Sample records for zircon shrimp geochronology

  1. SHRIMP zircon U-Pb geochronology of Indosinian granites in Hunan Province and its petrogenetic implications

    WANG Yuejun; FAN Weiming; LIANG Xinquan; PENG Touping; SHI Yuruo


    The SHRIMP zircon U-Pb geochronology of three typically Indosinian granitic plutons with peraluminous and potassium-rich affinities (Tangshi ultraunit for Weishan and Baimashan, and Longtan ultraunit for Guandimiao) is presented in Hunan Province, South China. The analyses of zircons from biotite monozonite granites for Weishan, Baimashan and Guandimiao plutons show the single and tight clusters on the concordia, and yield the weighted mean 206Pb/238U ages of 244±4, 243±3 and 239±3 Ma, respectively, representing the crystallized ages of these Indosinian granites. These data suggest that the Indosinian granitic plutons as previously thought formed at a narrow age span. In combination with other data, it is inferred that the Indosinian granites within the South China Block probably distributed in Hunan, Jiangxi, Guangxi and Guangdong provinces as planar shape, and were the derivation of the crustal materials in the intracontinental thickening setting. These precisely geochronological data provide important constraints for better understanding the spatiotemporal pattern of the Indosinian peraluminous granites and early Mesozoic tectonic evolution of the South China Block.

  2. SHRIMP U-Pb in zircon geochronology of granitoids from Myanmar: temporal constraints on the tectonic evolution of Southeast Asia

    Barley, M. E.; Zaw, Khin


    The Mesozoic to Tertiary tectonic evolution of Southeast Asia is the result of the convergence and collision of fragments of Gondwanaland with Eurasia culminating in the collision of India. A rapidly growing geochronological database is placing tight constraints on the timing and duration of magmatic episodes, metallogenic and tectonic events in the Himalayas, Tibet and eastern Indochina. However, there is little comparable geochronology for Myanmar. This SHRIMP U-Pb in zircon geochronology focuses on granitoids from the Mogok Metamorphic Belt (MMB, a belt of high grade metamorphic rocks at the edge of the Shan-Thai Terrane), the Myeik Archipelago (Shan-Thai Terrane) and the west Myanmar Terrane. Strongly deformed granitic orthogneisses in the MMB near Mandalay contain Jurassic (~170 Ma) zircons that have partly recrystallised during ~43 Ma high-grade metamorphism. A hornblende syenite from Mandalay also contains Jurassic zircons with evidence of Eocene metamorphism rimmed by thin zones of 30.9 ±0.7 Ma magmatic zircon. The relative abundance of Jurassic zircons in these rocks is consistent with suggestions that southern Eurasia had an Andean-type margin at that time. Mid-Cretaceous to earliest Eocene (120 to 50 Ma). I-type granitoids in the MMB, Myeik Archipelago and west Myanmar confirm that prior to the collision of India, an up to 200km wide magmatic belt extended along the Eurasian margin. The primitive I-type Khanza Chaung granodiorite in the Wuntho batholith in the west Myanmar terrane hosts porphyry-style mineralisation and has a magmatic age of 94  1 Ma. Triassic (~240 Ma), Jurassic (~170 Ma) and Early Cretaceous xenocryst zircons in this granitoid correspond with peaks of granitoid magmatism in the Shan-Thai terrane and establish that west Myanmar was part of the margin of Eurasia during the Mesozoic. A suite of highly fractionated metaluminous to peraluminous I-type granitoids with associated Sn-W-Ta mineralisation emplaced in the Myeik Archipelago of

  3. Metamorphic evolution and U-Pb zircon SHRIMP geochronology of the Belizario ultramafic amphibolite, Encantadas Complex, southernmost Brazil

    Hartmann, Leo A.; Porcher, Carla C. [Rio Grande do Sul Univ., Porto Alegre (Brazil). Inst. de Geociencias]. E-mail:; Santos, Joao O.S. [Centro de Pesquisas de Recursos Minerais (CPRM), Porto Alegre, RS (Brazil). Brazilian Geological Survey; Leite, Jayme A.D. [Mato Grosso Univ., Cuiaba (Brazil). Dept. de Recursos Minerais; McNaughton, Neal J. [Western Australia Univ., Nedlands, WA (Australia). Centre for Global Metallogeny


    The integrated investigation of metamorphism and zircon U-Pb SHRIMP geochronology of the Belizario ultramafic amphibolite from southernmost Brazil leads to a better understanding of the processes involved in the generation of the Encantadas Complex. Magmatic evidence of the magnesian basalt or pyroxenite protolith is only preserved in cores of zircon crystals, which are dated at 2257 {+-} 12 Ma. Amphibolite facies metamorphism M{sub 1} formed voluminous hornblende in the investigated rock possibly at 1989 {+-} 21 Ma. This ultramafic rock was re-metamorphosed at 702+- 21 Ma during a greenschist facies event M{sub 2}; the assemblage actinolite + oligoclase + microcline + epidote + titanite + monazite formed by alteration of hornblende. The metamorphic events are probably related to the Encantadas Orogeny (2257 {+-} 12 Ma) and Camboriu Orogeny ({approx}1989 Ma) of the Trans-Amazonian Cycle, followed by an orogenic event (702 {+-} 21 Ma) of the Brasiliano Cycle. The intervening cratonic period (2000-700 Ma) corresponds to the existence of the Supercontinent Atlantica, known regionally as the Rio de la Plata Craton. (author)

  4. Monazite trumps zircon: applying SHRIMP U-Pb geochronology to systematically evaluate emplacement ages of leucocratic, low-temperature granites in a complex Precambrian orogen

    Piechocka, Agnieszka M.; Gregory, Courtney J.; Zi, Jian-Wei; Sheppard, Stephen; Wingate, Michael T. D.; Rasmussen, Birger


    Although zircon is the most widely used geochronometer to determine the crystallisation ages of granites, it can be unreliable for low-temperature melts because they may not crystallise new zircon. For leucocratic granites U-Pb zircon dates, therefore, may reflect the ages of the source rocks rather than the igneous crystallisation age. In the Proterozoic Capricorn Orogen of Western Australia, leucocratic granites are associated with several pulses of intracontinental magmatism spanning 800 million years. In several instances, SHRIMP U-Pb zircon dating of these leucocratic granites either yielded ages that were inconclusive (e.g., multiple concordant ages) or incompatible with other geochronological data. To overcome this we used SHRIMP U-Th-Pb monazite geochronology to obtain igneous crystallisation ages that are consistent with the geological and geochronological framework of the orogen. The U-Th-Pb monazite geochronology has resolved the time interval over which two granitic supersuites were emplaced; a Paleoproterozoic supersuite thought to span 80 million years was emplaced in less than half that time (1688-1659 Ma) and a small Meso- to Neoproterozoic supersuite considered to have been intruded over 70 million years was instead assembled over 130 million years and outlasted associated regional metamorphism by 100 million years. Both findings have consequences for the duration of associated orogenic events and any estimates for magma generation rates. The monazite geochronology has contributed to a more reliable tectonic history for a complex, long-lived orogen. Our results emphasise the benefit of monazite as a geochronometer for leucocratic granites derived by low-temperature crustal melting and are relevant to other orogens worldwide.

  5. New insights into the history and origin of the southern Maya block, SE Mexico: U-Pb-SHRIMP zircon geochronology from metamorphic rocks of the Chiapas massif

    Weber, Bodo; Iriondo, Alexander; Premo, Wayne R.; Hecht, Lutz; Schaaf, Peter


    The histories of the pre-Mesozoic landmasses in southern México and their connections with Laurentia, Gondwana, and among themselves are crucial for the understanding of the Late Paleozoic assembly of Pangea. The Permian igneous and metamorphic rocks from the Chiapas massif as part of the southern Maya block, México, were dated by U–Pb zircon geochronology employing the SHRIMP (sensitive high resolution ion microprobe) facility at Stanford University. The Chiapas massif is composed of deformed granitoids and orthogneisses with inliers of metasedimentary rocks. SHRIMP data from an anatectic orthogneiss demonstrate that the Chiapas massif was part of a Permian (∼ 272 Ma) active continental margin established on the Pacific margin of Gondwana after the Ouachita orogeny. Latest Permian (252–254 Ma) medium- to high-grade metamorphism and deformation affected the entire Chiapas massif, resulting in anatexis and intrusion of syntectonic granitoids. This unique orogenic event is interpreted as the result of compression due to flat subduction and accretionary tectonics. SHRIMP data of zircon cores from a metapelite from the NE Chiapas massif yielded a single Grenvillian source for sediments. The majority of the zircon cores from a para-amphibolite from the SE part of the massif yielded either 1.0–1.2 or 1.4–1.5 Ga sources, indicating provenance from South American Sunsás and Rondonian-San Ignacio provinces.

  6. SHRIMP U-Pb zircon geochronology and its implications on the Xilin Gol Complex, Inner Mongolia, China

    SHI Guanghai; LIU Dunyi; ZHANG Fuqin; JIAN Ping; MIAO Laicheng; SHI Yuruo; TAO Hua


    The Xilin Gol Complex, consisting of deformed and metamorphosed rocks, was exposed as a large geological unit within the Central Asian Orogenic Belt, but its forming and subsequent deformed and metamorphic time has been an issue of little consensus. Petrographic analyses and SHRIMP dating on biotite-plagioclase gneiss, one of the major rocks within the Xilin Gol Complex, in southeast Xilinhot City, Inner Mongolia, China, where the Xilin Gol Complex was identified and named, yield its lower limit age of 437 ( 3 Ma (2--) by its magmatic zircon SHRIMP U-Pb dating, and an upper limit age of 316 ( 3Ma (2--), which was constrained by SHRIMP dating of magmatic zircons from adjacent undeformed garnet-bearing granite which intruded the Complex. The Complex was thus determined to be formed and subsequently deformed/metamorphosed from the late Ordovician-early Silurian to the mid-Carboniferous. Consequently, it is not the Precambrian terrane as previously considered by most geologists. More or less, the major rock--biotite- plagioclase gneiss within the Complex is more likely to be Paleozoic fore-arc turbidite formation before metamorphism and intensive deformation, in which the detrital zircons gave sporadic Precambrian ages as old as up to 3.1 Ga. The source of the turbidite formation is multiple, which may be derived either from the North China Craton, or from the South- Mongolia Micro-continent, or probably came from a potential and undiscovered in situ terranes aged 600-800 Ma or even up to ca 3.1 Ga near the Complex.

  7. SHRIMP U-Pb geochronology of the detrital zircons from the Longshoushan Group and its tectonic significance

    KuoAn TUNG; HoungYi YANG; LIU DunYi; ZHANG JianXin; ChienYuan TSENG; WAN YuSheng


    Sixty-two geologically meaningful U-Pb dates were obtained by using SHRIMP technique for the detrital zircons in three mettasedimentary rocks from stratigraphically uppermost parts of the Longshoushan Group in the present study.Eighty percents of these dates range from 1.7 Ga to 2.2 Ga with a peak at 1.8-2.0 Ga and twenty percents from 2.3 Ga to 2.7 Ga.The youngest detrital zircon is dated at 1724±19Ma which is interpreted as the maximum depositional age of the metasedimentary rocks.Therefore,the age for the diagenesis and lithification of the original sedimentary rocks of the Longshoushan Group before the metamorphism must be younger than 1724±19 Ma.Comparison of the age histograms of these detrital zircons with the ages of the igneous rocks on the surrounding older massifs suggests that the sediments of the Longshoushan Group were most likely derived from the Alaxa Block and Tarim Craton.This implies that the affinity between Alaxa Block and Tarim Craton was strong and that they might have been a unified craton during middle-early Proterozoic time

  8. SHRIMP-RG U-Pb zircon geochronology of mesoproterozoic metamorphism and plutonism in the southwesternmost United States

    Barth, Andrew P.; Wooden, Joseph L.; Coleman, Drew S.


    Mesoproterozoic intrusive and granulite‐grade metamorphic rocks in southern California have been inferred to be exotic to North America on the basis of perceived chronologic incompatibility with autochthonous cratonal rocks. Ion microprobe geochronology indicates that zircons in granulite‐grade gneisses, dated at 1.4 Ga using conventional methods, are composed of 1.68–1.80‐Ga cores and 1.19‐Ga rims. These Early Proterozoic gneisses were metamorphosed at extremely high temperatures and moderate pressures during emplacement of the 1.19‐Ga San Gabriel anorthosite complex. The lack of a 1.4‐Ga metamorphic event suggests that Proterozoic rocks in this region, rather than being exotic to North America, may in fact be a midcrustal window into Mesoproterozoic crustal evolutionary processes in southwestern North America.

  9. Comparison of SHRIMP U-Pb dating of monazite and zircon

    WAN Yusheng; LIU Dunyi; JIAN Ping


    Monazite dating is an important technique in geochronological studies. However, monazite U-Pb dating by SHRIMP is much less popular than zircon in geochronological applications. This paper compares the results of SHRIMP U-Pb dating of monazites and zircons separated from two granite samples, indicating that monazite SHRIMP U-Pb dating at the Beijing SHRIMP Centre is feasible and provides identical results within error.

  10. SHRIMP U-Pb zircon geochronology of Mesozoic granitoids from the Bariloche region (Argentina): Implications for the Middle-Late Jurassic evolution of the North Patagonian batholith.

    Castro, Antonio; Vujovich, Graciela; Fernández, Carlos; Moreno-Ventas, Iñaki; Martino, Roberto; Corretgé, Guillermo; Díaz-Alvarado, Juan; Heredia, Nemesio; Gallastegui, Gloria


    A detailed U-Pb geochronological study has been carried out on granitoids of the North Patagonian batholith in the region of Bariloche (Argentina), between 40°30' S and 41°45' S. In this region, the calc-alkaline, subduction-related, granitic bodies of the North Patagonian batholith intruded an Early Jurassic volcano-sedimentary sequence contemporary with the intrusion of the Subcordilleran Patagonian batholith (J1 magmatism), and unconformably overlying a metamorphic Gondwanan basement. All these rocks were affected by the Andean compressional phases during the Cenozoic. U-Pb SHRIMP dating of zircon crystals from 11 samples (109 spots) of diorites, tonalites, granodiorites and granites yielded dates ranging from 173 ± 3 Ma to 150 ± 2 Ma (Aalenian to Tithonian). No significant age differences have been identified among the distinct lithological types. Also no spatial trend emerges from these results, although ages tend to be younger westward in the traverse of the Manso River (≈ 41° 35' S). Two peaks appear in the probability density plot of zircon ages. Most of the dated zircons are Bajocian-Bathonian (Middle Jurassic, ≈169 Ma, J2 magmatism), while a secondary peak is observed at the boundary Oxfordian-Kimmeridgian (Late Jurassic, ≈ 156 Ma, J3 magmatism). The J2 magmatic period is coeval to the main stage of effusive activity (V2) in the huge volcanic Chon Aike Province, while J3 coincides with the lesser V3 period of volcanism in Chon Aike. These new geochronological data strongly contribute to the knowledge of the first stages of tectonic evolution of the Andean subduction margin in southern South America. Contrary to previous models, it can be proposed that the subduction-related Mesozoic magmatism started well before the Late Jurassic, and that a continuous supply of calc-alkaline magmas dominated the active margin of South America during at least 190 Ma, from the Early Jurassic to nowadays. Therefore, no dramatic time gap can be observed between

  11. Petrology and SHRIMP zircon geochronology of granulites from Vesleknausen, Lützow-Holm Complex, East Antarctica:Neoarchean magmatism and Neoproterozoic high-grade metamorphism

    Toshiaki Tsunogae; Daniel J. Dunkley; Kenji Horie; Takahiro Endo; Tomoharu Miyamoto; Mutsumi Kato


    We report new petrological data and geochronological measurements of granulites from Vesleknausen in the highest-grade section of the Lützow-Holm Complex, part of the Gondwana-assembling collisional orogen in East Antarctica. The locality is dominated by felsic to intermediate orthogneiss (charnockite and minor biotite gneiss), mafic orthogneiss, and hornblende-pyroxene granulite, with deformed and undeformed dykes of metagranite and felsic pegmatite. Pseudosection analysis of charnockite in the system NCKFMASHTO, supported by geothermometry of mafic orthogneiss, was used to infer peak metamorphic temperatures of 750e850 ?C, approximately 150 ?C lower than those estimated for met-asedimentary gneisses from Rundvågshetta, 6 km to the northeast. SHRIMP U-Pb analysis of zircons from feldspar-pyroxene gneiss, which corresponds to a partially molten patch around mafic orthogneiss, yielded a Concordia upper intercept ages of 2507.9 ? 7.4 Ma, corresponding to the time of formation of the magmatic protolith to the orthogneiss. Partial melting during peak metamorphism probably took place between 591 and 548 Ma, as recorded in rims overgrew around magmatic zircon. Our results suggest that Rundvågshetta-Vesleknausen-Strandnibba region in southwestern Lützow-Holm Bay, where orthogneisses are dominant, consists of a single crustal block, possibly formed by ca. 2.5 Ga arc mag-matism. The Neoarchean magmatic terrane was tectonically mingled with other fragments (such as metasedimentary units in northern Lützow-Holm Bay) by subduction/collision events during the as-sembly of Gondwana supercontinent, and subsequently underwent w850 ?C granulite-facies meta-morphosed during Neoproterozoic to Cambrian final collisional event.

  12. Petrology and SHRIMP zircon geochronology of granulites from Vesleknausen, Lützow-Holm Complex, East Antarctica: Neoarchean magmatism and Neoproterozoic high-grade metamorphism

    Toshiaki Tsunogae


    Full Text Available We report new petrological data and geochronological measurements of granulites from Vesleknausen in the highest-grade section of the Lützow-Holm Complex, part of the Gondwana-assembling collisional orogen in East Antarctica. The locality is dominated by felsic to intermediate orthogneiss (charnockite and minor biotite gneiss, mafic orthogneiss, and hornblende-pyroxene granulite, with deformed and undeformed dykes of metagranite and felsic pegmatite. Pseudosection analysis of charnockite in the system NCKFMASHTO, supported by geothermometry of mafic orthogneiss, was used to infer peak metamorphic temperatures of 750–850 °C, approximately 150 °C lower than those estimated for metasedimentary gneisses from Rundvågshetta, 6 km to the northeast. SHRIMP U-Pb analysis of zircons from feldspar-pyroxene gneiss, which corresponds to a partially molten patch around mafic orthogneiss, yielded a Concordia upper intercept ages of 2507.9 ± 7.4 Ma, corresponding to the time of formation of the magmatic protolith to the orthogneiss. Partial melting during peak metamorphism probably took place between 591 and 548 Ma, as recorded in rims overgrew around magmatic zircon. Our results suggest that Rundvågshetta-Vesleknausen-Strandnibba region in southwestern Lützow-Holm Bay, where orthogneisses are dominant, consists of a single crustal block, possibly formed by ca. 2.5 Ga arc magmatism. The Neoarchean magmatic terrane was tectonically mingled with other fragments (such as metasedimentary units in northern Lützow-Holm Bay by subduction/collision events during the assembly of Gondwana supercontinent, and subsequently underwent ∼850 °C granulite-facies metamorphosed during Neoproterozoic to Cambrian final collisional event.

  13. Metamorphic evolution and U-Pb zircon SHRIMP geochronology of the Belizário ultramafic amphibolite, Encantadas Complex, southernmost Brazil

    Léo A. Hartmann


    Full Text Available The integrated investigation of metamorphism and zircon U-Pb SHRIMP geochronology of the Belizário ultramafic amphibolite from southernmost Brazil leads to a better understanding of the processes involved in the generation of the Encantadas Complex. Magmatic evidence of the magnesian basalt or pyroxenite protolith is only preserved in cores of zircon crystals, which are dated at 2257 ± 12 Ma. Amphibolite facies metamorphism M1 formed voluminous hornblende in the investigated rock possibly at 1989 ± 21 Ma. This ultramafic rock was re-metamorphosed at 702±21 Ma during a greenschist facies eventM2; the assemblage actinolite + oligoclase + microcline + epidote + titanite + monazite formed by alteration of hornblende. The metamorphic events are probably related to the Encantadas Orogeny (2257±12 Ma and Camboriú Orogeny (~ 1989 Ma of the Trans-Amazonian Cycle, followed by an orogenic event (702±21 Ma of the Brasiliano Cycle. The intervening cratonic period (2000-700 Ma corresponds to the existence of the Supercontinent Atlantica, known regionally as the Rio de la Plata Craton.O entendimento dos processos evolutivos do Complexo Encantadas no sul do Brasil foi aperfeiçoado através do estudo integrado do metamorfismo de um anfibolito ultramáfico e da geocronologia U-Pb SHRIMP de zircão. Os núcleos herdados de alguns cristais de zircão tem idades em torno de 2257 ±12 Ma e constituem a única evidência preservada do protólito ígneo, que pode ter sido um basalto magnesiano ou um piroxenito. O metamorfismo M de fácies anfibolito formou abundante hornblenda na amostra investigada, possivelmente há 1989 ±21 Ma. Esta rocha ultramáfica foi re-metamorfizada talvez há cerca de 702 ±21 Ma durante um evento M de fácies xistos verdes do metamorfismo regional. Durante o evento M, a hornblenda foi recristalizada e formou a assembléia actinolita + oligoclásio + microclínio + epidoto + titanita + monazita. Estes eventos foram a manifesta

  14. SHRIMP U-Pb zircon geochronology of granulites at Rimana (Southern Tibet) in the central segment of Himalayan Orogen

    LI Dewei; LIAO Qunan; YUAN Yanming; WAN Yusheng; LIU Demin; ZHANG Xionghua; YI Shunhua; CAO Shuzhao; XIE Defan


    High-pressure mafic granulites, occurring as lenses within gneisses and quartzite in the central segment of the Himalayan orogen, were dated using SHRIMP U-Pb technique. 13 analyses out of a total of 15 are plotted along a concordia line and yield a mean 206Pb/238U age of 17.6 ± 0.3 Ma. This age indicates adiabatic decompression and a metamorphic event associated with rapid uplift of granulites in a tectonic environment resulted from the collision between India and Eurasia, synchronous with large-scale thrusting, extension, detachment as well as emplacement of leucogranite. One analysis gives a 206Pb/238U age of 29.5 ± 0.4 Ma that is interpreted to represent the timing of the final closure of the Neo-Tethys. Another age is 1991 ± 26 Ma that represents the age of the protolith of the granulites. In summary, dating results show that granulites in this area underwent multiphase metamorphism and complex geological evolution.

  15. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite

    Aleinikoff, J.N.; Schenck, W.S.; Plank, M.O.; Srogi, L.A.; Fanning, C.M.; Kamo, S.L.; Bosbyshell, H.


    High-grade rocks of the Wilmington Complex, northern Delaware and adjacent Maryland and Pennsylvania, contain morphologically complex zircons that formed through both igneous and metamorphic processes during the development of an island-arc complex and suturing of the arc to Laurentia. The arc complex has been divided into several members, the protoliths of which include both intrusive and extrusive rocks. Metasedimentary rocks are interlayered with the complex and are believed to be the infrastructure upon which the arc was built. In the Wilmingto n Complex rocks, both igneous and metamorphic zircons occur as elongate and equant forms. Chemical zoning, shown by cathodoluminescence (CL), includes both concentric, oscillatory patterns, indicative of igneous origin, and patchwork and sector patterns, suggestive of metamorphic growth. Metamorphic monazites are chemically homogeneous, or show oscillatory or spotted chemical zoning in backscattered electron images. U-Pb geochronology by sensitive high resolution ion microprobe (SHRIMP) was used to date complexly zoned zircon and monazite. All but one member of the Wilmington Complex crystallized in the Ordovician between ca. 475 and 485 Ma; these rocks were intruded by a suite of gabbro-to-granite plutonic rocks at 434 ?? Ma. Detrital zircons in metavolcanic and metasedimentary units were derived predominantly from 0.9 to 1.4 Ga (Grenvillian) basement, presumably of Laurentian origin. Amphibolite to granulite facies metamorphism of the Wilmington Complex, recorded by ages of metamorphic zircon (428 ?? 4 and 432 ?? 6 Ma) and monazite (429 ?? 2 and 426 ?? 3 Ma), occurred contemporaneously with emplacement of the younger plutonic rocks. On the basis of varying CL zoning patterns and external morphologies, metamorphic zircons formed by different processes (presumably controlled by rock chemistry) at slightly different times and temperatures during prograde metamorphism. In addition, at least three other thermal episodes are

  16. U-Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: An integrated SEM, EMPA, TIMS, and SHRIMP study

    Aleinikoff, J.N.; Wintsch, R.P.; Fanning, C.M.; Dorais, M.J.


    U-Pb ages for zircon and titanite from a granodioritic gneiss in the Glastonbury Complex, Connecticut, have been determined using both isotope dilution thermal ionization mass spectrometry (TIMS) and the sensitive high resolution ion microprobe (SHRIMP). Zircons occur in three morphologic populations: (1) equant to stubby, multifaceted, colorless, (2) prismatic, dark brown, with numerous cracks, and (3) elongate, prismatic, light tan to colorless. Cathodoluminescence (CL) imaging of the three populations shows simple concentric oscillatory zoning. The zircon TIMS age [weighted average of 207Pb/206Pb ages from Group 3 grains-450.5 ?? 1.6 Ma (MSWD=1.11)] and SHRIMP age [composite of 206Pb/238 U age data from all three groups-448.2 ?? 2.7 Ma (MSWD = 1.3)], are interpreted to suggest a relatively simple crystallization history. Titanite from the granodioritic gneiss occurs as both brown and colorless varieties. Scanning electron microscope backscatter (BSE) images of brown grains show multiple cross-cutting oscillatory zones of variable brightness and dark overgrowths. Colorless grains are unzoned or contain subtle wispy or very faint oscillatory zoning. Electron microprobe analysis (EMPA) clearly distinguishes the two populations. Brown grains contain relatively high concentrations of Fe2O3, Ce2O3 (up to ~ 1.5 wt.%), Nb2O5, and Zr. Cerium concentration is positively correlated with total REE + Y concentration, which together can exceed 3.5 wt.%. Oscillatory zoning in brown titanite is correlated with variations in REE concentrations. In contrast, colorless titanite (both as discrete grains and overgrowths on brown titanite) contains lower concentrations of Y, REE, Fe2O3, and Zr, but somewhat higher Al2O3 and Nb2O5. Uranium concentrations and Th/U discriminate between brown grains (typically 200-400 ppm U; all analyses but one have Th/U between about 0.8 and 2) and colorless grains (10-60 ppm U; Th/U of 0-0.17). In contrast to the zircon U-Pb age results, SHRIMP U

  17. Silurian A-type granitoids in the southern margin of the Tongbai-Dabieshan: Evidence from SHRIMP zircon geochronology and geochemistry

    MA; Changqian; SHE; Zhenbing; XU; Pin; WANG; Lingyan


    SHRIMP U-Pb dating on magmatic zircons extracted from a riebeckite quartz syenite in the Huangyangshan pluton in Suizhou, the southern margin of Tongbai-Dabieshan yielded an age of 439±6Ma. According to the morphology and high Th/U ratios of the zircons, the age is interpreted as crystallization timing of the pluton. The Huangyangshan pluton is composed of peralkaline quartz syenite, alkaline granite and syenite. All of the rocks are characterized by high agpaitic index (A.I.=(Na+K)/Al, molar ratio) and Fe-number [FeOT/(FeOT+MgO)], low CaO and MgO contents, enrichment of high field strength elements (i.e. Nb, Zr, Ga, Y, Hf) and light REEs, evidently negative Eu anomalies and high Ga/Al ratios, which are consistent with anorogenic A-type granitoids. Being part of the South Qinling-South Dabieshan Paleozoic alkaline rock belt, the Huangyangshan A-type granitoid pluton results from the Paleozoic extension-initial rifting in the northern margin of the Yangtze Craton related to the opening of the eastern Paleo-Tethyan Ocean.

  18. Devonian alkaline magmatism in the northern North China Craton: Geochemistry, SHRIMP zircon U-Pb geochronology and Sr-Nd-Hf isotopes

    Dingling Huang


    Full Text Available The Wulanhada pluton is among the rare suite of Devonian alkaline plutons occurring along the northern margin of the North China Craton (NCC. The intrusion is mainly composed of quartz-monzonite. Here we report zircon SHRIMP U-Pb data from this intrusion which shows emplacement age of ca. 381.5 Ma. The rock is metaluminous with high (Na2O + K2O values ranging from 8.46 to 9.66 wt.%. The REE patterns of the rocks do not show any Eu anomaly whereas the primitive-mantle-normalized spider diagram shows strong positive Sr and Ba anomalies. The Wulanhada rocks exhibit high initial values of (87Sr/86Srt = 0.70762–0.70809, low ɛNd(t = −12.76 to −12.15 values and negative values of ɛHf(t = −23.49 to −17.02 with small variations in (176Hf/177Hft (0.281873–0.282049. These geochemical features and quantitative isotopic modeling results suggest that the rocks might have been formed through the partial melting of Neoarchean basic rocks in the lower crust of the NCC. The Wulanhada rocks, together with the Devonian alkaline rocks and mafic-ultramafic complex from neighboring regions, constitute a post-collisional magmatic belt along the northern NCC.

  19. Zircon SHRIMP geochronology of the Xinkailing-Kele complex in the northwestern Lesser Xing'an Range, and its geological implications

    MIAO Laicheng; FAN Weiming; ZHANG Fuqing; LIU Dunyi; JIAN Ping; SHI Guanghai; TAO Hua; SHI Yuruo


    Located in the eastern portion of the Xing'an- Mongolian Orogenic Belt (XMOB), the Xinkailing-Kele complex has previously been considered to be Precambrian metamorphic rocks, mainly according to its relatively high metamorphic grade. Our filed observation, however, revealed that the complex is composed mainly of metamorphic rocks (Kele complex), tectono-schists ("Xinkailing Group"), and granitoids (Xinkailing granitic complex). Dating on these rocks using advanced SHRIMP zircon U-Pb technique indicates that: (1) Biotite-plagioclase gneiss from the Kele complex has a protolith age of 337±7 Ma (2σ) and a metamorphic age of 216(3 Ma (2σ); (2) the tectono-schist of the "Xinkailing Group" gave a magmatic age of 292±6 Ma (2σ), indicative of felsic volcanic protolith of the schist formed in Late Paleozoic time; and (3) the Menluhedingzi and Lengchuan granites of the Xinkailing granitic complex were emplaced at 167±4 (2σ) and 164±4 Ma (2σ), respectively. These results suggest that the Xinkailing-Kele complex is not Precambrian metamorphic rocks and the so-called Precambrian "Nenjiang Block" does essentially not exist. In combination with regional geological data, we propose that the Kele metamorphic complex is likely related to a collisional tectonism that took place in Triassic time, as indicted by its metamorphic age of 216(3 Ma. The Xinkailing granitic complex was emplaced along the collisional zone during Mid-Jurassic time, likely in a post-orogenic or anorogenic setting.

  20. Zircon and titanite U Pb SHRIMP geochronology of Neoproterozoic felsic magmatism on the eastern border of the Rio de la Plata Craton, Uruguay

    Hartmann, Léo A.; Santos, João Orestes S.; Bossi, Jorge; Campal, Néstor; Schipilov, Alejandro; McNaughton, Neal J.


    The Neoproterozoic reactivation of the eastern border of the Rio de la Plata Craton in Uruguay has major significance in the Precambrian geology of South America because it occurred on the southernmost extension of the 4000 km long Brasiliano cycle belt. The reactivated belt is known to be mostly Neoproterozoic in age, but three major geological events are dated for the first time in this investigation by the sensitive, high-mass resolution ion microprobe (SHRIMP II). The syntectonic Rocha syenogranite intruded the Cuchilla Dionisio Terrane at 762±8 Ma, within the time span of the São Gabriel orogeny of the Brasiliano cycle. The Puntas del Santa Lucı´a monzogranite intruded the Nico Pérez Terrane at 633±8 Ma, during the Dom Feliciano orogeny, which is the main thermal peak of the Brasiliano cycle in South America. This monzogranite was metamorphosed at 607±7 Ma. The Cerro Aguirre dacite, a volcanic rock from the Piriápolis foreland basin, crystallized at 571±8 Ma during one of the latest events of the Brasiliano cycle. Inherited zircon cores from the Rocha syenogranite yielded ages near 2.0 Ga, a possible indication of Paleoproterozoic basement in the terrane.

  1. Contribution of Columbia and Gondwana Supercontinent assembly- and growth-related magmatism in the evolution of the Meghalaya Plateau and the Mikir Hills, Northeast India: Constraints from U-Pb SHRIMP zircon geochronology and geochemistry

    Kumar, Santosh; Rino, Vikoleno; Hayasaka, Yasutaka; Kimura, Kosuke; Raju, Shunmugam; Terada, Kentaro; Pathak, Manjari


    The Meghalaya Plateau and the Mikir Hills constitute a northeastern extension of the Precambrian Indian Shield. They are dominantly composed of Proterozoic basement granite gneisses, granites, migmatites, granulites, the Shillong Group metasedimentary cover sequence, and Mesozoic-Tertiary igneous and sedimentary rocks. Medium to coarse grained, equigranular to porphyritic Cambrian granite plutons intrude the basement granite gneisses and the Shillong Group. U-Pb SHRIMP zircon geochronology and geochemistry of the granite gneisses and granites have been carried out in order to understand the nature and timing of granite magmatism, supercontinent cycles, and crustal growth of the Meghalaya Plateau and Mikir Hills. Zircons from the Rongjeng granite gneiss record the oldest magmatism at 1778 ± 37 Ma. An inherited zircon core has an age of 2566.4 ± 26.9 Ma, indicating the presence of recycled Neoarchaean crust in the basement granite gneisses. Zircons from the Sonsak granite have two ages: 523.4 ± 7.9 Ma and 1620.8 ± 9.2 Ma, which indicate partial assimilation of an older granite gneiss by a younger granite melt. Zircons from the Longavalli granite gneiss of the Mikir Hills has a crystallization age of 1430.4 ± 9.6 Ma and a metamorphic age of 514 ± 18.6 Ma. An inherited core of a zircon from Longavalli granite gneiss has an age of 1617.1 ± 14.5 Ma. Zircons from younger granite plutons have Cambrian mean ages of 528.7 ± 5.5 Ma (Kaziranga), 516 ± 9.0 Ma (South Khasi), 512.5 ± 8.7 Ma (Kyrdem), and 506.7 ± 7.1 Ma and 535 ± 11 Ma (Nongpoh). These plutons are products of the global Pan-African tectonothermal event, and their formation markedly coincides with the later stages of East Gondwana assembly (570-500 Ma, Kuunga orogen). The older inherited zircon cores (2566.4 ± 26.9 Ma, 1758.1 ± 54.3 Ma, 1617.1 ± 14 Ma) imply a significant role for recycled ancient crust in the generation of Cambrian granites. Thus the Meghalaya Plateau and Mikir Hills experienced

  2. Characterization and zircon SHRIMP U-Pb geochronology of the subvolcanic rocks from Yarumalito Porphyry System, Marmato District, Colombia; Caracterizacao e geocronologia SHRIMP U-Pb em zircao das rochas subvulcanicas do sistema porfiro Yarumalito, Distrito de Marmato, Colombia

    Henrichs, Isadora A.; Frantz, Jose Carlos; Marques, Juliana C.; Castoldi, Marco S., E-mail:, E-mail:, E-mail: [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Instituto de Geociencias; Ordonez-Carmona, Oswaldo, E-mail: [Universidad Nacional de Colombia, Medellin (Colombia). Facultad de Minas; Sato, Kei, E-mail: [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Centro de Pesquisas Geocronologicas


    The mining District of Marmato, located in the Central Cordillera, is considered one of the oldest gold districts in Colombia and its exploration dates back to the Inca’s times, being exploited regularly for more than a thousand years. Inserted in this context lies the Yarumalito porphyry system (YPS), characterized to concentrate ore in structure related veins and stockworks. The YPS is related to the Miocene magmatism of the Combia Formation. In this paper, the subvolcanic rocks directly associated with the mineralized zones were described in order to obtain U-Pb ages in zircon to the intrusions. Selected samples from two fertile intrusions, one andesitic (more abundant in the area) and other dioritic (more restricted), were carefully described and dated by SHRIMP. The results points to a very restricted interval for the ages, with weighted average {sup 206}Pb/{sup 238}U varying from 7,00 ± 0,15 Ma for the andesitic porphyry and 6.95 ± 0.16 Ma for the dioritic porphyry. These results constrain the Yarumalito system to the final stages of the Combia magmatism and suggest a brief period for the crystallization of the mineralized subvolcanic rocks in the area and in the Marmato District. (author)

  3. Early Cretaceous subvolcanic calc-alkaline granitoid magmatism in the Nubra-Shyok valley of the Shyok Suture Zone, Ladakh Himalaya, India: Evidence from geochemistry and U-Pb SHRIMP zircon geochronology

    Kumar, Santosh; Bora, Sita; Sharma, Umesh K.; Yi, Keewook; Kim, Namhoon


    The lithounits constituting the Ladakh Himalaya are exposed along the Indus and Shyok Sutures Zones of northwest Himalaya. The Shyok Suture Zone (SSZ) in northern Ladakh represents a highly tectonized zone of a back-arc basin, which is mainly composed of volcano-sedimentary formations (Shyok and Khardung Formations) intimately, associated with intrusive granitoids. In the Nubra-Shyok valley of the SSZ calc-alkaline granitoids of batholithic dimension are exposed in the Tirit region, referred herein as the Tirit granitoids, which are intrusive evidently into the Shyok volcanic (rhyolite) rocks belonging to the Shyok Formation. In this valley the northern margins of granitoids of the Ladakh batholith can also be found intrusive into the metasediments (shale/slate) and metavolcanics of the Shyok Formation. The compositions and crystallization pressures ( 66 to 91 MPa) of amphiboles in the intrusive Tirit granitoid corroborate a calc-alkaline nature and solidification of Tirit granitoid melt at subvolcanic level equivalent to a minimum of 2.5 km to a maximum of 3.5 km thick overburden of Shyok volcanics. U-Pb SHRIMP zircons from the Tirit granitoids have yielded mean crystallization ages of 109.4 ± 1.1 Ma and 105.30 ± 0.80 Ma, which strengthen the idea of Early Cretaceous subduction beneath the Karakoram terrain. Inherited older zircon cores (278-393 Ma, 476-519-713-952 Ma and 1933 Ma) suggest a contribution from heterogeneous Palaeozoic and Proterozoic sources in the generation of the Tirit granitoids similar to those observed elsewhere in the Karakoram-Kohistan region. A mean crystallization age (105.30 ± 0.80) of zircons in the Tirit granitoid hosting xenoliths of porphyritic volcanics places a minimum eruption age of ca. 105 Ma for the Shyok volcanics. The Ladakh granitoid, Tirit granitoids and porphyritic volcanic xenolith belong to a calc-alkaline series. A mean crystallization age (67.32 ± 0.66 Ma) for zircon in the Ladakh granitoid implies that the Shyok

  4. SHRIMP Geochronology and Hf Isotope of Zircons from Granitoids of the Weilasituo Deposit in Inner Mongolia%内蒙古维拉斯托矿床花岗岩类SHRIMP年代学及Hf同位素研究

    王新宇; 侯青叶; 王瑾; 陈岳龙; 刘金宝; 王忠; 李大鹏


    Weilasituo copper polymetallic deposit is located in the intersection of central Asia orogenic belt and Da Xinganling orogenic belt. The zircon SHRIMP U-Pb dating shows that granitoids ages are (298.0 ± 2. 5) Ma, (308. 3 ± 4. 2) Ma, (313. 9 ± 3. 4) Ma and (320. 5 ±4.1) Ma, indicating that they formed in Late Carboniferous. Rock geochemistry characteristics shows that the granitoids are the product of magmatic arc activities. Except for the zircons of granodiorites samples with εHf(t) values from -4. 1 to +4. 08 , the zircon εHf(t) values of the other samples are positive, ranging from +0. 4 to +9. 9. The peak of zircon Hf model age is consistent with the time of Paleo-Asian Ocean development, suggesting that the main source material of granitoids in mining area is the subducted oceanic curst of the Paleo-Asian Ocean and some Precambrian crust. Systematic study on granitoids in mining area may provide the basic information for exploring the evolution of Xinganling-Mongolian orogenic belt in the Late Paleozoic and new evidence for the genesis of copper polymetallic deposit.%维拉斯托铜多金属矿床地处中亚造山带和大兴安岭造山带的叠加复合部位,该矿床花岗岩类锆石SHRIMP U-Pb 测年结果显示为(298.0±2.5)Ma、(308.3±4.2)Ma、(313.9±3.4)Ma和(320.5±4.1)Ma,表明该矿区花岗岩类的成岩时代为晚石炭世.岩石地球化学特征表明它们为岩浆弧活动的产物.除花岗闪长岩样品锆石的εHf(t)为-4.1~+4.08外,其他3件黑云母花岗岩、黑云母二长花岗岩、石英闪长岩样品锆石εHf(t)为正值,为+0.4~ +9.9,锆石Hf模式年龄的峰值与古亚洲洋发育的时间较为一致,暗示矿区花岗岩类源区物质主要为俯冲的古亚洲洋壳以及少量前寒武纪地壳.矿区花岗岩类系统研究为探讨晚古生代兴蒙造山带的演化过程提供了基础资料,为该铜多金属矿床的成因研究提供了新的证据.

  5. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards

    Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinikoff, J.N.; Valley, J.W.; Mundil, R.; Campbell, I.H.; Korsch, R.J.; Williams, I.S.; Foudoulis, C.


    Precise isotope dilution-thermal ionisation mass spectrometry (ID-TIMS) documentation is given for two new Palaeozoic zircon standards (TEMORA 2 and R33). These data, in combination with results for previously documented standards (AS3, SL13, QGNG and TEMORA 1), provide the basis for a detailed investigation of inconsistencies in 206Pb/238U ages measured by microprobe. Although these ages are normally consistent between any two standards, their relative age offsets are often different from those established by ID-TIMS. This is true for both sensitive high-resolution ion-microprobe (SHRIMP) and excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) dating, although the age offsets are in the opposite sense for the two techniques. Various factors have been investigated for possible correlations with age bias, in an attempt to resolve why the accuracy of the method is worse than the indicated precision. Crystallographic orientation, position on the grain-mount and oxygen isotopic composition are unrelated to the bias. There are, however, striking correlations between the 206Pb/238U age offsets and P, Sm and, most particularly, Nd abundances in the zircons. Although these are not believed to be the primary cause of this apparent matrix effect, they indicate that ionisation of 206Pb/238U is influenced, at least in part, by a combination of trace elements. Nd is sufficiently representative of the controlling trace elements that it provides a quantitative means of correcting for the microprobe age bias. This approach has the potential to reduce age biases associated with different techniques, different instrumentation and different standards within and between laboratories. Crown Copyright ?? 2004 Published by Elsevier B.V. All rights reserved.

  6. Zircon SHRIMP dating of granite from Qaidamshan,NW China


    Zircon SHRIMP dating from Qaidamshan granite shows that the granite age is 446 Ma, similar to that of eclogite in the UHP belt. We think that both granite and eclogite may be formed at different stages during tectonic evolution of this area. Together with other studies we suggested that the collision of ocean and continent plates may occur at the early Caledonian in this area, forming the eclogite, and the collision of continent and continent plates at the late Caledonian, forming the Qaidamshan granite with the zircon SHRIMP age of 446 Ma.

  7. Geology, zircon geochronology, and petrogenesis of Sabalan volcano (northwestern Iran)

    Ghalamghash, J.; Mousavi, S. Z.; Hassanzadeh, J.; Schmitt, A. K.


    Sabalan Volcano (NW Iran) is an isolated voluminous (4821 m elevation; > 800 km2) composite volcano that is located within the Arabia-Eurasia collision zone. Its edifice was assembled by recurrent eruptions of trachyandesite and dacite magma falling into a relatively restricted compositional range (56-67% SiO2) with high-K calc-alkaline and adakitic trace element (Sr/Y) signatures. Previous K-Ar dating suggested protracted eruptive activity between 5.6 and 1.4 Ma, and a two stage evolution which resulted in the construction of the Paleo- and Neo-Sabalan edifices, respectively. The presence of a topographic moat surrounding Neo-Sabalan and volcanic breccias with locally intense hydrothermal alteration are indicative of intermittent caldera collapse of the central part of Paleo-Sabalan. Volcanic debris-flow and debris-avalanche deposits indicate earlier episodes of volcanic edifice collapse during the Paleo-Sabalan stage. In the Neo-Sabalan stage, three dacitic domes extruded to form the summits of Sabalan (Soltan, Heram, and Kasra). Ignimbrites and minor pumice fall-out deposits are exposed in strongly dissected drainages that in part have breached the caldera depression. Lavas and pyroclastic rocks are varyingly porphyritic with Paleo-Sabalan rocks being trachyandesites carrying abundant phenocrysts (plagioclase + amphibole + pyroxene + biotite). The Neo-Sabalan rocks are slightly more evolved and include dacitic compositions with phenocrysts of plagioclase + amphibole ± alkali-feldspar ± quartz. All Sabalan rock types share a common accessory assemblage (oxides + apatite + zircon). High spatial resolution and sensitivity U-Pb geochronology using Secondary Ionization Mass Spectrometry yielded two clusters of zircon ages which range from 4.5 to 1.3 Ma and 545 to 149 ka, respectively (all ages are averages of multiple determinations per sample). U-Th zircon geochronology for selected Neo-Sabalan rocks agrees with the U-Pb ages, with the youngest zircon rims dating

  8. SHRIMP zircon U-Pb and biotite and hornblende Ar-Ar geochronology of Sungun, Haftcheshmeh, Kighal, and Niaz porphyry Cu-Mo systems: evidence for an early Miocene porphyry-style mineralization in northwest Iran

    Hassanpour, Shohreh; Alirezaei, Saeed; Selby, David; Sergeev, Sergey


    The Cenozoic Urumieh-Dokhtar magmatic belt (UDMB) extends for over 2,000 km from northwest to southeast Iran and is characterized by dominantly calc-alkaline volcanic, pyroclastic, and intrusive rocks. The UDMB hosts numerous porphyry-type Cu ± Mo deposits, mostly distributed in two separate areas, one known as the Kerman copper belt (KCB) in the south, and the other, here referred to as the Arasbaran Metallogenic Zone (AMZ), in the north, of the UDMB. The two areas are represented by two world-class Cu-Mo deposits, Sarcheshmeh (1,200 Mt of ore at 0.69 % Cu and 300 ppm Mo) and Sungun (>500 Mt of ore at 0.69 % Cu and ~250 ppm Mo), respectively. Chronology data were obtained for the Sungun, Haftcheshmeh, Kighal, and Niaz deposits in the AMZ. The Sungun deposit is associated with a suite of porphyritic granodiorite to monzodiorite stocks and late dykes intruding older andesitic lavas and limestones. SHRIMP zircon U-Pb data indicate that the host andesites were emplaced at 27.65 ± 0.51 Ma (±0.2σ). The main Sungun porphyritic intrusion crystallized at 20.69 ± 0.37 (±0.2σ) Ma. The Haftcheshmeh deposit is associated with a porphyritic granodiorite body intruding an older gabbro-diorite intrusion. Primary magmatic hornblende from the gabbro-diorite host rock yielded a 40Ar/39Ar plateau age of 27.47 ± 0.17 Ma. The main porphyritic intrusion crystallized at 19.46 ± 0.39 Ma. The Kighal porphyry system is associated with a porphyritic monzonite body intruding into older andesitic and dacitic lavas, and the Niaz porphyry system is associated with a porphyritic granodiorite stock cutting through an older monzodiorite intrusion. For the Kighal and Niaz, secondary biotite concentrates collected from potassic alteration zones in the parent porphyritic bodies yielded plateau ages of 20.1 ± 1.8 and 22.14 ± 0.13 Ma, respectively. The timing of the porphyritic intrusions and the associated mineralizations in the AMZ is considerably older than that in KCB in southern UDMB (14

  9. Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone (Évora Aracena metamorphic belt, SW Iberian Massif): Sm Nd isotopes and SHRIMP zircon U Th Pb geochronology

    Chichorro, M.; Pereira, M. F.; Díaz-Azpiroz, M.; Williams, I. S.; Fernández, C.; Pin, C.; Silva, J. B.


    The Late Ediacaran (c. 560-550 Ma) Série Negra sediments of the Évora-Aracena metamorphic belt, Ossa-Morena Zone, SW Iberian Massif, preserve a record of the erosion of an Avalonian-Cadomian magmatic arc and subsequent related turbiditic sedimentation. Detrital zircon from the Série Negra is characterized by predominantly Ediacaran and Cryogenian ages, with few Paleoproterozoic and Archean cores, and a marked lack of Grenvillian ages. These features, when combined with the metasediments' enrichment in LREE (La/Yb = 14), negative Eu-anomalies, low 147Sm/ 144Nd values (0.121) and negative ɛNd 550 = - 5.5, indicate that the protolith Série Negra sediments were derived from a continental magmatic arc. A period of Late Cadomian (ca. 560-540 Ma) tectonism was followed by an extended episode of widespread bimodal magmatism related to Cambrian (ca. 540-500 Ma) rifting. This tectonic inversion is expressed in the geological record by a regional Early Cambrian unconformity. SHRIMP zircon U-Th-Pb ages from four felsic orthogneisses from the Évora Massif record Cambrian (527 ± 10 Ma, 522 ± 5 Ma, 517 ± 6 Ma and 505 ± 5 Ma) crystallization ages for their igneous protoliths. This confirms the existence of widespread Lower Paleozoic igneous activity in the Ossa-Morena Zone: (i) a Lower Cambrian (ca. 535-515 Ma) igneous-felsic dominated-sedimentary complex (with calc-alkaline signature and associated carbonate and siliciclastic deposition), and (ii) a Middle Cambrian-?Ordovician (ca. 515-490 Ma) igneous-bimodal-sedimentary complex (with calc-alkaline and tholeiitic signatures and associated dominant siliciclastic deposition, but also carbonate sediments). The Cambrian felsic magmatism was characterized by negative Eu-anomalies, (La/Lu) N = 0.8-11, 147Sm/ 144Nd = 0.1289-0.1447 and ɛNd 500 ranging from - 1.5 to - 0.8. A tendency towards peraluminous compositions suggests late fractionation, low degrees of partial melting, or the mixing of crustal and mantle

  10. Zircon SHRIMP age of Mesoarchaean meta-argillo-arenaceous rock in the Anshan area and its geological significance

    WAN; Yusheng(万渝生); SONG; Biao(宋彪); LIU; Dunyi(刘敦一)


    In order to better understand the early continental evolution of the Anshan area, one of the typical Precambrian distribution areas of the North China Craton, the geochronology and REE composition of the zircons from the meta-argillo-arenaceous rock occurred as enclave in 3.1 Ga Lishan trondhjemite are studied by using SHRIMP II ion microprobe. It is indicated that the Paleoarchaean is a very important continental formation period in the Anshan area and 3.2 Ga can be regarded as the boundary between the Paleoarchaean and Mesoarchaean.

  11. Zircon geochronology of intrusive rocks from Cap de Creus, eastern Pyrenees


    New petrological and U–Pb zircon geochronological information has been obtained from intrusive plutonic rocks and migmatites from the Cap de Creus massif (Eastern Pyrenees) in order to constrain the timing of the thermal and tectonic evolution of this northeasternmost segment of Iberia during late Palaeozoic time. Zircons from a deformed syntectonic quartz diorite from the northern Cap de Creus Tudela migmatitic complex yield a mean age of 298.8±3.8 Ma. A syntectonic granodiori...

  12. Palaeoproterozoic U Pb SHRIMP zircon age from basement rocks in Bangladesh: A possible remnant of the Columbia supercontinent

    Hossain, Ismail; Tsunogae, Toshiaki; Rajesh, Hariharan M.; Chen, Bin; Arakawa, Yoji


    We present new U-Pb SHRIMP zircon geochronological data for basement rocks in Bangladesh, and discuss the relationship with the formation of the Columbia supercontinent. Euhedral zircons from a diorite sample yield a concordia age of 1730 ± 11 Ma, which is interpreted as the crystallization age. The Palaeoproterozoic age of the examined basement rock and the common occurrences of similar ˜1.7-Ga geologic units in the Central Indian Tectonic Zone and Meghalaya-Shillong Plateau in Indian Shield suggest their apparent continuation. This, together with the occurrence of similar ˜1.7-Ga geologic units in the Albany-Fraser belt in Australia and East Antarctica, are used to suggest that the basement rocks in Bangladesh formed towards the final stages of the assembly of the Columbia supercontinent.

  13. Chemical Abrasion Applied to LA-ICP-MS U–Pb Zircon Geochronology

    Quentin G. Crowley


    Full Text Available Zircon (ZrSiO4 is the most commonly used mineral in U–Pb geochronology. Although it has proven to be a robust chronometer, it can suffer from Pb-loss or elevated common Pb, both of which impede precision and accuracy of age determinations. Chemical abrasion of zircon involves thermal annealing followed by relatively low temperature partial dissolution in HF acid. It was specifically developed to minimize or eliminate the effects of Pb-loss prior to analysis using Thermal Ionization Mass Spectrometry (TIMS. Here we test the application of chemical abrasion to Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS by analyzing zircons from both untreated and chemically abraded samples. Rates of ablation for high alpha-dose non-treated zircons are up to 25% faster than chemically abraded equivalents. Ablation of 91500 zircon reference material demonstrates a ca. 3% greater down-hole fractionation of 206Pb/238U for non-treated zircons. These disparities necessitate using chemical abrasion for both primary reference material and unknowns to avoid applying an incorrect laser induced fractionation correction. All treated samples display a marked increase in the degree of concordance and/or lowering of common Pb, thereby illustrating the effectiveness of chemical abrasion to LA-ICP-MS U–Pb zircon geochronology.

  14. Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China

    Mattinson, C.G.; Wooden, J.L.; Zhang, J.X.; Bird, D.K.


    In the southeastern part of the North Qaidam terrane, near Dulan, paragneiss hosts minor peridotite and UHP eclogite. Zircon geochronology and trace element geochemistry of three paragneiss samples (located within a ???3 km transect) indicates that eclogite-facies metamorphism resulted in variable degrees of zircon growth and recrystallization in the three samples. Inherited zircon core age groups at 1.8 and 2.5 Ga suggest that the protoliths of these rocks may have received sediments from the Yangtze or North China cratons. Mineral inclusions, depletion in HREE, and absence of negative Eu anomalies indicate that zircon U-Pb ages of 431 ?? 5 Ma and 426 ?? 4 Ma reflect eclogite-facies zircon growth in two of the samples. Ti-in-zircon thermometry results are tightly grouped at ???660 and ???600 ??C, respectively. Inclusions of metamorphic minerals, scarcity of inherited cores, and lack of isotopic or trace element inheritance demonstrate that significant new metamorphic zircon growth must have occurred. In contrast, zircon in the third sample is dominated by inherited grains, and rims show isotopic and trace element inheritance, suggesting solid-state recrystallization of detrital zircon with only minor new growth. ?? 2009 Elsevier Ltd.

  15. Constraining a SHRIMP U-Pb age: micro-scale characterization of zircons from Saxonian Rotliegend rhyolites

    Nasdala, Lutz; Götze, Jens; Pidgeon, Robert T.; Kempe, Ulf; Seifert, Thomas

    We present results of a detailed investigation of zircons from two rhyolites from St. Egidien and Chemnitz, Saxony, using a combination of microprobe techniques (SHRIMP ion probe, Raman microprobe, SEM: SE, BSE, and CL imaging). These rhyolites belong to the so-called ``lower volcanics'', which is the older of two series of Late Variscan volcanic rocks occurring in the Saxonian Sub-Erzgebirge basin (Germany). The purpose of the present contribution is to demonstrate that detailed characterization of zircons, as provided by the different micro-techniques, facilitates soundest interpretation of geochronological data. The zircons (at most 40 to 80 m in size) show oscillatory growth zoning, with reversely correlated CL and BSE signal intensities. These zircons are interpreted to have grown during crystallization of the rhyolite because, apart from some cracking, they do not appear to have experienced any alteration since the time of their growth: The shapes of the zircons and their internal structures revealed by CL and BSE imaging appear to be magmatic, and neither annealing of the accumulated alpha-decay damage nor disturbance of the U-Pb system is observed. The SHRIMP ion probe measurements on the zircons gave a Permian 206Pb/238U age of 278 +/- 5 Ma (95% confidence). The concordance of this age is supported by the correlation between the low degrees of metamictization (estimated from Raman parameters) and the accumulated alpha fluxes (calculated from SHRIMP data). The 278 Ma zircon age is interpreted to represent the age of the ``lower rhyolites'' series and, with that, the age of postkinematic Late Variscan volcanism in the Sub-Erzgebirge basin, which has been related to anorogenic extension and uplift as a result of intracontinental rifting. Because of genetic association of rhyolites in the Sub-Erzgebirge basin and Li-F granites and lamprophyres in the neighbouring Erzgebirge, the rhyolite age also indirectly contributes to the understanding of the geological

  16. Small-Volume U-Pb Zircon Geochronology by Laser Ablation-Multicollector-ICP-MS


    detrital and metamorphic history of a granulite -facies paragneiss — demonstrate the utility of this technique to a variety of geologic problems and confirm... granulite -facies pelitic gneiss collected inn geochronology by laser ablation-multicollector-ICP-MS, Chemical Fig. 11. A) Concordia plot of all...zircons to unravel the detrital–metamorphic history of a granulite -facies paragneiss from east Greenland. In addition to the small spot diameter, the

  17. A zircon vs titanite geochronometres by SHRIMP IIe as a tool in multistage magmatic intrusion problems

    Wiszniewska, Janina; Krzemińska, Ewa


    Most of crystalline basement area of NE Poland is represented by late Svecofennian (1.84-1.80 Ga) orogenic granitoids and supracrustal succession. These early rock assemblages were intruded by plutons of the Mezoproterozoic AMCG suite, which occupies most of W-E trending belt of the so called Mazury Complex. This suite is dominated by A-type granitoids of rapakivi-like texture. The subsequent important components are gabbro-norite, anorthosite and locally mangerite and charnockite rock variations. Anorthosite occurs at three autonomic massifs Sejny, Suwałki(SAM) and Ketrzyn. The basic geochronological investigation was carried out previously using mainly the U-Pb-Th system of zircon and monazite geochronometers. The AMCG suite yielded ages mainly in the range between 1548 to 1500 Ma. The isotopic work also reveals sporadic ages recorded on titanite (1526±11 Ma), considered as the crystallization age of the titanites under subsolidus conditions (Dörr et al.,2002). The geochemical and isotopic whole rock investigation suggests that formation of the AMCG suite was a complex process with multiple magma batches sequentially differentiating, and probably undergoing mixing and crustal assimilation. In this study, we report sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon and titanite single grain age data from upper part of drill section (Krasnopol 6, depth 1003m) located within easternmost vicinity of the SAM. Both of mineral phases have been selected from the contact between A-type granitoid with Pb-Pb TIMS age of 1525±5 Ma (op cit) and mafic chilled margin interpreted as next magma input. Dating of 20 single zircons from the contact zone yielded concordia ages of 1510±10 Ma for most of grains defined as emplacement age with inheritance at 1850±10 Ma. It evidenced a younger dose of the melt on the top of plutonic body and some input of older crustal material, detected also by whole rock isotopic signatures. Single titanite grains from the same zone

  18. SHRIMP Zircon U-Pb Dating of Gabbro and Granite from the Huashan Ophiolite, Qinling Orogenic Belt, China: Neoproterozoic Suture on the Northern Margin of the Yangtze Craton

    SHI Yuruo; LIU Dunyi; ZHANG Zongqing; MIAO Laicheng; ZHANG Fuqin; XUE Hongmei


    The recently identified Huashan ophiolitic mélange was considered as the eastern part of the Mianliie suture in the Qinling orogenic belt. SHRIMP zircon U-Pb geochronology on gabbro from the Huashan ophiolite and granite intruding basic volcanic rocks indicates crystallization ages of 947±14Ma and 876±17 Ma respectively. These ages do not support a recently proposed Hercynian Huashan Ocean, but rather favor that a Neoproterozoic suture assemblage (ophiolite) is incorporated into the younger (Phanerozoic) Qinling orogenic belt.

  19. Provisional zircon and monazite uranium-lead geochronology for selected rocks from Vermont

    Aleinikoff, John N.; Ratcliffe, Nicholas M.; Walsh, Gregory J.


    This report presents the results of zircon and monazite uranium-lead (U-Pb) geochronologic analyses of 24 rock samples. The samples in this study were collected from mapped exposures identified while conducting either new, detailed (1:24,000-scale) geologic quadrangle mapping or reconnaissance mapping, both of which were used for compilation of the bedrock geologic map of Vermont. All of the collected samples were judged to be igneous rocks (either intrusive or extrusive) on the basis of field relations and geochemistry. The one exception is the Okemo Quartzite on Ludlow Mountain. These geochronologic data were used to supplement regional correlations between igneous suites on the basis of similar geochemistry and geologic mapping.

  20. Geochronology of Zircon from Modern Plutons Beneath Two Contrasting Arc Volcanoes

    Bacon, C. R.


    Ion microprobe (SHRIMP RG) 238U-230Th zircon dating documents recent crystallization of shallow plutons beneath two caldera volcanoes where magmas evolved mainly by crystallization differentiation. Mount Mazama, Oregon, is a medium-K calc-alkaline Cascade arc volcano whose 7.7-ka climactic eruption ejected granodiorite and related plutonic blocks during formation of Crater Lake caldera. Mount Veniaminof, Alaska, is a medium-K tholeiitic Aleutian arc volcano that ejected granodiorite, diorite, and gabbro blocks in its 3.7-ka caldera-enlarging eruption. Zircons in four granodiorite blocks from Mazama crystallized at various times between 20 ka and greater than 300 ka, with concentrations of model ages near 50-70, 110, and 200 ka that correspond to periods of dacitic volcanism dated by K-Ar (Bacon and Lowenstern, 2005, EPSL 233:277-293). Multiple-age zircon populations are common. The youngest zircon model ages in blocks from different locations around the caldera are similar to ages of nearby volcanic vents and may help map the distribution of intrusions within a composite pluton. Mazama zircons typically have many 10's to 100's of ppm U and Th, and grew relatively late in high- crystallinity magmas. U-Th model ages of zircon from a 27-ka rhyodacite, the only eruptive unit known with common zircon, are similar to those from granodiorite. Survival of these recycled crystals in zircon- undersaturated hydrous rhyodacitic magma suggests little time from entrainment to the 27-ka eruption. In contrast, the voluminous 7.7-ka climactic rhyodacite is virtually lacking in zircon, indicating dissolution of any granodioritic debris in the hot, vigorously growing silicic magma body during the intervening period. Veniaminof erupted basaltic through rhyodacitic magmas over the past 250 kyr. Gabbro, diorite, and miarolitic granodiorite blocks from Veniaminof represent cumulate mush and vapor-saturated residual melt segregations (Bacon, Sisson, and Mazdab, 2006, EOS 87:36:U41B-05

  1. Disturbed Sr and Nd Isotope Systematics in Zircons With Concordant SHRIMP U-Pb Ages

    Weaver, K. L.; Bennett, V. C.; Depaolo, D. J.; Mundil, R.


    Little is known about the Sr- and Nd-isotopic systematics of zircon. With slow diffusion rates and a high resistance to weathering, zircon should preserve accurate age information and initial Sr and Nd isotopic ratios. As a common accessory mineral, it could provide petrogenetic information for rocks that have been altered, weathered, or metamorphosed. We have investigated the Sm-Nd and Rb-Sr systematics of zircons from unmetamorphosed granitic rocks that have yielded concordant U-Pb SHRIMP (Sensitive High Resolution Ion Microprobe) ages and have depleted mantle signatures for Nd and Sr isotopes. Zircon populations from mantle-derived igneous rocks with ages of 0.1, 1.7, and 3.8 Ga were chosen for Sr and Nd isotopic analysis. Low concentrations (Sr, 4 to 8 ppm and Nd, 6 to 12 ppm) and small grain size necessitate the use of multigrain aliquots. Meaningful results can be obtained only if all of the zircons in the rock are a coherent population with homogeneous ages throughout and among grains. Zircon U-Pb ages were characterized using the SHRIMP RG, and trace element concentrations were measured by LA-ICPMS. The populations are homogeneous and the material ablated by the ion beam ( ˜~20 μ m spot size) shows little evidence of lead loss. Results on zircons of 100 Ma and 1700 Ma indicate that both the Rb-Sr and Sm-Nd systems have been severely disturbed. For the 1700 Ma granitic rocks from the Yavapai sequence of Arizona, zircon Sm-Nd apparent ages are ca. 1000 Ma! Leaching was used to remove contributions from adhering or included minerals, but leached residues that presumably most closely approximate the composition of the pure zircon (e.g. have high Sm/Nd) are no less disturbed than unleached samples. Despite the U-Pb SHRIMP ages indicating a closed system, the zircons have failed to preserve a reasonable age or initial isotopic composition for Sr and Nd, indicating that parts of the crystal might be severely affected by radiation damage resulting in disturbed

  2. SHRIMP Dating and Recrystallization of Metamorphic Zircons from a Granitic Gneiss in the Sulu UHP Terrane

    LI Hongyan


    An unusual zircon SHRIMP dating result of a granitic gneiss from the Qinglongshan eclogite-gneiss roadcut section is presented in this paper. The very peculiar and complicated internal structures, as well as the very low Th/U ratios (0.01-0.08) of the zircons indicate that they were formed by metamorphic recrystallization. Strongly in contrast with previously published zircon U-Pb ages of the Dabie-Sulu UHP metamorphic rocks where protolith ages of 600-800 Ma are commonly recorded, only metamorphic age of 218+5 Ma, defined by 18 analytical spots either in rim or in core of zircons, are recorded in this granitic gneiss. This age represents the time of the complete metamorphic recrystallization overprint on primary magmatic zircons. The recrystallization was derived by the UHP metamorphism,and was strengthened by the early stage of retrograde metamorphic fluid activity.

  3. Cenomanian-? early Turonian minimum age of the Chubut Group, Argentina: SHRIMP U-Pb geochronology

    Suárez, Manuel; Márquez, Marcelo; De La Cruz, Rita; Navarrete, César; Fanning, Mark


    Four new SHRIMP U-Pb zircon ages older than 93 Ma from samples of the two uppermost formations accumulated in two different depocenters (Golfo de San Jorge and Cañadón Asfalto basins) of the Chubut Group in central Argentinean Patagonia, establish a pre-late Cenomanian-? early Turonian age for the group. It also confirms a coeval and comparable evolution of the two depocenters, where distal pyroclastic material was deposited together with fluvial and lacustrine facies.

  4. Elucidating the magmatic history of the Austurhorn silicic intrusive complex (southeast Iceland) using zircon elemental and isotopic geochemistry and geochronology

    Padilla, A. J.; Miller, C. F.; Carley, T. L.; Economos, R. C.; Schmitt, A. K.; Coble, M. A.; Wooden, J. L.; Fisher, C. M.; Vervoort, J. D.; Hanchar, J. M.


    The Austurhorn intrusive complex (AIC) in southeast Iceland comprises large bodies of granophyre and gabbro, and a mafic-silicic composite zone (MSCZ) that exemplifies magmatic interactions common in Icelandic silicic systems. Despite being one of Iceland's best-studied intrusions, few studies have included detailed analyses of zircon, a mineral widely recognized as a valuable tracer of the history and evolution of its parental magma(s). In this study, we employ high spatial resolution zircon elemental and isotopic geochemistry and U-Pb geochronology as tools for elucidating the complex construction and magmatic evolution of Austurhorn's MSCZ. The trace element compositions of AIC zircon crystals form a broad but coherent array that partly overlaps with the geochemical signature for zircons from Icelandic silicic volcanic rocks. Typical of Icelandic zircons, Hf concentrations are relatively low (mush-like material and a prolonged lifetime for the complex.

  5. Structural evolution of the Yeongwol thrust system, northeastern Okcheon fold-thrust belt, Korea: Insights from structural interpretations and SHRIMP U-Pb and K-Ar geochronology

    Jang, Yirang; Kwon, Sanghoon


    The NE-trending Okcheon Belt is a prominent fold-thrust belt preserved in the Korean Peninsula. In the Yeongwol area, the northeastern Okcheon Belt, the Cambrian-Ordovician (possibly to Silurian) Joseon Supergroup overlies the Carboniferous-Permian (possibly to early Triassic) Pyeongan Supergroup and/or Jurassic Bansong Group by N-S trending thrust faults, having highly connected traces in map view. To understand the structural geometry of these thrust faults and their evolution history, we have conducted structural analyses, together with SHRIMP U-Pb zircon and K-Ar illite age datings. The results show that (1) the thrusts in the Yeongwol area, carrying the lower Paleozoic strata over the upper Paleozoic or Mesozoic strata, are defined as the Yeongwol thrust system. The closed-loops map patterns of this system can further be interpreted by alternative duplex models in terms of a hinterland dipping duplex vs. a combination of major thrusts and connecting splays; (2) newly obtained SHRIMP U-Pb zircon ages from a dike and synorogenic sediments and K-Ar illite ages from fault gouges, together with previously reported evidences form the Yeongwol area, suggest multiple events after Permo-Triassic to early Neogene. The SHRIMP U-Pb detrital zircon ages from the lower Paleozoic rocks of the Yeongwol area can provide tectono-stratigraphic information of this area before the Permian. These further indicate the broader implications in that how detailed structural interpretations supported by the geochronological data can help to understand the tectonic evolution of the Okcheon Belt as well as the fold-thrust belts in general.

  6. Scanning ion imaging - a potent tool in SIMS U -Pb zircon geochronology

    Whitehouse, M. J.; Fedo, C.; Kusiak, M.; Nemchin, A.


    The application of high spatial resolution (BSE) characterisation, has revolutionised geochronology over the past 25 years, re-vealing complexities of crustal evolution from zoned zircons. In addition to ge-ochronology, such studies now commonly form the basis of broader investigations using O- and Hf- isotopes and trace elements obtained from the same growth zone as age, circumventing ambiguities commonly present in bulk-rock isotope studies. The choice of analytical beam diameter is often made to maximise the precision of data obtained from a given area of analysis within an identifiable growth zone. In cases where zircons yield poorly constrained internal structures in SEM, high spatial resolution spot analyses may yield uninterpretable and/or meaningless mixed ages by inadvertent sampling across regions with real age differences. Scanning ion imaging (SII) has the potential to generate accurate and precise geochrono-logical data with a spatial resolution down to ca. 2 μm, much higher than that of a normal spot analysis. SII acquisition utilises a rastered primary beam to image an area of the sample with a spatial resolution dependent on the selected primary beam diameter. On the Cameca ims1270/80 instruments, the primary beam scanning is coupled with the dynamic transfer optical system (DTOS) which deflects the secondary ions back on to the ion optical axis of the instrument regardless of where in the raster illuminated area the ions originated. This feature allows retention of a high field magnification (= high transmission) mode and the ability to operate the mass spectrometer at high mass resolution without any compromise in the quality of the peak shape. Secondary ions may be detected either in a sequential (peak hopping) mono-collection mode or simultaneous multicollection mode using low-noise pulse counting electron multipliers. Regardless of the detection mode, data are acquired over sufficient cycles to generate usable counting statistics from selected

  7. Combined garnet and zircon geochronology and trace elements studies - constraints of the UHP-(U)HT evolution of Orlica-Śnieżnik Dome (NE Bohemian Massif).

    Walczak, Katarzyna; Anczkiewicz, Robert; Szczepański, Jacek; Rubatto, Daniela


    The Orlica-Śnieżnik Dome (OSD), located on the NE margin of the Bohemian Massif, is predominantly composed of amphibolite-facies orthogneiss that contain bodies of HP and UHP eclogites and granulites. Numerous geochronological studies have been undertaken to constrain the timing of the ultra-high grade metamorphic event. Despite this, the exact timing of UHP-(U)HT conditions remain dubious (e.g. Brueckner et al., 1991; Anczkiewicz et al., 2007; Bröcker et al., 2009 & 2010). We have utilized garnet and zircon geochronology to provide time constraints on the evolution of the UHT-(U)HP rocks of the OSD. We have combined the ages with trace element analyses in garnet and zircon to better understand the significance of the obtained ages in petrological context. Lu-Hf grt-wr dating of peritectic garnet from two felsic granulites constrained the time of its initial growth at 346.9 ± 1.2 and 348.3 ± 2.0 Ma, recording peak conditions of 2.7 GPa and 950°C (e.g. Ferrero et al., 2015). In situ U-Pb SHRIMP dating of zircon from the same granulite gave a younger age of 342.2 ± 3.4 Ma. HREE partitioning between garnet rim and metamorphic zircon indicate their growth in equilibrium, hence, the U-Pb zircon date constrains the terminal phase of garnet crystallization. Similar ages were obtained from two eclogite bodies from Międzygórze and Nowa Wieś localities; Lu-Hf (grt-cpx-wr) dating provided ages of 346.5 ± 2.4 and 348.1 ± 9.1 Ma for samples from Międzygórze and Nowa Wieś, respectively. The same age (within error) of 346.3 ± 5.2 Ma was reported by Bröcker et al. (2010) for zircon from the Międzygórze eclogite. Comparison of REE concentrations in garnet (this study) and in metamorphic zircon (reported in Bröcker et al., 2010) indicate that garnet and zircon crystallized in equilibrium. Furthermore, M-HREE patterns observed in both garnet and zircon strongly suggest their growth at eclogite facies conditions. Sm-Nd garnet ages obtained for both felsic and mafic

  8. SHRIMP single zircon U-Pb dating of the Kongling high-grade metamorphic terrain: Evidence for >3.2 Ga old continental crust in the Yangtze craton

    GAO; Shan; (


    [1]Liu, G. L., New progress in the geochronology of the Kongling terrain, Regional Geology of China, 1987, 1: 95.[2]Zheng, W. Z., Liu, G. L., Wang, X. W., Geochronology of the Archean Kongling terrain, Bull. Yichang Inst. Geol. Miner. Resour. (in Chinese), 1991, 16: 97-105.[3]Yuan, H. H., Zhang, Z. L., Liu, W. et al., Dating of zircons by evaporation method and its application, Mineral. Petrol. (in Chinese), 1991, 11: 72.-79[4]Ling, W. L., Gao, S., Zheng, H. F. et al., Sm-Nd isotopic dating of Kongling terrain, Chinese. Sci. Bull., 1998, 43(1): 86-89.[5]Gao, S., Ling, W. L., Qiu, Y. et al., Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton: evidence for cratonic evolution and redistribution of REE during crustal anatexis, Geochim. Cosmochim. Acta, 1999, 63: 2071-2088.[6]Gao, S., Zhang, B. R., The discovery of Archean TTG gneisses in northern Yangtze craton and their implications, Earth Sci. (in Chinese, with English abstract), 1990, 15: 675-679.[7]Dong, S. B., Metamorphism and Its Relation to the Crustal Evolution in China (in Chinese), Beijing: Geological Publishing House, 1986. [8]Composton, W., Williams, I. S., Meyer, C., U-Pb geochronology of zircons from lunar breccia 73217 using sensitive high mass-resolution ion microprobe, J. Geophys. Res., 1984, 89(B): 252-534.[9]Williams, I. S., Composton, W., Black, L. P et al., Unsupported radiogenic Pb in zircon: a case of anomalously high Pb-Pb, U-Pb and Th-Pb ages, Contrib. Mineral. Petrol., 1984, 88: 322-327.[10] Nelson, D. R., Evolution of the Archean granite-greenstone terrains of the Eastern Goldfileds, Western Australia: SHRIMP U-Pb zircon constraints, Precambrian Res., 1997, 83: 57-81.[11] Ling, W. L., Geochronology and crustal growth of the Paleoproterozoic basements along the northern margin of the Yangzte craton, Earth Sci., 1996, 21(5): 491—493.

  9. Zircon SHRIMP U-Pb Dating, Geochemical Characteristics and Tectonic Significance of Granitic Gneisses in Amdo, Tibet

    Lu Lu; Zhenhan Wu; Zhen Zhao; Daogong Hu; Peisheng Ye


    The Amdo microcontinent is located within the middle of Bangong-Nujiang suture (BNS) zone in the shape of lens. The basic geological research restricts geologists from understand-ing the histories of tectonic evolution of BNS and regional geology more deeply. This paper system-atically studies the geochronology and geochemistry of granitic gneisses from Amdo basement. These data provide constraints on formation age, source characteristics and tectonic setting of their protolith. The SHRIMP zircon U-Pb dating is operated for granitic gneisses. Samples AGS-2 and AGS-3 (granitic gneiss) yield average zircon U-Pb ages of 485±14 and 487±6 Ma, respectively. These ages should represent the formation age of protolith and indicate that they are formed in the Early Ordovician. Granitic gneisses are characterized by high SiO2, Na2O, K2O and Al2O3, low Fe and Mg, enrichment in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), deple-tion in heavy rare earth elements (HREEs) and high field strength elements (HFSEs), with negative Eu anomaly. The Rittmann index (σ) is 1.77 to 2.60, less than 3.3. The aluminum saturation index (A/CNK) values range from 0.88 to 1.26. These features suggest that protolith of granitic gneisses from Amdo basement show characteristics of calc-alkaline and S-type granite, and they could be de-rived from partial melting of metamorphic greywackes in the upper crust of low maturity. The tec-tonic setting is syn-collision. These all suggest that the formation of protolith of granitic gneisses from Amdo are caused by the Early Paleozoic orogeny, which could be related to proto-Tethyan oceanic subduction along Gondwana continental margins, and does not result from the production of Pan-African orogenesis.

  10. New U-Pb SHRIMP zircon ages for pre-variscan orthogneisses from Portugal and their bearing on the evolution of the Ossa-Morena tectonic zone

    Cordani Umberto G.


    Full Text Available New SHRIMP U-Pb zircon ages for the Portalegre and Alcáçovas orthogneisses document a complex pre- Variscan history for the Iberian basement in Portugal. The available geochemical and geochronological data for the Alcáçovas orthogneiss (ca. 540 Ma tend to favor its involvement in a Cadomian orogenic event. This is consistent with the development of an active continental margin setting at the end of the Proterozoic and supports a Gondwanan provenance for the Iberian crust. On the other hand, the Ordovician emplacement age obtained for the magmatic precursors of the Portalegre orthogneisses (497?10 Ma provides additional evidence for the occurrence of rift-related magmatic activity during the Lower Paleozoic.

  11. New U-Pb SHRIMP zircon ages for pre-variscan orthogneisses from Portugal and their bearing on the evolution of the Ossa-Morena tectonic zone.

    Cordani, Umberto G; Nutman, Allen P; Andrade, Antonio S; Santos, José F; Azevedo, Maria do Rosário; Mendes, Maria Helena; Pinto, Manuel S


    New SHRIMP U-Pb zircon ages for the Portalegre and Alcáçovas orthogneisses document a complex pre- Variscan history for the Iberian basement in Portugal. The available geochemical and geochronological data for the Alcáçovas orthogneiss (ca. 540 Ma) tend to favor its involvement in a Cadomian orogenic event. This is consistent with the development of an active continental margin setting at the end of the Proterozoic and supports a Gondwanan provenance for the Iberian crust. On the other hand, the Ordovician emplacement age obtained for the magmatic precursors of the Portalegre orthogneisses (497 +/- 10 Ma) provides additional evidence for the occurrence of rift-related magmatic activity during the Lower Paleozoic.

  12. Tithonian age of dinosaur fossils in central Patagonian, Chile: U-Pb SHRIMP geochronology

    Suárez, Manuel; De La Cruz, Rita; Fanning, Mark; Novas, Fernando; Salgado, Leonardo


    Three Tithonian concordant U-Pb SHRIMP zircon ages of 148.7 ± 1.4, 147.9 ± 1.5 and 147.0 ± 1.0 from tuffs intercalated in a clastic sedimentary succession with exceptional dinosaur bones including the new taxon Chilesaurus diegosuarezi gen. et sp. nov. exposed in central Chilean Patagonia (ca. 46°30'S) are reported herein. The fossiliferous beds accumulated in a synvolcanic fan delta reaching a shallow marine basin as indicated by glauconite present in some of the beds, and coeval with the beginning of the transgression of the Aysén Basin.

  13. Tithonian age of dinosaur fossils in central Patagonian, Chile: U-Pb SHRIMP geochronology

    Suárez, Manuel; De La Cruz, Rita; Fanning, Mark; Novas, Fernando; Salgado, Leonardo


    Three Tithonian concordant U-Pb SHRIMP zircon ages of 148.7 ± 1.4, 147.9 ± 1.5 and 147.0 ± 1.0 from tuffs intercalated in a clastic sedimentary succession with exceptional dinosaur bones including the new taxon Chilesaurus diegosuarezi gen. et sp. nov. exposed in central Chilean Patagonia (ca. 46°30'S) are reported herein. The fossiliferous beds accumulated in a synvolcanic fan delta reaching a shallow marine basin as indicated by glauconite present in some of the beds, and coeval with the beginning of the transgression of the Aysén Basin.


    高林志; 丁孝忠; 庞维华; 张传恒


    On the basis of the new remarked the Precambrian stratigraphical column of China, which is discussed by the National Commission on Stratigraphy of China on Aug. , 2010. The Changcheng System is limited in 1.8~1.6 Ga. The Jixian System is limited in 1. 6~1.4 Ga. Unnamed system (1. 4~1.0 Ga) only developed the Xiamaling Formation in the Jixian section. The Qingbaikou System is limited in 1.0~0. 78 Ga. The Nanhua System is in 780 ~635 Ma and The Sinian System is in between 635 ~ 542 Ma.There three important markers in the new geologic time scale. 1) The Changcheng System and the Jixian System are reformed in it; 2) According to the SHRIMP zircon U-Pb dating, the unnamed system is left in the time scale; and 3) the lower boundary age of the Nanhua System is limited at 780 Ma. Because the big problems is the strata division and correlation in restudy of new regional geology in each provinces by Chinese Geological Survey and according to the new geologic time scale of Meso and Neoproterozoic of China, it is big changes in Precambrian strata correlation and tectonic explanation. According to new zircon U-Pb dating found in North China Plate, Yangtze Plate and Talimu Plate, it primary shows the volcanic province and distribution. Dealing with the basic global geodynimics, it is useful to set up a basic late Precambrian section of unify, practical and high precision chronological dating.%报道了全国地层委员会的中-新元古代地层年表新标定的方案:即长城系限定在1.8~1.6 Ga;蓟县系限定在1.6~1.4 Ga;待建系1.4~1.0 Ga;青白口系限定在1.0~0.78 Ga;南华系限定在780~635 Ma及震旦系限定在635~542 Ma.新年表突出3个方面的标定:1)对长城系和蓟县系的年代学限定;2)依据蓟县剖面的新年龄信息,在中国年表中表示了"待建系"的位置; 3)对南华系下限的限定.依据新地层年表,有关的地层对比和构造背景解疑将发生重大变化.中国华北古陆、扬子古陆

  15. Using Zircon Geochronology to Unravel the History of the Naga Hills Ophiolite

    Roeder, T.; Aitchison, J. C.; Clarke, G. L.; Ireland, T. R.; Ao, A.; Bhowmik, S. K.


    Outcrops of the Naga Hills Ophiolite (NHO), a possible eastern extension of the ophiolitic belt running along the India-Asia suture, in Northeast India include a full suite of ophiolitic rocks. The ophiolite has been dated Upper Jurassic based on radiolarian studies of the unit (Baxter et al., 2011) but details of its emplacement onto the Indian margin have not been the subject of detailed investigation. Conglomerates of the Phokphur Formation unconformably overlie an eroded surface on top of dismembered ophiolite fragments and include sediments sourced from both the ophiolite and the margin of the Indian subcontinent. Notably no Asian margin-derived detritus is recognised (similar to the Liuqu conglomerates of Tibet (Davis et al., 2002)). Thus, a detailed study of the Phokphur sediments can produce valuable details of the NHO history, including constraining the timing of ophiolite emplacement. Studies of detrital sandstone petrography confirm a recycled orogen provenance for the Phokphur Formation and thus serve as validation of the methods of Dickinson and Suczek (1979) and Garzanti et al. (2007). Detrital zircon data provides further insight as to the age of source rocks of Phokphur sediments and help to further constrain the timing of ophiolite emplacement. We present results of sedimentary and detrital zircon geochronology analyses of Phokphur sediments from outcrops near the villages of Salumi and Wazeho as a contribution to furthering research on aspects of the India-Asia collision. Baxter, A.T., et al. 2011. Upper Jurassic radiolarians from the Naga Ophiolite, Nagaland, northeast India. Gondwana Research, 20: 638-644. Davis, A.M., et al. 2002. Paleogene island arc collision-related conglomerates, Yarlung-Tsangpo suture zone, Tibet. Sedimentary Geology, 150: 247-273. Dickinson, W.R. and Suczek, C.A., 1979. Plate tectonics and sandstone compositions. Am. Assoc. Pet. Geol. Bull., 63, 2164-2182, (1979). Garzanti, E., et al., 2007. Orogenic belts and orogenic

  16. U-Pb zircon geochronology of Caledonian age orthogneisses dredged from the Chukchi Borderland, Arctic Ocean.

    Brumley, K.; Miller, E. L.; Mayer, L. A.; Wooden, J.; Grove, M.


    Over 500 kilos of metamorphic rock was dredged from outcrops along a steep normal fault scarp in the central Chukchi Borderland in 2009 (HLY0905) from water depths of between about 2500-1400m. The rocks in the dredge included broken angular cobbles and boulder-sized samples of amphibolites, orthogneisses, and granitoids of the same amphibolite facies metamorphic grade, as well as gravel to small cobble-sized ice rafted debris of various rock types. Zircons were separated from two of the orthogneiss samples, and single grain zircon U-Pb ages were determined by SHRIMP analysis to be 428 Ma ± 3.4 for both samples (N=60). Several zircon grains had distinct igneous cores that ranged in age from about 928-1200 Ma (n=7) with two older grains (1700, 1760 Ma). The Caledonian orogenic belt developed in the Ordovician to Devonian affecting northern Europe, Greenland and Arctic Canada. Caledonian deformational trends continue into the Arctic and disappear at the rifted margin of the Arctic Ocean. Syn-orogenic magmatism in the Barents region date deformation in this region during the Caledonian event to have occurred between about 450-410 Ma (Johansson et al., 2005; Gee et al., 2006; Gee and Tebenkov, 2004). Grenville age plutons (900-1250Ma) that were later involved in Caledonian deformation and intruded by 410-450 Ma aged plutons are found on western and eastern Svalbard (Johansson et al., 2005), eastern Greenland, and the Pearya Terrane of northern Ellesmere Island (Trettin,1986, 1992). The Franklinian basement of Arctic Alaska and Canada do not share these Grenvillian ages (Trentin et al, 1987). This suggests that the inherited zircon cores in the Chukchi Borderland orthogneisses were derived, at least in part, from an older Grenvillian basement like that of Pearya, Svalbard and parts of Greenland, or through sediments eroded from these sources, and later intruded by Caledonian aged granites. This constrains the pre-rift location of the Chukchi Borderland to be within the

  17. Determining Mechanics of Segregating Small Crystals from Melt Using Modeling and SHRIMP-RG Trace Element Analysis of Zircons: Application to the Spirit Mountain Batholith, Nevada

    Claiborne, L. L.; Furbish, D. J.; Miller, C. F.


