WorldWideScience

Sample records for zipcode-binding protein imp1

  1. A family of insulin-like growth factor II mRNA-binding proteins represses translation in late development

    DEFF Research Database (Denmark)

    Nielsen, J; Christiansen, J; Lykke-Andersen, J

    1999-01-01

    Insulin-like growth factor II (IGF-II) is a major fetal growth factor. The IGF-II gene generates multiple mRNAs with different 5' untranslated regions (5' UTRs) that are translated in a differential manner during development. We have identified a human family of three IGF-II mRNA-binding proteins.......5 followed by a decline towards birth, and, similar to IGF-II, IMPs are especially expressed in developing epithelia, muscle, and placenta in both mouse and human embryos. The results imply that cytoplasmic 5' UTR-binding proteins control IGF-II biosynthesis during late mammalian development....... and are homologous to the Xenopus Vera and chicken zipcode-binding proteins. IMP localizes to subcytoplasmic domains in a growth-dependent and cell-specific manner and causes a dose-dependent translational repression of IGF-II leader 3 -luciferase mRNA. Mouse IMPs are produced in a burst at embryonic day 12...

  2. Oncofetal protein IMP3, a new cancer biomarker.

    Science.gov (United States)

    Gong, Yuna; Woda, Bruce A; Jiang, Zhong

    2014-05-01

    IMP3 is a member of a family of RNA-binding proteins that consists of IMP1, IMP2 and IMP3. These proteins contain 2 RNA recognition motifs and 4 K-homology domains that allow them to bind RNAs strongly and specifically. IMP3 is an oncofetal protein involved in embryogenesis and its expression is associated with a number of malignant neoplasms. IMP3 is associated with aggressive and advanced cancers and is specifically expressed in malignant tumors but is not found in adjacent benign tissues. Moreover, in vitro studies have shown that IMP3 promotes tumor cell proliferation, adhesion, and invasion. This review focuses on the studies of IMP3 expression in different cancers and emphasizes the potential utility of IMP3 in routine surgical pathology practice. We also discuss IMP3 as a prognostic biomarker for cancer patients' outcomes.

  3. RNA-binding IMPs promote cell adhesion and invadopodia formation

    DEFF Research Database (Denmark)

    Vikesaa, Jonas; Hansen, Thomas V O; Jønson, Lars

    2006-01-01

    Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading and inva......Oncofetal RNA-binding IMPs have been implicated in mRNA localization, nuclear export, turnover and translational control. To depict the cellular actions of IMPs, we performed a loss-of-function analysis, which showed that IMPs are necessary for proper cell adhesion, cytoplasmic spreading...... and invadopodia formation. Loss of IMPs was associated with a coordinate downregulation of mRNAs encoding extracellular matrix and adhesion proteins. The transcripts were present in IMP RNP granules, implying that IMPs were directly involved in the post-transcriptional control of the transcripts. In particular......-mediated invadopodia formation. Taken together, our results indicate that RNA-binding proteins exert profound effects on cellular adhesion and invasion during development and cancer formation....

  4. Molecular composition of IMP1 ribonucleoprotein granules

    DEFF Research Database (Denmark)

    Jønson, Lars; Vikesaa, Jonas; Krogh, Anders

    2007-01-01

    Localized mRNAs are transported to sites of local protein synthesis in large ribonucleoprotein (RNP) granules, but their molecular composition is incompletely understood. Insulin-like growth factor II mRNA-binding protein (IMP) zip code-binding proteins participate in mRNA localization, and in mo......Localized mRNAs are transported to sites of local protein synthesis in large ribonucleoprotein (RNP) granules, but their molecular composition is incompletely understood. Insulin-like growth factor II mRNA-binding protein (IMP) zip code-binding proteins participate in mRNA localization...

  5. Characterization of the Eimeria maxima sporozoite surface protein IMP1.

    Science.gov (United States)

    Jenkins, M C; Fetterer, R; Miska, K; Tuo, W; Kwok, O; Dubey, J P

    2015-07-30

    The purpose of this study was to characterize Eimeria maxima immune-mapped protein 1 (IMP1) that is hypothesized to play a role in eliciting protective immunity against E. maxima infection in chickens. RT-PCR analysis of RNA from unsporulated and sporulating E. maxima oocysts revealed highest transcription levels at 6-12h of sporulation with a considerable downregulation thereafter. Alignment of IMP1 coding sequence from Houghton, Weybridge, and APU-1 strains of E. maxima revealed single nucleotide polymorphisms that in some instances led to amino acid changes in the encoded protein sequence. The E. maxima (APU-1) IMP1 cDNA sequence was cloned and expressed in 2 different polyHis Escherichia coli expression vectors. Regardless of expression vector, recombinant E. maxima IMP1 (rEmaxIMP1) was fairly unstable in non-denaturing buffer, which is consistent with stability analysis of the primary amino acid sequence. Antisera specific for rEmaxIMP1 identified a single 72 kDa protein or a 61 kDa protein by non-reducing or reducing SDS-PAGE/immunoblotting. Immunofluorescence staining with anti-rEmaxIMP1, revealed intense surface staining of E. maxima sporozoites, with negligible staining of merozoite stages. Immuno-histochemical staining of E. maxima-infected chicken intestinal tissue revealed staining of E. maxima developmental stages in the lamnia propia and crypts at both 24 and 48 h post-infection, and negligible staining thereafter. The expression of IMP1 during early stages of in vivo development and its location on the sporozoite surface may explain in part the immunoprotective effect of this protein against E. maxima infection. Published by Elsevier B.V.

  6. Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Hammer, Niels A; Nielsen, Jacob

    2004-01-01

    Insulin-like growth factor II mRNA-binding protein 1 (IMP1) belongs to a family of RNA-binding proteins implicated in mRNA localization, turnover, and translational control. Mouse IMP1 is expressed during early development, and an increase in expression occurs around embryonic day 12.5 (E12.5). T...

  7. Insulin-like growth factor II mRNA binding protein 3 (IMP3) is overexpressed in prostate cancer and correlates with higher Gleason scores

    International Nuclear Information System (INIS)

    Ikenberg, Kristian; Behnke, Silvia; Gerhardt, Josefine; Mortezavi, Ashkan; Wild, Peter; Hofstädter, Ferdinand; Burger, Maximilian; Moch, Holger; Kristiansen, Glen; Fritzsche, Florian R; Zuerrer-Haerdi, Ursina; Hofmann, Irina; Hermanns, Thomas; Seifert, Helge; Müntener, Michael; Provenzano, Maurizio; Sulser, Tullio

    2010-01-01

    The oncofetal protein insulin-like growth factor II mRNA binding protein 3 (IMP3) is an important factor for cell-migration and adhesion in malignancies. Recent studies have shown a remarkable overexpression of IMP3 in different human malignant neoplasms and also revealed it as an important prognostic marker in some tumor entities. To our knowledge, IMP3 expression has not been investigated in prostate carcinomas so far. Immunohistochemical stainings for IMP3 were performed on tissue microarray (TMA) organized samples from 507 patients: 31 normal prostate tissues, 425 primary carcinomas and 51 prostate cancer metastases or castration-resistant prostate cancers (CRPC). IMP3 immunoreactivity was semiquantitatively scored and correlated with clinical-pathologic parameters including survival. IMP3 is significantly stronger expressed in prostate carcinomas compared to normal prostate tissues (p < 0.0001), but did not show significant correlation with the pT-stage, the proliferation index (MIB1), preoperative serum PSA level and the margin status. Only a weak and slightly significant correlation was found with the Gleason score and IMP3 expression failed to show prognostic significance in clinico-pathological correlation-analyses. Although IMP3 is overexpressed in a significant proportion of prostate cancer cases, which might be of importance for novel therapeutic approaches, it does not appear to possess any immediate diagnostic or prognostic value, limiting its potential as a tissue biomarker for prostate cancer. These results might be corroborated by the fact, that two independent tumor cohorts were separately reviewed

  8. Insulin-like growth factor II mRNA binding protein 3 (IMP3 is overexpressed in prostate cancer and correlates with higher Gleason scores

    Directory of Open Access Journals (Sweden)

    Mortezavi Ashkan

    2010-06-01

    Full Text Available Abstract Background The oncofetal protein insulin-like growth factor II mRNA binding protein 3 (IMP3 is an important factor for cell-migration and adhesion in malignancies. Recent studies have shown a remarkable overexpression of IMP3 in different human malignant neoplasms and also revealed it as an important prognostic marker in some tumor entities. To our knowledge, IMP3 expression has not been investigated in prostate carcinomas so far. Methods Immunohistochemical stainings for IMP3 were performed on tissue microarray (TMA organized samples from 507 patients: 31 normal prostate tissues, 425 primary carcinomas and 51 prostate cancer metastases or castration-resistant prostate cancers (CRPC. IMP3 immunoreactivity was semiquantitatively scored and correlated with clinical-pathologic parameters including survival. Results IMP3 is significantly stronger expressed in prostate carcinomas compared to normal prostate tissues (p Conclusions Although IMP3 is overexpressed in a significant proportion of prostate cancer cases, which might be of importance for novel therapeutic approaches, it does not appear to possess any immediate diagnostic or prognostic value, limiting its potential as a tissue biomarker for prostate cancer. These results might be corroborated by the fact, that two independent tumor cohorts were separately reviewed.

  9. Expression of IGF-II mRNA-binding proteins (IMPs) in gonads and testicular cancer

    DEFF Research Database (Denmark)

    Hammer, Niels A; Hansen, Thomas v O; Byskov, Anne Grete

    2005-01-01

    prompted us to examine their possible involvement in testicular neoplasia. IMPs were detected primarily in germ-cell neoplasms, including preinvasive testicular carcinoma in situ, classical and spermatocytic seminoma, and nonseminomas, with particularly high expression in undifferentiated embryonal...... carcinoma. The relative expression of IMP1, IMP2 and IMP3 varied among tumor types and only IMP1 was detected in all carcinoma in situ cells. Thus IMPs, and in particular IMP1, may be useful auxiliary markers of testicular neoplasia....

  10. Elevated expression of the IGF2 mRNA binding protein 2 (IGF2BP2/IMP2) is linked to short survival and metastasis in esophageal adenocarcinoma

    OpenAIRE

    Barghash, Ahmad; Golob-Schwarzl, Nicole; Helms, Volkhard; Haybaeck, Johannes; Kessler, Sonja M.

    2016-01-01

    Esophageal adenocarcinoma (EAC) represents the sixth leading cause of cancer-related deaths and develops in Barret's esophagus affected tissues. The IGF2 mRNA binding protein IMP2/IGF2BP2/p62 was originally identified as an autoantigen in hepatocellular carcinoma. Aim of this study was to investigate the expression and prognostic role of IMP2 in EAC. Human EAC and Barret's esophagus tissue showed overexpression of IMP2, particularly in tumors of increased size and in metastatic tissues. Molec...

  11. Characterization of the Eimeria maxima sporozoite surface protein IMP1

    Science.gov (United States)

    The purpose of this study was to characterize Eimeria maxima immunoprotective protein IMP1 that is hypothesized to play a role in eliciting protective immunity against E. maxima infection in chickens. RT-PCR analysis of RNA from unsporulated and sporulating E. maxima oocysts revealed highest transc...

  12. Insight into stereochemistry of a new IMP allelic variant (IMP-55) metallo-β-lactamase identified in a clinical strain of Acinetobacter baumannii.

    Science.gov (United States)

    Shakibaie, Mohammad Reza; Azizi, Omid; Shahcheraghi, Fereshteh

    2017-07-01

    Metallo-β-lactamases (MBLs) such as IMPs are broad-spectrum β-lactamases that inactivate virtually all β-lactam antibiotics including carbapenems. In this study, we investigated the hydrolytic activity, phylogenetic relationship, three dimensional (3D) structure including zinc binding motif of a new IMP variant (IMP-55) identified in a clinical strain of Acinetobacter baumannii (AB). AB strain 56 was isolated from an adult ICU of a teaching hospital in Kerman, Iran. It exhibited MIC 32μg/ml to imipenem and showed MBL activity. Hydrolytic property of the MBL enzyme was measured phenotypically. Presence of bla IMP gene encoded by class 1 integrons was detected by PCR-sequencing. Phylogenetic tree of IMP protein was constructed using the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) and 3D model including zinc binding motif was predicted by bioinformatics softwares. Analysis of IMP sequence led to the identification of a novel IMP-type designated as IMP-55 (GenBank: KU299753.1; UniprotKB: A0A0S2MTX2). Impact in term of hydrolytic activity compared to the closest variants suggested efficient imipenem hydrolysis by this enzyme. Evolutionary distance matrix assessment indicated that IMP-55 protein is not closely related to other A. baumannii IMPs, however, shared 98% homology with Escherichia coli IMP-30 (UniprotKB: A0A0C5PJR0) and Pseudomonas aeruginosa IMP-1 (UniprotKB: Q19KT1). It consisted of five α-helices, ten β-sheets and six loops. A monovalent zinc ion attached to core of enzyme via His95, His97, His157 and Cys176. Multiple amino acid sequence alignments and mutational trajectory with reported IMPs showed 4 amino acid substitutions at positions 12(Phe→Ile), 31(Asp→Glu), 172(Leu→Phe) and 185(Asn→Lys). We suggest that the pleiotropic effect of mutations due to frequent administration of imipenem is responsible for emergence of new IMP variant in our hospitals. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. IGF2 mRNA-binding protein 2: biological function and putative role in type 2 diabetes

    DEFF Research Database (Denmark)

    Christiansen, J.; Kolte, A.M.; Hansen, T.O.

    2009-01-01

    Recent genome-wide association (GWA) studies of type 2 diabetes (T2D) have implicated IGF2 mRNA-binding protein 2 (IMP2/IGF2BP2) as one of the several factors in the etiology of late onset diabetes. IMP2 belongs to a family of oncofetal mRNA-binding proteins implicated in RNA localization...... and T2D Udgivelsesdato: 2009/11......, stability, and translation that are essential for normal embryonic growth and development. This review provides a background to the IMP protein family with an emphasis on human IMP2, followed by a closer look at the GWA studies to evaluate the significance, if any, of the proposed correlation between IMP2...

  14. Serum protein binding displacement: theoretical analysis using a hypothetical radiopharmaceutical and experimental analysis with 123I-N-isopropyl-p-iodoamphetamine

    International Nuclear Information System (INIS)

    Kawai, Keiichi; Nishii, Ryuichi; Shikano, Naoto; Makino, Nobuo; Kuga, Noriyuki; Yoshimoto, Mitsuyoshi; Jinnouchi, Seishi; Nagamachi, Shigeki; Tamura, Shozo; Takamura, Norito

    2009-01-01

    Introduction: The binding of radiopharmaceutical to serum proteins is thought to be an important factor that restricts its excretion and accumulation in tissue. We calculated the effect of inhibitors of serum protein binding using a hypothetical radiopharmaceutical. In vitro experiments and protein binding inhibitor-loaded monkey scintigraphy were then conducted using 123 I-N-isopropyl-p-iodoamphetamine (IMP) as the radiopharmaceutical. Methods: Free fraction ratios of radiopharmaceutical were calculated with one radiopharmaceutical, two serum proteins and two specific inhibitors in the steady state at various serum protein concentrations. In vitro protein binding inhibition studies using human, rat and monkey sera were performed with site-selective displacers of specific binding sites: 400 μM 6-methoxy-2-naphthylacetic acid (6MNA; a major nabumeton metabolite) as a serum albumin Site II inhibitor and 400 μM erythromycin (ETC) as an α 1 -acid glycoprotein (AGP) site inhibitor. Scintigraphy with or without 6MNA loading of monkeys was performed. Results: The theoretical findings roughly corresponded to the experimental results. Approximately 75% of IMP bound to serum albumin Site II and AGP in the species examined. The free fraction of IMP (25.0±0.6% for human, 22.8±0.4% for monkey, 23.7±0.3% for rat) increased with loading of specific protein binding inhibitors (6MNA: 28.0±0.3% for human, 24.5±0.7% for monkey, 24.3±0.2% for rat; ETC: 26.3±0.4% for human, 29.5±1.1% for monkey, 26.0±0.7% for rat) and was serum protein concentration dependant based on the results of calculations. Simultaneous administration of 6MNA and ETC produced a higher free fraction ratio of IMP (31.9±1.0% for human, 34.6±0.4% for monkey, 27.0±0.3% for rat) than summation of the single administrations of 6MNA and ETC (domino effect) in human, rat and monkey sera. Rapid cerebral accumulation was observed with 6MNA loading in monkey scintigraphy. Conclusions: 6MNA appears to change

  15. IMP3 expression in human ovarian cancer is associated with improved survival

    DEFF Research Database (Denmark)

    Noske, Aurelia; Faggad, Areeg; Wirtz, Ralph

    2009-01-01

    The insulin-like growth factor-II mRNA-binding protein IMP3 plays an important role in embryogenesis and recent reports suggest an involvement in tumorigenesis. Although IMP3 expression has been well studied in mouse and human fetal and adult gonads, its role in ovarian cancer is unknown. We...... investigated the expression of IMP3 at protein and mRNA levels in a cohort of primary ovarian carcinomas and in 11 ovarian cancer cell lines. Western blot analysis revealed an expression of IMP3 in all ovarian cancer cell lines and immunohistochemistry demonstrated a positive cytoplasmic staining in 32 of 68...... carcinomas (47%). In contrast, epithelium of borderline tumors, as well as, benign ovarian lesions and normal ovaries exhibited only weak or no IMP3 expression. In univariate Kaplan-Meier analysis, IMP3 protein expression was significantly associated with better overall survival (P=0.048). To confirm...

  16. A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity.

    Science.gov (United States)

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-02-27

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD(+), which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD(+) and XMP/NAD(+). In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD(+) adenosine moiety. More importantly, this new NAD(+)-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD(+)-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. A Novel Cofactor-binding Mode in Bacterial IMP Dehydrogenases Explains Inhibitor Selectivity*

    Science.gov (United States)

    Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R.; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej

    2015-01-01

    The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5′-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+, which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD+ and XMP/NAD+. In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD+ adenosine moiety. More importantly, this new NAD+-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD+-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. PMID:25572472

  18. Incorporation of a recombinant Eimeria maxima IMP1 antigen into nanoparticles confers protective immunity against E. Maxima challenge infection.

    Science.gov (United States)

    Jenkins, Mark C; Stevens, Laura; O'Brien, Celia; Parker, Carolyn; Miska, Katrzyna; Konjufca, Vjollca

    2018-02-14

    The purpose of this study was to determine if conjugating a recombinant Eimeria maxima protein, namely EmaxIMP1, into 20 nm polystyrene nanoparticles (NP) could improve the level of protective immunity against E. maxima challenge infection. Recombinant EmaxIMP1 was expressed in Escherichia coli as a poly-His fusion protein, purified by NiNTA chromatography, and conjugated to 20 nm polystyrene NP (NP-EmaxIMP1). NP-EMaxIMP1 or control non-recombinant (NP-NR) protein were delivered per os to newly-hatched broiler chicks with subsequent booster immunizations at 3 and 21 days of age. In battery cage studies (n = 4), chickens immunized with NP-EMaxIMP1 displayed complete protection as measured by weight gain (WG) against E. maxima challenge compared to chickens immunized with NP-NR. WG in the NP-EMaxIMP1-immunized groups was identical to WG in chickens that were not infected with E. maxima infected chickens. In floor pen studies (n = 2), chickens immunized with NP-EMaxIMP1 displayed partial protection as measured by WG against E. maxima challenge compared to chickens immunized with NP-NR. In order to understand the basis for immune stimulation, newly-hatched chicks were inoculated per os with NP-EMaxIMP1 or NP-NR protein, and the small intestine, bursa, and spleen, were examined for NP localization at 1 h and 6 h post-inoculation. Within 1 h, both NP-EMaxIMP1 and NP-NR were observed in all 3 tissues. An increase was observed in the level of NP-EmaxIMP1 and NP-NR in all tissues at 6 h post-inoculation. These data indicate that 20 nm NP-EmaxIMP1 or NP-NR reached deeper tissues within hours of oral inoculation and elicited complete to partial immunity against E. maxima challenge infection. Published by Elsevier Ltd.

  19. IMP3 RNP Safe Houses Prevent miRNA-Directed HMGA2 mRNA Decay in Cancer and Development

    Directory of Open Access Journals (Sweden)

    Lars Jønson

    2014-04-01

    Full Text Available The IMP3 RNA-binding protein is associated with metastasis and poor outcome in human cancer. Using solid cancer transcriptome data, we found that IMP3 correlates with HMGA2 mRNA expression. Cytoplasmic IMP3 granules contain HMGA2, and IMP3 dose-dependently increases HMGA2 mRNA. HMGA2 is regulated by let-7, and let-7 antagomiRs make HMGA2 refractory to IMP3. Removal of let-7 target sites eliminates IMP3-dependent stabilization, and IMP3-containing bodies are depleted of Ago1-4 and miRNAs. The relationship between Hmga2 mRNA and IMPs also exists in the developing limb bud, where IMP1-deficient embryos show dose-dependent Hmga2 mRNA downregulation. Finally, IMP3 ribonucleoproteins (RNPs contain other let-7 target mRNAs, including LIN28B, and a global gene set enrichment analysis demonstrates that miRNA-regulated transcripts in general are upregulated following IMP3 induction. We conclude that IMP3 RNPs may function as cytoplasmic safe houses and prevent miRNA-directed mRNA decay of oncogenes during tumor progression.

  20. CC1, a novel crenarchaeal DNA binding protein.

    Science.gov (United States)

    Luo, Xiao; Schwarz-Linek, Uli; Botting, Catherine H; Hensel, Reinhard; Siebers, Bettina; White, Malcolm F

    2007-01-01

    The genomes of the related crenarchaea Pyrobaculum aerophilum and Thermoproteus tenax lack any obvious gene encoding a single-stranded DNA binding protein (SSB). SSBs are essential for DNA replication, recombination, and repair and are found in all other genomes across the three domains of life. These two archaeal genomes also have only one identifiable gene encoding a chromatin protein (the Alba protein), while most other archaea have at least two different abundant chromatin proteins. We performed a biochemical screen for novel nucleic acid binding proteins present in cell extracts of T. tenax. An assay for proteins capable of binding to a single-stranded DNA oligonucleotide resulted in identification of three proteins. The first protein, Alba, has been shown previously to bind single-stranded DNA as well as duplex DNA. The two other proteins, which we designated CC1 (for crenarchaeal chromatin protein 1), are very closely related to one another, and homologs are restricted to the P. aerophilum and Aeropyrum pernix genomes. CC1 is a 6-kDa, monomeric, basic protein that is expressed at a high level in T. tenax. This protein binds single- and double-stranded DNAs with similar affinities. These properties are consistent with a role for CC1 as a crenarchaeal chromatin protein.

  1. Oncofetal Protein IMP3: A Novel Molecular Marker That Predicts Metastasis of Papillary and Chromophobe Renal Cell Carcinomas

    Science.gov (United States)

    Jiang, Zhong; Lohse, Christine M.; Chu, Peigou G.; Wu, Chin-Lee; Woda, Bruce A.; Rock, Kenneth L.; Kwon, Eugene D.

    2009-01-01

    BACKGROUND Whether an oncofetal protein, IMP3, can serve as a prognostic biomarker to predict metastasis for patients with localized papillary and chromophobe subtypes of renal cell carcinomas (RCCs) was investigated. METHODS The expression of IMP3 in 334 patients with primary papillary and chromophobe RCC from multiple medical centers was evaluated by immunohistochemistry. The 317 patients with localized papillary and chromophobe RCCs were further evaluated for outcome analyses. RESULTS IMP3 was significantly increased in a subset of localized papillary and chromophobe RCCs that subsequently metastasized. Patients with localized IMP3-positive tumors (n = 33; 10%) were over 10 times more likely to metastasize (risk ratio [RR], 11.38; 95% confidence interval [CI], 5.40–23.96; P <.001) and were nearly twice as likely to die (RR, 1.91; 95% CI, 1.13–3.22; P =.016) compared with patients with localized IMP3 negative tumors. The 5-year metastasis-free and overall survival rates were 64% and 58% for patients with IMP3-positive localized papillary and chromophobe RCCs compared with 98% and 85% for patients with IMP3 negative tumors, respectively. In multivariable analysis adjusting for the TNM stage and nuclear grade, patients with IMP3-positive tumors were still over 10 times more likely to progress to distant metastasis (RR, 13.45; 95% CI, 6.00–30.14; P <.001) and were still nearly twice as likely die (RR, 1.95; 95% CI, 1.15–3.31; P =.013) compared with patients with IMP3-negative tumors. CONCLUSIONS IMP3 is an independent prognostic biomarker that can be used to identify a subgroup of patients with localized papillary and chromophobe RCC who are at high risk for developing distant metastasis. PMID:18412154

  2. Nuclear Trafficking of the Rabies Virus Interferon Antagonist P-Protein Is Regulated by an Importin-Binding Nuclear Localization Sequence in the C-Terminal Domain.

    Directory of Open Access Journals (Sweden)

    Caitlin L Rowe

    Full Text Available Rabies virus P-protein is expressed as five isoforms (P1-P5 which undergo nucleocytoplasmic trafficking important to roles in immune evasion. Although nuclear import of P3 is known to be mediated by an importin (IMP-recognised nuclear localization sequence in the N-terminal region (N-NLS, the mechanisms underlying nuclear import of other P isoforms in which the N-NLS is inactive or has been deleted have remained unresolved. Based on the previous observation that mutation of basic residues K214/R260 of the P-protein C-terminal domain (P-CTD can result in nuclear exclusion of P3, we used live cell imaging, protein interaction analysis and in vitro nuclear transport assays to examine in detail the nuclear trafficking properties of this domain. We find that the effect of mutation of K214/R260 on P3 is largely dependent on nuclear export, suggesting that nuclear exclusion of mutated P3 involves the P-CTD-localized nuclear export sequence (C-NES. However, assays using cells in which nuclear export is pharmacologically inhibited indicate that these mutations significantly inhibit P3 nuclear accumulation and, importantly, prevent nuclear accumulation of P1, suggestive of effects on NLS-mediated import activity in these isoforms. Consistent with this, molecular binding and transport assays indicate that the P-CTD mediates IMPα2/IMPβ1-dependent nuclear import by conferring direct binding to the IMPα2/IMPβ1 heterodimer, as well as to a truncated form of IMPα2 lacking the IMPβ-binding autoinhibitory domain (ΔIBB-IMPα2, and IMPβ1 alone. These properties are all dependent on K214 and R260. This provides the first evidence that P-CTD contains a genuine IMP-binding NLS, and establishes the mechanism by which P-protein isoforms other than P3 can be imported to the nucleus. These data underpin a refined model for P-protein trafficking that involves the concerted action of multiple NESs and IMP-binding NLSs, and highlight the intricate regulation of P-protein

  3. Incorporation of a recombinant Eimeria maxima IMP1 antigen into nanoparticles confers protective immunity against E. maxima challenge infection

    Science.gov (United States)

    The purpose of this study was to determine if incorporating a recombinant Eimeria maxima protein, namely rEmaxIMP1, into gold nanoparticles (NP) could improve the level of protective immunity against E. maxima challenge infection. Recombinant EmaxIMP1 was expressed in Escherchia coli as a poly-His f...

  4. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    Science.gov (United States)

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-08-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.

  5. Characterization of a Chitin-Binding Protein from Bacillus thuringiensis HD-1.

    Directory of Open Access Journals (Sweden)

    Naresh Arora

    Full Text Available Strains of Bacillus thuringiensis produce insecticidal proteins. These strains have been isolated from diverse ecological niches, such as soil, phylloplane, insect cadavers and grain dust. To effectively propagate, these strains produce a range of molecules that facilitate its multiplication in a competing environment. In this report, we have examined synthesis of a chitin-binding protein and evaluated its effect on fungi encountered in environment and its interaction with insecticidal proteins synthesized by B. thuringiensis. The gene encoding chitin-binding protein has been cloned and expressed. The purified protein has been demonstrated to interact with Cry insecticidal protein, Cry1Ac by Circular Dichrosim spectroscopy (CD and in vitro pull down assays. The chitin-binding protein potentiates insecticidal activity of bacillar insecticidal protein, Cry1Ac. Further, chitin-binding protein was fungistatic against several soil fungi. The chitin binding protein is expressed in spore mother cell and deposited along with insecticidal protein, Cry1Ac. It interacts with Cry1Ac to potentiate its insecticidal activity and facilitate propagation of Bacillus strain in environment by inhibiting growth of certain fungi.

  6. The expression of selenium-binding protein 1 is decreased in uterine leiomyoma

    Directory of Open Access Journals (Sweden)

    Quddus M Ruhul

    2010-12-01

    Full Text Available Abstract Background Selenium has been shown to inhibit cancer development and growth through the mediation of selenium-binding proteins. Decreased expression of selenium-binding protein 1 has been reported in cancers of the prostate, stomach, colon, and lungs. No information, however, is available concerning the roles of selenium-binding protein 1 in uterine leiomyoma. Methods Using Western Blot analysis and immunohistochemistry, we examined the expression of selenium-binding protein 1 in uterine leiomyoma and normal myometrium in 20 patients who had undergone hysterectomy for uterine leiomyoma. Results and Discussion The patient age ranged from 34 to 58 years with a mean of 44.3 years. Proliferative endometrium was seen in 8 patients, secretory endometrium in 7 patients, and atrophic endometrium in 5 patients. Two patients showed solitary leiomyoma, and eighteen patients revealed 2 to 5 tumors. Tumor size ranged from 1 to 15.5 cm with a mean of 4.3 cm. Both Western Blot analysis and immunohistochemistry showed a significant lower level of selenium-binding protein 1 in leiomyoma than in normal myometrium. Larger tumors had a tendency to show a lower level of selenium-binding protein 1 than smaller ones, but the difference did not reach a statistical significance. The expression of selenium-binding protein 1 was the same among patients with proliferative, secretory, and atrophic endometrium in either leiomyoma or normal myometrium. Also, we did not find a difference of selenium-binding protein 1 level between patients younger than 45 years and older patients in either leiomyoma or normal myometrium. Conclusions Decreased expression of selenium-binding protein 1 in uterine leiomyoma may indicate a role of the protein in tumorigenesis. Our findings may provide a basis for future studies concerning the molecular mechanisms of selenium-binding protein 1 in tumorigenesis as well as the possible use of selenium in prevention and treatment of uterine

  7. Genome-wide identification, sequence characterization, and protein-protein interaction properties of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat family members in Solanum lycopersicum.

    Science.gov (United States)

    Zhu, Yunye; Huang, Shengxiong; Miao, Min; Tang, Xiaofeng; Yue, Junyang; Wang, Wenjie; Liu, Yongsheng

    2015-06-01

    One hundred DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family genes were identified in the S. lycopersicum genome. The DWD genes encode proteins presumably functioning as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. These findings provide candidate genes and a research platform for further gene functionality and molecular breeding study. A subclass of DDB1 (damaged DNA binding protein-1)-binding WD40-repeat domain (DWD) family proteins has been demonstrated to function as the substrate recognition subunits of the cullin4-ring ubiquitin E3 ligase complex. However, little information is available about the cognate subfamily genes in tomato (S. lycopersicum). In this study, based on the recently released tomato genome sequences, 100 tomato genes encoding DWD proteins that potentially interact with DDB1 were identified and characterized, including analyses of the detailed annotations, chromosome locations and compositions of conserved amino acid domains. In addition, a phylogenetic tree, which comprises of three main groups, of the subfamily genes was constructed. The physical interaction between tomato DDB1 and 14 representative DWD proteins was determined by yeast two-hybrid and co-immunoprecipitation assays. The subcellular localization of these 14 representative DWD proteins was determined. Six of them were localized in both nucleus and cytoplasm, seven proteins exclusively in cytoplasm, and one protein either in nucleus and cytoplasm, or exclusively in cytoplasm. Comparative genomic analysis demonstrated that the expansion of these subfamily members in tomato predominantly resulted from two whole-genome triplication events in the evolution history.

  8. Imp2 regulates GBM progression by activating IGF2/PI3K/Akt pathway.

    Science.gov (United States)

    Mu, Qingchun; Wang, Lijun; Yu, Fengbo; Gao, Haijun; Lei, Ting; Li, Peiwen; Liu, Pengfei; Zheng, Xu; Hu, Xitong; Chen, Yong; Jiang, Zhenfeng; Sayari, Arash J; Shen, Jia; Huang, Haiyan

    2015-01-01

    Glioblastomas multiforme (GBM) are the most frequently occurring malignant brain cancers. Treatment for GBM consists of surgical resection and subsequent adjuvant radiation therapy and chemotherapy. Despite this, GBM patient survival is limited to 12-15 months, and researchers are continually trying to develop improved therapy options. Insulin-like growth factor 2 mRNA-binding protein 2 (Imp2) is known to be upregulated in many cancers and is known to regulate the signaling activity of insulin-like growth factor 2 (IGF2). However, relatively little is known about its role in malignant development of GBM. In this study, we first found Imp2 is upregulated in GBM tissues by using clinical samples and public database search. Studies with loss and gain of Imp2 expression in in vitro GBM cell culture system demonstrated the role of Imp2 in promoting GBM cell proliferation, migration, invasion and epithelial-to-mesenchymal transition (EMT). Additionally, our results show that Imp2 regulates the activity of IGF2, which further activates PI3K/Akt signaling, thereby to promote GBM malignancy. Inhibition of Imp2 was also found to sensitize GBM to temozolomide treatment. These observations add to the current knowledge of GBM biology, and may prove useful in development of more effective GBM therapy.

  9. IMP metabolism in human skeletal muscle after exhaustive exercise

    DEFF Research Database (Denmark)

    Tullson, P. C.; Bangsbo, Jens; Hellsten, Ylva

    1995-01-01

    This study addressed whether AMP deaminase (AMPD)myosin binding occurs with deamination during intense exercise in humans and the extent of purine loss from muscle during the initial minutes of recovery. Male subjects performed cycle exercise (265 +/- 2 W for 4.39 +/- 0.04 min) to stimulate muscle...... inosine 5'-monophosphate (IMP) formation. After exercise, blood flow to one leg was occluded. Muscle biopsies (vastus lateralis) were taken before and 3.6 +/- 0.2 min after exercise from the occluded leg and 0.7 +/- 0.0, 1.1 +/- 0.0, and 2.9 +/- 0.1 min postexercise in the nonoccluded leg. Exercise...... activated AMPD; at exhaustion IMP was 3.5 +/- 0.4 mmol/kg dry muscle. Before exercise, 16.0 +/- 1.6% of AMPD cosedimented with the myosin fraction; the extent of AMPD:myosin binding was unchanged by exercise. Inosine content increased about threefold during exercise and twofold more during recovery; by 2...

  10. Insulin-like growth factor II messenger RNA-binding protein-3 is an independent prognostic factor in uterine leiomyosarcoma.

    Science.gov (United States)

    Yasutake, Nobuko; Ohishi, Yoshihiro; Taguchi, Kenichi; Hiraki, Yuka; Oya, Masafumi; Oshiro, Yumi; Mine, Mari; Iwasaki, Takeshi; Yamamoto, Hidetaka; Kohashi, Kenichi; Sonoda, Kenzo; Kato, Kiyoko; Oda, Yoshinao

    2018-04-01

    The aim of this study was to identify the prognostic factors of uterine leiomyosarcoma (ULMS). We reviewed 60 cases of surgically resected ULMSs and investigated conventional clinicopathological factors, together with the expression of insulin-like growth factor II messenger RNA-binding protein-3 (IMP3), hormone receptors and cell cycle regulatory markers by immunohistochemistry. Mediator complex subunit 12 (MED12) mutation analysis was also performed. Univariate analyses revealed that advanced stage (P < 0.0001), older age (P = 0.0244) and IMP3 expression (P = 0.0011) were significant predictors of a poor outcome. Multivariate analysis revealed advanced stage (P < 0.0001) and IMP3 (P = 0.0373) as independent predictors of a poor prognosis. Expressions of cell cycle markers and hormone receptors, and MED12 mutations (12% in ULMSs) were not identified as prognostic markers in this study. IMP3 expression in ULMS could be a marker of a poor prognosis. © 2017 John Wiley & Sons Ltd.

  11. Nuclear exportin receptor CAS regulates the NPI-1-mediated nuclear import of HIV-1 Vpr.

    Directory of Open Access Journals (Sweden)

    Eri Takeda

    Full Text Available Vpr, an accessory protein of human immunodeficiency virus type 1, is a multifunctional protein that plays an important role in viral replication. We have previously shown that the region between residues 17 and 74 of Vpr (Vpr(N17C74 contained a bona fide nuclear localization signal and it is targeted Vpr(N17C74 to the nuclear envelope and then imported into the nucleus by importin α (Impα alone. The interaction between Impα and Vpr is important not only for the nuclear import of Vpr but also for HIV-1 replication in macrophages; however, it was unclear whether full-length Vpr enters the nucleus in a manner similar to Vpr(N17C74. This study investigated the nuclear import of full-length Vpr using the three typical Impα isoforms, Rch1, Qip1 and NPI-1, and revealed that full-length Vpr is selectively imported by NPI-1, but not Rch1 and Qip1, after it makes contact with the perinuclear region in digitonin-permeabilized cells. A binding assay using the three Impα isoforms showed that Vpr bound preferentially to the ninth armadillo repeat (ARM region (which is also essential for the binding of CAS, the export receptor for Impα in all three isoforms. Comparison of biochemical binding affinities between Vpr and the Impα isoforms using surface plasmon resonance analysis demonstrated almost identical values for the binding of Vpr to the full-length isoforms and to their C-terminal domains. By contrast, the data showed that, in the presence of CAS, Vpr was released from the Vpr/NPI-1 complex but was not released from Rch1 or Qip1. Finally, the NPI-1-mediated nuclear import of Vpr was greatly reduced in semi-intact CAS knocked-down cells and was recovered by the addition of exogenous CAS. This report is the first to show the requirement for and the regulation of CAS in the functioning of the Vpr-Impα complex.

  12. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    OpenAIRE

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-01-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly ...

  13. Fusicoccin-Binding Proteins in Arabidopsis thaliana (L.) Heynh. 1

    Science.gov (United States)

    Meyer, Christiane; Feyerabend, Martin; Weiler, Elmar W.

    1989-01-01

    Using the novel radioligand, [3H]-9′-nor-fusicoccin-8′-alcohol, high affinity binding sites for fusicoccin were characterized in preparations from leaves of Arabidopsis thaliana (L.) Heynh. The binding site copartitioned with the plasmalemma marker, vanadate-sensitive K+, Mg2+-ATPase, when microsomal fractions were further purified by aqueous two-phase partitioning in polyethylene glycol-dextran phase systems and sedimented at an equilibrium density of 1.17 grams per cubic centimeter in continuous sucrose density gradients, as did the ATPase marker. The binding of [3H]-9′-nor-fusicoccin-8′-alcohol was saturable and Scatchard analysis revealed a biphasic plot with two apparent dissociation constants (KD), KD1 = 1.5 nanomolar and KD2 = 42 nanomolar, for the radioligand. Binding was optimal at pH 6, thermolabile, and was reduced by 70% when the membrane vesicles were pretreated with trypsin. The data are consistent with the presence of one or several binding proteins for fusicoccin at the plasma membrane of A. thaliana. Binding of the radioligand was unaffected by pretreatment of the sites with various alkylating and reducing agents, but was reduced by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, diethylpyrocarbonate, chloramine T, and periodate. A number of detergents were tested to find optimum conditions for solubilization. Nonanoyl-N-methylglucamide (50 millimolar) solubilized 70% of the radioligand-binding protein complex in undissociated form. Photoaffinity labeling of membrane preparations with a tritiated azido analog of fusicoccin resulted in the labeling of a 34 ± 1 kilodalton polypeptide. Labeling of this polypeptide, presumably the fusicoccin-binding protein, was severely reduced in the presence of unlabeled fusicoccin. PMID:16666603

  14. The spliceosome-associated protein Mfap1 binds to VCP in Drosophila.

    Directory of Open Access Journals (Sweden)

    Sandra Rode

    Full Text Available Posttranscriptional regulation of gene expression contributes to many developmental transitions. Previously, we found that the AAA chaperone Valosin-Containing Protein (VCP regulates ecdysone-dependent dendrite pruning of Drosophila class IV dendritic arborization (c4da neurons via an effect on RNA metabolism. In a search for RNA binding proteins associated with VCP, we identified the spliceosome-associated protein Mfap1, a component of the tri-snRNP complex. Mfap1 is a nucleolar protein in neurons and its levels are regulated by VCP. Mfap1 binds to VCP and TDP-43, a disease-associated RNA-binding protein. via distinct regions in its N- and C-terminal halfs. Similar to vcp mutations, Mfap1 overexpression causes c4da neuron dendrite pruning defects and mislocalization of TDP-43 in these cells, but genetic analyses show that Mfap1 is not a crucial VCP target during dendrite pruning. Finally, rescue experiments with a lethal mfap1 mutant show that the VCP binding region is not essential for Mfap1 function, but may act to increase its stability or activity.

  15. Leishmania replication protein A-1 binds in vivo single-stranded telomeric DNA

    International Nuclear Information System (INIS)

    Neto, J.L. Siqueira; Lira, C.B.B.; Giardini, M.A.; Khater, L.; Perez, A.M.; Peroni, L.A.; Reis, J.R.R. dos; Freitas-Junior, L.H.; Ramos, C.H.I.; Cano, M.I.N.

    2007-01-01

    Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 is a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres

  16. Protein phosphatase PPM1G regulates protein translation and cell growth by dephosphorylating 4E binding protein 1 (4E-BP1).

    Science.gov (United States)

    Liu, Jianyu; Stevens, Payton D; Eshleman, Nichole E; Gao, Tianyan

    2013-08-09

    Protein translation initiation is a tightly controlled process responding to nutrient availability and mitogen stimulation. Serving as one of the most important negative regulators of protein translation, 4E binding protein 1 (4E-BP1) binds to translation initiation factor 4E and inhibits cap-dependent translation in a phosphorylation-dependent manner. Although it has been demonstrated previously that the phosphorylation of 4E-BP1 is controlled by mammalian target of rapamycin in the mammalian target of rapamycin complex 1, the mechanism underlying the dephosphorylation of 4E-BP1 remains elusive. Here, we report the identification of PPM1G as the phosphatase of 4E-BP1. A coimmunoprecipitation experiment reveals that PPM1G binds to 4E-BP1 in cells and that purified PPM1G dephosphorylates 4E-BP1 in vitro. Knockdown of PPM1G in 293E and colon cancer HCT116 cells results in an increase in the phosphorylation of 4E-BP1 at both the Thr-37/46 and Ser-65 sites. Furthermore, the time course of 4E-BP1 dephosphorylation induced by amino acid starvation or mammalian target of rapamycin inhibition is slowed down significantly in PPM1G knockdown cells. Functionally, the amount of 4E-BP1 bound to the cap-dependent translation initiation complex is decreased when the expression of PPM1G is depleted. As a result, the rate of cap-dependent translation, cell size, and protein content are increased in PPM1G knockdown cells. Taken together, our study has identified protein phosphatase PPM1G as a novel regulator of cap-dependent protein translation by negatively controlling the phosphorylation of 4E-BP1.

