based capacitors has been a long time goal of ferroelectric random access memories (FRAM). However, PZT-based perovskites with common platinum (Pt) electrodes have suffered from a significant reduction of the remanent polarization (P r ) after a certain number of read/write cycles (electrical fatigue). We now report the development of fatigue-free lanthanum-modified PZT capacitors using common Pt electrodes. The capacitors fabricated at 580 o C by applying a PZT seed layer exhibited fatigue-free behavior up to 6.5 x 10 10 switching cycles, a quite stable charge retention profile with time, and comparatively high P r values, all of which assure their suitability for practical FRAM applications. Copyright 2001 American Institute of Physics

  17. Piezoelectric Lead Zirconate Titanate (PZT) Ring Shaped Contour-Mode MEMS Resonators

    Science.gov (United States)

    Kasambe, P. V.; Asgaonkar, V. V.; Bangera, A. D.; Lokre, A. S.; Rathod, S. S.; Bhoir, D. V.

    2018-02-01

    Flexibility in setting fundamental frequency of resonator independent of its motional resistance is one of the desired criteria in micro-electromechanical (MEMS) resonator design. It is observed that ring-shaped piezoelectric contour-mode MEMS resonators satisfy this design criterion than in case of rectangular plate MEMS resonators. Also ring-shaped contour-mode piezoelectric MEMS resonator has an advantage that its fundamental frequency is defined by in-plane dimensions, but they show variation of fundamental frequency with different Platinum (Pt) thickness referred as change in ratio of fNEW /fO . This paper presents the effects of variation in geometrical parameters and change in piezoelectric material on the resonant frequencies of Platinum piezoelectric-Aluminium ring-shaped contour-mode MEMS resonators and its electrical parameters. The proposed structure with Lead Zirconate Titanate (PZT) as the piezoelectric material was observed to be a piezoelectric material with minimal change in fundamental resonant frequency due to Platinum thickness variation. This structure was also found to exhibit extremely low motional resistance of 0.03 Ω as compared to the 31-35 Ω range obtained when using AlN as the piezoelectric material. CoventorWare 10 is used for the design, simulation and corresponding analysis of resonators which is Finite Element Method (FEM) analysis and design tool for MEMS devices.

  18. Experimental Determination of Effect of Variable Resistance on Lead ZirconateTitanate (PZT-5A4Eunder various Thermal and Frequency Conditions

    Directory of Open Access Journals (Sweden)

    Hassan Elahi

    2014-12-01

    Full Text Available A specially designed apparatus and circuit working on the principle of inverse piezoelectricity due to the effect of polarization was used to find the relationship between resistance and peak to peak voltage of Lead Zirconate Titanate (PZT-5A4E by shocking it at variable frequencies and at variable resistances under various thermal conditions within Curie temperature limit using equivalent circuit method. It was found that by increasing temperature, peak to peak voltage increases and similarly by increasing frequency, peak to peak voltage decreases and with the increase in resistance peak to peak voltage decreases.

  19. Generation of electrical energy using lead zirconate titanate (PZT-5A) piezoelectric material: Analytical, numerical and experimental verifications

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Zubair; Ahmad, Nasir [Dept. of Mechanical, Mechatronics and Manufacturing Engineering, UET Lahore, Faisalabad Campus, Lahore (Pakistan); Pasha, Riffat Asim; Qayyum, Faisal; Anjum, Zeeshan [Dept. of Mechanical Engineering, University of Engineering and Technology, Taxila (Pakistan); Elahi, Hassan [Northwestern Polytechnical University, Xian (China)

    2016-08-15

    Energy harvesting is the process of attaining energy from the external sources and transforming it into usable electrical energy. An analytical model of piezoelectric energy harvester has been developed to determine the output voltage across an electrical circuit when it is forced to undergo a base excitation. This model gives an easy approach to design and investigate the behavior of piezoelectric material. Numerical simulations have been carried out to determine the effect of frequency and loading on a Lead zirconate titanate (PZT-5A) piezoelectric material. It has been observed that the output voltage from the harvester increases when loading increases whereas its resonance frequency decreases. The analytical results were found to be in good agreement with the experimental and numerical simulation results.

  20. On the use of non-MPB lead zirconium titanate (PZT) granules for piezoelectric ceramic–polymer sensorial composites

    NARCIS (Netherlands)

    Shaji Karapuzha, A.; Kunnamkuzhakkal James, N.; van der Zwaag, S.; Groen, W.A.

    2016-01-01

    Modern flexible and sensitive sensors based on polymer–ceramic composites employ lead zirconate titanate (PZT) granulates having the morphotropic phase boundary (MPB) composition as the piezo active ingredient, as this composition gives the best properties in fully ceramic piezoelectric sensors.

  1. On the use of non-MPB lead zirconium titanate (PZT) granules for piezoelectric ceramic–polymer sensorial composites

    NARCIS (Netherlands)

    Shaji Karapuzha, A.; Zwaag, S. van der; Groen, W.A.

    2016-01-01

    Modern flexible and sensitive sensors based on polymer–ceramic composites employ lead zirconate titanate (PZT) granulates having the morphotropic phase boundary (MPB) composition as the piezo active ingredient, as this composition gives the best properties in fully ceramic piezoelectric sensors. In

  2. Improvement of fatigue resistance for multilayer lead zirconate titanate (PZT)-based ceramic actuators by external mechanical loads

    Science.gov (United States)

    Yang, Gang; Yue, Zhenxing; Ji, Ye; Chu, Xiangcheng; Li, Longtu

    2008-12-01

    The influence of external compressive loads, applied along a direction perpendicular to polarization, on fatigue behaviors of multilayer lead zirconate titanate (PZT)-based ceramic actuators was investigated. Under no external mechanical load, a normal fatigue behavior was observed, demonstrating that both switching polarization (Pswitching) and remnant polarization (Pr) progressively decreased with increasing switching cycles due to domain pinning by charge point defects. However, an anomalous enhancement in both switching and remnant polarizations was observed upon application of the external compressive loads. After 5×106 cycles of polarization switching, Pswitching and Pr increase by about 13% and 6% at 40 MPa, respectively, while Pswitching and Pr increase by about 11% and 21% at 60 MPa, respectively. The improvement of fatigue resistance can be attributed to non-180° domain switching and suppression of microcracking, triggered by external mechanical loads.

  3. Structural and electrical properties of Nd ion modified lead zirconate titanate nanopowders and ceramics

    International Nuclear Information System (INIS)

    Da-Wei, Wang; De-Qing, Zhang; Quan-Liang, Zhao; Hong-Mei, Liu; Zhi-Ying, Wang; Mao-Sheng, Cao; Jie, Yuan

    2009-01-01

    A modified sol-gel method is used for synthesizing Nd ion doped lead zirconate titanate nanopowders Pb 1–3x/2 Nd x Zr 0.52 Ti 0.48 O 3 (PNZT) in an ethylene glycol system with zirconium nitrate as zirconium source. The results show that it is critical to add lead acetate after the reaction of zirconium nitrate with tetrabutyl titanate in the ethylene glycol system for preparing PNZT with an exact fraction of titanium content. It has been observed that the dopant of excess Nd ions can effectively improve the sintered densification and activity of the PNZT ceramics. Piezoelectric, dielectric and ferroelectric properties of the PNZT ceramics are remarkably enhanced as compared with those of monolithic lead zirconate titanate (PZT). Especially, the supreme values of piezoelectric constant (d 33 ) and dielectric constant ( element of ) for the PNZT are both about two times that of the monolithic PZT and moreover, the remnant polarization (P r ) also increases by 30%. According to the analysis of the structures and properties, we attribute the improvement in electrical properties to the lead vacancies caused by the doping of Nd ions

  4. Influence of crystal phases on electro-optic properties of epitaxially grown lanthanum-modified lead zirconate titanate films

    Science.gov (United States)

    Masuda, Shin; Seki, Atsushi; Masuda, Yoichiro

    2010-02-01

    We describe here how we have improved the crystal qualities and controlled the crystal phase of the lanthanum-modified lead zirconate titanate (PLZT) film without changing the composition ratio using an oxygen-pressure crystallization process. A PLZT film deposited on a SrTiO3 substrate with the largest electro-optic (EO) coefficient of 498 pm/V has been achieved by controlling the crystal phase of the film. Additionally, a fatigue-free lead zirconate titanate (PZT) capacitor with platinum electrodes has been realized by reducing the oxygen vacancies in the films.

  5. Fractal cluster modeling of the fatigue behavior of lead zirconate titanate

    OpenAIRE

    Priya, Shashank; Kim, Hyeoung Woo; Ryu, Jungho; Uchino, Kenji; Viehland, Dwight D.

    2002-01-01

    The fatigue behavior of lead zirconate titanate ceramics (PZT) has been studied under electrical and mechanical drives. Piezoelectric fatigue was studied using a mechanical method. Under ac mechanical drive, hard and soft PZTs showed an increase in the longitudinal piezoelectric constant at short times, reaching a maximum at intermediate times. Systematic investigations were performed to characterize the electrical fatigue behavior. A decrease in the magnitude of the remanent polarization was...

  6. Structural contribution to the ferroelectric fatigue in lead zirconate titanate ceramics

    Science.gov (United States)

    Hinterstein, M.; Rouquette, J.; Haines, J.; Papet, Ph.; Glaum, J.; Knapp, M.; Eckert, J.; Hoffman, M.

    2014-09-01

    Many ferroelectric devices are based on doped lead zirconate titanate (PZT) ceramics with compositions near the morphotropic phase boundary (MPB), at which the relevant material's properties approach their maximum. Based on a synchrotron x-ray diffraction study of MPB PZT, bulk fatigue is unambiguously found to arise from a less effective field induced tetragonal-to-monoclinic transformation, at which the degradation of the polarization flipping is detected by a less intense and more diffuse anomaly in the atomic displacement parameter of lead. The time dependence of the ferroelectric response on a structural level down to 250 μs confirms this interpretation in the time scale of the piezolectric strain response.

  7. Using the methods of radiospectroscopy (EPR, NMR) to study the nature of the defect structure of solid solutions based on lead zirconate titanate (PZT).

    Science.gov (United States)

    Bykov, Igor; Zagorodniy, Yuriy; Yurchenko, Lesya; Korduban, Alexander; Nejezchleb, Karel; Trachevsky, Vladimir; Dimza, Vilnis; Jastrabik, Lubomir; Dejneka, Alexander

    2014-08-01

    The nature of intrinsic and impurity point defects in lead zirconate titanate (PZT) ceramics has been explored. Using electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) methods, several impurity sites have been identified in the materials, including the Fe(3+)-oxygen vacancy (VO) complex and Pb ions. Both of these centers are incorporated into the PZT lattice. The Fe(3+) –VО paramagnetic complex serves as a sensitive probe of the local crystal field in the ceramic; the symmetry of this defect roughly correlates with PZT phase diagram as the composition is varied from PbTiO3 to PbZrO3. NMR spectra (207)Pb in PbTiO3, PbZrO3, and PZT with iron content from 0 to 0.4 wt% showed that increasing the iron concentration leads to a distortion of the crystal structure and to improvement of the electrophysical parameters of the piezoceramics. This is due to the formation of a phase which has a higher symmetry, but at high concentrations of iron (>0.4 wt%), it leads to sharp degradation of electrophysical parameters.

  8. Acoustic response of piezoelectric lead-zirconate-titanate to a 400MeV/n xenon beam

    CERN Document Server

    Miyachi, T; Ito, H

    2003-01-01

    Characteristics of lead-zirconate-titanate (PZT) elements were studied by directly irradiating them with a 400 MeV/n Xe beam. The elements were sensitive to 10 sup 4 Xe ions and their output amplitudes were proportional to the beam intensity. An ensemble of those output amplitudes displayed a Bragg-curve-like response towards the range of 400 MeV/n Xe ion. We discuss the potential of PZT elements as a radiation detector and their application to high-intensity and high-energy detectors. (author)

  9. Elution of lead from lead zirconate titanate ceramics to acid rain

    Science.gov (United States)

    Tsurumi, Takaaki; Takezawa, Shuhei; Hoshina, Takuya; Takeda, Hiroaki

    2017-10-01

    The amount of lead that eluted from lead zirconate titanate (PZT) ceramics to artificial acid rain was evaluated. Four kinds of PZT ceramics, namely, pure PZT at MPB composition, CuO-added PZT, PZT with 10 mol % substitution of Ba for Pb, and CuO-added PZT with 10 mol % substitution of Ba for Pb, were used as samples of the elution test. These PZT ceramics of 8 mm2 and 1.1-1.2 mm thickness were suspended in 300 ml of H2SO4 solution of pH 4.0. The concentration of lead eluted from PZT was in the range from 0.2 to 0.8 ppm. It was found that both liquid phase formation by the addition of CuO and the substitution of Ba for Pb were effective to reduce the amount of lead that eluted. By fitting the leaching out curve with a classical equation, a master curve assuming no sampling effect was obtained. The lead concentration evaluated from the amount of lead that eluted from a commercial PZT plate to H2SO4 solution of pH 5.3 was almost the same as the limit in city water. It is concluded that PZT is not harmful to health and the environment and the amount of lead that eluted from PZT can be controlled by modifying PZT composition.

  10. Patterning lead zirconate titanate nanostructures at sub-200-nm resolution by soft confocal imprint lithography and nanotransfer molding

    NARCIS (Netherlands)

    Khan, Sajid; Göbel, Ole; Blank, David H.A.; ten Elshof, Johan E.

    2009-01-01

    Patterned sol-gel-derived lead zirconate titanate (PZT) thin films with lateral resolutions down to 100 nm on silicon are reported. Both an imprint and a transfer-molding method were employed. The formed patterns after annealing were characterized with scanning electron microscopy, atomic force

  11. Biotemplated Synthesis of PZT Nanowires

    Science.gov (United States)

    2013-11-25

    electromechanical coupling coefficient , Y is the Young’s modulus, and Ri is intrinsic resistance. The PZT nanowire- based film is taken to have negligible...robotic actuation, and bioMEMS. Lead zirconate titanate ( PZT ), in particular, has attracted significant attention, owing to its superior...electromechanical conversion performance. Yet, the ability to synthesize crystalline PZT nanowires with reproducible and well-controlled properties remains a

  12. Investigation of the effect of temperature on aging behavior of Fe-doped lead zirconate titanate

    Science.gov (United States)

    Promsawat, Napatporn; Promsawat, Methee; Janphuang, Pattanaphong; Marungsri, Boonruang; Luo, Zhenhua; Pojprapai, Soodkhet

    The aging degradation behavior of Fe-doped Lead zirconate titanate (PZT) subjected to different heat-treated temperatures was investigated over 1000h. The aging degradation in the piezoelectric properties of PZT was indicated by the decrease in piezoelectric charge coefficient, electric field-induced strain and remanent polarization. It was found that the aging degradation became more pronounced at temperature above 50% of the PZT’s Curie temperature. A mathematical model based on the linear logarithmic stretched exponential function was applied to explain the aging behavior. A qualitative aging model based on polar macrodomain switchability was proposed.

  13. Anisotropy of domain switching in prepoled lead titanate zirconate ceramics under multiaxial electrical loading

    Science.gov (United States)

    Liu, Yuan-Ming; Li, Fa-Xin; Fang, Dai-Ning

    2007-01-01

    The authors report an observation of anisotropic domain switching process in prepoled lead titanate zirconate (PZT) ceramics under multiaxial electrical loading. Prepoled PZT blocks were obliquely cut to apply an electric field at discrete angles θ (0°-180°) to the initial poling direction. Both the coercive field and switchable polarization are found to decrease significantly when sinθ increases from zero to unity. The measured strain curves show that most domains that accomplished 180° domain switching actually experienced two successive 90° switching. The oriented domain texture after poling plus the induced nonuniform stress are used to explain the observed domain switching anisotropy.

  14. Surface bond contraction and its effect on the nanometric sized lead zirconate titanate

    International Nuclear Information System (INIS)

    Haitao Huang; Sun, Chang Q.; Hing, Peter

    2000-01-01

    The grain size effect of lead zirconate titanate PbZr 1-x Ti x O 3 (PZT, x≥0.6) caused by surface bond contraction has been investigated by using the Landau-Ginsburg-Devonshire (LGD) phenomenological theory. It has been shown that, due to the surface bond contraction, both the Curie temperature and the spontaneous polarization of tetragonal PZT decrease with decreasing grain size. These effects become more significant when the grain size is in the nanometre range. A dielectric anomaly appears with decreasing grain size, which corresponds to a size dependent phase transformation. The ferroelectric critical size below which a loss of ferroelectricity will happen is estimated from the results obtained. (author). Letter-to-the-editor

  15. PZ, PT and PZT formation from metal citrates

    International Nuclear Information System (INIS)

    Bastos, C.M.R.; Zaghette, M.A.; Jafelicci Junior, M.; Varela, J.A.

    1990-01-01

    Lead zirconate, lead titanate and lead titanate-zirconate were obtained by mechanical mixing of lead, titanium and zirconium citrates in ether and by calcination. The process was analyzed by DTA, TGA, IR, pore size distribution and surface area measurements. The results indicate that the decomposition reaction and formation of PZ, PT occur simultaneaously without formation of intermediate compounds. PZT was formed from 500 0 C. (author) [pt

  16. Preparation of lead titanate zirconate from metal citrates; Preparacao do titanato zirconato de chumbo a partir dos citratos metalicos

    Energy Technology Data Exchange (ETDEWEB)

    Bastos, C M.R.

    1994-12-31

    Lead titanate zirconate (PZT) preparation from its metal constituent citrates have been investigated. Metal citrates were obtained by forced precipitation using a dehydration alcohol mixture. Salt solutions of lead nitrate and octahydrated zirconyl chloride, and titanium tetrachloride were treated separately with citric acid and ammonium hydroxide. Zirconium, titanium and lead oxides resulted from thermal decomposition of corresponding citrates at 500{sup 0} C, 450{sup 0} C and 250{sup 0} C, respectively. Lead titanate (PT) and lead zirconate (P Z) were obtained by calcining at 450{sup 0} C and 500{sup 0} C, respectively, after adequate heating of citrates mechanically mixed in ethyl ether. PZT samples were obtained with different starting stoichiometry. Rhombohedral PZT-1 53/47 sample was prepared from co precipitating zirconyl ammonium and ammonium lead citrates in presence of ethanolic titanium oxide dispersion, and calcinating at 800{sup 0} C. Rhombohedral PZT-q 52/48 sample was obtained from heating at 500{sup 0} C for 2 hours a mixture of metal citrates coprecipitated by dehydration mixture of acetone-ethanol-formic acid (2:1:0,06). Tetragonal PZT-m stoichiometry 53/47 sample were obtained by calcining at after 600{sup 0} C for 2 hours after heating a mechanically mixed metal citrates. PT phase arose at 400{sup 0} C. PZT-m powders obtained in a range of 400{sup 0} C-800{sup 0} C were isostatically pressed, and sintered at 1100{sup 0} C and 1200{sup 0} C in saturated Pb O atmosphere. Rhombohedral sintered PZT was obtained with 7,78 g.cm{sup -3} at 1200{sup 0} C. (author). 123 refs, 53 figs, 32 tabs.

  17. Fracture mechanisms in lead zirconate titanate ceramics

    International Nuclear Information System (INIS)

    Freiman, S.W.; Chuck, L.; Mecholsky, J.J.; Shelleman, D.L.

    1986-01-01

    Lead Zirconate Titanate (PZT) ceramics can be formed over a wide range of PbTiO 3 /PbZrO 3 ratios and exist in a number of crystal structures. This study involved the use of various fracture mechanics techniques to determine critical fracture toughness, K /SUB IC/ , as a function of composition, microstructure, temperature, and electrical and thermal history. The results of these experiments indicate that variations in K /SUB IC/ are related to phase transformations in the material as well as to other toughening mechanisms such as twinning and microcracking. In addition, the strength and fracture toughness of selected PZT ceramics were determined using specimens in which a crack was introduced by a Vicker's hardness indentor. The variation of K /SUB IC/ with composition and microstructure was related to the extent of twin-crack interaction. Comparison of the plot of strength as a function of indentation load with that predicted from indentation fracture models indicates the presence of internal stresses which contribute to failure. The magnitude of these internal stresses has been correlated with electrical properties of the ceramic. Fractographic analysis was used to determine the magnitude of internal stresses in specimens failing from ''natural flaws.''

  18. Output characteristics of piezoelectric lead zirconate titanate detector using high-energy heavy-ion beam

    International Nuclear Information System (INIS)

    Takechi, Seiji; Sekiguchi, Masahiro; Miyachi, Takashi; Kobayashi, Masanori; Hattori, Maki; Okudaira, Osamu; Shibata, Hiromi; Fujii, Masayuki; Okada, Nagaya; Murakami, Takeshi; Uchihori, Yukio

    2014-01-01

    A radiation detector fabricated using piezoelectric lead zirconate titanate (PZT) has been studied by irradiating it with a 400 MeV/n xenon (Xe) beam. The beam diameter was controlled to change the irradiation conditions. It was found that the magnitude of the output observed from the PZT detector may be related to the number of Xe ions per unit area per unit time within the limits of the experimental conditions. -- Highlights: • The performance of PZT detector was studied by irradiation of a 400 MeV/n Xe beam. • The beam diameter was controlled to change the irradiation conditions. • By the control, the number of Xe ions per one pulse was changed from ∼500 to ∼1500. • The output of the PZT detector was not always larger with more intense beam. • The energy of Xe ions per unit area per unit time may determine the output

  19. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    International Nuclear Information System (INIS)

    Wang, Hong; Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-01-01

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10 8 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines

  20. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    Science.gov (United States)

    Wang, Hong; Lee, Sung-Min; Wang, James L.; Lin, Hua-Tay

    2014-12-01

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  1. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong, E-mail: wangh@ornl.gov; Lee, Sung-Min; Wang, James L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Lin, Hua-Tay [School of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou, 510006 (China)

    2014-12-21

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10{sup 8} cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  2. Wafer scale lead zirconate titanate film preparation by sol-gel method using stress balance layer

    International Nuclear Information System (INIS)

    Lu Jian; Kobayashi, Takeshi; Yi Zhang; Maeda, Ryutaro; Mihara, Takashi

    2006-01-01

    In this paper, platinum/titanium (Pt/Ti) film was introduced as a residual stress balance layer into wafer scale thick lead zirconate titanate (PZT) film fabrication by sol-gel method. The stress developing in PZT film's bottom electrode as well as in PZT film itself during deposition were analyzed; the wafer curvatures, PZT crystallizations and PZT electric properties before and after using Pt/Ti stress balance layer were studied and compared. It was found that this layer is effective to balance the residual stress in PZT film's bottom electrode induced by thermal expansion coefficient mismatch and Ti diffusion, thus can notably reduce the curvature of 4-in. wafer from - 40.5 μm to - 12.9 μm after PZT film deposition. This stress balance layer was also found effective to avoid the PZT film cracking even when annealed by rapid thermal annealing with heating-rate up to 10.5 deg. C/s. According to X-ray diffraction analysis and electric properties characterization, crack-free uniform 1-μm-thick PZT film with preferred pervoskite (001) orientation, excellent dielectric constant, as high as 1310, and excellent remanent polarization, as high as 39.8 μC/cm 2 , can be obtained on 4-in. wafer

  3. Ferroelastic domain switching fatigue in lead zirconate titanate ceramics

    International Nuclear Information System (INIS)

    Pojprapai, Soodkhet; Jones, Jacob L.; Studer, Andrew J.; Russell, Jennifer; Valanoor, Nagarajan; Hoffman, Mark

    2008-01-01

    The influence of the frequency and amplitude of cyclic mechanical loading on soft, tetragonal lead zirconate titanate (PZT) ceramics was investigated via neutron diffraction. Intensity change in the {2 0 0} reflections provided quantitative measurements of domain switching behavior, domain texture and the strain resulting from domain switching. The results are explained using a viscoelasticity model. It was found that the magnitude of applied stress affects the level of strain accumulated, while its frequency affects the time taken for the strain to reach saturation. Furthermore, markedly different behaviors are exhibited by poled and unpoled samples. For samples loaded under identical conditions, the frequency effect is more pronounced in unpoled samples and the accumulated ferroelastic strain is greater in poled samples

  4. Temperature Dependent Electrical Properties of PZT Wafer

    Science.gov (United States)

    Basu, T.; Sen, S.; Seal, A.; Sen, A.

    2016-04-01

    The electrical and electromechanical properties of lead zirconate titanate (PZT) wafers were investigated and compared with PZT bulk. PZT wafers were prepared by tape casting technique. The transition temperature of both the PZT forms remained the same. The transition from an asymmetric to a symmetric shape was observed for PZT wafers at higher temperature. The piezoelectric coefficient (d 33) values obtained were 560 pc/N and 234 pc/N, and the electromechanical coupling coefficient (k p) values were 0.68 and 0.49 for bulk and wafer, respectively. The reduction in polarization after fatigue was only ~3% in case of PZT bulk and ~7% for PZT wafer.

  5. Effect of polarization fatigue on the Rayleigh coefficients of ferroelectric lead zirconate titanate thin films: Experimental evidence and implications

    Science.gov (United States)

    Lou, X. J.; Zhang, H. J.; Luo, Z. D.; Zhang, F. P.; Liu, Y.; Liu, Q. D.; Fang, A. P.; Dkhil, B.; Zhang, M.; Ren, X. B.; He, H. L.

    2014-09-01

    The effect of polarization fatigue on the Rayleigh coefficients of ferroelectric lead zirconate titanate (PZT) thin film was systematically investigated. It was found that electrical fatigue strongly affects the Rayleigh behaviour of the PZT film. Both the reversible and irreversible Rayleigh coefficients decrease with increasing the number of switching cycles. This phenomenon is attributed to the growth of an interfacial degraded layer between the electrode and the film during electrical cycling. The methodology used in this work could serve as an alternative way for evaluating the fatigue endurance and degradation in dielectric properties of ferroelectric thin-film devices during applications.

  6. Evolution of transverse piezoelectric response of lead zirconate titanate ceramics under hydrostatic pressure

    International Nuclear Information System (INIS)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Gao Junjie; Zhang, Chonghui; Yao Xi; Jin Li

    2009-01-01

    The piezoelectric properties of 31-mode resonators of lead zirconate titanate ceramics under hydrostatic pressure from 0.1 to 325 MPa were evaluated by a fitting method, in which mechanical loss was taken into account. Our results based on the fitting method showed a hydrostatic pressure independent tendency of the piezoelectric coefficient and the electromechanical coupling factor because the adopted PZT ceramic can be considered as a linear system in our experiment, while two misleading tendencies of piezoelectric coefficient were obtained based on the resonance method when ignoring the contribution of the mechanical loss. (fast track communication)

  7. Non-aqueous electrochemical deposition of lead zirconate titanate films for flexible sensor applications

    Science.gov (United States)

    Joseph, Sherin; Kumar, A. V. Ramesh; John, Reji

    2017-11-01

    Lead zirconate titanate (PZT) is one of the most important piezoelectric materials widely used for underwater sensors. However, PZTs are hard and non-compliant and hence there is an overwhelming attention devoted toward making it flexible by preparing films on flexible substrates by different routes. In this work, the electrochemical deposition of composition controlled PZT films over flexible stainless steel (SS) foil substrates using non-aqueous electrolyte dimethyl sulphoxide (DMSO) was carried out. Effects of various key parameters involved in electrochemical deposition process such as current density and time of deposition were studied. It was found that a current density of 25 mA/cm2 for 5 min gave a good film. The morphology and topography evaluation of the films was carried out by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively, which showed a uniform morphology with a surface roughness of 2 nm. The PZT phase formation was studied using X-ray diffraction (XRD) and corroborated with Raman spectroscopic studies. The dielectric constant, dielectric loss, hysteresis and I-V characteristics of the film was evaluated.

  8. Adhesion strength of lead zirconate titanate sol-gel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Berfield, Thomas A., E-mail: tom.berfield@louisville.edu [Department of Mechanical Engineering, University of Louisville, Louisville, KY 40292 (United States); Kitey, Rajesh [Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur (India); Kandula, Soma S. [Intel Corporation, Portland, OR (United States)

    2016-01-01

    The adhesion strength between a thin film and substrate is often the critical parameter that controls the initiation as well as the mode of film failure. In this work, a laser-based spallation method is used to determine the adhesion strength of “as deposited” lead zirconate titanate (PZT) sol-gel thin films on the two functionally different substrates. For the first case, PZT sol-gel film is deposited onto bare Si/SiO{sub 2} substrates via spin casting. The extremely high adhesion strength between the film and the substrate necessitated an additional platinum mass superlayer to be deposited on top of the PZT film in order to induce interfacial failure. For the superlayer film system, a hybrid experimental/numerical method is employed for determining the substrate/film interfacial strength, quantified to be in the range of 460–480 MPa. A second substrate variation with lower adhesion strength is also prepared by applying a self-assembled octadecyltrichlorosilane (ODS) monolayer to the Si/SiO{sub 2} substrate prior to the film deposition. For the monolayer-coated substrate case, the adhesion strength is observed to be significantly lower (54.7 MPa) when compared to the earlier case. - Highlights: • A non-contact laser spallation method is used to determine PZT film adhesion. • A mediated self-assembled monolayer is shown to greatly reduce interface strength. • Adhesion strength for even well-bonded thin films was found using a superlayer.

  9. Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method

    International Nuclear Information System (INIS)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi

    2009-01-01

    The piezoelectric coefficients (d 33 , -d 31 , d 15 , g 33 , -g 31 , g 15 ) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 0 C. The results showed that the piezoelectric coefficients d 33 , -d 31 and d 15 obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g 33 , -g 31 and g 15 decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.

  10. Fatigue-free PZT-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H J; Sando, M [Nat. Ind. Res. Inst., Nagoya (Japan); Tajima, K [Synergy Ceramics Lab., Fine Ceramics Research Association, Nagoya (Japan); Niihara, K [ISIR, Osaka Univ., Mihogaoka, Ibaraki (Japan)

    1999-03-01

    The goal of this study is to fabricate fatigue-free piezoelectrics-based nanocomposites. Lead zirconate titanate (PZT) and metallic platinum (Pt) were selected as a matrix and secondary phase dispersoid. Fine Pt particles were homogeneously dispersed in the PZT matrix. Fatigue properties of the unpoled PZT-based nanocomposite under electrical cyclic loading were investigated. The electrical-field-induced crack growth was monitored by an optical microscope, and it depended on the number of cycles the sample was subjected to. Resistance to fatigue was significantly enhanced in the nanocomposite. The excellent fatigue behavior of the PZT/Pt nanocomposites may result from the grain boundary strenghtening due to the interaction between the matrix and Pt particles. (orig.) 8 refs.

  11. Transverse piezoelectric coefficient measurement of flexible lead zirconate titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dufay, T.; Guiffard, B.; Seveno, R. [LUNAM Université, Université de Nantes, IETR (Institut d' Électronique et de Télécommunications de Rennes), UMR CNRS 6164, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 (France); Thomas, J.-C. [LUNAM Université, Université de Nantes-École Centrale Nantes, GeM (Institut de Recherche en Génie Civil et Ingénierie Mécanique), UMR CNRS 6183, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3 (France)

    2015-05-28

    Highly flexible lead zirconate titanate, Pb(Zr,Ti)O{sub 3} (PZT), thin films have been realized by modified sol-gel process. The transverse piezoelectric coefficient d{sub 31} was determined from the tip displacement of bending-mode actuators made of PZT cantilever deposited onto bare or RuO{sub 2} coated aluminium substrate (16 μm thick). The influence of the thickness of ruthenium dioxide RuO{sub 2} and PZT layers was investigated for Pb(Zr{sub 0.57}Ti{sub 0.43})O{sub 3}. The modification of Zr/Ti ratio from 40/60 to 60/40 was done for 3 μm thick PZT thin films onto aluminium (Al) and Al/RuO{sub 2} substrates. A laser vibrometer was used to measure the beam displacement under controlled electric field. The experimental results were fitted in order to find the piezoelectric coefficient. Very large tip deflections of about 1 mm under low voltage (∼8 V) were measured for every cantilevers at the resonance frequency (∼180 Hz). For a given Zr/Ti ratio of 58/42, it was found that the addition of a 40 nm thick RuO{sub 2} interfacial layer between the aluminium substrate and the PZT layer induces a remarkable increase of the d{sub 31} coefficient by a factor of 2.7, thus corresponding to a maximal d{sub 31} value of 33 pC/N. These results make the recently developed PZT/Al thin films very attractive for both low frequency bending mode actuating applications and vibrating energy harvesting.

  12. Stacking effect on the ferroelectric properties of PZT/PLZT multilayer thin films formed by photochemical metal-organic deposition

    International Nuclear Information System (INIS)

    Park, Hyeong-Ho; Park, Hyung-Ho; Hill, Ross H.

    2004-01-01

    The ferroelectric properties of lead zirconate titanate (PZT) and lanthanum-doped lead zirconate titanate (PLZT) multilayer films formed by photochemical metal-organic deposition (PMOD) using photosensitive precursors have been characterized. The substitution of La for Pb was reported to induce improved ferroelectric properties, especially fatigue resistance, through the reduction of oxygen vacancies. The relation between La-substitution and the ferroelectric properties was investigated by characterization of the effect of the order of stacking four ferroelectric layers of PZT or PLZT in the multilayer films 4-PZT, PZT/2-PLZT/PZT, PLZT/2-PZT/PLZT, and 4-PLZT. The films with the PLZT layer at the top and bottom showed an improvement in the fatigue resistance. It was revealed that defect dipole such as O vacancy was reduced at the ferroelectric/Pt interface by doping with La. Also, the bottom layer, just on Pt substrate had a significant influence on the surface microstructure and growth orientation of ferroelectric film

  13. Fabrication and energy harvesting characteristics of unimorph piezoelectric cantilever generators with interdigitated electrode lead zirconate titanate laminates

    Science.gov (United States)

    Lee, Min-seon; Yun, Ji-sun; Park, Woon-ik; Hong, Youn-woo; Cho, Jeong-ho; Paik, Jong-hoo; Park, Yong Ho; Son, Chun-myung; Jeong, Young Hun

    2017-12-01

    Interdigitated electrode (IDE) unimorph piezoelectric cantilever generators (UPCGs) were fabricated and their energy harvesting characteristics were investigated. A hard lead zirconate titanate (PZT) material with a high mechanical quality factor (Q m) of 1280 was used for the active piezoelectric film of the IDE UPCGs. Two different laminated IDE UPCGs were prepared; one has Ag/Pd interdigitated electrode (IDE) formed only on the top and bottom PZT sheets (D-IDE), while the other has Ag/Pd IDE on all of the PZT sheets (M-IDE). Cofiring was conducted at 1050 °C for 2 h for PZT laminates with IDEs. The fabricated IDE UPCGs exhibited power densities of 50.4 µW/cm3 for the D-IDE and 820 µW/cm3 for the M-IDE. The UPCG with the M-IDE exhibited a higher performance than that with the D-IDE. Specifically, a significantly enhanced normalized power factor of 670 µW/(g2·cm3) was found at 118 Hz across 100 kΩ.

  14. Local Fatigue Evaluation in PZT Thin Films with Nanoparticles by Piezoresponse Force Microscopy

    OpenAIRE

    B. S. Li

    2012-01-01

    Lead zirconate titanate (PZT) thin films with the morphotropic phase boundary composition (Zr/Ti = 52/48) have been prepared using a modified diol-based sol-gel route by introducing 1–5 mol% barium titanate (BT) nanoseeds into the precursor solution on platinized silicon substrates (Pt/Ti/SiO2/Si). Macroscopic electric properties of PZT film with nanoparticle showed a significant improvement of ferroelectric properties. This work aims at the systematic study of the local switching polarizatio...

  15. Ion Irradiation Damage in Zirconate and Titanate Ceramics for Pu Disposition

    International Nuclear Information System (INIS)

    Stewart, Martin W.; Begg, Bruce D.; Finnie, K.; Colella, Michael; Li, H.; McLeod, Terry; Smith, Katherine L.; Zhang, Zhaoming; Weber, William J.; Thevuthasan, Suntharampillai

    2004-01-01

    In this paper, we discuss the effect of ion irradiation on pyrochlore-rich titanate and defect-fluorite zirconate ceramics designed for plutonium immobilization. Samples, with Ce as an analogue for Pu, were made via oxide routes and consolidated by cold-pressing and sintering. Ion irradiation damage was carried out with 2 MeV Au2+ ions to a fluence of 5 ions nm-2 in the accelerator facilities within the Environmental Molecular Sciences Laboratory at Pacific Northwest National Laboratory. Irradiated and non-irradiated samples were examined by x-ray diffraction, scanning and transmission electron microscopy, x-ray photoelectron and infrared spectroscopy, and spectroscopic ellipsometry. Samples underwent accelerated leach testing at pH 1.75 (nitric acid) at 90 C for 28 days. The zirconate samples were more ion-irradiation damage resistant than the titanate samples, showing little change after ion-irradiation whereas the titanate samples formed an amorphous surface layer ∼ 500 nm thick. While all samples had high aqueous durability, the titanate leach rate was ∼ 5 times that of the zirconate. The ion-irradiation increased the leach rate of the titanate without impurities by ∼ 5 times. The difference in the leach rates between irradiated and unirradiated zirconate samples is small. However, the zirconates were less able to incorporate impurities than the titanate ceramics and required higher sintering temperatures, ∼ 1500 C compared to 1350 C for the titanates.

  16. Pulsed laser deposition of piezoelectric lead zirconate titanate thin films maintaining a post-CMOS compatible thermal budget

    Science.gov (United States)

    Schatz, A.; Pantel, D.; Hanemann, T.

    2017-09-01

    Integration of lead zirconate titanate (Pb[Zrx,Ti1-x]O3 - PZT) thin films on complementary metal-oxide semiconductor substrates (CMOS) is difficult due to the usually high crystallization temperature of the piezoelectric perovskite PZT phase, which harms the CMOS circuits. In this work, a wafer-scale pulsed laser deposition tool was used to grow 1 μm thick PZT thin films on 150 mm diameter silicon wafers. Three different routes towards a post-CMOS compatible deposition process were investigated, maintaining a post-CMOS compatible thermal budget limit of 445 °C for 1 h (or 420 °C for 6 h). By crystallizing the perovskite LaNiO3 seed layer at 445 °C, the PZT deposition temperature can be lowered to below 400 °C, yielding a transverse piezoelectric coefficient e31,f of -9.3 C/m2. With the same procedure, applying a slightly higher PZT deposition temperature of 420 °C, an e31,f of -10.3 C/m2 can be reached. The low leakage current density of below 3 × 10-6 A/cm2 at 200 kV/cm allows for application of the post-CMOS compatible PZT thin films in low power micro-electro-mechanical-systems actuators.

  17. Design and fabrication of aspherical bimorph PZT optics

    CERN Document Server

    Tseng, T C; Yeh, Z C; Perng, S Y; Wang, D J; Kuan, C K; Chen, J R; Chen, C T

    2001-01-01

    Bimorph piezoelectric optics with a third-order-polynomial surface is designed and a prototype is fabricated as active optics. Two pairs of silicon (Si) and lead zirconate titanate (PZT) piezoelectric ceramic are bonded as Si-PZT-PZT-Si together with a multi-electrode or thin film resistor coating used as the control electrode between Si and PZT and metallic films as grounding between the interface of PZT ceramics. A linear voltage is applied to the bimorph PZT optics by probing the control electrodes from a two-channel controllable power supplier. In doing so, the optics surface can achieve a desired third-order-polynomial surface. Reducing hysteresis and creep in bimorph PZT X-ray optics is the only feasible way by inserting an appropriate capacitor in series with bimorph PZT optics to significantly reduce both effects.

  18. Fatigue responses of lead zirconate titanate stacks under semibipolar electric cycling with mechanical preload

    Science.gov (United States)

    Wang, Hong; Cooper, Thomas A.; Lin, Hua-Tay; Wereszczak, Andrew A.

    2010-10-01

    Lead zirconate titanate (PZT) stacks that had an interdigital internal electrode configuration were tested to more than 108 cycles. A 100 Hz semibipolar sine wave with a field range of +4.5/-0.9 kV/mm was used in cycling with a concurrently-applied 20 MPa preload. Significant reductions in piezoelectric and dielectric responses were observed during the cycling depending on the measuring condition. Extensive partial discharges were also observed. These surface events resulted in the erosion of external electrode and the exposure of internal electrodes. Sections prepared by sequential polishing technique revealed a variety of damage mechanisms including delaminations, pores, and etch grooves. The scale of damage was correlated with the degree of fatigue-induced reduction in piezoelectric and dielectric responses. The results from this study demonstrate the feasibility of using a semibipolar mode to drive a PZT stack under a mechanical preload and illustrate the potential fatigue and damages of the stack in service.

  19. Research on output signal of piezoelectric lead zirconate titanate detector using Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Takechi, Seiji, E-mail: takechi@elec.eng.osaka-cu.ac.jp [Graduate School of Engineering, Osaka City University, Osaka 558-8585 (Japan); Mitsuhashi, Tomoaki; Miura, Yoshinori [Graduate School of Engineering, Osaka City University, Osaka 558-8585 (Japan); Miyachi, Takashi; Kobayashi, Masanori; Okudaira, Osamu [Planetary Exploration Research Center, Chiba Institute of Technology, Narashino, Chiba 275-0016 (Japan); Shibata, Hiromi [The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Fujii, Masayuki [Famscience Co., Ltd., Tsukubamirai, Ibaraki 300-2435 (Japan); Okada, Nagaya [Honda Electronics Co., Ltd., Toyohashi, Aichi 441-3193 (Japan); Murakami, Takeshi; Uchihori, Yukio [National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2017-06-21

    The response of a radiation detector fabricated from piezoelectric lead zirconate titanate (PZT) was studied. The response signal due to a single 400 MeV/n xenon (Xe) ion was assumed to have a simple form that was composed of two variables, the amplitude and time constant. These variables were estimated by comparing two output waveforms obtained from a computer simulation and an experiment on Xe beam irradiation. Their values appeared to be dependent on the beam intensity. - Highlights: • The performance of PZT detector was studied by irradiation of a 400 MeV/n Xe beam. • Monte Carlo simulation was used to examine the formation process of the output. • The response signal due to a single Xe ion was assumed to have a simple form. • The form was composed of two variables, the amplitude and time constant. • These variables appeared to be dependent on the beam intensity.

  20. Reconstruction of the domain orientation distribution function of polycrystalline PZT ceramics using vector piezoresponse force microscopy.

    Science.gov (United States)

    Kratzer, Markus; Lasnik, Michael; Röhrig, Sören; Teichert, Christian; Deluca, Marco

    2018-01-11

    Lead zirconate titanate (PZT) is one of the prominent materials used in polycrystalline piezoelectric devices. Since the ferroelectric domain orientation is the most important parameter affecting the electromechanical performance, analyzing the domain orientation distribution is of great importance for the development and understanding of improved piezoceramic devices. Here, vector piezoresponse force microscopy (vector-PFM) has been applied in order to reconstruct the ferroelectric domain orientation distribution function of polished sections of device-ready polycrystalline lead zirconate titanate (PZT) material. A measurement procedure and a computer program based on the software Mathematica have been developed to automatically evaluate the vector-PFM data for reconstructing the domain orientation function. The method is tested on differently in-plane and out-of-plane poled PZT samples, and the results reveal the expected domain patterns and allow determination of the polarization orientation distribution function at high accuracy.

  1. Determination of temperature dependence of piezoelectric coefficients matrix of lead zirconate titanate ceramics by quasi-static and resonance method

    Energy Technology Data Exchange (ETDEWEB)

    Li Fei; Xu Zhuo; Wei Xiaoyong; Yao Xi, E-mail: lifei1216@gmail.co [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)

    2009-05-07

    The piezoelectric coefficients (d{sub 33}, -d{sub 31}, d{sub 15}, g{sub 33}, -g{sub 31}, g{sub 15}) of soft and hard lead zirconate titanate ceramics were measured by the quasi-static and resonance methods, at temperatures from 20 to 300 {sup 0}C. The results showed that the piezoelectric coefficients d{sub 33}, -d{sub 31} and d{sub 15} obtained by these two methods increased with increasing temperature for both hard and soft PZT ceramics, while the piezoelectric coefficients g{sub 33}, -g{sub 31} and g{sub 15} decreased with increasing temperature for both hard and soft PZT ceramics. In this paper, the observed results were also discussed in terms of intrinsic and extrinsic contributions to piezoelectric response.

  2. Effect of oxygen partial pressure on texture development in lead zirconate titanate thin films processed from metalorganic precursors

    International Nuclear Information System (INIS)

    Norton, Jarrod L.; Liedl, Gerald L.; Slamovich, Elliott B.

    1999-01-01

    Metalorganic liquid precursors were used to examine the effects of processing atmosphere on texture development in oriented Pb(Zr 0.60 Ti 0.40 )O 3 thin films. After removal of organic ligands via pyrolysis, the films were heated at 25 degree sign C/min in a 5% H 2 /Ar atmosphere until a switching temperature, after which the atmosphere was switched to pure oxygen. The films were heated to a maximum temperature of 650 degree sign C with switching temperatures ranging from 450 to 600 degree sign C. The degree of (111) orientation in the lead zirconate titanate (PZT) films increased with increasing switching temperature, resulting in highly textured (111) PZT films. These results suggest that atmosphere control plays a significant role in texture development during rapid thermal processing. (c) 1999 Materials Research Society

  3. Reduction of etching damage in lead-zirconate-titanate thin films with inductively coupled plasma

    International Nuclear Information System (INIS)

    Lim, Kyu-Tae; Kim, Kyoung-Tae; Kim, Dong-Pyo; Kim, Chang-Il

    2003-01-01

    In this work, we etched lead-zirconate-titanate (PZT) films with various additive gases (O 2 and Ar) in Cl 2 /CF 4 plasmas, while mixing ratio was fixed at 8/2. After the etching, the plasma induced damages are characterized in terms of hysteresis curves, leakage current, retention properties, and switching polarization. When the electrical properties of PZT etched in O 2 or Ar added to Cl 2 /CF 4 were compared, the value of remanent polarization in O 2 added to Cl 2 /CF 4 plasma is higher than that in Ar added plasma. The maximum etch rate of the PZT thin films was 145 nm/min for 30% Ar added Cl 2 /CF 4 gas having mixing ratio of 8/2 and 110 nm/min for 10% O 2 added to that same gas mixture. In order to recover the ferroelectric properties of the PZT thin films after etching, we annealed the etched PZT thin films at 550 deg. C in an O 2 atmosphere for 10 min. From the hysteresis curves, leakage current, retention property, and switching polarization, the reduction of the etching damage and the recovery via the annealing turned out to be more effective when O 2 was added to Cl 2 /CF 4 than Ar. X-ray diffraction showed that the structural damage was lower when O 2 was added to Cl 2 /CF 4 and the improvement in the ferroelectric properties of the annealed samples was consistent with the increased intensities of the (100) and the (200) PZT peaks

  4. Design, Modeling and Optimization of a Piezoelectric Pressure Sensor based on a Thin-Film PZT Membrane Containing Nanocrystalline Powders

    Directory of Open Access Journals (Sweden)

    Vahid MOHAMMADI

    2009-11-01

    Full Text Available In this paper fabrication of a 0-3 ceramic/ceramic composite lead zirconate titanate, Pb(Zr0.52Ti0.48O3 thin film has been presented and then a pressure sensor based on multilayer thin-film PZT diaphragm contain of Lead Zirconate Titanate nanocrystalline powders was designed, modeled and optimized. Dynamics characteristics of this multilayer diaphragm have been investigated by ANSYS® FE software. By this simulation the effective parameters of the multilayer PZT diaphragm for improving the performance of a pressure sensor in different ranges of pressure are optimized. The optimized thickness ratio of PZT layer to SiO2 was given in the paper to obtain the maximum deflection of the multilayer thin-film PZT diaphragm. A 0-3 ceramic/ceramic composite lead zirconate titanate, Pb(Zr0.52Ti0.48O3 film has been developed to fabricate the pressure sensor by a hybrid sol gel process. PZT nanopowders fabricated via conventional sol gel method and uniformly dispersed in PZT precursor solution by an attrition mill. XRD analysis shows that perovskite structure would be formed due to the presence of a significant amount of ceramic nanopowders. This texture has a good effect on piezoelectric properties of perovskite structure. The film forms a strongly bonded network and less shrinkage occurs, so the films do not crack during process. Also the aspect ratio through this process would be increased. SEM micrographs indicated that PZT films were uniform, crack free and have a composite microstructure and a piezoelectric coefficient d31 of -40 pC.N-1 and d33 ranged from 50pm.N-1 to 60pm.N-1.

  5. Comparison of chemical solution deposition systems for the fabrication of lead zirconate titanate thin films

    International Nuclear Information System (INIS)

    Lecarpentier, F.; Daglish, M.; Kemmitt, T.

    2001-01-01

    Ferroelectric thin films of lead zirconate titanate Pb(Zr x Ti 1-x )O 3 (PZT) were prepared from five chemical solution deposition (CSD) systems, namely methoxyethanol, citrate, diol, acetic acid and triethanolamine. Physical characteristics of the solutions, processing parameters and physical and electrical properties of the films were used to assess the relative advantages and disadvantages of the different chemical systems. All the CSD systems decomposed to produce single phase perovskite PZT at temperatures above 650 deg C. Thin film deposition was influenced by the specific characteristics of each system such as wetting on the substrate and viscosity. Distinct precursor effects on the thin film crystallinity and electrical performance were revealed. The diol route yielded films with the highest crystallite size, highest permittivity and lowest loss tangent. The relative permittivity exhibited by films made by the other routes were 25% to 35% lower at equivalent thicknesses. Copyright (2001) The Australian Ceramic Society

  6. Fracture mechanisms in ferroelectric-ferroelastic lead zirconate titanate (Zr:Ti = 0.54:0.46) ceramics

    International Nuclear Information System (INIS)

    Mehta, K.; Virkar, A.V.

    1990-01-01

    Fracture toughness, K IC , of a single-phase commercial lead zirconate titanate (PZT) ceramic of tetragonal structure was measured using the single edge notched beam method above and below the Curie temperature. Domain switching (poling) under electrical and mechanical loading was examined using x-ray diffraction. Surface grinding, electrical poling, and mechanical poling caused crystallographic texture. Similar texture, indicative of domain switching, was also observed on fracture surfaces of some samples fractured at room temperature. At room temperature, the highest K IC measured was 1.85 MPa · m 1/2 , while above the Curie temperature it was about 1.0 MPa · m 1/2 . Cracks emanating from Vickers indents in poled samples were different in the poling and the transverse directions. The difference in crack sizes is explained on the basis of domain switching during crack growth. These results indicate that ferroelastic domain switching (twinning) is a viable toughening mechanism in the PZT materials tested

  7. Fatigue and failure responses of lead zirconate titanate multilayer actuator under unipolar high-field electric cycling

    Science.gov (United States)

    Zeng, Fan Wen; Wang, Hong; Lin, Hua-Tay

    2013-07-01

    Lead zirconate titanate (PZT) multilayer actuators with an interdigital electrode design were studied under high electric fields (3 and 6 kV/mm) in a unipolar cycling mode. A 100 Hz sine wave was used in cycling. Five specimens tested under 6 kV/mm failed from 3.8 × 105 to 7 × 105 cycles, whereas three other specimens tested under 3 kV/mm were found to be still functional after 108 cycles. Variations in piezoelectric and dielectric responses of the tested specimens were observed during the fatigue test, depending on the measuring and cycling conditions. Selected fatigued and damaged actuators were characterized using an impedance analyzer or small signal measurement. Furthermore, involved fatigue and failure mechanisms were investigated using scanning acoustic microscope and scanning electron microscope. The extensive cracks and porous regions were revealed across the PZT layers on the cross sections of a failed actuator. The results from this study have demonstrated that the high-field cycling can accelerate the fatigue of PZT stacks as long as the partial discharge is controlled. The small signal measurement can also be integrated into the large signal measurement to characterize the fatigue response of PZT stacks in a more comprehensive basis. The former can further serve as an experimental method to test and monitor the behavior of PZT stacks.

  8. Improvement of conditions for ceramics sintering on the base of lead zirconate-titanate

    International Nuclear Information System (INIS)

    Glinchuk, M.D.; Kim, P.V.; Bykov, I.P.; Lyashchenko, A.B.

    1989-01-01

    Lead zirconate-titanate powders of different graininess are studied for their phase composition. The finest grains of the powder consist of lead zirconate-titanate with the rhombohedral structure. Grains of 3-5 μm size are a mixture of lead zirconate-titanate and lead titanate, the latter exceeding 50% (by weight) causes the effect of anomalous expansion in the process of sintering. Control of the technological parameters of the synthesis permits producing powder with favourable correlation of the above phases and grain sizes. Sintering of such a powder induces no effect of the anomalous expansion with an increased density of the product attained

  9. Investigation of the additive induced doping effects in gelcast soft lead zirconate titanate ceramics

    International Nuclear Information System (INIS)

    Guo Dong; Cai Kai; Li Longtu; Gui Zhilun

    2009-01-01

    Due to the high sensitivity of the electrical properties of electronic ceramics to various factors, knowledge about the possible influence of the processing procedure on their electrical performance is critical for applying a new technique to the fabrication of the materials. In this study, various electrical parameters, complex impedance spectra, ferroelectric hysteresis loops, and microstructures of soft lead zirconate titanate (PZT) ceramics formed by the gelcasting technique from suspensions with various dispersants were investigated in comparison with those of the conventional dry pressed ones. We found that the sodium ion, which is the main cation in many commercial surfactants, exhibited obvious hard doping effects; thus causing deteriorated performance of the gelcast PZT ceramics. While a certain impurity ion introduced by a dispersant was also found to induce soft doping characteristics and improve the electrical performance of the materials. The results suggest that the doping effects of the metal ions or impurities introduced by the dispersants, or other additives, should be generally considered for applying a wet processing technique to forming multicomponent electronic ceramics.

  10. Current—voltage characteristics of lead zirconate titanate/nickel bilayered hollow cylindrical magnetoelectric composites

    International Nuclear Information System (INIS)

    De-An, Pan; Shen-Gen, Zhang; Jian-Jun, Tian; Li-Jie, Qiao; Jun-Sai, Sun; Volinsky, Alex A.

    2010-01-01

    Current–voltage measurements obtained from lead zirconate titanate/nickel bilayered hollow cylindrical magnetoelectric composite showed that a sinusoidal current applied to the copper coil wrapped around the hollow cylinder circumference induces voltage across the lead zirconate titanate layer thickness. The current–voltage coefficient and the maximum induced voltage in lead zirconate titanate at 1 kHz and resonance (60.1 kHz) frequencies increased linearly with the number of the coil turns and the applied current. The resonance frequency corresponds to the electromechanical resonance frequency. The current–voltage coefficient can be significantly improved by optimizing the magnetoelectric structure geometry and/or increasing the number of coil turns. Hollow cylindrical lead zirconate titanate/nickel structures can be potentially used as current sensors. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. Ferroelectric and piezoelectric properties of epitaxial PZT films and devices on silicon

    NARCIS (Netherlands)

    Nguyen, Duc Minh

    2010-01-01

    In this thesis, the integration of lead zirconate titanate Pb(Zr,Ti)O3 (PZT) thin films into piezoelectric microelectromechanical systems (MEMS) based on silicon is studied. In these structures, all epitaxial oxide layers (thin film/electrode/buffer-layer(s)) were deposited by pulsed laser

  12. Biotemplated synthesis of PZT nanowires.

    Science.gov (United States)

    Cung, Kellye; Han, Booyeon J; Nguyen, Thanh D; Mao, Sheng; Yeh, Yao-Wen; Xu, Shiyou; Naik, Rajesh R; Poirier, Gerald; Yao, Nan; Purohit, Prashant K; McAlpine, Michael C

    2013-01-01

    Piezoelectric nanowires are an important class of smart materials for next-generation applications including energy harvesting, robotic actuation, and bioMEMS. Lead zirconate titanate (PZT), in particular, has attracted significant attention, owing to its superior electromechanical conversion performance. Yet, the ability to synthesize crystalline PZT nanowires with well-controlled properties remains a challenge. Applications of common nanosynthesis methods to PZT are hampered by issues such as slow kinetics, lack of suitable catalysts, and harsh reaction conditions. Here we report a versatile biomimetic method, in which biotemplates are used to define PZT nanostructures, allowing for rational control over composition and crystallinity. Specifically, stoichiometric PZT nanowires were synthesized using both polysaccharide (alginate) and bacteriophage templates. The wires possessed measured piezoelectric constants of up to 132 pm/V after poling, among the highest reported for PZT nanomaterials. Further, integrated devices can generate up to 0.820 μW/cm(2) of power. These results suggest that biotemplated piezoelectric nanowires are attractive candidates for stimuli-responsive nanosensors, adaptive nanoactuators, and nanoscale energy harvesters.

  13. Microwave emission from lead zirconate titanate induced by impulsive mechanical load

    Energy Technology Data Exchange (ETDEWEB)

    Aman, A., E-mail: alexander.aman@ovgu.de [Department of Engineering, Brandenburg University of Applied Science, 14470 Brandenburg an derHavel (Germany); Packaging Group, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Majcherek, S. [Packaging Group, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany); Hirsch, S. [Department of Engineering, Brandenburg University of Applied Science, 14470 Brandenburg an derHavel (Germany); Schmidt, B. [Chair of Micorsystem Technology, Institute of Micro- and Sensorsytems, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg (Germany)

    2015-10-28

    This paper focuses on microwave emission from Lead zirconate titanate Pb [Zr{sub x}Ti{sub 1−x}] O{sub 3} (PZT) induced by mechanical stressing. The mechanical stress was initiated by impact of a sharp tungsten indenter on the upper surface of PZT ceramic. The sequences of microwave and current impulses, which flew from indenter to electric ground, were detected simultaneously. The voltage between the upper and lower surface of ceramic was measured to obtain the behavior of mechanical force acting on ceramic during the impact. It was found that the amplitude, form, and frequency of measured microwave impulses were different by compression and restitution phase of impact. Two different mechanisms of electron emission, responsible for microwave impulse generation, were proposed based on the dissimilar impulse behavior. The field emission from tungsten indenter is dominant during compression, whereas ferroemission dominates during restitution phase. Indeed, it was observed that the direction of the current flow, i.e., sign of current impulses is changed by transitions from compression to restitution phase of impact. The observed dissimilar behavior of microwave impulses, caused by increasing and decreasing applied force, can be used to calculate the contact time and behavior of mechanical force during mechanical impact on ceramic surface. It is shown that the generation of microwave impulses exhibits high reproducibility, impulse intensity, a low damping factor, and high mechanical failure resistance. Based on these microwave emission properties of PZT, the development of new type of stress sensor with spatial resolution of few microns becomes possible.

  14. Microstructure of pulsed-laser deposited PZT on polished and annealed MGO substrates

    NARCIS (Netherlands)

    King, S.L.; Coccia, L.G.; Gardeniers, Johannes G.E.; Boyd, I.W.

    1996-01-01

    Thin films of Lead-Zirconate-Titanate (PZT) have been grown by pulsed-laser-deposition (PLD) onto polished MgO substrates both with and without pre-annealing. The surface morphology of polished MgO substrates, which are widely used for deposition, is examined by AFM. Commercially available,

  15. Fabrication and characterization of thick-film piezoelectric lead zirconate titanate ceramic resonators by tape-casting.

    Science.gov (United States)

    Qin, Lifeng; Sun, Yingying; Wang, Qing-Ming; Zhong, Youliang; Ou, Ming; Jiang, Zhishui; Tian, Wei

    2012-12-01

    In this paper, thick-film piezoelectric lead zirconate titanate (PZT) ceramic resonators with thicknesses down to tens of micrometers have been fabricated by tape-casting processing. PZT ceramic resonators with composition near the morphotropic phase boundary and with different dopants added were prepared for piezoelectric transducer applications. Material property characterization for these thick-film PZT resonators is essential for device design and applications. For the property characterization, a recently developed normalized electrical impedance spectrum method was used to determine the electromechanical coefficient and the complex piezoelectric, elastic, and dielectric coefficients from the electrical measurement of resonators using thick films. In this work, nine PZT thick-film resonators have been fabricated and characterized, and two different types of resonators, namely thickness longitudinal and transverse modes, were used for material property characterization. The results were compared with those determined by the IEEE standard method, and they agreed well. It was found that depending on the PZT formulation and dopants, the relative permittivities ε(T)(33)/ε(0) measured at 2 kHz for these thick-films are in the range of 1527 to 4829, piezoelectric stress constants (e(33) in the range of 15 to 26 C/m(2), piezoelectric strain constants (d(31)) in the range of -169 × 10(-12) C/N to -314 × 10(-12) C/N, electromechanical coupling coefficients (k(t)) in the range of 0.48 to 0.53, and k(31) in the range of 0.35 to 0.38. The characterization results shows tape-casting processing can be used to fabricate high-quality PZT thick-film resonators, and the extracted material constants can be used to for device design and application.

  16. Characterisation of glass matrix composites reinforced with lead zirconate titanate particles

    International Nuclear Information System (INIS)

    Cannillo, Valeria; Manfredini, Tiziano; Montorsi, Monia; Tavoni, Francesca; Minay, Emma J.; Boccaccini, Aldo R.

    2005-01-01

    A new type of glass matrix composite reinforced with ferroelectric particulate secondary phase was investigated. Samples containing lead zirconate titanate (PZT) particles in a silicate lead glass were fabricated. Various sintering strategies were tested in order to optimise the processing route. The densest samples were obtained by hot-pressing. The composites were characterized by means of SEM observations, X-ray diffraction, differential thermal analysis and Vickers indentations. In order to get a deeper insight into the thermo-mechanical behaviour of the material, a FEM based numerical model was prepared and applied. In particular, the crack-particle interaction was assessed and thus possible toughening mechanisms were investigated. By means of the numerical modelling supported by SEM observations, traditional toughening mechanisms (e.g. crack deflection, particle debonding) were ruled out. Since the experimentally measured indentation fracture toughness of the composite is significantly higher than that of the unreinforced glass, the findings suggest that a new toughening mechanism may be active, based on the piezoelectric effect

  17. Towards a digital sound reconstruction MEMS device: Characterization of a single PZT based piezoelectric actuator

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Castro, David; Jaber, Nizar; Younis, Mohammad I.; Foulds, Ian G.

    2015-01-01

    of acoustic actuators. These actuators consist of a flexible membrane fabricated using polyimide, which is actuated using a Lead-Zirconate-Titanate (PZT) piezoelectric ceramic layer working in the d31 actuation mode. The dimensions of the membrane are of 1mm

  18. Electric and ferroelectric properties of PZT/BLT multilayer films prepared by photochemical metal-organic deposition

    Science.gov (United States)

    Park, Hyeong-Ho; Lee, Hong-Sub; Park, Hyung-Ho; Hill, Ross H.; Hwang, Yun Taek

    2009-01-01

    The electric and ferroelectric properties of lead zirconate titanate (PZT) and lanthanum-substituted bismuth titanate (BLT) multilayer films prepared using photosensitive precursors were characterized. The electric and ferroelectric properties were investigated by studying the effect of the stacking order of four ferroelectric layers of PZT or BLT in 4-PZT, PZT/2-BLT/PZT, BLT/2-PZT/BLT, and 4-BLT multilayer films. The remnant polarization values of the 4-BLT and BLT/2-PZT/BLT multilayer films were 12 and 17 μC/cm 2, respectively. Improved ferroelectric properties of the PZT/BLT multilayer films were obtained by using a PZT intermediate layer. The films which contained a BLT layer on the Pt substrate had improved leakage currents of approximately two orders of magnitude and enhanced fatigue resistances compared to the films with a PZT layer on the Pt substrate. These improvements are due to the reduced number of defects and space charges near the Pt electrodes. The PZT/BLT multilayer films prepared by photochemical metal-organic deposition (PMOD) possessed enhanced electric and ferroelectric properties, and allow direct patterning to fabricate micro-patterned systems without dry etching.

  19. Electric and ferroelectric properties of PZT/BLT multilayer films prepared by photochemical metal-organic deposition

    International Nuclear Information System (INIS)

    Park, Hyeong-Ho; Lee, Hong-Sub; Park, Hyung-Ho; Hill, Ross H.; Hwang, Yun Taek

    2009-01-01

    The electric and ferroelectric properties of lead zirconate titanate (PZT) and lanthanum-substituted bismuth titanate (BLT) multilayer films prepared using photosensitive precursors were characterized. The electric and ferroelectric properties were investigated by studying the effect of the stacking order of four ferroelectric layers of PZT or BLT in 4-PZT, PZT/2-BLT/PZT, BLT/2-PZT/BLT, and 4-BLT multilayer films. The remnant polarization values of the 4-BLT and BLT/2-PZT/BLT multilayer films were 12 and 17 μC/cm 2 , respectively. Improved ferroelectric properties of the PZT/BLT multilayer films were obtained by using a PZT intermediate layer. The films which contained a BLT layer on the Pt substrate had improved leakage currents of approximately two orders of magnitude and enhanced fatigue resistances compared to the films with a PZT layer on the Pt substrate. These improvements are due to the reduced number of defects and space charges near the Pt electrodes. The PZT/BLT multilayer films prepared by photochemical metal-organic deposition (PMOD) possessed enhanced electric and ferroelectric properties, and allow direct patterning to fabricate micro-patterned systems without dry etching.