    Melt segregation from crystal mush is commonly cited as generating the highly differentiated melts that form leucogranites and high-silica rhyolites (i.e. Bachmann and Bergantz, 2004). The Spirit Mountain batholith in southern Nevada appears to be a prime example of an intrusion that records this process. It is composed primarily of a thick (more than 7 km) sequence of cumulate granite overlain by 2 km of high-silica leucogranite, interpreted to have been extracted from the cumulate below (Walker et al., in press). Using SHRIMP geochronology, Ti-in-zircon thermometry (Watson et al., 2006), and trace element analysis of the strongly zoned zircons, we have suggested that the batholith accumulated and evolved through repeated episodes of recharge, reheating, and fractionation via melt expulsion from mush (Walker et al., in press; Lowery Claiborne et al., in press). In the leucogranites, interiors of zircons commonly are similar to much of the zircon in cumulate granites, exhibiting the trace element signature of hotter, less fractionated melt; rims of leucogranite zircons generally reflect low T and fractionated melt compositions, consistent with the highly felsic melt represented by their host rocks. These interiors likely represent zircon crystals that were entrained in the upward moving differentiated melt during segregation from the crystal mush. However, the low bulk rock Zr and Zr/Hf of the leucogranite and the high whole rock Zr concentration of the cumulate indicate that most zircon was retained in the cumulate (Lowery Claiborne et al., in press). So, what determines whether zircon (and other small) crystals are entrained in the upward migrating differentiated melt, or whether they are captured in the cumulate mush and segregated from the high-silica melt? What can this tell us about the mechanics of cumulate-melt segregation? Following Bachmann and Bergantz (2004), we have modeled the critical size of crystals and the critical size to mush porosity ratio

  18. Sm-Nd and zircon SHRIMP U-Pb dating of Huilanshan mafic granulite in the Dabie Mountains and its zircon trace element geochemistry

    HOU; Zhenhui; LI; Shuguang; CHEN; Nengsong; LI; Qiuli; LIU


    The mafic granulites from Huilanshan are outcropped on the center of the Luotian dome in the northern Dabie Mountains. The Sm-Nd isochron defined by granulite-facies metamorphic minerals (garnet + clinopyroxene + hypersthene) yields an age of 136(±)18 Ma indicating the early Cretaceous granulite-facies metamorphism. The cathodoluminescence (CL) images of zircons from the granulite show clearly core-mantle-rim structures. The zircon cores are characterized by typical oscillatory zoning and highly HREE enriched patterns, which suggests their magma origin. Some zircon cores among them with little Pb loss give SHRIMP U-Pb ages ranging from 753 to 780 Ma, which suggests that the protolith of Huilanshan granulite is Neoproterozoic mafic rocks. The zircon mantles usually cut across the oscillatory zone of the zircon cores have 3―10 times lower REE, Th, U, Y, Nb and Ta contents than the igneous zircon cores but have high common Pb contents. These characteristics suggest that they were formed by hydrothermal alteration of the igneous zircons. The part of zircon mantles with little Pb loss give a similar SHRIMP U-Pb age (716―780 Ma) to the igneous zircon cores, which implies that the hydrothermal events occurred closely to the magmatic emplacement. In view of the strong early Cretaceous magmatism in the Luotian dome, consequently, the Huilanshan mafic granulite was formed by heating of the Neoproterozoic mafic rocks in mid-low crust, which caused the granulite-facies metamorphism underneath the Dabie Mountains. The similarity between the granulite metamorphic age (136±18 Ma) defined by Sm-Nd isochron and K-Ar age of 123―127 Ma given by amphible from the gneiss in Luotian dome suggests a rapid uplifting of the Luotian dome, which may result in further exhumation of the ultrahigh pressure metamorphic rocks in the Dabie Mountains.

  19. Trace element signature and U-Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway

    Bingen, Bernard; Austrheim, Håkon; Whitehouse, Martin J.; Davis, William J.

    Secondary-ion mass spectrometry (SIMS) U-Pb and trace element data are reported for zircon to address the controversial geochronology of eclogite-facies metamorphism in the Lindås nappe, Bergen Arcs, Caledonides of W Norway. Caledonian eclogite-facies overprint in the nappe was controlled by fracturing and introduction of fluid in the Proterozoic-Sveconorwegian-granulite-facies meta-anorthosite-norite protolith. Zircon grains in one massive eclogite display a core-rim structure. Sveconorwegian cores have trace element signatures identical with those of zircon in the granulite protolith, i.e. 0.31<=Th/U<=0.89, heavy rare earth element (HREE) enrichment, and negative Eu anomaly. Weakly-zoned to euhedral oscillatory-zoned Caledonian rims are characterized by Th/U<=0.13, low LREE content (minimum normalized abundance for Pr or Nd), variable enrichment in HREE, and no Eu anomaly. A decrease of REE towards the outermost rim, especially HREE, is documented. This signature reflects co-precipitation of zircon with garnet and clinozoisite in a feldspar-absent assemblage, and consequently links zircon to the eclogite-facies overprint. The rims provide a mean 206Pb/238U crystallization age of 423+/-4 Ma. This age reflects eclogite-forming reactions and fluid-rock interaction. This age indicates that eclogite-facies overprint in the Lindås nappe took place at the onset of the Scandian (Silurian) collision between Laurentia and Baltica.

  20. Provenance and drainage system of the Early Cretaceous volcanic detritus in the Himalaya as constrained by detrital zircon geochronology

    Xiu-Mian Hu; Eduardo Garzanti; Wei An


    The age range of the major intra-plate volcanic event that affected the northern Indian margin in the Early Cretaceous is here deifned precisely by detrital zircon geochronol-ogy. U–Pb ages of Early Cretaceous detrital zircons found in the Cretaceous to the Paleocene sandstones cluster mainly between 142 Ma and 123 Ma in the northern Tethys Himalayan unit, and between 140 Ma and 116 Ma in the southern Tethys Himalayan unit. The youngest and oldest detrital zircons within this group indicate that volcanism in the source areas started in the latest Jurassic and ended by the early Albian. Stratigraphic data indicate that volcaniclastic sedimentation began signiifcantly earlier in southern Tibet (Tithonian) than in Nepal (Valangin-ian), and considerably later in Spiti and Zanskar (Aptian/Albian) to the west. This apparent westward migration of magmatism was explained with progressive westward propagation of extensional/transtensional tectonic activity and development of fractures cutting deeply across the Indian continental margin crust. However, detrital zircon geochronology provides no indi-cation of heterochroneity in magmatic activity in the source areas from east to west, and thus lends little support to such a scenario. Westward migration of volcaniclastic sedimentation may thus relfect instead the westward progradation of major drainage systems supplying vol-canic detritus sourced from the same volcanic centers in the east. Development of multiple radial drainage away from the domal surface uplift associated with magmatic upwelling, as observed for most large igneous provinces around the world, may also explain why U–Pb ages of detrital zircons tend to cluster around 133–132 Ma (the age of the Comei igneous province) in Tethys Himalayan units, but around 118–117 Ma (the age of the Rajmahal igneous province) in Lesser Himalayan units.

  1. Paleozoic accretionary orogenesis in the eastern Beishan orogen: constraints from zircon U-Pb and 40Ar/39Ar geochronology

    Ao, Songjian; Xiao, Wenjiao; Windley, Brian; Mao, Qigui


    The continental growth mechanism of the Altaids in Central Asia is still in controversy between models of continuous subduction-accretion versus punctuated accretion by closure of multiple oceanic basins. The Beishan orogenic belt, located in the southern Altaids, is a natural laboratory to address this controversy. Key questions that are heavily debated are: the closure time and subduction polarity of former oceans, the emplacement time of ophiolites, and the styles of accretion and collision. This paper reports new structural data, zircon ages and Ar-Ar dates from the eastern Beishan Orogen that provide information on the accretion process and tectonic affiliation of various terranes. Our geochronological and structural results show that the younging direction of accretion was northwards and the subduction zone dipped southwards under the northern margin of the Shuangyingshan micro-continent. This long-lived and continuous accretion process formed the Hanshan accretionary prism. Our field investigations show that the emplacement of the Xiaohuangshan ophiolite was controlled by oceanic crust subduction beneath the forearc accretionary prism of the Shuangyingshan-Mazongshan composite arc to the south. Moreover, we address the age and terrane affiliation of lithologies in the eastern Beishan orogen through detrital zircon geochronology of meta-sedimentary rocks. We provide new information on the ages, subduction polarities, and affiliation of constituent structural units, as well as a new model of tectonic evolution of the eastern Beishan orogen. The accretionary processes and crustal growth of Central Asia were the result of multiple sequences of accretion and collision of manifold terranes. Reference: Ao, S.J., Xiao, W., Windley, B.F., Mao, Q., Han, C., Zhang, J.e., Yang, L., Geng, J., Paleozoic accretionary orogenesis in the eastern Beishan orogen: Constraints from zircon U-Pb and 40Ar/39Ar geochronology. Gondwana Research, doi:

  2. U-Pb zircon SHRIMP data from the Cana Brava layered complex: new constraints for the mafic-ultramafic intrusions of Northern Goiás, Brazil

    Giovanardi, T.; Girardi, V. A. V.; Correia, C. T.; Sinigoi, S.; Tassinari, C. C. G.; Mazzucchelli, M.


    The Cana Brava Complex is the northernmost and least well known layered intrusion of a discontinuous belt of mafic-ultramafic massifs within the Brasilia Belt, which also comprises theNiquelândia and Barro Alto complexes. Available geochronological data from a range of techniques (K/Ar, Ar/Ar, Rb/Sr, Sm/Nd and U/Pb) provide a range of possible ages (time span from 3.9 Ga to 450 Ma), hence a precise and reliable age for the Cana Brava Complex is still lacking. Also, preliminary isotopic and geochemical data of the Cana Brava Complex suggest a significant crustal contamination, which could have affected bulk-rock Sr and Nd systematics resulting in meaningless age determinations. In this paper, we present new U-Pb SHRIMP zircon analyses from four samples of different units of the Cana Brava Complexwhich suggest that the intrusion occurred during the Neoproterozoic, between 800 and 780 Ma, i.e. at the same age ofNiquelândia. Discordant older 206Pb/238U ages are provided by inherited zircons, and match the age of the metamorphism of the embedding Palmeirópolis Sequence.

  3. Cambrian Kherlen ophiolite in northeastern Mongolia and its tectonic implications: SHRIMP zircon dating and geochemical constraints

    Miao, Laicheng; Baatar, Munkhtsengel; Zhang, Fochin; Anaad, Chimedtseren; Zhu, Mingshuai; Yang, Shunhu


    The Kherlen terrane, which contains the Kherlen ophiolitic complex, is located between two Precambrian continental blocks in the northeastern Mongolia. We present new geochemical and SHRIMP zircon U-Pb data for the Kherlen ophiolitic complex and for granitic plutons intruding the complex, providing constraints on the regional evolution in Early Paleozoic time. The Kherlen ophiolite, which is geochemically similar to SSZ-type ophiolites, was originated from two distinct mantle sources, a N-MORB-like source and an E-MORB-like source. A gabbro and a plagiogranite dike intruding the gabbro from the Kherlen ophiolite yielded similar SHRIMP zircon U-Pb ages of ca. 500 Ma, suggesting that the ophiolite formed in Late Cambrian time. Post- or syn-collisional granites intruding the ophiolitic complex yielded crystallization ages of ca. 440 Ma, which is interpreted to record the minimum age of the tectonic emplacement of the ophiolite. These new data demonstrate that the Kherlen ophiolite belt is an Early Paleozoic suture between the Ereendavaa and the Idermeg continental terranes, which is generally coeval with the Bayankhongor belt in central Mongolia, indicating that they are regionally correlated, and thus they define a major Early Paleozoic suture between two Precambrian continental blocks in the central-northeastern Mongolia.

  4. The Dabie Orogen as the early Jurassic sedimentary provenance: Constraints from the detrital zircon SHRIMP U-Pb dating

    LI Renwei; WAN Yusheng; CHENG Zhenyu; ZHOU Jianxiong; XU Yunhua; LI Zhong; JIANG Maosheng


    The SHRIMP U-Pb ages of detrital zircon from the oldest Mesozoic strata, the Fanghushan Fomation, in the Hefei Basin range from 200 Ma to ca. 2500 Ma, which indicates that the Dabie Orogen as the early Jurassic sedimentary provenance was complex. The composition of the Dabie Orogen includes: the Triassic high pressure-ultrahigh pressure metamorphic rocks, of which the detrital zircon ages are from 234 Ma to 200 Ma; the rocks possibly related to the Qinling and Erlangping Groups representing the southern margin of the Sino-Korean craton in the Qinling and Dabie area, of which the detrital zircon has an age of 481-378 Ma; the Neoproterozoic rocks originated from the Yangtze croton, of which the detrital zircon ages are 799-721 Ma old; and the rocks with the detrital zircon ages of ca. 2000 Ma and ca. 2500 Ma, which could be the old basement of the Yangtze craton.

  5. Geochronologic, Isotopic, and Trace Element Constraints on Zircon Recycling in Sierra Crest Intrusive Suites, Sierra Nevada Batholith, USA

    Miller, J. S.; Lackey, J.; Memeti, V.; Hirt, W. H.; Wooden, J. L.


    Owing to its ubiquity and chemical properties, zircon is the primary tool for obtaining age information from felsic igneous rocks. Numerous geochronologic studies in ancient and recent plutonic and volcanic rocks over the last decade have shown: (1) that assemblages of zircons from single hand samples rarely crystallized at the same time; (2) that zircons from single hand samples may have variable geochemistry and isotopic compositions requiring distinct growth environments. Nonetheless, the conditions under which diverse assemblages of magmatic zircons crystallize, are dispersed and then gathered within such magma systems are less well understood. We have initiated a systematic geochemical (trace element) and isotopic (δ18O, 176Hf/177Hf) investigation of zircons from dated plutons within several of the Cretaceous Sierran Crest zoned intrusive suites of the Sierra Nevada Batholith to better understand melt sources and zircon recycling within these large magma systems. Preliminary O and Hf isotopic results indicate that zircon assemblages between different intrusive suites have variable isotopic compositions with multiple crustal and mantle sources involved. Preliminary trace element analysis of some of the zircon suites also show appreciable variability but important trends have emerged from the data. In particular, there are pronounced differences between trace element patterns and ratios of the youngest, interior, K-feldspar megacryst-bearing granodiorites (e.g. Cathedral Peak, Mono Creek, Whitney) and the older outer units of the intrusive suites, which are generally more mafic granodiorites and tonalites. In contrast to the more mafic outer units, zircons from the inner megacryst-bearing intrusions are overwhelmingly characterized by low Ti-in-zircon (Tzrn,Ti) model temperatures (regardless of uncertainties in aTiO2), low concentrations of MREEs, high Yb/Gd, low Th/U, high Hf, and high Eu/Eu*. These characteristics, and generally low Zr contents of the

  6. The Triassic reworking of the Yunkai massif (South China): EMP monazite and U-Pb zircon geochronologic evidence

    Chen, Cheng-Hong; Liu, Yung-Hsin; Lee, Chi-Yu; Sano, Yuji; Zhou, Han-Wen; Xiang, Hua; Takahata, Naoto


    Geohistory of the Yunkai massif in South China Block is important in understanding the geodynamics for the build-up of this block during the Phanerozoic orogenies. To investigate this massif, we conduct EMP monazite and U-Pb zircon geochronological determinations on mineral inclusions and separate for seventeen samples in four groups, representing metamorphic rocks from core domain, the Gaozhou Complex (amphibolite facies, NE-striking) and the Yunkai Group (greenschist facies, NW-striking) of this massif and adjacent undeformed granites. Some EMP monazite ages are consistent with the NanoSIMS results. Monazite inclusions, mostly with long axis parallel to the cleavage of platy and elongated hosts, give distinguishable age results for NW- and NE-trending deformations at 244-236 Ma and 236-233 Ma, respectively. They also yield ages of 233-230 Ma for core domain gneissic granites and 232-229 Ma for undefomed granites. Combining U-Pb zircon ages of the same group, 245 Ma and 230 Ma are suggested to constrain the time of two phases of deformation. Aside from ubiquity of Triassic ages in studied rocks, ages of detrital monazite in the meta-sandstone match the major U-Pb zircon age clusters of the metamorphic rock that are largely concentrated at Neoproterozoic (1.0-0.9 Ga) and Early Paleozoic (444-431 Ma). Based on these geochronological data, Triassic is interpreted as representing the time for recrystallization of these host minerals on the Early Paleozoic protolith, and the also popular Neoproterozoic age is probably inherited. With this context, Yunkai massif is regarded as a strongly reactivated Triassic metamorphic terrain on an Early Paleozoic basement which had incorporated sediments with Neoproterozoic provenances. Triassic tectonic evolution of the Yunkai massif is suggested to have been controlled by converging geodynamics of the South China and Indochina Blocks as well as mafic magma emplacement related to the Emeishan large igneous province (E-LIP).

  7. Application of geochronology/geochemistry of zircon in understanding the construction of the Peninsular Range Batholith

    Kylander-Clark, A. R.; Johnston, S. M.


    Trace-element signatures of zircon are becoming increasingly used as a tool to infer the petrologic history of the rock from which that zircon crystallized. In this study, we sampled 11 igneous rocks from west to east across the northern Peninsular Ranges Batholith (PRB) to test how well REE patterns in zircon reflect those of the whole rock in arc magmas (granodiorite-tonalite). Previous studies of the PRB show two transitions from west to east, with respect to their REE patterns; transition 1) a decrease in HREE, from the west to the central PRB, and 2) an increase in LREE from the central to the eastern PRB. Whole rock samples in this study, analyzed by XRF and ICPMS, reproduce this pattern and thus provide a variety of REE signatures with which to test whether zircon can be used as a proxy for whole-rock data. Zircon from the 11 samples was analyzed by LASS (Laser Ablation Split Stream) ICP-MS, to measure both the age of the zircons and their trace-element compositions. In general, as expected, ages young from west (ca. 104 Ma) to east (ca. 90 Ma). Patterns of HREE in zircon correlate well with those of the whole rock, whereas the LREE correlation is weak. The distribution coefficient for HREE between zircon and whole rock, however, decreases with increasing HREE. Possibilities for this negative relation include: 1) minor changes in whole-rock chemistry, as samples become slightly more felsic from west to east, 2) changes in crystallization temperature from west to east, and 3) sampling bias of HREE-poor zircon rims with HREE fractionated in zircon cores. Other trace element data measured in zircon and whole rock include P, Ti, Y, Nb, Hf, Ta, Th, and U and provide interesting results. Nb and Ta show a moderate correlation between zircon and whole rock, but the Nb/Ta ratio does not. Also, though U correlates well between whole rock and zircon and Th/U correlates well between zircon and age, the Th/U ratio of the zircon is negatively correlated with the whole

  8. SHRIMP U-Pb zircon age of the youngest exposed pluton in eastern China


    Analysis using the Sensitive High Resolution Ion Microprobe (SHRIMP) shows that the Yongsheng pluton, located to the south of Huadian County, Jilin Province, in the North China Craton, has a zircon U-Pb isotopic emplacement age of (31.6±13) Ma. It is therefore the youngest exposed pluton so far recognized in eastern China. Although geochemical data indicate intensive crystal fractionation, the Sr-Nd isotopic features suggest that the magmatic source region of the lithospheric mantle was weakly depleted. This implies that the previous enriched lithospheric mantle had been replaced by juvenile asthenospheric mantle before or during the Palaeogene. This recognition has great significance for future work on the Mesozoic-Cenozoic geological evolution and deep geological processes in eastern China.

  9. Zircon U-Pb SHRIMP Ages from the Late Paleozoic Turpan-Hami Basin, NW China

    Xiang Mao; Jianghai Li; Huatian Zhang


    Permian volcanic rocks are widely distributed in the Turpan-Hami Basin, which is part of the Central Asian orogenic belt. Here we present SHRIMP zircon data for the rhyolite in Well Baocan 1, one of the deepest wells in the basin. The 283.9±2.7 Ma reported in our study provides the best precise age determination for the Yierxitu Formation, the oldest Permian layer of Hami Depression, one of the three substructural units of the Turpan-Hami Basin, and a potential hydrocarbon reservoir in this ba-sin. Our data refines earlier imprecise39Ar-40Ar ages and shows that the volcanic rocks both inside the Turpan-Hami Basin and along its margin are almost coeval. We delineate a collisional orogenesis, and the new age of 283.9±2.7 Ma may limit the latest time of the collision orogenesis.

  10. U-Pb SHRIMP-RG zircon ages and Nd signature of lower Paleozoic rifting-related magmatism in the Variscan basement of the Eastern Pyrenees

    Martinez, F.J.; Iriondo, A.; Dietsch, C.; Aleinikoff, J.N.; Peucat, J.J.; Cires, J.; Reche, J.; Capdevila, R.


    The ages of orthogneisses exposed in massifs of the Variscan chain can determine whether they are part of a pre-Neoproterozoic basement, a Neoproterozoic, Panafrican arc, or are, in fact, lower Paleozoic, and their isotopic compositions can be used to probe the nature of their source rocks, adding to the understanding of the types, distribution, and tectonic evolution of peri-Gondwanan crystalline basement. Using SHRIMP U-Pb zircon geochronology and Nd isotopic analysis, pre-Variscan metaigneous rocks from the N??ria massif in the Eastern Pyrenean axial zone and the Guilleries massif, 70km to the south, have been dated and their Nd signatures characterized. All dated orthogneisses from the N??ria massif have the same age within error, ~457Ma, including the Ribes granophyre, interpreted as a subvolcanic unit within Caradocian sediments contemporaneous with granitic magmas intruded into Cambro-Ordovician sediments at deeper levels. Orthogneisses in the Guilleries massif record essentially continuous magmatic activity during the Ordovician, beginning at the Cambro-Ordovician boundary (488??3Ma) and reaching a peak in the volume of magma in the early Late Ordovician (~460Ma). Metavolcanic rocks in the Guilleries massif were extruded at 452??4Ma and appear to have their intrusive equivalent in thin, deformed veins of granitic gneiss (451??7Ma) within metasedimentary rocks. In orthogneisses from both massifs, the cores of some zircons yield Neoproterozoic ages between ~520 and 900Ma. The age of deposition of a pre-Late Ordovician metapelite in the Guilleries massif is bracketed by the weighted average age of the youngest detrital zircon population, 582??11Ma, and the age of cross-cutting granitic veins, 451??7Ma. Older detrital zircons populations in this metapelite include Neoproterozoic (749-610Ma; n=10), Neo- to Mesoproterozoic (1.04-0.86Ga; n=7), Paleoproterozoic (2.02-1.59Ga; n=5), and Neoarchean (2.74-2.58Ga; n=3). Nd isotopic analyses of the N??ria and Guilleries

  11. Geochemistry and U-Pb zircon geochronology of Late-Mesozoic lavas from Xishan, Beijing

    YUAN; Honglin; LIU; Xiaoming; LIU; Yongsheng; GAO; Shan; LING; Wenli


    Zircon U-Pb dating by both SHRIMP and LA-ICP-MS and geochemical study of the Tiaojishan Formation and the Donglintai Formation from Xishan, Beijing, reveal that ages of upper lavas of Tiaojishan Formation and Middle of Donglintai Formation are 137.1±4.5 Ma(2σ) and 130-134 Ma, respectively. The fomer is slightly older than the latter and the age difference between these two formations is less than 5 Ma. These lines of evidence prove that the two volcanoes erupted within a short time. The age of the Tiaojishan Formation from Xishan, Beijing is distinctively different from that of the Chende Basin. This indicated that the ages of Tiaojishan lavas varied in different regions. The Tiaojishan Formation consists of typical adakite (SiO2=56%, Na2O = 3.99-6.17, Na2O/K2O = 2.2-3.1, Sr = 680-1074×10-6, Y = 13.2-16.3×10-6, Yb = 1.13-1.52×10-6, Sr/Y = 43-66), high-Mg adakite and high-Mg andesite (Mg# = 54-55). Features of continental crust of adakite from the Tiaojishan Formation and its syngeneric middle silicic vocanic rocks, such as typical Nd-Ta negative abnormality and Pb possive abnormality, indicate that these lavas are originated from partial melts of continental crust. These results suggest that the adakite from the Tiaojishan Formation of Xishan, Beijing derived from thickened eclogitic lower crust and lithosphere beneath the North China craton at mesozoic that was foundered into the aesthenosphere, and subsequenctly partially melted and interacted with mantle olivine during melts upward migration. The age of lavas from the Tiaojishan Formation restrained the foundation which should last at least until 137 Ma. Lavas of the Donglintai Formation are rhyolith and andesite with normal Mg# and thus they did not interact with the mantle. These lavas represent remobilized melts of lower crust material caused by mantle aesthenosphere upwelling migration induced by foundation.

  12. SHRIMP U-Pb zircon ages of granite gneiss and paragneiss from Oki-Dogo island, southwest Japan, and their tectonic implications

    Cho, D.-L.; Takahashi, Y.; Yi, K.; Lee, S. R.


    The Hida belt, located in the northern part of southwest Japan, is considered to be a rarely preserved cratonic remnant originated from the easternmost continental margin of the Eurasian continent before the major build-up of the Japanese Islands. It is thus one of the key tectonic elements to unravel the continental accretion processes of the East Asia that have been almost accomplished at the end of the Permo-Triassic time. The gneiss in the Oki-Dogo Island is considered as a western extension of the Hida gneiss on the basis of similarities in both lithofacies and metamorphic ages. However, recent geochronologic investigations on these gneisses raised a question against the simple tectonic correlation between the Hida belt and Oki-Dogo Island (e.g., Tsutsumi et al., 2006). In this work we report new SHRIMP U-Pb zircon ages obtained from two granite gneiss and a paragneiss (Oki gneiss) from Oki-Dogo island. Samples include garnet-bearing granite gneiss (OKI8), granite gneiss (OKI14) and garnet-biotite gneiss (OKI13). Most of zircon grains in OKI8 and OKI14 show oscillatory zoning patterns. They give almost equivalent Late Paleoprotrozoic ages of 1867±16 Ma (n=20, MSWD=2.0) and 1881±17 Ma (n= 20, MSWD=4.4) which are interpreted to date the emplacement ages of the granite protoliths. A few of zircon grains from sample OKI8 show recrystallized rims yielding Triassic metamorphic age of 235.0±6.1 Ma (n=9, MSWD=1.8). Zircon grains from OKI13 have overgrowth rims with low Th/U ratio, and gave a Late Paleoprotrozoic metamorphic age of 1867±16 Ma (n=18, MSWD=3.3) marking the timing of the paragneiss. Most of inherited cores of OKI13 zircons showing magmatic zoning patterns with high Th/U ratio gave a spectrum ranging in ages from Late Archean (up to 2693 Ma) to Early Paleotroterozoic. The Permo-Triassic metamorphic age (~235 Ma) obtained here is well corroborated with those reported from the Hida belt. However, formation ages (~1.9 Ga) of the Oki Gneisses are clearly

  13. Detrital Zircon Geochronology of Cretaceous and Paleogene Strata Across the South-Central Alaskan Convergent Margin

    Bradley, Dwight; Haeussler, Peter; O'Sullivan, Paul; Friedman, Rich; Till, Alison; Bradley, Dan; Trop, Jeff


    Ages of detrital zircons are reported from ten samples of Lower Cretaceous to Paleogene metasandstones and sandstones from the Chugach Mountains, Talkeetna Mountains, and western Alaska Range of south-central Alaska. Zircon ages are also reported from three igneous clasts from two conglomerates. The results bear on the regional geology, stratigraphy, tectonics, and mineral resource potential of the southern Alaska convergent margin. Chugach Mountains - The first detrital zircon data are reported here from the two main components of the Chugach accretionary complex - the inboard McHugh Complex and the outboard Valdez Group. Detrital zircons from sandstone and two conglomerate clasts of diorite were dated from the McHugh Complex near Anchorage. This now stands as the youngest known part of the McHugh Complex, with an inferred Turonian (Late Cretaceous) depositional age no older than 91-93 Ma. The zircon population has probability density peaks at 93 and 104 Ma and a smattering of Early Cretaceous and Jurassic grains, with nothing older than 191 Ma. The two diorite clasts yielded Jurassic U-Pb zircon ages of 179 and 181 Ma. Together, these findings suggest a Mesozoic arc as primary zircon source, the closest and most likely candidate being the Wrangellia composite terrane. The detrital zircon sample from the Valdez Group contains zircons as young as 69 and 77 Ma, consistent with the previously assigned Maastrichtian to Campanian (Late Cretaceous) depositional age. The zircon population has peaks at 78, 91, 148, and 163 Ma, minor peaks at 129, 177, 330, and 352 Ma, and no concordant zircons older than Devonian. A granite clast from a Valdez Group conglomerate yielded a Triassic U-Pb zircon age of 221 Ma. Like the McHugh Complex, the Valdez Group appears to have been derived almost entirely from Mesozoic arc sources, but a few Precambrian zircons are also present. Talkeetna Mountains - Detrital zircons ages were obtained from southernmost metasedimentary rocks of the

  14. U-Pb geochronology of zircon and monazite from Mesoproterozoic granitic gneisses of the northern Blue Ridge, Virginia and Maryland, USA

    Aleinikoff, J.N.; Burton, W.C.; Lyttle, P.T.; Nelson, A.E.; Southworth, C.S.


    Mesoproterozoic granitic gneisses comprise most of the basement of the northern Blue Ridge geologic province in Virginia and Maryland. Lithology, structure, and U-Pb geochronology have been used to subdivide the gneisses into three groups. The oldest rocks, Group 1, are layered granitic gneiss (1153 ?? 6 Ma), hornblende monzonite gneiss (1149 ?? 19 Ma), porphyroblastic granite gneiss (1144 ?? 2 Ma), coarse-grained metagranite (about 1140 Ma), and charnockite (>1145 Ma?). These gneisses contain three Proterozoic deformational fabrics. Because of complex U-Pb systematics due to extensive overgrowths on magmatic cores, zircons from hornblende monzonite gneiss were dated using the sensitive high-resolution ion microprobe (SHRIMP), whereas all other ages are based on conventional U-Pb geochronology. Group 2 rocks are leucocratic and biotic varieties of Marshall Metagranite, dated at 1112??3 Ma and 1111 ?? 2 Ma respectively. Group 3 rocks are subdivided into two age groups: (1) garnetiferous metagranite (1077 ?? 4 Ma) and quartz-plagioclase gneiss (1077 ?? 4 Ma); (2) white leucocratic metagranite (1060 ?? 2 Ma), pink leucocratic metagranite (1059 ?? 2), biotite granite gneiss (1055 ?? 4 Ma), and megacrystic metagranite (1055 ?? 2 Ma). Groups 2 and 3 gneisses contain only the two younger Proterozoic deformational fabrics. Ages of monazite, seprated from seven samples, indicate growth during both igneous and metamorphic (thermal) events. However, ages obtained from individual grains may be mixtures of different age components, as suggested by backscatter electron (BSE) imaging of complexly zoned grains. Analyses of unzoned monazite (imaged by BSE and thought to contain only one age component) from porphyroblastic granite gneiss yield ages of 1070, 1060, and 1050 Ma. The range of ages of monazite (not reset to a uniform date) indicates that the Grenville granulite event at about 1035 Ma did not exceed about 750??C. Lack of evidence for 1110 Ma growth of monazite in

  15. Zircon SHRIMP U-Pb age of garnet olivine pyroxenite at Hujialin in the Sulu terrane and its geological significance

    GAO Tianshan; CHEN Jiangfeng; XIE Zhi; YANG Shenghong; YU Gang


    Garnet olivine pyroxenite at Hujialin is situated in the Sulu ultrahigh pressure (UHP) metamorphic belt, Shandong Province. Most of the zircon separated from the rock is well crystallized, prismatic and granular with a length to width ratio of 1︰1.3-1︰2.5. CL and BSE images show the magmatic oscillatory zoning in the zircon. Th/U ratio ranges from 0.99 to 2.81. These suggest a magmatic origin for the zircon studied. SHRIMP dating yields 206Pb/238U ages of 207-223 Ma, with a weighted average of 216±3 Ma. This age corresponds to zircon growth during exhumation of UHP slab and thus the timing of amphibolite-facies retrogression. The garnet olivine pyroxenite was wrapped and brought to the crust by the UHP slab during exhumation, and then suffered from metasomatism by fluid from the UHP slab itself. The zircon U-Pb age records the timing of the crystallization of metasomatic melt. Therefore, fluid that was released during exhumation of deeply subducted continental slab may be the important source for zircon growth.

  16. Petrography and U-Pb zircon geochronology of Caledonian age orthogneisses dredged from the Chukchi Borderland, Arctic Ocean

    Brumley, K.; Miller, E. L.; Mayer, L. A.; Wooden, J. L.; Dumitru, T. A.


    The Caledonian orogenic belt developed in the Ordovician to Devonian affecting northern Europe, Greenland and Arctic Canada. Caledonian deformational trends continue into the Arctic region disappearing at the rifted margin of the Arctic Ocean. Syn-orogenic magmatism in the Barents region date deformation of Grenvillian basement during the Caledonian event to be between about 450-410 Ma (Johansson et al., 2005; Gee et al., 2006; Gee and Tebenkov, 2004). Over 500 kilos of metamorphic rock was dredged from outcrops in the central Chukchi Borderland in 2009 (HLY0905) that included amphibolites and orthogneisses metamorphosed to amphibolite facies continuing to deform under greenschist conditions. Zircons were separated from two orthogneiss samples from this dredge, and single grain zircon U-Pb ages were determined by SHRIMP analysis be 428 Ma ± 3.4 for both samples (N=60). One sample had several zircon grains with distinct igneous cores that ranged in age from about 850-1000 Ma. Grenville age plutons (1000-910 Ma) that were later involved in Caledonian deformation and intruded by 450-410 Ma aged plutons are found on western and eastern Svalbard (Johansson et al., 2005), eastern Greenland, and the Pearya Terrane of northern Ellesmere Island (Trettin,1986, 1992). The Franklinian basement of Arctic Alaska and Canada do not share these Grenvillian ages (Trentin et al, 1987). This suggests that the inherited zircon cores in the Chukchi Borderland orthogneisses were derived, at least in part, from an older Grenvillian basement like that of Pearya, Svalbard and parts of Greenland and later intruded by Caledonian aged granites.

  17. Early Paleozoic tectonic reconstruction of Iran: Tales from detrital zircon geochronology

    Moghadam, Hadi Shafaii; Li, Xian-Hua; Griffin, William L.; Stern, Robert J.; Thomsen, Tonny B.; Meinhold, Guido; Aharipour, Reza; O'Reilly, Suzanne Y.


    In this study we use detrital zircons to probe the Early Paleozoic history of NE Iran and evaluate the link between sediment sources and Gondwanan pre-Cadomian, Cadomian and younger events. U-Pb zircon ages and Hf isotopic compositions are reported for detrital zircons from Ordovician and Early Devonian sedimentary rocks from NE Iran. These clastic rocks are dominated by zircons with major age populations at 2.5 Ga, 0.8-0.6 Ga, 0.5 Ga and 0.5-0.4 Ga as well as a minor broad peak at 1.0 Ga. The source of 2.5 Ga detrital zircons is enigmatic; they may have been supplied from the Saharan Metacraton (or West African Craton) to the southwest or Afghanistan-Tarim to the east. The detrital zircons with age populations at 0.8-0.6 Ga probably originated from Cryogenian-Ediacaran juvenile igneous rocks of the Arabian-Nubian Shield; this inference is supported by their juvenile Hf isotopes, although some negative εHf (t) values suggest that other sources (such as the West African Craton) were also involved. The age peak at ca 0.5 Ga correlates with Cadomian magmatism reported from Iranian basement and elsewhere in north Gondwana. The variable εHf (t) values of Cadomian detrital zircons, resembling the εHf (t) values of zircons in magmatic Cadomian rocks from Iran and Taurides (Turkey), suggest an Andean-type margin and the involvement of reworked older crust in the generation of the magmatic rocks. The youngest age population at 0.5-0.4 Ga is interpreted to represent Gondwana rifting and the opening of Paleotethys, which probably started in Late Cambrian-Ordovician time. A combination of U-Pb dating and Hf-isotope data from Iran, Turkey and North Gondwana confirms that Iran and Turkey were parts of Gondwana at least until late Paleozoic time.

  18. U-Pb zircon geochronology and phase equilibria modelling of a mafic eclogite from the Sumdo complex of south-east Tibet: Insights into prograde zircon growth and the assembly of the Tibetan plateau

    Weller, O. M.; St-Onge, M. R.; Rayner, N.; Waters, D. J.; Searle, M. P.; Palin, R. M.


    The Sumdo complex is a Permian-Triassic eclogitic metamorphic belt in south-east Tibet, which marks the location of a suture zone that separates the northern and southern Lhasa terranes. An integrated geochronological and petrological study of a mafic eclogite from the complex has constrained its tectonometamorphic history and provides a case study of zircon growth in eclogite as a product of prograde dissolution-precipitation. In situ U-Pb geochronology indicates that the eclogite contains a single population of zircon with a crystallisation age of 273.6 ± 2.8 Ma. The morphology and chemistry of the zircon grains are consistent with growth by dissolution-precipitation of protolith magmatic zircon. The presence of zircon grains as inclusions in the cores of peak phases indicates that zircon dissolution-precipitation occurred during prograde metamorphism, and calculated pressure and temperature conditions over which mineral inclusions in zircon are stable suggest that the zircon most likely precipitated at 15.5-16.5 kbar and 500-560 °C. Subsequent peak metamorphism is calculated to have reached pressure-temperature conditions of 27 ± 1 kbar and 670 ± 50 °C. Previous studies, which have documented a range of peak metamorphic conditions from high- to ultrahigh-pressure at c. 266-230 Ma, indicate that the Sumdo complex is a composite belt that experienced protracted eclogite exhumation. The results of this study are consistent with this interpretation, and extend the age range of high-pressure metamorphism in the complex to over 40 Myr. Analysis of published pressure-temperature-time data indicates two systematic behaviours within this spread. First, peak metamorphic temperatures declined over time. Second, eclogite exhumation occurred in two discrete intervals: soon after formation, and during the demise of the subduction zone. The latter behaviour serves as a reminder that eclogite exhumation is the exception rather than the rule.

  19. SHRIMP U-Pb zircon dating of Pedras Grandes Suite, southern Santa Catarina State, Brazil

    Andréa R. Jelinek


    Full Text Available Two major magmatic pulses of the granitic Florianópolis Batholith in Santa Catarina State, southern Brazil, occurred between 613±5Ma and 595±5 Ma, during the Neoproterozoic Brasiliano Cycle. These ages were obtained by U-Pb isotopic determinations with the sensitive high mass-resolution ion microprobe on igneous zircons from Pedras Grandes Suite in Santa Catarina State. Euhedral zircons remained unaltered close to a fluorite vein deposited at 180?C or more. These ages suggest a northern limit for the Pedras Grandes Suite, explaining the spatial relationship between the fluorite veins and the source rock.Dois dos principais pulsos da atividade granítica no Batólito Florianópolis em Santa Catarina ocorreram entre 613 ±5 Ma e 595 ±5 Ma, durante o Neoproterozóico do Ciclo Brasiliano. Estas idades foram obtidas a partir dedeterminações isotópicas U-Pb em cristais de zircão da Suite Pedras Grandes por "Sensitive high-resolution íon microprobe" - SHRIMP II. Os cristais de zircão permaneceram inalterados mesmo mediante condições hidrotermais com temperaturas iguais e, até mesmo, superiores a 180ºC. Estas idades sugerem a delimitação norte do Maciço Pedras Grandes, explicando a relação espacial existente entre os filões de fluorita e a rocha fonte destas mineralizações.

  20. Detrital zircon geochronology and provenance of the Chubut Group in the northeast of Patagonia, Argentina

    Navarro, Edgardo L.; Astini, Ricardo A.; Belousova, Elena; Guler, M. Verónica; Gehrels, George


    The Chubut Group constitutes the most widespread sedimentary unit in NE Patagonia, characterized by variable-energy fluvial deposits. U-Pb analysis of detrital zircons from two sections of the Chubut Group constraint the age of the oldest sedimentary rocks in the northeast of the Somuncurá - Cañadón Asfalto Basin. In the Cañadón Williams area, at San Jorge section, 20 km NW of Telsen locality, dating of 56 detrital zircons from a medium to coarse sandstone indicated a maximum depositional age of 109 ± 1 Ma (n = 4). These sandstones were interpreted to represent shallow channels, associated with a lacustrine system. In the Telsen locality, a laser ablation analysis of 115 detrital zircons from a medium to coarse-grained sandstone, from fluvial channel facies, yielded a maximum depositional age of ca. 106 ± 1 Ma (n = 8). Both ages are consistent with volcanic events of the Barremian to Albian age in the central Patagonian Andes Region. Cathodoluminescence images of zircons from the San Jorge sample suggest an igneous origin, which is further supported by Th/U values above 0.5 in most of the grains. The distribution of the statistical modes of the main age populations of detrital zircons for the two samples [182, 185 and 189 Ma for Telsen sample (T2S) and 181 ± 1 Ma for San Jorge sample (SJS)] matches the age of the volcanic Marifil Formation. The rocks of the Marifil Formation of these ages are exposed NE to SE of the study area. The abundance of zircons of similar Jurassic ages (n = 52 for SJS and n = 105 for T2S) and the external morphology of the zircons in the sample SJS, implies a close proximity of the source area. Suggestion that the Marifil Formation was the main provenance source is also supported by northeast-southeasterly paleocurrents measured at the San Jorge and Telsen sections.

  1. Amplifying Earth history: Zircon U-Pb geochronology by ID-TIMS at the 0.1 ‰ level using new 1013 ohm resistors

    Wotzlaw, Jörn-Frederik; von Quadt, Albrecht


    Precise and accurate radiometric dating of volcanic ash beds in sedimentary successions is the backbone of the numerical calibration of Earth history. Uranium-lead geochronology by isotope dilution thermal ionization mass spectrometry (ID-TIMS) is the most precise and accurate dating technique and is applicable to most of Earth history from the Hadean to the Pleistocene. The accessory mineral zircon is the prime target material due to its commonly high U concentration, virtually no initial Pb and high daughter-product retentivity. However, complex crystallization histories as well as magmatic and sedimentary recycling of zircons require the analysis of single crystals resulting in small amounts of radiogenic Pb (Pb* usually dates with uncertainties <0.2 ‰ for high-Pb* zircons and weighted mean ages for populations of closed system zircons with uncertainties <0.1 ‰ . This level of temporal resolution will allow to better quantify the timing and durations of critical intervals in Earth history, evaluate causalities between different events such as flood basalt eruptions and mass extinctions, quantify rates of changes in biodiversity and assess the origin of cyclic patterns in the sedimentary records. [1] von Quadt, A., Wotzlaw, J.F., Buret, Y., Large, S., Peytcheva, I., Trinquier, A., 2016, High-precision zircon U/Pb geochronology by ID-TIMS using new 1013 ohm resistors. J. Anal. At. Spectrom., DOI: 10.1039/C5JA00457H

  2. Mesozoic magmatism and timing of epigenetic Pb-Zn-Ag mineralization in the western Fortymile mining district, east-central Alaska: Zircon U-Pb geochronology, whole-rock geochemistry, and Pb isotopes

    Dusel-Bacon, Cynthia; Aleinkoff, J.N.; Day, W.C.; Mortensen, J.K.


    The Mesozoic magmatic history of the North American margin records the evolution from a more segmented assemblage of parautochthonous and allochthonous terranes to the more cohesive northern Cordilleran orogenic belt. We characterize the setting of magmatism, tectonism, and epigenetic mineralization in the western Fortymile mining district, east-central Alaska, where parautochthonous and allochthonous Paleozoic tectonic assemblages are juxtaposed, using sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon geochronology, whole-rock geochemistry, and feldspar Pb isotopes of Mesozoic intrusions and spatially associated mineral prospects. New SHRIMP U-Pb zircon ages and published U-Pb and 40Ar/39Ar ages indicate four episodes of plutonism in the western Fortymile district: Late Triassic (216-208 Ma), Early Jurassic (199-181 Ma), mid-Cretaceous (112-94 Ma), and Late Cretaceous (70-66 Ma). All age groups have calc-alkalic arc compositions that became more evolved through time. Pb isotope compositions of feldspars from Late Triassic, Early Jurassic, and Late Cretaceous igneous rocks similarly became more radiogenic with time and are consistent with the magmas being mantle derived but extensively contaminated by upper crustal components with evolving Pb isotopic compositions. Feldspar Pb isotopes from mid-Cretaceous rocks have isotopic ratios that indicate magma derivation from upper crustal sources, probably thickened mid-Paleozoic basement. The origin of the mantle component in Late Cretaceous granitoids suggested by Pb isotopic ratios is uncertain, but we propose that it reflects asthenospheric upwelling following slab breakoff and sinking of an inactive inner subduction zone that delivered the previously accreted Wrangellia composite terrane to the North American continental margin, after the outer Farallon subduction zone was established.

  3. Detrital zircon geochronology of pre- and syncollisional strata, Acadian orogen, Maine Appalachians

    Bradley, Dwight C.; O'Sullivan, Paul B.


    The Central Maine Basin is the largest expanse of deep-marine, Upper Ordovician to Devonian metasedimentary rocks in the New England Appalachians, and is a key to the tectonics of the Acadian Orogeny. Detrital zircon ages are reported from two groups of strata: (1) the Quimby, Rangeley, Perry Mountain and Smalls Falls Formations, which were derived from inboard, northwesterly sources and are supposedly older; and (2) the Madrid, Carrabassett and Littleton Formations, which were derived from outboard, easterly sources and are supposedly younger. Deep-water deposition prevailed throughout, with the provenance shift inferred to mark the onset of foredeep deposition and orogeny. The detrital zircon age distribution of a composite of the inboard-derived units shows maxima at 988 and 429 Ma; a composite from the outboard-derived units shows maxima at 1324, 1141, 957, 628, and 437 Ma. The inboard-derived units have a greater proportion of zircons between 450 and 400 Ma. Three samples from the inboard-derived group have youngest age maxima that are significantly younger than the nominal depositional ages. The outboard-derived group does not share this problem. These results are consistent with the hypothesised provenance shift, but they signal potential problems with the established stratigraphy, structure, and (or) regional mapping. Shallow-marine deposits of the Silurian to Devonian Ripogenus Formation, from northwest of the Central Maine Basin, yielded detrital zircons featuring a single age maximum at 441 Ma. These zircons were likely derived from a nearby magmatic arc now concealed by younger strata. Detrital zircons from the Tarratine Formation, part of the Acadian foreland-basin succession in this strike belt, shows age maxima at 1615, 980 and 429 Ma. These results are consistent with three episodes of zircon recycling beginning with the deposition of inboard-derived strata of the Central Maine Basin, which were shed from post-Taconic highlands located to the

  4. Bashikaogong-Shimierbulake granitic complex,north Altun,NW China: Geochemistry and zircon SHRIMP ages

    WU; Cailai; YAO; Sunzhi; ZENG; Lingsen; YANG; Jingsui; Joseph; L.Wooden; CHEN; Songyong; Frank; K.Mazdab


    The Bashikaogong-Shimierbulake granitoid complex is about 30 km long and 2-6 km wide,with an area of 140 km2,located at the north margin of the Bashikaogong Basin in the north Altun terrain.It intruded into schist,metapelite and metatuff of Precambrian ages.This granitoid complex consists of darkish quartz diorite,grey granite,pink granite and pegmatite.Geochemically,the quartz diorite has I-type granite affinity and belongs to Calc-alkaline sereies,and the other granites have S-type affinity and to high-K calc-alkaline series.Zircon SHRIMP U-Pb dating shows that the quartz diorite has a bigger age than those of other granites,which is 481.6±5.6 Ma for quartz diorite,437.0±3.0 Ma-433.1±3.4 Ma for grey granite and 443±11 Ma-434.6±1.6 Ma for pink granite,respectively.Combined with regional geology,we think that the quartz diorite formed in tectonic environment related to oceanic crust subduction and the granites in post-collision.

  5. Zircon SHRIMP Dating for the Weiya Pluton, Eastern Tianshan: Its Geological Implications

    ZHANG Zunzhong; GU Lianxing; WU Changzhi; LI Weiqiang; XI Aihua; WANG Shuo


    The timing of the emplacement of the Weiya pluton remains controversial due to the absence of systematic and precise dating.This paper reports zircon SHRIMP U-Pb dating of different lithologic phases in the Weiya pluton,and discusses the genesis and tectonic environment.The ages of gabbro,quartz syenite,diorite porphyrite and fine-grained granite are 236±6 Ma,246±6 Ma,233±8 Ma and 237±8 Ma,respectively.All these phases were formed in early-middle Indosinian (Triassic) in a post-orogenic environment.In addition to underplating,intraplating of mantle-derived magmas is also a substantial mechanism for magma generation and vertical accretion of the continental crust.Granitoid rocks are important products of vertical continental accretion as underplating evolves gradually to intraplating.The existence of post-orogenic Indosinian granites shows that the middle Tianshan orogenic belt underwent an important tectonic conversion from the Paleo-Asian ocean subduction-collision system to the Paleo-Tethys ocean regime.

  6. Constraints on the timing of Co-Cu ± Au mineralization in the Blackbird district, Idaho, using SHRIMP U-Pb ages of monazite and xenotime plus zircon ages of related Mesoproterozoic orthogneisses and metasedimentary rocks

    Aleinikoff, John N.; Slack, John F.; Lund, Karen; Evans, Karl V.; Fanning, C. Mark; Mazdab, Frank K.; Wooden, Joseph L.; Pillers, Renee M.


    The Blackbird district, east-central Idaho, contains the largest known Co reserves in the United States. The origin of strata-hosted Co-Cu ± Au mineralization at Blackbird has been a matter of controversy for decades. In order to differentiate among possible genetic models for the deposits, including various combinations of volcanic, sedimentary, magmatic, and metamorphic processes, we used U-Pb geochronology of xenotime, monazite, and zircon to establish time constraints for ore formation. New age data reported here were obtained using sensitive high resolution ion microprobe (SHRIMP) microanalysis of (1) detrital zircons from a sample of Mesoproterozoic siliciclastic metasedimentary country rock in the Blackbird district, (2) igneous zircons from Mesoproterozoic intrusions, and (3) xenotime and monazite from the Merle and Sunshine prospects at Blackbird. Detrital zircon from metasandstone of the biotite phyllite-schist unit has ages mostly in the range of 1900 to 1600 Ma, plus a few Neoarchean and Paleoproterozoic grains. Age data for the six youngest grains form a coherent group at 1409 ± 10 Ma, regarded as the maximum age of deposition of metasedimentary country rocks of the central structural domain. Igneous zircons from nine samples of megacrystic granite, granite augen gneiss, and granodiorite augen gneiss that crop out north and east of the Blackbird district yield ages between 1383 ± 4 and 1359 ± 7 Ma. Emplacement of the Big Deer Creek megacrystic granite (1377 ± 4 Ma), structurally juxtaposed with host rocks in the Late Cretaceous ca. 5 km north of Blackbird, may have been involved in initial deposition of rare earth elements (REE) minerals and, possibly, sulfides. In situ SHRIMP ages of xenotime and monazite in Co-rich samples from the Merle and Sunshine prospects, plus backscattered electron imagery and SHRIMP analyses of trace elements, indicate a complex sequence of Mesoproterozoic and Cretaceous events. On the basis of textural relationships

  7. Sample-scale zircon geochemical and geochronological heterogeneities as indicators of residual liquid infiltration events in the incrementally assembled Caleu Pluton, Central Chile

    Molina, P. G.; Parada, M. A.; Gutiérrez, F. J.; Ma, C.; Li, J.; Liu, Y.


    The Upper Cretaceous metaluminous Caleu Pluton is emplaced at a depth equivalent of 2kbar and consists of four lithological zones: the Gabbro-Dioritic Zone (GDZ), the Quartz-Monzodioritic Zone (QMDZ), the Granodioritic Zone (GZ) and the Monzogranitic Zone (MGZ). The zones would have been fed from a deeper magma reservoir emplaced at a 4 kbar. U238/Pb206 LA-ICP-MS geochronology of zircon grains of the four lithological zones (82 analyzed spots, 4 samples) indicates a maximum zircon crystallization range of ca. 106-91 Ma for the pluton as a whole. The U-Pb zircon age distribution of the four samples shows three inflection points at about 101, 99 and 96 Ma, separating four zircon crystallization events with the following weighted average ages and 2σ confidence intervals: 103.×1.6 Ma (n=4), 100.3×0.68 Ma (n=14), 97.49×0.49 Ma (n=25) and 94.66×0.44 Ma (n=30). The GDZ sample records the first three events, the GZ and QMDZ samples record the last three events while the MGZ only have zircons formed during the last two events. It is interesting to note that the youngest event of zircon formation coincide with the Ar/Ar cooling ages (95-93 Ma) previously obtained in hornblende, biotite and plagioclase of the four lithological zones, as a consequence of a rapid pluton exhumation. Temperatures of zircon crystallization (Ti-in-Zrn) obtained in each sample are variable and roughly lower than the zircon saturation temperatures. Most of the Ti-in-Zrn temperatures indicate late-stage crystallization conditions, consistent with the calculated melt composition from which zircons would have crystallized and the observed coexistence of zircons with quartz-orthoclase symplectites, hornblende and interstitial anhedral biotite. There are variable and overlapped total incompatible element concentrations in zircons of the four lithological zones regardless its age and Ti-in-Zrn temperatures, indicating that the melts from which zircon crystallized at different moments, were equivalent

  8. U-Pb (SHRIMP-II) isotope dating of zircons from alkali rocks of Vitim province, West Transbaikalia

    Doroshkevich, A. G.; Ripp, G. S.; Sergeev, S. A.


    A U-Pb (SHRIMP-II) geochronological study of rocks from the Sayzhenski, Snezhny and Nizhne-Burulzayski massifs, incorporated into the Vitim alkali province (Sayzhenski Complex) has been made. The acquired data indicate that the rocks formed in the interval of 520-486 Ma. The proximity of their age to accretionary-collision processes in the Central Asian fold belt, accompanied by intràplate magmatism, has been noted. Two independent stages in the evolution of Vitim Province magmatism are suggested: Early Paleozoic (520-485 Ma) and Late Paleozoic (350-290 Ma).

  9. Pre-Devonian tectonic evolution of the eastern South China Block:Geochronological evidence from detrital zircons


    Using the U-Pb LA-ICP-MS analysis technique we analyzed geochronological features of detrital zircons from Devonian and Ordovician coarse sandstone in southern Jiangxi Province,northern Cathaysia Block.Abundant ancient crustal information was obtained.The 350 groups of U-Pb age center on five ranges:2600-2300 Ma(peak at 2470 Ma),1100-900 Ma(peak at 980 Ma),900-700 Ma(peak at 800 Ma),650-520 Ma(peak at 600 Ma) and 450-400 Ma(peak at 440 Ma).We also found a detrital zircon of ~3.5 Ga.This is the oldest age in northern Cathaysia Block obtained so far.From the analysis we concluded that:(1) the 2600-2300 Ma period,characterized by a global continent-building,records late Neoarchean magmatism that did not occur in the neighboring area of Cathaysia;(2) the marked peak at 1100-900 Ma corresponds with the assembly time of the Neoproterozoic supercontinent,Rodinia,suggesting that the Cathaysia Block was once a part of Rodinia,and numerous euhedral zircons with similar ages likely resulted from the Grenville event;(3) the peak at 900-700 Ma corresponds to the breakup of Rodinia,as evidenced by wide occurrence of Neoproterozoic granite,basic dyke swarms and continental rift-type deposition;(4) the 650-520 Ma period is the typical time of the Pan-African event,but as yet no associated magmatic rock has been reported in this area;and(5) the peak at 450-400 Ma,representing the early Paleozoic orogeny,was recorded in various igneous rocks.Abundant Silurian-Lower Devonian granitic plutons,orthogneisses and their zircon U-Pb dating ages(450-400 Ma) are important evidence of an early Paleozoic orogenic event.Geological data support the interpretation of an Early Paleozoic tectonic heat event in Cathaysia,which was likely to be caused by intracontinental collision.

  10. Zircon U-Pb geochronology of basement metamorphic rocks in the Songliao Basin

    PEI FuPing; XU WenLiang; YANG DeBin; ZHAO QuanGuo; LIU XiaoMing; HU ZhaoChu


    Zircon LA-ICP MS U-Pb dating of six metamorphic rocks and a metagranite (breccia) from southern basement of the Songliao Basin are reported in order to constrain the formation ages of basement. The basement metamorphic rocks in the Songliao Basin mainly consist of metagabbro (L45-1), amphibolite (SN117), metarhyolitical tuff (G190), sericite (Ser) schist (N103), chlorite (Chi) schist (T5-1), biotite (Bi)-actinolite (Act)-quartz (Q) schist (Y205), and metagranite (L44-1). The cathodoluminesence (CL)images of the zircons from metagabbro (L45-1) and metagranite (L44-1) indicate that they have cores of magmatic origin and rims of metamorphic overgrowths. Their U-Pb isotopic ages are 1808±21 Ma and 1873±13 Ma, respectively. The zircons with oscillatory zoning from amphibolite (SN117) and Chi schist (T5-1), being similar to those of mafic igneous rocks, yield ages of 274 ± 3.4 Ma and 264 ± 3.2 Ma, respectively. The zircons from metarhyolitical tuff (G190) and Ser schist (N103) display typical magmatic growth zoning and yield ages of 424 ± 4.5 Ma and 287 ± 5.1Ma, respectively. Most of zircons from Bi-Act-Q schist (Y2O5) are round in shape and different in absorption degree in the CL images, implying their sedimentary detritals. U-Pb dating yield concordant ages of 427 ± 3.1Ma, 455 ± 12 Ma, 696 ± 13 Ma,1384±62 Ma, 1649±36 Ma, 1778±18 Ma, 2450±9 Ma, 2579±10 Ma, 2793±4 Ma and 2953±14 Ma. The above-mentioned results indicate that the Precambrian crystalline basement (1808-1873 Ma) exists in the southern Songliao Basin and could be related to tectonic thrust, and that the Early Paleozoic (424-490 Ma) and Late Paleozoic magmatisms (264-292 Ma) also occur in the basin basement, which are consistent with the ages of the detrital zircons from Bi-Act-Q schist in the basement.

  11. Detrital zircon U-Pb geochronology, Lu-Hf isotopes and REE geochemistry constrains on the provenance and tectonic setting of Indochina Block in the Paleozoic

    Wang, Ce; Liang, Xinquan; Foster, David A.; Fu, Jiangang; Jiang, Ying; Dong, Chaoge; Zhou, Yun; Wen, Shunv; Van Quynh, Phan


    In situ U-Pb geochronology, Lu-Hf isotopes and REE geochemical analyses of detrital zircons from Cambrian-Devonian sandstones in the Truong Son Belt, central Vietnam, are used to provide the information of provenance and tectonic evolution of the Indochina Block. The combined detrital zircon age spectra of all of the samples ranges from 3699 Ma to 443 Ma and shows with dominant age peaks at ca. 445 Ma and 964 Ma, along with a number of age populations at 618-532 Ma, 1160-1076 Ma, 1454 Ma, 1728 Ma and 2516 Ma. The zircon age populations are similar to those from time equivalent sedimentary sequences in continental blocks disintegrated from the East Gondwana during the Phanerozoic. The younger zircon grains with age peaks at ca. 445 Ma were apparently derived from middle Ordovician-Silurian igneous and metamorphic rocks in Indochina. Zircons with ages older than about 600 Ma were derived from other Gondwana terrains or recycled from the Precambrian basement of the Indochina Block. Similarities in the detrital zircon U-Pb ages suggest that Paleozoic strata in the Indochina, Yangtze, Cathaysia and Tethyan Himalayas has similar provenance. This is consistent with other geological constrains indicating that the Indochina Block was located close to Tethyan Himalaya, northern margin of the India, and northwestern Australia in Gondwana.

  12. Zircon LA-ICPMS geochronology of the Cornubian Batholith, SW England

    Neace, Erika R.; Nance, R. Damian; Murphy, J. Brendan; Lancaster, Penelope J.; Shail, Robin K.


    Available Usbnd Pb age data for the Cornubian Batholith of SW England is based almost entirely on monazite and xenotime, and very little zircon Usbnd Pb age data has been published. As a result, no zircon inheritance data is available for the batholith, by which the nature of the unexposed basement of the Rhenohercynian Zone in SW England might be constrained. Zircon LA-ICPMS data for the Cornubian Batholith provides Concordia ages (Bodmin Moor granite: 316 ± 4 Ma, Carnmenellis granite: 313 ± 3 Ma, Dartmoor granite: ~ 310 Ma, St. Austell granite: 305 ± 5 Ma, and Land's End granite: 300 ± 5 Ma) that are consistently 20-30 Ma older than previously published emplacement ages for the batholith and unrealistic in terms of geologic relative age relationships with respect to the country rock. This discrepancy is likely as a consequence of minor pre-granitic Pb inheritance. Several of the batholith's granite plutons contain a component of late-Devonian inheritance that may record rift-related, lower crustal melting or arc-related magmatism associated with subduction of the Rheic Ocean. In addition, the older granites likely contain Mesoproterozoic inheritance, although the highly discordant nature of the Mesoproterozoic ages precludes their use in assigning an affinity to the Rhenohercynian basement in SW England.

  13. Timing of the granulite facies metamorphism in the Sanggan area, North China craton: zircon U-Pb geochronology

    GUO; Jinghui


    Serre, southern Calabria (Italy), Contrib. Mineral. Petrol., 1980, 73: 23-38.[28]Kroner, A., Stern, R. J., Dawoud, A. S. et al., The Pan-African continental margin in northeastern Africa: evidence from a geochronological study of granulites at Saboloka, Sudan, Earth Planet Sci. Lett., 1987, 85:91-104.[29]Mezger, K., Geochronology in granulites, in Granulites and Crustal Evolution (eds. D. Vielzeuf, Ph. Vidal), Dordrecht: Kluwer Academic Publishers 1990, 451-470.[30]Kroner, A., Jaeckel, P., Williams, I. S., Pb-loss patterns in zircons from a high-grade metamorphic terrain as revealed by different dating methods: U-Pb and Pb-Pb ages for igneous and metamorphic zircons from northern Sri Lanka, Precambrian Research, 1994, 66: 151-181.[31]Pupin, J. P., Zircon and granite petrology, Contrib. Mineral. Petrol., 1980, 73: 207-220.[32]Vavra, G., On the kinematics of zircon growth and its petrogenetic significance: a cathodoluminescence study, Contrib. Mineral. Petrol., 1990, 106: 90-99.[33]Ganguly, J., Tirone, M., Hervig, R. L., Diffusion kinetics of Samarium and Neodymium in garnet, and a method for determining cooling rates of rocks, Science, 1998, 281: 805-807.[34]Hensen, B. J., Zhou, B., Retention of isotopic memory in garnets partially broken down during an overprinting granulite-facies metamorphism: implications for the Sm-Nd closure temperature, Geology, 1995, 23(3): 225-228.[35]Guo, J. H., Wang, S. S., Sang, H. Q. et al., 40Ar39Ar age spectra of garnet porphyroblast: Implications for metamorphic age of high-pressure granulite in the North China craton, Acta Petrologia Sinica (in Chinese with English abstract), 2001,17(3): 436-442.[36]Whitehouse, M. J., Granulite facies Nd-isotopic homogenization of the Lewisian complex of northwest Scotland, Nature,1988, 331: 705-707.[37]Wang, S. S., Hu, S. L., Zhai, M. G. et al., An application of the 40Ar-39Ar dating technique to the formation time of Qingyuan granite-greenstone terrain in NE

  14. Detrital zircon geochronology of the Cretaceous succession from the Iberian Atlantic Margin: palaeogeographic implications

    Dinis, Pedro A.; Dinis, Jorge; Tassinari, Colombo; Carter, Andy; Callapez, Pedro; Morais, Manuel


    Detrital zircon U-Pb data performed on eight Cretaceous sandstone samples (819 age isotopic results) from the Lusitanian basin (west Portugal) constrain the history of uplift and palaeodrainage of western Iberia following break-up of Pangaea and opening of the North Atlantic Ocean. We examined the links between shifts in provenance and known basinwide unconformities dated to the late Berriasian, Barremian, late Aptian and Cenomanian-Turonian. The detrital zircon record of sedimentary rocks with wider supplying areas is relatively homogenous, being characterized by a clear predominance of late Palaeozoic ages (c. 375-275 Ma) together with variable proportions of ages in the range c. 800-460 Ma. These two groups of ages are diagnostic of sources within the Variscan Iberian Massif. A few samples also reveal significant amounts of middle Palaeozoic (c. 420-385 Ma) and late Mesoproterozoic to early Neoproterozoic (c. 1.2-0.9 Ga) zircon, which are almost absent in the basement to the east of the Lusitanian basin, but are common in terranes with a Laurussia affinity found in NW Iberia and the conjugate margin (Newfoundland). The Barremian unconformity marks a sudden rise in the proportion of c. 375-275 Ma zircon ages accompanied by a decrease in the abundance of the c. 420-385 Ma and c. 1.2-0.9 Ga ages. This shift in the zircon signature, which is contemporaneous with the separation of the Galicia Bank from Flemish Cap, reflects increased denudation of Variscan crystalline rocks and a reduction in source material from NW Iberia and adjoining areas. The late Aptian unconformity, which represents the largest hiatus in the sedimentary record, is reflected by a shift in late Palaeozoic peak ages from c. 330-310 Ma (widespread in Iberia) to c. 310-290 Ma (more frequent in N Iberia). It is considered that this shift in the age spectra resulted from a westward migration of catchment areas following major uplift in northern Iberia and some transport southward from the Bay of

  15. Petrography and U-Pb detrital zircon geochronology of metasedimentary strata dredged from the Chukchi Borderland, Amerasia Basin, Arctic Ocean

    Brumley, K.; Miller, E. L.; Mayer, L. A.; Andronikov, A.; Wooden, J. L.; Dumitru, T. A.; Elliott, B.; Gehrels, G. E.; Mukasa, S. B.


    In 2008-2009, twelve dredges were taken aboard the USCGC Healy from outcrops along the Alpha Ridge, Northern Chukchi Borderland, Northwind Ridge and the Chukchi Plateau in the Arctic Ocean as part of the U.S. Extended Continental Shelf Project. To ensure sampling of outcrop, steep bathymetric slopes (>40°) with little mud cover were identified with multibeam sonar and targeted for dredging. The first dredge from Alpha Ridge yielded volcaniclastic sedimentary rocks deposited from a phreatomagmatic eruption in shallow water (<200m). This is inconsistent with tectonic reconstructions suggesting that the Alpha Ridge was created as an oceanic plateau on deep oceanic crust of the Canada Basin. Another dredge, taken from the northern tip of Northwind Ridge, yielded metasedimentary rocks deformed under greenschist facies conditions (chlorite+white mica). These rocks are intruded and/or overlain by mid-Cretaceous alkalic basalts, also taken in this dredge, and dated by 40Ar/39Ar (plagioclase separate) to be 112±1 Ma. The metasedimentary rocks, from this single dredge, range in grain size from mud to coarse sandstone and grit which all contain grains and sub-angular clasts of volcanic, plutonic, metamorphic and fine grained sedimentary rocks as well as monocrystalline quartz, potassium feldspar, and plagioclase. All of these samples display the same bedding to foliation angle and lithology, which further indicates that they were dredged from in situ outcrop and are not random samples of ice rafted debris. Based on grain size variations and graded beds, they are interpreted as Silurian gravity flow deposits fed by proximal syn-orogenic and/or magmatic arc sources. Detrital zircons were separated from four sandstone samples of the Northwind Ridge dredge, and their U-Pb single grain ages determined by LA-MC-ICPMS and SHRIMP, (N= 393). Their detrital zircon populations are dominated by euhedral first-cycle zircon ca. 430 and 980 Ma with lesser older recycled zircons between

  16. New assemly model of Jiangnan Orogen: insight from detrital zircon geochronology of pre-Cretaceous strata, South China

    Su, J.; Dong, S.


    , which results in entirely different interpretation of the tectonic background of Jiangnan Orogen. The detrital age spectrums and provenance of basement in SCB are analyzed and compared with each other, which indicate that the depositional processes are totally distinctive and not the product induced by same orogeny along east margin of Yangtze Block. The detrital zircons from Proterozoic and Phanerozoic strata record major Proterozoic populations of 2.0-1.8 Ga, 1.1-0.9Ga and 0.7-0.9 Ga, implying existence of multi-phase orogenies in SCB during Proterozoic. In addition, the SCB has affinity with Australia not only in Columbia supercontinent but also in Rodinia supercontinent. Considering the distribution of Proterozoic orogen in Australia and geochronology of SCB, another amalgamation history between Yangtze and Cathaysia Blocks is proposed. We infer existence of ancient orogen under the western Jiangnan Orogen, which may occur at either Columbia-age or Greenville-age earlier than the Sibao orogeny.

  17. Zircon SHRIMP dating of sodium alkaline rocks from Maomaogou area of Huili County in Panxi,SW China and its geological implications

    LIU Hongying; XIA Bin; ZHANG Yuquan


    Alkali-feldspar syenites from the Maomaogou area of Huili County in Panxi of Sichuan Province, SW China are sodium alkaline rocks, the minerals of which are mainly composed of calcic ferroaugite, ferroamphibole and biotite. Most of the zircons (>80%) selected for SHRIMP U-Pb dating are magmatic compound zircons and they have relict inner cores and growing outer shells. The age of zircon SHRIMP U-Pb dating is 224±8 Ma, suggesting that the Maomaogou alkali-feldspar syenite was formed in the late Triassic period. At the same time, two old age periods of relict cores of zircon are determined, they are the Archean age (2692-2818 Ma) and Neoproterozoic age (622-691 Ma),respectively. These periods indicate that the cores derived from the crystal basement. Furthermore, the Archean age of zircon provides the first reliable SHRIMP U-Pb zircon dating evidence of >2.8 Ga basement in the Xikang-Yunnan Axis of southwest China.

  18. Detrital zircon geochronology and Nd isotope geochemistry of an early Paleozoic succession in Korea:

    Lee, Yong Il; Choi, Taejin; Lim, Hyoun Soo; Orihashi, Yuji


    This study reports the results of an analysis of U-Pb ages of detrital zircons and Nd isotope compositions from the well-established lower Paleozoic platform succession developed on the Precambrian gneiss and metasedimentary rocks in South Korea. The three stratigraphic units in the basal part of the succession are the Jangsan, Myeonsan, and Myobong Formations. The unfossiliferous Jangsan (white­to­pink quartz sandstone) and Myeonsan (dark-gray ilmenite-rich sandstone/shale) Formations are in fault contact and are generally considered to be coeval (Early Cambrian). Both formations are also generally considered to be conformably overlain by the dark­ gray, fossiliferous, fine-grained Myobong Formation (late Early-early Middle Cambrian). We here report U-Pb ages of detrital zircons and Nd isotopic data from the Jangsan, Myeonsan, and Myobong Formations. The Jangsan and Myeonsan Formations provide Archean-Paleoproterozoic U-Pb ages, but the former is characterized by Archean Sm-Nd model ages and the latter by late Paleoproterozoic Sm-Nd model ages, which is indicative of a significant change in provenance. This suggests that the Jangsan Formation predates the Myeonsan Formation. The Myobong Formation provides dominantly Meso- to Neoproterozoic U-Pb ages and Sm-Nd model ages that are slightly younger than those of the Myeonsan Formation. Contrary to the conventional wisdom, the combined evidence of unconformable contact and marked changes in zircon U-Pb ages and Nd isotopic compositions suggests that the Myobong Formation overlies the Jangsan and Myeonsan Formations unconformably. Considering the metamorphic age of the immediately underlying Precambrian basement metasediments (0.8 to 0.9 Ga), this stratigraphic relationship strongly suggests that the Jangsan Formation may be Neoproterozoic in age and that the Myeonsan Formation may be latest Neoproterozoic to Early Cambrian and calls for reevaluation of Precambrian-Paleozoic history of the Korean Peninsula. The

  19. U/Pb zircon geochronology and tempo of the end-permian mass extinction

    Bowring; Erwin; Jin M W Martin YG; Davidek; Wang


    The mass extinction at the end of the Permian was the most profound in the history of life. Fundamental to understanding its cause is determining the tempo and duration of the extinction. Uranium/lead zircon data from Late Permian and Early Triassic rocks from south China place the Permian-Triassic boundary at 251.4 +/- 0.3 million years ago. Biostratigraphic controls from strata intercalated with ash beds below the boundary indicate that the Changhsingian pulse of the end-Permian extinction, corresponding to the disappearance of about 85 percent of marine species, lasted less than 1 million years. At Meishan, a negative excursion in delta13C at the boundary had a duration of 165,000 years or less, suggesting a catastrophic addition of light carbon.

  20. Dating sub-20 micron zircons in granulite-facies mafic dikes from SW Montana: a new approach using automated mineralogy and SIMS U-Pb geochronology

    Ault, A. K.; Mahan, K. H.; Flowers, R. M.; Chamberlain, K.; Appleby, S. K.; Schmitt, A. K.


    Geochronological data is fundamental to all tectonic studies, but a major limitation for many lithologies is a paucity of sizeable zircons suitable for conventional U-Pb techniques. In particular, mafic dike swarms provide important time markers for tectonometamorphic activity in Precambrian terranes, but commonly yield little or no zircon or baddeleyite sufficient for TIMS or standard ion-probe analysis of crystal separates. We apply a new approach involving in-situ automated mineralogy and high spatial resolution Secondary Ion Mass Spectrometry (SIMS) geochronology to a mafic dike swarm exposed in the Northern Madison Range of SW Montana. The dikes cross-cut early fabrics but are also variably deformed and metamorphosed to P-T conditions as high as 1.2 GPa and 850 C. The swarm emplacement age is inferred to be ca. 2.1 Ga based on similarities to dated dikes in the adjacent Tobacco Root Mountains. Resolving the timing of dike emplacement and high-grade metamorphism in the study area is important for understanding the extent of post-Archean modification to the northwest margin of the Wyoming craton. Identification and textural characterization of zircons were facilitated by in-situ automated mineralogical analysis, in contrast to a standard elemental X-ray mapping approach. Our technique uses an SEM-based platform coupling calibrated BSE data with X-ray data collected by multiple energy dispersive spectrometers to rapidly identify target accessory phases at high spatial resolution. Whole thin section search maps were generated in ~30 minutes at 4 µm pixel resolution. Our dike thin sections commonly contained >300 zircons in a variety of textural settings, with 80% having a short dimension 95% for 206Pb. SIMS data for 22 zircons from a granulite-facies mafic dike thin section define a chord with upper and lower intercepts of 1753.1 ± 9.5 Ma and 63.2 ± 7.9 Ma, respectively (2 sigma error, MSWD = 1.6). A positive correlation between U concentration and degree of

  1. Large southward motion and clockwise rotation of Indochina throughout the Mesozoic: Paleomagnetic and detrital zircon U-Pb geochronological constraints

    Yan, Yonggang; Huang, Baochun; Zhao, Jie; Zhang, Donghai; Liu, Xiaohui; Charusiri, Punya; Veeravinantanakul, Apivut


    We report a combined paleomagnetic and U-Pb geochronologic study of sedimentary rocks from the Huai Hin Lat and Nam Phong formations of Mesozoic age in NE Thailand in order to provide independent constraints on the tectonic movement of the Indochina Block during convergence of the major blocks now comprising East Asia. The maximum allowable depositional age of the two formations is estimated to be 227 Ma and 215 Ma, respectively, from detrital zircon U-Pb geochronologic analysis which also indicates a sediment source transition in the Khorat Plateau Basin during the Middle-Late Jurassic. A formation mean paleomagnetic direction of Dg /Ig = 21.4 ° / 38.1 ° (kg = 19.5, α95 = 9.6 °) before and Ds /Is = 43.0 ° / 48.0 ° (ks = 47.4, α95 = 6.1 °, N = 13) after tilt correction is derived from samples with different lithologies, bedding attitudes, magnetic carriers and polarities and yields a positive fold test. Hence, the magnetization is likely primary. The revised Mesozoic APWP of the Indochina Block yields paleolatitudes (for a reference site of 22°N, 102°E) of 33.4 ± 7.2°N during the Norian Late Triassic, 25.9 ± 5.9°N during the Late Triassic to Early Jurassic, 23.9 ± 8°N during the Late Jurassic to Early Cretaceous, 27.5 ± 3.2°N during the Early Cretaceous and 24.5 ± 4.9°N by the Late Cretaceous; corresponding declinations are 45.2 ± 8.6°, 38.0 ± 6.6°, 36.3 ± 8.8°, 29.6 ± 3.6° and 24.9 ± 5.4° respectively. These data indicate a significantly southward displacement accompanied by clockwise rotation during the Mesozoic. A reconstruction of the Indochina Block within the now well-studied merging process of South China and North China indicates that the Indochina Block was located at a higher latitude than the South China Block during the Norian stage of Late Triassic times whilst no significant relative poleward displacement apparently occurred during the Early Jurassic to Early Cretaceous interval. Our study supports a post

  2. U-Pb Zircon geochronology of the Cambro-Ordovician metagranites and metavolcanic rocks of central and NW Iberia

    Talavera, C.; Montero, P.; Bea, F.; González Lodeiro, F.; Whitehouse, M.


    New U-Pb zircon data from metagranites and metavolcanic rocks of the Schist-Graywacke Complex Domain and the Schistose Domain of Galicia Tras-os-Montes Zone from central and NW Iberia contribute to constrain the timing of the Cambro-Ordovician magmatism from Central Iberian and Galicia Tras-os-Montes Zones which occurred between 498 and 462 Ma. The crystallization ages of the metagranites and metavolcanic rocks from the northern Schist-Graywacke Complex Domain are as follows: (a) in west Salamanca, 489 ± 5 Ma for Vitigudino, 486 ± 6 Ma for Fermoselle and 471 ± 7 Ma for Ledesma; (b) in northern Gredos, 498 ± 4 Ma for Castellanos, 492 ± 4 Ma for San Pelayo and 488 ± 3 Ma for Bercimuelle; (c) in Guadarrama, 490 ± 5 Ma for La Estación I, 489 ± 9 Ma for La Cañada, 484 ± 6 Ma for Vegas de Matute (leucocratic), 483 ± 6 Ma for El Cardoso, 482 ± 8 Ma for La Morcuera, 481 ± 9 Ma for Buitrago de Lozoya, 478 ± 7 Ma for La Hoya, 476 ± 5 Ma for Vegas de Matute (melanocratic), 475 ± 5 Ma for Riaza, 473 ± 8 Ma for La Estación II and 462 ± 11 Ma for La Berzosa; and (d) in Toledo, 489 ± 7 Ma for Mohares and 480 ± 8 Ma for Polán. The crystallization ages of the metagranites from the Schistose Domain of Galicia Tras-os-Montes Zone are 497 ± 6 Ma for Laxe, 486 ± 8 Ma for San Mamede, 482 ± 7 Ma for Bangueses, 481 ± 5 Ma for Noia, 480 ± 10 for Rial de Sabucedo, 476 ± 9 Ma for Vilanova, 475 ± 6 Ma for Pontevedra, 470 ± 6 Ma for Cherpa and 462 ± 8 Ma for Bande. This magmatism is characterized by an average isotopic composition of (87Sr/86Sr)485Ma ≈ 0.712, (ɛNd)485Ma ≈ -4.1 and (TDM) ≈ 1.62 Ga, and a high zircon inheritance, composed of Ediacaran-Early Cambrian (65 %) and, to a lesser extent, Cryogenian, Tonian, Mesoproterozoic, Orosirian and Archean pre-magmatic cores. Combining our geochronological and isotopic data with others of similar rocks from the European Variscan Belt, it may be deduced that Cambro-Ordovician magmas from this belt were mainly

  3. U-Pb zircon geochronology, Sr-Nd isotope geochemistry, and petrogenesis of oxidant granitoids at Keybarkuh, southwest of Khaf

    Ehsan Salati


    Full Text Available Keybarkuh area is located 70 km southwest of Khaf, Khorasan Razavi province. The study area is situated in northeastern Lut block. The rock units in the area are Paleozoic metamorphic rocks and Cretaceous to Tertiary subvolcanic intrusions intruded as dike, stock and batholith; their composition varies from granite to diorite. Based on magnetic susceptibility, the intrusive rocks are divided into oxidant and reduced series. In this study, the oxidant intrusions are discussed. These intrusions are mostly high-K to shoshonitic and also meta-aluminous type. Their magma formed in subduction magmatic arc and they belong to I-type granitoid series. Enrichment of Large Ion Lithophile Elements (LILE such as Rb, Cs, K, Ba, and Th relative to High Field Stength Elements (HFSE such as Nb, Zr, and Ti supported the idea. Enrichment of Light Rare Earth Elements (LREE and depletion of Heavy Rare Earth Elements (HREE are also typical of subduction magmatism. Negative anomalies of Eu/Eu* can be attributed to the presence of residual plagioclase in a mantle source and contamination of magma by reduced continental crust. The amount of Nb > 11 ppm, lower ratio of Zr/Nb 0.706, initial 143Nd/144Nd (> 0.512 and εNd (< -3.5 indicate that magma contaminated by reduced continental crust. Hornblende biotite granodiorite porphyry dated using U-Pb zircon geochronology at 43.44 Ma (Middle Eocene. Based on calculated TDM, magma derived from ancient slab with 820 Ma age in the Keybarkuh area, was affected by the highest continental crust contamination during its ascent.

  4. Sandstone provenance and detrital zircon geochronology record changes in Plio-Pleistocene tectonism of the Southern Cascadia forearc

    Garcia, M. J.; Michalak, M.; Hourigan, J. K.


    The Cascadia Subduction Zone (CSZ) in the Pacific NW is defined by subducting oceanic lithosphere (Juan de Fuca-Gorda) beneath the North American Plate, from British Colombia to Northern California. In the Southern CSZ, the forearc is characterized by high topography of the Klamath Mountain Province west of the volcanic arc, the lower lying Northern Coast Ranges, comprising Cretaceous through Miocene Franciscan Formation, and structurally controlled coastal basins of Pliocene-Pleistocene fluvial-marine sedimentary rocks. The southernmost CSZ is affected by northward migration of the Mendocino Triple Junction; high rates of rock uplift and tectonically controlled drainage patterns are evident of its passage spatially and temporally. While provenance sources for early-to-mid Tertiary sedimentary units of the Franciscan are well-described, less is known about provenance sources in Plio-Pleistocene time, and how changes in regional tectonics, such as the migration of the MTJ, and uplift of the Klamath Mountains, may have affected sediment dispersal. Previous work and our preliminary results indicate that the Plio-Pleistocene Wildcat Group of the Eel River basin is characterized by distant sources. Aalto et al., (1998) and Moley (1997) use detrital mica Ar/Ar ages and petrofacies analyses of the Wildcat to hypothesize provenance from the distant Idaho Batholith. We test this hypothesis using detrital zircon U-Pb geochronology, and present eight new detrital sample ages from Plio-Pleistocene sedimentary basins along the coastal margin north of the MTJ. These results are used to inform paleographic reconstructions of Pliocene-Pleistocene regional topography associated with the dynamic tectonics of Southern Cascadia.

  5. A chronostratigraphic assessment of the Moenave Formation, USA using C-isotope chemostratigraphy and detrital zircon geochronology: Implications for the terrestrial end Triassic extinction

    Suarez, Celina A.; Knobbe, Todd K.; Crowley, James L.; Kirkland, James I.; Milner, Andrew R. C.


    The Late Triassic is a period of abrupt climate change associated with a disruption to the global carbon cycle usually ascribed to the emplacement of the Central Atlantic Magmatic Province (CAMP). Geochronologic, paleontologic, and geochemical studies have shown that the CAMP was likely the major factor for the end-Triassic extinction (ETE), however, difficulties correlating and dating terrestrial strata has left the nature of the terrestrial extinction in question. The lacustrine Whitmore Point Member (WPM) of the Moenave Formation is ideal for investigating these details because it is reported to be Late Triassic to Early Jurassic. However, currently there are conflicting age constraints between biostratigraphy and magnetostratigraphy. In this study we attempt to elucidate the ETE by incorporating C-isotope chemostratigraphy and detrital zircon geochronology. Detrital zircon geochronology suggests the upper part of the Dinosaur Canyon Member (DCM) is younger (201.33 ± 0.07/0.12/0.25 Ma) than the ETE (201.564 Ma) suggesting the ETE is in the middle to lower DCM, in agreement with track biostratigraphy (first occurrence of Eubrontes, Anomoepus, and Batrachopus). Meanwhile a distinct negative carbon isotope (NCIE) excursion (-5.5‰) occurs at the base of the WPM at Potter Canyon, AZ with a more subtle NCIE at the base of the WPM at Black Canyon, UT (-2.0‰) that may correlate to the initial NCIE at the ETE. However, the WPM NCIE is correlated to the preservation of organic C (relative %C) suggesting it may be either related to local lake productivity and biases in organic matter preservation or may be a negative CIE in the Jurassic Hettangian stage. With the addition of the detrital zircon data, we suggest the M2r reversal at the base of the WPM is a reversal in the Hettangian (the H24r, H25r, or H26r) and the ETE is within the DCM. Additional C-isotope analysis of the DCM is necessary to determine if the initial NCIE that is the hallmark of the ETE occurs in

  6. Tectonic events reflected by palaeocurrents, zircon geochronology, and palaeobotany in the Sierra Baguales of Chilean Patagonia

    Gutiérrez, Nestor M.; Le Roux, Jacobus P.; Vásquez, Ana; Carreño, Catalina; Pedroza, Viviana; Araos, José; Oyarzún, José Luis; Pablo Pino, J.; Rivera, Huber A.; Hinojosa, L. F.


    The Sierra Baguales, situated north of the Torres Del Paine National Park in the Magallanes region of southern Chile, shows a well-exposed stratigraphic sequence ranging from the Late Cretaceous to late Pliocene, which presents a unique opportunity to study the evolution of sedimentological styles and trends, palaeoclimate changes, and tectonic events during this period. The depositional environment changed from a continental slope and shelf during the Cenomanian-Campanian (Tres Pasos Formation) to deltaic between the Campanian-Maastrichtian (Dorotea Formation) and estuarine in the Lutetian-Bartonian (Man Aike Formation). During the Rupelian, a continental environment with meandering rivers and overbank marshes was established (Río Leona Formation). This area was flooded in the early Burdigalian (Estancia 25 de Mayo Formation) during the Patagonian Transgression, but emerged again during the late Burdigalian (Santa Cruz Formation). Measured palaeocurrent directions in this Mesozoic-Cenozoic succession indicate source areas situated between the northeast and east-southeast during the Late Cretaceous, east-southeast during the middle Eocene, and southwest during the early Oligocene to early Miocene. This is confirmed by detrital zircon age populations in the different units, which can be linked to probable sources of similar ages in these areas. The east-southeastern provenance is here identified as the Antarctic Peninsula or its northeastern extension, which is postulated to have been attached to Fuegian Patagonia during the Eocene. The southwestern and western sources were exhumed during gradual uplift of the Southern Patagonian Andes, coinciding with a change from marine to continental conditions in the Magallanes-Austral Basin, as well as a decrease in mean annual temperature and precipitation indicated by fossil leaves in the Río Leona Formation. The rain shadow to the east of the Andes thus started to develop here during the late Eocene-early Oligocene ( 34

  7. Paleoproterozoic mojaveprovince in northwestern Mexico? Isotopic and U-Pb zircon geochronologic studies of precambrian and Cambrian crystalline and sedimentary rocks, Caborca, Sonora

    Lang, Farmer G.; Bowring, S.A.; Matzel, J.; Maldonado, G.E.; Fedo, C.; Wooden, J.


    Whole-rock Nd isotopic data and U-Pb zircon geochronology from Precambrian crystalline rocks in the Caborca area, northern Sonora, reveal that these rocks are most likely a segment of the Paleoproterozoic Mojave province. Supporting this conclusion are the observations that paragneiss from the ??? 1.75 Ga Bamori Complex has a 2.4 Ga Nd model age and contains detrital zircons ranging in age from Paleo- proterozoic (1.75 Ga) to Archean (3.2 Ga). Paragneisses with similar age and isotopic characteristics occur in the Mojave province in southern California. In addition, "A-type" granite exposed at the southern end of Cerro Rajon has ca 2.0 Ga Nd model age and a U-Pb zircon age of 1.71 Ga, which are similar to those of Paleoproterozoic granites in the Mojave province. Unlike the U.S. Mojave province, the Caborcan crust contains ca. 1.1 Ga granite (Aibo Granite), which our new Nd isotopic data suggest is largely the product of anatexis of the local Precambrian basement. Detrital zircons from Neoproterozoic to early Cambrian miogeoclinal arenites at Caborca show dominant populations ca. 1.7 Ga, ca. 1.4 Ga, and ca. 1.1 Ga, with subordinate Early Cambrian and Archean zircons. These zircons were likely derived predominately from North American crust to the east and northeast, and not from the underlying Caborcan basement. The general age and isotopic similarities between Mojave province basement and overlying miogeoclinal sedimentary rocks in Sonora and southern California is necessary, but not sufficient, proof of the hypothesis that Sonoran crust is allochthonous and was transported to its current position during the Mesozoic along the proposed Mojave-Sonora megashear. One viable alternative model is that the Caborcan Precambrian crust is an isolated, autochthonous segment of Mojave province crust that shares a similar, but not identical, Proterozoic geological history with Mojave province crust found in the southwest United States ?? 2005 Geological Society of America.