  17. Activator Protein-1: redox switch controlling structure and DNA-binding

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J.; Rudenko, Gabby (Texas-MED); (Icahn)

    2017-09-07

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a ‘redox switch’ centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the ‘OFF’ state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins.

  18. Detection of bla-IMP-1 and bla-IMP-2 Genes Among Metallo-β-lactamase-Producing Pseudomonas Aeruginosa Isolated from Burn Patients in Isfahan

    Directory of Open Access Journals (Sweden)

    M. Pourbabaee

    2016-02-01

    Full Text Available Background: Pseudomonas aeruginosa is a nosocomial pathogen which especially causes infections among burn patients. Carbapenems are extensively used for the treatment of infections caused by multidrug-resistant P. aeruginosa isolates. The emergence of carbapenemases producing isolates is an outcome of increased utilization of carbapenems. The aim of this study was to determine the bla-IMP-1 and bla-IMP-2 genes in metallo-β-lactamase (MBL -producing Pseudomonas aeruginosa isolated from burn patients in Isfahan. Material and Methods: A total of 150 P. aeruginosa were isolated from burn patients hospitalized in Imam-Mousakazem hospital in Isfahan. Antimicrobial susceptibility was determined using disk diffusion method according to the Clinical and Laboratory Standards Institute (CLSI guidelines. Double Disk Synergy Test (DDST was carried out for screening of MBL production in imipenem-resistant strains. PCR assays were used for detection of bla-IMP-1 and bla-IMP-2 genes among metallo-β-lactamase-producing Pseudomonas aeruginosa isolates. The purified PCR products were sequenced. Results: Of 150 Pseudomonas aeruginosa isolates, %100 identified as multi-drug resistant strains. The most resistance rates were seen against ciprofloxacin, tobromycin, meropenem and imipenem. All of 144 imipenem-resistant Pseudomonas aeruginosa isolates were MBL producing by DDST test. Twenty-nine (19.3% and 8(5.3% MBL producing Pseudomonas aeruginosa isolates harbored bla-IMP-1 and bla-IMP-2 genes respectively. Conclusions: According to results of this study high level resistance to imipenem and MBl genes carriage was seen among Pseudomonas aeruginosa isolated from burn patient infections in our region.

  19. Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes

    Energy Technology Data Exchange (ETDEWEB)

    Dahms, Sven O., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Mayer, Magnus C. [Freie Universität Berlin, Thielallee 63, 14195 Berlin (Germany); Miltenyi Biotec GmbH, Robert-Koch-Strasse 1, 17166 Teterow (Germany); Roeser, Dirk [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Multhaup, Gerd [McGill University Montreal, Montreal, Quebec H3G 1Y6 (Canada); Than, Manuel E., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany)

    2015-03-01

    Two X-ray structures of APLP1 E2 with and without a heparin dodecasaccharide are presented, revealing two distinct binding modes of the protein to heparan sulfate. The data provide a mechanistic explanation of how APP-like proteins bind to heparan sulfates and how they specifically recognize nonreducing structures of heparan sulfates. Beyond the pathology of Alzheimer’s disease, the members of the amyloid precursor protein (APP) family are essential for neuronal development and cell homeostasis in mammals. APP and its paralogues APP-like protein 1 (APLP1) and APP-like protein 2 (APLP2) contain the highly conserved heparan sulfate (HS) binding domain E2, which effects various (patho)physiological functions. Here, two crystal structures of the E2 domain of APLP1 are presented in the apo form and in complex with a heparin dodecasaccharide at 2.5 Å resolution. The apo structure of APLP1 E2 revealed an unfolded and hence flexible N-terminal helix αA. The (APLP1 E2){sub 2}–(heparin){sub 2} complex structure revealed two distinct binding modes, with APLP1 E2 explicitly recognizing the heparin terminus but also interacting with a continuous heparin chain. The latter only requires a certain register of the sugar moieties that fits to a positively charged surface patch and contributes to the general heparin-binding capability of APP-family proteins. Terminal binding of APLP1 E2 to heparin specifically involves a structure of the nonreducing end that is very similar to heparanase-processed HS chains. These data reveal a conserved mechanism for the binding of APP-family proteins to HS and imply a specific regulatory role of HS modifications in the biology of APP and APP-like proteins.

  20. An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin

    International Nuclear Information System (INIS)

    Yin, Guangwen; Qin, Mei; Liu, Xianyong; Suo, Jingxia; Tang, Xinming; Tao, Geru; Han, Qian; Suo, Xun; Wu, Wenxue

    2013-01-01

    Highlights: •We found a new protective protein – (IMPI) in Eimeria tenella. •EtIMP1-flagellin fusion protein is an effective immunogen against Eimeria infection. •Flagellin can be as an apicomplexan parasite vaccine adjuvant in chickens. -- Abstract: Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (a truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund’s Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens

  1. An Eimeria vaccine candidate based on Eimeria tenella immune mapped protein 1 and the TLR-5 agonist Salmonella typhimurium FliC flagellin

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Guangwen; Qin, Mei [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Liu, Xianyong [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Suo, Jingxia; Tang, Xinming; Tao, Geru [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Han, Qian [Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061 (United States); Suo, Xun [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Wu, Wenxue, E-mail: labboard@126.com [National Animal Protozoa Laboratory and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China); Key Laboratory of Zoonosis, China Ministry of Agriculture and College of Veterinary Medicine, China Agricultural University, Beijing 100193 (China)

    2013-10-25

    Highlights: •We found a new protective protein – (IMPI) in Eimeria tenella. •EtIMP1-flagellin fusion protein is an effective immunogen against Eimeria infection. •Flagellin can be as an apicomplexan parasite vaccine adjuvant in chickens. -- Abstract: Immune mapped protein-1 (IMP1) is a new protective protein in apicomplexan parasites, and exits in Eimeria tenella. But its structure and immunogenicity in E. tenella are still unknown. In this study, IMPI in E. tenella was predicted to be a membrane protein. To evaluate immunogenicity of IMPI in E. tenella, a chimeric subunit vaccine consisting of E. tenella IMP1 (EtIMP1) and a molecular adjuvant (a truncated flagellin, FliC) was constructed and over-expressed in Escherichia coli and its efficacy against E. tenella infection was evaluated. Three-week-old AA broiler chickens were vaccinated with the recombinant EtIMP1-truncated FliC without adjuvant or EtIMP1 with Freund’s Complete Adjuvant. Immunization of chickens with the recombinant EtIMP1-truncated FliC fusion protein resulted in stronger cellular immune responses than immunization with only recombinant EtIMP1 with adjuvant. The clinical effect of the EtIMP1-truncated FliC without adjuvant was also greater than that of the EtIMP1 with adjuvant, which was evidenced by the differences between the two groups in body weight gain, oocyst output and caecal lesions of E. tenella-challenged chickens. The results suggested that the EtIMP1-flagellin fusion protein can be used as an effective immunogen in the development of subunit vaccines against Eimeria infection. This is the first demonstration of antigen-specific protective immunity against avian coccidiosis using a recombinant flagellin as an apicomplexan parasite vaccine adjuvant in chickens.

  2. Ligand Binding Induces Conformational Changes in Human Cellular Retinol-binding Protein 1 (CRBP1) Revealed by Atomic Resolution Crystal Structures.

    Science.gov (United States)

    Silvaroli, Josie A; Arne, Jason M; Chelstowska, Sylwia; Kiser, Philip D; Banerjee, Surajit; Golczak, Marcin

    2016-04-15

    Important in regulating the uptake, storage, and metabolism of retinoids, cellular retinol-binding protein 1 (CRBP1) is essential for trafficking vitamin A through the cytoplasm. However, the molecular details of ligand uptake and targeted release by CRBP1 remain unclear. Here we report the first structure of CRBP1 in a ligand-free form as well as ultra-high resolution structures of this protein bound to either all-trans-retinol or retinylamine, the latter a therapeutic retinoid that prevents light-induced retinal degeneration. Superpositioning of human apo- and holo-CRBP1 revealed major differences within segments surrounding the entrance to the retinoid-binding site. These included α-helix II and hairpin turns between β-strands βC-βD and βE-βF as well as several side chains, such as Phe-57, Tyr-60, and Ile-77, that change their orientations to accommodate the ligand. Additionally, we mapped hydrogen bond networks inside the retinoid-binding cavity and demonstrated their significance for the ligand affinity. Analyses of the crystallographic B-factors indicated several regions with higher backbone mobility in the apoprotein that became more rigid upon retinoid binding. This conformational flexibility of human apo-CRBP1 facilitates interaction with the ligands, whereas the more rigid holoprotein structure protects the labile retinoid moiety during vitamin A transport. These findings suggest a mechanism of induced fit upon ligand binding by mammalian cellular retinol-binding proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Nucleic acid-binding properties of the RRM-containing protein RDM1

    International Nuclear Information System (INIS)

    Hamimes, Samia; Bourgeon, Dominique; Stasiak, Alicja Z.; Stasiak, Andrzej; Van Dyck, Eric

    2006-01-01

    RDM1 (RAD52 Motif 1) is a vertebrate protein involved in the cellular response to the anti-cancer drug cisplatin. In addition to an RNA recognition motif, RDM1 contains a small amino acid motif, named RD motif, which it shares with the recombination and repair protein, RAD52. RDM1 binds to single- and double-stranded DNA, and recognizes DNA distortions induced by cisplatin adducts in vitro. Here, we have performed an in-depth analysis of the nucleic acid-binding properties of RDM1 using gel-shift assays and electron microscopy. We show that RDM1 possesses acidic pH-dependent DNA-binding activity and that it binds RNA as well as DNA, and we present evidence from competition gel-shift experiments that RDM1 may be capable of discrimination between the two nucleic acids. Based on reported studies of RAD52, we have generated an RDM1 variant mutated in its RD motif. We find that the L 119 GF → AAA mutation affects the mode of RDM1 binding to single-stranded DNA

  4. Deleted in malignant brain tumors-1 protein (DMBT1): a pattern recognition receptor with multiple binding sites.

    Science.gov (United States)

    Ligtenberg, Antoon J M; Karlsson, Niclas G; Veerman, Enno C I

    2010-01-01

    Deleted in Malignant Brain Tumors-1 protein (DMBT1), salivary agglutinin (DMBT1(SAG)), and lung glycoprotein-340 (DMBT1(GP340)) are three names for glycoproteins encoded by the same DMBT1 gene. All these proteins belong to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins: a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. In addition to SRCR domains, all DMBT1s contain two CUB domains and one zona pellucida domain. The SRCR domains play a role in the function of DMBT1s, which is the binding of a broad range of pathogens including cariogenic streptococci, Helicobacter pylori and HIV. Mucosal defense proteins like IgA, surfactant proteins and lactoferrin also bind to DMBT1s through their SRCR domains. The binding motif on the SRCR domains comprises an 11-mer peptide in which a few amino acids are essential for binding (GRVEVLYRGSW). Adjacent to each individual SRCR domain are glycosylation domains, where the attached carbohydrate chains play a role in the binding of influenza A virus and Helicobacter pylori. The composition of the carbohydrate chains is not only donor specific, but also varies between different organs. These data demonstrate a role for DMBT1s as pattern recognition molecules containing various peptide and carbohydrate binding motifs.

  5. Deleted in Malignant Brain Tumors-1 Protein (DMBT1: A Pattern Recognition Receptor with Multiple Binding Sites

    Directory of Open Access Journals (Sweden)

    Enno C. I. Veerman

    2010-12-01

    Full Text Available Deleted in Malignant Brain Tumors-1 protein (DMBT1, salivary agglutinin (DMBT1SAG, and lung glycoprotein-340 (DMBT1GP340 are three names for glycoproteins encoded by the same DMBT1 gene. All these proteins belong to the scavenger receptor cysteine-rich (SRCR superfamily of proteins: a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. In addition to SRCR domains, all DMBT1s contain two CUB domains and one zona pellucida domain. The SRCR domains play a role in the function of DMBT1s, which is the binding of a broad range of pathogens including cariogenic streptococci, Helicobacter pylori and HIV. Mucosal defense proteins like IgA, surfactant proteins and lactoferrin also bind to DMBT1s through their SRCR domains. The binding motif on the SRCR domains comprises an 11-mer peptide in which a few amino acids are essential for binding (GRVEVLYRGSW. Adjacent to each individual SRCR domain are glycosylation domains, where the attached carbohydrate chains play a role in the binding of influenza A virus and Helicobacter pylori. The composition of the carbohydrate chains is not only donor specific, but also varies between different organs. These data demonstrate a role for DMBT1s as pattern recognition molecules containing various peptide and carbohydrate binding motifs.

  6. Activator Protein-1: redox switch controlling structure and DNA-binding.

    Science.gov (United States)

    Yin, Zhou; Machius, Mischa; Nestler, Eric J; Rudenko, Gabby

    2017-11-02

    The transcription factor, activator protein-1 (AP-1), binds to cognate DNA under redox control; yet, the underlying mechanism has remained enigmatic. A series of crystal structures of the AP-1 FosB/JunD bZIP domains reveal ordered DNA-binding regions in both FosB and JunD even in absence DNA. However, while JunD is competent to bind DNA, the FosB bZIP domain must undergo a large conformational rearrangement that is controlled by a 'redox switch' centered on an inter-molecular disulfide bond. Solution studies confirm that FosB/JunD cannot undergo structural transition and bind DNA when the redox-switch is in the 'OFF' state, and show that the mid-point redox potential of the redox switch affords it sensitivity to cellular redox homeostasis. The molecular and structural studies presented here thus reveal the mechanism underlying redox-regulation of AP-1 Fos/Jun transcription factors and provide structural insight for therapeutic interventions targeting AP-1 proteins. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Global Molecular Epidemiology of IMP-Producing Enterobacteriaceae.

    Science.gov (United States)

    Matsumura, Yasufumi; Peirano, Gisele; Motyl, Mary R; Adams, Mark D; Chen, Liang; Kreiswirth, Barry; DeVinney, Rebekah; Pitout, Johann D D

    2017-04-01

    International data on the molecular epidemiology of Enterobacteriaceae with IMP carbapenemases are lacking. We performed short-read (Illumina) whole-genome sequencing on a global collection of 38 IMP-producing clinical Enterobacteriaceae (2008 to 2014). IMP-producing Enterobacteriaceae (7 varieties within 11 class 1 integrons) were mainly present in the South Pacific and Asia. Specific bla IMP -containing integrons (In809 with bla IMP-4 , In722 with bla IMP-6 , and In687 with bla IMP-14 ) were circulating among different bacteria in countries such as Australia, Japan, and Thailand. In1312 with bla IMP-1 was present in Klebsiella pneumoniae from Japan and Citrobacter freundii from Brazil. Klebsiella pneumoniae ( n = 22) was the most common species; clonal complex 14 (CC14) from Philippines and Japan was the most common clone and contained In1310 with bla IMP-26 and In1321 with bla IMP-6 The Enterobacter cloacae complex ( n = 9) consisted of Enterobacter hormaechei and E. cloacae cluster III. CC78 (from Taiwan) containing In73 with bla IMP-8 was the most common clone among the E. cloacae complex. This study highlights the importance of surveillance programs using the latest molecular techniques for providing insight into the characteristics and global distribution of Enterobacteriaceae with bla IMP genes. Copyright © 2017 American Society for Microbiology.

  8. Analysis of the PDZ binding specificities of Influenza A Virus NS1 proteins

    Directory of Open Access Journals (Sweden)

    Nagasaka Kazunori

    2011-01-01

    Full Text Available Abstract The Influenza A virus non-structural protein 1 (NS1 is a multifunctional virulence factor with several protein-protein interaction domains, involved in preventing apoptosis of the infected cell and in evading the interferon response. In addition, the majority of influenza A virus NS1 proteins have a class I PDZ-binding motif at the C-terminus, and this itself has been shown to be a virulence determinant. In the majority of human influenza NS1 proteins the consensus motif is RSxV: in avian NS1 it is ESxV. Of the few human strains that have the avian motif, all were from very high mortality outbreaks of the disease. Previous work has shown that minor differences in PDZ-binding motifs can have major effects on the spectrum of cellular proteins targeted. In this study we analyse the effect of these differences upon the binding of Influenza A virus NS1 protein to a range of cellular proteins involved in polarity and signal transduction.

  9. Arabidopsis dynamin-related protein 1A polymers bind, but do not tubulate, liposomes

    International Nuclear Information System (INIS)

    Backues, Steven K.; Bednarek, Sebastian Y.

    2010-01-01

    The Arabidopsis dynamin-related protein 1A (AtDRP1A) is involved in endocytosis and cell plate maturation in Arabidopsis. Unlike dynamin, AtDRP1A does not have any recognized membrane binding or protein-protein interaction domains. We report that GTPase active AtDRP1A purified from Escherichia coli as a fusion to maltose binding protein forms homopolymers visible by negative staining electron microscopy. These polymers interact with protein-free liposomes whose lipid composition mimics that of the inner leaflet of the Arabidopsis plasma membrane, suggesting that lipid-binding may play a role in AtDRP1A function. However, AtDRP1A polymers do not appear to assemble and disassemble in a dynamic fashion and do not have the ability to tubulate liposomes in vitro, suggesting that additional factors or modifications are necessary for AtDRP1A's in vivo function.

  10. Lead-Binding Proteins: A Review

    Directory of Open Access Journals (Sweden)

    Harvey C. Gonick

    2011-01-01

    Full Text Available Lead-binding proteins are a series of low molecular weight proteins, analogous to metallothionein, which segregate lead in a nontoxic form in several organs (kidney, brain, lung, liver, erythrocyte. Whether the lead-binding proteins in every organ are identical or different remains to be determined. In the erythrocyte, delta-aminolevulinic acid dehydratase (ALAD isoforms have commanded the greatest attention as proteins and enzymes that are both inhibitable and inducible by lead. ALAD-2, although it binds lead to a greater degree than ALAD-1, appears to bind lead in a less toxic form. What may be of greater significance is that a low molecular weight lead-binding protein, approximately 10 kDa, appears in the erythrocyte once blood lead exceeds 39 μg/dL and eventually surpasses the lead-binding capacity of ALAD. In brain and kidney of environmentally exposed humans and animals, a cytoplasmic lead-binding protein has been identified as thymosin β4, a 5 kDa protein. In kidney, but not brain, another lead-binding protein has been identified as acyl-CoA binding protein, a 9 kDa protein. Each of these proteins, when coincubated with liver ALAD and titrated with lead, diminishes the inhibition of ALAD by lead, verifying their ability to segregate lead in a nontoxic form.

  11. An Agent-Based Model for Zip-Code Level Diffusion of Electric Vehicles and Electricity Consumption in New York City

    Directory of Open Access Journals (Sweden)

    Azadeh Ahkamiraad

    2018-03-01

    Full Text Available Current power grids in many countries are not fully prepared for high electric vehicle (EV penetration, and there is evidence that the construction of additional grid capacity is constantly outpaced by EV diffusion. If this situation continues, then it will compromise grid reliability and cause problems such as system overload, voltage and frequency fluctuations, and power losses. This is especially true for densely populated areas where the grid capacity is already strained with existing old infrastructure. The objective of this research is to identify the zip-code level electricity consumption that is associated with large-scale EV adoption in New York City, one of the most densely populated areas in the United States (U.S.. We fuse the Fisher and Pry diffusion model and Rogers model within the agent-based simulation to forecast zip-code level EV diffusion and the required energy capacity to satisfy the charging demand. The research outcomes will assist policy makers and grid operators in making better planning decisions on the locations and timing of investments during the transition to smarter grids and greener transportation.

  12. The Structure of the Iron Binding Protein, FutA1, from Synechocystis 6803*

    International Nuclear Information System (INIS)

    Koropatkin, Nicole; Randich, Amelia M.; Bhattacharyya-Pakrasi, Maitrayee; Pakrasi, Himadri B.; Smith, Thomas J.

    2007-01-01

    Cyanobacteria account for a significant percentage of aquatic primary productivity even in areas where the concentrations of essential micronutrients are extremely low. To better understand the mechanism of iron selectivity and transport, the structure of the solute-binding domain of an ABC iron transporter, FutA1, was determined in the presence and absence of iron. The iron ion is bound within the 'C-clamp' structure via four tyrosine and one histidine residues. There are extensive interactions between these ligating residues and the rest of the protein such that the conformations of the side chains remain relatively unchanged as the iron is released by the opening of the metal binding cleft. This is in stark contrast to the zinc binding protein, ZnuA, where the domains of the metal binding protein remain relatively fixed while the ligating residues rotate out of the binding pocket upon metal release. The rotation of the domains in FutA1 is facilitated by two flexible β-strands running along the back of the protein that act like a hinge during domain motion. This motion may require relatively little energy since total contact area between the domains is the same whether the protein is in the open or closed conformation. Consistent with the pH dependency of iron binding, the main trigger for iron release is likely the histidine in the iron-binding site. Finally, neither FutA1 nor FutA2 binds iron as a siderophore complex or in the presence of anions and both preferentially bind ferrous over ferric ions

  13. Specific T-cell recognition of the merozoite proteins rhoptry-associated protein 1 and erythrocyte-binding antigen 1 of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jakobsen, P H; Hviid, L; Theander, T G

    1993-01-01

    The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living i...... by individuals living in an area with a high transmission rate of malaria. Most of the donor plasma samples tested contained immunoglobulin G (IgG) and IgM antibodies recognizing the merozoite proteins, while only a minority showed high IgG reactivity to the synthetic peptides.......The merozoite proteins merozoite surface protein 1 (MSP-1) and rhoptry-associated protein 1 (RAP-1) and synthetic peptides containing sequences of MSP-1, RAP-1, and erythrocyte-binding antigen 1, induced in vitro proliferative responses of lymphocytes collected from Ghanaian blood donors living...

  14. TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein

    NARCIS (Netherlands)

    Hateboer, G.; Timmers, H.T.M.; Rustgi, A.K.; Billaud, Marc; Veer, L.J. Van 't; Bernards, R.A.

    1993-01-01

    Using a protein binding assay, we show that the amino-teminal 204 amino acids of the c-Myc protein interact di y with a key component of the basal p tdon factor TFID, the TATA box-binding protein (TBP). Essentialy the same region of the c-Myc protein alo binds the product of the retinoblatoma

  15. Detection of VIM-2-, IMP-1- and NDM-1-producing multidrug resistant Pseudomonas aeruginosa in Malaysia.

    Science.gov (United States)

    Liew, Siew Mun; Rajasekaram, Ganeswrei; Puthucheary, Savithri D; Chua, Kek Heng

    2018-02-09

    The increasing incidence of carbapenem-resistant Pseudomonas aeruginosa along with the discovery of novel metallo-β-lactamases (MBLs) is of concern. In this study, the isolation of Malaysian MBL-producing P. aeruginosa clinical strains was investigated. Fifty-three P. aeruginosa clinical strains were isolated from different patients in Sultanah Aminah Hospital, Johor Bahru, Malaysia in 2015. Antimicrobial susceptibility test was conducted. Minimum inhibitory concentrations (MICs) of imipenem and meropenem were determined by Etest. The carbapenem-resistant strains were screened for MBL production by IMP-EDTA double disk synergy test (DDST), MBL imipenem/imipenem-inhibitor (IP/IPI) Etest and polymerase chain reaction (PCR). Genotyping was performed by multilocus sequence typing (MLST) analysis. Three (5.7%) clinical strains were identified as MBL producers. Multidrug resistance was observed in the three strains, and two were resistant to all the antimicrobials tested. Sequencing analysis confirmed the three strains to harbour carbapenemase genes: one with bla IMP-1 , one with bla VIM-2 and the other with bla NDM-1 genes. These multidrug resistant strains were identified as sequence type (ST) 235 and ST308. None of the bla IMP-1 and bla NDM-1 genes have been reported in Malaysian P. aeruginosa. The emergence of imipenemase 1 (IMP-1)- and New Delhi metallo-β-lactamase 1 (NDM-1)-producing P. aeruginosa in Malaysia maybe travel-associated. Copyright © 2018. Published by Elsevier Ltd.

  16. Radiation damage to DNA-binding proteins

    International Nuclear Information System (INIS)

    Culard, G.; Eon, S.; DeVuyst, G.; Charlier, M.; Spotheim-Maurizot, M.

    2003-01-01

    The DNA-binding properties of proteins are strongly affected upon irradiation. The tetrameric lactose repressor (a dimer of dimers) losses its ability to bind operator DNA as soon as at least two damages per protomer of each dimer occur. The monomeric MC1 protein losses its ability to bind DNA in two steps : i) at low doses only the specific binding is abolished, whereas the non-specific one is still possible; ii) at high doses all binding vanishes. Moreover, the DNA bending induced by MC1 binding is less pronounced for a protein that underwent the low dose irradiation. When the entire DNA-protein complexes are irradiated, the observed disruption of the complexes is mainly due to the damage of the proteins and not to that of DNA. The doses necessary for complex disruption are higher than those inactivating the free protein. This difference, larger for MC1 than for lactose repressor, is due to the protection of the protein by the bound DNA. The oxidation of the protein side chains that are accessible to the radiation-induced hydroxyl radicals seems to represent the inactivating damage

  17. Impétigo ampolloso

    OpenAIRE

    Alma Delfina Pérez-De la O; María Teresa García Romero

    2017-01-01

    El impétigo es la enfermedad infecto-contagiosa más común en la piel.1 Existen dos tipos: no ampolloso, que es el más frecuente, y ampolloso. Es causado principalmente por Streptococcus pyogenes (Streptococcus β-hemolítico del grupo A) y Staphylococcus aureus. El impétigo no ampolloso es producido principalmente por S. pyogenes y se caracteriza por vesículas pequeñas que rápidamente se rompen y originan un exudado que al secarse forma costras melicéricas. El impétigo ampolloso siempre es caus...

  18. Ligand binding turns moth pheromone-binding protein into a pH sensor: effect on the Antheraea polyphemus PBP1 conformation.

    Science.gov (United States)

    Katre, Uma V; Mazumder, Suman; Prusti, Rabi K; Mohanty, Smita

    2009-11-13

    In moths, pheromone-binding proteins (PBPs) are responsible for the transport of the hydrophobic pheromones to the membrane-bound receptors across the aqueous sensillar lymph. We report here that recombinant Antheraea polyphemus PBP1 (ApolPBP1) picks up hydrophobic molecule(s) endogenous to the Escherichia coli expression host that keeps the protein in the "open" (bound) conformation at high pH but switches to the "closed" (free) conformation at low pH. This finding has bearing on the solution structures of undelipidated lepidopteran moth PBPs determined thus far. Picking up a hydrophobic molecule from the host expression system could be a common feature for lipid-binding proteins. Thus, delipidation is critical for bacterially expressed lipid-binding proteins. We have shown for the first time that the delipidated ApolPBP1 exists primarily in the closed form at all pH levels. Thus, current views on the pH-induced conformational switch of PBPs hold true only for the ligand-bound open conformation of the protein. Binding of various ligands to delipidated ApolPBP1 studied by solution NMR revealed that the protein in the closed conformation switches to the open conformation only at or above pH 6.0 with a protein to ligand stoichiometry of approximately 1:1. Mutation of His(70) and His(95) to alanine drives the equilibrium toward the open conformation even at low pH for the ligand-bound protein by eliminating the histidine-dependent pH-induced conformational switch. Thus, the delipidated double mutant can bind ligand even at low pH in contrast to the wild type protein as revealed by fluorescence competitive displacement assay using 1-aminoanthracene and solution NMR.

  19. Structural and binding studies of SAP-1 protein with heparin.

    Science.gov (United States)

    Yadav, Vikash K; Mandal, Rahul S; Puniya, Bhanwar L; Kumar, Rahul; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2015-03-01

    SAP-1 is a low molecular weight cysteine protease inhibitor (CPI) which belongs to type-2 cystatins family. SAP-1 protein purified from human seminal plasma (HuSP) has been shown to inhibit cysteine and serine proteases and exhibit interesting biological properties, including high temperature and pH stability. Heparin is a naturally occurring glycosaminoglycan (with varied chain length) which interacts with a number of proteins and regulates multiple steps in different biological processes. As an anticoagulant, heparin enhances inhibition of thrombin by the serpin antithrombin III. Therefore, we have employed surface plasmon resonance (SPR) to improve our understanding of the binding interaction between heparin and SAP-1 (protease inhibitor). SPR data suggest that SAP-1 binds to heparin with a significant affinity (KD = 158 nm). SPR solution competition studies using heparin oligosaccharides showed that the binding of SAP-1 to heparin is dependent on chain length. Large oligosaccharides show strong binding affinity for SAP-1. Further to get insight into the structural aspect of interactions between SAP-1 and heparin, we used modelled structure of the SAP-1 and docked with heparin and heparin-derived polysaccharides. The results suggest that a positively charged residue lysine plays important role in these interactions. Such information should improve our understanding of how heparin, present in the reproductive tract, regulates cystatins activity. © 2014 John Wiley & Sons A/S.

  20. mTOR complex 2 phosphorylates IMP1 cotranslationally to promote IGF2 production and the proliferation of mouse embryonic fibroblasts

    DEFF Research Database (Denmark)

    Dai, Ning; Christiansen, Jan; Nielsen, Finn

    2013-01-01

    uncover a new mechanism by which mTOR regulates organismal growth by promoting IGF2 production in the mouse embryo through mTORC2-catalyzed cotranslational IMP1/IMP3 phosphorylation. Inasmuch as TORC2 is activated by association with ribosomes, the present results indicate that mTORC2-catalyzed...... production, and diminished proliferation. The proliferation of the IMP1-null fibroblasts can be restored to wild-type levels by IGF2 in vitro or by re-expression of IMP1, which corrects the defects in IGF2 RNA splicing and translation. The ability of IMP1 to correct these defects is dependent on IMP1...

  1. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  2. The 10 kDa domain of human erythrocyte protein 4.1 binds the Plasmodium falciparum EBA-181 protein

    Directory of Open Access Journals (Sweden)

    Coetzer Theresa L

    2006-11-01

    Full Text Available Abstract Background Erythrocyte invasion by Plasmodium falciparum parasites represents a key mechanism during malaria pathogenesis. Erythrocyte binding antigen-181 (EBA-181 is an important invasion protein, which mediates a unique host cell entry pathway. A novel interaction between EBA-181 and human erythrocyte membrane protein 4.1 (4.1R was recently demonstrated using phage display technology. In the current study, recombinant proteins were utilized to define and characterize the precise molecular interaction between the two proteins. Methods 4.1R structural domains (30, 16, 10 and 22 kDa domain and the 4.1R binding region in EBA-181 were synthesized in specific Escherichia coli strains as recombinant proteins and purified using magnetic bead technology. Recombinant proteins were subsequently used in blot-overlay and histidine pull-down assays to determine the binding domain in 4.1R. Results Blot overlay and histidine pull-down experiments revealed specific interaction between the 10 kDa domain of 4.1R and EBA-181. Binding was concentration dependent as well as saturable and was abolished by heat denaturation of 4.1R. Conclusion The interaction of EBA-181 with the highly conserved 10 kDa domain of 4.1R provides new insight into the molecular mechanisms utilized by P. falciparum during erythrocyte entry. The results highlight the potential multifunctional role of malaria invasion proteins, which may contribute to the success of the pathogenic stage of the parasite's life cycle.

  3. Identification of carbohydrate-binding domains in the attachment proteins of type 1 and type 3 reoviruses.

    Science.gov (United States)

    Chappell, J D; Duong, J L; Wright, B W; Dermody, T S

    2000-09-01

    The reovirus attachment protein, sigma1, is responsible for strain-specific patterns of viral tropism in the murine central nervous system and receptor binding on cultured cells. The sigma1 protein consists of a fibrous tail domain proximal to the virion surface and a virion-distal globular head domain. To better understand mechanisms of reovirus attachment to cells, we conducted studies to identify the region of sigma1 that binds cell surface carbohydrate. Chimeric and truncated sigma1 proteins derived from prototype reovirus strains type 1 Lang (T1L) and type 3 Dearing (T3D) were expressed in insect cells by using a baculovirus vector. Assessment of expressed protein susceptibility to proteolytic cleavage, binding to anti-sigma1 antibodies, and oligomerization indicates that the chimeric and truncated sigma1 proteins are properly folded. To assess carbohydrate binding, recombinant sigma1 proteins were tested for the capacity to agglutinate mammalian erythrocytes and to bind sialic acid presented on glycophorin, the cell surface molecule bound by type 3 reovirus on human erythrocytes. Using a panel of two wild-type and ten chimeric and truncated sigma1 proteins, the sialic acid-binding domain of type 3 sigma1 was mapped to a region of sequence proposed to form the more amino terminal of two predicted beta-sheet structures in the tail. This unit corresponds to morphologic region T(iii) observed in computer-processed electron micrographs of sigma1 protein purified from virions. In contrast, the homologous region of T1L sigma1 sequence was not implicated in carbohydrate binding; rather, sequences in the distal portion of the tail known as the neck were required. Results of these studies demonstrate that a functional receptor-binding domain, which uses sialic acid as its ligand, is contained within morphologic region T(iii) of the type 3 sigma1 tail. Furthermore, our findings indicate that T1L and T3D sigma1 proteins contain different arrangements of receptor-binding

  4. Oxysterol-Binding Protein-Related Protein 1L Regulates Cholesterol Egress from the Endo-Lysosomal System

    Directory of Open Access Journals (Sweden)

    Kexin Zhao

    2017-05-01

    Full Text Available Lipoprotein cholesterol is delivered to the limiting membrane of late endosomes/lysosomes (LELs by Niemann-Pick C1 (NPC1. However, the mechanism of cholesterol transport from LELs to the endoplasmic reticulum (ER is poorly characterized. We report that oxysterol-binding protein-related protein 1L (ORP1L is necessary for this stage of cholesterol export. CRISPR-mediated knockout of ORP1L in HeLa and HEK293 cells reduced esterification of cholesterol to the level in NPC1 knockout cells, and it increased the expression of sterol-regulated genes and de novo cholesterol synthesis, indicative of a block in cholesterol transport to the ER. In the absence of this transport pathway, cholesterol-enriched LELs accumulated in the Golgi/perinuclear region. Cholesterol delivery to the ER required the sterol-, phosphatidylinositol 4-phosphate-, and vesicle-associated membrane protein-associated protein (VAP-binding activities of ORP1L, as well as NPC1 expression. These results suggest that ORP1L-dependent membrane contacts between LELs and the ER coordinate cholesterol transfer with the retrograde movement of endo-lysosomal vesicles.

  5. Calcium binding properties of calcium dependent protein kinase 1 (CaCDPK1) from Cicer arietinum.

    Science.gov (United States)

    Dixit, Ajay Kumar; Jayabaskaran, Chelliah

    2015-05-01

    Calcium plays a crucial role as a secondary messenger in all aspects of plant growth, development and survival. Calcium dependent protein kinases (CDPKs) are the major calcium decoders, which couple the changes in calcium level to an appropriate physiological response. The mechanism by which calcium regulates CDPK protein is not well understood. In this study, we investigated the interactions of Ca(2+) ions with the CDPK1 isoform of Cicer arietinum (CaCDPK1) using a combination of biophysical tools. CaCDPK1 has four different EF hands as predicted by protein sequence analysis. The fluorescence emission spectrum of CaCDPK1 showed quenching with a 5 nm red shift upon addition of calcium, indicating conformational changes in the tertiary structure. The plot of changes in intensity against calcium concentrations showed a biphasic curve with binding constants of 1.29 μM and 120 μM indicating two kinds of binding sites. Isothermal calorimetric (ITC) titration with CaCl2 also showed a biphasic curve with two binding constants of 0.027 μM and 1.7 μM. Circular dichroism (CD) spectra showed two prominent peaks at 208 and 222 nm indicating that CaCDPK1 is a α-helical rich protein. Calcium binding further increased the α-helical content of CaCDPK1 from 75 to 81%. Addition of calcium to CaCDPK1 also increased fluorescence of 8-anilinonaphthalene-1-sulfonic acid (ANS) indicating exposure of hydrophobic surfaces. Thus, on the whole this study provides evidence for calcium induced conformational changes, exposure of hydrophobic surfaces and heterogeneity of EF hands in CaCDPK1. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Binding of the Inhibitor Protein IF1 to Bovine F1-ATPase

    Science.gov (United States)

    Bason, John V.; Runswick, Michael J.; Fearnley, Ian M.; Walker, John E.

    2011-01-01

    In the structure of bovine F1-ATPase inhibited with residues 1–60 of the bovine inhibitor protein IF1, the α-helical inhibitor interacts with five of the nine subunits of F1-ATPase. In order to understand the contributions of individual amino acid residues to this complex binding mode, N-terminal deletions and point mutations have been introduced, and the binding properties of each mutant inhibitor protein have been examined. The N-terminal region of IF1 destabilizes the interaction of the inhibitor with F1-ATPase and may assist in removing the inhibitor from its binding site when F1Fo-ATPase is making ATP. Binding energy is provided by hydrophobic interactions between residues in the long α-helix of IF1 and the C-terminal domains of the βDP-subunit and βTP-subunit and a salt bridge between residue E30 in the inhibitor and residue R408 in the C-terminal domain of the βDP-subunit. Several conserved charged amino acids in the long α-helix of IF1 are also required for establishing inhibitory activity, but in the final inhibited state, they are not in contact with F1-ATPase and occupy aqueous cavities in F1-ATPase. They probably participate in the pathway from the initial interaction of the inhibitor and the enzyme to the final inhibited complex observed in the structure, in which two molecules of ATP are hydrolysed and the rotor of the enzyme turns through two 120° steps. These findings contribute to the fundamental understanding of how the inhibitor functions and to the design of new inhibitors for the systematic analysis of the catalytic cycle of the enzyme. PMID:21192948

  7. Recent insights into the biological functions of liver fatty acid binding protein 1

    Science.gov (United States)

    Wang, GuQi; Bonkovsky, Herbert L.; de Lemos, Andrew; Burczynski, Frank J.

    2015-01-01

    Over four decades have passed since liver fatty acid binding protein (FABP)1 was first isolated. There are few protein families for which most of the complete tertiary structures, binding properties, and tissue occurrences are described in such detail and yet new functions are being uncovered for this protein. FABP1 is known to be critical for fatty acid uptake and intracellular transport and also has an important role in regulating lipid metabolism and cellular signaling pathways. FABP1 is an important endogenous cytoprotectant, minimizing hepatocyte oxidative damage and interfering with ischemia-reperfusion and other hepatic injuries. The protein may be targeted for metabolic activation through the cross-talk among many transcriptional factors and their activating ligands. Deficiency or malfunction of FABP1 has been reported in several diseases. FABP1 also influences cell proliferation during liver regeneration and may be considered as a prognostic factor for hepatic surgery. FABP1 binds and modulates the action of many molecules such as fatty acids, heme, and other metalloporphyrins. The ability to bind heme is another cytoprotective property and one that deserves closer investigation. The role of FABP1 in substrate availability and in protection from oxidative stress suggests that FABP1 plays a pivotal role during intracellular bacterial/viral infections by reducing inflammation and the adverse effects of starvation (energy deficiency). PMID:26443794

  8. Competitive protein binding assay

    International Nuclear Information System (INIS)

    Kaneko, Toshio; Oka, Hiroshi

    1975-01-01

    The measurement of cyclic GMP (cGMP) by competitive protein binding assay was described and discussed. The principle of binding assay was represented briefly. Procedures of our method by binding protein consisted of preparation of cGMP binding protein, selection of 3 H-cyclic GMP on market, and measurement procedures. In our method, binding protein was isolated from the chrysalis of silk worm. This method was discussed from the points of incubation medium, specificity of binding protein, the separation of bound cGMP from free cGMP, and treatment of tissue from which cGMP was extracted. cGMP existing in the tissue was only one tenth or one scores of cGMP, and in addition, cGMP competed with cGMP in binding with binding protein. Therefore, Murad's technique was applied to the isolation of cGMP. This method provided the measurement with sufficient accuracy; the contamination by cAMP was within several per cent. (Kanao, N.)

  9. First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig enhances immune responses and antitumor activity

    Directory of Open Access Journals (Sweden)

    Gligorov Joseph

    2010-07-01

    Full Text Available Abstract Background IMP321 is a recombinant soluble LAG-3Ig fusion protein that binds to MHC class II with high avidity and mediates APC and then antigen-experienced memory CD8+ T cell activation. We report clinical and biological results of a phase I/II in patients with metastatic breast carcinoma (MBC receiving first-line paclitaxel weekly, 3 weeks out of 4. Methods MBC patients were administered one dose of IMP321 s.c. every two weeks for a total of 24 weeks (12 injections. The repeated single doses were administered the day after chemotherapy at D2 and D16 of the 28-day cycles of paclitaxel (80 mg/m2 at D1, D8 and D15, for 6 cycles. Blood samples were taken 13 days after the sixth and the twelfth IMP321 injections to determine sustained APC, NK and memory CD8 T cell responses. Results Thirty MBC patients received IMP321 in three cohorts (doses: 0.25, 1.25 and 6.25 mg. IMP321 induced both a sustained increase in the number and activation of APC (monocytes and dendritic cells and an increase in the percentage of NK and long-lived cytotoxic effector-memory CD8 T cells. Clinical benefit was observed for 90% of patients with only 3 progressors at 6 months. Also, the objective tumor response rate of 50% compared favorably to the 25% rate reported in the historical control group. Conclusions The absence of toxicity and the demonstration of activity strongly support the future development of this agent for clinical use in combined first-line regimens. Trial registration ClinicalTrials.gov NCT00349934

  10. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    Directory of Open Access Journals (Sweden)

    Garry Robert F

    2011-01-01

    Full Text Available Abstract Background The surface glycoprotein (SU, gp120 of the human immunodeficiency virus (HIV must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP to bind the Duffy Antigen Receptor for Chemokines (DARC and invade reticulocytes. Results Variable loop 3 (V3 of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, for DARC binding and contained a consensus heparin binding site essential for DARC binding. Both HIV-1 and P. vivax can be blocked from binding to their chemokine receptors by the chemokine, RANTES and its analog AOP-RANTES. Site directed mutagenesis of the heparin binding motif in members of the DBP family, the P. knowlesi alpha, beta and gamma proteins abrogated their binding to erythrocytes. Positively charged residues within domain 1 are required for binding of P. vivax and P. knowlesi erythrocyte binding proteins. Conclusion A heparin binding site motif in members of the DBP family may form part of a conserved erythrocyte receptor binding pocket.