  20. Hyperfine interaction measurements on ceramics: PZT revisited

    International Nuclear Information System (INIS)

    Guarany, Cristiano A.; Araujo, Eudes B.; Silva, Paulo R.J.; Saitovitch, Henrique

    2007-01-01

    The solid solution of PbZr 1- x Ti x O 3 , known as lead-zirconate titanate (PZT), was probably one of the most studied ferroelectric materials, especially due to its excellent dielectric, ferroelectric and piezoelectric properties. The highest piezoelectric coefficients of the PZT are found near the morphotropic phase boundary (MPB) (0.46≤x≤0.49), between the tetragonal and rhombohedral regions of the composition-temperature phase diagram. Recently, a new monoclinic phase near the MPB was observed, which can be considered as a 'bridge' between PZT's tetragonal and rhombohedral phases. This work is concerned with the study of the structural properties of the ferroelectric PZT (Zr/Ti=52/48, 53/47) by hyperfine interaction (HI) measurements obtained from experiments performed by using the nuclear spectroscopy time differential perturbed angular correlation (TDPAC) in a wide temperature range

  1. Electrical fatigue behaviour in lead zirconate titanate: an experimental and theoretical study

    International Nuclear Information System (INIS)

    Bhattacharyya, Mainak; Arockiarajan, A

    2013-01-01

    A systematic investigation on electrical fatigue in lead zirconate titanate (PZT) is carried out for different loading frequencies. Experiments are conducted up to 10 6 cycles to measure the electrical displacement and longitudinal strain on bulk ceramics in the bipolar mode with large electrical loading conditions. A simplified macroscopic model based on physical mechanisms of domain switching is developed to predict the non-linear behaviour. In this model, the volume fraction of a domain is used as the internal variable by considering the mechanisms of domain nucleation and propagation (domain wall movement). The measured material properties at different fatigue cycles are incorporated into the switching model as damage parameters and the classical strain versus electric field and electric displacement versus electric field curves are simulated. Comparison between the experiments and simulations shows that the proposed model can reproduce the characteristics of non-linear as well as fatigue responses. (paper)

  2. Electrical fatigue behaviour in lead zirconate titanate: an experimental and theoretical study

    Science.gov (United States)

    Bhattacharyya, Mainak; Arockiarajan, A.

    2013-08-01

    A systematic investigation on electrical fatigue in lead zirconate titanate (PZT) is carried out for different loading frequencies. Experiments are conducted up to 106 cycles to measure the electrical displacement and longitudinal strain on bulk ceramics in the bipolar mode with large electrical loading conditions. A simplified macroscopic model based on physical mechanisms of domain switching is developed to predict the non-linear behaviour. In this model, the volume fraction of a domain is used as the internal variable by considering the mechanisms of domain nucleation and propagation (domain wall movement). The measured material properties at different fatigue cycles are incorporated into the switching model as damage parameters and the classical strain versus electric field and electric displacement versus electric field curves are simulated. Comparison between the experiments and simulations shows that the proposed model can reproduce the characteristics of non-linear as well as fatigue responses.

  3. Piezoelectric and dielectric performance of poled lead zirconate titanate subjected to electric cyclic fatigue

    Science.gov (United States)

    Wang, Hong; Matsunaga, Tadashi; Lin, Hua-Tay; Mottern, Alexander M.

    2012-02-01

    Poled lead zirconate titanate (PZT) material as a single-layer plate was tested using a piezodilatometer under electric cyclic loading in both unipolar and bipolar modes. Its responses were evaluated using unipolar and bipolar measurements on the same setup. The mechanical strain and charge density loops exhibited various variations when the material was cycled for more than 108 cycles. The various quantities including loop amplitude, hysteresis, switchable polarization, and coercive field were characterized accordingly under the corresponding measurement conditions. At the same time, the offset polarization and bias electric field of the material were observed to be changed and the trend was found to be related to the measurement conditions also. Finally, the piezoelectric and dielectric coefficients were analyzed and their implications for the application of interest have been discussed.

  4. Piezoelectric and dielectric performance of poled lead zirconate titanate subjected to electric cyclic fatigue

    International Nuclear Information System (INIS)

    Wang, Hong; Matsunaga, Tadashi; Lin, Hua-Tay; Mottern, Alexander M

    2012-01-01

    Poled lead zirconate titanate (PZT) material as a single-layer plate was tested using a piezodilatometer under electric cyclic loading in both unipolar and bipolar modes. Its responses were evaluated using unipolar and bipolar measurements on the same setup. The mechanical strain and charge density loops exhibited various variations when the material was cycled for more than 10 8 cycles. The various quantities including loop amplitude, hysteresis, switchable polarization, and coercive field were characterized accordingly under the corresponding measurement conditions. At the same time, the offset polarization and bias electric field of the material were observed to be changed and the trend was found to be related to the measurement conditions also. Finally, the piezoelectric and dielectric coefficients were analyzed and their implications for the application of interest have been discussed. (paper)

  5. Interfacial morphology and domain configurations in 0-3 PZT-Portland cement composites

    International Nuclear Information System (INIS)

    Jaitanong, N.; Zeng, H.R.; Li, G.R.; Yin, Q.R.; Vittayakorn, W.C.; Yimnirun, R.; Chaipanich, A.

    2010-01-01

    Cement-based piezoelectric composites have attracted great attention recently due to their promising applications as sensors in smart structures. Lead zirconate titanate (PZT) and Portland cement (PC) composite were fabricated using 60% of PZT by volume. Scanning Electron Microscope and piezoresponse force microscope were used to investigate the morphology and domain configurations at the interfacial zone of PZT-Portland cement composites. Angular PZT ceramic grains were found to bind well with the cement matrix. The submicro-scale domains were clearly observed by piezoresponse force microscope at the interfacial regions between the piezoelectric PZT phase and Portland cement phase, and are clearer than the images obtained for pure PZT. This is thought to be due to the applied internal stress of cement to the PZT ceramic particle which resulted to clearer images.

  6. The nature of the photoluminescence in amorphized PZT

    International Nuclear Information System (INIS)

    Silva, M.S.; Cilense, M.; Orhan, E.; Goes, M.S.; Machado, M.A.C.; Santos, L.P.S.; Paiva-Santos, C.O.; Longo, E.; Varela, J.A.; Zaghete, M.A.; Pizani, P.S.

    2005-01-01

    The polymeric precursor method was used to synthesize lead zirconate titanate powder (PZT). The crystalline powder was then amorphized by a high-energy ball milling process during 120 h. A strong photoluminescence emission was observed at room temperature for the amorphized PZT powder. The powders were characterized by XRD and the percentage of amorphous phase was calculated through Rietveld refinement. The microstructure for both phases was investigated by TEM. The optical gap was calculated through the Wood and Tauc method using the UV-Vis. data. Quantum mechanical calculations were carried out to give an interpretation of the photoluminescence in terms of electronic structure

  7. Investigation of Top/bottom Electrode and Diffusion Barrier Layer for PZT thick film MEMS Sensors

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Hindrichsen, Christian Carstensen; Lou-Møller, R.

    2007-01-01

    In this work screen printed piezoelectric Ferroperm PZ26 lead zirconate titanate (PZT) thick film is used for two MEMS devices. A test structure is used to investigate several aspects regarding bottom and top electrodes. 450 nm ZrO2 thin film is found to be an insufficient diffusion barrier layer...... for thick film PZT sintered at 850degC. E-beam evaporated Al and Pt is patterned on PZT with a lift-off process with a line width down to 3 mum. The roughness of the PZT is found to have a strong influence on the conductance of the top electrode....

  8. Electric field tuning of magnetism in heterostructure of yttrium iron garnet film/lead magnesium niobate-lead zirconate titanate ceramic

    Science.gov (United States)

    Lian, Jianyun; Ponchel, Freddy; Tiercelin, Nicolas; Chen, Ying; Rémiens, Denis; Lasri, Tuami; Wang, Genshui; Pernod, Philippe; Zhang, Wenbin; Dong, Xianlin

    2018-04-01

    In this paper, the converse magnetoelectric (CME) effect by electric field tuning of magnetization in an original heterostructure composed of a polycrystalline yttrium iron garnet (YIG) film and a lead magnesium niobate-lead zirconate titanate (PMN-PZT) ceramic is presented. The magnetic performances of the YIG films with different thicknesses under a DC electric field applied to the PMN-PZT ceramics and a bias magnetic field are investigated. All the magnetization-electric field curves are found to be in good agreement with the butterfly like strain curve of the PMN-PZT ceramic. Both the sharp deformation of about 2.5‰ of PMN-PZT and the easy magnetization switching of YIG are proposed to be the reasons for the strongest CME interaction in the composite at the small electric coercive field of PMN-PZT (4.1 kV/cm) and the small magnetic coercive field of YIG (20 Oe) where the magnetic susceptibility reaches its maximum value. A remarkable CME coefficient of 3.1 × 10-7 s/m is obtained in the system with a 600 nm-thick YIG film. This heterostructure combining multiferroics and partially magnetized ferrite concepts is able to operate under a small or even in the absence of an external bias magnetic field and is more compact and power efficient than the traditional magnetoelectric devices.

  9. Power harvesting using PZT ceramics embedded in orthopedic implants.

    Science.gov (United States)

    Chen, Hong; Liu, Ming; Jia, Chen; Wang, Zihua

    2009-09-01

    Battery lifetime has been the stumbling block for many power-critical or maintenance-free real-time embedded applications, such as wireless sensors and orthopedic implants. Thus a piezoelectric material that could convert human motion into electrical energy provides a very attractive solution for clinical implants. In this work, we analyze the power generation characteristics of stiff lead zirconate titanate (PZT) ceramics and the equivalent circuit through extensive experiments. Our experimental framework allows us to explore many important design considerations of such a PZT-based power generator. Overall we can achieve a PZT element volume of 0.5 x 0.5 x 1.8 cm, which is considerably smaller than the results reported so far. Finally, we outline the application of our PZT elements in a total knee replacement (TKR) implant.

  10. Effects of Thickness, Pulse Duration, and Size of Strip Electrode on Ferroelectric Electron Emission of Lead Zirconate Titanate Films

    Science.gov (United States)

    Yaseen, Muhammad; Ren, Wei; Chen, Xiaofeng; Feng, Yujun; Shi, Peng; Wu, Xiaoqing

    2018-02-01

    Sol-gel-derived lead zirconate titanate (PZT) thin-film emitters with thickness up to 9.8 μm have been prepared on Pt/TiO2/SiO2/Si wafer via chemical solution deposition with/without polyvinylpyrrolidone (PVP) modification, and the relationship between the film thickness and electron emission investigated. Notable electron emission was observed on application of a trigger voltage of 120 V for PZT film with thickness of 1.1 μm. Increasing the film thickness decreased the threshold field to initiate electron emission for non-PVP-modified films. In contrast, the electron emission behavior of PVP-modified films did not show significant dependence on film thickness, probably due to their porous structure. The emission current increased with decreasing strip width and space between strips. Furthermore, it was observed that increasing the duration of the applied pulse increased the magnitude of the emission current. The stray field on the PZT film thickness was also calculated and found to increase with increasing ferroelectric sample thickness. The PZT emitters were found to be fatigue free up to 105 emission cycles. Saturated emission current of around 25 mA to 30 mA was achieved for the electrode pattern used in this work.

  11. Hyperfine interaction measurements on ceramics: PZT revisited

    Energy Technology Data Exchange (ETDEWEB)

    Guarany, Cristiano A. [Universidade Estadual Paulista (Unesp), Departmento de Fisica Quimica, Caixa Postal 31, 15.385-000 Ilha Solteira, SP (Brazil); Araujo, Eudes B. [Universidade Estadual Paulista (Unesp), Departmento de Fisica Quimica, Caixa Postal 31, 15.385-000 Ilha Solteira, SP (Brazil); Silva, Paulo R.J. [Centro Brasileiro de Pesquisas Fisicas-Rua Dr. Xavier Sigaud, 150, 22290-180 Rio de Janeiro, RJ (Brazil); Saitovitch, Henrique [Centro Brasileiro de Pesquisas Fisicas-Rua Dr. Xavier Sigaud, 150, 22290-180 Rio de Janeiro, RJ (Brazil)]. E-mail: henrique@cbpf.br

    2007-02-01

    The solid solution of PbZr{sub 1-} {sub x} Ti {sub x} O{sub 3}, known as lead-zirconate titanate (PZT), was probably one of the most studied ferroelectric materials, especially due to its excellent dielectric, ferroelectric and piezoelectric properties. The highest piezoelectric coefficients of the PZT are found near the morphotropic phase boundary (MPB) (0.46{<=}x{<=}0.49), between the tetragonal and rhombohedral regions of the composition-temperature phase diagram. Recently, a new monoclinic phase near the MPB was observed, which can be considered as a 'bridge' between PZT's tetragonal and rhombohedral phases. This work is concerned with the study of the structural properties of the ferroelectric PZT (Zr/Ti=52/48, 53/47) by hyperfine interaction (HI) measurements obtained from experiments performed by using the nuclear spectroscopy time differential perturbed angular correlation (TDPAC) in a wide temperature range.

  12. Metalorganic solution deposition of lead zirconate titanate films onto an additively manufactured Ni-based superalloy

    International Nuclear Information System (INIS)

    Patel, T.; Khassaf, H.; Vijayan, S.; Bassiri-Gharb, N.; Aindow, M.; Alpay, S.P.; Hebert, R.J.

    2017-01-01

    Recent advances in additive manufacturing of high-temperature alloys for structural aerospace applications has led to interest in integrating additional functionality into such parts. Lead zirconate titanate (PZT) is a prototypical ferroelectric ceramic used as the electro-active material in many piezoelectric sensors and actuators. In this study, 300 nm thick PbZr_0_._2Ti_0_._8O_3 (PZT 20/80) films were grown using metalorganic solution deposition onto additively manufactured substrates of Inconel 718. The microstructures of the films and the nature of the film/substrate interfaces were characterized using a combination of X-ray diffraction and electron microscopy techniques. Electrical measurements were performed to determine the ferroelectric, dielectric, and conductive responses of the PZT films. Our findings show that the PZT films exhibit robust ferroelectricity characterized by well-defined polarization-applied electric field (P-E) hysteresis loops. The samples display internal bias of up to ∼40 kV/cm. The room temperature remnant polarization and the small signal dielectric permittivity are ∼70 μC/cm"2 and 205, respectively. The dielectric loss (tan δ) and the leakage current at 1 kHz are 9% and 1 nA at 1 V, respectively. We attribute the internal bias observed in the hysteresis loops and the overall large dielectric losses to the presence of an intermediate oxide layer at the PZT/Inconel interface, which forms during the high temperature crystallization of the ferroelectric film. These results show that it is possible to grow functional oxides with promising electrical properties onto additively manufactured metallic substrates.

  13. Preparation and properties of porous PMN-PZT ceramics doped with strontium

    International Nuclear Information System (INIS)

    Zeng Tao; Dong Xianlin; Mao Chaoliang; Chen Shutao; Chen Heng

    2006-01-01

    The piezoelectric and dielectric properties of lead magnesium niobate-lead zirconate titanate (PMN-PZT) ceramics were investigated as a function of density for transducer applications. A decrease in density increased elastic compliance and improved acoustic impedance matching between PMN-PZT ceramics and ambient media. The reduced dielectric constant (ε 33 ) and enhanced hydrostatic figure of merit (d h g h ) of PMN-PZT were observed with decreased density. The results showed the d h g h of PMN-PZT ceramic with density of about 5.4 g/cm 3 reached 4000 x 10 -15 m 2 /N, and the ε 33 was very close to 2000, which demonstrates that porous PMN-PZT ceramic is a promising material for transducer applications. Moreover, the low density PMN-PZT ceramics exhibited lower dielectric loss than high density PMN-PZT ceramics during the temperature from 250 deg. C to 500 deg. C

  14. PVDF-PZT nanocomposite film based self-charging power cell.

    Science.gov (United States)

    Zhang, Yan; Zhang, Yujing; Xue, Xinyu; Cui, Chunxiao; He, Bin; Nie, Yuxin; Deng, Ping; Lin Wang, Zhong

    2014-03-14

    A novel PVDF-PZT nanocomposite film has been proposed and used as a piezoseparator in self-charging power cells (SCPCs). The structure, composed of poly(vinylidene fluoride) (PVDF) and lead zirconate titanate (PZT), provides a high piezoelectric output, because PZT in this nanocomposite film can improve the piezopotential compared to the pure PVDF film. The SCPC based on this nanocomposite film can be efficiently charged up by the mechanical deformation in the absence of an external power source. The charge capacity of the PVDF-PZT nanocomposite film based SCPC in 240 s is ∼0.010 μA h, higher than that of a pure PVDF film based SCPC (∼0.004 μA h). This is the first demonstration of using PVDF-PZT nanocomposite film as a piezoseparator for SCPC, and is an important step for the practical applications of SCPC for harvesting and storing mechanical energy.

  15. Modification of surface texture by grinding and polishing lead zirconate titanate ceramics

    International Nuclear Information System (INIS)

    Cheng, S.; Lloyd, I.K.

    1992-01-01

    This paper reports that grinding and polishing affected the orientation of 90 degrees domains at the surface of lead zirconate titanate (PZT) ceramics. This was quantified by using changes in the intensity ratio of the (002) and (200) X-ray reflections. Grinding unpoled PZT with 600-grit SiC paper gave X-ray intensity ratios similar to those of poled material. This implies that 90 degrees domain realignments had occurred in the near surface region probed by the X-rays. Grinding poled samples with 600-grit SiC further increased the X-ray intensity ratio beyond that caused by poling, indicating that additional surface reorientation of 90 degrees domains had occurred. The effects of diamond polishing depended on the size of the diamond particles. The use of 6-μm diamond had no effect on the (002)/(200) intensity ratio of either poled or unpoled samples, while polishing with 15- or 45-μm diamond significantly enhanced the 90 degrees domain rotation. In unpoled samples, the increase in the X-ray intensity ratio then approached that induced by poling or grinding with 600-grit SiC paper. While the observed increase in X-ray intensity ratio upon grinding is attributed to the rotation of 90 degrees domains, the simultaneous formation of 180 degrees domains appears to minimize or reduce the increase in electrical polarization

  16. Crystallization of sol-gel derived lead zirconate titanate thin films in argon and oxygen atmospheres

    International Nuclear Information System (INIS)

    Bursill, L.A.

    1994-01-01

    Electron diffraction and high-resolution electron microscopic techniques are applied to reveal the mechanisms of crystallization of 75 nm thin films of ferroelectric lead-zirconate-titanate (PZT). Sol-gel methods, followed by pyrolysis at 350 deg C, were used to provide a common starting point after which a variety of rapid-thermal annealing (RTA) experiments in the temperature range 400-700 deg C were made in argon, oxygen and nitrogen/hydrogen atmospheres. The results are interpreted in terms of the crystal chemical analysis, which points out that partial pressure of oxygen and heating rate are important experimental parameters which must be controlled if ferroelectric perovskite-type Pb 2 ZrTiO 6 , rather than pyrochlore-type Pb 2 ZrTiO 6+x , where O < X < 1 or -1 < X < O, is to be obtained after the RTA step. Thus significant improvements in the crystallization of perovskite-type PZT were clearly demonstrated by using argon atmospheres for the RTA step. The results have significance for the production of high-quality ferroelectric thin films, with improved switching and fatigue characteristics, since even small amounts of the pyrochlore phase prove detrimental for these properties. 18 refs., 1 tab., 10 figs

  17. Investigation of Top/Bottom electrode and Diffusion Barrier Layer for PZT Thick Film MEMS Sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Thomsen, Erik Vilain

    2008-01-01

    Top and bottom electrodes for screen printed piezoelectric lead zirconate titanate, Pb(ZrxTi1 - x)O3 (PZT) thick film are investigated with respect to future MEMS devices. Down to 100 nm thick E-beam evaporated Al and Pt films are patterned as top electrodes on the PZT using a lift-off process...... with a line width down to 3 μ m. A 700 nm thick ZrO2 layer as insolating diffusion barrier layer is found to be insufficient as barrier layer for PZT on a silicon substrate sintered at 850°C. EDX shows diffusion of Si into the PZT layer....

  18. Development of a stress sensor based on the piezoelectric lead zirconate titanate for impact stress measurement

    Science.gov (United States)

    Liu, Yiming; Xu, Bin; Li, Lifei; Li, Bing

    2012-04-01

    The measurement of stress of concrete structures under impact loading and other strong dynamic loadings is crucial for the monitoring of health and damage detection. Due to its main advantages including availability, extremely high rigidity, high natural frequency, wide measuring range, high stability, high reproducibility, high linearity and wide operating temperature range, piezoelectric (Lead Zirconate Titanate, PZT) ceramic materials has been a widely used smart material for both sensing and actuation for monitoring and control in engineering structures. In this paper, a kind of stress sensor based on piezoelectric ceramics for impact stress measuring of concrete structures is developed. Because the PZT is fragile, in order to employ it for the health monitoring of concrete structures, special handling and treatment should be taken to protect the PZT and to make it survive and work properly in concrete. The commercially available PZT patch with lead wires is first applied with an insulation coating to prevent water and moisture damage, and then is packaged by jacketing it by two small precasted cylinder concrete blocks with enough strength to form a smart aggregate (SA). The employed PZT patch has a dimension of 10mm x 10mm x 0.3mm. In order to calibrate the PZT based stress sensor for impact stress measuring, a dropping hammer was designed and calibration test on the sensitivity of the proposed transducer was carried out with an industry charge amplifier. The voltage output of the stress sensor and the impact force under different free falling heights and impact mass were recorded with a high sampling rate data acquisition system. Based on the test measurements, the sensibility of the PZT based stress sensor was determined. Results show that the output of the PZT based stress sensor is proportional to the stress level and the repeatability of the measurement is very good. The self-made piezoelectric stress sensor can be easily embedded in concrete and provide

  19. Unexpectedly high piezoelectricity of Sm-doped lead zirconate titanate in the Curie point region.

    Science.gov (United States)

    Seshadri, Shruti B; Nolan, Michelle M; Tutuncu, Goknur; Forrester, Jennifer S; Sapper, Eva; Esteves, Giovanni; Granzow, Torsten; Thomas, Pam A; Nino, Juan C; Rojac, Tadej; Jones, Jacob L

    2018-03-07

    Large piezoelectric coefficients in polycrystalline lead zirconate titanate (PZT) are traditionally achieved through compositional design using a combination of chemical substitution with a donor dopant and adjustment of the zirconium to titanium compositional ratio to meet the morphotropic phase boundary (MPB). In this work, a different route to large piezoelectricity is demonstrated. Results reveal unexpectedly high piezoelectric coefficients at elevated temperatures and compositions far from the MPB. At temperatures near the Curie point, doping with 2 at% Sm results in exceptionally large piezoelectric coefficients of up to 915 pm/V. This value is approximately twice those of other donor dopants (e.g., 477 pm/V for Nb and 435 pm/V for La). Structural changes during the phase transitions of Sm-doped PZT show a pseudo-cubic phase forming ≈50 °C below the Curie temperature. Possible origins of these effects are discussed and the high piezoelectricity is posited to be due to extrinsic effects. The enhancement of the mechanism at elevated temperatures is attributed to the coexistence of tetragonal and pseudo-cubic phases, which enables strain accommodation during electromechanical deformation and interphase boundary motion. This work provides insight into possible routes for designing high performance piezoelectrics which are alternatives to traditional methods relying on MPB compositions.

  20. Substrate clamping effects on irreversible domain wall dynamics in lead zirconate titanate thin films.

    Science.gov (United States)

    Griggio, F; Jesse, S; Kumar, A; Ovchinnikov, O; Kim, H; Jackson, T N; Damjanovic, D; Kalinin, S V; Trolier-McKinstry, S

    2012-04-13

    The role of long-range strain interactions on domain wall dynamics is explored through macroscopic and local measurements of nonlinear behavior in mechanically clamped and released polycrystalline lead zirconate-titanate (PZT) films. Released films show a dramatic change in the global dielectric nonlinearity and its frequency dependence as a function of mechanical clamping. Furthermore, we observe a transition from strong clustering of the nonlinear response for the clamped case to almost uniform nonlinearity for the released film. This behavior is ascribed to increased mobility of domain walls. These results suggest the dominant role of collective strain interactions mediated by the local and global mechanical boundary conditions on the domain wall dynamics. The work presented in this Letter demonstrates that measurements on clamped films may considerably underestimate the piezoelectric coefficients and coupling constants of released structures used in microelectromechanical systems, energy harvesting systems, and microrobots.

  1. A concept for the development of piezoceramic materials based on lead zirconate titanate (PZT). Part 2; Ein Entwicklungskonzept piezokeramischer Werkstoffe auf der Basis von Bleizirkonattitanat (PZT). Teil 2

    Energy Technology Data Exchange (ETDEWEB)

    Helke, G. [CeramTec AG, Lauf a.d. Pegnitz (Germany)

    2002-07-01

    Piezoceramic ceramics based on Lead Zircontate Titanate (PZT) show - within a relatively close Zr/Ti ratio range (close to the ratio 0.5/0.5) - extreme values for remanent polarization P{sub r} and the dielectric coefficient {epsilon}{sub 33}{sup {tau}}/{epsilon}{sub 0} as well as their corresponding piezoelectric coefficients. Remanent polarization P{sub t} can be directly correlated to the structural parameter {delta} (spontaneous deformation) and the domain mobility {eta}. PZT modification results from the substitution of isovalent or heterovalent ions, thereby taking ion radii and valency at the A and B sites of the perovskite-type lattice under consideration. The substitution of specific ions is the process used to develop new piezoceramic materials which is mainly applied to determine the values of specific parameters corresponding to technical requirements. (orig.) [German] Piezoelektrische Keramiken auf der Basis von Bleizirkonattitanat (PZT) weisen in einem relativ engen Bereich des Zr/Ti-Verhaeltnisses (nahe dem Verhaeltnis 0,5/0,5). Extremwerte der remanenten Polarisation P{sub r} und der Dielektrizitaetskonstanten {epsilon}{sub 33}{sup {tau}}/{epsilon}{sub 0} sowie der von ihnen abhaengigen piezoelektrischen Kenngroessen auf. Die remanente Polarisation P{sub r} laesst sich unmittelbar dem Strukturparameter {delta} (spontane Deformation) und der Domaenenbeweglichkeit {eta} zuordnen. Die Modifikation von PZT erfolgt durch Substitution isovalenter oder heterovalenter Ionen unter Beruecksichtigung von Ionenradien und -wertigkeit auf A- und B-Plaetzen des Perowskigitters. Die Substitution bestimmter Ionen ist das Verfahren zur Schaffung neuer piezokeramischer Werkstoffe und wird insbesondere zur Einstellung der Werte einzelner Kenngroessen auf einem bestimmten Niveau entsprechend den technischen Anforderungen angewendet. (orig.)

  2. A concept for the development of piezoceramic materials based on lead zirconate titanate (PZT). Part 1; Ein Entwicklungskonzept piezokeramischer Werkstoffe auf der Basis von Gleizirkonattitanat (PZT). Teil 1

    Energy Technology Data Exchange (ETDEWEB)

    Helke, G. [CeramTec AG, Lauf a.d. Pegnitz (Germany)

    2002-07-01

    Piezoceramic ceramics based on Lead Zircontate Titanate (PZT) show - within a relatively close Zr/Ti ratio range (close to the ratio 0.5/0.5) - extreme values for remanent polarization P{sub r} and the dielectric coefficient {epsilon}{sub 33}{sup {tau}}/{epsilon}{sub 0} as well as their corresponding piezoelectric coefficients. Remanent polarization P{sub t} can be directly correlated to the structural parameter {delta} (spontaneous deformation) and the domain mobility {eta}. PZT modification results from the substitution of isovalent or heterovalent ions, thereby taking ion radii and valency at the A and B sites of the perovskite-type lattice under consideration. The substitution of specific ions is the process used to develop new piezoceramic materials which is mainly applied to determine the values of specific parameters corresponding to technical requirements. (orig.) [German] Piezoelektrische Keramiken auf der Basis von Bleizirkonattitanat (PZT) weisen in einem relativ engen Bereich des Zr/Ti-Verhaeltnisses (nahe dem Verhaeltnis 0,5/0,5). Extremwerte der remanenten Polarisation P{sub r} und der Dielektrizitaetskonstanten {epsilon}{sub 33}{sup {tau}}/{epsilon}{sub 0} sowie der von ihnen abhaengigen piezoelektrischen Kenngroessen auf. Die remanente Polarisation P{sub r} laesst sich unmittelbar dem Strukturparameter {delta} (spontane Deformation) und der Domaenenbeweglichkeit {eta} zuordnen. Die Modifikation von PZT erfolgt durch Substitution isovalenter oder heterovalenter Ionen unter Beruecksichtigung von Ionenradien und -wertigkeit auf A- und B-Plaetzen des Perowskigitters. Die Substitution bestimmter Ionen ist das Verfahren zur Schaffung neuer piezokeramischer Werkstoffe und wird insbesondere zur Einstellung der Werte einzelner Kenngroessen auf einem bestimmten Niveau entsprechend den technischen Anforderungen angewendet. (orig.)

  3. Effect of bipolar electric fatigue on polarization switching in lead-zirconate-titanate ceramics

    Science.gov (United States)

    Zhukov, Sergey; Fedosov, Sergey; Glaum, Julia; Granzow, Torsten; Genenko, Yuri A.; von Seggern, Heinz

    2010-07-01

    From comparison of experimental results on polarization switching in fresh and electrically fatigued lead-zirconate-titanate (PZT) over a wide range of applied fields and switching times it is concluded that fatigue alters the local field distribution inside the sample due to the generation of discrete defects, such as voids and cracks. Such defects have a strong influence on the overall electric field distribution by their shape and dielectric permittivity. On this hypothesis, a new phenomenological model of polarization switching in fatigued PZT is proposed. The model assumes that the fatigued sample can be composed of different local regions which exhibit different field strengths but otherwise can be considered as unfatigued. Consequently the temporal response of a fatigued sample is assumed to be the superposition of the field-dependent temporal responses of unfatigued samples weighted by their respective volume fraction. A certain part of the volume is excluded from the overall switching process due to the domain pinning even at earlier stages of fatigue, which can be recovered by annealing. Suitability of the proposed model is demonstrated by a good correlation between experimental and calculated data for differently fatigued samples. Plausible cause of the formation of such regions is the generation of defects such as microcracks and the change in electrical properties at imperfections such as pores or voids.

  4. Elasticity Imaging of Ferroelectric Domain Structure in PZT by Ultrasonic Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Tsuji, T.; Ogiso, H.; Fukuda, K.; Yamanaka, K.

    2004-01-01

    UAFM was applied to the observation of the domain structure in lead zirconate titanate (PZT). It imaged the change of elasticity due to grain and domain boundary (DB). For the quantitative evaluation of the contact stiffness, the lateral contact stiffness was taken into account. The stiffness of DB was 10% lower than that within the domain and the width of the DB was about 30 nm. The implication of this work is the understanding of the fatigue mechanism in a PZT memory and the high resolution imaging for a high-density memory

  5. Study of pyroelectric activity of PZT/PVDF-HFP composite

    Directory of Open Access Journals (Sweden)

    Luiz Francisco Malmonge

    2003-12-01

    Full Text Available Flexible, free-standing piezo and pyroelectric composite with 0 to 3 connectivity was made up from Lead Zirconate Titanate (PZT powder and poly(vinylidene fluoride-hexafluoropropylene (PVDF-HFP copolymer. The pyroelectric and the piezoelectric longitudinal (d33 coefficients were measured. A 50/50 vol.% PZT/PVDF-HFP composite resulted in piezo and pyroelectric coefficients of d33 = 25.0 pC/N and p = 4.5 × 10-4 C/m²K at 70 °C, respectively. Analysis of the complex permittivity in a wide range of frequency was carried out indicating lower permittivity of the composite in comparison with a permittivity of the PZT ceramic. The low value of the permittivity gives a high pyroelectric figure of merit indicating that this material can be used to build a temperature sensor in spite of the lower pyroelectric coefficient compared with PZT.

  6. Influence of processing parameters on PZT thick films

    International Nuclear Information System (INIS)

    Huang, Oliver; Bandyopadhyay, Amit; Bose, Susmita

    2005-01-01

    We have studied influence of processing parameters on the microstructure and ferroelectric properties of lead zirconate titanate (PZT)-based thick films in the range of 5-25 μm. PZT and 2% La-doped PZT thick films were processed using a modified sol-gel process. In this process, PZT- and La-doped PZT powders were first prepared via sol-gel. These powders were calcined and then used with respective sols to form a slurry. Slurry composition was optimized to spin-coat thick films on platinized Si substrate (Si/SiO 2 /Ti/Pt). Spinning rate, acceleration and slurry deposition techniques were optimized to form thick films with uniform thickness and without any cracking. Increasing solids loading was found to enhance the surface smoothness of the film and decrease porosity. Films were tested for their electrical properties and ferroelectric fatigue response. The maximum polarization obtained was 40 μC/cm 2 at 250 kV/cm for PZT thick film and 30 μC/cm 2 at 450 kV/cm for La-doped PZT thick film. After 10 9 cycles of fatiguing at 35 kHz, La-doped PZT showed better resistance for ferroelectric fatigue compared with un-doped PZT films

  7. Template-based electrophoretic deposition of perovskite PZT nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Nourmohammadi, A. [Solid Surfaces Analysis and Electron Microscopy Group, Institute of Physics, Chemnitz University of Technology, D-09126 Chemnitz (Germany); Semiconductors Department, Materials and Energy Research Center (MERC), 31779-83634 Karaj (Iran, Islamic Republic of); Bahrevar, M.A. [Semiconductors Department, Materials and Energy Research Center (MERC), 31779-83634 Karaj (Iran, Islamic Republic of)], E-mail: ma.bahrevar@yahoo.com; Hietschold, M. [Solid Surfaces Analysis and Electron Microscopy Group, Institute of Physics, Chemnitz University of Technology, D-09126 Chemnitz (Germany)

    2009-04-03

    Template-based electrophoretic deposition of perovskite lead zirconate titanate (PZT) nanotubes was achieved using anodic alumina (AA) membranes and sols, containing lead, zirconium and titanium precursors. The effect of various anodizing voltages on the size of the channels in the anodic alumina template was investigated. The prepared sol was driven into the channels under the influence of various electric fields and subsequently sintered at about 700 deg. C. The effects of the initial heating rates and the burn-out temperature on the phase evolution of the samples were studied and a modified firing process was employed. The effects of the electrophoretic voltage and the deposition time on the average wall thickness of the tubes were investigated. Scanning and transmission electron microscopy (SEM and TEM) revealed the efficiency of electrophoresis in the growth of lead zirconate titanate nanotubes in a close-packed array. The X-ray diffraction analyses indicated the presence of perovskite as the principal phase after a modified firing schedule.

  8. Crystallization of sol-gel derived lead zirconate titanate thin films in argon and oxygen atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Bursill, L A [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Brooks, K G [Ecole Polytechnique Federale, Lausanne (Switzerland)

    1994-12-31

    Electron diffraction and high-resolution electron microscopic techniques are applied to reveal the mechanisms of crystallization of 75 nm thin films of ferroelectric lead-zirconate-titanate (PZT). Sol-gel methods, followed by pyrolysis at 350 deg C, were used to provide a common starting point after which a variety of rapid-thermal annealing (RTA) experiments in the temperature range 400-700 deg C were made in argon, oxygen and nitrogen/hydrogen atmospheres. The results are interpreted in terms of the crystal chemical analysis, which points out that partial pressure of oxygen and heating rate are important experimental parameters which must be controlled if ferroelectric perovskite-type Pb{sub 2}ZrTiO{sub 6}, rather than pyrochlore-type Pb{sub 2}ZrTiO{sub 6+x}, where O < X < 1 or -1 < X < O, is to be obtained after the RTA step. Thus significant improvements in the crystallization of perovskite-type PZT were clearly demonstrated by using argon atmospheres for the RTA step. The results have significance for the production of high-quality ferroelectric thin films, with improved switching and fatigue characteristics, since even small amounts of the pyrochlore phase prove detrimental for these properties. 18 refs., 1 tab., 10 figs.

  9. The effect of calcining temperature on the properties of 0-3 piezoelectric composites of PZT and a liquid crystalline thermosetting polymer

    NARCIS (Netherlands)

    Ende, D.A. van den; Groen, W.A.; Zwaag, S. van der

    2011-01-01

    We report on the optimisation of a recently developed high performance 0-3 piezoelectric composite comprising of the piezoelectric Lead Zirconate Titanate (PZT) powder and a liquid crystalline thermosetting matrix polymer (LCT). The matrix polymer is a liquid crystalline polymer comprising of an

  10. Experimental research on dynamic mechanical properties of PZT ceramic under hydrostatic pressure

    International Nuclear Information System (INIS)

    Wang, S.; Liu, K.X.

    2011-01-01

    Highlights: → We developed an experimental device to examine dynamic mechanical properties of PZT. → Ductile behavior of PZT was seen when hydrostatic pressure was involved. → Compressive strength was shown sensitive to hydrostatic pressure and strain-rate. → A failure criterion was suggested to explain the failure behavior of PZT. - Abstract: An experimental technique for initially applied hydrostatic pressure in specimens subjected to axial impact has been developed to study the dynamic mechanical properties of materials. The technique was employed for the purpose of examining the dynamic mechanical properties of lead zirconate titanate (PZT) at zero to 15 MPa hydrostatic pressures. Experimental results unambiguously exhibit the ductile behavior of PZT when hydrostatic pressure is involved. The compressive strength is demonstrated sensitive to the initial hydrostatic pressure and the strain-rate. The fracture modes are analyzed by means of scanning electron microscopy (SEM). Moreover, a failure criterion based on Mohr-Coulomb failure theory is suggested to explain the brittle and ductile failure of PZT.

  11. The effects of sintering behavior on piezoelectric properties of porous PZT ceramics for hydrophone application

    International Nuclear Information System (INIS)

    Zeng Tao; Dong Xianlin; Chen Heng; Wang Yonglin

    2006-01-01

    Porous lead zirconate titanate (PZT) ceramics were fabricated by adding polymethyl methacrylate (PMMA) and the effects of sintering behavior on their microstructure and piezoelectric properties were investigated. The porosity of PZT ceramics decreased with an increase in the sintering temperature at a fixed PMMA addition. The dielectric constant (ε), longitudinal piezoelectric coefficient (d 33 ) and hydrostatic figures of merit (d h g h ) of 34% porous PZT ceramics increased with an increase in sintering temperature from 1050 to 1300 deg. C. When sintered at 1300 deg. C, longitudinal piezoelectric coefficient of 34% porous PZT ceramic was very close to that of 95% dense PZT ceramics, while the hydrostatic figures of merit of 34% porous PZT ceramics is about fifteen times more than that of 95% dense PZT ceramics. Compared with PZT-polymer composites, the dielectric constant of 34% porous PZT sintered at 1300 deg. C is much higher, which can be more efficient to resist the interference in receiving sensitivities caused by loading effect of the cable

  12. Single ZnO nanowire-PZT optothermal field effect transistors.

    Science.gov (United States)

    Hsieh, Chun-Yi; Lu, Meng-Lin; Chen, Ju-Ying; Chen, Yung-Ting; Chen, Yang-Fang; Shih, Wan Y; Shih, Wei-Heng

    2012-09-07

    A new type of pyroelectric field effect transistor based on a composite consisting of single zinc oxide nanowire and lead zirconate titanate (ZnO NW-PZT) has been developed. Under infrared (IR) laser illumination, the transconductance of the ZnO NW can be modulated by optothermal gating. The drain current can be increased or decreased by IR illumination depending on the polarization orientation of the Pb(Zr(0.3)Ti(0.7))O(3) (PZT) substrate. Furthermore, by combining the photocurrent behavior in the UV range and the optothermal gating effect in the IR range, the wide spectrum of response of current by light offers a variety of opportunities for nanoscale optoelectronic devices.

  13. New fabrication of high-frequency (100-MHz) ultrasound PZT film kerfless linear array.

    Science.gov (United States)

    Zhu, Benpeng; Chan, Ngai Yui; Dai, Jiyan; Shung, K Kirk; Takeuchi, Shinichi; Zhou, Qifa

    2013-04-01

    The paper describes the design, fabrication, and measurements of a high-frequency ultrasound kerfless linear array prepared from hydrothermal lead zirconate titanate (PZT) thick film. The 15-μm hydrothermal PZT thick film with an area of 1 × 1 cm, obtained through a self-separation process from Ti substrate, was used to fabricate a 32-element 100-MHz kerfless linear array with photolithography. The bandwidth at -6 dB without matching layer, insertion loss around center frequency, and crosstalk between adjacent elements were measured to be 39%, -30 dB, and -15 dB, respectively.

  14. Fatigue studies in compensated bulk lead zirconate titanate

    International Nuclear Information System (INIS)

    Verdier, Cyril; Morrison, Finlay D.; Lupascu, Doru C.; Scott, James F.

    2005-01-01

    Impedance analysis studies were carried out on compensated bulk lead zirconate titanate samples. Fatigue is concomitant with the onset of dielectric loss. This is shown to be dominantly due to an irreversibly modified near-surface layer that can be polished off. The highly compensated nature of these samples minimizes the role of oxygen vacancies

  15. Lead zirconate titanate nanoscale patterning by ultraviolet-based lithography lift-off technique for nano-electromechanical system applications.

    Science.gov (United States)

    Guillon, Samuel; Saya, Daisuke; Mazenq, Laurent; Costecalde, Jean; Rèmiens, Denis; Soyer, Caroline; Nicu, Liviu

    2012-09-01

    The advantage of using lead zirconate titanate (PbZr(0.54)Ti(0.46)O(3)) ceramics as an active material in nanoelectromechanical systems (NEMS) comes from its relatively high piezoelectric coefficients. However, its integration within a technological process is limited by the difficulty of structuring this material with submicrometer resolution at the wafer scale. In this work, we develop a specific patterning method based on optical lithography coupled with a dual-layer resist process. The main objective is to obtain sub-micrometer features by lifting off a 100-nm-thick PZT layer while preserving the material's piezoelectric properties. A subsequent result of the developed method is the ability to stack several layers with a lateral resolution of few tens of nanometers, which is mandatory for the fabrication of NEMS with integrated actuation and read-out capabilities.

  16. Effect of MnO2, Bi2O3, and ZnO additions on the electrical properties of lead zirconate titanate piezo ceramics

    International Nuclear Information System (INIS)

    Klimov, V.V.; Selikova, N.I.; Bronnikov, A.N.

    2006-01-01

    The effect of manganese dioxide additions on the electrical properties of lead zirconate titanate (PZT) piezo ceramics has been investigated. The results demonstrate that, taken alone, manganese dioxide does not ensure the formation of hard PZT. The valence state of manganese in the piezo ceramics is shown to be 4+ if no other dopants are present and 3+ if manganese is introduced in combination with Bi and Zn. Microstructural examination indicates that the grain size of the singly doped ceramics is 5-15 μm, while that of the codoped ceramics is 1-3 μm. The polarization current curves of the piezo ceramics containing manganese, bismuth, and zinc oxides have extra maxima, which points to significant internal fields. The manganese is shown to reside at grain boundaries. The conclusion is made that it is the composition of Mn-containing intergranular phases, rather than the presence of manganese ions, that plays a key role in the formation of hard piezo ceramics [ru

  17. Lattice strain induced multiferroicity in PZT-CFO particulate composite

    Science.gov (United States)

    Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Rajnish; Kar, Manoranjan

    2018-02-01

    Lead Zirconate Titanate [Pb(Zr0.52Ti0.48)O3/PZT] and Cobalt Ferrite [CoFe2O4/CFO] based multiferroic composites [(1-x)PZT-(x)CFO] with (x = 0.10-0.40) have been prepared to study its magnetoelectric (ME) and multiferroic properties. X-ray diffraction method along with the Rietveld refinement technique reveals that the crystal symmetries corresponding to PZT and CFO exist independently in the composites. The effect of interfacial strain on lattice distortion in PZT has been observed. It is well correlated with the magnetoelectric coupling of the composites. Dispersion behavior of dielectric constant with frequency can be explained by the modified Debye model. Different relaxation phenomena have been observed in PZT-CFO particulate composites. The ferroelectric properties of composites decrease with the increase in percentage of CFO in the composite. Both saturation (Ms) and remanent (Mr) magnetization increase with the increase in CFO content in the composite. The maximum ME coupling was found to be 1.339 pC/cm2 Oe for the composition (0.80) PZT-(0.20) CFO at the application of maximum magnetic field of 50 Oe. The multiferroic properties in CFO-PZT can be explained by the lattice strain at the CFO-PZT interfaces.

  18. Effect of porosity on dielectric properties and microstructure of porous PZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, B. Praveen [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India); Kumar, H.H. [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India); Kharat, D.K. [PZT Centre, Armament Research and Development Establishment, Pune 411021 (India)]. E-mail: dkkharat@rediffmail.com

    2006-02-25

    Porous piezoelectric materials are of great interest because of their high hydrostatic figure of merit and low sound velocity, which results in to low acoustic impedance and efficient coupling with medium. Porous lead zirconate titanate (PZT) ceramics with varying porosity was developed using polymethyl methacrylate by burnable plastic spheres (BURPS) process. The porous PZT ceramics were characterized for dielectric constant ({epsilon}), dielectric loss factor (tan {delta}), hydrostatic charge (d {sub h}) and voltage (g {sub h}) coefficients and microstructure. The effect of the porous microstructure on the dielectric constant and loss factor at frequencies of 10-10{sup 5} Hz are discussed in this paper.

  19. Electro-Caloric Properties of BT/PZT Multilayer Thin Films Prepared by Sol-Gel Method.

    Science.gov (United States)

    Kwon, Min-Su; Lee, Sung-Gap; Kim, Kyeong-Min

    2018-09-01

    In this study, Barium Titanate (BT)/Lead Zirconate Titanate (PZT) multilayer thin films were fabricated by the spin-coating method on Pt (200 nm)/Ti (10 nm) SiO2 (100 nm)/P-Si (100) substrates using BaTiO3 and Pb(Zr0.90Ti0.10)O3 metal alkoxide solutions. The coating and heating procedure was repeated several times to form the multilayer thin films. All of BT/PZT multilayer thin films show X-ray diffraction patterns typical to a polycrystalline perovskite structure and a uniform and void free grain microstructure. The thickness of the BT and PZT film by one-cycle of drying/sintering was approximately 50 nm and all of the films consisted of fine grains with a flat surface morphology. The electrocaloric properties of BT/PZT thin films were investigated by indirect estimation. The results showed that the temperature change ΔT can be calculated as a function of temperature using Maxwell's relation; the temperature change reaches a maximum value of ~1.85 °C at 135 °C under an applied electric field of 260 kV/cm.

  20. Microstructure and Properties of Plasma Sprayed Lead Zirconate Titanate (PZT) Ceramics

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Pala, Zdeněk; Boldyryeva, Hanna; Sedláček, J.; Kmetík, Viliam

    2012-01-01

    Roč. 2, č. 2 (2012), s. 64-75 ISSN 2079-6412 R&D Projects: GA TA ČR TA01010878 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma spraying * electroceramics * PZT * phase composition * permittivity Subject RIV: JK - Corrosion ; Surface Treatment of Materials http://www.mdpi.com/2079-6412/2/2/64

  1. Pressure, temperature, and electric field dependence of phase transformations in niobium modified 95/5 lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Wen D.; Carlos Valadez, J.; Gallagher, John A.; Jo, Hwan R.; Lynch, Christopher S., E-mail: cslynch@seas.ucla.edu [Department of Mechanical and Aerospace Engineering, The University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095 (United States); Sahul, Raffi; Hackenberger, Wes [TRS Technologies, 2820 East College Avenue, State College, Pennsylvania 16801 (United States)

    2015-06-28

    Ceramic niobium modified 95/5 lead zirconate-lead titanate (PZT) undergoes a pressure induced ferroelectric to antiferroelectric phase transformation accompanied by an elimination of polarization and a volume reduction. Electric field and temperature drive the reverse transformation from the antiferroelectric to ferroelectric phase. The phase transformation was monitored under pressure, temperature, and electric field loading. Pressures and temperatures were varied in discrete steps from 0 MPa to 500 MPa and 25 °C to 125 °C, respectively. Cyclic bipolar electric fields were applied with peak amplitudes of up to 6 MV m{sup −1} at each pressure and temperature combination. The resulting electric displacement–electric field hysteresis loops were open “D” shaped at low pressure, characteristic of soft ferroelectric PZT. Just below the phase transformation pressure, the hysteresis loops took on an “S” shape, which split into a double hysteresis loop just above the phase transformation pressure. Far above the phase transformation pressure, when the applied electric field is insufficient to drive an antiferroelectric to ferroelectric phase transformation, the hysteresis loops collapse to linear dielectric behavior. Phase stability maps were generated from the experimental data at each of the temperature steps and used to form a three dimensional pressure–temperature–electric field phase diagram.

  2. Enhanced ferroelectric and piezoelectric properties in La-modified PZT ceramics

    Science.gov (United States)

    Kour, P.; Pradhan, S. K.; Kumar, Pawan; Sinha, S. K.; Kar, Manoranjan

    2016-06-01

    The effect of lanthanum (La) doping on ferroelectric and piezoelectric properties of lead zirconate titanate (PZT) sample has been investigated. Pb1- x La x Zr0.52Ti0.48O3 ceramics with x = 0.00, 0.02, 0.04, 0.06 and 0.10 were prepared by the sol-gel technique. Raman and Fourier transforms infrared spectroscopy have been employed to understand the structural modification due to ionic size mismatch. Raman spectra show the existence of both rhombohedral and tetragonal crystal symmetries. It also shows the dielectric relaxation with increase in La concentration in the sample. The increase in lattice strain due to La doping increases the remnant polarization and coercive field. The linear piezoelectric coefficient increases with the increase in La concentration. It reveals that La-substituted PZT is a better candidate for piezoelectric sensor applications as compared to that of PZT.

  3. PZT/PLZT - elastomer composites with improved piezoelectric voltage coefficient

    Science.gov (United States)

    Harikrishnan, K.; Bavbande, D. V.; Mohan, Dhirendra; Manoharan, B.; Prasad, M. R. S.; Kalyanakrishnan, G.

    2018-02-01

    Lead Zirconate Titanate (PZT) and Lanthanum-modified Lead Zirconate Titanate (PLZT) ceramic sensor materials are widely used because of their excellent piezoelectric coefficients. These materials are brittle, high density and have low achievable piezoelectric voltage coefficients. The density of the sintered ceramics shall be reduced by burnable polymeric sponge method. The achievable porosity level in this case is nearly 60 - 90%. However, the porous ceramic structure with 3-3 connectivity produced by this method is very fragile in nature. The strength of the porous structure is improved with Sylgard®-184 (silicone elastomer) by vacuum impregnation method maintaining the dynamic vacuum level in the range of -650 mm Hg. The elastomer Sylgard®-184 is having low density, low dielectric constant and high compliance (as a resultant stiffness of the composites is increased). To obtain a net dipole moment, the impregnated ceramic composites were subjected to poling treatment with varying conditions of D.C. field and temperature. The properties of the poled PZT/PLZT - elastomer composites were characterized with LCR meter for measuring the dielectric constant values (k), d33 meter used for measuring piezo-electric charge coefficient values (d33) and piezo-electric voltage coefficient (g33) values which were derived from d33 values. The voltage coefficient (g33) values of these composites are increased by 10 fold as compared to the conventional solid ceramics demonstrates that it is possible to fabricate a conformable detector.

  4. Interaction between depolarization effects, interface layer, and fatigue behavior in PZT thin film capacitors

    Science.gov (United States)

    Böttger, U.; Waser, R.

    2017-07-01

    The existence of non-ferroelectric regions in ferroelectric thin films evokes depolarization effects leading to a tilt of the P(E) hysteresis loop. The analysis of measured hysteresis of lead zirconate titanate (PZT) thin films is used to determine a depolarization factor which contains quantitative information about interfacial layers as well as ferroelectrically passive zones in the bulk. The derived interfacial capacitance is smaller than that estimated from conventional extrapolation techniques. In addition, the concept of depolarization is used for the investigation of fatigue behavior of PZT thin films indicating that the mechanism of seed inhibition, which is responsible for the effect, occurs in the entire film.

  5. In situ synchrotron diffraction of lead-zirconate-titanate at its morphotropic phase boundary

    International Nuclear Information System (INIS)

    Schoenau, K.A.

    2008-01-01

    Ferroelectric lead zirconate titanate ceramics (PZT,Pb(Zr x Ti 1-x )O 3 ) find in industry intensifiedly applications as piezoactors. Their largest macroscopic strain under electric field they show in the region of the morphotropic phase boundary (MPB), the transition region between the Ti rich tetragonal and the Zr rich structure. The structure of PZT at the MPB was controversially discussed since the detection of a monoclinic intermediate phase by Noheda et al. [Appl. Phys. Lett.,74(14), 2059(1999)], whereby into the considerations the domain structure of the material not entered, which however is essentially responsible for the reaction under electric field. In order to understand the domain structure of PZT under electric field and to study possible causes for the fatigue behaviour of the material under bipolar cycling a bridge must be built between macroscopic and local structure. For this at the measuring place B2 of the Hasylab, Hamburg, synchrotron X-ray powder diffractometry was in situ performed under different sample environments in transmission geometry, which was correlated with transmission-electron-microscopical studies and electron spin resonance. Samples with compositions over the whole MPB were beside temperature-dependent measurements measured at room temperature in high resolution and under applied electric field. Furthermore for studies under electric field at elevated temperatures a special E-field furnace was constructed. It could be shown the large piezoelectric reaction of PZT at its MPB is strongly correlated with a diminishment of the domain structure, which simulates in X-ray diffraction a lower symmetric phase. The stability range of the nanodomains with temperature and electric field reflects in the switching behaviour of the matter and by the detection of a relaxor behavior of the nanodomain structure for the first time a direct comparison with relaxoceramics is possible. The varying stress conditions within the sample influence

  6. Structural and electrical characterization of PZT on gold for micromachined piezoelectric membranes

    International Nuclear Information System (INIS)

    Robinson, M.C.; Morris, D.J.; Hayenga, P.D.; Cho, J.H.; Richards, C.D.; Richards, R.F.; Bahr, D.F.

    2006-01-01

    Piezoelectric membranes have been fabricated that incorporate a gold bottom electrode with an adhesion layer of titanium-tungsten (10:90 wt. %). For solution-deposited acetic acid based lead zirconate titanate (HoAc-PZT) with a Zr:Ti ratio of 40:60, the film's average piezoelectric coefficient, e 31 , is -5.31 C/m 2 , with a dielectric constant of 814 at 200 Hz, which is similar to values for platinum bottom electrodes. The PZT structure remains columnar on both types of bottom electrodes. Initial fabrication attempts resulted in cracking that initiated in the PZT layer of the structure. X-ray photoelectron spectroscopy was utilized to establish how processing affects diffusion throughout the composite membrane structure. Crack-free membranes were fabricated and tested. This paper discusses the performance properties and piezoelectric fatigue results for these membranes. (orig.)

  7. Dielectric characteristics of PZT 95/5 ferroelectric ceramics at high pressures

    International Nuclear Information System (INIS)

    Spears, R.K.

    1978-01-01

    The room temperature dielectric properties of a ferroelectric ceramic having a nominal composition of 95 atomic percent lead zirconate and 5 atomic percent lead titanate (designated as PZT 95/5) with a niobium dopant were examined at high hydrostatic pressures using a tetrahedral anvil apparatus. This ceramic has practical applications as a power source in which large quantities of charge are released by dynamic (shock wave) depolarization. Numerous mathematical models of this process have been proposed; however, the use of models has been limited because of the lack of high pressure electrical properties. This study attempted to provide these data on PZT 95/5 by determining the small signal and high electric field dielectric properties at pressures over 4 GPa

  8. Experimental characterization of PZT fibers using IDE electrodes

    Science.gov (United States)

    Wyckoff, Nicholas; Ben Atitallah, Hassene; Ounaies, Zoubeida

    2016-04-01

    Lead zirconate titanate (PZT) fibers are mainly used in active fiber composites (AFC) where they are embedded in a polymer matrix. Interdigitated electrodes (IDE) along the direction of the fibers are used to achieve planar actuation, hereby exploiting the d33 coefficient of PZT. When embedded in the AFC, the PZT fibers are subjected to mechanical loading as well as non-uniform electric field as a result of the IDEs. Therefore, it is important to characterize the electrical and electromechanical behavior of these fibers ex-situ using the IDE electrodes to assess the impact of nonuniform electric field on the properties of the fibers. For that reason, this work aims at quantifying the impact of IDE electrodes on the electrical and electromechanical behavior of PZT fibers, which is necessary for their successful implementation in devices like AFC. The tested fibers were purchased from Advanced Cerametrics and they have an average diameter of 250 micrometers. The IDE electrodes were screen printed on an acrylic substrate. The PZT fibers were subjected to frequency sweeps at low voltages to determine permittivity for parallel and interdigitated electrodes. The piezoelectric e33 constant is determined from electromechanical testing of PZT fibers in parallel electrodes to compare the electromechanical behavior for PZT in bulk and fiber form. The dielectric constant and e33 were found to be lower for the IDE and parallel electrodes compared to bulk but comparable to results published in literature.

  9. A Reusable PZT Transducer for Monitoring Initial Hydration and Structural Health of Concrete

    Directory of Open Access Journals (Sweden)

    Yaowen Yang

    2010-05-01

    Full Text Available During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use.

  10. A Reusable PZT Transducer for Monitoring Initial Hydration and Structural Health of Concrete

    Science.gov (United States)

    Yang, Yaowen; Divsholi, Bahador Sabet; Soh, Chee Kiong

    2010-01-01

    During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT) transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD) is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use. PMID:22399929

  11. A reusable PZT transducer for monitoring initial hydration and structural health of concrete.

    Science.gov (United States)

    Yang, Yaowen; Divsholi, Bahador Sabet; Soh, Chee Kiong

    2010-01-01

    During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT) transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD) is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use.

  12. Energy Harvesting with Coupled Magnetorestrictive Resonators

    Science.gov (United States)

    2013-09-01

    matching, small hysteresis, and low coercivity2. Ceramic material like PZT tends to develop fatigue during its cycles whereas Galfenol does not have...Magnetostrictive Material PZT Pb [ZrxTi1-x] O3, 0<xə, Lead Zirconate Titanate RX Receiver SHM Structural Health Monitoring...zirconate titanate [ PZT ]) have lead in their fabrication process, which is an environmental risk. Another major issue with standard energy

  13. X-ray and neutron scattering on disordered nanosize clusters: a case study of lead-zirconate-titanate solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Frantti, Johannes; Fujioka, Yukari [Finnish Research and Engineering, Helsinki (Finland)

    2015-04-01

    Defects and frequently used defect models of solids are reviewed. Signatures for identifying the disorder from x-ray and neutron scattering data are given. To give illustrative examples how technologically important defects contribute to x-ray and neutron scattering numerical method able to treat non-periodical solids possessing several simultaneous defect types is given for simulating scattering in nanosize disordered clusters. The approach takes particle size, shape, and defects into account and isolates element specific signals. As a case study a statistical approximation model for lead-zirconate titanate [Pb(Zr{sub x}Ti{sub 1-x})O{sub 3}, PZT] is introduced. PZT is a material possessing several defect types, including substitutional, displacement and surface defects. Spatial composition variation is taken into account by introducing a model in which the edge lengths of each cell depend on the distribution of Zr and Ti ions in the cluster. Spatially varying edge lengths and angles is referred to as microstrain. The model is applied to compute the scattering from ellipsoid shaped PZT clusters and to simulate the structural changes as a function of average composition. Two-phase co-existence range, the so called morphotropic phase boundary composition is given correctly. The composition at which the rhombohedral and tetragonal cells are equally abundant was x ∼ 0.51. Selected x-ray and neutron Bragg reflection intensities and line shapes were simulated. Examples of the effect of size and shape of the scattering clusters on diffraction patterns are given and the particle dimensions, computed through Scherrer equation, are compared with the exact cluster dimensions. Scattering from two types of 180 domains in spherical particles, one type assigned to Ti-rich PZT and the second to the MPB and Zr-rich PZT, is computed. We show how the method can be used for modelling polarization reversal. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Temperature dependent mechanical property of PZT film: an investigation by nanoindentation.

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    Full Text Available Load-depth curves of an unpoled Lead Zirconate Titanate (PZT film composite as a function of temperature were measured by nanoindentation technique. Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method. Then the true modulus and hardness of the PZT film were assessed by decoupling the influence of substrate using methods proposed by Zhou et al. and Korsunsky et al., respectively. Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature. The increasing of indentation depth and the decreasing of hardness are thought to be caused by the decreasing of the critical stress needed to excite dislocation initiation at high temperature. The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains. The influence of residual stress on the indentation behavior of PZT film composite was also investigated by measuring its load-depth curves with pre-load strains.

  15. 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers.

    Science.gov (United States)

    Chen, Xi; Xu, Shiyou; Yao, Nan; Shi, Yong

    2010-06-09

    Energy harvesting technologies that are engineered to miniature sizes, while still increasing the power delivered to wireless electronics, (1, 2) portable devices, stretchable electronics, (3) and implantable biosensors, (4, 5) are strongly desired. Piezoelectric nanowire- and nanofiber-based generators have potential uses for powering such devices through a conversion of mechanical energy into electrical energy. (6) However, the piezoelectric voltage constant of the semiconductor piezoelectric nanowires in the recently reported piezoelectric nanogenerators (7-12) is lower than that of lead zirconate titanate (PZT) nanomaterials. Here we report a piezoelectric nanogenerator based on PZT nanofibers. The PZT nanofibers, with a diameter and length of approximately 60 nm and 500 microm, were aligned on interdigitated electrodes of platinum fine wires and packaged using a soft polymer on a silicon substrate. The measured output voltage and power under periodic stress application to the soft polymer was 1.63 V and 0.03 microW, respectively.

  16. Temperature dependent mechanical property of PZT film: an investigation by nanoindentation.

    Science.gov (United States)

    Li, Yingwei; Feng, Shangming; Wu, Wenping; Li, Faxin

    2015-01-01

    Load-depth curves of an unpoled Lead Zirconate Titanate (PZT) film composite as a function of temperature were measured by nanoindentation technique. Its reduce modulus and hardness were calculated by the typical Oliver-Pharr method. Then the true modulus and hardness of the PZT film were assessed by decoupling the influence of substrate using methods proposed by Zhou et al. and Korsunsky et al., respectively. Results show that the indentation depth and modulus increase, but the hardness decreases at elevated temperature. The increasing of indentation depth and the decreasing of hardness are thought to be caused by the decreasing of the critical stress needed to excite dislocation initiation at high temperature. The increasing of true modulus is attributed to the reducing of recoverable indentation depth induced by back-switched domains. The influence of residual stress on the indentation behavior of PZT film composite was also investigated by measuring its load-depth curves with pre-load strains.

  17. Effect of solid content variations on PZT slip for tape casting

    Directory of Open Access Journals (Sweden)

    Gang Jian

    2012-12-01

    Full Text Available Lead zirconate titanate (PZT particles with pure tetragonal structure were synthesized by solid-state reaction method and used for preparation of slurries with different solid contents (34–80 wt.%. Then, PZT thick films were fabricated by the nonaqueous tape casting method. It was shown that the slurry prepared from ball-milled particles exhibited better rheology properties than slurry from particles which were not ball-milled. Measurement of sedimentation volumes and zeta potentials indicated particle aggregation, resulting in weak stability of the slurries with high solid contents. The microstructure, piezoelectric and ferroelectric properties of PZT sintered films were investigated in terms of solid contents. Ceramic films prepared from the slurry with solid contents of 73 wt.% had the optimal structure and properties. After poling at 200 °C with an applied field of 1.2 kV/cm, a d33 of 294 pC/N was achieved; typical ferroelectric properties were also observed with a Ps of 38 μC/cm2.

  18. PZT Thin Film Piezoelectric Traveling Wave Motor

    Science.gov (United States)

    Shen, Dexin; Zhang, Baoan; Yang, Genqing; Jiao, Jiwei; Lu, Jianguo; Wang, Weiyuan

    1995-01-01

    With the development of micro-electro-mechanical systems (MEMS), its various applications are attracting more and more attention. Among MEMS, micro motors, electrostatic and electromagnetic, are the typical and important ones. As an alternative approach, the piezoelectric traveling wave micro motor, based on thin film material and integrated circuit technologies, circumvents many of the drawbacks of the above mentioned two types of motors and displays distinct advantages. In this paper we report on a lead-zirconate-titanate (PZT) piezoelectric thin film traveling wave motor. The PZT film with a thickness of 150 micrometers and a diameter of 8 mm was first deposited onto a metal substrate as the stator material. Then, eight sections were patterned to form the stator electrodes. The rotor had an 8 kHz frequency power supply. The rotation speed of the motor is 100 rpm. The relationship of the friction between the stator and the rotor and the structure of the rotor on rotation were also studied.