  8. High precision dating of mass extinction events: a combined zircon geochronology, apatite tephrochronology, and Bayesian age modelling approach of the Permian-Triassic boundary extinction

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Bagherpour, Borhan; Schaltegger, Urs


    Chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS) U-Pb dating of single-zircon crystals is preferably applied to tephra beds intercalated in sedimentary sequences. By assuming that the zircon crystallization age closely approximate that of the volcanic eruption and ash deposition, U-Pb zircon geochronology is the preferred approach for dating mass extinction events (such as the Permian-Triassic boundary mass extinction) in the sedimentary record. As tephra from large volcanic eruptions is often transported over long distances, it additionally provide an invaluable tool for stratigraphic correlation across distant geologic sections. Therefore, the combination of high-precision zircon geochronology with apatite chemistry of the same tephra bed (so called apatite tephrochronology) provides a robust fingerprint of one particular volcanic eruption. In addition we provide coherent Bayesian model ages for the Permian-Triassic boundary (PTB) mass extinction, then compare it with PTB model ages at Meishan after Burgess et al. (2014). We will present new high-precision U-Pb zircon dates for a series of volcanic ash beds in deep- and shallow-marine Permian-Triassic sections in the Nanpanjiang Basin, South China. In addition, apatite crystals out of the same ash beds were analysed focusing on their halogen (F, Cl) and trace-element (e.g. Fe, Mg, REE) chemistry. We also show that Bayesian age models produce reproducible results from different geologic sections. On the basis of these data, including litho- and biostratigraphic correlations, we can precisely and accurately constrain the Permian-Triassic boundary in an equatorial marine setting, and correlate tephra beds over different sections and facies in the Nanpanjiang Basin independently from litho-, bio- or chemostratigraphic criteria. The results evidence that data produced in laboratories associated to the global EARTHTIME consortium can provide age information at the 0.05% level of 206

  9. Mesoproterozoic Continental Arc Type Granite in the Central Tianshan Mountains: Zircon SHRIMP U-Pb Dating and Geochemical Analyses

    YANG Tiannan; LI Jinyi; SUN Guihua; WANG Yanbin


    The Central Tianshan belt in northwestern China is a small Precambrian block located in the southern part of the Central Asia Orogenic Belt (CAOB), which is considered as "the most voluminous block of young continental crust in the world" that comprises numerous small continental blocks separated by Paleozoic magmatic arcs. The Precambrian basement of the central Tianshan Mountains is composed of volcanic rocks and associated volcano-sedimentary rocks that were intruded by granitic plutons. Geochemical analyses demonstrate that the granitic plutons and volcanic rocks were generated in the Andean-type active continental arc environment like today's Chile, and the zircon U-Pb SHRIMP dating indicates that they were developed at about 956 Ma, possibly corresponding to the subduction of the inferred Mozambique Ocean under the Baltic-African super-continent.

  10. Geologic evolution of the Serrinha nucleus granite–greenstone terrane (NE Bahia, Brazil) constrained by U–Pb single zircon geochronology

    Rios, Débora Correia; Davis, Donald Wayne; Conceicão, Herbet; Davis, W.J.; Rosa, Maria De Lourdes Da Silva; Dickin, A.P.


    p. 175–201 U–Pb single zircon crystallization ages were determined using TIMS and sensitive high resolution ion microprobe (SHRIMP) on samples of granitoid rocks exposed in the Serrinha nucleus granite–greenstone terrane, in NE Brazil. Our data show that the granitoid plutons can be divided into three distinct groups. Group 1 consists of Mesoarchaean (3.2–2.9 Ga) gneisses and N-S elongated TTG (Tonalite-Trondhjemite-Granodiorite) plutons with gneissic borders. Group 2 is represented by ca....

  11. Zircon U–Pb geochronology and geochemistry of rhyolitic tuff, granite porphyry and syenogranite in the Lengshuikeng ore district, SE China: Implications for a continental arc to intra-arc rift setting

    Wang, Changming; Zhang, Da; Wu, Gangguo; Xu, Yigan; Carranza, Emmanuel John M.; Zhang, Yaoyao; Li, Haikun; Geng, Jianzhen


    SE China is well known for its Mesozoic large-scale granitoid plutons and associated ore deposits. Here, zircon U–Pb geochronological and geochemical data have been used to better constrain the petrogenesis of the igneous rocks associated with porphyry Ag–Pb–Zn deposits in the Lengshuikeng ore distr

  12. Zircon U–Pb geochronology and geochemistry of rhyolitic tuff, granite porphyry and syenogranite in the Lengshuikeng ore district, SE China: Implications for a continental arc to intra-arc rift setting

    Wang, Changming; Zhang, Da; Wu, Gangguo; Xu, Yigan; Carranza, E.J.M; Zhang, Yaoyao; Li, Haikun; Geng, Jianzhen


    SE China is well known for its Mesozoic large-scale granitoid plutons and associated ore deposits. Here, zircon U–Pb geochronological and geochemical data have been used to better constrain the petrogenesis of the igneous rocks associated with porphyry Ag–Pb–Zn deposits in the Lengshuikeng ore

  13. Tracing long term tectonic evolution of accretionary orogens by U-Pb zircon geochronology: Proterozoic to Jurassic tectonics of the Santander Massif, northern Colombia

    Valencia, V. A.; Cardona, A.; Gehrels, G. E.; Ruiz, J.; Ibañez, M.


    Accurate orogenic models are nedded to reconstruct complex tectonic histories of long lived convergent margins. Integrated zircon U-Pb geochronology on igneous, sedimentary and metasedimentry rocks within single crustal domains is a powerful tool, as it can be used to trace the timing of rock forming events, magmatic style and episodity, and identify crustal recycling. U-Pb detrital zircon and magmatic geochronology was carried on multiple litostratigraphic units of the Santander Massif in the northeastern Andes, in order to reconstruct its long term Late Proterozoic to Early Mesozoic tectonic evolution. Major zircon forming events includ well defined Grenvillian, Late Neoproterozoic to Ordovician, Silurian, Early Permian and Jurassic events. Major peaks of activity at ca. 197 Ma, 440-410 Ma and 470-490 Ma and 950-1052 Ma, support the existence of continental scale tectonic cycles. Older Mesoproterozoic (1.3-1.5 Ga) crustal input in metasediments and magmatic rocks link these units to crustal recycling on the margins of the Amazon Craton, whereas the older 950-1052 Ma peak indicates the link of this crustal segment with other Andean Grenvillian remnant. Previous interpretations of the Paleozoic Silgara Formation seem incorrect, as acquired dates from this study includ different metamorphic units, deposited and formed after the Silurian and Permian during final stages of Pangea's assemblage, probably as Laurentia migrated to its final Alleghanian position. Finally the presence of the NW South America Jurassic arc is also present in the region by granitoid ages. The limited input of this arc signature within the contemporaneous and overlapping Early Cretaceous sedimentary rocks suggest that this arc was developed in a back arc setting.

  14. SHRIMP zircon U-Pb ages and tectonic implications of igneous events in the Ereendavaa metamorphic terrane in NE Mongolia

    Miao, Laicheng; Zhang, Fochin; Baatar, Munkhtsengel; Zhu, Mingshuai; Anaad, Chimedtseren


    The Ereendavaa metamorphic terrane in NE Mongolia has long been considered as a Pre-Altaid block or a Precambrian cratonic terrane with a Paleoproterozoic basement overlain by Neoproterozoic-Cambrian rocks, but the idea has not been supported by any isotopic dating. Sensitive high resolution ion microprobe (SHRIMP) zircon U-Pb dating on gneisses, amphibolite and schists (mylonites) of the Ereendavaa terrane suggests that the terrane mainly formed during Early Paleozoic (495-464 Ma) and Late Paleozoic-Early Mesozoic (295-172 Ma). A minor amount of Precambrian rocks might have been involved in the formation of the protoliths of these rocks, as shown by Precambrian inherited zircons (1796-794 Ma). The new age data also suggest that the Ereendavaa terrane experienced at least two periods of magmatism: (1) Early Paleozoic (495-464 Ma) and (2) Late Paleozoic-Early Mesozoic (295-172 Ma), which are probably produced by the subduction of the Paleo Asian Ocean in the south and the subduction of the Mongol-Okhotsk Ocean in the north, respectively. The mylonitized granite (172 Ma) and undeformed pegmatite (163 Ma) are interpreted to be syn- and post-kinematic products. The new age data constrain the closure of the Mongol-Okhotsk Ocean at mid-Jurassic.

  15. SHRIMP Zircon U-Pb Dating of the Tongshi Magmatic Complex in Western Shandong and Its Geological Implications

    HU Huabin; MAO Jingwen; LIU Dunyi; NIU Shuyin; WANG Yanbin; LI Yongfeng; SHI Ruruo


    The SHRIMP U-Pb zircon dating result of the Tongshi magmatic complex in western Shandong is presented in this paper.The Tongshi magmatic complex comprises fine-grained porphyritic diorite and syenitic porphyry.Eighteen analyses for fine-grained porphyritic diorite gave two concordia ages,in which ten analyses constitute the young age group,giving 206Pb/238U ages ranging from 167.9 Ma to 183 Ma with a weighted mean age of 175.7±3.8 Ma,and the other eight yielded 207Pb/206Pb ages of 2502 Ma to 2554 Ma with a weighted mean 2518±11 Ma.Two analyses for syenitic porphyry gave ages of 2485 Ma and 2512 Ma,respectively.The age of 175.7±3.8 Ma indicates that the crystallization of the Tongshi magmatic complex occurred in the Middle Jurassic,whereas that of 2518±11 Ma is interpreted as the age of inherited magmatic zircons in the Neoarchean Wutai period.

  16. In situ isotopic analyses of U and Pb in zircon by remotely operated SHRIMP II, and Hf by LA-ICP-MS: an example of dating and genetic evolution of zircon by {sup 176}Hf/{sup 177}Hf from the Ita Quarry in the Atuba Complex, SE, Brazil; Analises in situ de U e Pb em zircao por SRIMP II por controle remoto e de Hf por LA-ICP-MS: um exemplo de datacao e da evolucao genetica de zircao atraves da razao {sup 176}Hf/{sup 177} em amostra da Pedreira Ita no Complexo Atuba, SE, Brasil

    Sato, K.; Siga Junior, Oswaldo; McReath, Ian; Sproesser, Walter; Basei, Miguel Angelo Stipp [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias. Centro de Pesquisas Geocronologicas], e-mail:, e-mail:, e-mail:, e-mail:, e-mail:; Silva, Josiane Aline da [Universidade de Sao Paulo (USP), SP (Brazil). Programa de Pos-graduacao em Geoquimica e Geotectonica; Dunyi, Liu [Institute of Geology, Beijing (China); Iizuka, Takafumi; Rino, Shuji; Hirata, Takafumi [Tokyo Institute of Technology, Tokyo (Japan)


    Remotely-operated SHRIMP dating of zircon is an interesting alternative for dating of zircon crystals. Although it does not represent any technical progress of the geochronological method using the U-Pb system in zircon it is a very useful and cheap facility. The procedure was first used for mass spectrometric analyses involving two international laboratories in Sao Paulo, Brazil and Beijing, China. It was applied to samples of three gneiss-migmatitic rocks from the Ita quarry in the Atuba Complex (located between the Luis Alves and the Apiai Domain) to test previous controversial hypotheses about its evolution. The presence of important archaean and paleo proterozoic components in the complex is confirmed by analyses of zircon found in probably neo proterozoic leucosomes. Diorite intrusion also occurred during the neo proterozoic, associated with the 0.6Ga continental collisions involved in the assembly of Gondwana. The determination of Hf isotope ratios by LA-ICP/MS represents a new option for checking the relative importance of mantle ({epsilon}{sub Hf} > 0) and crustal contributions (({epsilon}{sub Hf} < 0) during the growth of the zircon crystals. While the archaean component in the complex was derived from the mantle ({epsilon}{sub Hf} + 1.5 to + 8.7) the paleo proterozoic component had a crustal contribution ({epsilon}{sub Hf} - 9.1 to -10.1). (author)

  17. SHRIMP zircon U-Pb dating in Jingshan "migmatitic granite", Bengbu and its geological significance

    XU Wenliang; WANG Qinghai; YANG Debin; LIU Xiaochun; GUO Jinghui


    The petrographic characteristics of Jingshan "migmatitic granite" and the occurrence of the magmatic zircons indicate that the granite was formed by normal crystallization of felsic melts. All zircons in the granite have inherited cores and fine-scale oscillatory zoning rims of magmatic origin. It is realized that the granite was formed at 160.2±1.3 Ma through dating magmatic zircons. The generation of the granitic magma could be related to the lithospheric mantle and/or lower crust delamination after the ultrahigh pressure metamorphism (UHPM) in Triassic. Most inherited zircons yield the ages of 217.1±6.6 Ma, which is consistent with the peak UHPM in the Dabie-Sulu orogenic belt. Some of the inherited zircons (433-722 Ma) constitute a discordia line with the upper intercept age of 850+85/-68 Ma and a lower intercept age of 261+100/-140 Ma. These ages imply that the granite could be derived from the partial melting of the crustal materials of the South China Block that was intensively superimposed by the UHPM. The UHPM could be the reason for the major Pb loss at ±220 Ma.

  18. Chronology and Sources of Mesozoic Intrusive Complexes in the Xuzhou-Huainan Region, Central China:Constraints from SHRIMP Zircon U-Pb Dating

    XU Wenliang; WANG Qinghai; LIU Xiaochun; WANG Dongyan; GUO Jinghui


    SHRIMP zircon U-Pb dating in the Liguo and Jiagou intmsives indicates that they were formed at ~130 Ma in the Early Cretaceous. Most inherited zircons in the Liguo intrusive were formed at 2509±43 Ma. Most inherited and detrital zircons in the Jiagou intrusive were formed at ~2500 Ma, ~2000 Ma and ~1800 Ma. The SHRIMP zircon U-Pb dating in two gneiss xenoliths from the Jiagou intrusive yields the ages of 2461+22 Ma and 2508±15 Ma, respectively. The dating results from inherited and detrital zircons in the intmsives and the gneiss xenoliths imply that the magmas could be derived from the partial melting of the basement of the North China Block (NCB). The magmatism is strong and extensive in the periods from 115 to 132 Ma, which is of typical bimodal characteristics. It is suggested that the lithospheric thinning in the eastern North China Block reached its peak in 115-132 Ma.

  19. Magmatism as a response to exhumation of the Priest River complex, northern Idaho: Constraints from zircon U-Pb geochronology and Hf isotopes

    Stevens, L. M.; Baldwin, J. A.; Crowley, J. L.; Fisher, C. M.; Vervoort, J. D.


    Zircon and monazite U-Pb geochronology and zircon Hf isotopes place constraints on the temporal and source relationships between crustal anatexis, magmatism, and exhumation of the Priest River metamorphic core complex, northern Idaho. Granitoids that intruded the migmatitic, pelitic Hauser Lake gneiss include the pluton emplacement in the Priest River complex indicates that it was primarily a response to decompression rather than a cause. The mylonitized Silver Point and undeformed Wrencoe plutons bracket the end of a rapid phase of exhumation to c. 50-48 Ma. Zircon εHf(i) values and Lu-Hf isotope evolution indicate that the Silver Point and Wrencoe plutons crystallized from homogeneous magmas sourced from Archean-Proterozoic basement orthogneisses, whereas the Spokane granite and two leucocratic units appear to have been produced by partial melting of the Hauser Lake gneiss. Comparison of the Priest River complex with other deeply exhumed northern Cordilleran complexes indicates variability in the timing and, therefore, relative influences of partial melting and magmatism on the initiation of exhumation, which must be accounted for in numerical models of metamorphic core complex formation and evolution.

  20. Zircon Geochronology (U-Pb, Petrography, Geochemistry and Radioisotopes of Bornaward Metarhyolites (Central Taknar Zone-Northwest of Bardaskan

    Reza Monazzami Bagherzadeh


    -Pb zircon geochronology Measurement of U-Pb isotopes of the Bornaward metarhyolite zircons of sample BKCh-103, indicates an age of 552.23+4.73,-6.62 Ma (Upper Precambrian. Sr-Nd isotopes The Sr ratios of the metarhyolites (87Sr/86Sr were found to fall in the range of 0.688949 to 0.723435 and the Nd ratios (143Nd/144Ndi were in the range of 0.511701 to 0.511855. These values indicate that the metarhyolites of samples BKCh-12, BKCh-103 and BKCh-177 were affected by hydrothermal alteration since their (87Sr/86SrI ratios are high. The Sr ratios suggest that the more negative Nd anomaly and the more negative ɛNd(552 of the samples BKCh-12, BKCh-103 and BKCh-177 indicate that these lavas originated in an enriched upper mantle source and/or lower continental crust. In contrast, two recent examples (Xua et al., 2005 can be related to sialic continental crust with significant contamination. Petrogenesis The Bornaward metarhyolite- rhyodacites show an enriched pattern for Rb, Th, U, K, Pb, Nd and Y relative to the primitive mantle, while Ba, P, Ti, Sr, Zr and Nb show a reduction as a result of fractional crystallization. Based on isotopic correlations of207Pb/204Pb vs 206Pb/204Pb, the primitive source of the Bornaward metarhyolite- rhyodacites is the lower continental crust. This part of the continental crust is only slightly depleted in Pb. Consequently, it has a low 87Sr/86Sr ratio (Samples BKCh-138 and BKCh-198. In contrast, the samples of BKCh-12, BKCh-103 and BKCh-177 have high 87Sr/86Sr ratios that could be the result of significant contamination to parts of the continental crust with very high 87Sr/86Sr (Karimpour et al., 2011. Results and Conclusions The calc-alkaline compositions of samples BKCh-12, BKCh-103 and BKCh-177, the high K- calc alkaline of samples BKCh-138 and BKCh-198 of the Bornaward metarhyolites and the higher temperature overgrowth of plagioclase on lower temperature microcline phenocrysts can be a reason for entrance lavas with different generations. The

  1. A combined study of SHRIMP U-Pb dating, trace element and mineral inclusions on high-pressure metamorphic overgrowth zircon in eclogite from Qinglongshan in the Sulu terrane

    LI Qiuli; LI Shuguang; HOU Zhenhui1; HONG Jian; YANG Wei1


    Methods recently advanced for discrimination on the genesis of metamorphic zircon, such as analysis of mineral inclusions and trace elements, provide us powerful means to distinguish zircon overgrowth during high-pressure metamorphism. Zircons in ultrahigh-pressure eclogite from Qinglongshan in the Sulu terrane were studied by the SHRIMP U-Pb method in combining with trace element and mineral inclusion analyses. No inherited core was identified in the analyzed zircons by means of cathodoluminescence images. The occurrence of high-pressure metamorphic mineral inclusions in zircon, such as garnet, omphacite, rutile, and the flat HREE pattern in zircon indicate that the zircon formed at high-pressure metamorphic conditions. Therefore, a weighted average U-Pb age of 227.4 ± 3.5 Ma obtained from such a kind of zircon is interpreted to represent the timing of peak metamorphism for the Qinglongshan eclogite.

  2. Zircon U-Pb SHRIMP ages of high-pressure granulite in Yushugou ophiolitic terrane in southern Tianshan and their tectonic implications

    ZHOU Dingwu; SU Li; JIAN Ping; WANG Runsan; LIU Xiaoming; LU Guanxiang; WANG Juli


    Zircons from two high-pressure granulite samples from the Yushugou ophiolitic terrane, southern Tianshan have been investigated by cathodoluminescence, LAICPMS and ion microprobe (SHRIMP) for their internal textures, trace elemental compositions and in situ dating. The weighted mean ages of these two samples are 392±7 and 390±11 Ma, respectively, representing the granulite-facies metamorphic age of the ophiolitic terrane, and indicating that the southern Tianshan ocean initiated its northward subduction since the early Devonian.

  3. Geochemistry, petrography, and zircon U-Pb geochronology of Paleozoic metaigneous rocks in the Mount Veta area of east-central Alaska: implications for the evolution of the westernmost part of the Yukon-Tanana terrane

    Dusel-Bacon, Cynthia; Day, Warren C.; Aleinikoff, John N.


    We report the results of new mapping, whole-rock major, minor, and trace-element geochemistry, and petrography for metaigneous rocks from the Mount Veta area in the westernmost part of the allochthonous Yukon–Tanana terrane (YTT) in east-central Alaska. These rocks include tonalitic mylonite gneiss and mafic metaigneous rocks from the Chicken metamorphic complex and the Nasina and Fortymile River assemblages. Whole-rock trace-element data from the tonalitic gneiss, whose igneous protolith was dated by SHRIMP U–Pb zircon geochronology at 332.6 ± 5.6 Ma, indicate derivation from tholeiitic arc basalt. Whole-rock analyses of the mafic rocks suggest that greenschist-facies rocks from the Chicken metamorphic complex, a mafic metavolcanic rock from the Nasina assemblage, and an amphibolite from the Fortymile River assemblage formed as island-arc tholeiite in a back-arc setting; another Nasina assemblage greenschist has MORB geochemical characteristics, and another mafic metaigneous rock from the Fortymile River assemblage has geochemical characteristics of calc-alkaline basalt. Our geochemical results imply derivation in an arc and back-arc spreading region within the allochthonous YTT crustal fragment, as previously proposed for correlative units in other parts of the terrane. We also describe the petrography and geochemistry of a newly discovered tectonic lens of Alpine-type metaharzburgite. The metaharzburgite is interpreted to be a sliver of lithospheric mantle from beneath the Seventymile ocean basin or from sub-continental mantle lithosphere of the allochthonous YTT or the western margin of Laurentia that was tectonically emplaced within crustal rocks during closure of the Seventymile ocean basin and subsequently displaced and fragmented by faults.

  4. An integrated zircon geochronological and geochemical investigation into the Miocene plutonic evolution of the Cyclades, Aegean Sea, Greece: Part 1: Geochronology

    Bolhar, Robert; Ring, Uwe; Allen, Charlotte M.


    We use 369 individual U-Pb zircon ages from 14 granitoid samples collected on five islands in the Cyclades in the Aegean Sea, Greece, for constraining the crystallisation history of I- and S-type plutons above the retreating Hellenic subduction zone. Miocene magmatism in the Cyclades extended over a time span from 17 to 11 Ma. The ages for S-type granites are systematically ~2 million years older than those for I-type granites. Considering plutons individually, the zircon data define age spectra ranging from simple and unimodal to complex and multimodal. Seven of the 14 investigated samples yield more than one distinct zircon crystallisation age, with one I-type granodiorite sample from Mykonos Island representing the most complex case with three resolvable age peaks. Two samples from S-type granites on Ikaria appear to have crystallised zircon over 2-3 million years, whereas for the majority of individual samples with multiple zircon age populations the calculated ages deviate by 1-1.5 million years. We interpret our age data to reflect a protracted history involving initial partial melting at deeper lithospheric levels, followed by crystallisation and cooling at shallower crustal levels. Our study corroborates published research arguing that pluton construction is due to incremental emplacement of multiple magma pulses over a few million years. Assuming that multiple age peaks of our 14 samples can indeed serve to quantify time spans for magmatic emplacement, our data suggest that Aegean plutons were constructed over a few million years. Our tectonic interpretation of the U-Pb ages is that the S-type granites resulted from partial melting and migmatisation of the lower crust, possibly starting at ~23 Ma. The I-type granites and associated mafic melts are interpreted to reflect the magmatic arc stage in the Cyclades starting at ~15 Ma.

  5. Geochemical and Geochronologic Investigations of Zircon-hosted Melt Inclusions in Rhyolites from the Mesoproterozoic Pea Ridge IOA-REE Deposit, St. Francois Mountains, Missouri

    Watts, K. E.; Mercer, C. N.; Vazquez, J. A.


    Silicic volcanic and plutonic rocks of an eroded Mesoproterozoic caldera complex were intruded and replaced by iron ore, and cross-cut by REE-enriched breccia pipes (~12% total REO) to form the Pea Ridge iron-oxide-apatite-REE (IOA-REE) deposit. Igneous activity, iron ore formation, and REE mineralization overlapped in space and time, however the source of REEs and other metals (Fe, Cu, Au) integral to these economically important deposits remains unclear. Melt inclusions (MI) hosted in refractory zircon phenocrysts are used to constrain magmatic components and processes in the formation of the Pea Ridge deposit. Homogenized (1.4 kbar, 1000°C, 1 hr) MI in zircons from rhyolites ~600 ft (PR-91) and ~1200 ft (PR-12) laterally from the ore body were analyzed for major elements by EPMA and volatiles and trace elements (H2O, S, F, Cl, REEs, Rb, Sr, Y, Zr, Nb, U, Th) by SHRIMP-RG. Metals (including Cu, Au) will be measured in an upcoming SHRIMP-RG session. U-Pb ages, Ti and REE were determined by SHRIMP-RG for a subset of zircon spots adjacent to MI (1458 ± 18 Ma (PR-12); 1480 ± 45 Ma (PR-91)). MI glasses range from fresh and homogeneous dacite-rhyolite (65-75 wt% SiO2) to heterogeneous, patchy mixtures of K-spar and quartz (PR-12, 91), and more rarely mica, albite and/or anorthoclase (PR-91). MI are commonly attached to monazite and xenotime, particularly along re-entrants and zircon rims (PR-91). Fresh dacite-rhyolite glasses (PR-12) have moderate H2O (~2-2.5 wt%), Rb/Sr ratios (~8) and U (~5-7 ppm), and negative (chondrite-normalized) Eu anomalies (Eu ~0.4-0.7 ppm) (typical of rhyolites), whereas HREEs (Tb, Ho, Tm) are elevated (~2-3 ppm). Patchy K-spar and quartz inclusions (PR-12, 91) have flat LREE patterns, and positive anomalies in Tb, Ho, and Tm. One K-spar inclusion (PR-91) has a ~5-50 fold increase in HREEs (Tb, Dy, Ho, Er, Tm) and U (35 ppm) relative to other MI. U-Pb and REE analyses of its zircon host are not unusual (1484 ± 21 Ma); its irregular shape

  6. Zircon geochronology of the Klyuchevskoi gabbro-ultramafic massif and the problem of the age of the Mohorovicic paleoboundary in the Central Urals

    Ivanov, K. S.; Krasnobaev, A. A.; Smirnov, V. N.


    The Klyuveskoi gabbro-ultramafic massif is the most representative ophiolite complex on the eastern portion of the Uralian paleoisland arc part. The massif is composed of dunite-harzburgite (tectonized mantle peridotites) and dunite-wehrlite-clinopyroxenite-gabbro (layered part of the ophiolite section) rock associations. The U-Pb age was obtained for the accessory zircons from the latter association using a SHRIMP-II ion microprobe at the Center for Isotopic Research at the Karpinskii Russian Geological Research Institute. The euhedral zircon crystals with thin rhythmic zoning from dunites are 441.4 ± 5.0 Ma in age. Zircons from olivine clinopyroxenite show three age clusters with sharply prevalent grains 449.0 ± 6.8 Ma in age. Two points give 1.7 Ga, which is probably related to the age of the mantle generating the layered complex. One value corresponds to 280 Ma, which possibly reflects exhumation of ultramafic rocks in the upper crust during the collision of the Uralian foldbelt. Thus, dunites and olivine pyroxenites from the Klyuchevskoi massif are similar in age at 441-449 Ma. The bottom of the layered part of the ophiolite section corresponds to the M paleoboundary and, consequently, the age of the Mohorovicic discontinuity conforms with the Ordovician-Silurian boundary in this part of the Urals.

  7. Stages of late Paleozoic to early Mesozoic magmatism in the Song Ma belt, NW Vietnam: evidence from zircon U-Pb geochronology and Hf isotope composition

    Hieu, Pham Trung; Li, Shuang-Qing; Yu, Yang; Thanh, Ngo Xuan; Dung, Le Tien; Tu, Vu Le; Siebel, Wolfgang; Chen, Fukun


    The Song Ma zone in NW Vietnam bears important tectonic implications as a potential subduction corridor between the Indochina and South China blocks. On the basis of U-Pb ages, the Hf isotopic characteristics of zircons and the geochemical composition of granitoids, a two-stage magmatic evolution process of the Song Ma zone at ~290-260 and ~245-230 Ma can be proposed. Isotopic analyses indicate magmatic contributions from Neoproterozoic oceanic island basalt, Proterozoic continental crust, and depleted mantle or juvenile lithosphere. By combining geochronological and geochemical data from the granitoid rocks, we suggest that the staged magmatic processes of Song Ma zone may be related to a long-lasting period of ocean subduction (ca. 290-260 Ma) and subsequent syn-/post-collisional evolution (ca. 245-230 Ma).

  8. Zircon SHRIMP U-Pb ages of the "Xinghuadukou Group" in Hanjiayuanzi and Xinlin areas and the "Zhalantun Group" in Inner Mongolia, Da Hinggan Mountains

    MIAO LaiCheng; LIU DunYi; ZHANG FuQin; FAN WeiMing; SHI YuRuo; XIE HangQiang


    A report is presented of SHRIMP zircon U-Pb dating data of meta-igneous and meta-sedimentary rocks of the Xinghuadukou Group (Xinlin-Hanjiayuanzi area, Heilongjiang Province) and meta-volcanic rocks of the Zhalantun Group (Zhalantun district, Inner Mongolia). The SHRIMP analyses show that the meta-igneous rocks from the Xinghuadukou Group formed at 506±10-547±46 Ma, belonging to Early-Middle Precambrian, whereas the meta-sedimentary rocks yielded detrital zircons, with ages of 1.0-1.2, 1.6-1.8 and 2.5-2.6 Ga, indicative of deposition age at least <1.0 Ga.Meta-basic volcanic rocks from the Zhalantun Group have a formation age of 506±3 Ma. These data suggest that both the Xinghuadukou and Zhalantun Groups formed during Cambrian and/or Neoproterozoic time, rather than Paleoproterozoic time as previously thought. Early Precambrian inherited zircons in the meta-igneous rocks and numerous Precambrian detrital zircons in the meta-sedimentary rocks imply that these rocks were formed proximal to older crust. It is inferred that the Xinghuadukou and Zhalantun Groups represent Cambrian and/or Neoproterozoic volcano-sedimentary sequences formed in an active continental margin setting.

  9. Geochemistry and U-Pb geochronology of detrital zircons in the Brujas beach sands, Campeche, Southwestern Gulf of Mexico, Mexico

    Tapia-Fernandez, Hector J.; Armstrong-Altrin, John S.; Selvaraj, Kandasamy


    This study investigated the bulk sediment geochemistry, U-Pb ages and rare earth element (REE) geochemistry of one hundred detrital zircons recovered from the Brujas beach sands in southwestern Gulf of Mexico to understand the provenance and age spectra. The bulk sediments are high in Zr and Hf contents (∼1400-3773 ppm and ∼33-90 ppm, respectively) suggested the abundance of resistant mineral zircon. The chondrite normalized REE patterns of the bulk sediments are less fractionated with enriched low REE (LREE; LaCN/SmCN = ∼491-693), depleted heavy REE (HREE; GdCN/YbCN = ∼44-69) and a negative Eu anomaly (Eu/Eu∗ = ∼0.44-0.67) suggested that the source rock is felsic type. The results of this study revealed highly varied contents of Th (∼4.2-321 ppm), U (∼20.7-1680 ppm), and Hf (∼6970-14,200 ppm) in detrital zircons compared to bulk sands. The total REE content (∼75 and 1600 ppm) and its chondrite-normalized pattern with positive Ce and negative Eu anomalies as well as low Th/U ratio of zircon grains indicated that they were dominantly of magmatic origin. U-Pb data of zircons indicated two age populations, with predominance of Permian-Triassic (∼216-286 Ma) and Neoproterozoic (∼551-996 Ma). The Permian-Triassic zircons were contributed by the granitoids and recycled metasedimentary rocks of the Chiapas Massif Complex. The major contribution of Neoproterozoic zircons was from the Chaucus, Oaxacan, and Chiapas Massif Complexes in Grenville Province, southern Mexico. U-Pb ages of zircons from the Brujas beach are consistent to the reported zircon ages from the drainage basins of Usumacinta, Coatzacoalcos, and Grijalva Rivers in southern Mexico, suggesting that the sediments delivered by the rivers to the beach area are vital in defining the provenance of placers.

  10. Zircon U-Pb geochronology of the volcanic rocks from Fanchang-Ningwu volcanic basins in the Lower Yangtze region and its geological implications

    YAN Jun; LIU HaiQuan; SONG ChuanZhong; XU XiSheng; AN YaJun; LIU Jia; DAI LiQun


    The latest eruptions in two important Mesozoic volcanic basins of Fanchang and Ningwu located in the middle-lower reaches of the Yangtze River formed the bimodal volcanic rocks of the Kedoushan Formation and ultrapotassic volcanic rocks of the Niangniangshan Formation,respectively.The representative volcanic rocks of the two Formations were selected for LA-ICPMS zircon U-Pb dating.The results indicate that there exist a large amount of magmatic zircons as indicated by high Th/U ratios in these volcanic rocks.The weighted mean age of 21 analyses is 130.7±1.1 Ma for the Kedoushan Formation,and that of 20 analyses is 130.6±1.1 Ma for the Niangniangshan Formation.These U-Pb ages are interpreted to represent the formation times of the volcanic rocks.In combination with other known geochronological data for Mesozoic volcanic rocks from the Lower Yangtze region,it is proposed that the latest volcanic activations in the Jinniu,Luzong,Fanchang and Ningwu volcanic basins probably came to end prior to ca.128 Me.There is no significant time interval between the early and later volcanic activities in the Luzong and Ningwu basins,suggesting e short duration of volcanic activities and thus implying the onset of an extensional tectonic setting at about 130 Ma in the Lower Yangtze region.Integrated studies reveal that the Early Cretaceous magmatic activities and their geochronological framework in the Lower Yangtze region are a response to progressively dynamic deep processes that started with the transformation of tectonic setting from compression to extension,followed by delaminating of the lower part of the thickened lithosphere,lithospheric thinning,asthenosphere upwelling,and crust-mantle interaction.

  11. SHRIMP Zircon U-Pb Chronology and Geochemistry of the Henglingguan and Beiyu Granitoids in the Zhongtiao Mountains, Shanxi Province

    YU Shengqiang; LIU Shuwen; TIAN Wei; LI Qiugen; FENG Yonggang


    Henglingguan and Beiyu metamorphic granitoids, distributed in the northwest of the Zhongtiaoshan Precambrian complex, comprise trondhjemites and calc-alkaline monzogranites,displaying intrusive contacts with the Archean Zhaizi TTG gneisses. And the Beiyu metamorphic granitoids consist mainly of trondhjemites, distributed at the core of the Hujiayu anticline fold. New SHRIMP zircon U-Pb dating data show that the weighted mean 207Pb/206Pb ages are 2435.9 Ma and 2477 Ma for the Henglingguan metamorphic calc-alkaline monzogranites and Beiyu metamorphic trondhjemites, respectively, and reveal ~2600 Ma inherited core in magmatic zircons. Whole-rock geochemical data indicate that all the Henglingguan and Beiyu metamorphic trondhjemites and calcalkaline monzogranites belong to the metaluminous medium- and high-potassium calc-alkaline series.These rocks are characterized by relatively high total alkali contents (Na2O+K2O, up to 9.08%),depleted Nb, Ta, P and Ti, and right-declined REE patterns with moderate to high LREEs/HREEs fractionation (the mean ratio of (La/Yb)n = 25). The Henglingguan and Beiyu metamorphic trondhjemites display negative Rb, Th and K anomalies in the multi-element spider diagrams normalized by primitive mantle. Sm-Nd isotopic data reveal that these granitoids have initial εNd(t)=-1.2 to +2.4 and Nd depleted mantle model ages of TMD = 2622 Ma-2939 Ma. All these geochemical features indicate that these granitoids were formed in an continent-marginal arc, and the trondhjemites mainly originated from partial melting of juvenile basaltic materials and, howbeit, the Henglingguan metamorphic calc-alkaline monzogranites derived from recycling of materials in the ancient crust under a continent-marginal arc. The granitic magma underwent contamination and fractional crystallization during their formation.

  12. Geochemistry and zircon U-Pb geochronology of the rhyolitic tuff on Port Island, Hong Kong: Implications for early Cretaceous tectonic setting

    Longlong Zhao


    Full Text Available Early Cretaceous rhyolitic tuffs, widely distributed on Port Island, provide insights into the volcanism and tectonic setting of Hong Kong. In this paper we present petrological, geochronological and geochemical data of the rhyolitic tuff to constrain the diagenesis age and petrogenesis of the rocks, tectonic setting and early Cretaceous volcanism of Hong Kong. The first geochronological data show that the zircons in the volcanic rocks have U-Pb age of 141.1–139.5 Ma, which reveals that the rhyolitic tuff on Port Island was formed in the early Cretaceous (K1. Geochemically, these acid rocks, which are enriched in large ion lithophile elements (LILEs and light rare earth elements (LREEs, and depleted in high field strength elements (HFSEs, belong to the high K calc-alkaline to shoshonite series with strongly-peraluminous characteristic. The geochemical analyses suggest that the volcanic rocks were derived from deep melting in the continental crust caused by basaltic magma underplating. Based on the geochemical analysis and previous studies, we concluded that the rhyolitic tuffs on Port Island were formed in a back-arc extension setting in response to the subduction of the Paleo-Pacific Plate beneath the Eurasian Plate.

  13. Zircon-apatite U-Pb geochronology, zircon Hf isotope composition and geochemistry of granite batholith in the northern Mexico: Implications for Tectonomagmatic evolution of southern Cordillera.

    Mahar, M. A.; Goodell, P.


    We present the zircon-apatite U-Pb ages and zircon Hf isotope composition of the granite batholith exposed at the western boundary of Chihuahua. Granidiorite samples were analyzed from both, north and south of the Rio El Fuerte and Sinforosa Lineament. Based on previous studies, the WWN-EES trending Sinforosa Lineament is proposed as the manifestation of a terrane boundary between Seri in the north and Tahue terrane in the south. Zircon U-Pb data indicate that the magmatism spans a time period of 36 Ma from 89 to 53 Ma to the north of the Sinforosa Lineament while granodiorites in the south of the Sinforosa Lineament are dated at 59 Ma. The U-Pb apatite ages are variable in the north of the Sinforosa Lineament and range from 86-51 Ma. These apatite dates are 1-28 Ma younger than the corresponding zircon U-Pb crystallization ages. This indicates variable cooling rates and moderate to shallow emplacement. In contrast, in the south of the Sinforosa Lineament, the U-Pb apatite ages (64-59 Ma) are indistinguishable from the zircon U-Pb age (59 Ma), indicating rapid cooling and shallow emplacement. Zircon morphology and U-Pb dating revealed the absence of inherited component in the zircon ages, as no inheritance of any age has been observed. Most of the northwestern Mexico is underlain by Precambrian-Paleozoic-Jurassic basement. However, in the study area, U-Pb dating does not support the involvement of the older basement in generating the granite magmas. The weighted mean initial ɛHf (t) isotope composition of granodiorites on both sides of the Sinforosa Lineament varies from +2 to +5. However, Hf isotope composition in the south of the Sinforosa Lineament is more heterogeneous and relatively evolved with weighted Mean ɛHf (t) = +1.45. The Hf isotope composition is consistent with the previously reported near bulk silicate Sr-Nd isotope values. We suggest that the magmatic rocks in this region are not derived from melting of a felsic older crust beneath the batholith

  14. Detrital zircon U-Pb geochronology and provenance of the Carboniferous-Permian glaciomarine pebbly slates in the Tibetan Plateau

    Wang, Q.; Zhu, D.; Zhao, Z.; Chung, S.; Li, C.; Sui, Q.; Fu, X.; Mo, X.


    Glaciomarine diamictites (including pebbly slate, pebbly siltstone, and pebbly sandstone) in the Tibetan Plateau are widely interpreted to have been associated with the deglaciation of the Indian continent. Guiding by zircon cathodoluminescence images, we determined U-Pb ages for detrital zircons from five typical Carboniferous-Permian pebbly slate samples from the Qiangtang, Lhasa, and Tethyan Himalaya of the Tibetan Plateau. The age distributions of detrital zircons from two samples (180 analyses) from Qiwu and Gangma Tso of the Qiangtang Terrane are similar, with two main age peaks ca. 579 and ca. 816 Ma and one minor age peak ca. 2490 Ma. Two samples (177 analyses) from Jiangrang and Damxung of the Lhasa Terrane define similar age distributions with two main age peaks ca. 539 and ca. 1175 Ma. Ages of detrital zircons from one sample (110 analyses) from Kangmar of the Tethyan Himalaya display main age peaks ca. 535, ca. 949, and ca. 2490 Ma. The ca. 816-Ma detrital zircons from the Qiangtang Terrane were most likely derived from the Lesser Himalaya, and the ca. 950-Ma detrital zircons from the Tethyan Himalaya might have been sourced from the High Himalaya, Eastern Ghats Province of the Indian plate and the Rayner Province of East Antarctica. The distinctive ca. 1175-Ma age population characteristic of zircons in the pebbly slates from the Lhasa Terrane is identical to the detrital zircons from the late Paleozoic sandstones (Zhu et al., 2011a) and the inherited zircons from the Mesozoic peraluminous granites (Zhu et al., 2011b) in this terrane, but significantly absent in the pebbly slates from both the Qiangtang and the Tethyan Himalayan terranes. The ca. 1175-Ma detrital zircons in the Lhasa Terrane were most likely sourced from the Albany-Fraser-Wilkes in southwestern Australia and East Antarctica. These new data obtained in this study reveal a distinct difference of detrital zircon provenance for the coeval Carboniferous-Permian glaciomarine pebbly slates

  15. Tectonic evolution of the southern margin of the Amazonian craton in the late Mesoproterozoic based on field relationships and zircon U-Pb geochronology



    Full Text Available New U-Pb zircon geochronological data integrated with field relationships and an airborne geophysical survey suggest that the Nova Brasilândia and Aguapeí belts are part of the same monocyclic, metaigneous and metasedimentary belt formed in the late Mesoproterozoic (1150 Ma-1110 Ma. This geological history is very similar to the within-plate origin of the Sunsás belt, in eastern Bolivia. Thus, we propose that the Nova Brasilândia, Aguapeí and Sunsás belts represent a unique geotectonic unit (here termed the Western Amazon belt that became amalgamated at the end of the Mesoproterozoic and originated through the reactivation of a paleo-suture (Guaporé suture zone in an intracontinental rift environment. Therefore, its geological history involves a short, complete Wilson cycle of ca. 40 Ma. Globally, this tectonic evolution may be related with the final breakup of the supercontinent Columbia. Mafic rocks and trondhjemites in the northernmost portion of the belt yielded U-Pb zircon ages ca. 1110 Ma, which dates the high-grade metamorphism and the closure of the rift. This indicates that the breakup of supercontinent Columbia was followed in short sequence by the assembly of supercontinent Rodinia at ca. 1.1-1.0 Ga and that the Western Amazon belt was formed during the accretion of the Arequipa-Antofalla basement to the Amazonian craton.

  16. U-Pb zircon geochronology and Sr-Nd isotopic composition of the Inchope orthogneiss in Mozambique: Age constraints and petrogenetic implications

    Manjate, Vicente Albino


    The Inchope orthogneiss comprises a mesoproterozoic group of variously deformed and migmatised orthogneisses in the Chimoio group. This area is well known for its numerous, small pegmatite deposits with cassiterite and columbite. Zircon U-Pb geochronological and whole rock Sr-Nd isotope data are reported for five Inchope orthogneiss samples. The zircon U-Pb data exhibit one period of crystallization between 1065 and 1053 Ma and two metamorphic ages of 956 Ma and 484 Ma. The Inchope orthogneiss displays evolved Nd isotopic compositions with ɛNdi between -11.7 and -13.3, 87Sr/86Sri between 0.7117 and 0.7209 and TDM values of between 2.3 and 2.4 Ga. Therefore, the Inchope orthogneiss crystallized in Mesoproterozoic from the paleoproterozoic metapelites along the eastern margin of the archaen Zimbabwean craton. This was followed by pegmatite veins intrusions and Pan-African tectonometamorphic reworking. These features are typical of S-type and calc-alkaline granites in continental margin arcs.

  17. Paleoproterozoic crustal evolution in the East Sarmatian Orogen: Petrology, geochemistry, Sr-Nd isotopes and zircon U-Pb geochronology of andesites from the Voronezh massif, Western Russia

    Terentiev, R. A.; Savko, K. A.; Santosh, M.


    Andesites and related plutonic rocks are major contributors to continental growth and provide insights into the interaction between the mantle and crust. Paleoproterozoic volcanic rocks are important components of the East Sarmatian Orogen (ESO) belonging to the East European Craton, although their petrogenesis and tectonic setting remain controversial. Here we present petrology, mineral chemistry, bulk chemistry, Sr-Nd isotopes, and zircon U-Pb geochronological data from andesites and related rocks in the Losevo and Vorontsovka blocks of the ESO. Clinopyroxene phenocrysts in the andesites are depleted in LREE, and enriched in HFSE (Th, Nb, Zr, Hf, Ti) and LILE (Ba, Sr). Based on the chemistry of pyroxenes and whole rocks, as well as Fe-Ti oxides, we estimate a temperature range of 1179 to 1262 °C, pressures of 11.3 to 13.0 kbar, H2O content of 1-5 wt.%, and oxygen fu gacity close to the MH buffer for the melts of the Kalach graben (KG) and the Baygora area (BA) andesites. Our zircon U-Pb geochronological data indicate new zircon growth during the middle Paleoproterozoic as displayed by weighted mean 207Pb/206Pb ages of 2047 ± 17 Ma and 2040 ± 16 Ma for andesite and dacite-porphyry of the BA, and 2050 ± 16 Ma from high-Mg basaltic andesite of the KG. The andesites and related rocks of the KG and BA are characterized by high magnesium contents (Mg # up to 0.68). All these volcanic rocks are depleted in LREE and HFSE, and display negative Nb and Ti anomalies relative to primitive mantle. The high-Mg bulk composition, and the presence of clinopyroxene phenocrysts suggests that the parent melts of the KG and BA suite were in equilibrium with the mantle rocks. The rocks show positive εNd(T) values and low initial 87Sr/86Sr, suggesting that the magmas were mostly derived from metasomatized mantle source. The geochemical differences between the two andesite types are attributed to: the predominance of fractional crystallization, and minor role of contamination in the

  18. Late Cretaceous volcanic arc system in Southwest Korea: Occurrence, lithological characteristics, SHRIMP zircon U-Pb age, and tectonic implications

    Koh, Hee Jae; Kwon, Chang Woo


    In the southwest region of the Korean Peninsula, four large volcanoes, the Buan, Seonunsan, Wido, and Beopseongpo, with a maximum diameter of ca 20 km, form a distinct topographic undulation along the NE-SW-trending Hamyeol Fault. These volcanics comprise various types of pyroclastic, sedimentary, and lava/intrusive rocks, and are interpreted as remnants of calderas resulting from various volcanic eruptions, indicating that Hamyeol Fault, together with crustal extension, played an important role in volcano formation in this region. SHRIMP U-Pb ages of zircon isolated from each volcanics are as follows. For Buan Volcanics, Cheonmasan Tuff 87.23 ±0.92 Ma, Udongje Tuff 86.79 ±0.71 Ma, Seokpo Tuff 87.30 ±0.99 Ma and Yujeongje Tuff 86.66 ±0.93 Ma. For Seonunsan Volcanics, Gyeongsusan Tuff 84.9 ±1.1 Ma and Yeongije Tuff 86.61 ±0.67 Ma. These ages indicate that the four volcanics were formed in the Late Cretaceous. The ages are comparable to those of the volcanic rocks of the Aioi and Arima groups in Southwestern Japan, suggesting that the Late Cretaceous volcanic arc systems developed in a NE-SW direction from the Japanese Islands to the southwestern part of the Korean Peninsula caused by regional magmatism together with crustal deformation as reflected by occurrence of the volcanic rocks along the Hamyeol Fault.

  19. Zircon SHRIMP U-Pb dating for olivine gabbro at Wangmuguan in the Beihuaiyang zone and its geological significance

    LIU Yican; LI Shuguang; GU Xiaofeng; HOU Zhenhui


    Zircon SHRIMP U-Pb dating was performed for olivine gabbro at Wangmuguan in the Beihuaiyang zone of the Dabie orogen and its country rock (garnet-bearing epidote-mica-quartz schist).The results show that the gabbro was crystallized at 635±5 Ma, in the late Neoproterozoic rather than in the late Paleozoic as previously suggested; its country rocks formed at 464±7 Ma, younger than the enclosed gabbro. The U-Pb age for the gabbro is in good agreement with ages for tuff interbedded with sediments from the Doushantuo Formation in the South China Block and late-Neoproterozoic basic dyke swarms distributed on a large scale over areas of Suizhou to Zaoyang of Hubei Province in the northern margin of the South China Block. This suggests a large-scale magmatic activity occurred at the late Neoproterozoic in the South China Block, so that the gabbro at Wangmuguan in the western segment of the Beihuaiyang zone is geotectonic affinity to the northern margin of the South China Block. Since the olivine gabbro occurs within the schist of Ordovician protolith with tectonic contact between them but forming in different tectonic settings, it is concluded that the late-Neoproterozoic gabbro was detached from the Precambrian basement of the South China Block during the Triassic subduction of the South China Block, and tectonically thrusted over the metamorphosed rocks in the southern margin of the North China Block.

  20. SHRIMP zircon U-Pb dating for subduction-related granitic rocks in the northern part of east Junggar, Xinjiang


    SHRIMP U-Pb zircon dating on the Xileketehalasu granodiorite porphyry and Kalasayi monodiorite porphyry that intrude middle Devonian Beitashan Formation at the north part of east Junggar region shows that they were formed at 381±6 Ma and 376±10 Ma respectively. They are interpreted as subduction-related granitic rocks, which is the first report that the isotopic ages for the granitic rocks range from 350 to 390 Ma. Another determined age for the Kalasayi monodiorite porphyry is 408±9 Ma, representing the age of underlain Lower Devonian volcanic rocks. Thus, the U-Pb dates suggest that the northeastward subduction of Junggar ocean from southwest occurred at 408 to 376 Ma (the real interval may be larger). Because the ore-bearing porphyry intruded following the formation of the volcanic rocks of middle Devonian Beitashan Formation, their tectonic setting is similar to the Andes Mountains that hosts world-class porphyry copper deposits, and the researched area could be regarded as a potential area for prospecting large porphyry copper deposits.

  1. New zircon ages on the Cambrian-Ordovician volcanism of the Southern Gemericum basement (Western Carpathians, Slovakia): SHRIMP dating, geochemistry and provenance

    Vozárová, Anna; Rodionov, Nickolay; Šarinová, Katarína; Presnyakov, Sergey


    The Southern Gemericum basement in the Inner Western Carpathians, composed of low-grade volcano-sedimentary rock complexes, constitutes a record of the polyphase Cambrian-Ordovician continental volcanic arc volcanism. These metavolcanic rocks are characterized by the enrichment in K, Rb, Ba, Th and Ce and Sm relative to Ta, Nb, Hf, Zr, Y and Yb that are the characteristic features for volcanic arc magmatites. The new SHRIMP U-Pb zircon data and compilation of previously published and re-evaluated zircon ages, contribute to a new constrain of the timing of the Cambrian-Ordovician volcanism that occurred between 496 and 447 Ma. The following peaks of the volcanic activity of the Southern Gemericum basement have been recognized: (a) mid-late Furongian at 492 Ma; (b) Tremadocian at 481 Ma; (c) Darriwilian at 464 Ma prolonged to 453 Ma within the early Upper Ordovician. The metavolcanic rocks are characterized by a high zircon inheritance, composed of Ediacaran (650-550 Ma), Tonian-Stenian (1.1-0.9 Ma), and, to a lesser extent, Mesoproterozoic (1.3 Ga), Paleoproterozoic (1.9 Ga) and Archaean assemblages (2.6 Ga). Based on the acquired zircon populations, it could be deduced that Cambrian-Ordovician arc crust was generated by a partial melting of Ediacaran basement in the subduction-related setting, into which old crustal fragments were incorporated. The ascertained zircon inheritances with Meso-, Paleoproterozoic and Archaean cores indicate the similarities with the Saharan Metacraton provenance.

  2. SHRIMP zircon dating and LA-ICPMS Hf analysis of early Precambrian rocks from drill holes into the basement beneath the Central Hebei Basin, North China Craton

    Yusheng Wan; Runlong Fan; Huiyi Sun; Xianzheng Zhao; Zejiu Wang; Dunyi Liu; Alfred Kröner; Chunyan Dong; Hangqian Xie; Yuansheng Geng; Yuhai Zhang


    The Central Hebei Basin (CHB) is one of the largest sedimentary basins in the North China Craton, extending in a northeastesouthwest direction with an area of>350 km2. We carried out SHRIMP zircon dating, Hf-in-zircon isotopic analysis and a whole-rock geochemical study on igneous and metasedi-mentary rocks recovered from drill holes that penetrated into the basement of the CHB. Two samples of gneissic granodiorite (XG1-1) and gneissic quartz diorite (J48-1) have magmatic ages of 2500 and 2496 Ma, respectively. Their zircons also record metamorphic ages of 2.41e2.51 and w2.5 Ga, respec-tively. Compared with the gneissic granodiorite, the gneissic quartz diorite has higher SREE contents and lower Eu/Eu* and (La/Yb)n values. Two metasedimentary samples (MG1, H5) mainly contain w2.5 Ga detrital zircons as well as late Paleoproterozoic metamorphic grains. The zircons of different origins haveεHf (2.5 Ga) values and Hf crustal model ages ranging from 0 to 5 and 2.7 to 2.9 Ga, respectively. Therefore, w2.5 Ga magmatic and Paleoproterozoic metasedimentary rocks and late Neoarchean to early Paleoproterozoic and late Paleoproterozoic tectono-thermal events have been identified in the basement beneath the CHB. Based on regional comparisons, we conclude that the early Precambrian basement beneath the CHB is part of the North China Craton.

  3. Mechanisms and timescales of generating eruptible rhyolitic magmas at Yellowstone caldera from zircon and sanidine geochronology and geochemistry

    Stelten, Mark; Cooper, Kari M.; Vazquez, Jorge A.; Calvert, Andrew T.; Glessner, Justin G


    We constrain the physical nature of the magma reservoir and the mechanisms of rhyolite generation at Yellowstone caldera via detailed characterization of zircon and sanidine crystals hosted in three rhyolites erupted during the (ca. 170 – 70 ka) Central Plateau Member eruptive episode – the most recent post-caldera magmatism at Yellowstone. We present 238U-230Th crystallization ages and trace-element compositions of the interiors and surfaces (i.e., unpolished rims) of individual zircon crystals from each rhyolite. We compare these zircon data to 238U- 230Th crystallization ages of bulk sanidine separates coupled with chemical and isotopic data from single sanidine crystals. Zircon age and trace-element data demonstrate that the magma reservoir that sourced the Central Plateau Member rhyolites was long-lived (150 – 250 kyr) and genetically related to the preceding episode of magmatism, which occurred ca. 256 ka. The interiors of most zircons in each rhyolite were inherited from unerupted material related to older stages of Central Plateau Member magmatism or the preceding late Upper Basin Member magmatism (i.e., are antecrysts). Conversely, most zircon surfaces crystallized near the time of eruption from their host liquids (i.e., are autocrystic). The repeated recycling of zircon interiors from older stages of magmatism demonstrates that sequentially erupted Central Plateau Member rhyolites are genetically related. Sanidine separates from each rhyolite yield 238U-230Th crystallization ages at or near the eruption age of their host magmas, coeval with the coexisting zircon surfaces, but are younger than the coexisting zircon interiors. Chemical and isotopic data from single sanidine crystals demonstrate that the sanidines in each rhyolite are in equilibrium with their host melts, which considered along with their near-eruption crystallization ages suggests that nearly all CPM sanidines are autocrystic. The paucity of antecrystic sanidine crystals relative to

  4. Zircon Senstive High Resolution Ion Microprobe (SHRIMP) study of granitoid intrusions in Zhaoye Gold Belt of Shandong Province and its implication

    苗来成; 罗镇宽; 黄佳展; 关康; N.J. McNaughton; D. I. Groves


    The zircon Sensitive High Resolution Ion Microprobe (SHRIMP) results show that granitoid intrusions in Zhaoyc Gold Belt were emplaced at two periods of Mesozoic: Linglong and Luanjiahe types of granitic intrusions were emplaced between 160 Ma and 150 Ma (late Jurassic); Guojialing type of granodioritic intrusions, 130 Ma and 126 Ma (early Cretaceous). All the three types contain at least two major generations of inherited zircons with Precambrian ( >650 Ma) and early Mesozoic ages (200-250 Ma), respectively. The former suggests that these plu-tonic rocks are of crustal origin and that Precambrian basement with component of sialic crust up to 3.4 Ga old ( Middle Archean) exists in the region. The presence of abundant inherited zircons with early Mesozoic age indicates that the Precambrian basement was affected by a major tectono-thermal event, that is the collision of the North and South China blocks, at 250 Ma to 200 Ma. SHRIMP results also indicate that the gold mineralization in the region took place

  5. SHRIMP-RG U-Pb isotopic systematics of zircon from the Angel Lake orthogneiss, East Humboldt Range, Nevada: Is this really archean crust?

    Premo, Wayne R.; Castineiras, Pedro; Wooden, Joseph L.


    New SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) data confirm the existence of Archean components within zircon grains of a sample from the orthogneiss of Angel Lake, Nevada, United States, previously interpreted as a nappe of Archean crust. However, the combined evidence strongly suggests that this orthogneiss is a highly deformed, Late Cretaceous monzogranite derived from melting of a sedimentary source dominated by Archean detritus. Zircon grains from the same sample used previously for isotope dilution-thermal ionization mass spectrometry (ID-TIMS) isotopic work were analyzed using the SHRIMP-RG to better define the age and origin of the orthogneiss. Prior to analysis, imaging revealed a morphological variability and intragrain, polyphase nature of the zircon population. The SHRIMP-RG yielded 207Pb/206Pb ages between ca. 2430 and 2580 Ma (a best-fit mean 207Pb/206Pb age of 2531 ± 19 Ma; 95% confidence) from mostly rounded to subrounded zircons and zircon components (cores). In addition, several analyses from rounded to subrounded cores or grains yielded discordant 207Pb/206Pb ages between ca. 1460 and ca. 2170 Ma, consistent with known regional magmatic events. All cores of Proterozoic to latest Archean age were encased within clear, typically low Th/U (206Pb/238U ages between 72 and 91 Ma, consistent with magmatic ages from Lamoille Canyon to the south. An age of ca. 90 Ma is suggested, the younger 206Pb/238U ages resulting from Pb loss. The Cretaceous and Precambrian zircon components also have distinct trace element characteristics, indicating that these age groups are not related to the same igneous source. These results support recent geophysical interpretations and negate the contention that the Archean-Proterozoic boundary extends into the central Great Basin area. They further suggest that the world-class gold deposits along the Carlin Trend are not underlain by Archean cratonal crust, but rather by the Proterozoic Mojave

  6. Paleoproterozoic lower crust beneath Nushan in Anhui Province: Evidence from zircon SHRIMP U-Pb dating on granulite xenoliths in Cenozoic alkali basalt

    HUANG Xiaolong; XU Yigang; LIU Dunyi; JIAN Ping


    Zircon SHRIMP U-Pb dating was carried out for an intermediate granulite xenolith in Cenozoic alkali basalt from Nushan. The results suggest that the lower crust beneath Nushan may have formed at about 2400-2200 Ma, and have been subjected to granulite-facies metamorphism at 1915±27 Ma. The old age of the Nushan lower crust is consistent with the geochemical similarities between Nushan granulite xenoliths and Archean-Paleoproterozoic granulite terrains in the NorthChina craton, but it is not distinguishable from high-grade metamorphic rocks in the Yangtze craton where such old ages were also reported. Significant Pb-lossoccurs in the Nushan zircons, implying important influence of widespread Mesozoic to Cenozoic underplating in East China on the lower crust beneath Nushan.

  7. SHRIMP zircon U-Pb age and significance of Early Paleozoic volcanic rocks in East Kunlun orogenic belt, Qinghai Province, China


    Early Paleozoic volcanic rocks in Nuomuhong area occurred as basalt slice and meta-volcanic slice. SHRIMP zircon U-Pb dating of the basalt slice and the meta-volcanic slice show that the age of the basalt slice is 419±5 Ma, and that of the meta-volcanic slice is 401± 6 Ma. These ages directly testify that there existed Early Paleozoic ocean-continent transform in East Kunlun, the basalt slice was formed in an extensional mid-ocean ridge setting and the meta-volcanic rock slice was formed in an extrusion subduction and collision setting. The inherited zircon age of 1734 Ma in volcanic rocks reflects that the base of East Kunlun may be Middle Proterozoic.

  8. Zircon SHRIMP U-Pb dating of meta-diorite from the basement of the Songliao Basin and its geological significance

    WANG Ying; ZHANG Fuqin; ZHANG Dawei; MIAO Laicheng; LI Tiesheng; XIE Hangqiang; MENG Qingren; LIU Dunyi


    The basement of the Songliao Basin mainly contains low-grade metamorphic rocks and granites. It has been long disputed whether the basin has Precambrian metamorphic basement. This is a report of zircon SHRIMP U-Pb dating results of a meta-diorite sample, which was taken from the Si-5 drilling hole in the southern portion of the Songliao Basin. The SHRIMP analyses indicate that the meta-diorite with a weighted mean 207Pb/206Pb age of 1839±7 Ma (2σ, n = 8) was emplaced during Paleo-Proterozoic time. Additionally, the meta-diorite has old Nd model ages (TDM1:2999Ma; TDM2:2849Ma). These data suggest that the southern part of the Songliao Basin do possess Precambrian basement.

  9. SHRIMP U-Pb zircon age, geochemistry and Nd isotope of the Guandaoshan pluton in SW Sichuan: Petrogenesis and tectonic significance

    LI; Xianhua(李献华); LI; Zhengxiang(李正祥); ZHOU; Hanwen(周汉文); LIU; Ying(刘颖); LIANG; Xirong(梁细荣); LI; Wuxian(李武显)


    SHRIMP U-Pb zircon age, geochemical and Nd isotopic data are reported for the Neoproterozoic Guandaoshan pluton in the Yanbian region, SW Sichuan. This pluton is of typical I-type granite and emplaced at (857±13) Ma. Geochemical and Nd isotopic characters suggest that the pluton was generated by partial melting of pre-existing, young (late Mesoproterozoic to early Neoproterozoic) low-K tholeiitic protolith within an intraplate anorogenic setting. The Guandaoshan pluton probably records the earliest magmatism induced by the proposed ca. 860-750 Ma mantle superplume beneath the supercontinent Rodinia.

  10. Cryogenian U-Pb (SHRIMP I) zircon ages of anorthosites from the upper sequences of Niquelandia and Barro Alto Complexes, Central Brazil

    Correia, Ciro Teixeira Vicente; Girardi, Antonio Vitorio; Basei, Miguel Angelo Stipp, E-mail: ccorrei@usp.b, E-mail: girardi@usp.b, E-mail: baseimas@usp.b [Universidade de Sao Paulo (IG/USP), SP (Brazil). Inst. de Geociencias. Dept. de Mineralogia e Geotectonica; Nutman, Allen, E-mail: [Australian National University, Camberra (Canada). Research School of Earth Science


    The Niquelandia Complex comprises two main superposed sequences dipping westward: the lower (LS), at the eastern, and the upper (US), at the western part of the body. The Complex is either interpreted as a single body, or as two distinct unrelated layered massifs. New SHRIMP U-Pb determinations on igneous zircon grains of anorthosites from Niquelandia US and from the upper portion of the Barro Alto Complex indicate crystallization ages of 833 {+-} 21 Ma and 733 {+-} 25 Ma, respectively, thus supporting Cryogenian Neoproterozoic ages for the igneous crystallization of the US unit of Niquelandia and for the Barro Alto anorthosites. (author)

  11. Zircon U-Pb geochronology, Sr-Nd-Hf isotopic composition and geological significance of the Late Triassic Baijiazhuang and Lvjing granitic plutons in West Qinling Orogen

    Duan, Meng; Niu, Yaoling; Kong, Juanjuan; Sun, Pu; Hu, Yan; Zhang, Yu; Chen, Shuo; Li, Jiyong


    The Qinling Orogen was a consequence of continental collision of the South China Craton with the North China Craton in the Triassic and caused widespread granitoid magmatism. However, the petrogenesis of these granitoids remains controversial. In this paper, we choose the Baijiazhuang (BJZ) and Lvjing (LJ) plutons in the West Qinling Orogen for a combined study of the zircon U-Pb geochronology, whole-rock major and trace element compositions and Sr-Nd-Hf isotopic characteristics. We obtained zircon crystallization ages of 216 Ma and 212 Ma for the BJZ and the LJ plutons, respectively. The granitoid samples from both plutons have high K2O metaluminous to peraluminous compositions. They are enriched in large ion lithophile elements (LILEs), light rare earth elements (LREEs) and depleted in high field-strength elements (HFSEs) with significant negative Eu anomalies. The BJZ samples have initial Sr isotopic ratios of 0.7032 to 0.7078, εNd(t) of - 10.99 to - 8.54 and εHf (t) of - 10.22 to - 6.41. The LJ granitoids have initial Sr isotopic ratios of 0.7070 to 0.7080, εNd(t) of - 5.37 to - 4.58 and εHf(t) of - 3.64 to - 1.78. The enriched isotopic characteristics of the two plutons are consistent with their source being dominated by ancient continental crust. However, two BJZ samples show depleted Sr isotope compositions, which may infer possible involvement of mantle materials. Mantle-derived melt, which formed from partial melting of mantle wedge peridotite facilitated by dehydration of the subducted/subducting Mianlue ocean crust, provide the required heat for the crustal melting while also contributing to the compositions of these granitoids. That is, the two granitic plutons are magmatic responses to the closure of the Mianlue ocean basin and the continental collision between the Yangtze and South Qinling crustal terranes.

  12. Timing of the granulite facies metamorphism in the Sanggan area, North China craton: zircon U-Pb geochronology


    Zircon U-Pb ages are reported for three samples of intrusive rocks in Khondalite series in the Sanggan area, North China craton. The age of meta-granite is dated as 2005±9 Ma, implying that the sedimentary sequences in Khondalites series formed before 2.0Ga. The age of 1921 ±1Ma for the meta-diorite constrain the age of granulite facies metamorphism younger than this date. The age of 1892±10 Ma for garnet granite is obtained, but the granite crystallization age seems a little younger than the date considering the morphology of zircons. On the basis of these dates and of a concise review of previous age data, it is inferred that the Khondalite series was subjected to granulite facies metamorphism at about 1.87Ga together with tonalitic granulites and HP basic granulites in the Sanggan area.

  13. Sequence stratigraphy and U/b shrimp geochronology of the active margin deposits of the Cacheuta sub-basin, Cuyo Basin, Northwestern Argentina

    Avila, Janaina Nunes [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Geociencias]. E-mail:; Chemale Junior, Farid [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Geociencias; Borba, Andre Weissheimer de [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Geociencias; Cingolani, Carlos [La Plata Univ. Nacional (Argentina)


    This study focuses on the stratigraphic and geochronologic analysis of the deposits related to the faulted active margin of the Cacheuta sub-basin, Cuyo Basin (Triassic), in NW-Argentina. This basin was mainly controlled by extensional tectonics along NW-trending structures inherited from Paleozoic sutures. The whole stratigraphic package of this basin is interpreted as a second order depositional sequence. Low stand deposits comprise coarse-grained alluvial fans (sheet flood and debris-flow deposits). Fluvial and minor lacustrine deposits with expressive volcaniclastic contribution make up the transgressive systems tract. The maximum flooding surface was traced on lacustrine black shales of the Cacheuta Formation (source rock for petroleum accumulations). The high stand system tract comprises fluvial meandering facies and more sparse volcanic contribution. U/Pb SHRIMP dating of a pyroclastic rock inter layered with basal alluvial fans yielded a magmatic age of 243 {+-} 4.7 Ma positioned in the Early to Middle Triassic. (author)

  14. Multiple provenance of rift sediments in the composite basin-mountain system: Constraints from detrital zircon U-Pb geochronology and heavy minerals of the early Eocene Jianghan Basin, central China

    Wu, Lulu; Mei, Lianfu; Liu, Yunsheng; Luo, Jin; Min, Caizheng; Lu, Shengli; Li, Minghua; Guo, Libin


    Zircon U-Pb geochronology and heavy minerals are used in combination to provide valuable insights into the provenance of the early Eocene Jianghan Basin, central China. Five samples for zircon U-Pb dating and eighty-five samples for heavy mineral analysis were collected from drill cores or cuttings of the Xingouzui Formation. Most analyzed zircons are of magmatic origin, with oscillatory zoning. Detrital zircons from sample M96 located on eastern basin have two dominant age groups of 113-158 Ma and 400-500 Ma, and the other samples located on southern basin have three prominent age populations at 113-158 Ma, 400-500 Ma and 700-1000 Ma. Samples on different parts of the basin show distinct differences in heavy mineral compositions and they apparently divide into two groups according to the content of rutile (higher or lower than 4%). The spatial variations of zircon-tourmaline-rutile (ZTR) indices are marked by some noticeable increasing trends from basin margins to the inner part of the basin. Compared with the potential source areas, this study clarifies the multiple source characteristics of the Jianghan basin in the composite basin-mountain system. The majority of clastic material was supplied from the north source area through rift-trough sediment-transport pathways, and the eastern, southern and northwestern source areas also contributed detritus to the basin. This clastic material is broadly dispersed in the basin. The early Eocene paleogeography implies that rift architecture and rifting process had an important influence on sediment dispersal. This study shows that integrated zircon U-Pb geochronology and heavy mineral analysis is a useful and powerful method to identify sediment provenance.

  15. Duration of a large Mafic intrusion and heat transfer in the lower crust: A SHRIMP U-Pb zircon Study in the Ivrea-Verbano Zone (Western Alps, Italy)

    Peressini, G.; Quick, J.E.; Sinigoi, S.; Hofmann, A.W.; Fanning, M.


    The Ivrea-Verbano Zone in the western Italian Alps contains one of the world's classic examples of ponding of mantle-derived, mafic magma in the deep crust. Within it, a voluminous, composite mafic pluton, the Mafic Complex, intruded lower-crustal, high-grade paragneiss of the Kinzigite Formation during Permian-Carboniferous time, and is now exposed in cross-section as a result of Alpine uplift. The age of the intrusion is still debated because the results of geochronological studies in the last three decades on different rock types and with various dating techniques range from 250 to about 300 Ma. Sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon age determinations on 12 samples from several locations within the Mafic Complex were performed to better constrain the age of the igneous event. The results indicate a long history of magma emplacement and cooling, which reconciles the spread in previously published ages. The main intrusive phase took place at 288 ?? 4 Ma, causing a perturbation of the deep-crustal geotherm, which relaxed to the Sm-Nd closure temperature in garnet-free mafic rocks after about 15-20 Myr of sub-solidus cooling at c. 270 Ma. These results suggest that large, deep crustal plutons, such as those identified geophysically at depths of 10-20 km within extended continental crust (e.g. Yellowstone, Rio Grande Rift, Basin and Range) may have formed rapidly but induced a prolonged thermal perturbation. In addition, the data indicate that a significant thermal event affected the country rock of the Mafic Complex at about 310 Ma. The occurrence of an upper amphibolite- to granulite-facies thermal event in the Kinzigite Formation prior to the main intrusive phase of the Mafic Complex has been postulated by several workers, and is corroborated by other geochronological investigations. However, it remains uncertain whether this event (1) was part of a prolonged perturbation of the deep-crustal geotherm, which started long before the onset of

  16. Constraints on the timing of Quaternary volcanism and duration of magma residence at Ciomadul volcano, east-central Europe, from combined U-Th/He and U-Th zircon geochronology

    Harangi, S.; Lukács, R.; Schmitt, A. K.; Dunkl, I.; Molnár, K.; Kiss, B.; Seghedi, I.; Novothny, Á.; Molnár, M.


    High-spatial resolution zircon geochronology was applied to constrain the timescales of volcanic eruptions of the youngest, mostly explosive volcanic phase of Ciomadul volcano (Carpathian-Pannonian region, Romania). Combined U-Th and (U-Th)/He zircon dating demonstrates that intermittent volcanic eruptions occurred in a time range of 56-32 ka. The reliability of the eruption dates is supported by concordant ages obtained from different dating techniques, such as zircon geochronology, radiocarbon analysis, and infrared stimulated luminescence dating for the same deposits. The new geochronological data suggest that volcanism at Ciomadul is much younger (volcanic phase occurred after an apparent lull in volcanism that lasted for several 10's of ka, after a period of lava dome extrusion that defines the onset of the known volcanism at Ciomadul. At least four major eruptive episodes can be distinguished within the 56-32 ka period. Among them, relatively large (sub-plinian to plinian) explosive eruptions produced distal tephra covering extended areas mostly southeast from the volcano. The 38.9 ka tephra overlaps the age of the Campanian Ignimbrite eruption and has an overlapping dispersion axis towards the Black Sea region. The wide range of U-Th model ages of the studied zircons indicates prolonged existence of a low-temperature (volcanism. Even the youngest U-Th model ages obtained for the outermost 4 μm rim of individual zircon crystals predate the eruption by several 10's of ka. The zircon age distributions suggest re-heating above zircon saturation temperatures via injection of hot mafic magmas prior to eruption. Intermittent intrusions of fresh magma could play a significant role in keeping the intrusive silicic magmatic reservoir in a partially melted for prolonged period. The previous history of Ciomadul suggests that melt-bearing crystal mush resided beneath the volcano, and was rapidly remobilized after a protracted (several 10's of ka) lull in volcanism to

  17. SHRIMP U-Pb zircon age of tuff from the Kunyang Group in central Yunnan: Evidence for Grenvillian orogeny in South China

    ZHANG ChuanHeng; GAO LinZhi; WU ZhenJie; SHI XiaoYing; YAN QuanRen; LI DaJian


    Whether or not Grenvillian orogeny occurred in South China still remains highly controversial because high-quality, discriminating data are lacking, and therefore, the key to resolve this matter is to find datable volcanic and/or sedimentary rocks related to Grenvillian orogeny. Such rocks are apparently present in the Fuliangpeng Member from the lower-middle part of Kunyang Group in central Yunnan;here the unit is more than 100 m thick and consists of andesitic ignimbrite, tuffite, terrigeous clastic rocks and carbonates. These volcanic rocks, developed south of the Sibao fold-thrust belts, represent the earliest calc-alkaline volcanic activity in late Precambrian time from central Yunnan and are coeval with both a change in sedimentary facies from detritus to carbonates and the beginning of seismite development elsewhere. Two samples for SHRIMP analysis were collected from this volcanic unit.Sample G3-29-2, from the bottom of Fuliangpeng Member, is an ignimbrite, and about 100 zircon crystals recovered from it have euhedral shapes and display relatively simple sector zonation under cathodoluminescent (CL) imaging, suggesting a magmatogenic origin. Twenty-five of the zircons were analyzed and a weighed-mean U-Pb age of 1032±9 Ma was obtained. Sample G3-29-3 from uppermost part of Fuliangpeng Member is a tuffite, and many rounded, evidently detrital zircons were recovered.Nine of these zircons were analyzed, and the oldest single-grain U-Pb zircon age is 1938±26 Ma, implying that Paleoproterozoic basement developed in Cathaysia. The dating result, combined with the geotectonic research on the Fuliangpeng Member, leads us to conclude that late Mesoproterozoic orogenic volcanic activity occurred in the western part of South China, and that the related collision of Yangtze and Cathaysian cratons was an integral part of the assembly of Rodinia.

  18. SHRIMP zircon dating and LA-ICPMS Hf analysis of early Precambrian rocks from drill holes into the basement beneath the Central Hebei Basin, North China Craton

    Yusheng Wan


    Full Text Available The Central Hebei Basin (CHB is one of the largest sedimentary basins in the North China Craton, extending in a northeast–southwest direction with an area of >350 km2. We carried out SHRIMP zircon dating, Hf-in-zircon isotopic analysis and a whole-rock geochemical study on igneous and metasedimentary rocks recovered from drill holes that penetrated into the basement of the CHB. Two samples of gneissic granodiorite (XG1-1 and gneissic quartz diorite (J48-1 have magmatic ages of 2500 and 2496 Ma, respectively. Their zircons also record metamorphic ages of 2.41–2.51 and ∼2.5 Ga, respectively. Compared with the gneissic granodiorite, the gneissic quartz diorite has higher ΣREE contents and lower Eu/Eu* and (La/Ybn values. Two metasedimentary samples (MG1, H5 mainly contain ∼2.5 Ga detrital zircons as well as late Paleoproterozoic metamorphic grains. The zircons of different origins have εHf (2.5 Ga values and Hf crustal model ages ranging from 0 to 5 and 2.7 to 2.9 Ga, respectively. Therefore, ∼2.5 Ga magmatic and Paleoproterozoic metasedimentary rocks and late Neoarchean to early Paleoproterozoic and late Paleoproterozoic tectono-thermal events have been identified in the basement beneath the CHB. Based on regional comparisons, we conclude that the early Precambrian basement beneath the CHB is part of the North China Craton.

  19. Assembling and disassembling california: A zircon and monazite geochronologic framework for proterozoic crustal evolution in southern California

    Barth, A.P.; Wooden, J.L.; Coleman, D.S.; Vogel, M.B.


    The Mojave province in southern California preserves a comparatively complete record of assembly, postorogenic sedimentation, and rifting along the southwestern North American continental margin. The oldest exposed rocks are metasedimentary gneisses and amphibolite, enclosing intrusive suites that range from tonalite and quartz mon-zodiorite to granite with minor trondhjemite. Discrete magmatic episodes occurred at approximately 1790-1730 and 1690-1640 Ma. Evidence from detrital and premagmatic zircons indicates that recycling of 1900-1790 Ma Paleopro-terozoic crust formed the unique isotopic character of the Mojave province. Peak metamorphic conditions in the Mojave province reached middle amphibolite to granulite facies; metamorphism occurred locally from 1795 to 1640 Ma, with widespread evidence for metamorphism at 1711-1689 and 1670-1650 Ma. Structures record early, tight to isoclinal folding and penetrative west-vergent shear during the final metamorphic event in the west Mojave province. Proterozoic basement rocks are overlain by siliciclastic-carbonate sequences of Mesoproterozoic, Neoproterozoic, and Cambrian age, recording environmental change over the course of the transition from stable Mojave crust to the rifted Cordilleran margin. Neoproterozoic quartzites have diverse zircon populations inconsistent with a southwest North American source, which we infer were derived from the western conjugate rift pair within Rodinia, before establishment of the miogeocline. Neoproterozoic-Cambrian miogeoclinal clastic rocks record an end to rifting and establishment of the Cordilleran miogeocline in southern California by latest Neoproterozoic to Early Cambrian time. ?? 2009 by The University of Chicago.

  20. Methods of isotopic geochronology

    Gorokhov, I. M.; Levchenkov, O. A.

    Papers are presented on such topics as the age of the chemical elements; the age of meteorites, the moon, and the earth; isotopic ages of the most ancient terrestrial formations; and the Archean evolution of Enderby Land in the Antarctic as evidenced by isotopic dating. Consideration is also given to a uranium-lead geochronology technique for investigating Precambrian ore deposits, a Pb-Pb technique of zircon dating, and the potentials and limitations of Sm-Nd geochronology.

  1. Records of Precambrian Early Palaeozoic volcanic and sedimentary processes in the Central European Variscides: A review of SHRIMP zircon data from the Kaczawa succession (Sudetes, SW Poland)

    Kryza, Ryszard; Zalasiewicz, Jan


    The early, pre-orogenic stages of evolution in the Variscan belt, i.e. rifting processes, opening of sedimentary basins and associated igneous activities, are often obscure because many successions have yielded little or no biostratigraphic data, have a strong metamorphic overprint and are tectonically deformed and dislocated. The increasing application of SHRIMP zircon dating has provided useful constraints on magmatic and metamorphic processes, helped locate probable source areas for detritus within sedimentary successions and facilitated large-scale palaeogeographic correlations. This methodology has recently thrown considerable light on the age and relationships of the previously poorly constrained rock units of the Kaczawa Complex in the Polish West Sudetes. Thus, recent SHRIMP studies in the Kaczawa Mountains have yielded Early Ordovician ages of the initial rift type bimodal volcanic suites at the bottom part of the Kaczawa Succession: c. 503 Ma for metarhyodacites of crustal derivation, and c. 485 Ma for alkaline metatrachytes of mantle signature. These dates provide a firm temporal constraint on the initial rift magmatism interpreted as related to the continental break-up of the northern peripheries of Gondwana. New SHRIMP data from metavolcaniclastic and metasedimentary rocks of the Kaczawa Complex have yielded results that have provided significantly changed interpretations on their age and relationships. For instance, a siliciclastic sequence interpreted as belonging to the lower part of the Kaczawa Complex (the Gackowa Sandstones) and seemingly sourced (using an array of geochemical and mineralogical evidence) from nearby early Ordovician volcanic rocks has, surprisingly, yielded zircon ages not younger than Precambrian and thus this unit has tentatively been reinterpreted as a possible correlative of the Neoproterozoic Lusatian Graywackes. Felsic metavolcaniclastic rocks embedded in the carbonate succession of the Wojcieszów Limestone have yielded

  2. Zircon U-Pb geochronology and geochemistry of low-grade metamorphosed volcanic rocks from the Dantazi Complex: Implications for the evolution of the North China Craton

    Ge, Songsheng; Zhai, Mingguo; Li, Tiesheng; Peng, Peng; Santosh, M.; Shan, Houxiang; Zuo, Pengfei


    The late Neoarchean witnessed the cratonization of the North China Craton (NCC) through amalgamation of several micro-blocks to form a coherent basement. The Archean orthogneisses and supracrustal rocks in this craton have experienced various grades of metamorphism ranging up to upper amphibolite and granulite facies at ∼2500 Ma. Recently, a suite of low-grade metamorphosed (greenschist to lower amphibolite facies) volcanic rocks was discovered in the late Neoarchean Dantazi Complex in northern Hebei province. These meta-volcanic rocks consist of bimodal basalt-andesite and trachyte-dacite with a SiO2 gap between 54.4 wt.% and 60.7 wt.%. Here we report SHRIMP zircon U-Pb ages of 2490 ± 19 Ma (MSWD = 2.0) and 2502 ± 8 Ma (MSWD = 0.83) from the meta-mafic and meta-felsic volcanics, respectively, representing the timing of igneous activity. All the meta-mafic volcanic rocks display coherent trace element and REE patterns which are characterized by enriched LILE and LREE but depleted HFSE and HREE ((La/Yb)N = 6.29-15.10). Combining these trace element features with the positive zircon εHf(t) values (+1.3 to +6.6), we propose that the mafic rocks were likely derived from partial melting of a previously metasomatized lithospheric mantle. In the primitive mantle-normalized diagram, the felsic rocks display uniform patterns enriched in LILE but depleted in Nb and Ta, similar to those of lower crust. Furthermore, their strongly fractionated REE ((La/Yb)N = 15.24-61.20), lower HREE concentrations (Yb = 0.47-1.65 ppm) and positive zircon εHf(t) values (+1.6 to +5.3) suggest that they were derived from partial melting of the lower crust with garnet in the residue. This coeval occurrence of metasomatized mantle-derived mafic magmas and potassic felsic magmas from different source regions reflects an intracontinental extensional setting during the late Neoarchean to earliest Paleoproterozoic following the cratonization of the NCC. Our new data, combined with previous

  3. SHRIMP zircon U-Pb dating for volcanic rocks of the Dasi Formation in southeast Hubei Province, middle-lower reaches of the Yangtze River and its implications

    XIE Guiqing; MAO Jingwen; LI Ruiling; ZHOU Shaodong; YE Huishou; YAN Quanren; ZHANG Zusong


    The Jinniu Basin in southeast Hubei,located at the westernmost part of middle-lower valley of the Yangtze River, is one of the important volcanic basins in East China. Volcanic rocks in the Jinniu Basin are distributed mainly in the Majiashan Formation, the Lingxiang Formation and the Dasi Formation, consisting of rhyolite, basalt and basaltic andesite, (trachy)-basalt and basaltic trachy-andesite and (trachy)-andesite and (trachy)-dacite and rhyolite respectively, in which the Dasi volcanism is volumetrically dominant and widespread. The Dasi volcanic rocks were selected for SHRIMP zircon U-Pb dating to confirm the timing of volcanism. The results indicate that there exist a large amount of magmatic zircons characterized by high U and Th contents in the volcanic rocks. The concordia ages for 13 points are 128±1Ma (MSWD = 3.0). On account of the shape of zircons and Th/U ratios, this age is considered to represent the crystallization time of the Dasi volcanism. The volcanic rocks in the Dasi, Majiashan and Lingxiang Formations share similar trace element and REE partition patterns as well as Sr-Nd isotopic compositions. In combination with the regional geology, it is proposed that the southeast Hubei volcanic rocks were formed mainly during the Early Cretaceous, just like other volcanic basins in middle-lower Yangtze valley. A lithospheric extension is also suggested for tectonic regime in this region in the Cretaceous Period.

  4. High-pressure granulite from Western Kunlun,northwestern China:Its metamorphic evolution,zircon SHRIMP U-Pb ages and tectonic implication


    High-pressure mafic granulites occurring as lenticular bodies within garnet-amphibolites in Kangxiwar Fault have been first reported in this paper. The P-T conditions of two metamorphic stages were ob-tained using calibrated geothermal barometers and ThermoCalc Program. The peak metamorphic con-dition of these high-pressure granulites is about 760―820℃,1.0―1.2 GPa and the retrograde meta-morphic condition is about 620―720℃,0.7―0.8 GPa. The petrological studies show that they have a near-isobaric cooling P-T path which suggests that the Western Kunlun underwent initial crustal thickening,subsequent exhumation and cooling. The SHRIMP zircon U-Pb dating gives two groups of ages for high-pressure granulites. One is 177±6 Ma which is obtained from the rim of the zircon. We consider this age should be the metamorphic age. And the other is 456±30 Ma which is obtained from the core of the zircon and should be the protolith age. The formation of these high-pressure granulites in western Kunlun is closely correlated with the evolution of the Paleo-Tethys and has important im-plications for the research on Tethys and Paleo-Asian tectonic zone.

  5. High-pressure granulite from Western Kunlun, northwestern China: Its metamorphic evolution, zircon SHRIMP U-Pb ages and tectonic implication

    QU JunFeng; ZHANG LiFei; AI YongLiang; L(U) Zeng; WANG JianPing; ZHOU Hui; WANG ShiYan


    High-pressure mafic granulites occurring as lenticular bodies within garnet-amphibolites in Kangxiwar Fault have been first reported in this paper. The P-T conditions of two metamorphic stages were obtained using calibrated geothermal barometers and ThermoCalc Program. The peak metamorphic condition of these high-pressure granulites is about 760-820℃, 1.0-1.2 GPa and the retrograde metamorphic condition is about 620-720℃, 0.7-0.8 GPa. The petrological studies show that they have a near-isobaric cooling P-T path which suggests that the Western Kunlun underwent initial crustal thickening, subsequent exhumation and cooling. The SHRIMP zircon U-Pb dating gives two groups of ages for high-pressure granulites. One is 177±6 Ma which is obtained from the rim of the zircon. We consider this age should be the metamorphic age. And the other is 456±30 Ma which is obtained from the core of the zircon and should be the protolith age. The formation of these high-pressure granulites in western Kunlun is closely correlated with the evolution of the Paleo-Tethys and has important implications for the research on Tethys and Paleo-Asian tectonic zone.