  11. A computational model of the LGI1 protein suggests a common binding site for ADAM proteins.

    Directory of Open Access Journals (Sweden)

    Emanuela Leonardi

    Full Text Available Mutations of human leucine-rich glioma inactivated (LGI1 gene encoding the epitempin protein cause autosomal dominant temporal lateral epilepsy (ADTLE, a rare familial partial epileptic syndrome. The LGI1 gene seems to have a role on the transmission of neuronal messages but the exact molecular mechanism remains unclear. In contrast to other genes involved in epileptic disorders, epitempin shows no homology with known ion channel genes but contains two domains, composed of repeated structural units, known to mediate protein-protein interactions.A three dimensional in silico model of the two epitempin domains was built to predict the structure-function relationship and propose a functional model integrating previous experimental findings. Conserved and electrostatic charged regions of the model surface suggest a possible arrangement between the two domains and identifies a possible ADAM protein binding site in the β-propeller domain and another protein binding site in the leucine-rich repeat domain. The functional model indicates that epitempin could mediate the interaction between proteins localized to different synaptic sides in a static way, by forming a dimer, or in a dynamic way, by binding proteins at different times.The model was also used to predict effects of known disease-causing missense mutations. Most of the variants are predicted to alter protein folding while several other map to functional surface regions. In agreement with experimental evidence, this suggests that non-secreted LGI1 mutants could be retained within the cell by quality control mechanisms or by altering interactions required for the secretion process.

  12. Binding interaction between a queen pheromone component HOB and pheromone binding protein ASP1 of Apis cerana.

    Science.gov (United States)

    Weng, Chen; Fu, Yuxia; Jiang, Hongtao; Zhuang, Shulin; Li, Hongliang

    2015-01-01

    The honeybee's social behavior is closely related to the critical response to pheromone, while pheromone binding proteins (PBPs) play an important role in binding and transferring those pheromones. Here we report one known PBP, antennal special protein 1(ASP1), which has high affinity with a queen mandibular pheromone component, methyl-p-hydroxybenzoate (HOB). In this study, multiple fluorescent spectra, UV absorption spectra, circular dichroism (CD) spectra and molecular docking analysis were combined to clarify the binding process. Basically, fluorescence intensity of ASP1 could be considerably quenched by HOB with an appropriate interaction distance (3.1 nm), indicating that a complex, which is more stable in lower temperature, was formed. The fact ΔH < 0, ΔS < 0, by thermodynamic analysis, indicated the van der Waals and hydrogen bond as main driving force. Moreover, synchronous fluorescence spectra and CD spectra analysis showed the change of partial hydrophilicity of ASP1 and the increase of α-helix after HOB addition. In conclusion, ASP1 can strongly and spontaneously interact with HOB. But the binding ability decreases with the rise of temperature, which may be necessary for sufficient social stability of hives. This study provides elucidation of the detailed binding mechanism and potential physicochemical basis of thermal stability to the social behavior of honeybee. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. L1 retrotransposition is activated by Ten-eleven-translocation protein 1 and repressed by methyl-CpG binding proteins.

    Science.gov (United States)

    Zhang, Peng; Ludwig, Anne K; Hastert, Florian D; Rausch, Cathia; Lehmkuhl, Anne; Hellmann, Ines; Smets, Martha; Leonhardt, Heinrich; Cardoso, M Cristina

    2017-09-03

    One of the major functions of DNA methylation is the repression of transposable elements, such as the long-interspersed nuclear element 1 (L1). The underlying mechanism(s), however, are unclear. Here, we addressed how retrotransposon activation and mobilization are regulated by methyl-cytosine modifying ten-eleven-translocation (Tet) proteins and how this is modulated by methyl-CpG binding domain (MBD) proteins. We show that Tet1 activates both, endogenous and engineered L1 retrotransposons. Furthermore, we found that Mecp2 and Mbd2 repress Tet1-mediated activation of L1 by preventing 5hmC formation at the L1 promoter. Finally, we demonstrate that the methyl-CpG binding domain, as well as the adjacent non-sequence specific DNA binding domain of Mecp2 are each sufficient to mediate repression of Tet1-induced L1 mobilization. Our study reveals a mechanism how L1 elements get activated in the absence of Mecp2 and suggests that Tet1 may contribute to Mecp2/Mbd2-deficiency phenotypes, such as the Rett syndrome. We propose that the balance between methylation "reader" and "eraser/writer" controls L1 retrotransposition.

  14. End-Binding Protein 1 (EB1) Up-regulation is an Early Event in Colorectal Carcinogenesis

    Science.gov (United States)

    Stypula-Cyrus, Yolanda; Mutyal, Nikhil N.; Cruz, Mart Angelo Dela; Kunte, Dhananjay P.; Radosevich, Andrew J.; Wali, Ramesh; Roy, Hemant K.; Backman, Vadim

    2014-01-01

    End-binding protein (EB1) is a microtubule protein that binds to the tumor suppressor adenomatous polyposis coli (APC). While EB1 is implicated as a potential oncogene, its role in cancer progression is unknown. Therefore, we analyzed EB1/APC expression at the earliest stages of colorectal carcinogenesis and in the uninvolved mucosa ("field effect") of human and animal tissue. We also performed siRNA-knockdown in colon cancer cell lines. EB1 is up-regulated in early and field carcinogenesis in the colon, and the cellular/nano-architectural effect of EB1 knockdown depended on the genetic context. Thus, dysregulation of EB1 is an important early event in colon carcinogenesis. PMID:24492008

  15. Partial characterization of GTP-binding proteins in Neurospora

    International Nuclear Information System (INIS)

    Hasunuma, K.; Miyamoto-Shinohara, Y.; Furukawa, K.

    1987-01-01

    Six fractions of GTP-binding proteins separated by gel filtration of a mycelial extract containing membrane components of Neurospora crassa were partially characterized. [ 35 S]GTP gamma S bound to GTP-binding protein was assayed by repeated treatments with a Norit solution and centrifugation. The binding of [ 35 S]GTP gamma S to GTP-binding proteins was competitively prevented in the presence of 0.1 to 1 mM GTP but not in the presence of ATP. These GTP-binding proteins fractionated by the gel column had Km values of 20, 7, 4, 4, 80 and 2 nM. All six fractions of these GTP-binding proteins showed the capacity to be ADP-ribosylated by pertussis toxin

  16. Human-Phosphate-Binding-Protein inhibits HIV-1 gene transcription and replication

    Directory of Open Access Journals (Sweden)

    Candolfi Ermanno

    2011-07-01

    Full Text Available Abstract The Human Phosphate-Binding protein (HPBP is a serendipitously discovered lipoprotein that binds phosphate with high affinity. HPBP belongs to the DING protein family, involved in various biological processes like cell cycle regulation. We report that HPBP inhibits HIV-1 gene transcription and replication in T cell line, primary peripherical blood lymphocytes and primary macrophages. We show that HPBP is efficient in naïve and HIV-1 AZT-resistant strains. Our results revealed HPBP as a new and potent anti HIV molecule that inhibits transcription of the virus, which has not yet been targeted by HAART and therefore opens new strategies in the treatment of HIV infection.

  17. C1q protein binds to the apoptotic nucleolus and causes C1 protease degradation of nucleolar proteins.

    Science.gov (United States)

    Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua

    2015-09-11

    In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Paxillin associates with poly(A)-binding protein 1 at the dense endoplasmic reticulum and the leading edge of migrating cells.

    Science.gov (United States)

    Woods, Alison J; Roberts, Marnie S; Choudhary, Jyoti; Barry, Simon T; Mazaki, Yuichi; Sabe, Hisataka; Morley, Simon J; Critchley, David R; Norman, Jim C

    2002-02-22

    Using mass spectrometry we have identified proteins which co-immunoprecipitate with paxillin, an adaptor protein implicated in the integrin-mediated signaling pathways of cell motility. A major component of paxillin immunoprecipitates was poly(A)-binding protein 1, a 70-kDa mRNA-binding protein. Poly(A)-binding protein 1 associated with both the alpha and beta isoforms of paxillin, and this was unaffected by RNase treatment consistent with a protein-protein interaction. The NH(2)-terminal region of paxillin (residues 54-313) associated directly with poly(A)-binding protein 1 in cell lysates, and with His-poly(A)-binding protein 1 immobilized in microtiter wells. Binding was specific, saturable and of high affinity (K(d) of approximately 10 nm). Cell fractionation studies showed that at steady state, the bulk of paxillin and poly(A)-binding protein 1 was present in the "dense" polyribosome-associated endoplasmic reticulum. However, inhibition of nuclear export with leptomycin B caused paxillin and poly(A)-binding protein 1 to accumulate in the nucleus, indicating that they shuttle between the nuclear and cytoplasmic compartments. When cells migrate, poly(A)-binding protein 1 colocalized with paxillin-beta at the tips of lamellipodia. Our results suggest a new mechanism whereby a paxillin x poly(A)-binding protein 1 complex facilitates transport of mRNA from the nucleus to sites of protein synthesis at the endoplasmic reticulum and the leading lamella during cell migration.

  19. DNA binding specificity of the basic-helix-loop-helix protein MASH-1.

    Science.gov (United States)

    Meierhan, D; el-Ariss, C; Neuenschwander, M; Sieber, M; Stackhouse, J F; Allemann, R K

    1995-09-05

    Despite the high degree of sequence similarity in their basic-helix-loop-helix (BHLH) domains, MASH-1 and MyoD are involved in different biological processes. In order to define possible differences between the DNA binding specificities of these two proteins, we investigated the DNA binding properties of MASH-1 by circular dichroism spectroscopy and by electrophoretic mobility shift assays (EMSA). Upon binding to DNA, the BHLH domain of MASH-1 underwent a conformational change from a mainly unfolded to a largely alpha-helical form, and surprisingly, this change was independent of the specific DNA sequence. The same conformational transition could be induced by the addition of 20% 2,2,2-trifluoroethanol. The apparent dissociation constants (KD) of the complexes of full-length MASH-1 with various oligonucleotides were determined from half-saturation points in EMSAs. MASH-1 bound as a dimer to DNA sequences containing an E-box with high affinity KD = 1.4-4.1 x 10(-14) M2). However, the specificity of DNA binding was low. The dissociation constant for the complex between MASH-1 and the highest affinity E-box sequence (KD = 1.4 x 10(-14) M2) was only a factor of 10 smaller than for completely unrelated DNA sequences (KD = approximately 1 x 10(-13) M2). The DNA binding specificity of MASH-1 was not significantly increased by the formation of an heterodimer with the ubiquitous E12 protein. MASH-1 and MyoD displayed similar binding site preferences, suggesting that their different target gene specificities cannot be explained solely by differential DNA binding. An explanation for these findings is provided on the basis of the known crystal structure of the BHLH domain of MyoD.

  20. Structure of Cryptosporidium IMP dehydrogenase bound to an inhibitor with in vivo antiparasitic activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngchang; Makowska-Grzyska, Magdalena; Gorla, Suresh Kumar; Gollapalli, Deviprasad R.; Cuny, Gregory D.; Joachimiak, Andrzej; Hedstrom, Lizbeth

    2015-04-21

    Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment ofCryptosporidiuminfections. Here, the structure ofC. parvumIMPDH (CpIMPDH) in complex with inosine 5'-monophosphate (IMP) and P131, an inhibitor within vivoanticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO2moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is a new strategy for the further optimization ofC. parvuminhibitors for both antiparasitic and antibacterial applications.

  1. Clear cell carcinomas of the ovary: a mono-institutional study of 73 cases in China with an analysis of the prognostic significance of clinicopathological parameters and IMP3 expression.

    Science.gov (United States)

    Bi, Rui; Shen, Xuxia; Zhang, Weiwei; Cheng, Yufan; Feng, Zheng; Cai, Xu; Yang, Wentao

    2016-02-02

    Ovarian clear cell carcinoma (CCC) is an uncommon subtype of ovarian epithelial tumor. The prognostic significance of its clinicopathological parameters is discordant, with the exception of stage as the adverse prognostic factor. The present study aimed to evaluate the prognostic significance of its clinicopathological characteristics and the expression of IMP3 (Insulin-like growth factor-II mRNA-binding protein 3, IMP3 or IGF2BP3) in Chinese patients with primary pure CCC. We collected clinicopathological data from 73 cases with a minimum of 5 years of follow-up and evaluated the expression of IMP3 by immunohistochemistry. In total, 49.3 % of the patients were in stage I. Advanced stages were closely related to poor prognosis of disease-free survival (DFS) and overall survival (OS) (P 73 cases); Thus, positive expression of IMP3 is an adverse prognostic marker in terms of OS (P = 0.012), even in stage I patients (P = 0.038). The present study demonstrates that IMP3 expression is a prognostic marker, with the exception of stage. IMP3 represents a biomarker of unfavorable prognosis even in stage I patients.

  2. The occurrence of gibberellin-binding protein(s) in pea

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.H.

    1988-01-01

    In vitro gibberellin (GA) binding properties of a cytosol fraction from epicotyls of dwarf pea (Pisum sativum L. cv. Progress No. 9) and tall pea (Pisum sativum L. cv. Alaska) were investigated using ({sup 3}H)GA{sub 4} in a DEAE filter paper assay at 0-3 C. The binding obtained is saturable, reversible, and temperature labile in dwarf pea, and has a half-life of dissociation of 5-6 min. By varying the concentration of ({sup 3}H)GA{sub 4} in the incubation medium the Kd was estimated to be 120-140 nM in dwarf pea and 70 nM in tall pea. The number of binding sites (n) was estimated to be 0.66 and 0.43 pmole mg{sup {minus}1} soluble protein in dwarf pea and in tall pea, respectively. In competition binding assays, biologically active GAs, such as GA{sub 3} and GA{sub 4} could reduce the level of ({sup 3}H)GA{sub 4} binding much more than the biologically inactive GA{sub 4} methyl ester and epi-GA{sub 4}. Changes in gibberellin-binding protein(s) were studied during seed germination. While the Kd of the binding protein(s) for ({sup 3}H)GA{sub 4} remained the same, there was a marked increase in the number of binding sites from 24 h soaked seed to 8-day old seedlings. Also, the Kd and the number of binding sites in the GA-responsive apical part and in the nonresponsive basal part in the epicotyl were similar. The effect of light on gibberellin-binding protein in dwarf pea was also studied. The GA-binding protein in dwarf pea was partially purified by gel filtration and ion exchange chromatography.

  3. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  4. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  5. Identification of Bacillus thuringiensis Cry1AbMod binding-proteins from Spodoptera frugiperda.

    Science.gov (United States)

    Martínez de Castro, Diana L; García-Gómez, Blanca I; Gómez, Isabel; Bravo, Alejandra; Soberón, Mario

    2017-12-01

    Bacillus thuringiensis Cry toxins are currently used for pest control in transgenic crops but evolution of resistance by the insect pests threatens the use of this technology. The Cry1AbMod toxin was engineered to lack the alpha helix-1 of the parental Cry1Ab toxin and was shown to counter resistance to Cry1Ab and Cry1Ac toxins in different insect species including the fall armyworm Spodoptera frugiperda. In addition, Cry1AbMod showed enhanced toxicity to Cry1Ab-susceptible S. frugiperda populations. To gain insights into the mechanisms of this Cry1AbMod-enhanced toxicity, we isolated the Cry1AbMod toxin binding proteins from S. frugiperda brush border membrane vesicles (BBMV), which were identified by pull-down assay and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The LC-MS/MS results indicated that Cry1AbMod toxin could bind to four classes of aminopeptidase (N1, N3, N4 y N5) and actin, with the highest amino acid sequence coverage acquired for APN 1 and APN4. In addition to these proteins, we found other proteins not previously described as Cry toxin binding proteins. This is the first report that suggests the interaction between Cry1AbMod and APN in S. frugiperda. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Isolation and functional characterization of CE1 binding proteins

    Directory of Open Access Journals (Sweden)

    Yu Ji-hyun

    2010-12-01

    Full Text Available Abstract Background Abscisic acid (ABA is a plant hormone that controls seed germination, protective responses to various abiotic stresses and seed maturation. The ABA-dependent processes entail changes in gene expression. Numerous genes are regulated by ABA, and promoter analyses of the genes revealed that cis-elements sharing the ACGTGGC consensus sequence are ubiquitous among ABA-regulated gene promoters. The importance of the core sequence, which is generally known as ABA response element (ABRE, has been demonstrated by various experiments, and its cognate transcription factors known as ABFs/AREBs have been identified. Although necessary, ABRE alone is not sufficient, and another cis-element known as "coupling element (CE" is required for full range ABA-regulation of gene expression. Several CEs are known. However, despite their importance, the cognate transcription factors mediating ABA response via CEs have not been reported to date. Here, we report the isolation of transcription factors that bind one of the coupling elements, CE1. Results To isolate CE1 binding proteins, we carried out yeast one-hybrid screens. Reporter genes containing a trimer of the CE1 element were prepared and introduced into a yeast strain. The yeast was transformed with library DNA that represents RNA isolated from ABA-treated Arabidopsis seedlings. From the screen of 3.6 million yeast transformants, we isolated 78 positive clones. Analysis of the clones revealed that a group of AP2/ERF domain proteins binds the CE1 element. We investigated their expression patterns and analyzed their overexpression lines to investigate the in vivo functions of the CE element binding factors (CEBFs. Here, we show that one of the CEBFs, AtERF13, confers ABA hypersensitivity in Arabidopsis, whereas two other CEBFs enhance sugar sensitivity. Conclusions Our results indicate that a group of AP2/ERF superfamily proteins interacts with CE1. Several CEBFs are known to mediate defense or

  7. Isolation and functional characterization of CE1 binding proteins.

    Science.gov (United States)

    Lee, Sun-ji; Park, Ji Hye; Lee, Mi Hun; Yu, Ji-hyun; Kim, Soo Young

    2010-12-16

    Abscisic acid (ABA) is a plant hormone that controls seed germination, protective responses to various abiotic stresses and seed maturation. The ABA-dependent processes entail changes in gene expression. Numerous genes are regulated by ABA, and promoter analyses of the genes revealed that cis-elements sharing the ACGTGGC consensus sequence are ubiquitous among ABA-regulated gene promoters. The importance of the core sequence, which is generally known as ABA response element (ABRE), has been demonstrated by various experiments, and its cognate transcription factors known as ABFs/AREBs have been identified. Although necessary, ABRE alone is not sufficient, and another cis-element known as "coupling element (CE)" is required for full range ABA-regulation of gene expression. Several CEs are known. However, despite their importance, the cognate transcription factors mediating ABA response via CEs have not been reported to date. Here, we report the isolation of transcription factors that bind one of the coupling elements, CE1. To isolate CE1 binding proteins, we carried out yeast one-hybrid screens. Reporter genes containing a trimer of the CE1 element were prepared and introduced into a yeast strain. The yeast was transformed with library DNA that represents RNA isolated from ABA-treated Arabidopsis seedlings. From the screen of 3.6 million yeast transformants, we isolated 78 positive clones. Analysis of the clones revealed that a group of AP2/ERF domain proteins binds the CE1 element. We investigated their expression patterns and analyzed their overexpression lines to investigate the in vivo functions of the CE element binding factors (CEBFs). Here, we show that one of the CEBFs, AtERF13, confers ABA hypersensitivity in Arabidopsis, whereas two other CEBFs enhance sugar sensitivity. Our results indicate that a group of AP2/ERF superfamily proteins interacts with CE1. Several CEBFs are known to mediate defense or abiotic stress response, but the physiological functions

  8. Characterization of the retinoblastoma binding proteins RBP1 and RBP2

    DEFF Research Database (Denmark)

    Fattaey, A R; Helin, K; Dembski, M S

    1993-01-01

    The retinoblastoma gene product, pRB, regulates cell proliferation by binding to and inhibiting the activity of key growth promoting proteins. Several cellular proteins have been shown to bind directly to pRB and the genes encoding a number of them have been isolated. The protein product of one...

  9. Imp2, the PSTPIP homolog in fission yeast, affects sensitivity to the immunosuppressant FK506 and membrane trafficking in fission yeast

    International Nuclear Information System (INIS)

    Kita, Ayako; Higa, Mari; Doi, Akira; Satoh, Ryosuke; Sugiura, Reiko

    2015-01-01

    Cytokinesis is a highly ordered process that divides one cell into two cells, which is functionally linked to the dynamic remodeling of the plasma membrane coordinately with various events such as membrane trafficking. Calcineurin is a highly conserved serine/threonine protein phosphatase, which regulates multiple biological functions, such as membrane trafficking and cytokinesis. Here, we isolated imp2-c3, a mutant allele of the imp2 + gene, encoding a homolog of the mouse PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1), using a genetic screen for mutations that are synthetically lethal with calcineurin deletion in fission yeast. The imp2-c3 mutants showed a defect in cytokinesis with multi-septated phenotypes, which was further enhanced upon treatment with the calcineurin inhibitor FK506. Notably, electron micrographs revealed that the imp2-c3 mutant cells accumulated aberrant multi-lamella Golgi structures and putative post-Golgi secretory vesicles, and exhibited fragmented vacuoles in addition to thickened septa. Consistently, imp2-c3 mutants showed a reduced secretion of acid phosphatase and defects in vacuole fusion. The imp2-c3 mutant cells exhibited a weakened cell wall, similar to the membrane trafficking mutants identified in the same genetic screen such as ypt3-i5. These findings implicate the PSTPIP1 homolog Imp2 in Golgi/vacuole function, thereby affecting various cellular processes, including cytokinesis and cell integrity. - Highlights: • We isolated imp2-c3, in a synthetic lethal screen with calcineurin in fission yeast. • The imp2 + gene encodes a component of the actin contractile ring similar to Cdc15. • The imp2-c3 mutants showed defects in cytokinesis, which were exacerbated by FK506. • The imp2-c3 mutants were defective in membrane trafficking and cell wall integrity. • Our study revealed a novel role for Imp2 in the Golgi/vacuolar membrane trafficking

  10. Imp2, the PSTPIP homolog in fission yeast, affects sensitivity to the immunosuppressant FK506 and membrane trafficking in fission yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Ayako; Higa, Mari [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Doi, Akira [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Japan Society for the Promotion of Science, 1-8 Chiyoda-ku, Tokyo 102-8472 (Japan); Satoh, Ryosuke [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Sugiura, Reiko, E-mail: sugiurar@phar.kindai.ac.jp [Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan)

    2015-02-13

    Cytokinesis is a highly ordered process that divides one cell into two cells, which is functionally linked to the dynamic remodeling of the plasma membrane coordinately with various events such as membrane trafficking. Calcineurin is a highly conserved serine/threonine protein phosphatase, which regulates multiple biological functions, such as membrane trafficking and cytokinesis. Here, we isolated imp2-c3, a mutant allele of the imp2{sup +} gene, encoding a homolog of the mouse PSTPIP1 (proline-serine-threonine phosphatase interacting protein 1), using a genetic screen for mutations that are synthetically lethal with calcineurin deletion in fission yeast. The imp2-c3 mutants showed a defect in cytokinesis with multi-septated phenotypes, which was further enhanced upon treatment with the calcineurin inhibitor FK506. Notably, electron micrographs revealed that the imp2-c3 mutant cells accumulated aberrant multi-lamella Golgi structures and putative post-Golgi secretory vesicles, and exhibited fragmented vacuoles in addition to thickened septa. Consistently, imp2-c3 mutants showed a reduced secretion of acid phosphatase and defects in vacuole fusion. The imp2-c3 mutant cells exhibited a weakened cell wall, similar to the membrane trafficking mutants identified in the same genetic screen such as ypt3-i5. These findings implicate the PSTPIP1 homolog Imp2 in Golgi/vacuole function, thereby affecting various cellular processes, including cytokinesis and cell integrity. - Highlights: • We isolated imp2-c3, in a synthetic lethal screen with calcineurin in fission yeast. • The imp2{sup +} gene encodes a component of the actin contractile ring similar to Cdc15. • The imp2-c3 mutants showed defects in cytokinesis, which were exacerbated by FK506. • The imp2-c3 mutants were defective in membrane trafficking and cell wall integrity. • Our study revealed a novel role for Imp2 in the Golgi/vacuolar membrane trafficking.

  11. E-selectin ligand-1 (ESL-1) is a novel adiponectin binding protein on cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Hiroyasu; Kuroda, Nana; Uekita, Hiromi; Kochi, Ikoi; Matsumoto, Akane; Niinaga, Ryu [Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka (Japan); Funahashi, Tohru; Shimomura, Iichiro [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka (Japan); Kihara, Shinji, E-mail: skihara@sahs.med.osaka-u.ac.jp [Department of Biomedical Informatics, Division of Health Sciences, Osaka University Graduate School of Medicine, Osaka (Japan)

    2016-02-05

    Background: Adiponectin (APN) is an adipocyte-derived bioactive molecule with anti-diabetic and anti-atherogenic properties. Although anti-diabetic effects are mostly mediated by the adiponectin receptors AdipoR1 and AdipoR2, the anti-atherogenic mechanisms have not been fully elucidated. Methods and Results: In this study, we identified E-selectin ligand (ESL)-1 as a novel APN-binding protein by mass spectrometry analysis of HepG2 cell-derived immunoprecipitant with an anti-APN antibody. Cell adhesion assays using fluorescence-labelled monocyte cell line THP-1 cells and human umbilical vein endothelial cells (HUVECs) revealed that APN-pre-treated THP-1 cells had reduced binding ability to HUVECs. This APN-mediated suppressive effect on monocyte binding to endothelial cells was partially abrogated by targeting ESL-1 with shRNA in THP-1 cells. In addition, serial mutagenesis analysis disclosed that five extracellular amino acids close to the N-terminus of ESL-1 were essential for binding with APN. Conclusion: Our results highlight the fact that interaction between APN and ESL-1 could provide a fundamental mechanism underlying the anti-atherogenic properties of APN. - Highlights: • E-selectin ligand (ESL)-1 was identified as an adiponectin (APN)-binding protein. • ESL-1 bound to APN at its N-terminal 6th-10th amino acids. • shESL-1 reduced the suppressive effect of APN on adhesion of THP-1 cells to HUVECs. • Interaction with ESL may be involved in the anti-atherogenic effects of APN.

  12. E-selectin ligand-1 (ESL-1) is a novel adiponectin binding protein on cell adhesion

    International Nuclear Information System (INIS)

    Yamamoto, Hiroyasu; Kuroda, Nana; Uekita, Hiromi; Kochi, Ikoi; Matsumoto, Akane; Niinaga, Ryu; Funahashi, Tohru; Shimomura, Iichiro; Kihara, Shinji

    2016-01-01

    Background: Adiponectin (APN) is an adipocyte-derived bioactive molecule with anti-diabetic and anti-atherogenic properties. Although anti-diabetic effects are mostly mediated by the adiponectin receptors AdipoR1 and AdipoR2, the anti-atherogenic mechanisms have not been fully elucidated. Methods and Results: In this study, we identified E-selectin ligand (ESL)-1 as a novel APN-binding protein by mass spectrometry analysis of HepG2 cell-derived immunoprecipitant with an anti-APN antibody. Cell adhesion assays using fluorescence-labelled monocyte cell line THP-1 cells and human umbilical vein endothelial cells (HUVECs) revealed that APN-pre-treated THP-1 cells had reduced binding ability to HUVECs. This APN-mediated suppressive effect on monocyte binding to endothelial cells was partially abrogated by targeting ESL-1 with shRNA in THP-1 cells. In addition, serial mutagenesis analysis disclosed that five extracellular amino acids close to the N-terminus of ESL-1 were essential for binding with APN. Conclusion: Our results highlight the fact that interaction between APN and ESL-1 could provide a fundamental mechanism underlying the anti-atherogenic properties of APN. - Highlights: • E-selectin ligand (ESL)-1 was identified as an adiponectin (APN)-binding protein. • ESL-1 bound to APN at its N-terminal 6th-10th amino acids. • shESL-1 reduced the suppressive effect of APN on adhesion of THP-1 cells to HUVECs. • Interaction with ESL may be involved in the anti-atherogenic effects of APN.

  13. NS1-binding protein abrogates the elevation of cell viability by the influenza A virus NS1 protein in association with CRKL

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Masaya [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Nishihara, Hiroshi, E-mail: hnishihara@med.hokudai.ac.jp [Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Hasegawa, Hideki [Department of Pathology, National Institute of Infectious Diseases, Sinjuku-ku, Tokyo (Japan); Tashiro, Masato [Influenza Virus Research Center, National Institute of Infectious Diseases, Sinjuku-ku, Tokyo (Japan); Wang, Lei [Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Kimura, Taichi; Tanino, Mishie; Tsuda, Masumi [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Tanaka, Shinya [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan)

    2013-11-29

    Highlights: •NS1 induced excessive phosphorylation of ERK and elevated cell viability. •NS1-BP expression and CRKL knockdown abolished survival effect of NS1. •NS1-BP and NS1 formed the complex through the interaction with CRKL-SH3(N). -- Abstract: The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while the physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.

  14. The pancreatic zymogen granule membrane protein, GP2, binds Escherichia coli type 1 Fimbriae

    Directory of Open Access Journals (Sweden)

    Lowe Anson W

    2009-07-01

    Full Text Available Abstract Background GP2 is the major membrane protein present in the pancreatic zymogen granule, and is cleaved and released into the pancreatic duct along with exocrine secretions. The function of GP2 is unknown. GP2's amino acid sequence is most similar to that of uromodulin, which is secreted by the kidney. Recent studies have demonstrated uromodulin binding to bacterial Type 1 fimbria. The fimbriae serve as adhesins to host receptors. The present study examines whether GP2 also shares similar binding properties to bacteria with Type 1 fimbria. Commensal and pathogenic bacteria, including E. coli and Salmonella, express type 1 fimbria. Methods An in vitro binding assay was used to assay the binding of recombinant GP2 to defined strains of E. coli that differ in their expression of Type 1 fimbria or its subunit protein, FimH. Studies were also performed to determine whether GP2 binding is dependent on the presence of mannose residues, which is a known determinant for FimH binding. Results GP2 binds E. coli that express Type 1 fimbria. Binding is dependent on GP2 glycosylation, and specifically the presence of mannose residues. Conclusion GP2 binds to Type 1 fimbria, a bacterial adhesin that is commonly expressed by members of the Enterobacteriacae family.

  15. N-isopropyl-p-iodoamphetamine receptors in normal and cancerous tissue of the human lung

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Eiko; Mishima, Michiaki; Kawakami, Kenzo; Sakai, Naoki; Sugiura, Naoharu; Kuno, Kenshi [Kyoto Univ. (Japan). Dept. of Clinical Physiology; Taniguchi, Takashi [Kyoto Pharmaceutical Univ. (Japan). Dept. of Neurobiology

    1993-04-01

    N-Isopropyl-p-iodoamphetamine (IMP) receptors in normal human lung tissue were characterized using a radioligand binding assay with iodine-125 IMP as the ligand. Saturation binding studies revealed the presence of two binding sites with dissociation constant (K[sub d]) values of 53[+-]2 and 4687[+-]124 nM and maximum binding capacity (Bmax) values of 7[+-]1 and 133[+-]27 pmol/mg protein (n=5) respectively. The IC[sub 50] values of various amines were as follows: IMP, 9x10[sup -5] M; propranolol, 5x10[sup -4] M; haloperidol, 6x10[sup -4] M; ketamine, 9x10[sup -3] M; dopamine, 1x10[sup -2] M. The IMP receptors of cancerous tissue obtained from human lung also had two binding sites with K[sub d] values of 54[+-]2 and 5277[+-]652 nM and Bmax values of 7[+-]1 and 103[+-]21 pmol/mg protein (n=3) respectively. There was no significant difference in binding parameters between normal and cancerous lung tissue. These results demonstrate the existence of IMP receptors and suggest that cancer does not affect the nature of IMP receptors in human lung tissue. (orig.).

  16. RAE-1, a novel PHR binding protein, is required for axon termination and synapse formation in Caenorhabditis elegans.

    Science.gov (United States)

    Grill, Brock; Chen, Lizhen; Tulgren, Erik D; Baker, Scott T; Bienvenut, Willy; Anderson, Matthew; Quadroni, Manfredo; Jin, Yishi; Garner, Craig C

    2012-02-22

    Previous studies in Caenorhabditis elegans showed that RPM-1 (Regulator of Presynaptic Morphology-1) regulates axon termination and synapse formation. To understand the mechanism of how rpm-1 functions, we have used mass spectrometry to identify RPM-1 binding proteins, and have identified RAE-1 (RNA Export protein-1) as an evolutionarily conserved binding partner. We define a RAE-1 binding region in RPM-1, and show that this binding interaction is conserved and also occurs between Rae1 and the human ortholog of RPM-1 called Pam (protein associated with Myc). rae-1 loss of function causes similar axon and synapse defects, and synergizes genetically with two other RPM-1 binding proteins, GLO-4 and FSN-1. Further, we show that RAE-1 colocalizes with RPM-1 in neurons, and that rae-1 functions downstream of rpm-1. These studies establish a novel postmitotic function for rae-1 in neuronal development.

  17. Predicting protein-binding RNA nucleotides with consideration of binding partners.

    Science.gov (United States)

    Tuvshinjargal, Narankhuu; Lee, Wook; Park, Byungkyu; Han, Kyungsook

    2015-06-01

    In recent years several computational methods have been developed to predict RNA-binding sites in protein. Most of these methods do not consider interacting partners of a protein, so they predict the same RNA-binding sites for a given protein sequence even if the protein binds to different RNAs. Unlike the problem of predicting RNA-binding sites in protein, the problem of predicting protein-binding sites in RNA has received little attention mainly because it is much more difficult and shows a lower accuracy on average. In our previous study, we developed a method that predicts protein-binding nucleotides from an RNA sequence. In an effort to improve the prediction accuracy and usefulness of the previous method, we developed a new method that uses both RNA and protein sequence data. In this study, we identified effective features of RNA and protein molecules and developed a new support vector machine (SVM) model to predict protein-binding nucleotides from RNA and protein sequence data. The new model that used both protein and RNA sequence data achieved a sensitivity of 86.5%, a specificity of 86.2%, a positive predictive value (PPV) of 72.6%, a negative predictive value (NPV) of 93.8% and Matthews correlation coefficient (MCC) of 0.69 in a 10-fold cross validation; it achieved a sensitivity of 58.8%, a specificity of 87.4%, a PPV of 65.1%, a NPV of 84.2% and MCC of 0.48 in independent testing. For comparative purpose, we built another prediction model that used RNA sequence data alone and ran it on the same dataset. In a 10 fold-cross validation it achieved a sensitivity of 85.7%, a specificity of 80.5%, a PPV of 67.7%, a NPV of 92.2% and MCC of 0.63; in independent testing it achieved a sensitivity of 67.7%, a specificity of 78.8%, a PPV of 57.6%, a NPV of 85.2% and MCC of 0.45. In both cross-validations and independent testing, the new model that used both RNA and protein sequences showed a better performance than the model that used RNA sequence data alone in

  18. Solar wind plasma periodicities observed at 1 AU by IMP 8

    Science.gov (United States)

    Paularena, K. I.; Szabo, A.; Lazarus, A. J.

    1995-01-01

    The IMP 8 spacecraft has been in Earth orbit since 1973, gathering plasma data over one complete 22-year solar cycle. These data are being examined to look for periodicities at time scales ranging from several hours to the entire span of the data set. A 1.3-year periodicity in the radial speed observed by IMP 8 and Voyager 2 has already been reported for the years from 1987 to 1993. The periodogram method, useful for unevenly sampled data such as the IMP 8 plasma data, has been used to search for other periods. It is interesting to note that the 13-year period is not present in the out-of-the-ecliptic component of the velocity (Vz), although a 1-year period is very obvious both visually and on the periodogram. Both components show a very strong peak associated with the 11-year solar cycle variation. This work will be extended to the thermal speed (a measure of the wind's temperature) and density, although the frequent correlations between these parameters and the velocity are expected to cause similar results. Additionally, the fine resolution data will be examined for shorter time periods than are visible using the hourly average data which are appropriate for longer periods. A comparison with periods observed at other spacecraft may also be made.

  19. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    Science.gov (United States)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  20. Pheromone Binding Protein EhipPBP1 Is Highly Enriched in the Male Antennae of the Seabuckthorn Carpenterworm and Is Binding to Sex Pheromone Components

    Directory of Open Access Journals (Sweden)

    Ping Hu

    2018-04-01

    Full Text Available The seabuckthorn carpenterworm moth Eogystia hippophaecolus is a major threat to seabuckthorn plantations, causing considerable ecological and economic losses in China. Transcriptomic analysis of E. hippophaecolus previously identified 137 olfactory proteins, including three pheromone-binding proteins (PBPs. We investigated the function of E. hippophaecolus PBP1 by studying its mRNA and protein expression profiles and its binding ability with different compounds. The highest levels of expression were in the antennae, particularly in males, with much lower levels of expression in the legs and external genitals. Recombinant PBP1 showed strong binding to sex-pheromone components, suggesting that antennal EhipPBP1 is involved in binding sex-pheromone components during pheromone communication.

  1. Identification of novel putative-binding proteins for cellular prion protein and a specific interaction with the STIP1 homology and U-Box-containing protein 1

    Science.gov (United States)

    Gimenez, Ana Paula Lappas; Richter, Larissa Morato Luciani; Atherino, Mariana Campos; Beirão, Breno Castello Branco; Fávaro, Celso; Costa, Michele Dietrich Moura; Zanata, Silvio Marques; Malnic, Bettina; Mercadante, Adriana Frohlich

    2015-01-01

    ABSTRACT Prion diseases involve the conversion of the endogenous cellular prion protein, PrPC, into a misfolded infectious isoform, PrPSc. Several functions have been attributed to PrPC, and its role has also been investigated in the olfactory system. PrPC is expressed in both the olfactory bulb (OB) and olfactory epithelium (OE) and the nasal cavity is an important route of transmission of diseases caused by prions. Moreover, Prnp−/− mice showed impaired behavior in olfactory tests. Given the high PrPC expression in OE and its putative role in olfaction, we screened a mouse OE cDNA library to identify novel PrPC-binding partners. Ten different putative PrPC ligands were identified, which were involved in functions such as cellular proliferation and apoptosis, cytoskeleton and vesicle transport, ubiquitination of proteins, stress response, and other physiological processes. In vitro binding assays confirmed the interaction of PrPC with STIP1 homology and U-Box containing protein 1 (Stub1) and are reported here for the first time. Stub1 is a co-chaperone with ubiquitin E3-ligase activity, which is associated with neurodegenerative diseases characterized by protein misfolding and aggregation. Physiological and pathological implications of PrPC-Stub1 interaction are under investigation. The PrPC-binding proteins identified here are not exclusive to the OE, suggesting that these interactions may occur in other tissues and play general biological roles. These data corroborate the proposal that PrPC is part of a multiprotein complex that modulates several cellular functions and provide a platform for further studies on the physiological and pathological roles of prion protein. PMID:26237451

  2. Evidence that Na+/H+ exchanger 1 is an ATP-binding protein.

    Science.gov (United States)

    Shimada-Shimizu, Naoko; Hisamitsu, Takashi; Nakamura, Tomoe Y; Wakabayashi, Shigeo

    2013-03-01

    Na(+)/H(+) exchanger (NHE) 1 is a member of the solute carrier superfamily, which regulates intracellular ionic homeostasis. NHE1 is known to require cellular ATP for its activity, despite there being no requirement for energy input from ATP hydrolysis. In this study, we investigated whether NHE1 is an ATP-binding protein. We designed a baculovirus vector carrying both epitope-tagged NHE1 and its cytosolic subunit CHP1, and expressed the functional NHE1-CHP1 complex on the surface of Sf9 insect cells. Using the purified complex protein consisting of NHE1 and CHP1 from Sf9 cells, we examined a photoaffinity labeling reaction with 8-azido-ATP-biotin. UV irradiation promoted the incorporation of 8-azido-ATP into NHE1, but not into CHP1, with an apparent Kd of 29.1 µM in the presence of Mg(2+). The nonlabeled nucleotides ATP, GTP, TTP and CTP all inhibited this crosslinking. However, ATP had the strongest inhibitory effect, with an apparent inhibition constant (IC50) for ATP of 2.2 mM, close to the ATP concentration giving the half-maximal activation of NHE1 activity. Importantly, crosslinking was more strongly inhibited by ATP than by ADP, suggesting that ATP is dissociated from NHE1 upon ATP hydrolysis. Limited proteolysis with thrombin and deletion mutant analysis revealed that the 8-azido-ATP-binding site is within the C-terminal cytoplasmic domain of NHE1. Equilibrium dialysis with NHE1-derived peptides provided evidence that ATP directly binds to the proximal cytoplasmic region (Gly542-Pro598), which is critical for ATP-dependent regulation of NHE1. These findings suggest that NHE1 is an ATP-binding transporter. Thus, ATP may serve as a direct activator of NHE1. © 2013 The Authors Journal compilation © 2013 FEBS.

  3. Structure-function mapping of BbCRASP-1, the key complement factor H and FHL-1 binding protein of Borrelia burgdorferi.

    Science.gov (United States)

    Cordes, Frank S; Kraiczy, Peter; Roversi, Pietro; Simon, Markus M; Brade, Volker; Jahraus, Oliver; Wallis, Russell; Goodstadt, Leo; Ponting, Chris P; Skerka, Christine; Zipfel, Peter F; Wallich, Reinhard; Lea, Susan M

    2006-05-01

    Borrelia burgdorferi, a spirochaete transmitted to human hosts during feeding of infected Ixodes ticks, is the causative agent of Lyme disease, the most frequent vector-borne disease in Eurasia and North America. Sporadically Lyme disease develops into a chronic, multisystemic disorder. Serum-resistant B. burgdorferi strains bind complement factor H (FH) and FH-like protein 1 (FHL-1) on the spirochaete surface. This binding is dependent on the expression of proteins termed complement-regulator acquiring surface proteins (CRASPs). The atomic structure of BbCRASP-1, the key FHL-1/FH-binding protein of B. burgdorferi, has recently been determined. Our analysis indicates that its protein topology apparently evolved to provide a high affinity interaction site for FH/FHL-1 and leads to an atomic-level hypothesis for the functioning of BbCRASP-1. This work demonstrates that pathogens interact with complement regulators in ways that are distinct from the mechanisms used by the host and are thus obvious targets for drug design.

  4. Identification of a 34 kDa protein altered in the LF-1 mutant as the herbicide-binding D1 protein of photosystem II

    International Nuclear Information System (INIS)

    Metz, J.; Pakrasi, H.; Seibert, M.; Arntzen, C.