  19. Comparison of the Thermal Degradation of Heavily Nb-Doped and Normal PZT Thin Films.

    Science.gov (United States)

    Yang, Jeong-Suong; Kang, YunSung; Kang, Inyoung; Lim, SeungMo; Shin, Seung-Joo; Lee, JungWon; Hur, Kang Heon

    2017-03-01

    The degradation of niobium-doped lead zirconate titanate (PZT) and two types of PZT thin films were investigated. Undoped PZT, two-step PZT, and heavily Nb-doped PZT (PNZT) around the morphotropic phase boundary were in situ deposited under optimum condition by RF-magnetron sputtering. All 2- [Formula: see text]-thick films had dense perovskite columnar grain structure and self-polarized (100) dominant orientation. PZT thin films were deposited on Pt/TiO x bottom electrode on Si wafer, and PNZT thin film was on Ir/TiW electrode with the help of orientation control. Sputtered PZT films formed on microelectromechanical system (MEMS) gyroscope and the degradation rates were compared at different temperatures. PNZT showed the best resistance to the thermal degradation, followed by two-step PZT. To clarify the effect of oxygen vacancies on the degradation of the film at high temperature, photoluminescence measurement was conducted, which confirmed that oxygen vacancy rate was the lowest in heavy PNZT. Nb-doping PZT thin films suppressed the oxygen deficit and made high imprint with self-polarization. This defect distribution and high internal field allowed PNZT thin film to make the piezoelectric sensors more stable and reliable at high temperature, such as reflow process of MEMS packaging.

  20. Study of the microstructure and the hardness of PZT piezoelectric ceramics types I and III used in electro acoustic transducers; Estudo da microestrutura e da microdureza das ceramicas piezoeletricas tipos PZT I e III utilizadas em transdutores eletroacusticos

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Ricardo de Freitas; Itaboray, Lucas Mendes; Santos, Anna Paula de Oliveira [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil)

    2015-12-15

    The field of electronic processing of the ceramic piezoelectric type imported powdered led to the production of ceramics with 97% of theoretical density, homogeneous microstructure with great potential for applications in piezoelectric devices such as electro acoustic transducers. However, the production of electronic ceramics National piezoelectric type is not yet able to have as raw material zirconate titanate Lead (PZT) 100% made in Brazil. Thus, this is used for supply of domestic production, the zirconium oxide. In this work, both post PZT types I and III, imported, were uniaxially pressed at 70 MPa and sintered at 1200 and 1250 deg C for 3 hours. Hardness measurements were performed by micro indentation, X-ray diffraction analysis and Scanning Electron Microscopy. The hardness of PZT I was 393 HV. (author)

  1. Microwave hydrothermal synthesis and characterization of PZT 52/48 powders

    International Nuclear Information System (INIS)

    Teixeira, G.F.; Gasparotto, G.; Santos, N.A.; Zaghete, M.A.; Varela, J.A.; Longo, E.

    2009-01-01

    Full text: Lead Zirconate Titanate (PZT) is a ceramic witch has great interest because of their ferroelectric, piezoelectric, and other electrical properties. In this work Pb(ZrxTi1-x)O3 powders were synthesized by microwave hydrothermal synthesis (M-H) at 180°C without excess lead content. This method allows obtaining particles whit nanometer size, good stoichiometric controls, high purity and crystalline degree at low temperatures and short times of synthesis. Powders were synthesized with molar concentration of 0.15 mol.L -1 during different times: 30 min, 2, 4, 6 and 8 h. After that the powders were characterized by X-ray diffraction (XRD), Field Emission Gun (FEG) and photoluminescence (PL). Through analysis it is observed that the crystalline phase of PZT is obtained from 2 hours of synthesis and this same time also presents more intense PL emission. (author)

  2. Sensitivity of PZT Impedance Sensors for Damage Detection of Concrete Structures.

    Science.gov (United States)

    Yang, Yaowen; Hu, Yuhang; Lu, Yong

    2008-01-21

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) based electro-mechanicalimpedance (EMI) technique for structural health monitoring (SHM) has been successfullyapplied to various engineering systems. However, fundamental research work on thesensitivity of the PZT impedance sensors for damage detection is still in need. In thetraditional EMI method, the PZT electro-mechanical (EM) admittance (inverse of theimpedance) is used as damage indicator, which is difficult to specify the effect of damage onstructural properties. This paper uses the structural mechanical impedance (SMI) extractedfrom the PZT EM admittance signature as the damage indicator. A comparison study on thesensitivity of the EM admittance and the structural mechanical impedance to the damages ina concrete structure is conducted. Results show that the SMI is more sensitive to the damagethan the EM admittance thus a better indicator for damage detection. Furthermore, this paperproposes a dynamic system consisting of a number of single-degree-of-freedom elementswith mass, spring and damper components to model the SMI. A genetic algorithm isemployed to search for the optimal value of the unknown parameters in the dynamic system.An experiment is carried out on a two-storey concrete frame subjected to base vibrations thatsimulate earthquake. A number of PZT sensors are regularly arrayed and bonded to the framestructure to acquire PZT EM admittance signatures. The relationship between the damageindex and the distance of the PZT sensor from the damage is studied. Consequently, thesensitivity of the PZT sensors is discussed and their sensing region in concrete is derived.

  3. Optimum Operating Conditions for PZT Actuators for Vibrotactile Wearables

    Science.gov (United States)

    Logothetis, Irini; Matsouka, Dimitra; Vassiliadis, Savvas; Vossou, Clio; Siores, Elias

    2018-04-01

    Recently, vibrotactile wearables have received much attention in fields such as medicine, psychology, athletics and video gaming. The electrical components presently used to generate vibration are rigid; hence, the design and creation of ergonomical wearables are limited. Significant advances in piezoelectric components have led to the production of flexible actuators such as piezoceramic lead zirconate titanate (PZT) film. To verify the functionality of PZT actuators for use in vibrotactile wearables, the factors influencing the electromechanical conversion were analysed and tested. This was achieved through theoretical and experimental analyses of a monomorph clamped-free structure for the PZT actuator. The research performed for this article is a three-step process. First, a theoretical analysis presents the equations governing the actuator. In addition, the eigenfrequency of the film was analysed preceding the experimental section. For this stage, by applying an electric voltage and varying the stimulating electrical characteristics (i.e., voltage, electrical waveform and frequency), the optimum operating conditions for a PZT film were determined. The tip displacement was measured referring to the mechanical energy converted from electrical energy. From the results obtained, an equation for the mechanical behaviour of PZT films as actuators was deduced. It was observed that the square waveform generated larger tip displacements. In conjunction with large voltage inputs at the predetermined eigenfrequency, the optimum operating conditions for the actuator were achieved. To conclude, PZT films can be adapted to assist designers in creating comfortable vibrotactile wearables.

  4. Optimizing Pt/TiO2 templates for textured PZT growth and MEMS devices

    Science.gov (United States)

    Potrepka, Daniel; Fox, Glenn; Sanchez, Luz; Polcawich, Ronald

    2013-03-01

    Crystallographic texture of lead zirconate titanate (PZT) thin films strongly influences piezoelectric properties used in MEMS applications. Textured growth can be achieved by relying on crystal growth habit and can also be initiated by the use of a seed-layer heteroepitaxial template. Template choice and the process used to form it determine structural quality, ultimately influencing performance and reliability of MEMS PZT devices such as switches, filters, and actuators. This study focuses on how 111-textured PZT is generated by a combination of crystal habit and templating mechanisms that occur in the PZT/bottom-electrode stack. The sequence begins with 0001-textured Ti deposited on thermally grown SiO2 on a Si wafer. The Ti is converted to 100-textured TiO2 (rutile) through thermal oxidation. Then 111-textured Pt can be grown to act as a template for 111-textured PZT. Ti and Pt are deposited by DC magnetron sputtering. TiO2 and Pt film textures and structure were optimized by variation of sputtering deposition times, temperatures and power levels, and post-deposition anneal conditions. The relationship between Ti, TiO2, and Pt texture and their impact on PZT growth will be presented. Also affiliated with U.S. Army Research Lab, Adelphi, MD 20783, USA

  5. Analysis of signals propagating in a phononic crystal PZT layer deposited on a silicon substrate.

    Science.gov (United States)

    Hladky-Hennion, Anne-Christine; Vasseur, Jérôme; Dubus, Bertrand; Morvan, Bruno; Wilkie-Chancellier, Nicolas; Martinez, Loïc

    2013-12-01

    The design of a stop-band filter constituted by a periodically patterned lead zirconate titanate (PZT) layer, polarized along its thickness, deposited on a silicon substrate and sandwiched between interdigitated electrodes for emission/reception of guided elastic waves, is investigated. The filter characteristics are theoretically evaluated by using finite element simulations: dispersion curves of a patterned PZT layer with a specific pattern geometry deposited on a silicon substrate present an absolute stop band. The whole structure is modeled with realistic conditions, including appropriate interdigitated electrodes to propagate a guided mode in the piezoelectric layer. A robust method for signal analysis based on the Gabor transform is applied to treat transmitted signals; extract attenuation, group delays, and wave number variations versus frequency; and identify stop-band filter characteristics.

  6. Study on optimizing ultrasonic irradiation period for thick polycrystalline PZT film by hydrothermal method.

    Science.gov (United States)

    Ohta, Kanako; Isobe, Gaku; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi

    2013-04-01

    The hydrothermal method utilizes a solution-based chemical reaction to synthesize piezoelectric thin films and powders. This method has a number of advantages, such as low-temperature synthesis, and high purity and high quality of the product. In order to promote hydrothermal reactions, we developed an ultrasonic assisted hydrothermal method and confirmed that it produces dense and thick lead-zirconate-titanate (PZT) films. In the hydrothermal method, a crystal growth process follows the nucleation process. In this study, we verified that ultrasonic irradiation is effective for the nucleation process, and there is an optimum irradiation period to obtain thicker PZT films. With this optimization, a 9.2-μm-thick PZT polycrystalline film was obtained in a single deposition process. For this film, ultrasonic irradiation was carried out from the beginning of the reaction for 18 h, followed by a 6 h deposition without ultrasonic irradiation. These results indicate that the ultrasonic irradiation mainly promotes the nucleation process. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Effect of External Vibration on PZT Impedance Signature

    Directory of Open Access Journals (Sweden)

    Yaowen Yang

    2008-11-01

    Full Text Available Piezoelectric ceramic Lead Zirconate Titanate (PZT transducers, working on the principle of electromechanical impedance (EMI, are increasingly applied for structural health monitoring (SHM in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.

  8. Effect of External Vibration on PZT Impedance Signature.

    Science.gov (United States)

    Yang, Yaowen; Miao, Aiwei

    2008-11-01

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) transducers, working on the principle of electromechanical impedance (EMI), are increasingly applied for structural health monitoring (SHM) in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI) signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.

  9. Niobium effect on the Pzt ceramic properties

    International Nuclear Information System (INIS)

    Gimenes, R.; Zaguete, M.A.; Varela, J.A.; Cilense, M.; Paiva-Santos, C.O.; Las, W.C.

    1996-01-01

    Lead zirconate titanate, PZT, was prepared with Zr/Ti ratio of 50/50. The powder was prepared by the Pechini method with addition of 0,3; 0,5 e 0,7 mol % of Nb +5 ions. The precursors obtained were calcined at 700 deg C for 3 hs and milled with zirconia balls in a medium of isopropilic alcohol for 6 hs. The powders were characterized by XRD. For the sintering studies powders were isostatically pressed (230 MPa) into pellets and which were put inside a box furnace at 1200 deg C for 2 hs and 1100 deg C for 4 hs in a closed system containing 5 % of atmospheric powder (Pb Zr O 3 + 5% Pb O) relative to all pellets'mass. It was verified that the best densification rate was obtained for PZT with addition of 0,5 mol % of Nb +5 ions and sintered at 1100 deg C for 4 hs. Sintered samples at 1100 deg C for 4 hs were characterized as to dielectric (k, P r and E c ) and piezoelectric properties. (author)

  10. Niobium effect on the Pzt ceramic properties; Efeito do niobio sobre as propriedades da ceramica PZT

    Energy Technology Data Exchange (ETDEWEB)

    Gimenes, R.; Zaguete, M.A.; Varela, J.A.; Cilense, M.; Paiva-Santos, C.O.; Las, W.C. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica

    1996-12-31

    Lead zirconate titanate, PZT, was prepared with Zr/Ti ratio of 50/50. The powder was prepared by the Pechini method with addition of 0,3; 0,5 e 0,7 mol % of Nb{sup +5} ions. The precursors obtained were calcined at 700 deg C for 3 hs and milled with zirconia balls in a medium of isopropilic alcohol for 6 hs. The powders were characterized by XRD. For the sintering studies powders were isostatically pressed (230 MPa) into pellets and which were put inside a box furnace at 1200 deg C for 2 hs and 1100 deg C for 4 hs in a closed system containing 5 % of atmospheric powder (Pb Zr O{sub 3} + 5% Pb O) relative to all pellets`mass. It was verified that the best densification rate was obtained for PZT with addition of 0,5 mol % of Nb{sup +5} ions and sintered at 1100 deg C for 4 hs. Sintered samples at 1100 deg C for 4 hs were characterized as to dielectric (k, P{sub r} and E{sub c}) and piezoelectric properties. (author) 5 refs., 2 figs., 3 tabs.

  11. MEMS-Based Waste Vibrational Energy Harvesters

    Science.gov (United States)

    2013-06-01

    MEMS energy- harvesting device. Although PZT is used more prevalently due to its higher piezoelectric coefficient and dielectric constant, AlN has...7 1. Lead Zirconium Titanate ( PZT ) .........................................................7 2. Aluminum...Laboratory PiezoMUMPS Piezoelectric Multi-User MEMS Processes PZT Lead Zirconate Titanate SEM Scanning Electron Microscopy SiO2 Silicon

  12. Influence of PZT Coating Thickness and Electrical Pole Alignment on Microresonator Properties.

    Science.gov (United States)

    Janusas, Giedrius; Ponelyte, Sigita; Brunius, Alfredas; Guobiene, Asta; Vilkauskas, Andrius; Palevicius, Arvydas

    2016-11-10

    With increasing technical requirements in the design of microresonators, the development of new techniques for lightweight, simple, and inexpensive components becomes relevant. Lead zirconate titanate (PZT) is a powerful tool in the formation of these components, allowing a self-actuation or self-sensing capability. Different fabrication methods lead to the variation of the properties of the device itself. This research paper covers the fabrication of a novel PZT film and the investigations of its chemical, surface, and dynamic properties when film thickness is varied. A screen-printing technique was used for the formation of smooth films of 60 µm, 68 µm, and 25 µm thickness. A custom-made poling technique was applied to enhance the piezoelectric properties of the designed films. However, poling did not change any compositional or surface characteristics of the films; changes were only seen in the electrical ones. The results showed that a thinner poled PZT film having a chemical composition with the highest amount of copper and zirconium led to better electrical characteristics (generated voltage of 3.5 mV).

  13. Phase transformations in lead zirconate-titanate doped with lanthanum

    Energy Technology Data Exchange (ETDEWEB)

    Ishchuk, V M; Morozov, E M

    1979-07-01

    Presented are the results of studies on the character of phase transitions of the lead-lanthanum zirconate-titanate (LLZT) system. The replacement of lead by lanthanum leads to the expansion of the region of antisegnetoelectric (ASE) states of solid solutions of lead zirconate-titanate (LZT) in the direction of PbTiO/sub 3/ concentration growth. An intermediate region is revealed between segnetoelectric (SE) and ASE states, material properties in which depend on their prehistory: annealed samples are in the ASE state, whereas the application of electric field exceeding some critical value induces the SE state. A family of phase diagrams obtained at consequent replacement of lead by lanthanum permits to identify phase states in any series of LLZT with a constant ratio of Zr:Ti, in the x/65/35 series in particular. Thermally depolarized state of materials of this series at x<6.5 is shown to be antisegnetoelectric at all the temperatures below the Curie point Tsub(c), and heating causes phase transition of ASE..-->..PE (paraelectric state) at Tsub(c). Polarized samples being heated, a successiveness of phase transitions of SE..-->..ASE takes place at T/sub 0/, and that of ASE reversible PE at Tsub(C) (Tsub(0)..ASE phase transition in the LZT system.

  14. Dielectric and electrical properties of gadolinium-modified lead-zirconate-titanate system

    International Nuclear Information System (INIS)

    Panigrahi, S.C.; Das, Piyush R.; Parida, B.N.; Padhee, R.; Choudhary, R.N.P.

    2014-01-01

    Highlights: • Gadolinium modified PZT have very good dielectric and ferroelectric properties. • The impedance analysis of shows grain and grain boundary phenomena. • Electrical properties of the compounds show very good transport properties. • Piezoelectric coefficient of the samples have higher values. - Abstract: The gadolinium (Gd) modified lead zirconate titanate (PbZr,TiO 3 ) ceramics with Zr/Ti = 48/52 (i.e., near morphotropic phase boundary (MPB)) in a general chemical formula Pb 1−x Gd x (Zr 0.48 Ti 0.52 ) 1−x/4 O 3 (PGZT; x = 0, 0.07, 0.10 and 0.12) have been synthesized using a high-temperature solid-state reaction method. Preliminary structural analysis using X-ray powder diffraction (XRD) shows the formation of a single-phase tetragonal structure of the compounds. Detailed studies of dielectric parameters of PGZT exhibit the diffuse phase transition but non-relaxor characteristics in the material for the higher concentration of gadolinium. The ac conductivity spectra of PGZT are found to obey Jonscher’s universal power law. The electrical impedance parameters of PGZT (near MPB) were obtained in a wide range of temperature (25–500 °C) and frequency (1–1000 kHz) using complex impedance spectroscopy (CIS) technique. Detailed analysis of these parameters shows that bulk (grain) and grain boundary resistance have significant effect on the total impedance of the materials. Temperature dependence of hysteresis characteristics of PGZT confirms that the phase transition parameter of the material is strongly affected by the substitution of Gd at the Pb-sites

  15. Improving yield of PZT piezoelectric devices on glass substrates

    Science.gov (United States)

    Johnson-Wilke, Raegan L.; Wilke, Rudeger H. T.; Cotroneo, Vincenzo; Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.; Trolier-McKinstry, Susan

    2012-10-01

    The proposed SMART-X telescope includes adaptive optics systems that use piezoelectric lead zirconate titanate (PZT) films deposited on flexible glass substrates. Several processing constraints are imposed by current designs: the crystallization temperature must be kept below 550 °C, the total stress in the film must be minimized, and the yield on 1 cm2 actuator elements should be work, RF magnetron sputtering was used to deposit films since chemical solution deposition (CSD) led to warping of large area flexible glass substrates. A PZT 52/48 film that wasdeposited at 4 mTorr and annealed at 550 °C for 24 hours showed no detectable levels of either PbO or pyrochlore second phases. Large area electrodes (1cm x 1 cm) were deposited on 4" glass substrates. Initially, the yield of the devices was low, however, two methods were employed to increase the yield to near 100 %. The first method included a more rigorous cleaning to improve the continuity of the Pt bottom electrode. The second method was to apply 3 V DC across the capacitor structure to burn out regions of defective PZT. The result of this latter method essentially removed conducting filaments in the PZT but left the bulk of the material undamaged. By combining these two methods, the yield on the large area electrodes improved from < 10% to nearly 100%.

  16. Synthesis, by alkaline fusion of zirconia from zirconite: characterization and preparation of lead zirconate-titanate

    International Nuclear Information System (INIS)

    Zaghete, M.A.

    1985-01-01

    Zirconium oxide was prepared from zirconite by alkaline fusion. The purity of zirconia was determined by atomic absorption spectroscopy and was found to be 99,94 wt%. In order to prepare en unglomerated and dry hidrous zirconia powder it was used alcohol and acetone for washing and gel suspension; control of the drying rate; and control of the atmosphere and temperature of the oven. The physical characteristics of the hidrous zirconia powder were determined after calcining in several conditions. The zirconia obtained by calcining at 800 0 C during 5 hours (13,9m 2 /g) was used with titanium oxide (7,6m 2 /g and lead oxide (0,6m 2 /g) to prepare a lead zirconate-titanate (PZT) with composition Pb(Zr 0,5 Ti 0,5 O 3 . Two different procedures were used to obtain high densits PZT pellets: in the first procedure the misture of the oxide powder with above composition were reacted at 850 0 C for 4 hours. Then the powder was pressed and sintered at 1200 0 C during 4 and 6 hours; in the second procedure the mixture of unreacted oxide were pressed in pellets and then reacted at 850 0 C during 4 hours and sintered at 1200 0 C during 4 and 6 hours. The apparent density of the sintered pellets were determined By mercury displacement and ranged from 7,25 to 7,39 g/cm 3 for the compacts obtained by the second procedure and from 8,08 to 8,10g/cm 3 for the compacts obtained by the first procedure. The microstructure observed by scanning electron microscopy showed that sintered compact obtained by the first procedure has a more homogeneous size distribution when compared with samples obtained be the second procedure. (author) [pt

  17. New phase transitions in lead zirconate-titanate

    International Nuclear Information System (INIS)

    Ishchuk, V.M.; Morozov, E.M.; Klimov, V.V.

    1977-01-01

    Processes of disordering are considered in the paraelectric phase of lead zirconate-titanate. Te investigations were carried out on poly- and single-crystal specimens of the composition PbZrsub(1-x)Tisub(x)O 3 (0< x(<=)0.5). The results are presented of measurements of the temperature dependence of the dielectric constant and the dependence of the polarization on the temperature and the electric field. Anomaly is observed of the investigated characteristics above the Curie point due to a first-type phase transition. The results are interpreted within the framework of the model proposed by Coms, Lambert, and Guiniot, according to which this transition is due to the disordering of chains of unit cells existing above the Curie point

  18. Thickness dependence of the poling and current-voltage characteristics of paint films made up of lead zirconate titanate ceramic powder and epoxy resin

    Science.gov (United States)

    Egusa, Shigenori; Iwasawa, Naozumi

    1995-11-01

    A specially prepared paint made up of lead zirconate titanate (PZT) ceramic powder and epoxy resin was coated on an aluminum plate and was cured at room temperature, thus forming the paint film of 25-300 μm thickness with a PZT volume fraction of 53%. The paint film was then poled at room temperature, and the poling behavior was determined by measuring the piezoelectric activity as a function of poling field. The poling behavior shows that the piezoelectric activity obtained at a given poling field increases with an increase in the film thickness from 25 to 300 μm. The current-voltage characteristic of the paint film, on the other hand, shows that the increase in the film thickness leads not only to an increase in the magnitude of the current density at a given electric field but also to an increase in the critical electric field at which the transition from the ohmic to space-charge-limited conduction takes place. This fact indicates that the amount of the space charge of electrons injected into the paint film decreases as the film thickness increases. Furthermore, comparison of the current-voltage characteristic of the paint film with that of a pure epoxy film reveals that the space charge is accumulated largely at the interface between the PZT and epoxy phases in the paint film. On the basis of this finding, a model is developed for the poling behavior of the paint film by taking into account a possible effect of the space-charge accumulation and a broad distribution of the electric field in the PZT phase. This model is shown to give an excellent fit to the experimental data of the piezoelectric activity obtained here as a function of poling field and film thickness.

  19. Cross-poling textures in a lead zirconate titanate piezoelectric material

    International Nuclear Information System (INIS)

    Wan, Shan; Bowman, Keith J.

    2000-01-01

    Tetragonal ferroelectric materials are polarized to induce the anisotropy necessary for the piezoelectric effect. This poling of the material is inherently an orientation process. Pole figure texture measurements of poling and cross-poling in a lead zirconate titanate Navy VI material show domain motion. The resulting axisymmetric and three-dimensional textures demonstrate the contribution of 90 degree sign domain motion to piezoelectricity. Cross-poling results in strong orientations with lower applied fields than in the initial poling steps. (c) 2000 Materials Research Society

  20. Nanocomposites with increased energy density through high aspect ratio PZT nanowires.

    Science.gov (United States)

    Tang, Haixiong; Lin, Yirong; Andrews, Clark; Sodano, Henry A

    2011-01-07

    High energy storage plays an important role in the modern electric industry. Herein, we investigated the role of filler aspect ratio in nanocomposites for energy storage. Nanocomposites were synthesized using lead zirconate titanate (PZT) with two different aspect ratio (nanowires, nanorods) fillers at various volume fractions dispersed in a polyvinylidene fluoride (PVDF) matrix. The permittivity constants of composites containing nanowires (NWs) were higher than those with nanorods (NRs) at the same inclusion volume fraction. It was also indicated that the high frequency loss tangent of samples with PZT nanowires was smaller than for those with nanorods, demonstrating the high electrical energy storage efficiency of the PZT NW nanocomposite. The high aspect ratio PZT NWs showed a 77.8% increase in energy density over the lower aspect ratio PZT NRs, under an electric field of 15 kV mm(-1) and 50% volume fraction. The breakdown strength was found to decrease with the increasing volume fraction of PZT NWs, but to only change slightly from a volume fraction of around 20%-50%. The maximum calculated energy density of nanocomposites is as high as 1.158 J cm(-3) at 50% PZT NWs in PVDF. Since the breakdown strength is lower compared to a PVDF copolymer such as poly(vinylidene fluoride-tertrifluoroethylene-terchlorotrifluoroethylene) P(VDF-TreEE-CTFE) and poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP), the energy density of the nanocomposite could be significantly increased through the use of PZT NWs and a polymer with greater breakdown strength. These results indicate that higher aspect ratio fillers show promising potential to improve the energy density of nanocomposites, leading to the development of advanced capacitors with high energy density.

  1. Piezoelectric ceramic (PZT) modulates axonal guidance growth of rat cortical neurons via RhoA, Rac1, and Cdc42 pathways.

    Science.gov (United States)

    Wen, Jianqiang; Liu, Meili

    2014-03-01

    Electrical stimulation is critical for axonal connection, which can stimulate axonal migration and deformation to promote axonal growth in the nervous system. Netrin-1, an axonal guidance cue, can also promote axonal guidance growth, but the molecular mechanism of axonal guidance growth under indirect electric stimulation is still unknown. We investigated the molecular mechanism of axonal guidance growth under piezoelectric ceramic lead zirconate titanate (PZT) stimulation in the primary cultured cortical neurons. PZT induced marked axonal elongation. Moreover, PZT activated the excitatory postsynaptic currents (EPSCs) by increasing the frequency and amplitude of EPSCs of the cortical neurons in patch clamp assay. PZT downregulated the expression of Netrin-1 and its receptor Deleted in Colorectal Cancer (DCC). Rho GTPase signaling is involved in interactions of Netrin-1 and DCC. PZT activated RhoA. Dramatic decrease of Cdc42 and Rac1 was also observed after PZT treatment. RhoA inhibitor Clostridium botulinum C3 exoenzyme (C3-Exo) prevented the PZT-induced downregulation of Netrin-1 and DCC. We suggest that PZT can promote axonal guidance growth by downregulation of Netrin-1 and DCC to mediate axonal repulsive responses via the Rho GTPase signaling pathway. Obviously, piezoelectric materials may provide a new approach for axonal recovery and be beneficial for clinical therapy in the future.

  2. Electron Emission And Beam Generation Using Ferroelectric Cathodes (electron Beam Generation, Lead Lanthanum Zicronate Titanate, High Power Traveling Wave Tube Amplfier)

    CERN Document Server

    Flechtner, D D

    1999-01-01

    In 1989, researchers at CERN published the discovery of significant electron emission (1– 100 A/cm2) from Lead- Lanthanum-Zirconate-Titanate (PLZT). The publication of these results led to international interest in ferroelectric cathodes studies for use in pulsed power devices. At Cornell University in 1991, experiments with Lead-Zirconate-Titanate (PZT) compositions were begun to study the feasibility of using this ferroelectric material as a cathode in the electron gun section of High Power Traveling Wave Tube Amplifier Experiments. Current-voltage characteristics were documented for diode voltages ranging from 50– 500,000 V with anode cathode gaps of.5– 6 cm. A linear current-voltage relation was found for voltages less than 50 kV. For diode voltages ≥ 200 kV, a typical Child-Langmuir V3/2 dependence was observed...

  3. Photoluminescence properties of PZT 52/48 synthesized by microwave hydrothermal method using PVA with template

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, G.F., E-mail: guilmina@hotmail.com [Instituto de Quimica, Universidade Estadual Paulista, Departamento de Bioquimica e Tecnologia Quimica, Rua Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, SP (Brazil); Gasparotto, G. [Instituto de Quimica, Universidade Estadual Paulista, Departamento de Bioquimica e Tecnologia Quimica, Rua Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, SP (Brazil); Paris, E.C. [Empresa Brasileira de Pesquisa Agropecuaria, Embrapa Instrumentacao, Rua XV de novembro, 1452, Centro, 13.569-970 Sao Carlos, SP (Brazil); Zaghete, M.A.; Longo, E.; Varela, J.A. [Instituto de Quimica, Universidade Estadual Paulista, Departamento de Bioquimica e Tecnologia Quimica, Rua Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, SP (Brazil)

    2012-01-15

    Lead Titanate Zirconate (PZT) perovskite powders were synthesized by microwave hydrothermal method (M-H) at 180 {sup o}C for different time periods (2, 4, 8 and 12 h) with the presence of aqueous polyvinyl alcohol (PVA) solution 0.36 g L{sup -1}. The X-Ray diffraction (XRD), SE-FEG as well as the measurements of photoluminescence (PL) emission were used for monitoring the formation of a perovskite phase with random polycrystalline distortion in the structure. Emission spectra with fixed excitation wavelength of 350 nm showed higher value for the powder obtained after undergoing 8 h of treatment. A theoretical model derived from previous calculations allows us to discuss the origin of photoluminescence emission in the powders, which can be further related to the local disorder in the network of both ZrO{sub 6} and TiO{sub 6} octahedral, and dodecahedral PbO{sub 12}. The new morphology initially observed from the PZT perovskite crystal growth bearing the shape of fine plates is found to be directly related to photoluminescence emission with energy lower than that present in the PZT with cube-like morphology that emits in 560 nm. - Highlights: > This work details the efficiency of microwave hydrothermal synthesis in obtaining PZT powders. > PVA is used as a crystallization agent of PZT particles. > PZT particles presented photoluminescent (PL) behavior. > There aren't previous reports of photoluminescent PZT obtained by microwave hydrothermal synthesis. > Photoluminescence is one more interesting property for technological applications this material.

  4. Determination of the piezoelectric properties of fine scale PZT fibres

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, L.J.; Bowen, C.R. [Bath Univ. (United Kingdom). Dept. of Engineering and Applied Science

    2002-07-01

    Finite element (FE) modelling is used to determine the effect of fibre volume fraction, aspect ratio and polymer matrix stiffness on the d{sub 33} coefficients of 1-3 connectivity piezoelectric fibre composites. The aim is to use these observations as a means of determining the d{sub 33} of fine scale lead zirconate titanate (PZT) fibres. Results from a 1-D analytical model fit well with FE predictions for low aspect ratios. Two commercially available PZT-5A fibres, produced via the viscous suspension spinning process (VSSP) and an extrusion process, were fabricated into 1-3 composites with varying fibre volume fractions. The composite d{sub 33} measurements are compared to the model predictions and used to determine the d{sub 33} coefficients of the fibers. The d{sub 33} of the VSSP fibres and extruded fibres is measured as 365 pCN{sup -1} and 235 pCN{sup -1} respectively using this method. The large difference in the piezoelectric coefficients is possibly linked to the grain size and porosity, which is examined using scanning electron microscopy. (orig.)

  5. Analyzing the defect structure of CuO-doped PZT and KNN piezoelectrics from electron paramagnetic resonance.

    Science.gov (United States)

    Jakes, Peter; Kungl, Hans; Schierholz, Roland; Eichel, Rüdiger-A

    2014-09-01

    The defect structure for copper-doped sodium potassium niobate (KNN) ferroelectrics has been analyzed with respect to its defect structure. In particular, the interplay between the mutually compensating dimeric (Cu(Nb)'''-V(O)··) and trimeric (V(O)··-Cu(Nb)'''-V(O)··)· defect complexes with 180° and non-180° domain walls has been analyzed and compared to the effects from (Cu'' - V(O)··)(x)× dipoles in CuO-doped lead zirconate titanate (PZT). Attempts are made to relate the rearrangement of defect complexes to macroscopic electromechanical properties.

  6. Y3Fe5O12/Na,Bi,Sr-doped PZT particulate magnetoelectric composites

    Science.gov (United States)

    Lisnevskaya, I. V.; Bobrova, I. A.; Lupeiko, T. G.; Agamirzoeva, M. R.; Myagkaya, K. V.

    2016-05-01

    Magnetoelectric (ME) composites of Na, Bi, Sr substituted lead zirconate titanate (PZT) and yttrium iron garnet having representative formula (100-x) wt% Na,Bi,Sr-doped PZT (PZTNB-1)+x wt% Y3Fe5O12 (YIG) with x=10-90 were manufactured using powdered components obtained through sol-gel processes. It is shown that the decrease in sintering temperature provided by the use of finely dispersed PZTNB-1 and YIG powders allows to significantly reduce content of fluorite-like foreign phase based on zirconium oxide, which forms due to the interfacial interaction during heat treatment and becomes stabilized by yttrium oxide. Connectivity has considerable effect on the value of ME coefficient of composite ceramics. With the same x value, ΔE/ΔH characteristic decreases when changing from 0-3-type structured composites (PZT grains embedded in ferrite matrix) to 3-3-(interpenetrating network of two phases) and especially 3-0-type samples (YIG grains embedded in PZT matrix); in the last case this can be attributed to the substrate clamping effect when ferrite grains are clamped with piezoelectric matrix. ΔE/ΔH value of 0-3 composites with x=40-60 wt% was found to be ∼1.6 mV/(cm Oe).

  7. Texture of poled tetragonal PZT detected by synchrotron X-ray diffraction and micromechanics analysis

    International Nuclear Information System (INIS)

    Hall, D.A.; Steuwer, A.; Cherdhirunkorn, B.; Withers, P.J.; Mori, T.

    2005-01-01

    The texture and lattice elastic strain due to electrical poling of tetragonal PZT (lead zirconate titanate) ceramics have been measured using high energy synchrotron X-ray diffraction. It is shown that XRD peak intensity ratios associated with crystal planes of the form {002}, {112} and {202} exhibit a linear dependence on cos-bar 2 Ψ, where Ψ represents the orientation angle between the plane normal and the macroscopic poling axis. The observed dependence of texture and lattice strain on the grain orientation can be understood on the basis that the macroscopic strain due to poling is the average of the poling strains of all the individual grains

  8. Effect of Nb doping on sintering and dielectric properties of PZT ceramics

    Directory of Open Access Journals (Sweden)

    Ali Mirzaei

    2016-09-01

    Full Text Available The extensive use of piezoelectric ceramics such as lead zirconate titanate (PZT in different applications became possible with the development of donor or acceptor dopants. Therefore, studies on the effect of dopants on the properties of PZT ceramics are highly demanded. In this study undoped and 2.4 mol% Nb-doped PZT (PZTN powders were successfully obtained by a solid-state reaction and calcination at 850 °C for 2 h. Crystallinity and phase formation of the prepared powders were studied using X-ray diffraction (XRD. In order to study morphology of powders, scanning electron microscopy (SEM was performed. The crystalline PZT and Nb-doped PZT powders were pelleted into discs and sintered at 1100, 1150 and 1200 °C, with a heating rate of 10 °C/min, and holding time of 1–6 h to find the optimum combination of temperature and time to produce high density ceramics. Microstructural characterization was conducted on the fractured ceramic surfaces using SEM. Density measurements showed that maximal density of 95% of the theoretical density was achieved after sintering of PZT and PZTN ceramics at 1200 °C for 2 h and 4 h, respectively. However, the results of dielectric measurements showed that PZTN ceramics have higher relative permittivity (εr ∼17960 with lower Curie temperature (∼358 °C relative to PZT (εr = 16000 at ∼363 °C as a result of fine PZTN structure as well as presence of vacancies. In addition, dielectric loss (at 1 kHz of PZT and PZTN ceramics with 95% theoretical density was 0.0087 and 0.02, respectively. The higher dielectric loss in PZTN was due to easier domain wall motions in PZTN ceramics.

  9. Lead-free piezoelectric (K,Na)NbO3-based ceramic with planar-mode coupling coefficient comparable to that of conventional lead zirconate titanate

    Science.gov (United States)

    Ohbayashi, Kazushige; Matsuoka, Takayuki; Kitamura, Kazuaki; Yamada, Hideto; Hishida, Tomoko; Yamazaki, Masato

    2017-06-01

    We developed a (K,Na)NbO3-based lead-free piezoelectric ceramic with a KTiNbO5 system, (K1- x Na x )0.86Ca0.04Li0.02Nb0.85O3-δ-K0.85Ti0.85Nb1.15O5-BaZrO3-Fe2O3-MgO (K1- x N x N-NTK-FM). K1- x N x N-NTK-FM ceramic exhibits a very dense microstructure and a coupling coefficient of k p = 0.59, which is almost comparable to that of conventional lead zirconate titanate (PZT). The (K,Na)NbO3-based ceramic has the Γ15 mode for a wide x range. The nanodomains of orthorhombic (K,Na)NbO3 with the M3 mode coexist within the tetragonal Γ15 mode (K,Na)NbO3 matrix. Successive phase transition cannot occur with increasing x. The maximum k p is observed at approximately the minimum x required to generate the M3 mode phase. Unlike the behavior at the morphotropic phase boundary (MPB) in PZT, the characteristics of K1- x N x N-NTK-FM ceramic in this region changed moderately. This gentle phase transition seems to be a relaxor, although the diffuseness degree is not in line with this hypothesis. Furthermore, piezoelectric properties change from “soft” to “hard” upon the M3 mode phase aggregation.

  10. Fatigue response of a PZT multilayer actuator under high-field electric cycling with mechanical preload

    Science.gov (United States)

    Wang, Hong; Wereszczak, Andrew A.; Lin, Hua-Tay

    2009-01-01

    An electric fatigue test system was developed for evaluating the reliability of piezoelectric actuators with a mechanical loading capability. Fatigue responses of a lead zirconate titanate (PZT) multilayer actuator with a platethrough electrode configuration were studied under an electric field (1.7 times that of the coercive field of PZT material) and a concurrent mechanical preload (30.0 MPa). A total of 109 cycles was carried out. Variations in charge density and mechanical strain under the high electric field and constant mechanical loads were observed during the fatigue test. The dc and the first harmonic (at 10 Hz) dielectric and piezoelectric coefficients were subsequently characterized using fast Fourier transformation. Both the dielectric and the piezoelectric coefficients exhibited a monotonic decrease prior to 2.86×108 cycles under certain preloading conditions, and then fluctuated. Both the dielectric loss tangent and the piezoelectric loss tangent also fluctuated after a decrease. The results are interpreted and discussed with respect to domain wall activities, microdefects, and other anomalies.

  11. Broadband Electromagnetic Emission from PZT Ferroelectric Ceramics after Shock Loading

    Directory of Open Access Journals (Sweden)

    Fiodoras ANISIMOVAS

    2013-12-01

    Full Text Available It was experimentally registered pulsed electromagnetic (EM radiation in frequency range higher than television one using wideband horns with coaxial and waveguide outputs. The EM radiation was received during shock loading of lead zirconate titanate (PZT ceramics cylinders in conventional piezoelectric ignition mechanisms. Digital oscilloscope allows registering whole series of EM pulses and each pulse from the series transmitted from horn antenna of (1 – 18 GHz operating band frequencies. There is (1 – 4 ms delay between the shock and the first pulse of the series. Duration of the series is about (3 – 4 ms. The PZT cylinders were cleaved along their axes and the surfaces formed in the process were investigated by scanning electron microscope. It was concluded that from electrical point of view PZT ceramics contain interacting subsystems. It was found that EM radiation spectrum of pulse detected by waveguide detector heads has harmonics reaching 80 GHz. Presence of harmonics higher than 20 GHz indicates on radiation due to deceleration of electrons emitted during the switching. The EM pulses in the series appear randomly and have different amplitudes which partly confirmed thesis on independent switching dynamics of small volumes governed by a local electric field.DOI: http://dx.doi.org/10.5755/j01.ms.19.4.3137

  12. Ferroelectric and Piezoelectric properties of (111) oriented lanthanum modified lead zirconate titanate film

    International Nuclear Information System (INIS)

    Dutta, Soma; Antony Jeyaseelan, A.; Sruthi, S.

    2014-01-01

    Lanthanum modified lead zirconate titanate (PLZT) thick film with molecular formula of Pb 0.92 La 0.08 (Zr 0.52 Ti 0.48 ) 0.98 O 3 was grown preferentially along (111) direction on Pt/SiO 2 /Si (platinum/silicon oxide/silicon) substrate by spin coating of chemical solution. The directional growth of the film was facilitated by platinum (Pt) (111) template and rapid thermal annealing. X-ray diffraction pattern and atomic force microscopy revealed the preferential growth of the PLZT film. The film was characterized for ferroelectric and detailed piezoelectric properties in a parallel plate capacitor (metal–PLZT–metal) configuration. Ferroelectric characterization of the film showed saturated hysteresis loop with remanent polarization and coercive electric field values of 10.14 μC/cm 2 and 42 kV/cm, respectively, at an applied field of 300 kV/cm. Longitudinal piezoelectric coefficient (d 33,f ) was measured by employing converse piezoelectric effect where electrical charge response and displacement were measured with electrical voltage excitation on the sample electrodes. The effective transverse piezoelectric coefficient (e 31,f ) was derived from charge measurement with an applied mechanical excitation strain by using the four point bending method. d 33,f and e 31,f coefficients of PLZT films were found to be 380 pm/V and − 0.831 C/m 2 respectively. - Highlights: • PLZT (111) film is prepared by spin coating of chemical sol on Pt (111) template. • Piezoelectric d 33 value (380 pm/V) of PLZT film is found 20% higher than PZT. • Transverse piezocoefficient e 31,f of PLZT film is reported for the first time

  13. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator

    Science.gov (United States)

    Feng, Guo-Hua; Lee, Kuan-Yi

    2017-12-01

    This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.

  14. Impedance spectroscopy of PZT ceramics--measuring diffusion coefficients, mixed conduction, and Pb loss.

    Science.gov (United States)

    Donnelly, Niall J; Randall, Clive A

    2012-09-01

    Sintering of lead zirconate titanate (PZT) at high temperatures results in loss of Pb unless an ambient Pb activity is maintained. The tell-tale sign of Pb loss is an increased conductivity, usually manifested in unacceptably high values of tanδ. The conductivity is caused by oxygen vacancies and/or electron holes which are a byproduct of Pb evaporation. In the first part of this paper, it is shown how impedance spectroscopy can be used to separate ionic and electronic conductivity in a properly designed sample by selection of appropriate boundary conditions. Subsequently, impedance is used to probe defect concentrations in PZT during prolonged annealing at 700°C. It is found that oxygen vacancies are generated during annealing in air but the rate of generation actually decreases upon lowering the ambient pO(2). These results are explained by a model of Pb evaporation which, in this case, leads predominantly to oxygen vacancy generation. In principle, this effect could be used to generate a specific vacancy concentration in similar Pb-based oxides.

  15. Piezoelectric and mechanical properties of structured PZT-epoxy composites

    NARCIS (Netherlands)

    James, N.K.; Ende, D.A. van den; Lafont, U.; Zwaag, S. van der; Groen, W.A.

    2013-01-01

    Structured lead zirconium titanate (PZT)-epoxy composites are prepared by dielectrophoresis. The piezoelectric and dielectric properties of the composites as a function of PZT volume fraction are investigated and compared with the corresponding unstructured composites. The effect of poling voltage

  16. Finite Element Analysis of Single Cell Stiffness Measurements Using PZT-Integrated Buckling Nanoneedles

    Directory of Open Access Journals (Sweden)

    Maryam Alsadat Rad

    2016-12-01

    Full Text Available This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young’s modulus, Poisson’s ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m−1, 123.4700 GPa, 0.3000 and 0.0693 V·m·N−1, respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young’s modulus of the cells are determined to be 10.8867 ± 0.0094 N·m−1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young’s modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.

  17. Finite Element Analysis of Single Cell Stiffness Measurements Using PZT-Integrated Buckling Nanoneedles.

    Science.gov (United States)

    Rad, Maryam Alsadat; Tijjani, Auwal Shehu; Ahmad, Mohd Ridzuan; Auwal, Shehu Muhammad

    2016-12-23

    This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT)-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young's modulus, Poisson's ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m -1 , 123.4700 GPa, 0.3000 and 0.0693 V·m·N -1 , respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young's modulus of the cells are determined to be 10.8867 ± 0.0094 N·m -1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young's modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.

  18. Compact piezoelectric micromotor with a single bulk lead zirconate titanate stator

    Science.gov (United States)

    Yan, Liang; Lan, Hua; Jiao, Zongxia; Chen, Chin-Yin; Chen, I.-Ming

    2013-04-01

    The advance of micro/nanotechnology promotes the development of micromotors in recent years. In this article, a compact piezoelectric ultrasonic micromotor with a single bulk lead zirconate titanate stator is proposed. A traveling wave is generated by superposition of bending modes with 90° phase difference excited by d15 inverse piezoelectric effects. The operating principle simplifies the system structure significantly, and provides a miniaturization solution. A research prototype with the size of 0.75× 0.75×1.55 mm is developed. It can produce start-up torque of 0.27μNmand maximum speed of 2760 r/min at 14RMS.

  19. Enhanced tunability of magneto-impedance and magneto-capacitance in annealed Metglas/PZT magnetoelectric composites

    Science.gov (United States)

    Leung, Chung Ming; Zhuang, Xin; Xu, Junran; Li, Jiefang; Zhang, Jitao; Srinivasan, G.; Viehland, D.

    2018-05-01

    This report is on a new class of magnetostatically tunable magneto-impedance and magneto-capacitance devices based on a composite of ferromagnetic Metglas and ferroelectric lead zirconate titanate (PZT). Layered magneto-electric (ME) composites with annealed Metglas and PZT were studied in a longitudinal in-plane magnetic field-transverse electric field (L-T) mode. It was found that the degree of tunability was dependent on the annealing temperature of Metglas. An impedance tunability (ΔZ/Z0) of ≥400% was obtained at the electromechanical resonance (EMR) frequency (fr) for a sample with Metglas layers annealed at Ta = 500oC. This tunability is a factor of two higher than for composites with Metglas annealed at 350oC. The tunability of the capacitance, (ΔC/C0), was found to be 290% and -135k% at resonance and antiresonance, respectively, for Ta = 500oC. These results provide clear evidence for improvement in static magnetic field tunability of impedance and capacitance of ME composites with the use of annealed Metglas and are of importance for their potential use in tunable electronic applications.

  20. Deposition of highly (111)-oriented PZT thin films by using metal organic chemical deposition

    CERN Document Server

    Bu, K H; Choi, D K; Seong, W K; Kim, J D

    1999-01-01

    Lead zirconate titanate (PZT) thin films have been grown on Pt/Ta/SiNx/Si substrates by using metal organic chemical vapor deposition with Pb(C sub 2 H sub 5) sub 4 , Zr(O-t-C sub 4 H sub 9) sub 4 , and Ti(O-i-C sub 3 H sub 7) sub 4 as source materials and O sub 2 as an oxidizing gas. The Zr fraction in the thin films was controlled by varying the flow rate of the Zr source material. The crystal structure and the electrical properties were investigated as functions of the composition. X-ray diffraction analysis showed that at a certain range of Zr fraction, highly (111)-oriented PZT thin films with no pyrochlore phases were deposited. On the other hand, at low Zr fractions, there were peaks from Pb-oxide phases. At high Zr fractions, peaks from pyrochlore phase were seen. The films also showed good electrical properties, such as a high dielectric constant of more than 1200 and a low coercive voltage of 1.35 V.

  1. Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites

    NARCIS (Netherlands)

    James, N.K.; Lafont, U.; Zwaag, S. van der; Groen, W.A.

    2014-01-01

    Piezoelectric ceramic-polymer composites with 0-3 connectivity were fabricated using lead zirconium titanate (PZT) powder dispersed in an ionomer (Zn ionomer) and its reference ethylene methacrylic acid copolymer (EMAA) polymer matrix. The PZT-Zn ionomer and PZT-EMAA composites were prepared by melt

  2. High Frequency Magneto Dielectric Effects In Self Assembled Ferrite Ferroelectric Core Shell Nanoparticles

    Science.gov (United States)

    2014-09-10

    ferrimagnetic metals, alloys or oxides and ferroelectrics such as barium titanate (BTO), lead zirconate titanate ( PZT ), and lead magnesium niobate-lead...estimate the magneto-capacitance effect in BTO or PZT films on substrates of ferromagnetic alloys.25 This work is on the observation and theory of MDE...transmission and reflection coefficients were done to estimate the complex permittivity. During the measurements a bias static magnetic field was

  3. Displacement and resonance behaviors of a piezoelectric diaphragm driven by a double-sided spiral electrode

    KAUST Repository

    Shen, Zhiyuan; Olfatnia, Mohammad; Miao, Jianmin; Wang, Zhihong

    2012-01-01

    This paper presents the design of a lead zirconate titanate (PZT) diaphragm actuated by double-sided patterned electrodes. Au/Cr electrodes were deposited on bulk PZT wafers by sputtering while patterned by a lift-off process. SU-8 thick film

  4. Ferroelectric and Piezoelectric properties of (111) oriented lanthanum modified lead zirconate titanate film

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Soma, E-mail: som@nal.res.in; Antony Jeyaseelan, A.; Sruthi, S.

    2014-07-01

    Lanthanum modified lead zirconate titanate (PLZT) thick film with molecular formula of Pb{sub 0.92}La{sub 0.08}(Zr{sub 0.52}Ti{sub 0.48}){sub 0.98}O{sub 3} was grown preferentially along (111) direction on Pt/SiO{sub 2}/Si (platinum/silicon oxide/silicon) substrate by spin coating of chemical solution. The directional growth of the film was facilitated by platinum (Pt) (111) template and rapid thermal annealing. X-ray diffraction pattern and atomic force microscopy revealed the preferential growth of the PLZT film. The film was characterized for ferroelectric and detailed piezoelectric properties in a parallel plate capacitor (metal–PLZT–metal) configuration. Ferroelectric characterization of the film showed saturated hysteresis loop with remanent polarization and coercive electric field values of 10.14 μC/cm{sup 2} and 42 kV/cm, respectively, at an applied field of 300 kV/cm. Longitudinal piezoelectric coefficient (d{sub 33,f}) was measured by employing converse piezoelectric effect where electrical charge response and displacement were measured with electrical voltage excitation on the sample electrodes. The effective transverse piezoelectric coefficient (e{sub 31,f}) was derived from charge measurement with an applied mechanical excitation strain by using the four point bending method. d{sub 33,f} and e{sub 31,f} coefficients of PLZT films were found to be 380 pm/V and − 0.831 C/m{sup 2} respectively. - Highlights: • PLZT (111) film is prepared by spin coating of chemical sol on Pt (111) template. • Piezoelectric d{sub 33} value (380 pm/V) of PLZT film is found 20% higher than PZT. • Transverse piezocoefficient e{sub 31,f} of PLZT film is reported for the first time.

  5. Lanthanide-Assisted Deposition of Strongly Electro-optic PZT Thin Films on Silicon: Toward Integrated Active Nanophotonic Devices.

    Science.gov (United States)

    George, J P; Smet, P F; Botterman, J; Bliznuk, V; Woestenborghs, W; Van Thourhout, D; Neyts, K; Beeckman, J

    2015-06-24

    The electro-optical properties of lead zirconate titanate (PZT) thin films depend strongly on the quality and crystallographic orientation of the thin films. We demonstrate a novel method to grow highly textured PZT thin films on silicon using the chemical solution deposition (CSD) process. We report the use of ultrathin (5-15 nm) lanthanide (La, Pr, Nd, Sm) based intermediate layers for obtaining preferentially (100) oriented PZT thin films. X-ray diffraction measurements indicate preferentially oriented intermediate Ln2O2CO3 layers providing an excellent lattice match with the PZT thin films grown on top. The XRD and scanning electron microscopy measurements reveal that the annealed layers are dense, uniform, crack-free and highly oriented (>99.8%) without apparent defects or secondary phases. The EDX and HRTEM characterization confirm that the template layers act as an efficient diffusion barrier and form a sharp interface between the substrate and the PZT. The electrical measurements indicate a dielectric constant of ∼650, low dielectric loss of ∼0.02, coercive field of 70 kV/cm, remnant polarization of 25 μC/cm(2), and large breakdown electric field of 1000 kV/cm. Finally, the effective electro-optic coefficients of the films are estimated with a spectroscopic ellipsometer measurement, considering the electric field induced variations in the phase reflectance ratio. The electro-optic measurements reveal excellent linear effective pockels coefficients of 110 to 240 pm/V, which makes the CSD deposited PZT thin film an ideal candidate for Si-based active integrated nanophotonic devices.

  6. Structural and electrical properties of Sm{sup 3+} substituted PZT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, S.K. [Solid State Physics Laboratory, Timarpur, Delhi 110 054 (India)], E-mail: 628@ssplnet.org; Thakur, O.P.; Bhattacharya, D.K. [Solid State Physics Laboratory, Timarpur, Delhi 110 054 (India); Prakash, Chandra [DRDO Bhawan, DHQ, New Delhi 110 011 (India); Chatterjee, Ratnamala [Department of Physics, Indian Institute of Technology, New Delhi 110 016 (India)

    2009-01-22

    Samarium modified lead zirconate titanate (PSZT: Pb{sub 1-x}Sm{sub x}(Zr{sub 0.65}Ti{sub 0.35})O{sub 3}: x = 0, 0.02, 0.04, 0.06) ceramics were synthesized by solid state ceramic route. XRD shows single-phase formation with rhombohedral structure up to x = 0.04. With Sm-substitution, the grain size first increases up to x = 0.02 and then decreases. A metal/ferroelectric/metal (MFM) structure was made by depositing gold electrode on the flat surfaces for electrical measurements. All samples show normal ferroelectric behaviour, however, a squareness of P-E loop (polarization vs. electric field) was observed to increase with Sm content. Higher electromechanical coupling coefficients (K{sub p} and K{sub t}) have been achieved for the PZT with 6 mol% Sm substitution and having fine grain size.

  7. Characterization And Operation Of PZT Ceramic Filters On Gamma-Radiation Environment

    International Nuclear Information System (INIS)

    Fawzy, Y.H.A.; Soliman, F.A.S.; Swidan, A.; Abdelmagid, A.

    2008-01-01

    The present paper deals with the gamma-ray effects on the electrical characteristics of ferroelectric materials used as an electronic frequency filters. After the recall of main observations, mechanisms are analyzed and proposed to take into account the effects in Lead- Zirconate-Titanate (PZT) based materials. In this concern, a wide frequency range samples, extends from 400 k Hz up to 6.5 MHz, were chosen for studying their frequency response and related terminologies, dynamic characteristics, and equivalent circuits. In general, for all samples, a shift on the frequency values was recorded, where the values of the center frequency, resonance frequency and anti-resonance frequency were shown to be shifted. The observed shift is mainly due to the noticed changes on the equivalent circuit elements of the devices, where a pronounced shift on the values of L,,,CP and R,, were recorded

  8. Damage-free patterning of ferroelectric lead zirconate titanate thin films for microelectromechanical systems via contact printing

    Science.gov (United States)

    Welsh, Aaron

    This thesis describes the utilization and optimization of the soft lithographic technique, microcontact printing, to additively pattern ferroelectric lead zirconate titanate (PZT) thin films for application in microelectromechanical systems (MEMS). For this purpose, the solution wetting, pattern transfer, printing dynamics, stamp/substrate configurations, and processing damages were optimized for incorporation of PZT thin films into a bio-mass sensor application. This patterning technique transfers liquid ceramic precursors onto a device stack in a desired configuration either through pattern definition in the stamp, substrate or both surfaces. It was determined that for ideal transfer of the pattern from the stamp to the substrate surface, wetting between the solution and the printing surface is paramount. To this end, polyurethane-based stamp surfaces were shown to be wet uniformly by polar solutions. Patterned stamp surfaces revealed that printing from raised features onto flat substrates could be accomplished with a minimum feature size of 5 mum. Films patterned by printing as a function of thickness (0.1 to 1 mum) showed analogous functional properties to continuous films that were not patterned. Specifically, 1 mum thick PZT printed features had a relative permittivity of 1050 +/- 10 and a loss tangent of 2.0 +/- 0.4 % at 10 kHz; remanent polarization was 30 +/- 0.4 muC/cm 2 and the coercive field was 45 +/- 1 kV/cm; and a piezoelectric coefficient e31,f of -7 +/- 0.4 C/m2. No pinching in the minor hysteresis loops or splitting of the first order reversal curve (FORC) distributions was observed. Non-uniform distribution of the solution over the printed area becomes more problematic as feature size is decreased. This resulted in solutions printed from 5 mum wide raised features exhibiting a parabolic shape with sidewall angles of ˜ 1 degree. As an alternative, printing solutions from recesses in the stamp surface resulted in more uniform solution thickness

  9. Displacive Transformation in Ceramics

    Science.gov (United States)

    1994-02-28

    PZT ), ceramics have attracted natural abundance. much attention for use in nonvolatile semiconductor mem- We attribute the observed spectra in Fig. I to...near a crack tip in piezoelectric ceramics of lead zirconate titanate ( PZT ) and barium titanate. They reasoned that the poling of ferroelectric... Texture in Ferroelastic Tetragonal Zirconia," J. Am. Ceram . Soc., 73 (1990) no. 6: 1777-1779. 27. J. F. Jue and A. Virkar, "Fabrication, Microstructural

  10. Characterization of PZT thin films on metal substrates; Charakterisierung von PZT-Duennschichten auf Metallsubstraten

    Energy Technology Data Exchange (ETDEWEB)

    Dutschke, A.

    2008-02-02

    Lead zirconate titanate (PbZr{sub x}Ti{sub 1-x}O{sub 3},PZT) is one of the most applied ceramic materials because of its distinctive piezo- and ferroelectric properties. Prepared as thin films on flexible, metallic substrates it can be used for various applications as strain gauges, key switches, vibration dampers, microactuators and ultrasonic transducers. The aim of this work is to analyze the microstructure and the phase-content of PZT-thin films deposited on temperature- und acid-resistant hastelloy-sheets, to correlate the results with the ferroelectric and dielectric properties. It is demonstrated, that the specific variation of the microstructure can be achieved by different thermal treatments and the selective addition of Neodymium as dopant. Nd-doping leads to a shift of the maximum nucleation rate towards reduced temperatures and a decrease in the rate of growth compared to undoped films. The PZT-films are prepared by a sol-gel-process in fourfold multilayers with a composition near the morphotropic phase boundary, where the tetragonal und rhombohedral perovskite-phases coexist. The crystallisation in Nd-doped and undoped films takes place heterogeneously, preferentially at the interfaces and on the surface of the multilayered films as well as on the inner surface of pores within the films. For the first time, the Zr:Ti fluctuation phenomena emerging in sol-gel derived PZT films is related to the microstructure and the local phase content on a nanometer scale. In this connection it is proved, that long-distance Zr:Ti gradients arise preferentially before and during the crystallisation of the pyrochlore phase. During the following crystallisation of the perovskite phase, the crystallites grow across these gradients without modifying them. It is pointed out that the fluctuation in the Zr:Ti ratio has only minor influence on the amount of the tetragonal or rhombohedral distortion of the crystallites after the transition from the para- to the ferroelectric

  11. Barium zirconate-titanate/barium calcium-titanate ceramics via sol-gel process: novel high-energy-density capacitors

    International Nuclear Information System (INIS)

    Puli, Venkata Sreenivas; Kumar, Ashok; Scott, J F; Katiyar, Ram S; Chrisey, Douglas B; Tomozawa, M

    2011-01-01

    Lead-free barium zirconate-titanate/barium calcium-titanate, [(BaZr 0.2 Ti 0.80 )O 3 ] 1-x -[(Ba 0.70 Ca 0.30 )TiO 3 ] x (x = 0.10, 0.15, 0.20) (BZT-BCT) ceramics with high dielectric constant, low dielectric loss and moderate electric breakdown field were prepared by the sol-gel synthesis technique. X-ray diffraction patterns revealed tetragonal crystal structure and this was further confirmed by Raman spectra. Well-behaved ferroelectric hysteresis loops and moderate polarizations (spontaneous polarization, P s ∼ 3-6 μC cm -2 ) were obtained in these BZT-BCT ceramics. Frequency-dependent dielectric spectra confirmed that ferroelectric diffuse phase transition (DPT) exists near room temperature. Scanning electron microscope images revealed monolithic grain growth in samples sintered at 1280 deg. C. 1000/ε versus (T) plots revealed ferroelectric DPT behaviour with estimated γ values of ∼1.52, 1.51 and 1.88, respectively, for the studied BZT-BCT compositions. All three compositions showed packing-limited breakdown fields of ∼47-73 kV cm -1 with an energy density of 0.05-0.6 J cm -3 for thick ceramics (>1 mm). Therefore these compositions might be useful in Y5V-type capacitor applications.

  12. Evolution of a MEMS Photoacoustic Chemical Sensor

    National Research Council Canada - National Science Library

    Pellegrino, Paul M; Polcawich, Ronald G

    2003-01-01

    .... Initial MEMS work is centered on fabrication of a lead zirconate titanate (PZT) microphone subsystem to be incorporated in the full photoacoustic device. Preliminary results were very positive for the macro-photoacoustic cell, PZT membrane microphones design / fabrication and elementary monolithic MEMS photoacoustic cavity.

  13. Piezoelectric and dielectric characterization of corona and contact poled PZT-epoxy-MWCNT bulk composites

    Science.gov (United States)

    Banerjee, S.; Cook-Chennault, K. A.; Du, W.; Sundar, U.; Halim, H.; Tang, A.

    2016-11-01

    Three-phase lead zirconate titanate (PZT, PbZr0.52Ti0.48O3)-epoxy-multi-walled carbon nanotube (MWCNT) bulk composites were prepared, where the volume fraction of PZT was held constant at 30%, while the volume fraction of the MWCNTs was varied from 1.0%-10%. The samples were poled using either a parallel plate contact or contactless (corona) poling technique. The piezoelectric strain coefficient (d33), dielectric constant (ɛ), and dielectric loss tangent (tan δ) of the samples were measured at 110 Hz, and compared as a function of poling technique and volume fraction of MWCNTs. The highest values for dielectric constant and piezoelectric strain coefficients were 465.82 and 18.87 pC/N for MWCNT volume fractions of 10% and 6%, respectively. These values were obtained for samples that were poled using the corona contactless method. The impedance and dielectric spectra of the composites were recorded over a frequency range of 100 Hz-20 MHz. The impedance values observed for parallel-plate contact poled samples are higher than that of corona poled composites. The fractured surface morphology and distribution of the PZT particles and MWCNTs were observed with the aid of electron dispersion spectroscopy and a scanning electron microscope. The surface morphology of the MWCNTs was observed with the aid of a field emission transmission electron microscope.

  14. Performance of PZT stacks under high-field electric cycling at various temperatures in heavy-duty diesel engine fuel injectors

    Science.gov (United States)

    Wang, Hong; Lee, Sung-Min; Lin, Hua-Tay; Stafford, Randy

    2016-04-01

    Testing and characterization of large prototype lead zirconate titanate (PZT) stacks present substantial technical challenges to electronic systems. The work in this study shows that an alternative approach can be pursued by using subunits extracted from prototype stacks. Piezoelectric and dielectric integrity was maintained even though the PZT plate specimens experienced an additional loading process involved with the extraction after factory poling. Extracted 10-layer plate specimens were studied by an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 108 cycles, both at room temperature (22°C) and at 50°C. The elevated temperature had a defined impact on the fatigue of PZT stacks. About 48 and 28% reductions were observed in the piezoelectric and dielectric coefficients, respectively, after 108 cycles at 50°C, compared with reductions of 25 and 15% in the respective coefficients at 22°C. At the same time, the loss tangent varied to a limited extent. The evolution of PZT-electrode interfacial layers or nearby dielectric layers should account for the difference in the fatigue rates of piezoelectric and dielectric coefficients. But the basic contribution to observed fatigue may result from the buildup of a bias field that finally suppressed the motion of the domain walls. Finally, monitoring of dielectric coefficients can be an effective tool for on-line lifetime prediction of PZT stacks in service if a failure criterion is defined properly.