  6. A polyphase metamorphic evolution for the Xitieshan paragneiss of the north Qaidam UHP metamorphic belt, western China: In-situ EMP monazite- and U-Pb zircon SHRIMP dating

    Zhang, C.; Roermund, H.L.M. van; Zhang, L.; Spiers, C.


    In-situ electron microprobe (EMP) U–Th–Pbmonazite-, sensitive high-resolution ion microprobe (SHRIMP) zircon analyses, metamorphic phase equilibrium (Domino/Theriak)- and geothermobarometric calculations are performed on kyanite/sillimanite-bearing garnet biotite gneisses forming part of the dominan

  7. High-precision U-Pb zircon geochronological constraints on the End-Triassic Mass Extinction, the late Triassic Astronomical Time Scale and geochemical evolution of CAMP magmatism

    Blackburn, T. J.; Olsen, P. E.; Bowring, S. A.; McLean, N. M.; Kent, D. V.; Puffer, J. H.; McHone, G.; Rasbury, T.


    Mass extinction events that punctuate Earth's history have had a large influence on the evolution, diversity and composition of our planet's biosphere. The approximate temporal coincidence between the five major extinction events over the last 542 million years and the eruption of Large Igneous Provinces (LIPs) has led to the speculation that climate and environmental perturbations generated by the emplacement of a large volume of magma in a short period of time triggered each global biologic crisis. Establishing a causal link between extinction and the onset and tempo of LIP eruption has proved difficult because of the geographic separation between LIP volcanic deposits and stratigraphic sequences preserving evidence of the extinction. In most cases, the uncertainties on available radioisotopic dates used to correlate between geographically separated study areas often exceed the duration of both the extinction interval and LIP volcanism by an order of magnitude. The "end-Triassic extinction" (ETE) is one of the "big five" and is characterized by the disappearance of several terrestrial and marine species and dominance of Dinosaurs for the next 134 million years. Speculation on the cause has centered on massive climate perturbations thought to accompany the eruption of flood basalts related to the Central Atlantic Magmatic Province (CAMP), the most aerially extensive and volumetrically one of the largest LIPs on Earth. Despite an approximate temporal coincidence between extinction and volcanism, there lacks evidence placing the eruption of CAMP prior to or at the initiation of the extinction. Estimates of the timing and/or duration of CAMP volcanism provided by astrochronology and Ar-Ar geochronology differ by an order of magnitude, precluding high-precision tests of the relationship between LIP volcanism and the mass extinction, the causes of which are dependent upon the rate of magma eruption. Here we present high precision zircon U-Pb ID-TIMS geochronologic data

  8. Origin of an unusual monazite-xenotime gneiss, Hudson Highlands, New York: SHRIMP U-Pb geochronology and trace element geochemistry

    Aleinikoff, John N.; Grauch, Richard I.; Mazdab, Frank K.; Kwak, Loretta; Fanning, C. Mark; Kamo, Sandra L.


    A pod of monazite-xenotime gneiss (MXG) occurs within Mesoproterozoic paragneiss, Hudson Highlands, New York. This outcrop also contains granite of the Crystal Lake pluton, which migmatized the paragneiss. Previously, monazite, xenotime, and zircon from MXG, plus detrital zircon from the paragneiss, and igneous zircon from the granite, were dated using multi-grain thermal ionization mass spectrometry (TIMS). New SEM imagery of dated samples reveals that all minerals contain cores and rims. Thus TIMS analyses comprise mixtures of age components and are geologically meaningless. New spot analyses by sensitive high resolution ion microprobe (SHRIMP) of small homogeneous areas on individual grains allows deconvolution of ages within complexly zoned grains. Xenotime cores from MXG formed during two episodes (1034 ± 10 and 1014 ± 3 Ma), whereas three episodes of rim formation are recorded (999 ± 7, 961 ± 11, and 874 ± 11 Ma). Monazite cores from MXG mostly formed at 1004 ± 4 Ma; rims formed at 994 ± 4, 913 ± 7, and 890 ± 7 Ma. Zircon from MXG is composed of oscillatory-zoned detrital cores (2000-1170 Ma), plus metamorphic rims (1008 ± 7, 985 ± 5, and ∼950 Ma). In addition, MXG contains an unusual zircon population composed of irregularly-zoned elongate cores dated at 1036 ± 5 Ma, considered to be the time of formation of MXG. The time of granite emplacement is dated by oscillatory-zoned igneous cores at 1058 ± 4 Ma, which provides a minimum age constraint for the time of deposition of the paragneiss. Selected trace elements, including all REE plus U and Th, provide geochemical evidence for the origin of MXG. MREE-enriched xenotime from MXG are dissimilar from typical HREE-enriched patterns of igneous xenotime. The presence of large negative Eu anomalies and high U and Th in monazite and xenotime are uncharacteristic of typical ore-forming hydrothermal processes. We conclude that MXG is the result of unusual metasomatic processes during high grade

  9. Geochemical fingerprints and pebbles zircon geochronology: Implications for the provenance and tectonic setting of Lower Cretaceous sediments in the Zhucheng Basin (Jiaodong peninsula, North China)

    Jin-Long Ni; Jun-Lai Liu; Xiao-Ling Tang; Xiao-Xiao Shi; Hong Zhang; Shuai Han


    This paper conducts a petrogeochemical analysis of the Lower Cretaceous Laiyang Group’s sandstones, compares the results with the Neoproterozoic and Mesozoic intrusive rocks in the southern Sulu Orogen (also called the Jiaonan Orogen), and performs an LA-ICP-MS zircon geochronology analysis of the granitic gneisses in the conglomerates of the Laiyang Group and the intrusive rocks in the JiaonanOrogen. The results show that the major element proportions of the Longwangzhuang Formation (LWZ Fm) and Qugezhuang Formation (QGZ Fm) of the Laiyang Group in the Zhucheng Basin are similar. The values of various indices for the LWZ Fm are similar to the average sandstone content of activecontinental margins, whereas, the values for the QGZ Fm are similar to those of continental island arcs. The comparison shows that the REE characteristics of the LWZ Fm and QGZ Fm of Laiyang Group are similar to those of the Neoproterozoic granitic gneisses in the Jiaonan Orogen but obviously different from those of the Early Cretaceous intrusive rocks. A tectonic setting discrimination diagram revealsthat the provenance of the Laiyang Group includes features of active continental margins and continental island arcs. A number of indicators, e.g., the sandstone type, the Chemical Index of Alteration, the Chemical Index of Weathering, the Plagioclase Index of Alteration and the Index of Chemical Constituent Variation, indicated that the sandstones did not undergo intense weathering and were deposited near the source area. The zircon ages of the granitic gneiss material in the conglomerates at the base of the Laiyang Group are 790±8.4 Ma, close to the ages of the Neoproterozoic granitic gneiss in the Jiaonan Orogen (739–819 Ma), and very different from the ages of the Early Cretaceous intrusive rocks. Combiningwith paleocurrent directions, geochemical character, the Neoproterozoic granitic gneisses in the Jiaonan Orogen may represent the primary provenance of the Laiyang Group in the

  10. U-Pb zircon geochronology of Mesoproterozoic postorogenic rocks and implications for post-Ottawan magmatism and metallogenesis, New Jersey Highlands and contiguous areas, USA

    Volkert, R.A.; Zartman, R.E.; Moore, P.B.


    Postorogenic rocks are widespread in Grenville terranes of the north-central Appalachians where they form small, discordant, largely pegmatitic felsic intrusive bodies, veins, and dikes, and also metasomatic calcic skarns that are unfoliated and postdate the regional 1090 to 1030 Ma upper amphibolite- to granulite-facies metamorphism related to the Grenville (Ottawan) Orogeny. Zircons from magmatic and nonmagmatic rocks from northern New Jersey and southern New York were dated to provide information on the regional tectonomagmatic and metallogenic history following Ottawan orogenesis. We obtained U-Th-Pb zircon ages of 1004 ?? 3 Ma for pegmatite associated with the 1020 ?? 4 Ma Mount Eve Granite near Big Island, New York, 986 ?? 4 Ma for unfoliated, discordant pegmatite that intrudes supracrustal marble at the Buckwheat open cut, Franklin, New Jersey, ???990 Ma for a silicate-borate skarn layer in the Franklin Marble at Rudeville, New Jersey, and 940 ?? 2 Ma for a calc-silicate skarn layer at Lower Twin Lake, New York. This new data, together with previously published ages of 1020 ?? 4 to 965 ?? 10 Ma for postorogenic rocks from New Jersey and southern New York, provide evidence of magmatic activity that lasted for up to 60 Ma past the peak of high-grade metamorphism. Postorogenic magmatism was almost exclusively felsic and involved relatively small volumes of metaluminous to mildly peraluminous melt that fractionated from an A-type granite parent source. Field relationships suggest the melts were emplaced along lithosphere-scale fault zones in the Highlands that were undergoing extension and that emplacement followed orogenic collapse by least 30 Ma. Postorogenic felsic intrusions correspond to the niobium-yttrium-fluorine (NYF) class of pegmatites of C??erny?? (1992a). Geochronologic data provide a temporal constraint on late-stage hydrothermal activity and a metallogenic event in New Jersey at ???990 to 940 Ma that mineralized pegmatites with subeconomic to

  11. Geochemical fingerprints and pebbles zircon geochronology: Implications for the provenance and tectonic setting of Lower Cretaceous sediments in the Zhucheng Basin (Jiaodong peninsula, North China)

    Ni, Jin-Long; Liu, Jun-Lai; Tang, Xiao-Ling; Shi, Xiao-Xiao; Zhang, Hong; Han, Shuai


    This paper conducts a petrogeochemical analysis of the Lower Cretaceous Laiyang Group's sandstones, compares the results with the Neoproterozoic and Mesozoic intrusive rocks in the southern Sulu Orogen (also called the Jiaonan Orogen), and performs an LA-ICP-MS zircon geochronology analysis of the granitic gneisses in the conglomerates of the Laiyang Group and the intrusive rocks in the Jiaonan Orogen. The results show that the major element proportions of the Longwangzhuang Formation (LWZ Fm) and Qugezhuang Formation (QGZ Fm) of the Laiyang Group in the Zhucheng Basin are similar. The values of various indices for the LWZ Fm are similar to the average sandstone content of active continental margins, whereas, the values for the QGZ Fm are similar to those of continental island arcs. The comparison shows that the REE characteristics of the LWZ Fm and QGZ Fm of Laiyang Group are similar to those of the Neoproterozoic granitic gneisses in the Jiaonan Orogen but obviously different from those of the Early Cretaceous intrusive rocks. A tectonic setting discrimination diagram reveals that the provenance of the Laiyang Group includes features of active continental margins and continental island arcs. A number of indicators, e.g., the sandstone type, the Chemical Index of Alteration, the Chemical Index of Weathering, the Plagioclase Index of Alteration and the Index of Chemical Constituent Variation, indicated that the sandstones did not undergo intense weathering and were deposited near the source area. The zircon ages of the granitic gneiss material in the conglomerates at the base of the Laiyang Group are 790 ± 8.4 Ma, close to the ages of the Neoproterozoic granitic gneiss in the Jiaonan Orogen (739-819 Ma), and very different from the ages of the Early Cretaceous intrusive rocks. Combining with paleocurrent directions, geochemical character, the Neoproterozoic granitic gneisses in the Jiaonan Orogen may represent the primary provenance of the Laiyang Group in the

  12. Neoproterozoic granitic magmatism along the Ailao Shan-Red River belt: U-Pb zircon geochronology, Lu-Hf isotopes and tectonic implications

    Chen, Xiaoyu; Liu, Junlai; Qi, Yinchuan; Fan, Wenkui; Burg, Jean-Pierre


    The Neoproterozoic tectonic characteristics of the high grade metamorphic massifs along the Ailao Shan-Red River belt are debated. Controversies are on 1) whether the massifs were parts of the Yangtze block to the northeast or 2) parts of the Indochina block to the southwest and 3) the magmatic rocks represent arc magmatism or rifting linked to break-up of the Rodinia supercontinent. This study presents new and precise LA-ICP-MS U-Pb age dating and geochemical and Hf isotopic analyses of granitic intrusions along the Ailao Shan-Red River belt in an attempt to elucidate the Neoproterozoic magmatic evolution of this belt. In general, zircon U-Pb ages of the studied granitic rocks are between 804 and 724Ma, with a weighted mean of ca. 770 Ma, thus confirming Neoproterozoic magmatism. All samples plot into the peraluminous domain, indicating a major crustal resource. In consistency with these conclusions, most of the Neoproterozoic granitoids show negative ɛHf (t) values near the chondrite line. A few samples possess low positiveɛ Hf (t) values, being signatures of mantle sources. It is therefore concluded that the Neoproterozoic magmatism along the ASRR belt originated from mantle sources with important contributions through anatexis of ancient lower crust. Discrimination diagrams of tectonic settings suggest continental arc magmatism. Neoproterozoic magmatism is widely reported along the margins of the Yangtze block, especially in the northern margin. However, there are fewer reports about Neoproterozoic magmatic activity along the southern and southwestern margins. The geochronology spectrum and geochemisty of the studied Neoproterozoic granitic rocks are similar to those along the western margin of the Yangtze block. The present study, combined with previous results, suggests that oceanic subduction contributed to the generation of the arc magmatisms along the western and southwestern margin of the Yangtze plate and along the ASRR belt (as part of the

  13. U Pb zircon and monazite geochronology of Variscan magmatism related to syn-convergence extension in Central Northern Portugal

    Valle Aguado, B.; Azevedo, M. R.; Schaltegger, U.; Martínez Catalán, J. R.; Nolan, J.


    The Viseu area is located in the Central Iberian Zone of the Iberian Variscan Belt and hosts numerous post-thickening, collision-related granitoids intruded into upper and middle crustal levels. The present paper reports high precision U-Pb zircon and monazite ages for four plutons of the Viseu area: the syn-kinematic granitoids of Maceira (314±5 Ma), Casal Vasco (311±1 Ma) and Junqueira (307.8±0.7 Ma) and the late-kinematic biotite monzogranites of Cota (306±9 Ma). This points to a synchronous emplacement of the different syn-kinematic plutons shortly followed by the intrusion of the late-kinematic granites and shows that the Upper Carboniferous plutonism occurred within a short time span of ca. 10 million years. The ascent of granite magmas took place after an extensional tectonic event (D 2) and is coeval with dextral and sinistral crustal-scale transcurrent shearing (D 3). Field and petrographical evidence suggest a narrow time-span between peak T metamorphic conditions and the intrusion of granitic melts which implies very fast uplift rates accommodated through active tectonic exhumation. Magma compositions evolve through time, reflecting an increasing involvement of mid-crustal sources and the underplating effect of an upwelling asthenospheric mantle at the base of a thinning and stretching continental crust.

  14. U-Pb SHRIMP zircon dating of high-grade rocks from the Upper Allochthonous Terrane of Bragança and Morais Massifs (NE Portugal); geodynamic consequences

    Mateus, A.; Munhá, J.; Ribeiro, A.; Tassinari, C. C. G.; Sato, K.; Pereira, E.; Santos, J. F.


    Bragança and Morais Massifs are part of the mega-klippen ensemble of NW Iberia, comprising a tectonic pile of four allochthonous units stacked above the Central-Iberian Zone autochthon. On top of this pile, the Upper Allochthonous Terrane (UAT) includes different high-grade metamorphic series whose age and geodynamic meaning are controversial. Mafic granulites provided U-Pb zircon ages at 399 ± 7 Ma, dating the Variscan emplacement of UAT. In contrast, U-Pb zircon ages of ky- and hb-eclogites, felsic/intermediate HP/HT-granulites and orthogneisses (ca. 500-480 Ma) are identical to those of gabbros (488 ± 10 Ma) and Grt-pyroxenites (495 ± 8 Ma) belonging to a mafic/ultramafic igneous suite that records upper mantle melting and mafic magma crustal underplating at these times. Gabbros intrude the high-grade units of UAT and did not underwent the HP metamorphic event experienced by eclogites and granulites. These features and the zircon dates resemblance among different lithologies, suggest that extensive age resetting of older events may have been correlative with the igneous suite emplacement/crystallisation. Accordingly, reconciliation of structural, petrological and geochronological evidence implies that the development and early deformation of UAT high-grade rocks should be ascribed to an orogenic cycle prior to ≈ 500 Ma. Undisputable dating of this cycle is impossible, but the sporadic vestiges of Cadomian ages cannot be disregarded. The ca. 500-480 Ma time-window harmonises well with the Lower Palaeozoic continental rifting that trace the Variscan Wilson Cycle onset and the Rheic Ocean opening. Subsequent preservation of the high heat-flow regime, possibly related to the Palaeotethys back-arc basin development (ca. 450-420 Ma), would explain the 461 ± 10 Ma age yielded by some zircon domains in felsic granulites, conceivably reflecting zircon dissolution/recrystallisation till Ordovician times, long before the Variscan paroxysm (ca. 400-390 Ma). This

  15. SHRIMP U-Pb dating of detrital zircons in paragneiss from Oki-Dogo Island, western Japan

    TSUTSUMI, Yukiyasu; YOKOYAMA, Kazumi; HORIE, Kenji; TERADA, Kentaro; HIDAKA, Hiroshi


    We obtained the radiometric ages of detrital zircons from two samples of paragneiss from Oki-Dogo Island, Japan, from the 238U/206Pb ratio and isotopic composition of Pb determined using a Sensitive...

  16. SHRIMP U-Pb dating of detrital zircons in paragneiss from Oki-Dogo Island, western Japan

    TSUTSUMI, Yukiyasu; YOKOYAMA, Kazumi; HORIE, Kenji; TERADA, Kentaro; HIDAKA, Hiroshi


      We obtained the radiometric ages of detrital zircons from two samples of paragneiss from Oki-Dogo Island, Japan, from the 238U/206Pb ratio and isotopic composition of Pb determined using a Sensitive...

  17. Zircon SHRIMP U-Pb ages, Hf isotopic features and their geological significance of the Greater Himalayan Crystalline Complex augen gneiss in Gyirong Area, south Tibet%藏南吉隆地区早古生代大喜马拉雅片麻岩锆石SHRIMP U-Pb年龄、Hf同位素特征及其地质意义

    王晓先; 张进江; 杨雄英; 张波


    藏南吉隆地区眼球状片麻岩是大喜马拉雅结晶岩系的一部分,其矿物组成为石英、斜长石、钾长石、黑云母和少量的白云母.片麻岩中的锆石具有核一边结构,由继承碎屑锆石核和具有同心环带结构的岩浆锆石边组成.SHRIMP U-Pb测年显示,边部岩浆锆石加权平均年龄为(498.9±4.4)Ma,表明片麻岩的原岩为早古生代的花岗岩,εHf加权平均值为-8.3±0.95,暗示片麻岩原岩为壳源,可能是印度大陆北部地壳部分熔融的产物.文中和现有的地质年代学数据表明,喜马拉雅造山带是一个复合造山带,经历了早古生代的造山作用,早古生代的喜马拉雅造山带是原特提斯洋向冈瓦纳大陆北缘俯冲的结果,是冈瓦纳大陆拼合之后在其边缘形成的安第斯型造山带,而不属于冈瓦纳超大陆聚合过程中陆一陆碰撞形成的泛非造山带的一部分.%The augen gneiss in the Gyirong Area of south Tibet belongs to the Greater Himalayan Crystalline Complex. It consists of quartz, plagioclase, K-feldspar, biotite and minor muscovite. Zircons of the augen gneiss have core-rim structures with inherited cores and magmatic rims indicated by concentric oscillatory zoning. The zircon rims gave a weighted mean age of 498. 9-t-4.4 Ma, hinting that the protoliths of the gneiss was early Paleozoic granite. The εHf ranges between - 13. 6 and - 4. 6 with a weighted mean value of - 8. 3 ± 0. 95. It implies that the source of granite came from crust, possibly resulted from partial melting of the crust in the northernmost margin of the India Crator. The zircon SHRIMP U-Pb ages, combined with the published geochronological data, demonstrate that the Himalaya is a composite orogenic belt, which underwent an early Paleozoic orogenesis. The early Paleozoic Himalaya was an Andean-type orogen after the Gondwana assemblying, which resulted from the subduction of the proto-Tethys ocean beneath the India Plate, rather than a Pan

  18. Geochemistry and SHRIMP Zircon U-Pb Age of Post-Collisional Granites in the Southwest Tianshan Orogenic Belt of China: Examples from the Heiyingshan and Laohutai Plutons

    LONG Lingli; GAO Jun; WANG Jingbin; QIAN Qing; XIONG Xianming; WANG Yuwang; WANG Lijuan; GAO Liming


    The Heiyingshan granite and the Laohutai granite plutons exposed in the Southwest Tianshan resemble A-type granites geochemically. Analysis shows that the both are ferron calc-alkalic peraluminous or ferron aikali-calcic peraluminous with a relatively high concentration of SiO2 (>70%), high alkali contents (Na2O + K2O = 7.14%-8.56%; K2O>N2O; A/CNK = 0.99-1.20), and pronounced negative anomales in Eu, Ba, Sr, P and Ti. A SHRIMP zircon U-Pb age of 285±4 Ma was obtained for the Heiyingshan hornblende biotite granite intrusion. The geochemical and age dating data reported in this paper indicate that these granites were formed during the post-collisional crustal extension of the Southwest Tianshan orogenic belt, in agreement with the published data for the granites in the South Tianshan.

  19. SHRIMP U-Pb Zircon Dating of the Tula Granite Pluton on the South Side of the Altun Fault and Its Geological Implications

    WU Suoping; WU Cailai; WANG Meiying; CHEN Qilong; Joseph L. WOODEN


    The Tula A2-subtype granite pluton is located between the Altun fault and its branching fault.According to the geological, geochemical, REE and trace elements characteristics, it belongs to the A2 (PA) subtype granite. The SHRIMP U-Pb zircon dating gives a result of 385.2+8.1 Ma, which is located between the Middle and Late Devonian in the international stratigraphic chart, and can be regarded as the crystallization age of the Tula granite. The study indicates that the Tula area was in a local extensional environment in the end of the Middle Devonian, and that environment was probably related to the synchronized strike-slip activity of the Altun fault.

  20. 滇南新元古代的岩浆作用:来自瑶山群深变质岩SHRIMP锆石U-Pb年代学证据%Neoproterozoic Magmatism in South Yunnan: Evidence from SHRIMP Zircon U-Pb Geochrological Results of High-Grade Metamorphic Rocks in the Yaoshan Group

    李宝龙; 季建清; 王丹丹; 马宗晋


    The Lower Proterozoic Yaoshan Group and Ailao Shan Group, composed of high-grade metamorphosed rocks, is a long, narrow belt striking NW-SE direction along the Red River fault, and are considered the Precambrian crystalline basement. In this paper, the SHRIMP zircon U-Pb dating have been conducted on the augen granitic mylonite (08HK-1) from the Yaoshan Group (Lianhuatan, Hekou County) and gneissic granite (08JP-5, Adebo,Jinping County), and ages of two magmatic zircon groups are 828 + 6. 2Ma (N=ll, MSWD= 1.8) and 748~801Ma, respectively. In addition, the SHRIMP zircon U-Pb ages of 769~893Ma were obtained on biotite granodioritic gneiss from the Ailao Shan Group in Mojiang-Yuanjiang section. Combined with the crystal features, CL images and concordant of U-Pb age, 828 6. 2Ma and 748~801Ma should present the crystal age. These ages suggested that there should have the Neoproterozoic magmatism in the study area. The SHRIMP zircon U-Pb dating on old core from sample 08HK-1 has the age of 984Ma, and the 08JP-5 sample has the old core zircon U-Pb age of 1104~ 1353Ma and even 2655Ma. The old core zircon age show that the Yaoshan area and southern part of Ailao Shan should be a Mesproterozoic or Archea basement. Based on these isotopic geochronological data above and regional geological tectonic evolution, the Yaoshan area and southern part of Ailao Shan should located in the cross region of the Nanhua Rift and the Kangdian Rift during breaking-up of the Rodinian Super-continent in the Neoproterozoic.%滇南瑶山哀牢山地区出露一套呈NW-SE向狭长条带状展布的深变质岩系——下元古界瑶山群和哀牢山群,并认为存在前寒武纪的结晶基底.本文选取瑶山群眼球状花岗质糜棱岩和金平阿得博的片麻状花岗岩作为研究对象,进行SHRIMP锆石U-Pb定年.结合阴极发光图像,获得岩浆锆石的结晶年龄为828±6.2Ma(N=11,MSWD=1.8)和748~801Ma.同时,作者在墨江-元江剖面的哀牢山群黑

  1. Zircon U-Pb geochronological framework of Qitianling granite batholith, middle part of Nanling Range, South China


    The Qitianling granite batholith (QGB) is located in the southern Hunan Province, middle part of the Nanling Range, South China. Its total exposure area is about 520 km2. Based on our 25 single grain zircon U-Pb age data and 7 published data as well as the geological, petrological, and space distribution characteristics, we conclude that QGB is an Early Yanshanian (Jurassic) multi-staged composite pluton. Its formation process can be subdivided into three major stages. The first stage, emplaced at 163―160 Ma with a peak at about 161 Ma, is mainly composed of hornblende-biotite monzonitic granites and locally biotite granites, and distributed in the eastern, northern, and western peripheral parts of the pluton. The second stage, emplaced at 157―153 Ma with a peak at 157―156 Ma, is mainly composed of biotite granites and locally containing hornblende, and distributed in the middle and southeastern parts of the pluton. The third stage, emplaced at 150―146 Ma with a peak at about 149 Ma, is mainly composed of fine-grained (locally porphyritic) biotite granites, and distributed in the middle-southern part of the pluton. Each stage can be further disintegrated into several granite bodies. The first two intrusive stages comprise the major phase of QGB, and the third intrusive stage comprises the additional phase. Many second stage fine-grained granite bosses and dykes intruded into the first stage host granites with clear chilling margin-baking phenomena at their intrusive contacts. They were emplaced in the open fracture space of the earlier stage consolidated rocks. Their isotopic ages are mostly 2―6 Ma younger than their hosts. Conceivably, the time interval from magma emplacement, through cooling, crystallization, solidification, up to fracturing of the earlier stage granites cannot exceed 2―6 Ma. During the Middle-Late Jurassic in the Qitianling area and neighboring Nanling Range, the coeval granitic and basic-intermediate magmatic activities were widely

  2. Mineral inclusions and SHRIMP U-Pb dating of zircons from the Alamas nephrite and granodiorite: Implications for the genesis of a magnesian skarn deposit

    Liu, Yan; Zhang, Rongqing; Zhang, Zhiyu; Shi, Guanghai; Zhang, Qichao; Abuduwayiti, Maituohuti; Liu, Jianhui


    Extending approximately 1300 km and located in the Western Kunlun Mountains, the Hetian nephrite belt is the largest nephrite belt in the world and contains approximately 11 major deposits and more than 20 orebodies including the Alamas deposit. Hetian nephrite deposits can be classified as Mg-skarn deposits with Precambrian dolomitic marble host rock and green, green-white and white nephrite zones are distributed gradually in the zone of a granodiorite pluton. The green nephrite is mainly predominately composed of tremolite with generally minor to trace constituents of diopside, grossularitic garnet, actinolite and other minerals. Also green nephrite has higher content of TFe2O3, than green-white and white nephrites have. We subdivided the zircons from the green nephrites into four types, depending on their internal textures, mineral inclusions, and SHRIMP U-Pb ages. Type I zircons are round instead of idiomorphic in shape and lack obvious zoning. Type II and IV zircons have broad, clear oscillatory zoning and are hypidiomorphic or idiomorphic in shape; they contain inclusions of diopside, tremolite, chlorite and calcite. Most Type III zircons are narrow rims (nephrite deposit. The partially recrystallization of zircons during skarn formation possibly lead to some younger individual ages (406.5 to 308 Ma). In the Western Kunlun Mountain, both Buya granite and Alamas grandiorite are high Ba-Sr granites and crystallized in Western Kunlun Orogen. The Buya granite formed at about 430 Ma in a post-orogenic tectonic environment. Considering Alamas granodiorite formed at about 12 Ma younger than that of Buya granite and it is convincible that Alamas granodiorite also formed at a post-orogenic tectonic environment. Together with the evolution of Western Kunlun Mountain, it is also possible that high Ba-Sr Alamas granodiorite and the nephrite deposit formed in the post-orogenic stage. Most zircons in the Alamas granodiorite and green nephrite have high Th/U ratios (> 0

  3. Structural evolution and U-Pb SHRIMP zircon ages of the Neoproterozoic Maria da Fé shear zone, central Ribeira Belt - SE Brazil

    Zuquim, M. P. S.; Trouw, R. A. J.; Trouw, C. C.; Tohver, E.


    The Maria da Fé Shear Zone (MFSZ) is a sinistral strike-slip kilometric-scale structure developed in the late Neoproterozoic during the assembly of Gondwana. The MFSZ development is related to the NW-SE collision between the São Francisco Paleocontinent and the Rio Negro Magmatic Arc, which formed the Ribeira Belt. This paper describes the shear zone in detail, concluding that the orientation and age are consistent with NW-SE shortening during the afore mentioned collision. A U-Pb SHRIMP Concordia age of 586.9 ± 8.7 Ma is reported from zircon grains of a granitic dyke that crystallised synkinematically to the main tectonic activity of the shear zone. Another group of zircon grains from the same sample generated an upper intercept age of 2083 ± 43 Ma anchored in the younger Concordia age. These zircon grains are interpreted as relict grains of the basement from which the granite dyke was generated by partial melting. The temperature during mylonitization in the MFSZ was estimated in the range from 450 to 600 °C, based on microstructures in quartz and feldspar. An earlier collision in the same region, between 640 and 610 Ma, led to an extensive nappe-stack with tectonic transport to ENE, integrating the southern Brasilia Belt. One of the thrust zones between these nappes in the studied area is the Cristina Shear Zone with mylonites that were generated under upper amphibolite to granulite facies conditions. Brittle-ductile E-W metric-scale shear zones are superimposed on the MFSZ, which were active in similar, but probably slightly cooler, metamorphic conditions (≈500 °C).

  4. Mineral chemistry and shrimp U-Pb Geochronology of mesoproterozoic polycrase-titanite veins in the sullivan Pb-Zn-Ag Deposit, British Columbia

    Slack, J.F.; Aleinikoff, J.N.; Belkin, H.E.; Fanning, C.M.; Ransom, P.W.


    Small polycrase-titanite veins 0.1-2 mm thick cut the tourmalinite feeder zone in the deep footwall of the Sullivan Pb-Zn-Ag deposit, southeastern British Columbia. Unaltered, euhedral crystals of polycrase and titanite 50-100 ??m in diameter are variably replaced by a finer-grained alteration-induced assemblage composed of anhedral polycrase and titanite with local calcite, albite, epidote, allanite, and thorite or uranothorite (or both). Average compositions of the unaltered and altered polycrase, as determined by electron-microprobe analysis, are (Y0.38 REE0.49 Th0.10 Ca0.04 Pb0.03 Fe0.01U0.01) (Ti1.48 Nb0.54 W0.04 Ta0.02)O6 and (Y0.42 REE0.32 Th0.15 U0.06 Ca0.04 Pb0.01 Fe0.01) (Ti1.57 Nb0.44 W0.04 Ta0.02)O6, respectively. The unaltered titanite has, in some areas, appreciable F (to 0.15 apfu), Y (to 0.40 apfu), and Nb (to 0.13 apfu). SHRIMP U-Pb geochronology of eight grains of unaltered polycrase yields a weighted 207Pb/206Pb age of 1413 ?? 4 Ma (2??) that is interpreted to be the age of vein formation. This age is 50-60 m.y. younger than the ca. 1470 Ma age of synsedimentary Pb-Zn-Ag mineralization in the Sullivan deposit, which is based on combined geological and geochronological data. SHRIMP ages for altered polycrase and titanite suggest later growth of minerals during the ???1370-1320 Ma East Kootenay and ???1150-1050 Ma Grenvillian orogenies. The 1413 ?? 4 Ma age for the unaltered polycrase in the veins records a previously unrecognized post-ore (1370 Ma) mineralizing event in the Sullivan deposit and vicinity. The SHRIMP U-Pb age of the polycrase and high concentrations of REE, Y, Ti, Nb, and Th in the veins, together with elevated F in titanite and the absence of associated sulfides, suggest transport of these high-field-strength elements (HFSE) by F-rich and S-poor hydrothermal fluids unrelated to the fluids that formed the older Fe-Pb-Zn-Ag sulfide ores of the Sullivan deposit. Fluids containing abundant REE, HFSE, and F may have been derived from a

  5. Zircon U-Pb geochronology, geochemistry, and Sr-Nd-Hf isotopes of granitoids in the Yulekenhalasu copper ore district, northern Junggar, China: Petrogenesis and tectonic implications

    Yang, Fuquan; Chai, Fengmei; Zhang, Zhixin; Geng, Xinxia; Li, Qiang


    The Yulekenhalasu porphyry copper deposit is located in the Kalaxiange'er metallogenic belt in northern Junggar, China. We present the results from zircon U-Pb geochronology, and geochemical and Sr-Nd-Hf isotope analyses of the granitoids associated with the ore deposits with a view to constrain their petrogenesis and tectonic setting. The granitoids consist of quartz diorite, diorite porphyry, porphyritic monzonite, and quartz porphyry, emplaced at 382, 379, 375-374, and 348 Ma, respectively, which span Late Devonian to early Carboniferous ages. The ore-bearing intrusion is mainly diorite porphyry, with subordinate porphyritic monzonite. The Late Devonian intrusions are characterized by SiO2 contents of 54.5-64.79 wt.%, Na2O contents of 3.82-8.24 wt.%, enrichment in Na, light rare-earth elements (LREEs), and large ion lithophile elements. They also display relative depletion in Y, Ba, P, Nb, Ta, and Ti, and weak negative Eu anomalies (δEu = 0.6-0.87). The early Carboniferous quartz porphyry is characterized by high SiO2 content (72.26-73.35 wt.%), enrichment in LREEs, K, and Sr, and relative depletion in Y (10.82-12.52 ppm) and Yb (1.06-1.15 ppm). The Late Devonian and early Carboniferous granitoids are characterized by positive ɛNd(t) values (5.2-10.1, one sample at - 1.9), positive ɛHf(t) values (7.46-18.45), low (87Sr/86Sr)i values (0.70363-0.70476), and young crustal residence ages. These data indicate that the sources of the granitoids were mainly mantle-derived juvenile rocks. Geochemical and Nd-Sr-Hf isotopic data demonstrate that the Late Devonian granitoids formed in an oceanic island arc, and they were formed from different sources, among which the mineralized diorite porphyry might have originated from a mixed slab-derived and mantle wedge melt source. The early Carboniferous quartz porphyry was likely emplaced in a mature island arc environment, and was probably derived from juvenile crust.

  6. Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: Geochemistry and U-Pb zircon geochronology

    Hosseini, Mohammad Reza; Hassanzadeh, Jamshid; Alirezaei, Saeed; Sun, Weidong; Li, Cong-Ying


    The Urumieh-Dokhtar magmatic belt of Central Iran runs parallel to the Zagros orogenic belt and has been resulted from Neotethys ocean subduction underneath Eurasia. The Bahr Aseman volcanic-plutonic complex (BAC), covering an area 2000 km2 in the Kerman magmatic belt (KMB) in the southern section of the Urumieh-Dokhtar belt, has long been considered as the earliest manifestation of extensive Cenozoic arc magmatism in KMB. The nature and timing of the magmatism, however, is poorly constrained. An area 1000 km2, in BAC and adjacent Razak volcaniclastic complex and Jebal Barez-type granitoids, was mapped and sampled for geochemistry and geochronology. Andesite and basaltic andesite are the main volcanic components in the study area; plutonic bodies vary from tonalite to quartz diorite, granodiorite and biotite-granite. The rocks in BAC display dominantly normal calc-alkaline character. On spider diagrams, the rocks are characterized by enrichments in LILE relative to HFSE and enrichments in LREE relative to HREE. These features suggest a subduction related setting for the BAC. LaN/YbN ratios for the intrusive and volcanic rocks range from 1.41 to 5.16 and 1.01 to 6.42, respectively. These values are lower than those for other known granitoids in KMB, namely the abyssal, dominantly Oligocene Jebal Barez-type (LaN/YbN = 1.66-9.98), and the shallow, dominantly late Miocene Kuh Panj-type (LaN/YbN = 12.97-36.04) granitoids. This suggests a less evolved magma source for the BAC igneous rocks. In Y vs. Nb and Th/Yb vs. La/Yb discrimination diagrams, an island-arc setting is defined for the BAC rocks. The rocks further plot in primitive island-arc domain in Nb vs. Rb/Zr and Y/Nb vs. TiO2 diagrams. The BAC volcanic and plutonic rocks yielded zircon U-Pb ages of 78.1 to 82.7 Ma and 77.5 to 80.8 Ma, respectively. Zircon U-Pb dating of volcanic rocks and granitoids from the adjacent Razak complex and the Jebal Barez-type granitoids indicated 48.2 Ma and 26.1 Ma ages

  7. Opening of the Tethys in southwest China and its significance to the breakup of East Gondwanaland in late Paleozoic: Evidence from SHRIMP U-Pb zircon analyses for the Garzê ophiolite block

    YAN Quanren; WANG Jianguo; ZHANG Dehui; ZHAO Jian; WANG Zongqi; LIU Shuwen; LI Qiugen; ZHANG Hongyuan; WANG Tao; LIU Dunyi; SHI Yuruo; JIAN Ping


    SHRIMP U-Pb zircon analyses for a gabbro sample from the Garzê ophiolite block yielded a mean 206Pb/238U age of 292±4 Ma, which indicated that the spreading time of the Garzê-Litang Tethys was most likely at the earliest Permian. Combined with previous studies, we suggest that the opening of the Tethys in southwest China was derived from breakup of the East Gondwanaland in the late Paleozoic.

  8. SHRIMP U-Pb Dating of Zircons of a Dark Eclogite and a Garnet-bearing Gneissic Granitic Rock from Bixiling, EasternDabie Area, Anhui Province: Isotope Chronological Evidence of Neoproterozoic UHP Metamorphism


    The paper reports SHRIMP U-Pb zircon data of a dark eclogite and a post-eclogite garnet-bearing gneissic granitic rock from the Bixiling area, Yuexi County, Anhui Province, in the eastern Dabie Mountains. The eclogite, which is metamorphosed basic tuff, contains very scarce zircons in omphacite or garnet, but more zircons in quartz. They usually exhibit a double-layered texture, as shown clearly in cathodoluminescence images. Their inner main parts give a206 Pb/238U age of 757±7Ma, representing the approximate age of the high-pressure (HP)-ultrahighpressure (UHP) metamorphic event duing which the eclogite was formed. The outer peripheral parts of the zircons,which have been modified by late-stage fluids, give an age of 223±3 Ma. The granitic rock contains more zircons of anatectic origin found mostly in feldspar and quartz and usually also showing a similar composite texture. The inner main parts of the anatectic zircons with oscillatory zoning give a 206Pb/238U age of 727±15Ma for the approximate age of the emplacement of the granitic rock, and their outer parts, an age of 219±3 Ma for a similar or even the same fluid event. It is thus suggested that the HP-UHP metamorphism of the Bixiling eclogite facies rocks took place during the Neoproterozoic Jinningian,and the Indosinian age values may only represent a late event in the nature of fluid activity.

  9. SHRIMP zircon U-Pb dating from K-bentonite in the top of Ordovician of Wangjiawan Section, Yichang, Hubei,China

    HU YanHua; ZHOU JiBin; SONG Biao; LI Wei; SUN WeiDong


    The Global boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the latest stage of the Ordovician System) is defined at a point 0.39m below the base of the Kuanyinchiao Bed in the Wangjiawan North Section, which is the upper most "golden spike" of the Ordovician.However, this "golden spike" is lack of reliable geochronology data. This article gives a sensitive high resolution ion microprobe (SHRIMPII) zircon U-Pb dating for a K-bentonite sample from the Kuanyinchiao Bed in the Wangjiawan North Section. The age of the K-bentonite sample is 443.2+1.6 Ma, that is to say, the isotopic age of the uppermost of Hirnantian Stage, the point of Ordovician-Silurian boundary,should be near to, but slightly younger than 443.2±1.6 Ma. This age is identical to the Ordovician-Silurian boundary age 443.7±1.5 Ma as declared by International Commission on Stratigraphy (ICS). So, this research provides some good geochronlogical data for the Hirnantian Stage and the Ordovician-Silurian boundary as well as the global correlation.

  10. Geology, petrology, U-Pb (SHRIMP) geochronology of the Morrinhos granite - Paragua terrane, SW Amazonian craton: implications for the magmatic evolution of the San Ignacio orogeny

    Franca, Ohana; Ruiz, Amarildo Salina; Sousa, Maria Zelia Aguiar de, E-mail:, E-mail:, E-mail: [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Instituto de Ciencias Exatas e da Terra. Dept. de Geologia Geral; Batata, Maria Elisa Froes, E-mail: [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Grupo de Pesquisa em Evolucao Crustal e Tectonica; Lafon, Jean-Michel [Universidade Federal do Para (GEOCIAM/UFPA), Belem, PR (Brazil). Inst. Nacional de Cencia e Tecnologia de Geociencias da Amazonia


    Morrinhos granite is a batholith body that is slightly elongated in the NNW direction and approximately 1,140 km{sup 2} long; it is located in the municipality of Vila Bela da Santissima Trindade of the state of Mato Grosso, Brazil, in the Paragua Terrane, Rondonian-San Ignacio Province, in the SW portion of the Amazonian Craton. This intrusion displays a compositional variation from tonalite to monzogranite, has a medium to coarse inequigranular texture and is locally porphyritic; biotite is the predominant mafic in one of the facies, and hornblende is predominant in the other, with both metamorphosed into the green schist facies. The studied rocks characterize an intermediate to acidic sequence that was formed by a subalkaline magmatism; the series is alkali-calcic to metaluminous to slightly peraluminous, and the rocks evolved through fractioned crystallization mechanisms. The structural data show two deformation phases represented by penetrative foliation (S{sub 1}) and open folds (D{sub 2}), and both phases were most likely related to the San Ignacio Orogeny. The geochronological (U-Pb SHRIMP) and isotopic (Sm-Nd) investigations of these rocks indicated a crystallization age of 1350±12Ma, T{sub DM} of approximately 1.77 Ga and εNd{sub (1.35}) with a negative value of -2.57, suggesting that their generation was related to a partial melting process of a Paleoproterozoic (Statherian) continental crust. The results herein indicate that the Morrinhos granite was generated in a continental magmatic arc in a late- to post-orogenic stage of the San Ignacio Orogeny, and it can be recognized as belonging to the Pensamiento Intrusive Suite. (author)

  11. Age intercalibration of 40Ar/39Ar sanidine and chemically distinct U/Pb zircon populations from the Alder Creek Rhyolite Quaternary geochronology standard

    Rivera, Tiffany; Storey, Michael; Schmitz, M. D.;


    (2σ external uncertainty), determined relative to the astronomically dated A1 tephra sanidine, is interpreted as the ACR eruption age. This age is supported by CA-TIMS U–Pb zircon dating, guided by LA-ICPMS trace element analyses, titanium-in-zircon (TiZR) thermometry, and cathodoluminescence (CL...

  12. Middle Neoproterozoic (ca. 705-716 Ma) arc to rift transitional magmatism in the northern margin of the Yangtze Block: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes

    Wang, Ruirui; Xu, Zhiqin; Santosh, M.; Xu, Xianbing; Deng, Qi; Fu, Xuehai


    The South Qinling Belt in Central China is an important window to investigate the Neoproterozoic tectono-magmatic processes along the northern margin of the Yangtze Block. Here we present whole-rock geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes of a suite of Middle Neoproterozoic intrusion from the Wudang Uplift in South Qinling. Zircon LA-ICP-MS U-Pb ages reveal that these rocks were formed at ca. 705-716 Ma. Geochemical features indicate that the felsic magmatic rocks are I-type granitoids, belong to calcic- to calc-alkaline series, and display marked negative Nb, Ta and Ti anomalies. Moreover, the enrichment of light rare earth elements (LREEs) and large ion lithophile elements (LILEs), combined with depletion of heavy rare earth elements (HREEs) support that these rocks have affinity to typical arc magmatic rocks formed in Andean-type active continental margins. The REE patterns are highly to moderately fractionated, with (La/Yb)N = 5.13-8.10 in meta-granites, and 2.32-2.35 in granodiorite. The granitoids have a wide range of zircon εHf(t) values (-29.91 to 14.76) and zircon Hf two-stage model ages (696-3482 Ma). We suggest that the ca. 705-716 Ma granitoids were sourced from different degrees of magma mixing between partial melting of the overlying mantle wedge triggered by hydrous fluids released from subducted materials and crustal melting. The hybrid magmas were emplaced in the shallow crust accompanied by assimilation and fractional crystallization (AFC). Both isotopic and geochemical data suggest that the ca. 705-716 Ma felsic magmatic rocks were formed along a continental arc. These rocks as well as the contemporary A-type granite may mark a transitional tectonic regime from continental arc to rifting, probably related to slab rollback during the oceanic subduction beneath the northern margin of Yangtze Block.

  13. Geochemistry and Geochronology U-Pb SHRIMP of granites from Peixoto de Azevedo: Alta Floresta Gold Province; Geoquimica e geocronologia U-Pb (SHRIMP) de granitos da regiao de Peixoto de Azevedo: Provincia Aurifera Alta Floresta, MT

    Silva, Fernanda Rodrigues da; Barros, Marcia Aparecida Sant' Ana; Pierosan, Ronaldo; Pinho, Francisco Edigio Cavalcante; Tavares, Carla; Rocha, Jhonattan, E-mail:, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil). Inst. de Ciencias Exatas e da Terra; Rocha, Mara Luiza Barros Pita; Vasconcelos, Bruno Rodrigo; Dezula, Samantha Evelyn Max, E-mail:, E-mail:, E-mail: [Universidade de Brasilia (UNB), Brasilia, DF (Brazil). Programa de Pos-Graduacao em Geologia


    The analysis of petrographic, geochemical and geochronological data of granites in the Peixoto de Azevedo region, Mato Grosso, Brazil, in the eastern portion of the Alta Floresta Gold Province, led to the recognition of two granitic bodies bounded by regional major faults and shear zones. In the northwestern portion a body with featured as biotite granodiorite, coarse-grained, with porphyritic to inequigranular texture, metaluminous to peraluminous, high-K calc-alkaline and magnesium character. In the southeastern portion of the area, a biotite monzogranite coarse-grained, with equigranular to porphyritic texture, slightly peraluminous, high-K calc-alkaline and dominantly of ferrous character. U- Pb dating (SHRIMP) showed that the biotite monzogranite has an age of 1869 ± 10 Ma, similar to the Matupa Intrusive Suite, while the biotite granodiorite has an age of 1781 ± 10 Ma, that is the age expected to Peixoto Granite. Both units show patterns of rare earth elements with enrichment of light over heavy and negative Eu anomaly (La{sub N}/Yb{sub N} » 7.6 to 17.31 and ratios Eu/EU{sup ⁎} between 0.46 – 0.72 for biotite monzogranite and La{sub N}/Yb{sub N} » 7.13 to 29.09 with ratios Eu/Eu{sup ⁎} between 0.25 - 0.40 for the biotite granodiorite). Trace elements pattern for both present negative anomalies of Ba, P, Ti and Nb indicating an evolution from mineral fractionation and subduction related sources. In this paper, it is suggested that the monzogranite Matupa was developed in mature arc tectonic environment. For the Peixoto Granite, two hypotheses are suggested: (a) it was developed in younger magmatic arc environment associated with the Colider Magmatism or (b) it was generated in extensional tectonic environment during the Columbia Super continent break up. (author)

  14. Estimates of volume and magma input in crustal magmatic systems from zircon geochronology: the effect of modelling assumptions and system variables

    Caricchi, Luca; Simpson, Guy; Schaltegger, Urs


    Magma fluxes in the Earth's crust play an important role in regulating the relationship between the frequency and magnitude of volcanic eruptions, the chemical evolution of magmatic systems and the distribution of geothermal energy and mineral resources on our planet. Therefore, quantifying magma productivity and the rate of magma transfer within the crust can provide valuable insights to characterise the long-term behaviour of volcanic systems and to unveil the link between the physical and chemical evolution of magmatic systems and their potential to generate resources. We performed thermal modelling to compute the temperature evolution of crustal magmatic intrusions with different final volumes assembled over a variety of timescales (i.e., at different magma fluxes). Using these results, we calculated synthetic populations of zircon ages assuming the number of zircons crystallising in a given time period is directly proportional to the volume of magma at temperature within the zircon crystallisation range. The statistical analysis of the calculated populations of zircon ages shows that the mode, median and standard deviation of the populations varies coherently as function of the rate of magma injection and final volume of the crustal intrusions. Therefore, the statistical properties of the population of zircon ages can add useful constraints to quantify the rate of magma injection and the final volume of magmatic intrusions. Here, we explore the effect of different ranges of zircon saturation temperature, intrusion geometry, and wall rock temperature on the calculated distributions of zircon ages. Additionally, we determine the effect of undersampling on the variability of mode, median and standards deviation of calculated populations of zircon ages to estimate the minimum number of zircon analyses necessary to obtain meaningful estimates of magma flux and final intrusion volume.

  15. Estimates of volume and magma input in crustal magmatic systems from zircon geochronology: the effect of modelling assumptions and system variables

    Luca eCaricchi


    Full Text Available Magma fluxes in the Earth’s crust play an important role in regulating the relationship between the frequency and magnitude of volcanic eruptions, the chemical evolution of magmatic systems and the distribution of geothermal energy and mineral resources on our planet. Therefore, quantifying magma productivity and the rate of magma transfer within the crust can provide valuable insights to characterise the long-term behaviour of volcanic systems and to unveil the link between the physical and chemical evolution of magmatic systems and their potential to generate resources. We performed thermal modelling to compute the temperature evolution of crustal magmatic intrusions with different final volumes assembled over a variety of timescales (i.e., at different magma fluxes. Using these results, we calculated synthetic populations of zircon ages assuming the number of zircons crystallising in a given time period is directly proportional to the volume of magma at temperature within the zircon crystallisation range. The statistical analysis of the calculated populations of zircon ages shows that the mode, median and standard deviation of the populations varies coherently as function of the rate of magma injection and final volume of the crustal intrusions. Therefore, the statistical properties of the population of zircon ages can add useful constraints to quantify the rate of magma injection and the final volume of magmatic intrusions.Here, we explore the effect of different ranges of zircon saturation temperature, intrusion geometry, and wall rock temperature on the calculated distributions of zircon ages. Additionally, we determine the effect of undersampling on the variability of mode, median and standards deviation of calculated populations of zircon ages to estimate the minimum number of zircon analyses necessary to obtain meaningful estimates of magma flux and final intrusion volume.

  16. Usbnd Pb zircon geochronology constraints on the ages of the Tananao Schist Belt and timing of orogenic events in Taiwan: Implications for a new tectonic evolution of the South China Block during the Mesozoic

    Chen, Wen-Shan; Huang, Yi-Chang; Liu, Chang-Hao; Feng, Han-Ting; Chung, Sun-Lin; Lee, Yuan-Hsi


    The Tananao Schist Belt is a low-pressure metamorphic complex comprised of three lithological units of marble, schist formation, and granite, in ascending order of proportion. Previous studies have found that the schist formation was formed during the Mesozoic. However, there is a lack of geochronological data to corroborate the schist protolith and metamorphic ages. In this study, we have used Usbnd Pb zircon geochronology to provide a time frame for the creation of the schist formation and metamorphism, as well as a new tectonic model. Twenty-three schist and eleven meta-magmatic samples were used for Usbnd Pb dating by LA-ICP-MS. Results from the youngest peak age of detrital zircon indicate that the schist formed in a new depositional age of 120-110 Ma and, therefore, is different from the previously estimated age of the Paleozoic-Mesozoic. Additionally, the block-in-matrix schist indicates an age that ranges from 270 to 80 Ma and was inferred from the chaotic deposits to be a metamorphic mélange. The Tananao Schist Belt appears to represent an arc-trench system that formed during the Cretaceous in the South China Block margin. Moreover, the youngest Usbnd Pb age of 80 Ma from the leucogranite dike and schist, constrains the upper age limit for a metamorphism that is younger than the previously accepted age of 100-90 Ma. The contact layer between Permian-Triassic marble and the overlying early Cretaceous schists remains a chloritoid bed that is, therefore, considered to be a paleosol at the unconformity, which formed over an extended duration of 60 ± 30 Ma. The stratigraphic contact indicates a long period of erosion during the Jurassic and suggests that a tectonic event occurred. However, we propose that two important metamorphic events took place prior to, and following, the schist formation during the Jurassic and late Cretaceous orogenic events.

  17. Prolonged episodic Paleoproterozoic metamorphism in the Thelon Tectonic Zone, Canada: an in-situ SHRIMP/EPMA monazite geochronology study

    Mitchell, Rhea; William, Davis; Robert, Berman; Sharon, Carr; Michael, Jercinovic


    The Thelon Tectonic zone (TTZ), Nunavut, Canada, is a >500km long geophysically, lithologically and structurally distinct N-NNE striking Paleoproterozoic boundary zone between the Slave and Rae Archean provinces. The TTZ has been interpreted as a ca. 2.0 Ga continental arc on the western edge of the Rae craton, that was deformed during collision with the Slave craton ca. 1.97 Ga. Alternatively, the Slave-Rae collision is interpreted as occurring during the 2.35 Ga Arrowsmith orogeny while the 1.9-2.0 Ga TTZ represents an intra-continental orogenic belt formed in previously thinned continental crust, postdating the Slave-Rae collision. The central part of the TTZ comprises three >100 km long, 10-20 km wide belts of ca. 2.0 Ga, mainly charnockitic plutonic rocks, and a ca. 1910 Ma garnet-leucogranite belt. Metamorphism throughout these domains is upper-amphibolite to granulite-facies, with metasedimentary rocks occurring as volumetrically minor enclaves and strands of migmatites. The Ellice River domain occurs between the western and central plutonic belts. It contains ca. 1950 Ma ultramafic to dacitic volcanic rocks and foliated Paleoproterozoic psammitic metasedimentary rocks at relatively lower grade with lower to middle amphibolite-facies metamorphic assemblages. In-situ U-Pb analyses of monazite using a combination of Sensitive High-Resolution Ion Microprobe (SHRIMP) and Electron Probe Microanalyzer (EPMA) were carried out on high-grade metasedimentary rocks from seventeen samples representing the eastern margin of the Slave Province and all major lithological domains of the TTZ. 207Pb/206Pb monazite ages from SHRIMP analysis form the foundation of this dataset, while EPMA ages are supplementary. The smaller <6µm spot size of EPMA allowed for further constraint on ages of micro-scale intra-crystalline domains in some samples. Monazite ages define four distinct Paleoproterozoic metamorphic events and one Archean metamorphic event at ca. 2580 Ma. The latter is

  18. New material of microfossils from the Ediacaran Doushantuo Formation in the Zhangcunping area,Yichang, Hubei Province and its zircon SHRIMP U-Pb age

    LIU PengJu; YIN ChongYu; GAO LinZhi; TANG Feng; CHEN ShouMing


    The Zhangcunping area is located at the north limb of the Huangling anticline in Yichang, Hubei Province. Here, the sedimentary succession of the Ediacaran Doushantuo Formation is similar with that in the Weng'an area, Guizhou Province. A large number of new microfossils (mainly acanthoacritarchs) from the Doushantuo Formation in this area are reported in this paper. The fossil assemblage shows similarity as the phosphatized biota of the Doushantuo Formation at Wang'an, Guizhou Province and the silicified biota of the Doushantuo Formation at the Yangtze Gorges, which suggests that the Zhangcunping area is a key for correlation of the Doushantuo Formation between the Weng'an area,Guizhou Province and the Yangtze Gorges. Besides, a new zircon SHRIMP U-Pb age (614.0±7.6 Ma) is first obtained from a horizon underneath the exposed surface in the middle of the Doushantuo Formation in the Zhangcunping area. This age not only provides a new datum for subdivision of the Ediacaran Doushantuo Formation, but also indicates that the age of the exposed surface in the middle of the Doushantuo Formation in the Yangtze Platform should be posterior to 614.0±7.6 Ma. Due to the horizon of the Weng'an biota situated above the exposed surface, the age of the Wang'an biota should be posterior to 614.0±7.6 Ma as well.

  19. Zircon SHRIMP U-Pb dating for the Cangshuipu volcanic rocks and its implications for the lower boundary age of the Nanhua strata in South China

    WANG Jian; LI Xianhua; DUAN Taizhong; LIU Dunyi; SONG Biao; LI Zhongxiong; GAO Yonghua


    The continental volcanic rocks and volcaniclastic sedimentary conglomerates of the Cangshuipu Formation occur well in Yiyang of Hunan Province, consisting of a wedge-shaped succession of Neoproterozoic strata that overlie with high-angle unconformity the flysch turbidites of the Lengjiaxi Group in the Upper Mesoproterozoic Eonothem. SHRIMP zircon U-Pb dating gives a weighted mean age of 814 ( 12 Ma for the dacitic volcanic agglomerates from the lowest part of the volcanic rocks in the Cangshuipu Formation. This age is younger than previously reported values of 921-933 Ma for the volcanic rocks from the Cangshuipu Formation. Our new dating represents the lower boundary age of the Neoproterozoic System in the studied area. The younger age for the Cangshuipu volcanic rocks is supported by the following observations: (1) Lower Neoproterozoic strata (814-1000 Ma) are missing in the studied area; (2) the Nanhua rift system was initiated at about 820 Ma; and (3) an age of ~820 Ma may be taken as the lower boundary timing of the Nanhua System (even Neoproterozoic) in South China.

  20. Petrogenesis and significance of the Hongshan syenitic pluton,South Taihang: zircon SHRIMP U-Pb age, chemical compositions and Sr-Nd isotopes


    The Hongshan syenitic pluton (South Taihang) is mainly made up of hornblende syenite and minor granite. SHRIMP zircon dating yields a U-Pb age of 135 ± 2.7 Ma for the emplacement of the pluton, while biotite Rb-Sr isotopic data give an isochron of 120.3 ± 2.4 Ma. Hongshan syenites show low silica, high alkalis and LILE such as Sr, and exhibit negligible Eu anomalies or slightly positive anomalies in the REE patterns. The syenites show quite enriched isotopic compositions with Isr from 0. 7052 to 0. 7102 and εNd( t ) from - 7.5 to - 11. 1. Petrogenesis of the pluton can be that partial melting of an enriched lithospheric mantle gave birth to an alkali basaltic magma, which subsequently underplated in the lower crust and experienced a coupled fractionation of ferromagnesian phases like pyroxene and hornblende and minor ( < 10 % ) contamination of lower continental crust, producing the Hongshan syenites that partially evolved into granite through combined fractionation of hornblende and feldspar. Our data are not in agreement with a previous model that the syenites originated from melting of lower crust in a thickened crust circumstance, and thus do not support the speculation of "East China Plateau" in the Mesozoic.

  1. Precambrian crustal contribution to the Variscan accretionary prism of the Kaczawa Mountains (Sudetes, SW Poland): evidence from SHRIMP dating of detrital zircons

    Kryza, Ryszard; Zalasiewicz, Jan; Mazur, Stanisław; Aleksandrowski, Paweł; Sergeev, Sergey; Larionov, Alexander


    SHRIMP dating of detrital zircons from sandstones of the Gackowa Formation (Kaczawa Complex, Sudetes, SW Poland) indicates input from late (550-750 Ma) and early Proterozoic to Archaean sources (˜2.0-3.4 Ga, the latter being the oldest recorded age from the Sudetic region). These dates preclude within-terrane derivation from seemingly correlatory acid volcanic rocks of early Palaeozoic age. Rather, they indicate provenance from Cadomian and older rocks that currently form part of other, geographically distant terranes; the most likely source identified to date is the Lusatian Block in the Saxothuringian Zone. Hence, the Gackowa Formation may be late Proterozoic rather than early Palaeozoic in depositional age, possibly coeval with the late Proterozoic (pre-Cadomian) greywackes of Lusatia, being subsequently tectonically interleaved with early Palaeozoic volcanic rocks into the Kaczawa accretionary prism during the Variscan orogeny. However, correlation with the lithologically similar early Ordovician Dubrau Quartzite of Saxothuringia, and so assignation to the early Paleozoic (post-Cadomian) rift succession deposited at the northern margin of Gondwana, cannot yet be precluded.

  2. SHRIMP U-Pb zircon dating for lamprophyre from Liaodong Peninsula: Constraints on the initial time of Mesozoic lithosphere thinning beneath eastern China

    JIANG Yaohui; JIANG Shaoyong; ZHAO Kuidong; NI Pei; LING Hongfei; LIU Dunyi


    It is undebated fact that the lithospheric mantle beneath eastern China was considerably thinned during the Mesozoic time. However, it has no adequate evidence for the exact timing when the lithosphere thinning started. The Liaodong Peninsula is located in the eastern segment of the North China Craton and is one of the important domains to explore the event of lithosphere thinning. SHRIMP U-Pb zircon dating and geochemical study were carried out for the lamprophyre dike swarm that intruded into the magnesite ore-beds in the Dashiqiao Formation of Paleoproterozoic Liaohe Group at the Huaziyu magnesite ore district, Liaodong Peninsula. The results indicate that these lamprophyre dikes were intruded in late Jurassic (155±4 Ma) and show some geochemical characteristics of potassic magmas. It is now accepted that the lithosphere thinning took place in the late Mesozoic, and the peak thinning stage occurred in early Cretaceous (130―120 Ma). Considering the potassic mafic magmatism marking the onset of the lithospheric thinning, we therefore suggest that the studied late Jurassic potassic lamprophyre dike swarm could imply that the late Jurassic is the time that lithosphere thinning started.

  3. SHRIMP zircon U-Pb ages for the Paleoproterozoic metamorphic-magmatic events in the southeast margin of the North China Craton

    GUO SuShu; LI ShuGuang


    A garnet-pyroxene bearing amphibolite as a xenolith hosted by the Mesozoic igneous rocks from Xuzhou-Suzhou area was dated by zircon SHRIMP U-Pb method, which yields a metamorphic age of Archean metamorphic complex named Wuhe group in the Bengbu uplift give a metamorphic U-Pb age Bengbu uplift give a magma crystallization U-Pb age of 2054 ± 22 Ma. Both the Xuzhou-Suzhou area and Bengbu uplift are located in the southeastern margin of the North China Craton. Therefore, these ages indicate that there is a Paleoproterozoic tectonic zone in the southeastern margin of the North China Craton, and its metamorphic and magmatic ages are consistent with those of the other three Paleoproterozoic tectonic zones in the North China Craton. In view of the large scale sinistral strike-slip movement occurred at the Mesozoic along the Tan-Lu fault zone, the position of the eastern Shandong area, which is a south section of the Paleoproterozoic Jiao-Liao-Ji Belt, was correlated to Xuzhou-Suzhou-Bengbu area prior to movement of the Tan-Lu fault zone. This suggests that the Xuzhou-Suzhou-Bengbu Paleoproterozoic tectonic zone might be a southwest extension of the Paleoproterozoic Jiao-Liao-Ji Belt.

  4. Using SHRIMP zircon dating to unravel tectonothermal events in arc environments. The early Palaeozoic arc of NW Iberia revisited

    Abati, J.; Castineiras, P.G.; Arenas, R.; Fernandez-Suarez, J.; Barreiro, J.G.; Wooden, J.L.


    Dating of zircon cores and rims from granulites developed in a shear zone provides insights into the complex relationship between magmatism and metamorphism in the deep roots of arc environments. The granulites belong to the uppermost allochthonous terrane of the NW Iberian Massif, which forms part of a Cambro-Ordovician magmatic arc developed in the peri-Gondwanan realm. The obtained zircon ages confirm that voluminous calc-alkaline magmatism peaked around 500Ma and was shortly followed by granulite facies metamorphism accompanied by deformation at c. 480Ma, giving a time framework for crustal heating, regional metamorphism, deformation and partial melting, the main processes that control the tectonothermal evolution of arc systems. Traces of this arc can be discontinuously followed in different massifs throughout the European Variscan Belt, and we propose that the uppermost allochthonous units of the NW Iberian Massif, together with the related terranes in Europe, constitute an independent and coherent terrane that drifted away from northern Gondwana prior to the Variscan collisional orogenesis. ?? 2007 Blackwell Publishing Ltd.

  5. Zircon U–Pb geochronology and geochemistry of rhyolitic tuff, granite porphyry and syenogranite in the Lengshuikeng ore district, SE China: Implications for a continental arc to intra-arc rift setting

    Changming Wang; Da Zhang; Ganguo Wu; Yigan Xu; Emmanuel John M Carranza; Yaoyao Zhang; Huaikun Li; Jianzhen Geng


    SE China is well known for its Mesozoic large-scale granitoid plutons and associated ore deposits. Here, zircon U–Pb geochronological and geochemical data have been used to better constrain the petrogenesis of the igneous rocks associated with porphyry Ag–Pb–Zn deposits in the Lengshuikeng ore district, SE China. The Lengshuikeng rhyolitic tuff, granite porphyry and syenogranite yielded zircon U–Pb ages of 161, 155 and 138 Ma, respectively. The Lengshuikeng granite porphyries belong to calc-alkaline series and show fractionated I-type affinities. The rhyolitic tuffs show almost similar characteristics as the granite porphyries. The engshuikeng syenogranites are all alkali-rich and show A-type affinities. The syenogranites have high contents of high field strength elements such as Nb, Ta, Zr, Hf; with Zr + Nb + Ce + Y contents of < 350 ppm. Chondrite-normalized REE patterns show relative enrichment of LREEs and strong negative Eu anomalies. The Lengshuikeng granite porphyries, syenogranites and tuffs were probably derived from partial melting of underlying Proterozoic metasedimentary rocks with minor addition of mantle-derived magmas, accompanied by fractional crystallization. Detailed petrologic and geochemical data for the Jurassic igneous rocks from the Lengshuikeng ore district imply that during the Late Jurassic, SE China on the southeast of the Shi-Hang zone was a continental arc associated with the subduction of the Palaeo-Pacific plate and that since the beginning of the Early Cretaceous an intra-arc rift has been formed along the Shi-Hang zone.

  6. New techniques applied to the U-Pb method at the Centre for Geochronological Research of the University of Sao Paulo: chemical digestions, TIMS mass spectrometry and examples of integrated application of SHRIMP; Novas tecnicas aplicadas ao metodo U-Pb no CPGeo-IGc/USP: avancos na digestao quimica, espectrometria de massa (TIMS) e exemplos de aplicacao integrada com SHRIMP

    Sato, Kei; Basei, Miguel Angelo Stipp; Siga Junior, Oswaldo; Sproesser, Walter Mauricio; Passarelli, Claudia Regina [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias. Centro de Pesquisas Geocronologicas]. E-mails:;;;;


    The present work describes new techniques of U-Pb ID-TIMS developed at the CPGeo-IGc/USP. Techniques of partial and total chemical digestions, U and Pb concentration using anion exchange in a micro column, and the utilization of a {sup 205}Pb spike are discussed. Main geochronological equations used are also discussed. Examples of the application of U-Pb data, obtained by leaching technique using a microwave oven in zircon with isotopic inheritances in the core and border, are presented. The genesis of zircon based on the initial {sup 176}Hf/{sup 177}Hf ratio is discussed. Finally complete listings of the mathematical formulations used in the PBDAT software are given in the appendix. (author)

  7. U-Pb zircon and Re-Os molybdenite geochronology from La Caridad porphyry copper deposit: insights for the duration of magmatism and mineralization in the Nacozari District, Sonora, Mexico

    Valencia, V. A.; Ruiz, J.; Barra, F.; Geherls, G.; Ducea, M.; Titley, S. R.; Ochoa-Landin, L.


    Uranium-lead zircon (laser ablation multi-collector ICP-MS spot analysis) ages from La Caridad porphyry copper deposit in the Nacozari District, Northeastern Sonora, Mexico, suggest a short period of magmatism, between 55.5 and 52.6 Ma. Two U-Pb ages from the mineralized quartz monzonite unit, showing different textural characteristics, yielded indistinguishable crystallization ages (~54 Ma), and indicate that the intrusion responsible for the mineralization occurred as a single large complex unit, instead of multiple pulses of magmatism. Some zircons analyzed also show inherited ages in cores recording dates of 112-124 Ma, 141-166 Ma and 1.4 Ga. The Re-Os molybdenite ages from the potassic and phyllic hydrothermal alteration veins yielded identical ages within error, 53.6±0.3 Ma and 53.8±0.3 Ma, respectively (weighted average of 53.7±0.21 Ma), supporting a restricted period for the mineralization. The geochronological data thus indicate a short-lived magmatic and hydrothermal system. The inherited zircons of Precambrian and Late Jurassic-Mid Cretaceous age found in the intrusive rocks of La Caridad deposit, can be explained considering two possible scenarios within the tectonic/magmatic evolution of the area. The first scenario considers the presence of a Precambrian anorogenic granitic basement that is intruded by Mesozoic (Jurassic-Cretaceous) units present beneath the La Caridad deposit. The second scenario suggests that the Mesozoic Glance Conglomerate Formation of Arizona underlies the Paleocene volcanic-igneous pile in the La Caridad area.

  8. Blocks of Archean material in the structure of the Uralian Platinum Belt: insights from in situ U-Pb (SHRIMP-II) data on zircon from the Nizhny Tagil clinopyroxenite-dunite complex

    Malitch, K. N.; Efimov, A. A.; Ronkin, Yu. L.


    The Nizhny Tagil massif forms part of the 900-km-long Uralian Platinum Belt (UPB) and represents an undisputable example of a zoned Uralian-type clinopyroxenite-dunite complex (Efimov 1998; Auge et al. 2005). The 47 km2 Nizhny Tagil massif is almond-shape, shear bounded and enclosed by Riphean and Devonian metasediments to the west and late Paleozoic to Mesozoic predominantly mafic igneous rocks to the east. It consists of a platiniferrous dunite core (Fo92-90), surrounded by a clinopyroxenite rim. Recently obtained U-Pb and Sm-Nd isotope ages defined the range for UPB complexes between 540 and 425 Ma. Geochronological data for dunite remains scarce being restricted to the Kytlym dunite block (Bea et al. 2001). To fill this gap, we present the first results of uranium-lead ages for 10 grains of zircon, which were extracted by conventional techniques from course-grained dunite sampled at Alexandrovsky Log in the central part of the Nizhny Tagil massif. Most of zircons are subeuhedral, prismatic (80-170 microns long), with an elongation between 1.3 and 1.6, and oscillatory zoning characteristic of igneous rocks. Majority of zircons yield secondary inclusions; some grains show tracers of subdivision and recrystallization, whereas several grains are characterized by curved external counters pointing to specific condition of their evolution. U-Pb analyses were performed with secondary ion mass spectrometer SHRIMP II at VSEGEI, following the procedure described by Williams (1998). Concentrations of U vary from 34 to 520 ppm, Th from 18 to 358 ppm. Three age clusters have been determined. Two subordinate groups are characterized by concordant ages of 585±29 Ma (MSWD=1.07, probability (P) =0.30) and 1608±56 Ma (MSWD=0.07, P=0.79), whereas the main data set cluster around 2781±56 Ma. We assume, therefore, that the Late Archean age testifies the timing of dunite generation in subcontinental mantle, whereas the "youngest" U-Pb age might be linked with timing of formation

  9. Provenance records of the North Jiangsu Basin,East China:Zircon U-Pb geochronology and geochemistry from the Paleogene Dainan Formation in the Gaoyou Sag

    Chun-Ming; Lin; Xia; Zhang; Ni; Zhang; Shun-Yong; Chen; Jian; Zhou; Yu-Rui; Liu


    Detailed zircon U-Pb dating and whole-rock geochemical analyses were carried out on the sedimentary rocks of the Paleogene Dainan Formation from Gaoyou Sag in the North Jiangsu Basin,East China.Whole-rock rare earth element characteristics suggest that the provenance was mainly from the Late Proterozoic low-grade metamorphic felsic rocks in the Dabie-Sulu orogenic belt,with the parent rocks probably being the I-type high-potassium granite gneiss.Cathodoluminescence images indicate that most of the detrital zircons are originally magmatic.A few zircons show overgrowths,indicating multiple-episode tectonic events.The U-Pb age distribution patterns of the detrital zircons suggest four main magmatic episodes in the provenance:Late Archean-Early Proterozoic(2450-2600 Ma),Early Proterozoic(1700-1900 Ma),Late Proterozoic(700-850 Ma),and Late Paleozoic-Mesozoic(100-300 Ma).These zircon U-Pb age and whole-rock geochemical results suggest that the sediments of the Dainan Formation were mainly sourced from the recycled orogenic belts within and/or around the North Jiangsu Basin,including the basement of the Yangtze Block,the Neoproterozoic rocks in the Dabie-Sulu orogenic belt,and the Mesozoic igneous rocks in the south part of Zhangbaling Uplift.

  10. SHRIMP U-Pb zircon dates from igneous rocks from the Fontana Lake region, Patagonia: Implications for the age of magmatism, Mesozoic geological evolution and age of basement

    A.P. Rolando


    Full Text Available In the eastern margin of the Patagonian Andes and between 44° 30´S and 45° 30´S (Fontana Lake region, Middle Jurassic to Early Cretaceous volcanic and sedimentary rocks were intruded by granitic bodies during the Cretaceous. The reconstruction of the Jurassic-Cretaceous magmatic evolution in the Fontana Lake region and in the adjacent Patagonian Batholith was made possible by the consideration of the following characteristics: distribution in time and space of several intrusive bodies, retro-arc basin formation and volcanic intensity. U-Pb SHRIMP dating of zircon crystals from an ignimbrite, a dacitic porphyry and two granitoid rocks yielded dates of 148.7 ± 2.3, 144.5 ± 1.6, 117 ± 1.7 and 99.6 ± 2.8 Ma, respectively. The Cerro Bayo Ignimbrite (148.7 ± 2.3 Ma, Late Jurassic was included in the Lago La Plata Formation; this unit hosts an epithermal ore deposit. The Laguna Escondida dacitic porphyry (144.5 ± 1.6 Ma, Jurassic-Cretaceous boundary intruded metasedimentary rocks of the Lago La Plata Formation; this sub-volcanic body can chronologically be linked to the Patagonian Batholith. After the Jurassic volcanic events, a retro-arc basin formed in the eastern sector of the Patagonian Range at about 140-115 Ma (Late Berriasian-Barremian and magmatism ceased during this event. The dating of granitoids (117 ± 1.7 and 99.6 ± 2.8 Ma in the Fontana Lake region confirms a temporal magmatic continuity with the Patagonian Batholith. These dates also are in agreement with the volcanic rocks of the Divisadero Group and epithermal deposits in the region (La Ferrocarrilera deposit. One of the analyzed granitoids (Dedo Chico, 99.6 ± 2.8 Ma has inherited zircon crystals of about 2,100 and 3,410 Ma, in agreement with other previous isotopic evidence for the occurrence of an underlying Precambrian basement in the region.

  11. Relationship between UHP eclogite and two different types of granite in the North Qaidam, NW China: Evidence from zircon SHRIMP ages of granites

    Wu, C.; Yang, J.; Wooden, J.; Ernst, G. W.; Liou, J. G.; Li, H.; Zhang, J.; Wan, Y.; Shi, R.


    The southern margin of the Qilianshan is a long, narrow mountain range extending from the Altyn Mtn southeastward to the Alcitoshan for about 800 km and consists chiefly of Proterozoic and Paleozoic rocks. Our recent studies show that this foldbelt consists of a Caledonian north Qaidam UHP belt near the Qaidam Basin and I-type and S-type granites to the north near the Qilianshan. Two types of granite bodies at the Aolaoshan and Qaidamshan were selected for zircon SHRIMP dating. The results indicate that the Aolaoshan granites range from 496+/-7.6 to 445+/-15.3 Ma whereas the Qaidamshan granites range from 435+/-6 to 456+/-11 Ma. The Aolaoshan granites have geochemical characteristics similar to I-type granite probably formed in an island arc setting whereas the Qaidamshan granites are S type granites coeval with timing of collision. The UHP eclogites at Yuca have 238U-206Pb age of 494.6+/-6.5Ma, representing the peak stage of UHP metamorphism, and the 39 Ar-40Ar plateau and isochron ages of phengite respectively at 466.7+/-1.2 Ma and 465.9+/-5.4Ma represent the cooling ages of retrograde metamorphism during exhumation. In addition, the SHRIMP ages of UHP eclogites from Xitieshan and Dulan are the Caledonian. These spatial and temporal relationships suggest that UHP eclogites and two different types of Caledonian granites occur in north Qaidam with the eclogite belt to the south and the granite bodies to the north. The country rocks of UHP eclogites are Proterozoic age whereas granitic bodies have both Proterozoic and Paleozoic groups. Thus, an early Caledonian northward subduction of an oceanic lithosphere resulted in the formation of high-P eclogite to the south and I type Aolaoshan granite to the north. Subsequent continent-continent collision induced widespread partial melting of continental crust to form S type Qaidamshan granites. Hence both eclogite and two different types of granites in this foldbelt are the products of two different stages of plate

  12. U-Pb zircon geochronology and Nd-Hf-O isotopic systematics of the Neoproterozoic Hadb adh Dayheen ring complex, Central Arabian Shield, Saudi Arabia

    Ali, Kamal A.; Jeon, Heejin; Andresen, Arild; Li, Shuang-Qing; Harbi, Hesham M.; Hegner, Ernst


    A combined study of single zircon U-Pb dating, Hf-O zircon isotopic analyses and whole-rock Nd isotopic compositions was carried out to infer the magma sources of Neoproterozoic post-collisional A-type granitoids in Saudi Arabia. U-Pb zircon dating of magmatic zircons of two samples from the Hadb adh Dayheen ring complex yielded ages of 625 ± 11 Ma for a hornblende-biotite granite sample, and 613 ± 4 Ma for a monzogranite sample. The granitic rocks show initial εNd values of + 4.1 to + 5.3 and εHf of + 4.5 to + 8.4 that are lower than those of a model depleted mantle (εHf ~+ 14 and εNd ~+ 6.5) and consistent with melting of subduction-related crustal protoliths that were formed during the Neoproterozoic assembly of the Arabian-Nubian Shield (ANS). Crustal-model ages (Hf-tNC) of 0.81 to 1.1 Ga are inconsistent with depleted-mantle Nd model ages of 0.71 to 0.81 Ga and indicate that the post-collisional Hadb adh Dayheen granites were derived mostly from juvenile crust formed in Neoproterozoic time. Single zircons data show a wide range in δ18O values from + 3.2‰ to + 6.4‰, possibly indicating crystallization of zircon from magma derived from magmatic rocks altered by meteoric water in a magma chamber-caldera system.

  13. Zircon U-Pb geochronology,Hf isotopic composition and geological implications of the rhyodacite and rhyodacitic porphyry in the Xiangshan uranium ore field,Jiangxi Province,China


    The Xiangshan uranium ore field is the largest volcanic rock hosted uranium deposit in China.The host rock is a volcanic intrusive complex,including rhyodacite,porphyroclastic lava and late stage sub-volcanic rocks.In this study,zircons from an early stage rhyodacite and a late stage rhyodacite porphyry were dated by SHRIMP and LA-ICP-MS U-Pb methods,and their Hf isotopic compositions were measured by LA-MC-ICP-MS.206Pb/238U ages of 135.1±1.7 and 134.8±1.1 Ma were obtained for the rhyodacite and rhyodacitic porphyry,respectively.These accurate ages indicate that the Xiangshan volcanic-intrusive complex formed in the Early Cretaceous rather than in the Late Jurassic,as concluded in some previous studies.By the Early Cretaceous,the tectonic setting of the area has evolved into a back-arc extensional setting,possibly related to subduction of the paleo-Pacific plate.The close ages of the(early) eruptive rhyodacite and the(late) hypabyssal rhyodacitic porphyry shows that the Xiangshan volcanism was intensive and concentrated in a short time.Zircons from the rhyodacite show negative εHf(t) values of-5.7 to-8.5,with Hf depleted mantle model ages between 1550 and 1720 Ma,whereas zircons from the rhyodacitic porphyry yield εHf(t) values of-6.9 to-10.1 and Hf model ages between 1621 and 1823 Ma.These zircon Hf model ages are similar to the whole rock Nd model ages(1486 to 1911 Ma).Combined with other geochemical characteristics,the Xiangshan rhyodacite and rhyodacitic porphyry may have been derived from partial melting of the Paleo-Mesoproterozoic metamorphic rocks from the Xiangshan basement,without any significant addition of mantle-derived magma.Contribution of basement of this age is also supported by finding a Paleoproterozoic xenocrystic zircon core in the rhyodacite sample.

  14. First SHRIMP zircon U-Pb ages for Hutuo Group in Wutaishan:Further evidence for Palaeoproterozoic amalgamation of North China Craton

    S.A.Wilde; ZHAO Guochun; WANG Kaiyi; SUN Min


    A felsic tuffaceous rock, obtained from a metamorphosed sequence of volcanics and sediments of the Hutuo Group, 8 km south of Taihuai in Wutaishan, contains two zircon populations. These record SHRIMP 207Pb/206Pb weighted mean ages of 2180 ± 5 Ma and 2087±9 Ma, respectively. The older date is within error of the age of the Dawaliang Granite in Wutaishan and is considered to be derived from a similar crustal magmatic source. The younger date is within error of reported ages from metasediments and meta-volcanics of the Wanzi supracrustal rocks and the Nanying granitic gneisses in the adjacent Fuping Complex and is interpreted to be the age of volcanism in the Hutuo Group. These data establish that: (1) the Hutuo Group is Paleoproterozoic and not Archean in age and (2) the volcanism and sedimentation were coeval in the Wutai and Fuping complexes. Sedimentation was therefore widespread at this time and possibly reflects deposition along an evolving continental margin, most likely the western margin of the Eastern Block of the North China Craton. The age of 2087 ± 9 Ma for volcanism in the Hutuo Group means that it must have been deformed and metamorphosed after this time. This further supports the evidence, obtained from other recent studies, that the main tectonism in the Wutaishan area occurred at ~1.8 Ga during the Lüliang orogeny. This orogeny resulted in the collision of the Eastern and Western blocks of the North China Craton and formed part of a global supercontinental amalgamation event.

  15. Timing of Magma Mixing in the Gangdisê Magmatic Belt during the India-Asia Collision:Zircon SHRIMP U-Pb Dating

    MO Xuanxue; DONG Guochen; ZHAO Zhidan; GUO Tieying; WANG Liangliang; CHEN Tao


    Abundant mafic microgranular enclaves (MMEs) extensively distribute in granitoids in the Gangdisê giant magmatic belt, within which the Quxu batholith is the most typical MME-bearing pluton. Systematic sampling for granodioritic host rock, mafic microgranular enclaves and gabbro nearby at two locations in the Quxu batholith, and subsequent zircon SHRIMP Ⅱ U-Pb dating have been conducted. Two sets of isotopic ages for granodioritic host rock,mafic microgranular enclaves and gabbro are 50.4±1.3 Ma, 51.2±1.1 Ma, 47.0±1 Ma and 49.3±1.7 Ma, 48.9±1.1 Ma,49.9±1.7 Ma, respectively. It thus rules out the possibilities of mafic microgranular enclaves being refractory residues after partial melting of magma source region, or being xenoliths of country rocks or later intrusions.Therefore, it is believed that the three types of rocks mentioned above likely formed in the same magmatic event, i.e., they formed by magma mixing in the Eocene (c. 50 Ma). Compositionally, granitoid host rocks incline towards acidic end member involved in magma mixing, gabbros are akin to basic end member and mafic microgranular enclaves are the incompletely mixed basic magma clots trapped in acidic magma. The isotopic dating also suggested that huge-scale magma mixing in the Gangdise belt took place 15-20 million years after the initiation of the India-Asia continental collision, genetically related to the underplating of subduction-collision-induced basic magma at the base of the continental crust. Underplating and magma mixing were likely the main process of mass-energy exchange between the mantle and the crust during the continental collision, and greatly contributed to the accretion of the continental crust, the evolution of the lithosphere and related mineralization beneath the portion of the Tibetan Plateau to the north of the collision zone.

  16. "Slab graveyards" beneath axial rift of the Mid-Atlantic Ridge?: Evidence from SHRIMP-II dating of zircon in gabbroids from the Markov Deep, 6oN

    Sharkov, E.; Bortnikov, N.; Zinger, T.; Lepekhina3, E.; Sergeev, S.


    Unusually ancient (ranging from ~100 to 300 and even 2230 Ma [5, 6, etc.) and young (~1.2-2 Ma [1] zircons were discovered in the axial Mid-Atlantic Ridge (MAR) zone using U-Pb dating. At first glance, finds of ancient zircons are inconsistent with the general accepted plate tectonics model which suggests the formation of new oceanic crust in the spreading zone of the World Ocean. However, they can be explained by features of the oceanic mantle structure. We have dated 150 grains of zircon by U-Pb SIMS SHRIMP technique, which identified both ancient and young zircons in the same samples of MAR gabbroids from Sierra Leone testing area, Markov Deep, 6oN, dredged during Cruise 10 of R/V "Akademik Ioffe" (2001-2002) and Cruise 22 of R/V "Professor Logachev" (2003) [2]. Zircons were separated from gabbroids in the Markov Deep from depths 3600-3240 and 3900-3600 m. All complexes of the oceanic lithosphere occur on it's slopes: mantle residual ultramafites (harzburgites, lherzolites, and dunites), diverse gabbroids, granodiorites, plagiogranites, dolerites and basalts, including fresh pillow lavas (with chilled glassy margins), and deformed and hydrothermally altered rocks with sulfide mineralization. Studied samples are represented by cataclased and altered leucogabbronorites and one sample of fresh non-cataclased troctolite. Based on SHRIMP U-Pb dating, zircons can be subdivided into two groups: "young" zircon (less than ~2.3 Ma) and "old" zircon (older than ~87 Ma). The young zircon often form subhedral crystals with thin oscillatory zoning and a sectorial structure. It has low U and Th contents (up to 100 μg/g) and extremely low radiogenic lead. Its 238U/206Pb age varied from 0.76 ± 0.04 Ma to 2.28 ± 0.18 Ma. Zircons from nearby plagiogranites define an intermediate age of ~1.2-1.4 Ma [1]. The magmatic nature of young zircon suggests that its age defines the crystallization age of the host magmatic rocks. Ancient zircons define U/Pb ages between the Paleozoic and

  17. Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese, Tibet: Constraints from zircon U-Pb geochronology, geochemistry and Sr-Nd-Hf isotopes


    The Cretaceous granitoids in the middle and northern Gangdese, Tibet are generally interpreted as the products of anatexis of thickened deep crust genetically associated with the Lhasa-Qiangtang collision. This paper reports bulk-rock major element, trace element and Sr-Nd isotopic data, zircon U-Pb age data, and zircon Hf isotopic data on the Zayu pluton in eastern Gangdese, Tibet. These data shed new light on the petrogenesis of the pluton. Our SHRIMP zircon U-Pb age dates, along with LA-ICPMS zircon U-Pb age dates recently reported in the literature, indicate that the Zayu pluton was emplaced at about 130 Ma, coeval with Early Cretaceous magmatic rocks in other areas of eastern Gangdese (e.g., Rawu, Baxoi areas) and the Middle Gangdese. The Zayu pluton samples lack amphibole and muscovite, and are compositionally characterized by high SiO2 (69.9%―76.8%), K2O (4.4%―5.7%), and low P2O5 (0.05%―0.12%). These samples also have A/CNK values of 1.00-1.05, and are enriched in Rb, Th, U, and Pb, and depleted in Ba, Nb, Ta, Sr, P, Ti, and Eu. These geochemical features suggest that the Zayu pluton samples are metaluminous to slightly peraluminous and are of highly fractionated I-type granite. The Zayu pluton samples have high εNd(t) values (-10.9--7.6) and low initial 87Sr/86Sr ratios (0.7120- 0.7179) relative to melts derived from mature continental crust in the Gangdese (e.g., Ningzhong Early Jurassic strongly peraluminous granite). The Zayu pluton samples are heterogeneous in zircon εHf(t) values (-12.8--2.9), yielding ancient zircon Hf crustal model ages of 1.4―2.0 Ga. The data obtained in this study together with the data in the recent literature suggest that the Early Cretaceous granitoids in eastern Gangdese represent the eastward extension of the Early Cretaceous magmatism in the middle Gangdese, and that the Lhasa micro-continent block with ancient basement may extend for ~2000 km from east to west. Zircon Hf isotopic data and bulk-rock zircon

  18. Petrogenesis of highly fractionated Ⅰ-type granites in the Zayu area of eastern Gangdese,Tibet:Constraints from zircon U-Pb geochronology,geochemistry and Sr-Nd-Hf isotopes

    ZHU DiCheng; MO XuanXue; WANG LiQuan; ZHAO ZhiDan; NIU Yaoling; ZHOU ChangYong; YANG YueHeng


    The Cretaceous granitoids in the middle and northern Gangdese,Tibet are generally interpreted as the products of anatexis of thickened deep crust genetically associated with the Lhasa-Qiangtang collision.This paper reports bulk-rock major element,trace element and Sr-Nd isotopic data,zircon U-Pb age data,and zircon Hf isotopic data on the Zayu pluton in eastern Gangdese,Tibet.These data shed new light on the petrogenesis of the pluton.Our SHRIMP zircon U-Pb age dates,along with LA-ICPMS zircon U-Pb age dates recently reported in the literature,indicate that the Zayu pluton was emplaced at about 130 Ma,coeval with Early Cretaceous magmatic rocks in other areas of eastern Gangdese (e.g.,Rawu,Baxoi areas) and the Middle Gangdese.The Zayu pluton samples lack amphibole and muscovite,and are compositionally characterized by high SiO2 (69.9%-76.8%),K20 (4.4%-5.7%),and low P2O5 (0.05%-0.12%).These samples also have A/CNK values of 1.00-1.05,and are enriched in Rb,Th,U,and Pb,and depleted in Ba,Nb,Ta,Sr,P,Ti,and Eu.These geochemical features suggest that the Zayu pluton samples ere metaluminous to slightly peraluminous and are of highly fractionated Ⅰ-type granite.The Zayu pluton samples have high εNd(t) values (-10.9-7.6) and low initial 87Sr/86Sr ratios (0.7120-0.7179) relative to melts derived from mature continental crust in the Gangdese (e.g.,Ningzhong Early Jurassic strongly peraluminous granite).The Zayu pluton samples are heterogeneous in zircon εHf(t) values (-12.8-2.9),yielding ancient zircon Hf crustal model ages of 1.4-2.0 Ga.The data obtained in this study together with the data in the recent literature suggest that the Early Cretaceous granitoids in eastern Gangdese represent the eastward extension of the Early Cretaceous magmatism in the middle Gangdese,and that the Lhasa micro-continent block with ancient basement may extend for ~2000 km from east to west.Zircon Hf isotopic data and bulk-rock zircon saturation temperature (789-821℃) indicate that

  19. Geochemistry and zircon geochronology of the Neoarchean volcano-sedimentary sequence along the northern margin of the Nilgiri Block, southern India

    Samuel, Vinod O.; Santosh, M.; Yang, Qiong-Yan; Sajeev, K.