    1986-01-01

    The LF-1 mutant of Scenedesmus has a complete block on the oxidizing side of its PSII reaction center. However, the reaction center as well as the reducing side of PSII is fully functional in this mutant. Compared to the wildtype (WT) the only detected protein difference in the PSII complex of LF-1 is the change in mobility of a 34 kDa protein to 36 kDa. This protein has been implicated to have a major role in Mn-binding and water-oxidation. The authors have recently shown that photoaffinity labeling of thylakoids with azido-[ 14 C]-atrazine tags the 34 kDa protein in WT and the 36 kDa protein in LF-1. It has been shown that the azido-atrazine labeled protein, called D1, functions in herbicide binding and Q/sub A/ to Q/sub B/ electron transfer on the reducing side of PSII. Polyclonal antibodies directed against the D1 protein of Amaranthus hybridus (Ohad, et al., EMBOJ 1985) were found to recognize the Scenedesmus 34 kDa (WT) and 36 kDa (LF-1) proteins. The implied dual function for the D1 protein on the reducing as well as the oxidizing side of PSII reaction center will be discussed

  5. Characterization of monomeric DNA-binding protein Histone H1 in Leishmania braziliensis.

    Science.gov (United States)

    Carmelo, Emma; González, Gloria; Cruz, Teresa; Osuna, Antonio; Hernández, Mariano; Valladares, Basilio

    2011-08-01

    Histone H1 in Leishmania presents relevant differences compared to higher eukaryote counterparts, such as the lack of a DNA-binding central globular domain. Despite that, it is apparently fully functional since its differential expression levels have been related to changes in chromatin condensation and infectivity, among other features. The localization and the aggregation state of L. braziliensis H1 has been determined by immunolocalization, mass spectrometry, cross-linking and electrophoretic mobility shift assays. Analysis of H1 sequences from the Leishmania Genome Database revealed that our protein is included in a very divergent group of histones H1 that is present only in L. braziliensis. An antibody raised against recombinant L. braziliensis H1 recognized specifically that protein by immunoblot in L. braziliensis extracts, but not in other Leishmania species, a consequence of the sequence divergences observed among Leishmania species. Mass spectrometry analysis and in vitro DNA-binding experiments have also proven that L. braziliensis H1 is monomeric in solution, but oligomerizes upon binding to DNA. Finally, despite the lack of a globular domain, L. braziliensis H1 is able to form complexes with DNA in vitro, with higher affinity for supercoiled compared to linear DNA.

  6. IMP3 expression is associated with poor outcome and epigenetic deregulation in intrahepatic cholangiocarcinoma.

    Science.gov (United States)

    Gao, Yuanyuan; Yang, Michelle; Jiang, Zhong; Woda, Bruce A; Mercurio, Arthur M; Qin, Jianjie; Huang, Xinli; Zhang, Feng

    2014-06-01

    IMP3 is a fetal protein not expressed in normal adult tissues. IMP3 is an oncoprotein and a useful biomarker for a variety of malignancies and is associated with reduced overall survival of a number of them. IMP3 expression and its prognostic value for patients with intrahepatic cholangiocarcinoma (ICC) have not been well investigated. The molecular mechanism underlying IMP3 expression in human cancer cells remains to be elucidated. Here we investigated IMP3 expression in ICC and adjacent nonneoplastic liver in 72 unifocal primary ICCs from a single institute by immunohistochemistry, immunoblotting, and real-time polymerase chain reaction. IMP3 was specifically expressed in cancer cells but not in the surrounding normal tissue, and 59 (82%) of 72 ICCs were IMP3 positive by immunohistochemistry. Among 35 cases with lymphovascular invasion, 26 (74%) showed IMP3 positivity in lymph node metastases. IMP3 expression was significantly correlated with tumor size, pathological grade, metastasis, and clinical stage. Kaplan-Meier analysis demonstrated an inverse correlation between IMP3 expression and overall survival rate. Multivariate analysis revealed that IMP3 was the only risk factor associated with survival. To further explore the mechanism of IMP3 expression in cancers, we identified 2 CpG islands at IMP3 proximal promoter. Interestingly, the IMP3 promoter was almost completely demethylated in ICCs in contrast to densely methylated promoter in normal liver tissues. IMP3 expression is a useful biomarker for ICCs and can provide an independent prognostic value for patients with ICC. To our knoweldge, this is the first direct evidence of epigenetic deregulation of IMP3 in human cancer. Copyright © 2014 The Auhtors. Published by Elsevier Inc. All rights reserved.

  7. Optimization of labeling conditions of n-isopropyl-p-iodoamphetamine chloridate (IMP) with radioiodine. Biological distribution studies

    International Nuclear Information System (INIS)

    Colturato, Maria Tereza

    2000-01-01

    The development of this work was based on a great interest from the medical community in the utilization of N-isopropyl-p-iodoamphetamine chloridate (IMP) labeled with 123 l, for brain perfusion evaluation. The IMP was initially characterized by: Melting Point (MP), Infrared Spectrophotometry (IR), Nuclear Magnetic Resonance Spectrometry (NMR), Elemental Analysis and High Performance Liquid Chromatography (HPLC). After having chosen the ideal method (nucleophilic substitution) to label IMP with that used Cu(I) as reducing agent and ascorbic acid as catalyzing of Cu(II), studies were performed to optimize the labeling parameters of 123 l-IMP: temperature reaction, time reaction, ascorbic acid mass, pH and molar ratio, and stability of the final product. The quality control method (ascending paper chromatographic) used to determine the radiochemistry purity showed to be efficient, fast and of easily handling for routine production. Biological distribution studies were performed with laboratory animals (mice) to determine the percent administered dose in the blood, different organs and whole body after intravenous administration of the radiopharmaceutical. Toxicological evaluation and in vitro study to determine the plasmatic protein binding were also done. The data of the biological distribution in mice have shown that the product crossed the intact blood brain barrier, for a enough time to obtain brain scintigraphic image, thus, allowing a follow up of further studies after the intravenous administration of the radiopharmaceutical. The 123 l-IMP showed a blood clearance and then the principal elimination route was the urinary. The kinetic study of 123 l-IMP, submitting blood samples data to BIEXP.BAS program, showed a biexponential pattern which allowed demonstrating that the compound presents a first phase of quick distribution and a second one slower corresponding to the equilibrium and elimination. Based on the results from radiochemical purity, stability and

  8. The protein network surrounding the human telomere repeat binding factors TRF1, TRF2, and POT1.

    Directory of Open Access Journals (Sweden)

    Richard J Giannone

    2010-08-01

    Full Text Available Telomere integrity (including telomere length and capping is critical in overall genomic stability. Telomere repeat binding factors and their associated proteins play vital roles in telomere length regulation and end protection. In this study, we explore the protein network surrounding telomere repeat binding factors, TRF1, TRF2, and POT1 using dual-tag affinity purification in combination with multidimensional protein identification technology liquid chromatography--tandem mass spectrometry (MudPIT LC-MS/MS. After control subtraction and data filtering, we found that TRF2 and POT1 co-purified all six members of the telomere protein complex, while TRF1 identified five of six components at frequencies that lend evidence towards the currently accepted telomere architecture. Many of the known TRF1 or TRF2 interacting proteins were also identified. Moreover, putative associating partners identified for each of the three core components fell into functional categories such as DNA damage repair, ubiquitination, chromosome cohesion, chromatin modification/remodeling, DNA replication, cell cycle and transcription regulation, nucleotide metabolism, RNA processing, and nuclear transport. These putative protein-protein associations may participate in different biological processes at telomeres or, intriguingly, outside telomeres.

  9. Sterol regulatory element binding protein-1 (SREBP1) gene expression is similarly increased in polycystic ovary syndrome and endometrial cancer.

    Science.gov (United States)

    Shafiee, Mohamad N; Mongan, Nigel; Seedhouse, Claire; Chapman, Caroline; Deen, Suha; Abu, Jafaru; Atiomo, William

    2017-05-01

    Women with polycystic ovary syndrome have a three-fold higher risk of endometrial cancer. Insulin resistance and hyperlipidemia may be pertinent factors in the pathogenesis of both conditions. The aim of this study was to investigate endometrial sterol regulatory element binding protein-1 gene expression in polycystic ovary syndrome and endometrial cancer endometrium, and to correlate endometrial sterol regulatory element binding protein-1 gene expression with serum lipid profiles. A cross-sectional study was performed at Nottingham University Hospital, UK. A total of 102 women (polycystic ovary syndrome, endometrial cancer and controls; 34 participants in each group) were recruited. Clinical and biochemical assessments were performed before endometrial biopsies were obtained from all participants. Taqman real-time polymerase chain reaction for endometrial sterol regulatory element binding protein-1 gene and its systemic protein expression were analyzed. The body mass indices of women with polycystic ovary syndrome (29.28 ± 2.91 kg/m 2 ) and controls (28.58 ± 2.62 kg/m 2 ) were not significantly different. Women with endometrial cancer had a higher mean body mass index (32.22 ± 5.70 kg/m 2 ). Sterol regulatory element binding protein-1 gene expression was significantly increased in polycystic ovary syndrome and endometrial cancer endometrium compared with controls (p ovary syndrome, but this was not statistically significant. Similarly, statistically insignificant positive correlations were found between endometrial sterol regulatory element binding protein-1 gene expression and body mass index in endometrial cancer (r = 0.643, p = 0.06) and waist-hip ratio (r = 0.096, p = 0.073). Sterol regulatory element binding protein-1 gene expression was significantly positively correlated with triglyceride in both polycystic ovary syndrome and endometrial cancer (p = 0.028 and p = 0.027, respectively). Quantitative serum sterol regulatory element

  10. Water binding of proteins in the processing frankfurter-type sausages. Part. 1. Water-binding ability of freeze-dried meat fractions containing myofibrillar and stromal proteins.

    Science.gov (United States)

    Heinevetter, L; Gassmann, B; Kroll, J

    1987-01-01

    As soon as possible and 48 h after slaughter respectively, from both blade-bone muscle groups of cattle and pig carcasses the "thick pieces" were excised, extracted, and fractionated. Residues and precipitates from water and salt extracts resulted were freeze-dried, and an improved Baumann capillary suction apparatus was used to measure their water binding capacity (WBC) with and without addition of 2% sodium chloride and/or heating to 80 degrees C. With one exception the WBC results followed a relative pattern demonstrating the final residues (stromal proteins and leavings of myofibrillar proteins) binding the highest amount of added water, precipitates of dialysis (mainly containing myofibrillar proteins) a remarkable amount and powdered meats the least. As scanning electron micrographs confirmed, there were no fibrous structures in the precipitates resulted from dialysis of salt solutions (1.0 mol/1). Heating decreased the spontaneous water uptake of all fractions. Addition of sodium chloride had only a noticeable capillary-suction and swelling effect on unheated samples. Hence swelling of undissolved protein structures (extraction of myosin and possibly of actomyosin) is therefore not the only way for water binding in frankfurter-type sausages.

  11. The Potato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein*

    Science.gov (United States)

    Fenyk, Stepan; Townsend, Philip D.; Dixon, Christopher H.; Spies, Gerhard B.; de San Eustaquio Campillo, Alba; Slootweg, Erik J.; Westerhof, Lotte B.; Gawehns, Fleur K. K.; Knight, Marc R.; Sharples, Gary J.; Goverse, Aska; Pålsson, Lars-Olof; Takken, Frank L. W.; Cann, Martin J.

    2015-01-01

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR. PMID:26306038

  12. Characterization of a cocaine binding protein in human placenta

    International Nuclear Information System (INIS)

    Ahmed, M.S.; Zhou, D.H.; Maulik, D.; Eldefrawi, M.E.

    1990-01-01

    [ 3 H]-Cocaine binding sites are identified in human placental villus tissue plasma membranes. These binding sites are associated with a protein and show saturable and specific binding of [ 3 H]-cocaine with a high affinity site of 170 fmole/mg protein. The binding is lost with pretreatment with trypsin or heat. The membrane bound protein is solubilized with the detergent 3-(3-cholamidopropyl)dimethyl-ammonio-1-propane sulphonate (CHAPS) with retention of its saturable and specific binding of [ 3 H]-cocaine. The detergent-protein complex migrates on a sepharose CL-6B gel chromatography column as a protein with an apparent molecular weight of 75,900. The protein has an S 20,w value of 5.1. The binding of this protein to norcocaine, pseudococaine, nomifensine, imipramine, desipramine, amphetamine and dopamine indicates that it shares some, but not all, the properties of the brain cocaine receptor. The physiologic significance of this protein in human placenta is currently unclear

  13. Substrate-Triggered Exosite Binding: Synergistic Dendrimer/Folic Acid Action for Achieving Specific, Tight-Binding to Folate Binding Protein.

    Science.gov (United States)

    Chen, Junjie; van Dongen, Mallory A; Merzel, Rachel L; Dougherty, Casey A; Orr, Bradford G; Kanduluru, Ananda Kumar; Low, Philip S; Marsh, E Neil G; Banaszak Holl, Mark M

    2016-03-14

    Polymer-ligand conjugates are designed to bind proteins for applications as drugs, imaging agents, and transport scaffolds. In this work, we demonstrate a folic acid (FA)-triggered exosite binding of a generation five poly(amidoamine) (G5 PAMAM) dendrimer scaffold to bovine folate binding protein (bFBP). The protein exosite is a secondary binding site on the protein surface, separate from the FA binding pocket, to which the dendrimer binds. Exosite binding is required to achieve the greatly enhanced binding constants and protein structural change observed in this study. The G5Ac-COG-FA1.0 conjugate bound tightly to bFBP, was not displaced by a 28-fold excess of FA, and quenched roughly 80% of the initial fluorescence. Two-step binding kinetics were measured using the intrinsic fluorescence of the FBP tryptophan residues to give a KD in the low nanomolar range for formation of the initial G5Ac-COG-FA1.0/FBP* complex, and a slow conversion to the tight complex formed between the dendrimer and the FBP exosite. The extent of quenching was sensitive to the choice of FA-dendrimer linker chemistry. Direct amide conjugation of FA to G5-PAMAM resulted in roughly 50% fluorescence quenching of the FBP. The G5Ac-COG-FA, which has a longer linker containing a 1,2,3-triazole ring, exhibited an ∼80% fluorescence quenching. The binding of the G5Ac-COG-FA1.0 conjugate was compared to poly(ethylene glycol) (PEG) conjugates of FA (PEGn-FA). PEG2k-FA had a binding strength similar to that of FA, whereas other PEG conjugates with higher molecular weight showed weaker binding. However, no PEG conjugates gave an increased degree of total fluorescence quenching.

  14. Maize AUXIN-BINDING PROTEIN 1 and AUXIN-BINDING PROTEIN 4 impact on leaf growth, elongation, and seedling responsiveness to auxin and light

    Czech Academy of Sciences Publication Activity Database

    Jurišić-Knežev, Dejana; Čudejková, Mária; Zalabák, David; Hlobilová, Marta; Rolčík, Jakub; Pěnčík, Aleš; Bergougnoux, Véronique; Fellner, Martin

    2012-01-01

    Roč. 90, č. 10 (2012), s. 990-1006 ISSN 1916-2790 R&D Projects: GA MŠk(CZ) 1P05ME792 Institutional research plan: CEZ:AV0Z50380511 Keywords : auxin * auxin-binding protein * growth Subject RIV: EF - Botanics Impact factor: 1.225, year: 2012

  15. Identification of FUSE-binding proteins as interacting partners of TIA proteins

    International Nuclear Information System (INIS)

    Rothe, Francoise; Gueydan, Cyril; Bellefroid, Eric; Huez, Georges; Kruys, Veronique

    2006-01-01

    TIA-1 and TIAR are closely related RNA-binding proteins involved in several mechanisms of RNA metabolism, including alternative hnRNA splicing and mRNA translation regulation. In particular, TIA-1 represses tumor necrosis factor (TNF) mRNA translation by binding to the AU-rich element (ARE) present in the mRNA 3' untranslated region. Here, we demonstrate that TIA proteins interact with FUSE-binding proteins (FBPs) and that fbp genes are co-expressed with tia genes during Xenopus embryogenesis. FBPs participate in various steps of RNA processing and degradation. In Cos cells, FBPs co-localize with TIA proteins in the nucleus and migrate into TIA-enriched cytoplasmic granules upon oxidative stress. Overexpression of FBP2-KH3 RNA-binding domain fused to EGFP induces the specific sequestration of TIA proteins in cytoplasmic foci, thereby precluding their nuclear accumulation. In cytosolic RAW 264.7 macrophage extracts, FBPs are found associated in EMSA to the TIA-1/TNF-ARE complex. Together, our results indicate that TIA and FBP proteins may thus be relevant biological involved in common events of RNA metabolism occurring both in the nucleus and the cytoplasm

  16. Activation of the ATR kinase by the RPA-binding protein ETAA1

    DEFF Research Database (Denmark)

    Haahr, Peter; Hoffmann, Saskia; Tollenaere, Maxim A X

    2016-01-01

    Activation of the ATR kinase following perturbations to DNA replication relies on a complex mechanism involving ATR recruitment to RPA-coated single-stranded DNA via its binding partner ATRIP and stimulation of ATR kinase activity by TopBP1. Here, we discovered an independent ATR activation pathway...... in vertebrates, mediated by the uncharacterized protein ETAA1 (Ewing's tumour-associated antigen 1). Human ETAA1 accumulates at DNA damage sites via dual RPA-binding motifs and promotes replication fork progression and integrity, ATR signalling and cell survival after genotoxic insults. Mechanistically...

  17. The calcium binding properties and structure prediction of the Hax-1 protein.

    Science.gov (United States)

    Balcerak, Anna; Rowinski, Sebastian; Szafron, Lukasz M; Grzybowska, Ewa A

    2017-01-01

    Hax-1 is a protein involved in regulation of different cellular processes, but its properties and exact mechanisms of action remain unknown. In this work, using purified, recombinant Hax-1 and by applying an in vitro autoradiography assay we have shown that this protein binds Ca 2+ . Additionally, we performed structure prediction analysis which shows that Hax-1 displays definitive structural features, such as two α-helices, short β-strands and four disordered segments.

  18. Extracellular and intracellular steroid binding proteins

    International Nuclear Information System (INIS)

    Wagner, R.K.

    1978-01-01

    Steroid hormone binding proteins can be measured, after the removal of endogenous steroids, as specific complexes with radio-labelled hormones. In this study all the requirements for a quantitative determination of steroid hormone binding proteins are defined. For different methods, agargel electrophoresis, density gradient centrifugation, equilibrium dialysis and polyacrylamide electrophoresis have been evaluated. Agar electrophoresis at low temperature was found to be the simplest and most useful procedure. With this method the dissociation rates of high affinity complexes can be assessed and absolute binding protein concentrations can be determined. The dissociation rates of the oestradiol-oestrogen receptor complex and the R-5020-progestin receptor complex are low (1-2% per h run time.) In contrast, that of complexes between androgen receptor and dihydrotestosterone (17β-hydroxy-5α-androstan-3-one (DHT), progestin receptor and progesterone, corticosteroid binding globulin (CBG) and cortisol or progesterone and sex hormone binding globulin (SHBG) and DHT were hign (16-27% per h run time). Target tissue extracts (cytosols) contain, besides soluble tissue proteins, large amounts of plasma proteins. The extent of this plasma contamination can be determined by measuring the albumin concentration in cytosols by immunodiffusion. In cytosols of 4 different human target tissues the albumin content varied from 20-30% corresponding to an even higher whole plasma concentration. Steroid binding plasma proteins, such as CBG and SHBG are constituents of this containment. (author)

  19. Proportionate Dwarfism in Mice Lacking Heterochromatin Protein 1 Binding Protein 3 (HP1BP3) Is Associated With Alterations in the Endocrine IGF-1 Pathway

    OpenAIRE

    Garfinkel, Benjamin P.; Arad, Shiri; Le, Phuong T.; Bustin, Michael; Rosen, Clifford J.; Gabet, Yankel; Orly, Joseph

    2015-01-01

    Heterochromatin protein 1 binding protein 3 (HP1BP3) is a recently described histone H1-related protein with roles in chromatin structure and transcriptional regulation. To explore the potential physiological role of HP1BP3, we have previously described an Hp1bp3?/? mouse model with reduced postnatal viability and growth. We now find that these mice are proportionate dwarfs, with reduction in body weight, body length, and organ weight. In addition to their small size, microcomputed tomography...

  20. The Potato Nucleotide-binding Leucine-rich Repeat (NLR) Immune Receptor Rx1 Is a Pathogen-dependent DNA-deforming Protein.

    Science.gov (United States)

    Fenyk, Stepan; Townsend, Philip D; Dixon, Christopher H; Spies, Gerhard B; de San Eustaquio Campillo, Alba; Slootweg, Erik J; Westerhof, Lotte B; Gawehns, Fleur K K; Knight, Marc R; Sharples, Gary J; Goverse, Aska; Pålsson, Lars-Olof; Takken, Frank L W; Cann, Martin J

    2015-10-09

    Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Imparting albumin-binding affinity to a human protein by mimicking the contact surface of a bacterial binding protein.

    Science.gov (United States)

    Oshiro, Satoshi; Honda, Shinya

    2014-04-18

    Attachment of a bacterial albumin-binding protein module is an attractive strategy for extending the plasma residence time of protein therapeutics. However, a protein fused with such a bacterial module could induce unfavorable immune reactions. To address this, we designed an alternative binding protein by imparting albumin-binding affinity to a human protein using molecular surface grafting. The result was a series of human-derived 6 helix-bundle proteins, one of which specifically binds to human serum albumin (HSA) with adequate affinity (KD = 100 nM). The proteins were designed by transferring key binding residues of a bacterial albumin-binding module, Finegoldia magna protein G-related albumin-binding domain (GA) module, onto the human protein scaffold. Despite 13-15 mutations, the designed proteins maintain the original secondary structure by virtue of careful grafting based on structural informatics. Competitive binding assays and thermodynamic analyses of the best binders show that the binding mode resembles that of the GA module, suggesting that the contacting surface of the GA module is mimicked well on the designed protein. These results indicate that the designed protein may act as an alternative low-risk binding module to HSA. Furthermore, molecular surface grafting in combination with structural informatics is an effective approach for avoiding deleterious mutations on a target protein and for imparting the binding function of one protein onto another.

  2. Epilepsy, Behavioral Abnormalities, and Physiological Comorbidities in Syntaxin-Binding Protein 1 (STXBP1 Mutant Zebrafish.

    Directory of Open Access Journals (Sweden)

    Brian P Grone

    Full Text Available Mutations in the synaptic machinery gene syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1, are linked to childhood epilepsies and other neurodevelopmental disorders. Zebrafish STXBP1 homologs (stxbp1a and stxbp1b have highly conserved sequence and are prominently expressed in the larval zebrafish brain. To understand the functions of stxbp1a and stxbp1b, we generated loss-of-function mutations using CRISPR/Cas9 gene editing and studied brain electrical activity, behavior, development, heart physiology, metabolism, and survival in larval zebrafish. Homozygous stxbp1a mutants exhibited a profound lack of movement, low electrical brain activity, low heart rate, decreased glucose and mitochondrial metabolism, and early fatality compared to controls. On the other hand, homozygous stxbp1b mutants had spontaneous electrographic seizures, and reduced locomotor activity response to a movement-inducing "dark-flash" visual stimulus, despite showing normal metabolism, heart rate, survival, and baseline locomotor activity. Our findings in these newly generated mutant lines of zebrafish suggest that zebrafish recapitulate clinical phenotypes associated with human syntaxin-binding protein 1 mutations.

  3. pIMP-PH114 carrying bla IMP-4 in a Klebsiella pneumoniae strain is closely related to other multidrug-resistant IncA/C2 plasmids.

    Science.gov (United States)

    Ho, Pak-Leung; Lo, Wai-U; Chan, Jane; Cheung, Yuk-Yam; Chow, Kin-Hung; Yam, Wing-Cheong; Lin, Chi-Ho; Que, Tak-Lun

    2014-02-01

    The IncA/C plasmids are broad host-range vehicles which have been associated with wide dissemination of CMY-2 among Enterobacteriaceae of human and animal origins. Acquired metallo-β-lactamases (MBLs) such as the IMP-type enzymes are increasingly reported in multidrug-resistant Gram-negative bacteria worldwide, particularly in Enterobacteriaceae. We described the complete sequence of the first IMP-4-encoding IncA/C2 plasmid, pIMP-PH114 (151,885 bp), from a sequence type 1 Klebsiella pneumoniae strain that was recovered from a patient who was hospitalized in the Philippines. pIMP-PH114 consists of a backbone from the IncA/C2 plasmids, with the insertion of a novel Tn21-like class 1 integron composite structure (containing the cassette array bla IMP-4-qacG-aacA4-catB3, followed by a class C β-lactamase bla DHA-1 and the mercury resistance operon, merRTPCADE) and a sul2-floR encoding region. Phylogenetic analysis of the IncA/C repA sequences showed that pIMP-PH114 formed a subgroup with other IncA/C plasmids involved in the international spread of CMY-2, TEM-24 and NDM-1. Identical bla IMP-4 arrays have been described among different Enterobacteriaceae and Acinetobacter spp. in China, Singapore and Australia but the genetic context is different. The broad host range of IncA/C plasmids may have facilitated dissemination of the bla IMP-4 arrays among different diverse groups of bacteria.

  4. High insulin-like growth factor-binding protein-1 (IGFBP-1) is associated with low relative muscle mass in older women

    DEFF Research Database (Denmark)

    Stilling, Frej; Wallenius, Sara; Michaëlsson, Karl

    2017-01-01

    . In the present study we investigate the association between serum IGFBP-1 and muscle mass. Design Cross-sectional analysis of 4908 women, between 55 and 85 years old, participating in the Swedish Mammography Cohort-Clinical. Methods We defined low relative muscle mass (LRMM) as an appendicular lean mass divided...... relative muscle mass. High IGFBP-1 may be a marker of a catabolic state.......Objective Skeletal muscles serve several important roles in maintaining good health. Insulin-like growth factor-1 (IGF-1) is a promoter of protein synthesis in skeletal muscle. Its binding protein, Insulin-like growth factor-binding protein-1 (IGFBP-1) can be one determinant of IGF-1 activity...

  5. Identification and characterization of mouse PSF1-binding protein, SLD5

    International Nuclear Information System (INIS)

    Kong, Lingyu; Ueno, Masaya; Itoh, Machiko; Yoshioka, Katsuji; Takakura, Nobuyuki

    2006-01-01

    Although most somatic cells cannot proliferate, immature cells proliferate continuously to produce mature cells. Recently, we cloned mouse PSF1 from a hematopoietic stem cell specific cDNA library and reported that PSF1 is indispensable for the proliferation of immature cells. To identify the PSF1-binding protein, we used the yeast two-hybrid system with PSF1 as bait, and identified and cloned SLD5. SLD5 interacted with a central region of PSF1. Tissue distribution of SLD5 was quite similar to that of PSF1. When overexpressed, SLD5 protein was co-localized with PSF1. These data suggest that PSF1 and SLD5 may cooperate in the proliferation of immature cell populations

  6. The structure of an LIM-only protein 4 (LMO4 and Deformed epidermal autoregulatory factor-1 (DEAF1 complex reveals a common mode of binding to LMO4.

    Directory of Open Access Journals (Sweden)

    Soumya Joseph

    Full Text Available LIM-domain only protein 4 (LMO4 is a widely expressed protein with important roles in embryonic development and breast cancer. It has been reported to bind many partners, including the transcription factor Deformed epidermal autoregulatory factor-1 (DEAF1, with which LMO4 shares many biological parallels. We used yeast two-hybrid assays to show that DEAF1 binds both LIM domains of LMO4 and that DEAF1 binds the same face on LMO4 as two other LMO4-binding partners, namely LIM domain binding protein 1 (LDB1 and C-terminal binding protein interacting protein (CtIP/RBBP8. Mutagenic screening analysed by the same method, indicates that the key residues in the interaction lie in LMO4LIM2 and the N-terminal half of the LMO4-binding domain in DEAF1. We generated a stable LMO4LIM2-DEAF1 complex and determined the solution structure of that complex. Although the LMO4-binding domain from DEAF1 is intrinsically disordered, it becomes structured on binding. The structure confirms that LDB1, CtIP and DEAF1 all bind to the same face on LMO4. LMO4 appears to form a hub in protein-protein interaction networks, linking numerous pathways within cells. Competitive binding for LMO4 therefore most likely provides a level of regulation between those different pathways.

  7. Effects of cigarette smoking on I-123 IMP clearance from the lung

    International Nuclear Information System (INIS)

    Katoh, Kunihiko; Takahashi, Tsuneo

    1990-01-01

    N-isopropyl-p-I-123-iodoamphetamine (I-123 IMP), originally developed as a brain scanning agent, is also taken up by the lung. To evaluate the cigarette smoking on the uptake of IMP by the lung, we studied I-123 IMP clearance from the lung on 14 volunteers; 5 non-smokers and 9 smokers. After the injection of 111 MBq (3mCi) of I-123 IMP into the medial cubital vein, the time-activity curve for 60 minutes and the regional activity using 1 frame per minute and a 64 x 64 matrix was obtained. I-123 IMP clearance curve was described as follows: C(t)=A 1 e -k1t +A 2 e -k2t (A 1 , A 2 : intercepts, and k 1 , k 2 : slopes of the exponential components). I-123 IMP clearance was delayed in smokers, and k 2 was smaller in smokers. Also a significant correlations between k 1 , k 2 , and the number of cigarettes smoked per day were found. In conclusion, this study suggests that the delayed clearance and retention of I-123 IMP in the lung indicate the lung metabolic disorders due to cigarette smoking. (author)

  8. [Insulin-like growth factor-binding protein-1: a new biochemical marker of nonalcoholic fatty liver disease?].

    Science.gov (United States)

    Graffigna, Mabel Nora; Belli, Susana H; de Larrañaga, Gabriela; Fainboim, Hugo; Estepo, Claudio; Peres, Silvia; García, Natalia; Levalle, Oscar

    2009-03-01

    to assess the presence of nonalcoholic fatty liver disease in patients with risk factors for this pathology (obesity, dyslipidemia, metabolic syndrome and diabetes type 2) and to determine the role of insulin, HOMA index, insulin-like growth factor-binding protein-1, sex hormone-binding globulin and plasminogen activator inhibitor type 1, as biochemical markers. Ninety-one patients with risk factors for nonalcoholic fatty liver disease were evaluated. Serum transaminases, insulin, sex hormone-binding globulin, insulin-like growth factor-binding protein-1 and plasminogen activator inhibitor type 1 were measured. The diagnosis of fatty liver was performed by ultrasonography and liver biopsies were performed to 31 subjects who had steatosis by ultrasonography and high alanine aminotransferase. Nonalcoholic fatty liver disease was present in 65 out of 91 patients (71,4%). Liver biopsy performed to 31 subjects confirmed nonalcoholic steatohepatitis. Twenty-five patients had different degrees of fibrosis. Those individuals with fatty liver had higher waist circumference, serum levels of triglycerides, insulin and HOMA index, and lower serum insulin-like growth factor-binding protein-1 concentration. The degree ofhepatic steatosis by ultrasonography was positively correlated to waist circumference, triglycerides, insulin and HOMA index (p<0,003; p<0,003; p<0,002 and p<0,001, respectively), and was negatively correlated to HDL-cholesterol and insulin-like growth factor-binding protein-1 (p<0,025 and p<0,018, respectively). We found a high prevalence of NAFLD in patients with risk factors, most of them overweight or obese. Although SHBG and PAI-1 have a closely relationship to insulin resistance, they did not show to be markers of NAFLD. Regardless of low IGFBP-1 levels associated with NAFLD, serum IGFBP-1 measure is less accessible than insulin and triglycerides levels, HOMA index and waist circumference. Moreover, it is not a better marker for NAFLD than the above

  9. [Determination of plasma protein binding rate of arctiin and arctigenin with ultrafiltration].

    Science.gov (United States)

    Han, Xue-Ying; Wang, Wei; Tan, Ri-Qiu; Dou, De-Qiang

    2013-02-01

    To determine the plasma protein binding rate of arctiin and arctigenin. The ultrafiltration combined with HPLC was employed to determine the plasma protein binding rate of arctiin and arctigenin as well as rat plasma and healthy human plasma proteins. The plasma protein binding rate of arctiin with rat plasma at the concentrations of 64. 29, 32.14, 16.07 mg x L(-1) were (71.2 +/- 2.0)%, (73.4 +/- 0.61)%, (78.2 +/- 1.9)%, respectively; while the plasma protein binding rate of arctiin with healthy human plasma at the above concentrations were (64.8 +/- 3.1)%, (64.5 +/- 2.5)%, (77.5 +/- 1.7)%, respectively. The plasma protein binding rate of arctigenin with rat plasma at the concentrations of 77.42, 38.71, 19.36 mg x L(-1) were (96.7 +/- 0.41)%, (96.8 +/- 1.6)%, (97.3 +/- 0.46)%, respectively; while the plasma protein binding rate of arctigenin with normal human plasma at the above concentrations were (94.7 +/- 3.1)%, (96.8 +/- 1.6)%, (97.9 +/- 1.3)%, respectively. The binding rate of arctiin with rat plasma protein was moderate, which is slightly higher than the binding rate of arctiin with healthy human plasma protein. The plasma protein binding rates of arctigenin with both rat plasma and healthy human plasma are very high.

  10. NifI inhibits nitrogenase by competing with Fe protein for binding to the MoFe protein

    International Nuclear Information System (INIS)

    Dodsworth, Jeremy A.; Leigh, John A.

    2007-01-01

    Reduction of substrate by nitrogenase requires direct electron transfer from the Fe protein to the MoFe protein. Inhibition of nitrogenase activity in Methanococcus maripaludis occurs when the regulatory protein NifI 1,2 binds the MoFe protein. This inhibition is relieved by 2-oxoglutarate. Here we present evidence that NifI 1,2 binding prevents association of the two nitrogenase components. Increasing amounts of Fe protein competed with NifI 1,2 , decreasing its inhibitory effect. NifI 1,2 prevented the co-purification of MoFe protein with a mutant form of the Fe protein that forms a stable complex with the MoFe protein, and NifI 1,2 was unable to bind to an AlF 4 - -stabilized Fe protein:MoFe protein complex. NifI 1,2 inhibited ATP- and MoFe protein-dependent oxidation of the Fe protein, and 2OG relieved this inhibition. These results support a model where NifI 1,2 competes with the Fe protein for binding to MoFe protein and prevents electron transfer

  11. Overproduction, purification, crystallization and preliminary X-ray diffraction analysis of Cockayne syndrome protein A in complex with DNA damage-binding protein 1

    International Nuclear Information System (INIS)

    Meulenbroek, Elisabeth M.; Pannu, Navraj S.

    2011-01-01

    Human Cockayne syndrome protein A has been cocrystallized with human DNA damage-binding protein 1 and data have been collected to 2.9 Å resolution. Cockayne syndrome protein A is one of the main components in mammalian transcription coupled repair. Here, the overproduction, purification and crystallization of human Cockayne syndrome protein A in complex with its interacting partner DNA damage binding protein 1 are reported. The complex was coproduced in insect cells, copurified and crystallized using sitting drops with PEG 3350 and sodium citrate as crystallizing agents. The crystals had unit-cell parameters a = b = 142.03, c = 250.19 Å and diffracted to 2.9 Å resolution on beamline ID14-1 at the European Synchrotron Radiation Facility

  12. The Magnaporthe oryzae Alt A 1-like protein MoHrip1 binds to the plant plasma membrane.

    Science.gov (United States)

    Zhang, Yi; Liang, Yingbo; Dong, Yijie; Gao, Yuhan; Yang, Xiufen; Yuan, Jingjing; Qiu, Dewen

    2017-10-07

    MoHrip1, a protein isolated from Magnaporthe oryzae, belongs to the Alt A 1 (AA1) family. mohrip1 mRNA levels showed inducible expression throughout the infection process in rice. To determine the location of MoHrip1 in M. oryzae, a mohrip1-gfp mutant was generated. Fluorescence microscopy observations and western blotting analysis showed that MoHrip1 was both present in the secretome and abundant in the fungal cell wall. To obtain MoHrip1 protein, we carried out high-yield expression of MoHrip1 in Pichia pastoris. Treatment of tobacco plants with MoHrip1 induced the formation of necrosis, accumulation of reactive oxygen species and expression of several defense-related genes, as well as conferred disease resistance. By fusion to green fluorescent protein, we showed that MoHrip1 was able to bind to the tobacco and rice plant plasma membrane, causing rapid morphological changes at the cellular level, such as cell shrinkage and chloroplast disorganization. These findings indicate that MoHrip1 is a microbe-associated molecular pattern that is perceived by the plant immune system. This is the first study on an AA1 family protein that can bind to the plant plasma membrane. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Neuronal low-density lipoprotein receptor-related protein 1 binds and endocytoses prion fibrils via receptor cluster 4

    DEFF Research Database (Denmark)

    Jen, Angela; Parkyn, Celia J; Mootoosamy, Roy C

    2010-01-01

    For infectious prion protein (designated PrP(Sc)) to act as a template to convert normal cellular protein (PrP(C)) to its distinctive pathogenic conformation, the two forms of prion protein (PrP) must interact closely. The neuronal receptor that rapidly endocytoses PrP(C) is the low......-density lipoprotein receptor-related protein 1 (LRP1). We show here that on sensory neurons LRP1 is also the receptor that binds and rapidly endocytoses smaller oligomeric forms of infectious prion fibrils, and recombinant PrP fibrils. Although LRP1 binds two molecules of most ligands independently to its receptor...... both prion and LRP1 biology....

  14. Gonadal cell surface receptor for plasma retinol-binding protein

    International Nuclear Information System (INIS)

    Krishna Bhat, M.; Cama, H.R.

    1979-01-01

    A specific membrane receptor for plasma retinol-binding protein has been demonstrated in testicular cells. Prealbumin-2 did not show any specific binding to the membrane. The affinity of retinol-binding protein for receptor drastically decreases upon delivery of retinol and the retinol-binding protein does not enter the cell. The mechanism of delivery of retinol to the target cell by plasma retinol-binding protein has been investigated. The process involves two steps; direct binding of retinol-binding protein to the receptor and uptake of retinol by the target cell with a concomitant drastic reduction in the affinity of the retinol-binding protein to the receptor. Probably the second step of the process needs a cytosolic factor, possibly the cellular retinol-binding protein or an enzyme. The binding of retinol-binding protein to the receptor is saturable and reversible. The interaction shows a Ksub(d) value of 2.1x10 -10 . The specific binding of a retinol-binding protein with great affinity has been employed in the development of a method for radioassay of the receptor. The receptor level of the gonadal cell has been found to vary with the stage of differentiation. The receptor concentrations in 11-week-old birds and adult birds are comparable. Testosterone treatment of 11-week-old birds produced a substantial increase in the receptor concentration over control, while the protein content increased marginally, indicating that, probably, synthesis of the receptor is specifcally induced by testosterone during spermatogenesis, and the concentration of receptor is relatively higher before the formation of the acrosome. (Auth.)

  15. E-selectin ligand-1 (ESL-1) is a novel adiponectin binding protein on cell adhesion.

    Science.gov (United States)

    Yamamoto, Hiroyasu; Kuroda, Nana; Uekita, Hiromi; Kochi, Ikoi; Matsumoto, Akane; Niinaga, Ryu; Funahashi, Tohru; Shimomura, Iichiro; Kihara, Shinji

    2016-02-05

    Adiponectin (APN) is an adipocyte-derived bioactive molecule with anti-diabetic and anti-atherogenic properties. Although anti-diabetic effects are mostly mediated by the adiponectin receptors AdipoR1 and AdipoR2, the anti-atherogenic mechanisms have not been fully elucidated. In this study, we identified E-selectin ligand (ESL)-1 as a novel APN-binding protein by mass spectrometry analysis of HepG2 cell-derived immunoprecipitant with an anti-APN antibody. Cell adhesion assays using fluorescence-labelled monocyte cell line THP-1 cells and human umbilical vein endothelial cells (HUVECs) revealed that APN-pre-treated THP-1 cells had reduced binding ability to HUVECs. This APN-mediated suppressive effect on monocyte binding to endothelial cells was partially abrogated by targeting ESL-1 with shRNA in THP-1 cells. In addition, serial mutagenesis analysis disclosed that five extracellular amino acids close to the N-terminus of ESL-1 were essential for binding with APN. Our results highlight the fact that interaction between APN and ESL-1 could provide a fundamental mechanism underlying the anti-atherogenic properties of APN. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Gamma interferon-induced guanylate binding protein 1 is a novel actin cytoskeleton remodeling factor.

    Science.gov (United States)

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J K; Schubert, Dirk W; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies.

  17. Human plasminogen binding protein tetranectin

    DEFF Research Database (Denmark)

    Kastrup, J S; Rasmussen, H; Nielsen, B B

    1997-01-01

    The recombinant human plasminogen binding protein tetranectin (TN) and the C-type lectin CRD of this protein (TN3) have been crystallized. TN3 crystallizes in the tetragonal space group P4(2)2(1)2 with cell dimensions a = b = 64.0, c = 75.7 A and with one molecule per asymmetric unit. The crystals...... to at least 2.5 A. A full data set has been collected to 3.0 A. The asymmetric unit contains one monomer of TN. Molecular replacement solutions for TN3 and TN have been obtained using the structure of the C-type lectin CRD of rat mannose-binding protein as search model. The rhombohedral space group indicates...

  18. Binding of Multiple Rap1 Proteins Stimulates Chromosome Breakage Induction during DNA Replication.

    Directory of Open Access Journals (Sweden)

    Greicy H Goto

    2015-08-01

    Full Text Available Telomeres, the ends of linear eukaryotic chromosomes, have a specialized chromatin structure that provides a stable chromosomal terminus. In budding yeast Rap1 protein binds to telomeric TG repeat and negatively regulates telomere length. Here we show that binding of multiple Rap1 proteins stimulates DNA double-stranded break (DSB induction at both telomeric and non-telomeric regions. Consistent with the role of DSB induction, Rap1 stimulates nearby recombination events in a dosage-dependent manner. Rap1 recruits Rif1 and Rif2 to telomeres, but neither Rif1 nor Rif2 is required for DSB induction. Rap1-mediated DSB induction involves replication fork progression but inactivation of checkpoint kinase Mec1 does not affect DSB induction. Rap1 tethering shortens artificially elongated telomeres in parallel with telomerase inhibition, and this telomere shortening does not require homologous recombination. These results suggest that Rap1 contributes to telomere homeostasis by promoting chromosome breakage.

  19. Binding of complement proteins C1q and C4bp to serum amyloid P component (SAP) in solid contra liquid phase

    DEFF Research Database (Denmark)

    Sørensen, Inge Juul; Nielsen, EH; Andersen, Ove

    1996-01-01

    Serum amyloid P component (SAP), a member of the conserved pentraxin family of plasma proteins, binds calcium dependently to its ligands. The authors investigated SAPs interaction with the complement proteins C4b binding protein (C4bp) and C1q by ELISA, immunoelectrophoresis and electron microscopy....... Binding of these proteins to SAP was demonstrated when SAP was immobilized using F(ab')2 anti-SAP, but not when SAP reacted with these proteins in liquid phase; thus the binding to human SAP was markedly phase state dependent. Presaturation of solid phase SAP with heparin, which binds SAP with high...... affinity, did not interfere with the subsequent binding of C4bp or C1q to SAP. In contrast, collagen I and IV showed partial competition with the binding of C1q to SAP. Using fresh serum, immobilized native SAP bound C4bp whereas binding of C1q/C1 could not be demonstrated. Altogether the results indicate...