  15. Development of dual PZT transducers for reference-free crack detection in thin plate structures.

    Science.gov (United States)

    Sohn, Hoon; Kim, Seuno Bum

    2010-01-01

    A new Lamb-wave-based nondestructive testing (NDT) technique, which does not rely on previously stored baseline data, is developed for crack monitoring in plate structures. Commonly, the presence of damage is identified by comparing "current data" measured from a potentially damaged stage of a structure with "baseline data" previously obtained at the intact condition of the structure. In practice, structural defects typically take place long after collection of the baseline data, and the baseline data can be also affected by external loading, temperature variations, and changing boundary conditions. To eliminate the dependence on the baseline data comparison, the authors previously developed a reference-free NDT technique using 2 pairs of collocated lead zirconate titanate (PZT) transducers placed on both sides of a plate. This reference-free technique is further advanced in the present study by the necessity of attaching transducers only on a single surface of a structure for certain applications such as aircraft. To achieve this goal, a new design of PZT transducers called dual PZT transducers is proposed. Crack formation creates Lamb wave mode conversion due to a sudden thickness change of the structure. This crack appearance is instantly detected from the measured Lamb wave signals using the dual PZT transducers. This study also suggests a reference-free statistical approach that enables damage classification using only the currently measured data set. Numerical simulations and experiments were conducted using an aluminum plate with uniform thickness and fundamental Lamb waves modes to demonstrate the applicability of the proposed technique to reference-free crack detection.

  16. Model Development for Atomic Force Microscope Stage Mechanisms

    National Research Council Canada - National Science Library

    Smith, Ralph C; Hatch, Andrew G; De, Tathagata; Salapaka, Murti V; Raye, Julie K; del Rosario, Ricardo C

    2005-01-01

    In this paper, we develop nonlinear constitutive equations and resulting system models quantifying the nonlinear and hysteretic field-displacement relations inherent to lead zirconate titanate (PZT...

  17. Optimization of Pb(Zr0.53,Ti0.47)O3 films for micropower generation using integrated cantilevers

    KAUST Repository

    Fuentes-Fernandez, E. M A; Baldenegro-Pé rez, Leonardo Aurelio; Quevedo-Ló pez, Manuel Angel Quevedo; Gnade, Bruce E.; Hande, Abhiman; Shah, Pradeep; Alshareef, Husam N.

    2011-01-01

    Lead zirconate titanate, Pb(Zr0.53,Ti0.47)O 3 or PZT, thin films and integrated cantilevers have been fabricated for energy harvesting applications. The PZT films were deposited on PECVD SiO2/Si substrates with a sol-gel derived ZrO2 buffer layer

  18. Barium zirconate-titanate/barium calcium-titanate ceramics via sol-gel process: novel high-energy-density capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Puli, Venkata Sreenivas; Kumar, Ashok; Scott, J F; Katiyar, Ram S [SPECLAB, Department of Physics, University of Puerto Rico, San Juan, PR 00936 (Puerto Rico); Chrisey, Douglas B; Tomozawa, M, E-mail: rkatiyar@uprrp.edu [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590 (United States)

    2011-10-05

    Lead-free barium zirconate-titanate/barium calcium-titanate, [(BaZr{sub 0.2}Ti{sub 0.80})O{sub 3}]{sub 1-x}-[(Ba{sub 0.70}Ca{sub 0.30})TiO{sub 3}]{sub x} (x = 0.10, 0.15, 0.20) (BZT-BCT) ceramics with high dielectric constant, low dielectric loss and moderate electric breakdown field were prepared by the sol-gel synthesis technique. X-ray diffraction patterns revealed tetragonal crystal structure and this was further confirmed by Raman spectra. Well-behaved ferroelectric hysteresis loops and moderate polarizations (spontaneous polarization, P{sub s} {approx} 3-6 {mu}C cm{sup -2}) were obtained in these BZT-BCT ceramics. Frequency-dependent dielectric spectra confirmed that ferroelectric diffuse phase transition (DPT) exists near room temperature. Scanning electron microscope images revealed monolithic grain growth in samples sintered at 1280 deg. C. 1000/{epsilon} versus (T) plots revealed ferroelectric DPT behaviour with estimated {gamma} values of {approx}1.52, 1.51 and 1.88, respectively, for the studied BZT-BCT compositions. All three compositions showed packing-limited breakdown fields of {approx}47-73 kV cm{sup -1} with an energy density of 0.05-0.6 J cm{sup -3} for thick ceramics (>1 mm). Therefore these compositions might be useful in Y5V-type capacitor applications.

  19. Study of mechanical-magnetic and electromagnetic properties of PZT/Ni film systems by a novel bulge technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q.; Zhou, W.; Ding, J.; Xiao, M. [School of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Film Materials and Devices of Science and Technology Department of Hunan Province, Xiangtan University, Hunan 411105 (China); Yu, Z.J.; Xu, H. [State Key Lab for Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Mao, W.G., E-mail: ssamao@126.com [School of Materials Science and Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Film Materials and Devices of Science and Technology Department of Hunan Province, Xiangtan University, Hunan 411105 (China); Pei, Y.M.; Li, F.X. [State Key Lab for Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Feng, X. [AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Fang, D.N., E-mail: fangdn@pku.edu.cn [State Key Lab for Turbulence and Complex Systems, Peking University, Beijing 100871 (China); Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2017-02-01

    A novel multiple functional bulge apparatus was designed to study the mechanical-electronic-magnetic characteristics of electromagnetic materials. The elastic modulus difference effect of Ni thin film was observed and it was about 22.16% in the demagnetized and magnetization saturated states. The mechanical-magnetic behaviors of Ni and lead-titanate zirconate (PZT)/Ni films were in-situ measured by using the new bulge systems, respectively. The evolutions of three key material properties in hysteresis loop including saturation magnetization, remanent magnetization and coercive field were discussed in detail, respectively. The mechanisms of mechanical-magnetic coupled behaviors of Ni and PZT/Ni films were analyzed with the aid of the competitive relationship of stress and magnetization. Similarly, the electronic-magnetic characteristics of PZT/Ni films were in-situ measured by using this experimental system. The evolution of saturated magnetization, remanent magnetization and coercive field Kerr signals were discussed with the magneto-elastic anisotropy energy point. In this paper, a suitable mechanical-electronic-magnetic bulge measurement system was established, which would provide a good choice for further understanding the multi field coupling characteristics of electromagnetic film materials. - Highlights: • A novel bulge apparatus was designed to study electromagnetic materials. • The mechanical-magnetic features of Ni film were studied by this new apparatus. • The ΔE effect of Ni film was observed and analyzed. • The mechanical electronic-magnetic characteristics of PZT/Ni film were discussed.

  20. Thin PZT-Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications

    KAUST Repository

    Ghoneim, Mohamed T.; Zidan, Mohammed A.; Al-Nassar, Mohammed Y.; Hanna, Amir; Kosel, Jü rgen; Salama, Khaled N.; Hussain, Muhammad Mustafa

    2015-01-01

    A flexible version of traditional thin lead zirconium titanate ((Pb1.1Zr0.48Ti0.52O3)-(PZT)) based ferroelectric random access memory (FeRAM) on silicon shows record performance in flexible arena. The thin PZT layer requires lower operational

  1. Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics

    CERN Document Server

    Damjanovic, D

    1997-01-01

    The contribution from the irreversible displacement of non-180 deg domain walls to the direct longitudinal piezoelectric d sub 3 sub 3 coefficient of BaTiO sub 3 and Pb(Zr, Ti)O sub 3 ceramics was determined quantitatively by using the Rayleigh law. Effects of the crystal structure and microstructure of the ceramics as well as the external d.c. pressure on the domain wall contribution to d sub 3 sub 3 were examined. In barium titanate, this domain wall contribution is large (up to 35% of the total d sub 3 sub 3 , under the experimental conditions used) and dependent on the external d.c. pressure in coarse grained ceramics, and much smaller and independent of the external d.c. pressure in fine-grained samples. The presence of internal stresses in fine-grained ceramics could account for the observed behaviour. The analysis shows that the domain-wall contribution to the d sub 3 sub 3 in lead zirconate titanate ceramics is large in compositions close to the morphotropic phase boundary that contain a mixture of te...

  2. The determination of major and some minor constituents in lead zirconate-titanate compositions by x-ray fluorescence and atomic absorption spectrometry

    NARCIS (Netherlands)

    van Willigen, J.H.H.G.; Kruidhof, H.; Dahmen, E.A.M.F.

    1972-01-01

    An accurate X-ray fluorescence spectrometric method is described for the determination of lead, zirconium and titanium in lead zirconate-titanate ceramics. Careful matching of samples and standards by a borax fusion method resulted in a relative standard deviation of about 0.2% for the major

  3. Microestructura y propiedades de materiales cerámicos PZT con control de crecimiento de grano

    Directory of Open Access Journals (Sweden)

    Celi, L. A.

    1999-10-01

    Full Text Available Lead zirconate titanate ceramic powders have been surface modified by using phosphor esther 0.3% in volume. The phosphorous modification gave higher densities at lower temperatures associated with a reduction of the weight losses during the densification process. From the relationships between ceramic processing and microstructure, it was established that the phosphorous surface modification allows the effective grain growth control as well a higher homogeneity in the grain size distribution.

    Se ha realizado un proceso de modificación superficial con ester fosfato al 0.3% en volumen, sobre polvo cerámico de titanato circonato de plomo, PZT. Se observa que el material modificado con fósforo presenta una mayor densificación aparente a una temperatura menor unida a una reducción de las pérdidas de peso durante el proceso de densificación. Se han establecido las relaciones entre el procesamiento y las microestructuras del material PZT sin modificar y el modificado. Se evidencia un control del crecimiento de grano y una mayor homogeneidad en la distribución de tamaños de grano en el material modificado.

  4. Sound velocity variation as function of polarization state in Lead Zirconate Titanate (PZT) Ceramics

    International Nuclear Information System (INIS)

    Essolaani, W; Farhat, N

    2012-01-01

    There are several ultrasonic techniques to measure the sound velocity, for example, the pulse-echo method. In such method, the size of transducer used to measure the sound velocity must be in the same order of the sample size. If not, the incompatibility of sizes becomes an error source of the sound velocity measurement. In this work, the Laser Induced Pressure Pulse (LIPP) method is used as ultrasonic method. This method has been very useful for studying the spatial distribution of charges and polarization in dielectrics. We take advantage of the fact that the method allows the sound velocity measurement, to study its variation as function of polarization state in (PZT) ceramics. In a sample with a known thickness e, the sound velocity ν is deduced from the measurement of the transit time T. The sound velocity depends on the elastic constants which in turn they depend on poling conditions. Thus, the variation of the sound velocity is related to the direction and the amplitude of the polarization.

  5. A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents an experimental study of damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic...

  6. Effect of the Crystal Structure on the Electrical Properties of Thin-Film PZT Structures

    Science.gov (United States)

    Delimova, L. A.; Gushchina, E. V.; Zaitseva, N. V.; Seregin, D. S.; Vorotilov, K. A.; Sigov, A. S.

    2018-03-01

    A new method of two-stage crystallization of lead zirconate-titanate (PZT) films using a seed sublayer with a low excess lead content has been proposed and realized. A seed layer with a strong texture of perovskite Pe(111) grains is formed from a solution with a lead excess of 0-5 wt %; the fast growth of the grains is provided by the deposition of the main film from a solution with high lead content. As a result, a strong Pe(111) texture with complete suppression of the Pe(100) orientation forms. An analysis of current-voltage dependences of the transient currents and the distributions of the local conductivity measured by the contact AFM method reveals two various mechanisms of current percolation that are determined by traps in the bulk and at the perovskite grain interfaces.

  7. Characterization and microstructure of porous lead zirconate titanate ...

    Indian Academy of Sciences (India)

    Unknown

    need to have porous piezoelectric materials. These can be made by combining a PZT ceramic with a passive polymer or air phase. These materials greatly extend the range of properties offered by conventional PZT ceramics. More- over, porosity in the materials could reduce the effective acoustical impedance leading to an ...

  8. Thermoelectric-pyroelectric hybrid energy generation from thermopower waves in core-shell structured carbon nanotube-PZT nanocomposites.

    Science.gov (United States)

    Yeo, Taehan; Hwang, Hayoung; Shin, Dongjoon; Seo, Byungseok; Choi, Wonjoon

    2017-02-10

    There is an urgent need to develop a suitable energy source owing to the rapid development of various innovative devices using micro-nanotechnology. The thermopower wave (TW), which produces a high specific power during the combustion of solid fuel inside micro-nanostructure materials, is a unique energy source for unusual platforms that cannot use conventional energy sources. Here, we report on the significant enhancement of hybrid energy generation of pyroelectrics and thermoelectrics from TWs in carbon nanotube (CNT)-PZT (lead zirconate titanate, P(Z 0.5 -T 0.5 )) composites for the first time. Conventional TWs use only charge carrier transport driven by the temperature gradient along the core materials to produce voltage. In this study, a core-shell structure of CNTs-PZTs was prepared to utilize both the temperature gradient along the core material (thermoelectrics) and the dynamic change in the temperature of the shell structure (pyroelectrics) induced by TWs. The dual mechanism of energy generation in CNT-PZT composites amplified the average peak and duration of the voltage up to 403 mV and 612 ms, respectively, by a factor of 2 and 60 times those for the composites without a PZT layer. Furthermore, dynamic voltage measurements and structural analysis in repetitive TWs confirmed that CNT-PZT composites maintain the original performance in multiple TWs, which improves the reusability of materials. The advanced TWs obtained by the application of a PZT layer as a pyroelectric material contributes to the extension of the usable energy portion as well as the development of TW-based operating devices.

  9. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method.

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-12-07

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs.

  10. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method

    Science.gov (United States)

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-01-01

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs. PMID:27941617

  11. PZT Thin-Film Micro Probe Device with Dual Top Electrodes

    Science.gov (United States)

    Luo, Chuan

    Lead zirconate titanate (PZT) thin-film actuators have been studied intensively for years because of their potential applications in many fields. In this dissertation, a PZT thin-film micro probe device is designed, fabricated, studied, and proven to be acceptable as an intracochlear acoustic actuator. The micro probe device takes the form of a cantilever with a PZT thin-film diaphragm at the tip of the probe. The tip portion of the probe will be implanted in cochlea later in animal tests to prove its feasibility in hearing rehabilitation. The contribution of the dissertation is three-fold. First, a dual top electrodes design, consisting of a center electrode and an outer electrode, is developed to improve actuation displacement of the PZT thin-film diaphragm. The improvement by the dual top electrodes design is studied via a finite element model. When the dimensions of the dual electrodes are optimized, the displacement of the PZT thin-film diaphragm increases about 30%. A PZT thin-film diaphragm with dual top electrodes is fabricated to prove the concept, and experimental results confirm the predictions from the finite element analyses. Moreover, the dual electrode design can accommodate presence of significant residual stresses in the PZT thin-film diaphragm by changing the phase difference between the two electrodes. Second, a PZT thin-film micro probe device is fabricated and tested. The fabrication process consists of PZT thin-film deposition and deep reactive ion etching (DRIE). The uniqueness of the fabrication process is an automatic dicing mechanism that allows a large number of probes to be released easily from the wafer. Moreover, the fabrication is very efficient, because the DRIE process will form the PZT thin-film diaphragm and the special dicing mechanism simultaneously. After the probes are fabricated, they are tested with various possible implantation depths (i.e., boundary conditions). Experimental results show that future implantation depths

  12. Molten salt synthesis of lead lanthanum zirconate titanate ceramic powders

    International Nuclear Information System (INIS)

    Cai Zongying; Xing Xianran; Li Lu; Xu Yeming

    2008-01-01

    Lead lanthanum zirconate titanate (Pb 0.95 La 0.03 )(Zr 0.52 Ti 0.48 )O 3 (PLZT) was synthesized by one step molten salt method with the starting materials of PbC 2 O 4 , La 2 O 3 , ZrO(NO 3 ) 2 .2H 2 O and TiO 2 in the NaCl-KCl eutectic mixtures in the temperature range of 700-1000 deg. C. The single phase of (Pb 0.95 La 0.03 )(Zr 0.52 Ti 0.48 )O 3 powders was prepared at a temperature as low as 850 deg. C for 5 h. The effects of process parameters, such as soaking temperature and time, salt species, and the amount of flux with respect to the starting materials were investigated. The growth process of the PLZT particles in the molten salt undergoes a transition from a diffusion controlled mechanism to an interfacial reaction controlled mechanism at 900 deg. C

  13. Phase and Texture Evolution in Chemically Derived PZT Thin Films on Pt Substrates

    Science.gov (United States)

    2014-09-01

    function of heating rate. The FWHM of the Ill PZT texture components is sim 2978 Journal of the American Ceramic Society Mhin et al. Vol. 97, No. 9...Z39.18 ABSTRACT Phase and Texture Evolution in Chemically Derived PZT Thin Films on Pt Substrates Report Title The crystallization of lead zirconate...phase influencing texture evolution. The results suggest that PZT nucleates directly on Pt, which explains the observation of a more highly oriented

  14. Raman study of lead zirconate titanate under uniaxial stress

    International Nuclear Information System (INIS)

    Tallant, David R.; Simpson, Regina L.; Grazier, J. Mark; Zeuch, David H.; Olson, Walter R.; Tuttle, Bruce A.

    2000-01-01

    The authors used micro-Raman spectroscopy to monitor the ferroelectric (FE) to antiferroelectric (AFE) phase transition in PZT ceramic bars during the application of uniaxial stress. They designed and constructed a simple loading device, which can apply sufficient uniaxial force to transform reasonably large ceramic bars while being small enough to fit on the mechanical stage of the microscope used for Raman analysis. Raman spectra of individual grains in ceramic PZT bars were obtained as the stress on the bar was increased in increments. At the same time gauges attached to the PZT bar recorded axial and lateral strains induced by the applied stress. The Raman spectra were used to calculate an FE coordinate, which is related to the fraction of FE phase present. The authors present data showing changes in the FE coordinates of individual PZT grains and correlate these changes to stress-strain data, which plot the macroscopic evolution of the FE-to-AFE transformation. Their data indicates that the FE-to-AFE transformation does not occur simultaneously for all PZT grains but that grains react individually to local conditions

  15. Effect of La and W dopants on dielectric and ferroelectric properties of PZT thin films prepared by sol-gel process

    International Nuclear Information System (INIS)

    Xiao, Mi; Zhang, Zebin; Zhang, Weikang; Zhang, Ping

    2018-01-01

    La or W-doped lead zirconate titanate thin films (PLZT or PZTW) were prepared on platinized silicon substrates by sol-gel process. The effects of La or W dopant on the phase development, microstructure, dielectric and ferroelectric characteristics of films were studied. For PLZT films, the optimum doping concentration was found to be 2 mol%. While for PZTW films, the dielectric and ferroelectric properties were found to be improved as the doping concentration increased. The fatigue properties of PLZT and PZTW thin films were also investigated, the results showed that A- or B-site donor doping could improve the fatigue properties of PZT thin films. The theory of oxygen vacancy was used to explain the performance improvement caused by donor doping. (orig.)

  16. Effect of La and W dopants on dielectric and ferroelectric properties of PZT thin films prepared by sol-gel process

    Science.gov (United States)

    Xiao, Mi; Zhang, Zebin; Zhang, Weikang; Zhang, Ping

    2018-01-01

    La or W-doped lead zirconate titanate thin films (PLZT or PZTW) were prepared on platinized silicon substrates by sol-gel process. The effects of La or W dopant on the phase development, microstructure, dielectric and ferroelectric characteristics of films were studied. For PLZT films, the optimum doping concentration was found to be 2 mol%. While for PZTW films, the dielectric and ferroelectric properties were found to be improved as the doping concentration increased. The fatigue properties of PLZT and PZTW thin films were also investigated, the results showed that A- or B-site donor doping could improve the fatigue properties of PZT thin films. The theory of oxygen vacancy was used to explain the performance improvement caused by donor doping.

  17. Microelectromechanical Systems (MEMS) Photoacoustic (PA) Detector of Terahertz (THz) Radiation for Chemical Sensing

    Science.gov (United States)

    2014-03-01

    films. The seed layer established the desired orientation and texture for the preferential crystal formation of the PZT . Deposited by chemical...34Stoichiometry and crystal orientation of YAG-PLD derived ferroelectric PZT thin film," Journal of the European Ceramic Society, vol. 24, no. 6, pp...results performed on the lead zirconate titanate ( PZT ) target used in previous attempts at fabricating piezoelectric cantilever. It is shown that the

  18. Dynamic fatigue on repolarization of lead zirconate-titanate base ceramics with various ferroelectric hardness

    International Nuclear Information System (INIS)

    Gavrilyachenko, V.G.; Semenchev, A.F.; Sklyarova, E.N.; Kuznetsova, E.M.

    2006-01-01

    One studied experimentally changes of the residual polarization in lead zirconate-titanate base ceramics with various ferroelectric hardness under the effect of a strong varying field. The twinning and untwinning of crystallites accompanying repolarization is assumed to be the basic mechanism of propagation of the crystalline structure defects governing the fatigue rates of the ferroelectric-soft ceramics. In ferroelectric-hard ceramics crystallites the stable configurations of mechanical twins, the result of the secondary twinning, are formed when the hysteresis loop is formed. At repolarization in the mentioned structures one observes no motion of the twin boundaries, and the fatigue rates are low ones [ru

  19. Effects of atmosphere in sintering pure or doped PZT with barium and strontium ions; Efeito da atmosfera na sinterizacao do PZT puro ou dopado com ions bario e estroncio

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, A.Z.; D`Alkimin, R.; Zaghete, M.A.; Perazolli, L.; Varela, J.A.; Gimenes, E.R. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica

    1996-05-01

    Lead zirconate titanate powder with Zr/Ti ratio of 50/50 was prepared by Pechini method and doped with 1,0; 3,0 and 5,0 mol% of Ba or Sr ions. The powder was calcined at 700 deg C by 3 hours and milled by 6 hours in isopropyl alcohol. Surface area was measured by BET method and the purity of the powder characterized by IV. DRX was used to characterize the crystal structure. The powder was isostatically pressed at 230 MPa and sintered in a dilatometer furnace with constant heating rate of 10 deg C/min up to 1100 deg C. Argon, synthetic air oxygen and oxygen with water vapor were used at atmosphere. The presence of Ba or Sr ions reduce the temperature of maximum sintering rate for all considered atmospheres. The effects of each sintering atmosphere of doped PZT is discussed. (author) 6 refs., 3 figs., 2 tabs.

  20. Impact of process parameters on the structural and electrical properties of metal/PZT/Al2O3/silicon gate stack for non-volatile memory applications

    Science.gov (United States)

    Singh, Prashant; Jha, Rajesh Kumar; Singh, Rajat Kumar; Singh, B. R.

    2018-02-01

    In this paper, we present the structural and electrical properties of the Al2O3 buffer layer on non-volatile memory behavior using Metal/PZT/Al2O3/Silicon structures. Metal/PZT/Silicon and Metal/Al2O3/Silicon structures were also fabricated and characterized to obtain capacitance and leakage current parameters. Lead zirconate titanate (PZT::35:65) and Al2O3 films were deposited by sputtering on the silicon substrate. Memory window, PUND, endurance, breakdown voltage, effective charges, flat-band voltage and leakage current density parameters were measured and the effects of process parameters on the structural and electrical characteristics were investigated. X-ray data show dominant (110) tetragonal phase of the PZT film, which crystallizes at 500 °C. The sputtered Al2O3 film annealed at different temperatures show dominant (312) orientation and amorphous nature at 425 °C. Multiple angle laser ellipsometric analysis reveals the temperature dependence of PZT film refractive index and extinction coefficient. Electrical characterization shows the maximum memory window of 3.9 V and breakdown voltage of 25 V for the Metal/Ferroelectric/Silicon (MFeS) structures annealed at 500 °C. With 10 nm Al2O3 layer in the Metal/Ferroelectric/Insulator/Silicon (MFeIS) structure, the memory window and breakdown voltage was improved to 7.21 and 35 V, respectively. Such structures show high endurance with no significant reduction polarization charge for upto 2.2 × 109 iteration cycles.

  1. Enhanced Dielectric Nonlinearity in Epitaxial Pb(0.92)La(0.08)Zr(0.52)Ti(0.48)O(3)

    Science.gov (United States)

    2014-04-23

    storage capacitors, electro-mechanical, or photo- mechanical transducers, etc.1–3 Among them, Lead zirconate titanate system ( PZT ), which exhibits...and at the interfaces between PZT and electro- des. Recently, lanthanum doped PZT with different Zr/Ti ra- tio, such as 65/35, 53/47, or 20/80, has...been investigated, since it can effectively reduce oxygen vacancy, decrease leakage current, and lower the fatigue and domain pinning.8–10 In general

  2. Effect of electrical and mechanical poling history on domain orientation and piezoelectric properties of soft and hard PZT ceramics

    International Nuclear Information System (INIS)

    Marsilius, Mie; Granzow, Torsten; Jones, Jacob L

    2011-01-01

    The superior piezoelectric properties of all polycrystalline ferroelectrics are based on the extent of non-180 0 domain wall motion under electrical and mechanical poling loads. To distinguish between 180 0 and non-180 0 domain wall motion in a soft-doped and a hard-doped lead zirconate titanate (PZT) ceramic, domain texture measurements were performed using x-ray and neutron diffraction after different loading procedures. Comparing the results to measurements of the remanent strain and piezoelectric coefficient allowed the differentiation between different microstructural contributions to the macroscopic parameters. Both types of ceramic showed similar behavior under electric field, but the hard-doped material was more susceptible to mechanical load. A considerable fraction of the piezoelectric coefficient originated from poling by the preferred orientation of 180 0 domains.

  3. Effect of electrical and mechanical poling history on domain orientation and piezoelectric properties of soft and hard PZT ceramics

    Science.gov (United States)

    Marsilius, Mie; Granzow, Torsten; Jones, Jacob L.

    2011-02-01

    The superior piezoelectric properties of all polycrystalline ferroelectrics are based on the extent of non-180° domain wall motion under electrical and mechanical poling loads. To distinguish between 180° and non-180° domain wall motion in a soft-doped and a hard-doped lead zirconate titanate (PZT) ceramic, domain texture measurements were performed using x-ray and neutron diffraction after different loading procedures. Comparing the results to measurements of the remanent strain and piezoelectric coefficient allowed the differentiation between different microstructural contributions to the macroscopic parameters. Both types of ceramic showed similar behavior under electric field, but the hard-doped material was more susceptible to mechanical load. A considerable fraction of the piezoelectric coefficient originated from poling by the preferred orientation of 180° domains.

  4. Y{sub 3}Fe{sub 5}O{sub 12}/Na,Bi,Sr-doped PZT particulate magnetoelectric composites

    Energy Technology Data Exchange (ETDEWEB)

    Lisnevskaya, I.V., E-mail: liv@sfedu.ru; Bobrova, I.A.; Lupeiko, T.G.; Agamirzoeva, M.R.; Myagkaya, K.V.

    2016-05-01

    Magnetoelectric (ME) composites of Na, Bi, Sr substituted lead zirconate titanate (PZT) and yttrium iron garnet having representative formula (100−x) wt% Na,Bi,Sr-doped PZT (PZTNB-1)+x wt% Y{sub 3}Fe{sub 5}O{sub 12} (YIG) with x=10–90 were manufactured using powdered components obtained through sol–gel processes. It is shown that the decrease in sintering temperature provided by the use of finely dispersed PZTNB-1 and YIG powders allows to significantly reduce content of fluorite-like foreign phase based on zirconium oxide, which forms due to the interfacial interaction during heat treatment and becomes stabilized by yttrium oxide. Connectivity has considerable effect on the value of ME coefficient of composite ceramics. With the same x value, ΔE/ΔH characteristic decreases when changing from 0–3-type structured composites (PZT grains embedded in ferrite matrix) to 3-3-(interpenetrating network of two phases) and especially 3-0-type samples (YIG grains embedded in PZT matrix); in the last case this can be attributed to the substrate clamping effect when ferrite grains are clamped with piezoelectric matrix. ΔE/ΔH value of 0–3 composites with x=40–60 wt% was found to be ∼1.6 mV/(cm Oe). - Highlights: • Y{sub 3}Fe{sub 5}O{sub 12}/Na,Bi,Sr-doped PZT particulate magnetoelectric composites were prepared. • The decrease in sintering temperature reduces the content of foreign phase of ZrO{sub 2}. • Connectivity pattern is important factor for magnetoelectric response. • The value of ME coefficient reaches ~1,6 mV/(cm Oe) in 0–3 composites.

  5. Towards a digital sound reconstruction MEMS device: Characterization of a single PZT based piezoelectric actuator

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2015-04-01

    In this paper we report the fabrication and characterization of a single piezoelectric actuator for digital sound reconstruction. This work is the first step towards the implementation of a true digital micro-loudspeaker by means of an array of acoustic actuators. These actuators consist of a flexible membrane fabricated using polyimide, which is actuated using a Lead-Zirconate-Titanate (PZT) piezoelectric ceramic layer working in the d31 actuation mode. The dimensions of the membrane are of 1mm diameter and 4μm in thickness, which is capable of being symmetrically actuated in both upward and downward directions, due to the back etch step releasing the membrane. Our electrical characterization shows an improvement in the polarization of the piezoelectric material after its final etch patterning step, and our mechanical characterization shows the natural modes of resonance of the stacked membrane. © 2015 IEEE.

  6. Characterization of PZT thin films on metal substrates

    International Nuclear Information System (INIS)

    Dutschke, A.

    2008-01-01

    Lead zirconate titanate (PbZr x Ti 1-x O 3 ,PZT) is one of the most applied ceramic materials because of its distinctive piezo- and ferroelectric properties. Prepared as thin films on flexible, metallic substrates it can be used for various applications as strain gauges, key switches, vibration dampers, microactuators and ultrasonic transducers. The aim of this work is to analyze the microstructure and the phase-content of PZT-thin films deposited on temperature- und acid-resistant hastelloy-sheets, to correlate the results with the ferroelectric and dielectric properties. It is demonstrated, that the specific variation of the microstructure can be achieved by different thermal treatments and the selective addition of Neodymium as dopant. Nd-doping leads to a shift of the maximum nucleation rate towards reduced temperatures and a decrease in the rate of growth compared to undoped films. The PZT-films are prepared by a sol-gel-process in fourfold multilayers with a composition near the morphotropic phase boundary, where the tetragonal und rhombohedral perovskite-phases coexist. The crystallisation in Nd-doped and undoped films takes place heterogeneously, preferentially at the interfaces and on the surface of the multilayered films as well as on the inner surface of pores within the films. For the first time, the Zr:Ti fluctuation phenomena emerging in sol-gel derived PZT films is related to the microstructure and the local phase content on a nanometer scale. In this connection it is proved, that long-distance Zr:Ti gradients arise preferentially before and during the crystallisation of the pyrochlore phase. During the following crystallisation of the perovskite phase, the crystallites grow across these gradients without modifying them. It is pointed out that the fluctuation in the Zr:Ti ratio has only minor influence on the amount of the tetragonal or rhombohedral distortion of the crystallites after the transition from the para- to the ferroelectric state due to

  7. Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application

    Science.gov (United States)

    Gupta, Reema; Tomar, Monika; Kumar, Ashok; Gupta, Vinay

    2017-03-01

    Magnetoelectric (ME) coefficient of Lead Zirconium Titanate (PZT) thin films has been probed for possible energy harvesting applications. Single phase PZT thin films have been deposited on nickel substrate (PZT/Ni) using pulsed laser deposition (PLD) technique. The effect of PLD process parameters on the ME coupling coefficient in the prepared systems has been investigated. The as grown PZT films on Ni substrate were found to be polycrystalline with improved ferroelectric and ferromagnetic properties. The electrical switching behavior of the PZT thin films were verified using capacitance voltage measurements, where well defined butterfly loops were obtained. The ME coupling coefficient was estimated to be in the range of 94.5 V cm-1 Oe-1-130.5 V cm-1 Oe-1 for PZT/Ni system, which is large enough for harnessing electromagnetic energy for subsequent applications.

  8. Evolution of bias field and offset piezoelectric coefficient in bulk lead zirconate titanate with fatigue

    International Nuclear Information System (INIS)

    Zhang Yong; Baturin, Ivan S.; Aulbach, Emil; Lupascu, Doru C.; Kholkin, Andrei L.; Shur, Vladimir Ya.; Roedel, Juergen

    2005-01-01

    Hysteresis loops of the piezoelectric coefficient, d 33 =f(E 3 ), are measured on virgin and fatigued lead zirconate titanate ceramics. Four parameters are directly extracted from the measurements: internal bias field E b , offset piezoelectric coefficient d offset , coercive field E c , and remnant piezoelectric coefficient d r . The reduction in d r displays the decreasing switchable polarization with fatigue cycling. E b and d offset are found to be linearly related. After thermal annealing, both offsets disappear, while the increase in E c and the reduction in d r withstand annealing. The microscopic entities responsible for the offsets are less stable than those for reduced switching

  9. Magnetoelectric Energy Harvesting

    Science.gov (United States)

    2014-11-20

    zirconate titanate ( PZT ). The non-linear electromechanically coupled phase transition associated with field and stress driven phase transformations...The magnetoelectric coefficient , ME, as estimated from experimental results is: = > 40 × (1) where E is the electric

  10. Energy harvesting on highway bridges.

    Science.gov (United States)

    2011-01-01

    A concept for harvesting energy from the traffic-induced loadings on a highway bridge using piezoelectric : materials to generate electricity was explored through the prototype stage. A total of sixteen lead-zirconate : titanate (PZT) Type 5A piezoel...

  11. Experimental investigation into the effect of substrate clamping on the piezoelectric behaviour of thick-film PZT elements

    Energy Technology Data Exchange (ETDEWEB)

    Torah, R N; Beeby, S P; White, N M [Department of Electronics and Computer Science, University of Southampton, SO17 1BJ (United Kingdom)

    2004-04-07

    This paper details an experimental investigation of the clamping effect associated with thick-film piezoelectric elements printed on a substrate. The clamping effect reduces the measured piezoelectric coefficient, d{sub 33}, of the film. This reduction is due to the influence of the d{sub 31} component in the film when a deformation of the structure occurs, by either the direct or indirect piezoelectric effect. Theoretical analysis shows a reduction in the measured d{sub 33} of 62%, i.e. a standard bulk lead zirconate titanate (PZT)-5H sample with a manufacturer specified d{sub 33} of 593pC/N would fall to 227.8pC/N. To confirm this effect, the d{sub 33} coefficients of five thin bulk PZT-5H samples of 220 {mu}m thickness were measured before and after their attachment to a metallized 96% alumina substrate. The experimental results show a reduction in d{sub 33} of 74% from 529pC/N to 139pC/N. The theoretical analysis was then applied to existing University of Southampton thick-film devices. It is estimated that the measured d{sub 33} value of 131pC/N of the thick-film devices is the equivalent of an unconstrained d{sub 33} of 345pC/N.

  12. Parametric and Wavelet Analyses of Acoustic Emission Signals for the Identification of Failure Modes in CFRP Composites Using PZT and PVDF Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Prasopchaichana, Kritsada; Kwon, Oh Yang [Inha University, Incheon (Korea, Republic of)

    2007-12-15

    Combination of the parametric and the wavelet analyses of acoustic emission (AE) signals was applied to identify the failure modes in carbon fiber reinforced plastic (CFRP) composite laminates during tensile testing. AE signals detected by surface mounted lead-zirconate-titanate (PZT) and polyvinylidene fluoride (PVDF) sensors were analyzed by parametric analysis based on the time of occurrence which classifies AE signals corresponding to failure modes. The frequency band level-energy analysis can distinguish the dominant frequency band for each failure mode. It was observed that the same type of failure mechanism produced signals with different characteristics depending on the stacking sequences and the type of sensors. This indicates that the proposed method can identify the failure modes of the signals if the stacking sequences and the sensors used are known

  13. Improvement of the fatigue and the ferroelectric properties of PZT films through a LSCO seed layer

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Sofia A.S., E-mail: sofiarodrigues@fisica.uminho.pt; Silva, José P.B.; Khodorov, Anatoli; Martín-Sánchez, Javier; Pereira, M.; Gomes, M.J.M.

    2013-11-01

    Highlights: • Pulsed laser deposited PZT thin films. • Seed layer effect on the structural and ferroelectric properties of the PZT films. • The stability of P{sub r} was improved with the introduction of the LSCO layer. -- Abstract: The ability to optimizate the preparation of Lead Zirconate Titanate (PZT) films on platinized Si substrate by pulsed laser deposition was demonstrated. The effect of the modification of the interface film/electrode through the use of a (La,Sr)CoO{sub 3} (LSCO) seed layer on the remnant polarization, fatigue endurance and stress in PZT films was studied. An improvement on the ferroelectric properties was found with the using of the LSCO layer. A remnant polarization (P{sub r}) of 19.8 μC/cm{sup 2} and 4.4 μC/cm{sup 2} for films with and without the LSCO layer were found. In the same way the polarization fatigue decreases significantly after deposition of the LSCO layer between the film and substrate. Atomic force microscopy (AFM) images revealed a different growth process in the films. Current–voltage (I–V) measurements showed that the use of LSCO seed layer improves the leakage current and, on the other hand the conduction mechanisms in the film without LSCO, after the fatigue test, was found to be changed from Schottky to Poole–Frenkel. The trap activation energy (about 0.14 eV) determined from Poole–Frenkel mode agrees well with the energy level of oxygen vacancies. The films stresses were estimated by XRD in order to explain the improvement on the structure and consequentially ferroelectric properties of the films. The model proposed by Dawber and Scott was found to be in agreement with our experimental data, which seems to predict that the oxygen vacancies play an important role on fatigue.

  14. Determination of the Steady State Leakage Current in Structures with Ferroelectric Ceramic Films

    Science.gov (United States)

    Podgornyi, Yu. V.; Vorotilov, K. A.; Sigov, A. S.

    2018-03-01

    Steady state leakage currents have been investigated in capacitor structures with ferroelectric solgel films of lead zirconate titanate (PZT) formed on silicon substrates with a lower Pt electrode. It is established that Pt/PZT/Hg structures, regardless of the PZT film thickness, are characterized by the presence of a rectifying contact similar to p-n junction. The steady state leakage current in the forward direction increases with a decrease in the film thickness and is determined by the ferroelectric bulk conductivity.

  15. Damage Detection Based on Power Dissipation Measured with PZT Sensors through the Combination of Electro-Mechanical Impedances and Guided Waves.

    Science.gov (United States)

    Sevillano, Enrique; Sun, Rui; Perera, Ricardo

    2016-05-05

    The use of piezoelectric ceramic transducers (such as Lead-Zirconate-Titanate-PZT) has become more and more widespread for Structural Health Monitoring (SHM) applications. Among all the techniques that are based on this smart sensing solution, guided waves and electro-mechanical impedance techniques have found wider acceptance, and so more studies and experimental works can be found containing these applications. However, even though these two techniques can be considered as complementary to each other, little work can be found focused on the combination of them in order to define a new and integrated damage detection procedure. In this work, this combination of techniques has been studied by proposing a new integrated damage indicator based on Electro-Mechanical Power Dissipation (EMPD). The applicability of this proposed technique has been tested through different experimental tests, with both lab-scale and real-scale structures.

  16. Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substrates

    Science.gov (United States)

    Almusallam, A.; Yang, K.; Zhu, D.; Torah, R. N.; Komolafe, A.; Tudor, J.; Beeby, S. P.

    2015-11-01

    This paper introduces a new flexible lead zirconate titanate (PZT)/polymer composite material that can be screen-printed onto fabrics and flexible substrates, and investigates the clamping effect of these substrates on the characterization of the piezoelectric material. Experimental results showed that the optimum blend of PZT/polymer binder with a weight ratio of 12:1 provides a dielectric constant of 146. The measured value of the piezoelectric coefficient d33 was found to depend on the substrate used. Measured d33clp values of 70, 40, 36 pC N-1 were obtained from the optimum formulation printed on Polyester-cotton with an interface layer, Kapton and alumina substrates, respectively. The variation in the measured d33clp values occurs because of the effect of the mechanical boundary conditions of the substrate. The piezoelectric film is mechanically bonded to the surface of the substrate and this constrains the film in the plane of the substrate (the 1-direction). This constraint means that the perpendicular forces (applied in the 3-direction) used to measure d33 introduce a strain in the 1-direction that produces a charge of the opposite polarity to that induced by the d33 effect. This is due to the negative sign of the d31 coefficient and has the effect of reducing the measured d33 value. Theoretical and experimental investigations confirm a reduction of 13%, 50% and 55% in the estimated freestanding d33fs values (80 pC N-1) on Polyester-cotton, Kapton and alumina substrates, respectively. These results demonstrate the effect of the boundary conditions of the substrate/PZT interface on the piezoelectric response of the PZT/polymer film and in particular the reduced effect of fabric substrates due to their lowered stiffness.

  17. Comparison of lead zirconate titanate thin films on ruthenium oxide and platinum electrodes

    International Nuclear Information System (INIS)

    Bursill, L.A.; Reaney, I.M.

    1994-01-01

    High-resolution and bright- and dark-field transmission electron microscopy are used to characterize and compare the interface structures and microstructure of PZT/RuO 2 /SiO 2 /Si and PZT/Pt/Ti/SiO 2 /Si ferroelectric thin films, with a view to understanding the improved fatigue characteristics of PZT thin films with RuO 2 electrodes. The RuO 2 /PZT interface consists of a curved pseudoperiodic minimal surface. The interface is chemically sharp with virtually no intermixing of RuO 2 and PZT, as evidenced by the atomic resolution images as well as energy dispersive X-ray analysis. A nanocrystalline pyrochlore phase Pb 2 ZrTiO 7-x (x ≠ 1) was found on the top surface of the PZT layer. The PZT/Pt/Ti/SiO 2 /Si thin film was well-crystallized and showed sharp interfaces throughout. Possible reasons for the improved fatigue characteristics of PZT/RuO 2 /SiO 2 /Si thin films are discussed. 13 refs; 7 figs

  18. Comparison of lead zirconate titanate thin films on ruthenium oxide and platinum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Bursill, L A; Reaney, I M

    1994-12-31

    High-resolution and bright- and dark-field transmission electron microscopy are used to characterize and compare the interface structures and microstructure of PZT/RuO{sub 2}/SiO{sub 2}/Si and PZT/Pt/Ti/SiO{sub 2}/Si ferroelectric thin films, with a view to understanding the improved fatigue characteristics of PZT thin films with RuO{sub 2} electrodes. The RuO{sub 2}/PZT interface consists of a curved pseudoperiodic minimal surface. The interface is chemically sharp with virtually no intermixing of RuO{sub 2} and PZT, as evidenced by the atomic resolution images as well as energy dispersive X-ray analysis. A nanocrystalline pyrochlore phase Pb{sub 2}ZrTiO{sub 7-x} (x {ne} 1) was found on the top surface of the PZT layer. The PZT/Pt/Ti/SiO{sub 2}/Si thin film was well-crystallized and showed sharp interfaces throughout. Possible reasons for the improved fatigue characteristics of PZT/RuO{sub 2}/SiO{sub 2}/Si thin films are discussed. 13 refs; 7 figs.

  19. Wafer-scale integration of piezoelectric actuation capabilities in nanoelectromechanical systems resonators

    OpenAIRE

    DEZEST, Denis; MATHIEU, Fabrice; MAZENQ, Laurent; SOYER, Caroline; COSTECALDE, Jean; REMIENS, Denis; THOMAS, Olivier; DEÜ, Jean-François; NICU, Liviu

    2013-01-01

    In this work, we demonstrate the integration of piezoelectric actuation means on arrays of nanocantilevers at the wafer scale. We use lead titanate zirconate (PZT) as piezoelectric material mainly because of its excellent actuation properties even when geometrically constrained at extreme scale

  20. Comparison of lead zirconate titanate thin films on ruthenium oxide and platinum electrodes

    OpenAIRE

    Bursill, Les A.; Reaney, Ian M.; Vijay, Dilip P.; Desu, Seshu B.

    1994-01-01

    High-resolution and bright- and dark-field transmission electron microscopy are used to characterize and compare the interface structures and microstructure of PZT/RuO2/SiO2/Si and PZT/Pt/Ti/SiO2/Si ferroelectric thin films, with a view to understanding the improved fatigue characteristics of PZT thin films with RuO2 electrodes. The RuO2/PZT interface consists of a curved pseudoperiodic minimal surface. The interface is chemically sharp with virtually no intermixing of RuO2 and PZT, as eviden...

  1. Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites

    Science.gov (United States)

    James, N. K.; Lafont, U.; van der Zwaag, S.; Groen, W. A.

    2014-05-01

    Piezoelectric ceramic-polymer composites with 0-3 connectivity were fabricated using lead zirconium titanate (PZT) powder dispersed in an ionomer (Zn ionomer) and its reference ethylene methacrylic acid copolymer (EMAA) polymer matrix. The PZT-Zn ionomer and PZT-EMAA composites were prepared by melt extrusion followed by hot pressing. The effects of poling conditions such as temperature, time and electric field on the piezoelectric properties of the composites were investigated. The experimentally observed piezoelectric charge coefficient and dielectric constant of the composites were compared with theoretical models. The results show that PZT-Zn ionomer composites have better piezoelectric properties compared to PZT-EMAA composites. The static and fatigue properties of the composites were investigated. The PZT-Zn ionomer composites were found to have excellent fatigue resistance even at strain levels of 4%. Due to the self-healing capabilities of the ionomer matrix, the loss of piezoelectric properties after high strain tensile cyclic loading could be partially recovered by thermal healing.

  2. Fabrication of Pb (Zr, Ti) O3 Thin Film for Non-Volatile Memory Device Application

    International Nuclear Information System (INIS)

    Mar Lar Win

    2011-12-01

    Ferroelectric lead zirconate titanate powder was composed of mainly the oxides of titanium, zirconium and lead. PZT powder was firstly prepared by thermal synthesis at different Zr/Ti ratios with various sintering temperatures. PZT thin film was fabricated on SiO2/Si substrate by using thermal evaporation method. Physical and elemental analysis were carried out by using SEM, EDX and XRD The ferroelectric properties and the switching behaviour of the PZT thin films were investigated. The ferroelectric properties and switching properties of the PZT thin film (near morphotropic phase boundary sintered at 800 C) could function as a nonvolatile memory.

  3. PZT piezoelectric films on glass for Gen-X imaging

    Science.gov (United States)

    Wilke, Rudeger H. T.; Trolier-McKinstry, Susan; Reid, Paul B.; Schwartz, Daniel A.

    2010-09-01

    The proposed adaptive optics system for the Gen-X telescope uses piezoelectric lead zirconate titanate (PZT) films deposited on flexible glass substrates. The low softening transition of the glass substrates imposes several processing challenges that require the development of new approaches to deposit high quality PZT thin films. Synthesis and optimization of chemical solution deposited 1 μm thick films of PbZr0.52Ti0.48O3 on small area (1 in2) and large area (16 in2) Pt/Ti/glass substrates has been performed. In order to avoid warping of the glass at temperatures typically used to crystallize PZT films ({700°C), a lower temperature, two-step crystallization process was employed. An {80 nm thick seed layer of PbZr0.30Ti0.70O3 was deposited to promote the growth of the perovskite phase. After the deposition of the seed layer, the films were annealed in a rapid thermal annealing (RTA) furnace at 550°C for 3 minutes to nucleate the perovskite phase. This was followed by isothermal annealing at 550°C for 1 hour to complete crystallization. For the subsequent PbZr0.52Ti0.48O3 layers, the same RTA protocol was performed, with the isothermal crystallization implemented following the deposition of three PbZr0.52Ti0.48O3 spin-coated layers. Over the frequency range of 1 kHz to 100 kHz, films exhibit relative permittivity values near 800 with loss tangents below 0.07. Hysteresis loops show low levels of imprint with coercive fields of 40-50 kV/cm in the forward direction and 50-70 kV/cm in the reverse direction. The remanent polarization varied from 25-35 μC/cm2 and e31,f values were approximately -5.0 C/m2. In scaling up the growth procedure to large area films, where warping becomes more pronounced due to the increased size of the substrate, the pyrolysis and crystallization conditions were performed in a box furnace to improve the temperature uniformity. By depositing films on both sides of the glass substrate, the tensile stresses are balanced, providing a

  4. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Castro, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT

  5. Photoluminescence of sol–gel synthesized PZT powders

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Aranda, M.C. [Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología-Universidad Autónoma de San Luis Potosí, Av. Sierra Leona No.550,Col. Lomas 2a. sección, C.P. 78210 San Luis Potosí, SLP, México (Mexico); Calderón-Piñar, F. [Centro de Investigación y de Estudios Avanzados del I.P.N. Unidad Querétaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, C.P. 7623 Querétaro, Qro, México (Mexico); Facultad de Física/IMRE, San Lázaro y L, Universidad de la Habana, C.P. 10400 Habana (Cuba); Hernández-Landaverde, M.A. [Centro de Investigación y de Estudios Avanzados del I.P.N. Unidad Querétaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, C.P. 7623 Querétaro, Qro, México (Mexico); and others

    2016-11-15

    A wide band of photoluminescence (PL) emission in structurally disordered lead zirconate titanate (PZT) powders, prepared by sol–gel route, was observed at room temperature excited with a laser line (488 nm). Powders with PbZr{sub 0.53}Ti{sub 0.47}O{sub 3} nominal composition annealed at different temperatures were studied by X-ray diffraction, Raman spectroscopy, Luminescence, Diffuse Reflectance and Electronic Paramagnetic Resonance Spectroscopy (EPR). Our results indicate that the PL response can be associated to order–disorder degree in the perovskite structure, with the exception of samples annealed at low temperature, where a mixture of oxides precursorsГ—Ві phases was observed. Furthermore, in quasi-crystalline ordered samples (95% of crystallinity) a small generation of PL remains. In these experiments, the band gap increases with the formation of crystalline structure. EPR experiments were conducted in order to follow the evolution of paramagnetic species with thermal treatment from the mixture of oxides precursors to the perovskite phase and paramagnetic point defects were identified (Pb{sup +3} and Ti{sup +3}). EPR data suggest the presence of order–disorder within the lattice network. Paramagnetic species are similar in samples treated at 700 and 800 °C, nevertheless the emission intensity decreases by a factor of 6, indicating that the defects associated with PL are not paramagnetic at both temperatures.

  6. Dynamic pyroelectric response of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene) and ferroelectric ceramics of barium lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Solnyshkin, A.V. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Morsakov, I.M.; Bogomolov, A.A. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); Belov, A.N.; Vorobiev, M.I.; Shevyakov, V.I.; Silibin, M.V. [National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Shvartsman, V.V. [University of Duisburg-Essen, Institute for Materials Science, Essen (Germany)

    2015-10-15

    In this work, pyroelectric properties of composite films on the basis of poly(vinylidene fluoride-trifluoroethylene) copolymer with a various level of ferroelectric ceramics inclusions of barium lead zirconate titanate solid solution were investigated by the dynamic method. The composite films were prepared by the solvent cast method. The unusual spike-like dynamic response with a quasi-stationary component was observed. It is supposed that composite films may be effectively used for pyroelectric applications. (orig.)

  7. Stress- and temperature-dependent scaling behavior of dynamic hysteresis in soft PZT bulk ceramics

    International Nuclear Information System (INIS)

    Yimnirun, R; Wongsaenmai, S; Wongmaneerung, R; Wongdamnern, N; Ngamjarurojana, A; Ananta, S; Laosiritaworn, Y

    2007-01-01

    Effects of electric field-frequency, electric field-amplitude, mechanical stress, and temperature on the hysteresis area, especially the scaling form, were investigated in soft lead zirconate titanate (PZT) bulk ceramics. The hysteresis area was found to depend on the frequency and field-amplitude with the same set of exponents as the power-law scaling for both with and without stresses. The inclusion of stresses into the power-law was obtained in the form of σ=0 > ∝ f -0.25 E 0 σ 0.45 which indicates the difference in energy dissipation between the under-stress and stress-free conditions. The power-law temperature scaling relations were obtained for hysteresis area (A) and remanent polarization P r , while the coercivity E C was found to scale linearly with temperature T. The three temperature scaling relations were also field-dependent. At fixed field amplitude E 0 , the scaling relations take the forms of ∝ T -1.1024 , P r ∼T -1.2322 and (E C0 - E C ) ∼T

  8. A Study of Ultrasonic Wavefront Distortion Compensation.

    Science.gov (United States)

    1998-08-01

    arrays. The array is made of piezoelectric composite consisting of PZT (lead zirconate titanate) ceramic rods in a polymer matrix. The transducer...We have developed the procedures for making the final transducer array package by a series of steps. The arrays utilize PZT piezoelectric ceramic ...the low contrast cyst at coordinates (250,425) in Figure 6a. Seen below the cyst is a region with an altered texture and poorer angular resolution, a

  9. Mechanical Pre-Stressing a Transducer through a Negative DC Biasing Field

    Science.gov (United States)

    2017-04-21

    Undersea Warfare Center ONR Office of Naval Research PMN-PT Lead Magnesium Niobate-Lead Titanate PZT Lead Zirconate Titanate 1 MECHANICAL...stiff material (such as aluminum or magnesium ). With the ceramic stack sandwiched between the two masses, a two degree-of-freedom system is...Aerotech, Inc., Pittsburgh, PA. Sayer, M., Judd, B.A., EI -Assal, K., Prasad, E., “Poling of Piezoelectric Ceramics,” Journal of the Canadian

  10. Thermodynamic properties of titanates, zirconates and hafnates of alkaline earth metals

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    The problems are considered arising in critical analysis and choosing recommended values of thermodynamic constants of the series of the most important perovskites-ferroelectrics-titanates, zirconates, and hafnates of alkaline-earth metals finding application in modern radioelectronics. Recommended values of standard thermodynamic values are given: heat capacity Csub(p,298) , enthalpy change H/sub 298/-H/sub 0/, entropy S/sub 298/, heat formation ..delta..Hsub(f,298 ), free energy formation ..delta..Gsub(f,298) , temperatures and heats of phase transitions with indication of errors for the adopted values. The effect of impurities on thermal constants of phase transitions is discussed. The relationships between thermodynamic characteristics of perovskites and crystal structure as well as the effect of orthorhombic distortions of ideal perovskite lattice on entropy of the compounds have been considered. Along with thermodynamic methods of investigation, a great attention is given to other physical methods which have been used for finding temperature regions of phase transitions, Curie points, and temperatures of transition from ferroelectric to paraelectric state. The importance of physical methods is emphasized in those cases when phase transitions are accompanied by small energy changes and are not fixed in measuring heat capacity.

  11. Guided-Wave Testing of Trunnion Rods at Greenup Lock and Dam, Kentucky

    Science.gov (United States)

    2014-04-01

    fatigue cracks which go through opening and closing periods during their progression, microcracks in post-tension trunnion anchor rods are believed to be...produce undesired interference effects. A new 1.5 in. diameter, medium-damped lead zirconate titanate ( PZT ), ceramic-based crystal (i.e., an Accuscan

  12. Defect enhanced optic and electro-optic properties of lead zirconate titanate thin films

    Directory of Open Access Journals (Sweden)

    M. M. Zhu

    2011-12-01

    Full Text Available Pb(Zr1-xTixO3 (PZT thin films near phase morphotropic phase boundary were deposited on (Pb0.86La0.14TiO3-coated glass by radio frequency sputtering. A retrieved analysis shows that the lattice parameters of the as-grown PZT thin films were similar to that of monoclinic PZT structure. Moreover, the PZT thin films possessed refractive index as high as 2.504 in TE model and 2.431 in TM model. The as-grown PZT thin film had one strong absorption peak at 632.6 nm, which attributed to lead deficiency by quantitative XPS analysis. From the attractive properties achieved, electro-optic and photovoltaic characteristic of the films were carried out.

  13. Fabrication and electromechanical properties of a self-actuating Pb(Zr0.52Ti0.48)O3 microcantilever using a direct patternable sol-gel method

    International Nuclear Information System (INIS)

    Kang, Ghi Yuun; Bae, Sang-Woo; Park, Hyung-Ho; Kim, Tae Song

    2006-01-01

    The use of direct-patternable lead zirconate titanate (PZT) films produced using photosensitive stock solutions with ortho-nitrobenzaldehyde and UV (365 nm) irradiation has reached an advanced stage of application in microdetection systems. Electromechanical properties of direct patterned PZT microcantilevers on SiN x /Ta/Pt/PZT/Pt/SiO 2 structure were measured by a laser vibrometer system as a function of cantilever length. The gravimetric sensitivity of cantilevers in air was characterized by Au deposition, and the mass detecting resolution was 38 Hz/ng. These results suggested a possibility that microelectromechanical systems may be fabricated relatively easily and without high cost processes, for example, by PZT dry etching

  14. Fabrication and Characterization of PZT Thick Films for Sensing and Actuation

    Directory of Open Access Journals (Sweden)

    Kuo-Ching Kuo

    2007-04-01

    Full Text Available Lead Zirconate Titanate oxide (PZT thick films with thicknesses of up to 10 μmwere developed using a modified sol-gel technique. Usually, the film thickness is less than1 μm by conventional sol-gel processing, while the electrical charge accumulation whichreveals the direct effect of piezoelectricity is proportional to the film thickness and thereforerestricted. Two approaches were adopted to conventional sol-gel processing – precursorconcentration modulation and rapid thermal annealing. A 10 μm thick film was successfullyfabricated by coating 16 times via this technique. The thickness of each coating layer wasabout 0.6 μm and the morphology of the film was dense with a crack-free area as large as 16mm2. In addition, the structure, surface morphology and physical properties werecharacterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and atomicforce microscopy (AFM and electrical performance. The dielectric constant and hysteresisloops were measured as electric characteristics. This study investigates the actuation andsensing performance of the vibrating structures with the piezoelectric thick film. Theactuation tests demonstrated that a 4 mm x 4 mm x 6.5 μm PZT film drove a 40 mm x 7 mmx 0.5 mm silicon beam as an actuator. Additionally, it generated an electrical signal of 60mVpp as a sensor, while vibration was input by a shaker. The frequencies of the first twomodes of the beam were compared with the theoretical values obtained by Euler-Bernoullibeam theory. The linearity of the actuation and sensing tests were also examined.

  15. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Chang

    2017-10-01

    Full Text Available Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the “open loop sensitivity” of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  16. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope.

    Science.gov (United States)

    Chang, Cheng-Yang; Chen, Tsung-Lin

    2017-10-31

    Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT) material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the "open loop sensitivity" of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  17. Dielectric properties of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene and ferroelectric ceramics of barium lead zirconate titanate

    Directory of Open Access Journals (Sweden)

    A. V. Solnyshkin

    2017-10-01

    Full Text Available A study of dielectric properties of composite films on the base of poly(vinylidene fluoride-trifluoroethylene copolymer P(VDF-TrFE and ferroelectric ceramics of barium lead zirconate titanate (BPZT solid solution is presented in this work. The composite films containing up to 50 vol.% of BPZT grains with size ∼1μm were prepared by the solvent cast method. Frequency dependences of real and imaginary components of the complex permittivity were determined. The concentration dependence of the dielectric constant was discussed.

  18. Extrinsic Fabry-Perot ultrasonic detector

    Science.gov (United States)

    Kidwell, J. J.; Berthold, John W., III

    1996-10-01

    We characterized the performance of a commercial fiber optic extrinsic Fabry-Perot interferometer for use as an ultrasonic sensor, and compared the performance with a standard lead zirconate titanate (PZT) detector. The interferometer was unstabilized. The results showed that the fiber sensor was about 12 times less sensitive than the PZT detector. Ultrasonic frequency response near 100 kHz was demonstrated. We describe the design of the fiber sensor, the details of the tests performed, and potential applications.

  19. Electromechanical properties of textured K0.5Na0.5NbO3 ceramics

    OpenAIRE

    Pinho, Rui Manuel de Oliveira

    2014-01-01

    This work is about lead-free ceramic materials intended for electromechanical applications and candidates to replace lead-based electroceramics. One of the most widely used piezoelectric ceramics is lead zirconate titanate (PZT). However, it contains more than 60% of lead and it is toxic for humans and environment. In 2003, a directive from European Union has prohibited the use of potentially hazardous elements as lead. Due to the lack of competitive materials for PZT replacement an exception...

  20. An Optimal Image-Based Method for Identification of Acoustic Emission (AE) Sources in Plate-Like Structures Using a Lead Zirconium Titanate (PZT) Sensor Array

    Science.gov (United States)

    Zhou, Li

    2018-01-01

    This paper proposes an innovative method for identifying the locations of multiple simultaneous acoustic emission (AE) events in plate-like structures from the view of image processing. By using a linear lead zirconium titanate (PZT) sensor array to record the AE wave signals, a reverse-time frequency-wavenumber (f-k) migration is employed to produce images displaying the locations of AE sources by back-propagating the AE waves. Lamb wave theory is included in the f-k migration to consider the dispersive property of the AE waves. Since the exact occurrence time of the AE events is usually unknown when recording the AE wave signals, a heuristic artificial bee colony (ABC) algorithm combined with an optimal criterion using minimum Shannon entropy is used to find the image with the identified AE source locations and occurrence time that mostly approximate the actual ones. Experimental studies on an aluminum plate with AE events simulated by PZT actuators are performed to validate the applicability and effectiveness of the proposed optimal image-based AE source identification method. PMID:29466310

  1. An Optimal Image-Based Method for Identification of Acoustic Emission (AE) Sources in Plate-Like Structures Using a Lead Zirconium Titanate (PZT) Sensor Array.

    Science.gov (United States)

    Yan, Gang; Zhou, Li

    2018-02-21

    This paper proposes an innovative method for identifying the locations of multiple simultaneous acoustic emission (AE) events in plate-like structures from the view of image processing. By using a linear lead zirconium titanate (PZT) sensor array to record the AE wave signals, a reverse-time frequency-wavenumber (f-k) migration is employed to produce images displaying the locations of AE sources by back-propagating the AE waves. Lamb wave theory is included in the f-k migration to consider the dispersive property of the AE waves. Since the exact occurrence time of the AE events is usually unknown when recording the AE wave signals, a heuristic artificial bee colony (ABC) algorithm combined with an optimal criterion using minimum Shannon entropy is used to find the image with the identified AE source locations and occurrence time that mostly approximate the actual ones. Experimental studies on an aluminum plate with AE events simulated by PZT actuators are performed to validate the applicability and effectiveness of the proposed optimal image-based AE source identification method.

  2. Measurement of effective piezoelectric coefficients of PZT thin films for energy harvesting application with interdigitated electrodes.

    Science.gov (United States)

    Chidambaram, Nachiappan; Mazzalai, Andrea; Muralt, Paul

    2012-08-01

    Interdigitated electrode (IDE) systems with lead zirconate titanate (PZT) thin films play an increasingly important role for two reasons: first, such a configuration generates higher voltages than parallel plate capacitor-type electrode (PPE) structures, and second, the application of an electric field leads to a compressive stress component in addition to the overall stress state, unlike a PPE structure, which results in tensile stress component. Because ceramics tend to crack at relatively moderate tensile stresses, this means that IDEs have a lower risk of cracking than PPEs. For these reasons, IDE systems are ideal for energy harvesting of vibration energy, and for actuators. Systematic investigations of PZT films with IDE systems have not yet been undertaken. In this work, we present results on the evaluation of the in-plane piezoelectric coefficients with IDE systems. Additionally, we also propose a simple and measurable figure of merit (FOM) to analyze and evaluate the relevant piezoelectric parameter for harvesting efficiency without the need to fabricate the energy harvesting device. Idealized effective coefficients e(IDE) and h(IDE) are derived, showing its composite nature with about one-third contribution of the transverse effect, and about two-thirds contribution of the longitudinal effect in the case of a PZT film deposited on a (100)-oriented silicon wafer with the in-plane electric field along one of the Si directions. Randomly oriented 1-μm-thick PZT 53/47 film deposited by a sol-gel technique, was evaluated and yielded an effective coefficient e(IDE) of 15 C·m(-2). Our FOM is the product between effective e and h coefficient representing twice the electrical energy density stored in the piezoelectric film per unit strain deformation (both for IDE and PPE systems). Assuming homogeneous fields between the fingers, and neglecting the contribution from below the electrode fingers, the FOM for IDE structures with larger electrode gap is derived to be

  3. Multi-photon vertical cross-sectional imaging with a dynamically-balanced thin-film PZT z-axis microactuator.

    Science.gov (United States)

    Choi, Jongsoo; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R

    2017-10-01

    Use of a thin-film piezoelectric microactuator for axial scanning during multi-photon vertical cross-sectional imaging is described. The actuator uses thin-film lead-zirconate-titanate (PZT) to generate upward displacement of a central mirror platform, micro-machined from a silicon-on-insulator (SOI) wafer to dimensions compatible with endoscopic imaging instruments. Device modeling in this paper focuses on existence of frequencies near device resonance producing vertical motion with minimal off-axis tilt even in the presence of multiple vibration modes and non-uniformity in fabrication outcomes. Operation near rear resonance permits large stroke lengths at low voltages relative to other vertical microactuators. Highly uniform vertical motion of the mirror platform is a key requirement for vertical cross-sectional imaging in the remote scan architecture being used for multi-photon instrument prototyping. The stage is installed in a benchtop testbed in combination with an electrostatic mirror that performs in-plane scanning. Vertical sectional images are acquired from 15 μm diameter beads and excised mouse colon tissue.

  4. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring.