    The Nilgiri Block is one of the major Archean crustal blocks that define the tectonic framework of southern India. Here we report geologic, petrologic, geochemical, and zircon U-Pb, -REE, and -Lu-Hf data of a highly metamorphosed and disrupted sequence of amphibolite, meta-gabbro, websterite, volcanic tuff, meta-sediment, and banded iron formation (BIF) from the northern fringe of the Nilgiri Block. Geochemically, the amphibolite shows altered ocean floor basalt signature, whereas the meta-gabbro and the websterite samples form part of a volcanic arc. The metamorphosed volcanic tuff shows subalkaline rhyolitic signature. U-Pb isotope analysis of zircon grains from the volcanic tuff and meta-gabbro shows 207Pb/206Pb ages of 2490 ± 12 Ma and 2448 ± 16 Ma, respectively. Zircons from the meta-sediments show an age range of 2563 ± 33 Ma to 2447 ± 34 Ma. The dominantly positive εHf (t) values of the zircons in the analyzed rock suite suggest that the magmas from which the zircons crystallized evolved from a Neoarchean depleted mantle source. The Hf model ages (TDM) of volcanic tuff, meta-sediment and meta-gabbro samples are ranging between 2908-2706 Ma, 2849-2682 Ma, and 2743-2607 Ma, respectively. The ca. 2500 Ma ages for the arc-related magmatic rock suite identified along the northern periphery of Nilgiri Block suggest prominent Neoarchean arc magmatism and early Paleoproterozoic convergent margin processes contributing to the early Precambrian crustal growth in Peninsular India.

  20. Petrography and U-Pb Zircon Geochronology of Geological Units of the Mesa de Cocodite, Península de Paraguaná, Venezuela

    Mendi, D.; Baquero, M. L.; Oliveira, E. P.; Urbani, F.; Pinto, J.; Grande, S.; Valencia, V.


    Several continental crust units crop out in The Mesa de Cocodite, central Paraguaná Peninsula, Northwestern Venezuela, including a newly mapped quartz-feldspar gneiss that intruded the El Amparo Pluton, a major low-graded metamorphic unit of Permian age. It is unconformably overlying by Late Jurassic phyllites of the Pueblo Nuevo Formation. All these units are cross-cut by narrow dykes. This contribution focuses on the petrography and LA-ICP-MS U-Pb zircon dating of the igneous units, with the aim of constraining magmatism and its tectonic significance in the area. The quartz-feldspar gneiss consists of albite, bluish-smoked quartz, muscovite-chlorite, epidote and zircon. The enclosing El Amparo Pluton is typically a coarse-grained and thick-banded metagranodiorite, containing andesine, quartz, hornblende, epidote, K-feldspar, biotite, chlorite, titanite and zircon. The younger dykes consist of fine-grained, porphyritic hornblende diorites that contain numerous hornblende phenocrysts. The main minerals are andesine, hornblende, quartz, and chlorite. Accessory minerals include zircon, epidote and opaques. A felsic gneiss xenolith collected from the dykes contain quartz, K-feldspar, chlorite, epidote, albite and zircon. Zircon population in the quartz-feldspar gneiss displays a discordia trend, ranging in age from 1050-750 Ma but mostly around 950-900 Ma, which may represent a peak high-grade metamorphism in the area. The El Amparo Pluton provides a concordant Permian age (271.3±6.5 Ma), which is comparable with previous reported U-Pb ages in titanite. Because the porphyry dykes cross-cut all the units in the area, they should be post-Late Jurassic in Age; however, all dated zircons from the dykes are in the range of 1200-750 Ma. The absence of younger ages can be attributed to either formation during a relatively low temperature magmatic event, which generated very narrow younger zircon rims only and thus undetectable with the technique used, or a completely lack

  1. U-Pb Detrital Zircon Geochronologic Constraints on Depositional Age and Sediment Source Terrains of the Late Paleozoic Tepuel-Genoa Basin

    Griffis, N. P.; Montanez, I. P.; Isbell, J.; Gulbranson, E. L.; Wimpenny, J.; Yin, Q. Z.; Cúneo, N. R.; Pagani, M. A.; Taboada, A. C.


    The late Paleozoic Ice Age (LPIA) is the longest-lived icehouse of the Phanerozoic and the only time a metazoan dominated and vegetated world transitioned from an icehouse climate into a greenhouse. Despite several decades of research, the timing, extent of glaciation and the location of ice centers remain unresolved, which prohibits reconstruction of ice volume. The Permo-Carboniferous sediments in the Tepuel-Genoa Basin, Patagonia contains a near complete record of sedimentation from the lower Carboniferous through lower Permian. Outsized clasts, thin pebble-rich diamictites and slumps represent the last of the late Paleozoic glacially influenced deep-water marine sediments in the Mojón de Hierro Fm. and the Paleozoic of Patagonia. U-Pb analysis of detrital zircons separated from slope sediments reveal groupings (20 myr bins, n≥5 zircons) with peak depositional ages of 420, 540 to 660 and 1040 Ma. Zircon age populations recovered from the Mojón de Hierro Fm. compare well with bedrock ages of the Deseado Massif of SE Patagonia, suggesting this may be a potential source of sediments. The maximum depositional age of the sediments is 306.05 ± 3.7 Ma (2σ) as determined by the median age of the two youngest concordant zircons that overlap in error. The youngest zircon from the analysis yields a 238U/206Pb age of 301.3 ± 4.5 Ma (2σ; MSWD = 2.3). Younger zircons from the analysis compare well with the age of granite bedrock exposed along the basin margin to the E-NE suggesting they may reflect a more proximal source. These data, which indicate a maximum age of late Carboniferous for the Mojón de Hierro Fm, provide the first geochemical constraints for the timing of final deposition of glaciomarine sediments in the Tepuel-Genoa Basin, and contributes to the biostratigraphic correlation of the late Paleozoic succession in Patagonia with other key LPIA basins that has thus far been hindered by faunal provincialism.

  2. U-Th-Pb SHRIMP ages and oxygen isotope composition of zircon from two contrasting late Variscan granitoids, Nisa-Albuquerque batholith, SW Iberian Massif: Petrologic and regional implications

    Solá, A. Rita; Williams, Ian S.; Neiva, Ana M. R.; Ribeiro, M. Luisa


    The late Variscan Nisa-Albuquerque batholith in the SW Iberian Massif, consists of a dominant very coarse-grained porphyritic S-type monzogranite to syenogranite (Nisa monzogranite) surrounding a discontinuous central core that includes contrasting very fine-grained I-type tonalite-granodiorite (Aldeia da Mata tonalite). The batholith is located at the boundary between the Central Iberian and Ossa-Morena Zones, a complex segment of crust that was subject to both Cadomian and Variscan tectonism. Variscan zircons in the Nisa monzogranite can be broadly classified into three texturally and chemically distinct types with mutually indistinguishable SHRIMP 206Pb/ 238U ages: 1) high-U, low-Th/U (< 0.1) outermost overgrowths (307.4 ± 4.0 Ma); 2) moderate U and Th/U zircon with concentric zoning occurring both as inner overgrowths and whole grains (305.4 ± 6.2 Ma)";; and 3) texturally discordant cores (309.0 ± 4.6 Ma). Many other cores have ages in the ranges 2.56-1.85 and 0.66-0.51 Ga. The overgrowths and Variscan cores with low Th/U have uniformly high δ18O (9.5 ± 0.2‰). Variscan cores with moderate Th/U have a wide range of δ18O (6.7-10.9‰). Cores older than 500 Ma have an even wider range of composition (4.4-10.0‰). Zircon from the central Aldeia da Mata tonalite, in contrast, contains no inherited cores, has moderate to high Th/U (0.5-1.8), and is uniform in 206Pb/ 238U age (306.2 ± 3.0 Ma) and δ18O (7.4 ± 0.3‰). The zircon in the Nisa monzogranite records a history of magma genesis involving mixing between 1) a metaluminous magma progressively contaminated by a small sedimentary component, and 2) a more voluminous peraluminous magma originating from a largely metasedimentary source. The inherited zircon age pattern closely matches the age pattern of detrital zircon in early Paleozoic sediments from North Africa. The zircon in the Aldeia da Mata tonalite records nothing of the age of the magma's source rocks, but the moderately high δ18O does preclude

  3. Petrogenesis and tectonic settings of volcanic rocks of the Ashele Cu-Zn deposit in southern Altay, Xinjiang, Northwest China: Insights from zircon U-Pb geochronology, geochemistry and Sr-Nd isotopes

    Wu, Yufeng; Yang, Fuquan; Liu, Feng; Geng, Xinxia; Li, Qiang; Zheng, Jiahao


    The Early-Mid-Devonian Ashele Formation of the southern margin of the Chinese Altay hosts the Ashele Cu-Zn volcanogenic massive sulfide (VMS) deposit and consists of intercalated volcanic and sedimentary rocks that have experienced regional greenschist-facies metamorphism. We studied the petrography, zircon U-Pb geochronology, geochemistry, and Sr-Nd isotopes of dacites and basalts in order to understand the petrogenesis of these rocks and the regional tectonic evolution. Two dacites yielded LA-MC-ICP-MS zircon U-Pb ages of 402 ± 6 Ma and 403 ± 2 Ma. The dacites are calc-alkaline, and characterized by high Na2O/K2O ratios (3.6-9.3), and high Mg# values (47-63), enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE), depletion in Nb, Ta, Ti, and P, and relatively positive εNd(t) values (+3.6 to +7.5), collectively suggesting a sanukitic magma affinity. The variations in the major and trace elements of the dacites indicate that Fe-Ti oxide, plagioclase, and apatite were fractionated during their petrogenesis. The basalts are tholeiitic, and are characterized by high Mg# values (66-73), and negative Nb and Ta anomalies. The geochemical characteristics of the basalts are similar to those of N-MORB. Those characteristics together with the positive εNd(t) values (+6.8 to +9.2) of the basalts, indicate that the precursor magma was derived mainly from an N-MORB-type depleted asthenospheric mantle in an island arc setting. The geochemical similarities between the basalts and dacites indicate that they both originated from a similar depleted mantle source via partial melting under different magmatic conditions in each case, possibly related to ridge subduction.

  4. Tectono-magmatic evolution of the Chihuahua-Sinaloa border region in northern Mexico: Insights from zircon-apatite U-Pb geochronology, zircon Hf isotope composition and geochemistry of granodiorite intrusions

    Mahar, Munazzam Ali; Goodell, Philip C.; Feinstein, Michael Nicholas


    We present the whole-rock geochemistry, LA-ICP-MS zircon-apatite U-Pb ages and zircon Hf isotope composition of the granodioritic plutons at the southwestern boundary of Chihuahua with the states of Sinaloa and Sonora. These granodiorites are exposed in the north and south of the Rio El Fuerte in southwest Chihuahua and northern Sinaloa. The magmatism spans over a time period of 37 Ma from 90 to 53 Ma. Zircons are exclusively magmatic with strong oscillatory zoning. No inheritance of any age has been observed. Our new U-Pb dating ( 250 analyses) does not support the involvement of older basement lithologies in the generation of the granitic magmas. The U-Pb apatite ages from granodiorites in southwest Chihuahua vary from 52 to 70 Ma. These apatite ages are 1 to 20 Ma younger than the corresponding zircon U-Pb crystallization ages, suggesting variable cooling rates from very fast to 15 °C/Ma ( 800 °C to 500 °C) and shallow to moderate emplacement depths. In contrast, U-Pb apatite ages from the Sinaloa batholith are restricted from 64 to 61 Ma and are indistinguishable from the zircon U-Pb ages range from 67 to 60 Ma within the error, indicating rapid cooling and very shallow emplacement. However, one sample from El Realito showed a larger difference of 20 Ma in zircon-apatite age pair: zircon 80 ± 0.8 Ma and apatite 60.6 ± 4 Ma, suggesting a slower cooling rate of 15 °C/Ma. The weighted mean initial εHf (t) isotope composition (2σ) of granodiorites varies from + 1.8 to + 5.2. The radiogenic Hf isotope composition coupled with previous Sr-Nd isotope data demonstrates a significant shift from multiple crustal sources in the Sonoran batholithic belt to the predominant contribution of the mantle-derived magmas in the southwest Chihuahua and northern Sinaloa. Based on U-Pb ages, the absence of inheritance, typical high Th/U ratio and radiogenic Hf isotope composition, we suggest that the Late Cretaceous-Paleogene magmatic rocks in this region are not derived from

  5. LA-ICP-MS U-Pb Zircon Geochronology of Basic Dikes within Maxianshan Rock Group in the Central Qilian Orogenic Belt and Its Tectonic Implications

    He Shiping; Wang Hongliang; Chen Junlu; Xu Xueyi; Zhang Hongfei; Ren Guangming; Yu Jiyuan


    A large number of basic dikes, which indicate an important tectonic-magmatic event in the eastern part of the Central Qilian (祁连) orogenic belt, were found from Maxianshan (马衔山) rock group, Yongjing (永靖) county, Gansu (甘肃) Province, China. According to the research on the characteristics of geology and petrology, the basic dike swarms, widely intruded in Maxianshan rock group,are divided into two phases by the authors. U-Pb isotope of zircons from the basic dikes above two phases is separately determined by LA-ICP-MS in the Key Laboratory of Continental Dynamics of Northwest University, China and the causes of formation of the zircons are studied using CL images.The formation age of the earlier phase of metagabbro dikes is (441.1±1.4) Ma (corresponding to the early stage of Early Silurian), and the age of the main metamorphic period is (414.3±1.2) Ma (corresponding to the early stage of Early Devonian). The formation age of the later phase of diabase dike swarms is (434±1.0) Ma (corresponding to the late stage of Early Silurian). The cap- tured-zircons from diabase dike swarms saved some information of material interfusion by Maxianshan rock group (207pb/206Pb apparent ages are (2325±3)-(2573±6) Ma), and some zircons from diabase dike swarms also saved impacted information by tectonic thermal event during the late period of Caledonian movement (206pb/238U apparent ages are (400±2)-(429±2) Ma). By combining the results of the related studies, the basic dikes within Maxianshan rock group were considered to be formed in the transfer period, from subductional orogeny towards collisional orogeny, which represents geological records of NW-SE extension during regional NE-SW towards intense compression in the Central Qilian block.

  6. LA-ICPMS zircon U-Pb geochronological constraints on the tectonothermal evolution of the Early Paleoproterozoic Dakendaban Group in the Quanji Block, NW China

    WANG QinYan; CHEN NengSong; LI XiaoYan; HAO Shuang; CHEN HaiHong


    The Ouanji Block, situated between the northern margin of the Oaidam Block and the South Qilian orogenic belt in the NE Qinghai-Tibet Plateau, China, is thought to represent a remnant continental crust. In this study, LA-ICPMS U-Pb analyses of detrital zircon grains from two mesosomes in the migmatitic Dakendaban Group yield ages of 2467+281-26 Ma and 2474+66/-52 Ms, respectively. Zircon grains from a leucosome give two distinct ages of 2471+18/-16 Ma and 1924+14/-15 Ms. Zircon from a granitic pegmatite that intruded into the Dakendaban Group yields an age of 2427+44/-38 Ms. These data suggest that the Early Paleoproterozoic Dakendaban Group deposited between ~2.43 to ~2.47 Ga and has been subject to an intrusive event at 2.43 Ga, and regional metamorphism-anatexis at 1.92 Ga. The common lower intercept age of ~0.9 Ga probably records a significant Early Neoproterozoic event in the Quanji Block.

  7. U-Pb LA-SF-ICP-MS zircon geochronology of the Serbo-Macedonian Massif, Greece: palaeotectonic constraints for Gondwana-derived terranes in the Eastern Mediterranean

    Meinhold, Guido; Kostopoulos, Dimitrios; Frei, Dirk; Himmerkus, Felix; Reischmann, Thomas


    The Pirgadikia Terrane in northern Greece forms tectonic inliers within the Vardar suture zone bordering the Serbo-Macedonian Massif to the southwest. It comprises Cadomian basement rocks of volcanic-arc origin and very mature quartz-rich metasedimentary rocks. U-Pb laser ablation sector-field inductively-coupled plasma mass spectrometry analyses of detrital zircons from the latter reveal a marked input from a Cadomian-Pan-African source with minor contribution from Mesoproterozoic, Palaeoproterozoic and Archaean sources. The metasedimentary rocks are correlated with Ordovician overlap sequences at the northern margin of Gondwana on the basis of their maturity and zircon age spectra. The Pirgadikia Terrane can be best interpreted as a peri-Gondwana terrane of Avalonian origin, which was situated close to the Cadomian terranes in the Late Neoproterozoic-Early Palaeozoic, very much like the Istanbul Terrane. The second unit investigated is the Vertiskos Terrane, which constitutes the major part of the Serbo-Macedonian Massif in Greece. It comprises predominantly igneous rocks of Silurian age and minor metasedimentary rocks of unknown age and provenance. U-Pb analyses of detrital zircons from a garnetiferous mica schist of the Vertiskos Terrane indicate derivation from 550 to 1,150 Ma-old source rocks with a major Cadomian peak. This, combined with minor input of >1,950 Ma-old zircons and the absence of ages between ca. 1.2 and 1.7 Ga suggests a NW Africa source. The protolith age of the garnetiferous mica schist is presumably Early Ordovician. One sample of garnet-bearing biotite gneiss, interpreted as meta-igneous rock, comprises predominantly subhedral zircons of igneous origin with late Middle Ordovician to Silurian ages. We suggest that the rock association of the Vertiskos Terrane is part of an ancient active-margin succession of the Hun superterrane, comparable to successions of the Austro- and Intra-Alpine Terranes. The new data of this study provide evidence

  8. Geochemistry and U-Pb zircon geochronology of the pegmatites in Ede area, southwestern Nigeria: A newly discovered oldest Pan African rock in southwestern Nigeria

    Adetunji, A.; Olarewaju, V. O.; Ocan, O. O.; Ganev, V. Y.; Macheva, L.


    Field and petrographic studies, whole rock geochemistry and in-situ LA-ICP-MS geochemical and isotopic U-Pb measurements on zircons have been performed on granitic pegmatites of Ede area, southwestern Nigeria with a view to characterize them, determining their mineralization potentials, petrogenetic attributes and emplacement age. The pegmatites are hosted by migmatite gneiss complex, biotite-muscovite schist and associated quartzite. The textural and mineralogical characteristics of these pegmatites indicate the occurrence of two main varieties, namely, muscovite pegmatite and garnet pegmatite. Of less importance are inclusions and pods of graphic granite, quartz-microcline aplitic and pegmatitic bodies. At the present level of erosion, the parent igneous rocks of the pegmatites are not exposed. The two dominant pegmatite varieties show slightly different chemical peculiarities but similar peraluminous character. The average K/Rb ratios of 165 and 163, respectively, for muscovite and garnet pegmatites combined with other trace element compositions are indicative of affinity to muscovite class of pegmatite which are generally not promising for rare elements mineralization. However, the unusually high concentration of bismuth in the zircons indicates Bi mineralization in the area which can either be in the pegmatites or host rocks. The Nb/Ta ratios for both muscovite and garnet pegmatites range from 0.7 to 15.2 and 1.0 to 14.8, respectively. These Nb/Ta ratios and Eu anomalies are statistically similar for both pegmatites. These probably indicate the pegmatites crystallized from a common source but separated into crystallization paths that produced different pegmatite varieties through liquid-liquid immiscibity mechanism. In-situ measurements of REE, P, Y, Nb, Hf, Ta, Bi, Th and U of individual zircon grains show the existence of two chemically and texturally different domains which are indicative of alteration that may be due to interface-coupled dissolution

  9. Zircon U-Pb geochronology, geochemistry and Sr-Nd-Pb isotopes from the metamorphic basement in the Wuhe Complex: Implications for Neoarchean active continental margin along the southeastern North China Craton and constraints on the petrogenesis of Mesozoic granitoids

    Andong Wang


    Full Text Available We report zircon U-Pb geochronology, geochemistry and Sr-Nd-Pb isotope data from mafic granulites and garnet amphibolites of the Wuhe Complex in the southeastern margin of the North China Craton (NCC. In combination with previous data, our results demonstrate that these rocks represent fragments of the ancient lower crust, and have features similar to those of the granulite basement in the northern margin of the NCC. A detailed evaluation of the Pb isotope data shows that Pb isotopes cannot effectively distinguish the role of the Yangtze Craton basement from that of the NCC basement with regard to the source and generation of magmas, at least for southeastern NCC. The age data suggest that the protoliths of the granulites or amphibolites in the Wuhe Complex were most likely generated in Neoarchean and that these rocks were subjected to Paleoproterozoic (1.8–1.9 Ga high-pressure granulite facies metamorphism. This study also shows that the Precambrian metamorphic basement in the southeastern margin of the NCC might have formed in a tectonic setting characterized by a late Neoarchean active continental margin.

  10. Guandishan Granitoids of the Paleoproterozoic Lüliang Metamorphic Complex in the Trans-North China Orogen:SHRIMP Zircon Ages,Petrogenesis and Tectonic Implications

    LIU Shuwen; LI Qiugen; LIU Chaohui; LU Yongjun; ZHANG Fan


    The Paleoproterozoic Liiliang Metamorphic Complex(PLMC)is situated in the middle segment of the western margin of the Trans-North China Orogen(TNCO),North China Craton(NCC). As the most important Iithological assemblages in the southern part of the PLMC,Guandishan granitoids consist of early gneissic tonalities,granodiorites and gneissic monzogranites,and younger gneissic to massive monzogranites.Petrochemical features reveal that the early gneissic tonalities and granodiorites belong to the medium-K calc-alkaline series;the early gneissic monzogranites are transitional from high-K caic-alkaline to the shoshonite series;the younger gneissic to massive monzogranites belong to the high-k calc-alkaline series,and all rocks are characterized by right-declined REE patterns and negative Nb,Ta,Sr,P,and Ti anomalies in the primitive mantle normalized spidergrams.SHRIMP zircon U-Pb isotopic dating reveal that the early gneissic tonalities and granodiorites formed at ~2.17 Ga,the early gneissic monzogranites at ~2.06 Ga,and the younger gneissic to massive monzogranites at ~1.84 Ga.Sm-Nd isotopic data show that the early gneissic tonalities and granodiorites have εNd(t) values of +0.48 to -3.19 with Nd-depleted mantle model ages (TDM)of 2.76-2.47 Ga,and early gneissic monzogranites have εNd(t) values of -0.53 to -2.51 with TDM of 2.61-2.43 Ga,and the younger gneissic monzogranites have εNd(t) values of -6.41 to -2.78 with a TDM of 2.69-2.52 Ga.These geochemical and isotopic data indicate that the early gneissic tonalities,granodiorites,and monzogranites were derived from the partial melting of metamorphosed basaltic and pelitic rocks,respectively,in a continental arc setting.The younger gneissic to massive monzogranites were derived by partial melting of metamorphosed greywackes within the continental crust.Combined with previously regional data,we suggest that the PaleOproterOzOic granitoid magmatism in the Guandishan granitoids of the PLMC may provide the best

  11. Combined U Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany

    Gerdes, Axel; Zeh, Armin


    Uranium-lead ages obtained by LA-ICP-MS analyses of zircon cores from a high-grade Armorican metasediment from the Mid-German Crystalline Rise, Central Germany, yield results which are identical to, but more precise than those previously obtained by SHRIMP dating. This is mainly due to the fact that SHRIMP analyses are more sensitive than LA-ICP-MS analyses to common Pb contamination on the surface of the grain mount. The new U-Pb ages, in combination with in-situ Hf isotope analyses of zircon, provide the first evidence that detrital zircons within Armorican sediments crystallized in both juvenile and evolved magmatic rocks during the Archaean at 2.7-2.9 Ga, the Palaeoproterozoic at 1.8-2.1 Ga, and the Neoproterozoic/Early Palaeozoic at 500-720 Ma. In addition, zircons were formed at ca. 1.0 Ga by remelting of Palaeoproterozoic crust during the Grenville orogeny. The U-Pb dataset shows an age gap between 1.8 and 1.0 Ga, which is characteristic of Armorican sediments, and indicates that the metasediment protolith is younger than Late Cambrian. In addition, the data support previous conclusions that sediments constituting the Armorican terrane assemblage were derived from three crustal sources. Dominant sources were the Avalonian-Cadomian belt (ca. 45%), situated at the northern margin of Gondwana during the Neoproterozoic, and the West-African and/or eastern Amazonian cratons (ca. 50%). The Grenville belt was a minor source (< 5%). Variation of ɛHf( t) values of the Neoproterozoic/Early Paleozoic zircons indicates two periods of increased juvenile magma formation, one at 595-575 Ma and a second at 515-500 Ma. The older event is coeval with the formation of the Avalonian-Cadomian magmatic arc, whereas the younger event can be related to the break-up of the northern Gondwana margin in Cambrian/Ordovician times. In between, at around 545 Ma, only recycling of older crustal material took place.

  12. Timing of the Wudangshan, Yaolinghe volcanic sequences and mafic sills in South Qinling: U-Pb zircon geochronology and tectonic implication

    LING WenLi; REN BangFang; DUAN RuiChun; LIU XiaoMing; MAO XinWu; PENG LianHong; LIU ZaoXue; CHENG JianPing; YANG HongMei


    The Wudangshan, Yaolinghe volcanic-sedimentary sequences and doleritic-gabbroic sills comprise the largest exposed Precambrian basement in South Qinling. Zircons separated from 5 volcanic-pyroclas-tic samples of the Wudangshan Group, 2 volcanic samples of the Yaolinghe Group and one sample for the mafic sills were used for U-Pb dating by laser ablation-inductively coupled plasma mass spec-trometry (LA-ICPMS). The results reveal that the Wudangshan volcanic sequence was formed at (755±3) Ma (a weighted mean from the 5 samples, MSWD=0.47), whereas the Yaolinghe volcanic suite and the mafic sill were crystallized at (685:L±5) (2 samples, MSWD=0.36) and (679±J:3) Ma (MSWD=1.6), respectively, which are equal to each other within analysis errors. These ages are markedly younger than those previously documented for the rocks. The newly obtained ages for the Wudangshan and Yaolinghe Groups are identical to those of the bottom Liantuo and slightly older than those of the Nantuo Forms-tions, respectively, lower strata of the Nanhua (middle to late Neoproterozoic) stratotype section in eastern Three Gorges, Yangtze craton. A range of inherited magmatic zircons was recognized with ages of 830 to 780 Ma, which are typical of Neoprotzrozoic magmatisms recorded along the margins and interior of the Yangtze craton. Thus, there is Neoproterozoic basement comprising 830-780 Ma igne-ous suites in South Qinling; the inherited zircons were detrital sediments derived from the northern margin of the Yangtze craton. Accordingly, it is suggested that the South Qinling is a segment of the Yangtze craton before the Qinling Orogeny.

  13. Zircon U-Pb Geochronology, Hf Isotopic Composition and Geological Implications of the Neoproterozoic Huashan Group in the Jingshan Area, Northern Yangtze Block, China

    Yang, Z.; Yang, K.


    In the northern Yangtze Block, a clear angular unconformity between the Mesoproterozoic sequences (e.g. Dagushi Group) and the overlying Neoproterozoic strata (e.g. Huashan Group) marks the the Jinning orogeny. A combined study of Lu-Hf isotopes and U-Pb ages for detrital zircons from Huashan Group can provide information on the crustal evolution of sedimentary provenances and the timing of the Jinning orogeny. Detrital zircons from Huashan Group have two major U-Pb age populations of about 2.0Ga, 2.65Ga, and three subordinate age groups of about 0.82Ga, 2.5Ga, 2.9Ga with minor >3.0Ga ages. The youngest five analyses yield a weighted average age of 816±9Ma, which is consistent with that of interlayered basalt (824±9Ma, Deng et al., 2013) and roughly defines the minimum depositional age of Huashan Group. Detrital zircons of Huashan Group mostly have two stage Hf isotope model ages (TDM2) between 3.0 to 3.3Ga, indicating that the northern Yangtze Block experienced significant continental crustal growth during the Paleo- to Meso-archean. Similar U-Pb ages of detrital zircons have been obtained from Precambrian sedimentary rocks in the northern Yangtze Block from previous studies (Liu et al., 2008; Guo et al., 2014 and references therein). Recently, ca. 2.65Ga A-type granites had been reported from the Kongling and Huji area, which likely record the thermally stable lithosphere (Chen et al., 2013; Zhou et al., 2015). In combination with this study, it documents the widespread 2.6-2.7Ga magmatic rocks in the northern Yangtze Block. Zhao et al. (2013) demonstrated both the ca. 850Ma tonalite and trondhjemite of the Huangling igneous complex were formed in a continental arc setting. This suggests the Miaowan-Huashan oceanic basin proposed by Bader et al. (2013) has not been closed at ca. 850Ma. This evidence, together with the depositional age of the Huashan Group, indicates the Jinning orogeny took place at 850-820 Ma. [1] Bader et al., 2013 Tectonics [2] Deng et al

  14. U Pb zircon (TIMS and SIMS) and Sm Nd whole-rock geochronology of the Gour Oumelalen granulitic basement, Hoggar massif, Tuareg shield, Algeria

    Peucat, Jean Jacques; Drareni, Amar; Latouche, Louis; Deloule, Etienne; Vidal, Philippe


    Two major granulitic units are recognized in the Gour Oumelalen area. One of the units is composed partially of Archean gneisses (Red Gneiss complex) with U-Pb zircon SIMS and TIMS ages of approximately 2.7 Ga. Although they were formed from 3.0- to 3.2-Ga-old precursors, as indicated by Nd model ages, we find no evidence of any older history (≈3.5 Ga) as suggested by previous Pb-Pb ages. The other formation (Gour Oumelalen supergroup) is a metasedimentary sequence at least partly of Paleoproterozoic age, as indicated by zircon dates of a metavolcanic rock at approximately 2.2 Ga. A later magmatic event is recorded at approximately 1.9 Ga in both units and related to coeval granulite-facies metamorphism that affected both units. Nd model ages at approximately 2.0 Ga suggest an accretion of juvenile crust formation at that time. The existence of T DM Nd model ages intermediate between 2.5 and 2.9 Ga could result from the mixing of 3.2 and 2.0-Ga-old material or may reflect separate events.

  15. U-Pb zircon geochronology of rocks in the Salinas Valley region of California: A reevaluation of the crustal structure and origin of the Salinian block

    Barth, A.P.; Wooden, J.L.; Grove, M.; Jacobson, C.E.; Pedrick, J.N.


    The Salinian block in the Salinas Valley region of central California consists of arc granitic and metasedimentary rocks (schist of Sierra de Salinas) sandwiched between coeval high-pressure, low-temperature me??lange belts. U-Pb zircon ages of three granitic plutons from this region range from 88 to 82 Ma, and coexisting biotite yielded 40Ar/39Ar cooling ages of 76-75 Ma. The U-Pb ages from detrital zircons indicate derivation of the protolith of the schist from a 117-81 Ma igneous provenance. Muscovite and biotite 40Ar/ 39Ar cooling ages of 72-68 Ma from the nearby schist are distinctly younger than those from the granitic plutons. These data indicate that deposition and metamorphism of the schist occurred after emplacement of adjacent granitic rocks, contradicting the prevailing view that the schist comprises the local framework for the Salinian arc. We propose that the schist of Sierra de Salinas was thrust beneath the Salinian magmatic arc along a Campanian thrust fault that has not been recognized. This hypothesis implies that the Salinian arc originated as a klippe of basement rocks derived from the vicinity of the western Mojave Desert. Thrusting initiated southeastward-migrating Laramide tectonism of a style similar to that which formed the Vincent thrust and the latest Cretaceous and Paleocene Pelona and Orocopia Schists of southern California and southwestern Arizona.

  16. U-Pb (SHRIMP) and Sm-Nd geochronology of basaltic green schists of the Aracuai orogen: implications for the age of the Macaubas group; Geocronologia U-Pb (SHRIMP) e Sm-Nd de xistos verdes basalticos do orogeno Aracuai: implicacoes para a idade do grupo Macaubas

    Babinski, Marly [Universidade de Sao Paulo, SP (Brazil). Inst. de Geociencias. Centro de Pesquisas Geocronologicas]. E-mail:; Gradim, Rafael Jaude; Alkmim, Fernando Flecha de [Universidade Federal de Ouro Preto, MG (Brazil). Escola de Minas. Dept. de Geologia]. E-mails:;; Pedrosa-Soares, Antonio Carlos; Noce, Carlos Mauricio [Minas Gerais Univ., Belo Horizonte (Brazil). Inst. de Geociencias; Liu, Dunyi [Chinese Academy of Geological Sciences, Beijing (China). Beijing SHRIMP Lab.


    The age and stratigraphic position of the basaltic green schists of the Rio Preto valley, located in the western part of the Aracuai Belt (ca. 60 km north of Diamantina, Minas Gerais) were a matter of controversy in the geologic literature, because several authors correlated them to the Neo proterozoic Macaubas Group but others to the lower Espinhaco Supergroup (ca. 1.7 Ga). However, detailed studies demonstrate that these green schists represent an interplay of submarine basaltic volcanism, volcanoclastic sedimentation and fire fountaining, and that they belong to the Chapada Acaua Formation of the Macaubas Group (Gradim et al., 2005). Geochemical studies indicate that the green schist protoliths evolved in a continental intra plate environment. Zircon crystals were separated from a green schist sample and analyzed by the U-Pb SHRIMP method. A Sm-Nd whole-rock isotopic analysis was obtained from the same sample. The Sm- Nd model age of ca. 1.52 Ga suggests that the green schist protoliths are younger than the magmatism of the Espinhaco rift. Most analyzed zircon crystals show features of detrital grains. The older ages indicate zircon grains inherited from the Archean- Paleoproterozoic basement and from magmatic rocks of the Espinhaco rift. The younger U-Pb values constrain the maximum age of the green schist protoliths at ca. 1,16 Ga. (author)

  17. Mid-Neoproterozoic intraplate magmatism in the northern margin of the Southern Granulite Terrane, India: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    Deeju, T. R.; Santosh, M.; Yang, Qiong-Yan; Pradeepkumar, A. P.; Shaji, E.


    The northern margin of the Southern Granulite Terrane in India hosts a number of mafic, felsic and alkaline magmatic suites proximal to major shear/paleo-suture zones and mostly represents magmatism in rift-settings. Here we investigate a suite of gabbros and granite together with intermediate (dioritic) units generated through mixing and mingling of a bimodal magmatic suite. The massive gabbro exposures represent the cumulate fraction of a basic magma whereas the granitoids represent the product of crystallization in felsic magma chambers generated through crustal melting. Diorites and dioritic gabbros mostly occur as enclaves and lenses within host granitoids resembling mafic magmatic enclaves. Geochemistry of the felsic units shows volcanic arc granite and syn-collisional granite affinity. The gabbro samples show mixed E-MORB signature and the magma might have been generated in a rift setting. The trace and REE features of the rocks show variable features of subduction zone enrichment, crustal contamination and within plate enrichment, typical of intraplate magmatism involving the melting of source components derived from both depleted mantle sources and crustal components derived from older subduction events. The zircons in all the rock types show magmatic crystallization features and high Th/U values. Their U-Pb data are concordant with no major Pb loss. The gabbroic suite yields 206Pb/238U weighted mean ages in the range of 715 ± 4-832.5 ± 5 Ma marking a major phase of mid Neoproterozoic magmatism. The diorites crystallized during 206Pb/238U weighted mean age of 724 ± 6-830 ± 2 Ma. Zircons in the granite yield 206Pb/238U weighted mean age of 823 ± 4 Ma. The age data show broadly similar age ranges for the mafic, intermediate and felsic rocks and indicate a major phase of bi-modal magmatism during mid Neoproterozoic. The zircons studied show both positive and negative εHf(t) values for the gabbros (-6.4 to 12.4), and negative values for the diorites (-7

  18. High-grade metamorphism during Archean-Paleoproterozoic transition associated with microblock amalgamation in the North China Craton: Mineral phase equilibria and zircon geochronology

    Yang, Qiong-Yan; Santosh, M.; Tsunogae, Toshiaki


    Metamorphic regimes in Archean terranes provide important keys to the plate tectonic processes in early Earth. The North China Craton (NCC) is one of the ancient continental nuclei in Asia and recent models propose that the cratonic architecture was built through the assembly of several Archean microcontinental blocks into larger crustal blocks. Here we investigate garnet- and pyroxene-bearing granulite facies rocks along the periphery of the Jiaoliao microcontinental block in the NCC. The garnet-bearing granulites contain peak mineral assemblage of garnet + clinopyroxene + orthopyroxene + magnetite + plagioclase + quartz ± biotite ± ilmenite. Mineral phase equilibria computations using pseudosection and geothermobarometry suggest peak P-T condition of 800-830 °C and 7-8 kbar for metamorphism. Isopleths using XMg of orthopyroxene and XCa of garnet in another sample containing the peak mineral assemblage of garnet + orthopyroxene + quartz + magnetite ± fluid yield peak P-T conditions of 860-920 °C and 11-14 kbar. Geochemical data show tonalitic to granodioritic composition and arc-related tectonic setting for the magmatic protoliths of these rocks. Zircon LA-ICP-MS analyses yield well-defined discordia with upper intercept ages of 2562 ± 20 Ma (MSWD = 0.94) and 2539 ± 21 Ma (MSWD = 0.59) which is correlated with the timing of emplacement of the magmatic protolith. A younger group of zircons with upper intercept ages of 2449 ± 41 Ma (MSWD = 0.83); N = 6 as 2449 ± 41 Ma (MSWD = 0.83; N = 6) and 2480 ± 44 Ma (MSWD = 1.2; N = 9) constrains the timing of metamorphism. Zircon Lu-Hf data show dominantly positive εHf(t) values (up to 8.5), and yield crustal residence ages (TDMC) in the range of 2529 to 2884 Ma, suggesting magma sources from Meso-Neoarchean juvenile components. The high temperature and medium to high pressure metamorphism is considered to have resulted from the subduction-collision tectonics associated with microblock amalgamation in the NCC at

  19. U-Pb zircon geochronology, petrochemical and Sr-Nd isotopic characteristic of Late Neoproterozoic granitoid of the Bornaward Complex (Bardaskan-NE Iran)

    Bagherzadeh, R. Monazzami; Karimpour, M. H.; Farmer, G. Lang; Stern, C. R.; Santos, J. F.; Rahimi, B.; Heidarian Shahri, M. R.


    The Bornaward Granitoid Complex (BGC) in the Taknar Zone is located in the northeast of Central Iranian Block. The BGC consists of granite, alkaligranite, syenogranite, leucogranite, granophyre, monzogranite, granodiorite, tonalite and diorite that have intruded into the center of Taknar Zone. These intrusive rocks affected by low grade metamorphism. Because of there are no reliable isotope dating data, for the Bornaward Granitoid Complex rocks have been proposed discordant ages (Jurassic, Cretaceous or even younger ages) by many studies. In the present study, new isotopic information based on zircon U-Pb dating has revealed the origin and time of the formation of the BGC. These new results do not confirm previously proposed ages. The results obtained from zircon U-Pb dating of the BGC rocks suggest late-Neoproterozoic (Precambrian) age (540-550 Ma). The Bornaward Granitoid Complex is middle-high metaluminous to lower-middle peraluminous and belongs to tholeiite, calc-alkaline to high-K calc-alkaline rock series with enrichment in LIL (Cs, Rb and Ba, U, K, Zr, Y, Th) and depletion in HIL (Sr and Nb, Ta, Ti) elements. Chondrite-normalized Rare Earth Elements (REE) plots indicate minor enrichment of LREE compared to HREE, and strong negative anomaly of Eu compared to other Rare Earth Elements. Furthermore, initial 87Sr/86Sr and 143Nd/144Nd range from 0.70351 to 0.71689 and 0.511585 to 0.512061, respectively, and initial εNd isotope values for granite, granodiorite and diorite range from -6.73 to 2.52. These all indicate that the BGC has derived from partial melting of distinct basement source regions with very high initial 87Sr/86Sr and undergoing extensive crustal contamination (S-type granite).

  20. Zircon geochronology and geochemistry of mafic xenoliths from Liaoning kimberlites:Track the early evolution of the lower crust, North China Craton

    ZHENG Jianping; YU Chunmei; LU Fengxiang; LI Huimin


    Mafic xenoliths from Paleozoic Fuxian kimberlites (Liaoning Province) mainly include garnet granulite, with minor pyroxene amphibolite, meta-gabbro and pyroxene syenite. The SiO2 contents of the xenoliths are from 47.3 wt% to 49.9 wt%. The granulites are mainly coarse-medium grained and reasonably with well-developed granoblastic (mostly polygonal)texture, contain the assemblage of garnet + plagioclase + pyroxene + K-feldspar ± phlogopite.The mineral assemblage of the amphibolites is plagioclase + pyroxene + amphibole ± K-feldspar,with the equilibrium temperature and pressure conditions of 744-821 ℃ and 0.76-0.88 GPa.The granulites are regarded as derivation from the lower crust depth (more than 29 km), below the amphibolites. Garnet granulites compositionally correspond to sub-alkalic basalt, and have wide ranges of Ni abundance (133-840 ppm), and Nb/Y (0.12-1.85), Nb/U (3.51-53.86) and Ta/U (0.38-2.48). The amphibolite and the syenite correspond to alkalic basalt. The Fuxian mafic xenoliths are regarded as the metamorphic product of the underplated magmas (including fractional crystallization or not) experienced the contamination with the pre-existed crustal components, and partly effected by kimberlitic magmas. The concordant ages of zircons for the gabbro (2610-2580 Ma) and the near-concordant upper intercept ages of zircons for the garnet granulite and pyroxene amphibolite (2578-2538 Ma) indicate that they are currently known as the oldest deep-seated xenoliths from the lower crust of the North China Craton. These ages recorded the formation of the united Eastern Block of the North China Craton, That is, Neoarchean (2.6-2.5 Ga) is an important continental crustal growth period of the North China Craton.The lower intercept age of the garnet granulite (1853 Ma) recorded an important tectonic thermal event in Paleoproterozoic. This event was probably related to collision of the East and West block,and resulted in the final assembly of the North China Craton

  1. Zircon geochronology and geochemistry of mafic xenoliths from Liaoning kimberlites: Track the early evolution of the lower crust, North China Craton

    ZHENG; Jianping; YU; Chunmei; LU; Fengxiang; LI; Huimin


    Mafic xenoliths from Paleozoic Fuxian kimberlites (Liaoning Province) mainly include garnet granulite, with minor pyroxene amphibolite, meta-gabbro and pyroxene syenite. The SiO2 contents of the xenoliths are from 47.3 wt% to 49.9 wt%. The granulites are mainly coarse-medium grained and reasonably with well-developed granoblastic (mostly polygonal)texture, contain the assemblage of garnet + plagioclase + pyroxene + K-feldspar ± phlogopite.The mineral assemblage of the amphibolites is plagioclase + pyroxene + amphibole ± K-feldspar,with the equilibrium temperature and pressure conditions of 744-821 ℃ and 0.76-0.88 GPa.The granulites are regarded as derivation from the lower crust depth (more than 29 km), below the amphibolites. Garnet granulites compositionally correspond to sub-alkalic basalt, and have wide ranges of Ni abundance (133-840 ppm), and Nb/Y (0.12-1.85), Nb/U (3.51-53.86) and Ta/U (0.38-2.48). The amphibolite and the syenite correspond to alkalic basalt. The Fuxian mafic xenoliths are regarded as the metamorphic product of the underplated magmas (including fractional crystallization or not) experienced the contamination with the pre-existed crustal components, and partly effected by kimberlitic magmas. The concordant ages of zircons for the gabbro (2610-2580 Ma) and the near-concordant upper intercept ages of zircons for the garnet granulite and pyroxene amphibolite (2578-2538 Ma) indicate that they are currently known as the oldest deep-seated xenoliths from the lower crust of the North China Craton. These ages recorded the formation of the united Eastern Block of the North China Craton, That is, Neoarchean (2.6-2.5 Ga) is an important continental crustal growth period of the North China Craton.The lower intercept age of the garnet granulite (1853 Ma) recorded an important tectonic thermal event in Paleoproterozoic. This event was probably related to collision of the East and West block,and resulted in the final assembly of the North China Craton

  2. Geochemistry and zircon U-Pb geochronology of granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau: origin and tectonic implications

    Zhou, Bo; Dong, Yunpeng; Zhang, Feifei; Yang, Zhao; Sun, Shengsi; He, Dengfeng


    The East Kunlun Orogenic Belt (EKOB) in the northern margin of the Tibet Plateau is characterized by widespread granitic plutons, which are keys to understanding the tectonic evolution of the EKOB. The Zhiyu pluton, newly recognized in the central part of the EKOB, mainly consists of monzogranites, biotite granites and quartz diorites. Their LA-ICPMS zircon U-Pb results show formation ages of 447 ± 1.6 Ma, 448 ± 2.5 Ma and 408 ± 1.8 Ma. The monzogranites and biotite granites are characterized by relatively high Sr (208-631 ppm), low Y (4.28-15.82 ppm) and Yb (0.44-1.59 ppm) contents, thus resulting in elevated Sr/Y (30-105) and (La/Yb)N (4-79) ratios, indicating geochemical features of adakitic rocks. These adakitic granites are medium- to high-K, calcic or calc-alkaline in composition, and display a weak peraluminous character. They have low MgO (0.57-1.84 wt.%, average 1.01 wt.%), Mg# (40-53, average 45), as well as low Cr (3.67-17.98 ppm, average 7.19 ppm) and Ni (2.59-9.30 ppm, average 4.71 ppm) contents. These rocks are enriched in LREE, and show negligible or variable positive Eu anomalies (Eu/Eu∗ = 0.61-3.80, average 1.45) and significant negative Nb and Ta anomalies. Majority of the zircon grains from these adakitic granitic rocks have positive εHf(t) values of 0.09-5.21 with two-stage model ages ranging from 1.1 Ga to 1.6 Ga. These features are compatible with those of adakitic rocks derived from a thickened lower crust in the garnet stability field. Their formation is mainly controlled by the process of crust thickening following the closure of the Qimantag Ocean. The younger quartz diorites belong to medium- to high-K, calc-alkalic or alkali-calcic and metaluminous series, and exhibit a relatively high MgO (2.23-5.18 wt.%) and Mg# (40-56, average 50.11), with significant LREE enrichment and negative Eu anomalies, as well as depletion of Nb, Ta. In addition, the quartz diorites have an enriched εHf(t) values ranging from -5.25 to -3.19. Combining

  3. U-Pb zircon geochronology and geochemical constraints on the age and origin of late Neoarchean leucosomes in migmatites from the Maevatanana area, Madagascar

    Yang, Xi-An; Liu, Shan-Bao; Hou, Ke-Jun


    Migmatites represent the dominant lithological facies in the Maevatanana area of Madagascar. The migmatites are composite rocks with hybrid metamorphic and magmatic features, comprising 60% melanosome bands that are interlayered and/or tectonically interleaved with 40% of centimeter-to decimeter-scale quartz-feldspar leucosome veins. The leucosome and granite veins are bordered by a series of gently dipping shear zones in the migmatites. U-Pb zircon dating shows that the leucosome veins formed at 2548.3 ± 5.3 Ma and are coeval with intrusion of the granite veins at 2552.2 ± 6.1 Ma. Furthermore, the leucosome and granite veins have uniform chondrite-normalized rare earth element (REE) patterns which are characterized by light REE enrichment relative to heavy REE, and negative or slightly positive Eu anomalies (δEu = 0.61-1.13). Primitive-mantle-normalized trace element patterns of the leucosome and granite veins are enriched in large-ion lithophile elements (Ba and K) and show pronounced depletions in high-field strength elements (Th, U, Ta, Nb, Zr, Hf, and Ti), suggesting that the leucosome and granite veins in the migmatites are syntectonic and synigneous intrusives. Primitive-mantle-normalized trace element patterns of the leucosome veins and melanosome bands in the migmatites are similar and suggest that the granite veins in the migmatites were generated by partial melting of medium-to high-K metabasalt, whereas the melanosome bands originated through metamorphism of calc-alkaline basalts. As such, the leucosome veins were likely generated by partial melting of melanosome bands in the migmatites. Calculated zircon saturation temperatures (TZr) of the leucosome veins are 599-685 °C, which represents the magma crystallization temperatures, and the pressures of magma formation range from 1.2 to 3.2 GPa. These P-T estimates for magma formation and crystallization are consistent with those of 605-658 °C and 1.22-1.43 GPa for metamorphism of the melanosome bands

  4. Dating slate belts using 40Ar/39Ar geochronology and zircon ages from crosscutting plutons: A case study from east-central Maine, USA

    Ghanem, Hind; Kunk, Michael J.; Ludman, Allan; Bish, David L.; Wintsch, Robert P.


    We report the ages of cleavage development in a normally intractable lower greenschist facies slate belt, the Central Maine-Aroostook-Matapedia belt in east-central Maine. We have attacked this problem by identifying the minimum ages of muscovite in a regional Acadian cleavage (S1) and in a local ductile fault zone cleavage (S2) using 40Ar/39Ar geochronology and the ages of crosscutting plutons. Our success stems from the regional low-grade metamorphism of the rocks in which each crystallization event preserves a40Ar/39Ar crystallization age and not a cooling age. Evidence for recrystallization via a pressure solution mechanism comes from truncations of detrital, authigenic, and in some rocks S1 muscovite and chlorite grains by new cleavage-forming muscovite and chlorite grains. Low-blank furnace age spectra from meta-arkosic and slaty rocks climb from moderate temperature Devonian age-steps dominated by cleavage-forming muscovite to Ordovician age-steps dominated by a detrital muscovite component. S1- and S2-cleaved rocks were hornfelsed by granitoids of ∼407 and 377 Ma, respectively. The combination of these minimum ages with the maximum metamorphic crystallization ages establishes narrow constraints on the timing of these two cleavage-forming events, ∼410 Ma (S1) and ∼380 Ma (S2). These two events coincide in time with a change in the plate convergence kinematics from the arrival of the Avalon terrane (Acadian orogeny), to a right-lateral transpression arrival of the Meguma terrane in the Neoacadian orogeny.

  5. Extensional and Colisional Magmatic Records in the Apiaí Terrane, South-Southeastern Brazil: Integration of Geochronological U-Pb Zircon Ages

    Oswaldo Siga Junior


    Full Text Available The aim of this work is the presentation of a synthesis of available geochronological data for the basement inliers andmetavolcano-sedimentary sequences which occur in the southern part of the Apiaí Terrane, south-southeastern Brazil.These data, especially those obtained during the last decade, have made substantial modifi cations to the tectonic scenarioof south-southeastern Brazil with the recognition of the presence of extensional basins (continental rifts with magmatismand sedimentation at the late Paleoproterozoic (1790 - 1750 Ma and of the Mesoproterozoic (1600 - 1450 Ma. Theseprocesses started at the late Paleoproterozoic in the Betara, Perau and Apiai Mirim Nuclei, and the basins became widerduring the Mesoproterozoic with the deposition of the Betara, Perau, Votuverava and Água Clara metavolcano-sedimentarysequences. A different pattern is found for the Itaicoca Sequence which occupies the northern part of the Apiaí Terrain.Here two rock associations of different ages are found. The fi rst is a metamorphosed carbonate platform association withsubalkaline, tholeiitic metabasic rocks with minimum deposition ages at the end of the Mesoproterozoic or beginning of theNeoproterozoic (Itaiacoca Sequence; 1030 - 900 Ma, while the second mainly contains metapsammites and metavolcanicrocks including ultrapotassic trachytes deposited during the Cryogenian-Ediacaran transition between 645 and 628 Ma(Abapã Sequence. It is then proposed that the present scenario of the Apiaí Terrane be representative of the distincttectono-sedimentary histories, refl ecting a polycyclic evolution. In the Mesoproterozoic, stable conditions prevailed, withthe deposition of the majority of the sequences (Lajeado, Água Clara, Betara, Perau, Votuverava in a passive margincontext, succeded by a Tonian extensional phase (deposition of the Itaiacoca Sequence. In the Ediacaran the region wastransformed into an unstable active margin, with the predominance of magmatic

  6. Geology, mineralization, Rb-Sr & Sm-Nd geochemistry, and U–Pb zircon geochronology of Kalateh Ahani Cretaceous intrusive rocks, southeast Gonabad

    Mohammad Hassan Karimpour


    Full Text Available Kalateh Ahani is located 27 km southeast of Gonabad within the Khorasan Razavi province. The area is part of Lut Block. Sub-volcanic monzonitic rocks intruded regional metamorphosed Shemshak Formation (Jurassic age. Magnetic susceptibility of less altered monzonitic rocks is 0.6%., As, Pb and Zn > 1%, Au up to 150 ppb and Sn = 133 ppm. The Sn content of vein in the northern part of Kalateh Ahani (Rud Gaz is > 1%. Based on mineralization, alteration and geochemistry, it seems that Sn mineralization is associated with the Cretaceous monzonitic rocks. Zircon U–Pb dating indicates that the age of the monzonitic rocks associated with mineralization is 109 Ma (Lower Cretaceous. Based on (87Sr/86Sri = 0.71089-0.710647 and (143Nd/144Ndi = 0.512113-0.51227 of the monzonitic rocks, the magma for these rocks were originated from the continental crust. This research has opened new window with respect to Sn-Cu mineralization and exploration within the Lut Block which is associated with Cretaceous granitoid rocks (reduced type, ilmenite series originated from the continental crust.

  7. High-Precision U-Pb Zircon Dates as Benchmarks in Absolute Time

    Schmitz, M. D.; Bowring, S. A.; Schoene, B.


    High-precision IDTIMS U-Pb zircon dates provide the most precise and accurate isotopic benchmarks in absolute time, due to the concordancy check of the paired U-Pb decay schemes, the precisely measured 235U and 238U decay constants, very high initial parent/daughter ratios, and the robust nature of zircon to loss or gain of U and Pb over geologic time. However, caveats to the use of such zircon dates include the accurate assessment and minimization of random and systematic errors in the analytical methods, and decay constant uncertainties. Unfortunately, there exists little consensus within the U-Pb geochronological community regarding an international zircon standard for the external assessment of interlaboratory reproducibility, while residual questions remain regarding the potential for systematic error in the single available high-precision counting experiment of the U decay constants1. Stringent criteria are imposed on candidates for zircon geochronology standards including the absence of inheritance and Pb-loss at both the single grain scale and the resolution of microbeam techniques. We present an example of the potential and limitations of a possible zircon standard, AS3, from the Duluth Complex, North American Midcontinent Rift2. New data for 27 single zircons are indistinguishable from prior results, with 207Pb/206Pb and upper intercept dates identical within error to a U-Pb concordia date of 1099.1+/-0.2 Ma (+/-1.2 Ma with systematic errors) based on 12 concordant and equivalent analyses. However, we must reiterate that a zircon population exhibiting consistent concordancy remains elusive, as AS3 and all Paleozoic and older standard candidates so far examined contain grains exhibiting Pb-loss, although rigorous selection and preparation of zircons through diamagnetic separation and aggressive abrasion can mitigate this phenomenon. The continued screening of candidate standards by both IDTIMS and SHRIMP techniques should be an organized, international

  8. Large-scale displacement along the Altyn Tagh Fault (North Tibet) since its Eocene initiation: Insight from detrital zircon U-Pb geochronology and subsurface data

    Cheng, Feng; Jolivet, Marc; Fu, Suotang; Zhang, Changhao; Zhang, Qiquan; Guo, Zhaojie


    Marking the northern boundary of the Tibetan plateau, the Altyn Tagh fault plays a crucial role in accommodating the Cenozoic crustal deformation affecting the plateau. However, its initiation time and amount of offset are still controversial despite being key information for the understanding of Tibet evolution. In this study, we present 1122 single LA-ICP-MS detrital zircon U-Pb ages obtained from 11 Mesozoic to Cenozoic sandstone samples, collected along two sections in the northwestern Qaidam basin (Eboliang and Huatugou). These data are combined with new 3D seismic reflection profiles to demonstrate that: (1) from the Paleocene to early Eocene, the Eboliang section was approximately located near the present position of Anxi, 360 ± 40 km southwest from its current location along the Altyn Tagh fault, and sediments were mainly derived from the Altyn Tagh Range. At the same period, the Huatugou section was approximately located near the present position of Tula, ca. 360 km southwest from its current location along the Altyn Tagh fault, and the Eastern Kunlun Range represented a significant sediment source. (2) Left-lateral strike-slip movement along the Altyn Tagh fault initiated during the early-middle Eocene, resulting in northeastward displacement of the two sections. (3) By early Miocene, the intensive deformation within the Altyn Tagh Range and northwestern Qaidam basin strongly modified the drainage system, preventing the materials derived from the Altyn Tagh Range to reach the Eboliang and the Huatugou sections. The post-Oligocene clastic material in the western Qaidam basin is generally derived from local sources and recycling of the deformed Paleocene to Oligocene strata. From these data, we suggest enhanced tectonic activity within the Altyn Tagh Range and northwestern Qaidam basin since Miocene time, and propose an early-middle Eocene initiation of left-lateral strike-slip faulting leading to a 360 ± 40 km offset along the Altyn Tagh fault.

  9. U-Pb zircon geochronology of the Paleogene - Neogene volcanism in the NW Anatolia: Its implications for the Late Mesozoic-Cenozoic geodynamic evolution of the Aegean

    Ersoy, E. Yalçın; Akal, Cüneyt; Genç, Ş. Can; Candan, Osman; Palmer, Martin R.; Prelević, Dejan; Uysal, İbrahim; Mertz-Kraus, Regina


    The northern Aegean region was shaped by subduction, obduction, collision, and post-collisional extension processes. Two areas in this region, the Rhodope-Thrace-Biga Peninsula to the west and Armutlu-Almacık-Nallıhan (the Central Sakarya) to the east, are characterized by extensive Eocene to Miocene post-collisional magmatic associations. We suggest that comparison of the Cenozoic magmatic events of these two regions may provide insights into the Late Mesozoic to Cenozoic tectonic evolution of the Aegean. With this aim, we present an improved Cenozoic stratigraphy of the Biga Peninsula derived from a new comprehensive set of U-Pb zircon age data obtained from the Eocene to Miocene volcanic units in the region. The compiled radiometric age data show that calc-alkaline volcanic activity occurred at 43-15 Ma in the Biga Peninsula, 43-17 Ma in the Rhodope and Thrace regions, and 53-38 Ma in the Armutlu-Almacık-Nallıhan region, which are slightly overlapping. We discuss the possible cause for the distinct Cenozoic geodynamic evolution of the eastern and western parts of the region, and propose that the Rhodope, Thrace and Biga regions in the north Aegean share the same Late Mesozoic to Cenozoic geodynamic evolution, which is consistent with continuous subduction, crustal accretion, southwestward trench migration and accompanying extension; all preceded by the Late Cretaceous - Paleocene collision along the Vardar suture zone. In contrast, the Armutlu-Almacık-Nallıhan region was shaped by slab break-off and related processes following the Late Cretaceous - Paleocene collision along the İzmir-Ankara suture zone. The eastern and western parts of the region are presently separated by a northeast-southwest trending transfer zone that was likely originally present as a transform fault in the subducted Tethys oceanic crust, and demonstrates that the regional geodynamic evolution can be strongly influenced by the geographical distribution of geologic features on the

  10. Early Paleozoic intracontinental orogeny in the Yunkai domain, South China Block: New insights from field observations, zircon U-Pb geochronological and geochemical investigations

    Yan, Chaolei; Shu, Liangshu; Michel, Faure; Chen, Yan; Li, Cheng


    Debate on whether the Early Paleozoic tectono-magmatic event in South China is related to a subduction-collision or an intracontinental orogen has been lasted for decades within the geoscience community. This study deals with LA-ICP-MS zircon U-Pb ages, whole-rock chemistry, rare earth elements, trace elements and Hf isotopes from granitoid samples collected in the Yunkai domain in order to better constrain the Early Paleozoic tectonic evolution of the South China Block. The weighted mean 206Pb/238U ages for eight samples range from 426 Ma to 443 Ma, representing the crystallization ages of the magma. Fourteen samples were analyzed for geochemistry, all of which are characterized by a peraluminous signature with A/CNK values greater than 1.0. The REE geochemistry reveals enrichment in light rare earth element. LREE/HREE values range from 2.81 to 30.36 and (La/Yb)N vary from 1.23 to 55.14 (mean of 14 analyses is 14.69). All the samples exhibit distinct negative Ba, Sr and Nb anomalies and enrichment in Rb, Th, U and Pb. Hf isotopic analyses indicate negative εHf (t) values mainly ranging from - 3 to - 12, corresponding to two model age distributing from 1637 Ma to 2208 Ma. The geochemical analyses indicate that the Silurian granitic magmas in the Yunkai domain were derived from partial melting of crustal materials with little or no input of mantle source. These new data support the intracontinental subduction model already proposed to account for the Early Paleozoic tectonic, metamorphic and magmatic event of South China.

  11. U-Pb zircon geochronology of Paleoproterozoic plutons from the northern midcontinent, USA: Evidence for subduction flip and continued convergence after geon 18 Penokean orogenesis

    Holm, D.K.; Van Schmus, W. R.; MacNeill, L.C.; Boerboom, Terrence; Schweitzer, D.; Schneider, D.


    We propose that the late Paleoproterozoic igneous and deformational history preserved in the northern midcontinent United States can be explained by a change in subduction-polarity from geon 18 south-dipping subduction during Penokean accretion to geon 17 north-dipping subduction as convergence continued after Penokean orogenesis. New U-Pb zircon ages indicate that late to post-Penokean magmatism occurred at ca. 1800, 1775, and 1750 Ma and generally migrated southeastward across the newly accreted Penokean terrane. We suggest that geon 17 Yavapai slab rollback caused continental arc magmatism to step southeastward between 1800 and 1750 Ma. As the slab steepened, reduced compressional stresses and magma-induced thermal weakening allowed for collapse of the overthickened portions of the Penokean crust. Postcollapse crustal stabilization (the 1750-1650 Ma Baraboo interval) was followed by geon 16 Mazatzal arc accretion further south. The 1900-1600 Ma tectonic history of the north-central United States, not surprisingly, records events related to the southward growth and tectonic development of the southern Laurentian margin. New and published 40Ar/ 39Ar mineral ages delineate the northern and western extent of geon 16 Mazatzal deformation. Interestingly, only little exhumed crust intruded by a small volume of shallow-level ca. 1750 Ma plutons (and associated rhyolites) was deformed significantly during geon 16. In contrast, more deeply exhumed crust and crust pervasively invaded by a large volume of post-Penokean magma (i.e., East-Central Minnesota Batholith) were largely unaffected by Mazatzal deformation and reheating. We suggest that posttectonic intrusions and crustal thinning were an important step in strengthening and stabilizing the crust in the southern Lake Superior region. ?? 2005 Geological Society of America.

  12. Zircon U-Pb geochronology and petrogenesis of metabasites from the western Beihuaiyang zone in the Hong'an orogen, central China: Implications for detachment within subducting continental crust at shallow depths

    Liu, Yi-Can; Liu, Li-Xiang; Li, Yuan; Gu, Xiao-Feng; Song, Biao


    Deformed low-grade metabasites from the western segment of the Beihuaiyang zone in the Hong'an orogen, central China can be divided into two types, i.e. meta-gabbro and meta-basalt. These lithologies have been studied by using whole-rock elemental and Sr-Nd-Pb isotopic analyses, and zircon SHRIMP U-Pb dating. Concordant zircon U-Pb ages of 631 ± 5 Ma and 623 ± 14 Ma are obtained for the meta-gabbros, consistent with a previously reported U-Pb age of 635 ± 5 Ma. The meta-basalt was dated to have a protolith age of middle Neoproterozoic (∼750 Ma) and a metamorphic age at ca. 240 Ma. The all studied metabasites occur as block or slice within a metamorphosed Ordovician volcanic zone (originally named as the Dingyuan Formation) and are in tectonic contact to each other. The gabbro and basalt emplaced at ∼630 Ma and ∼750 Ma, respectively in a continental rifting setting, whereas their present country rocks were erupted at ∼465 Ma in an arc setting. The Pb-isotope compositions of the low-grade meta-gabbros and meta-basalts are similar to those from the Dabie ultrahigh-pressure (UHP) meta-igneous rocks with an upper continental crust affinity. The protolith ages of the studied relatively low-grade meta-basic rocks are in good agreement not only with ages for two episodes of middle and late Neoproterozoic mafic and felsic magmatism in the Suizhou to Zaoyang areas at the northern margin of the South China Block, but are also in agreement with the protolith ages of UHP meta-igneous rocks in the Dabie-Sulu orogenic belt. Therefore, these Neoproterozoic low-grade metabasites are considered to be exotic and they may have been detached and offscraped from the subducting upper crust of the South China Block at shallow depths during continental collision in the Triassic. They were subsequently exhumed in the initial stage of continental subduction, and thrusted over the Paleozoic metamorphosed rocks in the southern margin of the North China Block or as foreign slices

  13. Deciphering tectonic provenance signatures from the trace element geochemistry of igneous zircon

    Grimes, C. B.; Wooden, J. L.; Vazquez, J. A.


    The ability to correlate stable isotope ratios and trace element signatures with age on single crystals, coupled with resistance to chemical and physical weathering make zircon a useful complement in a wide range of geologic investigations. Zircon trace element concentrations broadly reflect parental magma composition, although studies show that crystal chemistry also imparts a significant control on the shape of REE patterns. Concentrations of select elements (e.g., Hf) and various trace element ratios (e.g., Th/U, Yb/Gd, Eu/Eu*) commonly correlate with crystallization temperature (from Ti-in-zircon thermometry) for suites of zircon precipitated during magmatic fractionation in zircon-saturated systems. Other trace element ratios, primarily U/Yb and Th/Yb plotted against Hf or Y discriminate zircon sampled in situ from mid-ocean ridges from those formed in arc-related ('continental') settings. However, these geochemical discriminations are limited in that ~20% of published mid-ocean ridge zircon compositions plot within the 'continental' zircon field and they fail to distinguish zircon from other magmatic settings such as ocean islands. To improve geochemical zircon discrimination diagrams for diverse tectonic environments, trace element criteria that distinguish lavas from different tectonic settings are considered along with a broad suite of elements routinely measured by the Stanford-USGS SHRIMP-RG ion probe. Arc-related magmas exhibit enrichment in large ion lithophile (LIL) elements (i.e., U, Th) with respect to typical MORB, and are depleted in niobium (Nb) with respect to both OIB and MORB lavas. OIB lavas are typically enriched in LIL with respect to MORB, but lack the Nb-depletion characteristic of arcs. The ratios U/Yb, Yb/Nb, and Th/Nb can therefore be used to discriminate lavas from these different settings. Discrimination diagrams based on these elemental ratios in zircon also define separate (though partly overlapping) fields for modern mid

  14. The link between volcanism and plutonism in epizonal magma systems; high-precision U-Pb zircon geochronology from the Organ Mountains caldera and batholith, New Mexico

    Rioux, Matthew; Farmer, G. Lang; Bowring, Samuel A.; Wooton, Kathleen M.; Amato, Jeffrey M.; Coleman, Drew S.; Verplanck, Philip L.


    The Organ Mountains caldera and batholith expose the volcanic and epizonal plutonic record of an Eocene caldera complex. The caldera and batholith are well exposed, and extensive previous mapping and geochemical analyses have suggested a clear link between the volcanic and plutonic sections, making this an ideal location to study magmatic processes associated with caldera volcanism. Here we present high-precision thermal ionization mass spectrometry U-Pb zircon dates from throughout the caldera and batholith, and use these dates to test and improve existing petrogenetic models. The new dates indicate that Eocene volcanic and plutonic rocks in the Organ Mountains formed from ~44 to 34 Ma. The three largest caldera-related tuff units yielded weighted mean 206Pb/238U dates of 36.441 ± 0.020 Ma (Cueva Tuff), 36.259 ± 0.016 Ma (Achenback Park tuff), and 36.215 ± 0.016 Ma (Squaw Mountain tuff). An alkali feldspar granite, which is chemically similar to the erupted tuffs, yielded a synchronous weighted mean 206Pb/238U date of 36.259 ± 0.021 Ma. Weighted mean 206Pb/238U dates from the larger volume syenitic phase of the underlying Organ Needle pluton range from 36.130 ± 0.031 to 36.071 ± 0.012 Ma, and the youngest sample is 144 ± 20 to 188 ± 20 ka younger than the Squaw Mountain and Achenback Park tuffs, respectively. Younger plutonism in the batholith continued through at least 34.051 ± 0.029 Ma. We propose that the Achenback Park tuff, Squaw Mountain tuff, alkali feldspar granite and Organ Needle pluton formed from a single, long-lived magma chamber/mush zone. Early silicic magmas generated by partial melting of the lower crust rose to form an epizonal magma chamber. Underplating of the resulting mush zone led to partial melting and generation of a high-silica alkali feldspar granite cap, which erupted to form the tuffs. The deeper parts of the chamber underwent continued recharge and crystallization for 144 ± 20 ka after the final eruption. Calculated magmatic

  15. Genesis of the Bangbule Pb-Zn-Cu polymetallic deposit in Tibet, western China: Evidence from zircon U-Pb geochronology and S-Pb isotopes

    Kan, Tian; Zheng, Youye; Gao, Shunbao


    The Banbule Pb-Zn-Cu skarn deposit is located in the Longger-Gongbujiangda volcanic magma arc in the Gangdese-Nyainqentanglha Plate. It is the only lead-zinc polymetallic deposit discovered in the westernmost Nyainqentanglha metallogenic belt. The measured and indicated resources include 0.9 Mt of Pb+Zn (4.77% Pb and 4.74% Zn, respectively), 6499 t of Cu, and 178 t of Ag (18.75g/t Ag). The orebodies mainly occur as lenses, veins and irregular shapes in the contact zone between the quartz-porphyry and limestone of the Upper Permian Xiala Formation, or in the boundaries between limestone and sandstone. Pb-Zn-Cu mineralization in the Banbule deposit is closely associated with skarns. The ore minerals are dominated by galena, sphalerite, chalcopyrite, bornite, and magnetite, with subordinate pyrite, malachite, and azurite. The gangue minerals are mainly garnet, actinolite, diopside, quartz, and calcite. The ore-related quartz-porphyry displays LA-ICP-MS zircon U-Pb age of 77.31±0.74 Ma. The δ34S values of sulfides define a narrow range of -0.8 to 4.7‰ indicating a magmatic source for the ore-forming materials. Lead isotopic systematics yield 206Pb/204Pb of 18.698 to 18.752, 207Pb/204Pb of 15.696 to 15.760, and 208Pb/204Pb of 39.097 to 39.320. The data points are constrained around the growth curves of upper crust and orogenic belt according to the tectonic discrimination diagrams. The calculated Δβ - Δγ values plot within the magmatic field according to the discrimination diagram of Zhu et al. (1995). The S-Pb isotopic data suggest that Bangbule is a typical skarn deposit, and the Pb-Zn-Cu mineralization is genetically related to the quartz-porphyry in the mining district. The discovery of the Bangbule deposit indicates that there is metallogenic potential in the westernmost Nyainqentanglha belt, which is of great importance for the exploration work in this area.

  16. Petrogenesis of granitoids in the eastern section of the Central Qilian Block: Evidence from geochemistry and zircon U-Pb geochronology

    Li, Jiyong; Niu, Yaoling; Chen, Shuo; Sun, Wenli; Zhang, Yu; Liu, Yi; Ma, Yuxin; Hu, Zhenxing; Zhang, Guorui


    The Caledonian-age Qilian Orogenic Belt at the northern margin of the Greater Tibetan Plateau comprises abundant granitoids that record the histories of the orogenesis. We report here our study of these granitoids from two localities. The Qingchengshan (QCS) pluton, which is situated in the eastern section of the Central Qilian Block, is dated at ~430-420 Ma. It has high-K calc-alkaline composition with high SiO2 (> 70 wt%), enrichment in large ion lithophile elements (LILEs), depletion in high field strength elements (HFSEs), and varying degrees of negative Sr and Eu anomalies. The granitoids in the Tongwei (TW) area, 150 km east of the QCS, are complex, the majority of which are dated at ~440 Ma, but there also exist younger, ~230 Ma intrusions genetically associated with the Qinling Orogeny. The Paleozoic TW intrusions also have high SiO2, fractionated REE (rare earth element) patterns, but a negligible Eu anomaly. The whole rock Sr-Nd-Hf isotopic compositions suggest that all these Paleozoic granitoids are consistent with melting-induced mixing of a two-component source, which is best interpreted as the combination of last fragments of subducted/subducting ocean crust with terrigenous sediments. The mantle isotopic signature of these granitoids (87Sr/86Sri: 0.7038 to 0.7100, ɛNd(t): -4.8 to -1.3, ɛHf(t): -0.7 to +4.0) reflects significant (~70 %) contribution of the ocean crust derived in no distant past from the mantle at ocean ridges with an inherited mantle isotopic signature. Partial melting of such ocean crust plus terrigenous sediments in response to the ocean closing and continental collision (between the Qilian and Alashan Blocks) under amphibolite facies conditions is responsible for the magmatism. Varying extents of fractional crystallization (±plagioclase, ±amphibole, ±garnet, ±zircon) of the parental magmas produced the observed QCS and TW granitoids. We note that sample HTC12-01 in the TW area shows an A-type or highly fractionated granite

  17. Petrogenesis of granitoids in the eastern section of the Central Qilian Block: Evidence from geochemistry and zircon U-Pb geochronology

    Li, Jiyong; Niu, Yaoling; Chen, Shuo; Sun, Wenli; Zhang, Yu; Liu, Yi; Ma, Yuxin; Hu, Zhenxing; Zhang, Guorui


    The Caledonian-age Qilian Orogenic Belt at the northern margin of the Greater Tibetan Plateau comprises abundant granitoids that record the histories of the orogenesis. We report here our study of these granitoids from two localities. The Qingchengshan (QCS) pluton, which is situated in the eastern section of the Central Qilian Block, is dated at 430-420 Ma. It has high-K calc-alkaline composition with high SiO2 (> 70 wt%), enrichment in large ion lithophile elements (LILEs), depletion in high field strength elements (HFSEs), and varying degrees of negative Sr and Eu anomalies. The granitoids in the Tongwei (TW) area, 150 km east of the QCS, are complex, the majority of which are dated at 440 Ma, but there also exist younger, 230 Ma intrusions genetically associated with the Qinling Orogeny. The Paleozoic TW intrusions also have high SiO2, fractionated REE (rare earth element) patterns, but a negligible Eu anomaly. The whole rock Sr-Nd-Hf isotopic compositions suggest that all these Paleozoic granitoids are consistent with melting-induced mixing of a two-component source, which is best interpreted as the combination of last fragments of subducted/subducting ocean crust with terrigenous sediments. The mantle isotopic signature of these granitoids (87Sr/86Sri: 0.7038 to 0.7100, ɛNd(t): -4.8 to -1.3, ɛHf(t): -0.7 to +4.0) reflects significant ( 70 %) contribution of the ocean crust derived in no distant past from the mantle at ocean ridges with an inherited mantle isotopic signature. Partial melting of such ocean crust plus terrigenous sediments in response to the ocean closing and continental collision (between the Qilian and Alashan Blocks) under amphibolite facies conditions is responsible for the magmatism. Varying extents of fractional crystallization (±plagioclase, ±amphibole, ±garnet, ±zircon) of the parental magmas produced the observed QCS and TW granitoids. We note that sample HTC12-01 in the TW area shows an A-type or highly fractionated granite

  18. The link between volcanism and plutonism in epizonal magma systems; high-precision U–Pb zircon geochronology from the Organ Mountains caldera and batholith, New Mexico

    Rioux, Matthew; Farmer, Lang; Bowring, Samuel; Wooton, Kathleen M.; Amato, Jeffrey M.; Coleman, Drew S.; Verplanck, Philip L.


    The Organ Mountains caldera and batholith expose the volcanic and epizonal plutonic record of an Eocene caldera complex. The caldera and batholith are well exposed, and extensive previous mapping and geochemical analyses have suggested a clear link between the volcanic and plutonic sections, making this an ideal location to study magmatic processes associated with caldera volcanism. Here we present high-precision thermal ionization mass spectrometry U–Pb zircon dates from throughout the caldera and batholith, and use these dates to test and improve existing petrogenetic models. The new dates indicate that Eocene volcanic and plutonic rocks in the Organ Mountains formed from ~44 to 34 Ma. The three largest caldera-related tuff units yielded weighted mean 206Pb/238U dates of 36.441 ± 0.020 Ma (Cueva Tuff), 36.259 ± 0.016 Ma (Achenback Park tuff), and 36.215 ± 0.016 Ma (Squaw Mountain tuff). An alkali feldspar granite, which is chemically similar to the erupted tuffs, yielded a synchronous weighted mean 206Pb/238U date of 36.259 ± 0.021 Ma. Weighted mean 206Pb/238U dates from the larger volume syenitic phase of the underlying Organ Needle pluton range from 36.130 ± 0.031 to 36.071 ± 0.012 Ma, and the youngest sample is 144 ± 20 to 188 ± 20 ka younger than the Squaw Mountain and Achenback Park tuffs, respectively. Younger plutonism in the batholith continued through at least 34.051 ± 0.029 Ma. We propose that the Achenback Park tuff, Squaw Mountain tuff, alkali feldspar granite and Organ Needle pluton formed from a single, long-lived magma chamber/mush zone. Early silicic magmas generated by partial melting of the lower crust rose to form an epizonal magma chamber. Underplating of the resulting mush zone led to partial melting and generation of a high-silica alkali feldspar granite cap, which erupted to form the tuffs. The deeper parts of the chamber underwent continued recharge and crystallization for 144 ± 20 ka after the

  19. U-Pb SHRIMP and Sm-Nd geochronology of the Silvânia Volcanics and Jurubatuba Granite: juvenile Paleoproterozoic crust in the basement of the Neoproterozoic Brasília Belt, Goiás, central Brazil



    Full Text Available U-Pb SHRIMP and Sm-Nd isotopic ages were determined for felsic metavolcanic rocks from the Silvânia Sequence and Jurubatuba Granite in the central part of the Brasília Belt. Zircon grains from a metavolcanic sample yielded 2115 ± 23 Ma and from the granite yielded 2089 ± 14 Ma, interpreted as crystallization ages of these rocks. Six metavolcanic samples of the Silvânia Sequence yielded a six-point whole-rock Sm-Nd isochron indicating a crystallization age of 2262 ± 110 Ma and positive epsilonNd(T = +3.0 interpreted as a juvenile magmatic event. Nd isotopic analyses on samples from the Jurubatuba Granite have Paleoproterozoic T DM model ages between 2.30 and 2.42 Ga and epsilonNd(T values vary between -0.22 and -0.58. The oldest T DM value refers to a sedimentary xenolith in the granite. These results suggest crystallization ages of Silvânia volcanics and Jurubatuba Granite are the first evidence of a ca. 2.14-2.08 juvenile magmatic event in the basement of the central part of the Brasília Belt that implies the presence of arc/suture hidden in reworked basement of the Brasília Belt.

  20. Petrology, geochemistry and zircon U-Pb geochronology of a layered igneous complex from Akarui Point in the Lützow-Holm Complex, East Antarctica: Implications for Antarctica-Sri Lanka correlation

    Kazami, Sou; Tsunogae, Toshiaki; Santosh, M.; Tsutsumi, Yukiyasu; Takamura, Yusuke


    The Lützow-Holm Complex (LHC) of East Antarctica forms part of a complex subduction-collision orogen related to the amalgamation of the Neoproterozoic supercontinent Gondwana. Here we report new petrological, geochemical, and geochronological data from a metamorphosed and disrupted layered igneous complex from Akarui Point in the LHC which provide new insights into the evolution of the complex. The complex is composed of mafic orthogneiss (edenite/pargasite + plagioclase ± clinopyroxene ± orthopyroxene ± spinel ± sapphirine ± K-feldspar), meta-ultramafic rock (pargasite + olivine + spinel + orthopyroxene), and felsic orthogneiss (plagioclase + quartz + pargasite + biotite ± garnet). The rocks show obvious compositional layering reflecting the chemical variation possibly through magmatic differentiation. The metamorphic conditions of the rocks were estimated using hornblende-plagioclase geothermometry which yielded temperatures of 720-840 °C. The geochemical data of the orthogneisses indicate fractional crystallization possibly related to differentiation within a magma chamber. Most of the mafic-ultramafic samples show enrichment of LILE, negative Nb, Ta, P and Ti anomalies, and constant HFSE contents in primitive-mantle normalized trace element plots suggesting volcanic arc affinity probably related to subduction. The enrichment of LREE and flat HREE patterns in chondrite-normalized REE plot, with the Nb-Zr-Y, Y-La-Nb, and Th/Yb-Nb/Yb plots also suggest volcanic arc affinity. The felsic orthogneiss plotted on Nb/Zr-Zr diagram (low Nb/Zr ratio) and spider diagrams (enrichment of LILE, negative Nb, Ta, P and Ti anomalies) also show magmatic arc origin. The morphology, internal structure, and high Th/U ratio of zircon grains in felsic orthogneiss are consistent with magmatic origin for most of these grains. Zircon U-Pb analyses suggest Early Neoproterozoic (847.4 ± 8.0 Ma) magmatism and protolith formation. Some older grains (1026-882 Ma) are regarded as

  1. Evolution Of An Upper Crustal Plutonic-Volcanic Plumbing System:Insights From High Precision U-Pb Zircon Geochronology Of Intracaldera Tuff And Intrusions In Silver Creek Caldera, Arizona, USA

    Zhang, T.; Mundil, R.; Miller, C. F.; Miller, J. S.; Paterson, S. R.


    Study of both plutonic and volcanic regimes in one single magmatic system is a powerful approach towards obtaining a more complete view of the long-term evolution of magma systems. The recently discovered Silver Creek caldera is the source of the voluminous Peach Spring Tuff (PST) (Ferguson, 2008) and presents a unique opportunity to study a field laboratory of a linked plutonic-volcanic system. This relict west-facing half caldera is predominantly filled with trachytic intracaldera tuff with the caldera margin intruded by several petrologically distinct hypabyssal intrusions. These include porphyritic granite with granophyric texture, felsic leucogranite, porphyritic monzonite exposed on NE side of the caldera that is zoned from more felsic to more mafic, and quartz-phyric dikes that intrude the caldera fill. We present preliminary single zircon ages from 4 samples that have been analyzed using the CA-TIMS method after thermal annealing and chemical leaching (Mattinson 2005), including 1 sample from intracaldera tuff and 3 samples from caldera-related intrusions. 3-D total U/Pb isochron ages from all four samples fall within a range of 18.32-18.90 Ma with uncertainties between 0.09 and 0.39 Ma, although some of them lack precision and are compromised by elevated common Pb. For example, zircon from the dated porphyritic monzonite yields an age of 18.32±0.42 Ma (MSWD=2.7) where the excess scatter may result from real age dispersion and/or different compositions of the common Pb contribution. The PST had been dated to ~18.5 Ma by 40Ar/39Ar techniques (Nielson et al., 1990). In order to be compared to U/Pb ages the 40Ar/39Ar age must be adjusted for a revised age for the then used flux monitor (MMbh-1) and corrected for the now quantified systematic bias between 40Ar/39Ar and U/Pb ages (Renne et al., 2010), which results in a corrected age of 18.8 Ma. Thus, the ages for our samples match that of the PST within error. Based on current results, the age difference

  2. U-Pb SHRIMP Dating of Zircon from Quartz Veins of the Yangshan Gold Deposit in Gansu Province and Its Geological Significance

    QI Jinzhong; YUAN Shisong; LIU Zhijie; LIU Dunyi; WANG Yanbin; LI Zhihong; GUO Junhua; SUN Bin3


    The Yangshan gold deposit is a super-large fine-grained disseminated gold deposit located in southern Gansu Province. Its metallogenic age has been determined by using the cathodoluminescence image and ion probe U-Pb dating techniques. It is found that zircons from quartz veinlet of the fine-grained disseminated gold ore show characters of magmatic origin with prism idiomorphism, oscillatory zoning and dominant Th/U ratios of 0.5-1.5. Three main populations of zircons are obtained, giving average 206pb/238U ages of 197.6±1.7 Ma, 126.9±3.2 Ma and 51.2±l.3 Ma respectively. The first age corresponds to the K-Ar age of the plagiogranite dike, while the latter two ages indicate that buried Cretaceous and Tertiary intrusives exist in the orefield, suggesting that the Yangshan gold deposit was genetically related to the three magmatic hydrothermal activities. By contrast, zircons from coarse gold-bearing quartz vein in the mining area are much older than the host rock, indicating that the vein was formed earlier and was not contaminated by later magmatic fluids. It is concluded that the coupling of multiperiodic hydrothermal activities in the mining area has contributed a lot to mineralization of the Yangshan gold deposit.