  20. The Inner Nuclear Membrane Protein Nemp1 Is a New Type of RanGTP-Binding Protein in Eukaryotes.

    Directory of Open Access Journals (Sweden)

    Takashi Shibano

    Full Text Available The inner nuclear membrane (INM protein Nemp1/TMEM194A has previously been suggested to be involved in eye development in Xenopus, and contains two evolutionarily conserved sequences in the transmembrane domains (TMs and the C-terminal region, named region A and region B, respectively. To elucidate the molecular nature of Nemp1, we analyzed its interacting proteins through those conserved regions. First, we found that Nemp1 interacts with itself and lamin through the TMs and region A, respectively. Colocalization of Nemp1 and lamin at the INM suggests that the interaction with lamin participates in the INM localization of Nemp1. Secondly, through yeast two-hybrid screening using region B as bait, we identified the small GTPase Ran as a probable Nemp1-binding partner. GST pulldown and co-immunoprecipitation assays using region B and Ran mutants revealed that region B binds directly to the GTP-bound Ran through its effector domain. Immunostaining experiments using transfected COS-7 cells revealed that full-length Nemp1 recruits Ran near the nuclear envelope, suggesting a role for Nemp1 in the accumulation of RanGTP at the nuclear periphery. At the neurula-to-tailbud stages of Xenopus embryos, nemp1 expression overlapped with ran in several regions including the eye vesicles. Co-knockdown using antisense morpholino oligos for nemp1 and ran caused reduction of cell densities and severe eye defects more strongly than either single knockdown alone, suggesting their functional interaction. Finally we show that Arabidopsis thaliana Nemp1-orthologous proteins interact with A. thaliana Ran, suggesting their evolutionally conserved physical and functional interactions possibly in basic cellular functions including nuclear transportation. Taken together, we conclude that Nemp1 represents a new type of RanGTP-binding protein.

  1. Clinical relevance of drug binding to plasma proteins

    Science.gov (United States)

    Ascenzi, Paolo; Fanali, Gabriella; Fasano, Mauro; Pallottini, Valentina; Trezza, Viviana

    2014-12-01

    Binding to plasma proteins highly influences drug efficacy, distribution, and disposition. Serum albumin, the most abundant protein in plasma, is a monomeric multi-domain macromolecule that displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds, such as fatty acids and most acidic drugs. α-1-Acid glycoprotein, the second main plasma protein, is a glycoprotein physiologically involved in the acute phase reaction and is the main carrier for basic and neutral drugs. High- and low-density lipoproteins play a limited role in drug binding and are natural drug delivery system only for few lipophilic drugs or lipid-based formulations. Several factors influence drug binding to plasma proteins, such as pathological conditions, concurrent administration of drugs, sex, and age. Any of these factors, in turn, influences drug efficacy and toxicity. Here, biochemical, biomedical, and biotechnological aspects of drug binding to plasma proteins are reviewed.

  2. Trans-Binding Mechanism of Ubiquitin-like Protein Activation Revealed by a UBA5-UFM1 Complex

    Directory of Open Access Journals (Sweden)

    Walaa Oweis

    2016-09-01

    Full Text Available Modification of proteins by ubiquitin or ubiquitin-like proteins (UBLs is a critical cellular process implicated in a variety of cellular states and outcomes. A prerequisite for target protein modification by a UBL is the activation of the latter by activating enzymes (E1s. Here, we present the crystal structure of the non-canonical homodimeric E1, UBA5, in complex with its cognate UBL, UFM1, and supporting biochemical experiments. We find that UBA5 binds to UFM1 via a trans-binding mechanism in which UFM1 interacts with distinct sites in both subunits of the UBA5 dimer. This binding mechanism requires a region C-terminal to the adenylation domain that brings UFM1 to the active site of the adjacent UBA5 subunit. We also find that transfer of UFM1 from UBA5 to the E2, UFC1, occurs via a trans mechanism, thereby requiring a homodimer of UBA5. These findings explicitly elucidate the role of UBA5 dimerization in UFM1 activation.

  3. The cellular RNA-binding protein EAP recognizes a conserved stem-loop in the Epstein-Barr virus small RNA EBER 1.

    Science.gov (United States)

    Toczyski, D P; Steitz, J A

    1993-01-01

    EAP (EBER-associated protein) is an abundant, 15-kDa cellular RNA-binding protein which associates with certain herpesvirus small RNAs. We have raised polyclonal anti-EAP antibodies against a glutathione S-transferase-EAP fusion protein. Analysis of the RNA precipitated by these antibodies from Epstein-Barr virus (EBV)- or herpesvirus papio (HVP)-infected cells shows that > 95% of EBER 1 (EBV-encoded RNA 1) and the majority of HVP 1 (an HVP small RNA homologous to EBER 1) are associated with EAP. RNase protection experiments performed on native EBER 1 particles with affinity-purified anti-EAP antibodies demonstrate that EAP binds a stem-loop structure (stem-loop 3) of EBER 1. Since bacterially expressed glutathione S-transferase-EAP fusion protein binds EBER 1, we conclude that EAP binding is independent of any other cellular or viral protein. Detailed mutational analyses of stem-loop 3 suggest that EAP recognizes the majority of the nucleotides in this hairpin, interacting with both single-stranded and double-stranded regions in a sequence-specific manner. Binding studies utilizing EBER 1 deletion mutants suggest that there may also be a second, weaker EAP-binding site on stem-loop 4 of EBER 1. These data and the fact that stem-loop 3 represents the most highly conserved region between EBER 1 and HVP 1 suggest that EAP binding is a critical aspect of EBER 1 and HVP 1 function. Images PMID:8380232

  4. C to U RNA editing mediated by APOBEC1 requires RNA-binding protein RBM47.

    Science.gov (United States)

    Fossat, Nicolas; Tourle, Karin; Radziewic, Tania; Barratt, Kristen; Liebhold, Doreen; Studdert, Joshua B; Power, Melinda; Jones, Vanessa; Loebel, David A F; Tam, Patrick P L

    2014-08-01

    Cytidine (C) to Uridine (U) RNA editing is a post-transcriptional modification that is accomplished by the deaminase APOBEC1 and its partnership with the RNA-binding protein A1CF. We identify and characterise here a novel RNA-binding protein, RBM47, that interacts with APOBEC1 and A1CF and is expressed in tissues where C to U RNA editing occurs. RBM47 can substitute for A1CF and is necessary and sufficient for APOBEC1-mediated editing in vitro. Editing is further impaired in Rbm47-deficient mutant mice. These findings suggest that RBM47 and APOBEC1 constitute the basic machinery for C to U RNA editing. © 2014 The Authors.

  5. Entrapment of alpha1-acid glycoprotein in high-performance affinity columns for drug-protein binding studies.

    Science.gov (United States)

    Bi, Cong; Jackson, Abby; Vargas-Badilla, John; Li, Rong; Rada, Giana; Anguizola, Jeanethe; Pfaunmiller, Erika; Hage, David S

    2016-05-15

    A slurry-based method was developed for the entrapment of alpha1-acid glycoprotein (AGP) for use in high-performance affinity chromatography to study drug interactions with this serum protein. Entrapment was achieved based on the physical containment of AGP in hydrazide-activated porous silica supports and by using mildly oxidized glycogen as a capping agent. The conditions needed for this process were examined and optimized. When this type of AGP column was used in binding studies, the association equilibrium constant (Ka) measured by frontal analysis at pH 7.4 and 37°C for carbamazepine with AGP was found to be 1.0 (±0.5)×10(5)M(-1), which agreed with a previously reported value of 1.0 (±0.1)×10(5)M(-1). Binding studies based on zonal elution were conducted for several other drugs with such columns, giving equilibrium constants that were consistent with literature values. An entrapped AGP column was also used in combination with a column containing entrapped HSA in a screening assay format to compare the binding of various drugs to AGP and HSA. These results also agreed with previous data that have been reported in literature for both of these proteins. The same entrapment method could be extended to other proteins and to the investigation of additional types of drug-protein interactions. Potential applications include the rapid quantitative analysis of biological interactions and the high-throughput screening of drug candidates for their binding to a given protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. In silico studies on structure-function of DNA GCC- box binding domain of brassica napus DREB1 protein

    International Nuclear Information System (INIS)

    Qamarunnisa, S.; Hussain, M.

    2012-01-01

    DREB1 is a transcriptional factor, which selectively binds with the promoters of the genes involved in stress response in the plants. Homology of DREB protein and its binding element have been detected in the genome of many plants. However, only a few reports exist that discusses the binding properties of this protein with the gene (s) promoter. In the present study, we have undertaken studies exploring the structure-function relationship of Brassica napus DREB1. Multiple sequence alignment, protein homology modeling and intermolecular docking of GCC-box binding domain (GBD) of the said protein was carried out using atomic coordinates of GBD from Arabdiopsis thaliana and GCC-box containing DNA respectively. Similarities and/or identities in multiple, sequence alignment, particularly at the functionally important amino acids, strongly suggested the binding specificity of B. napus DREB1 to GCC-box. Similarly, despite 56% sequence homology, tertiary structures of both template and modeled protein were found to be extremely similar as indicated by root mean square deviation of 0.34 A. More similarities were established between GBD of both A. thaliana and B. napus DREB1 by conducting protein docking with the DNA containing GCC-box. It appears that both proteins interact through their beta-sheet with the major DNA groove including both nitrogen bases and phosphate and sugar moieties. Additionally, in most cases the interacting residues were also found to be identical. Briefly, this study attempts to elucidate the molecular basis of DREB1 interaction with its target sequence in the promoter. (author)

  7. Genome wide binding (ChIP-Seq of murine Bapx1 and Sox9 proteins in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Sumantra Chatterjee

    2016-12-01

    Full Text Available This work pertains to GEO submission GSE36672, in vivo and in vitro genome wide binding (ChIP-Seq of Bapx1/Nkx3.2 and Sox9 proteins. We have previously shown that data from a genome wide binding assay combined with transcriptional profiling is an insightful means to divulge the mechanisms directing cell type specification and the generation of tissues and subsequent organs [1]. Our earlier work identified the role of the DNA-binding homeodomain containing protein Bapx1/Nkx3.2 in midgestation murine embryos. Microarray analysis of EGFP-tagged cells (both wildtype and null was integrated using ChIP-Seq analysis of Bapx1/Nkx3.2 and Sox9 DNA-binding proteins in living tissue.

  8. A conserved NAD+ binding pocket that regulates protein-protein interactions during aging.

    Science.gov (United States)

    Li, Jun; Bonkowski, Michael S; Moniot, Sébastien; Zhang, Dapeng; Hubbard, Basil P; Ling, Alvin J Y; Rajman, Luis A; Qin, Bo; Lou, Zhenkun; Gorbunova, Vera; Aravind, L; Steegborn, Clemens; Sinclair, David A

    2017-03-24

    DNA repair is essential for life, yet its efficiency declines with age for reasons that are unclear. Numerous proteins possess Nudix homology domains (NHDs) that have no known function. We show that NHDs are NAD + (oxidized form of nicotinamide adenine dinucleotide) binding domains that regulate protein-protein interactions. The binding of NAD + to the NHD domain of DBC1 (deleted in breast cancer 1) prevents it from inhibiting PARP1 [poly(adenosine diphosphate-ribose) polymerase], a critical DNA repair protein. As mice age and NAD + concentrations decline, DBC1 is increasingly bound to PARP1, causing DNA damage to accumulate, a process rapidly reversed by restoring the abundance of NAD + Thus, NAD + directly regulates protein-protein interactions, the modulation of which may protect against cancer, radiation, and aging. Copyright © 2017, American Association for the Advancement of Science.

  9. Fragment-based quantum mechanical calculation of protein-protein binding affinities.

    Science.gov (United States)

    Wang, Yaqian; Liu, Jinfeng; Li, Jinjin; He, Xiao

    2018-04-29

    The electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method has been successfully utilized for efficient linear-scaling quantum mechanical (QM) calculation of protein energies. In this work, we applied the EE-GMFCC method for calculation of binding affinity of Endonuclease colicin-immunity protein complex. The binding free energy changes between the wild-type and mutants of the complex calculated by EE-GMFCC are in good agreement with experimental results. The correlation coefficient (R) between the predicted binding energy changes and experimental values is 0.906 at the B3LYP/6-31G*-D level, based on the snapshot whose binding affinity is closest to the average result from the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) calculation. The inclusion of the QM effects is important for accurate prediction of protein-protein binding affinities. Moreover, the self-consistent calculation of PB solvation energy is required for accurate calculations of protein-protein binding free energies. This study demonstrates that the EE-GMFCC method is capable of providing reliable prediction of relative binding affinities for protein-protein complexes. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  10. Neuronal Calcium Sensor-1 Binds the D2 Dopamine Receptor and G-protein-coupled Receptor Kinase 1 (GRK1) Peptides Using Different Modes of Interactions.

    Science.gov (United States)

    Pandalaneni, Sravan; Karuppiah, Vijaykumar; Saleem, Muhammad; Haynes, Lee P; Burgoyne, Robert D; Mayans, Olga; Derrick, Jeremy P; Lian, Lu-Yun

    2015-07-24

    Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca(2+)-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca(2+)/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca(2+)/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178-Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca(2+)/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178-Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins

    DEFF Research Database (Denmark)

    Rognan, D; Lauemoller, S L; Holm, A

    1999-01-01

    A simple and fast free energy scoring function (Fresno) has been developed to predict the binding free energy of peptides to class I major histocompatibility (MHC) proteins. It differs from existing scoring functions mainly by the explicit treatment of ligand desolvation and of unfavorable protein...... coordinates of the MHC-bound peptide have first been determined with an accuracy of about 1-1.5 A. Furthermore, it may be easily recalibrated for any protein-ligand complex.......) and of a series of 16 peptides to H-2K(k). Predictions were more accurate for HLA-A2-binding peptides as the training set had been built from experimentally determined structures. The average error in predicting the binding free energy of the test peptides was 3.1 kJ/mol. For the homology model-derived equation...

  12. Characteristics and management of Enterobacteriaceae harboring IMP-4 or IMP-8 carbapenemase in a tertiary hospital.

    Science.gov (United States)

    Pang, Feng; Jia, Xiu-Qin; Song, Zhen-Zhu; Li, Yan-Hua; Wang, Bin; Zhao, Qi-Gang; Wang, Chuan-Xin; Zhang, Yi; Wang, Le-Xin

    2016-03-01

    The emergence of Enterobacteriaceae harboring IMP-4 or IMP-8 carbapenemases is rare. We report an occurrence of Enterobacteriaceae harboring IMP-4 or IMP-8 carbapenemases in a Chinese tertiary care hospital from November 2010 to December 2012. The clinical characteristics of 30 patients were described. The genetic relationship of isolates was determined by pulsed-field gel electrophoresis (PFGE). Carbapenemases were detected by modified Hodge test (MHT) and polymerase chain reactions (PCRs). Amplicons were sequenced and blasted to determine the genotype. Most infected patients were from intensive care unit and had complex and serious underlying illnesses requiring mechanical ventilation. PFGE revealed that Klebsiella pneumoniae showed two major PFGE types. Two Klebsiella oxytoca had an indistinguishable PFGE pattern, while four Enterobacter cloacae were different strains. The sequencing studies showed Enterobacteriaceae harboring IMP-4 or IMP-8 carbapenemase in the 23 infected patients. The majority of patients had infections with the carbapenemase-producing Enterobacteriaceae (CPE) strain, most were successfully treated with a range of antibiotics and discharged. It is important to maintain a high index of suspicion to screen for carbapenemase-producing Enterobacteriaceae strains. Rapid identification of these strains and implementation of stringent procedures are the key to prevent major outbreaks in a hospital setting.

  13. Insulin-like growth factor binding protein-2: contributions of the C-terminal domain to insulin-like growth factor-1 binding.

    Science.gov (United States)

    Kibbey, Megan M; Jameson, Mark J; Eaton, Erin M; Rosenzweig, Steven A

    2006-03-01

    Signaling by the insulin-like growth factor (IGF)-1 receptor (IGF-1R) has been implicated in the promotion and aggressiveness of breast, prostate, colorectal, and lung cancers. The IGF binding proteins (IGFBPs) represent a class of natural IGF antagonists that bind to and sequester IGF-1/2 from the IGF-1R, making them attractive candidates as therapeutics for cancer prevention and control. Recombinant human IGFBP-2 significantly attenuated IGF-1-stimulated MCF-7 cell proliferation with coaddition of 20 or 100 nM IGFBP-2 (50 or 80% inhibition, respectively). We previously identified IGF-1 contact sites both upstream and downstream of the CWCV motif (residues 247-250) in human IGFBP-2 (J Biol Chem 276:2880-2889, 2001). To further test their contributions to IGFBP-2 function, the single tryptophan in human IGFBP-2, Trp-248, was selectively cleaved with 2-(2'nitrophenylsulfenyl)-3-methyl-3 bromoindolenine (BNPS-skatole) and the BNPS-skatole products IGFBP-2(1-248) and IGFBP-2(249-289) as well as IGFBP-2(1-190) were expressed as glutathione S-transferase-fusion proteins and purified. Based on competition binding analysis, deletion of residues 249 to 289 caused an approximately 20-fold decrease in IGF-1 binding affinity (IGFBP-2 EC50 = 0.35 nM and IGFBP-2(1-248) = 7 nM). Removal of the remainder of the C-terminal domain had no further effect on affinity (IGFBP-2(1-190) EC50 = 9.2 nM). In kinetic assays, IGFBP-2(1-248) and IGFBP-2(1-190) exhibited more rapid association and dissociation rates than full-length IGFBP-2. These results confirm that regions upstream and downstream of the CWCV motif participate in IGF-1 binding. They further support the development of full-length IGFBP-2 as a cancer therapeutic.

  14. The RNA-binding proteins FMR1, rasputin and caprin act together with the UBA protein lingerer to restrict tissue growth in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Roland Baumgartner

    Full Text Available Appropriate expression of growth-regulatory genes is essential to ensure normal animal development and to prevent diseases like cancer. Gene regulation at the levels of transcription and translational initiation mediated by the Hippo and Insulin signaling pathways and by the TORC1 complex, respectively, has been well documented. Whether translational control mediated by RNA-binding proteins contributes to the regulation of cellular growth is less clear. Here, we identify Lingerer (Lig, an UBA domain-containing protein, as growth suppressor that associates with the RNA-binding proteins Fragile X mental retardation protein 1 (FMR1 and Caprin (Capr and directly interacts with and regulates the RNA-binding protein Rasputin (Rin in Drosophila melanogaster. lig mutant organs overgrow due to increased proliferation, and a reporter for the JAK/STAT signaling pathway is upregulated in a lig mutant situation. rin, Capr or FMR1 in combination as double mutants, but not the respective single mutants, display lig like phenotypes, implicating a redundant function of Rin, Capr and FMR1 in growth control in epithelial tissues. Thus, Lig regulates cell proliferation during development in concert with Rin, Capr and FMR1.

  15. The RNA-binding proteins FMR1, rasputin and caprin act together with the UBA protein lingerer to restrict tissue growth in Drosophila melanogaster.

    Science.gov (United States)

    Baumgartner, Roland; Stocker, Hugo; Hafen, Ernst

    2013-01-01

    Appropriate expression of growth-regulatory genes is essential to ensure normal animal development and to prevent diseases like cancer. Gene regulation at the levels of transcription and translational initiation mediated by the Hippo and Insulin signaling pathways and by the TORC1 complex, respectively, has been well documented. Whether translational control mediated by RNA-binding proteins contributes to the regulation of cellular growth is less clear. Here, we identify Lingerer (Lig), an UBA domain-containing protein, as growth suppressor that associates with the RNA-binding proteins Fragile X mental retardation protein 1 (FMR1) and Caprin (Capr) and directly interacts with and regulates the RNA-binding protein Rasputin (Rin) in Drosophila melanogaster. lig mutant organs overgrow due to increased proliferation, and a reporter for the JAK/STAT signaling pathway is upregulated in a lig mutant situation. rin, Capr or FMR1 in combination as double mutants, but not the respective single mutants, display lig like phenotypes, implicating a redundant function of Rin, Capr and FMR1 in growth control in epithelial tissues. Thus, Lig regulates cell proliferation during development in concert with Rin, Capr and FMR1.

  16. The prion protein has RNA binding and chaperoning properties characteristic of nucleocapsid protein NCP7 of HIV-1.

    Science.gov (United States)

    Gabus, C; Derrington, E; Leblanc, P; Chnaiderman, J; Dormont, D; Swietnicki, W; Morillas, M; Surewicz, W K; Marc, D; Nandi, P; Darlix, J L

    2001-06-01

    Transmissible spongiform encephalopathies are fatal neurodegenerative diseases associated with the accumulation of a protease-resistant form of the prion protein (PrP). Although PrP is conserved in vertebrates, its function remains to be identified. In vitro PrP binds large nucleic acids causing the formation of nucleoprotein complexes resembling human immunodeficiency virus type 1 (HIV-1) nucleocapsid-RNA complexes and in vivo MuLV replication accelerates the scrapie infectious process, suggesting possible interactions between retroviruses and PrP. Retroviruses, including HIV-1 encode a major nucleic acid binding protein (NC protein) found within the virus where 2000 NC protein molecules coat the dimeric genome. NC is required in virus assembly and infection to chaperone RNA dimerization and packaging and in proviral DNA synthesis by reverse transcriptase (RT). In HIV-1, 5'-leader RNA/NC interactions appear to control these viral processes. This prompted us to compare and contrast the interactions of human and ovine PrP and HIV-1 NCp7 with HIV-1 5'-leader RNA. Results show that PrP has properties characteristic of NCp7 with respect to viral RNA dimerization and proviral DNA synthesis by RT. The NC-like properties of huPrP map to the N-terminal region of huPrP. Interestingly, PrP localizes in the membrane and cytoplasm of PrP-expressing cells. These findings suggest that PrP is a multifunctional protein possibly participating in nucleic acid metabolism.

  17. RPA-Binding Protein ETAA1 Is an ATR Activator Involved in DNA Replication Stress Response.

    Science.gov (United States)

    Lee, Yuan-Cho; Zhou, Qing; Chen, Junjie; Yuan, Jingsong

    2016-12-19

    ETAA1 (Ewing tumor-associated antigen 1), also known as ETAA16, was identified as a tumor-specific antigen in the Ewing family of tumors. However, the biological function of this protein remains unknown. Here, we report the identification of ETAA1 as a DNA replication stress response protein. ETAA1 specifically interacts with RPA (Replication protein A) via two conserved RPA-binding domains and is therefore recruited to stalled replication forks. Interestingly, further analysis of ETAA1 function revealed that ETAA1 participates in the activation of ATR signaling pathway via a conserved ATR-activating domain (AAD) located near its N terminus. Importantly, we demonstrate that both RPA binding and ATR activation are required for ETAA1 function at stalled replication forks to maintain genome stability. Therefore, our data suggest that ETAA1 is a new ATR activator involved in replication checkpoint control. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Protein Binding Capacity of Different Forages Tannin

    Science.gov (United States)

    Yusiati, L. M.; Kurniawati, A.; Hanim, C.; Anas, M. A.

    2018-02-01

    Eight forages of tannin sources(Leucaena leucocephala, Arachis hypogaea, Mimosa pudica, Morus alba L, Swietenia mahagoni, Manihot esculenta, Gliricidia sepium, and Bauhinia purpurea)were evaluated their tannin content and protein binding capacity. The protein binding capacity of tannin were determined using precipitation of bovine serum albumin (BSA). Swietenia mahagonihas higest total tannin level and condensed tannin (CT) compared with other forages (P<0.01). The Leucaena leucocephala has highest hydrolysable tannin (HT) level (P<0.01). The total and condensed tannin content of Swietenia mahagoni were 11.928±0.04 mg/100 mg and 9.241±0.02mg/100mg dry matter (DM) of leaves. The hydrolysable tannin content of Leucaena leucocephala was 5.338±0.03 mg/100 mg DM of leaves. Binding capacity was highest in Swietenia mahagoni and Leucaena leucocephala compared to the other forages (P<0.01). The optimum binding of BSA to tannin in Leucaena leucocephala and Swietenia mahagoniwere1.181±0.44 and 1.217±0.60mg/mg dry matter of leaves. The present study reports that Swietenia mahagoni has highest of tannin content and Leucaena leucocephala and Swietenia mahagoni capacity of protein binding.

  19. TgICMAP1 is a novel microtubule binding protein in Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Aoife T Heaslip

    Full Text Available The microtubule cytoskeleton provides essential structural support for all eukaryotic cells and can be assembled into various higher order structures that perform drastically different functions. Understanding how microtubule-containing assemblies are built in a spatially and temporally controlled manner is therefore fundamental to understanding cell physiology. Toxoplasma gondii, a protozoan parasite, contains at least five distinct tubulin-containing structures, the spindle pole, centrioles, cortical microtubules, the conoid, and the intra-conoid microtubules. How these five structurally and functionally distinct sets of tubulin containing structures are constructed and maintained in the same cell is an intriguing problem. Previously, we performed a proteomic analysis of the T. gondii apical complex, a cytoskeletal complex located at the apical end of the parasite that is composed of the conoid, three ring-like structures, and the two short intra-conoid microtubules. Here we report the characterization of one of the proteins identified in that analysis, TgICMAP1. We show that TgICMAP1 is a novel microtubule binding protein that can directly bind to microtubules in vitro and stabilizes microtubules when ectopically expressed in mammalian cells. Interestingly, in T. gondii, TgICMAP1 preferentially binds to the intra-conoid microtubules, providing us the first molecular tool to investigate the intra-conoid microtubule assembly process during daughter construction.

  20. Echinococcus granulosus fatty acid binding proteins subcellular localization.

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2016-05-01

    Two fatty acid binding proteins, EgFABP1 and EgFABP2, were isolated from the parasitic platyhelminth Echinococcus granulosus. These proteins bind fatty acids and have particular relevance in flatworms since de novo fatty acids synthesis is absent. Therefore platyhelminthes depend on the capture and intracellular distribution of host's lipids and fatty acid binding proteins could participate in lipid distribution. To elucidate EgFABP's roles, we investigated their intracellular distribution in the larval stage by a proteomic approach. Our results demonstrated the presence of EgFABP1 isoforms in cytosolic, nuclear, mitochondrial and microsomal fractions, suggesting that these molecules could be involved in several cellular processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Ion Binding Energies Determining Functional Transport of ClC Proteins

    Science.gov (United States)

    Yu, Tao; Guo, Xu; Zou, Xian-Wu; Sang, Jian-Ping

    2014-06-01

    The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl- ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl- at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl- pathway, they are still part contributors for the Cl- functional transport. This work provides a guide rule to estimate the importance of Cl- at the binding sites and how chloride ions have influences on the function of ClC proteins.

  2. Does protein binding modulate the effect of angiotensin II receptor antagonists?

    Directory of Open Access Journals (Sweden)

    Marc P Maillard

    2001-03-01

    Full Text Available IntroductionAngiotensin II AT 1-receptor antagonists are highly bound to plasma proteins (≥ 99%. With some antagonists, such as DuP-532, the protein binding was such that no efficacy of the drug could be demonstrated clinically. Whether protein binding interferes with the efficacy of other antagonists is not known. We have therefore investigated in vitro how plasma proteins may affect the antagonistic effect of different AT1-receptor antagonists.MethodsA radio-receptor binding assay was used to analyse the interaction between proteins and the ability of various angiotensin II (Ang II antagonists to block AT1-receptors. In addition, the Biacore technology, a new technique which enables the real-time monitoring of binding events between two molecules, was used to evaluate the dissociation rate constants of five AT1-receptor antagonists from human serum albumin.ResultsThe in vitro AT 1-antagonistic effects of different Ang II receptor antagonists were differentially affected by the presence of human plasma, with rightward shifts of the IC50 ranging from one to several orders of magnitude. The importance of the shift correlates with the dissociation rate constants of these drugs from albumin. Our experiments also show that the way that AT1-receptor antagonists bind to proteins differs from one compound to another. These results suggest that the interaction with plasma proteins appears to modulate the efficacy of some Ang II antagonists.ConclusionAlthough the high binding level of Ang II receptor antagonist to plasma proteins appears to be a feature common to this class of compounds, the kinetics and characteristics of this binding is of great importance. With some antagonists, protein binding interferes markedly with their efficacy to block AT1-receptors.

  3. RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins

    International Nuclear Information System (INIS)

    Hoffman, D.W.; Query, C.C.; Golden, B.L.; White, S.W.; Keene, J.D.

    1991-01-01

    An RNA recognition motif (RRM) of ∼80 amino acids constitutes the core of RNA-binding domains found in a large family of proteins involved in RNA processing. The U1 RNA-binding domain of the A protein component of the human U1 small nuclear ribonucleoprotein (RNP), which encompasses the RRM sequence, was analyzed by using NMR spectroscopy. The domain of the A protein is a highly stable monomer in solution consisting of four antiparallel β-strands and two α-helices. The highly conserved RNP1 and RNP2 consensus sequences, containing residues previously suggested to be involved in nucleic acid binding, are juxtaposed in adjacent β-strands. Conserved aromatic side chains that are critical for RNA binding are clustered on the surface to the molecule adjacent to a variable loop that influences recognition of specific RNA sequences. The secondary structure and topology of the RRM are similar to those of ribosomal proteins L12 and L30, suggesting a distant evolutionary relationship between these two types of RNA-associated proteins

  4. Proteomic analysis identifies insulin-like growth factor-binding protein-related protein-1 as a podocyte product.

    Science.gov (United States)

    Matsumoto, Takayuki; Hess, Sonja; Kajiyama, Hiroshi; Sakairi, Toru; Saleem, Moin A; Mathieson, Peter W; Nojima, Yoshihisa; Kopp, Jeffrey B

    2010-10-01

    The podocyte secretory proteome may influence the phenotype of adjacent podocytes, endothelial cells, parietal epithelial cells, and tubular epithelial cells but has not been systematically characterized. We have initiated studies to characterize this proteome, with the goal of further understanding the podocyte cell biology. We cultured differentiated conditionally immortalized human podocytes and subjected the proteins in conditioned medium to mass spectrometry. At a false discovery rate of factor-binding protein-related protein-1 (IGFBP-rP1), was expressed in mRNA and protein of cultured podocytes. In addition, transforming growth factor-β1 stimulation increased IGFBP-rP1 in conditioned medium. We analyzed IGFBP-rP1 glomerular expression in a mouse model of human immunodeficiency virus-associated nephropathy. IGFBP-rP1 was absent from podocytes of normal mice and was expressed in podocytes and pseudocrescents of transgenic mice, where it was coexpressed with desmin, a podocyte injury marker. We conclude that IGFBP-rP1 may be a product of injured podocytes. Further analysis of the podocyte secretory proteome may identify biomarkers of podocyte injury.

  5. Alcohol binding in the C1 (C1A + C1B) domain of protein kinase C epsilon

    Science.gov (United States)

    Pany, Satyabrata; Das, Joydip

    2015-01-01

    Background Alcohol regulates the expression and function of protein kinase C epsilon (PKCε). In a previous study we identified an alcohol binding site in the C1B, one of the twin C1 subdomains of PKCε. Methods In this study, we investigated alcohol binding in the entire C1 domain (combined C1A and C1B) of PKCε. Fluorescent phorbol ester, SAPD and fluorescent diacylglycerol (DAG) analog, dansyl-DAG were used to study the effect of ethanol, butanol, and octanol on the ligand binding using fluorescence resonance energy transfer (FRET). To identify alcohol binding site(s), PKCεC1 was photolabeled with 3-azibutanol and 3-azioctanol, and analyzed by mass spectrometry. The effects of alcohols and the azialcohols on PKCε were studied in NG108-15 cells. Results In the presence of alcohol, SAPD and dansyl-DAG showed different extent of FRET, indicating differential effects of alcohol on the C1A and C1B subdomains. Effects of alcohols and azialcohols on PKCε in NG108-15 cells were comparable. Azialcohols labeled Tyr-176 of C1A and Tyr-250 of C1B. Inspection of the model structure of PKCεC1 reveals that these residues are 40 Å apart from each other indicating that these residues form two different alcohol binding sites. Conclusions The present results provide evidence for the presence of multiple alcohol-binding sites on PKCε and underscore the importance of targeting this PKC isoform in developing alcohol antagonists. PMID:26210390

  6. The first 3':5'-cyclic nucleotide-amino acid complex: L-His-cIMP.

    Science.gov (United States)

    Slepokura, Katarzyna

    2012-08-01

    In the crystal structure of the L-His-cIMP complex, i.e. L-histidinium inosine 3':5'-cyclic phosphate [systematic name: 5-(2-amino-2-carboxyethyl)-1H-imidazol-3-ium 7-hydroxy-2-oxo-6-(6-oxo-6,9-dihydro-1H-purin-9-yl)-4a,6,7,7a-tetrahydro-4H-1,3,5,2λ(5)-furo[3,2-d][1,3,2λ(5)]dioxaphosphinin-2-olate], C(6)H(10)N(3)O(2)(+)·C(10)H(10)N(4)O(7)P(-), the Hoogsteen edge of the hypoxanthine (Hyp) base of cIMP and the Hyp face are engaged in specific amino acid-nucleotide (His···cIMP) recognition, i.e. by abutting edge-to-edge and by π-π stacking, respectively. The Watson-Crick edge of Hyp and the cIMP phosphate group play a role in nonspecific His···cIMP contacts. The interactions between the cIMP anions (anti/C3'-endo/trans-gauche/chair conformers) are realized mainly between riboses and phosphate groups. The results for this L-His-cIMP complex, compared with those for the previously reported solvated L-His-IMP crystal structure, indicate a different nature of amino acid-nucleotide recognition and interactions upon the 3':5'-cyclization of the nucleotide phosphate group.

  7. A structural classification of substrate-binding proteins

    NARCIS (Netherlands)

    Berntsson, Ronnie P. -A.; Smits, Sander H. J.; Schmitt, Lutz; Slotboom, Dirk-Jan; Poolman, Bert

    2010-01-01

    Substrate-binding proteins (SBP) are associated with a wide variety of protein complexes. The proteins are part of ATP-binding cassette transporters for substrate uptake, ion gradient driven transporters, DNA-binding proteins, as well as channels and receptors from both pro-and eukaryotes. A wealth

  8. Gamma Interferon-Induced Guanylate Binding Protein 1 Is a Novel Actin Cytoskeleton Remodeling Factor

    OpenAIRE

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J. K.; Schubert, Dirk W.; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin a...

  9. High-mobility group (HMG) protein HMG-1 and TATA-binding protein-associated factor TAF(II)30 affect estrogen receptor-mediated transcriptional activation.

    Science.gov (United States)

    Verrier, C S; Roodi, N; Yee, C J; Bailey, L R; Jensen, R A; Bustin, M; Parl, F F

    1997-07-01

    The estrogen receptor (ER) belongs to a family of ligand-inducible nuclear receptors that exert their effects by binding to cis-acting DNA elements in the regulatory region of target genes. The detailed mechanisms by which ER interacts with the estrogen response element (ERE) and affects transcription still remain to be elucidated. To study the ER-ERE interaction and transcription initiation, we employed purified recombinant ER expressed in both the baculovirus-Sf9 and his-tagged bacterial systems. The effect of high-mobility group (HMG) protein HMG-1 and purified recombinant TATA-binding protein-associated factor TAF(II)30 on ER-ERE binding and transcription initiation were assessed by electrophoretic mobility shift assay and in vitro transcription from an ERE-containing template (pERE2LovTATA), respectively. We find that purified, recombinant ER fails to bind to ERE in spite of high ligand-binding activity and electrophoretic and immunological properties identical to ER in MCF-7 breast cancer cells. HMG-1 interacts with ER and promotes ER-ERE binding in a concentration- and time-dependent manner. The effectiveness of HMG-1 to stimulate ER-ERE binding in the electrophoretic mobility shift assay depends on the sequence flanking the ERE consensus as well as the position of the latter in the oligonucleotide. We find that TAF(II)30 has no effect on ER-ERE binding either alone or in combination with ER and HMG-1. Although HMG-1 promotes ER-ERE binding, it fails to stimulate transcription initiation either in the presence or absence of hormone. In contrast, TAF(II)30, while not affecting ER-ERE binding, stimulates transcription initiation 20-fold in the presence of HMG-1. These results indicate that HMG-1 and TAF(II)30 act in sequence, the former acting to promote ER-ERE binding followed by the latter to stimulate transcription initiation.

  10. Multiple protonation equilibria in electrostatics of protein-protein binding.

    Science.gov (United States)

    Piłat, Zofia; Antosiewicz, Jan M

    2008-11-27

    All proteins contain groups capable of exchanging protons with their environment. We present here an approach, based on a rigorous thermodynamic cycle and the partition functions for energy levels characterizing protonation states of the associating proteins and their complex, to compute the electrostatic pH-dependent contribution to the free energy of protein-protein binding. The computed electrostatic binding free energies include the pH of the solution as the variable of state, mutual "polarization" of associating proteins reflected as changes in the distribution of their protonation states upon binding and fluctuations between available protonation states. The only fixed property of both proteins is the conformation; the structure of the monomers is kept in the same conformation as they have in the complex structure. As a reference, we use the electrostatic binding free energies obtained from the traditional Poisson-Boltzmann model, computed for a single macromolecular conformation fixed in a given protonation state, appropriate for given solution conditions. The new approach was tested for 12 protein-protein complexes. It is shown that explicit inclusion of protonation degrees of freedom might lead to a substantially different estimation of the electrostatic contribution to the binding free energy than that based on the traditional Poisson-Boltzmann model. This has important implications for the balancing of different contributions to the energetics of protein-protein binding and other related problems, for example, the choice of protein models for Brownian dynamics simulations of their association. Our procedure can be generalized to include conformational degrees of freedom by combining it with molecular dynamics simulations at constant pH. Unfortunately, in practice, a prohibitive factor is an enormous requirement for computer time and power. However, there may be some hope for solving this problem by combining existing constant pH molecular dynamics

  11. Anatomically standardized statistical mapping of 123I-IMP SPECT in brain tumors

    International Nuclear Information System (INIS)

    Shibata, Yasushi; Akimoto, Manabu; Matsushita, Akira; Yamamoto, Tetsuya; Takano, Shingo; Matsumura, Akira

    2010-01-01

    123 I-iodoamphetamine Single Photon Emission Computed Tomography (IMP SPECT) is used to evaluate cerebral blood flow. However, application of IMP SPECT to patients with brain tumors has been rarely reported. Primary central nervous system lymphoma (PCNSL) is a rare tumor that shows delayed IMP uptake. The relatively low spatial resolution of SPECT is a clinical problem in diagnosing brain tumors. We examined anatomically standardized statistical mapping of IMP SPECT in patients with brain lesions. This study included 49 IMP SPECT images for 49 patients with brain lesions: 20 PCNSL, 1 Burkitt's lymphoma, 14 glioma, 4 other tumor, 7 inflammatory disease and 3 without any pathological diagnosis but a clinical diagnosis of PCNSL. After intravenous injection of 222 MBq of 123 I-IMP, early (15 minutes) and delayed (4 hours) images were acquired using a multi-detector SPECT machine. All SPECT data were transferred to a newly developed software program iNeurostat+ (Nihon Medi-physics). SPECT data were anatomically standardized on normal brain images. Regions of increased uptake of IMP were statistically mapped on the tomographic images of normal brain. Eighteen patients showed high uptake in the delayed IMP SPECT images (16 PCNSL, 2 unknown). Other tumor or diseases did not show high uptake of delayed IMP SPECT, so there were no false positives. Four patients with pathologically proven PCNSL showed no uptake in original IMP SPECT. These tumors were too small to detect in IMP SPECT. However, statistical mapping revealed IMP uptake in 18 of 20 pathologically verified PCNSL patients. A heterogeneous IMP uptake was seen in homogenous tumors in MRI. For patients with a hot IMP uptake, statistical mapping showed clearer uptake. IMP SPECT is a sensitive test to diagnose of PCNSL, although it produced false negative results for small posterior fossa tumor. Anatomically standardized statistical mapping is therefore considered to be a useful method for improving the diagnostic

  12. UV-induced DNA-binding proteins in human cells

    International Nuclear Information System (INIS)

    Glazer, P.M.; Greggio, N.A.; Metherall, J.E.; Summers, W.C.

    1989-01-01

    To investigate the response of human cells to DNA-damaging agents such as UV irradiation, the authors examined nuclear protein extracts of UV-irradiated HeLa cells for the presence of DNA-binding proteins. Electrophoretically separated proteins were transferred to a nitrocellulose filter that was subsequently immersed in a binding solution containing radioactively labeled DNA probes. Several DNA-binding proteins were induced in HeLa cells after UV irradiation. These included proteins that bind predominantly double-stranded DNA and proteins that bind both double-stranded and single-stranded DNA. The binding proteins were induced in a dose-dependent manner by UV light. Following a dose of 12 J/m 2 , the binding proteins in the nuclear extracts increased over time to a peak in the range of 18 hr after irradiation. Experiments with metabolic inhibitors (cycloheximide and actinomycin D) revealed that de novo synthesis of these proteins is not required for induction of the binding activities, suggesting that the induction is mediated by protein modification

  13. Identification of Arsenic Direct-Binding Proteins in Acute Promyelocytic Leukaemia Cells

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2015-11-01

    Full Text Available The identification of arsenic direct-binding proteins is essential for determining the mechanism by which arsenic trioxide achieves its chemotherapeutic effects. At least two cysteines close together in the amino acid sequence are crucial to the binding of arsenic and essential to the identification of arsenic-binding proteins. In the present study, arsenic binding proteins were pulled down with streptavidin and identified using a liquid chromatograph-mass spectrometer (LC-MS/MS. More than 40 arsenic-binding proteins were separated, and redox-related proteins, glutathione S-transferase P1 (GSTP1, heat shock 70 kDa protein 9 (HSPA9 and pyruvate kinase M2 (PKM2, were further studied using binding assays in vitro. Notably, PKM2 has a high affinity for arsenic. In contrast to PKM2, GSTP1and HSPA9 did not combine with arsenic directly in vitro. These observations suggest that arsenic-mediated acute promyelocytic leukaemia (APL suppressive effects involve PKM2. In summary, we identified several arsenic binding proteins in APL cells and investigated the therapeutic mechanisms of arsenic trioxide for APL. Further investigation into specific signal pathways by which PKM2 mediates APL developments may lead to a better understanding of arsenic effects on APL.

  14. Probing protein phosphatase substrate binding

    DEFF Research Database (Denmark)

    Højlys-Larsen, Kim B.; Sørensen, Kasper Kildegaard; Jensen, Knud Jørgen

    2012-01-01

    Proteomics and high throughput analysis for systems biology can benefit significantly from solid-phase chemical tools for affinity pull-down of proteins from complex mixtures. Here we report the application of solid-phase synthesis of phosphopeptides for pull-down and analysis of the affinity...... profile of the integrin-linked kinase associated phosphatase (ILKAP), a member of the protein phosphatase 2C (PP2C) family. Phosphatases can potentially dephosphorylate these phosphopeptide substrates but, interestingly, performing the binding studies at 4 °C allowed efficient binding to phosphopeptides......, without the need for phosphopeptide mimics or phosphatase inhibitors. As no proven ILKAP substrates were available, we selected phosphopeptide substrates among known PP2Cδ substrates including the protein kinases: p38, ATM, Chk1, Chk2 and RSK2 and synthesized directly on PEGA solid supports through a BAL...