    Science.gov (United States)

    Dagdeviren, Canan; Su, Yewang; Joe, Pauline; Yona, Raissa; Liu, Yuhao; Kim, Yun-Soung; Huang, YongAn; Damadoran, Anoop R; Xia, Jing; Martin, Lane W; Huang, Yonggang; Rogers, John A

    2014-08-05

    The ability to measure subtle changes in arterial pressure using devices mounted on the skin can be valuable for monitoring vital signs in emergency care, detecting the early onset of cardiovascular disease and continuously assessing health status. Conventional technologies are well suited for use in traditional clinical settings, but cannot be easily adapted for sustained use during daily activities. Here we introduce a conformal device that avoids these limitations. Ultrathin inorganic piezoelectric and semiconductor materials on elastomer substrates enable amplified, low hysteresis measurements of pressure on the skin, with high levels of sensitivity (~0.005 Pa) and fast response times (~0.1 ms). Experimental and theoretical studies reveal enhanced piezoelectric responses in lead zirconate titanate that follow from integration on soft supports as well as engineering behaviours of the associated devices. Calibrated measurements of pressure variations of blood flow in near-surface arteries demonstrate capabilities for measuring radial artery augmentation index and pulse pressure velocity.

  5. Develop techniques for ion implantation of PLZT [lead-lanthanum-zirconate-titanate] for adaptive optics

    International Nuclear Information System (INIS)

    Batishko, C.R.; Brimhall, J.L.; Pawlewicz, W.T.; Stahl, K.A.; Toburen, L.H.

    1987-09-01

    Research was conducted at Pacific Northwest Laboratory to develop high photosensitivity adaptive optical elements utilizing ion implanted lanthanum-doped lead-zirconate-titanate (PLZT). One centimeter square samples were prepared by implanting ferroelectric and anti-ferroelectric PLZT with a variety of species or combinations of species. These included Ne, O, Ni, Ne/Cr, Ne/Al, Ne/Ni, Ne/O, and Ni/O, at a variety of energies and fluences. An indium-tin oxide (ITO) electrode coating was designed to give a balance of high conductivity and optical transmission at near uv to near ir wavelengths. Samples were characterized for photosensitivity; implanted layer thickness, index of refraction, and density; electrode (ITO) conductivity; and in some cases, residual stress curvature. Thin film anti-ferroelectric PLZT was deposited in a preliminary experiment. The structure was amorphous with x-ray diffraction showing the beginnings of a structure at substrate temperatures of approximately 550 0 C. This report summarizes the research and provides a sampling of the data taken during the report period

  6. Orientation of rapid thermally annealed lead zirconate titanate thin films on (111) Pt substrate

    International Nuclear Information System (INIS)

    Brooks, K.G.; Reaney, I.M.; Klissurska, R.; Huang, Y.; Bursill, L.A.; Setter, N.

    1994-01-01

    The nucleation, growth and orientation of lead zirconate titanate thin films prepared from organometallic precursor solutions by spin coating on (111) oriented platinum substrates and crystallized by rapid thermal annealing was investigated. The effects of pyrolysis temperature, post-pyrolysis thermal treatments, excess lead addition, and Nb dopant substitution are reported. The use of post pyrolysis oxygen anneals at temperatures in the regime of 350-450 deg C was found to strongly effect the kinetics of subsequent amorphous-pyrochlore perovskite crystallization by rapid thermal annealing. It has also allowed films of reproducible microstructure and textures (both (100) and (111)) to be prepared by rapid thermal annealing. It is suggested that such anneals and pyrolysis temperature affect the oxygen concentration/average Pb valence in the amorphous films prior to annealing. The changes in Pb valence state then affect the stability of the transient pyrochlore phase and thus the kinetics of perovskite crystallization. Nb dopant was also found to influence the crystallization kinetics. 28 refs., 18 figs

  7. Bi-axial Vibration Energy Harvesting

    Science.gov (United States)

    2012-07-01

    included early dedicated portable signal averaging equipment, Nomad, CT4 and F18 fatigue test control systems and some field trials. Currently he is...and repairs to acoustically- fatigued structures. ____________________ ________________________________________________ UNCLASSIFIED...Physicists at the Tokyo Institute of Technology investigated various piezoceramic materials [20], developing lead zirconate titanate ( PZT ) in around 1952

  8. Quantitative Diagnostics of Multilayered Composite Structures with Ultrasonic Guided Waves

    Science.gov (United States)

    2014-09-01

    sensors. These IDT sensors were fabricated from thin wafer of piezoelectric lead zirconate titanate ( PZT ) substrates by using a pulse laser micro...pavement structures," J. Acoust. Soc. Am., vol. 116, no. 5, pp. 2902-2913, 2004. [9] E. Kostson and P. Fromme, " Fatigue crack growth monitoring in multi

  9. Processing and electrical properties of gallium-substituted lead zirconate titanate ceramics

    Science.gov (United States)

    Hajra, Sugato; Sharma, Pulkit; Sahoo, Sushrisangita; Rout, P. K.; Choudhary, R. N. P.

    2017-12-01

    In the present paper, the effect of gallium (Ga) substitution on structural, microstructural, electrical conductivity of Pb(ZrTi)O3 (PZT) in the morphotropic phase boundary (MPB) region (i.e., Pb0.96Ga0.04(Zr0.48Ti0.52)0.99O3 (PGaZT-4)) was investigated. Increased grain density increases the resistivity of the Ga-modified PZT system. Preliminary structural analysis using X-ray diffraction pattern and data showed the existence of two phases [major tetragonal (T) and minor monoclinic (M)]. Field emission scanning electron micrograph (FESEM) showed the distribution of spherical as well as platelet type grains with small pores. The behavior of dielectric constant with temperature of PGaZT-4 exhibited the suppression of the ferroelectric phase transition [i.e., disappearance of Curie temperature ( T c)]. The complex impedance spectroscopy (CIS) technique helped to investigate the impedance parameters of PGaZT-4 in MPB region in a wide range of temperature (250-500 °C) and frequency (1-1000 kHz) region. The impedance parameters of the material are found to be strongly dependent on frequency of AC electric field and temperature. The substitution of gallium at the Pb site of PZT generally enhances the dielectric constant and decreases loss tangent. The AC conductivity vs frequency ( f = ω2 π) in the region of dispersion follows the universal response of Jonscher's equation. Enhanced resistive characteristics were observed for Ga-substituted PZT in comparison to the pure PZT, which was well ensured from the studies of electrical parameters, such as impedance and AC conductivity.

  10. Effects of electric field on the fracture toughness (KIc) of ceramic PZT

    International Nuclear Information System (INIS)

    Goljahi, Sam; Lynch, Christopher S

    2013-01-01

    This work was motivated by the observation that a small percentage of the ceramic lead zirconate titanate (PZT) parts in a device application, one that requires an electrode pattern on the PZT surface, developed fatigue cracks at the edges of the electrodes; yet all of the parts were subjected to similar loading. To obtain additional information on the fracture behavior of this material, similar specimens were run at higher voltage in the laboratory under a microscope to observe the initiation and growth of the fatigue cracks. A sequence of experiments was next performed to determine whether there were fracture toughness variations that depended on material processing. Plates were cut from a single bar in different locations and the Vickers indentation technique was used to measure the relative fracture toughness as a function of position along the bar. Small variations in toughness were found, that may account for some of the devices developing fatigue cracks and not others. Fracture toughness was measured next as a function of electric field. The surface crack in flexure technique was modified to apply an electric field perpendicular to a crack. The results indicate that the fracture toughness drops under a positive electric field and increases under a negative electric field that is less than the coercive field, but as the negative coercive field is approached the fracture toughness drops. Examination of the fracture surfaces using an optical microscope and a surface profilometer reveal the initial indentation crack shape and (although less accurately) the crack shape and size at the transition from stable to unstable growth. These results are discussed in terms of a ferroelastic toughening mechanism that is dependent on electric field. (paper)

  11. Effects of electric field on the fracture toughness (KIc) of ceramic PZT

    Science.gov (United States)

    Goljahi, Sam; Lynch, Christopher S.

    2013-09-01

    This work was motivated by the observation that a small percentage of the ceramic lead zirconate titanate (PZT) parts in a device application, one that requires an electrode pattern on the PZT surface, developed fatigue cracks at the edges of the electrodes; yet all of the parts were subjected to similar loading. To obtain additional information on the fracture behavior of this material, similar specimens were run at higher voltage in the laboratory under a microscope to observe the initiation and growth of the fatigue cracks. A sequence of experiments was next performed to determine whether there were fracture toughness variations that depended on material processing. Plates were cut from a single bar in different locations and the Vickers indentation technique was used to measure the relative fracture toughness as a function of position along the bar. Small variations in toughness were found, that may account for some of the devices developing fatigue cracks and not others. Fracture toughness was measured next as a function of electric field. The surface crack in flexure technique was modified to apply an electric field perpendicular to a crack. The results indicate that the fracture toughness drops under a positive electric field and increases under a negative electric field that is less than the coercive field, but as the negative coercive field is approached the fracture toughness drops. Examination of the fracture surfaces using an optical microscope and a surface profilometer reveal the initial indentation crack shape and (although less accurately) the crack shape and size at the transition from stable to unstable growth. These results are discussed in terms of a ferroelastic toughening mechanism that is dependent on electric field.

  12. Low fatigue lead zirconate titanate-based capacitors modified by manganese for nonvolatile memories

    International Nuclear Information System (INIS)

    Zhang, Q.; Whatmore, R.W.

    2004-01-01

    We have investigated the effects of Mn doping on the ferroelectric properties of Pb(Zr 0.3 Ti 0.7 )O 3 (PZT) thin films on substrates Pt/Ti/SiO 2 /Si. Small amount of Mn-doped (≤1 mol%) PZT (PMZT) showed almost no hysteretic fatigue up to 10 10 switching bipolar pulse cycles, coupled with excellent retention properties. We present evidence that while a low permittivity interfacial layer forms between the Pt electrode and PZT films, this does not occur in PMZT. We propose that Mn dopants are able to reduce oxygen vacancy mobility in PZT films and Mn 2+ ions consume the oxygen vacancies generated during repeated switching, forming Mn 4+ ions. These mechanisms are probably responsible for their low observed fatigue characteristics

  13. Processing and electrical properties of gallium-substituted lead zirconate titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hajra, Sugato; Sharma, Pulkit; Rout, P.K. [Siksha O Anusandhan University, Department of Electrical and Electronics Engineering, Bhubaneswar (India); Sahoo, Sushrisangita; Choudhary, R.N.P. [Siksha O Anusandhan University, Department of Physics, Bhubaneswar (India)

    2017-12-15

    In the present paper, the effect of gallium (Ga) substitution on structural, microstructural, electrical conductivity of Pb(ZrTi)O{sub 3} (PZT) in the morphotropic phase boundary (MPB) region (i.e., Pb{sub 0.96}Ga{sub 0.04}(Zr{sub 0.48}Ti{sub 0.52}){sub 0.99}O{sub 3} (PGaZT-4)) was investigated. Increased grain density increases the resistivity of the Ga-modified PZT system. Preliminary structural analysis using X-ray diffraction pattern and data showed the existence of two phases [major tetragonal (T) and minor monoclinic (M)]. Field emission scanning electron micrograph (FESEM) showed the distribution of spherical as well as platelet type grains with small pores. The behavior of dielectric constant with temperature of PGaZT-4 exhibited the suppression of the ferroelectric phase transition [i.e., disappearance of Curie temperature (T{sub c})]. The complex impedance spectroscopy (CIS) technique helped to investigate the impedance parameters of PGaZT-4 in MPB region in a wide range of temperature (250-500 C) and frequency (1-1000 kHz) region. The impedance parameters of the material are found to be strongly dependent on frequency of AC electric field and temperature. The substitution of gallium at the Pb site of PZT generally enhances the dielectric constant and decreases loss tangent. The AC conductivity vs frequency (f = ω2π) in the region of dispersion follows the universal response of Jonscher's equation. Enhanced resistive characteristics were observed for Ga-substituted PZT in comparison to the pure PZT, which was well ensured from the studies of electrical parameters, such as impedance and AC conductivity. (orig.)

  14. Modified lead titanate thin films for pyroelectric infrared detectors on gold electrodes

    Science.gov (United States)

    Ahmed, Moinuddin; Butler, Donald P.

    2015-07-01

    Pyroelectric infrared detectors provide the advantage of both a wide spectral response and dynamic range, which also has enabled systems to be developed with reduced size, weight and power consumption. This paper demonstrates the deposition of lead zirconium titanate (PZT) and lead calcium titanate (PCT) thin films for uncooled pyroelectric detectors with the utilization of gold electrodes. The modified lead titanate thin films were deposited by pulsed laser deposition on gold electrodes. The PZT and PCT thins films deposited and annealed at temperatures of 650 °C and 550 °C respectively demonstrated the best pyroelectric performance in this work. The thin films displayed a pyroelectric effect that increased with temperature. Poling of the thin films was carried out for a fixed time periods and fixed dc bias voltages at elevated temperature in order to increase the pyroelectric coefficient by establishing a spontaneous polarization of the thin films. Poling caused the pyroelectric current to increase one order of magnitude.

  15. Low fatigue lead zirconate titanate-based capacitors modified by manganese for nonvolatile memories

    OpenAIRE

    Zhang, Qi; Whatmore, Roger W.

    2004-01-01

    We have investigated the effects of Mn doping on the ferroelectric properties of Pb(Zr0.3Ti0.7)O3 (PZT) thin films on substrates Pt/Ti/SiO2/Si. Small amount of Mn-doped (≤1 mol%) PZT (PMZT) showed almost no hysteretic fatigue up to 1010 switching bipolar pulse cycles, coupled with excellent retention properties. We present evidence that while a low permittivity interfacial layer forms between the Pt electrode and PZT films, this does not occur in PMZT. We propose that Mn dopants are able to r...

  16. Comparison of Piezo-material based Energy Transduction Systems for Artificial Nanoswimmer

    Science.gov (United States)

    Nain, S.; Rathore, J. S.; Sharma, N. N.

    2018-04-01

    The energy harnessing is a process of obtaining energy from the surrounding environment and converting into electrical energy. In the last two decades, there has been a plenteous study in energy harnessing. Now a day, energy harnessing using piezoelectric materials has drawn attention of researchers due to low cost, flexibility and light weight. The benefits of piezoelectric material can be utilized by designing a self-powered device for artificial nanoswimmer. Some of the ceramics which displays the piezoelectric effect are lead-zirconate-titanate (PZT), lead-titanate (PbTiO2), lead-zirconate (PbZrO3) and Barium Titanate (BaTiO3). PZT is most extensively used piezoelectric material in the field of energy harnessing but it is brittle in nature. Lead based piezoelectric materials are toxic in nature and may not suitable for in-vivo biomedical applications. To eradicate this problem, researchers are interested in synthesizing lead free piezoelectric material such as Aluminium Nitride (AIN), Barium Titanate (BaTiO3) and Polyvinylidenefluoride (PVDF). The biocompatibility of PVDF makes it appropriate to be used for energy harnessing in human body for applications like on board powering of nanoswimmer for various disease detection and drug delivery. In this paper, a cantilever beam is being simulated in COMSOL to study electric potential generated on the surface of beam made of different piezoelectric materials such as AIN, PVDF and PZT due to fluidic pressure, which will be utilized as energy for actuation of artificial nanoswimmer. Piezo-based cantilever beams have been compared and maximum electric potential is being observed in PVDF based beam. PVDF seems most promising piezoelectric material for in-vivo biomedical application and it is readily available.

  17. Síntese e caracterização da cerâmica PZT dopada com íons bário Synthesis and characterization of barium-doped PZT ceramics

    Directory of Open Access Journals (Sweden)

    G. Gasparotto

    2003-04-01

    Full Text Available Pós de titanato zirconato de chumbo (PZT puros e dopados com bário foram obtidos pelo método de precursores poliméricos, conformados uniaxialmente, na forma de cilindros, utilizando 15 MPa, e prensados isostaticamente à 210MPa. Com o objetivo de estudar o comportamento de sinterização os compactos foram divididos em dois lotes. Sendo um sinterizado em um forno acoplado a um dilatômetro até a temperatura de 1300 °C e o outro sinterizado em forno tipo mufla, em sistema fechado, na temperatura de 1100 °C por 4 horas. Verificou-se que a adição do íon bário influencia na cinética de sinterização, na densificação final, na microestrutura e nas propriedades elétricas da cerâmica. A adição de bário aumenta a concentração da fase tetragonal no PZT, em função da substituição do chumbo por bário na rede perovskita. As amostras dopadas com concentrações maiores que 5,0 mol % em bário apresentaram segregação de PbO no contorno de grão, inibindo seu crescimento.Pure and barium doped lead zirconate titanate powders were obtained by the polymeric precursor method, uniaxially conformed in cylinders form using 15 MPa and pressing isostatically at 210 MPa. In order to study the sintering behaviour, the compacts were divided in two parts. One part was sintered in a dilatometer furnace till 1300 °C and the other one sintered in muffle furnace in the temperature of 1100 °C for 4 hours. It was verified that the addition of barium influences on the sintering kinetics, on the final density, microstructure and electric properties of the ceramics. The addition of barium increases the concentration of the tetragonal phase of PZT due to the substitution of lead by barium in the perovskite lattice. The samples doped with barium concentrations higher than 5.0 mol % leads to the segregation of PbO in the grain boundary, inhibiting grain growth.

  18. Synthesis and characterization of lead zirconate titanate powders obtained by the oxidant peroxo method

    International Nuclear Information System (INIS)

    Camargo, Emerson R.; Leite, Edson R.; Longo, Elson

    2009-01-01

    Lead zirconate titanate (PbZr 1-x Ti x O 3 ) was synthesized by the 'oxidant peroxo method (OPM)' with 'x' between 0.25 and 0.50. Titanium metal was dissolved into a hydrogen peroxide/ammonia aqueous solution, followed by the addition of lead and zirconium nitrate solution. The amorphous precipitated precursor obtained was crystallized by heat treatment between 400 and 1000 deg. C. Images of transmission microscopy showed spherical particles with average diameter between 20 and 60 nm, and the presence of necks between particles treated at 700 deg. C. All of the unpressed powders were characterized by X-ray diffractometry and FT-Raman spectroscopy. Powder samples with 'x' up to 0.35 showed rhombohedral structure when treated at temperatures higher than 500 deg. C, and tetragonal structure when 'x' was higher than 0.40. Analysis of XRD and Raman spectroscopy of the precursor powders showed amorphous-like structures, however powders treated at 400 deg. C showed a structure identified as an intermediate pyrochlore phase, independently of the Zr and Ti mole ratio

  19. 5 V Compatible Two-Axis PZT Driven MEMS Scanning Mirror with Mechanical Leverage Structure for Miniature LiDAR Application.

    Science.gov (United States)

    Ye, Liangchen; Zhang, Gaofei; You, Zheng

    2017-03-05

    The MEMS (Micro-Electronical Mechanical System) scanning mirror is an optical MEMS device that can scan laser beams across one or two dimensions. MEMS scanning mirrors can be applied in a variety of applications, such as laser display, bio-medical imaging and Light Detection and Ranging (LiDAR). These commercial applications have recently created a great demand for low-driving-voltage and low-power MEMS mirrors. However, no reported two-axis MEMS scanning mirror is available for usage in a universal supplying voltage such as 5 V. In this paper, we present an ultra-low voltage driven two-axis MEMS scanning mirror which is 5 V compatible. In order to realize low voltage and low power, a two-axis MEMS scanning mirror with mechanical leverage driven by PZT (Lead zirconate titanate) ceramic is designed, modeled, fabricated and characterized. To further decrease the power of the MEMS scanning mirror, a new method of impedance matching for PZT ceramic driven by a two-frequency mixed signal is established. As experimental results show, this MEMS scanning mirror reaches a two-axis scanning angle of 41.9° × 40.3° at a total driving voltage of 4.2 Vpp and total power of 16 mW. The effective diameter of reflection of the mirror is 2 mm and the operating frequencies of two-axis scanning are 947.51 Hz and 1464.66 Hz, respectively.

  20. Effect of ultraviolet light on fatigue of lead zirconate titanate thin-film capacitors

    Science.gov (United States)

    Lee, J.; Esayan, S.; Safari, A.; Ramesh, R.

    1994-07-01

    Fatigue of Pb(Zr0.52Ti0.48)O3 (PZT) thin-film capacitors was studied under UV light (He-Cd laser, λ=325 nm). The remanent polarization of the PZT film capacitors increased upon light illumination. Fatigue resistance was also improved under UV light. During fatigue test, the change in polarization of PZT films upon UV light illumination increased gradually with cycling. These results were examined within the framework of the polarization screening model, which is suggested as an essential process for fatigue. This leads to a conclusion that more charged defects are involved in the fatigue process through internal screening of polarization.

  1. Piezoelectric ultrasonic micromotor with 1.5 mm diameter.

    Science.gov (United States)

    Dong, Shuxiang; Lim, Siak P; Lee, Kwork H; Zhang, Jingdong; Lim, Leong C; Uchino, Kenji

    2003-04-01

    A piezoelectric ultrasonic micromotor has been developed using a lead zirconate titanate (PZT) ceramic/metal composite tube stator that was 1.5 mm in diameter and 7 mm in length. The micromotor was operated in its first bending vibration mode (approximately 70 kHz), producing speeds from hundreds to over 2000 rpm in both rotational directions. The maximum torque-output was 45 microN-m, which is far superior to previous PZT thin film-based micromotors. This micromotor showed good reliability and stability for more than 300 hours of continued operation.

  2. Characterization of PZT Capacitor Structures with Various Electrode Materials Processed In-Situ Using AN Automated, Rotating Elemental Target, Ion Beam Deposition System

    Science.gov (United States)

    Gifford, Kenneth Douglas

    Ferroelectric thin film capacitor structures containing lead zirconate titanate (PZT) as the dielectric, with the chemical formula Pb(rm Zr_{x }Ti_{1-x})O_3, were synthesized in-situ with an automated ion beam sputter deposition system. Platinum (Pt), conductive ruthenium oxide (RuO_2), and two types of Pt-RuO_2 hybrid electrodes were used as the electrode materials. The capacitor structures are characterized in terms of microstructure and electrical characteristics. Reduction or elimination of non-ferroelectric phases, that nucleate during PZT processing on Pt/TiO _2/MgO and RuO_2/MgO substrates, is achieved by reducing the thickness of the individually deposited layers and by interposing a buffer layer (~100-200A) of PbTiO _3 (PT) between the bottom electrode and the PZT film. Capacitor structures containing a Pt electrode exhibit poor fatigue resistance, irregardless of the PZT microstructure or the use of a PT buffer layer. From these results, and results from similar capacitors synthesized with sol-gel and laser ablation, PZT-based capacitor structures containing Pt electrodes are considered to be unsuitable for use in memory devices. Using a PT buffer layer, in capacitor structures containing RuO_2 top and bottom electrodes and polycrystalline, highly (101) oriented PZT, reduces or eliminates the nucleation of zirconium-titanium oxide, non-ferroelectric species at the bottom electrode interface during processing. This results in good fatigue resistance up to ~2times10^ {10} switching cycles. DC leakage current density vs. time measurements follow the Curie-von Schweidler law, J(t) ~ t^ {rm -n}. Identification of the high electric field current conduction mechanism is inconclusive. The good fatigue resistance, low dc leakage current, and excellent retention, qualifies the use of these capacitor structures in non-volatile random access (NVRAM) and dynamic random access (DRAM) memory devices. Excellent fatigue resistance (10% loss in remanent polarization up to

  3. Dynamic processes of domain switching in lead zirconate titanate under cyclic mechanical loading by in situ neutron diffraction

    International Nuclear Information System (INIS)

    Pojprapai, Soodkhet; Luo, Zhenhua; Clausen, Bjorn; Vogel, Sven C.; Brown, Donald W.; Russel, Jennifer; Hoffman, Mark

    2010-01-01

    The performance of ferroelectric ceramics is governed by the ability of domains to switch. A decrease in the switching ability can lead to degradation of the materials and failure of ferroelectric devices. In this work the dynamic properties of domain reorientation are studied. In situ time-of-flight neutron diffraction is used to probe the evolution of ferroelastic domain texture under mechanical cyclic loading in bulk lead zirconate titanate ceramics. The high sensitivity of neutron diffraction to lattice strain is exploited to precisely analyze the change of domain texture and strain through a full-pattern Rietveld method. These results are then used to construct a viscoelastic model, which explains the correlation between macroscopic phenomena (i.e. creep and recovered deformation) and microscopic dynamic behavior (i.e. ferroelastic switching, lattice strain).

  4. Pt/Pb(Zr, Ti)O3/Pt capacitor with excellent fatigue properties prepared by sol-gel process applied to FeRAM

    International Nuclear Information System (INIS)

    Jia Ze; Ren Tianling; Zhang Zhigang; Liu Tianzhi; Wen Xinyi; Hu Hong; Shao Tianqi; Xie Dan; Liu Litian

    2006-01-01

    Lead zirconate titanate (PZT) film is prepared on Pt/Ti/SiO 2 /Si substrate by proposed processes based on the sol-gel method and rapid thermal anneal (RTA). The ratio of Zr/Ti in the PZT film is 40/60. The PZT film has a mixture of perovskite orientations in which the (110) orientation is dominant. The Pt/PZT/Pt capacitor has remanent polarization of approximately 28.8 μC cm -2 and coercive voltage of approximately 0.76 V at 3 V voltage amplitude. The Pt/PZT/Pt capacitor has excellent fatigue properties. Switch polarizations decrease to 93.1% after 6 x 10 12 switch cycles. The excellent fatigue properties result from the ameliorations of PZT/Pt interface conditions, restraining Pb volatilization and the directions of crystal domains in the RTA process. Some electric properties of the PZT capacitor proposed are contrasted with those of PZT capacitors with a different anneal process in the preparation

  5. Polarization recovery in lead zirconate titanate thin films deposited on nanosheets-buffered Si (001)

    OpenAIRE

    Anuj Chopra; Muharrem Bayraktar; Maarten Nijland; Johan E. ten Elshof; Fred Bijkerk; Guus Rijnders

    2016-01-01

    Fatigue behavior of Pb(Zr,Ti)O3 (PZT) films is one of the deterrent factors that limits the use of these films in technological applications. Thus, understanding and minimization of the fatigue behavior is highly beneficial for fabricating reliable devices using PZT films. We have investigated the fatigue behavior of preferentially oriented PZT films deposited on nanosheets-buffered Si substrates using LaNiO3 bottom and top electrodes. The films show fatigue of up to 10% at 100 kHz, whereas n...

  6. Influence of chelation ratio of metal alkoxides on aging of PZT 53/47 ...

    Indian Academy of Sciences (India)

    Administrator

    In this work, we explore the sol–gel-based synthesis route of lead zirconate titanate ..... polydispersity index, as reported by the DLS equipment, must be consistently .... datasets. Statistically equivalent groups (p-value > 0∙05) are highlighted.

  7. Shear piezoelectric coefficients of PZT, LiNbO3 and PMN-PT at cryogenic temperatures

    International Nuclear Information System (INIS)

    Bukhari, Syed; Islam, Md; Haziot, Ariel; Beamish, John

    2014-01-01

    Piezoelectric transducers are used to detect stress and to generate nanometer scale displacements but their piezoelectric coefficients decrease with temperature, limiting their performance in cryogenic applications. We have developed a capacitive technique and directly measured the temperature dependence of the shear coefficient d 15 for ceramic lead zirconium titanate (PZT), 41° X-cut lithium niobate (LiNbO 3 ) and single crystal lead magnesium niobium-lead titanate (PMN-PT). In PZT, d 15 decreases nearly linearly with temperature, dropping by factor of about 4 by 1.3 K. LiNbO3 has the smallest room temperature d15, but its value decreased by only 6% at the lowest temperatures. PMN-PT had the largest value of d15 at room temperature (2.9 × 10 −9 m/V, about 45 times larger than for LiNbO 3 ) but it decreased rapidly below 75 K; at 1.3 K, d 15 was only about 8% of its room temperature value

  8. Pressure tuning of the morphotropic phase boundary in piezoelectric lead zirconate titanate

    International Nuclear Information System (INIS)

    Rouquette, J.; Haines, J.; Bornand, V.; Pintard, M.; Papet, Ph.; Bousquet, C.; Konczewicz, L.; Gorelli, F. A.; Hull, S.

    2004-01-01

    Titanium-rich PZT solid solutions were studied under high pressure by neutron and x-ray diffraction, Raman spectroscopy and dielectric measurements. The results show that high pressure stabilizes the ferroelectric monoclinic phases, which are proposed to be responsible for the high piezoelectric properties characteristic of the morphotropic composition PbZr 0.52 Ti 0.48 O 3 . Pressure may thus be used to tune the morphotropic phase boundary in the composition-pressure plane to include a wide range of titanium-rich PZT compositions

  9. Effects on Ferroelectric Thin-Film Stacks and Devices for Piezoelectric MEMS Applications at Varied Total Ionizing Dose (TID)

    Science.gov (United States)

    2017-03-01

    non -linearly mobile internal interfaces, e.g. domain walls and eventual phase boundaries. Radiation exposure is expected...zirconate titanate; PZT; actuator; radiation ; gamma; total ionization dose; TID; top electrode; Pt; IrO2; polarization; PE; hysteresis; permittivity...Hayashigawa, et. al., “A 2 Mbit Radiation Hardened Stackable Ferroelectric Memory” Non - Volatile Memory Technology Symposium, NVMTS 07, Nov 10-13, 2007 Albuquerque, NM, USA

  10. Chemical solution deposited BaPbO3 buffer layers for lead zirconate titanate ferroelectric films

    International Nuclear Information System (INIS)

    Tseng, T.-K.; Wu, J.-M.

    2005-01-01

    Conductive perovskite BaPbO 3 (BPO) films have been prepared successfully by chemical solution deposition method through spin-coating on Pt/Ti/SiO 2 /Si substrates. The choice of baking temperature is a key factor on the development of conducting BPO perovskite phase. When the baking temperature is higher than 350 deg. C, the BPO films contain a high content of BaCO 3 phase after annealing at temperatures higher than 500 deg. C. If the baking temperature is chosen lower than 300 deg. C, such as 200 deg. C, the annealed BPO films consist mostly of perovskite with only traces of BaCO 3 . Choosing 200 deg. C as the baking temperature, the BPO films developed single perovskite phase at temperatures as low as 550 deg. C. The perovskite BPO phase is stable in the range of 550-650 deg. C and the measured sheet resistance of the BPO films is about 2-3 Ω/square. The perovskite BPO film as a buffer layer provides improvement in electric properties of lead zirconate titanate films

  11. Combined effect of preferential orientation and Zr/Ti atomic ratio on electrical properties of Pb(ZrxTi1-x)O3 thin films

    International Nuclear Information System (INIS)

    Gong Wen; Li Jingfeng; Chu Xiangcheng; Gui Zhilun; Li Longtu

    2004-01-01

    Lead zirconate titanate [Pb(Zr x Ti 1-x )O 3 , PZT] thin films with various compositions, whose Zr/Ti ratio were varied as 40/60, 48/52, 47/53, and 60/40, were deposited on Pt(111)/Ti/SiO 2 /Si substrates by sol-gel method. A seeding layer was introduced between the PZT layer and the bottom electrode to control the texture of overlaid PZT thin films. A single perovskite PZT thin film with absolute (100) texture was obtained, when lead oxide was used as the seeding crystal, whereas titanium dioxide resulted in highly [111]-oriented PZT films. The dielectric and ferroelectric properties of PZT films with different preferential orientations were evaluated systemically as a function of composition. The maximums of relative dielectric constant were obtained in the morphotropic phase boundary region for both (100)- and (111)-textured PZT films. The ferroelectric properties also greatly depend on films' texture and composition. The intrinsic and extrinsic contributions to dielectric and ferroelectric properties were discussed

  12. Grain growth kinetics and electrical properties of lanthanum modified lead zirconate titanate (9/65/35) based ferroelectric ceramics

    International Nuclear Information System (INIS)

    Roca, R. Alvarez; Guerrero, F.; Botero, E. R.; Garcia, D.; Eiras, J. A.; Guerra, J. D. S.

    2009-01-01

    The influence of the microstructural characteristics on the dielectric and electrical properties has been investigated for Nd 3+ doped lanthanum modified lead zirconate titanate ferroelectric ceramics, obtained by the conventional solid-state reaction method, by taking into account different sintering conditions. The grain growth mechanism has been investigated and a cubic-type grain growth law was observed for samples with grain size varying from 1.00 up to 2.35 μm. The porosity and grain size dependences of the phase transition parameters, such as the maximum dielectric permittivity and its corresponding temperature (ε m and T m , respectively) were also investigated. The ac conductivity analyses followed the universal Jonscher law. The behavior of the frequency exponent (s) was analyzed through the correlated barrier hopping model. Both ac and dc conductivity results have been correlated with the observed microstructural features

  13. Synthesis and characterization of lead zirconate titanate powders obtained by the oxidant peroxo method

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Emerson R. [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos SP, 13565-905 (Brazil)], E-mail: camargo@ufscar.br; Leite, Edson R. [LIEC-Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Department of Chemistry, UFSCar-Federal University of Sao Carlos, Rod. Washington Luis km 235, CP 676, Sao Carlos SP, 13565-905 (Brazil)], E-mail: derl@power.ufscar.br; Longo, Elson [Department of Biochemistry, Chemistry Institute of Araraquara, UNESP, Sao Paulo State University Rua Francisco Degni, CP 355 Araraquara SP, 14801-907 Brazil (Brazil)], E-mail: elson@iq.unesp.br

    2009-02-05

    Lead zirconate titanate (PbZr{sub 1-x}Ti{sub x}O{sub 3}) was synthesized by the 'oxidant peroxo method (OPM)' with 'x' between 0.25 and 0.50. Titanium metal was dissolved into a hydrogen peroxide/ammonia aqueous solution, followed by the addition of lead and zirconium nitrate solution. The amorphous precipitated precursor obtained was crystallized by heat treatment between 400 and 1000 deg. C. Images of transmission microscopy showed spherical particles with average diameter between 20 and 60 nm, and the presence of necks between particles treated at 700 deg. C. All of the unpressed powders were characterized by X-ray diffractometry and FT-Raman spectroscopy. Powder samples with 'x' up to 0.35 showed rhombohedral structure when treated at temperatures higher than 500 deg. C, and tetragonal structure when 'x' was higher than 0.40. Analysis of XRD and Raman spectroscopy of the precursor powders showed amorphous-like structures, however powders treated at 400 deg. C showed a structure identified as an intermediate pyrochlore phase, independently of the Zr and Ti mole ratio.

  14. Raman analysis of ferroelectric switching in niobium-doped lead zirconate titanate thin films

    International Nuclear Information System (INIS)

    Ferrari, P.; Ramos-Moore, E.; Guitar, M.A.; Cabrera, A.L.

    2014-01-01

    Characteristic Raman vibration modes of niobium-doped lead zirconate titanate (PNZT) are studied as a function of ferroelectric domain switching. The microstructure of PNZT is characterized by scanning electron microscopy and X-ray diffraction. Ferroelectric switching is achieved by applying voltages between the top (Au) and bottom (Pt) electrodes, while acquiring the Raman spectra in situ. Vibrational active modes associated with paraelectric and ferroelectric phases are identified after measuring above and below the ferroelectric Curie temperature, respectively. Changes in the relative intensities of the Raman peaks are observed as a function of the switching voltage. The peak area associated with the ferroelectric modes is analyzed as a function of the applied voltage within one ferroelectric polarization loop, showing local maxima around the coercive voltage. This behavior can be understood in terms of the correlation between vibrational and structural properties, since ferroelectric switching modifies the interaction between the body-centered atom (Zr, Ti or Nb) and the Pb–O lattice. - Highlights: • Electric fields induce structural distortions on ferroelectric perovskites. • Ferroelectric capacitor was fabricated to perform hysteresis loops. • Raman analysis was performed in situ during ferroelectric switching. • Raman modes show hysteresis and inflections around the coercive voltages. • Data can be understood in terms of vibrational–structural correlations

  15. Fatigue-resistant epitaxial Pb(Zr,Ti)O3 capacitors on Pt electrode with ultra-thin SrTiO3 template layers

    International Nuclear Information System (INIS)

    Takahara, Seiichi; Morimoto, Akiharu; Kawae, Takeshi; Kumeda, Minoru; Yamada, Satoru; Ohtsubo, Shigeru; Yonezawa, Yasuto

    2008-01-01

    Lead zirconate-titanate Pb(Zr,Ti)O 3 (PZT) capacitors with Pt bottom electrodes were prepared on MgO substrates by pulsed laser deposition (PLD) technique employing SrTiO 3 (STO) template layer. Perovskite PZT thin films are prepared via stoichiometric target using the ultra-thin STO template layers while it is quite difficult to obtain the perovskite PZT on Pt electrode via stoichiometric target in PLD process. The PZT capacitor prepared with the STO template layer showed good hysteresis and leakage current characteristics, and it showed an excellent fatigue resistance. The ultra-thin STO template layers were characterized by angle-resolved X-ray photoelectron spectroscopy measurement. The effect of the STO template layer is discussed based on the viewpoint of the perovskite nucleation and diffusion of Pb and O atoms

  16. A novel method for the fabrication of freestanding PZT features on substrates

    NARCIS (Netherlands)

    van Bennekom, Joost G.; van Bennekom, J.G.; Winnubst, Aloysius J.A.; Nijdam, W.; Wessling, Matthias; Lammertink, Rob G.H.

    2009-01-01

    A simple and cheap micromoulding fabrication route was developed to prepare freestanding piezo active features. Dimensions as small as 200 μm by 200 μm and 40 μm high were successfully fabricated via a replication technique. The lead zirconate titanate features were thoroughly characterized using

  17. Compensator design for hysteresis of a stacked PZT actuator using a congruency-based hysteresis model

    International Nuclear Information System (INIS)

    Nguyen, Phuong-Bac; Choi, Seung-Bok

    2012-01-01

    This paper proposes a rate-independent hysteresis compensator for a stacked PZT (lead zirconate titanate) actuator. From a congruency-based hysteresis (CBH) model which is derived from the inherent properties of this actuator, especially the congruency, a feedforward compensator associated with it is developed. The formulation of the proposed compensator is based on an assumption that the inverse operator also possesses the same properties as the CBH model does. This implies that the compensator also possesses properties such as the wiped-out loop closing between the consecutive control points and congruency. Consequently, the expressions for the compensator can be conducted by exploiting the equations for the CBH model in two cases of monotonic increase and monotonic decrease of input excitation. In order to assess the performance of the compensator, several experiments in both open-loop and closed-loop controls are undertaken. In the open-loop control experiment, the performance of the feedforward compensator using the CBH model is compared with the classical Preisach model-based one in three cases of reference waveforms. In the closed-loop control experiment, the proposed compensator is incorporated into a PID (proportional-integral-derivative) control system and the performance of this integrated system is then evaluated and compared to that of the PID with and without compensator. (paper)

  18. Structures and Techniques For Implementing and Packaging Complex, Large Scale Microelectromechanical Systems Using Foundry Fabrication Processes.

    Science.gov (United States)

    1996-06-01

    switches 5-43 Figure 5-27. Mechanical interference between ’Pull Spring’ devices 5-45 Figure 5-28. Array of LIGA mechanical relay switches 5-49...like coating DM Direct metal interconnect technique DMD ™ Digital Micromirror Device EDP Ethylene, diamine, pyrocatechol and water; silicon anisotropic...mechanical systems MOSIS MOS Implementation Service PGA Pin grid array, an electronic die package PZT Lead-zirconate-titanate LIGA Lithographie

  19. Wavelet Spectral Finite Elements for Wave Propagation in Composite Plates with Damages - Years 3-4

    Science.gov (United States)

    2014-05-23

    governing differential equation, transforming to frequency domain using wavelet transform, performing uncoupling of wavelet coefficients using...transformed to the frequency domain where 1024 sampling points are used. For spatial variation, 30 Fourier series coefficients are considered. In FE...using Lead Zirconate Titanate ( PZT ) wafer active patch (15 mm diameter and 2 mm thickness) which was bonded to the structure. A 3D Laser Doppler

  20. Toward a unified description of nonlinearity and frequency dispersion of piezoelectric and dielectric responses in Pb(Zr,Ti)O3

    International Nuclear Information System (INIS)

    Damjanovic, D.; Bharadwaja, S.S.N.; Setter, N.

    2005-01-01

    A phenomenological approach is proposed describing both nonlinearity and frequency dispersion in dielectric and piezoelectric properties of lead zirconate titanate, Pb(Zr,Ti)O 3 (PZT), thin films and ceramics. The approach couples the frequency dependent response in form of the power law, 1/ω β , with the rate-independent nonlinear response described by the Rayleigh law. The main experimental trends are well described by the model

  1. A fatigue test method for Pb(Zr,Ti)O3 thin films by using MEMS-based self-sensitive piezoelectric microcantilevers

    Science.gov (United States)

    Kobayashi, T.; Maeda, R.; Itoh, T.

    2008-11-01

    In the present study, we propose a new method for the fatigue test of lead zirconate titanate (PZT) thin films for MEMS devices by using self-sensitive piezoelectric microcantilevers developed in our previous study. We have deposited PZT thin films on SOI wafers and fabricated the microcantilevers through the MEMS microfabrication process. In the self-sensitive piezoelectric microcantilevers, the PZT thin films are separated in order to act as an actuator and a sensor. The fatigue characteristic of the PZT thin films can be evaluated by measuring the output voltage of the sensor as a function of time. When a sine wave of 20 Vpp and a dc bias of 10 V were applied to the PZT thin films for an actuator, the output voltage of the sensor fell down after 107 fatigue cycles. We have also investigated the influence of amplitude of the actuation sine wave and dc bias on the fatigue of the PZT thin films by using the proposed fatigue test method.

  2. A fatigue test method for Pb(Zr,Ti)O3 thin films by using MEMS-based self-sensitive piezoelectric microcantilevers

    International Nuclear Information System (INIS)

    Kobayashi, T; Maeda, R; Itoh, T

    2008-01-01

    In the present study, we propose a new method for the fatigue test of lead zirconate titanate (PZT) thin films for MEMS devices by using self-sensitive piezoelectric microcantilevers developed in our previous study. We have deposited PZT thin films on SOI wafers and fabricated the microcantilevers through the MEMS microfabrication process. In the self-sensitive piezoelectric microcantilevers, the PZT thin films are separated in order to act as an actuator and a sensor. The fatigue characteristic of the PZT thin films can be evaluated by measuring the output voltage of the sensor as a function of time. When a sine wave of 20 V pp and a dc bias of 10 V were applied to the PZT thin films for an actuator, the output voltage of the sensor fell down after 10 7 fatigue cycles. We have also investigated the influence of amplitude of the actuation sine wave and dc bias on the fatigue of the PZT thin films by using the proposed fatigue test method

  3. Wireless guided wave and impedance measurement using laser and piezoelectric transducers

    International Nuclear Information System (INIS)

    Park, Hyun-Jun; Sohn, Hoon; Yun, Chung-Bang; Chung, Joseph; Lee, Michael M S

    2012-01-01

    Guided-wave- and impedance-based structural health monitoring (SHM) techniques have gained much attention due to their high sensitivity to small defects. One of the popular devices commonly used for guided wave and impedance measurements is a lead zirconate titanate (PZT) transducer. This study proposes a new wireless scheme where the power and data required for PZT excitation and sensing are transmitted via laser. First, a modulated laser beam is wirelessly transmitted to the photodiode connected to a PZT on a structure. Then, the photodiode converts the laser light into an electric signal, and it is applied to the PZT for excitation. The corresponding responses, impedance at the same PZT or guided waves at another PZT, are measured, re-converted into laser light, and wirelessly transmitted back to the other photodiode located in the data interrogator for signal processing. The feasibility of the proposed wireless guided wave and impedance measurement schemes has been examined through circuit analyses and experimentally investigated in a laboratory setup. (paper)

  4. Microstructure of lead zirconium titanate (PZT) by electron microscopy

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng JuLin

    1989-01-01

    Transmission and high-resolution electron microscopy reveal the microtexture of lead zirconium titanate ceramics. Fine scale (≤ 500 Aangstroem) ferroelastic and ferroelectric twin domains, as well as dislocations were found in a complex texture. Correlations between stoichiometry, microstructure and piezoelectric properties are discussed. 6 refs., 3 figs

  5. Effects of Polarization on Mechanical Properties of Lead Zirconate Titanate Ceramics Evaluated by Modified Small Punch Tests

    Science.gov (United States)

    Deng, Qihuang; Fan, Yuchi; Wang, Lianjun; Xiong, Zhi; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong; Kawasaki, Akira; Jiang, Wan

    2012-01-01

    Pb(Zr,Ti)O3 (PZT) ceramics were prepared by the conventional mixed oxide method, and the strength of the resultant PZT ceramics was evaluated using modified small punch (MSP) tests. Load-displacement curve test results showed that the crack-initiation and fracture strengths of PZT ceramics decreased after polarization. The effect of the polarization accelerated the fatigue properties of PZT ceramics. Scanning electron microscopy (SEM) results showed that microcracks were formed before the maximum load in the MSP test, and the first load drop corresponded to crack initiation.

  6. Dynamic magnetoelectric effects in bulk and layered composites of cobalt zinc ferrite and lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, G.; Hayes, R.; DeVreugd, C.P. [Oakland University, Physics Department, Rochester, MI (United States); Laletsin, V.M.; Paddubnaya, N. [National Academy of Sciences, Institute of Technical Acoustics, Vitebsk (Belarus)

    2005-02-01

    Low-frequency magnetoelectric (ME) coupling is investigated in bulk samples and multilayers of cobalt zinc ferrite, Co{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} (x=0-0.6), and lead zirconate titanate. In bulk samples, the transverse and longitudinal couplings are weak and of equal magnitude. A substantial strengthening of ME interactions is evident in layered structures, with the ME voltage coefficient a factor of 10-30 higher than in bulk samples. Important findings of our studies of layered composites are as follows. (i) The transverse coupling is stronger than the longitudinal coupling. (ii) The strength of ME interactions is dependent on Zn substitution, with a maximum for x=0.4. (iii) A weak coupling exists at the ferromagnetic-piezoelectric interface, as revealed by an analysis of the volume and static magnetic field dependence of ME voltage coefficients. (iv) The interface coupling k increases with Zn substitution and the k versus x profile shows a maximum centered at x=0.4. (v) The Zn-assisted enhancement can be attributed to efficient magneto-mechanical coupling in the ferrite. (orig.)

  7. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications.

    Science.gov (United States)

    Zhang, Yan; Xie, Mengying; Roscow, James; Bao, Yinxiang; Zhou, Kechao; Zhang, Dou; Bowen, Chris R

    2017-04-14

    This paper demonstrates the significant benefits of exploiting highly aligned porosity in piezoelectric and pyroelectric materials for improved energy harvesting performance. Porous lead zirconate (PZT) ceramics with aligned pore channels and varying fractions of porosity were manufactured in a water-based suspension using freeze-casting. The aligned porous PZT ceramics were characterized in detail for both piezoelectric and pyroelectric properties and their energy harvesting performance figures of merit were assessed parallel and perpendicular to the freezing direction. As a result of the introduction of porosity into the ceramic microstructure, high piezoelectric and pyroelectric harvesting figures of merits were achieved for porous freeze-cast PZT compared to dense PZT due to the reduced permittivity and volume specific heat capacity. Experimental results were compared to parallel and series analytical models with good agreement and the PZT with porosity aligned parallel to the freezing direction exhibited the highest piezoelectric and pyroelectric harvesting response; this was a result of the enhanced interconnectivity of the ferroelectric material along the poling direction and reduced fraction of unpoled material that leads to a higher polarization. A complete thermal energy harvesting system, composed of a parallel-aligned PZT harvester element and an AC/DC converter, was successfully demonstrated by charging a storage capacitor. The maximum energy density generated by the 60 vol% porous parallel-connected PZT when subjected to thermal oscillations was 1653 μJ cm -3 , which was 374% higher than that of the dense PZT with an energy density of 446 μJ cm -3 . The results are beneficial for the design and manufacture of high performance porous pyroelectric and piezoelectric materials in devices for energy harvesting and sensor applications.

  8. Fabrication and Evaluation of One-Axis Oriented Lead Zirconate Titanate Films Using Metal-Oxide Nanosheet Interface Layer

    Science.gov (United States)

    Minemura, Yoshiki; Nagasaka, Kohei; Kiguchi, Takanori; Konno, Toyohiko J.; Funakubo, Hiroshi; Uchida, Hiroshi

    2013-09-01

    Nanosheet Ca2Nb3O20 (ns-CN) layers with pseudo-perovskite-type crystal configuration were applied on the surface of polycrystalline metal substrates to achieve preferential crystal orientation of Pb(Zr,Ti)O3 (PZT) films for the purpose of enhanced ferroelectricity comparable to that of epitaxial thin films. PZT films with tetragonal symmetry (Zr/Ti=0.40:0.60) were fabricated by chemical solution deposition (CSD) on ns-CN-buffered Inconel 625 and SUS 316L substrates, while ns-CN was applied on the the substrates by dip-coating. The preferential crystal growth on the ns-CN layer can be achieved by favorable lattice matching between (001)/(100)PZT and (001)ns-CN planes. The degree of (001) orientation was increased for PZT films on ns-CN/Inconel 625 and ns-CN/SUS 316L substrates, whereas randomly-oriented PZT films with a lower degree of (001) orientation were grown on bare and Inconel 625 films. Enhanced remanent polarization of 60 µC/cm2 was confirmed for the PZT films on ns-CN/metal substrates, ascribed to the preferential alignment of the polar [001] axis normal to the substrate surface, although it also suffered from higher coercive field above 500 kV/cm caused by PZT/metal interfacial reaction.

  9. Polarization recovery in lead zirconate titanate thin films deposited on nanosheets-buffered Si (001)

    Science.gov (United States)

    Chopra, Anuj; Bayraktar, Muharrem; Nijland, Maarten; ten Elshof, Johan E.; Bijkerk, Fred; Rijnders, Guus

    2016-12-01

    Fatigue behavior of Pb(Zr,Ti)O3 (PZT) films is one of the deterrent factors that limits the use of these films in technological applications. Thus, understanding and minimization of the fatigue behavior is highly beneficial for fabricating reliable devices using PZT films. We have investigated the fatigue behavior of preferentially oriented PZT films deposited on nanosheets-buffered Si substrates using LaNiO3 bottom and top electrodes. The films show fatigue of up to 10% at 100 kHz, whereas no fatigue has been observed at 1 MHz. This frequency dependence of the fatigue behavior is found to be in accordance with Dawber-Scott fatigue model that explains the origin of the fatigue as migration of oxygen vacancies. Interestingly, a partial recovery of remnant polarization up to ˜97% of the maximum value is observed after 4×109 cycles which can be further extended to full recovery by increasing the applied electric field. This full recovery is qualitatively explained using kinetic approach as a manifestation of depinning of domains walls. The understanding of the fatigue behavior and polarization recovery that is explained in this paper can be highly useful in developing more reliable PZT devices.

  10. Wafer-scale growth of highly textured piezoelectric thin films by pulsed laser deposition for micro-scale sensors and actuators

    Science.gov (United States)

    Nguyen, M. D.; Tiggelaar, R.; Aukes, T.; Rijnders, G.; Roelof, G.

    2017-11-01

    Piezoelectric lead-zirconate-titanate (PZT) thin films were deposited on 4-inch (111)Pt/Ti/SiO2/Si(001) wafers using large-area pulsed laser deposition (PLD). This study was focused on the homogeneity in film thickness, microstructure, ferroelectric and piezoelectric properties of PZT thin films. The results indicated that the highly textured (001)-oriented PZT thin films with wafer-scale thickness homogeneity (990 nm ± 0.8%) were obtained. The films were fabricated into piezoelectric cantilevers through a MEMS microfabrication process. The measured longitudinal piezoelectric coefficient (d 33f = 210 pm/V ± 1.6%) and piezoelectric transverse coefficient (e 31f = -18.8 C/m2 ± 2.8%) were high and homogeneity across wafers. The high piezoelectric properties on Si wafers will extend industrial application of PZT thin films and further development of piezoMEMS.

  11. Preparation of Pb(Zr, Ti)O3 Thin Films on Glass Substrates

    Science.gov (United States)

    Hioki, Tsuyoshi; Akiyama, Masahiko; Ueda, Tomomasa; Onozuka, Yutaka; Hara, Yujiro; Suzuki, Kouji

    2000-09-01

    Lead-zirconate-titanate (PZT) thin films were prepared on non-alkaline glass substrates widely used in liquid crystal display (LCD) devices, by plasma-assisted magnetron RF sputtering with an immersed coil. After preparation of the PZT thin film, the glass was available for use in LCD device processing. No mutual diffusion of the elements was recognized between the glass substrate and the bottom electrode. The PZT layer had a dense film structure with rectangular and columnar grains, and only its perovskite phase was crystalline. PZT thin films on a glass substrate had leakage current densities of about 10-8 A/cm2, acceptable hysteresis loop shapes with the remanent polarization (Pr) of 45 μC/cm2 and the coercive field (Ec) of 90 kV/cm. Ferroelectric properties on a glass substrate almost conform with those on a Si-based substrate.

  12. Polarizaton recovery in lead zirconate titanate thin films deposited on nanosheets-beffered Si (oo1)

    NARCIS (Netherlands)

    Chopra, A.; Bayraktar, Muharrem; Nijland, Maarten; ten Elshof, Johan E.; Bijkerk, Frederik; Rijnders, Augustinus J.H.M.

    2016-01-01

    Fatigue behavior of Pb(Zr,Ti)O3 (PZT) films is one of the deterrent factors that limits the use of these films in technological applications. Thus, understanding and minimization of the fatigue behavior is highly beneficial for fabricating reliable devices using PZT films. We have investigated the

  13. A three-degree-of-freedom thin-film PZT-actuated microactuator with large out-of-plane displacement.

    Science.gov (United States)

    Choi, Jongsoo; Qiu, Zhen; Rhee, Choong-Ho; Wang, Thomas; Oldham, Kenn

    2014-07-01

    A novel three degree-of-freedom microactuator based on thin-film lead-zirconate-titanate (PZT) is described with its detailed structural model. Its central rectangular-shaped mirror platform, also referred to as the stage, is actuated by four symmetric PZT bending legs such that each leg provides vertical translation for one corner of the stage. It has been developed to support real-time in vivo vertical cross-sectional imaging with a dual axes confocal endomicroscope for early cancer detection, having large displacements in three axes (z, θ x , θ y ) and a relatively high bandwidth in the z-axis direction. Prototype microactuators closely meet the performance requirements for this application; in the out-of-plane (z-axis) direction, it has shown more than 177 μ m of displacement and about 84 Hz of structural natural frequency, when two diagonal legs are actuated at 14V. With all four legs, another prototype of the same design with lighter stage mass has achieved more than 430 μ m of out-of-plane displacement at 15V and about 200 Hz of bandwidth. The former design has shown approximately 6.4° and 2.9° of stage tilting about the x-axis and y-axis, respectively, at 14V. This paper also presents a modeling technique that uses experimental data to account for the effects of fabrication uncertainties in residual stress and structural dimensions. The presented model predicts the static motion of the stage within an average absolute error of 14.6 μ m, which approaches the desired imaging resolution, 5 μ m, and also reasonably anticipates the structural dynamic behavior of the stage. The refined model will support development of a future trajectory tracking controller for the system.

  14. Bath temperature effect on magnetoelectric performance of Ni-lead zirconate titanate-Ni laminated composites synthesized by electroless deposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, W. [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Y.G., E-mail: yingang.wang@nuaa.edu.c [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Bi, K. [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2011-03-15

    Magnetoelectric (ME) Ni-lead zirconate titanate-Ni laminated composites have been prepared by electroless deposition at various bath temperatures. The structure of the Ni layers deposited at various bath temperatures was characterized by X-ray diffraction, and microstructures were investigated by transmission electron microscopy. The magnetostrictive coefficients were measured by means of a resistance strain gauge. The transverse ME voltage coefficient {alpha}{sub E,31} was measured with the magnetic field applied parallel to the sample plane. The deposition rate of Ni increases with bath temperature. Ni layer with smaller grain size is obtained at higher bath temperature and shows higher piezomagnetic coefficient, promoting the ME effect of corresponding laminated composites. It is advantageous to increase the bath temperature, while trying to avoid the breaking of bath constituents. - Research Highlights: Laminated composites without interlayer are prepared by electroless deposition. Bath temperature affects the grain size of the deposited Ni layers. Higher bath temperature is beneficial to obtain stronger ME response.

  15. Polarization recovery in lead zirconate titanate thin films deposited on nanosheets-buffered Si (001

    Directory of Open Access Journals (Sweden)

    Anuj Chopra

    2016-12-01

    Full Text Available Fatigue behavior of Pb(Zr,TiO3 (PZT films is one of the deterrent factors that limits the use of these films in technological applications. Thus, understanding and minimization of the fatigue behavior is highly beneficial for fabricating reliable devices using PZT films. We have investigated the fatigue behavior of preferentially oriented PZT films deposited on nanosheets-buffered Si substrates using LaNiO3 bottom and top electrodes. The films show fatigue of up to 10% at 100 kHz, whereas no fatigue has been observed at 1 MHz. This frequency dependence of the fatigue behavior is found to be in accordance with Dawber–Scott fatigue model that explains the origin of the fatigue as migration of oxygen vacancies. Interestingly, a partial recovery of remnant polarization up to ∼97% of the maximum value is observed after 4×109 cycles which can be further extended to full recovery by increasing the applied electric field. This full recovery is qualitatively explained using kinetic approach as a manifestation of depinning of domains walls. The understanding of the fatigue behavior and polarization recovery that is explained in this paper can be highly useful in developing more reliable PZT devices.

  16. International Infantry and Joint Services Small Arms Systems Section Symposium, Exhibition and Firing Demonstration. Held in Atlantic City, NJ on 13-16 May 2002. Volume 2

    Science.gov (United States)

    2002-05-13

    going efforts to gather data Types of Sound Generation Sources • Piezo - Electric – High Performance Speakers & Ceramics – Smallest Volume Package...40-µm DRIE spring Stage 2 Devices-Fab 2 Texture of DRIE- machined surface Details of undercutting and release etch for 40-µm spring 1 Tank-automotive... PZT -5A Piezoceramic Sheets Nomenclature - Lead-Zirconate Titanate Micro-Flex Actuator* * Fundamentals of Adaptive/Smart Aerostructures Short Course

  17. Piezoelectric Ceramics Characterization

    National Research Council Canada - National Science Library

    Jordan, T

    2001-01-01

    ... the behavior of a piezoelectric material. We have attempted to cover the most common measurement methods as well as introduce parameters of interest. Excellent sources for more in-depth coverage of specific topics can be found in the bibliography. In most cases, we refer to lead zirconate titanate (PZT) to illustrate some of the concepts since it is the most widely used and studied piezoelectric ceramic to date.

  18. Combined application of FBG and PZT sensors for plantar pressure monitoring at low and high speed walking.

    Science.gov (United States)

    Suresh, R; Bhalla, S; Singh, C; Kaur, N; Hao, J; Anand, S

    2015-01-01

    Clinical monitoring of planar pressure is vital in several pathological conditions, such as diabetes, where excess pressure might have serious repercussions on health of the patient, even to the extent of amputation. The main objective of this paper is to experimentally evaluate the combined application of the Fibre Bragg Grating (FBG) and the lead zirconate titanate (PZT) piezoceramic sensors for plantar pressure monitoring during walk at low and high speeds. For fabrication of the pressure sensors, the FBGs are embedded within layers of carbon composite material and stacked in an arc shape. From this embedding technique, average pressure sensitivity of 1.3 pm/kPa and resolution of nearly 0.8 kPa is obtained. These sensors are found to be suitable for measuring the static and the low-speed walk generated foot pressure. Simultaneously, PZT patches of size 10 × 10 × 0.3 mm were used as sensors, utilizing the d_{33} (thickness) coupling mode. A sensitivity of 7.06 mV/kPa and a pressure resolution of 0.14 kPa is obtained from these sensors, which are found to be suitable for foot pressure measurement during high speed walking and running. Both types of sensors are attached to the underside of the sole of commercially available shoes. In the experiments, a healthy male subject walks/runs over the treadmill wearing the fabricated shoes at various speeds and the peak pressure is measured using both the sensors. Commercially available low-cost hardware is used for interrogation of the two sensor types. The test results clearly show the feasibility of the FBG and the PZT sensors for measurement of plantar pressure. The PZT sensors are more accurate for measurement of pressure during walking at high speeds. The FBG sensors, on the other hand, are found to be suitable for static and quasi-dynamic (slow walking) conditions. Typically, the measured pressure varied from 400 to 600 kPa below the forefoot and 100 to 1000 kPa below the heel as the walking speed varied from 1

  19. Multi-layer micro/nanofluid devices with bio-nanovalves

    Science.gov (United States)

    Li, Hao; Ocola, Leonidas E.; Auciello, Orlando H.; Firestone, Millicent A.

    2013-01-01

    A user-friendly multi-layer micro/nanofluidic flow device and micro/nano fabrication process are provided for numerous uses. The multi-layer micro/nanofluidic flow device can comprise: a substrate, such as indium tin oxide coated glass (ITO glass); a conductive layer of ferroelectric material, preferably comprising a PZT layer of lead zirconate titanate (PZT) positioned on the substrate; electrodes connected to the conductive layer; a nanofluidics layer positioned on the conductive layer and defining nanochannels; a microfluidics layer positioned upon the nanofluidics layer and defining microchannels; and biomolecular nanovalves providing bio-nanovalves which are moveable from a closed position to an open position to control fluid flow at a nanoscale.

  20. Characterization of domain reorientation in Pzt ceramics

    International Nuclear Information System (INIS)

    Lente, Manuel Henrique; Povoa, Jose Marques; Eiras, Jose Antonio

    1997-01-01

    The dynamic of domains in ferroelectric materials has been intensively studied due to its importance in applications like non volatile memories. Domain reorientation was characterized in lead zirconate titanate samples, pure and doped, through measurements of the transient current, after reversal a electric field. The reorientation behavior of the domains showed to be influenced by type of impurity (Nb or Fe) and by the electrical field intensity. Analysis of the experimental results reveals mainly the existence of two contributions: a dependent (t 0.1 s) of the field intensity. (author)

  1. Study of samarium modified lead zirconate titanate and nickel zinc ferrite composite system

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Rekha [Department of Physics, SD PG College, Panipat 132103 (India); School of Physics and Materials Science, Thapar University, Patiala 147004 (India); Juneja, J.K., E-mail: jk_juneja@yahoo.com [Department of Physics, Hindu College, Sonepat 131001 (India); Singh, Sangeeta [Department of Physics, GVM Girls College, Sonepat 131001 (India); Raina, K.K. [School of Physics and Materials Science, Thapar University, Patiala 147004 (India); Prakash, Chandra [Solid State Physics Laboratory, Timarpur, Delhi 110054 (India)

    2015-03-15

    In the present work, composites of samarium substituted lead zirconate titanate and nickel zinc ferrite with compositional formula 0.95Pb{sub 1−3x/2} Sm{sub x}Zr{sub 0.65}Ti{sub 0.35}O{sub 3}–0.05Ni{sub 0.8}Zn{sub 0.2}Fe{sub 2}O{sub 4} (x=0, 0.01, 0.02 and 0.03) were prepared by the conventional solid state route. X-ray diffraction analysis was carried out to confirm the coexistence of individual phases. Microstructural study was done by using scanning electron microscope. Dielectric constant and loss were studied as a function of temperature and frequency. To study ferroelectric and magnetic properties of the composite samples, corresponding P–E and M–H hysteresis loops were recorded. Change in magnetic properties of electrically poled composite sample (x=0.02) was studied to confirm the magnetoelectric (ME) coupling. ME coefficient (dE/dH) of the samples (x=0 and 0.02) was measured as a function of DC magnetic field. - Highlights: • We are reporting the effect of Sm substitution on PZT–NiZn ferrite composites. • Observation of both P–E and M–H loops confirms ferroelectric and magnetic ordering. • With Sm substitution, significant improvement in properties was observed. • Increase in magnetization for electrically poled sample is evidence of ME coupling. • Electric polarization is generated by applying magnetic field.