  3. Geology, petrology, U-Pb (shrimp geochronology of the Morrinhos granite -Paraguá terrane, SW Amazonian craton: implications for the magmatic evolution of the San Ignácio orogeny

    Ohana França

    Full Text Available Morrinhos granite is a batholith body that is slightly elongated in the NNW direction and approximately 1,140 km2 long; it is located in the municipality of Vila Bela da Santíssima Trindade of the state of Mato Grosso, Brazil, in the Paraguá Terrane, Rondonian-San Ignácio Province, in the SW portion of the Amazonian Craton. This intrusion displays a compositional variation from tonalite to monzogranite, has a medium to coarse inequigranular texture and is locally porphyritic; biotite is the predominant mafic in one of the facies, and hornblende is predominant in the other, with both metamorphosed into the greenschist facies. The studied rocks characterize an intermediate to acidic sequence that was formed by a subalkaline magmatism; the series is alkali-calcic to metaluminous to slightly peraluminous, and the rocks evolved through fractioned crystallization mechanisms. The structural data show two deformation phases represented by penetrative foliation (S1 and open folds (D2, and both phases were most likely related to the San Ignácio Orogeny. The geochronological (U-Pb SHRIMP and isotopic (Sm-Nd investigations of these rocks indicated a crystallization age of 1350 ± 12 Ma, TDMof approximately 1.77 Ga and εNd(1.35with a negative value of -2.57, suggesting that their generation was related to a partial melting process of a Paleoproterozoic (Statherian continental crust. The results herein indicate that the Morrinhos granite was generated in a continental magmatic arc in a late- to post-orogenic stage of the San Ignácio Orogeny, and it can be recognized as belonging to the Pensamiento Intrusive Suite.

  4. Chemical abrasion-SIMS (CA-SIMS) U-Pb dating of zircon from the late Eocene Caetano caldera, Nevada

    Watts, Kathryn E.; Coble, Matthew A.; Vazquez, Jorge A.; Henry, Christopher D.; Colgan, Joseph P.; John, David A.


    Zircon geochronology is a critical tool for establishing geologic ages and time scales of processes in the Earth's crust. However, for zircons compromised by open system behavior, achieving robust dates can be difficult. Chemical abrasion (CA) is a routine step prior to thermal ionization mass spectrometry (TIMS) dating of zircon to remove radiation-damaged parts of grains that may have experienced open system behavior and loss of radiogenic Pb. While this technique has been shown to improve the accuracy and precision of TIMS dating, its application to high-spatial resolution dating methods, such as secondary ion mass spectrometry (SIMS), is relatively uncommon. In our efforts to U-Pb date zircons from the late Eocene Caetano caldera by SIMS (SHRIMP-RG: sensitive high resolution ion microprobe, reverse geometry), some grains yielded anomalously young U-Pb ages that implicated Pb-loss and motivated us to investigate with a comparative CA and non-CA dating study. We present CA and non-CA 206Pb/238U ages and trace elements determined by SHRIMP-RG for zircons from three Caetano samples (Caetano Tuff, Redrock Canyon porphyry, and a silicic ring-fracture intrusion) and for R33 and TEMORA-2 reference zircons. We find that non-CA Caetano zircons have weighted mean or bimodal U-Pb ages that are 2–4% younger than CA zircons for the same samples. CA Caetano zircons have mean U-Pb ages that are 0.4–0.6 Myr older than the 40Ar/39Ar sanidine eruption age (34.00 ± 0.03 Ma; error-weighted mean, 2σ), whereas non-CA zircons have ages that are 0.7–1.3 Myr younger. U-Pb ages do not correlate with U (~ 100–800 ppm), Th (~ 50–300 ppm) or any other measured zircon trace elements (Y, Hf, REE), and CA and non-CA Caetano zircons define identical trace element ranges. No statistically significant difference in U-Pb age is observed for CA versus non-CA R33 or TEMORA-2 zircons. Optical profiler measurements of ion microprobe pits demonstrate consistent depths of ~ 1.6

  5. New U-Pb SHRIMP-II zircon intrusion ages of the Cana Brava and Barro Alto layered complexes, central Brazil: constraints on the genesis and evolution of the Tonian Goias Stratiform Complex

    Giovanardi, Tommaso; Girardi, Vicente A. V.; Correia, Ciro T.; Tassinari, Colombo C. G.; Sato, Kei; Cipriani, Anna; Mazzucchelli, Maurizio


    The Cana Brava, Niquelândia and Barro Alto complexes (Goiás, central Brazil) are three of the largest mafic-ultramafic layered complexes in the world and their origin has been a matter of debate for several decades. One hypothesis suggests that Niquelândia and Barro Alto were both formed by two distinct igneous events at 1.3 Ga and at 790 Ma and were later overlapped during tectonic exhumation at 650 Ma; according to this reconstruction Cana Brava belongs to the youngest intrusion at 790 Ma. A second hypothesis suggests that the three complexes formed during the same event. Here we provide new U-Pb SHRIMP-II zircon ages for the Cana Brava and Barro Alto complexes, constraining their intrusion age to the Neoproterozoic (between 770 and 800 Ma), coeval with Niquelândia. A review of new and literature ages indicate that these complexes formed during a single igneous event and were not modified by regional metamorphism. We propose that the complexes represent fragments of the larger Tonian Goiás Stratiform Complex, which was likely part of a back-arc environment connected to the formation of the Goiás Magmatic Arc at about 790 Ma, later disrupted and accreted to the São Francisco craton.

  6. Zircon U-Pb Ages from an Ultra-High Temperature Metapelite, Rauer Group, East Antarctica: Implications for Overprints by Grenvillian and Pan-African Events

    Wang, Yanbin; Tong, Laixi; Liu, Dunyi


    SHRIMP U-Pb dating of zircon from an ultra-high temperature (UHT, ~1000 °C) granulite-facies metapelite from the Rauer Group, Mather Peninsula, east Antarctica, has yielded evidence for two episodes of metamorphic zircon growth, at ~1.00 Ga and ~530 Ma, and two episodes of magmatism in the source region for the protolith sediment, at ~2.53 and ~2.65 Ga, were identified from the zircon cores. Successive zircon growth at ~1.00 Ga and ~530 Ma records a sequence of distinct, widely spaced high-temperature metamorphic and/or anatectic events related to Grenvillian and Pan-African orogenesis. This study presents the first robust geochronological evidence for the timing of UHT metamorphism of the Rauer Group, supporting arguments that the peak UHT metamorphic event occurred at ~1.00 Ga and was overprinted by a separate high-grade event at ~530 Ma. The new age data indicate that the UHT granulites of the Rauer Group experienced a complex, multi-stage tectonothermal history, which cannot simply be explained via a single Pan-African (~500 Ma) high-grade tectonic event. This is critical in understanding the role of the eastern Prydz Bay region during the assembly of the east Gondwana supercontinent, and the newly recognized inherited Archaean ages (~2.53 and ~2.65 Ga) suggest a close tectonic relationship between the Rauer Group and the adjacent Archaean of the Vestfold Hills

  7. Petrology and LA-ICP-MS Zircon U-Pb Geochronology of the Qianjinchang Pluton, Southeastern Inner Mongolia%内蒙古前进场岩体岩石学与锆石U-Pb年代学研究

    徐佳佳; 赖勇; 崔栋; 鲁彬


    The Qianjinchang biotite granite from southeastern Inner Mongolia is located in the suture zone between the Siberian and North China Cratons. The Daolundaba Cu-W-Sn polymetallic deposit formed at the contact zone between the north-west margin of the pluton and the Lower Permian Linxi Formation. The biotite granite is high-K calc-alkaline and peraluminous, with Na2O+K2O: 6.12% to 9.31%, Al2O3: 14.42% to 15.59%, A/CNK: 1.09 to 1.22, and a mean 5value of 2.41. The rock samples lie within the S-type granite region in the ACF plot. They are depleted in Sr (89.91 to 192.80 μg/g), Ba, Eu (δEu: 0.46 to 0.81) and δREE (102.65 to 237.92 μg/g), but slightly enriched in Yb (2.17 to 3.46 μg/g) and La, consistent with the characteristics of S-type granites. The rocks further fall in the region of post-collisional granite in the Rb vs. Y+Nb diagram. LA-ICP-MS zircon U-Pb geochronology shows that the pluton emplaced at (273±7.7) to (278 ±4.3) Ma. These Permian granite rocks probably formed in an extensional setting that postdated the collision between the Siberian and North China Cratons.%前进场黑云母花岗岩岩体位于内蒙古东南部,华北板块与西伯利亚板块碰撞的缝合部位。岩体北西边缘与林西组地层的接触带发育道伦达坝中型铜-钨-锡多金属岩浆热液矿床。岩石地球化学研究表明,黑云母花岗岩为高钾钙碱性系列的过铝质花岗岩,Na2O+K2O含量为6.12%-9.31%,Al2O3含量为14.42%-15.59%,A/CNK值为1.09-1.22,万均值为2.41,在花岗岩ACF图解中落人s型花岗岩区。全岩总稀土含量为102.65~237.92μg/g,低Sr(89.91-192.80μg/g)高Yb(2.17~3.46μg/g),δEu值为0.46~0.81,亏损Ba,Sr,Eu,富集La,显示S型花岗岩特征,在Rb-(Y+Nb)图解中显示后碰撞岩浆地球化学性质。利用LA-ICP-MS锆石U-Pb年代学方法,确定岩体形成年代为(273±7.7)-(278±4.3)Ma,在早

  8. Origin of ~2.5 Ga potassic granite from the Nellore Schist Belt, SE India: textural, cathodoluminescence, and SHRIMP U-Pb data

    Vijaya Kumar, K.; Ernst, W. G.; Leelanandam, C.; Wooden, J. L.; Grove, M. J.


    In a geochemical and geochronological investigation of Archean and Proterozoic magmatism in the Nellore Schist Belt, we conducted SHRIMP U-Pb analyses of zircons from two cospatial granitic bodies at Guramkonda and Vendodu. The former is a Ba- and Sr-rich hornblende-bearing tonalite, whereas the latter is a Rb-, Zr-, Pb-, Th-, U-, and REE-rich biotite-bearing leucogranite. The Guramkonda tonalite displays a restitic texture with remnants of trapped granitic melt, whereas the Vendodu leucogranite contains residual/partially melted plagioclase grains. Both rock types contain two generations of zircon: tonalite contains a group of euhedral zoned zircons enclosed within plagioclase and a group of subhedral patchy zircons associated with trapped melt (quartz + feldspar matrix), and leucogranite also contains a group of doubly terminated euhedral zircons included within orthoclase as well as a group of zircons with visible cores mantled by later rim growth. Cathodoluminescence images also clearly document two distinctly textured varieties of zircon: the tonalite contains a population characterized by narrowly spaced uninterrupted oscillatory zoning and a second population lacking zoning but exhibiting a random distribution of dark (U-rich) and light (U-poor) regions; the leucogranite contains U-rich zoned zircons and U-poor zircon cores mantled by U-rich rims. The REE chemistry of zircon cores from the Vendodu leucogranite is very similar to the REE of zoned zircons from the Guramkonda tonalite. Zircon ages from both plutons exhibit bimodal distributions in U-Pb concordia diagrams. The tonalite defines an age of 2,521 Ma ± 5 Ma for zoned magmatic zircons and 2,485 Ma ± 5 Ma for unzoned newly precipitated zircons, whereas the leucogranite has an age of 2,518 Ma ± 5 Ma for U-poor zircon cores (relics of the tonalite pluton) and 2,483 Ma ± 3 Ma for U-rich zoned magmatic zircons. The trace element geochemistry of the ~2,520 Ma zircons is distinctly different from the ~2

  9. SHRIMP Geochronology of Volcanics of the Zhangjiakou and Yixian Formations, Northern Hebei Province, with a Discussion on the Age of the Xing'anling Group of the Great Hinggan Mountains and Volcanic Strata of the Southeastern Coastal Area of China

    NIU Baogui; HE Zhengjun; SONG Biao; REN Jishun; XIAO Liwei


    A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma,respectively. It is pointed out that the ages of sedimentary basins and volcanism in the northern Hebei -western Liaoning area become younger from west to east, i. e. the volcanism of the Luanping Basin commenced at c. 135 Ma, the Luotuo Mount area of the Chengde Basin c. 130 Ma, and western Liaoning c. 128 Ma. With a correlation of geochronological stratigraphy and biostratigraphy, we deduce that the Xing'anling Group, which comprises the Great Hinggan Mountains volcanic rock belt in eastern China, is predominantly of the early-middle Early Cretaceous, while the Jiande and Shimaoshan Groups and their equivalents, which form the volcanic rock belt in the southeastern coast area of China, are of the mid-late Early Cretaceous, and both the Jehol and Jiande Biotas are of the Early Cretaceous, not Late Jurassic or Late Jurassic-Early Cretaceous. Combining the characteristics of the volcanic rocks and, in a large area, hiatus in the strata of the Late Jurassic or Late Jurassic-early Early Cretaceous between the formations mentioned above and the underlying sequences, we can make the conclusion that, in the Late Jurassic-early Early Cretaceous, the eastern China region was of high relief or plateau, where widespread post-orogenic volcanic series of the Early Cretaceous obviously became younger from inland in the west to continental margin in the east. This is not the result of an oceanward accretion of the subduction belt between the Paleo-Pacific ocean plate and the Asian continent, but rather reflects the extension feature, i.e. after the closure of the Paleo-Pacific ocean, the Paleo-Pacific ancient continent collided with the Asian continent and reached the peak of orogenesis, and then the compression waned and resulted in the retreating of the post

  10. Geochemistry and geochronology of HP mélanges from Tinos and Andros, cycladic blueschist belt, Greece

    Bulle, Florian; Bröcker, Michael; Gärtner, Claudia; Keasling, Alan


    U-Pb zircon geochronology, Sr-Nd isotope and bulk-rock geochemistry have been applied to meta-igneous and meta-sedimentary rocks from high-pressure metamorphic mélanges exposed on the Cycladic islands of Tinos, Syros and Andros. Ion microprobe (SHRIMP) U-Pb zircon dating of 7 samples representing meta-igneous blocks (Tinos), a blackwall zone (Tinos) and chlorite-talc schists from block-matrix contacts (Syros and Tinos) yielded Cretaceous ages of c. 80 Ma. Many of the criteria commonly used to distinguish between magmatic or metamorphic zircon genesis (internal structure, Th/U ratio, REE characteristics, Ti-in zircon thermometry, enclosed mineral phases) do not provide unambiguous constraints for the mode of formation. However, a magmatic origin for Cretaceous zircon of meta-gabbros and eclogites is considered likely. Supporting evidence for a previously suggested metamorphic origin for c. 80 Ma zircon in eclogite has not been found. Zircon of the same age occurring in chlorite-talc schists is presumably related to non-magmatic processes. Well-defined Cretaceous age groups clustering at c. 79 Ma also occur in the detrital zircon populations of 2 quartz mica schists representing the mélange matrix on Tinos, and suggest a much later time for sediment accumulation than previously assumed. The importance of c. 57 Ma zircon ages remains unclear, but may record either HP metamorphic processes or a post-57 Ma depositional age. The youngest age group in a third quartz mica schist from Tinos, collected outside the main mélange occurrences, clusters at c. 226-238 Ma. In all clastic metasediments from Tinos, most data points plot along the concordia between c. 300 and 900 Ma; single data points indicate concordant ages of c. 2.5 Ga, 2.3 Ga and 1 Ga, respectively. The youngest 206Pb/ 238U age group that has been recognized in a felsic paragneiss from Andros indicates an age of 163.1 ± 3.9 Ma, and mostly represents overgrowths around zircon with ages in the range from ˜ 272

  11. In-Situ U-Pb Dating of Apatite by Hiroshima-SHRIMP: Contributions to Earth and Planetary Science.

    Terada, Kentaro; Sano, Yuji


    The Sensitive High Resolution Ion MicroProbe (SHRIMP) is the first ion microprobe dedicated to geological isotopic analyses, especially in-situ analyses related to the geochronology of zircon. Such a sophisticated ion probe, which can attain a high sensitivity at a high mass resolution, based on a double focusing high mass-resolution spectrometer, designed by Matsuda (1974), was constructed at the Australian National University. In 1996, such an instrument was installed at Hiroshima University and was the first SHRIMP to be installed in Japan. Since its installation, our focus has been on the in-situ U-Pb dating of the mineral apatite, as well as zircon, which is a more common U-bearing mineral. This provides the possibility for extending the use of in-situ U-Pb dating from determining the age of formation of volcanic, granitic, sedimentary and metamorphic minerals to the direct determination of the diagenetic age of fossils and/or the crystallization age of various meteorites, which can provide new insights into the thermal history on the Earth and/or the Solar System. In this paper, we review the methodology associated with in-situ apatite dating and our contribution to Earth and Planetary Science over the past 16 years.

  12. SHRIMP zircon U-Pb dating of the Huangfengzhai pluton in eastern Nanling and its geological implications%南岭东段黄峰寨岩体SHRIMP锆石U-Pb年龄及地质意义

    范飞鹏; 肖惠良; 陈乐柱; 蔡逸涛; 李海立; 鲍晓明; 周延


    黄峰寨岩体位于南岭钨锡多金属成矿带的东段,对该岩体中的石英二长岩进行 SHRIM P 锆石 U‐Pb 年龄测定、岩石学和地球化学研究。石英二长岩的 SHRIMP 锆石 U‐Pb 年龄为231±3 Ma ,属中三叠世晚期。岩石学和地球化学特征表明,该岩体具有高硅、富铝、高钾、中碱、高钙的特征,属高钾钙碱性系列弱过铝质 S 型花岗岩类;微量元素 Sr 、Ba 、Nb 、P 、Ti 强烈亏损,Rb 、Th 、Ce 、Zr 、Sm 相对富集;稀土元素总量高,轻稀土富集,轻、重稀土分异明显,Eu 中等负异常;Hf(t)为-15.25~-2.88,Hf 两阶段模式年龄值为1.87~2.22Ga ,表明黄峰寨岩体为上地壳底部基性岩部分熔融的产物,推测该岩体可能形成于同碰撞构造环境。%The Huangfengzhai pluton is located in the eastern section of tungsten‐tin polymetallic met‐allogenic belt in the Nanling region .This study carried out SHRIM P zircon U‐Pb dating and lithological and geochemical anlyzses for quartz monazites from the Huangfengzhai pluton .The results show that a zircon U‐Pb age of quartz monzonite from the Huangfengzhai pluton is 231 ± 3 Ma ,belonging to late Mid‐dle Triassic .Lithological ,mineralogical and geochemical analyses suggest that the pluton is rich in Si ,Al and Ca ,with medium alkali ,indicating that the pluton belongs to high‐K ,calc‐alkaline series ,weakly‐per‐luminous S‐type granitoids .The pluton is also depleted in Sr ,Ba ,Nb ,P and Ti ,but relatively enriched in Rb ,Th ,Ce ,Zr and Sm ,with high ΣREE content ,distinct LREE and HREE differentiation ,and weak negative Eu anomalies .Zircon εHf(t) values range from - 15 .25 to - 2 .88 and Hf two‐stage model age values are 1 .87 ~ 2 .22 Ga ,indicating that the Huangfengzhai pluton was derived from partial melting of mafic rocks at the bottom of upper crust .It can be inferred that the Huangfengzhai pluton might form at a

  13. The U-Th-Pb systematics of zircon from the Bishop Tuff: A case study in challenges to high-precision Pb/U geochronology at the millennial scale

    Ickert, Ryan B.; Mundil, Roland; Magee, Charles W.; Mulcahy, Sean R.


    Dating zircon by U-Pb in the Pleistocene Bishop Tuff is challenging because the concentration of radiogenic Pb is low and the correction required for disequilibrium in the intermediate daughter products is large. The dates can be difficult to interpret, because their absolute precision is similar in magnitude to purported timescales of crystallization. Previous estimates of the duration of zircon crystallization span two orders of magnitude and appear to depend on the analytical approach. To reconcile the differing interpretations, we present new SIMS and ID-TIMS zircon Pb/U dates, including some crystals that are dated by both techniques. Both the SIMS and ID-TIMS dates have similar distributions as previous results. Normalized to a Th/Umelt = 2.81, SIMS spot dates from interior regions of sectioned grains range from 769 ± 31 ka to 845 ± 28 ka (2σ) and ID-TIMS dates have a range from 760 ± 7 ka to 793 ± 6 ka. Individual crystals dated by both methods have an average difference of 31 ka, with the SIMS dates being consistently older than the bulk crystal dates. This level of variability precludes the assignment of a geological significance to a mean (or weighted-mean) zircon date. A previous ID-TIMS investigation of single BT zircon that showed apparent statistically significant clustering of zircon ages was compromised by an incorrect treatment of the covariance structure of 230Th-corrected Pb/U data. We show approximate and exact methods for the correct treatment and demonstrate substantially more scatter in that data than previously recognized. Close scrutiny of available partition coefficient data show that they are not adequately precise for Bishop Tuff to <775 ka, which conflicts with some estimates of the 40Ar-39Ar sanidine age of eruption.

  14. Grenville Zircon Fertility, Baby Boom, and Baby Boom Echo; Natural Bias in the Detrital Zircon Record

    Moecher, D. P.; Samson, S. D.


    Grenville-aged (~1150-1050 Ma) granitoids of eastern Laurentia exposed in Appalachian basement massifs are as much as 20 times more Zr-rich and much more fertile for crystallizing zircon compared to Paleozoic Laurentian granitoids of the Eastern Blue Ridge, Inner Piedmont, and Carolina terranes. Erosion of Grenville source rocks generates disproportionately large numbers and/or sizes of detrital zircon compared to less fertile magmatic sources. The latter are essentially undetectable by standard detrital zircon provenance methods (SHRIMP or LA-ICP-MS analysis of magmatic cores of >100 micron grains). Grenvillian zircon fertility biased the Neoproterozoic to Recent detrital record as a result of: (1) zircon durability and insolubility in aqueous fluids means detrital zircons eroded from Grenville basement terranes are recycled during repeated orogenesis; (2) inertness of zircon below upper amphibolite facies (onset of anatexis), and high Zr resulting from concentration of detrital zircon in sedimentary protoliths, means dominantly metasedimentary terranes will fail to generate sufficient new zircon corresponding in age to the time of accretion of those terranes to Laurentia. Zircon growth under incipient anatectic conditions generates new zircon as overgrowths on detrital magmatic cores; overgrowths are often too thin to analyze by ion or laser beam. In this case, metasedimentary terranes may be rendered essentially undetectable. New `magmatic' zircon may be generated with greater degrees of anatexis, but might be inferred to be of plutonic, not metamorphic, parentage. Grenville modes dominate detrital zircon age distributions for: Laurentian Neoproterozoic rift basins; Neoproterozoic to Lower Ordovician passive margin sequences; Appalachian Paleozoic syn-orogenic clastic sequences; Appalachian metasedimentary terranes; and modern rivers. The latter is surprising since Grenville terranes comprise baby boom' that echoed through later orogenies. The natural Grenville

  15. U-Th-Pb zircon geochronology on igneous rocks in the Toija and Salittu Formations, Orijärvi area, southwestern Finland: constraints on the age of volcanism and metamorphism

    Christopher L. Kirkland


    Full Text Available Zircons from a felsic volcanic rock in the Toija Formation and a synvolcanic gabbro intrusion in the Salittu Formation within the Orijärvi area were dated by U-Th-Pb SIMS in order to provide depositional constraints on these formations. Zircon crystals from the felsic rock preserve a two-stage crystallisation history with zoned core domains and homogeneous rim domains. Inner domains yield a 1878±4 Ma concordia age, interpreted to determine the crystallisation of this rock. Rims yield a 1815±3 Ma concordia age interpretedto determine the regional metamorphism. Small rounded zircon grains from the Salittu gabbro, located within the Jyly shear zone, yield a concordia age of 1792±5 Ma. We interpret the grain textures to suggest that they recrystallised from inherited zircon seeds during the heat and fluid flow into the shear zone. Although no direct ages for the Salittu Formation have been recovered, field relationships imply that it was deposited between 1878−1875 Ma.

  16. The pre-orogenic detrital zircon record of the Variscan orogeny: Preliminary results

    Stephan, Tobias; Kroner, Uwe


    To test plate-tectonic constellations in consideration of the long-term development of sedimentary transport paths, temporally and spatially highly resolved records of provenance analysis are mandatory. The interpretation of existing studies focus on small-scale areas within an orogen thereby neglecting the differing distribution of provenance data in the entire orogenic system. This study reviews a large data set of compiled geochronological data to document the development of pre-orogenic tectonic units on the example of the Variscan orogeny. Constrained by tectonic and geological models, the temporal distribution of U-Pb detrital zircon ages, used as a proxy for sedimentary provenance, shows that some minima and maxima of zircon abundance are nearly synchronous for thousands of kilometres along the orogeny. Age spectra of Precambrian to Lower Palaeozoic samples were constructed on the basis of 38729 U-Pb ages from 685 samples that were compiled from 102 publications. The age compilation combines thermal ionization mass spectrometry (TIMS), laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS), sensitive high-resolution ion microprobe (SHRIMP), and secondary ion mass spectrometry (SIMS) analyses. The data was re-processed using a common age calculation and concordance filter to ensure comparability. The concordance of each zircon grain was calculated from 206Pb/238U and 207Pb/235U ages to guarantee that only concordant grains, i.e., with 3) is used for the maximum age of deposition. In addition to the location of >600 samples, the precise depositional ages result in a spatially and temporally high resolution. To avoid the different levels of analytical precision of the compiled TIMS, LA-ICP-MS, SHRIMP, and SIMS data, detrital zircon ages are plotted as kernel density estimates. Spatial and temporal distribution of the kernel density estimates, as well as further statistical techniques (e.g. multidimensional scaling) are used to discriminate

  17. Paleoproterozoic tectonic transition from collision to extension in the eastern Cathaysia Block, South China: Evidence from geochemistry, zircon U-Pb geochronology and Nd-Hf isotopes of a granite-charnockite suite in southwestern Zhejiang

    Zhao, Lei; Zhou, Xiwen; Zhai, Mingguo; Santosh, M.; Ma, Xudong; Shan, Houxiang; Cui, Xiahong


    The Badu complex and associated Paleoproterozoic granitoids are among the oldest known rocks in the Cathaysia Block in South China. The Paleoproterozoic units of the Badu complex are dominantly composed of metapelitic rocks and meta-greywackes. Here we report LA-SS-ICP-MS (laser ablation-split-stream inductively coupled plasma-mass spectrometry) zircon U-Pb data from a newly discovered garnet-bearing granite which show an emplacement age of 1929 ± 15 Ma and metamorphism at 1872 ± 34 Ma. We also report U-Pb ages of 1886 ± 16 Ma, 1858 ± 7 Ma, 1848 ± 11 Ma from a gneissic granodiorite, and two charnockites respectively. The garnet-bearing granite is peraluminous with A/CNK range from 1.1 to 1.3. The rock shows relatively high SiO2, K2O and Rb contents, and low total REE, Sr, CaO and ferromagnesian components, typical of leucogranites. The whole rock Nd two-stage model age(TDM2(Nd)) of this rock is ca. 2.7 Ga, zircon Hf crustal model ages(TDMC(Hf)) peak at about 2.7 Ga, and abundant inherited zircons occur with U-Pb ages in the range of 2044 to 2803 Ma. Evidences from zircon U-Pb age and Hf isotope compositions, whole rock Nd isotopes and whole rock major and trace elements suggest a metasedimentary protolith, and that the garnet-bearing granite (leucogranite) was derived by partial melting in a thickened crust at about 1.93 Ga. The gneissic granodiorite and charnockites show indistinguishable major and trace element features, as well as zircon Hf and whole rock Nd isotope compositions, indicating that they were generated from the same source rocks. The gneissic granodiorite and charnockites are ferroan, calc-alkalic and metaluminous with A/CNK range from 0.80 to 0.98. They display relatively low SiO2 contents and Ga/Al ratios, suggesting their A-type affinity. Their zircon TDMC(Hf) age-peak is 2.9 Ga and whole rock TDM2(Nd) ages range from 2.8 to 2.9 Ga. These high temperature rocks were generated possibly through the partial melting of ancient amphibolites (2

  18. Precambrian crustal evolution and Cretaceous–Palaeogene faulting in West Greenland: Zircon geochronology from the Kangaatsiaq–Qasigiannguit region, the northern part of the 1.9–1.8 Ga Nagssugtoqidian orogen, West Greenland

    Conelly, James N.


    Full Text Available The Kangaatsiaq–Qasigiannguit region in the northern part of the Palaeoproterozoic Nagssugtoqidian orogen of West Greenland consists of poly-deformed orthogneisses and minor occurrences of interleaved, discontinuous supracrustal belts. Laser ablation ICP-MS 207Pb/206Pb analyses of detrital zircons from four metasedimentary rocks (supplemented by ion probe analysis of one sample and igneous zircons from six granitoid rocks cutting metasedimentary units indicate that the supracrustal rocks in the Kangaatsiaq–Qasigiannguit (Christianshåb region are predominantly Archaean in age. Four occurrences of metasedimentary rocks are clearly Archaean, two have equivocal ages, and only one metasedimentary unit, from within the Naternaq (Lersletten supracrustal belt, is demonstrably Palaeoproterozoic and readily defines a large fold complex of this age at Naternaq. The 2.9–2.8 Ga ages of detrital Archaean grains are compatible with derivation from the local basement orthogneisses within the Nagssugtoqidian orogen. The detrital age patterns are similar to those of metasediments within the central Nagssugtoqidian orogen but distinct from age patterns in metasediments of the Rinkian belt to the north, where there is an additional component of pre-2.9 Ga zircons. Synkinematic intrusive granitoid rocks constrain the ages of some Archaean deformation at 2748 ± 19 Ma and some Palaeoproterozoic deformation at 1837 ± 12 Ma.

  19. U-Pb-Th geochronology of monazite and zircon in albitite metasomatites of the Rožňava-Nadabula ore field (Western Carpathians, Slovakia): implications for the origin of hydrothermal polymetallic siderite veins

    Hurai, V.; Paquette, J.-L.; Lexa, O.; Konečný, P.; Dianiška, I.


    Sodic metasomatites (albitites) occur around and within siderite veins in the southern part of the Gemeric tectonic unit of the Western Carpathians. Accessory minerals of the metasomatites represented by monazite, zircon, apatite, rutile, tourmaline and siderite are basically identical with the quartz-tourmaline stage of other siderite and stibnite veins of the tectonic unit. Statistical analysis of chemical Th-U(total)-Pb isochron method (CHIME) of monazite dating yielded Jurassic-Cretaceous ages subdivided into 3-4 modes, spreading over time interval between 78 and 185 Ma. In contrast, LA-ICPMS 206Pb/238U dating carried out on the same monazite grains revealed a narrow crystallization interval, showing ages of Th-poor cores with phengite inclusions identical within the error limit with Th-rich rims with cauliflower-like structure. The determined lower intercept at 139 ± 1 Ma overlapped the Vallanginian-Berriasian boundary, thus corroborating the model of formation of hydrothermal vein structures within an arcuate deformation front built up in the Variscan basement as a response to Early Cretaceous compression, folding and thrusting. In contrast, associated zircons are considerably older than the surrounding Early-Palaeozoic volcano-sedimentary rocks, showing Neoproterozoic ages. The zircon grains in albitite metasomatites are thus interpreted as fragments of Pan-African magmatic detritus incorporated in the vein structures by buoyant hydrothermal fluids.

  20. Timing and conditions of metamorphism and melt crystallization in Greater Himalayan rocks, eastern and central Bhutan: insight from U-Pb zircon and monazite geochronology and trace-element analyses

    Zeiger, K.; Gordon, S. M.; Long, S. P.; Kylander-Clark, A. R. C.; Agustsson, K.; Penfold, M.


    Within the eastern Himalaya in central and eastern Bhutan, Greater Himalayan (GH) rocks are interpreted to have been thickened by the Kakhtang thrust (KT). In order to understand the metamorphic and exhumation history of the GH and to evaluate the structural significance of the KT, zircon and monazite from twenty samples were analyzed by laser-ablation split-stream ICPMS. In eastern Bhutan, zircon and monazite from samples collected in the KT hanging wall revealed ca. 36-28 Ma metamorphism. Subsequently, the initiation of melt crystallization shows a trend with structural distance above the KT, with early melt crystallization (ca. 27 Ma) in the structurally highest samples and younger melt crystallization (ca. 16 Ma) for leucosomes within the KT zone. Melt crystallization was protracted and continued until ca. 14-13 Ma in both the KT hanging wall and the footwall. In comparison, in central Bhutan, two leucosomes revealed extended melt crystallization from ca. 31 to 19 Ma. The youngest zircon dates from samples exposed structurally above and below the KT are similar, indicating that the KT was not as significant of a structure as other fault systems to which it has been correlated. However, the younging trend in the initiation of melt crystallization with decreasing structural distance above the KT argues that progressive underplating of ductile material assisted in the initial emplacement of the GH unit in central and eastern Bhutan. The KT likely represents a minor shear zone that aided in this underplating process.

  1. Neoarchean-Early Paleoproterozoic and Early Neoproterozoic arc magmatism in the Lützow-Holm Complex, East Antarctica: Insights from petrology, geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    Tsunogae, Toshiaki; Yang, Qiong-Yan; Santosh, M.


    The Lützow-Holm Complex (LHC) of East Antarctica forms part of the Neoproterozoic-Cambrian high-grade metamorphic segment of the East African-Antarctic Orogen. Here we present new petrological, geochemical, and zircon U-Pb and Lu-Hf isotopic data for meta-igneous rocks including charnockite, felsic gneiss, metagabbro, and mafic granulite from the LHC and evaluate the Neoarchean to Early Paleoproterozoic (ca. 2.5 Ga) and Early Neoproterozoic (ca. 1.0 Ga) arc magmatic events. The trace element geochemical signatures reveal a volcanic arc affinity for the charnockites from Sudare Rocks and Vesleknausen and felsic gneiss from Rundvågshetta, suggesting that the protoliths of these rocks were derived from felsic arc magmas. In contrast, metagabbros from Skallevikshalsen and Austhovde, occurring as boudins in metasediments, show non-arc signatures (within-plate basalt or mid-oceanic ridge basalt). The upper intercept ages of magmatic zircons in charnockite plotted on concordia diagrams yielded 2508 ± 14 Ma (Sudare Rocks) and 2490 ± 18 Ma (Vesleknausen), clearly suggesting a Neoarchean to Early Paleoproterozoic arc magmatic event. A subsequent thermal event during Early Neoproterozoic traced by 206Pb/238U age of oscillatory-zoned core of zircon in mafic granulite from Langhovde (973 ± 10 Ma) is consistent with a similar Early Neoproterozoic magmatic event reported from the LHC, suggesting a second stage of arc magmatism. The timing of peak metamorphism has been inferred from 206Pb/238U mean ages of structureless zircons in metagabbros from Skallevikshalsen and Austhovde, mafic granulite from Langhovde, and felsic gneiss from Rundvågshetta in the range of 551 ± 5.4 to 584 ± 5.0 Ma. Zircon Lu-Hf data of Neoarchean charnockites from Sudare Rocks and Vesleknausen indicate that the protolith magma was sourced from Paleo- to Neoarchean juvenile components mixed with reworked ancient crustal materials. Protolith magmatic rock of the felsic gneiss from Rundvågshetta might

  2. 东准噶尔晚古生代次火山侵入岩锆石SHRIMP U-Pb年龄及Sr-Nd同位素地球化学%Zircon SHRIMP U-Pb Dating and Sr-Nd Isotopic Geochemistry of Late Paleozoic Subvolcanic-Intrusive Rocks in Eastern Junggar

    张峰; 徐涛; 郭晓东; 范俊杰; 张栋; 潘爱军; 朝银银


    Late Paleozoicvolcanic-subvolcanic-intrusive rocks in Eastern Junggar are developed.Songkaersu granodiorite porphyry,as a part of them,formed in the southeast Kalamali tectonic belt.Petrography,SHRIMP zircon U-Pb and Sr-Nd isotope indicate that all zircons selected are magmatic, and the zircons U-Pb concordant ages of two samples may be sub-divided into many groups,of which the youngest concordant age is 305.5~316.3Ma which can be interpreted as the for-mation age of Songkaersu granodiorite porphyry.On the other hand,others ages such as early Cambrian to early Carbonif-erou are consistent with the ages of oceanic-crust and island-arc magmatic rocks around the Junggar Basin.Moreover,the positiveεNd(t)(3.0 to 15.1), medium 87Sr/86Sr initial ratios (0.703 861 to 0.713 151), and smaller T2DM (412 to 839) may imply that the eastern basement of the Junggar Basin was tectonically amalgamated by underplating of mantle-derived substances and different Paleozoic remnant oceanic crust and arc complexes upon the minor Precambrian continental crust . Songkaersu granodiorite porphyry may result from the interaction of a amount of new-born lower crust and minor asthenospheric mantle or depleted lithospheric mantle,and the formation mechanism of them perhaps might be related to the subduction of the Paleo-Asian oceanic plate under the Kazakhstan-Junggar plate and result in back-arc spreading.%东准噶尔地区石炭纪巴塔玛依内山组火山岩-次火山侵入岩发育。本文以卡拉麦里构造带东南部松喀尔苏地区次火山侵入岩--花岗闪长斑岩为研究对象,通过岩石学、SHRIMP锆石U-Pb和Sr-Nd同位素方面的研究发现,所有锆石都具岩浆成因,锆石U-Pb年龄可分为多组,其中最小的一组年龄为305.5~316.3 Ma,代表岩体的形成时间,其他年龄多与准噶尔地区产出的具洋壳和岛弧性质的岩浆岩时代一致。岩石具正的εNd(t)(3.0~15.1),中等的87Sr/86Sr初始值(0

  3. SHRIMP U-Pb dating of the preeruption growth history of zircons from the 340 ka Whakamaru Ignimbrite, New Zealand: Evidence for >250 k.y. magma residence times

    Brown, Stuart J. A.; Fletcher, Ian R.


    The Whakamaru group ignimbrites are products of one of the largest caldera-forming eruptions from the central Taupo Volcanic Zone, New Zealand, ca. 340 ka. Imaging of zircons separated from low-silica rhyolite pumice from Whakamaru group ignimbrite reveals a complex magmatic crystallization history; some grains contain resorbed cores. Cores and rims of individual zircons were dated using the sensitive high-resolution ion microprobe. Due to the high U contents of the zircons, 206Pb count rates were sufficiently high to obtain 206Pb/238U ages with precisions of 5% 10% (1 σS) using longer than usual 206Pb+ count times, and this has allowed zircon core and rim ages to be distinguished. Zircon rim and outer growth zone ages range from within 1 σS error of the eruption age to 449 ± 20 ka, whereas zircon cores produced ages to 608 ± 20 ka, indicating magmatic residence times exceeding 250 k.y. for some zircons. The data are consistent with a prolonged evolution of the magma system over hundreds of thousands of years, involving magma replenishment and mixing with residual phases of older silicic magma chambers, in addition to crystal fractionation processes, prior to eruption. The study has shown that 206Pb/238U dating using high-resolution ion microprobe can be used to determine zircon preeruptive growth histories in Quaternary lavas and pyroclastic rocks.

  4. Subduction-related Late Carboniferous to Early Permian Magmatism in the Eastern Pontides, the Camlik and Casurluk plutons: Insights from geochemistry, whole-rock Sr-Nd and in situ zircon Lu-Hf isotopes, and U-Pb geochronology

    Karsli, Orhan; Dokuz, Abdurrahman; Kandemir, Raif


    Late Carboniferous to early Permian granitoid rocks represent a volumetrically minor component of the Eastern Pontide lithosphere, but they preserve useful information about the region's tectonomagmatic history. The Casurluk and Camlik plutons primarily consist of gabbro, gabbroic diorite, diorite, monzogabbro, monzodiorite and monzonite, which intrude early to middle Carboniferous granitic basement rocks in the region. In this study, we use in situ zircon U-Pb ages and Lu-Hf isotopic values, whole-rock Sr-Nd isotopic values, and mineral chemistry and geochemistry of these plutons to determine petrogenesis and crustal evolution; we also discuss geodynamic implications. LA-ICP-MS zircon U-Pb dating of magmatic zircons from the rocks suggests that the plutons were emplaced during the late Carboniferous to early Permian (302 Ma). The metaluminous and I-type intrusive rocks belong to the high-K calc-alkaline series. In addition, they are relatively enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs); they are depleted in heavy rare earth elements (HREEs) and high field strength elements (HFSEs), such as Nb and Ti. All of the samples have homogeneous initial ISr values (0.70675 to 0.70792) and low εNd (t) values (- 5.1 to - 3.3). Zircons from the rocks of both plutons have uniform negative to slightly positive εHf (t) values (- 3.5 to 1.4) and old Hf two-stage model ages (1323 to 1548 Ma), implying that they have the same source, as well as suggesting the involvement of old enriched lithospheric mantle materials during their magma genesis. These results, combined with the εHf (t) values and two-stage model ages, demonstrate that the primary magmas were derived from partial melting of old lithospheric mantle material metasomatized by subduction-related fluids. Considering other regional geological data from the Sakarya Zone where these plutons formed, we conclude that late Carboniferous to early Permian magmatism in the area

  5. Determining age of Pan African metamorphism using Sm-Nd garnet-whole rock geochronology and phase equilibria modeling in the Tasriwine ophiolite, Sirwa, Anti-Atlas Morocco

    Inglis, Jeremy D.; Hefferan, Kevin; Samson, Scott D.; Admou, Hassan; Saquaque, Ali


    Sm-Nd garnet-whole rock geochronology and phase equilibria modeling have been used to determine the age and conditions of regional metamorphism within the Tasriwine ophiolite complex, Sirwa, Morocco. Pressure and temperature estimates obtained using a NaCaKFMASHT phase diagram (pseudosection) and garnet core and rim compositions predict that garnet growth began at ∼0.72 GPa and ∼615 °C and ended at ∼0.8 GPa and ∼640 °C. A bulk garnet Sm-Nd age of 647.2 ± 1.7 Ma, calculated from a four point isochron that combines whole rock, garnet full dissolution and two successively more aggressive partial dissolutions, provides a precise date for garnet formation and regional metamorphism. The age is over 15 million years younger than a previous age estimate of regional metamorphism of 663 ± 13 Ma based upon a SHRIMP U-Pb date from rims on zircon from the Iriri migmatite. The new data provide further constraints on the age and nature of regional metamorphism in the Anti-Atlas mountains and emphasizes that garnet growth during regional metamorphism may not necessarily coincide with magmatism/anatexis which predominate the signature witnessed by previous U-Pb studies. The ability to couple PT estimates for garnet formation with high precision Sm-Nd geochronology highlights the utility of garnet studies for uncovering the detailed metamorphic history of the Anti-Atlas mountain belt.

  6. Tracing magma sources of three different S-type peraluminous granitoid series by in situ U-Pb geochronology and Hf isotope zircon composition: The Variscan Montes de Toledo batholith (central Spain)

    Merino Martínez, E.; Villaseca, C.; Orejana, D.; Pérez-Soba, C.; Belousova, E.; Andersen, T.


    Three distinct S-type peraluminous granitoid types have been identified within the Variscan Montes de Toledo batholith, located in the Central Iberian Zone (SW European Variscides): type-1, extremely high peraluminous restite-rich granitoids; type-2, highly peraluminous restite-bearing granitoids; and type-3, moderately peraluminous granitoids with mafic microgranular enclaves. Type-1 and type-2 granitoids are restricted to the western part of the batholith, whereas type-3 granites are mostly restricted to the eastern segment. There is a sequential youngering of emplacement age from type-1 (late-tectonic) to type-2 and type-3 granitoids (post-tectonic), extending the timing of the batholith formation for about 19 Ma between 316 and 297 Ma. Although the degree of peraluminousity of the different series could be related to different partial melting conditions or to the variable entrainment of restitic components (including the peritectic mineral assemblage of the melting reactions), whole-rock geochemical signatures and isotope zircon composition of the peraluminous granitoid types suggest contribution of different crustal sources. There is no evidence for the direct mantle-derived material contribution in the genesis of these peraluminous melts. Type-1 and type-2 granitoids contain mostly Archean to Neoproterozoic inherited zircons, whereas type-3 granites show preferentially Neoproterozoic (up to late Cryogenian) and Ordovician inheritance. The wide range of initial Hf isotope composition, ranging to highly radiogenic values (ƐHf up to + 10), of Neoproterozoic zircon inheritances in type-1 and type-2 granitoids suggests derivation from heterogeneous Neoproterozoic metasedimentary sources composed of both juveline and recycled crustal materials, similar in composition to the host Schist-Greywacke Complex metasediments. Trace-element modelling clearly suggests the involvement of metasediments similar to those mentioned from the southern part of the Central Iberian

  7. Geochemistry, geochronology and zircon Hf isotopic study of peralkaline-alkaline intrusions along the northern margin of the North China Craton and its tectonic implication for the southeastern Central Asian Orogenic Belt

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei; Liao, Wen; Wang, Yanyang


    A giant Permian alkaline magmatic belt has recently been identified in southern Inner Mongolia, along the northern margin of the North China Craton (NCC). This belt is mainly composed of syenite, quartz syenite, alkaline granite and mafic microgranular enclaves (MME)-bearing granodiorite. In order to study the petrogenesis and tectonic implications of these rocks, we undertook zircon U-Pb dating and geochemical analysis of two Permian alkaline plutons. The first Guangxingyuan Pluton occurs in the Hexigten area and is composed of MME-bearing tonalite, K-feldspar granite and syenite. The second Durenwuliji Pluton, located in the Xianghuangqi area, comprises syenite, quartz syenite and K-feldspar granite. Zircon U-Pb dating on tonalite, K-feldspar granite, syenite and quartz syenite from the two plutons yielded a tight range of ages from 259 to 267 Ma. The peralkaline-alkaline rocks show high abundance of total alkalis (K2O + Na2O = 7.9-12.9%) and K2O contents (3.9-8.0%), enrichment in large ion lithophile elements (LILE) and light rare earth element (LREE), and depletion of high field strength elements (HFSE). The associated tonalite and MMEs display I-type granitic geochemical affinity, with less total abundance of trace elements than the peralkaline-alkaline rocks. Zircon Hf isotopic analysis of the Guangxingyuan pluton yielded a large range of εHf(t) values from - 15.5 to + 6.7 and model ages (TDMC) from 781 to 2012 Ma. By contrast, the Hf isotopic data of the Durenwuliji pluton shows a small range of εHf(t) from + 6.2 to + 8.9 and TDMC from 667 to 816 Ma. The geochemical and Hf isotopic characteristics indicate that the parental magma was derived from a mixing of metasomatic mantle-derived mafic magma with different amount of crust-derived felsic magma, and followed by fractional crystallization. Considering previous tectonic studies in Inner Mongolia, a Permian post-orogenic extension was proposed to account for these peralkaline-alkaline intrusions following

  8. Possible early Neoproterozoic magmatism associated with slab window in the Pingshui segment of the Jiangshan-Shaoxing suture zone: Evidence from zircon LA-ICP-MS U-Pb geochronology and geochemistry


    We report here geochemical data, U-Pb zircon ages, and Hf isotopes for the high-Mg diorites (HMDs), Nb-enriched basaltic porphyrys (NEBPs) and plagiogranites (PLAGs) in the Pingshui segment of the Jiangshan-Shaoxing suture zone. The HMDs are characterized by high Mg# (>60), high Na and LREE contents, depletion of HREE and HFSE, and pronounced positive εNd(t) values of 7.0 to 7.7, similar to some adakitic high-Mg andesites. The NEBPs are relatively Na-rich (Na2O/K2O>6) and display high abundances of P2O5 (~1.00%), TiO2 (~3.08%) and HFSE (e.g., Nb=9.53-10.27 ppm). Their Nd isotopic compositions (εNd(t)=6.8-8.0) are comparable to those of the HMDs. The PLAGs are metaluminous (A/CNK=0.84-0.89) and sodic (Na2O/K2O>10). Their depletion in HFSE (e.g., Nb, Ta) is consistent with "SSZ-type" plagiogranite. Zircon LA-ICP-MS U-Pb dating yields an age of 932±7 Ma for the HMD, 916±6 Ma for the NEBP, and 902±5 Ma for the PLAG, respectively, indicating that they were products of early Neoproterozoic magmatism. The PLAGs exhibit relatively high zircon Hf isotopes and positive εHf(t) values of 11.0 to 16.2, consistent with their Nd isotopic data (εNd(t)=7.5-8.4). Such features are similar to those of oceanic plagiogranites in ophiolites and distinct from those of crust-derived granites. The PLAGs were most likely derived from partial melting of subducted oceanic crust in an active continental margin. Considering these results in the context of the regional geology, we suggest that a slab window in the subducting oceanic crust between the Yangtze Block and Cathaysia Block was possibly the principal cause for the unique arc magmatism in the area. The upwelling asthenosphere below the slab window may have provided significant thermodynamic conditions.

  9. Possible early Neoproterozoic magmatism associated with slab window in the Pingshui segment of the Jiangshan-Shaoxing suture zone: Evidence from zircon LA-ICP-MS U-Pb geochronology and geochemistry

    CHEN ZhiHong; GUO KunYi; DONG YongGuan; CHEN Rong; LI LongMing; LIANG YiHong; LI ChunHai; YU XiMing; ZHAO Ling; XING GuangFui


    We report here geochemical data, U-Pb zircon ages, and Hf Isotopes for the high-Mg diorites (HMDs), Nb-enriched basaltic porphyrys (NEBPs) and plagiogranitee (PLAGs) in the Pingshui segment of the Jiangshan-Shaoxing suture zone. The HMDs are characterized by high Mg# (>60), high Na and LREE contents, depletion of HREE and HFSE, and pronounced positive εNd(t) values of 7.0 to 7.7, similar to some adakitic high-Mg andesites. The NEBPs are relatively Na-rich (Na2O/K2O>6) and display high abundances of P2Os5(~1.00%), TiO2(~3.08%) and HFSE (e.g., Nb=9.53-10.27 ppm). Their Nd isotopic compositions (εNd(t)=6.8-8.0) are comparable to those of the HMDs. The PLAGs are metaluminous (AJCNK=0.84-0.89) and sodic (Na2O/K2O>10). Their depletion in HFSE (e.g., Nb, Ta) Is consistent with "SSZ-type" plagiogrenite. Zircon LA-ICP-MS U-Pb dating yields an age of 932±7 Ma for the HMD, 916±6 Ma for the NEBP, and 902±5 Ma for the PLAG, respectively, indicating that they were products of early Neoproterozoic magmatism. The PLAGs exhibit relatively high zircon Hf isotopes and positive εHf(t) values of 11.0 to 16.2, consistent with their Nd isotopic data (trod(f)=7.5-8.4). Such features are similar to those of oceanic plagiogranites in ophiolites and distinct from those of crust-derived granites. The PLAGs were most likely derived from partial melting of subducted oceanic crust in an active conUnen- tal margin. Considering these results in the context of the regional geology, we suggest that a slab window in the subducting oceanic crust between the Yangtze Block and Cathaysia Block was possibly the principal cause for the unique arc magmatism in the area. The upwelling aathenosphere below the slab window may have provided significant thermodynamic conditions.

  10. Petrology and U-Pb zircon geochronology of bimodal volcanic rocks from the Maierze Group, northern Tibet: Constraints on the timing of closure of the Banggong-Nujiang Ocean

    Fan, Jian-Jun; Li, Cai; Xie, Chao-Ming; Wang, Ming; Chen, Jing-Wen


    We present new zircon U-Pb dates, major and trace element chemistry, and Hf isotopic compositions for bimodal volcanic rocks of the Maierze Group (MG) in the Maierze area of the Southern Qiangtang-Baoshan block, northern Tibet. We discuss the implications of these data for the evolution of this region. The MG bimodal volcanic rocks consist of basalts and dacites that yield LA-ICP-MS zircon U-Pb ages of 122 and 120 Ma, respectively. The MG basalts have light rare earth element (LREE)-enriched chondrite-normalized REE patterns (LaN/YbN = 13-14), high Ti/V ratios (45-64), high Zr (190-270 ppm) and Nb (22-41 ppm) concentrations, and Zr/Y ratios (7-9) that are similar to those of within-plate basalts. The MG basalts also have low MgO and total Fe2O3 (TFe2O3) concentrations, significant enrichments in the LREE and the light ion lithophile elements (LILEs; Rb, Ba, Th, U and Pb), and weak depletions in the high field strength elements (HFSE; Nb, Ta, and Ti), all of which are clearly evident in primitive-mantle-normalized multi-element variation diagrams. The MG dacites are more enriched in the LILE (e.g., Rb, Ba, Th, U, K, and Pb) and more depleted in the HFSE (e.g., Nb, Ta, and Ti) than the MG basalts. Moreover, the dacites have variable zircon εHf(t) values (- 6.3 to + 6.3). These features indicate that the parental magma for the MG basalts was likely derived from an enriched lithospheric mantle source that was contaminated by subduction-related fluids or melts. In contrast, the MG dacites were derived from mixing of the MG basaltic magma with a second magma derived from partial melting of the continental crust. The geochemical and Hf isotopic characteristics of the MG bimodal volcanic rocks suggest that they formed during the initial stages of development of a back-arc basin. From south to north, the Bangong-Nujiang suture zone, the Duolong gold-rich porphyry copper deposit, and the Maierze bimodal rocks are interpreted to represent a remnant of a complete volcanic arc

  11. Sequence of Late Jurassic-Early Cretaceous magmatic-hydrothermal events in the Xiong'ershan region, Central China: An overview with new zircon U-Pb geochronology data on quartz porphyries

    Deng, Jun; Gong, Qingjie; Wang, Changming; Carranza, Emmanuel John M.; Santosh, M.


    Recent investigations have revealed several large Au and Mo deposits in the Xiong'ershan region, Central China. Most quartz porphyries associated with the mineralization occur as dikes and apophyses, or as rubbles cemented in mineralized breccia pipes. Three types of quartz porphyries were sampled from the Leimengou Mo deposit, the Qiyugou Au deposit, and the Niutougou Au deposit. LA-ICP-MS zircon U-Pb analysis was performed in zircons from two quartz porphyries; the results yielded ages of 125.4 ± 0.77 Ma for Leimengou Mo deposit and 150.1 ± 1.1 Ma for Qiyugou Au deposit. The magma source of Leimengou quartz porphyry is similar to that of the mineralized cementing material in breccia pipes of the Qiyugou Au deposit, whereas the magma source of Qiyugou quartz porphyry is the same as that of quartz porphyries in Niutougou Au deposit. Based on the new U-Pb isotopic ages of granitic plutons reported in this study, together with the age data in the literature, we identify distinct magmatic pulses in the Xiong'ershan region at ca.160, 150, 143, 133, 125, and 115 Ma during the Late Jurassic-Early Cretaceous. The ages of Au and Mo mineralization coincide with the thermal events at about 115, 125, 133, and 143 Ma are considered to be co-eval with granitic magmatism. No mineralization ages of 150 and 160 Ma thermal events have been previously reported. Our study demonstrates Late Jurassic-Early Cretaceous multiple magmatic pulses and mineralization in the Xiong'ershan region.

  12. Geochronology and Tectonic Evolution of the Lincang Batholith in Southwestern Yunnan, China

    Hongyuan Zhang; Junlai Liu; Wenbin Wu


    Geochronological research of the Lincang Batholith is one key scientific problem to discuss the tectonic evolution of the Tethys. Two granitic specimens were selected from the Mengku-Douge area in the Lincang Batholith to perform the LA-ICPMS Zircon U-Pb dating based on thorough review of petrological, geochemical, and geochronological data by the former scientists. Rock-forming age data of biotite granite specimen from Kunsai is about 220 Ma, the Norian age. However, the west sample from Men...

  13. Ar-Ar and U-Pb geochronology of Late Paleozoic basalts in western Guangxi and its constraints on the eruption age of Emeishan basalt magmatism

    FAN Weiming; WANG Yuejun; PENG Touping; MIAO Laicheng; GUO Feng


    The Late Paleozoic layered or stratoid-layered basalts in western Guangxi have similar elemental and isotopic compositions to Emeishan high-Ti basalts. Whole-rock 40Ar/39Ar and SHRIMP zircon U-Pb dating were carried out for the representative basalt samples in three typical profiles in the area. Three basalts from the upper segment of Yangxu profile and lower segment of Yufeng and Min'an profiles yield the 40Ar/39Ar plateau ages of 253.6±0.4 Ma (20BS-71),255.4±0.4 Ma (20BS-99) and 256.2±0.8 Ma (20BS-119), respectively. Twenty-three analyses on 23 zircons of the basalt from the upper segment of Yangxu profile give a weighted mean 206pb/238U age of 253.7±6.1 Ma with an MSWD = 2.8.These new and published geochronological data for Emeishan large igneous province (LIP) indicate that the Emeishan LIP was initiated at ~260 Ma, voluminously erupted between 253 and 256 Ma, and possibly ended at ~251-253Ma' The age (251-260 Ma) is generally consistent with that of the associated environmental deterioration and mass extinction events at the end-Guadalupian and Permo-Triassic boundary. These precise geochronological data provide important constraints on the dominantly eruptive time of the Emeishan LIP and understanding of the distribution of Emeishan high-Ti basalts and its mantle plume dynamics.

  14. 浙江临安夏色岭钨矿含矿岩体特征及LA-ICP-MS锆石铀-铅年代学研究%Characteristics and LA-ICP-MS Zircon U-Pb Geochronology Study of Metallogenic Intrusion in the Xiaseling Tungsten Deposit in Lin'an,Zhejiang Province

    黄国成; 王登红; 吴小勇


    夏色岭钨矿是浙江省内已知规模最大的石英脉型钨矿,其形成与夏色岭花岗岩体关系密切,前人对该岩体的年代学研究方法比较局限.本研究采集了夏色岭钨矿区的新鲜花岗岩样品,从岩石的矿物学特征及地球化学特征出发,讨论了岩体与成矿作用之间的关系.通过分析精度更高、结果更可靠的激光剥蚀-电感耦合等离子体质谱( LA - ICP - MS)锆石U- Pb测年技术,获得206Pb/238 U加权平均年龄为( 126.9±1.7)Ma,表明为燕山晚期早阶段(早白垩世)的产物,结合区域上的找矿成果,对本地区的地质找矿具有一定指导意义.%The Xiaseling tungsten deposit is the largest discovered quartz-veined tungsten deposit in Zhejiang Province, which is closely related to Xiaseling Granite. The geochronological study on this granite has been very limited in previous studies. Fresh granite samples were collected from the Xiaseling tungsten deposit. The relationship between Xiaseling Granite and mineralization is discussed by mineralogy and geochemical characteristics of the rocks. The in-situ zircon U-Pb dating was performed with Laser Ablation-Multicollector Inductively Coupled Plasma-Mass Spectrometry ( LA-MC-ICPMS) with higher accuracy and greater reliability than previously achieved. Our result indicates that the weighted average 206Pb/238U ages for zircons from the Xiaseling granite is ( 126. 9 ?.7) Ma, suggesting the granite was intruded in the early stage of the late Yenshanian Period of the early Cretaceous era. Together with regional prospecting findings, it is also important for ore exploration work in this area.

  15. Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China

    Leng, Cheng-Biao; Zhang, Xing-Chun; Hu, Rui-Zhong; Wang, Shou-Xu; Zhong, Hong; Wang, Wai-Quan; Bi, Xian-Wu


    The Xuejiping porphyry copper deposit is located in northwestern Yunnan Province, China. Tectonically, it lies in the southern part of the Triassic Yidun island arc. The copper mineralization is mainly hosted in quartz-dioritic and quartz-monzonitic porphyries which intruded into clastic-volcanic rocks of the Late Triassic Tumugou Formation. There are several alteration zones including potassic, strong silicific and phyllic, argillic, and propylitic alteration zones from inner to outer of the mineralized porphyry bodies. The ages of ore-bearing quartz-monzonitic porphyry and its host andesite are obtained by using the zircon SIMS U-Pb dating method, with results of 218.3 ± 1.6 Ma (MSWD = 0.31, N = 15) and 218.5 ± 1.6 Ma (MSWD = 0.91, N = 16), respectively. Meanwhile, the molybdenite Re-Os dating yields a Re-Os isochronal age of 221.4 ± 2.3 Ma (MSWD = 0.54, N = 5) and a weighted mean age of 219.9 ± 0.7 Ma (MSWD = 0.88). They are quite in accordance with the zircon U-Pb ages within errors. Furthermore, all of them are contemporary with the timing of the Garzê-Litang oceanic crust subduction in the Yidun arc. Therefore, the Xuejiping deposit could be formed in a continental margin setting. There are negative ɛNd(t) values ranging from -3.8 to -2.1 and relatively high initial 87Sr/86Sr ratios from 0.7051 to 0.7059 for the Xuejiping porphyries and host andesites. The (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t values of the Xuejiping porphyries and host andesites vary from 17.899 to 18.654, from 15.529 to 15.626, and from 37.864 to 38.52, respectively, indicative of high radiogenic Pb isotopic features. In situ Hf isotopic analyses on zircons by using LA-MC-ICP-MS exhibit that there are quite uniform and slightly positive ɛHf(t) values ranging from -0.2 to +3.2 (mostly between 0 and +2), corresponding to relatively young single-stage Hf model ages from 735 Ma to 871 Ma. These isotopic features suggest that the primary magmas of the Xuejiping porphyries and

  16. Detrital Zircon of 4100 Ma in Quartzite in Burang, Tibet

    DUO Ji; WEN Chunqi; FAN Xiaoping; GUO Jianci; NI Zhiyao; LI Xiaowen; SHI Yuruo; WEN Quan


    A detrital zircon aged 4.1 Ga is discovered by the SHRIMP U-Pb method in a quartzite in Burang County, western Tibet. This is presently the oldest single-grain detrital zircon in China. The Th-U ratios of the two testing points of the >4.0 Ga zircon are between 0.76 and 0.86, indicating their magmatic origin. This discovery has offered an important age for investigating the geological evolution of the Qinghai-Tibet Plateau.

  17. U-Pb (Zircon Ages of Metavolcanic Rocks From the Itaiacoca Group: Tectonic Implications

    Oswaldo Siga Jr.


    Full Text Available The main aim of this work is to present and discuss the U-Pb ages obtained for zircon grains from metavolcanic rocks of theItaiacoca Group. The Itaiacoca Group is a metavolcano-sedimentary sequence, which occurs as a narrow belt between theCunhaporanga granitic batholith to the northwest and the Itapirapuã shear zone to the south and southwest, which separates thesequence from the Três Córregos granite batholith and metasedimentary rocks of the Açungui Group. Geological studies of thesouthern part of the Itaiacoca belt led to the recognition of three units, represented (from base to top by metawackes with animportant volcanic component, metacarbonate, and metapelitic and metapsammitic rocks. The U-Pb geochronological analyses ofzircon grains from two outcrops of metavolcanic rocks yield ages of 628 ± 18 Ma (SHRIMP and 636 ± 30 Ma (conventional multigrainanalyses. These ages are quite close to the metamorphic event recorded in the Itaiacoca Group (628 – 610 Ma, suggesting ashort interval between the formation of these rocks and closure of the basin. Furthermore, this volcanism is very close to the age offormation of the Três Córregos (630 Ma and Cunhaporanga (590 Ma granitic batholiths, admitted as associated with a probablemagmatic arc. Such an isotopic pattern characterizes a Neoproterozoic tectonic scenario involving volcanism, metamorphism andgranitic plutonism, interpreted here as the final stages in the evolution of the Itaiacoca Basin.

  18. U-Pb zircon geochronology of ''brasiliano'' granitoids from the Serido orogenic belt (Borborema Province, NE Brazil). Ages U-Pb sur zircon de granitoides ''brasilianos'' de la ceinture du Serido (Province Borborema, NE Bresil)

    Leterrier, J.; Bertrand, J.M. (Centre National de la Recherche Scientifique (CNRS), 54 - Nancy (France). Centre de Recherches Petrographiques et Geochimiques); Pin, C. (Clermont-Ferrand-2 Univ., 63 - Aubiere (France)); Jardim de Sa, E.


    Diorites previously attributed to an early stage of the 'brasiliano' plutonic evolution of the Serido belt yielded U-Pb zircon age of 579 [+-]7 Ma. The age of associated granites is slightly younger although a synchronous emplacement of granites and diorites is suggested by field relationships. Such an age difference may result from difficulties to distinguish 'crystallization age' from 'emplacement age', which is still to be determined precisely. (authors). 16 refs., 3 figs., 1 tab.

  19. Crystal Shrimp


    Ingredients: One egg white, 500 grams of shredded river shrimp, 10 grams of soda, 750 grams of cooking oil, sesame oil, sugar, salt, corn starch and hot pepper, and half ladle of soup-stock. Directions: 1. Clean the shrimp with salt, then wash away the salt and strain off the

  20. Synchronous formation of the metamorphic sole and igneous crust of the Semail ophiolite: New constraints on the tectonic evolution during ophiolite formation from high-precision U-Pb zircon geochronology

    Rioux, Matthew; Garber, Joshua; Bauer, Ann; Bowring, Samuel; Searle, Michael; Kelemen, Peter; Hacker, Bradley


    The Semail (Oman-United Arab Emirates) and other Tethyan-type ophiolites are underlain by a sole consisting of greenschist- to granulite-facies metamorphic rocks. As preserved remnants of the underthrust plate, sole exposures can be used to better understand the formation and obduction of ophiolites. Early models envisioned that the metamorphic sole of the Semail ophiolite formed as a result of thrusting of the hot ophiolite lithosphere over adjacent oceanic crust during initial emplacement; however, calculated pressures from granulite-facies mineral assemblages in the sole suggest the metamorphic rocks formed at >35 km depth, and are too high to be explained by the currently preserved thickness of ophiolite crust and mantle (up to 15-20 km). We have used high-precision U-Pb zircon dating to study the formation and evolution of the metamorphic sole at two well-studied localities. Our previous research and new results show that the ophiolite crust formed from 96.12-95.50 Ma. Our new dates from the Sumeini and Wadi Tayin sole localities indicate peak metamorphism at 96.16 and 94.82 Ma (±0.022 to 0.035 Ma), respectively. The dates from the Sumeini sole locality show for the first time that the metamorphic rocks formed either prior to or during formation of the ophiolite crust, and were later juxtaposed with the base of the ophiolite. These data, combined with existing geochemical constraints, are best explained by formation of the ophiolite in a supra-subduction zone setting, with metamorphism of the sole rocks occurring in a subducted slab. The 1.3 Ma difference between the Wadi Tayin and Sumeini dates indicates that, in contrast to current models, the highest-grade rocks at different sole localities underwent metamorphism, and may have returned up the subduction channel, at different times.

  1. U-Pb zircon and 40Ar/39Ar geochronology of sericite from hydrothermal alteration zones: new constraints for the timing of Ediacaran gold mineralization in the Sukhaybarat area, western Afif terrane, Saudi Arabia

    Harbi, Hesham M.; Ali, Kamal A.; McNaughton, Neal J.; Andresen, Arild


    The Sukhaybarat East and Red Hill deposits, in the northeastern part of the Arabian Shield, are mesothermal vein-type gold deposits hosted by late Cryogenian-Ediacaran intrusive rocks of the Idah suites (diorite, tonalite, granodiorite) and, at Sukhaybarat East, also by Ediacaran metasedimentary rocks. Gold mineralization comprises quartz-arsenopyrite veins (Sukhaybarat East), quartz-carbonate-pyrite veins (Red Hill), and subordinate gold-base metal sulfide veins. In the Red Hill deposit, alteration is complicated due to multiple overprinting hydrothermal events and is characteristically affected by pervasive, pink quartz-K-feldspar-hematite alteration which is overprinted by potassic alteration characterized by a quartz-biotite-carbonate-muscovite/sericite-rutile-apatite assemblage. This assemblage is associated with molybdenite veins which appear to form late in the paragenetic sequence and may represent either evolution of the ore fluid composition, or a later, unrelated mineralized fluids. Hydrothermal alteration at the Sukhaybarat East deposit is dominated by quartz-carbonate-sericite-arsenopyrite assemblages. Zircon from ore-hosting tonalite at Sukhaybarat East yields a U-Pb age of 629 ± 6 Ma, and biotite from the same rock gives an 40Ar/39Ar age of 622 ± 23 Ma. The 40Ar/39Ar age is within the uncertainty range for the U-Pb age of the host intrusion and is interpreted as a minimally disturbed cooling age for the tonalite. In the Red Hill area, granodiorite was emplaced at 615 ± 5 Ma, whereas muscovite/sericite separated from a mineralized sample of a quartz-carbonate-pyrite vein, that was overprinted by molybdenite-bearing veinlets, yields an 40Ar/39Ar age of 597 ± 8 Ma. We interpreted this age to represent the maximum age of the molybdenite mineralization and the probable minimum age of gold mineralization in the Red Hill deposit.

  2. Improving Consistency in Laser Ablation Geochronology

    Horstwood, Matt; Gehrels, George; Bowring, James


    Workshop on Data Handling in LA-ICP-MS U-Th-Pb Geochronology; San Francisco, California, 12-13 December 2009; The use of uranium-thorium-lead (U-Th-Pb) laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) geochronology involves rapid analysis of U-and Th-rich accessory minerals. It routinely achieves 1-2% precision for U-Th-Pb dates constituting detrital mineral age spectra and for dating igneous and metamorphic events. The speed and low setup and analysis cost of LA-ICP-MS U-Th-Pb geochronology has led to a proliferation of active laboratories. Tens of thousands of analyses are produced per month, but there is little agreement on how to transform these data into accurate U-Th-Pb dates. Recent interlaboratory blind comparisons of zircon samples indicate that resolvable biases exist among laboratories and the sources of bias are not fully understood. Common protocols of data reduction and reporting are essential for scientists to be able to compare and interpret these data accurately.

  3. SHRIMP zircon U-Pb dating and geochemical characteristics of Shihama granite pluton in northeastern Hunan province%湘东北地区石蛤蟆花岗岩体SHRIMP U—Pb年龄及地球化学特征

    姚宇军; 马铁球; 周柯军; 柏道远


    分布于湖南东北部的石蛤蟆岩体侵位于新元古代地层中。由微细粒斑状黑云母花岗闪长岩和细粒斑状黑云母二长花岗岩等两期侵入体组成。通过锆石SHRIM PU--Pb法测得岩体侵位年龄为157土2Ma(2d),MSWD=0.98,成岩时代为晚侏罗世。SiO2=68.26%~68.53%,K2O/Na2O=1.37~1.59,岩石属镁质、准铝质-微过铝质、高钾钙碱性-钾玄岩系列;岩石明显富集大离子亲石元素,亏损高场强元素,Rb/Sr较低(0.40~0.56);乏REE较高(171.48~183.81),Eu为弱负异常(δEu=0.86~0.93),(La/Yb)N=27.11~45.87;具较高的eNd值(-5.11)和高T2DM(1.63Ga)。综合研究表明,石蛤蟆花岗岩为混合源高钾钙碱性花岗岩类(KCG),其花岗岩浆有大量幔源物质加入。讨论认为岩体形成于构造体制转换下的地球动力学背景,是造山晚期张弛作用下的产物。%Distributed in northeastern Hunan province and intruded in Neoproterozoic strata, Shihama granite pluton is mainly composed of micro-fine-grained porphyritic biotite granodiorites of early stage and fine- grained porphyritic biotite monzonitic granites of late stage. SHRIMP zircon dating of the granites gives an age of 157±2 Ma which belongs to Late Jurassic. The granites belong to magnesian, metaluminous-weak- ly peraluminous, high-K calc-alkaline-shoshonite series, with SIO2=68.26% -68.53M and K2O/Na2O= 1.37 - 1.59. The rocks show enriched large-ion lithophile elements, depleted high field-strength ele- ments, low values of Rb/Sr(0.40-0.56), high values of ∑REE (171.48-183.81), with δEu=0.86-- 0. 93, (La/Yb)N=27. 11-45.87, εNd=5.11, T2DM=1. 63 Ga. Studies indicate that the Shihama gran- ites belong to high-K calc-alkaline granites (KCG) originated form the crust-mantled mixed source ivolving large amount of mantle source materials. It is believed that the granite pluton is the result of

  4. P-T-t conditions, Nd and Pb isotopic compositions and detrital zircon geochronology of the Massabesic Gneiss Complex, New Hampshire: isotopic and metamorphic evidence for the identification of Gander basement, central New England

    Dorais, Michael J.; Wintsch, Robert P.; Kunk, Michael J.; Aleinikoff, John; Burton, William; Underdown, Christine; Kerwin, Charles M.


    We present new evidence for the assignment of the Neoproterozoic Massabesic Gneiss Complex of New Hampshire to the Gander terrane rather than the Avalon terrane. The majority of Avalonian (sensu stricto) igneous and meta-igneous rocks as defined in Maritime Canada have positive whole-rock ɛNd compared to more negative values for Gander rocks, although there is a region of overlap in ɛNd between the two terranes. Our samples from areas in Connecticut previously thought to be Avalonian and samples from the Willimantic dome have the same isotopic signatures as Maritime Canada Avalon. In contrast, samples from the Clinton dome of southern Connecticut plots exclusively in the Gander field. The majority of the orthogneiss samples from Lyme dome (coastal Connecticut), Pelham dome (central Massachusetts) and Massabesic Gneiss Complex also plot in the Gander field, with a few samples plotting in the overlap zone between Gander and Avalon. U-Pb age distributions of detrital zircon populations from quartzites from the Massabesic Gneiss Complex more closely approximate the data from the Lyme Dome rather than Avalon. Additionally, the similarity of the P-T-t path for the rocks of the Massabesic Gneiss Complex (established by thermobarometry and 40Ar/39Ar dating of amphibole, muscovite, biotite and K-feldspar) with that established in the Ganderian Lyme dome of southern Connecticut strengthens the assignment of these rocks to a single Gander block that docked to Laurentia during the Salinic Orogeny. The identification of Ganderian isotopic signatures for these rocks all of which show evidence for Alleghanian metamorphism, supports the hypothesis that Neoproterozoic Gander lower crustal rocks underlie southern New Hampshire, Massachusetts, and Connecticut, and that all rocks of the overlying Central Maine trough that largely escaped high-grade Alleghanian metamorphism are allochthonous. We suggest that during the Alleghanian, the docking of Gondwana caused Avalon to wedge into

  5. U-Pb zircon and monazite geochronology of the Hercynian two-mica granite composite pluton of Cabeceiras de Basto (Northern Portugal); Geochronologie U-Pb sur zircon et monazite du massif composite de granite a deux micas hercynien de Cabeceiras de Basto (Nord-Portugal)

    Almeida, A.; Noronha, F. [Universidade do Porto (Portugal). Centro de Geologia; Leterrier, J. [Centre de Recherches Petrographiques et Geochimiques, 54 - Vandoeuvre-les-Nancy (France); Bertrand, J.M. [Universite de Savoie, 73 - Le-Bourget-du-Lac (France). Laboratoire de geodynamique des Chaines alpines


    The zircon and monazite U-Pb minimum age of the Hercynian peraluminous two-mica composite granite pluton of Cabeceiras de Basto (Northern Portugal) is 311 {+-} 1 Ma (2 {sigma}). This age, well constrained by a concordant monazite of 311{+-}4 Ma (2{sigma}), is in good agreement with the age suggested for the syn-kinematic, syn-D3, Iberian granites of the Hercynian orogeny (315-305; Pinto et al., 1987). The ({sup 87}Sr/{sup 86}Sr){sub i} and {xi}{sub Nd} isotopic ratios, calculated for 311 Ma, suggest that the three granite units which constitute the massif may derive from an heterogeneous crustal source dated (upper intercept of the discordance) around 1200 Ma. (authors) 21 refs.

  6. Depositional Age of the Pake Formation of Ximeng Group and Its Tectonic Implications:Constraints from Zircon U-Pb Geochronology and Lu-Hf Isotopes%滇西南西盟群帕可组沉积时代厘定及构造意义:锆石U-P b年代学及Lu-Hf同位素证据

    邢晓婉; 张玉芝


    研究滇西南地区出露的西盟群碎屑岩沉积时限及其古地理属性对了解冈瓦纳大陆东缘的构造演化及其古地理重建具有重要意义。本文对西盟群帕可组3个变质砂岩样品中的碎屑锆石进行了 LA-ICP-MS U-Pb测年和原位 Lu-Hf同位素组成分析,获得样品的最小年龄峰值分别为568Ma、541Ma和560Ma,εHf(t)值为-24.0~26.3。结合前人对帕可组内片麻状花岗岩的研究成果,推测西盟群帕可组沉积于早寒武世—中奥陶世(541~460Ma),而非以往所认为的前寒武纪地层。Lu-Hf同位素组成则表明西盟群帕可组物源为古老地壳物质的再循环并混入新生地壳组分,结合其他区域地质资料推断西盟群物源类似东印度板块,与东冈瓦纳大陆具有亲缘性。%Depositional age,provenance and paleogeography characteristics of the Ximeng metasedimentary sequence is key for better understanding the tectonic evolution and paleogeographic reconstruction of East Gondwana Continent.This paper presented the zircon U-Pb geochronology and Lu-Hf isotope for three metamorphic sandstone samples from the Pake Formation of Ximeng Group in SW Yunnan.The group has been traditionally considered as the Precambrian metamorphic basement of the Shan-Thai Block.The detrital zircons from three samples yielded the youngest age peaks at 568Ma, 541Ma and 560Ma,respectively,and the εHf(t)values change from -24.0 to +26.3.In combination with other data,it is inferred that the Pake Formation deposited at 541-460Ma,equivalent to Late Cambrian to early-middle Ordovician pe-riod,different from previous proposed Precambrian strata.Their εHf(t)values indicate that their source rocks might origi-nate from the mixing of recycled ancient continental material with juvenile crustal component.Our results,along with other geological data,suggest that the source rocks of the Ximeng Group have an affinity of Tethys-Himalaya and from

  7. Genesis of zircon and its constraints on interpretation of U-Pb age

    WU Yuanbao; ZHENG Yongfei


    Zircon U-Pb dating is the most commonly used method for isotopic geochronology. However, it has been a difficult issue when relating zircon U-Pb ages to metamorphic conditions in complex metamorphic rocks. Much progress has been made in the past decade with respect to the genesis of zircon and its constraints on interpretation of U-Pb age. Three methods have been proposed to link zircon U-Ph age to metamorphic conditions: ( I ) internal structure; (ii)trace element feature; (iii) mineral inclusion composition.Magmatic zircon shows typical oscillatory zoning and/or sector zoning, whereas metamorphic zircon has internal structures such as no zoned, weakly zoned, cloudy zoned,sector zoned, planar zoned, and patched zoned ones. Zircons formed in different geological environments generally have characteristic internal structures. Magmatic zircons from different rock types have variable trace element abundances,with a general trend of increasing trace element abundances in zircons from ultramafic through mafic to granitic rocks.Zircons formed under different metamorphic conditions have different trace element characteristics that can be used to relate their formation to metamorphic conditions. It is an effective way to relate zircon growth to certain P-T conditions by studying the trace element partitioning between coexisting metamorphic zircon and garnet in high-grade metamorphic rocks containing both zircon and garnet. Primary mineral inclusions in zircon can also provide unambiguous constraints on its formation conditions. Therefore,interpretation of zircon U-Pb ages can be constrained by its internal structure, trace element composition, mineral inclusion and so on.

  8. SHRIMP Zircon U Pb Age and Geochemical Characteristics of the Achieng Qulu Monzogranite in Inner Mongolia%内蒙古阿钦楚鲁二长花岗岩锆石SHRIMP U-Pb 年龄及地球化学特征

    王治华; 常春郊; 丛润祥; 王梁; 马德锡; 王晓军


    The Achieng Qulu monzogranite complex is located in the middle of Early Paleozoic Chaganaobao-Aoyoute-Chaobuleng tectonic-magmatic belt which belongs to the southeast margin of the Siberian plate.The main rock types of the complex are moderate-and fine-grained monzogranite as well as moderate-and coarse-grained monzogranite.SHRIMP zircon U Pb isotopic dating result indicates that the emplacement age of Achieng Qulu monzogranite is (296.3±3.8)Ma,namely Late Hercynian. Rock geochemical analysis shows silicon-rich of the monzogranite,as peraluminous with SiO2 content of 73.48% to 74.22%;with Al2 O3 content of 13.63% to 14.01% and A/CNK ratio of 1.04 to 1.10;alkali-rich,(K2 O+ Na2 O)content of 8.08% to 8.54%,with Rittmann index of (σ)2.13 to 2.46, relatively rich in potassium,K2 O/Na2 O ratio of 1.31 to 1.54,belonging to high-K calc-alkaline series;enriched in such large ion lithophile elements as Rb,Sr,Ba and light rare earth elements (LREE), relatively depleted in high field strength elements such as Ta,Nb,Ti;total REE to 1 12.05 × 10 -6 130.1 6×10 -6 ,moderate negative Eu anomality (δEu = 0.52 to 0.65),showing a slightly rightward with steep LREE line and slow HREE line,containing geochemical characteristics of from post-collision high-K granite to A-type granites.Relatively low initial 87 Sr/86 Sr ratios (0.703 849 to 0.704 236)and positiveεNd (t)values (4.2 to 4.3),reflect that the material source of the complex may be mainly derived from the new continental crust formed by underplating of mantle-derived magma.Based on the data mentioned above and discrimination on tectonic setting, combined with regional comparison, we conclude that the Achieng Qulu monzogranite belongs to post-collision high-K calc-alkaline granite derived from the partial melting of the upper crust,which is caused by sub-ducted slab break-off, asthenosphere upwelling and partial melting of the lithosphere mantle,meanwhile,part of the mantle-derived magma under-plated to the lower part of

  9. Analysis of U-Pb, O, Hf, and trace elements of horizontally oriented outer and inner zones of zircons from the Boulder batholith, Montana

    Aleinikoff, J. N.; Lund, K.; Du Bray, E. A.; Wooden, J. L.; Kozdon, R.; Kita, N.; Valley, J. W.; Kamenov, G. D.; Mueller, P. A.


    The Late Cretaceous Boulder batholith, southwestern MT, is composed of the Butte Granite and at least a dozen smaller granodiorite to syenogranite plutons. These plutons (81-73 Ma) were dated by zircon U-Pb geochronology using the SHRIMP. Typically for SIMS analysis of igneous zircon, the analytical spot is located midway between core and rim on an area that displays fine oscillatory zoning, thus sampling a ~25-30 µm area of vertically oriented zones to a depth of 1-2 µm. For this study, preliminary LA-ICP-MS analysis of Hf isotopes in zircons from several plutons suggested that some grains show significant variation (>5 ɛHf units) between inner and outer zones. This finding instigated a detailed investigation in which data for multiple isotopic systems (U-Pb, trace elements, O, and Hf ) were collected from horizontally oriented zones. Zircons were mounted in epoxy but not ground or polished. Reflected light, profilometer, and CL images were used to select homogeneous crystal faces. The outermost parts of 12-15 grains each from 12 plutons were analyzed consecutively for O and U-Pb isotope ratios, and trace element concentrations using an ion microprobe. The grains were then ground to half-thickness and O, U-Pb, and trace elements were measured at the centers of previously analyzed grains. The final step was Hf isotopic analysis by LA-ICP-MS which ablated a hole completely through the remaining half-grains. Although measurements of these isotopes from the outsides and insides of selected zircons is a limited form of depth-profiling, it enables acquisition of a very large, more precise data set than typical depth profiling. For all samples, U-Pb ages of zircon from interior and exterior zones are not resolvably different at ± 1% (2-sigma). However, in several samples a few outliers were identified, suggesting that interior parts in some grains formed later, during or after growth of the exterior parts of other grains. Thus, zircon growth was not an episodic

  10. Metallic Pb nanospheres in ultra-high temperature metamorphosed zircon from southern India

    Whitehouse, M. J.; Kusiak, M. A.; Wirth, R.; Ravindra Kumar, G. R.


    A transmission electron microscope (TEM) study of Paleoproterozoic zircon that has experienced ultra-high temperature (UHT) metamorphism at ca. 570 Ma in the Kerala Khondalite Belt (KKB), southern India, documents the occurrence of metallic Pb nanospheres. These results permit comparison with a previous report from UHT zircon in Enderby Land, Antarctica, and allow further constraints to be placed on possible mechanisms for nanosphere formation. As in Enderby Land, the nanospheres in the KKB occur in non-metamict zircon, emphasising that radiogenic Pb redistribution can occur with only partial interconnectivity of radiation damaged zircon. In contrast, the nanospheres reported here are not closely associated with Si-rich glass inclusions, which is inconsistent with a silicate liquid-metal immiscibility model proposed in the earlier study. Formation of these Pb nanospheres effectively halts Pb-loss from zircon, even under extreme conditions, and can adversely affect geochronological interpretations due to decoupling of Pb from U.

  11. A comparison of zircon U-Pb age results of the Red Clay sequence on the central Chinese Loess Plateau

    Gong, Hujun; Nie, Junsheng; Wang, Zhao; Peng, Wenbin; Zhang, Rui; Zhang, Yunxiang


    Single grain zircon U-Pb geochronology has demonstrated great potentials in extracting tectonic and atmospheric circulation signal carried by aeolian, fluvial, and fluviolacustrine sediments. A routine in this sort of studies is analyzing 100-150 grains and then compares zircon U-Pb age spectra between the measured sample and the potential sources. Here we compared the zircon U-Pb age results of the late Miocene-Pliocene Red Clay sequence of two neighboring sites from the Chinese Loess Plateau where similar provenance signal is expected. Although the results from the 5.5 Ma sediment support this prediction, the results from the 3 Ma sediment at these two sites differ from each other significantly. These results emphasize the importance of increasing analysis number per sample and combining the zircon U-Pb geochronology with other provenance tools in order to get reliable provenance information.

  12. Petrogenesis and U-Pb and Sm-Nd geochronology of the Taquaral granite: record of an orosirian continental magmatic arc in the region of Corumba - MS

    Letícia Alexandre Redes

    Full Text Available The Taquaral Granite is located on southern Amazon Craton in the region of Corumbá, westernmost part of the Brazilian state of Mato Grosso do Sul (MS, near Brazil-Bolivia frontier. This intrusion of batholitic dimensions is partially covered by sedimentary rocks of the Urucum, Tamengo Bocaina and Pantanal formations and Alluvial Deposits. The rock types are classified as quartz-monzodiorites, granodiorites, quartz-monzonites, monzo and syenogranites. There are two groups of enclaves genetically and compositionally different: one corresponds to mafic xenoliths and the second is identified as felsic microgranular enclave. Two deformation phases are observed: one ductile (F1 and the other brittle (F2. Geochemical data indicate intermediate to acidic composition for these rocks and a medium to high-K, metaluminous to peraluminous calk-alkaline magmatism, suggesting also their emplacement into magmatic arc settings. SHRIMP zircon U-Pb geochronological data of these granites reveals a crystallization age of 1861 ± 5.3 Ma. Whole rock Sm-Nd analyses provided εNd(1,86 Ga values of -1.48 and -1.28 and TDM model ages of 2.32 and 2.25 Ga, likely indicating a Ryacian crustal source. Here we conclude that Taquaral Granite represents a magmatic episode generated at the end of the Orosirian, as a part of the Amoguija Magmatic Arc.