  15. Detection and properties of A-factor-binding protein from Streptomyces griseus

    International Nuclear Information System (INIS)

    Miyake, K.; Horinouchi, S.; Yoshida, M.; Chiba, N.; Mori, K.; Nogawa, N.; Morikawa, N.; Beppu, T.

    1989-01-01

    The optically active form of tritium-labeled A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone), a pleiotropic autoregulator responsible for streptomycin production, streptomycin resistance, and sporulation in Streptomyces griseus, was chemically synthesized. By using the radioactive A-factor, a binding protein for A-factor was detected in the cytoplasmic fraction of this organism. The binding protein had an apparent molecular weight of approximately 26,000, as determined by gel filtration. Scatchard analysis suggested that A-factor bound the protein in the molar ratio of 1:1 with a binding constant, Kd, of 0.7 nM. The number of the binding protein was roughly estimated to be 37 per genome. The inducing material virginiae butanolide C (VB-C), which has a structure very similar to that of A-factor and is essential for virginiamycin production in Streptomyces virginiae, did not inhibit binding. In addition, no protein capable of specifically binding 3 H-labeled VB-C was found in S. griseus. Together with the observation that VB-C had almost no biological activity on the restoration of streptomycin production or sporulation in an A-factor-deficient mutant of S. griseus, these results indicated that the binding protein had a strict ligand specificity. Examination for an A-factor-binding protein in Streptomyces coelicolor A3(2) and Streptomyces lividans showed the absence of any specifically binding protein

  16. Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway.

    Science.gov (United States)

    Wang, Zhao V; Deng, Yingfeng; Gao, Ningguo; Pedrozo, Zully; Li, Dan L; Morales, Cyndi R; Criollo, Alfredo; Luo, Xiang; Tan, Wei; Jiang, Nan; Lehrman, Mark A; Rothermel, Beverly A; Lee, Ann-Hwee; Lavandero, Sergio; Mammen, Pradeep P A; Ferdous, Anwarul; Gillette, Thomas G; Scherer, Philipp E; Hill, Joseph A

    2014-03-13

    The hexosamine biosynthetic pathway (HBP) generates uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) for glycan synthesis and O-linked GlcNAc (O-GlcNAc) protein modifications. Despite the established role of the HBP in metabolism and multiple diseases, regulation of the HBP remains largely undefined. Here, we show that spliced X-box binding protein 1 (Xbp1s), the most conserved signal transducer of the unfolded protein response (UPR), is a direct transcriptional activator of the HBP. We demonstrate that the UPR triggers HBP activation via Xbp1s-dependent transcription of genes coding for key, rate-limiting enzymes. We further establish that this previously unrecognized UPR-HBP axis is triggered in a variety of stress conditions. Finally, we demonstrate a physiologic role for the UPR-HBP axis by showing that acute stimulation of Xbp1s in heart by ischemia/reperfusion confers robust cardioprotection in part through induction of the HBP. Collectively, these studies reveal that Xbp1s couples the UPR to the HBP to protect cells under stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan [Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3 (Canada); Babiuk, Lorne A. [University of Alberta, Edmonton, Alberta (Canada); Liu, Qiang, E-mail: qiang.liu@usask.ca [Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3 (Canada)

    2010-11-19

    Research highlights: {yields} A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. {yields} HCV-3a NS5A increases mature SREBP-1c protein level. {yields} HCV-3a NS5A activates SREBP-1c transcription. {yields} Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. {yields} Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  18. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    International Nuclear Information System (INIS)

    Xiang, Zhonghua; Qiao, Ling; Zhou, Yan; Babiuk, Lorne A.; Liu, Qiang

    2010-01-01

    Research highlights: → A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. → HCV-3a NS5A increases mature SREBP-1c protein level. → HCV-3a NS5A activates SREBP-1c transcription. → Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. → Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  19. IMP 2.0: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks.

    Science.gov (United States)

    Wong, Aaron K; Krishnan, Arjun; Yao, Victoria; Tadych, Alicja; Troyanskaya, Olga G

    2015-07-01

    IMP (Integrative Multi-species Prediction), originally released in 2012, is an interactive web server that enables molecular biologists to interpret experimental results and to generate hypotheses in the context of a large cross-organism compendium of functional predictions and networks. The system provides biologists with a framework to analyze their candidate gene sets in the context of functional networks, expanding or refining their sets using functional relationships predicted from integrated high-throughput data. IMP 2.0 integrates updated prior knowledge and data collections from the last three years in the seven supported organisms (Homo sapiens, Mus musculus, Rattus norvegicus, Drosophila melanogaster, Danio rerio, Caenorhabditis elegans, and Saccharomyces cerevisiae) and extends function prediction coverage to include human disease. IMP identifies homologs with conserved functional roles for disease knowledge transfer, allowing biologists to analyze disease contexts and predictions across all organisms. Additionally, IMP 2.0 implements a new flexible platform for experts to generate custom hypotheses about biological processes or diseases, making sophisticated data-driven methods easily accessible to researchers. IMP does not require any registration or installation and is freely available for use at http://imp.princeton.edu. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Proportionate Dwarfism in Mice Lacking Heterochromatin Protein 1 Binding Protein 3 (HP1BP3) Is Associated With Alterations in the Endocrine IGF-1 Pathway.

    Science.gov (United States)

    Garfinkel, Benjamin P; Arad, Shiri; Le, Phuong T; Bustin, Michael; Rosen, Clifford J; Gabet, Yankel; Orly, Joseph

    2015-12-01

    Heterochromatin protein 1 binding protein 3 (HP1BP3) is a recently described histone H1-related protein with roles in chromatin structure and transcriptional regulation. To explore the potential physiological role of HP1BP3, we have previously described an Hp1bp3(-/-) mouse model with reduced postnatal viability and growth. We now find that these mice are proportionate dwarfs, with reduction in body weight, body length, and organ weight. In addition to their small size, microcomputed tomography analysis showed that Hp1bp3(-/-) mice present a dramatic impairment of their bone development and structure. By 3 weeks of age, mice of both sexes have severely impaired cortical and trabecular bone, and these defects persist into adulthood and beyond. Primary cultures of both osteoblasts and osteoclasts from Hp1bp3(-/-) bone marrow and splenocytes, respectively, showed normal differentiation and function, strongly suggesting that the impaired bone accrual is due to noncell autonomous systemic cues in vivo. One major endocrine pathway regulating both body growth and bone acquisition is the IGF regulatory system, composed of IGF-1, the IGF receptors, and the IGF-binding proteins (IGFBPs). At 3 weeks of age, Hp1bp3(-/-) mice exhibited a 60% reduction in circulating IGF-1 and a 4-fold increase in the levels of IGFBP-1 and IGFBP-2. These alterations were reflected in similar changes in the hepatic transcripts of the Igf1, Igfbp1, and Igfbp2 genes. Collectively, these results suggest that HP1BP3 plays a key role in normal growth and bone development by regulating transcription of endocrine IGF-1 components.

  1. Kinesin-1 and mitochondrial motility control by discrimination of structurally equivalent but distinct subdomains in Ran-GTP-binding domains of Ran-binding protein 2.

    Science.gov (United States)

    Patil, Hemangi; Cho, Kyoung-in; Lee, James; Yang, Yi; Orry, Andrew; Ferreira, Paulo A

    2013-03-27

    The pleckstrin homology (PH) domain is a versatile fold that mediates a variety of protein-protein and protein-phosphatidylinositol lipid interactions. The Ran-binding protein 2 (RanBP2) contains four interspersed Ran GTPase-binding domains (RBD(n = 1-4)) with close structural homology to the PH domain of Bruton's tyrosine kinase. The RBD2, kinesin-binding domain (KBD) and RBD3 comprise a tripartite domain (R2KR3) of RanBP2 that causes the unfolding, microtubule binding and biphasic activation of kinesin-1, a crucial anterograde motor of mitochondrial motility. However, the interplay between Ran GTPase and R2KR3 of RanBP2 in kinesin-1 activation and mitochondrial motility is elusive. We use structure-function, biochemical, kinetic and cell-based assays with time-lapse live-cell microscopy of over 260,000 mitochondrial-motility-related events to find mutually exclusive subdomains in RBD2 and RBD3 towards Ran GTPase binding, kinesin-1 activation and mitochondrial motility regulation. The RBD2 and RBD3 exhibit Ran-GTP-independent, subdomain and stereochemical-dependent discrimination on the biphasic kinetics of kinesin-1 activation or regulation of mitochondrial motility. Further, KBD alone and R2KR3 stimulate and suppress, respectively, multiple biophysical parameters of mitochondrial motility. The regulation of the bidirectional transport of mitochondria by either KBD or R2KR3 is highly coordinated, because their kinetic effects are accompanied always by changes in mitochondrial motile events of either transport polarity. These studies uncover novel roles in Ran GTPase-independent subdomains of RBD2 and RBD3, and KBD of RanBP2, that confer antagonizing and multi-modal mechanisms of kinesin-1 activation and regulation of mitochondrial motility. These findings open new venues towards the pharmacological harnessing of cooperative and competitive mechanisms regulating kinesins, RanBP2 or mitochondrial motility in disparate human disorders.

  2. Casein kinase 1 regulates sterol regulatory element-binding protein (SREBP) to control sterol homeostasis.

    Science.gov (United States)

    Brookheart, Rita T; Lee, Chih-Yung S; Espenshade, Peter J

    2014-01-31

    Sterol homeostasis is tightly controlled by the sterol regulatory element-binding protein (SREBP) transcription factor that is highly conserved from fungi to mammals. In fission yeast, SREBP functions in an oxygen-sensing pathway to promote adaptation to decreased oxygen supply that limits oxygen-dependent sterol synthesis. Low oxygen stimulates proteolytic cleavage of the SREBP homolog Sre1, generating the active transcription factor Sre1N that drives expression of sterol biosynthetic enzymes. In addition, low oxygen increases the stability and DNA binding activity of Sre1N. To identify additional signals controlling Sre1 activity, we conducted a genetic overexpression screen. Here, we describe our isolation and characterization of the casein kinase 1 family member Hhp2 as a novel regulator of Sre1N. Deletion of Hhp2 increases Sre1N protein stability and ergosterol levels in the presence of oxygen. Hhp2-dependent Sre1N degradation by the proteasome requires Hhp2 kinase activity, and Hhp2 binds and phosphorylates Sre1N at specific residues. Our results describe a role for casein kinase 1 as a direct regulator of sterol homeostasis. Given the role of mammalian Hhp2 homologs, casein kinase 1δ and 1ε, in regulation of the circadian clock, these findings may provide a mechanism for coordinating circadian rhythm and lipid metabolism.

  3. Promiscuous RNA binding ensures effective encapsidation of APOBEC3 proteins by HIV-1.

    Directory of Open Access Journals (Sweden)

    Luis Apolonia

    2015-01-01

    Full Text Available The apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3 proteins are cell-encoded cytidine deaminases, some of which, such as APOBEC3G (A3G and APOBEC3F (A3F, act as potent human immunodeficiency virus type-1 (HIV-1 restriction factors. These proteins require packaging into HIV-1 particles to exert their antiviral activities, but the molecular mechanism by which this occurs is incompletely understood. The nucleocapsid (NC region of HIV-1 Gag is required for efficient incorporation of A3G and A3F, and the interaction between A3G and NC has previously been shown to be RNA-dependent. Here, we address this issue in detail by first determining which RNAs are able to bind to A3G and A3F in HV-1 infected cells, as well as in cell-free virions, using the unbiased individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP method. We show that A3G and A3F bind many different types of RNA, including HIV-1 RNA, cellular mRNAs and small non-coding RNAs such as the Y or 7SL RNAs. Interestingly, A3G/F incorporation is unaffected when the levels of packaged HIV-1 genomic RNA (gRNA and 7SL RNA are reduced, implying that these RNAs are not essential for efficient A3G/F packaging. Confirming earlier work, HIV-1 particles formed with Gag lacking the NC domain (Gag ΔNC fail to encapsidate A3G/F. Here, we exploit this system by demonstrating that the addition of an assortment of heterologous RNA-binding proteins and domains to Gag ΔNC efficiently restored A3G/F packaging, indicating that A3G and A3F have the ability to engage multiple RNAs to ensure viral encapsidation. We propose that the rather indiscriminate RNA binding characteristics of A3G and A3F promote functionality by enabling recruitment into a wide range of retroviral particles whose packaged RNA genomes comprise divergent sequences.

  4. When is protein binding important?

    Science.gov (United States)

    Heuberger, Jules; Schmidt, Stephan; Derendorf, Hartmut

    2013-09-01

    The present paper is an ode to a classic citation by Benet and Hoener (2002. Clin Pharm Ther 71(3):115-121). The now classic paper had a huge impact on drug development and the way the issue of protein binding is perceived and interpreted. Although the authors very clearly pointed out the limitations and underlying assumptions for their delineations, these are too often overlooked and the classic paper's message is misinterpreted by broadening to cases that were not intended. Some members of the scientific community concluded from the paper that protein binding is not important. This was clearly not intended by the authors, as they finished their paper with a paragraph entitled: "When is protein binding important?" Misinterpretation of the underlying assumptions in the classic work can result in major pitfalls in drug development. Therefore, we revisit the topic of protein binding with the intention of clarifying when clinically relevant changes should be considered during drug development. Copyright © 2013 Wiley Periodicals, Inc.

  5. Scaffold protein enigma homolog 1 overcomes the repression of myogenesis activation by inhibitor of DNA binding 2

    Energy Technology Data Exchange (ETDEWEB)

    Nakatani, Miyuki [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Ito, Jumpei [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Japan Society for the Promotion of Science, Tokyo, 102-0083 (Japan); Koyama, Riko [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Iijima, Masumi; Yoshimoto, Nobuo [The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 (Japan); Niimi, Tomoaki [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Kuroda, Shun' ichi [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 (Japan); Maturana, Andrés D., E-mail: maturana@agr.nagoya-u.ac.jp [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan)

    2016-05-27

    Enigma Homolog 1 (ENH1) is a scaffold protein for signaling proteins and transcription factors. Previously, we reported that ENH1 overexpression promotes the differentiation of C2C12 myoblasts. However, the molecular mechanism underlying the role of ENH1 in the C2C12 cells differentiation remains elusive. ENH1 was shown to inhibit the proliferation of neuroblastoma cells by sequestering Inhibitor of DNA binding protein 2 (Id2) in the cytosol. Id2 is a repressor of basic Helix-Loop-Helix transcription factors activity and prevents myogenesis. Here, we found that ENH1 overcome the Id2 repression of C2C12 cells myogenic differentiation and that ENH1 overexpression promotes mice satellite cells activation, the first step toward myogenic differentiation. In addition, we show that ENH1 interacted with Id2 in C2C12 cells and mice satellite cells. Collectively, our results suggest that ENH1 plays an important role in the activation of myogenesis through the repression of Id2 activity. -- Highlights: •Enigma Homolog 1 (ENH1) is a scaffold protein. •ENH1 binds to inhibitor of DNA binding 2 (Id2) in myoblasts. •ENH1 overexpression overcomes the Id2's repression of myogenesis. •The Id2-ENH1 complex play an important role in the activation of myogenesis.

  6. Dystrobrevin-binding protein 1 gene (DTNBP1) variants associated with cerebrospinal fluid homovanillic acid and 5-hydroxyindoleacetic acid concentrations in healthy volunteers

    DEFF Research Database (Denmark)

    Andreou, Dimitrios; Saetre, Peter; Kähler, Anna K

    2011-01-01

    The dystrobrevin binding protein-1 (DTNBP1) gene encodes dysbindin-1, a protein involved in neurodevelopmental and neurochemical processes related mainly to the monoamine dopamine. We investigated possible associations between eleven DTNBP1 polymorphisms and cerebrospinal fluid (CSF) concentratio...

  7. Megalin binds and mediates cellular internalization of folate binding protein

    DEFF Research Database (Denmark)

    Birn, Henrik; Zhai, Xiaoyue; Holm, Jan

    2005-01-01

    Folate is an essential vitamin involved in a number of biological processes. High affinity folate binding proteins (FBPs) exist both as glycosylphosphatidylinositol-linked, membrane associated folate binding proteins and as soluble FBPs in plasma and some secretory fluids such as milk, saliva...... to express high levels of megalin, is inhibitable by excess unlabeled FBP and by receptor associated protein, a known inhibitor of binding to megalin. Immortalized rat yolk sac cells, representing an established model for studying megalin-mediated uptake, reveal (125)I-labeled FBP uptake which is inhibited...

  8. Interaction of the protein transduction domain of HIV-1 TAT with heparan sulfate: binding mechanism and thermodynamic parameters.

    Science.gov (United States)

    Ziegler, André; Seelig, Joachim

    2004-01-01

    The positively charged protein transduction domain of the HIV-1 TAT protein (TAT-PTD; residues 47-57 of TAT) rapidly translocates across the plasma membrane of living cells. This property is exploited for the delivery of proteins, drugs, and genes into cells. The mechanism of this translocation is, however, not yet understood. Recent theories for translocation suggest binding of the protein transduction domain (PTD) to extracellular glycosaminoglycans as a possible mechanism. We have studied the binding equilibrium between TAT-PTD and three different glycosaminoglycans with high sensitivity isothermal titration calorimetry and provide the first quantitative thermodynamic description. The polysulfonated macromolecules were found to exhibit multiple identical binding sites for TAT-PTD with only small differences between the three species as far as the thermodynamic parameters are concerned. Heparan sulfate (HS, molecular weight, 14.2 +/- 2 kDa) has 6.3 +/- 1.0 independent binding sites for TAT-PTD which are characterized by a binding constant K0 = (6.0 +/- 0.6) x 10(5) M(-1) and a reaction enthalpy deltaHpep0 = -4.6 +/- 1.0 kcal/mol at 28 degrees C. The binding affinity, deltaGpep0, is determined to equal extent by enthalpic and entropic contributions. The HS-TAT-PTD complex formation entails a positive heat capacity change of deltaCp0 = +135 cal/mol peptide, which is characteristic of a charge neutralization reaction. This is in contrast to hydrophobic binding reactions which display a large negative heat capacity change. The stoichiometry of 6-7 TAT-PTD molecules per HS corresponds to an electric charge neutralization. Light scattering data demonstrate a maximum scattering intensity at this stoichiometric ratio, the intensity of which depends on the order of mixing of the two components. The data suggest cross-linking and/or aggregation of HS-TAT-PTD complexes. Two other glycosaminoglycans, namely heparin and chondroitin sulfate B, were also studied with isothermal

  9. Synthetic Polymer Affinity Ligand for Bacillus thuringiensis ( Bt) Cry1Ab/Ac Protein: The Use of Biomimicry Based on the Bt Protein-Insect Receptor Binding Mechanism.

    Science.gov (United States)

    Liu, Mingming; Huang, Rong; Weisman, Adam; Yu, Xiaoyang; Lee, Shih-Hui; Chen, Yalu; Huang, Chao; Hu, Senhua; Chen, Xiuhua; Tan, Wenfeng; Liu, Fan; Chen, Hao; Shea, Kenneth J

    2018-05-24

    We report a novel strategy for creating abiotic Bacillus thuringiensis ( Bt) protein affinity ligands by biomimicry of the recognition process that takes place between Bt Cry1Ab/Ac proteins and insect receptor cadherin-like Bt-R 1 proteins. Guided by this strategy, a library of synthetic polymer nanoparticles (NPs) was prepared and screened for binding to three epitopes 280 FRGSAQGIEGS 290 , 368 RRPFNIGINNQQ 379 and 436 FRSGFSNSSVSIIR 449 located in loop α8, loop 2 and loop 3 of domain II of Bt Cry1Ab/Ac proteins. A negatively charged and hydrophilic nanoparticle (NP12) was found to have high affinity to one of the epitopes, 368 RRPFNIGINNQQ 379 . This same NP also had specific binding ability to both Bt Cry1Ab and Bt Cry1Ac, proteins that share the same epitope, but very low affinity to Bt Cry2A, Bt Cry1C and Bt Cry1F closely related proteins that lack epitope homology. To locate possible NP- Bt Cry1Ab/Ac interaction sites, NP12 was used as a competitive inhibitor to block the binding of 865 NITIHITDTNNK 876 , a specific recognition site in insect receptor Bt-R 1 , to 368 RRPFNIGINNQQ 379 . The inhibition by NP12 reached as high as 84%, indicating that NP12 binds to Bt Cry1Ab/Ac proteins mainly via 368 RRPFNIGINNQQ 379 . This epitope region was then utilized as a "target" or "bait" for the separation and concentration of Bt Cry1Ac protein from the extract of transgenic Bt cotton leaves by NP12. This strategy, based on the antigen-receptor recognition mechanism, can be extended to other biotoxins and pathogen proteins when designing biomimic alternatives to natural protein affinity ligands.

  10. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions

    International Nuclear Information System (INIS)

    Dougherty, Gerard W.; Chopp, Treasa; Qi Shengmei; Cutler, Mary Lou

    2005-01-01

    Rsu-1 is a highly conserved leucine rich repeat (LRR) protein that is expressed ubiquitously in mammalian cells. Rsu-1 was identified based on its ability to inhibit transformation by Ras, and previous studies demonstrated that ectopic expression of Rsu-1 inhibited anchorage-independent growth of Ras-transformed cells and human tumor cell lines. Using GAL4-based yeast two-hybrid screening, the LIM domain protein, PINCH1, was identified as the binding partner of Rsu-1. PINCH1 is an adaptor protein that localizes to focal adhesions and it has been implicated in the regulation of adhesion functions. Subdomain mapping in yeast revealed that Rsu-1 binds to the LIM 5 domain of PINCH1, a region not previously identified as a specific binding domain for any other protein. Additional testing demonstrated that PINCH2, which is highly homologous to PINCH1, except in the LIM 5 domain, does not interact with Rsu-1. Glutathione transferase fusion protein binding studies determined that the LRR region of Rsu-1 interacts with PINCH1. Transient expression studies using epitope-tagged Rsu-1 and PINCH1 revealed that Rsu-1 co-immunoprecipitated with PINCH1 and colocalized with vinculin at sites of focal adhesions in mammalian cells. In addition, endogenous P33 Rsu-1 from 293T cells co-immunoprecipitated with transiently expressed myc-tagged PINCH1. Furthermore, RNAi-induced reduction in Rsu-1 RNA and protein inhibited cell attachment, and while previous studies demonstrated that ectopic expression of Rsu-1 inhibited Jun kinase activation, the depletion of Rsu-1 resulted in activation of Jun and p38 stress kinases. These studies demonstrate that Rsu-1 interacts with PINCH1 in mammalian cells and functions, in part, by altering cell adhesion

  11. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    Science.gov (United States)

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  12. DMPD: LPS-binding proteins and receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 9665271 LPS-binding proteins and receptors. Fenton MJ, Golenbock DT. J Leukoc Biol.... 1998 Jul;64(1):25-32. (.png) (.svg) (.html) (.csml) Show LPS-binding proteins and receptors. PubmedID 9665271 Title LPS-binding prot...eins and receptors. Authors Fenton MJ, Golenbock DT. Publication J Leukoc Biol. 199

  13. Loss of selenium-binding protein 1 decreases sensitivity to clastogens and intracellular selenium content in HeLa cells

    Science.gov (United States)

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesized that loss of SBP1 modulates cellular selenium content and the response of ...

  14. Protein binding of psychotropic agents

    International Nuclear Information System (INIS)

    Hassan, H.A.

    1990-01-01

    Based upon fluorescence measurements, protein binding of some psychotropic agents (chlorpromazine, promethazine, and trifluoperazine) to human IgG and HSA was studied in aqueous cacodylate buffer, PH7. The interaction parameters determined from emission quenching of the proteins. The interaction parameters determined include the equilibrium constant (K), calculated from equations derived by Borazan and coworkers, the number of binding sites (n) available to the monomer molecules on a single protein molecule. The results revealed a high level of affinity, as reflected by high values of K, and the existence of specific binding sites, since a limited number of n values are obtained. 39 tabs.; 37 figs.; 83 refs

  15. Shared Midgut Binding Sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa Proteins from Bacillus thuringiensis in Two Important Corn Pests, Ostrinia nubilalis and Spodoptera frugiperda

    Science.gov (United States)

    Hernández-Rodríguez, Carmen Sara; Hernández-Martínez, Patricia; Van Rie, Jeroen; Escriche, Baltasar; Ferré, Juan

    2013-01-01

    First generation of insect-protected transgenic corn (Bt-corn) was based on the expression of Cry1Ab or Cry1Fa proteins. Currently, the trend is the combination of two or more genes expressing proteins that bind to different targets. In addition to broadening the spectrum of action, this strategy helps to delay the evolution of resistance in exposed insect populations. One of such examples is the combination of Cry1A.105 with Cry1Fa and Cry2Ab to control O. nubilalis and S. frugiperda. Cry1A.105 is a chimeric protein with domains I and II and the C-terminal half of the protein from Cry1Ac, and domain III almost identical to Cry1Fa. The aim of the present study was to determine whether the chimeric Cry1A.105 has shared binding sites either with Cry1A proteins, with Cry1Fa, or with both, in O. nubilalis and in S. frugiperda. Brush-border membrane vesicles (BBMV) from last instar larval midguts were used in competition binding assays with 125I-labeled Cry1A.105, Cry1Ab, and Cry1Fa, and unlabeled Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab and Cry2Ae. The results showed that Cry1A.105, Cry1Ab, Cry1Ac and Cry1Fa competed with high affinity for the same binding sites in both insect species. However, Cry2Ab and Cry2Ae did not compete for the binding sites of Cry1 proteins. Therefore, according to our results, the development of cross-resistance among Cry1Ab/Ac, Cry1A.105, and Cry1Fa proteins is possible in these two insect species if the alteration of shared binding sites occurs. Conversely, cross-resistance between these proteins and Cry2A proteins is very unlikely in such case. PMID:23861865

  16. Predicting binding within disordered protein regions to structurally characterised peptide-binding domains.

    Directory of Open Access Journals (Sweden)

    Waqasuddin Khan

    Full Text Available Disordered regions of proteins often bind to structured domains, mediating interactions within and between proteins. However, it is difficult to identify a priori the short disordered regions involved in binding. We set out to determine if docking such peptide regions to peptide binding domains would assist in these predictions.We assembled a redundancy reduced dataset of SLiM (Short Linear Motif containing proteins from the ELM database. We selected 84 sequences which had an associated PDB structures showing the SLiM bound to a protein receptor, where the SLiM was found within a 50 residue region of the protein sequence which was predicted to be disordered. First, we investigated the Vina docking scores of overlapping tripeptides from the 50 residue SLiM containing disordered regions of the protein sequence to the corresponding PDB domain. We found only weak discrimination of docking scores between peptides involved in binding and adjacent non-binding peptides in this context (AUC 0.58.Next, we trained a bidirectional recurrent neural network (BRNN using as input the protein sequence, predicted secondary structure, Vina docking score and predicted disorder score. The results were very promising (AUC 0.72 showing that multiple sources of information can be combined to produce results which are clearly superior to any single source.We conclude that the Vina docking score alone has only modest power to define the location of a peptide within a larger protein region known to contain it. However, combining this information with other knowledge (using machine learning methods clearly improves the identification of peptide binding regions within a protein sequence. This approach combining docking with machine learning is primarily a predictor of binding to peptide-binding sites, and is not intended as a predictor of specificity of binding to particular receptors.

  17. Sequence similarity between the erythrocyte binding domain 1 of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals binding residues for the Duffy Antigen Receptor for Chemokines

    OpenAIRE

    Bolton, Michael J; Garry, Robert F

    2011-01-01

    Abstract Background The surface glycoprotein (SU, gp120) of the human immunodeficiency virus (HIV) must bind to a chemokine receptor, CCR5 or CXCR4, to invade CD4+ cells. Plasmodium vivax uses the Duffy Binding Protein (DBP) to bind the Duffy Antigen Receptor for Chemokines (DARC) and invade reticulocytes. Results Variable loop 3 (V3) of HIV-1 SU and domain 1 of the Plasmodium vivax DBP share a sequence similarity. The site of amino acid sequence similarity was necessary, but not sufficient, ...

  18. A Maltose-Binding Protein Fusion Construct Yields a Robust Crystallography Platform for MCL1.

    Directory of Open Access Journals (Sweden)

    Matthew C Clifton

    Full Text Available Crystallization of a maltose-binding protein MCL1 fusion has yielded a robust crystallography platform that generated the first apo MCL1 crystal structure, as well as five ligand-bound structures. The ability to obtain fragment-bound structures advances structure-based drug design efforts that, despite considerable effort, had previously been intractable by crystallography. In the ligand-independent crystal form we identify inhibitor binding modes not observed in earlier crystallographic systems. This MBP-MCL1 construct dramatically improves the structural understanding of well-validated MCL1 ligands, and will likely catalyze the structure-based optimization of high affinity MCL1 inhibitors.

  19. Leptospiral outer membrane protein microarray, a novel approach to identification of host ligand-binding proteins.

    Science.gov (United States)

    Pinne, Marija; Matsunaga, James; Haake, David A

    2012-11-01

    Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via freshwater and colonization of the renal tubules of their reservoir hosts. Infection requires adherence to cell surfaces and extracellular matrix components of host tissues. These host-pathogen interactions involve outer membrane proteins (OMPs) expressed on the bacterial surface. In this study, we developed an Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 OMP microarray containing all predicted lipoproteins and transmembrane OMPs. A total of 401 leptospiral genes or their fragments were transcribed and translated in vitro and printed on nitrocellulose-coated glass slides. We investigated the potential of this protein microarray to screen for interactions between leptospiral OMPs and fibronectin (Fn). This approach resulted in the identification of the recently described fibronectin-binding protein, LIC10258 (MFn8, Lsa66), and 14 novel Fn-binding proteins, denoted Microarray Fn-binding proteins (MFns). We confirmed Fn binding of purified recombinant LIC11612 (MFn1), LIC10714 (MFn2), LIC11051 (MFn6), LIC11436 (MFn7), LIC10258 (MFn8, Lsa66), and LIC10537 (MFn9) by far-Western blot assays. Moreover, we obtained specific antibodies to MFn1, MFn7, MFn8 (Lsa66), and MFn9 and demonstrated that MFn1, MFn7, and MFn9 are expressed and surface exposed under in vitro growth conditions. Further, we demonstrated that MFn1, MFn4 (LIC12631, Sph2), and MFn7 enable leptospires to bind fibronectin when expressed in the saprophyte, Leptospira biflexa. Protein microarrays are valuable tools for high-throughput identification of novel host ligand-binding proteins that have the potential to play key roles in the virulence mechanisms of pathogens.

  20. Characterization of cap binding proteins associated with the nucleus

    International Nuclear Information System (INIS)

    Patzelt, E.

    1986-04-01

    Eucaryotic mRNAs a carry 7-methylguanosine triphosphate residue (called cap structure) at their 5' terminus. The cap plays an important role in RNA recognition. Cap binding proteins (CBP) of HeLa cells were identified by photoaffinity labelling using the cap analogue γ-( 32 P)-(4-(benzoyl-phenyl)methylamido)-7-methylguanosine-5'-triphosphate (BP-m 7 GTP). Photoreaction of this cap analogue with HeLa cell initiation factors resulted in specific labelling of two polypeptides of Msub(r) 37000 and 26000. The latter was also labelled in crude initiation factors prepared from reticulocytes and is identical to the cap binding protein CBP I previously identified. These cap binding proteins were also affinity labelled in poliovirus infected cell extracts. Photoaffinity reaction with BP-m 7 GTP of whole HeLa cell homogenate showed three additional polypeptides with Msub(r) 120000, 89000 and 80000. These cap binding proteins were found to be associated with the nucleus and are therefore referred to as nuclear cap binding proteins, i.e. NCBP 1, NCBP 2 and NCBP 3. They were also present in splicing extracts. Photoaffinity labelling in these nuclear extracts was differentially inhibited by various cap analogues and capped mRNAs. Affinity chromatography on immobilized globin mRNA led to a partial separation of the three nuclear cap binding proteins. Chromatography on m 7 GTP-Sepharose resulted in a specific binding of NCBP 3. The different behaviour of the cap binding proteins suggests that they are functionally distinct and that they might be involved in different processes requiring cap recognition. (Author)

  1. Further biochemical characterization of Mycobacterium leprae laminin-binding proteins

    Directory of Open Access Journals (Sweden)

    M.A.M. Marques

    2001-04-01

    Full Text Available It has been demonstrated that the alpha2 chain of laminin-2 present on the surface of Schwann cells is involved in the process of attachment of Mycobacterium leprae to these cells. Searching for M. leprae laminin-binding molecules, in a previous study we isolated and characterized the cationic proteins histone-like protein (Hlp and ribosomal proteins S4 and S5 as potential adhesins involved in M. leprae-Schwann cell interaction. Hlp was shown to bind alpha2-laminins and to greatly enhance the attachment of mycobacteria to ST88-14 Schwann cells. In the present study, we investigated the laminin-binding capacity of the ribosomal proteins S4 and S5. The genes coding for these proteins were PCR amplified and their recombinant products were shown to bind alpha2-laminins in overlay assays. However, when tested in ELISA-based assays and in adhesion assays with ST88-14 cells, in contrast to Hlp, S4 and S5 failed to bind laminin and act as adhesins. The laminin-binding property and adhesin capacity of two basic host-derived proteins were also tested, and only histones, but not cytochrome c, were able to increase bacterial attachment to ST88-14 cells. Our data suggest that the alanine/lysine-rich sequences shared by Hlp and eukaryotic H1 histones might be involved in the binding of these cationic proteins to laminin.

  2. Orphan Nuclear Receptor NR4A1 Binds a Novel Protein Interaction Site on Anti-apoptotic B Cell Lymphoma Gene 2 Family Proteins.

    Science.gov (United States)

    Godoi, Paulo H C; Wilkie-Grantham, Rachel P; Hishiki, Asami; Sano, Renata; Matsuzawa, Yasuko; Yanagi, Hiroko; Munte, Claudia E; Chen, Ya; Yao, Yong; Marassi, Francesca M; Kalbitzer, Hans R; Matsuzawa, Shu-Ichi; Reed, John C

    2016-07-01

    B cell lymphoma gene 2 (Bcl-2) family proteins are key regulators of programmed cell death and important targets for drug discovery. Pro-apoptotic and anti-apoptotic Bcl-2 family proteins reciprocally modulate their activities in large part through protein interactions involving a motif known as BH3 (Bcl-2 homology 3). Nur77 is an orphan member of the nuclear receptor family that lacks a BH3 domain but nevertheless binds certain anti-apoptotic Bcl-2 family proteins (Bcl-2, Bfl-1, and Bcl-B), modulating their effects on apoptosis and autophagy. We used a combination of NMR spectroscopy-based methods, mutagenesis, and functional studies to define the interaction site of a Nur77 peptide on anti-apoptotic Bcl-2 family proteins and reveal a novel interaction surface. Nur77 binds adjacent to the BH3 peptide-binding crevice, suggesting the possibility of cross-talk between these discrete binding sites. Mutagenesis of residues lining the identified interaction site on Bcl-B negated the interaction with Nur77 protein in cells and prevented Nur77-mediated modulation of apoptosis and autophagy. The findings establish a new protein interaction site with the potential to modulate the apoptosis and autophagy mechanisms governed by Bcl-2 family proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. IGF binding proteins.

    Science.gov (United States)

    Bach, Leon A

    2017-12-18

    Insulin-like growth factor binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellularly; (ii) interaction with and modulation of other growth factor pathways including EGF, TGF- and VEGF; and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.

  4. Electron microscopy of the complexes of ribulose-1,5-bisphosphate carboxylase (Rubisco) and Rubisco subunit-binding protein from pea leaves

    NARCIS (Netherlands)

    Tsuprun, V.L.; Boekema, E.J.; Samsonidze, T.G.; Pushkin, A.V.

    1991-01-01

    The structure of ribulose-1,5-bisphosphate carboxylase (Rubisco) subunit-binding protein and its interaction with pea leaf chloroplast Rubisco were studied by electron microscopy and image analysis. Electron-microscopic evidence for the association of Rubisco subunit-binding protein, consisting of

  5. Monomeric Yeast Frataxin is an Iron-Binding Protein

    International Nuclear Information System (INIS)

    Cook, J.; Bencze, K.; Jankovic, A.; Crater, A.; Busch, C.; Bradley, P.; Stemmler, A.; Spaller, M.; Stemmler, T.

    2006-01-01

    Friedreich's ataxia, an autosomal cardio- and neurodegenerative disorder that affects 1 in 50 000 humans, is caused by decreased levels of the protein frataxin. Although frataxin is nuclear-encoded, it is targeted to the mitochondrial matrix and necessary for proper regulation of cellular iron homeostasis. Frataxin is required for the cellular production of both heme and iron-sulfur (Fe-S) clusters. Monomeric frataxin binds with high affinity to ferrochelatase, the enzyme involved in iron insertion into porphyrin during heme production. Monomeric frataxin also binds to Isu, the scaffold protein required for assembly of Fe-S cluster intermediates. These processes (heme and Fe-S cluster assembly) share requirements for iron, suggesting that monomeric frataxin might function as the common iron donor. To provide a molecular basis to better understand frataxin's function, we have characterized the binding properties and metal-site structure of ferrous iron bound to monomeric yeast frataxin. Yeast frataxin is stable as an iron-loaded monomer, and the protein can bind two ferrous iron atoms with micromolar binding affinity. Frataxin amino acids affected by the presence of iron are localized within conserved acidic patches located on the surfaces of both helix-1 and strand-1. Under anaerobic conditions, bound metal is stable in the high-spin ferrous state. The metal-ligand coordination geometry of both metal-binding sites is consistent with a six-coordinate iron-(oxygen/nitrogen) based ligand geometry, surely constructed in part from carboxylate and possibly imidazole side chains coming from residues within these conserved acidic patches on the protein. On the basis of our results, we have developed a model for how we believe yeast frataxin interacts with iron

  6. A Carbapenem-Resistant Pseudomonas aeruginosa Isolate Harboring Two Copies of blaIMP-34 Encoding a Metallo-β-Lactamase.

    Directory of Open Access Journals (Sweden)

    Tatsuya Tada

    Full Text Available A carbapenem-resistant strain of Pseudomonas aeruginosa, NCGM1984, was isolated in 2012 from a hospitalized patient in Japan. Immunochromatographic assay showed that the isolate was positive for IMP-type metallo-β-lactamase. Complete genome sequencing revealed that NCGM1984 harbored two copies of blaIMP-34, located at different sites on the chromosome. Each blaIMP-34 was present in the same structures of the class 1 integrons, tnpA(ISPa7-intI1-qacG-blaIMP-34-aac(6'-Ib-qacEdelta1-sul1-orf5-tniBdelta-tniA. The isolate belonged to multilocus sequence typing ST235, one of the international high-risk clones. IMP-34, with an amino acid substitution (Glu126Gly compared with IMP-1, hydrolyzed all β-lactamases tested except aztreonam, and its catalytic activities were similar to IMP-1. This is the first report of a clinical isolate of an IMP-34-producing P. aeruginosa harboring two copies of blaIMP-34 on its chromosome.

  7. Alterations in cell growth and signaling in ErbB3 binding protein-1 (Ebp1 deficient mice

    Directory of Open Access Journals (Sweden)

    Lee Myounghee

    2008-12-01

    Full Text Available Abstract Background The ErbB3 binding protein-1 (Ebp1 belongs to a family of DNA/RNA binding proteins implicated in cell growth, apoptosis and differentiation. However, the physiological role of Ebp1 in the whole organism is not known. Therefore, we generated Ebp1-deficient mice carrying a gene trap insertion in intron 2 of the Ebp1 (pa2g4 gene. Results Ebp1-/- mice were on average 30% smaller than wild type and heterozygous sex matched littermates. Growth retardation was apparent from Day 10 until Day 30. IGF-1 production and IGBP-3 and 4 protein levels were reduced in both embryo fibroblasts and adult knock-out mice. The proliferation of fibroblasts derived from Day 12.5 knock out embryos was also decreased as compared to that of wild type cells. Microarray expression analysis revealed changes in genes important in cell growth including members of the MAPK signal transduction pathway. In addition, the expression or activation of proliferation related genes such as AKT and the androgen receptor, previously demonstrated to be affected by Ebp1 expression in vitro, was altered in adult tissues. Conclusion These results indicate that Ebp1 can affect growth in an animal model, but that the expression of proliferation related genes is cell and context specific. The Ebp1-/- mouse line represents a new in vivo model to investigate Ebp1 function in the whole organism.

  8. Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2016-05-01

    Full Text Available Plants have varying abilities to tolerate chilling (low but not freezing temperatures, and it is largely unknown how plants such as Arabidopsis thaliana achieve chilling tolerance. Here, we describe a genome-wide screen for genes important for chilling tolerance by their putative knockout mutants in Arabidopsis thaliana. Out of 11,000 T-DNA insertion mutant lines representing half of the genome, 54 lines associated with disruption of 49 genes had a drastic chilling sensitive phenotype. Sixteen of these genes encode proteins with chloroplast localization, suggesting a critical role of chloroplast function in chilling tolerance. Study of one of these proteins RBD1 with an RNA binding domain further reveals the importance of chloroplast translation in chilling tolerance. RBD1 is expressed in the green tissues and is localized in the chloroplast nucleoid. It binds directly to 23S rRNA and the binding is stronger under chilling than at normal growth temperatures. The rbd1 mutants are defective in generating mature 23S rRNAs and deficient in chloroplast protein synthesis especially under chilling conditions. Together, our study identifies RBD1 as a regulator of 23S rRNA processing and reveals the importance of chloroplast function especially protein translation in chilling tolerance.

  9. Adaptor proteins intersectin 1 and 2 bind similar proline-rich ligands but are differentially recognized by SH2 domain-containing proteins.