  2. Development, Characterization and Piezoelectric Fatigue Behavior of Lead-Free Perovskite Piezoelectric Ceramics

    Science.gov (United States)

    Patterson, Eric Andrew

    Much recent research has focused on the development lead-free perovskite piezoelectrics as environmentally compatible alternatives to lead zirconate titanate (PZT). Two main categories of lead free perovskite piezoelectric ceramic systems were investigated as potential replacements to lead zirconate titanate (PZT) for actuator devices. First, solid solutions based on Li, Ta, and Sb modified (K0.5Na0.5)NbO3 (KNN) lead-free perovskite systems were created using standard solid state methods. Secondly, Bi-based materials a variety of compositions were explored for (1-x)(Bi 0.5Na0.5)TiO3-xBi(Zn0.5Ti0.5)O 3 (BNT-BZT) and Bi(Zn0.5Ti0.5)O3-(Bi 0.5K0.5)TiO3-(Bi0.5Na0.5)TiO 3 (BZT-BKT-BNT). It was shown that when BNT-BKT is combined with increasing concentrations of Bi(Zn1/2i1/2)O3 (BZT), a transition from normal ferroelectric behavior to a material with large electric field induced strains was observed. The higher BZT containing compositions are characterized by large hysteretic strains(> 0.3%) with no negative strains that might indicate domain switching. This work summarizes and analyzes the fatigue behavior of the new generation of Pb-free piezoelectric materials. In piezoelectric materials, fatigue is observed as a degradation in the electromechanical properties under the application of a bipolar or unipolar cyclic electrical load. In Pb-based materials such as lead zirconate titanate (PZT), fatigue has been studied in great depth for both bulk and thin film applications. In PZT, fatigue can result from microcracking or electrode effects (especially in thin films). Ultimately, however, it is electronic and ionic point defects that are the most influential mechanism. Therefore, this work also analyzes the fatigue characteristics of bulk polycrystalline ceramics of the modified-KNN and BNT-BKT-BZT compositions developed. The defect chemistry that underpins the fatigue behavior will be examined and the results will be compared to the existing body of work on PZT. It will

  3. Effect of compositional variations in the lead lanthanum zirconate stannate titanate system on electrical properties

    International Nuclear Information System (INIS)

    Markowski, K.; Park, S.E.; Yoshikawa, Shoko; Cross, L.E.

    1996-01-01

    The purpose of this work was to evaluate the effect of compositional modifications on the electrical properties of lead lanthanum zirconate stannate titanate (PLZST) ceramics, as well as to examine their electrically induced phase-change behavior. Variations in the Ti:Sn ratio were evaluated. Increased Ti 4+ content produced the following: decreased switching field, related to an increased antiferroelectric-ferroelectric (AFE-FE) transition temperature; constant hysteresis (ΔE) correlated with a constant temperature of the maximum dielectric constant (T max ); a sharper dielectric-constant maximum peak; and increased room-temperature dielectric constant (K). Variations in the Zr:Sn ratio also were evaluated. Increased Zr 4+ content produced the following: increased hysteresis with increased T max , decreased maximum dielectric constant, and decreased switching field with increased AFE-FE transition temperature (T AFE-FE ). From these results, with respect to compositional modifications, the AFE-FE switching field (E AFE-FE ) and ΔE were observed to be dependent strongly on T AFE-FE and T max , respectively. Negligible change existed in the strain achievable at the switching field, which remained constant for all compositions at ∼0.16%. The significance of this research was the ability demonstrated to tailor the properties of phase-change materials through compositional modifications

  4. Thickness effect on the structure, grain size, and local piezoresponse of self-polarized lead lanthanum zirconate titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Melo, M.; Araújo, E. B., E-mail: eudes@dfq.feis.unesp.br [Departamento de Física e Química, Faculdade de Engenharia de Ilha Solteira, UNESP—Univ. Estadual Paulista, 15385-000 Ilha Solteira, SP (Brazil); Shvartsman, V. V. [Institute for Materials Science, University Duisburg-Essen, 45141 Essen (Germany); Shur, V. Ya. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Kholkin, A. L. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Department of Physics and CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro (Portugal)

    2016-08-07

    Polycrystalline lanthanum lead zirconate titanate (PLZT) thin films were deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates to study the effects of the thickness and grain size on their structural and piezoresponse properties at nanoscale. Thinner PLZT films show a slight (100)-orientation tendency that tends to random orientation for the thicker film, while microstrain and crystallite size increases almost linearly with increasing thickness. Piezoresponse force microscopy and autocorrelation function technique were used to demonstrate the existence of local self-polarization effect and to study the thickness dependence of correlation length. The obtained results ruled out the bulk mechanisms and suggest that Schottky barriers near the film-substrate are likely responsible for a build-in electric field in the films. Larger correlation length evidence that this build-in field increases the number of coexisting polarization directions in larger grains leading to an alignment of macrodomains in thinner films.

  5. Chemical Synthesis of Porous Barium Titanate Thin Film and Thermal Stabilization of Ferroelectric Phase by Porosity-Induced Strain.

    Science.gov (United States)

    Suzuki, Norihiro; Osada, Minoru; Billah, Motasim; Bando, Yoshio; Yamauchi, Yusuke; Hossain, Shahriar A

    2018-03-27

    Barium titanate (BaTiO3, hereafter BT) is an established ferroelectric material first discovered in the 1940s and still widely used because of its well-balanced ferroelectricity, piezoelectricity, and dielectric constant. In addition, BT does not contain any toxic elements. Therefore, it is considered to be an eco-friendly material, which has attracted considerable interest as a replacement for lead zirconate titanate (PZT). However, bulk BT loses its ferroelectricity at approximately 130 °C, thus, it cannot be used at high temperatures. Because of the growing demand for high-temperature ferroelectric materials, it is important to enhance the thermal stability of ferroelectricity in BT. In previous studies, strain originating from the lattice mismatch at hetero-interfaces has been used. However, the sample preparation in this approach requires complicated and expensive physical processes, which are undesirable for practical applications. In this study, we propose a chemical synthesis of a porous material as an alternative means of introducing strain. We synthesized a porous BT thin film using a surfactant-assisted sol-gel method, in which self-assembled amphipathic surfactant micelles were used as an organic template. Through a series of studies, we clarified that the introduction of pores had a similar effect on distorting the BT crystal lattice, to that of a hetero-interface, leading to the enhancement and stabilization of ferroelectricity. Owing to its simplicity and cost effectiveness, this fabrication process has considerable advantages over conventional methods.

  6. Signal Processing and Imaging with Ultrasonic Guided Waves: Goals, Challenges and Recent Progress (Preprint)

    Science.gov (United States)

    2012-07-01

    SHM). 3 Approved for public release; distribution unlimited. The transducers, which are Lead Zirconate Titanate ( PZT ) discs, are permanently... fatigued . Data were recorded as a function of load before the hole was drilled, after the hole was drilled, and at intervals thereafter as a function...of fatigue life. Figure 7 illustrates the effects of matched loads on a fatigue crack about 5 mm in length. Figures 7(a), (b) and (c) correspond

  7. Thickness dependence of electrical properties in (0 0 1) oriented lead zirconate titanate films by laser ablation

    International Nuclear Information System (INIS)

    Zhu, T.J.; Lu, L.; Lai, M.O.; Soh, A.K.

    2007-01-01

    Highly (0 0 1)-oriented Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) thin films with LaNiO 3 (LNO) bottom electrodes have been fabricated on amorphous TiN buffered Si substrates by pulsed laser deposition. The polarization-electric field (P-E) hysteresis of the deposited PZT films with different thickness ranging from 25 to 850 nm was measured. Results showed that the coercive field increases with the film thickness scaling down. No P-E loops could be obtained for the film of thickness of 25 nm. The deterioration of ferroelectric property in the thinnest film was attributed to extrinsic effect other than intrinsic size effect. Current-voltage (I-V) characteristics measurement showed the increase in leakage current of the PZT films with the decrease in the thickness of the films under the same bias voltage. At a high field regime, the leakage current of the PZT films of 25 nm thickness remained unchanged with increasing applied voltage. A totally depleted back-to-back Shottky barrier model was used to explain the effect of electrode interfaces on leakage current in the PZT films. It is believed that ferroelectric/electrode interfaces play an important role in the electrical properties of ferroelectric thin films with thickness at nanometer level

  8. Effect of multi-layered bottom electrodes on the orientation of strontium-doped lead zirconate titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, M. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia)], E-mail: madhu.bhaskaran@gmail.com; Sriram, S. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia); Mitchell, D.R.G.; Short, K.T. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, New South Wales 2234 (Australia); Holland, A.S. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia)

    2008-09-30

    This article discusses the results from X-ray diffraction (XRD) analysis of piezoelectric strontium-doped lead zirconate titanate (PSZT) thin films deposited on multi-layer coatings on silicon. The films were deposited by RF magnetron sputtering on a metal coated substrate. The aim was to exploit the pronounced piezoelectric effect that is theoretically expected normal to the substrate. This work highlighted the influence that the bottom electrode architecture exerts on the final crystalline orientation of the deposited thin films. A number of bottom electrode architectures were used, with the uppermost metal layer on which PSZT was deposited being gold or platinum. The XRD analysis revealed that the unit cell of the PSZT thin films deposited on gold and on platinum were deformed, relative to expected unit cell dimensions. Experimental results have been used to estimate the unit cell parameters. The XRD results were then indexed based on these unit cell parameters. The choice and the thickness of the intermediate adhesion layers influenced the relative intensity, and in some cases, the presence of perovskite peaks. In some cases, undesirable reactions between the bottom electrode layers were observed, and layer architectures to overcome these reactions are also discussed.

  9. Study of HV Dielectrics for High Frequency Operation in Linear & Nonlinear Transmission Lines & Simulation & Development of Hybrid Nonlinear Lines for RF Generation

    Science.gov (United States)

    2015-08-27

    As shown in [4], [5], the capacitors based on PZT (lead-zirconate- titanate) and BT dielectrics have dielectric BD strength of the order of 50 kV/cm...results. Depending on the nonlinearity properties of the capacitor dielectric , input pulse rise time, output pulse sharpening and or RF soliton... capacitors in a frequency range up to 2 MHz, below the resonant frequency of the both dielectrics . As seen in Fig. 1, PZTs have better performance than

  10. Optimization of Pb(Zr0.53,Ti0.47)O3 films for micropower generation using integrated cantilevers

    KAUST Repository

    Fuentes-Fernandez, E. M A

    2011-09-01

    Lead zirconate titanate, Pb(Zr0.53,Ti0.47)O 3 or PZT, thin films and integrated cantilevers have been fabricated for energy harvesting applications. The PZT films were deposited on PECVD SiO2/Si substrates with a sol-gel derived ZrO2 buffer layer. It is found that lead content in the starting solution and ramp rate during film crystallization are critical to achieving large-grained films on the ZrO2 surface. The electrical properties of the PZT films were measured using metal-ferroelectric-metal and inter-digital electrode structures, and revealed substantial improvement in film properties by controlling the process conditions. Functional cantilevers are demonstrated using the optimized films with output of 1.4 V peak-to-peak at 1 kHz and 2.5 g. © 2011 Elsevier Ltd. All rights reserved.

  11. Mems-based pzt/pzt bimorph thick film vibration energy harvester

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2011-01-01

    We describe fabrication and characterization of a significantly improved version of a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The main advantage of bimorph vibration energy harvesters is that strain energy is not lost in mechanical...... support materials since only PZT is strained, and thus it has a potential for significantly higher output power. An improved process scheme for the energy harvester resulted in a robust fabrication process with a record high fabrication yield of 98.6%. Moreover, the robust fabrication process allowed...... a high pressure treatment of the screen printed PZT thick films prior to sintering, improving the PZT thick film performance and harvester power output reaches 37.1 μW at 1 g....

  12. Thin PZT-Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-04-24

    A flexible version of traditional thin lead zirconium titanate ((Pb1.1Zr0.48Ti0.52O3)-(PZT)) based ferroelectric random access memory (FeRAM) on silicon shows record performance in flexible arena. The thin PZT layer requires lower operational voltages to achieve coercive electric fields, reduces the sol-gel coating cycles required (i.e., more cost-effective), and, fabrication wise, is more suitable for further scaling of lateral dimensions to the nano-scale due to the larger feature size-to-depth aspect ratio (critical for ultra-high density non-volatile memory applications). Utilizing the inverse proportionality between substrate\\'s thickness and its flexibility, traditional PZT based FeRAM on silicon is transformed through a transfer-less manufacturable process into a flexible form that matches organic electronics\\' flexibility while preserving the superior performance of silicon CMOS electronics. Each memory cell in a FeRAM array consists of two main elements; a select/access transistor, and a storage ferroelectric capacitor. Flexible transistors on silicon have already been reported. In this work, we focus on the storage ferroelectric capacitors, and report, for the first time, its performance after transformation into a flexible version, and assess its key memory parameters while bent at 0.5 cm minimum bending radius.

  13. Ga+ implantation in a PZT film during focused ion beam micro-machining

    International Nuclear Information System (INIS)

    Wollschlaeger, Nicole; Oesterle, Werner; Haeusler, Ines; Stewart, Mark

    2015-01-01

    The objective of the present work was to study the impact of Focused Ion Beam (FIB) machining parameters on the thickness of the damaged layer within a thin film PZT. Therefore, different Ga + - ion doses and ion energies were applied to a standard PZT film (80/20 lead zirconium titanate) under two beam incidence angles (90 and 1 ). The thicknesses of the corresponding Ga + -implanted layers were then determined by cross-sectional TEM in combination with energy dispersive spectroscopic (EDS) line-scans and correlated with polarisation hysteresis loops. The results show a decrease of Ga + -implanted layer thickness with decreasing inclination angle, whereas ion energy and ion dose could be correlated with gallium concentration in the implanted layers. Under the most unfavorable conditions the depth of the affected zone was 26 nm, it was only 2 nm for the most favorable conditions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. High Discharge Energy Density at Low Electric Field Using an Aligned Titanium Dioxide/Lead Zirconate Titanate Nanowire Array.

    Science.gov (United States)

    Zhang, Dou; Liu, Weiwei; Guo, Ru; Zhou, Kechao; Luo, Hang

    2018-02-01

    Polymer-based capacitors with high energy density have attracted significant attention in recent years due to their wide range of potential applications in electronic devices. However, the obtained high energy density is predominantly dependent on high applied electric field, e.g., 400-600 kV mm -1 , which may bring more challenges relating to the failure probability. Here, a simple two-step method for synthesizing titanium dioxide/lead zirconate titanate nanowire arrays is exploited and a demonstration of their ability to achieve high discharge energy density capacitors for low operating voltage applications is provided. A high discharge energy density of 6.9 J cm -3 is achieved at low electric fields, i.e., 143 kV mm -1 , which is attributed to the high relative permittivity of 218.9 at 1 kHz and high polarization of 23.35 µC cm -2 at this electric field. The discharge energy density obtained in this work is the highest known for a ceramic/polymer nanocomposite at such a low electric field. The novel nanowire arrays used in this work are applicable to a wide range of fields, such as energy harvesting, energy storage, and photocatalysis.

  15. Propriedades electromecânicas de materiais à base de niobato de potássio e sódio

    OpenAIRE

    Rafiq, Muhammad Asif

    2014-01-01

    K0.5Na0.5NbO3 (KNN), is the most promising lead free material for substituting lead zirconate titanate (PZT) which is still the market leader used for sensors and actuators. To make KNN a real competitor, it is necessary to understand and to improve its properties. This goal is pursued in the present work via different approaches aiming to study KNN intrinsic properties and then to identify appropriate strategies like doping and texturing for designing better KNN materials f...

  16. Structural heterogeneity and diffuse scattering in morphotropic lead zirconate-titanate single crystals

    Czech Academy of Sciences Publication Activity Database

    Burkovsky, R.G.; Bronwald, Y.A.; Filimonov, A.V.; Rudskoy, A.I.; Chernyshov, D.; Bosak, A.; Hlinka, Jiří; Long, X.; Ye, Z. -G.; Vakhrushev, S. B.

    2012-01-01

    Roč. 109, č. 9 (2012), "097603-1"-"097603-4" ISSN 0031-9007 R&D Projects: GA ČR GAP204/10/0616 Institutional research plan: CEZ:AV0Z10100520 Keywords : inelastic x-ray scattering * PZT * diffuse scattering * morphotropic phase boundary Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.943, year: 2012

  17. Use of Savitzky-Golay Filter for Performances Improvement of SHM Systems Based on Neural Networks and Distributed PZT Sensors.

    Science.gov (United States)

    de Oliveira, Mario A; Araujo, Nelcileno V S; da Silva, Rodolfo N; da Silva, Tony I; Epaarachchi, Jayantha

    2018-01-08

    A considerable amount of research has focused on monitoring structural damage using Structural Health Monitoring (SHM) technologies, which has had recent advances. However, it is important to note the challenges and unresolved problems that disqualify currently developed monitoring systems. One of the frontline SHM technologies, the Electromechanical Impedance (EMI) technique, has shown its potential to overcome remaining problems and challenges. Unfortunately, the recently developed neural network algorithms have not shown significant improvements in the accuracy of rate and the required processing time. In order to fill this gap in advanced neural networks used with EMI techniques, this paper proposes an enhanced and reliable strategy for improving the structural damage detection via: (1) Savitzky-Golay (SG) filter, using both first and second derivatives; (2) Probabilistic Neural Network (PNN); and, (3) Simplified Fuzzy ARTMAP Network (SFAN). Those three methods were employed to analyze the EMI data experimentally obtained from an aluminum plate containing three attached PZT (Lead Zirconate Titanate) patches. In this present study, the damage scenarios were simulated by attaching a small metallic nut at three different positions in the aluminum plate. We found that the proposed method achieves a hit rate of more than 83%, which is significantly higher than current state-of-the-art approaches. Furthermore, this approach results in an improvement of 93% when considering the best case scenario.

  18. Use of Savitzky–Golay Filter for Performances Improvement of SHM Systems Based on Neural Networks and Distributed PZT Sensors

    Science.gov (United States)

    Araujo, Nelcileno V. S.; da Silva, Rodolfo N.; da Silva, Tony I.; Epaarachchi, Jayantha

    2018-01-01

    A considerable amount of research has focused on monitoring structural damage using Structural Health Monitoring (SHM) technologies, which has had recent advances. However, it is important to note the challenges and unresolved problems that disqualify currently developed monitoring systems. One of the frontline SHM technologies, the Electromechanical Impedance (EMI) technique, has shown its potential to overcome remaining problems and challenges. Unfortunately, the recently developed neural network algorithms have not shown significant improvements in the accuracy of rate and the required processing time. In order to fill this gap in advanced neural networks used with EMI techniques, this paper proposes an enhanced and reliable strategy for improving the structural damage detection via: (1) Savitzky–Golay (SG) filter, using both first and second derivatives; (2) Probabilistic Neural Network (PNN); and, (3) Simplified Fuzzy ARTMAP Network (SFAN). Those three methods were employed to analyze the EMI data experimentally obtained from an aluminum plate containing three attached PZT (Lead Zirconate Titanate) patches. In this present study, the damage scenarios were simulated by attaching a small metallic nut at three different positions in the aluminum plate. We found that the proposed method achieves a hit rate of more than 83%, which is significantly higher than current state-of-the-art approaches. Furthermore, this approach results in an improvement of 93% when considering the best case scenario. PMID:29316693

  19. Use of Savitzky–Golay Filter for Performances Improvement of SHM Systems Based on Neural Networks and Distributed PZT Sensors

    Directory of Open Access Journals (Sweden)

    Mario A. de Oliveira

    2018-01-01

    Full Text Available A considerable amount of research has focused on monitoring structural damage using Structural Health Monitoring (SHM technologies, which has had recent advances. However, it is important to note the challenges and unresolved problems that disqualify currently developed monitoring systems. One of the frontline SHM technologies, the Electromechanical Impedance (EMI technique, has shown its potential to overcome remaining problems and challenges. Unfortunately, the recently developed neural network algorithms have not shown significant improvements in the accuracy of rate and the required processing time. In order to fill this gap in advanced neural networks used with EMI techniques, this paper proposes an enhanced and reliable strategy for improving the structural damage detection via: (1 Savitzky–Golay (SG filter, using both first and second derivatives; (2 Probabilistic Neural Network (PNN; and, (3 Simplified Fuzzy ARTMAP Network (SFAN. Those three methods were employed to analyze the EMI data experimentally obtained from an aluminum plate containing three attached PZT (Lead Zirconate Titanate patches. In this present study, the damage scenarios were simulated by attaching a small metallic nut at three different positions in the aluminum plate. We found that the proposed method achieves a hit rate of more than 83%, which is significantly higher than current state-of-the-art approaches. Furthermore, this approach results in an improvement of 93% when considering the best case scenario.

  20. Electroactive properties of flexible piezoelectric composites

    Directory of Open Access Journals (Sweden)

    Sakamoto Walter Katsumi

    2001-01-01

    Full Text Available A flexible piezoelectric composite with 0-3 connectivity, made from Lead Zirconate Titanate (PZT powder and vegetable-based polyurethane (PU, was doped with small amount of semiconductor powder. As a result a composite with 0-0-3 connectivity was obtained. The nature of absorption and steady state electrical conduction and the dielectric behaviour have been studied for this ceramic/polymer composite. The dielectric loss processes of the composite were observed to be dominated by those the polymer. Adding a semiconductor phase in the composite the electrical conductivity can be controlled and a continuous electric flux path could be created between the PZT grains. This composite may be poled at low voltage and in shorter time compared with composites without a conductive phase.

  1. Three-degree-of-freedom ultrasonic motor using a 5-mm-diameter piezoelectric ceramic tube.

    Science.gov (United States)

    Mingsen Guo; Junhui Hu; Hua Zhu; Chunsheng Zhao; Shuxiang Dong

    2013-07-01

    A small three-degree-of-freedom ultrasonic motor has been developed using a simple piezoelectric lead zirconate titanate (PZT)-tube stator (OD 5 mm, ID 3 mm, length 15 mm). The stator drives a ball-rotor into rotational motion around one of three orthogonal (x-, y-, and z-) axes by combing the first longitudinal and second bending vibration modes. A motor prototype was fabricated and characterized; its performance was superior to those of previous motors made with a PZT ceramic/metal composite stator of comparable size. The method for further improving the performance was discussed. The motor can be further miniaturized and it has potential to be applied to medical microrobots, endoscopes or micro laparoscopic devices, and cell manipulation devices.

  2. Ga{sup +} implantation in a PZT film during focused ion beam micro-machining

    Energy Technology Data Exchange (ETDEWEB)

    Wollschlaeger, Nicole; Oesterle, Werner; Haeusler, Ines [Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205 Berlin (Germany); Stewart, Mark [National Physical Laboratory, Hampton Road, Teddington Middlesex TW 11 0LW (United Kingdom)

    2015-03-01

    The objective of the present work was to study the impact of Focused Ion Beam (FIB) machining parameters on the thickness of the damaged layer within a thin film PZT. Therefore, different Ga{sup +}- ion doses and ion energies were applied to a standard PZT film (80/20 lead zirconium titanate) under two beam incidence angles (90 and 1 ). The thicknesses of the corresponding Ga{sup +}-implanted layers were then determined by cross-sectional TEM in combination with energy dispersive spectroscopic (EDS) line-scans and correlated with polarisation hysteresis loops. The results show a decrease of Ga{sup +}-implanted layer thickness with decreasing inclination angle, whereas ion energy and ion dose could be correlated with gallium concentration in the implanted layers. Under the most unfavorable conditions the depth of the affected zone was 26 nm, it was only 2 nm for the most favorable conditions. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2012-01-01

    We present a microelectromechanical system (MEMS) based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. Most piezoelectric energy harvesting devices use a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric...... elements. We show experimental results from two types PZT/PZT harvesting devices, one where the Pb(ZrxTi1−x)O3 (PZT) thick films are high pressure treated during the fabrication and the other where the treatment is omitted. We find that with the high pressure treatment prior to PZT sintering, the films...

  4. DIELECTRIC AND PYROELECTRIC PROPERTIES OF THE COMPOSITES OF FERROELECTRIC CERAMIC AND POLY(VINYL CHLORIDE

    Directory of Open Access Journals (Sweden)

    M.Olszowy

    2003-01-01

    Full Text Available The dielectric and pyroelectric properties of lead zirconate titanate/poly(vinyl chloride [PZT/PVC] and barium titanate/poly(vinyl chloride [BaTiO3/ PVC] composites were studied. Flexible composites were fabricated in the thin films form (200-400 μm by hot-pressed method. Powders of PZT or BaTiO3 in the shape of ≤ 75 μm ceramics particles were dispersed in a PVC matrix, providing composites with 0-3} connectivity. Distribution of the ceramic particles in the polymer phase was examined by scanning electron microscopy. The analysis of the thermally stimulated currents (TSC have also been done. The changes of dielectric and pyroelectric data on composites with different contents of ceramics up to 40% volume were investigated. The dielectric constants were measured in the frequency range from 600 Hz to 6 MHz at room temperature. The pyroelectric coefficient for BaTiO3/PVC composite at 343 K is about 35 μC/m2K which is higher than that of β-PVDF (10 μC/m2 K.

  5. NASA Prototype All Composite Tank Cryogenic Pressure Tests to Failure with Structural Health Monitoring

    Science.gov (United States)

    Werlink, Rudolph J.; Pena, Francisco

    2015-01-01

    This Paper will describe the results of pressurization to failure of 100 gallon composite tanks using liquid nitrogen. Advanced methods of health monitoring will be compared as will the experimental data to a finite element model. The testing is wholly under NASA including unique PZT (Lead Zirconate Titanate) based active vibration technology. Other technologies include fiber optics strain based systems including NASA AFRC technology, Acoustic Emission, Acellent smart sensor, this work is expected to lead to a practical in-Sutu system for composite tanks.

  6. Ab-initio and atomistic study of the ferroelectric properties of Cu doped potassium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Koerbel, Sabine; Elsaesser, Christian [Fraunhofer-Institut fuer Werkstoffmechanik IWM, Woehlerstrasse 11, 79108 Freiburg (Germany)

    2011-07-01

    KNbO{sub 3} is one end member of the solid solution (K,Na)NbO{sub 3} (KNN), which has promising ferroelectric properties to become a future lead-free substitute for lead zirconate titanate Pb(Zr,Ti)O{sub 3} (PZT) in piezoelectric actors and sensors. Both KNN and PZT exhibit a phase transition with composition and a morphotropic phase boundary, at which enhanced piezoelectric coefficients are obtained. The material properties of PZT and KNN are commonly optimized by doping. E.g., CuO can be added when fabricating KNN as a sintering aid. Ab initio density functional theory and atomistic simulation using a classical shell model potential have been combined to investigate low Cu concentrations in the KNbO{sub 3}-CuNbO{sub 3} system. The atomistic model predicts a morphotropic phase boundary at a few percent Cu, analogous to the one found in the LiNbO{sub 3}-KNbO{sub 3} system.

  7. Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators.

    Science.gov (United States)

    Reichmann, Klaus; Feteira, Antonio; Li, Ming

    2015-12-04

    The ban of lead in many electronic products and the expectation that, sooner or later, this ban will include the currently exempt piezoelectric ceramics based on Lead-Zirconate-Titanate has motivated many research groups to look for lead-free substitutes. After a short overview on different classes of lead-free piezoelectric ceramics with large strain, this review will focus on Bismuth-Sodium-Titanate and its solid solutions. These compounds exhibit extraordinarily high strain, due to a field induced phase transition, which makes them attractive for actuator applications. The structural features of these materials and the origin of the field-induced strain will be revised. Technologies for texturing, which increases the useable strain, will be introduced. Finally, the features that are relevant for the application of these materials in a multilayer design will be summarized.

  8. Temperature dependent XAFS studies of local atomic structure of the perovskite-type zirconates

    International Nuclear Information System (INIS)

    Vedrinskii, R. V.; Lemeshko, M. P.; Novakovich, A. A.; Nazarenko, E. S.; Nassif, V.; Proux, O.; Joly, Y.

    2006-01-01

    Temperature dependent preedge and extended x-ray absorption fine structure measurements at the Zr K edge for the perovskite-type zirconates PbZr 0.515 Ti 0.485 O 3 (PZT), PbZrO 3 (PZ), and BaZrO 3 are performed. To carry out a more accurate study of the weak reconstruction of the local atomic structure we employed a combination of two techniques: (i) analysis of the preedge fine structure, and (ii) analysis of the Fourier transform of the difference between χ(k) functions obtained at different temperatures. A detailed investigation of local atomic structure in the cubic phase for all the crystals is also performed. It is shown that neither the displacive nor the order-disorder model can describe correctly the changes of local atomic structure during phase transitions in PZ and PZT. A spherical model describing the local atomic structure of perovskite-type crystals suffering structural phase transitions is proposed

  9. Fatigue in artificially layered Pb(Zr,Ti)O3 ferroelectric films

    Science.gov (United States)

    Jiang, A. Q.; Scott, J. F.; Dawber, M.; Wang, C.

    2002-12-01

    We have performed fatigue tests on lead zirconate titanate (PZT) multilayers having stacks of Pb(Zr0.8Ti0.2)O3/Pb(Zr0.2Ti0.8)O3 with repeated distances of 12 formula groups. The results are compared with single-layer n-type (0.5 at. % Ta-doped) PZT films. We conclude that fatigue is dominated by space-charge layers in each case, but that in the multilayer such space charge accumulates at the layer interfaces, rather than at the electrode-dielectric interface. The model, which includes both drift and diffusion, is quantitative and yields a rate-limiting mobility of 6.9±0.9×10-12 cm2/V s, in excellent agreement with the oxygen vacancy mobility for perovskite oxides obtained from Zafar et al.

  10. Elaboration of strontium ruthenium oxide thin films on metal substrates by chemical solution deposition

    International Nuclear Information System (INIS)

    Seveno, R.; Braud, A.; Gundel, H.W.

    2005-01-01

    In order to improve the structural interface between a metal substrate and a lead zirconate titanate (Pb(ZrTi)O 3 , PZT) ferroelectric thin film, the elaboration of strontium ruthenium oxide (SrRuO 3 ) by chemical solution deposition is studied. The SrRuO 3 thin films were realized by multiple spin-coating technique and the temperature of the rapid thermal annealing process was optimized. The crystallization behavior was examined by X-ray diffraction; surface analyses using scanning electron microscope and atomic force microscope techniques showed the influence of the SrRuO 3 layer at the interface PZT/metal on the morphology of the ferroelectric thin film. From the electrical measurements, a coercive electric field around 25 kV/cm and a remanent polarization of approximately 30 μC/cm were found

  11. Electronic and Optical Properties of Sodium Niobate: A Density Functional Theory Study

    Directory of Open Access Journals (Sweden)

    Daniel Fritsch

    2018-01-01

    Full Text Available In recent years, much effort has been devoted to replace the most commonly used piezoelectric ceramic lead zirconate titanate Pb[ZrxTi1−x]O3 (PZT with a suitable lead-free alternative for memory or piezoelectric applications. One possible alternative to PZT is sodium niobate as it exhibits electrical and mechanical properties that make it an interesting material for technological applications. The high-temperature simple cubic perovskite structure undergoes a series of structural phase transitions with decreasing temperature. However, particularly the phases at room temperature and below are not yet fully characterised and understood. Here, we perform density functional theory calculations for the possible phases at room temperature and below and report on the structural, electronic, and optical properties of the different phases in comparison to experimental findings.

  12. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  13. Vertically Free-Standing Ordered Pb(Zr0.52Ti0.48)O3 Nanocup Arrays by Template-Assisted Ion Beam Etching

    Science.gov (United States)

    Zhang, Xiaoyan; Tang, Dan; Huang, Kangrong; Hu, Die; Zhang, Fengyuan; Gao, Xingsen; Lu, Xubing; Zhou, Guofu; Zhang, Zhang; Liu, Junming

    2016-04-01

    In this report, vertically free-standing lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) nanocup arrays with good ordering and high density (1.3 × 1010 cm-2) were demonstrated. By a template-assisted ion beam etching (IBE) strategy, the PZT formed in the pore-through anodic aluminum oxide (AAO) membrane on the Pt/Si substrate was with a cup-like nanostructure. The mean diameter and height of the PZT nanocups (NCs) was about 80 and 100 nm, respectively, and the wall thickness of NCs was about 20 nm with a hole depth of about 80 nm. Uppermost, the nanocup structure with low aspect ratio realized vertically free-standing arrays when losing the mechanical support from templates, avoiding the collapse or bundling when compared to the typical nanotube arrays. X-ray diffraction (XRD) and Raman spectrum revealed that the as-prepared PZT NCs were in a perovskite phase. By the vertical piezoresponse force microscopy (VPFM) measurements, the vertically free-standing ordered ferroelectric PZT NCs showed well-defined ring-like piezoresponse phase and hysteresis loops, which indicated that the high-density PZT nanocup arrays could have potential applications in ultra-high non-volatile ferroelectric memories (NV-FRAM) or other nanoelectronic devices.

  14. Microheaters based on ultrasonic actuation of piezoceramic elements

    Science.gov (United States)

    Visvanathan, Karthik; Gianchandani, Yogesh B.

    2011-08-01

    This paper describes the use of micromachined lead zirconate titanate (PZT) piezoceramic elements for heat generation by ultrasonic energy dissipated within the elements and surrounding media. Simulations based on three-dimensional finite-element models suggest that circular disk-shaped elements provide superior steady-state temperature rise for a given cross-sectional area, volume of the PZT element and drive voltage. Experimental validation is performed using PZT-5A heaters of 3.2 mm diameter and 0.191 mm thickness. Single-element heaters and dual-element stacks are evaluated. Although the steady-state temperature generated by these heaters reaches the maximum value at the frequency of maximum electromechanical conductance, the heating effectiveness is maximized at the frequency of maximum electromechanical impedance. Stacked PZT heaters provide 3.5 times the temperature rise and 3 times greater heating effectiveness than single elements. Furthermore, the heaters attain the maximum heating effectiveness when bonded to highly damping and non-conducting substrates. A maximum temperature of 120 °C is achieved at 160 mW input power. Experiments are performed using porcine tissue samples to show the feasibility of using PZT heaters in tissue cauterization. A PZT heater probe brands a porcine tissue in 2-3 s with 10 VRMS drive voltage. The interface temperature is ≈150 °C.

  15. Effect Of Electric Field Induced Texture On The Properties Of Piezoelectric Lead Zirconate Titanate

    International Nuclear Information System (INIS)

    Alkoy, S.

    2010-01-01

    Texturing a polycrystalline piezoelectric ceramic provide single-crystal like properties without experiencing any difficulties of single crystal growth process. This study reports a method to obtain texture in PbZr 0 .5Ti 0 .5O 3 ceramics by application of an electric field during gelation of a gelcast slurry. Gelcasting provides a means to lock the particles aligned under the application of a high electric field via gelation and this alignment in green body was retained after sintering. Monomer, cross linker and dispersant were dissolved in DI water and PZT powder was dispersed in this premix. Iniator and catalyzer were added to the slurry. An electric field was applied to the slurry for 30 min during gelation. XRD pattern of sintered samples indicates that PZT develops a tetragonal symmetry as a result of E-field applied during gelation. Dielectric constants and piezoelectric d 3 3 coefficients along and perpendicular to E-field are 1070 and 450 and 390 and 280 pC/N, respectively.

  16. Effect of Nd Doping on Dielectric and Impedance Properties of PZT Nanoceramics

    Science.gov (United States)

    Kour, P.; Pradhan, S. K.; Kumar, Pawan; Sinha, S. K.; Kar, Manoranjan

    2018-02-01

    Neodymium-doped lead zirconate tianate, i.e. Pb1-x Nd x Zr0.52Ti0.48O3 (PNZT) ceramics, with x = 0-10 mol.% has been prepared by the sol-gel process. X-ray diffraction pattern at room temperature shows the pyrochlore free phase for all samples. The structural analysis suggests the coexistence of both rhombohedral (R3m space group) and tetragonal (P4 mm space group) crystal symmetries. Scanning electron micrographs of the samples show uniform distribution of grain and grain boundaries. Dielectric constant increases with the increase in neodymium concentration in the crystal lattice. Degree of diffuse phase transition increases with the increase in Nd3+ concentration in the sample. Nd3+ incorporation into the lead zirconatetitanate (PZT) lattice enhances the spreading factor. Interaction between neighbouring dipoles decreases with the increase of Nd3+ in PZT lattice. The conduction mechanism of the sample can be attributed to the overlapping large polar tunnelling. Second-order dielectric phase transition has been observed at the Curie temperature. The electrical properties of the sample can be explained by considering grain and grain boundaries contributions. All the samples show the poly-dispersive non-Debye type relaxation.

  17. Strongly Enhanced Piezoelectric Response in Lead Zirconate Titanate Films with Vertically Aligned Columnar Grains

    Science.gov (United States)

    2017-01-01

    Pb(Zr0.52Ti0.48)O3 (PZT) films with (001) orientation were deposited on Pt(111)/Ti/SiO2/Si(100) substrates using pulsed laser deposition. Variation of the laser pulse rate during the deposition of the PZT films was found to play a key role in the control of the microstructure and to change strongly the piezoelectric response of the thin film. The film deposited at low pulse rate has a denser columnar microstructure, which improves the transverse piezoelectric coefficient (d31f) and ferroelectric remanent polarization (Pr), whereas the less densely packed columnar grains in the film deposited at high pulse rates give rise to a significantly higher longitudinal piezoelectric coefficient (d33f) value. The effect of film thickness on the ferroelectric and piezoelectric properties of the PZT films was also investigated. With increasing film thickness, the grain column diameter gradually increases, and also the average Pr and d33f values become larger. The largest piezoelectric coefficient of d33f = 408 pm V–1 was found for a 4-μm film thickness. From a series of films in the thickness range 0.5–5 μm, the z-position dependence of the piezoelectric coefficient could be deduced. A local maximum value of 600 pm V–1 was deduced in the 3.5–4.5 μm section of the thickest films. The dependence of the film properties on film thickness is attributed to the decreasing effect of the clamping constraint imposed by the substrate and the increasing spatial separation between the grains with increasing film thickness. PMID:28247756

  18. Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2012-01-01

    We describe the fabrication and characterization of a significantly improved version of a microelectromechanical system-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass; the harvester is fabricated in a fully monolithic process. The main advantage...... yield of 98%. The robust fabrication process allowed a high pressure treatment of the screen printed PZT thick films prior to sintering. The high pressure treatment improved the PZT thick film performance and increased the harvester power output to 37.1 μW at 1 g root mean square acceleration. We also...... characterize the harvester performance when only one of the PZT layers is used while the other is left open or short circuit....

  19. High aspect ratio lead zirconate titanate tube structures: I. Template assisted fabrication - vacuum infiltration method

    Directory of Open Access Journals (Sweden)

    Vladimír Kovaľ

    2012-03-01

    Full Text Available Polycrystalline Pb(Zr0.52Ti0.48O3 (PZT microtubes are fabricated by a vacuum infiltration method. The method is based on repeated infiltration of precursor solution into macroporous silicon (Si templates at a sub-atmospheric pressure. The pyrolyzed PZT tubes of a 2-µm outer diameter, extending to over 30 µm in length were released from the template using a selective isotropic-pulsed XeF2 reactive ion etching of silicon. Free-standing microtubes, partially anchored at the bottom of the Si template, were then crystallized in pure oxygen atmosphere at 750 °C for 2 min using a rapid thermal annealer. The perovskite phase of the final PZT tubes was confirmed by X-ray diffraction (XRD analysis. The XRD spectrum also revealed a small amount of the pyrochlore phase in the structure and signs of possible fluoride contamination caused most likely by the XeF2 etching process. The surface morphology was examined using scanning electron microscopy. It was demonstrated that the whole surface of the pore walls was conformally coated during the repeated infiltration of templates, resulting in straight tubes with closed tips formed on the opposite ends as replicas of the pore bottoms. These high aspect ratio ferroelectric structures are suggested as building units for developing miniaturized electronic devices, such as memory storage (DRAM trenched capacitors, piezoelectric scanners and actuators, and are of fundamental value for the theory of ferroelectricity in systems with low dimensionality.

  20. A polarized Raman study of the relaxor and ferroelectric states of La-modified lead zirconate titanate ceramics

    International Nuclear Information System (INIS)

    El Marssi, M.; Farhi, R.; Viehland, D.

    1997-01-01

    Lanthanum modified lead zirconate titanate ceramics with La/Zr/Ti ratios of 6/40/60, 12/40/60, 5/65/35, and 9/65/35 have been studied by polarized Raman scattering. In the two former (tetragonal-type) compositions, selection rules were rather well defined and allowed an assignment of the Raman lines at lower temperature. These selection rules disappeared for 6/40/60 but remained for 12/40/60 even at higher temperatures. The behavior of the two latter (rhombohedral-type compositions) was quite different. No assignment of lines could be done. In addition, the spectra recorded in parallel and crossed polarizations were almost identical for 5/65/35 regardless of temperature. A very smeared paraelectric to ferroelectric transition was evidenced by Raman intensity measurements for this composition. On the contrary, selection rules were always present for the relaxor composition 9/65/35 which were similar to those for 12/40/60 and 6/40/60. This suggests that both tetragonal and rhombohedral-type local polar order is present for 9/65/35. The spectra of the field induced ferroelectric phase for 9/65/35 revealed no selection rules, similar to 5/65/35. This is attributed to the onset of only medium range ferroelectric order. Finally, Raman spectra recorded on powders of every composition did not reveal any selection rules, suggesting that intergranular effects might play a significant role in the behavior of these materials. copyright 1997 American Institute of Physics

  1. Structure and phase formation behavior and dielectric and magnetic properties of lead iron tantalate-lead zirconate titanate multiferroic ceramics

    International Nuclear Information System (INIS)

    Wongmaneerung, R.; Tipakontitikul, R.; Jantaratana, P.; Bootchanont, A.; Jutimoosik, J.; Yimnirun, R.; Ananta, S.

    2016-01-01

    Highlights: • The multiferroic ceramics consisted of PFT and PZT. • Crystal structure changed from cubic to mixedcubic and tetragonal with increasing PZT content. • Dielectric showed the samples underwent a typical relaxor ferroelectric behavior. • Magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops. - Abstract: Multiferroic (1 − x)Pb(Fe_0_._5Ta_0_._5)O_3–xPb(Zr_0_._5_3Ti_0_._4_7)O_3 (or PFT–PZT) ceramics were synthesized by solid-state reaction method. The crystal structure and phase formation of the ceramics were examined by X-ray diffraction (XRD). The local structure surrounding Fe and Ti absorbing atoms was investigated by synchrotron X-ray Absorption Near-Edge Structure (XANES) measurement. Dielectric properties were studied as a function of frequency and temperature using a LCR meter. A vibrating sample magnetometer (VSM) was used to determine the magnetic hysteresis loops. XRD study indicated that the crystal structure of the sample changed from pure cubic to mixed cubic and tetragonal with increasing PZT content. XANES measurements showed that the local structure surrounding Fe and Ti ions was similar. Dielectric study showed that the samples underwent a typical relaxor ferroelectric behavior while the magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops.

  2. Piezoelectric Materials Synthesized by the Hydrothermal Method and Their Applications

    Directory of Open Access Journals (Sweden)

    Takeshi Morita

    2010-12-01

    Full Text Available Synthesis by the hydrothermal method has various advantages, including low reaction temperature, three-dimensional substrate availability, and automatic polarization alignment during the process. In this review, powder synthesis, the fabrication of piezoelectric thin films, and their applications are introduced. A polycrystalline lead zirconate titanate (PZT thin film was applied to a micro ultrasonic motor, and an epitaxial lead titanate (PbTiO3 thin film was estimated as a ferroelectric data storage medium. Ferroelectric and piezoelectric properties were successfully obtained for epitaxial PbTiO3 films. As lead-free piezoelectric powders, KNbO3 and NaNbO3 powders were synthesized by the hydrothermal method and sintered together to form (K,NaNbO3 ceramics, from which reasonable piezoelectric performance was achieved.

  3. Elaboration of strontium ruthenium oxide thin films on metal substrates by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Seveno, R. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France)]. E-mail: raynald.seveno@univ-nantes.fr; Braud, A. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France); Gundel, H.W. [Universite de Nantes, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 2, rue de la Houssiniere, BP 92208, 44322 Nantes Cedex 3 (France)

    2005-12-22

    In order to improve the structural interface between a metal substrate and a lead zirconate titanate (Pb(ZrTi)O{sub 3}, PZT) ferroelectric thin film, the elaboration of strontium ruthenium oxide (SrRuO{sub 3}) by chemical solution deposition is studied. The SrRuO{sub 3} thin films were realized by multiple spin-coating technique and the temperature of the rapid thermal annealing process was optimized. The crystallization behavior was examined by X-ray diffraction; surface analyses using scanning electron microscope and atomic force microscope techniques showed the influence of the SrRuO{sub 3} layer at the interface PZT/metal on the morphology of the ferroelectric thin film. From the electrical measurements, a coercive electric field around 25 kV/cm and a remanent polarization of approximately 30 {mu}C/cm were found.

  4. Effect of material constants on power output in piezoelectric vibration-based generators.

    Science.gov (United States)

    Takeda, Hiroaki; Mihara, Kensuke; Yoshimura, Tomohiro; Hoshina, Takuya; Tsurumi, Takaaki

    2011-09-01

    A possible power output estimation based on material constants in piezoelectric vibration-based generators is proposed. A modified equivalent circuit model of the generator was built and was validated by the measurement results in the generator fabricated using potassium sodium niobate-based and lead zirconate titanate (PZT) ceramics. Subsequently, generators with the same structure using other PZT-based and bismuth-layered structure ferroelectrics ceramics were fabricated and tested. The power outputs of these generators were expressed as a linear functions of the term composed of electromechanical coupling coefficients k(sys)(2) and mechanical quality factors Q*(m) of the generator. The relationship between device constants (k(sys)(2) and Q*(m)) and material constants (k(31)(2) and Q(m)) was clarified. Estimation of the power output using material constants is demonstrated and the appropriate piezoelectric material for the generator is suggested.

  5. Lamb wave tuning curve calibration for surface-bonded piezoelectric transducers

    International Nuclear Information System (INIS)

    Sohn, Hoon; Lee, Sang Jun

    2010-01-01

    Surface-bonded lead zirconate titanate (PZT) transducers have been widely used for guided wave generation and measurement. For selective actuation and sensing of Lamb wave modes, the sizes of the transducers and the driving frequency of the input waveform should be tuned. For this purpose, a theoretical Lamb wave tuning curve (LWTC) of a specific transducer size is generally obtained. Here, the LWTC plots each Lamb wave mode' amplitude as a function of the driving frequency. However, a discrepancy between experimental and existing theoretical LWTCs has been observed due to little consideration of the bonding layer and the energy distribution between Lamb wave modes. In this study, calibration techniques for theoretical LWTCs are proposed. First, a theoretical LWTC is developed when circular PZT transducers are used for both Lamb wave excitation and sensing. Then, the LWTC is calibrated by estimating the effective PZT size with PZT admittance measurement. Finally, the energy distributions among symmetric and antisymmetric modes are taken into account for better prediction of the relative amplitudes between Lamb wave modes. The effectiveness of the proposed calibration techniques is examined through numerical simulations and experimental estimation of the LWTC using the circular PZT transducers instrumented on an aluminum plate

  6. Sub-Frequency Interval Approach in Electromechanical Impedance Technique for Concrete Structure Health Monitoring

    Directory of Open Access Journals (Sweden)

    Bahador Sabet Divsholi

    2010-12-01

    Full Text Available The electromechanical (EM impedance technique using piezoelectric lead zirconate titanate (PZT transducers for structural health monitoring (SHM has attracted considerable attention in various engineering fields. In the conventional EM impedance technique, the EM admittance of a PZT transducer is used as a damage indicator. Statistical analysis methods such as root mean square deviation (RMSD have been employed to associate the damage level with the changes in the EM admittance signatures, but it is difficult to determine the location of damage using such methods. This paper proposes a new approach by dividing the large frequency (30–400 kHz range into sub-frequency intervals and calculating their respective RMSD values. The RMSD of the sub-frequency intervals (RMSD-S will be used to study the severity and location of damage. An experiment is carried out on a real size concrete structure subjected to artificial damage. It is observed that damage close to the PZT changes the high frequency range RMSD-S significantly, while the damage far away from the PZT changes the RMSD-S in the low frequency range significantly. The relationship between the frequency range and the PZT sensing region is also presented. Finally, a damage identification scheme is proposed to estimate the location and severity of damage in concrete structures.

  7. Control of crystallographic texture and surface morphology of Pt/Tio2 templates for enhanced PZT thin film texture.

    Science.gov (United States)

    Fox, Austin J; Drawl, Bill; Fox, Glen R; Gibbons, Brady J; Trolier-McKinstry, Susan

    2015-01-01

    Optimized processing conditions for Pt/TiO2/SiO2/Si templating electrodes were investigated. These electrodes are used to obtain [111] textured thin film lead zirconate titanate (Pb[ZrxTi1-x ]O3 0 ≤ x ≤ 1) (PZT). Titanium deposited by dc magnetron sputtering yields [0001] texture on a thermally oxidized Si wafer. It was found that by optimizing deposition time, pressure, power, and the chamber pre-conditioning, the Ti texture could be maximized while maintaining low surface roughness. When oxidized, titanium yields [100]-oriented rutile. This seed layer has as low as a 4.6% lattice mismatch with [111] Pt; thus, it is possible to achieve strongly oriented [111] Pt. The quality of the orientation and surface roughness of the TiO2 and the Ti directly affect the achievable Pt texture and surface morphology. A transition between optimal crystallographic texture and the smoothest templating surface occurs at approximately 30 nm of original Ti thickness (45 nm TiO2). This corresponds to 0.5 nm (2 nm for TiO2) rms roughness as determined by atomic force microscopy and a full-width at half-maximum (FWHM) of the rocking curve 0002 (200) peak of 5.5/spl degrees/ (3.1/spl degrees/ for TiO2). A Pb[Zr0.52Ti 0.48]O3 layer was deposited and shown to template from the textured Pt electrode, with a maximum [111] Lotgering factor of 87% and a minimum 111 FWHM of 2.4/spl degrees/ at approximately 30 nm of original Ti.

  8. Structure and phase formation behavior and dielectric and magnetic properties of lead iron tantalate-lead zirconate titanate multiferroic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wongmaneerung, R., E-mail: re_nok@yahoo.com [Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Tipakontitikul, R. [Department of Physics, Ubonratchathani University, Ubonratchathani 31490 (Thailand); Jantaratana, P. [Department of Physics, Kasetsart University, Bangkok 10900 (Thailand); Bootchanont, A.; Jutimoosik, J.; Yimnirun, R. [School of Physics, Institute of Science, and NANOTEC-SUT Center of Excellence on Advanced Functional Nanomaterials, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Ananta, S. [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2016-03-15

    Highlights: • The multiferroic ceramics consisted of PFT and PZT. • Crystal structure changed from cubic to mixedcubic and tetragonal with increasing PZT content. • Dielectric showed the samples underwent a typical relaxor ferroelectric behavior. • Magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops. - Abstract: Multiferroic (1 − x)Pb(Fe{sub 0.5}Ta{sub 0.5})O{sub 3}–xPb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3} (or PFT–PZT) ceramics were synthesized by solid-state reaction method. The crystal structure and phase formation of the ceramics were examined by X-ray diffraction (XRD). The local structure surrounding Fe and Ti absorbing atoms was investigated by synchrotron X-ray Absorption Near-Edge Structure (XANES) measurement. Dielectric properties were studied as a function of frequency and temperature using a LCR meter. A vibrating sample magnetometer (VSM) was used to determine the magnetic hysteresis loops. XRD study indicated that the crystal structure of the sample changed from pure cubic to mixed cubic and tetragonal with increasing PZT content. XANES measurements showed that the local structure surrounding Fe and Ti ions was similar. Dielectric study showed that the samples underwent a typical relaxor ferroelectric behavior while the magnetic properties showed very interesting behavior with square saturated magnetic hysteresis loops.

  9. Polarization characterization of PZT disks and of embedded PZT plates by thermal wave methods

    International Nuclear Information System (INIS)

    Eydam, Agnes; Suchaneck, Gunnar; Gerlach, Gerald; Esslinger, Sophia; Schönecker, Andreas; Neumeister, Peter

    2014-01-01

    In this work, the thermal wave method was applied to characterize PZT disks and embedded PZT plates with regard to the polarization magnitude and spatial homogeneity. The samples were exposed to periodic heating by means of a laser beam and the pyroelectric response was determined. Thermal relaxation times (single time constants or distributions of time constants) describe the heat losses of the PZT samples to the environment. The resulting pyroelectric current spectrum was fitted to the superposition of thermal relaxation processes. The pyroelectric coefficient gives insight in the polarization distribution. For PZT disks, the polarization distribution in the surface region showed a characteristic decrease towards the electrodes

  10. Determination of the reduced matrix of the piezoelectric, dielectric, and elastic material constants for a piezoelectric material with C∞ symmetry.

    Science.gov (United States)

    Sherrit, Stewart; Masys, Tony J; Wiederick, Harvey D; Mukherjee, Binu K

    2011-09-01

    We present a procedure for determining the reduced piezoelectric, dielectric, and elastic coefficients for a C(∞) material, including losses, from a single disk sample. Measurements have been made on a Navy III lead zirconate titanate (PZT) ceramic sample and the reduced matrix of coefficients for this material is presented. In addition, we present the transform equations, in reduced matrix form, to other consistent material constant sets. We discuss the propagation of errors in going from one material data set to another and look at the limitations inherent in direct calculations of other useful coefficients from the data.

  11. Nano-embossing technology on ferroelectric thin film Pb(Zr0.3,Ti0.7O3 for multi-bit storage application

    Directory of Open Access Journals (Sweden)

    Lu Qian

    2011-01-01

    Full Text Available Abstract In this work, we apply nano-embossing technique to form a stagger structure in ferroelectric lead zirconate titanate [Pb(Zr0.3, Ti0.7O3 (PZT] films and investigate the ferroelectric and electrical characterizations of the embossed and un-embossed regions, respectively, of the same films by using piezoresponse force microscopy (PFM and Radiant Technologies Precision Material Analyzer. Attributed to the different layer thickness of the patterned ferroelectric thin film, two distinctive coercive voltages have been obtained, thereby, allowing for a single ferroelectric memory cell to contain more than one bit of data.

  12. Optimization of electrode geometry and piezoelectric layer thickness of a deformable mirror

    Directory of Open Access Journals (Sweden)

    Nováková Kateřina

    2013-05-01

    Full Text Available Deformable mirrors are the most commonly used wavefront correctors in adaptive optics systems. Nowadays, many applications of adaptive optics to astronomical telescopes, high power laser systems, and similar fast response optical devices require large diameter deformable mirrors with a fast response time and high actuator stroke. In order to satisfy such requirements, deformable mirrors based on piezoelectric layer composite structures have become a subject of intense scientific research during last two decades. In this paper, we present an optimization of several geometric parameters of a deformable mirror that consists of a nickel reflective layer deposited on top of a thin lead zirconate titanate (PZT piezoelectric disk. Honeycomb structure of gold electrodes is deposited on the bottom of the PZT layer. The analysis of the optimal thickness ratio between the PZT and nickel layers is performed to get the maximum actuator stroke using the finite element method. The effect of inter-electrode distance on the actuator stroke and influence function is investigated. Applicability and manufacturing issues are discussed.

  13. A Piezoelectric MEMS Microphone Based on Lead Zirconate Titanate (PZT) Thim Films

    National Research Council Canada - National Science Library

    Polcawich, Ronald

    2004-01-01

    .... A piezoelectric-based microphone can provide a solution to these requirements, since it offers the ability to passively sense without the power requirements of condenser or piezoresistive microphone counterparts...

  14. Production of continuous piezoelectric ceramic fibers for smart materials and active control devices

    Science.gov (United States)

    French, Jonathan D.; Weitz, Gregory E.; Luke, John E.; Cass, Richard B.; Jadidian, Bahram; Bhargava, Parag; Safari, Ahmad

    1997-05-01

    Advanced Cerametrics Inc. has conceived of and developed the Viscous-Suspension-Spinning Process (VSSP) to produce continuous fine filaments of nearly any powdered ceramic materials. VSSP lead zirconate titanate (PZT) fiber tows with 100 and 790 filaments have been spun in continuous lengths exceeding 1700 meters. Sintered PZT filaments typically are 10 - 25 microns in diameter and have moderate flexibility. Prior to carrier burnout and sintering, VSSP PZT fibers can be formed into 2D and 3D shapes using conventional textile and composite forming processes. While the extension of PZT is on the order of 20 microns per linear inch, a woven, wound or braided structure can contain very long lengths of PZT fiber and generate comparatively large output strokes from relatively small volumes. These structures are intended for applications such as bipolar actuators for fiber optic assembly and repair, vibration and noise damping for aircraft, rotorcraft, automobiles and home applications, vibration generators and ultrasonic transducers for medical and industrial imaging. Fiber and component cost savings over current technologies, such as the `dice-and-fill' method for transducer production, and the range of unique structures possible with continuous VSSP PZT fiber are discussed. Recent results have yielded 1-3 type composites (25 vol% PZT) with d33 equals 340 pC/N, K equals 470, and g33 equals 80 mV/N, kt equals 0.54, kp equals 0.19, dh equals 50.1pC/N and gh equals 13 mV/N.

  15. Control of mechanical response of freestanding PbZr0.52Ti0.48O3 films through texture

    Science.gov (United States)

    Das, Debashish; Sanchez, Luz; Martin, Joel; Power, Brian; Isaacson, Steven; Polcawich, Ronald G.; Chasiotis, Ioannis

    2016-09-01

    The texture of piezoelectric lead zirconate titanate (PZT) thin films plays a key role in their mechanical response and linearity in the stress vs. strain behavior. The open circuit mechanical properties of PZT films with controlled texture varying from 100% (001) to 100% (111) were quantified with the aid of direct strain measurements from freestanding thin film specimens. The texture was tuned using a highly {111}-textured Pt substrate and excess-Pb in the PbTiO3 seed layer. The mechanical and ferroelastic properties of 500 nm thick PZT (52/48) films were found to be strongly dependent on grain orientation: the lowest elastic modulus of 90 ± 2 GPa corresponded to pure (001) texture, and its value increased linearly with the percentage of (111) texture reaching 122 ± 3 GPa for pure (111) texture. These elastic modulus values were between those computed for transversely isotropic textured PZT films by using the soft and hard bulk PZT compliance coefficients. Pure (001) texture exhibited maximum non-linearity and ferroelastic domain switching, contrary to pure (111) texture that exhibited more linearity and the least amount of switching. A micromechanics model was employed to calculate the strain due to domain switching. The model fitted well the non-linearities in the experimental stress-strain curves of (001) and (111) textured PZT films, predicting 17% and 10% of switched 90° domains that initially were favorably aligned with the applied stress in (001) and (111) textured PZT films, respectively.

  16. Ceramics like PZT-PMN

    International Nuclear Information System (INIS)

    Droescher, R.E.; Sousa, V.C.; Bergman, C.P.

    2009-01-01

    The goal of this work was to achieve piezoelectric ceramics referring to the system PZT-PMN Pb(Mg 1 / 3 Nb 2 / 3 Zr 0 , 52 Ti 0 , 48 )O 3 . Have been analysed ceramics like 0,65PZT-0,35PMN ((Pb(Mg 0 , 1167 Nb 0 , 2300 Zr 0 , 3380 Ti 0 , 3120 )O 3 ), 0,75PZT-0,25PMN ((Pb(Mg 0 , 083 Nb 0 . 1675 Zr 0 , 3900 Ti 0 , 3600 )O3) and the 0,85PZT-0,15PMN ((Pb(Mg 0,0500 Nb 0 , 1000 Zr 0 , 4420 Ti 0 , 4080 )O 3 ). The influence of the calcination and concentration of PZT on the lattice phases, microstructure and density was evaluated. Then, the method used was the mixed-oxide method, the samples were taken under different temperatures of calcination before the final sinterizing. The DRX and SEM techniques were used to identify the phases formed and analyse the microstructure, respectively. The main result revealed that, the better way is to realize three burns before the final sinterizing at 1200 o C/4 h . Like that, on obtain for sure the average lattice phases, like: perovskite, pyrochlore and PbO and also tend to densify the samples. (author)

  17. Structural identification and damage diagnosis using self-sensing piezo-impedance transducers

    Science.gov (United States)

    Lim, Yee Yan; Bhalla, Suresh; Kiong Soh, Chee

    2006-08-01

    The use of smart materials, such as lead zirconate titanate (PZT), has accelerated developments in the fields of structural identification and automated structural health monitoring (SHM). One such technique that has made much progress is the electro-mechanical impedance (EMI) technique, which employs self-sensing piezo-impedance transducers. In this technique, a PZT patch is surface bonded to the structure to be monitored and its corresponding electro-mechanical admittance signature is used for damage detection. This paper introduces a new method for identifying structures from the measured admittance signatures in terms of equivalent structural parameters, whereby the identified parameters are used for damage characterization. The new method has been applied to a truss, a beam and a concrete cube, and found to be able to successfully perform structural identification and damage diagnosis. In addition, several advantages have been ascertained in comparison with the conventional, non-parametric statistical methods.

  18. Smart patch integration development of compression connector structural health monitoring in overhead transmission lines

    Science.gov (United States)

    Wang, Hong; Wang, Jy-An J.; Ren, Fei; Chan, John

    2016-04-01

    Integration of smart patches into full-tension splice connectors in overhead power transmission lines was investigated. Lead zirconate titanate (PZT) -5A was used as a smart material and an aluminum beam was used as a host structure. Negative electrode termination was examined by using copper adhesive tape and direct bonding methods. Various commercial adhesives were studied for PZT integration onto the host structure. Aluminum beam specimens with integrated PZT smart patches were tested under thermal cycling at a temperature of 125°C, which is the higher-end temperature experienced by in-service aluminum conductor steel-reinforced cables. Electromechanical impedance (EMI) measurements were conducted at room temperature, and the root mean square deviation (RMSD) of the conductance signals was used to analyze the EMI data. It has been shown that the negative electrode method has an important effect on the performance of the integrated PZT. The PZT displayed more susceptibility to cracking when copper tape was used than when direct bonding was used. The reliability of PZT in direct bonding depended on the adhesives used in bonding layers. Although a hard alumina-based adhesive can lead to cracking of the PZT, a high-temperature epoxy with adequate flexibility, such as Duralco 4538D, can provide the desired performance under target thermal cycling conditions. The RMSD parameter can characterize conductance signatures effectively. It also was demonstrated that RMSD can be used to quantify the fatigue of the PZT integration system, although RMSD is used primarily as a damage index in monitoring structural health.

  19. PZT-5A4/PA and PZT-5A4/PDMS piezoelectric composite bimorphs

    NARCIS (Netherlands)

    Babu, I.; Hendrix, M.M.R.M.; With, de G.

    2014-01-01

    Disc type reinforced piezoelectric composite bimorphs with series connection were designed and the performance was investigated. The composite bimorphs (PZT/PA and PZT/PDMS (40/60 vol%)) were successfully fabricated by a compression molding and solution casting technique. The charge developed at an

  20. Novel Photovoltaic Devices Using Ferroelectric Material and Colloidal Quantum Dots

    Science.gov (United States)

    Paik, Young Hun

    As the global concern for the financial and environmental costs of traditional energy resources increases, research on renewable energy, most notably solar energy, has taken center stage. Many alternative photovoltaic (PV) technologies for 'the next generation solar cell' have been extensively studied to overcome the Shockley-Queisser 31% efficiency limit as well as tackle the efficiency vs. cost issues. This dissertation focuses on the novel photovoltaic mechanism for the next generation solar cells using two inorganic nanomaterials, nanocrystal quantum dots and ferroelectric nanoparticles. Lead zirconate titanate (PZT) materials are widely studied and easy to synthesize using solution based chemistry. One of the fascinating properties of the PZT material is a Bulk Photovoltaic effect (BPVE). This property has been spotlighted because it can produce very high open circuit voltage regardless of the electrical bandgap of the materials. However, the poor optical absorption of the PZT materials and the required high temperature to form the ferroelectric crystalline structure have been obstacles to fabricate efficient photovoltaic devices. Colloidal quantum dots also have fascinating optical and electrical properties such as tailored absorption spectrum, capability of the bandgap engineering due to the wide range of material selection and quantum confinement, and very efficient carrier dynamics called multiple exciton generations. In order to utilize these properties, many researchers have put numerous efforts in colloidal quantum dot photovoltaic research and there has been remarkable progress in the past decade. However, several drawbacks are still remaining to achieve highly efficient photovoltaic device. Traps created on the large surface area, low carrier mobility, and lower open circuit voltage while increasing the absorption of the solar spectrum is main issues of the nanocrystal based photovoltaic effect. To address these issues and to take the advantages of

  1. Predicting the effective response of bulk polycrystalline ferroelectric ceramics via improved spectral phase field methods

    Science.gov (United States)

    Vidyasagar, A.; Tan, W. L.; Kochmann, D. M.

    2017-09-01

    Understanding the electromechanical response of bulk polycrystalline ferroelectric ceramics requires scale-bridging approaches. Recent advances in fast numerical methods to compute the homogenized mechanical response of materials with heterogeneous microstructure have enabled the solution of hitherto intractable systems. In particular, the use of a Fourier-based spectral method as opposed to the traditional finite element method has gained significant interest in the homogenization of periodic microstructures. Here, we solve the periodic, electro-mechanically-coupled boundary value problem at the mesoscale of polycrystalline ferroelectrics in order to extract the effective response of barium titanate (BaTiO3) and lead zirconate titanate (PZT) under applied electric fields. Results include the effective electric hysteresis and the associated butterfly curve of strain vs. electric field for mean stress-free electric loading. Computational predictions of the 3D polycrystalline response show convincing agreement with our experimental electric cycling and strain hysteresis data for PZT-5A. In addition to microstructure-dependent effective physics, we also show how finite-difference-based approximations in the spectral solution scheme significantly reduce instability and ringing phenomena associated with spectral techniques and lead to spatial convergence with h-refinement, which have been major challenges when modeling high-contrast systems such as polycrystals.