  13. Crustal Evolution of a Paleozoic Intra-oceanic Island-Arc-Back-Arc Basin System Constrained by the Geochemistry and Geochronology of the Yakuno Ophiolite, Southwest Japan

    Yoshimitsu Suda


    Full Text Available The Yakuno ophiolite in southwest Japan is considered to have been obducted by the collision between an intra-oceanic island-arc-back-arc basin (intra-OIA-BAB system and the East Asian continent during the late Paleozoic. New SIMS (SHRIMP zircon U-Pb determinations for amphibolite and metagabbro of BAB origin within the Yakuno ophiolite yield ages of 293.4 ± 9.5 Ma and 288 ± 13 Ma, respectively. These ages are slightly older (however, overlapping within analytical errors than the magmatic age of arc granitoids (ca. 285–282 Ma that intruded into the mafic rocks of BAB origin. Results from geochronological and geochemical data of the Yakuno ophiolite give rise to the following tentative geotectonic model for the Paleozoic intra-OIA-BAB system: the initial stage of BAB rifting (ca. 293–288 Ma formed the BAB crust with island-arc basalt (IAB signatures, which was brought to the OIA setting, and generated the arc granitoids (ca. 285–282 Ma by anatexis of the BAB crust. A later stage of BAB rifting (

  14. 藏北羌塘中部果干加年山石炭纪蛇绿岩地球化学特征及LA-ICP-MS锆石U-Pb年龄%Geochemical characteristics and LA-ICP-MS zircon U-Pb geochronology of Guogangjianan Carboniferous ophiolite in central Qiangtang, the Tibetan Plateau

    吴彦旺; 李才; 徐梦婧; 解超明; 王明; 熊盛青; 范正国


    In order to investigate the evolution of the Lungmu Co-Shuanghu plate suture zone and the tectonic history of central Qiangtang, the authors studied Guoganjianian ophiolite in the aspects of petrology, geochemistry and geochronology. The cumulate in Guoganjianian ophiolite was recently discovered during 1∶50000 regional geological survey of the Gemuri area. Geochemical studies show that the cumulate gabbro has low REE content and flatten REE patterns with slight enrichment of LREE, and the degree of differentiation between LREE and HREE is low. These samples are enriched in large ion lithophile elements (LILE) such as Rb and Ba, and depleted in Nb, Ta and Ti, suggesting that they were probably formed in a subduction zone. LA-ICP-MS technique was applied to U-Pb zircon dating of the cumulate gabbro from Guoganjianian ophiolite. The result shows that the ages of cumulate gabbro is 354.8Ma±2.4Ma, suggesting that Lungmu Co-Shuanghu Ocean already began its subduction in Early Carboniferous. The study of Guoganjianian cumulate gabbro provides important basic data for investigating the evolution of Lungmu Co-Shuanghu plate suture zone and the tectonic history of central Qiangtang.%在羌塘地区开展1∶5万戈木日区域地质调查的过程中,为研究龙木错-双湖板块缝合带的演化历史,探讨青藏高原羌塘中部地区的构造演化,对果干加年山地区的蛇绿岩进行了详细研究。石炭纪蛇绿岩变质堆晶辉长岩是填图过程中的新发现。全岩地球化学研究结果显示,岩石ΣREE较低,LREE弱富集,轻、重稀土元素分异程度不高;富集Rb、Bb等大离子亲石元素,明显亏损Nb、Ta、Ti等元素,具有典型的SSZ型蛇绿岩特征,表明其形成于俯冲带之上。蛇绿岩中变质堆晶辉长岩的LA-ICP-MS锆石U-Pb年龄为354.8Ma±2.4Ma,属于早石炭世。最终研究表明,龙木错-双湖板块缝合带所代表的古大洋至少在早石炭世就已经存在俯冲

  15. Temporal evolution of the giant Salobo IOCG deposit, Carajás Province (Brazil): constraints from paragenesis of hydrothermal alteration and U-Pb geochronology

    deMelo, Gustavo H. C.; Monteiro, Lena V. S.; Xavier, Roberto P.; Moreto, Carolina P. N.; Santiago, Erika S. B.; Dufrane, S. Andrew; Aires, Benevides; Santos, Antonio F. F.


    The giant Salobo copper-gold deposit is located in the Carajás Province, Amazon Craton. Detailed drill core description, petrographical studies, and U-Pb SHRIMP IIe and LA-ICP-MS geochronology unravel its evolution regarding the host rocks, hydrothermal alteration and mineralization. Within the Cinzento Shear Zone, the deposit is hosted by orthogneisses of the Mesoarchean Xingu Complex (2950 ± 25 and 2857 ± 6.7 Ma) and of the Neoarchean Igarapé Gelado suite (2763 ± 4.4 Ma), which are crosscut by the Old Salobo granite. Remnants of the Igarapé Salobo metavolcanic-sedimentary sequence are represented by a quartz mylonite with detrital zircon populations (ca. 3.1-3.0, 2.95, 2.86, and 2.74 Ga). High-temperature calcic-sodic hydrothermal alteration (hastingsite-actinolite) was followed by silicification, iron-enrichment (almandine-grunerite-magnetite), tourmaline formation, potassic alteration with biotite, copper-gold ore formation, and later Fe-rich hydrated silicate alteration. Myrmekitic bornite-chalcocite and magnetite comprise the bulk of copper-gold ore. All these alteration assemblages have been overprinted by post-ore hematite-bearing potassic and propylitic alteration, which is also recognized in the Old Salobo granite. In the central zone of the deposit the mylonitized Igarapé Gelado suite rocks yield an age of 2701 ± 30 Ma. Zircon ages of 2547 ± 5.3 and 2535 ± 8.4 Ma were obtained for the Old Salobo granite and for the high-grade copper ore, respectively. A U-Pb LA-ICP-MS monazite age (2452 ± 14 Ma) from the copper-gold ore indicates hydrothermal activity and overprinting in the Siderian. Therefore, a protracted tectono-thermal event due to the reactivation of the Cinzento Shear Zone is proposed for the evolution of the Salobo deposit.

  16. Zircon SHRIMP U-Pb dating and geological significance of granite in the Baogeda Ula Mo (W) mining area, Inner Mongolia, China%内蒙古宝格达乌拉钼(钨)矿区花岗岩锆石SHRIMPU-Pb年龄及地质意义

    刘勇; 聂凤军; 刘翼飞; 侯万荣


    本文首次对新发现的宝格达乌拉钼(钨)矿区中含矿花岗岩的锆石进行了SHRIMP U-Pb定年,获得9个锆石颗粒的206Pb/238U年龄的加权平均值为240.9±2.5Ma,MSW值为1.7,上述数值表明岩体形成时代应为印支期.根据野外实地勘查以及进一步室内研究工作,可以初步推测出,该地区在中生代时期曾经发生过古陆块内部拉张作用,由此所诱发的大规模构造-岩浆活动及相关流体活动为该区钼(钨)矿床的形成提供了物质、动力和热力来源.区内含矿花岗岩即是此次构造-岩浆作用产物.除此之外,由于宝格达乌拉地区位于早期西伯利亚板块和华北板块相互俯冲和碰撞的交界处,区域内花岗岩体在形成过程中受到了多期次岩浆热液作用的影响,因此在对区域内锆石年龄及相关微量元素进行测定时发现,该区域内含矿岩体岩性复杂,表现出了一定的继承性.这也为研究人员对二连浩特-东乌珠穆沁旗一带矿床成因作用的进一步研究提供了重要参考.%It's the first time that the zircon SHRIMP U-Pb dating of granite in the Baogeda Ula Mo (W) mining area which is found recently, and obtain the weighted average age of the nine zircons is 240. 9 ± 2. 5 Ma, the MSW is 1. 7, Indosinian. According to the fieldwork and indoor studies, we could speculate that the extension of ancient land mass in Mesozoic occurred in this area. Large scale tectonic-magmatic activities and related to fluid which induced by the extension provide the material, power and heating sources for the deposit in Baogeda Ula Mo (W) mining area. The granite in this area is the result of tectonic-magmatic activities. Beyond that, we found the ore-bearing rock with complex lithological characters and some succession characters. It' s because of that this area is at the junction after the subduction and collision between Early Siberian plate and the North China plate. Its also provide important reference

  17. SHRIMP zircon U-Pb and Re-Os dating of No. 10 intrusive body and associated ores in Pobei mafic-ultramafic belt of Xinjiang and its significance%新疆坡北基性-超基性岩带10号岩体SHRIMPU-Pb和矿石Re-Os同位素定年及其意义

    李华芹; 梅玉萍; 屈文俊; 蔡红; 杜国民


    Located in Beishan rift in the northeastern part of Tarim plate, the Pobei No. 10 mafic-ultramafic body in-truded into Early Carboniferous Hongliuyuan Formation. It is large in size and well differentiated, thus serving as one of the most important intrusive bodies in search for copper-nickel sulfides. According to its emplacement strata, it was previously thought that this intrusive body was formed in Late Carboniferous-Early Permian. The uthors performed dating by using such techniques as zircon U-Pb, disseminated ores Re-Os and Sr-Nd isotopic tracer with the purpose of systematic determination of the magmatie and mineralization ages, on such a basis, discussed the metallogenic significance of systematic differences between the ages dated by different isotopic sys-tems. Radiometric dating of the gabbro from the Pobei No. 10 mafic-ultramafie body yielded rather scattered zir-con age information, but obtained a main body zircon SHRIMP U-Pb age of (289± 13)Ma(95 % confidence, MSWD=4.9, n = 8), which is interpreted as the formation age of the host intrusive. The disseminated ores give an apparent Re-Os isochron age of (413 ± 20) Ma with an initial 187Os/188Os ratio of (0.226 ± 0.032). However, it is found that the apparent Re-Os isochron ages of disseminated ores are older than both the forma-tion age of the host intrusions and the ages of Pobei No. 10 mafic-ultramafic emplacement strata, which indicates that the apparent Re-Os isochron ages of disseminated ores are not reliable. It is suggested that the Pobei No. 10 mafic-ultramafic body and the deposit were formed at about 280 Ma ago. Because of heterogeneity in initial ~(187)Os/~(188)Os ratios of disseminated ores caused by crust contamination, the apparent dates older than the true age were obtained. Cu-Ni mineraliztion shows a close time-space relationship with the mafic-ultramafic intrusive body, implying a product of magmatic liquation. It is therefore concluded that the intrusion of Pobei No. 10 mafic

  18. Zircon Trace Element Contents and Refined U-Pb Crystallization Ages for the Tatoosh Pluton, Mount Rainier National Park, Washington Cascades

    Bacon, C. R.; Du Bray, E. A.; John, D. A.; Mazdab, F. K.; Wooden, J. L.


    The 7x12 km Tatoosh pluton south of Mount Rainier consists of 4 petrographic/compositional phases, here termed Nisqually, Reflection, Pyramid, and Stevens, that intrude Tertiary volcanic and sedimentary wall and roof rocks; contacts between the 4 intrusive units are rarely exposed. We used the USGS-Stanford SHRIMP- RG to analyze, in a continuous session, zircons from each of 6 quartz monzodiorite (qmd), quartz monzonite (qm), or granodiorite (grd) samples for 206Pb/238U ages and, concurrently, U, Th, Hf, and REE concentrations. A round-robin procedure yielded statistically robust geochronological results. Ages that we reported previously (FM07) were compromised by instrument instability and by calibration differences between analytical sessions. Between 11 and 31 new analyses of zircons from each sample were evaluated using the TuffZirc and Umix Ages routines of Isoplot 3.41 (Ludwig, 2003). TuffZirc solidification ages for the intrusions are: Nisqually grd (Paradise Valley; 65.4% SiO2) 17.29 +0.37/-0.24 Ma, Nisqually grd (Christine Falls; 66.4%) 17.70 +0.30/-0.16 Ma, Reflection qm (Pinnacle Peak trail; 66.6%) 18.38 +0.45/-0.28 Ma, Pyramid qmd (58.5%) 18.58 +0.20/-0.15 Ma, Stevens grd (Stevens Canyon; 67.8%) 19.15 +0.15/-0.12 Ma, and Stevens grd (south of Louise Lake; 69.3%) 19.20 +0.31/-0.26 Ma (U-Th initial-disequilibrium corrected, ±2σ). Precision of the U-Pb data limits rigorous identification of antecrysts to those with ages ~1 Myr > solidification ages. Antecryst ages that produce subsidiary modes in relative probability diagrams for the two Stevens samples give weighted mean values of 20.18 ±0.26 Ma and 20.07 ±0.18 Ma. Wide ranges in trace element concentrations and ratios indicate that many analyzed zircons grew in highly fractionated residual liquids in high-crystallinity environments. Concentrations of Th and U in Tatoosh zircons vary by two orders of magnitude, cores tend to have higher Th, U, and Th/U than rims, and overgrowths that fill reentrants

  19. SHRIMP U-Pb zircon dates from igneous rocks from the Fontana Lake region, Patagonia: Implications for the age of magmatism, Mesozoic geological evolution and age of basement Datación de circón por U-Pb SHRIMP en rocas ígneas de la región del lago Fontana, Patagonia: Implicancia para la edad del magmatismo, la evolución geológica mesozoica y edad del basamento

    A.P. Rolando


    Full Text Available In the eastern margin of the Patagonian Andes and between 44° 30´S and 45° 30´S (Fontana Lake region, Middle Jurassic to Early Cretaceous volcanic and sedimentary rocks were intruded by granitic bodies during the Cretaceous. The reconstruction of the Jurassic-Cretaceous magmatic evolution in the Fontana Lake region and in the adjacent Patagonian Batholith was made possible by the consideration of the following characteristics: distribution in time and space of several intrusive bodies, retro-arc basin formation and volcanic intensity. U-Pb SHRIMP dating of zircon crystals from an ignimbrite, a dacitic porphyry and two granitoid rocks yielded dates of 148.7 ± 2.3, 144.5 ± 1.6, 117 ± 1.7 and 99.6 ± 2.8 Ma, respectively. The Cerro Bayo Ignimbrite (148.7 ± 2.3 Ma, Late Jurassic was included in the Lago La Plata Formation; this unit hosts an epithermal ore deposit. The Laguna Escondida dacitic porphyry (144.5 ± 1.6 Ma, Jurassic-Cretaceous boundary intruded metasedimentary rocks of the Lago La Plata Formation; this sub-volcanic body can chronologically be linked to the Patagonian Batholith. After the Jurassic volcanic events, a retro-arc basin formed in the eastern sector of the Patagonian Range at about 140-115 Ma (Late Berriasian-Barremian and magmatism ceased during this event. The dating of granitoids (117 ± 1.7 and 99.6 ± 2.8 Ma in the Fontana Lake region confirms a temporal magmatic continuity with the Patagonian Batholith. These dates also are in agreement with the volcanic rocks of the Divisadero Group and epithermal deposits in the region (La Ferrocarrilera deposit. One of the analyzed granitoids (Dedo Chico, 99.6 ± 2.8 Ma has inherited zircon crystals of about 2,100 and 3,410 Ma, in agreement with other previous isotopic evidence for the occurrence of an underlying Precambrian basement in the region.En la margen oriental de la cordillera Patagónica, entre los 44° 30´ L.S. y 45° 30´ L.S. (región del lago Fontana, rocas volc

  20. EARTHTIME: Teaching geochronology to high school students

    Bookhagen, Britta; Buchwaldt, Robert; McLean, Noah; Rioux, Matthew; Bowring, Samuel


    The authors taught an educational module developed as part of the EARTHTIME ( outreach initiative to 215 high school students from a Massachusetts (USA) High School as part of an "out-of-school" field trip. The workshop focuses on uranium-lead (U-Pb) dating of zircons and its application to solving a geological problem. The theme of our 2.5-hour module is the timing of the K-T boundary and a discussion of how geochronology can be used to evaluate the two main hypotheses for the cause of the concurrent extinction—the Chicxlub impact and the massive eruption of the Deccan Traps. Activities are divided into three parts: In the first part, the instructors lead hands-on activities demonstrating how rock samples are processed to isolate minerals by their physical properties. Students use different techniques, such as magnetic separation, density separation using non-toxic heavy liquids, and mineral identification with a microscope. We cover all the steps from sampling an outcrop to determining a final age. Students also discuss geologic features relevant to the K-T boundary problem and get the chance to examine basalts, impact melts and meteorites. In the second part, we use a curriculum developed for and available on the EARTHTIME website ( The curriculum teaches the science behind uranium-lead dating using tables, graphs, and a geochronology kit. In this module, the students start by exploring the concepts of half-life and exponential decay and graphically solving the isotopic decay equation. Manipulating groups of double-sided chips labeled with U and Pb isotopes reinforces the concept that an age determination depends on the Pb/U ratio, not the absolute number of atoms present. Next, the technique's accuracy despite loss of parent and daughter atoms during analysis, as well as the use of isotopic ratios rather than absolute abundances, is explained with an activity on isotope dilution. Here the students

  1. Petrology and geochronology of crustal xenoliths from the Bering Strait region: Linking deep and shallow processes in extending continental crust

    Akinin, V.V.; Miller, E.L.; Wooden, J.L.


    Petrologic, geochemical, and metamorphic data on gneissic xenoliths derived from the middle and lower crust in the Neogene Bering Sea basalt province, coupled with U-Pb geochronology of their zircons using sensitive high-resolution ion microprobe-reverse geometry (SHRIMP-RG), yield a detailed comparison between the P-T-t and magmatic history of the lower crust and magmatic, metamorphic, and deformational history of the upper crust. Our results provide unique insights into the nature of lithospheric processes that accompany the extension of continental crust. The gneissic, mostly maficxenoliths (constituting less than two percent of the total xenolith population) from lavas in the Enmelen, RU, St. Lawrence, Nunivak, and Seward Peninsula fields most likely originated through magmatic fractionation processes with continued residence at granulite-facies conditions. Zircon single-grain ages (n ??? 125) are interpreted as both magmatic and metamorphic and are entirely Cretaceous to Paleocene in age (ca. 138-60 Ma). Their age distributions correspond to the main ages of magmatism in two belts of supracrustal volcanic and plutonic rocks in the Bering Sea region. Oscillatory-zoned igneous zircons, Late Cretaceous to Paleocene metamorphic zircons and overgrowths, and lack of any older inheritance in zircons from the xenoliths provide strong evidence for juvenile addition of material to the crust at this time. Surface exposures of Precambrian and Paleozoic rocks locally reached upper amphibolite-facies (sillimanite grade) to granulite-facies conditions within a series of extension-related metamorphic culminations or gneiss domes, which developed within the Cretaceous magmatic belt. Metamorphic gradients and inferred geotherms (??30-50 ??C/km) from both the gneiss domes and xenoliths aretoo high to be explained by crustal thickening alone. Magmatic heat input from the mantle is necessary to explain both the petrology of the magmas and elevated metamorphic temperatures. Deep

  2. Lithium in low-temperature fluid-affected zircons. Paleoproterozoic weathering horizon (Karelia, the Baltic shield).

    Alfimova, Nadezhda; Klimova, Ekaterina; Matrenichev, Vjacheslav; Zinger, Tatjana


    Zircon is a mineral, which is widely used in geochronology. At the same time, low-temperature fluids had been shown to affect the inner structure, chemical and even isotopic composition of zircons (Geisler et al., 2007, Pidgeon et al., 2013). Here we report changes in the inner structure and chemical composition of zircon grains, preserved in Paleoproterozoic weathering horizon from Karelia craton (N. Ladoga region, Russia) in spite of greenschist metamorphism. Detailed zircon SEM and CL study revealed that zircons in weathered samples can be classified into two groups depending on their microstructural characteristics: 1- the zircons with an unusual and complex (breccia-like) structure with almost no relics of magmatic zonation. The inner structure of that grains is often composed of a mosaic of angular crystal pieces cemented with silicates or even other generation of zircon itself. Group 2- zircons with clearly seen relics of magmatic (oscillatory) zonation. Both groups have outer rims which are forming the facets of the grains. These two groups are also different in chemistry. Group 1 zircons contain more than 10 ppm of Ba and Sr, >1000 ppm U and Th/U there is ≤0.1, REE spectra show LREE/HREE > 0.5, positive Cean (0.3, Ba and Sr are less than 10 ppm each, LREE/HREE+2.0, Euan ≤ +1.0, Li is from 19 to 73 ppm with average meaning 49 ppm. A separate geochemical group can be identified within "a-structural" grains (group 1) -parts of zircons and grains light-colored in SEM. These part of group 1 zircons demonstrate specific REE spectra - LREE/HREE sources. Paleo-weathering had changed not only chemical composition (major element and REEs) but the inner structure of grains with higher U concentration more, then with low U content. Li had demonstrated strong ability to resist changes during the low-temperature fluid-mineral interaction.

  3. The Use and Abuse of Th-U Ratios in the Interpretation of Zircon

    Möller, A.; ÓBrien, P. J.; Kennedy, A.; Kröner, A.


    In the interpretation of geochronological data the distinction between magmatic and metamorphic zircon is mainly based on morphology, internal zoning or Th-U ratio. This distinction is of doubtful benefit in partially molten high grade metamorphic rocks where partial melting and zircon growth or dissolution may have occurred in several phases. It is proposed that instead of classifying zircon into magmatic and metamorphic groups, differences and changes in chemistry from inherited core to overgrowth can be attributed to growth or recrystallization mechanisms. Taking the distinction literally, only zircon grown by solid state (metamorphic) reactions may be called metamorphic, whereas zircon crystallized from melt is magmatic, and zircon crystallized from fluids is hydrothermal. Trace element characteristics together with the criteria mentioned above may help to link zircon growth to these environments or to other processes altering existing zircon (i.e. metamictisation, annealing, recrystallization, dissolution-reprecipitation). In-situ ion microprobe analysis has been used to track Th-U ratios of zircon through time in polymetamorphic rocks. Several different trends can be distinguished and attributed to different growth mechanisms when combined with cathodo-luminescence and backscatter electron imaging. Unchanged Th/U through time is interpreted to reflect closed system behaviour, lower Th/U in overgrowths can indicate competition for Th with high Th minerals (monazite, allanite etc.), higher Th/U is also observed and interpreted to reflect open system behaviour, breakdown of minerals with high Th/U, or competition with high U minerals (e.g. xenotime). In summary, zircon grown during metamorphic events may not be characterized by low Th/U, and classifying zircon as "metamorphic" solely based on its Th/U as occasionally seen in the literature can lead to gross misinterpretations.

  4. Zircon U-Pb geochronology, geochemistry and petrogenesis of the porphyric-like muscovite granite in the Dahutang tungsten deposit, Jiangxi Province%江西大湖塘钨矿床似斑状白云母花岗岩锆石U-Pb年代学、地球化学及成因研究

    黄兰椿; 蒋少涌


    The Dahutang tungsten ( molybdenum, copper, tin) ore fields are located in the middle part of the Jiangnan Orogen which is the junction of three counties of Wuning, Xiushui, Jing'an area in the middle of the northern part of Jiuling Mountains. It is the world's largest tungsten mine. In this paper, we study the mineral chemistry, major elements, trace elements, and Sr-Nd isotopic compositions of the porphyric-like muscovite granite which is closely related to mineralization in the deposit. The results show that LA-ICP-MS zircon U-Pb age of the porphyric-like muscovite granite is 144. 2 ± 1. 3 Ma. The muscovite in the granite belongs to primary magmatic muscovite, and the biotite shows iron-rich characteristic, and its composition indicates a crust origin of the rock. The Fe3 + / Fe composition of biotite indicates a low oxygen fugacity for the magma evolution. The porphyric-like muscovite granite belongs to S-type granite which is characterized by high SiO2(72. 88% to 73. 33% ) , strongly peraluminous, low Nb and Ta, high Rb/Sr, strong LREE/HREE fractionation, and pronounced negative Eu anomalies. The εNd (t) values of the rock varied from - 7. 47 to - 7. 78 with the two-stage model ages tDMc of 1543Ma to 1568Ma. It is suggested that the source region of the granite were from argillaceous sedimentary rocks, likely from the Neoproterozoic Shuangqiaoshan Group. We also suspected that the ore-forming metals such as tungsten in the deposit may have likely derived from the Shuangqiaoshan Group. Based on the geochronological framework of the granite, the Yanshanian magmatic activity took place during the transition of the Jurassic and Cretaceous period in an extensional tectonic environment in Jiuling area.%江西省大湖塘钨(钼、铜、锡)矿集区位于江南造山带中段,九岭山脉中段北部之武宁、修水、靖安三县交界区域,是目前世界最大的钨矿之一.本文对该矿床中与成矿关系密切的似斑状白云母花岗岩进行了

  5. On the geometric relationship between deformation microstructures in zircon and the kinematic framework of the shear zone

    Kovaleva, Elizaveta; Klötzli, Urs; Habler, Gerlinde


    independent of zircon's grain size and shape, and reflect the strong geometric control of the macroscopic kinematic rotation axis on the crystal-plastic deformation behavior of zircon and on the geometry of its slip systems. We describe previously unknown rheological and crystallographic properties of zircon, which suggest a tool for deriving an orientation of the plastically deformed zircon crystals with respect to the associated foliation and stretching lineation. Additionally, relationships between zircon deformation microstructures and the macroscopic kinematic framework have implications for zircon geochronology. If deformation events result in zircon distortion and, as a consequence, partial or complete resetting of the zircon isotopic system, the age of deformation can be accurately dated.

  6. Developing Zircon as a Probe of Planetary Impact History

    Wielicki, Matthew


    The identification of Meteor Crater in Arizona as an extraterrestrial impact by Eugene Shoemaker provided the first evidence of this geologic phenomenon and opened the door to a new field of research that has eventually lead to the identification of over ~150 terrestrial impact structures. Subsequently impacts have been evoked in the formation of the moon, delivery of volatiles and bio-precursors to early Earth, creation of habitats for the earliest life and, in more recent times, major mass extinction events. However, understanding the impact flux to the Earth-Moon system has been complicated by the constant weathering and erosion at Earth's surface and the complex nature of impactite samples such that only a hand full of terrestrial craters have been accurately and precisely dated. Currently 40Ar/39Ar step-heating analysis of impactite samples is commonly used to infer impact ages but can be problematic due to the presence of relic clasts, incomplete 40Ar outgassing or excess 40Ar, and recoil and shock effects. The work presented here attempts to develop zircon geochronology to probe planetary impact histories as an alternative to current methods and provides another tool by which to constrain the bolide flux to the Earth-Moon system. Zircon has become the premier geo-chronometer in earth science and geochemical investigation of Hadean zircon from Western Australia has challenged the long-standing, popular conception that the near-surface Hadean Earth was an uninhabitable and hellish world; Zircons may preserve environmental information regarding their formation and thus provide a rare window into conditions on early Earth. Isotopic and petrologic analyses of these ancient grains have been interpreted to suggest that early Earth was more habitable than previously envisioned, with water oceans, continental crust, and possibly even plate tectonics. The Hadean is also suspected to be a time of major planetary bombardment however identifying impact signatures within

  7. Residence, resorption and recycling of zircons in Devils Kitchen rhyolite, Coso Volcanic Field, California

    Miller, J.S.; Wooden, J.L.


    Zircons from the Devils Kitchen rhyolite in the Pleistocene Coso Volcanic field, California have been analyzed by in situ Pb/U ion microprobe (SHRIMP-RG) and by detailed cathodoluminescence imaging. The zircons yield common-Pb-corrected and disequilibrium-corrected 206Pb/238U ages that predate a previously reported K-Ar sanidine age by up to 200 kyr, and the range of ages exhibited by the zircons is also approximately 200 kyr. Cathodoluminescence imaging indicates that zircons formed in contrasting environments. Most zircons are euhedral, and a majority of the zircons are weakly zoned, but many also have anhedral, embayed cores, with euhedral overgrowths and multiple internal surfaces that are truncated by later crystal zones. Concentrations of U and Th vary by two orders of magnitude within the zircon population, and by 10-20 times between zones within some zircon crystals, indicating that zircons were transferred between contrasting chemical environments. A zircon saturation temperature of ???750??C overlaps within error a previously reported phenocryst equilibration temperature of 740 ?? 25??C. Textures in zircons indicative of repeated dissolution and subsequent regrowth are probably caused by punctuated heating by mafic magma input into rhyolite. The overall span of ages and large variation in U and Th concentrations, combined with calculated zircon saturation temperatures and resorption times, are most compatible with crystallization in magma bodies that were emplaced piecemeal in the crust at Coso over 200 kyr prior to eruption, and that were periodically rejuvenated or melted by subsequent basaltic injections. ?? Oxford University Press 2004; all rights reserved.

  8. U-Pb Dating of Zircons and Phosphates in Lunar Meteorites, Acapulcoites and Angrites

    Zhou, Q.; Zeigler, R. A.; Yin, Q. Z.; Korotev, R. L.; Joliff, B. L.; Amelin, Y.; Marti, K.; Wu, F. Y.; Li, X. H.; Li, Q. L.; Lin, Y. T.; Liu, Y.; Tang, G. Q.


    Zircon U-Pb geochronology has made a great contribution to the timing of magmatism in the early Solar System [1-3]. Ca phosphates are another group of common accessory minerals in meteorites with great potential for U-Pb geochronology. Compared to zircons, the lower closure temperatures of the U-Pb system for apatite and merrillite (the most common phosphates in achondrites) makes them susceptible to resetting during thermal metamorphism. The different closure temperatures of the U-Pb system for zircon and apatite provide us an opportunity to discover the evolutionary history of meteoritic parent bodies, such as the crystallization ages of magmatism, as well as later impact events and thermal metamorphism. We have developed techniques using the Cameca IMS-1280 ion microprobe to date both zircon and phosphate grains in meteorites. Here we report U-Pb dating results for zircons and phosphates from lunar meteorites Dhofar 1442 and SaU 169. To test and verify the reliability of the newly developed phosphate dating technique, two additional meteorites, Acapulco, obtained from Acapulco consortium, and angrite NWA 4590 were also selected for this study as both have precisely known phosphate U-Pb ages by TIMS [4,5]. Both meteorites are from very fast cooled parent bodies with no sign of resetting [4,5], satisfying a necessity for precise dating.

  9. Reassessment of the geologic evolution of selected precambrian terranes in Brazil, based on SHRIMP U-Pb data, part 2: mineiro and Aracuai orogens and Southern Sao Francisco craton; Reavaliacao da evolucao geologica em terrenos pre-cambrianos brasileiros com base em novos dados U-Pb SHRIMP, parte 2: orogeno Aracuai, cinturao mineiro e craton Sao Francisco Meridional

    Silva, Luiz Carlos da; Pimentel, Marcio [Brasilia Univ., DF (Brazil). Inst. de Geociencias]. E-mail:; Leite, Carlos Augusto; Vieira, Valter Salino; Silva, Marcio Antonio da; Paes, Vinicius Jose de Castro; Cardoso Filho, Joao Moraes [Companhia de Pesquisas de Recursos Minerais (CPRM), Belo Horizonte, MG (Brazil); Armstrong, Richard [Australian National Univ., Canberra (Australia). Research School of Earth Sciences; Noce, Carlos Mauricio; Pedrosa-Soares, Antonio Carlos [Minas Gerais Univ., Belo Horizonte (Brazil). Inst. de Geociencias. Centro de Pesquisa Manuel Teixeira da Costa; Carneiro, Mauricio Antonio [Ouro Preto Univ., MG (Brazil). Dept. de Geologia


    This paper discusses new zircon SHRIMP (Sensitive High Resolution Ion Microprobe) U-Pb geochronological data for 19 key-exposures of several geological units exposed at the eastern border of the Southern Sao Francisco Craton and at the adjacent Proterozoic Mineiro and Aracuai orogens. Samples were collected along several E-W tran sects, aiming at tracing the precise limit of the Sao Francisco Craton Archean basement, as well as assessing the extension of the successive proterozoic orogenic collages. Due to the complex geologic history and/or high grade metamorphism which most of the rock units investigated have undergone, zircon morphology and the U-Pb analytical data exhibit very complex patterns. These are characterized by a combination of inheritance, partial resetting and new zircon growth during high-grade metamorphism. As a consequence, very careful and detailed analyses of cathodoluminescence imagery were required to allow distinction between inheritance, newly melt-precipitated zircon and partially reset zircons, as well as between the ages of magmatic and metamorphic events. In the southeastern border of the craton 5 units yielded Archean crystallization ages ranging from ca. 3000-2700 Ma, with poorly constrained metamorphic ages ranging from ca. 2850 to 550 Ma. The TTG gneissic complex exposed to the east and south of the Quadrilatero Ferrifero, formerly ascribed to the Archean basement, have crystallization ages from ca. 2210 Ma to 2050 Ma, and can now be interpreted as representing pre- to syn-collisional magmatic phases of the Mineiro Belt. Metamorphic ages of ca. 2100 Ma and 560 Ma are also well constrained in zircon populations from these gneisses. The crystallization age of ca 1740 Ma observed for an alkaline granite of the Borrachudos Suite (intrusive into the Archean basement east of the Southern Espinhaco Range) confirmed previous conventional U-Pb data for this Paleoproterozoic rift-related magmatism. One of the major basement inliers within the

  10. Gondwana to Pangea: a detrital zircons tale from NW Iberia

    Pastor-Galán, Daniel; Gutiérrez-Alonso, Gabriel; Brendan Murphy, J.; Fernández-Suárez, Javier; Hofmann, Mandy; Linnemann, Ulf


    The Cantabrian Zone of NW Iberia preserves a voluminous, almost continuous, sedimentary sequence that ranges from Neoproterozoic to Early Permian in age. Its tectonic setting is controversial and recent hypotheses include (i) passive margin deposition along the northern margin of Gondwana or (ii) an active continental margin or (iii) a drifting ribbon continent. In this paper we present detrital zircon U-Pb laser ablation age data from 13 samples from the Cantabrian Zone sequence ranging from Early Silurian to Early Permian in depositional age, which, together with previously published detrital zircon ages from Ediacaran-Ordovician strata, allow a comprehensive analysis of changing provenance through time. Laser ablation U-Pb geochronological analysis of detrital zircons in thirteen samples of the Cantabrian Zone of the NW Iberian Variscan belt reveal that this portion of Iberia was part of the northern passive-margin of Gondwana from the Ordovician to Late Devonian, until the onset of collision between Gondwana and Laurentia. Zircon populations in these samples show important similarities with zircons found in coeval detrital rocks from central North Africa. Additionally, the populations found in NW Iberia are coherent with a Saharan source. We suggest that NW Iberia was situated from Ordovician to Late Devonian along the Gondwana northern passive margin close to the paleoposition of central North Africa and Saharan craton. Additionally, the Carboniferous-Permian samples studied record the provenance changes produced during the Variscan collision and basement exhumation, the Cantabrian orocline formation and the subsequent detachment of the lithospheric mantle. The provenance changes reflect major topographic variations due to the afore mentioned processes during Late Devonian to Early Permian times. Detrital zircon studies are a useful tool that can complement regional syntheses in deducing paleogeographic locations, the occurrence of major tectonic events such

  11. Shrimp Survey Data

    National Oceanic and Atmospheric Administration, Department of Commerce — The Northern Shrimp Survey was initiated in 1983 by the Atlantic States Marine Fisheries Commission (ASMFC) and monitors the relative abundance (number of shrimp),...

  12. An apatite for progress:inclusions in zircon and titanite constrain petrogenesis and provenance

    Bruand, Emilie; Storey, Craig Darryl; Fowler, Michael


    Apatite has recently gained considerable attention as a mineral with many uses within the Earth and planetary sciences. Apatite chemistry has recently given new insight into a wide range of geological processes and tools, for example, magmatism, metasomatism, planetary geochemistry, and geochronology. We expand the utility of apatite here by presenting a novel way to fingerprint magma chemistry and petrogenesis using apatite inclusions within robust titanite and zircon. We present trace eleme...

  13. SHRIMP U-Pb ages of xenotime and monazite from the Spar Lake red bed-associated Cu-Ag deposit, western Montana: Implications for ore genesis

    Aleinikoff, John N.; Hayes, Timothy S.; Evans, Karl V.; Mazdab, Frank K.; Pillers, Renee M.; Fanning, C. Mark


    Xenotime occurs as epitaxial overgrowths on detrital zircons in the Mesoproterozoic Revett Formation (Belt Supergroup) at the Spar Lake red bed-associated Cu-Ag deposit, western Montana. The deposit formed during diagenesis of Revett strata, where oxidizing metal-bearing hydrothermal fluids encountered a reducing zone. Samples for geochronology were collected from several mineral zones. Xenotime overgrowths (1–30 μm wide) were found in polished thin sections from five ore and near-ore zones (chalcocite-chlorite, bornite-calcite, galena-calcite, chalcopyrite-ankerite, and pyrite-calcite), but not in more distant zones across the region. Thirty-two in situ SHRIMP U-Pb analyses on xenotime overgrowths yield a weighted average of 207Pb/206Pb ages of 1409 ± 8 Ma, interpreted as the time of mineralization. This age is about 40 to 60 m.y. after deposition of the Revett Formation. Six other xenotime overgrowths formed during a younger event at 1304 ± 19 Ma. Several isolated grains of xenotime have 207Pb/206Pb ages in the range of 1.67 to 1.51 Ga, and thus are considered detrital in origin. Trace element data can distinguish Spar Lake xenotimes of different origins. Based on in situ SHRIMP analysis, detrital xenotime has heavy rare earth elements-enriched patterns similar to those of igneous xenotime, whereas xenotime overgrowths of inferred hydrothermal origin have hump-shaped (i.e., middle rare earth elements-enriched) patterns. The two ages of hydrothermal xenotime can be distinguished by slightly different rare earth elements patterns. In addition, 1409 Ma xenotime overgrowths have higher Eu and Gd contents than the 1304 Ma overgrowths. Most xenotime overgrowths from the Spar Lake deposit have elevated As concentrations, further suggesting a genetic relationship between the xenotime formation and Cu-Ag mineralization.

  14. Zircon SHRIMP U Pb Ages and Its Geological Significance to the Rhyolite and Granite Porphyry in Dashimo Basin,Manzhouli%满洲里达石莫盆地流纹岩、花岗斑岩SHRIMP锆石U Pb年龄及其地质意义

    解开瑞; 巫建华; 李长华; 吴仁贵; 余达淦


    满洲里达石莫盆地火山岩系由下部的铁镁质火山岩组合、中部的高钾钙碱性流纹岩碱性粗面岩组合和上部的铁镁质火山岩组合所构成,并有花岗斑岩侵入.SHRIMP 锆石 U Pb 年龄表明,流纹岩和花岗斑岩锆石的206 Pb/238 U年龄分别为143�3±1�3Ma和143�0±1�8Ma,两者在误差范围内一致,同为早白垩世早期岩浆活动的产物.通过区域地层对比,结合已有的高精度锆石 U Pb 年龄数据,可将达石莫盆地及大兴安岭北部原塔木兰沟组、原上库力组、原梅勒图组火山岩中的铁镁质火山岩组合(年龄大于145Ma的部分)归入塔木兰沟组,高钾钙碱性流纹岩碱性粗面岩组合(年龄为145~130Ma的部分)归入上库力组,年龄小于127Ma的部分铁镁质火山岩组合归入梅勒图组.依照中国东部、俄罗斯东部和蒙古东部与火山岩有关的热液型铀矿主要赋存在早白垩世早期火山岩与次火山岩接触带附近的事实,推测达石莫盆地流纹岩与花岗斑岩的接触带是铀矿勘查值得关注的部位.%The lower and upper layer of volcanic series in Dashimo basin of southern Manzhouli is characG terized by the combination of mafic volcanic rocks,and the middle is characterized by the combination of the high potassium calc alkaline rhyolite alkaline trachyte,accompanied by the intrusion of granitic porphyry.The zircon SHRIMP U Pb dating results of rhyolite and granite porphyry show that rhyolite and granite porphyry are 143�3±1�3 Ma、143�0±1�8 Ma respectively,the rhyolite and granite porG phyry belong to Early age of Early Cretaceous epoch,the isotopic age of rhyolite and granite porphyry consistent within the error range,they are the products of the same magmatic evolution.Based on the study of regional stratigraphic correlation, combined with the published high precision U Pb zircon age data,the volcanic rocks from former Tamulangou formation,former Shangkuli formation and the

  15. Decay constants in geochronology

    IgorM.Villa; PaulR.Renne


    Geologic time is fundamental to the Earth Sciences, and progress in many disciplines depends critically on our ability to measure time with increasing accuracy and precision. Isotopic geochronology makes use of the decay of radioactive nuclides as a help to quantify the histories of rock, minerals, and other materials. Both accuracy and precision of radioisotopic ages are, at present, limited by those of radioactive decay constants. Modem mass spectrometers can measure isotope ratios with a precision of 10-4 or better. On the other hand, the uncertainties associated with direct half-life determinations are, in most cases, still at the percent level. The present short note briefly summarizes progress and problems that have been encountered during the Working Group's activity.

  16. Detrital geochronology of unroofing magmatic complexes

    Malusà, Marco Giovanni; Villa, Igor Maria; Vezzoli, Giovanni; Garzanti, Eduardo


    Tectonic reconstructions performed in recent years are increasingly based on petrographic (Dickinson & Suczek, 1979; Garzanti et al., 2007) and geochronological (Brandon et al., 1998; DeCelles et al., 2004) analyses of detrital systems. Detrital age patterns are traditionally interpreted as a result of cooling induced by exhumation (Jäger, 1967; Dodson, 1973). Such an approach can lead to infer extremely high erosion rates (Giger & Hurford 1989) that conflict with compelling geological evidence (Garzanti & Malusà, 2008). This indicates that interpretations solely based on exhumational cooling may not have general validity (Villa, 2006). Here we propose a new detrital geochronology model that takes into account the effects of both crystallization and exhumational cooling on geochronometers, from U-Pb on zircon to fission tracks on apatite. This model, specifically designed for unroofing magmatic complexes, predicts both stationary and moving mineral-age peaks. Because its base is the ordinary interaction between endogenic and exogenic processes, it is applicable to any geological setting. It was tested on the extremely well-studied Bregaglia-Bergell pluton in the Alps, and on the sedimentary succession derived from its erosion. The consistency between predicted and observed age patterns validates the model. Our results demonstrate that volcanoes were active on top of the growing Oligocene Alps, and resolve a long-standing paradox in quantitative erosion-sedimentation modelling, the scarcity of sediment during apparently fast erosion. Dickinson, W. R. & Suczek, C. A. Plate tectonics and sandstone composition. Am. Assoc. Petrol. Geol. Bull. 63, 2164-2172 (1979). Garzanti, E., Doglioni, C., Vezzoli. G. & Andò, S. Orogenic belts and orogenic sediment provenance. J. Geol. 115, 315-334 (2007). Brandon, M. T., Roden-Tice, M. K. & Garver, J. I. Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol. Soc. Am. Bull

  17. Age and compositional data of zircon from sepiolite drilling mud to identify contamination of ocean drilling samples

    Andrews, Graham D. M.; Schmitt, Axel K.; Busby, Cathy J.; Brown, Sarah R.; Blum, Peter; Harvey, Janet. C.


    Zircon extracted from drilled oceanic rocks is increasingly used to answer geologic questions related to igneous and sedimentary sequences. Recent zircon studies using samples obtained from marine drill cores revealed that drilling muds used in the coring process may contaminate the samples. The JOIDES Resolution Science Operator of the International Ocean Discovery Program has been using two types of clays, sepiolite and attapulgite, which both have salt water viscosifier properties able to create a gel-like slurry that carries drill cuttings out of the holes several hundred meters deep. The dominantly used drilling mud is sepiolite originating from southwestern Nevada, USA. This sepiolite contains abundant zircon crystals with U-Pb ages ranging from 1.89 to 2889 Ma and continental trace element, δ18O, and ɛHf isotopic compositions. A dominant population of 11-16 Ma zircons in sepiolite drilling mud makes identification of contamination in drilled Neogene successions particularly challenging. Interpretation of zircon analyses related to ocean drilling should be cautious of zircon ages in violation of independently constrained age models and that have age populations overlapping those in the sepiolite. Because individual geochronologic and geochemical characteristics lack absolute discriminatory power, it is recommended to comprehensively analyze all dated zircon crystals from cores exposed to drill mud for trace element, δ18O, and ɛHf isotopic compositions. Zircon analyzed in situ (i.e., in petrographic sections) are assumed to be trustworthy.

  18. In Situ Planetary Geochronology Technology Project

    National Aeronautics and Space Administration — Geochronology is the science of determining the age of rocks, fossils, and sediments.  The science of geochronology is the prime tool used to attempt to derive...

  19. Experimental Determination of Trace Element Partition Coefficients Between Zircon, Garnet and Melt

    Taylor, R. J.; Harley, S. L.; Hinton, R. W.; Elphick, S.


    The problem of relating ages, as calculated by zircon U-Pb geochronology, to processes and hence geoological events is central to understanding mountain building and crustal evolution. Accurate P-T-t paths can only be produced if zircon growth can be linked to specific rock and mineral processes used to establish pressure and temperature values for metamorphic episodes. As a major metamorphic mineral in crustal events, garnet is widely used as a thermobarometric tool, and linking garnet growth to zircon formation could be used to refine the interpretation of U-Pb ages. Attempts to resolve this issue have focussed on REE partitioning between zircon and garnet, both of which strongly incorporate the HREE into their structure, and so it is possible there is a distinct REE partitioning signature which will highlight whether the two minerals have grown in equilibrium. There are two complementary methods to obtaining this information, empirical and experimental. Empirical methods of determining this signature using carefully selected rocks have proved troublesome, with a wide range of partitioning signatures found. This work has used experimental techniques to produce zircon-melt, garnet-melt and zircon-garnet-melt partition coefficients at a range of P-T conditions using synthetic materials. Zircon and garnet are grown in trace element equilibrium with a water-undersaturated granitic melt, which represents partial melts formed in the lower crust during anatexis. Temperature ranges from 850°C to 1000°C at a pressure of 5Kbar were produced using internally heated gas apparatus. Trace element concentrations were measured using SIMS analysis at the Ion Microprobe Facility at the University of Edinburgh. The experimental data produced will be applied to interpret chemical signatures in zircon in garnet-bearing metamorphic rocks, and will provide an objective basis for interpretation of the timing of growth or recrystallisation of zircon in many high-grade terrains.

  20. Hydrogen diffusion in Zircon

    Ingrin, Jannick; Zhang, Peipei


    Hydrogen mobility in gem quality zircon single crystals from Madagascar was investigated through H-D exchange experiments. Thin slices were annealed in a horizontal furnace flushed with a gas mixture of Ar/D2(10%) under ambient pressure between 900 ° C to 1150 ° C. FTIR analyses were performed on oriented slices before and after each annealing run. H diffusion along [100] and [010] follow the same diffusion law D = D0exp[-E /RT], with log D0 = 2.24 ± 1.57 (in m2/s) and E = 374 ± 39 kJ/mol. H diffusion along [001] follows a slightly more rapid diffusion law, with log D0 = 1.11 ± 0.22 (in m2/s) and E = 334 ± 49 kJ/mol. H diffusion in zircon has much higher activation energy and slower diffusivity than other NAMs below 1150 ° C even iron-poor garnets which are known to be among the slowest (Blanchard and Ingrin, 2004; Kurka et al. 2005). During H-D exchange zircon incorporates also deuterium. This hydration reaction involves uranium reduction as it is shown from the exchange of U5+ and U4+ characteristic bands in the near infrared region during annealing. It is the first time that a hydration reaction U5+ + OH- = U4+ + O2- + 1/2H2, is experimentally reported. The kinetics of deuterium incorporation is slightly slower than hydrogen diffusion, suggesting that the reaction is limited by hydrogen mobility. Hydrogen isotopic memory of zircon is higher than other NAMs. Zircons will be moderately retentive of H signatures at mid-crustal metamorphic temperatures. At 500 ° C, a zircon with a radius of 300 μm would retain its H isotopic signature over more than a million years. However, a zircon is unable to retain this information for geologically significant times under high-grade metamorphism unless the grain size is large enough. Refrences Blanchard, M. and Ingrin, J. (2004) Hydrogen diffusion in Dora Maira pyrope. Physics and Chemistry of Minerals, 31, 593-605. Kurka, A., Blanchard, M. and Ingrin, J. (2005) Kinetics of hydrogen extraction and deuteration in

  1. High-Pressure/Low-Temperature Melanges in the Cycladic Blueschist Belt, Greece: Results of an Ionprobe (SHRIMP) U-Pb Study

    Bröcker, M.; Keasling, A.; Pidgeon, R. T.


    The Cycladic blueschist belt (CBB) in the central Aegean Sea has experienced epidote blueschist to eclogite facies metamorphism in the Eocene (c. 50-40 Ma) during collisional processes between the Apulian microplate and Eurasia. The general geological framework is well established, but many details of the tectonometamorphic history still are not fully understood. Unresolved issues concern the importance of pre-Eocene HP metamorphism [1, 2] and the geochronological record that is preserved in melange sequences. These aspects are addressed in an ionprobe (SHRIMP) U-Pb zircon study focusing on block-matrix associations from the islands of Syros and Andros. Melanges comprise in variable mixtures eclogites, glaucophanites, meta-gabbros, ultrabasic rocks, meta-acidic gneisses and jadeitites in a serpentinitic and/or metasedimentary matrix. The origin of the block-matrix associations is controversial and in many cases it remains unclear whether these melanges record sedimentary or tectonic processes. A tectonic slab from Syros, consisting of an interlayered meta-acidic gneiss - glaucophanite sequence, yielded 206Pb/238U ages of c. 237-245 Ma, similar to ages determined for rocks collected from structurally coherent sequences on other Cycladic islands. On Syros, we have also studied zircons from a metasomatic alteration profile, which developed around a compound eclogite-jadeitite net-veined block enclosed in a serpentinite matrix. From the outside in, distinct blackwall alteration zones (c. 5-30 cm in thickness) can be distinguished, which predominantly consist either of actinolite- chlorite, glaucophane or omphacite. Zircon from the unaltered jadeitite and all reaction zones yielded 206Pb/238U ages of c. 80 Ma. Across this profile, systematic changes are observed in zircon morphology and CL patterns. U- and Th-concentrations in zircon decrease towards the peripheral rinds. These observations are difficult to reconcile with a magmatic origin of the zircons and instead we

  2. Paleoproterozoic anorogenic granitoids of the Zheltav sialic massif (Southern Kazakhstan): Structural position and geochronology

    Tretyakov, A. A.; Degtyarev, K. E.; Sal'nikova, E. B.; Shatagin, K. N.; Kotov, A. B.; Ryazantsev, A. V.; Pilitsyna, A. V.; Yakovleva, S. Z.; Tolmacheva, E. V.; Plotkina, Yu. V.


    The basement of the Zheltav sialic massif (Southern Kazakhstan) is composed of different metamorphic rocks united into the Anrakhai Complex. In the southeastern part of the massif, these rocks form a large antiform with the core represented by amphibole and clinopyroxene gneissic granite varieties. By their chemical composition, dominant amphibole (hastingsite) gneissic granites correspond to subalkaline granites, while their petroand geochemical properties make them close to A-type granites. The U-Pb geochronological study of accessory zircons yielded an age of 1841 ± 6 Ma, which corresponds to the crystallization age of melts parental for protoliths of amphibole gneissic granites of the Zheltav Massif. Thus, the structural-geological and geochronological data make it possible to define the Paleoproterozoic (Staterian) stage of anorogenic magmatism in the Precambrian history of the Zheltav Massif. The combined Sm-Nd isotopic—geochronological data and age estimates obtained for detrital zircons indicate the significant role of the Paleoproterozoic tectono-magmatic stage in the formation of the Precambrian continental crust of sialic massifs in Kazakhstan and northern Tien Shan.

  3. Zircon U-Pb Ages Chronicle 3 Myr of Episodic Crystallization in the Composite Miocene Tatoosh Pluton, Mount Rainier National Park, Washington Cascades

    Bacon, C. R.; Du Bray, E. A.; Wooden, J. L.; Mazdab, F. K.


    Zircon geochronology of upper crustal plutons can constrain longevities of intermediate to silicic magmatic systems. As part of a larger study of the geochemistry and metallogeny of Tertiary Cascades magmatic arc rocks, we used the USGS-Stanford SHRIMP RG to determine 20 to 28 238U-206Pb ages for zircons from each of 6 quartz monzodiorite (qmd), quartz monzonite (qm), or granodiorite (grd) samples representative of the Tatoosh pluton, and one grd from the nearby Carbon River stock. The 7x12 km composite Tatoosh pluton, discontinuously exposed on the south flank of Mount Rainier, consists of at least 4 petrographic/compositional phases, here termed Pyramid Peak, Nisqually, Reflection Lake, and Tatoosh. These collectively intrude gently folded and weakly metamorphosed basaltic andesite flows and volcaniclastic rocks of the Eocene Ohanapecosh Formation, silicic ignimbrites and sedimentary rocks of the Oligocene Stevens Ridge Formation, and basaltic to intermediate volcanic rocks of the Miocene Fifes Peak Formation. Histograms and relative probability plots of U- Pb ages indicate 2 to 4 age populations within each sample. The weighted mean age of each of the youngest populations (all ±2σ) is interpreted as the time of final solidification: Pyramid Peak qmd (58.5% SiO2) 17.4±0.2 Ma, Nisqually grd (in Paradise Valley; 65.4% SiO2) 16.7±0.2 Ma, Nisqually grd (at Christine Falls; 66.4% SiO2) 17.3±0.2 Ma, Reflection Lake qm (along Pinnacle Peak trail; 66.6% SiO2) 17.1±0.2 Ma, Tatoosh grd (in Stevens Canyon; 67.8% SiO2) 18.2±0.2 Ma, Tatoosh grd (south of Louise Lake; 69.3% SiO2) 19.3±0.1 Ma, and Carbon River grd (68.0% SiO2) 17.4±0.3 Ma. The older Nisqually grd age is indistinguishable from a TIMS zircon age of 17.5±0.1 Ma reported by Mattinson (GSA Bulletin 88:1509-1514, 1977) for grd from a nearby locality. None of the 164 SHRIMP-RG U-Pb ages, including cores, is older than 21 Ma. The relatively small, high-level pluton likely was emplaced and solidified in pulses

  4. SHRIMP zircon U-Pb age of late Mesozoic volcanic rocks from the Chuzhou basin, eastern Anhui Province, and its geological significance%皖东滁州盆地晚中生代火山岩的SHRIMP锆石U-Pb年龄及其地质意义

    马芳; 薛怀民


    滁州盆地是长江中下游地区晚中生代发育的一系列断陷型火山岩盆地中的一个,但与其他在早中生代坳陷基础上发育起来的“继承式”火山岩盆地不同,它直接叠置在大别山造山带之上,盆地基底岩石的时代较老,属新元古代-早古生代地层.盆地内的火山岩主要为一套中酸性偏碱性的粗安质和粗面英安质岩石,属高钾钙碱性系列,地球化学特征上明显不同于长江中下游地区大多数盆地中火山岩所表现出的橄榄玄粗岩系列的特点(如宁芜盆地、庐枞盆地、溧水盆地、怀宁盆地).应用SHRIMP锆石U-Pb法测得滁州盆地黄石坝组粗安岩的锆石206 Pb/238U加权平均年龄为128±1Ma.该年龄与长江中下游地区其他盆地中火山岩-潜火山岩的形成时代类似,表明整个长江中下游地区的火山活动是在很短的时间内发生的.滁州盆地内的火山岩具有比长江中下游其他盆地中火山岩低得多的εNd(t)值,而类似于大别山造山带内晚中生代的花岗岩类侵入体,指示其成因可能主要与古老下地壳物质的部分熔融有关.%The Chuzhou basin, one of the several late Mesozoic volcanic basins developed in the middle and lower reaches of the Yangtze River, is the only basin directly superimposed upon the Dabie orogenic belt, with relatively old basement composed of Neoproterozoic-lower Paleozoic strata. The volcanic rocks in the Chuzhou basin are mainly intermediate-acidic trachyandesite and trachydacite, which belong to high-K cal-alkaline series and greatly differ from most late Mesozoic volcanic basins in the middle and lower reaches of the Yangtze River such as Ningwu basin, Luzong basin, Lishui basin and Huaining basin which belong to the shoshonitic series in geochemistry. In this study, the authors used zircon SHRIMP U-Pb technique to perform accurate dating of a tra-chyandesitic sample from the Huangshiba Formation in the Chuzhou basin, which yielded an

  5. Using Detrital Geochronologic and Thermochronologic "Double-Dating" to Constrain Depositional Age, Provenance, and Exhumation Signals in Ancient Forearc Basins

    Orme, D. A.


    The application of coupled detrital zircon U-Pb geochronology and (U-Th)/He thermochronology to sedimentary basins has the potential for unprecedented details about grain provenance, depositional age and source and basin exhumation signals. Although several studies have implored this technique, it is underutilized and may prove useful in geologic settings that are traditionally difficult to explore. For example, constraining the depositional age of strata in ancient forearc basins is challenging as many horizons are devoid of fossils and post-burial diagenesis of limestone beds limits biostratigraphic age control. This study applies U-Pb detrital zircon geochronology to clastic rocks from the Cretaceous-Eocene Xigaze forearc basin in southern Tibet to (1) to determine the provenance of forearc basin strata and (2) to constrain a maximum depositional age of stratigraphic horizons using the youngest distinct age group from a sample. In addition, (U-Th)/He thermochronology was applied to a subset of the detrital zircons on which U-Pb ages were previously determined in order to determine the timing of exhumation of Xigaze forearc strata and its source region. The use of young populations of zircons is a good method for age control in the Xigaze forearc basin because magmatism in the source area was more-or-less continuous and the lag time between the youngest zircons in a sample and the time of that samples deposition is likely relatively small. A total of 2,330 zircon grains yielded ages with acceptable precision and concordance for geochronologic interpretation. Together with sandstone petrography, the detrital zircons indicate that the primary source of detritus in the basin from ~113 to 54 Ma was the Gangdese magmatic arc. Analysis of the youngest age component of individual samples reveals a decrease in the youngest ages upsection, consistent with maximum depositional ages that are close to the likely true depositional age based on intervening tuff layers. Double

  6. 塔里木盆地东北缘敦煌群的形成和演化:锆石U-Pb年代学和Lu-Hf同位素证据%Evolution and formation of the Dunhuang Group in NE Tarim basin, NW China: Evidence from detrital-zircon geochronology and Hf isotope

    孟繁聪; 张建新; 相振群; 于胜尧; 李金平


    采用LA-MC-ICP-MS手段对敦煌地块中敦煌群的白云母石英片岩、石榴斜长角闪岩、石榴黑云斜长片麻岩和长英质伟晶岩脉中的锆石进行了U-Pb和Lu-Hf同位素分析,获得白云母石英片岩碎屑岩浆锆石的207Pb/206Pb表面年龄为1545~756Ma,主要集中在1200~1000Ma,表明地层的最大沉积时代为756Ma,蚀源区存在中、新元古代的岩浆事件.白云母石英片岩锆石的εHf(t)分为两组,一组为正值,εHf(t)=1.2~10.1,单阶段模式年龄为tDM=1.09~1.66Ga;一组为负值,εHf(t)=-1~-16,两阶段模式年龄为tDM2=1.91~2.42Ga.表明蚀源区存在古元古代、中元古代的再造地壳.石榴斜长角闪岩的两粒捕获锆石的年龄为2272Ma和1208Ma,εHf(t)为-3和14,tDM2和tDM为2.82Ga和1.1Ga,暗示捕获区存在太古代再造地壳和中元古代晚期新生地壳.石榴斜长角闪岩碎屑锆石的Th/U比值为0.02~0.42,206Pb/238U年龄为441±5Ma,代表了岩石遭受变质作用的时代.石榴黑云斜长片麻岩中的碎屑锆石与长英质伟晶岩脉中的继承锆石特征相同,锆石年龄集中在3个峰值区间:2.2~2.1Ga,1.8~1.6Ga,1.2~0.8Ga,相应的的εHf(t)分别为-9~4,-5.4~15,-27~20,相应锆石的模式年龄分别为3.1~2.4Ga,2.6~1.4Ga,3.1~1.7Ga,均大于其形成年龄,表明蚀源区锆石来自于再循环的新太古代、古元古代和中元古代地壳,样品代表的地层的最大沉积时代为新元古代早期.岩石中检测出早古生代的变质锆石,206Pb/238U年龄为464~422Ma,可能代表了沉积岩的变质时代.敦煌群锆石U-Pb和Lu-Hf同位素表明蚀源区岩石类型和时代的多样性,也表明部分敦煌群不是前寒武纪的变质基底,而是塔里木盆地变质基底之上新元古代的沉积盖层,后卷入了我国西北部早古生代的造山事件.%This paper reports in situe U-Pb ages and Hf isotopic data on detrital zircons from muscovite quartz schist, garnet amphibolite, gamet

  7. Geochronology of the Rio Formoso estuarine by {sup 210}Pb

    Arruda, Gilberto N.; Lyra, Denilson T.; Melo, Julyanne T.B.; Farias, Emerson E.G.; Franca, Elvis J.; Santos, Thiago O., E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Souza Neto, Joao A., E-mail: [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)


    Uranium series disequilibrium is useful for dating methods, in which profile sediments can be considered as historical records of anthropogenic events regarding the distribution and impacts of chemical substances on the environment. In this study, 2 deep sediment profiles (about 1 m) were collected, layered at each 3 cm, oven-dried and homogenized. The radiochemical separation of {sup 210}Pb consisted of using hydrobromic acid and an ion exchange resin (DOWEX) for precipitating {sup 210}Pb in the form of lead chromate. After 10 days, the radioactivity was therefore measured by means of the low level gas flow proportional counter, model S5-XLB, from Canberra. Sedimentation rate were obtained by CIC (Constant Initial Concentration) model assumes a constant sedimentation rate throughout the period over which unsupported {sup 210}Pb is measurable. Some sediment profiles were not dated since the percentage of sand was quite high in top layers or a high percentage of organic matter and water in excess were observed in the all sediment samples. {sup 210}Pb geochronology was successfully applied to age nine sediment profiles, in which higher sedimentation rates were observed in the middle portion of the estuarine probably related to shrimp farming impacts. By using geochronology, the detection of human impacts on chemical element distribution could be enhanced in the case of environmental monitoring studies in the Rio Formoso estuarine. (author)

  8. Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts

    Gervasoni, Fernanda; Klemme, Stephan; Rocha-Júnior, Eduardo R. V.; Berndt, Jasper


    The importance of zircon in geochemical and geochronological studies, and its presence not only in aluminous but also in alkaline rocks, prompted us to think about a new zircon saturation model that can be applied in a wide range of compositions. Therefore, we performed zircon crystallization experiments in a range of compositions and at high temperatures, extending the original zircon saturation model proposed by Watson and Harrison (Earth Planet Sci Lett 64:295-304, 1983) and Boehnke et al. (Chem Geol 351:324-334, 2013). We used our new data and the data from previous studies in peraluminous melts, to describe the solubility of zircon in alkaline and aluminous melts. To this effect, we devised a new compositional parameter called G [ {( {3 \\cdot {{Al}}2 {{O}}3 + {{SiO}}2 )/({{Na}}2 {{O}} + {{K}}2 {{O}} + {{CaO}} + {{MgO}} + {{FeO}}} )} ] (molar proportions), which enables to describe the zircon saturation behaviour in a wide range of rock compositions. Furthermore, we propose a new zircon saturation model, which depends basically on temperature and melt composition, given by (with 1σ errors): ln [ {{Zr}} ] = ( {4.29 ± 0.34} ) - ( {1.35 ± 0.10} ) \\cdot ln G + ( {0.0056 ± 0.0002} ) \\cdot T( °C ) where [Zr] is the Zr concentration of the melt in µg/g, G is the new parameter representing melt composition and T is the temperature in degrees Celsius. The advantages of the new model are its straightforward use, with the G parameter being calculated directly from the molar proportions converted from electron microprobe measurements, the temperature calculated given in degrees Celsius and its applicability in a wider range of rocks compositions. Our results confirm the high zircon solubility in peralkaline rocks and its dependence on composition and temperature. Our new model may be applied in all intermediate to felsic melts from peraluminous to peralkaline compositions.

  9. SHRIMP Zircon U-Pb and Molybdenite Re-Os Dating of the Skarn-type Tungsten Deposits in Southern Jiangxi Province, China, and Geological Implications: Examplified by the Jiaoli and Baoshan Tungsten Polymetallic Deposits%赣南矽卡岩型钨矿成岩成矿年代学及地质意义——以焦里和宝山矿床为例

    丰成友; 曾载淋; 王松; 梁景时; 丁明


    Skarn-type tungsten deposit is a very important type of tungsten mineral resources in southern Jiangxi province.Based on detailed field investigation and analysis on major elements,trace elements,rare earth elements and radiometric dating,the ages of tungsten mineralization and petrogenesis of ore-bearing granitoids,and tectonic environment of the skarn-type tungsten deposits in southern Jiangxi province were studied.SHRIMP zircon U-Pb age for the medium to fine-gained porphyritic granodiorite from the Jiaoli ore district is 164.4 ±1.1 Ma.Molybdenite Re-Os isochron age for the related Jiaoli skarn tungsten deposit is 170.6 ±4.6 Ma.The SHRIMP zircon U-Pb age of the Baoshan medium to fine-grained granite is 156.6 ±3.9 Ma,whereas the molybdenite Re-Os mean model age for the related Baoshan skarn-type tungsten deposit is 161.0 ±1.9 Ma.Thus,W-Sn mineralization and granite crystallization taking place in Middle to Late Jurassic were contemporaneous.These new ages,combined with those available in the literature,indicate that the ages of the granites and related W-Sn ores are Middle to Late Jurassic with a peak at 150 to 160 Ma.It can be concluded that tungsten mineralization occurred under Jurassic intraplate extensional environment which was a phase of lithospheric thinning in southern China.%矽卡岩型钨矿是赣南地区的一种重要钨矿床类型.本文以焦里和宝山两个典型的矽卡岩型钨多金属矿床为例,开展了系统的成岩成矿年代学和岩石地球化学研究,结合区域钨锡矿床最新年代学研究成果,探讨了赣南地区钨矿的成岩成矿时代及形成构造环境.结果表明,焦里矽卡岩型钨多金属矿区斑状花岗闪长岩SHRIMP锆石U-Pb年龄为164.4±1.1 Ma,辉钼矿Re-Os等时线年龄为170.6 ±4.6 Ma;宝山矽卡岩型钨矿区花岗岩SHRIMP锆石U-Pb年龄为156.6±3.9 Ma,辉钼矿Re-Os模式年龄加权平均值为161.0±1.9 Ma,厘定了它们的成岩成矿年龄为中-晚侏罗世,同一矿

  10. U-Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina

    Otamendi, Juan E.; Ducea, Mihai N.; Cristofolini, Eber A.; Tibaldi, Alina M.; Camilletti, Giuliano C.; Bergantz, George W.


    The Famatinian arc formed around the South Iapetus rim during the Ordovician, when oceanic lithosphere subducted beneath the West Gondwana margin. We present combined in situ U-Th-Pb and Lu-Hf isotope analyses for zircon to gain insights into the origin and evolution of Famatinian magmatism. Zircon crystals sampled from four intermediate and silicic plutonic rocks confirm previous observations showing that voluminous magmatism took place during a relatively short pulse between the Early and Middle Ordovician (472-465 Ma). The entire zircon population for the four plutonic rocks yields coherent εHf negative values and spreads over several ranges of initial εHf(t) units (-0.3 to -8.0). The range of εHf units in detrital zircons of Famatinian metasedimentary rocks reflects a prolonged history of the cratonic sources during the Proterozoic to the earliest Phanerozoic. Typical tonalites and granodiorites that contain zircons with evolved Hf isotopic compositions formed upon incorporating (meta)sedimentary materials into calc-alkaline metaluminous magmas. The evolved Hf isotope ratios of zircons in the subduction related plutonic rocks strongly reflect the Hf isotopic character of the metasedimentary contaminant, even though the linked differentiation and growth of the Famatinian arc crust was driven by ascending and evolving mantle magmas. Geochronology and Hf isotope systematics in plutonic zircons allow us understanding the petrogenesis of igneous series and the provenance of magma sources. However, these data could be inadequate for computing model ages and supporting models of crustal evolution.

  11. The timing of eclogite facies metamorphism and migmatization in the Orlica–Śnieżnik complex, Bohemian Massif: Constraints from a multimethod geochronological study

    Brocker, M.; Klemd, R.; Cosca, M.; Brock, W.; Larionov, A.N.; Rodionov, N.


    The Orlica–Śnieżnik complex (OSC) is a key geological element of the eastern Variscides and mainly consists of amphibolite facies orthogneisses and metasedimentary rocks. Sporadic occurrences of eclogites and granulites record high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic conditions. A multimethod geochronological approach (40Ar–39Ar, Rb–Sr, Sm–Nd, U–Pb) has been used to gain further insights into the polymetamorphic evolution of eclogites and associated country rocks. Special attention was given to the unresolved significance of a 370- to 360 Ma age group that was repeatedly described in previous studies. Efforts to verify the accuracy of c.370 Ma K–Ar phengite and biotite dates reported for an eclogite and associated country-rock gneiss from the location Nowa Wieś suggest that these dates are meaningless, due to contamination with extraneous Ar. Extraneous Ar is also considered to be responsible for a significantly older 40Ar–39Ar phengite date of c. 455 Ma for an eclogite from the location Wojtowka. Attempts to further substantiate the importance of 370–360 Ma zircon dates as an indicator for a melt-forming high-temperature (HT) episode did not provide evidence in support of anatectic processes at this time. Instead, SHRIMP U–Pb zircon dating of leucosomes and leucocratic veins within both orthogneisses and (U)HP granulites revealed two age populations (490–450 and 345–330 Ma respectively) that correspond to protolith ages of the magmatic precursors and late Variscan anatexis. The results of this study further underline the importance of Late Carboniferous metamorphic processes for the evolution of the OSC that comprise the waning stages of HP metamorphism and lower pressure HT overprinting with partial melting. Eclogites and their country rocks provided no chronometric evidence for an UHP and ultrahigh-temperature episode at 387–360 Ma, as recently suggested for granulites from the OSC, based on Lu–Hf garnet

  12. Zircon geochronology of Xingxingxia quartz dioritic gneisses:Implications for the tectonic evolution and Precambrian basement affinity of Chinese Tianshan orogenic belt%星星峡石英闪长质片麻岩的锆石年代学:对天山造山带构造演化及基底归属的意义

    贺振宇; 张泽明; 宗克清; 王伟; 于飞


    天山造山带是中亚造山带(CAOB)的主要组成部分,对于其前寒武纪古老基底的起源、古生代构造单元划分和造山作用过程的认识还存在很大分歧.本文对分布在星星峡镇西的石英闪长质片麻岩开展了系统地岩相学观察和锆石U-Pb年龄、Hf同位素及全岩地球化学分析.根据矿物组成推测它们的原岩为石英闪长岩,两个样品中的锆石具有基本一致的内部结构特征,均发育黑色、均一的边部和具震荡环带的核部,部分保留有更早的继承锆石核.分析结果表明,它们的原岩形成于- 425 Ma,变质作用年龄为约320 ~ 360Ma,继承锆石的年龄为1381~ 1743Ma.原岩结晶锆石具有正的且变化较大的εHf (t)值(0.9~17.8),继承锆石的tDM2模式年龄变化于1.54~2.44Ga.在全岩地球化学组成上,石英闪长质片麻岩具有明显富集Rb、Ba、Th、K等大离子亲石元素和Pb、U元素,亏损Nb、Ta、Ti等高场强元素的特点.结合区域上已有的前寒武纪基底、高级变质岩、蛇绿混杂岩、岩浆岩的研究资料,获得以下认识:中天山地块的前寒武纪基底的起源与塔里木板块没有明显的相关性,可能是中元古代时期,由东欧板决边缘的弧增生造山作用形成;中天山地块东部在早古生代为大陆边缘弧的构造环境,可能形成于南天山洋向中天山板块的俯冲作用;南天山洋在天山造山带的东部和西部可能具有一致的闭合时间.%The Tianshan orogen is the major component of the Central Asian Orogenic Belt (CAOB). There has been a continued debate on the derivation of the old Precambrian crustal basements and Paleozoic tectonic divisions and evolutions of the orogen. In this paper we present pejjological characteristics, zircon U-Pb ages and Hf isotope compositions as well as the whole rock geochemistry of the quartz dioritic gneisses from west of the Xingxingxia Town. Based on the mineral assemblies, their

  13. Dating of zircon from high-grade rocks:Which is the most reliable method?

    Alfred Kröner; Yusheng Wan; Xiaoming Liu; Dunyi Liu


    Magmatic zircon in high-grade metamorphic rocks is often characterized by complex textures as revealed by cathodoluminenscence (CL) that result from multiple episodes of recrystallization, over-growth, Pb-loss and modifications through fluid-induced disturbances of the crystal structure and the original U-Th-Pb isotopic systematics. Many of these features can be recognized in 2-dimensional CL images, and isotopic analysis of such domains using a high resolution ion-microprobe with only shallow penetration of the zircon surface may be able to reconstruct much of the magmatic and complex post-magmatic history of such grains. In particular it is generally possible to find original magmatic domains yielding concordant ages. In contrast, destructive techniques such as LA-ICP-MS consume a large volume, leave a deep crater in the target grain, and often sample heterogeneous domains that are not visible and thus often yield discordant results which are difficult to interpret. We provide examples of complex magmatic zircon from a southern Indian granulite terrane where SHRIMP II and LA-ICP-MS analyses are compared. The SHRIMP data are shown to be more precise and reliable, and we caution against the use of LA-ICP-MS in deciphering the chronology of complex zircons from high-grade terranes.

  14. Dating of zircon from high-grade rocks: Which is the most reliable method?

    Alfred Kröner


    Full Text Available Magmatic zircon in high-grade metamorphic rocks is often characterized by complex textures as revealed by cathodoluminenscence (CL that result from multiple episodes of recrystallization, overgrowth, Pb-loss and modifications through fluid-induced disturbances of the crystal structure and the original U-Th-Pb isotopic systematics. Many of these features can be recognized in 2-dimensional CL images, and isotopic analysis of such domains using a high resolution ion-microprobe with only shallow penetration of the zircon surface may be able to reconstruct much of the magmatic and complex post-magmatic history of such grains. In particular it is generally possible to find original magmatic domains yielding concordant ages. In contrast, destructive techniques such as LA-ICP-MS consume a large volume, leave a deep crater in the target grain, and often sample heterogeneous domains that are not visible and thus often yield discordant results which are difficult to interpret. We provide examples of complex magmatic zircon from a southern Indian granulite terrane where SHRIMP II and LA-ICP-MS analyses are compared. The SHRIMP data are shown to be more precise and reliable, and we caution against the use of LA-ICP-MS in deciphering the chronology of complex zircons from high-grade terranes.

  15. 甘肃敦煌水峡口地区前寒武纪岩石的锆石U-Pb年龄、Hf同位素组成及其地质意义%Zircon geochronology and Lu-Hf isotope compositions for Precambrian rocks of the Dunhuang complex in Shuixiakou area, Gansu Province

    赵燕; 第五春荣; 孙勇; 朱涛; 王洪亮


    Dunhuang block is located in the southeast of Tarim Craton,and the research of Precambrian Dunhuang complex is of great significance in investigating the formation and evolution of the crust of Dunhuang block,as well as its tectonic relationship with the North China Craton and Yangtze Craton.Dunhuang complex,in Shuixiakou area,Gansu Province,mainly consists of tonaliticgranodioritic gneisses,granitic gneisses and metamorphosed supracrustal rocks.The age of 2561 ± 16Ma and 2510 ± 22Ma respectively for the tonalitic and the granitic gneisses by LA-ICP-MS U-Pb dating of zircons confirm the existence of Archean rocks in Dunhuang complex,LA-ICP-MS U-Pb dating of zircons yielded a metamorphic age of 1806-± 14Ma for the amphibolite,and its parent magma probably derived from the partial melting of ancient lithospheric mantle.Based on the integration of our study and the available data,we put forward that Dunhuang complex has experienced a metamorphism during the Late Paleoproterozoic (1.80 ~ 1.85Ga).The analysis of Hf isotopes of zircons indicates that ~ 2.5Ga is a major period of crustal growth in Dunhuang block during the Neoarchean,while the ~ 1.8Ga tectonic-thermal event represent a reworking period of ancient crust.The above data show that the formation and evolution of Dunhuang block is similar with the North China Craton during Early Precambrian,and they are involved in the global collision-orogenic event during Columbia Period.%敦煌杂岩位于塔里木克拉通的东部,探寻和研究其中的早前寒武纪地质体对于探讨敦煌地块早前寒武纪地壳的形成和演化及其构造归属等问题具有重要的意义.甘肃敦煌水峡口地区的敦煌杂岩主要由英云闪长质片麻岩、花岗闪长质片麻岩以及表壳岩石组成.利用LA-ICP-MS锆石U-Pb定年方法测得水峡口英云闪长片麻岩和花岗片麻岩原岩的形成年龄分别为2561±16Ma和2510±22Ma,确证了在敦煌杂岩中存在太古宙岩石.此外,还

  16. Zircon LA ICPMS U Pb Geochronology of the Beryl-Bearing Pegmatite and Its Geological Significance,Western Yunnan,Southwest China%滇西含绿柱石伟晶岩锆石UPb年代学及其地质意义

    李再会; 唐发伟; 林仕良; 丛峰; 谢韬; 邹光富


    Zircon LA ICP MS U Pb dating and geochemical analyses were carried out for the beryl-bearing pegmatite of Tengchong Lianghe area,western Yunnan.Dating results revealed that the beryl-bearing pegmatite were formed at (48.1±0.8)Ma (MSWD=4.0).Zircon morphology and trace element feature indicate that the zircons suffered from hydrothermal alteration.The beryl-bearing pegmatite shows similar characteristics with respect to major elements,trace elements and rare elements with muscovite granite which formed during 55 52 Ma.They are sub-alkaline series,peraluminous granite with strongly Eu depletion,relatively enriched HREE with (La/Yb)N=1.61 1.92 and showing typical M-type of REE tetrad effect.The genesis of beryl-bearing pegmatite is related to the evolution of muscovite granitoids and the crystallization temperature of beryl-bearing pegmatite is 581 ℃.It indicates the overthickened crust tectonic setting caused by India-Asia continental collision.%对腾冲梁河地区含绿柱石伟晶岩进行了锆石 LA ICP MS U Pb 定年和地球化学分析。结果表明:含绿柱石伟晶岩的形成时代为(48.1±0.8)Ma(MSWD=4.0),锆石形态特征和微量元素特征显示,伟晶岩锆石受到热液的改造。含绿柱石伟晶岩与55~52 Ma 的白云母花岗岩在主量元素、微量元素及稀土元素方面表现出极其相似的特征,为钙碱性系列,过铝质花岗岩,表现出强烈的 Eu 亏损,δEu 为0.074~0.083,相对富集 HREE,(La/Yb)N =1.61~1.92,总体表现出典型的“M”型稀土元素四分组效应。含绿柱石伟晶岩是白云母花岗岩浆高度演化的结果,伟晶岩结晶温度为581℃,代表了印度欧亚板块碰撞导致地壳加厚的构造背景。

  17. U-Pb zircon in situ dating with LA-MC-ICP-MS using a mixed detector configuration

    Chemale Junior, Farid, E-mail: [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Geociencias; Kawashita, Koji; Dussin, Ivo A. [Universidade de Sao Paulo (USP), SP (Brazil). Centro de Pesquisas Geocronologicas; Avila, Janaina N. [Australian National University, Canberra, (Australia). Research School of Earth Sciences; Justino, Dayvisson; Bertotti, Anelise [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Curso de Pos-Graduacao em Geociencias


    The LA-MC-ICP-MS method applied to U-Pb in situ dating is still rapidly evolving due to improvements in both lasers and ICP-MS. To test the validity and reproducibility of the method, 5 different zircon samples, including the standard Temora-2, ranging in age between 2.2 Ga and 246 Ma, were dated using both LA-MC-ICP-MS and SHRIMP. The selected zircons were dated by SHRIMP and, after gentle polishing, the laser spot was driven to the same site or on the same zircon phase with a 213 nm laser microprobe coupled to a multi-collector mixed system. The data were collected with a routine spot size of 25 {mu}m and, in some cases, of 15 and 40 {mu}m. A careful cross-calibration using a diluted U-Th-Pb solution to calculate the Faraday reading to counting rate conversion factors and the highly suitable GJ-1 standard zircon for external calibrations were of paramount importance for obtaining reliable results. All age results were concordant within the experimental errors. The assigned age errors using the LA-MC-ICP-MS technique were, in most cases, higher than those obtained by SHRIMP, but if we are not faced with a high resolution stratigraphy, the laser technique has certain advantages. (author)

  18. Lithology, kinematics and geochronology related to Late Mesozoic basin-mountain evolution in the Nanxiong-Zhuguang area, South China

    SHU; Liangshu; DENG; Ping; WANG; Bin; TAN; Zhengzhong; YU


    Nanxiong basin and evolution of basin-mountain system were controlled both by the Zhuguang granitic-doming and the regional extensional tectonics.Development of the olivine basalt in the basin suggests that tension action was very strong during lava eruption. The magma-type zircon grains of basalt from the Nanxiong basin yielded the SHRIMP age of 96±1Ma, providing reliable geochronological constraint on the tectono-thermal event and basin-mountain evolution in the Nanling region, South China.

  19. Double Taste of Shrimp

    Jinvao Restaurant


    Ingredients: 8 shrimp (about 500g), 50 grams of oil, 150 grams of egg white, a little salt, MSG, pepper powder, Shaoxing wine, coriander, sesame, flour and sugar. Directions: 1. De-vein and wash the shrimp. Cut in half, separating the head from the tail. 2. Soak the shrimp tails in the salt, Shaoxing wine, pepper powder and MSG. Baste the tails with flour and coat with egg white and sesame. 3. Mix the starch in with egg white and stir until smooth. Spread the paste on the tails without the sesame, then sprinkle with coriander.

  20. Geochronological constraints on the metamorphic sole of the Semail ophiolite in the United Arab Emirates

    Nick M.W. Roberts


    Full Text Available The Semail ophiolite of Oman and the United Arab Emirates (UAE provides the best preserved large slice of oceanic lithosphere exposed on the continental crust, and offers unique opportunities to study processes of ocean crust formation, subduction initiation and obduction. Metamorphic rocks exposed in the eastern UAE have traditionally been interpreted as a metamorphic sole to the Semail ophiolite. However, there has been some debate over the possibility that the exposures contain components of older Arabian continental crust. To help answer this question, presented here are new zircon and rutile U-Pb geochronological data from various units of the metamorphic rocks. Zircon was absent in most samples. Those that yielded zircon and rutile provide dominant single age populations that are 95–93 Ma, partially overlapping with the known age of oceanic crust formation (96.5–94.5 Ma, and partially overlapping with cooling ages of the metamorphic rocks (95–90 Ma. The data are interpreted as dating high-grade metamorphism during subduction burial of the sediments into hot mantle lithosphere, and rapid cooling during their subsequent exhumation. A few discordant zircon ages, interpreted as late Neoproterozoic and younger, represent minor detrital input from the continent. No evidence is found in favour of the existence of older Arabian continental crust within the metamorphic rocks of the UAE.

  1. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada

    Lowery, Claiborne L.E.; Miller, C.F.; Walker, B.A.; Wooden, J.L.; Mazdab, F.K.; Bea, F.


    Zirconium and Hf are nearly identical geochemically, and therefore most of the crust maintains near-chondritic Zr/Hf ratios of ???35-40. By contrast, many high-silica rhyolites and granites have anomalously low Zr/Hf (15-30). As zircon is the primary reservoir for both Zr and Hf and preferentially incorporates Zr, crystallization of zircon controls Zr/ Hf, imprinting low Zr/Hf on coexisting melt. Thus, low Zr/Hf is a unique fingerprint of effective magmatic fractionation in the crust. Age and compositional zonation in zircons themselves provide a record of the thermal and compositional histories of magmatic systems. High Hf (low Zr/ Hf) in zircon zones demonstrates growth from fractionated melt, and Ti provides an estimate of temperature of crystallization (TTiZ) (Watson and Harrison, 2005). Whole-rock Zr/Hf and zircon zonation in the Spirit Mountain batholith, Nevada, document repeated fractionation and thermal fluctuations. Ratios of Zr/Hf are ???30-40 for cumulates and 18-30 for high-SiO2 granites. In zircons, Hf (and U) are inversely correlated with Ti, and concentrations indicate large fluctuations in melt composition and TTiZ (>100??C) for individual zircons. Such variations are consistent with field relations and ion-probe zircon geochronology that indicate a >1 million year history of repeated replenishment, fractionation, and extraction of melt from crystal mush to form the low Zr/Hf high-SiO2 zone. ?? 2006 The Mineralogical Society.

  2. Zircon Recycling in Arc Intrusions

    Miller, J.; Barth, A.; Matzel, J.; Wooden, J.; Burgess, S.


    Recycling of zircon has been well established in arc intrusions and arc volcanoes, but a better understanding of where and how zircons are recycled can help illuminate how arc magma systems are constructed. To that end, we are conducting age, trace element (including Ti-in-zircon temperatures; TzrnTi) and isotopic studies of zircons from the Late Cretaceous (95-85 Ma) Tuolumne Intrusive Suite (TIS) in the Sierra Nevada Batholith (CA). Within the TIS zircons inherited from ancient basement sources and/or distinctly older host rocks are uncommon, but recycled zircon antecrysts from earlier periods of TIS-related magmatism are common and conspicuous in the inner and two most voluminous units of the TIS, the Half Dome and Cathedral Peak Granodiorites. All TIS units have low bulk Zr ([Zr]825°C), [Zr] in the TIS is a factor of 2 to 3 lower than saturation values. Low [Zr] in TIS rocks might be attributed to a very limited supply of zircon in the source, by disequilibrium melting and rapid melt extraction [1], by melting reactions involving formation of other phases that can incorporate appreciable Zr [2], or by removal of zircon at an earlier stage of magma evolution. Based on a preliminary compilation of literature data, low [Zr] is common to Late Cretaceous N.A. Cordilleran granodioritic/tonalitic intrusions (typically Tzrnsat [3]. A corollary is that slightly older zircon antecrysts that are common in the inner units of the TIS could be considered inherited if they are derived from remelting of slightly older intrusions. Remelting at such low temperatures in the arc would require a source of external water. Refs: [1] Sawyer, J.Pet 32:701-738; [2] Fraser et al, Geology 25:607-610; [3] Harrison et al, Geology 35:635- 638

  3. Gulf Shrimp System

    National Oceanic and Atmospheric Administration, Department of Commerce — Gulf of Mexico Shrimp Landings - This data set contains catch (landed catch) and effort for fishing trips made by the larger vessels that fish near and offshore for...

  4. South Atlantic Shrimp System

    National Oceanic and Atmospheric Administration, Department of Commerce — The SEFSC, in cooperation with the South Atlantic states, collects South Atlantic shrimp data from dealers and fishermen. These data are collected to provide catch,...

  5. Trace-element study and age dating of zircon from chromitites of the Bushveld Complex (South Africa)

    Yudovskaya, Marina; Kinnaird, Judith; Naldrett, Anthony J.; Rodionov, Nickolay; Antonov, Anton; Simakin, Sergey; Kuzmin, Dmitry


    The layered Bushveld Complex hosts a number of chromitite layers, which were found to contain significant amounts of zircon grains compared with adjacent silicate rocks. Cathodoluminescent-dark, partially metamict cores and transparent rims of composite zircon grains were analyzed for trace elements with SIMS and LA-ICPMS techniques. The cores are enriched in REE, Y, Th and U and are characterized by distinctly flatter REE patterns in contrast to those of the rims and transparent homogenous crystals. Zircon from the different stratigraphic units has specific Th/U ratios, the highest of which (1.5-4) occurs in a Merensky Reef zircon core. The Ti content of Bushveld zircon ranges from 12 to 52 ppm correlating to a crystallization temperature range of 760-930 °C. The geochemical characteristics of the first zircon generation are consistent with its high-temperature crystallization as the first major U, Th and REE acceptor from a highly-evolved residue of the high-Mg basalt magma, whereas the rims and coreless crystals have crystallized from percolating intercumulus liquid of new influx of the same magma. U-Pb SHRIMP dating of zircon cores and rims does not reveal a distinguishable difference between their ages indicating the absence of inherited zircon. Concordia ages of 2,051 ± 9 Ma (2σ, MSWD = 0.1) and 2,056 ± 5 Ma (2σ, MSWD = 0.05) for zircons from the Merensky Reef and the Upper Platreef located equally near the top of the Critical Zone are in agreement with published ages for the Merensky Reef. Zircon from the deeper-seated Lower Group, Middle Group and Lower Platreef chromitites yields younger concordia ages that may reflect prolonged late-stage volatile activity.