    Directory of Open Access Journals (Sweden)

    Olga Novokhatska

    Full Text Available BACKGROUND: Scaffolding proteins of the intersectin (ITSN family, ITSN1 and ITSN2, are crucial for the initiation stage of clathrin-mediated endocytosis. These proteins are closely related but have implications in distinct pathologies. To determine how these proteins could be separated in certain cell pathways we performed a comparative study of ITSNs. METHODOLOGY/PRINCIPAL FINDINGS: We have shown that endogenous ITSN1 and ITSN2 colocalize and form a complex in cells. A structural comparison of five SH3 domains, which mediated most ITSNs protein-protein interactions, demonstrated a similarity of their ligand-binding sites. We showed that the SH3 domains of ITSN2 bound well-established interactors of ITSN1 as well as newly identified ITSNs protein partners. A search for a novel interacting interface revealed multiple tyrosines that could be phosphorylated in ITSN2. Phosphorylation of ITSN2 isoforms but not ITSN1 short isoform was observed in various cell lines. EGF stimulation of HeLa cells enhanced tyrosine phosphorylation of ITSN2 isoforms and enabled their recognition by the SH2 domains of the Fyn, Fgr and Abl1 kinases, the regulatory subunit of PI3K, the adaptor proteins Grb2 and Crk, and phospholipase C gamma. The SH2 domains mentioned were unable to bind ITSN1 short isoform. CONCLUSIONS/SIGNIFICANCE: Our results indicate that during evolution of vertebrates ITSN2 acquired a novel protein-interaction interface that allows its specific recognition by the SH2 domains of signaling proteins. We propose that these data could be important to understand the functional diversity of paralogous ITSN proteins.

  10. Serine 77 in the PDZ domain of PICK1 is a protein kinase Cα phosphorylation site regulated by lipid membrane binding

    DEFF Research Database (Denmark)

    Ammendrup-Johnsen, Ina; Thorsen, Thor Seneca; Gether, Ulrik

    2012-01-01

    PICK1 (protein interacting with C kinase 1) contains an N-terminal protein binding PDZ domain and a C-terminal lipid binding BAR domain. PICK1 plays a key role in several physiological processes, including synaptic plasticity. However, little is known about the cellular mechanisms governing the a...... lipid binding and/or polymerization capacity. We propose that PICK1 is phosphorylated at Ser77 by PKCα preferentially when bound to membrane vesicles and that this phosphorylation in turn modulates its cellular distribution....

  11. Guardian of Genetic Messenger-RNA-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Antje Anji

    2016-01-01

    Full Text Available RNA in cells is always associated with RNA-binding proteins that regulate all aspects of RNA metabolism including RNA splicing, export from the nucleus, RNA localization, mRNA turn-over as well as translation. Given their diverse functions, cells express a variety of RNA-binding proteins, which play important roles in the pathologies of a number of diseases. In this review we focus on the effect of alcohol on different RNA-binding proteins and their possible contribution to alcohol-related disorders, and discuss the role of these proteins in the development of neurological diseases and cancer. We further discuss the conventional methods and newer techniques that are employed to identify RNA-binding proteins.

  12. Relationships Between IGF-1, IGF-Binding Proteins and Diet in African American and Caucasian Men

    National Research Council Canada - National Science Library

    Agurs-Collins, Tanya

    2003-01-01

    .... The proposed study will help to explain the increased risk of prostate cancer for African American men and the role of specific nutrients in influencing IGF-1 and IGF-binding protein concentrations...

  13. Relationships Between IGF-1, IGF-Binding Proteins and Diet in African American and Caucasian Men

    National Research Council Canada - National Science Library

    Agura-Collins, Tanya

    2001-01-01

    .... The proposed study will help to explain the increased risk of prostate cancer for African American men and the role of specific nutrients in influencing IGF-1 and IGF-binding protein concentrations...

  14. Relationships Between IGF-1, IGF-Binding Proteins and Diet in African American and Caucasian Men

    National Research Council Canada - National Science Library

    Agurs-Collins, Tanya

    2002-01-01

    .... The proposed study will help to explain the increased risk of prostate cancer for African American men and the role of specific nutrients in influencing IGF-1 and IGF-binding protein concentrations...

  15. A damage-responsive DNA binding protein regulates transcription of the yeast DNA repair gene PHR1

    International Nuclear Information System (INIS)

    Sebastian, J.; Sancar, G.B.

    1991-01-01

    The PHR1 gene of Saccharomyces cerevisiae encodes the DNA repair enzyme photolyase. Transcription of PHR1 increases in response to treatment of cells with 254-nm radiation and chemical agents that damage DNA. The authors here the identification of a damage-responsive DNA binding protein, termed photolyase regulatory protein (PRP), and its cognate binding site, termed the PHR1 transcription after DNA damage. PRP activity, monitored by electrophoretic-mobility-shift assay, was detected in cells during normal growth but disappeared within 30 min after irradiation. Copper-phenanthroline footprinting of PRP-DNA complexes revealed that PRP protects a 39-base-pair region of PHR1 5' flanking sequence beginning 40 base pairs upstream from the coding sequence. Thus these observations establish that PRP is a damage-responsive repressor of PHR1 transcription

  16. Structural Insights into RNA Recognition by the Alternate-Splicing Regulator CUG-Binding Protein 1

    Energy Technology Data Exchange (ETDEWEB)

    M Teplova; J Song; H Gaw; A Teplov; D Patel

    2011-12-31

    CUG-binding protein 1 (CUGBP1) regulates multiple aspects of nuclear and cytoplasmic mRNA processing, with implications for onset of myotonic dystrophy. CUGBP1 harbors three RRM domains and preferentially targets UGU-rich mRNA elements. We describe crystal structures of CUGBP1 RRM1 and tandem RRM1/2 domains bound to RNAs containing tandem UGU(U/G) elements. Both RRM1 in RRM1-RNA and RRM2 in RRM1/2-RNA complexes use similar principles to target UGU(U/G) elements, with recognition mediated by face-to-edge stacking and water-mediated hydrogen-bonding networks. The UG step adopts a left-handed Z-RNA conformation, with the syn guanine recognized through Hoogsteen edge-protein backbone hydrogen-bonding interactions. NMR studies on the RRM1/2-RNA complex establish that both RRM domains target tandem UGUU motifs in solution, whereas filter-binding assays identify a preference for recognition of GU over AU or GC steps. We discuss the implications of CUGBP1-mediated targeting and sequestration of UGU(U/G) elements on pre-mRNA alternative-splicing regulation, translational regulation, and mRNA decay.

  17. Tsetse salivary gland proteins 1 and 2 are high affinity nucleic acid binding proteins with residual nuclease activity.

    Directory of Open Access Journals (Sweden)

    Guy Caljon

    Full Text Available Analysis of the tsetse fly salivary gland EST database revealed the presence of a highly enriched cluster of putative endonuclease genes, including tsal1 and tsal2. Tsal proteins are the major components of tsetse fly (G. morsitans morsitans saliva where they are present as monomers as well as high molecular weight complexes with other saliva proteins. We demonstrate that the recombinant tsetse salivary gland proteins 1&2 (Tsal1&2 display DNA/RNA non-specific, high affinity nucleic acid binding with K(D values in the low nanomolar range and a non-exclusive preference for duplex. These Tsal proteins exert only a residual nuclease activity with a preference for dsDNA in a broad pH range. Knockdown of Tsal expression by in vivo RNA interference in the tsetse fly revealed a partially impaired blood digestion phenotype as evidenced by higher gut nucleic acid, hematin and protein contents.

  18. RNA-binding protein PSPC1 promotes the differentiation-dependent nuclear export of adipocyte RNAs

    DEFF Research Database (Denmark)

    Wang, Jiexin; Rajbhandari, Prashant; Damianov, Andrey

    2017-01-01

    A highly orchestrated gene expression program establishes the properties that define mature adipocytes, but the contribution of posttranscriptional factors to the adipocyte phenotype is poorly understood. Here we have shown that the RNA-binding protein PSPC1, a component of the paraspeckle complex...

  19. Identification of arsenite-and arsenic diglutathione-binding proteins in human hepatocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Mizumura, Ayano; Watanabe, Takayuki [Graduate School of Pharmaceutical Sciences, Chiba University, Yayoi, Inage, Chiba 263-8522 (Japan); Kobayashi, Yayoi [Graduate School of Pharmaceutical Sciences, Chiba University, Yayoi, Inage, Chiba 263-8522 (Japan); Environmental Health Sciences Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Hirano, Seishiro [Graduate School of Pharmaceutical Sciences, Chiba University, Yayoi, Inage, Chiba 263-8522 (Japan); Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan)

    2010-01-15

    It is generally accepted that trivalent arsenicals are more toxic than the corresponding pentavalent arsenicals, since trivalent arsenicals bind the thiol groups of biomolecules, leading to a deterioration in cellular functions. In the present study, we prepared three different arsenic-bound sepharoses and investigated the binding of hepatic cytosolic proteins to pentavalent, trivalent, and glutathione-conjugated trivalent arsenicals. SDS-PAGE showed no proteins bound to pentavalent arsenic specifically. In contrast, we found a number of proteins that have specific and high affinity for trivalent arsenic. Two of those proteins were identified: protein disulfide isomerase-related protein 5 (PDSIRP5) and peroxiredoxin 1/enhancer protein (PRX1/EP). These proteins have vicinal cysteines, as previously reported. In contrast, one of the prominent proteins that did not bind to trivalent arsenic was identified as calreticulin precursor. Although there are 3 cysteines in calreticulin precursor, two of the cysteines are spaced more than 25 amino acids apart. Five synthetic peptides containing 2 vicinal cysteines were prepared to study whether they would inhibit the binding of PDSIRP5, PRX1/EP, and other arsenic-binding proteins to trivalent arsenicals. Only two of the five peptides effectively inhibited binding, suggesting that other amino acids besides the 2 vicinal cysteines may modulate the affinity of cysteine-rich proteins for trivalent arsenicals. We further investigated hepatic cytosolic proteins that bound specifically to glutathione-conjugated trivalent arsenic, which is the most abundant form of arsenical in bile fluid. Four proteins that bound specifically to glutathione-conjugated trivalent arsenic were identified; interestingly, these proteins were different from the trivalent arsenic-binding proteins. These results suggest that although glutathione-conjugation is an important process in the metabolism, excretion, and detoxification of arsenicals, glutathione

  20. Polymeric competitive protein binding adsorbents for radioassay

    International Nuclear Information System (INIS)

    Adams, R.J.

    1976-01-01

    Serum protein comprising specific binding proteins such as antibodies, B 12 intrinsic factor, thyroxin binding globulin and the like may be copolymerized with globulin constituents of serum by the action of ethylchloroformate to form readily packed insoluble precipitates which, following purification as by washing, are eminently suited for employment as competitive binding protein absorbents in radioassay procedures. 10 claims, no drawings

  1. Discrete persistent-chain model for protein binding on DNA.

    Science.gov (United States)

    Lam, Pui-Man; Zhen, Yi

    2011-04-01

    We describe and solve a discrete persistent-chain model of protein binding on DNA, involving an extra σ(i) at a site i of the DNA. This variable takes the value 1 or 0, depending on whether or not the site is occupied by a protein. In addition, if the site is occupied by a protein, there is an extra energy cost ɛ. For a small force, we obtain analytic expressions for the force-extension curve and the fraction of bound protein on the DNA. For higher forces, the model can be solved numerically to obtain force-extension curves and the average fraction of bound proteins as a function of applied force. Our model can be used to analyze experimental force-extension curves of protein binding on DNA, and hence deduce the number of bound proteins in the case of nonspecific binding. ©2011 American Physical Society

  2. IMP3 RNP safe houses prevent miRNA-directed HMGA2 mRNA decay in cancer and development

    DEFF Research Database (Denmark)

    Jønson, Lars; Christiansen, Jan; Hansen, Thomas van Overeem

    2014-01-01

    by let-7, and let-7 antagomiRs make HMGA2 refractory to IMP3. Removal of let-7 target sites eliminates IMP3-dependent stabilization, and IMP3-containing bodies are depleted of Ago1-4 and miRNAs. The relationship between Hmga2 mRNA and IMPs also exists in the developing limb bud, where IMP1-deficient...... that IMP3 RNPs may function as cytoplasmic safe houses and prevent miRNA-directed mRNA decay of oncogenes during tumor progression....

  3. Brittle Culm1, a COBRA-Like Protein, Functions in Cellulose Assembly through Binding Cellulose Microfibrils

    Science.gov (United States)

    Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity. PMID:23990797

  4. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Directory of Open Access Journals (Sweden)

    Lifeng Liu

    Full Text Available Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1, a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  5. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Science.gov (United States)

    Liu, Lifeng; Shang-Guan, Keke; Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  6. Oct-1 potentiates CREB-driven cyclin D1 promoter activation via a phospho-CREB- and CREB binding protein-independent mechanism.

    Science.gov (United States)

    Boulon, Séverine; Dantonel, Jean-Christophe; Binet, Virginie; Vié, Annick; Blanchard, Jean-Marie; Hipskind, Robert A; Philips, Alexandre

    2002-11-01

    Cyclin D1, the regulatory subunit for mid-G(1) cyclin-dependent kinases, controls the expression of numerous cell cycle genes. A cyclic AMP-responsive element (CRE), located upstream of the cyclin D1 mRNA start site, integrates mitogenic signals that target the CRE-binding factor CREB, which can recruit the transcriptional coactivator CREB-binding protein (CBP). We describe an alternative mechanism for CREB-driven cyclin D1 induction that involves the ubiquitous POU domain protein Oct-1. In the breast cancer cell line MCF-7, overexpression of Oct-1 or its POU domain strongly increases transcriptional activation of cyclin D1 and GAL4 reporter genes that is specifically dependent upon CREB but independent of Oct-1 DNA binding. Gel retardation and chromatin immunoprecipitation assays confirm that POU forms a complex with CREB bound to the cyclin D1 CRE. In solution, CREB interaction with POU requires the CREB Q2 domain and, notably, occurs with CREB that is not phosphorylated on Ser 133. Accordingly, Oct-1 also potently enhances transcriptional activation mediated by a Ser133Ala CREB mutant. Oct-1/CREB synergy is not diminished by the adenovirus E1A 12S protein, a repressor of CBP coactivator function. In contrast, E1A strongly represses CBP-enhanced transactivation by CREB phosphorylated on Ser 133. Our observation that Oct-1 potentiates CREB-dependent cyclin D1 transcriptional activity independently of Ser 133 phosphorylation and E1A-sensitive coactivator function offers a new paradigm for the regulation of cyclin D1 induction by proliferative signals.

  7. Identification of binding domains in the herpes simplex virus type 1 small capsid protein pUL35 (VP26).

    Science.gov (United States)

    Apcarian, Arin; Cunningham, Anthony L; Diefenbach, Russell J

    2010-11-01

    In this study, fragments of the small capsid protein pUL35 (VP26) from herpes simplex virus type 1 (HSV-1) were generated to identify binding domains for a number of known ligands. Analysis of the binding of dynein light chain subunits, DYNLT1 and DYNLT3, as well the HSV-1 structural proteins pUL19 (VP5) and pUL37 was then undertaken using the LexA yeast two-hybrid assay. The N-terminal half of pUL35, in particular residues 30-43, was identified as a common region for the binding of DYNLT1 and DYNLT3. Additional distinct regions in the C terminus of pUL35 also contribute to the binding of DYNLT1 and DYNLT3. In contrast, only the C-terminal half of pUL35 was found to mediate the binding of pUL19 and pUL37 through distinct regions. The relevance of this information to the role of pUL35 in viral transport and assembly is discussed.

  8. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    Science.gov (United States)

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  9. A calmodulin-like protein (LCALA) is a new Leishmania amazonensis candidate for telomere end-binding protein.

    Science.gov (United States)

    Morea, Edna G O; Viviescas, Maria Alejandra; Fernandes, Carlos A H; Matioli, Fabio F; Lira, Cristina B B; Fernandez, Maribel F; Moraes, Barbara S; da Silva, Marcelo S; Storti, Camila B; Fontes, Marcos R M; Cano, Maria Isabel N

    2017-11-01

    Leishmania spp. telomeres are composed of 5'-TTAGGG-3' repeats associated with proteins. We have previously identified LaRbp38 and LaRPA-1 as proteins that bind the G-rich telomeric strand. At that time, we had also partially characterized a protein: DNA complex, named LaGT1, but we could not identify its protein component. Using protein-DNA interaction and competition assays, we confirmed that LaGT1 is highly specific to the G-rich telomeric single-stranded DNA. Three protein bands, with LaGT1 activity, were isolated from affinity-purified protein extracts in-gel digested, and sequenced de novo using mass spectrometry analysis. In silico analysis of the digested peptide identified them as a putative calmodulin with sequences identical to the T. cruzi calmodulin. In the Leishmania genome, the calmodulin ortholog is present in three identical copies. We cloned and sequenced one of the gene copies, named it LCalA, and obtained the recombinant protein. Multiple sequence alignment and molecular modeling showed that LCalA shares homology to most eukaryotes calmodulin. In addition, we demonstrated that LCalA is nuclear, partially co-localizes with telomeres and binds in vivo the G-rich telomeric strand. Recombinant LCalA can bind specifically and with relative affinity to the G-rich telomeric single-strand and to a 3'G-overhang, and DNA binding is calcium dependent. We have described a novel candidate component of Leishmania telomeres, LCalA, a nuclear calmodulin that binds the G-rich telomeric strand with high specificity and relative affinity, in a calcium-dependent manner. LCalA is the first reported calmodulin that binds in vivo telomeric DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Rapid detection and purification of sequence specific DNA binding proteins using magnetic separation

    Directory of Open Access Journals (Sweden)

    TIJANA SAVIC

    2006-02-01

    Full Text Available In this paper, a method for the rapid identification and purification of sequence specific DNA binding proteins based on magnetic separation is presented. This method was applied to confirm the binding of the human recombinant USF1 protein to its putative binding site (E-box within the human SOX3 protomer. It has been shown that biotinylated DNA attached to streptavidin magnetic particles specifically binds the USF1 protein in the presence of competitor DNA. It has also been demonstrated that the protein could be successfully eluted from the beads, in high yield and with restored DNA binding activity. The advantage of these procedures is that they could be applied for the identification and purification of any high-affinity sequence-specific DNA binding protein with only minor modifications.

  11. Factor VII and protein C are phosphatidic acid-binding proteins.

    Science.gov (United States)

    Tavoosi, Narjes; Smith, Stephanie A; Davis-Harrison, Rebecca L; Morrissey, James H

    2013-08-20

    Seven proteins in the human blood clotting cascade bind, via their GLA (γ-carboxyglutamate-rich) domains, to membranes containing exposed phosphatidylserine (PS), although with membrane binding affinities that vary by 3 orders of magnitude. Here we employed nanodiscs of defined phospholipid composition to quantify the phospholipid binding specificities of these seven clotting proteins. All bound preferentially to nanobilayers in which PS headgroups contained l-serine versus d-serine. Surprisingly, however, nanobilayers containing phosphatidic acid (PA) bound substantially more of two of these proteins, factor VIIa and activated protein C, than did equivalent bilayers containing PS. Consistent with this finding, liposomes containing PA supported higher proteolytic activity by factor VIIa and activated protein C toward their natural substrates (factors X and Va, respectively) than did PS-containing liposomes. Moreover, treating activated human platelets with phospholipase D enhanced the rates of factor X activation by factor VIIa in the presence of soluble tissue factor. We hypothesize that factor VII and protein C bind preferentially to the monoester phosphate of PA because of its accessibility and higher negative charge compared with the diester phosphates of most other phospholipids. We further found that phosphatidylinositol 4-phosphate, which contains a monoester phosphate attached to its myo-inositol headgroup, also supported enhanced enzymatic activity of factor VIIa and activated protein C. We conclude that factor VII and protein C bind preferentially to monoester phosphates, which may have implications for the function of these proteases in vivo.

  12. Dynamic SPR monitoring of yeast nuclear protein binding to a cis-regulatory element

    International Nuclear Information System (INIS)

    Mao, Grace; Brody, James P.

    2007-01-01

    Gene expression is controlled by protein complexes binding to short specific sequences of DNA, called cis-regulatory elements. Expression of most eukaryotic genes is controlled by dozens of these elements. Comprehensive identification and monitoring of these elements is a major goal of genomics. In pursuit of this goal, we are developing a surface plasmon resonance (SPR) based assay to identify and monitor cis-regulatory elements. To test whether we could reliably monitor protein binding to a regulatory element, we immobilized a 16 bp region of Saccharomyces cerevisiae chromosome 5 onto a gold surface. This 16 bp region of DNA is known to bind several proteins and thought to control expression of the gene RNR1, which varies through the cell cycle. We synchronized yeast cell cultures, and then sampled these cultures at a regular interval. These samples were processed to purify nuclear lysate, which was then exposed to the sensor. We found that nuclear protein binds this particular element of DNA at a significantly higher rate (as compared to unsynchronized cells) during G1 phase. Other time points show levels of DNA-nuclear protein binding similar to the unsynchronized control. We also measured the apparent association complex of the binding to be 0.014 s -1 . We conclude that (1) SPR-based assays can monitor DNA-nuclear protein binding and that (2) for this particular cis-regulatory element, maximum DNA-nuclear protein binding occurs during G1 phase

  13. High-affinity DNA-binding Domains of Replication Protein A (RPA) Direct SMARCAL1-dependent Replication Fork Remodeling*

    Science.gov (United States)

    Bhat, Kamakoti P.; Bétous, Rémy; Cortez, David

    2015-01-01

    SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. PMID:25552480

  14. High-affinity DNA-binding domains of replication protein A (RPA) direct SMARCAL1-dependent replication fork remodeling.

    Science.gov (United States)

    Bhat, Kamakoti P; Bétous, Rémy; Cortez, David

    2015-02-13

    SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. GTP-binding proteins in rat liver nuclear envelopes

    International Nuclear Information System (INIS)

    Rubins, J.B.; Benditt, J.O.; Dickey, B.F.; Riedel, N.

    1990-01-01

    Nuclear transport as well as reassembly of the nuclear envelope (NE) after completion of mitosis are processes that have been shown to require GTP and ATP. To study the presence and localization of GTP-binding proteins in the NE, we have combined complementary techniques of [alpha-32P]GTP binding to Western-blotted proteins and UV crosslinking of [alpha-32P]GTP with well-established procedures for NE subfractionation. GTP binding to blotted NE proteins revealed five low molecular mass GTP-binding proteins of 26, 25, 24.5, 24, and 23 kDa, and [alpha-32P]GTP photoaffinity labeling revealed major proteins with apparent molecular masses of 140, 53, 47, 33, and 31 kDa. All GTP-binding proteins appear to localize preferentially to the inner nuclear membrane, possibly to the interface between inner nuclear membrane and lamina. Despite the evolutionary conservation between the NE and the rough endoplasmic reticulum, the GTP-binding proteins identified differed between these two compartments. Most notably, the 68- and 30-kDa GTP-binding subunits of the signal recognition particle receptor, which photolabeled with [alpha-32P]GTP in the rough endoplasmic reticulum fraction, were totally excluded from the NE fraction. Conversely, a major 53-kDa photolabeled protein in the NE was absent from rough endoplasmic reticulum. Whereas Western-blotted NE proteins bound GTP specifically, all [alpha-32P]GTP photolabeled proteins could be blocked by competition with ATP, although with a competition profile that differed from that obtained with GTP. In comparative crosslinking studies with [alpha-32P]ATP, we have identified three specific ATP-binding proteins with molecular masses of 160, 78, and 74 kDa. The localization of GTP- and ATP-binding proteins within the NE appears appropriate for their involvement in nuclear transport and in the GTP-dependent fusion of nuclear membranes

  16. Cobalamin and its binding protein in rat milk

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Poulsen, Steen Seier

    1989-01-01

    Cobalamin and its binding protein, haptocorrin, are present in rat milk throughout the lactation period. The concentration of cobalamin is approximately 0.3-times the concentration of the unsaturated binding protein. The concentration of the unsaturated cobalamin-binding protein varies between 18...

  17. ISEE/IMP Observations of simultaneous upstream ion events

    International Nuclear Information System (INIS)

    Mitchel, D.G.; Roelof, E.C.; Sanderson, T.R.; Reinhard, R.; Wenzel, K.

    1983-01-01

    Propagation of upstream energetic (50--200 keV) ions is analyzed in sixteen events observed simulataneously by solid state detectors on ISEE 3 at approx.200 R/sub E/ and on IMP 8 at approx.35 R/sub E/ from the earth. Conclusions are based on comparisons of the pitch angle distributions observed at the two spacecraft and transformed into the solar wind frame. They are beamlike at ISEE 3 and are confined to the outward hemisphere. When IMP 8 is furtherest from the bow shock, they are also usually beamlike, or hemispheric. However, when IMP 8 is closer to the bow shock, pancakelike distributions are observed. This systematic variation in the IMP 8 pitch angle distributions delimits a scattering region l< or approx. =14 R/sub E/ upstream of the earth's bow shock (l measured along the interplanetary magnetic field) that dominates ion propagation, influences the global distribution of fluxes in the foreshock, and may play a role in acceleration of the ions. When IMP 8 is beyond lapprox.15 R/sub E/, the propagation appears to be essentially scatter-free between IMP 8 and ISEE 3; this is deduced from the absence of earthward fluxes at IMP 8 as well as the tendency for the spin-averaged fluxes to be comparable at the two spacecraft

  18. Characterization of fatty acid binding by the P2 myelin protein

    International Nuclear Information System (INIS)

    Gudaitis, P.G.; Weise, M.J.

    1987-01-01

    In recent years, significant sequence homology has been found between the P2 protein of peripheral myelin and intracellular retinoid- and fatty acid-binding proteins. They have found that salt extracts of bovine intradural nerve roots contain the P2 basic protein in association with free fatty acid. Preliminary results from quantitative analyses showed a ratio of 0.4-1.1 fatty acid (mainly oleate and palmitate) per P2 molecule. P2/ligand interactions were partially characterized using ( 3 H)-oleate in gel permeation assays and binding studies using lipidex to separated bound and free fatty acid. Methyloleate was found to displace ( 3 H)-oleate from P2, indicating that ligand binding interactions are predominantly hydrophobic in nature. On the other hand, myristic acid and retinol did not inhibit the binding of oleate to the protein, results consistent with a decided affinity for long chain fatty acids but not for the retinoids. The binding between P2 and oleic acid showed an apparent Kd in the micromolar range, a value comparable to those found for other fatty acid-binding proteins. From these results they conclude that P2 shares not only structural homology with certain fatty acid binding proteins but also an ability to bind long chain fatty acids. Although the significance of these similarities is not yet clear, they may, by analogy, expect P2 to have a role in PNS lipid metabolism

  19. Embryonic expression of Drosophila IMP in the developing CNS and PNS

    DEFF Research Database (Denmark)

    Adolph, Sidsel Kramshøj; Delotto, Robert; Nielsen, Finn Cilius

    2008-01-01

    embryogenesis. In the cellular blastoderm, immunoreactivity was seen in the entire cell-layer, where it was localized apically to the nucleus, and in the pole cells. Later, the GFP-dIMP fusion protein appeared in the developing central nervous system, both in the brain and in the ventral nerve cord...

  20. Further Characterization of the UL37 Protein of Herpes Simplex Virus Type 1 and its Interaction with ICP8, the Major DNA-Binding Protein of Herpes Simplex Virus

    Science.gov (United States)

    1994-01-01

    Baringer, J.R. 1974. Recovery of herpes simplex virus from human sacral ganglions. N. Eng!. J. Med. 291:828-830. Baringer, J.R. 1976. The biology of herpes ...UL37 Protein of Herpes Simplex Virus Type 1 and its Interaction with [CPS, the Major DNA~Binding Protein of Herpes Simplex Virus" beyond brief...Protein of Herpes Simplex Virus Type 1 and its Interaction with [CPS, the Major DNA-Binding Protein of Herpes Simplex Virus Allen G. Albright Doctor of

  1. Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes

    DEFF Research Database (Denmark)

    Mandrup, S; Hummel, R; Ravn, S

    1992-01-01

    Acyl-CoA-binding protein (ACBP) is a 10 kDa protein isolated from bovine liver by virtue of its ability to bind and induce the synthesis of medium-chain acyl-CoA esters. Surprisingly, it turned out to be identical to a protein named diazepam-binding Inhibitor (DBI) claimed to be an endogenous mod...... have molecularly cloned and characterized the ACBP/DBI gene family in rat. The rat ACBP/DBI gene family comprises one expressed gene and four processed pseudogenes of which one was shown to exist in two allelic forms. The expressed gene is organized into four exons and three introns...

  2. Structure of the human-heart fatty-acid-binding protein 3 in complex with the fluorescent probe 1-anilinonaphthalene-8-sulphonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Mika; Sugiyama, Shigeru, E-mail: sugiyama@chem.eng.osaka-u.ac.jp [Lipid Active Structure Project, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Ishida, Hanako; Niiyama, Mayumi [Lipid Active Structure Project, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Osaka University, 2-1 Yamadaoka, Suita 565-0871 (Japan); Matsuoka, Daisuke; Hara, Toshiaki [Lipid Active Structure Project, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Mizohata, Eiichi [Osaka University, 2-1 Yamadaoka, Suita 565-0871 (Japan); Murakami, Satoshi [Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Kanagaw 226-8501 (Japan); Inoue, Tsuyoshi [Osaka University, 2-1 Yamadaoka, Suita 565-0871 (Japan); Matsuoka, Shigeru; Murata, Michio [Lipid Active Structure Project, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan); Osaka University, 1-1 Machikaneyama-cho, Toyonaka 560-0043 (Japan)

    2013-11-01

    The crystal structure of human-heart-type fatty-acid-binding protein in complex with anilinonaphthalene-8-sulfonate was solved at 2.15 Å resolution revealing the detailed binding mechanism of the fluorescent probe 1-anilinonaphthalene-8-sulfonate. Heart-type fatty-acid-binding protein (FABP3), which is a cytosolic protein abundantly found in cardiomyocytes, plays a role in trafficking fatty acids throughout cellular compartments by reversibly binding intracellular fatty acids with relatively high affinity. The fluorescent probe 1-anilinonaphthalene-8-sulfonate (ANS) is extensively utilized for examining the interaction of ligands with fatty-acid-binding proteins. The X-ray structure of FABP3 was determined in the presence of ANS and revealed the detailed ANS-binding mechanism. Furthermore, four water molecules were clearly identified in the binding cavity. Through these water molecules, the bound ANS molecule forms indirect hydrogen-bond interactions with FABP3. The adipocyte-type fatty-acid-binding protein (FABP4) exhibits 67% sequence identity with FABP3 and its crystal structure is almost the same as that of FABP3. However, FABP4 can bind with a higher affinity to ANS than FABP3. To understand the difference in their ligand specificities, a structural comparison was performed between FABP3–ANS and FABP4–ANS complexes. The result revealed that the orientation of ANS binding to FABP3 is completely opposite to that of ANS binding to FABP4, and the substitution of valine in FABP4 to leucine in FABP3 may result in greater steric hindrance between the side-chain of Leu115 and the aniline ring of ANS.

  3. Structure of the human-heart fatty-acid-binding protein 3 in complex with the fluorescent probe 1-anilinonaphthalene-8-sulphonic acid

    International Nuclear Information System (INIS)

    Hirose, Mika; Sugiyama, Shigeru; Ishida, Hanako; Niiyama, Mayumi; Matsuoka, Daisuke; Hara, Toshiaki; Mizohata, Eiichi; Murakami, Satoshi; Inoue, Tsuyoshi; Matsuoka, Shigeru; Murata, Michio

    2013-01-01

    The crystal structure of human-heart-type fatty-acid-binding protein in complex with anilinonaphthalene-8-sulfonate was solved at 2.15 Å resolution revealing the detailed binding mechanism of the fluorescent probe 1-anilinonaphthalene-8-sulfonate. Heart-type fatty-acid-binding protein (FABP3), which is a cytosolic protein abundantly found in cardiomyocytes, plays a role in trafficking fatty acids throughout cellular compartments by reversibly binding intracellular fatty acids with relatively high affinity. The fluorescent probe 1-anilinonaphthalene-8-sulfonate (ANS) is extensively utilized for examining the interaction of ligands with fatty-acid-binding proteins. The X-ray structure of FABP3 was determined in the presence of ANS and revealed the detailed ANS-binding mechanism. Furthermore, four water molecules were clearly identified in the binding cavity. Through these water molecules, the bound ANS molecule forms indirect hydrogen-bond interactions with FABP3. The adipocyte-type fatty-acid-binding protein (FABP4) exhibits 67% sequence identity with FABP3 and its crystal structure is almost the same as that of FABP3. However, FABP4 can bind with a higher affinity to ANS than FABP3. To understand the difference in their ligand specificities, a structural comparison was performed between FABP3–ANS and FABP4–ANS complexes. The result revealed that the orientation of ANS binding to FABP3 is completely opposite to that of ANS binding to FABP4, and the substitution of valine in FABP4 to leucine in FABP3 may result in greater steric hindrance between the side-chain of Leu115 and the aniline ring of ANS

  4. Pumilio and nanos RNA-binding proteins counterbalance the transcriptional consequences of RB1 inactivation.

    Science.gov (United States)

    Miles, Wayne O; Dyson, Nicholas J

    2014-01-01

    The ability of the retinoblastoma protein (RB) tumor suppressor to repress transcription stimulated by the E2 promoter binding factors (E2F) is integral to its biological functions. Our recent report described a conserved feedback mechanism mediated by the RNA-binding proteins Pumilio and Nanos that increases in importance following RB loss and helps cells to tolerate deregulated E2F.

  5. Contribution of the first K-homology domain of poly(C)-binding protein 1 to its affinity and specificity for C-rich oligonucleotides.

    Science.gov (United States)

    Yoga, Yano M K; Traore, Daouda A K; Sidiqi, Mahjooba; Szeto, Chris; Pendini, Nicole R; Barker, Andrew; Leedman, Peter J; Wilce, Jacqueline A; Wilce, Matthew C J

    2012-06-01

    Poly-C-binding proteins are triple KH (hnRNP K homology) domain proteins with specificity for single stranded C-rich RNA and DNA. They play diverse roles in the regulation of protein expression at both transcriptional and translational levels. Here, we analyse the contributions of individual αCP1 KH domains to binding C-rich oligonucleotides using biophysical and structural methods. Using surface plasmon resonance (SPR), we demonstrate that KH1 makes the most stable interactions with both RNA and DNA, KH3 binds with intermediate affinity and KH2 only interacts detectibly with DNA. The crystal structure of KH1 bound to a 5'-CCCTCCCT-3' DNA sequence shows a 2:1 protein:DNA stoichiometry and demonstrates a molecular arrangement of KH domains bound to immediately adjacent oligonucleotide target sites. SPR experiments, with a series of poly-C-sequences reveals that cytosine is preferred at all four positions in the oligonucleotide binding cleft and that a C-tetrad binds KH1 with 10 times higher affinity than a C-triplet. The basis for this high affinity interaction is finally detailed with the structure determination of a KH1.W.C54S mutant bound to 5'-ACCCCA-3' DNA sequence. Together, these data establish the lead role of KH1 in oligonucleotide binding by αCP1 and reveal the molecular basis of its specificity for a C-rich tetrad.

  6. Comparative studies of vertebrate scavenger receptor class B type 1: a high-density lipoprotein binding protein

    Directory of Open Access Journals (Sweden)

    Holmes RS

    2012-06-01

    Full Text Available Roger S Holmes,1,2 Laura A Cox11Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA; 2School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland, AustraliaAbstract: Scavenger receptor class B type 1 protein (SCARB1 plays an essential role in cholesterol homeostasis and functions in binding high density lipoprotein cholesterol (HDL in liver and other tissues of the body. SCARB1 also functions in lymphocyte homeostasis and in the uptake of hepatitis C virus (HCV by the liver. A genetic deficiency of this protein results in autoimmune disorders and significant changes in blood cholesterol phenotype. Comparative SCARB1 amino acid sequences and structures and SCARB1 gene locations were examined using data from several vertebrate genome projects. Vertebrate SCARB1 sequences shared 50%–99% identity as compared with 28%–31% sequence identities with other CD36-like superfamily members, ie, SCARB2 and SCARB3 (also called CD36. At least eight N-glycosylation sites were conserved among most of the vertebrate SCARB1 proteins examined. Sequence alignments, key amino acid residues, and conserved predicted secondary structures were also studied, including: cytoplasmic, transmembrane, and exoplasmic sequences; conserved N-terminal and C-terminal transmembrane glycines which participate in oligomer formation; conserved cystine disulfides and a free SH residue which participates in lipid transport; carboxyl terminal PDZ-binding domain sequences (Ala507-Arg/Lys508-Leu509; and 30 conserved proline and 18 conserved glycine residues, which may contribute to short loop formation within the exoplasmic HDL-binding sequence. Vertebrate SCARB1 genes usually contained 12 coding exons. The human SCARB1 gene contained CpG islands, micro RNA binding sites, and several transcription factor binding sites (including PPARG which may contribute to the high level (13.7 times

  7. Definition of IgG- and albumin-binding regions of streptococcal protein G.

    Science.gov (United States)

    Akerström, B; Nielsen, E; Björck, L

    1987-10-05

    Protein G, the immunoglobin G-binding surface protein of group C and G streptococci, also binds serum albumin. The albumin-binding site on protein G is distinct from the immunoglobulin G-binding site. By mild acid hydrolysis of the papain-liberated protein G fragment (35 kDa), a 28-kDa fragment was produced which retained full immunoglobulin G-binding activity (determined by Scatchard plotting) but had lost all albumin-binding capacity. A protein G (65 kDa), isolated after cloning and expression of the protein G gene in Escherichia coli, had comparable affinity to immunoglobulin G (5-10 X 10(10)M-1), but much higher affinity to albumin than the 35- and 28-kDa protein G fragments (31, 2.6, and 0 X 10(9)M-1, respectively). The amino-terminal amino acid sequences of the 65-, 35-, and 28-kDa fragments allowed us to exactly locate the three fragments in an overall sequence map of protein G, based on the partial gene sequences published by Guss et al. (Guss, B., Eliasson, M., Olsson, A., Uhlen, M., Frej, A.-K., Jörnvall, H., Flock, J.-I., and Lindberg, M. (1986) EMBO J. 5, 1567-1575) and Fahnestock et al. (Fahnestock, S. R., Alexander, P., Nagle, J., and Filpula, D. (1986) J. Bacteriol. 167, 870-880). In this map could then be deduced the location of three homologous albumin-binding regions and three homologous immunoglobulin G-binding regions.

  8. Characterization of the dextran-binding domain in the glucan-binding protein C of Streptococcus mutans.

    Science.gov (United States)

    Takashima, Y; Fujita, K; Ardin, A C; Nagayama, K; Nomura, R; Nakano, K; Matsumoto-Nakano, M

    2015-10-01

    Streptococcus mutans produces multiple glucan-binding proteins (Gbps), among which GbpC encoded by the gbpC gene is known to be a cell-surface-associated protein involved in dextran-induced aggregation. The purpose of the present study was to characterize the dextran-binding domain of GbpC using bioinformatics analysis and molecular techniques. Bioinformatics analysis specified five possible regions containing molecular binding sites termed GB1 through GB5. Next, truncated recombinant GbpC (rGbpC) encoding each region was produced using a protein expression vector and five deletion mutant strains were generated, termed CDGB1 through CDGB5 respectively. The dextran-binding rates of truncated rGbpC that included the GB1, GB3, GB4 and GB5 regions in the upstream sequences were higher than that of the construct containing GB2 in the downstream region. In addition, the rates of dextran-binding for strains CDGB4 and CD1, which was entire gbpC deletion mutant, were significantly lower than for the other strains, while those of all other deletion mutants were quite similar to that of the parental strain MT8148. Biofilm structures formed by CDGB4 and CD1 were not as pronounced as that of MT8148, while those formed by other strains had greater density as compared to that of CD1. Our results suggest that the dextran-binding domain may be located in the GB4 region in the interior of the gbpC gene. Bioinformatics analysis is useful for determination of functional domains in many bacterial species. © 2015 The Society for Applied Microbiology.

  9. Epstein-Barr virus-encoded EBNA-5 binds to Epstein-Barr virus-induced Fte1/S3a protein

    International Nuclear Information System (INIS)

    Kashuba, Elena; Yurchenko, Mariya; Szirak, Krisztina; Stahl, Joachim; Klein, George; Szekely, Laszlo

    2005-01-01

    Epstein-Barr virus (EBV) transforms resting human B cells into immortalized immunoblasts. EBV-encoded nuclear antigens EBNA-5 (also called EBNA-LP) is one of the earliest viral proteins expressed in freshly infected B cells. We have recently shown that EBNA-5 binds p14ARF, a nucleolar protein that regulates the p53 pathway. Here, we report the identification of another protein with partially nucleolar localization, the v-fos transformation effector Fte-1 (Fte-1/S3a), as an EBNA-5 binding partner. In transfected cells, Fte-1/S3a and EBNA-5 proteins showed high levels of colocalization in extranucleolar inclusions. Fte-1/S3a has multiple biological functions. It enhances v-fos-mediated cellular transformation and is part of the small ribosomal subunit. It also interacts with the transcriptional factor CHOP and apoptosis regulator poly(ADP-ribose) polymerase (PARP). Fte-1/S3a is regularly expressed at high levels in both tumors and cancer cell lines. Its high expression favors the maintenance of malignant phenotype and undifferentiated state, whereas its down-regulation is associated with cellular differentiation and growth arrest. Here, we show that EBV-induced B cell transformation leads to the up-regulation of Fte-1/S3a. We suggest that EBNA-5 through binding may influence the growth promoting, differentiation inhibiting, or apoptosis regulating functions of Fte-1/S3a

  10. The RNA-binding protein repertoire of Arabidopsis thaliana

    KAUST Repository

    Marondedze, Claudius

    2016-07-11

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.

  11. cIMP synthesized by sGC as a mediator of hypoxic contraction of coronary arteries.

    Science.gov (United States)

    Chen, Zhengju; Zhang, Xu; Ying, Lei; Dou, Dou; Li, Yanhui; Bai, Yun; Liu, Juan; Liu, Limei; Feng, Han; Yu, Xiaoxing; Leung, Susan Wai-Sum; Vanhoutte, Paul M; Gao, Yuansheng

    2014-08-01

    cGMP is considered the only mediator synthesized by soluble guanylyl cyclase (sGC) in response to nitric oxide (NO). However, purified sGC can synthesize several other cyclic nucleotides, including inosine 3',5'-cyclic monophosphate (cIMP). The present study was designed to determine the role of cIMP in hypoxic contractions of isolated porcine coronary arteries. Vascular responses were examined by measuring isometric tension. Cyclic nucleotides were assayed by HPLC tandem mass spectroscopy. Rho kinase (ROCK) activity was determined by measuring the phosphorylation of myosin phosphatase target subunit 1 using Western blot analysis and an ELISA kit. The level of cIMP, but not that of cGMP, was elevated by hypoxia in arteries with, but not in those without, endothelium [except if treated with diethylenetriamine (DETA) NONOate]; the increases in cIMP were inhibited by the sGC inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ). Hypoxia (Po2: 25-30 mmHg) augmented contractions of arteries with and without endothelium if treated with DETA NONOate; these hypoxic contractions were blocked by ODQ. In arteries without endothelium, hypoxic augmentation of contraction was also obtained with exogenous cIMP. In arteries with endothelium, hypoxic augmentation of contraction was further enhanced by inosine 5'-triphosphate, the precursor for cIMP. The augmentation of contraction caused by hypoxia or cIMP was accompanied by increased phosphorylation of myosin phosphatase target subunit 1 at Thr(853), which was prevented by the ROCK inhibitor Y-27632. ROCK activity in the supernatant of isolated arteries was stimulated by cIMP in a concentration-dependent fashion. These results demonstrate that cIMP synthesized by sGC is the likely mediator of hypoxic augmentation of coronary vasoconstriction, in part by activating ROCK. Copyright © 2014 the American Physiological Society.