  2. Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting

    DEFF Research Database (Denmark)

    Xu, R.; Lei, A.; Christiansen, T. L.

    2011-01-01

    We present a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The most common piezoelectric energy harvesting devices utilize a cantilever beam of a non piezoelectric material as support beneath or in-between the piezoelectric material...

  3. Flexoelectricity in PZT Nanoribbons and Biomembranes

    Science.gov (United States)

    2015-01-09

    Flexoelectricity in PZT Nanoribbons and Biomembranes The objective of this grant was to study flexoelectric phenomena in solids and in biomembranes...Flexoelectricity in PZT Nanoribbons and Biomembranes Report Title The objective of this grant was to study flexoelectric phenomena in solids and...producing PZT nanoribbons for energy harvesters. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers submitted or

  4. PZT-5A4/PA and PZT-5A4/PDMS piezoelectric composite bimorphs

    International Nuclear Information System (INIS)

    Babu, I; Hendrix, M M R M; De With, G

    2014-01-01

    Disc type reinforced piezoelectric composite bimorphs with series connection were designed and the performance was investigated. The composite bimorphs (PZT/PA and PZT/PDMS (40/60 vol%)) were successfully fabricated by a compression molding and solution casting technique. The charge developed at an applied force of 150 N is 18150 pC (PZT/PA) and 2310 pC (PZT/PDMS), respectively. Electric force microscopy (EFM) is used to study the structural characterization and piezoelectric properties of the materials realized. A clear inverse piezoelectric effect was observed when the bimorphs were subjected to an electric field stepped up through 2, 6 and 10 V, indicating the net polarization direction of the different ferroelectric domains. The as-developed bimorphs have the basic structure of a sensor and actuator, and, since they do not use any bonding agent for bonding, they can provide a valuable alternative to the present bimorphs where bonding processes are required for their realization that can limit their application at high temperature. (paper)

  5. Adjustability of resonance frequency by external magnetic field and bias electric field of sandwich magnetoelectric PZT/NFO/PZT composites

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ling-Fang; Feng, Xing; Sun, Kang; Liang, Ze-Yu; Xu, Qian; Liang, Jia-Yu; Yang, Chang-Ping [Hubei University, Hubei Key Laboratory of Ferro and Piezoelectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan (China)

    2017-07-15

    Sandwich magnetoelectric composites of PZT/NFO/PZT (PNP) have been prepared by laminating PZT5, NiFe{sub 2}O{sub 4}, and PZT5 ceramics in turn with polyvinyl alcohol (PVA) paste. A systematic study of structural, magnetic and ferroelectric properties is undertaken. Structural studies carried out by X-ray diffraction indicate formation of cubic perovskite phase of PZT5 ceramic and cubic spinel phase of NiFe{sub 2}O{sub 4} ceramic. As increasing the content of PZT5 phase, ferroelectric loops and magnetic loops of PNP composites showed increasing remnant electric polarizations and decreasing remnant magnetic moments separately. Both external magnetic fields and bias voltages could regulate the basal radial resonance frequency of the composites, which should be originated with the transformation and coupling of the stress between the piezoelectric phase and magnetostrictive phase. Such magnetoelectric composite provides great opportunities for electrostatically tunable devices. (orig.)

  6. Very high frequency (beyond 100 MHz) PZT kerfless linear arrays.

    Science.gov (United States)

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K Kirk

    2009-10-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-microm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-microm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss).

  7. Stress wave communication in concrete: I. Characterization of a smart aggregate based concrete channel

    International Nuclear Information System (INIS)

    Siu, Sam; Wu, Wenhao; Zhi Ding; Ji, Qing; Song, Gangbing

    2014-01-01

    In this paper, we explore the characteristics of a concrete block as a communication medium with piezoelectric transducers. Lead zirconate titanate (PZT) is a piezoceramic material used in smart materials intended for structural health monitoring (SHM). Additionally, a PZT based smart aggregate (SA) is capable of implementing stress wave communications which is utilized for investigating the properties of an SA based concrete channel. Our experiments characterize single-input single-output and multiple-input multiple-output (MIMO) concrete channels in order to determine the potential capacity limits of SAs for stress wave communication. We first provide estimates and validate the concrete channel response. Followed by a theoretical upper bound for data rate capacity of our two channels, demonstrating a near-twofold increase in channel capacity by utilizing multiple transceivers to form an MIMO system. Our channel modeling techniques and results are also helpful to researchers using SAs with regards to SHM, energy harvesting and stress wave communications. (paper)

  8. Growth of epitaxial Pb(Zr,Ti)O3 films by pulsed laser deposition

    Science.gov (United States)

    Lee, J.; Safari, A.; Pfeffer, R. L.

    1992-10-01

    Lead zirconate titanate (PZT) thin films with a composition near the morphotropic phase boundary have been grown on MgO (100) and Y1Ba2Cu3Ox (YBCO) coated MgO substrates. Substrate temperature and oxygen pressure were varied to achieve ferroelectric films with a perovskite structure. Films grown on MgO had the perovskite structure with an epitaxial relationship with the MgO substrate. On the other hand, films grown on the YBCO/MgO substrate had an oriented structure to the surface normal with a misorientation in the plane parallel to the surface. The measured dielectric constant and loss tangent at 1 kHz were 670 and 0.05, respectively. The remnant polarization and coercive field were 42 μC/cm2 and 53 kV/cm. A large internal bias field (12 kV/cm) was observed in the as-deposited state of the undoped PZT films.

  9. Piezo-generated charge mapping revealed through direct piezoelectric force microscopy.

    Science.gov (United States)

    Gomez, A; Gich, M; Carretero-Genevrier, A; Puig, T; Obradors, X

    2017-10-24

    While piezoelectric and ferroelectric materials play a key role in many everyday applications, there are still a number of open questions related to their physics. To enhance our understanding of piezoelectrics and ferroelectrics, nanoscale characterization is essential. Here, we develop an atomic force microscopy based mode that obtains a direct quantitative analysis of the piezoelectric coefficient d 33 . We report nanoscale images of piezogenerated charge in a thick single crystal of periodically poled lithium niobate (PPLN), a bismuth ferrite (BiFO 3 ) thin film, and lead zirconate titanate (PZT) by applying a force and recording the current produced by these materials. The quantification of d 33 coefficients for PPLN (14 ± 3 pC per N) and BFO (43 ± 6 pC per N) is in agreement with the values reported in the literature. Even stronger evidence of the reliability of the method is provided by an equally accurate measurement of the significantly larger d 33 of PZT.

  10. Research on FBG-based longitudinal-acousto-optic modulator with Fourier mode coupling method.

    Science.gov (United States)

    Li, Zhuoxuan; Pei, Li; Liu, Chao; Ning, Tigang; Yu, Shaowei

    2012-10-20

    Fourier mode coupling model was first applied to achieve the spectra property of a fiber Bragg grating (FBG)-based longitudinal-acousto-optic modulator. Compared with traditional analysis algorithms, such as the transfer matrix method, the Fourier mode coupling model could improve the computing efficiency up to 100 times with a guarantee of accuracy. In this paper, based on the theoretical analysis of this model, the spectra characteristics of the modulator in different frequencies and acoustically induced strains were numerically simulated. In the experiment, a uniform FBG was modulated by acoustic wave (AW) at 12 different frequencies. In particular, the modulator responses at 563 and 885.5 KHz with three different lead zirconate titanate (PZT) loads applied were plotted for illustration, and the linear fitting of experimental data demonstrated a good match with the simulation result. The acoustic excitation of the longitudinal wave is obtained using a conic silica horn attached to the surface of a shear-mode PZT plate paralleled to the fiber axis. This way of generating longitudinal AW with a transversal PZT may shed light on the optimal structural design for the FBG-based longitudinal-acousto-optic modulator.

  11. Residual stress relief due to fatigue in tetragonal lead zirconate titanate ceramics

    International Nuclear Information System (INIS)

    Hall, D. A.; Mori, T.; Comyn, T. P.; Ringgaard, E.; Wright, J. P.

    2013-01-01

    High energy synchrotron XRD was employed to determine the lattice strain ε{111}and diffraction peak intensity ratio R{200}in tetragonal PZT ceramics, both in the virgin poled state and after a bipolar fatigue experiment. It was shown that the occurrence of microstructural damage during fatigue was accompanied by a reduction in the gradient of the ε{111}–cos 2 ψ plot, indicating a reduction in the level of residual stress due to poling. In contrast, the fraction of oriented 90° ferroelectric domains, quantified in terms of R{200}, was not affected significantly by fatigue. The change in residual stress due to fatigue is interpreted in terms of a change in the average elastic stiffness of the polycrystalline matrix due to the presence of inter-granular microcracks

  12. Residual stress relief due to fatigue in tetragonal lead zirconate titanate ceramics

    Science.gov (United States)

    Hall, D. A.; Mori, T.; Comyn, T. P.; Ringgaard, E.; Wright, J. P.

    2013-07-01

    High energy synchrotron XRD was employed to determine the lattice strain ɛ{111} and diffraction peak intensity ratio R{200} in tetragonal PZT ceramics, both in the virgin poled state and after a bipolar fatigue experiment. It was shown that the occurrence of microstructural damage during fatigue was accompanied by a reduction in the gradient of the ɛ{111}-cos2 ψ plot, indicating a reduction in the level of residual stress due to poling. In contrast, the fraction of oriented 90° ferroelectric domains, quantified in terms of R{200}, was not affected significantly by fatigue. The change in residual stress due to fatigue is interpreted in terms of a change in the average elastic stiffness of the polycrystalline matrix due to the presence of inter-granular microcracks.

  13. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ta00967d Click here for additional data file.

    Science.gov (United States)

    Zhang, Yan; Xie, Mengying; Roscow, James; Bao, Yinxiang; Zhou, Kechao

    2017-01-01

    This paper demonstrates the significant benefits of exploiting highly aligned porosity in piezoelectric and pyroelectric materials for improved energy harvesting performance. Porous lead zirconate (PZT) ceramics with aligned pore channels and varying fractions of porosity were manufactured in a water-based suspension using freeze-casting. The aligned porous PZT ceramics were characterized in detail for both piezoelectric and pyroelectric properties and their energy harvesting performance figures of merit were assessed parallel and perpendicular to the freezing direction. As a result of the introduction of porosity into the ceramic microstructure, high piezoelectric and pyroelectric harvesting figures of merits were achieved for porous freeze-cast PZT compared to dense PZT due to the reduced permittivity and volume specific heat capacity. Experimental results were compared to parallel and series analytical models with good agreement and the PZT with porosity aligned parallel to the freezing direction exhibited the highest piezoelectric and pyroelectric harvesting response; this was a result of the enhanced interconnectivity of the ferroelectric material along the poling direction and reduced fraction of unpoled material that leads to a higher polarization. A complete thermal energy harvesting system, composed of a parallel-aligned PZT harvester element and an AC/DC converter, was successfully demonstrated by charging a storage capacitor. The maximum energy density generated by the 60 vol% porous parallel-connected PZT when subjected to thermal oscillations was 1653 μJ cm–3, which was 374% higher than that of the dense PZT with an energy density of 446 μJ cm–3. The results are beneficial for the design and manufacture of high performance porous pyroelectric and piezoelectric materials in devices for energy harvesting and sensor applications. PMID:28580142

  14. Anion and cation diffusion in barium titanate and strontium titanate

    International Nuclear Information System (INIS)

    Kessel, Markus Franz

    2012-01-01

    data suggests that oxygen vacancies and electron holes play the key role in the formation of the equilibrium surface space-charge layers. The oxygen vacancy diffusivities and the oxygen vacancy migration enthalpy are compared to other experimentally and theoretically derived data for barium titanate and a global expression for the temperature dependence of the oxygen vacancy diffusivity is determined. The latter was used for a comparison of the oxygen vacancy diffusivity and the oxygen vacancy migration enthalpy for BaTiO 3 to other perovskite oxides. Furthermore, this work shows results from cation interdiffusion experiments between BaZrO 3 and SrTiO 3 . Thin films of barium zirconate were deposited on strontium titanate single crystals and the cation interdiffusion investigated as a function of temperature. All four cations show a main diffusion profile and an additional fast diffusion profile. Each main diffusion profile can be described independently by the thick-film solution of the diffusion equation suggesting the diffusion coefficients to be concentration independent. The fast diffusion profiles are attributed to fast diffusion of Ba and Zr along dislocations of the SrTiO 3 single crystals and fast diffusion of Sr and Ti along the grain boundaries of the polycrystalline thin-film BaZrO 3 . The migration enthalpies of the bulk profiles for all four cations are very similar. The results suggest a complex diffusion mechanism with coupled diffusion of the cation vacancies on the A and B sites of the perovskite lattice.

  15. Effect of Pb content and solution concentration of Pb{sub x}TiO{sub 3} seed layer on (100)-texture and ferroelectric/dielectric behavior of PZT (52/48) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Jian; Batra, Vaishali; Han, Hui; Kotru, Sushma, E-mail: skotru@eng.ua.edu [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, Alabama 35487 (United States); Pandey, Raghvendar K. [Ingram School of Engineering, Texas State University, San Marcos, Texas 78666 (United States)

    2015-09-15

    The effect of Pb content and solution concentration of lead titanate (Pb{sub x}TiO{sub 3}) seed layer on the texture and electric properties of Pb{sub 1.1}(Zr{sub 0.52},Ti{sub 0.48})O{sub 3} (PZT) thin films was investigated. A variety of seed layers (y Pb{sub x}TiO{sub 3}) with varying solution concentration (y = 0.02, 0.05, 0.1, and 0.2 M) and Pb content (x = 1.0, 1.05, 1.1, and 1.2) was deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrates using chemical-solution deposition method. PZT films were then deposited on these seed layers using the same process. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy investigations of the seed layers confirm change in crystal structure with variation in the solution properties. XRD studies of PZT films deposited on seed layers demonstrate that the seed layer helps in enhancing (100)-texture and suppressing (111)-texture. It was observed that PZT films prepared on seed layers with lower solution concentrations results in highly (100)-textured films, which further helps to improve the electric properties. The polarization and dielectric constant of the PZT films were seen to increase while the coercive field decreased with increase in (100)-texture. Irrespective of the seed layer solution concentration, higher Pb content in the seed layer deteriorates the PZT film properties. Ninety-five percent to ninety-six percent (100)-texture was obtained from thin PZT films deposited on seed layers of 0.02 M solution concentration with 1.05 and 1.10 Pb contents, which is higher than the values reported for thick PZT films. Optimization of both Pb content and solution concentration of the seed layer is a promising route to achieve highly (100)-textured PZT films with improved electric properties.

  16. Evaluation of electromechanical coupling parameters of piezoelectric materials by using piezoelectric cantilever with coplanar electrode structure in quasi-stasis.

    Science.gov (United States)

    Zheng, Xuejun; Zhu, Yuankun; Liu, Xun; Liu, Jing; Zhang, Yong; Chen, Jianguo

    2014-02-01

    Based on Timoshenko beam theory, a principle model is proposed to establish the relationship between electric charge and excitation acceleration, and in quasi-stasis we apply the direct piezoelectric effect of multilayer cantilever with coplanar electrode structure to evaluate the piezoelectric strain coefficient d15 and electromechanical coupling coefficient k15. They are measured as 678 pC/N and 0.74 for the commercial piezoelectric ceramic lead zirconate titanate (PZT-51) bulk specimen and 656 pC/N and 0.63 for the lead magnesium niobate (PMN) bulk specimen, and they are in agreement with the calibration and simulation values. The maximum of relative errors is less than 4.2%, so the proposed method is reliable and convenient.

  17. Longitudinal-bending mode micromotor using multilayer piezoelectric actuator.

    Science.gov (United States)

    Yao, K; Koc, B; Uchino, K

    2001-07-01

    Longitudinal-bending mode ultrasonic motors with a diameter of 3 mm were fabricated using stacked multilayer piezoelectric actuators, which were self-developed from hard lead zirconate titanate (PZT) ceramic. A bending vibration was converted from a longitudinal vibration with a longitudinal-bending coupler. The motors could be bidirectionally operated by changing driving frequency. Their starting and braking torque were analyzed based on the transient velocity response. With a load of moment of inertia 2.5 x 10(-7) kgm2, the motor showed a maximum starting torque of 127.5 microNm. The braking torque proved to be a constant independent on the motor's driving conditions and was roughly equivalent to the maximum starting torque achievable with our micromotors.

  18. Shear wave propagation in piezoelectric-piezoelectric composite layered structure

    Directory of Open Access Journals (Sweden)

    Anshu Mli Gaur

    Full Text Available The propagation behavior of shear wave in piezoelectric composite structure is investigated by two layer model presented in this approach. The composite structure comprises of piezoelectric layers of two different materials bonded alternatively. Dispersion equations are derived for propagation along the direction normal to the layering and in direction of layering. It has been revealed that thickness and elastic constants have significant influence on propagation behavior of shear wave. The phase velocity and wave number is numerically calculated for alternative layer of Polyvinylidene Difluoride (PVDF and Lead Zirconate Titanate (PZT-5H in composite layered structure. The analysis carried out in this paper evaluates the effect of volume fraction on the phase velocity of shear wave.

  19. Misfit strain-film thickness phase diagrams and related electromechanical properties of epitaxial ultra-thin lead zirconate titanate films

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Q.Y.; Mahjoub, R. [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Alpay, S.P. [Materials Science and Engineering Program and Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Nagarajan, V., E-mail: nagarajan@unsw.edu.au [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2010-02-15

    The phase stability of ultra-thin (0 0 1) oriented ferroelectric PbZr{sub 1-x}Ti{sub x}O{sub 3} (PZT) epitaxial thin films as a function of the film composition, film thickness, and the misfit strain is analyzed using a non-linear Landau-Ginzburg-Devonshire thermodynamic model taking into account the electrical and mechanical boundary conditions. The theoretical formalism incorporates the role of the depolarization field as well as the possibility of the relaxation of in-plane strains via the formation of microstructural features such as misfit dislocations at the growth temperature and ferroelastic polydomain patterns below the paraelectric-ferroelectric phase transformation temperature. Film thickness-misfit strain phase diagrams are developed for PZT films with four different compositions (x = 1, 0.9, 0.8 and 0.7) as a function of the film thickness. The results show that the so-called rotational r-phase appears in a very narrow range of misfit strain and thickness of the film. Furthermore, the in-plane and out-of-plane dielectric permittivities {epsilon}{sub 11} and {epsilon}{sub 33}, as well as the out-of-plane piezoelectric coefficients d{sub 33} for the PZT thin films, are computed as a function of misfit strain, taking into account substrate-induced clamping. The model reveals that previously predicted ultrahigh piezoelectric coefficients due to misfit-strain-induced phase transitions are practically achievable only in an extremely narrow range of film thickness, composition and misfit strain parameter space. We also show that the dielectric and piezoelectric properties of epitaxial ferroelectric films can be tailored through strain engineering and microstructural optimization.

  20. Investigations on structural and multiferroic properties of artificially engineered lead zirconate titanate-cobalt iron oxide layered nanostructures

    Science.gov (United States)

    Ortega Achury, Nora Patricia

    Mutiferroics are a novel class of next generation multifunctional materials, which display simultaneous magnetic, electric, and ferroelastic ordering, have drawn increasing interest due to their multi-functionality for a variety of device applications. Since, very rare single phase materials exist in nature this kind of properties, an intensive research activity is being pursued towards the development of new engineered materials with strong magneto-electric (ME) coupling. In the present investigation, we have fabricated polycrystalline and highly oriented PbZr0.53,Ti0.47O3--CoFe 2O4 (PZT/CFO) artificially multilayers (MLs) engineered nanostructures thin films which were grown on Pt/TiO2/SiO2/Si and La 0.5Sr0.5CoO3 (LSCO) coated (001) MgO substrates respectively, using the pulsed laser deposition technique. The effect of various PZT/CFO sandwich configurations having 3, 5, and 9 layers, while maintaining similar total PZT and CFO thickness, has been systematically investigated. The first part of this thesis is devoted to the analysis of structural and microstructure properties of the PZT/CFO MLs. X-ray diffraction (XRD) and micro Raman analysis revealed that PZT and CFO were in the perovskite and spinel phases respectively in the all layered nanostructure, without any intermediate phase. The TEM and STEM line scan of the ML thin films showed that the layered structure was maintained with little inter-diffusion near the interfaces at nano-metric scale without any impurity phase, however better interface was observed in highly oriented films. Second part of this dissertation was dedicated to study of the dielectric, impedance, modulus, and conductivity spectroscopies. These measurements were carried out over a wide range of temperatures (100 K to 600 K) and frequencies (100 Hz to 1 MHz) to investigate the grain and grain boundary effects on electrical properties of MLs. The temperature dependent dielectric and loss tangent illustrated step-like behavior and

  1. Integration of epitaxial Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} films on GaN/AlGaN/GaN/Si(111) substrates using rutile TiO{sub 2} buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Elibol, K. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Nguyen, M.D. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); SolMateS B.V., Drienerlolaan 5, Building 6, 7522NB Enschede (Netherlands); International Training Institute for Materials Science, Hanoi University of Science and Technology, No.1 Dai Co Viet road, Hanoi 10000 (Viet Nam); Hueting, R.J.E. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Gravesteijn, D.J. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); NXP Semiconductors Research, High Tech Campus 46, 5656AE Eindhoven (Netherlands); Koster, G., E-mail: g.koster@utwente.nl [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands); Rijnders, G. [MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands)

    2015-09-30

    The integration of ferroelectric layers on gallium nitride (GaN) offers a great potential for various applications. Lead zirconate titanate (PZT), in particular Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3}, is an interesting candidate. For that a suitable buffer layer should be grown on GaN in order to prevent the reaction between PZT and GaN, and to obtain PZT with a preferred orientation and phase. Here, we study pulsed laser deposited (100) rutile titanium oxide (R-TiO{sub 2}) as a potential buffer layer candidate for ferroelectric PZT. For this purpose, the growth, morphology and the surface chemical composition of R-TiO{sub 2} films were analyzed by reflection high-energy electron diffraction, atomic force microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. We find optimally (100) oriented R-TiO{sub 2} growth on GaN (0002) using a 675 °C growth temperature and 2 Pa O{sub 2} deposition pressure as process conditions. More importantly, the R-TiO{sub 2} buffer layer grown on GaN/Si substrates prevents the unwanted formation of the PZT pyrochlore phase. Finally, the remnant polarization and coercive voltage of the PZT film on TiO{sub 2}/GaN/Si with an interdigitated-electrode structure were found to be 25.6 μC/cm{sup 2} and 8.1 V, respectively. - Highlights: • Epitaxial rutile TiO{sub 2} films were grown on GaN layer buffered Si substrate using pulsed laser deposition. • The rutile-TiO{sub 2} layer suppresses the formation of the pyrochlore phase in the epitaxial PZT film grown on GaN/Si. • An epitaxial PZT film on GaN/Si substrate with rutile TiO{sub 2} buffer layer exhibits good ferroelectric properties.

  2. Titan

    Science.gov (United States)

    Müller-Wodarg, Ingo; Griffith, Caitlin A.; Lellouch, Emmanuel; Cravens, Thomas E.

    2014-03-01

    Introduction I. C. F. Müller-Wodarg, C. A. Griffith, E. Lellouch and T. E. Cravens; Prologue 1: the genesis of Cassini-Huygens W.-H. Ip, T. Owen and D. Gautier; Prologue 2: building a space flight instrument: a P.I.'s perspective M. Tomasko; 1. The origin and evolution of Titan G. Tobie, J. I. Lunine, J. Monteux, O. Mousis and F. Nimmo; 2. Titan's surface geology O. Aharonson, A. G. Hayes, P. O. Hayne, R. M. Lopes, A. Lucas and J. T. Perron; 3. Thermal structure of Titan's troposphere and middle atmosphere F. M. Flasar, R. K. Achterberg and P. J. Schinder; 4. The general circulation of Titan's lower and middle atmosphere S. Lebonnois, F. M. Flasar, T. Tokano and C. E. Newman; 5. The composition of Titan's atmosphere B. Bézard, R. V. Yelle and C. A. Nixon; 6. Storms, clouds, and weather C. A. Griffith, S. Rafkin, P. Rannou and C. P. McKay; 7. Chemistry of Titan's atmosphere V. Vuitton, O. Dutuit, M. A. Smith and N. Balucani; 8. Titan's haze R. West, P. Lavvas, C. Anderson and H. Imanaka; 9. Titan's upper atmosphere: thermal structure, dynamics, and energetics R. V. Yelle and I. C. F. Müller-Wodarg; 10. Titan's upper atmosphere/exosphere, escape processes, and rates D. F. Strobel and J. Cui; 11. Titan's ionosphere M. Galand, A. J. Coates, T. E. Cravens and J.-E. Wahlund; 12. Titan's magnetospheric and plasma environment J.-E. Wahlund, R. Modolo, C. Bertucci and A. J. Coates.

  3. Fabrication of flexible piezoelectric PZT/fabric composite.

    Science.gov (United States)

    Chen, Caifeng; Hong, Daiwei; Wang, Andong; Ni, Chaoying

    2013-01-01

    Flexible piezoelectric PZT/fabric composite material is pliable and tough in nature which is in a lack of traditional PZT patches. It has great application prospect in improving the sensitivity of sensor/actuator made by piezoelectric materials especially when they are used for curved surfaces or complicated conditions. In this paper, glass fiber cloth was adopted as carrier to grow PZT piezoelectric crystal particles by hydrothermal method, and the optimum conditions were studied. The results showed that the soft glass fiber cloth was an ideal kind of carrier. A large number of cubic-shaped PZT nanocrystallines grew firmly in the carrier with a dense and uniform distribution. The best hydrothermal condition was found to be pH 13, reaction time 24 h, and reaction temperature 200°C.

  4. Advantages of PZT thick film for MEMS sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Lou-Moller, R.; Hansen, K.

    2010-01-01

    For all MEMS devices a high coupling between the mechanical and electrical domain is desired. Figures of merit describing the coupling are important for comparing different piezoelectric materials. The existing figures of merit are discussed and a new figure of merit is introduced for a fair comp....... Improved figure of merit is reached in the piezoelectric PZT thick film, TF2100CIP, by using cold isostatic pressure in the PZT preparation process. The porosity of TF2100 is decreased 38%, hence, allowing an increase of charge sensitivity for MEMS sensors of 59%....... thin film and PZT thick film. It is shown that MEMS sensors with the PZT thick film TF2100 from InSensor A/S have potential for significant higher voltage sensitivities compared to PZT thin film base MEMS sensors when the total thickness of the MEMS cantilever, beam, bridge or membrane is high...

  5. Study of magnetic properties and magnetoelectric effect in (x) Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}+(1-x)PZT composites

    Energy Technology Data Exchange (ETDEWEB)

    Bammannavar, B.K. [Department of Studies in Physics, Karnatak University, Dharwad 580003 (India); Naik, L.R., E-mail: naik_36@rediffmail.com [Department of Studies in Physics, Karnatak University, Dharwad 580003 (India)

    2012-03-15

    Magnetoelectric (ME) composites consisting of ferrite phase (x) Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}+ferroelectric phase (1-x)Pb Zr{sub 0.8}Ti{sub 0.2}O{sub 3} (Lead Zirconate Titanate-PZT) in which x (mol%) varies between 0 and 1 (0.0{<=}x{<=}1.0) was synthesized by double sintering ceramic method. The presence of constituent phases of ferrite, ferroelectric and their composites was confirmed by X-ray diffraction studies. The hysteresis measurement was used to study magnetic properties such as saturation magnetization (M{sub S}) and magnetic moment ({mu}{sub B}). The existence of single domain (SD) particle in the ferrite phase and mixed (SD+MD) particle in the composites was studied from AC susceptibility measurements. ME voltage coefficient for each mol% of ferrite phase was measured as a function of applied DC magnetic field and at the same time influence of magnetic field on ME response and resistivity of composites was studied. The maximum ME voltage coefficient of 0.84 mV/cm Oe was observed for 15% of ferrite phase and 85% of ferroelectric phase in the composites. - Highlights: Black-Right-Pointing-Pointer AC susceptibility measurement shows SD particles of the ferrite phase and mixed (SD+MD) particles in the composites. Black-Right-Pointing-Pointer Maximum ME voltage coefficient of 0.84 mV/cm Oe was observed 15 % of ferrite phase and 85 % of ferroelectric phase in composites. Black-Right-Pointing-Pointer These composites are useful in preparing ME devices as they show better ME voltage coefficients.

  6. Flexible graphene–PZT ferroelectric nonvolatile memory

    International Nuclear Information System (INIS)

    Lee, Wonho; Ahn, Jong-Hyun; Kahya, Orhan; Toh, Chee Tat; Özyilmaz, Barbaros

    2013-01-01

    We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr 0.35 ,Ti 0.65 )O 3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol–gel methods, respectively. Such PZT films show a high remnant polarization (P r ) of 30 μC cm −2 and a coercive voltage (V c ) of 3.5 V under a voltage loop over ±11 V. The graphene–PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits. (paper)

  7. Flexible graphene-PZT ferroelectric nonvolatile memory.

    Science.gov (United States)

    Lee, Wonho; Kahya, Orhan; Toh, Chee Tat; Ozyilmaz, Barbaros; Ahn, Jong-Hyun

    2013-11-29

    We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr0.35,Ti0.65)O3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol–gel methods, respectively. Such PZT films show a high remnant polarization (Pr) of 30 μC cm−2 and a coercive voltage (Vc) of 3.5 V under a voltage loop over ±11 V. The graphene–PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits.

  8. Fabrication and comparison of PMN-PT single crystal, PZT and PZT-based 1-3 composite ultrasonic transducers for NDE applications.

    Science.gov (United States)

    Kim, Ki-Bok; Hsu, David K; Ahn, Bongyoung; Kim, Young-Gil; Barnard, Daniel J

    2010-08-01

    This paper describes fabrication and comparison of PMN-PT single crystal, PZT, and PZT-based 1-3 composite ultrasonic transducers for NDE applications. As a front matching layer between test material (Austenite stainless steel, SUS316) and piezoelectric materials, alumina ceramics was selected. The appropriate acoustic impedance of the backing materials for each transducer was determined based on the results of KLM model simulation. Prototype ultrasonic transducers with the center frequencies of approximately 2.25 and 5MHz for contact measurement were fabricated and compared to each other. The PMN-PT single crystal ultrasonic transducer shows considerably improved performance in sensitivity over the PZT and PZT-based 1-3 composite ultrasonic transducers. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  9. Packaging of active fiber composites for improved sensor performance

    International Nuclear Information System (INIS)

    Melnykowycz, M; Barbezat, M; Koller, R; Brunner, A J

    2010-01-01

    Active fiber composites (AFC) composed of lead zirconate titanate (PZT) fibers embedded in an epoxy matrix and sandwiched between two interdigitated electrodes provide a thin and flexible smart material device which can act as a sensor or actuator. The thin profiles of AFC make them ideal for integration in glass or carbon fiber composite laminates. However, due to the low tensile limit of the PZT fibers, AFC can fail at strains below the tensile limit of many composites. This makes their use as a component in an active laminate design somewhat undesirable. In the current work, tensile testing of smart laminates composed of AFC integrated in glass fiber laminates was conducted to assess the effectiveness of different packaging strategies for improving AFC sensor performance at high strains relative to the tensile limit of the AFC. AFC were encased in carbon fiber, silicon, and pre-stressed carbon fiber to improve the tensile limit of the AFC when integrated in glass fiber laminates. By laminating AFC with pre-stressed carbon fiber, the tensile limit and strain sensor ability of the AFC were significantly improved. Acoustic emission monitoring was used and the results show that PZT fiber breakage was reduced due to the pre-stressed packaging process

  10. Active Vibration Suppression of a 3-DOF Flexible Parallel Manipulator Using Efficient Modal Control

    Directory of Open Access Journals (Sweden)

    Quan Zhang

    2014-01-01

    Full Text Available This paper addresses the dynamic modeling and efficient modal control of a planar parallel manipulator (PPM with three flexible linkages actuated by linear ultrasonic motors (LUSM. To achieve active vibration control, multiple lead zirconate titanate (PZT transducers are mounted on the flexible links as vibration sensors and actuators. Based on Lagrange’s equations, the dynamic model of the flexible links is derived with the dynamics of PZT actuators incorporated. Using the assumed mode method (AMM, the elastic motion of the flexible links are discretized under the assumptions of pinned-free boundary conditions, and the assumed mode shapes are validated through experimental modal test. Efficient modal control (EMC, in which the feedback forces in different modes are determined according to the vibration amplitude or energy of their own, is employed to control the PZT actuators to realize active vibration suppression. Modal filters are developed to extract the modal displacements and velocities from the vibration sensors. Numerical simulation and vibration control experiments are conducted to verify the proposed dynamic model and controller. The results show that the EMC method has the capability of suppressing multimode vibration simultaneously, and both the structural and residual vibrations of the flexible links are effectively suppressed using EMC approach.

  11. Standing wave brass-PZT square tubular ultrasonic motor.

    Science.gov (United States)

    Park, Soonho; He, Siyuan

    2012-09-01

    This paper reports a standing wave brass-PZT tubular ultrasonic motor. The motor is composed of a brass square tube with two teeth on each tube end. Four PZT plates are attached to the outside walls of the brass tube. The motor requires only one driving signal to excite vibration in a single bending mode to generate reciprocating diagonal trajectories of teeth on the brass tube ends, which drive the motor to rotate. Bi-directional rotation is achieved by exciting different pairs of PZT plates to switch the bending vibration direction. Through using the brass-PZT tube structure, the motor can take high magnitude vibration to achieve a high output power in comparison to PZT tube based ultrasonic motors. Prototypes are fabricated and tested. The dimension of the brass-PZT tube is 3.975mm×3.975mm×16mm. Measured performance is a no-load speed of >1000RPM, a stall torque of 370μNm and a maximum output power of 16 mW when a sinusoidal driving voltage of 50V is applied. The working frequencies of the motor are 46,050Hz (clockwise) and 46,200Hz (counter-clockwise). Copyright © 2012. Published by Elsevier B.V.

  12. Using microwave for processing nanostructured PZT ceramics; Utilizacao de microondas no processamento de ceramicas nanoestruturadas de PZT

    Energy Technology Data Exchange (ETDEWEB)

    Lanza, A.C.; Berti, T.G.; Thomazini, D.; Gelfuso, M.V., E-mail: lanza.work@gmail.com [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Instituto de Engenharia Mecanica; Eiras, J.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Dept. de Fisica

    2012-07-01

    The PZT ceramics have dielectric and piezoelectric properties of technological interest. The method of microwave assisted hydrothermal synthesis becomes interesting since it occurs in a closed environment, the low temperature and time, compared to conventional methods. In this work, PZT powders were dissolved in acid medium, and by adjusting the pH of the solutions obtained were precipitated, subjected to hydrothermal treatment at 120 °C for intervals of 15, 30 and 60 min. The powders were characterized by differential thermal and gravimetric analysis, X-ray diffraction and scanning electron microscopy. The results confirm the formation of PZT phase in one hour with particle size around 55 nm, showing the feasibility of the proposed method. (author)

  13. Comparative face-shear piezoelectric properties of soft and hard PZT ceramics

    Science.gov (United States)

    Miao, Hongchen; Chen, Xi; Cai, Hairong; Li, Faxin

    2015-12-01

    The face-shear ( d 36 ) mode may be the most practical shear mode in piezoelectrics, while theoretically this mode cannot appear in piezoelectric ceramics because of its transversally isotropic symmetry. Recently, we realized piezoelectric coefficient d 36 up to 206pC/N in soft PbZr1-xTixO3 (PZT) ceramics via ferroelastic domain engineering [H. C. Miao and F. X. Li, Appl. Phys. Lett. 107, 122902 (2015)]. In this work, we further realized the face-shear mode in both hard and soft PZT ceramics including PZT-4 (hard), PZT-51(soft), and PZT-5H (soft) and investigated the electric properties systematically. The resonance methods are derived to measure the d 36 coefficients using both square patches and narrow bar samples, and the obtained values are consistent with that measured by a modified d 33 meter previously. For all samples, the pure d 36 mode can only appear near the resonance frequency, and the coupled d 36 - d 31 mode dominates off resonance. It is found that both the piezoelectric coefficient d 36 and the electromechanical coupling factor k 36 of soft PZT ceramics (PZT-5H and PZT-51) are considerably larger than those of the hard PZT ceramics (PZT-4). The obtained d 36 of 160-275pC/N, k 36 ˜ 0.24, and the mechanical quality factor Q 36 of 60-90 in soft PZT ceramics are comparable with the corresponding properties of the d 31 mode sample. Therefore, the d 36 mode in modified soft PZT ceramics is more promising for industrial applications such as face-shear resonators and shear horizontal wave generators.

  14. Piezoelectric Materials Under Natural and Man-Made Radiation: The Potential for Direct Radiation Detection

    Science.gov (United States)

    Wart, Megan; Simpson, Evan; Flaska, Marek

    2018-01-01

    Radiation detection systems used for monitoring long term waste storage need to be compact, rugged, and have low or no power requirements. By using piezoelectric materials it may be possible to create a reliable self-powered radiation detection system. To determine the feasibility of this approach, the electrical signal response of the piezoelectric materials to radiation must be characterized. To do so, an experimental geometry has been designed and a neutron source has been chosen as described in this paper, which will be used to irradiate a uranium foil for producing fission fragments. These future experiments will be aimed at finding the threshold of exposure of lead zirconate titanate (PZT) plates needed to produce and electrical signal. Based on the proposed experimental geometry the thermal neutron beam-line at the Breazeale Reactor at The Pennsylvania State University will be used as the neutron source. The uranium foil and neutron source will be able to supply a maximum flux of 1.5e5 fission fragments/second*cm2 to each of the PZT plates.

  15. Synthesis and refinement of ferroelectric ceramic BaBi4Ti4O15 (BBT) using Rietveld Methods

    International Nuclear Information System (INIS)

    Silva, P.M.O.; Sales, A.J.M.; Carneiro, J.C.S.; Sancho, E.O.; Sales, J.C.; Sombra, A.S.B.

    2012-01-01

    The lead zirconate titanate (PZT) has potential application in nonvolatile ferroelectric memory and capacitors, however this material is linked to environmental pollution. In order to remedy this problem, we propose the synthesis of the compound, BaBi 4 TI 4 O 15 (BBT) because of similarity to PZT. The phase of the BBT has been prepared by the method of solid state. Reagents (BaCO 3 , Bi 2 O 3 and TiO 2 ) were ground for 6 hours at 360 rpm in a planetary ball mill and suffered high energy heat treatment for 2 hours at temperatures of 850, 900, 950 and 1000 ° C. The calcined powder was characterized by X-ray diffraction (XRD) and refined by the program DBWSTools 2.3 Beta based on the Rietveld method. The results obtained confirmed the refinement of the single-phase with tetragonal structure BaBi 4 TI 4 O 15 for all samples. The sample calcined at 950 °C presented the best densification (7.508 g/cm³). (author)

  16. Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites

    International Nuclear Information System (INIS)

    Van den Ende, D A; Van de Wiel, H J; Groen, W A; Van der Zwaag, S

    2012-01-01

    Direct piezoelectric strain energy harvesting can be used to power wireless autonomous sensors in environments where low frequency, high strains are present, such as in automobile tires during operation. However, these high strains place stringent demands on the materials with respect to mechanical failure or depolarization, especially at elevated temperatures. In this work, three kinds of ceramic–polymer composite piezoelectric materials were evaluated and compared against state-of-the-art piezoelectric materials. The new composites are unstructured and structured composites containing granular lead zirconate titanate (PZT) particles or PZT fibers in a polyurethane matrix. The composites were used to build energy harvesting patches which were attached to a tire and tested under simulated rolling conditions. The energy density of the piezoelectric ceramic–polymer composite materials is initially not as high as that of the reference materials (a macro-fiber composite and a polyvinylidene fluoride polymer). However, the area normalized power output of the composites after temperature and strain cycling is comparable to that of the reference devices because the piezoelectric ceramic–polymer composites did not degrade during operation. (paper)

  17. Modelling of magneto-acoustic resonance in ferrite-piezoelectric bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bichurin, M I; Petrov, V M; Averkin, S V; Filippov, A V [Institute for Electronic Information Systems, Novgorod State University, Veliky Novgorod 173003 (Russian Federation); Liverts, E [Department of Physics, Ben-Gurion University of the Negev, Beersheva 84105 (Israel); Mandal, S; Srinivasan, G [Physics Department, Oakland University, Rochester, MI 48309 (United States)

    2009-11-07

    A model is discussed for magnetoelectric (ME) effects in a single-crystal ferrite-piezoelectric bilayer on a substrate. The specific focus is on coupling at magneto-acoustic resonance (MAR) at the coincidence of ferromagnetic resonance in the ferrite and thickness modes of the electromechanical resonance in the piezoelectric. The clamping effect of the substrate has been considered in determining the ME voltage coefficient and applied to a model system of a bilayer of lead zirconate titanate (PZT) and yttrium iron garnet (YIG) on a gadolinium gallium garnet substrate. The theory predicts a giant ME effect at MAR due to interaction and transfer of energy between elastic modes and the uniform precession spin-wave mode. It is shown that the ME coupling strength decreases with increasing substrate thickness. Estimates for YIG-PZT for nominal film parameters predict MAR at 5 GHz and ME coefficients on the order of 5-70 V cm{sup -1} Oe{sup -1}. The phenomenon is of importance for the realization of multifunctional ME sensors and transducers operating at microwave frequencies.

  18. PLZT-based photovoltaic Piezoelectric Transformer with light feedback

    Energy Technology Data Exchange (ETDEWEB)

    Kozielski, L [University of Silesia, Dep. Materials Sc, 2, Sniezna St. Sosnowiec, 41-200 Poland (Poland); Adamczyk, M [University of Silesia, Institute Phys., 4, Uniwersytecka St. Katowice, 40-007 Poland (Poland); Erhart, J, E-mail: lucjan.kozielski@us.edu.pl [Technical University of Liberec, Studencka St. 2, CZ-461 17 Liberec (Czech Republic)

    2011-10-29

    Piezoelectric Transformer (PT) converts an electrical AC input voltage into ultrasonic vibrations and reconverts back to an output as AC voltage. Hard lead zirconate titanate (PZT) ceramics is typically used for fabrications of such devices. In case of lanthaniun ion La{sup 3+} addition in PZT solid solution we can achieve piezoelectric ceramics with good transparency exhibiting both optical Pockels and Kerr effects. Values of these coefficients in the PLZT system are much bigger than in LiNbO{sub 3} or SBN single crystals. Among the various PLZT compositions 8/65/35, near the morphotropic boundary, exhibit large electrooptic effect and thus have found applications in light shutters and displays. In the present study we have investigated radial mode piezoelectric transformer based on optically transparent PLZT8/65/35 ceramics. The effect of the UV light generated photovoltage and photostriction on the efficiency and voltage step-up ratio of piezoelectric transformer have been demonstrated. Novel functions of this device is proposed by superimposing two sophistically coupled effects of piezoelectricity and photostriction.

  19. Piezoelectric Materials Under Natural and Man-Made Radiation: The Potential for Direct Radiation Detection

    Directory of Open Access Journals (Sweden)

    Wart Megan

    2018-01-01

    Full Text Available Radiation detection systems used for monitoring long term waste storage need to be compact, rugged, and have low or no power requirements. By using piezoelectric materials it may be possible to create a reliable self-powered radiation detection system. To determine the feasibility of this approach, the electrical signal response of the piezoelectric materials to radiation must be characterized. To do so, an experimental geometry has been designed and a neutron source has been chosen as described in this paper, which will be used to irradiate a uranium foil for producing fission fragments. These future experiments will be aimed at finding the threshold of exposure of lead zirconate titanate (PZT plates needed to produce and electrical signal. Based on the proposed experimental geometry the thermal neutron beam-line at the Breazeale Reactor at The Pennsylvania State University will be used as the neutron source. The uranium foil and neutron source will be able to supply a maximum flux of 1.5e5 fission fragments/second*cm2 to each of the PZT plates.

  20. Piezoelectric paints as one approach to smart structural materials with health-monitoring capabilities

    Science.gov (United States)

    Egusa, Shigenori; Iwasawa, Naozumi

    1998-08-01

    Piezoelectric paints have a potential to change a conventional structural material into an intelligent material system with health-monitoring capabilities such as vibration sensing and damage detection. Such paints were prepared using lead zirconate titanate (PZT) ceramic powder as a pigment and epoxy resin as a binder. The obtained paints were coated on aluminum test specimens, and were cured at room temperature or at 150 0964-1726/7/4/002/img5, thus forming the paint films having different thicknesses of 25-300 0964-1726/7/4/002/img6. These films were then poled at room temperature, and were evaluated with regard to the sensitivities as vibration and acoustic emission sensors in the frequency ranges of 0-250 Hz and 0-1.0 MHz, respectively. This paper mainly describes the effects of the film thickness and the cure temperature on the poling behavior of the PZT/epoxy paint film. This paper describes also the application of the paint film as a vibration modal sensor integrated into a structural material.

  1. Process induced poling and plasma induced damage of thin films PZT

    NARCIS (Netherlands)

    Wang, J.; Houwman, Evert Pieter; Salm, Cora; Nguyen, Duc Minh; Vergeer, Kurt; Schmitz, Jurriaan

    2017-01-01

    This paper treats processing sequence induced changes on PZT. Two kinds of metal-PZT-metal capacitors are compared. The top surface and sidewall of PZT in one kind of capacitor is directly bombarded by energetic particles during ion milling process, whereas PZT in the other kind of capacitor is not.

  2. Enhancing the Responsivity of Uncooled Infrared Detectors Using Plasmonics for High-Performance Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Amr Shebl Ahmed

    2017-04-01

    Full Text Available A lead zirconate titanate (PZT;Pb(Zr0.52Ti0.48O3 layer embedded infrared (IR detector decorated with wavelength-selective plasmonic crystals has been investigated for high-performance non-dispersive infrared (NDIR spectroscopy. A plasmonic IR detector with an enhanced IR absorption band has been designed based on numerical simulations, fabricated by conventional microfabrication techniques, and characterized with a broadly tunable quantum cascade laser. The enhanced responsivity of the plasmonic IR detector at specific wavelength band has improved the performance of NDIR spectroscopy and pushed the limit of detection (LOD by an order of magnitude. In this paper, a 13-fold enhancement in the LOD of a methane gas sensing using NDIR spectroscopy is demonstrated with the plasmonic IR detector.

  3. Wave velocity characteristic for Kenaf natural fibre under impact damage

    Science.gov (United States)

    Zaleha, M.; Mahzan, S.; Fitri, Muhamad; Kamarudin, K. A.; Eliza, Y.; Tobi, A. L. Mohd

    2017-01-01

    This paper aims to determining the wave velocity characteristics for kenaf fibre reinforced composite (KFC) and it includes both experimental and simulation results. Lead zirconate titanate (PZT) sensor were proposed to be positioned to corresponding locations on the panel. In order to demonstrate the wave velocity, an impacts was introduced onto the panel. It is based on a classical sensor triangulation methodology, combines with experimental strain wave velocity analysis. Then the simulation was designed to replicate panel used in the experimental impacts test. This simulation was carried out using ABAQUS. It was shown that the wave velocity propagates faster in the finite element simulation. Although the experimental strain wave velocity and finite element simulation results do not match exactly, the shape of both waves is similar.

  4. Transparent Ferroelectric Capacitors on Glass

    Directory of Open Access Journals (Sweden)

    Daniele Sette

    2017-10-01

    Full Text Available We deposited transparent ferroelectric lead zirconate titanate thin films on fused silica and contacted them via Al-doped zinc oxide (AZO transparent electrodes with an interdigitated electrode (IDE design. These layers, together with a TiO2 buffer layer on the fused silica substrate, are highly transparent (>60% in the visible optical range. Fully crystallized Pb(Zr0.52Ti0.48O3 (PZT films are dielectrically functional and exhibit a typical ferroelectric polarization loop with a remanent polarization of 15 μC/cm2. The permittivity value of 650, obtained with IDE AZO electrodes is equivalent to the one measured with Pt electrodes patterned with the same design, which proves the high quality of the developed transparent structures.

  5. Study on the piezoelectric behavior and structural changes of strontium doped PZT

    International Nuclear Information System (INIS)

    Silva, M.S. da; Lemos, L.; Souza, E.F.; Cavalheiro, A.A.; Longo, E.; Zaghete, M.A.

    2014-01-01

    Lead zirconate titanate, with Zr/Ti ratio of 53/47 was prepared by the polymeric precursor method. The powders were doped with 0.0, 0.2, 0.4 and 0.6 mol% of Sr 2+ and the effects of Sr 2+ additions on piezoelectric properties and on the phase constitution were investigated by XRD. The percentages of tetragonal and rhombohedral phases were calculated through Rietveld refinement. The results indicated that addition of Sr 2+ ions in the amount of 0.4 mol% in the ceramic structure maximally increase the values of piezoelectric parameter to d 33 = 289 μC/N and K p = 0.43. The values found for the piezoelectric properties were among the highest at the concentration of 0.4 mol% of strontium and this composition showed the highest structural change from the rhombohedral to the tetragonal phase perovskita. (author)

  6. Synthesis and characterization of bismuth alkaline titanate powders

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atorresh@ipn.mx [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Dominguez-Crespo, M.A. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Hernandez-Perez, M.A. [ESIQIE, Metalurgia, Instituto Politecnico Nacional, Mexico, D. F (Mexico); Garcia-Zaleta, D.S. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Brachetti-Sibaja, S.B. [CICATA-Altamira, Instituto Politecnico Nacional, Km. 14.5 Carretera Tampico Puerto Industrial Altamira, Altamira, Tamps. 89600 (Mexico); Instituto Tecnologico de Ciudad Madero, Av. 1o. de Mayo esq. Sor Juana Ines de la Cruz s/n Col. Los Mangos C.P.89440 Cd. Madero Tamaulipas (Mexico)

    2011-06-15

    In this work, samples of bismuth alkaline titanate, (K{sub 0.5}Na{sub 0.5}){sub (2-x/2)}Bi{sub (x/6)}TiO{sub 3}, (x = 0.05-0.75) have been prepared by conventional ceramic technique and molten salts. Metal oxides or carbonates powders were used as starting raw materials. The crystalline phase of the synthesized powders was identified by the X-ray diffraction (XRD) and particle morphology was characterized by scanning electron microscopy (SEM). Solid state reaction method was unsuccessful to obtain pellets. From XRD results, a rhombohedral structure was detected and the parameter lattice were estimated to be a = 5.5478 A and {alpha} = 59.48{sup o}. These parameters were used to refine the structure by Rietveld analysis. SEM results showed several morphologies. Apparently, bismuth is promoting the grain growth whose sizes vary from 30 nm to 180 nm It is expected that these materials can be utilized in practical applications as substitutes for lead zirconatetitanate (PZT)-based ceramics.

  7. PZT crack detection in suspension-based dual stage actuator [for HDDs

    CERN Document Server

    Yung Ping Yeh; Ku, C

    2000-01-01

    An impedance method is proposed to detect cracks of PZT bars in suspension based dual stage-actuators. The frequency response amplitude of impedance at the resonance of 1.95 MHz, the PZT bar width extension mode, was very sensitive to the cracks in PZT material. As cracks in the PZT bars propagated from invisible micro cracks to visible macro cracks, the impedance gain at 1.95 MHz dropped suddenly. (3 refs).

  8. Humidity and polarity influence on MIM PZT capacitor degradation and breakdown

    NARCIS (Netherlands)

    Wang, Jiahui; Salm, Cora; Houwman, Evert; Schmitz, Jurriaan; Nguyen, Minh

    2016-01-01

    This paper presents a reliability study on unpackaged metal-PZT-metal capacitors. Both ramped voltage stress (RVS) and time dependent dielectric breakdown (TDDB) measurements show that environmental humidity dramatically worsens the PZT reliability. Visible breakdown spots on the surface of PZT

  9. Titan!

    Science.gov (United States)

    Matson, Dennis L.

    2010-05-01

    Cassini-Huygens achieved Saturnian orbit on July 1, 2004. The first order of business was the safe delivery of the Huygens atmospheric probe to Titan that took place on January 14, 2005. Huygens descended under parachute obtaining observations all the way down to a safe landing. It revealed Titan for the first time. Stunning are the similarities between Titan and the Earth. Viewing the lakes and seas, the fluvial terrain, the sand dunes and other features through the hazy, nitrogen atmosphere, brings to mind the geological processes that created analogous features on the Earth. On Titan frozen water plays the geological role of rock; liquid methane takes the role of terrestrial water. The atmospheres of both Earth and Titan are predominately nitrogen gas. Titan's atmosphere contains 1.5% methane and no oxygen. The surface pressure on Titan is 1.5 times the Earth's. There are aerosol layers and clouds that come and go. Now, as Saturn proceeds along its solar orbit, the seasons are changing. The effects upon the transport of methane are starting to be seen. A large lake in the South Polar Region seems to be filling more as winter onsets. Will the size and number of the lakes in the South grow during winter? Will the northern lakes and seas diminish or dry up as northern summer progresses? How will the atmospheric circulation change? Much work remains not only for Cassini but also for future missions. Titan has many different environments to explore. These require more capable instruments and in situ probes. This work was conducted at the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration.

  10. PZT Films Fabricated by Metal Organic Decomposition Method

    Science.gov (United States)

    Sobolev, Vladimir; Ishchuk, Valeriy

    2014-03-01

    High quality lead zirconate titanate films have been fabricated on different substrates by metal organic decomposition method and their ferroelectric properties have been investigated. Main attention was paid to studies of the influence of the buffer layer with conditional composition Pb1.3(Zr0.5Ti0.5) O3 on the properties of Pb(Zr0.5Ti0.5) O3 films fabricated on the polycrystalline titanium and platinum substrates. It is found that in the films on the Pt substrate (with or without the buffer layer) the dependencies of the remanent polarization and the coercivity field on the number of switching cycles do not manifest fatigue up to 109 cycles. The remanent polarization dependencies for films on the Ti substrate with the buffer layer containing an excess of PbO demonstrate an fundamentally new feature that consists of a remanent polarization increase after 108 switching cycles. The increase of remanent polarization is about 50% when the number of cycles approaches 1010, while the increase of the coercivity field is small. A monotonic increase of dielectric losses has been observed in all cases.

  11. Investigation of top electrode for PZT thick films based MEMS sensors

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Pedersen, Thomas; Kristiansen, Paw T.

    2010-01-01

    In this work processing of screen printed piezoelectric PZT thick films on silicon substrates is investigated for use in future MEMS devices. E-beam evaporated Al and Pt are patterned on PZT as a top electrode using a lift-off process with a line width down to 3 mu m. Three test structures are used...... to investigate the optimal thickness of the top electrode, the degradation of the piezoelectric properties of the PZT film in absence of a diffusion barrier layer and finally how to fabricate electrical interconnects down the edge of the PZT thick film. The roughness of the PZT is found to have a strong...... influence on the conductance of the top electrode influencing the optimal top electrode thickness. A 100 nm thick top electrode on the PZT thick film with a surface roughness of 273 nm has a 4.5 times higher resistance compared to a similar wire on a planar SiO2 surface which has a surface roughness of less...

  12. Synthesis and dielectric properties of ferroelectric-ferrimagnetic PZT-SFMO composites

    Directory of Open Access Journals (Sweden)

    Alexander V. Petrov

    2017-03-01

    Full Text Available Ferrimagnetic-ferroelectric composite materials on the base of Pb0.85Zr0.53Ti0.47O3– Sr2FeMoO6–δ (PZT-SFMO compounds have been prepared by a complex ceramic technology and a modified sol-gel synthesis. The dielectric properties of the PZT-SFMO composites with the PZT concentrations of 55 wt% and less, as well as of pure SFMO, are caused by the Maxwell-Wagner relaxation and a huge electrical conductivity. In contrast, in pure PZT the ferroelectric phase transition is clearly expressed in the static dielectric permittivity anomaly. Moreover, in all investigated composites, similarly to pure SFMO, the electrical conductivity anomaly is observed in the range from 560–540 K. This indicates that the composites with PZT concentrations of 55 wt% and higher are above the electrical and magnetic percolation threshold, in a good agreement with the excluded volume theory. In PZT-SFMO composites the DC electrical conductivity increases with SFMO concentration almost in a power law fashion, while the activation energy of the DC conductivity decreases under certain conditions.

  13. Barium titanate nanocomposite capacitor FY09 year end report.

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Tyler E.; DiAntonio, Christopher Brian; Yang, Pin; Chavez, Tom P.; Winter, Michael R.; Monson, Todd C.; Roesler, Alexander William; Fellows, Benjamin D.

    2009-11-01

    This late start RTBF project started the development of barium titanate (BTO)/glass nanocomposite capacitors for future and emerging energy storage applications. The long term goal of this work is to decrease the size, weight, and cost of ceramic capacitors while increasing their reliability. Ceramic-based nanocomposites have the potential to yield materials with enhanced permittivity, breakdown strength (BDS), and reduced strain, which can increase the energy density of capacitors and increase their shot life. Composites of BTO in glass will limit grain growth during device fabrication (preserving nanoparticle grain size and enhanced properties), resulting in devices with improved density, permittivity, BDS, and shot life. BTO will eliminate the issues associated with Pb toxicity and volatility as well as the variation in energy storage vs. temperature of PZT based devices. During the last six months of FY09 this work focused on developing syntheses for BTO nanoparticles and firing profiles for sintering BTO/glass composite capacitors.

  14. Lamb wave-based damage quantification and probability of detection modeling for fatigue life assessment of riveted lap joint

    Science.gov (United States)

    He, Jingjing; Wang, Dengjiang; Zhang, Weifang

    2015-03-01

    This study presents an experimental and modeling study for damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in-situ non-destructive testing during fatigue cyclical loading. A multi-feature integration method is developed to quantify the crack size using signal features of correlation coefficient, amplitude change, and phase change. In addition, probability of detection (POD) model is constructed to quantify the reliability of the developed sizing method. Using the developed crack size quantification method and the resulting POD curve, probabilistic fatigue life prediction can be performed to provide comprehensive information for decision-making. The effectiveness of the overall methodology is demonstrated and validated using several aircraft lap joint specimens from different manufactures and under different loading conditions.

  15. Temperature dependence of high field electromechanical coupling in ferroelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P M; Cain, M G; Stewart, M, E-mail: paul.weaver@npl.co.u [National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2010-04-28

    A study of the temperature dependence of the electromechanical response of ferroelectric lead zirconate titanate (PZT) ceramics at high electric fields (up to 1.3 kV mm{sup -1}) is reported. Simultaneous measurements were performed of strain, electric field and polarization to form a complete response map from room temperature up to 200 {sup 0}C. An electrostrictive model is shown to provide an accurate description of the electromechanical response to high levels of induced polarization and electric field. This provides a method for decoupling strain contributions from thermal expansion and polarization changes. Direct measurements of electrostriction and thermal expansion, above and below the Curie temperature, are reported. Electrostriction coefficients are shown to be temperature dependent in these ceramic materials, with different values above and below the Curie temperature.

  16. Candle Soot-Driven Performance Enhancement in Pyroelectric Energy Conversion

    Science.gov (United States)

    Azad, Puneet; Singh, V. P.; Vaish, Rahul

    2018-05-01

    We observed substantial enhancement in pyroelectric output with the help of candle soot coating on the surface of lead zirconate titanate (PZT). Candle soot of varying thicknesses was coated by directly exposing pyroelectric material to the candle flame. The open-circuit pyroelectric voltage and closed-circuit pyroelectric current were recorded while applying infrared heating across the uncoated and candle soot-coated samples for different heating and cooling cycles. In comparison to the uncoated sample, the maximum open-circuit voltage improves seven times for the candle soot-coated sample and electric current increases by eight times across a resistance of 10Å. Moreover, the harvested energy is enhanced by 50 times for candle soot-coated sample. Results indicate that candle soot coating is an effective and economic method to improve infrared sensing performance of pyroelectric materials.

  17. Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer

    International Nuclear Information System (INIS)

    Sohn, H; Yang, J Y; Dutta, D; DeSimio, M; Olson, S; Swenson, E

    2011-01-01

    The paper presents signal and image processing algorithms to automatically detect delamination and disbond in composite plates from wavefield images obtained using a scanning laser Doppler vibrometer (LDV). Lamb waves are excited by a lead zirconate titanate transducer (PZT) mounted on the surface of a composite plate, and the out-of-plane velocity field is measured using an LDV. From the scanned time signals, wavefield images are constructed and processed to study the interaction of Lamb waves with hidden delaminations and disbonds. In particular, the frequency–wavenumber (f–k) domain filter and the Laplacian image filter are used to enhance the visibility of defects in the scanned images. Thereafter, a statistical cluster detection algorithm is used to identify the defect location and distinguish damaged specimens from undamaged ones

  18. Ti-in-zircon thermometry: applications and limitations

    Science.gov (United States)

    Fu, Bin; Page, F. Zeb; Cavosie, Aaron J.; Fournelle, John; Kita, Noriko T.; Lackey, Jade Star; Wilde, Simon A.; Valley, John W.

    2008-08-01

    The titanium concentrations of 484 zircons with U-Pb ages of ˜1 Ma to 4.4 Ga were measured by ion microprobe. Samples come from 45 different igneous rocks (365 zircons), as well as zircon megacrysts (84) from kimberlite, Early Archean detrital zircons (32), and zircon reference materials (3). Samples were chosen to represent a large range of igneous rock compositions. Most of the zircons contain less than 20 ppm Ti. Apparent temperatures for zircon crystallization were calculated using the Ti-in-zircon thermometer (Watson et al. 2006, Contrib Mineral Petrol 151:413-433) without making corrections for reduced oxide activities (e.g., TiO2 or SiO2), or variable pressure. Average apparent Ti-in-zircon temperatures range from 500° to 850°C, and are lower than either zircon saturation temperatures (for granitic rocks) or predicted crystallization temperatures of evolved melts (˜15% melt residue for mafic rocks). Temperatures average: 653 ± 124°C (2 standard deviations, 60 zircons) for felsic to intermediate igneous rocks, 758 ± 111°C (261 zircons) for mafic rocks, and 758 ± 98°C (84 zircons) for mantle megacrysts from kimberlite. Individually, the effects of reduced a_{TiO2} or a_{SiO2}, variable pressure, deviations from Henry’s Law, and subsolidus Ti exchange are insufficient to explain the seemingly low temperatures for zircon crystallization in igneous rocks. MELTs calculations show that mafic magmas can evolve to hydrous melts with significantly lower crystallization temperature for the last 10-15% melt residue than that of the main rock. While some magmatic zircons surely form in such late hydrous melts, low apparent temperatures are found in zircons that are included within phenocrysts or glass showing that those zircons are not from evolved residue melts. Intracrystalline variability in Ti concentration, in excess of analytical precision, is observed for nearly all zircons that were analyzed more than once. However, there is no systematic change in Ti

  19. Properties of RF-Sputtered PZT Thin Films with Ti/Pt Electrodes

    Directory of Open Access Journals (Sweden)

    Cui Yan

    2014-01-01

    Full Text Available Effect of annealing temperature and thin film thickness on properties of Pb(Zr0.53Ti0.47O3 (PZT thin film deposited via radiofrequency magnetron sputtering technique onto Pt/Ti/SiO2/Si substrate was investigated. Average grain sizes of the PZT thin film were measured by atomic force microscope; their preferred orientation was studied through X-ray diffraction analysis. Average residual stress in the thin film was estimated according to the optimized Stoney formula, and impedance spectroscopy characterization was performed via an intelligent LCR measuring instrument. Average grain sizes of PZT thin films were 60 nm~90 nm and their average roughness was less than 2 nm. According to X-ray diffraction analysis, 600°C is the optimal annealing temperature to obtain the PZT thin film with better crystallization. Average residual stress showed that thermal mismatch was the decisive factor of residual stress in Pt/Ti/SiO2/Si substrate; the residual stress in PZT thin film decreased as their thickness increased and increased with annealing temperature. The dielectric constant and loss angle tangent were extremely increased with the thickness of PZT thin films. The capacitance of the device can be adjusted according to the thickness of PZT thin films.

  20. Flexible PZT Thin Film Tactile Sensor for Biomedical Monitoring

    Directory of Open Access Journals (Sweden)

    Wen-Jong Wu

    2013-04-01

    Full Text Available This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse topology of various human regions and sense the corresponding signals from human bodies. The measured arterial pulse waveform can be used to diagnose hypertension and cardiac failure in patients. The proposed sensors have several advantages, such as flexibility, reliability, high strain, low cost, simple fabrication, and low temperature processing. The PZT thin-film deposition process includes a pyrolysis process at 150 °C/500 °C for 10/5 min, followed by an annealing process at 650 °C for 10 min. Finally, the consistent pulse wave velocity (PWV was demonstrated based on human pulse measurements from apical to radial, brachial to radial, and radial to ankle. It is characterized that the sensitivity of our PZT-based tactile sensor was approximately 0.798 mV/g.