  6. 湖南仙人岩与金矿床有关的二长岩锆石U-Pb年龄、Hf同位素及地质意义%Zircon U-Pb Geochronology and Hf Isotopic Compositions of the Monzonite,Related to the Xianrenyan Gold Deposit in Hunan Province and Its Geological Significances

    甄世民; 祝新友; 李永胜; 杜泽忠; 公凡影; 巩小栋; 齐钒宇; 贾德龙; 王璐琳


    The Xianrenyan pluton is located in the south of Shuikoushan ore field, Hunan Province. There develops Au, Cu, Mo and Zn mineralization in inner and outer contact zones of the pluton, which shows the colse relationship between the pluton and the metallic mineralization. Zircon LA - MC - ICP -MS U - Pb age of the monzonite suggests a weighted mean age of (156. 09±0. 46) Ma (MSWD= 1. 4) which implies that the pluton was ernplaced in Early Yanshanian period. The in-situ Hf isotopic analysis reveals 176Hf/177Hf ratios in the zircon range from 0. 282 243 to 0. 282 904, and εHf(t) from —15. 55 to 7. 87 (with peak value around —10) , and the two stage Hf model ages(TDM2) from 703 Ma to 2 188 Ma (with peak value around 1 800 Ma), which indicates that parental magma of the pluton was derived from the mixed sources of the lower crust and mantle. Based on the geochemistry of the rocks, it can be concluded that the monzonite was mainly resulted from remelting of the Mesoproterozoic basement rocks and formed in Middle and Late Jurassic when the crust was in an extension-thinning geodynamic setting. In addition, the authors compare and analyze the lithogeochemical characteristics of the Xianrenyan pluton and the Shuikoushan stock. The fact that the Xianrenyan pluton has a weaker differentiation than the Shuikoushan pluton gives the reason for its unfavorable gold mineralization.%仙人岩岩体位于湖南水口山矿田的南部.岩体内外接触带上均见有不同程度的金、铜、钼、锌等矿化,反映出岩体与成矿存在着内在联系.二长岩中锆石的LA-MC-ICP-MS年代学研究表明,其U-Pb加权平均年龄值为(156.09±0.46)Ma(MSWD=1.4),显示为燕山早期侵位.锆石Lu-Hf同位素原位分析结果表明,176 Hf/177 Hf值为0.282 243~0.282 904,εHf (t)值为-15.55~7.87,峰值在-10左右,Hf同位素二阶段模式年龄(TDM2)为703~2 188 Ma,峰值在1 800 Ma左右,指示岩浆为壳幔混合来源.结合岩体的地球化学特征,认

  7. 大兴安岭北部红水泉组碎屑锆石LA-ICP-MS U-Pb年代学及其地质意义%LA-ICP-MS U-Pb Geochronology of Detrital Zircon from the Hongshuiquan Formation in the Northern Da Hinggan Area and Its Tectonic Significance

    赵芝; 迟效国; 赵秀羽; 孙巍; 潘世语; 胡兆初


    红水泉组广泛出露于大兴安岭北部地区,主要由杂砂岩、砂板岩、碳酸盐岩和凝灰岩组成,含腕足、珊瑚和苔藓虫化石,时代为早石炭世.对额尔古纳右旗和扎兰屯地区的红水泉组砂岩样品进行了LA-ICP-MS锆石U-Pb测年.结果显示,87个谐和-近谐和年龄主要分布在4个年龄区间:353~379 Ma,峰值年龄约为366Ma;428~473Ma,峰值年龄约为441Ma和464Ma;487~521Ma,峰值年龄约为502Ma;1 790~1943Ma,峰值年龄约为1 848Ma.其中:约366、441、464和502Ma的峰值年龄与额尔古纳、兴安地块的岩浆事件基本吻合,1 848 Ma的峰值年龄普遍存在于2个地块,说明红水泉组的沉积物主要来自额尔古纳—兴安地块;约366Ma的峰值年龄反映沉积物部分来自大兴安岭北部晚泥盆世火山弧,物源区具有双向性(古老陆壳和火山弧).结合区域早石炭世沉积特征认为红水泉组为一套弧后盆地沉积.%The Hongshuiquan Formation, widely exposed in the northern Da Hinggan area, consists mainly of greywacke, sand-slate, carbonate rocks and tuffs, in which brachiopods, corals and bryozoans flourished in Early Carboniferous. LA - ICP - MS zircon U - Pb dating of the sandstones from the Hongshuiquan Formation in Ergun and Zhalantun area is carried out in order to discuss the Early Carboniferous basin type. Results show that 87 zircon concordant ages give four age groups: 353 - 379 Ma with peak age at 366 Ma, 428 - 473 Ma with peak age at 441 Ma and 464 Ma, 487 - 521 Ma with peak age at 502 Ma and 1 790 -1 943 Ma with peak age at 1 848 Ma. In this frame, the peak ages of 366 Ma, 441 Ma, 464 Ma and 502 Ma are consistent with the magmatic events in Ergun and Xing'an blocks, and the peak age of 1 848 Ma is widely existed in the two blocks, suggesting that sediments of the Hongshuiquan Formation mainly derive from Ergun-Xing'an blocks. The youngest peak age of 366 Ma indicates that the sediments come partly from the Late

  8. U-Pb zircon geochronology of intrusive and basement rocks in the Jacurici Valley region, Sao Francisco Craton, BA, Brazil; Geocronologia U-Pb em zircao de rochas intrusivas e de embasamento na regiao do Vale do Jacurici, Craton do Sao Francisco, BA

    Silveira, Carlos Jose Sobrinho da; Frantz, Jose Carlos; Marques, Juliana Charao; Roos, Siegbert; Peixoto, Vinicius Medina, E-mail:, E-mail:, E-mail:, E-mail:, E-mail: [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Laboratorio de Geologia Isotopica; Queiroz, Waldemir Jose Alves de, E-mail: [Companhia de Ferro Ligas da Bahia (FERBASA), Pojuca, BA (Brazil)


    The Jacurici Complex, located in the NE of the Sao Francisco Craton, is constituted by several Cr-mineralized mafic-ultramafic N-S bodies, possible fragments of a single sill disrupted during deformation. Some works suggest it is intruded on the Serrinha Block while others consider it in the Salvador-Curaca Belt. The basement on this region is informally divided into paragneisses and orthogneisses; the latter is supposed to be younger considering it is less deformed. Petrography revealed that some of the paragneisses are alkali-feldspar granite strongly milonitized. The orthogneisses occur at the north and consist, at least in part, of monzogranites with heterogeneous deformation, locally of low temperature. U-Pb zircon dating were performed for five representative samples. Just three provided good concordia ages. A mafic rock produced a 2102 ± 5 Ma age and it is petrographically similar to the metanorites described in the Jacurici Complex, being interpreted as the record of the first pulses of the mafic magmatism. A monzogranite yielded a 2995 ± 15 Ma age, older than expected, related to the Serrinha Block. The alkali-feldspar granite yielded a 2081 ± 3 Ma age. The Itiuba Syenite and the pegmatites that crosscut the Jacurici Complex have similar ages. Considering the lack of information about the supracrustal sequence that hosts the intrusive alkaline and mafic-ultramafic rocks at the Ipueira and the Medrado areas, it is possible that part of the terrain belongs to the Salvador-Curaca Belt. We suggest that the Jacurici Complex could be intruded after the tectonic amalgamation between the Serrinha Block and the older part of the Salvador-Curaca Belt and, therefore, could be hosted by both terrains. (author)

  9. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS

    YUAN Honglin; WU Fuyuan; GAO Shan; LIU Xiaoming; XU Ping; SUN Deyou


    Using the in situ zircon U-Pb dating method of LA-ICPMS, we analyzed the 31 Ma old SHRIMP U-Pb age of the Yongsheng nepheline syenite from southern Jilin Province under different spot sizes. The obtained ages are comparable with that of SHRIMP in both accuracy and precision. The age is also identical to that of the Yinmawanshan gabbro from the Liaodong Peninsula within error. Both the Yongsheng nepheline syenite and the Yinmawanshan gabbro represent the youngest known exposed intrusions in northeastern and even eastern China. The results indicate the Eocene mantle-derived magmatic underplating, and the rapid crustal uplifting of this region since 30 Ma. The analyses also document extremely high LREE concentrations and relatively flat REE patterns for the zircons from the Yongsheng nepheline syenite, which represent a new type of zircon REE pattern.

  10. U-Pb zircon age from the base of the Ediacaran Doushantuo Formation in the Yangtze Gorges,South China: constraint on the age of Marinoan glaciation

    ChongyuYin; FengTang; YongqingLiu; LinzhiGao; PengjuLiu; YushengXing; ZhiqingYang; YushengWan; ZiqiangWang


    The reported new U-Pb age by sensitive high-resolution ion microprobe (SHRIMP Ⅱ) on zircon was obtained from a tuff sample at the basal Doushantuo Formation in the Jiuqunao section, which situated at the western limb of the Huangling anticline in the Yangtze Gorges in Zigui, Hubei, South China. Eighteen spots of zircons were analyzed and they form two clusters: one includes three spots, with an inherited age of 784+ 15 Ma (MSWD=0.05); the other consists of 15 spots and gives a weighted mean 206pb/238U age of 628.3±5.8 Ma (MSWD=0.86). It is the first SHRIMP U-Pb zircon age obtained nearly the base of the Doushantuo Formation of Ediacaran and represents a maximum age of the Doushantuo Formation It also forms an age constraint on the upper limit age of the Nantuo (Marinoantype) glaciation.

  11. Zircon SHRIMP geochronology and geochemistry of Late Permian high-Mg andesites in Seluohe area, Jilin province, China%吉林色洛河晚二叠世高镁安山岩SHRIMP锆石年代学及其地球化学特征

    李承东; 张福勤; 苗来成; 颉航强; 许雅雯


    吉林色洛河地区发育高镁安山岩类,SHRIMP锆石U-Pb定年结果表明它们形成于晚二叠世(252±5Ma).色洛河高镁安山岩类(SiO259.08%~65.67%)具有富MgO(3.68%~5.30%),高Mg#值(0.62~0.68,平均0.66),高Cr(203.17×10-6~379.70×10-6,平均258.79×10-6)、Ni(98.13×10-6~249.35×10-6,平均137.00×10-6)含量;富集大离子亲石元素(如Cs、K、Pb、Rb和Ba),亏损高场强元素(如Ta、Ti、Nb、P);富集LREE(Ce39.14×10-6~48.74×10-6),强烈亏损HREE(Yb 0.95×10-6~1.27×10-6,Y 10.80×10-6~13.13×10-6,(La/Yb)N13.27~16.66);但它们含有较低的Sr(158.62×10-6~369.77×10-6,平均258.52×10-6).它们属于中钾、钙碱性系列,具有明显的结晶分异和同化混染特征.上述地球化学特征表明它可能与消减沉积物流体交代形成富集地幔的部分熔融有关,其后又经历了分异和混染作用.这揭示它们形成于活动陆缘的构造背景,表明晚古生代末期古亚洲洋板块仍在消减,华北地块和佳木斯-兴凯地块(中亚造山带)最终的拼合时间可能在二叠纪之后.

  12. The Evolution of Triassic Granites Associated with Mineralization within East Kunlun Orogenic Belt:Evidence from the Petrology,Geochemistry and Zircon U-Pb Geochronology of the Mohexiala Pluton%东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学、地球化学和锆石 U-Pb 年代学的证据

    张炜; 周汉文; 朱云海; 毛武林; 佟鑫; 马占青; 曹永亮


    The East Kunlun orogenic belt is not only an important intrusive magmatic tectonic belt,but also a very important poly-metallic metallogenic belt for national economy.There are a large number of granites associated with mineralization formed in Triassic in this area,but the connection between them and the relationship about the tectogenesis are still not clear.In this paper,detailed petrography,element geochemical and zircon geochronological studies are presented for the Mohexiala granite-porphyry associated with silver poly-metallic ore;we summarize the characteristics of Triassic granites associated with minerali-zation within the East Kunlun orogenic belt,and discuss their evolution.Results show that:(1)the Triassic granites associat-ed with mineralization within East Kunlun orogenic belt have a clear trend from low-K and mid-K calc-alkaline series to high-K calc-alkaline and shoshonite series during 250-200 Ma,their A/NK ratios decreased from 2.0 to 1.0 during 240-200 Ma;(2) the (87 Sr/86 Sr)i ratios between 0.710 to 0.715,εNd (t)=-0.6-0.0,the value ofεHf (t)are concentrated in -5-1 and the peak ranges between -2 to -1,indicating that the East Kunlun Triassic granites associated with mineralization were derived from the sources of ancient crust and mixed by mantle material;(3)the East Kunlun area got into the post-orogenic stage at 240 Ma and a large number of calc-alkaline granites formed,the granites gradually reduced after 220 Ma and some alkaline A-type granites occurred between 204 Ma and 210 Ma which indicates that the orogenic belt transformed from collision-orogeny to the intraplate break-up stage.%东昆仑造山带在三叠纪不仅是一个重要的构造-岩浆带,也是一个对于国民经济非常重要的多金属成矿带.该区在三叠纪形成了大量与成矿有关的花岗岩,它们之间的联系、与区域构造运动的关系目前尚未明确.在莫河下拉银多金属矿花岗斑岩岩相学、地球化学和锆石年

  13. Subduction-accretion-collision history along the Gondwana suture in southern India: A laser ablation ICP-MS study of zircon chronology

    Sato, Kei; Santosh, M.; Tsunogae, Toshiaki; Chetty, T. R. K.; Hirata, Takafumi


    We report the petrological characteristics and preliminary zircon geochronology based on laser ablation ICP mass spectrometry of the various units in an accretionary belt within the Palghat-Cauvery Shear/Suture Zone in southern India, a trace of the Cambrian Gondwana suture. Zircons extracted from a plagiogranite in association with an ophiolite suite within this suture possess internal structure that suggests magmatic crystallization, and yield mid Neoproterozoic 206Pb/ 238U age of 817 ± 16 Ma (error: 1 σ) constraining the approximate timing of birth of the Mozambique Ocean floor. Compiled age data on zircons separated from a quartzite and metamorphosed banded iron formation within the accretionary belt yields a younger intercept age of 759 ± 41 Ma (error: 1 σ) which we relate to a mid Neoproteozoic magmatic arc. Detrital zircons extracted from the quartzite yield 207Pb/ 206Pb age peaks of about 1.9-2.6 Ga suggesting that they were sourced from multiple protolithis of Neoarchean and Paleoproterozoic. Metamorphic overgrowths on some zircon grains record ca. 500-550 Ma ages which are in good harmony with the known ages for the timing of high-grade metamorphism in this zone during the final stage of continent collision associated with the birth of the Gondwana supercontinent in the latest Neoproterozoic-Cambrian. The preliminary geochronological results documented in our study correlate with the subduction-accretion-collision history associated with the closure of the Mozambique Ocean and the final amalgamation of the Gondwana supercontinent.

  14. Burrowing behavior of penaeid shrimps

    National Oceanic and Atmospheric Administration, Department of Commerce — Brown shrimp, Farfantepenaeus aztecus, and white shrimp, Litopenaeus setiferus, were held were held under natural light conditions before experiments. Experiments...

  15. 华北板块北缘东段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约%Permian tectonic evolution of the eastern section of the northern margin of the North China Plate: Constraints from zircon U-Pb geochronology and geochemistry of the volcanic rocks

    曹花花; 许文良; 裴福萍; 郭鹏远; 王枫


    本文对华北板块北缘东段大河深组、关门咀子组火山岩进行了锆石LA-ICP-MS U-Pb定年和岩石地球化学研究以便制约该区的区域构造演化.大河深组和关门咀子组火山岩中的锆石均呈自形-半自形晶,具有清晰的岩浆振荡生长环带和条痕状吸收(玄武安山岩)的特点,其Th/U比值高达0.31 ~1.56,表明其岩浆成因.测年结果表明,桦甸大河深组流纹岩形成于早二叠世( 279±3Ma ~ 293±2Ma),珲春和图们关门咀子组玄武安山岩和玄武岩分别形成于早二叠世(275±7Ma)和晚二叠世(250 ±5Ma).大河深组火山岩SiO2含量介于64.9% ~ 75.4%,Mg#值介于0.21 ~0.57,属于中钾-高钾钙碱性系列,明显富集轻稀土元素(LREEs)和大离子亲石元素(LILEs)、亏损高场强元素(HFSEs,如Nb、Ta、Ti)以及P元素,类似活动大陆边缘火山岩;其锆石的εHf(t)值为+0.9 ~+ 10.37,Hf同位素二阶段模式年龄值为785 ~1240Ma,表明它们均起源于中-新元古代新增生玄武质下地壳的部分熔融.珲春早二叠世关门咀子组属于中钾钙碱性系列;贫硅(53.4% ~53.7%)和HFSEs,富铝(16.4% ~ 16.8%)和LILEs,具有较低的稀土元素总量,以及较平坦的稀土配分型式,显示出岛弧火山岩的地球化学属性;该组火山岩的原始岩浆应起源于受俯冲板片脱水熔融交代的亏损地幔楔.图们晚二叠世关门咀子组玄武岩SiO2含量为48.7%~49.6%,Mg#值高达0.64~0.72,相对富集LREEs和LILEs,亏损HREEs和HFSEs,具有火山弧玄武岩的地球化学属性,同时其εNd(t)=+6.01,暗示其原始岩浆起源于亏损的岩石圈地幔.综上所述,我们认为早二叠世至晚二叠世期间,华北板块北缘东段(吉林中部地区)和兴凯地块西南缘均处于古亚洲洋的俯冲作用下.%LA-ICP-MS zircon U-Pb dating and geochemical data have been obtained for the volcanic rocks from the Daheshen and Guanmenzuizi formations in the middle

  16. 陕西柞水地区小茅岭复式岩体东段LA-ICP-MS锆石U-Pb定年%LA-ICP-MS zircon U-Pb geochronology of the eastern pan of the Xiaomaoling composite intrusives in Zhashui area,Shaanxi,China

    刘仁燕; 牛宝贵; 和政军; 任纪舜


    小茅岭复式岩体东段主要由早期宋家屋场蚀变角闪辉绿(辉长)岩体和晚期迷魂阵蚀变闪长岩体、磨沟峡蚀变石英闪长岩体、叶家湾蚀变二长闪长岩体组成.经LA-ICp-MS锆石U-Pb同位素测年,分别获得宋家屋场岩体侵位年龄864.4Ma±1.7Ma,迷魂阵岩体846.7Ma±2.7Ma,磨沟峡岩体为859.4Ma±1.7Ma,叶家湾岩体861.1Ma+1.8Ma,确证该复式岩体形成于新元古代.鉴于在小茅岭-陡岭隆起带的早前寒武系变质岩中曾获得与北秦岭造山事件(1000-848Ma)相一致的变质年龄,结合该复式岩体自身的特征,认为小茅岭复式岩体东段形成于后造山应力松弛的构造环境.%The eastern part of the Xiaomaoling composite intrusives in the Qinling Mountains is considered to consist mainly of the early Songjiawuchang altered proterobase or bojite, the late Mihunzhen altered diorite, Mogouxia altered quartz diorite and Yejiawan altered monzodiorite.The LA-ICP-MS U-Pb isotope dating for zircons from the rock masses above yields four ages: 864.4Ma±1.7Ma from Songjiawuchang, 846.7Ma±2.7Ma from Mihunzhen, 859.4Ma±1.7Ma from Mogouxia and 861.1Ma±1.8Ma from Yejiawan.All the data suggest that the eastern part of the Xiaomaoling composite intrusives belongs to the Neoprotozoic in age.The metamorphic age obtained from the early Precambrian metamorphic rocks of the Xiaomaoling-Douling uplift belt is close to the age of the North Qinling orogenic event (1000Ma~848Ma) based on the previous materials and combining with the intrusives' own character, the authors infer that the eastern part of the Xiaomaoling composite intrusives forms in the post-collisional stress relaxation environment.

  17. Using multi-scale structural and petrological analysis coupled with zircon and monazite SIMS and in-situ EPMA geochronology to document the evolution of a mid-crustal transpression system: a case study from the Northern Appalachians, U.S.A.

    Massey, M. A.; Moecher, D. P.; McCulla, J. K.; Draper, K. P. J.; Young, J.; Rohrer, L.; Walker, T. B.; O'Brien, T.


    Three-dimensional transpressional strain is commonly associated with zones of oblique convergence, rather than ideal 2D simple shear or pure shear. Consequently, a considerable body of modeling has been aimed at understanding the progressive evolution of transpression, which has been used to explain an assortment of structures observed in natural settings. The basic tenants of most models involve simultaneous strike-slip and shortening, which provide the underlying mechanism for a constantly evolving finite strain geometry and magnitude. Despite the obvious temporal-dependence, very few studies have evaluated timescales of transpression. In the Northern Appalachians, the Bronson Hill arc and Central Maine basin of southern New England largely reflect highly oblique dextral transpression. Fabrics were initially characterized by strong foliations, subhorizontal lineations, and dextral kinematics, all of which are present in 360-354 Ma tonalite, diorite, and granite intrusions, the youngest placing a maximum age on transpression. As strains accumulated, fabrics began to reflect the increasing manipulation of the shortening component, marked by tightening of foliations, closed to isoclinal folding, and reverse high strain zones; stretching lineations changed in orientation to steeply plunging parallel to dip, while older pre-existing subhorizontal lineations were rotated. Syntectonic monazite and metamorphic zircon nucleated episodically throughout this time. Y-enriched monazite nucleated at 330 Ma along with fabric-forming biotite and sillimanite, and place a minimum age on the development of dip-parallel lineations. Mineral assemblages and associated ages document retrograde cooling attending deformation from partial melting at 355-350 Ma, to sillimanite grade at 330 Ma, below the Ar closure temperature for amphibole of 500°C at 326-314 Ma, and into biotite grade deformation as young as 295 Ma. Collectively, structures, fabrics, mineral assemblages, and

  18. High spatial resolution U-Pb geochronology and Pb isotope geochemistry of magnetite-apatite ore from the Pea Ridge iron oxide-apatite deposit, St. Francois Mountains, southeast Missouri, USA

    Neymark, Leonid; Holm-Denoma, Christopher S.; Pietruszka, Aaron; Aleinikoff, John N.; Fanning, C. Mark; Pillers, Renee M.; Moscati, Richard J.


    The Pea Ridge iron oxide-apatite (IOA) deposit is one of the major rhyolite-hosted magnetite deposits of the St. Francois Mountains terrane, which is located within the Mesoproterozoic (1.5–1.3 Ga) Granite-Rhyolite province in the U.S. Midcontinent. Precise and accurate determination of the timing and duration of oreforming processes in this deposit is crucial for understanding its origin and placing it within a deposit-scale and regional geologic context. Apatite and monazite, well-established U-Pb mineral geochronometers, are abundant in the Pea Ridge orebody. However, the potential presence of multiple generations of dateable minerals, processes of dissolution-reprecipitation, and occurrence of micrometer-sized intergrowths and inclusions complicate measurements and interpretations of the geochronological results. Here, we employ a combination of several techniques, including ID-TIMS and high spatial resolution geochronology of apatite and monazite using LA-SC-ICPMS and SHRIMP, and Pb isotope geochemistry of pyrite and magnetite to obtain the first direct age constraints on the formation and alteration history of the Pea Ridge IOA deposit. The oldest apatite TIMS 207Pb*/206Pb* dates are 1471 ± 1 and 1468 ± 1 Ma, slightly younger than (but within error of) the ~1474 to ~1473 Ma U-Pb zircon ages of the host rhyolites. Dating of apatite and monazite inclusions within apatite provides evidence for at least one younger metasomatic event at ~1.44 Ga, and possibly multiple superimposed metasomatic events between 1.47 and 1.44 Ga. Lead isotop analyses of pyrite show extremely radiogenic 206Pb/204Pb ratios up to ~80 unsupported by in situ U decay. This excess radiogenic Pb in pyrite may have been derived from the spatially associated apatite as apatite recrystallized several tens of million years after its formation. The low initial 206Pb/204Pb ratio of ~16.5 and 207Pb/204Pb ratio of ~15.4 for individual magnetite grains indicate closed U-Pb system behavior in

  19. 西准噶尔马拉苏早泥盆世火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其大地构造意义%LA-ICP-MS zircon U-Pb geochronology, geochemical characteristics and tec-tonic significance of Early Devonian volcanic rocks in Malasu area, western Juggar Basin

    翁凯; 徐学义; 马中平; 孙吉明; 张涛


    The early Devonian strata in Malasu area is a set of littoral-neritic facies volcanic sedimentary rocks. This paper reports the zircon age and geochemical characteristics of the volcanic rocks. A lot of Neo-Archean and middle Neo-Proterozoic zircons indicate that this area contains ancient continental crust material. According to the values of major elements (SiO 2 52.38%~69.6%, Na2O 2.80%~4.85%, K2O 0.16%~0.96%, TiO2 0.5%~1.96%, Al2O3 14.62%~18.18%, MgO 1.08%~5.75%) and the values of Mg# (22.92~38), the volcanic rocks of Malasu area are characterized by high content of sodium and low content of potassium, and thus belong to low-po⁃tassium tholeiite series and calc-alkaline series. The volcanic rocks have significant negative Eu anomalies ( 0.83~0.83), total rare earth element values of 73×10-6~115×10-6, and LREE/HREE values of 2.66~3.25. The geochemical characteristics of basaltic andesite sam⁃ples are similar to those of typical volcanic arc basalts, being rich in large ion lithophile elements K, Rb, Ba, Sr and depleted in the high field strength elements Nb, Ta, Zr, Hf. The same characteristics of enrichment of LILE and depletion of HFSE for dacite por⁃ phyry samples reflect the addition of lots of crust-derived materials. The chondrite-normalized REE and primitive mantle-normal⁃ized alteration-resistant trace element patterns for the dacite porphyry are similar to the patterns of basaltic andesite, which suggests that they belong to the comagmatic evolutionary series. Comprehensive research shows that the volcanic rocks have the characteristics of island arc volcanic rocks, and were formed in the volcanic island arc environment in the process of plate subduction.%马拉苏地区早泥盆世地层为一套滨海—浅海相火山—沉积岩系,对其中的火山岩夹层进行锆石U-Pb同位素定年和岩石地球化学研究,定年结果显示有大量的新太古代和中新元古代锆石,表明该区存在古老的大陆地壳

  20. Zircon U-Pb geochronology, geochemistry and its geological implications for the Precambrian granitoids in Zhongtiao Mountain, Shanxi Province%中条山前寒武纪花岗岩地球化学、年代学及其地质意义

    张瑞英; 张成立; 第五春荣; 孙勇


    Complex. Henglingguan and Xiezhou biotite adamellites are similar in the petrography and geochemistry feature, and have almost same forming age ( with a zircon age of 2609 ±31 Ma and 2620 ± 14Ma), suggesting that the two granitoid instrusions are the product of the same magmatism. Yanzhuang K-feldspar granite was formed in Paleoproterozoic (2351 ±37Ma). In-situ zircon Lu-Hf isotopic analyses for three granitoids show that their εHf(t) range from -2.3to +4.8, +4.4to +7.6and -1.8to +7. 8, and the corresponding two-stage model age are 2791 ~3222Ma, 2628 -2823Ma and 2408 ~2996Ma, respectively. Through multidisciplinary analysis lithology, litho-chemistry and Hf isotopic of the granites and combined with the setting regional structure, we suggested that the two Neoarchean granitic rocks belong to high-potassium cala-alkaline I-type granites and probably the result of the partial melting of ~ 2.7Ga TTG rocks and mafic lower crust. The Paleoproterozoic Yanzhuang granite is typically characterized by low Sr and Yb and similar to Himalayan-type granitic rocks, which is related to the partial melt of continental crust caused by crustal thickening. The paper, based on previous and the author' s own research results, summarizes that there is no obvious episodic character of crustal growth of the central North China Craton in the long period of 1.0Ga between ~ 2. 8Ga and ~ 1. 8Ga, but displays a feature of small frequency persistent pulsing growth, indicating that the eastern and western NCC and the Trans-North China Orogen should be a unified continental block in the Late Archaean.

  1. Mantis shrimp allergy.

    Alonso, R Eiró; Zavala, B Bartolomé; Escoda, J M Soler


    We report the case of a 25-year-old female who experienced two immediate episodes of labial, lingual and larynx angiodema after eating fried mantis shrimp (Squilla empusa), a crustacean belonging to the Squillidae family, and a third episode after eating shellfish pudding. Prick by prick tests to mantis shrimp and to other crustacean were positive. Serum specific IgE showed higher values than 0.35 kU/L to extracts from mantis shrimp shell, prawn, large prawn and crab. Serum specific IgE against large prawn tropomyosin were below 0.35 kU/L. Sodium dodecyl sulfate polyacrylamide gel electropheresis (SDS-PAGE) immunoblotting results with raw mantis shrimp shell revealed IgE-binding bands of 46 kDa and 25 kDa, in non reducing and reducing conditions, respectively. Cross-reactivity studies using the enzyme allergo sorbent test (EAST)-inhibition and Immunoblotting-inhibition methods showed the existence of significant cross-reactivity between the IgE-binding proteins present in mantis shrimp and those from prawn, large prawn and small crab.

  2. Geochronologic constraints on magmatic intrusions and mineralization of the Zhunuo porphyry copper deposit in Gangdese, Tibet


    In situ zircon U-Pb ages for the recently discovered Zhunuo porphyry copper deposit in the western part of the Gangdese metallogenic belt in Tibet were determined by sensitive high-resolution ion microprobe (SHRIMP). The ages can be divided into two separate groups, reflecting more than four major tectono-magmatic events in the area. The 62.5±2.5 Ma age of inherited zircons may be related to the volcanic eruption of the Linzizong Group formed shortly after the India-Asia continental collision. The 50.1±3.6 Ma age most likely corresponds to the time of underplating of mantle-derived mafic magma in Gangdese. The 15.6±0.6 Ma age obtained from magmatic zircons is interpreted as the age of crystallization of the Zhunuo ore-forming porphyry. Finally, a molybdenite Re-Os isochron age of 13.72±0.62 Ma is consistent with another zircon U-Pb age of 13.3 ±0.2 Ma, representing the time of copper mineralization. These ages, in combination with available literature data, indicate that magmatic crystallization and copper mineralization in the Gangdese metallogenic belt became gradually younger westward, and further suggest that the Zhunuo porphyry copper deposit was formed in the same tectonic stage as other porphyry copper deposits in the eastern and central Gangdese belt. This conclusion provides critical information for future exploration of porphyry copper deposits in western Gangdese.

  3. Zircon xenocryst resorption and magmatic regrowth at El Chichón Volcano, Chiapas, Mexico

    Pack, Brenda; Schmitt, Axel K.; Roberge, Julie; Tenorio, Felipe Garcia; Damiata, Brian N.


    El Chichón volcano is the only active volcano located within the Chiapanecan Volcanic Arc in southern Mexico, which lies between the Trans-Mexican Volcanic Belt and the Central American Volcanic Arc. Previous studies have shown that ~ 12 eruptions have occurred at El Chichón within the last 8000 years, forming a complex of lava domes with a central crater and surrounding pyroclastic deposits. Here, we report the discovery of zircon in Holocene El Chichón rocks, which were analyzed by high spatial resolution imaging (color cathodoluminescence CCL) and isotopic (secondary ionization mass spectrometry SIMS) methods to resolve core and rim crystallization ages. Pumice samples from five proximal pyroclastic flow and fall-out deposits were collected based on published stratigraphy. Two of the samples were further (re-)classified by new 14C dates. In addition, we sampled two lavas from the 1982 eruption and from remnants of the older Somma lava complex. Zircon crystals were dated using 230Th/238U disequilibrium (U-Th) and U-Pb geochronology. U-Th zircon ages fall between near eruption ages and ca. 84 ka, with overlapping ages in all samples. By contrast, zircon core U-Pb ages range between ca. 290 Ma and 1.9 Ga. These ages are consistent with xenocrystic origins and their heterogeneity indicates derivation from clastic country rocks. Strong age contrasts between inherited xenocrystic and young magmatic domains in individual zircon crystals are evidence for arrested assimilation of crustal rocks where initially zircon-undersaturated magmas cooled rapidly to form a crystal mush or subsolidus amalgamate as a crustally contaminated boundary layer. This layer contributed zircon crystals to eruptible magma during episodic recharge events followed by partial melt extraction, mixing and homogenization. Zircon overgrowths are significantly older than major minerals whose U-series ages and sharp zonation boundaries suggest crystallization only within a few ka before eruption

  4. Geochronological and geochemical constraints on the petrogenesis of late Cretaceous volcanic rock series from the eastern Sakarya zone, NE Anatolia-Turkey

    Aydin, Faruk; Oǧuz, Simge; Şen, Cüneyt; Uysal, İbrahim; Başer, Rasim


    New SHRIMP zircon U-Pb ages and whole-rock geochemical data as well as Sr-Nd-Pb and δ18O isotopes of late Cretaceous volcanic rock series from the Giresun and Artvin areas (NE Anatolia, Turkey) in the northern part of the eastern Sakarya zone (ESZ) provide important evidence for northward subduction of the Neo-Tethyan oceanic lithosphere along the southern border of the ESZ. In particular, tectonic setting and petrogenesis of these subduction-related volcanites play a critical role in determining the nature of the lower continental crust and mantle dynamics during late Mesozoic orogenic processes in this region. The late Cretaceous time in the ESZ is represented by intensive volcanic activities that occurred in two different periods, which generally consist of alternation of mafic-intermediate (basaltic to andesitic) and felsic rock series (dacitic to rhyolitic) within each period. Although there is no geochronological data for the lower mafic-intermediate rock series of the first volcanic period, U-Pb zircon dating from the first cycle of felsic rocks yielded ages ranging from 88.6±1.8 to 85.0±1.3 Ma (i.e. Coniacian-Early Santonian). The first volcanic period in the region is generally overlain by reddish biomicrite-rich sedimentary rocks of Santonian-Early Campanian. U-Pb zircon dating for the second cycle of mafic-intermediate and felsic rocks yielded ages varying from 84.9±1.7 to 80.8±1.5Ma (i.e. Early to Middle Campanian). The studied volcanic rocks have mostly transitional geochemical character changing from tholeiitic to calc-alkaline with typical arc signatures. N-MORB-normalised multi-element and chondrite-normalised rare earth element (REE) patterns show that all rocks are enriched in LILEs (e.g. Rb, Ba, Th) and LREEs (e.g. La, Ce) but depleted in Nb and Ti. In particular, the felsic samples are characterised by distinct negative Eu anomalies. The samples are characterized by a wide range of Sr-Nd-Pb isotopic compositions (initial ɛNd values from -7

  5. U - Pb Geochronology and Hf Isotope Geochemistry of the Zircon from Huping Complex in Tongshan Area of Zhongtiaoshan Mountains and Its Geologic Implications%中条山同善地区虎坪杂岩锆石U-Pb年龄、Hf同位素特征及地质意义

    张晗; 孙丰月


    The Zhongtiaoshan area in which Precambrian rocks widely occurred is an important part of the Trans-North China Orogen (TNCO). The Neoarchean TTG is mainly distributed in the Main Range of Zhongtiaoshan Mountain extending in NE direction and the Tongshan " window" of Wangwushan Mountain in EW direction. There occurs mainly the Huping complex composed of biotite plagioclase gneiss, tonalite and Songjiashan gourp in the Tongshan "window". LA - MC - ICPMS Zircon U-Pb dating shows that the age of the biotite plagioclase gneiss is (2 530+13) Ma and its Εhi(2 530 Ma)values range from 3. 89 to 7. 12. The weighted average 207Pb/2O6Pb age of the Tonalitic gneiss is (2 551.4 ± 2.7) Ma. And its εHε(t) values from 5. 49 to 9. 67, which are higher than that of depleted mantle. The approximate Εh1(2. 55 Ga) values of the Neoarchean depleted mantle in the TNCO are from 8. 2 to 9. 5, which is also proved by isotopic composition of the TNCO researched recently and the εHf(t) of the tonalitic gneiss. It can be concluded that the mantle of the TNCO was largely depleted before 2. 55 Ga. The εHf(t) values of the tonalitic gneiss in Huping complex suggest that the age of the ocean ridge subduction or inter-ocean subduction of young ocean crust is 2. 55 Ga, and the subduction played an important role in formation of the tonalitic gneiss in the Huping complex.%中条山地区是华北克拉通中部造山带的重要组成部分,区内前寒武纪地层广泛出露,新太古代地质体主要分布在北东走向的中条山主山脉和近东西向王屋山“同善天窗”内.“同善天窗”中主要出露虎坪花岗质片麻杂岩及宋家山群.虎坪杂岩中黑云斜长片麻岩的锆石U-Pb上交点年龄为(2530±13)Ma,εHf(2530 Ma)为3.89~7.12;英云闪长岩207 Pb/206Pb加权平均年龄为(2551.4±2.7)Ma,εHf(t)为5.49~9.67.结合近年来华北克拉通新太古代晚期中部造山带镁铁质火山岩Nd同位素及遵化二辉橄榄岩的Hf同位素特征,

  6. Shrimp Ball Soup


    Press the spring onion and ginger, add 25 grams water, soak for ten minutes, filter and remove the residue.Mince the shrimp meat and add pork fat. Add Shaoxing wine, egg white, spring onion and ginger juice, salt, MSG, and cornstarch, and blend. Slice the ham, and clean the bean sprouts. Put clear stock in a wok and heat.

  7. Refinement of the time-space evolution of the giant Mio-Pliocene Río Blanco-Los Bronces porphyry Cu-Mo cluster, Central Chile: new U-Pb (SHRIMP II) and Re-Os geochronology and 40Ar/39Ar thermochronology data

    Deckart, Katja; Clark, Alan H.; Cuadra, Patricio; Fanning, Mark


    Representing one of the largest known (estimated >5 Gt at 1 % Cu and 0.02 % Mo) porphyry system, the Río Blanco-Los Bronces deposit incorporates at least five hypabyssal intrusive and hydrothermal centres, extending for about 5 km from the Río Blanco and Los Bronces mines in the north, through the Don Luis mine, to the Sur Sur mine, La Americana and Los Sulfatos in the south. The new geochronology data, which now include data on different molybdenite vein types, confirm the U-Pb ages of the pre-mineralisation intrusions but slightly increase their age range from 8.8 to 8.2 Ma. The distinct magmatic pulses of the mineralisation-associated porphyritic intrusives (Late Porphyries) indicate an age interval instead of the previously suggested individual ages: the quartz monzonite porphyry ranges from 7.7 to 6.1 Ma (Sur Sur 5.74 ± 0.13 Ma), the feldspar porphyry shows an interval from 5.8 to 5.2 Ma and the Don Luis porphyry from 5.2 to 5.0 Ma. The new Re-Os data on distinct molybdenite vein types confirm the protracted history of Cu(-Mo) mineralisation, inferred previously. The vein development occurred at least from 5.94 to 4.50 Ma, indicating a time-span of 1.5 Ma for the hydrothermal activity. Hydrothermal minerals dated by the 40Ar/39Ar method are generally too young to record the age of early, high-temperature mineralisation. The majority of the 40Ar/39Ar data in the Río Blanco porphyry cluster record reheating by either the youngest member of the Late Porphyry suite or the post-mineralisation dacite or rhyolite plug formations at around 4.9-4.7 Ma.

  8. Promise and Pitfalls of Lu/Hf-Sm/Nd Garnet Geochronology

    King, R. L.; Vervoort, J. D.; Kohn, M. J.; Zirakparvar, N. A.; Hart, G. L.; Corrie, S. L.; Cheng, H.


    Our ability to routinely measure Lu-Hf and Sm-Nd isotopes in garnet allows broad new applications in geochronology, petrology, and tectonics. However, applications of these data can be limited by challenges in interpreting the petrologic record and preparing garnets for analysis. Here, we examine petrologic and chemical pitfalls encountered in garnet geochronology. Petrologic factors influencing trace element compositions in garnet include reactions that modify REE availability and partitioning (1,2), kinetically limited transfer of REEs to garnet (3), and bulk compositional heterogeneities (4). Interpreting the effects of these processes on Sm/Nd and Lu/Hf ages requires characterizing REE zonation prior to isotope analysis and age interpretation. Because garnet fractions are traditionally picked from crushed samples without regard to intracrystalline origins or chemistries, isochrons will represent mixtures derived to varying degrees from all periods of garnet growth. While measured zoning might generally indicate what garnet portion dominates the Lu/Hf or Sm/Nd budget, traditional mineral separation will rarely realize the chronologic potential afforded by high precision Hf and Nd isotope measurements. The potential use of alternative techniques, such as microsampling, necessitates selective digestion and/or leaching to eliminate inclusions within garnet. For Sm/Nd geochronology, H2SO4 leaching removes LREE-rich phosphates (e.g. apatite), but not silicates (e.g. epidote), precluding Sm-Nd dating of some rocks. For Lu/Hf geochronology, ubiquitous zircon microinclusions (c. 1 μm) can significantly disrupt age determinations. Microinclusions cannot be detected optically or separated physically, requiring selective chemical digestion. If complete digestion methods, such as bomb digestion, are used for garnet fractions, then "common Hf" from zircon will be contained in final solutions. These mixed analyses are of dubious utility and will fall into one of two

  9. Development of protein enriched shrimp croquette from shrimp industry wastes

    Khan, M.; Rahman, M.L.; Nowsad Alam, A.K.M.


    Protein fortified and tasty shrimp croquette was developed from different component parts of shrimp wastes by using a combination of vegetables (potato, Colocasia, green banana, green papaya and spinach), spices (green chili, onion, garlic, turmeric, red pepper and ginger) and other ingredients (salt, wheat flour, egg, sugar and milk powder). The ingredients were mixed with variable quantities of shrimp shell powder (3, 5 and 10%), shaped and covered with egg and bread crumb. Proximate compos...

  10. Geochronology of the Dahongshan Group

    胡霭琴; 朱炳泉; 等


    The Dahongshan Group is divided into five formations from the bottom to the top:the Laochanghe For-mation;the Manganghe Formation;the Hongshan Formation ,the Feiweihe Formation and the Potou For-mation.As can be seen form the U-Pb Concordia plot for zircon fractions collected from the metamorphic sodic lava of the Hongshan Formation,the upper intersect age with the Concordia is 1665.55-10.86+13.56Ma.Sm-Nd dating of four whole-rock samples and one hornblende from the Manganghe and Hongshan forma-tions yielded an isochron age of 1657±82Ma .This result is in good agreement with the zircon U-Pb age and thus can represent the formation age of the Dahongshan Group.The initial143Nd/144Nd ratio is esti-mated at 0.510646,with END(T)=+3.1±1.8.In addition the Dahongshan Group rocks are character-ized by low REE contents,with δEu>1.All this goes to show that the original rocks of the Dahongshan Group were derived from a depleted mantle.The calculated Sm-Nd model ages range from-1900 to -2000Ma,representing the time of crust/mantle differentiation in the area studied.From the above results,in conjunction with the time-scale scheme for China,the Dahongshan Group should be assigned to the Middle Proterozoic.

  11. Resolving high precision U-Pb ages from Tertiary plutons with complex zircon systematics

    Mcclelland, William C.; Mattinson, James M.


    Success in establishing high precision crystallization ages with the U/Pb zircon method is highly dependent on the ability to isolate or remove the effects of inherited xenocrystic components or secondary lead-loss, or the combined effects of both. Current "conventional" single crystal and ion probe (SHRIMP) methods are successfully applied to Paleozoic and older samples but typically suffer from imprecision when applied to younger (Mesozoic-Cenozoic) samples due to generally reduced radiogenic lead concentrations. Here we apply a series of intense partial dissolution steps to multigrain zircon fractions from a series of Paleocene tonalitic to granodioritic intrusive rocks from southeastern Alaska. The zircon systematics are complicated by both minor inheritance and postcrystallization lead-loss. Physical and isotopic evidence demonstrate that the partial dissolution steps preferentially remove outer layers susceptible to lead loss, as well as core regions containing inherited components. The final residues are often hollow shells of low-U primary igneous zircon that yield highly precise, reproducible, and concordant ages. The resulting age determinations commonly statistically differ at the 95% confidence level from ages based on apparently concordant, but less precise conventional isotope dilution analyses, the uncertainties of which masked minor, subtle isotopic complexities. This observation strongly cautions against basing age assignments of samples yielding slightly discordant data on (1) single "concordant" analyses accompanied by an array of discordant data or (2) the mean of several 206Pb/ 238U or 207Pb/ 206Pb ages. The step-wise dissolution technique allows age determinations on young, relatively low U and Pb zircons at a resolution not currently possible with techniques such as single-grain conventional or spot ion probe analyses. Widespread application of the technique will likely prove instrumental in resolving detailed magmatic histories of igneous

  12. Better U-Pb Zircon Standards for SIMS and LA-ICPMS? Preliminary Results of Detailed Characterization and Pre-treatment using CA-TIMS

    Mattinson, J. M.; Hourigan, J.; Wooden, J. L.


    U-Pb zircon dating using SIMS and LA-ICPMS requires calibrations against natural zircons of known age. Ideally, such zircons should be perfectly concordant -- free from Pb-loss, inheritance, or any other complications, and also accurately dated. In practice this can be problematic. Complexities can be difficult to detect by SIMS and LA-ICPMS analysis if they are at or below the level of precision of an individual analysis. In addition, conventional TIMS dating, used to date the standards, can be limited by residual minor Pb loss that has not been removed by conventional "pretreatments" such as air abrasion. CA-TIMS (Mattinson, 2005, Chem Geol 220, 47-66) utilizes high-T annealing of natural radiation damage, followed by partial dissolution in HF, and has proven highly successful at complete removal of zircon domains that have experienced Pb loss, both from the outer rims and also from the deep interiors of zircon grains. Thus, it is useful for detailed characterization of existing and potential zircon standards. Here, we also investigate the potential of CA-TIMS for pre-treating zircon standards prior to SIMS and LA-ICPMS analysis. Multi-step CA-TIMS analyses of Temora-2, R-33, and a possible new standard from the Klamath Mountains reveal minor Pb loss in the first few partial dissolution steps, then yield excellent 206Pb*/238 plateau ages, and concordant 207Pb*/206Pb* ages for the remaining steps. Additional aliquots of these zircons were then "pretreated" by CA-TIMS, with sufficient partial dissolution to remove all vestiges of Pb loss, based on the earlier experiments. A sample of AS-57 was pre-treated "blind" because it was received just prior to a scheduled SHRIMP session. All samples were then prepared in a single mount for SHRIMP analysis. Our preliminary results from a round-robin Stanford SHRIMP-RG session using Temora-2, R-33, AS-57, and the Klamath sample are very promising. The Temora-2 and Klamath zircons in particular yielded excellent reproducibility

  13. Late magmatic stage of the zoned Caleu pluton (Central Chile): insights from zircon crystallization conditions

    Molina, P. G.; Parada, M.; Gutierrez, F. J.; Chang-Qiang, M.; Jianwei, L.; Yuanyuan, L.


    The Caleu pluton consists of three N-S elongated lithological zones: Gabbro-Diorite Zone (GDZ), Tonalite Zone (TZ) and Granodiorite Zone (GZ); western, middle and eastern portions of the pluton, respectively. The zones are thought to be previously differentiated in a common, isotopically depleted (Sr-Nd), subjacent magma reservoir at a 4 kbar equivalent depth. The emplacement should have occurred at the climax of the Cretaceous rifting. We present preliminary results of U238/Pb206 zircon geochronology; zircon saturation, Tsat(Zrn), and crystallization temperatures (Ti-in-Zrn); as well as relative oxidation states at time of crystallization, based on: (i) the sluggish REE and HFSE subsolidus diffusivities in zircon; (ii) the behavior of Ti4+↔Si4+ and Ce4+↔Zr4+ isovalent replacement, in addition to a constrained TiO2 activity in almost all typical crustal rocks; and (iii) relative oxidation states at time of crystallization, respectively. The latter are obtained by interpolation of the partition coefficients of trivalent (REE) and tetravalent (HFSE) curves in Onuma diagrams for each zircon, and then estimating relative Ce(IV)/Ce(III) ratios. Results obtained from 4 samples (a total of 77 zircon grains) collected from the three mentioned lithological zones indicate U/Pb ages of approximately 99.5 ±1.5 Ma, 96.8 ±0.6 Ma, and 94.4 +2.2 -0.8 Ma; and Ti-in Zrn ranges of ca. 720-870°C, ca. 680-820°C and ca. 750-840°C, for the GDZ, TZ and GZ samples, respectively. On the other hand Tsat(Zrn) of ca. 750-780°C in the TZ, and ca. 830-890°C in the GZ, were obtained. As expected saturation temperatures are similar or higher than Ti-in-Zrn obtained in zircon grains of TZ and GZ, respectively. Cathodoluminiscence images in zircon suggest a magmatic origin, due to absence of complex zoning patterns and fairly well conserved morphologies. Exceptionally the GDZ sample zircons show evidence of inheritance, indicating a xenocrystic and/or antecrystic origin. A relative Ce

  14. Evolution of the depleted mantle and growth of the continental crust: improving on the imperfect detrital zircon record

    Vervoort, J. D.; Kemp, A. I. S.; Patchett, P. J.


    in the zircon record are often given as prima facie evidence of crustal reworking and recycling during Earth's early history, and underpin models for large volumes of ancient continental crust. For many of these old zircons it may have nothing to do with crustal reworking, but simply reflect unrecognized ancient Pb loss. A more robust picture of the isotopic evolution of the Earth can be gained from an integrated approach of Hf and Nd isotopes in well age-constrained magmatic samples: careful U-Pb zircon geochronology to determine the crystallization age of the rock; Hf isotopic composition of the zircons; and Hf and Nd isotopic measurements of the whole-rocks. We demonstrate this with respect to evolution of the depleted mantle, and discuss the implications for the timing of crust formation. An important part of this approach is the realization that not all rock samples (or zircons!) yield useful, unambiguous results. Inclusion of all Hf isotope data from large zircon databases, unscrutinized for quality and lacking in context, will do more to obscure our understanding of the isotopic evolution of the Earth than to clarify it.

  15. U-Pb Geochronology of VMS mineralization in the Iberian Pyrite Belt

    Barrie, Tucker C.; Amelin, Yuri; Pascual, Emilio


    A geochronology study using U-Pb isotope dilution TIMS analyses of zircon has been conducted to determine the ages of volcanic-associated massive sulfide (VMS) deposits in the Iberian Pyrite Belt (IPB), the world's most prolific VMS province. Ages have been determined for host rocks to four VMS systems that span the IPB: the giant Rio Tinto and Aljustrel districts in the central region, Lagoa Salgada to the west, and Las Cruces to the east. A sample of chloritized quartz porphyritic dacite/rhyolite in the footwall of the San Dionisio massive sulfide deposit of the Rio Tinto district is 349.76±0.90 Ma. This is taken as the best age estimate of the mineralization in the Rio Tinto district, probably the world's largest volcanogenic massive sulfide system. Two xenocrystic zircons from the same sample yielded 207Pb/206Pb ages of 414 and 416 Ma, which provide a minimum estimate for the age of the inherited component. A biotite tonalite from the Campofrio area, 3.5 km north of the center of the Rio Tinto district, is chemically similar to the felsic host rock protolith at Rio Tinto. The Campofrio sample has an age of 346.26±0.81 Ma, slightly younger and outside of the 2σ error for the Rio Tinto age; therefore, this phase of this intrusion was not a heat source for the hydrothermal system that formed the deposits of the Rio Tinto district. The Campofrio sample also has three zircon analyses with 207Pb/206Pb minimum ages of 534, 536, and 985 Ma, indicating inheritance from Ordovician and Neoproterozoic sources. In the Aljustrel VMS district, a U-Pb zircon age of 352.9±1.9 Ma characterizes the altered Green Tuff host rock of the Algares deposit, which is slightly older than the Rio Tinto age. Two zircons with 207Pb/206Pb ages of 531 and 571 Ma from this sample indicate inheritance from a Cambrian or older source. The age of mineralization at Lagoa Salgada is given by essentially identical ages of 356.21±0.73 and 356.4±0.8 Ma, for footwall and hanging wall samples

  16. Microbial Diseases in Shrimp Aquaculture

    Karunasagar, Iddya; Karunasagar, Indrani; Umesha, R.K.

    serious economic losses in several countries. According to a World Bank Report, global losses due to shrimp diseases are around US $ 3,000 million (Lundin, 1996). Thus, health management is of major importance in aquaculture. Diseases caused... for nauplii production and enrichment should be employed (Dhont et al., 1993). Management of shrimp diseases Effective management of the health of shrimp requires consideration of the fact that there is a delicate balance between the host, pathogen...

  17. Equilibrium and Disequilibrium of 230Th-238U in Zircon from the Minoan Eruption, Santorini, Aegean Sea, Greece

    Schmitt, A. K.; Stockli, D. F.; Song, E. J.; Storm, S.


    The Minoan eruption (ca. 1600 BCE; 40-80 km3 dense rock equivalent) occurred after a ca. 18 ka period of dormancy followed by rapid reinvigoration through arrival of new magma from deep reservoirs colliding with evolved magmas in shallow storage. Although zoned phenocrysts indicate brief timescales ranging between years to decades for final pre-eruptive magma recharge and mixing, it remains unclear how magma accumulation vs. crystallization were balanced in the subvolcanic reservoir during the preceding inter-eruptive cycle. To directly probe magma presence over the repose interval prior to the Minoan eruption and further back in time, we reconnoitered the potential of U-Th zircon geochronology to date the crystallization of individual zircon crystals from pumice from the Minoan eruption. Zircon crystals were extracted from composite pumice samples (several kg each) from basal fall out deposits using gravity and magnetic separation. Etching in cold HF removed adherent glass and revealed the shape of crystals, which were pressed into indium metal to expose unpolished rims to the ion beam of a CAMECA IMS 1270 secondary ionization mass spectrometer. Adherent glass was ubiquitous, indicating that crystals were in contact with melt at the time of eruption. Six of 18 crystals were in 230Th/238U secular equilibrium, two crystals yielded ages of ca. 160 ka, and the remaining rims dated between eruption age and ca. 20 ka. Low Th/U of some secular equilibrium zircon suggests recycling of metamorphic basement zircon, which is also indicated by the presence of rutile in heavy mineral separates. U-Th dates also reveal recycling of zircon from Pleistocene intrusions that likely represent left-over magma from antecedent eruption cycles. We tentatively interpret the dominant zircon population with near-eruption to ca. 20 ka ages to indicate continuous melt presence underneath Santorini during the last repose interval. Distinguishing a hiatus in zircon crystallization between 20 ka

  18. A New SHRIMP Age of the Xiamaling Formation in the North China Plate and Its Geological Significance


    Setting up the hypostratotype of late Precambrian is the main aim of the research on the Meso- and Neoproterozoic in North China. The chronostratigraphic position is the key in this study.However, many key horizons have not been calibrated with the high-quality isotopic ages. Using the reported new U-Pb age with the Sensitive High-Resolution Ion Microprobe (SHRIMP H), a zircon UPb age was obtained of the ash bed in the Xiamaling Formation in North China Plate, yielding a weighted mean 206Pb/238U age of 1368±12 Ma. It is the first SHRIMP U-Pb age from the Xiamaling Formation in the North China Plate, and represents the depositing time of the middle part of the Xiamaling Formation. The zircon age plays an important role to understanding geological evolution of the North China Plate during Meso- and Neoproterozoic.

  19. Provenance from zircon U-Pb age distributions in crustally contaminated granitoids

    Bahlburg, Heinrich; Berndt, Jasper


    The basement of sedimentary basins is often entirely covered by a potentially multi-stage basin fill and therefore removed from direct observation and sampling. Melts intruding through the basin stratigraphy at a subsequent stage in the geological evolution of a region may assimilate significant volumes of country rocks. This component may be preserved in the intrusive body either as xenoliths or it may be reflected only by the age spectrum of incorporated zircons. Here we present the case of an Ordovician calc-alkaline intrusive belt in NW Argentina named the "Faja Eruptiva de la Puna Oriental" (Faja Eruptiva), which in the course of intrusion sampled the unexposed and unknown basement of the Ordovician basin in this region, and parts of the basin stratigraphy. We present new LA-ICP-MS U-Pb ages on zircons from 9 granodiorites and granites of the Faja Eruptiva. The main part of the Faja Eruptiva intruded c. 445 Ma in the Late Ordovician. The zircon ages obtained from the intrusive rocks have a large spread between 2683.5 ± 21.6 and 440.0 ± 4.9 Ma and reflect the underlying crust and may be interpreted in several ways. The inherited zircons may have been derived from the oldest known unit in the region, the thick siliciclastic turbidite successions of the upper Neoproterozoic-lower Cambrian Puncoviscana Formation, which is inferred to represent the basement of the NW Argentina. The basement to the Puncoviscana Formation is not known. Alternatively, the inherited zircons may reflect the geochronological structure of the entire unexposed Early Paleozoic crust underlying this region of which the Puncoviscana Formation was only one component. This crust likely contained rocks pertaining to and detritus derived from earlier orogenic cycles of the southwestern Amazonia craton, including sources of Early Meso- and Paleoproterozoic age. Detritus derived, in turn, from the Faja Eruptiva intrusive belt reflects the origin of the granitoids as well as the inherited

  20. Morphology and geochemistry of zircon: a case study on zircon from the microgranitoid enclaves

    汪相; KIENAST; Jean-Robert


    There are three types of zircon (i.e. Zircon A, Zircon B and Zircon C) in the microgranitoid enclaves from the Qingtian granite. Zircon A is of the smallest Ipr, Ipy and Iel values with the largest range of variations; Zircon C is of the largest Ipr, Ipy and Iel values with the smallest range of variations; and Zircon B is intermediate among the three types. The microprobe analysis of zircon demonstrates that the contents of trace elements (Hf, U, Y, Th) increase progressively with larger and larger variation from Zircon A through Zircon B to Zircon C. These characters snggest that the three types of zircon in the enclaves may have formed successively during the cooling process of enclave magma, corresponding to different sites along with the intrusion of enclave magma. Because of positive correlations of the UO2/HfO2 ratio with Ipr, the ThO2/Y2O3 ratio with Ipy, and the UO2/(ThO2 + Y2O3) ratio with Iel, it is suggested that the variation in zircon typology is caused

  1. Conventional U-Pb dating versus SHRIMP of the Santa Barbara Granite Massif, Rondonia, Brazil

    Sparrenberger, I.; Bettencourt, Jorge S.; Tosdal, R.M.; Wooden, J.L.


    The Santa Ba??rbara Granite Massif is part of the Younger Granites of Rondo??nia (998 - 974 Ma) and is included in the Rondo??nia Tin Province (SW Amazonian Craton). It comprises three highly fractionated metaluminous to peraluminous within-plate A-type granite units emplaced in older medium-grade metamorphic rocks. Sn-mineralization is closely associated with the late-stage unit. U-Pb monazite conventional dating of the early-stage Serra do Cicero facies and late-stage Serra Azul facies yielded ages of 993 ?? 5 Ma and 989 ?? 13 Ma, respectively. Conventional multigrain U-Pb isotope analyses of zircon demonstrate isotopic disturbance (discordance) and the preservation of inherited older zircons of several different ages and thus yield little about the ages of Sn-granite magmatism. SHRIMP U-Pb ages for the Santa Ba??rbara facies association yielded a 207Pb/206Pb weighted-mean age of 978 ?? 13 Ma. The textural complexity of the zircon crystals of the Santa Ba??rbara facies association, the variable concentrations of U, Th and Pb, as well as the mixed inheritance of zircon populations are major obstacles to using conventional multigrain U-Pb isotopic analyses. Sm-Nd model ages and ??Nd (T) values reveal anomalous isotopic data, attesting to the complex isotopic behaviour within these highly fractionated granites. Thus, SHRIMP U-Pb zircon and conventional U-Pb monazite dating methods are the most appropriate to constrain the crystallization age of the Sn-bearing granite systems in the Rondo??nia Tin Province.

  2. Research agenda shrimp pulse fishery

    Marlen, van B.; Rasenberg, M.M.M.; Verschueren, B.; Polet, H.


    In the recent decennia, many developments have taken place to improve the selectivity of the shrimp fishing gears. Recently, the development of a pulse gear for catching shrimps has taken up again as an opportunity to decrease discards, inspired by developments in the flatfish pulse fishery.

  3. 内蒙古乌拉山地区大桦背岩体SHRIMP锆石U-Pb年代学研究%A Chronological Study of SHRIMP U-Pb of Zircon from the Dahuabei Intrusionin the Wulashan area, Inner Mongolia

    苗来成; Yumin QIU; 关康; Neal McNAUGHTON; 裘有守; 罗镇宽; Daviad GROVES



  4. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction

    Paton, Chad


    models of elemental fractionation such as expo- nential curves and smoothed cubic splines can efficiently correct complex fractionation trends, allowing detection of spatial heterogeneities, while simultaneously maintaining data quality. We present a data reduction module for use with the Iolite software...

  5. Algorithms and software for U-Pb geochronology by LA-ICPMS

    McLean, Noah M.; Bowring, James F.; Gehrels, George


    The past 15 years have produced numerous innovations in geochronology, including experimental methods, instrumentation, and software that are revolutionizing the acquisition and application of geochronological data. For example, exciting advances are being driven by Laser-Ablation ICP Mass Spectrometry (LA-ICPMS), which allows for rapid determination of U-Th-Pb ages with 10s of micrometer-scale spatial resolution. This method has become the most commonly applied tool for dating zircons, constraining a host of geological problems. The LA-ICPMS community is now faced with archiving these data with associated analytical results and, more importantly, ensuring that data meet the highest standards for precision and accuracy and that interlaboratory biases are minimized. However, there is little consensus with regard to analytical strategies and data reduction protocols for LA-ICPMS geochronology. The result is systematic interlaboratory bias and both underestimation and overestimation of uncertainties on calculated dates that, in turn, decrease the value of data in repositories such as EarthChem, which archives data and analytical results from participating laboratories. We present free open-source software that implements new algorithms for evaluating and resolving many of these discrepancies. This solution is the result of a collaborative effort to extend the U-Pb_Redux software for the ID-TIMS community to the LA-ICPMS community. Now named ET_Redux, our new software automates the analytical and scientific workflows of data acquisition, statistical filtering, data analysis and interpretation, publication, community-based archiving, and the compilation and comparison of data from different laboratories to support collaborative science.

  6. Provenance and U-Pb geochronology of the Upper Cretaceous El Chanate Group, northwest Sonora, Mexico, and its tectonic significance

    Jacques-Ayala, C.; Barth, A.P.; Wooden, J.L.; Jacobson, C.E.


    The Upper Cretaceous El Chanate Group, northwest Sonora, Mexico, is a 2.8km thick clastic sedimentary sequence deposited in a continental basin closely related to volcanic activity. It consists of three formations: the Pozo Duro (oldest), the Anita, and the Escalante (youngest). Petrographic study, conglomerate pebble counts, and U-Pb geochronology of detrital zircons were performed to determine the source and age of this sequence, and to interpret its tectonic setting. In the sandstones of all three formations, the most abundant grains are those of volcanic composition (Q38F22L 40, Q35F19L46, and Q 31F22L47, respectively). The Pozo Duro Formation includes well-rounded quartz-arenite clast conglomerates, whereas conglomerates of the two upper units have clasts predominantly of andesitic and rhyolitic composition. The most likely source for these sediments was the Jurassic volcanic arc exposed in northern Sonora and southern Arizona. Zircons from five sandstone samples define two main age groups, Proterozoic and Mesozoic. The first ranges mostly from 1000 to 1800Ma, which suggests the influence of a cratonic source. This zircon suite is interpreted to be recycled and derived from the same source area as the quartz-rich sandstone clasts in the basal part of the section. Mesozoic zircons range from Triassic to Late Cretaceous, which confirms the proposed Late Cretaceous age for the sequence, and also corroborates Jurassic felsic source rocks. Another possible source was the Alisitos volcanic arc, exposed along the western margin of the Baja California Peninsula. Of regional significance is the great similarity between the El Chanate Group and the McCoy Mountains Formation of southeastern California and southwestern Arizona. Both are Cretaceous, were deposited in continental environments, and have similar zircon-age patterns. Also, both exhibit intense deformation and locally display penetrative foliation. These features strongly suggest that both units underwent

  7. Paleoproterozoic Potassic Granitoids in the Sushui Complex from the Zhongtiao Mountains, Northern China:Geochronology, Geochemistry and Petrogenesis

    TIAN Wei; LIU Shuwen; ZHANG Huafeng


    Paleoproterozoic potassic granitoids in the southern Sushui Complex from the Zhongtiao Mountains yielded SHRIMP zircon U-Pb ages of 1968-1944 Ma. Lithologically, the potassic granitoid series consists chiefly of monzodiorite, quartz monzonite and syenogranite. Their trace elements and Sm-Nd isotope characteristics indicate that they were derived from partial melting of Archean TTG rocks in an overthickened continental crust. Petrogenesis of this potassic granitoid series implies a collisional environment within the Trans-North China Orogen in the Paleoproterozoic, which supports a tectonic model of Eastern and Western Continental Blocks being amalgamated in the Paleoproterozoic.

  8. Evaluating the Paleomagnetic Potential of Zircons

    Fu, R. R.; Lima, E. A.; Weiss, B. P.; Glenn, D. R.; Kehayias, P.; Walsworth, R. L.


    Because zircon crystals commonly display high natural U/Pb ratios and excellent resistance to weathering, paleomagnetic data collected from zircons potentially enjoy the benefits of excellent age controls and minimal remagnetization from infiltrating fluids. We present rock magnetic and paleomagnetic experiments on two sets of zircons with contrasting geologic histories to determine the viability of zircons as paleomagnetic recorders. First, we characterize primary zircons from the Bishop Tuff, a pyroclastic deposit formed at 767±1 ka in a magnetic field of 43±3 µT. Magnetic field maps with ~10 µm resolution obtained with the nitrogen vacancy (NV) diamond magnetometer indicate that most ferromagnetic sources are situated within zircon interiors, suggesting a primary origin (Fig. 1A). Stepwise thermal demagnetization reveals well-defined components of magnetization blocked in most samples up to 580˚C, indicating the dominance of magnetite, which is the expected primary phase. The intensity of natural remanent magnetization (NRM) is typically 10-12 Am2. Ongoing Thellier-Thellier dual heating experiments will evaluate the accuracy of recovered paleointensities. Second, we study Hadean and Archean detrital zircons from the Jack Hills. In contrast to the Bishop Tuff samples, magnetic microscopy and stepwise thermal demagnetization demonstrate that the remanent magnetization of >80% of Jack Hills zircon are carried exclusively by secondary hematite situated on grain surfaces (Fig. 1B). NRM intensities range between 10-15 and 10-12 Am2 and decrease by a factor of several upon chemical removal of secondary hematite. Our analyses reveal a diversity of ferromagnetic mineralogies and distribution in natural zircons. While some zircon populations carry reliable paleomagnetic information, others are dominated by secondary ferromagnetic phases. Without the application of high-resolution magnetic microscopy techniques to identify the main ferromagnetic carrier, it is

  9. Geology, geochemistry and geochronology of the Songwe Hill carbonatite, Malawi

    Broom-Fendley, Sam; Brady, Aoife E.; Horstwood, Matthew S. A.; Woolley, Alan R.; Mtegha, James; Wall, Frances; Dawes, Will; Gunn, Gus


    Songwe Hill, Malawi, is one of the least studied carbonatites but has now become particularly important as it hosts a relatively large rare earth deposit. The results of new mapping, petrography, geochemistry and geochronology indicate that the 0.8 km diameter Songwe Hill is distinct from the other Chilwa Alkaline Province carbonatites in that it intruded the side of the much larger (4 × 6 km) and slightly older (134.6 ± 4.4 Ma) Mauze nepheline syenite and then evolved through three different carbonatite compositions (C1-C3). Early C1 carbonatite is scarce and is composed of medium-coarse-grained calcite carbonatite containing zircons with a U-Pb age of 132.9 ± 6.7 Ma. It is similar to magmatic carbonatite in other carbonatite complexes at Chilwa Island and Tundulu in the Chilwa Alkaline Province and others worldwide. The fine-grained calcite carbonatite (C2) is the most abundant stage at Songwe Hill, followed by a more REE- and Sr-rich ferroan calcite carbonatite (C3). Both stages C2 and C3 display evidence of extensive (carbo)-hydrothermal overprinting that has produced apatite enriched in HREE (<2000 ppm Y) and, in C3, synchysite-(Ce). The final stages comprise HREE-rich apatite fluorite veins and Mn-Fe-rich veins. Widespread brecciation and incorporation of fenite into carbonatite, brittle fracturing, rounded clasts and a fenite carapace at the top of the hill indicate a shallow level of emplacement into the crust. This shallow intrusion level acted as a reservoir for multiple stages of carbonatite-derived fluid and HREE-enriched apatite mineralisation as well as LREE-enriched synchysite-(Ce). The close proximity and similar age of the large Mauze nepheline syenite suggests it may have acted as a heat source driving a hydrothermal system that has differentiated Songwe Hill from other Chilwa carbonatites.

  10. Nature of the Precambrian metamorphic blocks in the eastern segment of Central Tianshan:Constraint from geochronology and Nd isotopic geochemistry

    LIU; Shuwen; GUO; Zhaojie; ZHANG; Zhicheng; LI; Qiugen; ZH


    Granitoid gneisses are widespread in Precambrian metamorphic blocks of eastern segment of the Central Tianshan Tectonic Zone, and they have intrusive contact relationships with their metamorphic sedimentary country rocks of Proterozoic Xingxingxia and Kawabulag groups. Zircon U-Pb ages from a granodioritic gneiss (IW11-1) and a parametamorphic schist (W05-9) are determined at the Weiya area. Euhedral prismatic zircons from the granodioritic gneiss (IW11-1) provide U-Pb isotopic discordia intercept ages of 1218±17 Ma and 426±26 Ma, respectively, and euhedral prismatic zircons from the parametamorphic schist (W05-9) display U-Pb isotopic discordia intercept ages of 1216±74 Ma and 290±15 Ma, respectively. A whole-rock Sm-Nd isotopic isochron is determined in augen granitoid gneiss samples at the Ganggou-Kumishi area and we obtain the isochron age of 1142±120 Ma, and its εNd(t) = -4.3. These geochronological data suggest that these Precambrian metamorphic basement blocks within eastern segment of the Central Tianshan Tectonic Zone can be produced during 1140-1220 Ma, and occur a nearly homochronous metamorphism. Integrated to these geochronological data, Nd depleted mantle model ages (TDM) and epsilon Nd(t) values of these granitoid gneiss samples indicate that they can derive from mixing in various scales both magmas from mantle and crust sources at a late Mesoproterozoic active continental margin tectonic environment. Similarity in geochronology, Sm-Nd isotopic geochemistry between Weiya-Xingxingxia, Pargangtag and Ganggou-Kumishi areas suggests that they could be a bigger uniform metamorphic basement block, which could be formed by the assembly of the supercontinent Rodinia and be separated by late geological processes.

  11. Thermoluminescence of zircon : a kinetic model

    Turkin, AA; van Es, HJ; Vainshtein, DI; den Hartog, HW


    The mineral zircon, ZrSiO4, belongs to a class of promising materials for geochronometry by means of thermoluminescence (TL) dating. The development of a reliable and reproducible method for TL dating with zircon requires detailed knowledge of the processes taking place during exposure to ionizing

  12. Mineral zircon : A novel thermoluminescence geochronometer

    Van Es, HJ; Vainshtein, DI; De Meijer, RJ; Den Hartog, HW; Donoghue, JF; Rozendaal, A


    Mineral zircon contains trace amounts (typically 10-1000 ppm) of the alpha-emitters uranium and thorium, which irradiate this mineral internally. This outstanding feature of zircon turns out to be extremely useful when this mineral is applied as a thermoluminescence (TL) dating medium, because the b

  13. Grenvillian orogeny in the Southern Cathaysia Block: Constraints from U-Pb ages and Lu-Hf isotopes in zircon from metamorphic basement

    WANG LiJuan; YU JinHai; S.Y. O'REILLY; W.L. GRIFFIN; SUN Tao; WEI ZhenYang; JIANG ShaoYong; SHU LiangShu


    Metamorphic basement rocks in the Cathaysia Block are composed mainly of meta-sediments with different ages. New zircon U-Pb geochronological results from the meta-sedimentary rocks exposed in the Zengcheng and Hezi areas, southern Cathaysia Block, show that they consist dominantly of early Neoproterozoic (1.0-0.9 Ga) materials with minor Paleo- to Mesoproterozoic and late Neoproterozoic (0.8-0.6 Ga) components, suggesting that the detritus mostly come from a Grenvillian orogen. The youngest detrital zircon ages place a constraint on the deposition time of these sediments in Late Neoproterozoic. Zircon Hf isotopic compositions indicate that the Grenvillian zircons were derived from the reworking of Mesoproterozoic arc magmatic rocks and Paleoproterozoic continental crust, implying an arc-continent collisional setting. Single-peak age spectra and the presence of abundant euhedral Grenvillian zircons suggest that the sedimentary provenance is not far away from the sample location. Thus, the Grenvillian orogen probably preexisted along the southern margin of the Cathaysia Block, or very close to the south. Similarity in the ages of Grenvillian orogeny and the influence of the assembly of Gondwana in South China with India and East Antarctic are discussed, with suggestion that South China was more likely linked with the India-East Antarctica continents in Early Neoproterozoic rather than between western Laurentia and eastern Australia.

  14. Roundness of heavy minerals (zircon and apatite) as a provenance tool for unraveling recycling: A case study from the Sefidrud and Sarbaz rivers in N and SE Iran

    Zoleikhaei, Yousef; Frei, Dirk; Morton, Andrew; Zamanzadeh, S. Mohammad


    In order to improve techniques for provenance studies, and especially to address the question of sediment recycling, morphological changes of two minerals with contrasting durability (zircon and apatite) were tracked during both fluvial transport and littoral reworking. The Sefidrud river system in northern Iran, which drains the Alborz volcano-sedimentary range into the Caspian Sea, and the Sarbaz river system in southeastern Iran, which drains the Makran Accretionary Prism into the Oman Sea, were chosen for this study. To determine source rocks of the grains, and thus their nature in terms of sedimentary cycles, zircon geochronology was conducted on both rivers. The zircon data indicate that most of the Sefidrud sediments are first cycle, derived from crystalline rocks, and the Sarbaz sediments are generally recycled from older wedges of the Makran. Results from SEM analysis show significant differences between the roundness of associated zircon and apatite grains. Zircon grains remain unrounded through several cycles, while apatite grains show abrasion from the early stages of their first cycle.

  15. Solidification of simulated actinides by natural zircon

    YANG Jian-Wen; LUO Shang-Geng


    Natural zircon was used as precursor material to produce a zircon waste form bearing 20wt% simulated actinides (Nd2O3 and UO2) through a solid state reaction by a typical synroc fabrication process. The fabricated zircon waste form has relatively good physical properties (density 5.09g/cm3, open porosity 4.0%, Vickers hardness 715kg/mm2). The XRD, SEM/EDS and TEM/EDS analyses indicate that there are zircon phases containing waste elements formed through the reaction. The chemical durability and radiation stability are determined by the MCC-1method and heavy ion irradiation; the results show that the zircon waste form is highly leach resistance and relatively stable under irradiation (amorphous dose 0.7dpa). From this study, the method of using a natural mineral to solidify radioactive waste has proven to be feasible.

  16. Genetic Mechanism of Mineral Inclusions in Zircons from the Khondalite Series, Southeastern Inner Mongolia


    sillimanite garnet potash feldspar gneiss and garnet biotite plagioclase gneiss, have experienced granulite-facies metamorphism.Secondary electron microscopic images of zircons from the khondalite series display distinct zoning from core to rim, and are genetically related to the primary, prograde, and peak metamorphic mineral inclusion assemblages respectively. These images reveal irregular zoning patterns and varying thickness of cores and rims. The abundance of inclusions complicates the conventional U-Pb age dating. Therefore, the SHRIMP micro-spot U-Pb method is essential for the protolith and metamorphic age dating of the khondalite series, southeastern Inner Mongolia.

  17. Geochronology and structuring of the Ceara State: Borborema Province northwestern part, NE Brazil; Geocronologia e estruturacao do estado do Ceara: NW da provincia Borborema, NE, Brasil

    Fetter, A.; Van Schmus, W.R. [Kansas Univ., Lawrence, KS (United States). Dept. of Geology; Santos, Ticiano J. Saraiva dos [UNESP, Rio Claro, SP (Brazil). Inst. de Geociencias e Ciencias Exatas; Arthaud, M.; Nogueira Neto, J. [Ceara Univ., Fortaleza, CE (Brazil). Dept. de Geologia


    The work confirms that the geochronological new data U/Pb in zircon and Samarium/Neodymium from the Ceara State furnished a refined chronology of the geological activity in the NW part of the Borborema Province, indicating an evolutive history since 2,78 Ga and 532 Ma. Furthermore, these data facilitated the different crust domain outlines in the region, putting age maximum limits in the pre-brasilianas supracrusts rocks deposition, and evidencing the epoch and duration of the Brasiliano magmatism and metamorphism in the northwest part of the State

  18. Young cumulate complex beneath Veniaminof caldera, Aleutian arc, dated by zircon in erupted plutonic blocks

    Bacon, Charles R.; Sisson, Thomas W.; Mazdab, Frank K.


    Mount Veniaminof volcano, Alaska Peninsula, provides an opportunity to relate Quaternary volcanic rocks to a coeval intrusive complex. Veniaminof erupted tholeiitic basalt through dacite in the past ˜260 k.y. Gabbro, diorite, and miarolitic granodiorite blocks, ejected 3700 14C yr B.P. in the most recent caldera-forming eruption, are fragments of a shallow intrusive complex of cumulate mush and segregated vapor-saturated residual melts. Sensitive high-resolution ion microprobe (SHRIMP) analyses define 238U-230Th isochron ages of 17.6 ± 2.7 ka, 5 +11/-10 ka, and 10.2 ± 4.0 ka (2σ) for zircon in two granodiorites and a diorite, respectively. Sparse zircons from two gabbros give 238U-230Th model ages of 36 ± 8 ka and 26 ± 7 ka. Zircons from granodiorite and diorite crystallized in the presence of late magmatic aqueous fluid. Although historic eruptions have been weakly explosive Strombolian fountaining and small lava effusions, the young ages of plutonic blocks, as well as late Holocene dacite pumice, are evidence that the intrusive complex remains active and that evolved magmas can segregate at shallow levels to fuel explosive eruptions.

  19. Widespread Occurrence of Zircon in Slow- and Ultraslow Spreading Ocean Crust: A Tool for Studying Ocean Lithospheric Processes

    Grimes, C. B.; John, B. E.; Cheadle, M. J.; Schwartz, J. J.


    The presence of igneous zircon in oceanic gabbro and peridotite provides a new opportunity to constrain absolute ages, and the processes and rates of crustal accretion in oceanic environments. Our recent investigations show zircon to be common in slow and ultraslow spreading oceanic crust including several locations along the Mid-Atlantic Ridge (MAR) and Southwest Indian Ridge (SWIR), and in rock types ranging from trondjhemite dikes to peridotite. Zircon is typically found in felsic intrusions and oxide gabbro, and in many cases may be due to late stage saturation in small pockets of residual melt. We report the morphologic and chemical characteristics of zircon grains collected from >100 rock samples recovered both from the seafloor by manned submersible and ROV, and with depth by ODP/IODP drilling. Grains range from euhedral and faceted to anhedral and fractured, with internal zonation that may be homogeneous, concentric, or patchy, and rarely contain relict cores. Sizes range from 1 mm. Measurements of major, minor, and trace element concentrations and high-resolution Pb/U ages were collected with the SHRIMP-RG. Chondrite-normalized rare earth element (REE) patterns for more than 50 zircon grains are uniform in shape and closely resemble patterns for known terrestrial igneous zircon. This is in contrast to mantle affinity zircon (e.g. kimberlite), which typically show depleted and relatively unfractionated patterns. Observed total REE concentrations range from 330-3765 ppm. Patterns are convex upward and rise sharply towards the HREE, with normalized Sm/La ratios = 16-320 and Lu/Gd ratios = 20-51. Positive Ce and negative Eu anomalies are ubiquitous. Hf abundances range from 5988 to 14,266 ppm. Other elements occurring at minor abundance levels include Y (463-6949 ppm), P (253-2288 ppm), U (7-2827 ppm), and Th (3-7403 ppm). Preliminary Ti concentrations range from 13 to 270 ppm, indicating crystallization temperatures of 765 to 1147°C based on Ti in zircon

  20. Orogenesis and Basin Development: U-Pb Detrital Zircon Age Constraints on Evolution of the Late Paleozoic St. Marys Basin, Central Mainland Nova Scotia.

    Murphy; Hamilton


    The St. Marys Basin, along the southern flank of the composite Late Paleozoic Magdalen Basin in the Canadian Appalachians and along the Avalon-Meguma terrane boundary, contains Late Devonian-Early Carboniferous continental clastic rocks of the Horton Group that were deposited in fluvial and lacustrine environments after the peak of the Acadian orogeny. SHRIMP II (Geological Survey of Canada) data on approximately 100 detrital zircons from three samples of Horton Group rocks from the St. Marys Basin show that most of the zircons have been involved in a multistage history, recycled from clastic rocks in the adjacent Meguma and Avalonian terranes. Although there is a minor contribution from Early Silurian (411 Ma) and Late Devonian suites (ca. 380-370 Ma), Neoproterozoic (ca. 700-550 Ma) and Paleoproterozoic (ca. 2.0-2.2 Ga) zircon populations predominate, with a minor contribution from ca. 1.0-, 1.2-, and 1.8-Ga zircons. Published U-Pb single-zircon analyses on clastic sedimentary rocks indicate that the Meguma and Avalon terranes have different populations of detrital zircons, sourced from discrete portions (Amazonian and West African cratons) of the ancient Gondwanan margin. Both terranes contain Neoproterozoic and Late Archean populations. The SHRIMP data, in conjunction with published sedimentological and geochemical data, indicate that the Horton Group basin-fill sediments are largely the result of rapid uplift and erosion of Meguma terrane metasedimentary and granitoid rocks immediately to the south of the St. Marys Basin during the waning stages of the Acadian orogeny. Regional syntheses indicate that this uplift occurred before and during deposition and was a consequence of dextral ramping of the Meguma terrane over the Avalon terrane along the southern flank of the Magdalen Basin.

  1. Geochronological and isotopic records of crustal storage and assimilation in the Wolverine Creek-Conant Creek system, Heise eruptive centre, Snake River Plain

    Szymanowski, D.; Ellis, B. S.; Wotzlaw, J. F.; Buret, Y.; von Quadt, A.; Peytcheva, I.; Bindeman, I. N.; Bachmann, O.


    Understanding the processes of differentiation of the Yellowstone-Snake River Plain (YSRP) rhyolites is typically impeded by the apparent lack of erupted intermediate compositions as well as the complex nature of their shallow interaction with the surrounding crust responsible for their typically low O isotopic ratios. A pair of normal-δ18O rhyolitic eruptions from the Heise eruptive centre in eastern Idaho, the Wolverine Creek Tuff and the Conant Creek Tuff, represent unique magmatic products of the Yellowstone hotspot preserving abundant vestiges of the intermediate differentiation steps leading to rhyolite generation. We address both shallow and deep processes of magma generation and storage in the two units by combining high-precision ID-TIMS U-Pb zircon geochronology, trace element, O and Hf isotopic studies of zircon, and Sr isotopic analyses of individual high-Mg# pyroxenes inherited from lower- to mid-crustal differentiation stages. The zircon geochronology confirms the derivation of both tuffs from the same rhyolitic magma reservoir erupted at 5.5941 ± 0.0097 Ma, preceded by at least 92 ± 14 ky of continuous or intermittent zircon saturation approximating the length of pre-eruptive magma accumulation in the upper crust. Some low-Mg# pyroxenes enclosing zircons predate the eruption by at least 45 ± 27 ky, illustrating the co-crystallisation of major and accessory phases in the near-liquidus rhyolitic melts of the YSRP over a significant period of time. Coeval zircon crystals are isotopically heterogeneous (two populations at ɛHf -5 and -13), requiring the assembly of isotopically distinct melt pockets directly prior to, or during, the eruption. The primitive Mg# 60-90 pyroxenes are out of isotopic equilibrium with the host rhyolitic melt (87Sr/86Sri = 0.70889), covering a range of 87Sr/86Sri = 0.70705-0.70883 corresponding to ratios typical of the most radiogenic YSRP basalts to the least radiogenic YSRP rhyolites. Together with the low ɛHf in zircon

  2. SHRIMP U-Pb dating and geochemistry of the Cretaceous plutonic rocks in the Korean Peninsula: A new tectonic model of the Cretaceous Korean Peninsula

    Kim, Sung Won; Kwon, Sanghoon; Park, Seung-Ik; Lee, Changyeol; Cho, Deung-Lyong; Lee, Hong-Jin; Ko, Kyoungtae; Kim, Sook Ju


    The Cretaceous tectonomagmatism of the Korean Peninsula was examined based on geochemical and geochronological data of the Cretaceous plutonic rocks, along with distribution of volcano-sedimentary nonmarine N- to NE-trending fault bounded sedimentary basins. We conducted sensitive high-resolution ion microprobe (SHRIMP) zircon U-Pb ages and whole-rock geochemical compositions of 21 Cretaceous plutonic rocks, together with previously published data, from the central to southern Korean Peninsula. Four age groups of plutonic rocks were identified: Group I (ca. 119-106 Ma) in the northern to central area, Group II (ca. 99-87 Ma) in the central southern area, Group III (ca. 85-82 Ma) in the central to southern area, and Group IV (ca. 76-67 Ma) in the southernmost area. These results indicate a sporadic trenchward-younging trend of the Cretaceous magmatism in the Korean Peninsula. The Group I, II, and III rocks are dominated by high-K calc-alkaline I-type rocks with rift-related A-type granitoids. In contrast, the Group IV rocks are high-K calc-alkaline I-type plutonic rocks with no A-type rocks. The geochemical signatures of the entire groups indicated LREEs (light rare earth elements) enrichments and negative Nb, Ta, and Ti anomalies, indicating normal arc magmatism. A new tectonic model of the Cretaceous Korean Peninsula was proposed based on temporal and spatial distribution of the Cretaceous plutons represented by four age groups; 1) magmatic quiescence throughout the Korean Peninsula from ca. 160 to 120 Ma, 2) intrusions of the I- and A-type granitoids in the northern and central Korean Peninsula (Group I plutonic rocks from ca. 120 to 100 Ma) resulted from the partial melting of the lower continental crust due to the rollback of the Izanagi plate expressed as the conversion from flat-lying subduction to normal subduction. The Gyeongsang nonmarine sedimentary rift basin in the Korean Peninsula and adakite magmatism preserved in the present-day Japanese Islands

  3. Geochemistry, U-Pb geochronology, Sm-Nd and O isotopes of ca. 50 Ma long Ediacaran High-K Syn-Collisional Magmatism in the Pernambuco Alagoas Domain, Borborema Province, NE Brazil

    Francisco da Silva Filho, Adejardo; de Pinho Guimarães, Ignez; Santos, Lucilene; Armstrong, Richard; Van Schmus, William Randall


    The Pernambuco Alagoas (PEAL) domain shows the major occurrence of granitic batholiths of the Borborema Province, NE Brazil, with Archean to Neoproterozoic range of Nd TDM model ages, giving clues on the role of granites during the Brasiliano orogeny. SHRIMP U/Pb zircon geochronological data for seven granitic intrusions of the PEAL domain divide the studied granitoids into three groups: 1) early-to syn-collision granitoids with crystallization ages ca. 635 Ma (Serra do Catú pluton), 2) syn-collision granitoids with crystallization ages 610-618 Ma (Santana do Ipanema, Água Branca, Mata Grande and Correntes plutons) and 3) late-to post-collision granitoids with ages of ca. 590 Ma (Águas Belas, and Cachoeirinha plutons). The intrusions of group 1 and 2, except the Mata Grande and Correntes plutons, show Nd TDM model ages ranging from 1.2 to 1.5 Ga, while the granitoids from group 3, and Mata Grande Pluton and Correntes plutons have Nd TDM model ages ranging from 1.7 to 2.2 Ga. The studied granitoids with ages plutons, together with the available Nd isotopic data suggest that the Brasiliano orogeny strongly reworked older crust, of either Paleoproterozoic or Tonian ages. The studied granitoids are coeval with calc-alkaline granitoids of the Transversal Zone and Sergipano domains and rare high-K calc-alkaline granitoids from the Transversal Zone domain. Such large volumes of high-K granitoids with crystallization ages older than 600 Ma are not recorded in the Transversal Zone domains, suggesting that at least between 600 and 650 Ma, the granitic magmatism of these two areas were distinct. However, the studied granitoids (630-580 Ma) located in the north part of the PEAL domain, north of the Palmares shear zone are coeval with granitoids of similar geochemical compositions in the Transversal Zone domain. It suggests that the southeastern part of the Transversal Zone and the northern part of the PEAL domains belonged to the same crustal block during the Brasiliano

  4. LA-ICP-MS zircon U-Pb geochronology of the tuffs on the uppermost of the Emeishan basalt s