  1. Flexible PZT thin film tactile sensor for biomedical monitoring.

    Science.gov (United States)

    Tseng, Hong-Jie; Tian, Wei-Cheng; Wu, Wen-Jong

    2013-04-25

    This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse topology of various human regions and sense the corresponding signals from human bodies. The measured arterial pulse waveform can be used to diagnose hypertension and cardiac failure in patients. The proposed sensors have several advantages, such as flexibility, reliability, high strain, low cost, simple fabrication, and low temperature processing. The PZT thin-film deposition process includes a pyrolysis process at 150 °C/500 °C for 10/5 min, followed by an annealing process at 650 °C for 10 min. Finally, the consistent pulse wave velocity (PWV) was demonstrated based on human pulse measurements from apical to radial, brachial to radial, and radial to ankle. It is characterized that the sensitivity of our PZT-based tactile sensor was approximately 0.798 mV/g.

  2. Ferroelectric capped magnetization in multiferroic PZT/LSMO tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashok, E-mail: ashok553@nplindia.org; Shukla, A. K. [National Physical Laboratory (CSIR), Dr. K. S. Krishnan Road, New Delhi-110012 (India); Barrionuevo, D.; Ortega, N.; Katiyar, Ram S. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, Puerto Rico 00931-3343 (United States); Shannigrahi, Santiranjan [Institute of Materials Research and Engineering - IMRE, Agency for Science Technology and Research (A-STAR), 3 Research Link, Singapore 117602 (Singapore); Scott, J. F. [Department of Chemistry and Department of Physics, University of St. Andrews, St. Andrews KY16 ST (United Kingdom)

    2015-03-30

    Self-poled ultra-thin ferroelectric PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) (5 and 7 nm) films have been grown by pulsed laser deposition technique on ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) (30 nm) to check the effect of polar capping on magnetization for ferroelectric tunnel junction devices. PZT/LSMO heterostructures with thick polar PZT (7 nm) capping show nearly 100% enhancement in magnetization compared with thin polar PZT (5 nm) films, probably due to excess hole transfer from the ferroelectric to the ferromagnetic layers. Core-level x-ray photoelectron spectroscopy studies revealed the presence of larger Mn 3s exchange splitting and higher Mn{sup 3+}/Mn{sup 4+} ion ratio in the LSMO with 7 nm polar capping.

  3. Synthesis and characterization of some inorganic ion exchange materials and its application in the treatment of hazardous waste

    International Nuclear Information System (INIS)

    El-Deeb, A.B.I.M.

    2008-01-01

    inorganic ion exchange materials play an important role in the last decays in the fields of industry, medicine, agriculture and nuclear technology due to their stabilities towards thermal and radiation and their resistance to chemical attack. the most important property of inorganic ion exchangers enabling their use in the various chemical separation is the selectivity. the selectivity behaviour of synthetic inorganic ion exchanges are still far from being clearly understood. this work had been done in an attempt to synthesize of inorganic ion exchangers such as zircon-titanate and doping alkali metals with zircon-titanate to produce a new developed ion exchanger with properties allow to used in the treatment of hazardous wastes. this work is concerned with the preparation of zircon-titanate and the doping of some alkali metals (K,Na,Li and Cs)with zircon-titanate. characterization of the synthesized ion exchangers using x-ray diffraction, x-ray fluorescence, infrared spectroscopy, surface area and thermal analysis were conducted. equilibrium measurements and effect of batch factor, ph of the medium on percent uptake were determined. capacity measurements and sorption isotherm studies were also investigated on zircon-titanate and its dopant products.

  4. Nonlinear current-voltage behavior in PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Mi; Zhang, Weikang; Zhang, Zebin; Li, Shida; Zhang, Ping; Lan, Kuibo [Tianjin University, School of Electrical and Information Engineering, Tianjin (China)

    2017-05-15

    In this paper, Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films were prepared by sol-gel synthesis and characterized by X-ray diffraction, field emission scanning electron microscopy and current-voltage measurements. Here, we demonstrate that in addition to the outstanding ferroelectric and dielectric properties, the PZT films also have remarkably nonlinear current-voltage characteristics. Considering the contact of semi-conductive grains in the PZT films, a double Schottky barrier (DSB) model may be responsible for such phenomena. The test results show that with the decrease of annealing temperature and the increase of the film thickness, the threshold voltages (V{sub th}) increase obviously. The maximum V{sub th} value of 60.95 V and the minimum value of 6.9 V in our experiments were obtained from the five-layered samples annealed at 600 C and the two-layered samples annealed at 700 C, respectively. As a result, PZT thin film may lead to efficient switching and sensing devices. (orig.)

  5. The performance of integrated active fiber composites in carbon fiber laminates

    International Nuclear Information System (INIS)

    Melnykowycz, M; Brunner, A J

    2011-01-01

    Piezoelectric elements integrated into fiber-reinforced polymer-matrix laminates can provide various functions in the resulting adaptive or smart composite. Active fiber composites (AFC) composed of lead zirconate titanate (PZT) fibers can be used as a component in a smart material system, and can be easily integrated into woven composites. However, the impact of integration on the device and its functionality has not been fully investigated. The current work focuses on the integration and performance of AFC integrated into carbon-fiber-reinforced plastic (CFRP) laminates, focusing on the strain sensor performance of the AFC–CFRP laminate under tensile loading conditions. AFC were integrated into cross-ply CFRP laminates using simple insertion and interlacing of the CFRP plies, with the AFC always placed in the 90° ply cutout area. Test specimens were strained to different strain levels and then cycled with a 0.01% strain amplitude, and the resulting signal from the AFC was monitored. Acoustic emission monitoring was performed during tensile testing to provide insight to the failure characteristics of the PZT fibers. The results were compared to those from past studies on AFC integration; the strain signal of AFC integrated into CFRP was much lower than that for AFC integrated into woven glass fiber laminates. However, the profiles of the degradations of the AFC signal resulting from the strain were nearly identical, showing that the PZT fibers fragmented in a similar manner for a given global strain. The sensor performance recovered upon unloading, which is attributed to the closure of cracks between PZT fiber fragments

  6. Directly patternable high refractive index ferroelectric sol–gel resist

    Energy Technology Data Exchange (ETDEWEB)

    Garoli, D., E-mail: denis.garoli@iit.it [Istituto Italiano di Tecnologia, Via Morego 16, 16136 Genova (Italy); Della Giustina, G. [Industrial Engineering Department, University of Padova and INSTM, Via Marzolo 9, 35131 Padova (Italy)

    2015-08-15

    The development of a ferroelectric negative tone sol–gel resist for Ultraviolet (UV) and Electron Beam (EB) lithography is presented. A new system based on Lead Zirconate Titanate (PZT, with formula PbZr{sub 0.52}Ti{sub 0.48}O{sub 3}) was synthesized by sol–gel method. The lithographic performances were investigated and several structures spanning from the micron range down to less than 50 nm have been achieved by UV and EB lithography. The system interaction with UV light and Electron beam was thoroughly characterized by FT-IT spectroscopy. The exposed PZT was annealed at high temperatures in order to study the crystalline phase evolution, the optical constants values and stability of patterned structures. After exposure and annealing, the refractive index of the material can vary from 1.68 up to 2.33 (@400 nm), while the ferroelectric behaviour seems to be maintained after high temperature annealing. These results suggest a possible application of PZT resist not only as ferroelectric but also as nanopatternable high refractive index material. Moreover, direct nanopatterning by means of Focused Ion Beam (FIB) lithography was verified and the potentiality for the preparation of high aspect ratio hollow nanostructures will be presented. - Highlights: • A new formula directly patternable PZT high refractive index resist is presented. • The gel is sensitive to both UV and electron beam exposure. • The refractive index can vary from 1.68 up to 2.33 (@400 nm). • Direct nanopatterning by means of Focused Ion Beam (FIB) lithography was verified. • High aspect ratio hollow nanostructures will be presented.

  7. Topological design of compliant smart structures with embedded movable actuators

    International Nuclear Information System (INIS)

    Wang, Yiqiang; Zhang, Xiaopeng; Kang, Zhan; Luo, Zhen

    2014-01-01

    In the optimal configuration design of piezoelectric smart structures, it is favorable to use actuation elements with certain predefined geometries from the viewpoint of manufacturability of fragile piezoelectric ceramics in practical applications. However, preserving the exact shape of these embedded actuators and tracking their dynamic motions presents a more challenging research task than merely allowing them to take arbitrary shapes. This paper proposes an integrated topology optimization method for the systematic design of compliant smart structures with embedded movable PZT (lead zirconate titanate) actuators. Compared with most existing studies, which either optimize positions/sizes of the actuators in a given host structure or design the host structure with pre-determined actuator locations, the proposed method simultaneously optimizes the positions of the movable PZT actuators and the topology of the host structure, typically a compliant mechanism for amplifying the small strain stroke. A combined topological description model is employed in the optimization, where the level set model is used to track the movements of the PZT actuators and the independent point-wise density interpolation (iPDI) approach is utilized to search for the optimal topology of the host structure. Furthermore, we define an integral-type constraint function to prevent overlaps between the PZT actuators and between the actuators and the external boundaries of the design domain. Such a constraint provides a unified and explicit mathematical statement of the non-overlap condition for any number of arbitrarily shaped embedded actuators. Several numerical examples are used to demonstrate the effectiveness of the proposed optimization method. (paper)

  8. Analysis of elastic strain and crystallographic texture in poled rhombohedral PZT ceramics

    International Nuclear Information System (INIS)

    Hall, D.A.; Steuwer, A.; Cherdhirunkorn, B.; Mori, T.; Withers, P.J.

    2006-01-01

    The elastic strain and crystallographic texture of a rhombohedral lead zirconate titanate ceramic have been characterised in the remanent state, after poling, using high-energy synchrotron X-ray diffraction as a function of the grain orientation ψ relative to the poling direction. It is observed that the (2 0 0) diffraction peak exhibits pronounced shifts as a function of ψ, indicating an elastic lattice strain, while others ({1 1 1}, {1 1 2} and {2 2 0}) show marked changes in intensity as a result of preferred ferroelectric domain orientation. It is shown that the (2 0 0) peak is not affected by the domain switching itself but rather acts like an elastic macrostrain sensor. A simple Eshelby analysis is used to demonstrate that both the elastic strain and texture vary systematically with ψ according to the factor (3cos 2 ψ - 1). This angular dependence is evaluated through micromechanics modelling. The physical meaning of the texture variations with ψ is also discussed

  9. Displacement and resonance behaviors of a piezoelectric diaphragm driven by a double-sided spiral electrode

    KAUST Repository

    Shen, Zhiyuan

    2012-04-03

    This paper presents the design of a lead zirconate titanate (PZT) diaphragm actuated by double-sided patterned electrodes. Au/Cr electrodes were deposited on bulk PZT wafers by sputtering while patterned by a lift-off process. SU-8 thick film was used to form the structural layer. Double-spiral electrode induced in-plane poling and piezoelectric elongation are converted to an out-of-plane displacement due to the confined boundary condition. The influence of different drive configurations and electrode parameters on deflection has been calculated by finite element methods (FEM) using a uniform field model. Impedance and quasi-static displacement spectra of the diaphragm were measured after poling. Adouble-sided patterned electrode diaphragm can be actuated by more drive configurations than a single-sided one. Compared with a single-sided electrode drive, a double-sided out-of-phase drive configuration increases the coupling coefficient of the fundamental resonance from 7.6% to 11.8%. The displacement response of the diaphragm increases from 2.6 to 8.6nmV 1. Configurations including the electric field component perpendicular to the poling direction can stimulate shear modes of the diaphragm. © 2012 IOP Publishing Ltd.

  10. Rate dependent direct inverse hysteresis compensation of piezoelectric micro-actuator used in dual-stage hard disk drive head positioning system.

    Science.gov (United States)

    Rahman, Md Arifur; Al Mamun, Abdullah; Yao, Kui

    2015-08-01

    The head positioning servo system in hard disk drive is implemented nowadays using a dual-stage actuator—the primary stage consisting of a voice coil motor actuator providing long range motion and the secondary stage controlling the position of the read/write head with fine resolution. Piezoelectric micro-actuator made of lead zirconate titanate (PZT) has been a popular choice for the secondary stage. However, PZT micro-actuator exhibits hysteresis—an inherent nonlinear characteristic of piezoelectric material. The advantage expected from using the secondary micro-actuator is somewhat lost by the hysteresis of the micro-actuator that contributes to tracking error. Hysteresis nonlinearity adversely affects the performance and, if not compensated, may cause inaccuracy and oscillation in the response. Compensation of hysteresis is therefore an important aspect for designing head-positioning servo system. This paper presents a new rate dependent model of hysteresis along with rigorous analysis and identification of the model. Parameters of the model are found using particle swarm optimization. Direct inverse of the proposed rate-dependent generalized Prandtl-Ishlinskii model is used as the hysteresis compensator. Effectiveness of the overall solution is underscored through experimental results.

  11. Ceramic piezoelectric materials

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Ceramic piezoelectric materials conert reversibility electric energy into mechanical energy. In the presence of electric field piezoelectric materials exhibit deformations up to 0.15% (for single crystals up to 1.7%). The deformation energy is in the range of 10 2 - 10 3 J/m 3 and working frequency can reach 10 5 Hz. Ceramic piezoelectric materials find applications in many modern disciplines such as: automatics, micromanipulation, measuring techniques, medical diagnostics and many others. Among the variety of ceramic piezoelectric materials the most important appear to be ferroelectric materials such as lead zirconate titanate so called PZT ceramics. Ceramic piezoelectric materials can be processed by methods widely applied for standard ceramics, i.e. starting from simple precursors e.g. oxides. Application of sol-gel method has also been reported. Substantial drawback for many applications of piezoelectric ceramics is their brittleness, thus much effort is currently being put in the development of piezoelectric composite materials. Other important research directions in the field of ceramic piezoelectric materials composite development of lead free materials, which can exhibit properties similar to the PZT ceramics. Among other directions one has to state processing of single crystals and materials having texture or gradient structure. (author)

  12. A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves

    Science.gov (United States)

    He, Jingjing; Guan, Xuefei; Peng, Tishun; Liu, Yongming; Saxena, Abhinav; Celaya, Jose; Goebel, Kai

    2013-10-01

    This paper presents an experimental study of damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in situ non-destructive evaluation (NDE) during fatigue cyclical loading. PZT wafers are used to monitor the wave reflection from the boundaries of the fatigue crack at the edge of bolt joints. The group velocity of the guided wave is calculated to select a proper time window in which the received signal contains the damage information. It is found that the fatigue crack lengths are correlated with three main features of the signal, i.e., correlation coefficient, amplitude change, and phase change. It was also observed that a single feature cannot be used to quantify the damage among different specimens since a considerable variability was observed in the response from different specimens. A multi-feature integration method based on a second-order multivariate regression analysis is proposed for the prediction of fatigue crack lengths using sensor measurements. The model parameters are obtained using training datasets from five specimens. The effectiveness of the proposed methodology is demonstrated using several lap joint specimens from different manufactures and under different loading conditions.

  13. A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves

    International Nuclear Information System (INIS)

    He, Jingjing; Guan, Xuefei; Peng, Tishun; Liu, Yongming; Saxena, Abhinav; Celaya, Jose; Goebel, Kai

    2013-01-01

    This paper presents an experimental study of damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in situ non-destructive evaluation (NDE) during fatigue cyclical loading. PZT wafers are used to monitor the wave reflection from the boundaries of the fatigue crack at the edge of bolt joints. The group velocity of the guided wave is calculated to select a proper time window in which the received signal contains the damage information. It is found that the fatigue crack lengths are correlated with three main features of the signal, i.e., correlation coefficient, amplitude change, and phase change. It was also observed that a single feature cannot be used to quantify the damage among different specimens since a considerable variability was observed in the response from different specimens. A multi-feature integration method based on a second-order multivariate regression analysis is proposed for the prediction of fatigue crack lengths using sensor measurements. The model parameters are obtained using training datasets from five specimens. The effectiveness of the proposed methodology is demonstrated using several lap joint specimens from different manufactures and under different loading conditions. (paper)

  14. Evaluation of Data Retention Characteristics for Ferroelectric Random Access Memories (FRAMs)

    Science.gov (United States)

    Sharma, Ashok K.; Teverovsky, Alexander

    2001-01-01

    Data retention and fatigue characteristics of 64 Kb lead zirconate titanate (PZT)-based Ferroelectric Random Access Memories (FRAMs) microcircuits manufactured by Ramtron were examined over temperature range from -85 C to +310 C for ceramic packaged parts and from -85 C to +175 C for plastic parts, during retention periods up to several thousand hours. Intrinsic failures, which were caused by a thermal degradation of the ferroelectric cells, occurred in ceramic parts after tens or hundreds hours of aging at temperatures above 200 C. The activation energy of the retention test failures was 1.05 eV and the extrapolated mean-time-to-failure (MTTF) at room temperature was estimated to be more than 280 years. Multiple write-read cycling (up to 3x10(exp 7)) during the fatigue testing of plastic and ceramic parts did not result in any parametric or functional failures. However, operational currents linearly decreased with the logarithm of number of cycles thus indicating fatigue process in PZT films. Plastic parts, that had more recent date code as compared to ceramic parts, appeared to be using die with improved process technology and showed significantly smaller changes in operational currents and data access times.

  15. Adaptive Robust Sliding Mode Vibration Control of a Flexible Beam Using Piezoceramic Sensor and Actuator: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Ruo Lin Wang

    2014-01-01

    Full Text Available This paper presents an experimental study of an adaptive robust sliding mode control scheme based on the Lyapunov’s direct method for active vibration control of a flexible beam using PZT (lead zirconate titanate sensor and actuator. PZT, a type of piezoceramic material, has the advantages of high reliability, high bandwidth, and solid state actuation and is adopted here in forms of surface-bond patches for vibration control. Two adaptive robust sliding mode controllers for vibration suppression are designed: one uses a discontinuous bang-bang robust compensator and the other uses a smooth compensator with a hyperbolic tangent function. Both controllers guarantee asymptotic stability, as proved by the Lyapunov’s direct method. Experimental results verified the effectiveness and the robustness of both adaptive sliding mode controllers. However, from the experimental results, the bang-bang robust compensator causes small-magnitude chattering because of the discontinuous switching actions. With the smooth compensator, vibration is quickly suppressed and no chattering is induced. Furthermore, the robustness of the controllers is successfully demonstrated with ensured effectiveness in vibration control when masses are added to the flexible beam.

  16. PMN-PT-PZT composite films for high frequency ultrasonic transducer applications.

    Science.gov (United States)

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2012-06-01

    We have successfully fabricated x (0.65PMN-0.35PT)-(1 - x )PZT ( x PMN-PT-(1 - x )PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol-gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of x PMN-PT-(1 - x )PZT films show better ferroelectric properties. A representative 0.9PMN-PT-0.1PZT thick film transducer is built. It has 200 MHz center frequency with a -6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB.

  17. Accounting for the various contributions to pyroelectricity in lead zirconate titanate thin films

    Science.gov (United States)

    Hanrahan, B.; Espinal, Y.; Neville, C.; Rudy, R.; Rivas, M.; Smith, A.; Kesim, M. T.; Alpay, S. P.

    2018-03-01

    An understanding of the pyroelectric coefficient and particularly its relationship with the applied electric field is critical to predicting the device performance for infrared imaging, energy harvesting, and solid-state cooling devices. In this work, we compare direct measurements of the pyroelectric effect under pulsed heating to the indirect extraction of the pyroelectric coefficient from adiabatic hysteresis loops and predictions from Landau-Devonshire theory for PbZr0.52Ti0.48O3 (PZT 52/48) on platinized silicon substrates. The differences between these measurements are explained through a series of careful measurements that quantify the magnitude and direction of the secondary and field-induced pyroelectric effects. The indirect measurement is shown to be up to 25% of the direct measurement at high fields, while the direct measurements and theoretical predictions converge at high fields as the film approaches a mono-domain state. These measurements highlight the importance of directly measuring the pyroelectric response in thin films, where non-intrinsic effects can be a significant proportion of the total observed pyroelectricity. Material and operating conditions are also discussed which could simultaneously maximize all contributions to pyroelectricity.

  18. Anion and cation diffusion in barium titanate and strontium titanate; Anionen- und Kationendiffusion in Barium- und Strontiumtitanat

    Energy Technology Data Exchange (ETDEWEB)

    Kessel, Markus Franz

    2012-12-19

    pressure and temperature. The data suggests that oxygen vacancies and electron holes play the key role in the formation of the equilibrium surface space-charge layers. The oxygen vacancy diffusivities and the oxygen vacancy migration enthalpy are compared to other experimentally and theoretically derived data for barium titanate and a global expression for the temperature dependence of the oxygen vacancy diffusivity is determined. The latter was used for a comparison of the oxygen vacancy diffusivity and the oxygen vacancy migration enthalpy for BaTiO{sub 3} to other perovskite oxides. Furthermore, this work shows results from cation interdiffusion experiments between BaZrO{sub 3} and SrTiO{sub 3}. Thin films of barium zirconate were deposited on strontium titanate single crystals and the cation interdiffusion investigated as a function of temperature. All four cations show a main diffusion profile and an additional fast diffusion profile. Each main diffusion profile can be described independently by the thick-film solution of the diffusion equation suggesting the diffusion coefficients to be concentration independent. The fast diffusion profiles are attributed to fast diffusion of Ba and Zr along dislocations of the SrTiO{sub 3} single crystals and fast diffusion of Sr and Ti along the grain boundaries of the polycrystalline thin-film BaZrO{sub 3}. The migration enthalpies of the bulk profiles for all four cations are very similar. The results suggest a complex diffusion mechanism with coupled diffusion of the cation vacancies on the A and B sites of the perovskite lattice.

  19. Characterization of Bi and Fe co-doped PZT capacitors for FeRAM.

    Science.gov (United States)

    Cross, Jeffrey S; Kim, Seung-Hyun; Wada, Satoshi; Chatterjee, Abhijit

    2010-08-01

    Ferroelectric random access memory (FeRAM) has been in mass production for over 15 years. Higher polarization ferroelectric materials are needed for future devices which can operate above about 100 °C. With this goal in mind, co-doping of thin Pb(Zr 40 ,Ti 60 )O 3 (PZT) films with 1 at.% Bi and 1 at.% Fe was examined in order to enhance the ferroelectric properties as well as characterize the doped material. The XRD patterns of PZT-5% BiFeO 3 (BF) and PZT 140-nm thick films showed (111) orientation on (111) platinized Si wafers and a 30 °C increase in the tetragonal to cubic phase transition temperature, often called the Curie temperature, from 350 to 380 °C with co-doping, indicating that Bi and Fe are substituting into the PZT lattice. Raman spectra revealed decreased band intensity with Bi and Fe co-doping of PZT compared to PZT. Polarization hysteresis loops show similar values of remanent polarization, but square-shaped voltage pulse-measured net polarization values of PZT-BF were higher and showed higher endurance to repeated cycling up to 10 10 cycles. It is proposed that Bi and Fe are both in the +3 oxidation state and substituting into the perovskite A and B sites, respectively. Substitution of Bi and Fe into the PZT lattice likely creates defect dipoles, which increase the net polarization when measured by the short voltage pulse positive-up-negative-down (PUND) method.

  20. Uncertainty quantification for PZT bimorph actuators

    Science.gov (United States)

    Bravo, Nikolas; Smith, Ralph C.; Crews, John

    2018-03-01

    In this paper, we discuss the development of a high fidelity model for a PZT bimorph actuator used for micro-air vehicles, which includes the Robobee. We developed a high-fidelity model for the actuator using the homogenized energy model (HEM) framework, which quantifies the nonlinear, hysteretic, and rate-dependent behavior inherent to PZT in dynamic operating regimes. We then discussed an inverse problem on the model. We included local and global sensitivity analysis of the parameters in the high-fidelity model. Finally, we will discuss the results of Bayesian inference and uncertainty quantification on the HEM.

  1. The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber–epoxy composite laminate

    International Nuclear Information System (INIS)

    Konka, Hari P; Wahab, M A; Lian, K

    2012-01-01

    Piezoelectric fiber composite sensors (PFCSs) made from micro-sized lead zirconate titanate (PZT) fibers have many advantages over the traditional bulk PZT sensors for embedded sensor applications. PFCSs as embedded sensors will be an ideal choice to continuously monitor the stress/strain levels and health conditions of composite structures. PFCSs are highly flexible, easily embeddable, have high compatibility with composite structures, and also provides manufacturing flexibility. This research is focused on examining the effects of embedding PFCS sensors (macro-fiber composite (MFC) and piezoelectric fiber composite (PFC)) on the structural integrity of glass-fiber–epoxy composite laminates. The strengths of composite materials with embedded PFCSs and conventional PZT sensors were compared, and the advantages of PFCS sensors over PZTs were demonstrated. Initially a numerical simulation study is performed to understand the local stress/strain field near the embedded sensor region inside a composite specimen. High stress concentration regions were observed near the embedded sensor corner edge. Using PFCS leads to a reduction of 56% in longitudinal stress concentration and 38% in transverse stress concentration, when compared to using the conventional PZTs as embedded sensors. In-plane tensile, in-plane tension–tension fatigue, and short beam strength tests are performed to evaluate the strengths/behavior of the composite specimens containing embedded PFCS. From the tensile test it is observed that embedding PFCS and PZT sensors in the composite structures leads to a reduction in ultimate strength by 3 and 6% respectively. From the fatigue test results it is concluded that both embedded PFCS and PZT sensors do not have a significant effect on the fatigue behavior of the composite specimens. From the short beam strength test it is found that embedding PFCS and PZT sensors leads to a reduction in shear strength by 7 and 15% respectively. Overall the pure PZT

  2. The effects of embedded piezoelectric fiber composite sensors on the structural integrity of glass-fiber-epoxy composite laminate

    Science.gov (United States)

    Konka, Hari P.; Wahab, M. A.; Lian, K.

    2012-01-01

    Piezoelectric fiber composite sensors (PFCSs) made from micro-sized lead zirconate titanate (PZT) fibers have many advantages over the traditional bulk PZT sensors for embedded sensor applications. PFCSs as embedded sensors will be an ideal choice to continuously monitor the stress/strain levels and health conditions of composite structures. PFCSs are highly flexible, easily embeddable, have high compatibility with composite structures, and also provides manufacturing flexibility. This research is focused on examining the effects of embedding PFCS sensors (macro-fiber composite (MFC) and piezoelectric fiber composite (PFC)) on the structural integrity of glass-fiber-epoxy composite laminates. The strengths of composite materials with embedded PFCSs and conventional PZT sensors were compared, and the advantages of PFCS sensors over PZTs were demonstrated. Initially a numerical simulation study is performed to understand the local stress/strain field near the embedded sensor region inside a composite specimen. High stress concentration regions were observed near the embedded sensor corner edge. Using PFCS leads to a reduction of 56% in longitudinal stress concentration and 38% in transverse stress concentration, when compared to using the conventional PZTs as embedded sensors. In-plane tensile, in-plane tension-tension fatigue, and short beam strength tests are performed to evaluate the strengths/behavior of the composite specimens containing embedded PFCS. From the tensile test it is observed that embedding PFCS and PZT sensors in the composite structures leads to a reduction in ultimate strength by 3 and 6% respectively. From the fatigue test results it is concluded that both embedded PFCS and PZT sensors do not have a significant effect on the fatigue behavior of the composite specimens. From the short beam strength test it is found that embedding PFCS and PZT sensors leads to a reduction in shear strength by 7 and 15% respectively. Overall the pure PZT sensors

  3. Effects of Mn doping on the ferroelectric properties of PZT thin films

    International Nuclear Information System (INIS)

    Zhang Qi

    2004-01-01

    The effects of Mn doping on the ferroelectric properties of Pb(Zr 0.3 Ti 0.7 )O 3 (PZT) thin films on Pt/Ti/SiO 2 /Si substrates have been investigated. The composition of the PZT and Mn doping level are Pb(Zr 0.3 Ti 0.7 ) 1-x Mn x O 3 (x = 0,0.2,0.5,1,2,4 mol%). The PZT thin films doped with a small amount of Mn 2+ (x ≤ 1) showed almost no hysteretic fatigue up to 10 10 switching bipolar pulse cycles, coupled with excellent retention properties. However, excessive additions of manganese made the fatigue behaviour worse. We propose that the addition of small amounts of Mn is able to reduce the oxygen vacancy concentration due to the combination of Mn 2+ and oxygen vacancies in PZT films, forming Mn 4+ ions. The interfacial layer between the Pt electrode and PZT films and Mn-doped PZT (x = 4) was detected by measuring the dielectric constant of thin films of different thickness. However, this interfacial layer was not detected in Mn-doped PZT (x = 1). These observations support the concept of the preferential electromigration of oxygen vacancies into sites in planes parallel to the electrodes, which is probably responsible for the hysteretic fatigue

  4. PMN-PT–PZT composite films for high frequency ultrasonic transducer applications

    Science.gov (United States)

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    We have successfully fabricated x(0.65PMN-0.35PT)–(1 − x)PZT (xPMN-PT–(1 − x)PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol–gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of xPMN-PT–(1 − x)PZT films show better ferroelectric properties. A representative 0.9PMN-PT–0.1PZT thick film transducer is built. It has 200 MHz center frequency with a −6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB. PMID:23750072

  5. Properties of PZT-Based Piezoelectric Ceramics Between -150 and 250 C

    Science.gov (United States)

    Hooker, Matthew W.

    1998-01-01

    The properties of three PZT-based piezoelectric ceramics and one PLZT electrostrictive ceramic were measured as a function of temperature. In this work, the dielectric, ferroelectric polarization versus electric field, and piezoelectric properties of PZT-4, PZT-5A, PZT-5H, and PLZT-9/65/35 were measured over a temperature range of -150 to 250 C. In addition to these measurements, the relative thermal expansion of each composition was measured from 25 to 600 C and the modulus of rupture of each material was measured at room temperature. This report describes the experimental results and compares and contrasts the properties of these materials with respect to their applicability to intelligent aerospace systems.

  6. Thermal effects on domain orientation of tetragonal piezoelectrics

    Science.gov (United States)

    Chang, Wonyoung

    Thermal effects on electrical poling or mechanical grinding induced texture in tetragonal lead zirconate titanate (PZT) and lead titanate (PT) have been investigated using ex situ and in situ X-ray diffraction (XRD) with an area detector. According to previous results using ex situ XRD, domain configurations of poled samples after heat-treatment at or higher than the Curie temperature (TC) are similar to that of unpoled samples showing random domain distributions. The texture parameter called multiples of a random distribution (MRD) gradually decreases with increasing depoling temperature. On the other hand, using in situ XRD measurements, it was found that the MRD maximum for soft PZT initially increases with temperature up to approximately 100°C and then falls to unity at temperatures approaching the TC, whereas the MRD of hard PZT and PT initially undergoes a smaller increase or no change. Mechanical strain energy has an apparent effect on domain wall mobility. In contrast with previous results on electrical poling, mechanically-ground PT and soft PZT materials retained strong ferroelastic textures during thermal cycling, even after excursions to temperatures slightly above the TC . For the ground PT, it was found that repeated cycling above T C results in changes in both peak intensity and peak position, whereas the ground soft PZT undergoes the decrease in intensity of the (002) reflection after the first cycle of heating. Residual stresses in the surface region from grinding resulted in domain wall motion and the retention of textures in annealed samples. The research in this thesis demonstrates that the magnitude of loading applied to the sample surface, the speed used for grinding, or the grit size, can greatly affect the grinding induced damage zone and the depoling behavior of piezoelectric ceramics. Among the possible effects of grinding conditions on surface textures, one of particular interest is the effect of mechanical stresses produced during

  7. Microscopic local fatigue in PZT thin films

    International Nuclear Information System (INIS)

    Li, B S; Wu, A; Vilarinho, P M

    2007-01-01

    The reduction in switchable polarization during fatigue largely limits the application of PZT thin films in ferroelectric nonvolatile memories. So, it is very important to understand the fatigue mechanism in PZT films, especially at a nanoscale level. In this paper, nanoscale fatigue properties in PZT thin films have been studied by piezoresponse force microscopy and local piezoloops. It has been found that a piezoloop obtained on a fatigued point exhibits a much more pinched shape and a local imprint phenomenon is observed after severe fatigue. Furthermore, the domain structure evolves from a simple single-peak profile to a complex fluctuant one. However, there is only some shift of the piezoloop when a unipolar field with the same amplitude is applied on the film. The available experimental data show that there exist obvious domain wall pinning and injection of electrons into the film during fatigue. Finally, a schematic illustration is suggested to explain the possible fatigue mechanism

  8. Synthesis, Structural, Optical and Dielectric Properties of Nanostructured 0-3 PZT/PVDF Composite Films.

    Science.gov (United States)

    Revathi, S; Kennedy, L John; Basha, S K Khadheer; Padmanabhan, R

    2018-07-01

    Nanostructured PbZr0.52Ti0.48O3 (PZT) powder was synthesized at 500 °C-800 °C using sol-gel route. X-ray diffraction and Rietveld analysis confirmed the formation of perovskite structure. The sample heat treated at 800 °C alone showed the formation of morphotropic phase boundary with coexistence of tetragonal and rhombohedral phase. The PZT powder and PVDF were used in 0-3 connectivity to form the PZT/PVDF composite film using solvent casting method. The composite films containing 10%, 50%, 70% and 80% volume fraction of PZT in PVDF were fabricated. The XRD spectra validated that the PZT structure remains unaltered in the composites and was not affected by the presence of PVDF. The scanning electron microscopy images show good degree of dispersion of PZT in PVDF matrix and the formation of pores at higher PZT loading. The quantitative analysis of elements and their composition were confirmed from energy dispersive X-ray analysis. The optical band gap of the PVDF film is 3.3 eV and the band gap decreased with increase in volume fraction of PZT fillers. The FTIR spectra showed the bands corresponding to different phases of PVDF (α, β, γ) and perovskite phase of PZT. The thermogravimetric analysis showed that PZT/PVDF composite films showed better thermal stability than the pure PVDF film and hydrophobicity. The dielectric constant was measured at frequency ranging from 1 Hz to 6 MHz and for temperature ranging from room temperature to 150 °C. The composite with 50% PZT filler loading shows the maximum dielectric constant at the studied frequency and temperature range with flexibility.

  9. Formation of chemical compounds under vacuum plasma-arc deposition of nickel and its alloy onto piezoceramics

    International Nuclear Information System (INIS)

    Grinchenko, V.T.; Lyakhovich, T.K.; Prosina, N.I.; Khromov, S.M.

    1988-01-01

    The phase composition of the transition layer appearing during vacuum-arc coating of nickel and nickel alloy with copper on barium titanate and lead zirconate-titanate is identified. During vacuum plasma-arc coating of nickel and its alloy at the boundary with barium titanate and lead zirconate-titanate the Ni 2 Ti 4 O compound appears which has the crystal lattice type identical with substrate with the parity of lattice parameters. The transition layer contains nickel oxides and NiTiO 3 in the case of barium titanate. When titanate content in substrate increases the zone of reaction diffusion increases in value and becomes more complicate in composition

  10. Piezoelectric Flexible LCP-PZT Composites for Sensor Applications at Elevated Temperatures

    Science.gov (United States)

    Tolvanen, Jarkko; Hannu, Jari; Juuti, Jari; Jantunen, Heli

    2018-03-01

    In this paper fabrication of piezoelectric ceramic-polymer composites is demonstrated via filament extrusion enabling cost-efficient large-scale production of highly bendable pressure sensors feasible for elevated temperatures. These composites are fabricated by utilizing environmentally resistant and stable liquid crystal polymer matrix with addition of lead zirconate titanate at loading levels of 30 vol%. These composites, of approximately 0.99 mm thick and length of > 50 cm, achieved excellent bendability with minimum bending radius of 6.6 cm. The maximum piezoelectric coefficients d33 and g33 of the composites were > 14 pC/N and > 108 mVm/N at pressure < 10 kPa. In all cases, the piezoelectric charge coefficient (d33) of the composites decreased as a function of pressure. Also, piezoelectric coefficient (d33) further decreased in the case of increased frequency press-release cycle sand pre-stress levels by approximately 37-50%. However, the obtained results provide tools for fabricating novel piezoelectric sensors in highly efficient way for environments with elevated temperatures.

  11. Smart concrete slabs with embedded tubular PZT transducers for damage detection

    Science.gov (United States)

    Gao, Weihang; Huo, Linsheng; Li, Hongnan; Song, Gangbing

    2018-02-01

    The objective of this study is to develop a new concept and methodology of smart concrete slab (SCS) with embedded tubular lead zirconate titanate transducer array for image based damage detection. Stress waves, as the detecting signals, are generated by the embedded tubular piezoceramic transducers in the SCS. Tubular piezoceramic transducers are used due to their capacity of generating radially uniform stress waves in a two-dimensional concrete slab (such as bridge decks and walls), increasing the monitoring range. A circular type delay-and-sum (DAS) imaging algorithm is developed to image the active acoustic sources based on the direct response received by each sensor. After the scattering signals from the damage are obtained by subtracting the baseline response of the concrete structures from those of the defective ones, the elliptical type DAS imaging algorithm is employed to process the scattering signals and reconstruct the image of the damage. Finally, two experiments, including active acoustic source monitoring and damage imaging for concrete structures, are carried out to illustrate and demonstrate the effectiveness of the proposed method.

  12. Conventional and two step sintering of PZT-PCN ceramics

    Science.gov (United States)

    Keshavarzi, Mostafa; Rahmani, Hooman; Nemati, Ali; Hashemi, Mahdieh

    2018-02-01

    In this study, PZT-PCN ceramic was made via sol-gel seeding method and effects of conventional sintering (CS) as well as two-step sintering (TSS) were investigated on microstructure, phase formation, density, dielectric and piezoelectric properties. First, high quality powder was achieved by seeding method in which the mixture of Co3O4 and Nb2O5 powder was added to the prepared PZT sol to form PZT-PCN gel. After drying and calcination, pyrochlore free PZT-PCN powder was synthesized. Second, CS and TSS were applied to achieve dense ceramic. The optimum temperature used for 2 h of conventional sintering was obtained at 1150 °C; finally, undesired ZrO2 phase formed in CS procedure was removed successfully with TSS procedure and dielectric and piezoelectric properties were improved compared to the CS procedure. The best electrical properties obtained for the sample sintered by TSS in the initial temperature of T 1 = 1200 °C and secondary temperature of T 2 = 1000 °C for 12 h.

  13. Investigation of the performances of PZT vs rare earth (BaLaTiO3 vibration based energy harvester

    Directory of Open Access Journals (Sweden)

    Pak Nehemiah

    2017-01-01

    Full Text Available This study proposes the investigation of two piezoelectric material namely PZT and Lanthanum Doped Barium Titanate (BaLaTiO3 performance as a vibration based energy harvester. The piezoelectric material when applied mechanical stress or strain produces electricity through the piezoelectric effect. The vibration energy would exude mechanical energy and thus apply mechanical force on the energy harvester. The energy harvester would be designed and simulated using the piezoelectric material individually. The studied outputs are divided to frequency response, the load dependence, and the acceleration dependence whereby measurement are observed and taken at maximum power output. The simulation is done using the cantilevers design which employs d31 type of constants. Three different simulations to study the dependence of output power on the resonant frequency response, load and acceleration have found that material that exhibit highest power generation was the BaLaTiO3.

  14. Investigation of the performances of PZT vs rare earth (BaLaTiO3) vibration based energy harvester

    Science.gov (United States)

    Pak, Nehemiah; Aris, Hasnizah; Nadia Taib, Bibi

    2017-11-01

    This study proposes the investigation of two piezoelectric material namely PZT and Lanthanum Doped Barium Titanate (BaLaTiO3) performance as a vibration based energy harvester. The piezoelectric material when applied mechanical stress or strain produces electricity through the piezoelectric effect. The vibration energy would exude mechanical energy and thus apply mechanical force on the energy harvester. The energy harvester would be designed and simulated using the piezoelectric material individually. The studied outputs are divided to frequency response, the load dependence, and the acceleration dependence whereby measurement are observed and taken at maximum power output. The simulation is done using the cantilevers design which employs d31 type of constants. Three different simulations to study the dependence of output power on the resonant frequency response, load and acceleration have found that material that exhibit highest power generation was the BaLaTiO3.

  15. Zircon-rutile-ilmenite froth flotation process

    International Nuclear Information System (INIS)

    Schmidt, R.; Denham, D.L. Jr.

    1992-01-01

    This patent describes a method for separating a mixture of minerals comprising at least zircon, ilmenite and rutile. It comprises adding an acid solution to the mixture to acidify to a pH of between about 2.0 and 6.0; adding starch to the mixture to depress the ilmenite and the rutile; adding a source of fluoride ions to the mixture to provide a negative surface charge on the zircon surface to activate the zircon; adding an amine cationic collector to the mixture to float the activated zircon; subjecting the mixture containing the added acid solution, the fluoride ions, the starch and the cationic collector, to froth flotation; and withdrawing a float product comprising the zircon and a sink product comprising the ilmenite and rutile

  16. Dielectric and acoustical high frequency characterisation of PZT thin films

    International Nuclear Information System (INIS)

    Conde, Janine; Muralt, Paul

    2010-01-01

    Pb(Zr, Ti)O 3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  17. Dielectric and acoustical high frequency characterisation of PZT thin films

    Science.gov (United States)

    Conde, Janine; Muralt, Paul

    2010-02-01

    Pb(Zr, Ti)O3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  18. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates.

    Science.gov (United States)

    Park, Kwi-Il; Son, Jung Hwan; Hwang, Geon-Tae; Jeong, Chang Kyu; Ryu, Jungho; Koo, Min; Choi, Insung; Lee, Seung Hyun; Byun, Myunghwan; Wang, Zhong Lin; Lee, Keon Jae

    2014-04-23

    A highly-efficient, flexible piezoelectric PZT thin film nanogenerator is demonstrated using a laser lift-off (LLO) process. The PZT thin film nanogenerator harvests the highest output performance of ∼200 V and ∼150 μA·cm(-2) from regular bending motions. Furthermore, power sources generated from a PZT thin film nanogenerator, driven by slight human finger bending motions, successfully operate over 100 LEDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of mechanical milling on barium titanate (BaTiO3) perovskite

    Science.gov (United States)

    Singh, Rajan Kumar; Sanodia, Sagar; Jain, Neha; Kumar, Ranveer

    2018-05-01

    Commercial Barium Titanate BaTiO3 (BT) is milled by planetary ball mill in acetone medium using stainless steel bowl & ball for different hours. BT is an important perovskite oxide with structure ABO3. BT has applications in electro-optic devices, energy storing devices such as photovoltaic cells, thermistors, multiceramic capacitors & DRAMs etc. BT is non-toxic & environment friendly ceramic with high dielectric and piezoelectric property so it can be used as the substitute of PZT & PbTiO3. Here, we have investigated the effect of milling time and temperature on particle size and phase transition of BT powder. We used use Raman spectroscopy for studying the spectra of BT; XRD is used for structural study. Intensity (height) of Raman spectra and XRD spectra continuously decrease with increasing the milling hours and width if these spectra increases which indicates, decrease in BT size.

  20. Energy harvesting from vibration using a piezoelectric membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ericka, M.; Vasic, D.; Costa, F.; Tliba, S. [Ecole Normale Superieure de Cachan, Systemes et Applications des Technologies de l' Information et de l' Energie (SATIE, UMR 8029), 94 - Cachan (France); Poulin, G. [Ecole Nationale Superieure d' Ingenieurs Electriciens de Grenoble, Laboratoire d' Automatique de Grenoble, 38 (France)

    2005-09-01

    In this paper we investigate the capability of harvesting the electric energy from mechanical vibrations in a dynamic environment through a piezoelectric membrane transducer. This transducer consists of 2 layers lead zirconate titanate (PZT)/brass, the brass layer is embedded over the whole circumference by epoxy adhesive. A very small vibration gives a consequent deformation of the membrane which generates electric energy. Due to the impedance matrices connecting the efforts and flows of the membrane, we have established the dynamic electric equivalent circuit of the transducer. In a first study and in order to validate theoretical results, we performed experiments with a vibrating machine moving a macroscopic 25 mm diameter piezoelectric membrane. A power of 1.8 mW was generated at the resonance frequency (2.58 kHz) across a 56 k{omega} optimal resistor and for a 2 g acceleration. (authors)

  1. Transient Characteristics of a Fluidic Device for Circulatory Jet Flow.

    Science.gov (United States)

    Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu; Dau, Van Thanh

    2018-03-13

    In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis.

  2. Antiferrodistortive phase transitions and ground state of PZT ceramics

    International Nuclear Information System (INIS)

    Pandey, Dhananjai

    2013-01-01

    The ground state of the technologically important Pb(Zr x Ti (1-x) )O 3 , commonly known as PZT, ceramics is currently under intense debate. The phase diagram of this material shows a morphotropic phase boundary (MPB) for x∼0.52 at 300K, across which a composition induced structural phase transition occurs leading to maximization of the piezoelectric properties. In search for the true ground state of the PZT in the MPB region, Beatrix Noheda and coworkers first discovered a phase transition from tetragonal (space group P4mm) to an M A type monoclinic phase (space group Cm) at low temperatures for x=0.52. Soon afterwards, we discovered yet another low temperature phase transition for the same composition in which the M A type (Cm) monoclinic phase transforms to another monoclinic phase with Cc space group. We have shown that the Cm to Cc phase transition is an antiferrodistortive (AFD) transition involving tilting of oxygen octahedra leading to unit cell doubling and causing appearance of superlattice reflections which are observable in the electron and neutron diffraction patterns only and not in the XRD patterns, as a result of which Noheda and coworkers missed the Cc phase in their synchrotron XRD studies at low temperatures. Our findings were confirmed by leading groups using neutron, TEM, Raman and high pressure diffraction studies. The first principles calculations also confirmed that the true ground state of PZT in the MPB region has Cc space group. However, in the last couple of years, the Cc space group of the ground state has become controversial with an alternative proposal of R3c as the space group of the ground state phase which is proposed to coexist with the metastable Cm phase. In order to resolve this controversy, we recently revisited the issue using pure PZT and 6% Sr 2+ substituted PZT, the latter samples show larger tilt angle on account of the reduction in the average cationic radius at the Pb 2+ site. Using high wavelength neutrons and high

  3. Recent developments in piezoelectric ceramic materials and deterioration of their properties

    International Nuclear Information System (INIS)

    Pasha, R.A.; Khan, M.Z.

    2006-01-01

    There has been growing interest in recent years in piezoelectric ceramic materials because of their excellent dielectric, sensing, actuating and efficient process control applications. Lead Zirconate Titanate (PZT), Barium Titanate (BaTi O/sub 3/) and Lead Metaniobate (PbNb/sub 2/ O/sub 6/) and PVDF Polymers and generally favored as smart sensing materials. These materials are being used in critical engineering systems and smart structure. Fatigue failure due to electrical and thermal shocking is a major issue in degradation of these materials. Lot of work has been done in this area but still various issues need to investigate. Recent developments and current issues in piezoelectric materials and deterioration of their properties in different working conditions are discussed. The development of Finite Element codes incorporating smart material element has provided an opportunity to solve some practical problems. The new piezoelectric finite element capability available in some commercial package like ANSYS makes it convenient to perform static dynamic and thermal analysis for the fully coupled piezoelectric and structural response. Researchers have a great scope to uncover the various properties of these smart materials in different environmental conditions. In present work an overall review of the title is presented. (author)

  4. ALKALI FUSION OF ROSETTA ZIRCON

    International Nuclear Information System (INIS)

    DAHER, A.

    2008-01-01

    The decomposition of Rosetta zircon by fusion with different types of alkalis has been investigated. These alkalis include sodium hydroxide, potassium hydroxide and eutectic mixture of both. The influences of the reaction temperature, zircon to alkalis ratio, fusion time and the stirring of the reactant on the fusion reaction have been evaluated. The obtained results favour the decomposition of zircon with the eutectic alkalis mixture by a decomposition efficiency of 96% obtained at 500 0 C after one hour

  5. Micro-machined high-frequency (80 MHz) PZT thick film linear arrays.

    Science.gov (United States)

    Zhou, Qifa; Wu, Dawei; Liu, Changgeng; Zhu, Benpeng; Djuth, Frank; Shung, K

    2010-10-01

    This paper presents the development of a micromachined high-frequency linear array using PZT piezoelectric thick films. The linear array has 32 elements with an element width of 24 μm and an element length of 4 mm. Array elements were fabricated by deep reactive ion etching of PZT thick films, which were prepared from spin-coating of PZT sol-gel composite. Detailed fabrication processes, especially PZT thick film etching conditions and a novel transferring-and-etching method, are presented and discussed. Array designs were evaluated by simulation. Experimental measurements show that the array had a center frequency of 80 MHz and a fractional bandwidth (-6 dB) of 60%. An insertion loss of -41 dB and adjacent element crosstalk of -21 dB were found at the center frequency.

  6. Dielectric and acoustical high frequency characterisation of PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Janine; Muralt, Paul, E-mail: janine.conde@epfl.ch [Department of Materials Science, EPFL (Switzerland)

    2010-02-15

    Pb(Zr, Ti)O{sub 3} (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {l_brace}100{r_brace} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  7. UV laser micromachining of piezoelectric ceramic using a pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Zeng, D.W.; Xie, C.S.; Li, K.; Chan, H.L.W.; Choy, C.L.; Yung, K.C.

    2004-01-01

    UV laser (λ=355 nm) ablation of piezoelectric lead zirconate titanate (PZT) ceramics in air has been investigated under different laser parameters. It has been found that there is a critical pulse number (N=750). When the pulse number is smaller than the critical value, the ablation rate decreases with increasing pulse number. Beyond the critical value, the ablation rate becomes constant. The ablation rate and concentrations of O, Zr and Ti on the ablated surface increase with the laser fluence, while the Pb concentration decreases due to the selective evaporation of PbO. The loss of the Pb results in the formation of a metastable pyrochlore phase. ZrO 2 was detected by XPS in the ablated zone. Also, the concentrations of the pyrochlore phase and ZrO 2 increase with increasing laser fluence. These results clearly indicate that the chemical composition and phase structure in the ablated zone strongly depend on the laser fluence. The piezoelectric properties of the cut PZT ceramic samples completely disappear due to the loss of the Pb and the existence of the pyrochlore phase. After these samples were annealed at 1150 C for 1 h in a PbO-controlled atmosphere, their phase structure and piezoelectric properties were recovered again. Finally, 1-3 and concentric-ring 2-2 PZT/epoxy composites were fabricated by UV laser micromachining and their thickness modes were measured by impedance spectrum analysis and a d 33 meter. Both composites show high piezoelectric properties. (orig.)

  8. Impedance-Based Cable Force Monitoring in Tendon-Anchorage Using Portable PZT-Interface Technique

    Directory of Open Access Journals (Sweden)

    Thanh-Canh Huynh

    2014-01-01

    Full Text Available In this paper, a portable PZT interface for tension force monitoring in the cable-anchorage subsystem is developed. Firstly, the theoretical background of the impedance-based method is presented. A few damage evaluation approaches are outlined to quantify the variation of impedance signatures. Secondly, a portable PZT interface is designed to monitor impedance signatures from the cable-anchorage subsystem. One degree-of-freedom analytical model of the PZT interface is established to explain how to represent the loss of cable force from the change in the electromechanical impedance of the PZT interface as well as reducing the sensitive frequency band by implementing the interface device. Finally, the applicability of the proposed PZT-interface technique is experimentally evaluated for cable force-loss monitoring in a lab-scaled test structure.

  9. MEMS-based thick film PZT vibrational energy harvester

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Thyssen, Anders

    2011-01-01

    We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using a mechan......We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using...... a mechanical front side protection of an SOI wafer with screen printed PZT thick film. The fabricated harvester device produces 14.0 μW with an optimal resistive load of 100 kΩ from 1g (g=9.81 m s-2) input acceleration at its resonant frequency of 235 Hz....

  10. Mechanically activated synthesis of PZT and its electromechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.; Akdogan, E.K.; Safari, A.; Riman, R.E. [Rutgers the State University of New Jersey, Department of Ceramic and Materials Engineering, Piscataway, NJ (United States)

    2005-08-01

    Mechanical activation was successfully used to synthesize nanostructured phase-pure Pb(Zr{sub 0.7}Ti{sub 0.3})O{sub 3} (PZT) powders. Lead-zirconium-titanium (PbZrTi) hydrous oxide precursor, synthesized from chemical co-precipitation, was mechanically activated in a NaCl matrix. The synthesized PZT particles were characterized by using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, laser-light diffraction, and nitrogen adsorption. Thermogravimetric analysis and differential thermal analysis were used to monitor dehydration and phase transformation of PbZrTi hydrous oxide precursor during mechanical activation. The best mechanical activation conditions corresponded to mechanically activating PbZrTi hydrous oxide precursor in a NaCl matrix with a NaCl/precursor weight ratio of 4:1 for 8 h. These conditions resulted in a dispersible phase-pure PZT powder with a median secondary-particle size of {proportional_to}110 nm. The properties of PZT 70/30 from mechanically activated powder, as measured on discs sintered at 1150 C for 2 h, were found to be in close conformity to those obtained by a conventional mixed oxide solid state reaction route. (orig.)

  11. Mechanically activated synthesis of PZT and its electromechanical properties

    Science.gov (United States)

    Liu, X.; Akdogan, E. K.; Safari, A.; Riman, R. E.

    2005-08-01

    Mechanical activation was successfully used to synthesize nanostructured phase-pure Pb(Zr0.7Ti0.3)O3 (PZT) powders. Lead zirconium titanium (PbZrTi) hydrous oxide precursor, synthesized from chemical co-precipitation, was mechanically activated in a NaCl matrix. The synthesized PZT particles were characterized by using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, laser-light diffraction, and nitrogen adsorption. Thermogravimetric analysis and differential thermal analysis were used to monitor dehydration and phase transformation of PbZrTi hydrous oxide precursor during mechanical activation. The best mechanical activation conditions corresponded to mechanically activating PbZrTi hydrous oxide precursor in a NaCl matrix with a NaCl/precursor weight ratio of 4:1 for 8 h. These conditions resulted in a dispersible phase-pure PZT powder with a median secondary-particle size of ˜110 nm. The properties of PZT 70/30 from mechanically activated powder, as measured on discs sintered at 1150 °C for 2 h, were found to be in close conformity to those obtained by a conventional mixed oxide solid state reaction route.

  12. Barium titanate coated with magnesium titanate via fused salt method and its dielectric property

    International Nuclear Information System (INIS)

    Chen Renzheng; Cui Aili; Wang Xiaohui; Li Longtu

    2003-01-01

    Barium titanate fine particles were coated homogeneously with magnesium titanate via the fused salt method. The thickness of the magnesium titanate film is 20 nm, as verified by TEM and XRD. The mechanism of the coating is that: when magnesium chloride is liquated in 800 deg. C, magnesium will replace barium in barium titanate, and form magnesium titanate film on the surface of barium titanate particles. Ceramics sintered from the coated particles show improved high frequency ability. The dielectric constant is about 130 at the frequency from 1 to 800 MHz

  13. Band bending at copper and gold interfaces with ferroelectric Pb(Zr,Ti)O{sub 3} investigated by photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Apostol, Nicoleta G.; Ştoflea, Laura E.; Tănase, Liviu C.; Bucur, Ioana Cristina; Chirilă, Cristina; Negrea, Raluca F.; Teodorescu, Cristian M., E-mail: teodorescu@infim.ro

    2015-11-01

    Highlights: • Synthesis of lead zirco-titanate (0 0 1) layers with nearly perfect stoichiometric transfer from substrates by pulsed laser deposition. • Copper forms continuous layers on Pb(Zr,Ti)O{sub 3}, gold is deposited in form of nanoparticles. • Derivation of Schottky mechanism for band bending for gold deposited on lead zirco-titanate. • Cancellation of polarization-induced band bending for copper deposited on lead zirco-titanate. • Pb reduction observed only in the case of copper deposited on lead zirco-titanate. - Abstract: Interfaces formed by gold and copper on single crystal layers of (0 0 1) PbZr{sub 0.2}Ti{sub 0.8}O{sub 3} (PZT) produced by pulsed laser deposition and exhibiting outwards polarization are analyzed by X-ray photoelectron spectroscopy. The stoichiometry of the layers reproduces reasonably that of the PZT target. The band bending occurring at the interface between PZT and the metals is investigated by analyzing the core level shifts as function on the metal deposition. It is found that for Au/PZT(0 0 1) the gold layer is not continuous and the observed band bendings can be attributed to a Schottky mechanism, whereas for Cu/PZT(0 0 1) the copper layer is continuous; in this latter case, the observed band bendings towards higher energies (lower binding energies) can be attributed to a concomitant bending due to the Schottky effect together with the disappearance of the initial bending due to the outwards polarization of the samples. Metal Pb is observed to segregate only in the case of Cu/PZT(0 0 1), therefore the surface self-reduction might also be connected to the presence of a metal with lower work function, which for larger coverage forms a continuous metal layer, able to provide electrons to the surface. High resolution transmission electron spectroscopy yielded the disappearance of the tetragonal distortion in the case of Cu/PZT(0 0 1), in line with the assumption of disappearance of the polarization-induced band bending.

  14. Titan's Radioactive Haze : Production and Fate of Radiocarbon On Titan

    Science.gov (United States)

    Lorenz, R. D.; Jull, A. J. T.; Swindle, T. D.; Lunine, J. I.

    Just as cosmic rays interact with nitrogen atoms in the atmosphere of Earth to gener- ate radiocarbon (14C), the same process should occur in Titan`s nitrogen-rich atmo- sphere. Titan`s atmosphere is thick enough that cosmic ray flux, rather than nitrogen column depth, limits the production of 14 C. Absence of a strong magnetic field and the increased distance from the sun suggest production rates of 9 atom/cm2/s, approx- imately 4 times higher than Earth. On Earth the carbon is rapidly oxidised into CO2. The fate and detectability of 14C on Titan depends on the chemical species into which it is incorporated in Titan's reducing atmosphere : as methane it would be hopelessly diluted even in only the atmosphere (ignoring the other, much more massive carbon reservoirs likely to be present on Titan, like hydrocarbon lakes.) However, in the more likely case that the 14C attaches to the haze that rains out onto the surface (as tholin, HCN or acetylene and their polymers - a much smaller carbon reservoir) , haze in the atmosphere or recently deposited on the surface would therefore be quite intrinsically radioactive. Such activity may modify the haze electrical charging and hence its coag- ulation. Measurements with compact instrumentation on future in-situ missions could place useful constraints on the mass deposition rates of photochemical material on the surface and identify locations where surface deposits of such material are `freshest`.

  15. Piezoelectric and mechanical properties of structured PZT–epoxy composites

    NARCIS (Netherlands)

    Kunnamkuzhakkal James, N.; Van den Ende, D.; Lafont, U.; Van der Zwaag, S.; Groen, W.A.

    2013-01-01

    Structured lead zirconium titanate (PZT)–epoxy composites are prepared by dielectrophoresis. The piezoelectric and dielectric properties of the composites as a function of PZT volume fraction are investigated and compared with the corresponding unstructured composites. The effect of poling voltage

  16. Sulfur in zircons: A new window into melt chemistry

    Science.gov (United States)

    Tang, H.; Bell, E. A.; Boehnke, P.; Barboni, M.; Harrison, T. M.

    2017-12-01

    The abundance and isotopic composition of sulfur are important tools for exploring the photochemistry of the atmosphere, the thermal history of mantle and igneous rocks, and ancient metabolic processes on the early Earth. Because the oldest terrestrial samples are zircons, we developed a new in-situ procedure to analyze the sulfur content of zircons using the CAMECA ims 1290 at UCLA. We analyzed zircons from three metaluminous/I-type granites (reduced and oxidized Peninsular range and Elba), which exhibit low sulfur abundance with the average of 0.5ppm, and one peraluminous/S-type zircon (Strathbogie Range), which shows an elevated sulfur level with the average of 1.5ppm. Additionally, we found that sulfur content ranges between 0.4 and 2.3 ppm in young volcanic zircons (St. Lucia). Our analyses of zircons from the Jack Hills, Western Australia, whose ages range between 3.4 and 4.1 Ga, show a variety of sulfur contents. Three out of the ten zircons are consistent with the sulfur contents of S-type zircons; the rest have low sulfur contents, which are similar to those of I-type zircons. The high sulfur content in some of these Jack Hills zircons can be interpreted as indicating their origin in either a S-type granite or a volcanic reservoir. We favor the former interpretation since the Ti-in-zircon temperatures of our Jack Hills zircons is lower than those of volcanic zircons. Future work will be undertaken to develop a systematic understanding of the relationship between melt volatile content, melt chemistry, and zircon sulfur content.

  17. Enhanced Output Power of PZT Nanogenerator by Controlling Surface Morphology of Electrode.

    Science.gov (United States)

    Jung, Woo-Suk; Lee, Won-Hee; Ju, Byeong-Kwon; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-11-01

    Piezoelectric power generation using Pb(Zr,Ti)O3(PZT) nanowires grown on Nb-doped SrTiO3(nb:STO) substrate has been demonstrated. The epitaxial PZT nanowires prepared by a hydrothermal method, with a diameter and length of approximately 300 nm and 7 μm, respecively, were vertically aligned on the substrate. An embossed Au top electrode was applied to maximize the effective power generation area for non-uniform PZT nanowires. The PZT nanogenerator produced output power density of 0.56 μW/cm2 with a voltage of 0.9 V and current of 75 nA. This research suggests that the morphology control of top electrode can be useful to improve the efficiency of piezoelectric power generation.

  18. Feasibility Verification of Mountable PZT-Interface for Impedance Monitoring in Tendon-Anchorage

    Directory of Open Access Journals (Sweden)

    Thanh-Canh Huynh

    2015-01-01

    Full Text Available This study has been motivated to numerically evaluate the performance of the mountable PZT-interface for impedance monitoring in tendon-anchorage. Firstly, electromechanical impedance monitoring and feature classification methods are outlined. Secondly, a structural model of tendon-anchorage subsystem with mountable PZT-interface is designed for impedance monitoring. Finally, the feasibility of the mountable PZT-interface is numerically examined. A finite element (FE model is designed for the lab-scaled tendon-anchorage. The FE model of the PZT-interface is tuned as its impedance signatures meet the experimental test results at the same frequency ranges and also with identical patterns. Equivalent model properties of the FE model corresponding to prestress forces inflicted on the lab-tested structure are identified from the fine-tuning practice.

  19. Synthesis and characterization of tungsten or calcium doped PZT ceramics; Sintese e caracterizacao do PZT dopado com W ou Ca

    Energy Technology Data Exchange (ETDEWEB)

    Santos, D.M.; Caracas, L.B.; Noronha, R.G.; Santos, M.M.T. dos [Universidade Federal do Maranhao (UFMA), Sao Luis, MA (Brazil). Dept. de Desenho e Tecnologia. Curso de Desenho Industrial; Paiva-Santos, C.O., E-mail: denilson@ufma.b [Universidade Estadual Paulista (IQ/UNESP), Araraquara, SP (Brazil). Inst. de Quimica

    2009-07-01

    Pure and doped (tungsten or calcium) PZT ceramics were prepared by association of the polymeric precursor and partial oxalate method. The phase formation was investigated by thermal analysis (TG/DSC) and X-ray diffraction (XRD). The affect of W or Ca doping PZT and their electrical properties was evaluated. Substitution of W by Ti and Ca by Pb leads to an increase of Curie temperature and broadening of dielectric constant. A typical hysteresis loop was observed at room temperature and the remnant polarization was increased with the content of W and Ca. (author)

  20. Inflight dissociation of zircon in air plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yugeswaran, S; Selvarajan, V [Bharathiar University, Coimbatore 641046 (India); Ananthapadmanabhan, P V; Thiyagarajan, T K [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India); Nair, Janardhanan [Ion Arc Technologies Pvt Ltd, Coimbatore (India)

    2010-02-01

    Thermal dissociation of zircon can be conveniently carried out in a plasma reactor, which is characterized by high temperature, high energy density and high quench rate. Zirconia is recovered from this partially dissociated zircon by alkali leaching. Dissociation of zircon has been conventionally carried out in argon gas, which is expensive. The present paper reports experimental results on thermal dissociation of zircon in air plasma medium. Process simulation for 'inflight' dissociation of zircon in air plasma medium is also presented. The experimental system consists of a central hollow graphite electrode, which acts as the cathode and a graphite anode. The material to be processed is fed centrally through the cathode. The unique feature of the system is that it uses air as the working gas to generate the thermal plasma. The system has been used to study in-flight dissociation of zircon in the thermal plasma jet. Dissociation was carried out over 10-25 kW power range. Results of the study indicate that complete dissociation of zircon to ZrO{sub 2} and silica could be accomplished at 25 kW in air plasma.