  12. Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins

    DEFF Research Database (Denmark)

    Seeger, Michael; Hartmann-Petersen, Rasmus; Wilkinson, Caroline R M

    2003-01-01

    Fission yeast Rhp23 and Pus1 represent two families of multiubiquitin chain-binding proteins that associate with the proteasome. We show that both proteins bind to different regions of the proteasome subunit Mts4. The binding site for Pus1 was mapped to a cluster of repetitive sequences also found...... in the proteasome subunit SpRpn2 and the anaphase-promoting complex/cyclosome (APC/C) subunit Cut4. The putative role of Pus1 as a factor involved in allocation of ubiquitinylated substrates for the proteasome is discussed....

  13. Changes in circulating level of IGF-I and IGF-binding protein-1 from the first to second trimester as predictors of preeclampsia

    DEFF Research Database (Denmark)

    Vatten, Lars J; Nilsen, Tom I L; Juul, Anders

    2008-01-01

    To assess whether circulating IGF-I and IGF-binding protein-1 (IGFBP-1) in the first and second trimester are associated with subsequent risk of preterm and term preeclampsia.......To assess whether circulating IGF-I and IGF-binding protein-1 (IGFBP-1) in the first and second trimester are associated with subsequent risk of preterm and term preeclampsia....

  14. Ultraviolet B (UVB) induction of the c-fos promoter is mediated by phospho-cAMP response element binding protein (CREB) binding to CRE and c-fos activator protein 1 site (FAP1) cis elements.

    Science.gov (United States)

    Gonzales, Melissa; Bowden, G Tim

    2002-06-26

    The ultraviolet B (UVB) portion (280-320 nm) of the ultraviolet spectrum has been shown to contribute to the development of non-melanoma skin cancer in humans. Research in the human keratinocyte cell line, HaCaT, revealed that UVB irradiation caused the upregulation of the transcription factor activator protein-1 (AP-1). The AP-1 complex formed in UVB-irradiated HaCaT cells is specifically composed of c-fos and Jun D. c-Fos expression was induced in a manner that correlated with the UVB-induced activation of AP-1. To investigate how c-fos expression is regulated by UVB irradiation, the role of each of four cis elements within the c-fos promoter was evaluated. Clustered point mutations at the sis inducible element (SIE), serum response element (SRE), c-fos AP-1 site (FAP1), or cyclic AMP response elements (CRE) significantly inhibited UVB induction of the c-fos promoter. This indicated that all four cis elements are required for maximum promoter activity. The CRE and FAP1 elements were the two most active cis elements that mediate the UVB transactivation of c-fos. Homodimers of phosphorylated cAMP response element binding protein (CREB) were induced by UVB irradiation to bind to each of these elements. Therefore, CREB may function as an important regulatory protein in the UVB-induced expression of c-fos.

  15. Tritium NMR spectroscopy of ligand binding to maltose-binding protein

    International Nuclear Information System (INIS)

    Gehring, K.; Williams, P.G.; Pelton, J.G.; Morimoto, H.; Wemmer, D.E.

    1991-01-01

    Tritium-labeled α- and β-maltodextrins have been used to study their complexes with maltose-binding protein (MBP), a 40-kDa bacterial protein. Five substrates, from maltose to maltohexaose, were labeled at their reducing ends and their binding studied. Tritium NMR specctroscopy of the labeled sugars showed large upfield chamical shift changes upon binding and strong anomeric specficity. At 10 degrees C, MBP bound α-maltose with 2.7 ± 0.5-fold higher affinity than β-maltose, and, for longer maltodextrins, the ratio of affinities was even larger. The maximum chemical shift change was 2.2 ppm, suggesting that the reducing end of bound α-maltodextrin makes close contact with an aromatic residue in the MBP-binding site. Experiments with maltotriose (and longer maltodextrins) also revealed the presence of two bound β-maltotriose resonances in rapid exchange. The authors interpret these two resonances as arising from two distinct sugar-protein complexes. In one complex, the β-maltodextrin is bound by its reducing end, and, in the other complex, the β-maltodextrin is bound by the middle glucose residue(s). This interpretation also suggests how MBP is able to bind both linear and circular maltodextrins

  16. N-isopropyl I-123 p-iodoamphetamine (IMP) brain SPECT in dementia

    International Nuclear Information System (INIS)

    Momose, Toshimitsu; Kosaka, Noboru; Nishikawa, Junichi; Yoshikawa, Kohki; Ohtake, Tohru; Watanabe, Toshiaki; Iwata, Makoto; Shimizu, Teruo; Iio, Masahiro

    1988-01-01

    Six patients of Alzheimer's disease (AD), two patients of Pick disease (PD) and two patients of Creutzfeldt-Jakob disease (CJD) were studied with N-Isopropyl I-123 p-Iodoamphetamine (IMP) with SPECT. The pattern of IMP uptake in these demented groups were compared with that in five agematched normal controls and correlated with MRI and XCT. In all AD cases, SPECT revealed focal reduction of IMP uptake in frontal (6/6), parietal (6/6) and temporal (6/6) cortex, although MRI and XCT were normal. In both PD case, SPECT showed focal reduction of IMP uptake in frontal (1/2) and temporal (2/2) cortex with moderate labor atrophy on MRI and XCT. In both CJD case, SPECT showed diffuse reduction of IMP uptake in cerebral cortex in spite of no abnormality on MRI and XCT. These findings suggest that SPECT can detect earlier diseased process of AD and CJD than MRI or XCT and that SPECT may be helpful for the differential diagnosis of non-vascular dementia. (author)

  17. N-isopropyl I-123 p-iodoamphetamine (IMP) brain SPECT in dementia

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Toshimitsu; Kosaka, Noboru; Nishikawa, Junichi; Yoshikawa, Kohki; Ohtake, Tohru; Watanabe, Toshiaki; Iwata, Makoto; Shimizu, Teruo; Iio, Masahiro

    1988-12-01

    Six patients of Alzheimer's disease (AD), two patients of Pick disease (PD) and two patients of Creutzfeldt-Jakob disease (CJD) were studied with N-Isopropyl I-123 p-Iodoamphetamine (IMP) with SPECT. The pattern of IMP uptake in these demented groups were compared with that in five agematched normal controls and correlated with MRI and XCT. In all AD cases, SPECT revealed focal reduction of IMP uptake in frontal (6/6), parietal (6/6) and temporal (6/6) cortex, although MRI and XCT were normal. In both PD case, SPECT showed focal reduction of IMP uptake in frontal (1/2) and temporal (2/2) cortex with moderate labor atrophy on MRI and XCT. In both CJD case, SPECT showed diffuse reduction of IMP uptake in cerebral cortex in spite of no abnormality on MRI and XCT. These findings suggest that SPECT can detect earlier diseased process of AD and CJD than MRI or XCT and that SPECT may be helpful for the differential diagnosis of non-vascular dementia.

  18. Wind and IMP 8 Solar Wind, Magnetosheath and Shock Data

    Science.gov (United States)

    2004-01-01

    The purpose of this project was to provide the community access to magnetosheath data near Earth. We provided 27 years of IMP 8 magnetosheath proton velocities, densities, and temperatures with our best (usually 1-min.) time resolution. IMP 8 crosses the magnetosheath twice each 125 day orbit, and we provided magnetosheath data for the roughly 27 years of data for which magnetometer data are also available (which are needed to reliably pick boundaries). We provided this 27 years of IMP 8 magnetosheath data to the NSSDC; this data is now integrated with the IMP 8 solar wind data with flags indicating whether each data point is in the solar wind, magnetosheath, or at the boundary between the two regions. The plasma speed, density, and temperature are provided for each magnetosheath point. These data are also available on the MIT web site ftp://space .mit.edu/pub/plasma/imp/www/imp.html. We provide ASCII time-ordered rows of data giving the observation time, the spacecraft position in GSE, the velocity is GSE, the density and temperature for protons. We also have analyzed and archived on our web site the Wind magnetosheath plasma parameters. These consist of ascii files of the proton and alpha densities, speeds, and thermal speeds. These data are available at ftp://space.mit.edu/pub/plasma/wind/sheath These are the two products promised in the work statement and they have been completed in full.

  19. Quantitative 123I IMP and 99mTc HMPAO imaging in the dog following cocaine administration

    International Nuclear Information System (INIS)

    Susskind, Herbert; Weber, David A.; Ivanovic, Marija; Wong, Christopher T.C.; Haan, Constance E. de; Gavin, Patrick R.

    1996-01-01

    SPECT and associated imaging procedures were used in beagle dogs to evaluate the uptake, distribution, and clearance properties of i.v.-injected 123 I IMP (IMP) and 99m Tc HMPAO (HMPAO) in the brain, lungs, liver, and kidneys; (2) quantify the acute effects (after 15 sec) of very low doses (0.5 or 1.0 mg/kg) cocaine on the kinetics and localization properties of IMP and HMPAO; and (3) evaluate comparative imaging properties of IMP and HMPAO for measuring regional cerebral blood flow (rCBF). Regional and global uptake and localization of IMP or HMPAO were evaluated in control studies using dynamic planar (0-30 min) and SPECT imaging (at 35 min). The regional distribution properties of IMP and HMPAO in the brain were estimated from regions of interest (ROIs) drawn around anatomic structures on MR slices and manually registered with corresponding SPECT slices. Cocaine significantly reduced the 30-min IMP uptake in the brain and lungs by ∼15%, but only slightly changed HMPAO uptake in the brain and other organs. In the control studies, the respective uptakes of IMP in the brain and lungs were 9 and 39% greater (p < 0.01) than those of HMPAO. In control SPECT studies, the highest uptake of IMP was observed in the thalamus and progressively less activity was observed in the parietal lobe, frontal lobe, cerebellum, occipital lobe, and entire brain; activity in the olfactory bulb was lower than in all other regions. Cocaine reduced IMP uptake in the cerebellum (p < 0.01), occipital lobe (p < 0.01), and entire brain (p < 0.05). IMP uptake (cpm/pixel-mCi) in the different brain regions was 1.3 to 2.1 times greater than that of HMPAO (p < 0.001). HMPAO uptake was more homogeneous throughout the gray matter of the brain; no significant uptake differences were observed among flagged regions. Results indicate that single, acute doses of cocaine, 0.5 and 1.0 mg/kg, significantly altered the uptake and localization properties of IMP in the dog's brain, lungs, liver, and kidneys

  20. Localization of cellular retinol-binding protein and retinol-binding protein in cells comprising the blood-brain barrier of rat and human

    International Nuclear Information System (INIS)

    MacDonald, P.N.; Ong, D.E.; Bok, D.

    1990-01-01

    Brain is not generally recognized as an organ that requires vitamin A, perhaps because no obvious histologic lesions have been observed in severely vitamin A-deficient animals. However, brain tissue does contain cellular vitamin A-binding proteins and a nuclear receptor protein for retinoic acid. In the present study, immunohistochemical techniques were used to determine the cell-specific location of cellular retinol-binding protein in human and rat brain tissue. Cellular retinol-binding protein was localized specifically within the cuboidal epithelial cells of the choroid plexus, two primary sites of the mammalian blood-brain barrier. In addition, autoradiographic procedures demonstrated binding sites for serum retinol-binding protein in the choroidal epithelium. These observations suggest that a significant movement of retinol across the blood-brain barrier may occur

  1. Random mutagenesis of the nucleotide-binding domain of NRC1 (NB-LRR Required for Hypersensitive Response-Associated Cell Death-1), a downstream signalling nucleotide-binding, leucine-rich repeat (NB-LRR) protein, identifies gain-of-function mutations in the nucleotide-binding pocket

    NARCIS (Netherlands)

    Sueldo, D.J.; Shimels, M.Z.; Spiridon, L.N.; Caldararu, O.; Petrescu, A.J.; Joosten, M.H.A.J.; Tameling, W.I.L.

    2015-01-01

    •Plant nucleotide-binding, leucine-rich repeat (NB-LRR) proteins confer immunity to pathogens possessing the corresponding avirulence proteins. Activation of NB-LRR proteins is often associated with induction of the hypersensitive response (HR), a form of programmed cell death. •NRC1 (NB-LRR

  2. The BRCT domain is a phospho-protein binding domain.

    Science.gov (United States)

    Yu, Xiaochun; Chini, Claudia Christiano Silva; He, Miao; Mer, Georges; Chen, Junjie

    2003-10-24

    The carboxyl-terminal domain (BRCT) of the Breast Cancer Gene 1 (BRCA1) protein is an evolutionarily conserved module that exists in a large number of proteins from prokaryotes to eukaryotes. Although most BRCT domain-containing proteins participate in DNA-damage checkpoint or DNA-repair pathways, or both, the function of the BRCT domain is not fully understood. We show that the BRCA1 BRCT domain directly interacts with phosphorylated BRCA1-Associated Carboxyl-terminal Helicase (BACH1). This specific interaction between BRCA1 and phosphorylated BACH1 is cell cycle regulated and is required for DNA damage-induced checkpoint control during the transition from G2 to M phase of the cell cycle. Further, we show that two other BRCT domains interact with their respective physiological partners in a phosphorylation-dependent manner. Thirteen additional BRCT domains also preferentially bind phospho-peptides rather than nonphosphorylated control peptides. These data imply that the BRCT domain is a phospho-protein binding domain involved in cell cycle control.

  3. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    Directory of Open Access Journals (Sweden)

    Stormo Gary D

    2005-07-01

    Full Text Available Abstract Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data.

  4. HuR/ELAVL1 RNA binding protein modulates interleukin-8 induction by muco-active ribotoxin deoxynivalenol

    International Nuclear Information System (INIS)

    Choi, Hye Jin; Yang, Hyun; Park, Seong Hwan; Moon, Yuseok

    2009-01-01

    HuR/Elav-like RNA binding protein 1 (ELAVL1) positively regulates mRNA stability of AU-rich elements (ARE)-containing transcript such as pro-inflammatory cytokines. Ribotoxic stresses can trigger the production of pro-inflammatory mediators by enhancing mRNA stability and the transcriptional activity. We investigated the effects of ribotoxin deoxynivalenol (DON) on HuR translocation and its involvement in the regulation of the pro-inflammatory interleukin-8 (IL-8) mRNA stability. Exposure to the muco-active DON induced nuclear export of both endogenous and exogenous HuR RNA binding protein in human intestinal epithelial cells. Moreover, the interference with HuR protein production suppressed ribotoxic DON-induced IL-8 secretion and its mRNA stability. Cytoplasmic HuR protein interacted with IL-8 mRNA and the complex stabilization was due to the presence of 3'-untranslated region of the transcript. Partly in terms of IL-8-modulating transcription factors, HuR protein was demonstrated to be positively and negatively associated with DON-induced early growth response gene 1 (EGR-1) and activating transcription factor 3 (ATF3), respectively. HuR was a critical mechanistic link between ribotoxic stress and the pro-inflammatory cytokine production, and may have a broader functional significance with regard to mucosal insults since ribotoxic stress responses are also produced upon interactions with the diverse environment of gut.

  5. Genetic analysis of RPA single-stranded DNA binding protein in Haloferax volcanii

    OpenAIRE

    Stroud, A. L.

    2012-01-01

    Replication protein A (RPA) is a single-stranded DNA-binding protein that is present in all three domains of life. The roles of RPA include stabilising and protecting single- stranded DNA from nuclease degradation during DNA replication and repair. To achieve this, RPA uses an oligosaccharide-binding fold (OB fold) to bind single- stranded DNA. Haloferax volcanii encodes three RPAs – RPA1, RPA2 and RPA3, of which rpa1 and rpa3 are in operons with genes encoding associated proteins (APs). ...

  6. The hydroxyl-functionalized magnetic particles for purification of glycan-binding proteins.

    Science.gov (United States)

    Sun, Xiuxuan; Yang, Ganglong; Sun, Shisheng; Quan, Rui; Dai, Weiwei; Li, Bin; Chen, Chao; Li, Zheng

    2009-12-01

    Glycan-protein interactions play important biological roles in biological processes. Although there are some methods such as glycan arrays that may elucidate recognition events between carbohydrates and protein as well as screen the important glycan-binding proteins, there is a lack of simple effectively separate method to purify them from complex samples. In proteomics studies, fractionation of samples can help to reduce their complexity and to enrich specific classes of proteins for subsequent downstream analyses. Herein, a rapid simple method for purification of glycan-binding proteins from proteomic samples was developed using hydroxyl-coated magnetic particles coupled with underivatized carbohydrate. Firstly, the epoxy-coated magnetic particles were further hydroxyl functionalized with 4-hydroxybenzhydrazide, then the carbohydrates were efficiently immobilized on hydroxyl functionalized surface of magnetic particles by formation of glycosidic bond with the hemiacetal group at the reducing end of the suitable carbohydrates via condensation. All conditions of this method were optimized. The magnetic particle-carbohydrate conjugates were used to purify the glycan-binding proteins from human serum. The fractionated glycan-binding protein population was displayed by SDS-PAGE. The result showed that the amount of 1 mg magnetic particles coupled with mannose in acetate buffer (pH 5.4) was 10 micromol. The fractionated glycan-binding protein population in human serum could be eluted from the magnetic particle-mannose conjugates by 0.1% SDS. The methodology could work together with the glycan microarrays for screening and purification of the important GBPs from complex protein samples.

  7. Role of Electrostatics in Protein-RNA Binding: The Global vs the Local Energy Landscape.

    Science.gov (United States)

    Ghaemi, Zhaleh; Guzman, Irisbel; Gnutt, David; Luthey-Schulten, Zaida; Gruebele, Martin

    2017-09-14

    U1A protein-stem loop 2 RNA association is a basic step in the assembly of the spliceosomal U1 small nuclear ribonucleoprotein. Long-range electrostatic interactions due to the positive charge of U1A are thought to provide high binding affinity for the negatively charged RNA. Short range interactions, such as hydrogen bonds and contacts between RNA bases and protein side chains, favor a specific binding site. Here, we propose that electrostatic interactions are as important as local contacts in biasing the protein-RNA energy landscape toward a specific binding site. We show by using molecular dynamics simulations that deletion of two long-range electrostatic interactions (K22Q and K50Q) leads to mutant-specific alternative RNA bound states. One of these states preserves short-range interactions with aromatic residues in the original binding site, while the other one does not. We test the computational prediction with experimental temperature-jump kinetics using a tryptophan probe in the U1A-RNA binding site. The two mutants show the distinct predicted kinetic behaviors. Thus, the stem loop 2 RNA has multiple binding sites on a rough RNA-protein binding landscape. We speculate that the rough protein-RNA binding landscape, when biased to different local minima by electrostatics, could be one way that protein-RNA interactions evolve toward new binding sites and novel function.

  8. Efficient identification of phosphatidylserine-binding proteins by ORF phage display

    International Nuclear Information System (INIS)

    Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela; Fan, Xianqun; Li, Wei

    2009-01-01

    To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in ∼300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressed for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.

  9. The HTLV-1 Tax protein binding domain of cyclin-dependent kinase 4 (CDK4 includes the regulatory PSTAIRE helix

    Directory of Open Access Journals (Sweden)

    Grassmann Ralph

    2005-09-01

    Full Text Available Abstract Background The Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV-1 is leukemogenic in transgenic mice and induces permanent T-cell growth in vitro. It is found in active CDK holoenzyme complexes from adult T-cell leukemia-derived cultures and stimulates the G1- to-S phase transition by activating the cyclin-dependent kinase (CDK CDK4. The Tax protein directly and specifically interacts with CDK4 and cyclin D2 and binding is required for enhanced CDK4 kinase activity. The protein-protein contact between Tax and the components of the cyclin D/CDK complexes increases the association of CDK4 and its positive regulatory subunit cyclin D and renders the complex resistant to p21CIP inhibition. Tax mutants affecting the N-terminus cannot bind cyclin D and CDK4. Results To analyze, whether the N-terminus of Tax is capable of CDK4-binding, in vitro binding -, pull down -, and mammalian two-hybrid analyses were performed. These experiments revealed that a segment of 40 amino acids is sufficient to interact with CDK4 and cyclin D2. To define a Tax-binding domain and analyze how Tax influences the kinase activity, a series of CDK4 deletion mutants was tested. Different assays revealed two regions which upon deletion consistently result in reduced binding activity. These were isolated and subjected to mammalian two-hybrid analysis to test their potential to interact with the Tax N-terminus. These experiments concurrently revealed binding at the N- and C-terminus of CDK4. The N-terminal segment contains the PSTAIRE helix, which is known to control the access of substrate to the active cleft of CDK4 and thus the kinase activity. Conclusion Since the N- and C-terminus of CDK4 are neighboring in the predicted three-dimensional protein structure, it is conceivable that they comprise a single binding domain, which interacts with the Tax N-terminus.

  10. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites.

    Directory of Open Access Journals (Sweden)

    Daniel M Dupont

    Full Text Available Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126 with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA. We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A controlling uPA activities. One of the aptamers (upanap-126 binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12 binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.

  11. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor.

    Science.gov (United States)

    Miao, Yinglong; McCammon, J Andrew

    2018-03-20

    Protein-protein binding is key in cellular signaling processes. Molecular dynamics (MD) simulations of protein-protein binding, however, are challenging due to limited timescales. In particular, binding of the medically important G-protein-coupled receptors (GPCRs) with intracellular signaling proteins has not been simulated with MD to date. Here, we report a successful simulation of the binding of a G-protein mimetic nanobody to the M 2 muscarinic GPCR using the robust Gaussian accelerated MD (GaMD) method. Through long-timescale GaMD simulations over 4,500 ns, the nanobody was observed to bind the receptor intracellular G-protein-coupling site, with a minimum rmsd of 2.48 Å in the nanobody core domain compared with the X-ray structure. Binding of the nanobody allosterically closed the orthosteric ligand-binding pocket, being consistent with the recent experimental finding. In the absence of nanobody binding, the receptor orthosteric pocket sampled open and fully open conformations. The GaMD simulations revealed two low-energy intermediate states during nanobody binding to the M 2 receptor. The flexible receptor intracellular loops contribute remarkable electrostatic, polar, and hydrophobic residue interactions in recognition and binding of the nanobody. These simulations provided important insights into the mechanism of GPCR-nanobody binding and demonstrated the applicability of GaMD in modeling dynamic protein-protein interactions.

  12. Adipocyte spliced form of X-box-binding protein 1 promotes adiponectin multimerization and systemic glucose homeostasis

    NARCIS (Netherlands)

    Sha, H.; Yang, L.; Liu, M.; Xia, S.; Liu, Y.; Liu, F.; Kersten, A.H.; Qi, L.

    2014-01-01

    The physiological role of the spliced form of X-box–binding protein 1 (XBP1s), a key transcription factor of the endoplasmic reticulum (ER) stress response, in adipose tissue remains largely unknown. In this study, we show that overexpression of XBP1s promotes adiponectin multimerization in

  13. pH modulates the binding of early growth response protein 1 transcription factor to DNA.

    Science.gov (United States)

    Mikles, David C; Bhat, Vikas; Schuchardt, Brett J; Deegan, Brian J; Seldeen, Kenneth L; McDonald, Caleb B; Farooq, Amjad

    2013-08-01

    The transcription factor early growth response protein (EGR)1 orchestrates a plethora of signaling cascades involved in cellular homeostasis, and its downregulation has been implicated in the development of prostate cancer. Herein, using a battery of biophysical tools, we show that the binding of EGR1 to DNA is tightly regulated by solution pH. Importantly, the binding affinity undergoes an enhancement of more than an order of magnitude with an increase in pH from 5 to 8, implying that the deprotonation of an ionizable residue accounts for such behavior. This ionizable residue is identified as His382 by virtue of the fact that its replacement by nonionizable residues abolishes the pH dependence of the binding of EGR1 to DNA. Notably, His382 inserts into the major groove of DNA, and stabilizes the EGR1-DNA interaction via both hydrogen bonding and van der Waals contacts. Remarkably, His382 is mainly conserved across other members of the EGR family, implying that histidine protonation-deprotonation may serve as a molecular switch for modulating the protein-DNA interactions that are central to this family of transcription factors. Collectively, our findings reveal an unexpected but a key step in the molecular recognition of the EGR family of transcription factors, and suggest that they may act as sensors of pH within the intracellular environment. © 2013 FEBS.

  14. The binding cavity of mouse major urinary protein is optimised for a variety of ligand binding modes

    Energy Technology Data Exchange (ETDEWEB)

    Pertinhez, Thelma A.; Ferrari, Elena; Casali, Emanuela [Department of Experimental Medicine, University of Parma, Via Volturno, 39, 43100 Parma (Italy); Patel, Jital A. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); Spisni, Alberto, E-mail: alberto.spisni@unipr.it [Department of Experimental Medicine, University of Parma, Via Volturno, 39, 43100 Parma (Italy); Smith, Lorna J., E-mail: lorna.smith@chem.ox.ac.uk [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom)

    2009-12-25

    {sup 15}N and {sup 1}HN chemical shift data and {sup 15}N relaxation studies have been used to characterise the binding of N-phenyl-naphthylamine (NPN) to mouse major urinary protein (MUP). NPN binds in the {beta}-barrel cavity of MUP, hydrogen bonding to Tyr120 and making extensive non-bonded contacts with hydrophobic side chains. In contrast to the natural pheromone 2-sec-butyl-4,5-dihydrothiazole, NPN binding gives no change to the overall mobility of the protein backbone of MUP. Comparison with 11 different ligands that bind to MUP shows a range of binding modes involving 16 different residues in the {beta}-barrel cavity. These finding justify why MUP is able to adapt to allow for many successful binding partners.

  15. Measuring Binding Affinity of Protein-Ligand Interaction Using Spectrophotometry: Binding of Neutral Red to Riboflavin-Binding Protein

    Science.gov (United States)

    Chenprakhon, Pirom; Sucharitakul, Jeerus; Panijpan, Bhinyo; Chaiyen, Pimchai

    2010-01-01

    The dissociation constant, K[subscript d], of the binding of riboflavin-binding protein (RP) with neutral red (NR) can be determined by titrating RP to a fixed concentration of NR. Upon adding RP to the NR solution, the maximum absorption peak of NR shifts to 545 nm from 450 nm for the free NR. The change of the absorption can be used to determine…

  16. HOXA1 and TALE proteins display cross-regulatory interactions and form a combinatorial binding code on HOXA1 targets.

    Science.gov (United States)

    De Kumar, Bony; Parker, Hugo J; Paulson, Ariel; Parrish, Mark E; Pushel, Irina; Singh, Narendra Pratap; Zhang, Ying; Slaughter, Brian D; Unruh, Jay R; Florens, Laurence; Zeitlinger, Julia; Krumlauf, Robb

    2017-09-01

    Hoxa1 has diverse functional roles in differentiation and development. We identify and characterize properties of regions bound by HOXA1 on a genome-wide basis in differentiating mouse ES cells. HOXA1-bound regions are enriched for clusters of consensus binding motifs for HOX, PBX, and MEIS, and many display co-occupancy of PBX and MEIS. PBX and MEIS are members of the TALE family and genome-wide analysis of multiple TALE members (PBX, MEIS, TGIF, PREP1, and PREP2) shows that nearly all HOXA1 targets display occupancy of one or more TALE members. The combinatorial binding patterns of TALE proteins define distinct classes of HOXA1 targets, which may create functional diversity. Transgenic reporter assays in zebrafish confirm enhancer activities for many HOXA1-bound regions and the importance of HOX-PBX and TGIF motifs for their regulation. Proteomic analyses show that HOXA1 physically interacts on chromatin with PBX, MEIS, and PREP family members, but not with TGIF, suggesting that TGIF may have an independent input into HOXA1-bound regions. Therefore, TALE proteins appear to represent a wide repertoire of HOX cofactors, which may coregulate enhancers through distinct mechanisms. We also discover extensive auto- and cross-regulatory interactions among the Hoxa1 and TALE genes, indicating that the specificity of HOXA1 during development may be regulated though a complex cross-regulatory network of HOXA1 and TALE proteins. This study provides new insight into a regulatory network involving combinatorial interactions between HOXA1 and TALE proteins. © 2017 De Kumar et al.; Published by Cold Spring Harbor Laboratory Press.

  17. Improved detection of calcium-binding proteins in polyacrylamide gels

    International Nuclear Information System (INIS)

    Anthony, F.A.; Babitch, J.A.

    1984-01-01

    The authors refined the method of Schibeci and Martonosi (1980) to enhance detection of calcium-binding proteins in polyacrylamide gels using 45 Ca 2+ . Their efforts have produced a method which is shorter, has 40-fold greater sensitivity over the previous method, and will detect 'EF hand'-containing calcium-binding proteins in polyacrylamide gels below the 0.5 μg level. In addition this method will detect at least one example from every described class of calcium-binding protein, including lectins and γ-carboxyglutamic acid containing calcium-binding proteins. The method should be useful for detecting calcium-binding proteins which may trigger neurotransmitter release. (Auth.)

  18. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum).

    Science.gov (United States)

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  19. Structure and Calcium Binding Properties of a Neuronal Calcium-Myristoyl Switch Protein, Visinin-Like Protein 3.

    Science.gov (United States)

    Li, Congmin; Lim, Sunghyuk; Braunewell, Karl H; Ames, James B

    2016-01-01

    Visinin-like protein 3 (VILIP-3) belongs to a family of Ca2+-myristoyl switch proteins that regulate signal transduction in the brain and retina. Here we analyze Ca2+ binding, characterize Ca2+-induced conformational changes, and determine the NMR structure of myristoylated VILIP-3. Three Ca2+ bind cooperatively to VILIP-3 at EF2, EF3 and EF4 (KD = 0.52 μM and Hill slope of 1.8). NMR assignments, mutagenesis and structural analysis indicate that the covalently attached myristoyl group is solvent exposed in Ca2+-bound VILIP-3, whereas Ca2+-free VILIP-3 contains a sequestered myristoyl group that interacts with protein residues (E26, Y64, V68), which are distinct from myristate contacts seen in other Ca2+-myristoyl switch proteins. The myristoyl group in VILIP-3 forms an unusual L-shaped structure that places the C14 methyl group inside a shallow protein groove, in contrast to the much deeper myristoyl binding pockets observed for recoverin, NCS-1 and GCAP1. Thus, the myristoylated VILIP-3 protein structure determined in this study is quite different from those of other known myristoyl switch proteins (recoverin, NCS-1, and GCAP1). We propose that myristoylation serves to fine tune the three-dimensional structures of neuronal calcium sensor proteins as a means of generating functional diversity.

  20. Predicting DNA-binding proteins and binding residues by complex structure prediction and application to human proteome.

    Directory of Open Access Journals (Sweden)

    Huiying Zhao

    Full Text Available As more and more protein sequences are uncovered from increasingly inexpensive sequencing techniques, an urgent task is to find their functions. This work presents a highly reliable computational technique for predicting DNA-binding function at the level of protein-DNA complex structures, rather than low-resolution two-state prediction of DNA-binding as most existing techniques do. The method first predicts protein-DNA complex structure by utilizing the template-based structure prediction technique HHblits, followed by binding affinity prediction based on a knowledge-based energy function (Distance-scaled finite ideal-gas reference state for protein-DNA interactions. A leave-one-out cross validation of the method based on 179 DNA-binding and 3797 non-binding protein domains achieves a Matthews correlation coefficient (MCC of 0.77 with high precision (94% and high sensitivity (65%. We further found 51% sensitivity for 82 newly determined structures of DNA-binding proteins and 56% sensitivity for the human proteome. In addition, the method provides a reasonably accurate prediction of DNA-binding residues in proteins based on predicted DNA-binding complex structures. Its application to human proteome leads to more than 300 novel DNA-binding proteins; some of these predicted structures were validated by known structures of homologous proteins in APO forms. The method [SPOT-Seq (DNA] is available as an on-line server at http://sparks-lab.org.

  1. Two Tetrahymena G-DNA-binding proteins, TGP1 and TGP3, share novel motifs and may play a role in micronuclear division

    OpenAIRE

    Lu, Quan; Henderson, Eric

    2000-01-01

    G-DNA is a four-stranded DNA structure with diverse putative biological roles. We have previously purified and cloned a novel G-DNA-binding protein TGP1 from the ciliate Tetrahymena thermophila. Here we report the molecular cloning of TGP3, an additional G-DNA-binding protein from the same organism. The TGP3 cDNA encodes a 365 amino acid protein that is homologous to TGP1 (34% identity and 44% similarity). The proteins share a sequence pattern that contains two novel repetitive and homologous...

  2. Comparison of I-123 IMP cerebral uptake and MR spectroscopy following experimental carotid occlusion

    International Nuclear Information System (INIS)

    Holman, B.L.; Jolesz, F.A.; Polak, J.F.; Kronauge, J.F.; Adams, D.F.

    1985-01-01

    Both I-123 IMP scintigraphy and MRI have been suggested as sensitive detectors of changes shortly after acute cerebral infarction. We compared the uptake of N-isopropyl I-123 p-iodoamphetamine (IMP) and MR spectroscopy of the brain after internal carotid artery ligation. Thirteen gerbils were lightly anesthetized with ether. After neck dissection, an internal carotid artery was occluded. After 2.8 hours, 100 muCi I-123 IMP was injected intravenously into the 13 experimental animals plus three controls. Seven gerbils remained asymptomatic while six developed hemiparesis. At 3 hours after ligation, the animals were killed. The brains were bisected and T1 and T2 relaxation times were determined for the right and left hemispheres by MR spectroscopy immediately after dissection. I-123 IMP uptake was then determined in the samples. Interhemispheric differences in uptake for I-123 IMP were 0.1 +/- 1.7% (SEM) in the control, 33.5 +/- 10% in the asymptomatic and 54.6 +/- 9.7% in the symptomatic animals. Significant differences were seen with I-123 IMP in 6/7 asymptomatic and 6/6 symptomatic animals. In conclusion, I-123 is more sensitive than T1 or T2 relaxation times for the detection of cerebral perfusion abnormalities. Prolongation in T1 and T2 relaxation times correlates closely with increased brain tissue water content and the development of symptoms, indicators of structural brain damage and probable infarction

  3. The Scl1 protein of M6-type group A Streptococcus binds the human complement regulatory protein, factor H, and inhibits the alternative pathway of complement.

    Science.gov (United States)

    Caswell, Clayton C; Han, Runlin; Hovis, Kelley M; Ciborowski, Pawel; Keene, Douglas R; Marconi, Richard T; Lukomski, Slawomir

    2008-02-01

    Non-specific activation of the complement system is regulated by the plasma glycoprotein factor H (FH). Bacteria can avoid complement-mediated opsonization and phagocytosis through acquiring FH to the cell surface. Here, we characterize an interaction between the streptococcal collagen-like protein Scl1.6 of M6-type group A Streptococcus (GAS) and FH. Using affinity chromatography with immobilized recombinant Scl1.6 protein, we co-eluted human plasma proteins with molecular weight of 155 kDa, 43 kDa and 38 kDa. Mass spectrometry identified the 155 kDa band as FH and two other bands as isoforms of the FH-related protein-1. The identities of all three bands were confirmed by Western immunoblotting with specific antibodies. Structure-function relation studies determined that the globular domain of the Scl1.6 variant specifically binds FH while fused to collagenous tails of various lengths. This binding is not restricted to Scl1.6 as the phylogenetically linked Scl1.55 variant also binds FH. Functional analyses demonstrated the cofactor activity of the rScl1.6-bound FH for factor I-mediated cleavage of C3b. Finally, purified FH bound to the Scl1.6 protein present in the cell wall material obtained from M6-type GAS. In conclusion, we have identified a functional interaction between Scl1 and plasma FH, which may contribute to GAS evasion of complement-mediated opsonization and phagocytosis.

  4. ATP-binding motifs play key roles in Krp1p, kinesin-related protein 1, function for bi-polar growth control in fission yeast

    International Nuclear Information System (INIS)

    Rhee, Dong Keun; Cho, Bon A; Kim, Hyong Bai

    2005-01-01

    Kinesin is a microtubule-based motor protein with various functions related to the cell growth and division. It has been reported that Krp1p, kinesin-related protein 1, which belongs to the kinesin heavy chain superfamily, localizes on microtubules and may play an important role in cytokinesis. However, the function of Krp1p has not been fully elucidated. In this study, we overexpressed an intact form and three different mutant forms of Krp1p in fission yeast constructed by site-directed mutagenesis in two ATP-binding motifs or by truncation of the leucine zipper-like motif (LZiP). We observed hyper-extended microtubules and the aberrant nuclear shape in Krp1p-overexpressed fission yeast. As a functional consequence, a point mutation of ATP-binding domain 1 (G89E) in Krp1p reversed the effect of Krp1p overexpression in fission yeast, whereas the specific mutation in ATP-binding domain 2 (G238E) resulted in the altered cell polarity. Additionally, truncation of the leucine zipper-like domain (LZiP) at the C-terminal of Krp1p showed a normal nuclear division. Taken together, we suggest that krp1p is involved in regulation of cell-polarized growth through ATP-binding motifs in fission yeast

  5. Atomic structure of nitrate-binding protein crucial for photosynthetic productivity

    Energy Technology Data Exchange (ETDEWEB)

    Koropatkin, Nicole M.; Pakrasi, Himadri B.; Smith, Thomas J.

    2006-06-27

    Cyanobacteria, blue-green algae, are the most abundant autotrophs in aquatic environments and form the base of all aquatic food chains by fixing carbon and nitrogen into cellular biomass. The single most important nutrient for photosynthesis and growth is nitrate, which is severely limiting in many aquatic environments particularly the open ocean (1, 2). It is therefore not surprising that NrtA, the solute-binding component of the high-affinity nitrate ABC transporter, is the single-most abundant protein in the plasma membrane of these bacteria (3). Here we describe the first structure of a nitratespecific receptor, NrtA from Synechocystis sp. PCC 6803, complexed with nitrate and determined to a resolution of 1.5Å. NrtA is significantly larger than other oxyanionbinding proteins, representing a new class of transport proteins. From sequence alignments, the only other solute-binding protein in this class is CmpA, a bicarbonatebinding protein. Therefore, these organisms created a novel solute-binding protein for two of the most important nutrients; inorganic nitrogen and carbon. The electrostatic charge distribution of NrtA appears to force the protein off of the membrane while the flexible tether facilitates the delivery of nitrate to the membrane pore. The structure not only details the determinants for nitrate selectivity in NrtA, but also the bicarbonate specificity in CmpA. Nitrate and bicarbonate transport are regulated by the cytoplasmic proteins NrtC and CmpC, respectively. Interestingly, the residues lining the ligand binding pockets suggest that they both bind nitrate. This implies that the nitrogen and carbon uptake pathways are synchronized by intracellular nitrate and nitrite.3 The nitrate ABC transporter of cyanobacteria is composed of four polypeptides (Figure 1): a high-affinity periplasmic solute-binding lipoprotein (NrtA), an integral membrane permease (NrtB), a cytoplasmic ATPase (NrtD), and a unique ATPase/solute-binding fusion protein (Nrt

  6. Dominance of IMP-4-Producing Enterobacter cloacae among Carbapenemase-Producing Enterobacteriaceae in Australia

    Science.gov (United States)

    Townell, Nicola; Nimmo, Graeme R.; George, Narelle M.; Robson, Jennifer; Vohra, Renu; Davis, Louise; Heney, Claire; Paterson, David L.

    2015-01-01

    The prevalence of carbapenemase-producing Enterobacteriaceae (CPE) has been increasing worldwide. blaIMP has been reported to be the predominant carbapenemase-encoding gene within Enterobacteriaceae in Australia. However, there are limited data currently available on CPE from Queensland, Australia. A total of 58 CPE isolates were isolated between July 2009 and March 2014 from Queensland hospitals. The clonality of isolates was determined by Diversilab repetitive sequence-based PCR. The isolates were investigated for the resistance mechanisms carbapenemase, extended-spectrum β-lactamase, and AmpC β-lactamase and for aminoglycoside resistance and plasmid-mediated quinolone resistance genes by PCR. The plasmid types associated with carbapenemase-encoding genes were characterized. The majority of the CPE were Enterobacter cloacae (n = 29). The majority of Queensland CPE isolates were IMP producers and comprised 11 species (n = 48). Nine NDM-producing Enterobacteriaceae were identified. One NDM-producing Klebsiella pneumoniae isolate coproduced OXA-48. One K. pneumoniae isolate was an OXA-181 producer. The incidence of IMP producers increased significantly in 2013. blaIMP-4 was found in all IMP-producing isolates. blaTEM, qnrB, and aacA4 were common among IMP-4 producers. The HI2 (67%) and L/M (21%) replicons were associated with blaIMP-4. All HI2 plasmids were of sequence type 1 (ST1). All but one of the NDM producers possessed blaCTX-M-15. The 16S rRNA methylase genes found among NDM producers were armA, rmtB, rmtC, and rmtF. The substantial increase in the prevalence of CPE in Queensland has been associated mainly with the emergence E. cloacae strains possessing HI2 plasmids carrying blaIMP-4 over the past 2 years. The importation of NDM producers and/or OXA-48-like producers in patients also contributed to the increased emergence of CPE. PMID:25918153

  7. Characterization of binding of N'-nitrosonornicotine to protein

    International Nuclear Information System (INIS)

    Hughes, M.F.

    1986-01-01

    The NADPH-dependent activation of the carcinogenic nitrosamine, N'-nitrosonornicotine (NNN) to a reactive intermediate which binds covalently to protein was assessed using male Sprague-Dawley rat liver and lung microsomes. The NADPH-dependent covalent binding of [ 14 C]NNN to liver and lung microsomes was linear with time up to 90 and 45 min, respectively and was also linear with protein concentrations up to 3.0 and 2.0 mg/ml, respectively. The apparent K/sub m/ and V/sub max/ of the NADPH-dependent binding to liver microsomes were determined from the initial velocities. Addition of the thiols glutathione, cystein, N-acetylcysteine or 2-mercapthoethanol significantly decreased the non-NADPH-dependent binding to liver microsomal protein, but did not affect the NADPH-dependent binding. Glutathione was required in order to observe any NADPH-dependent binding to lung microsomal protein. In lung microsomes, SKF-525A significantly decreased the NADPH-dependent binding by 79%. Replacement of an air atmosphere with N 2 or CO:O 2 (8:2) significantly decreased the NADPH-dependent binding of [ 14 C]NNN to liver microsomal protein by 40% or 27% respectively. Extensive covalent binding of [ 14 C]NNN to liver and muscle microsomal protein occurred in the absence of an NADPH-generating system, in the presence of 50% methanol and also to bovine serum albumin, indicating a nonenzymatic reaction. These data indicate that cytochrome P-450 is at least in part responsible for the metabolic activation of the carcinogen NNN, but also suggest additional mechanisms of activation

  8. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weizao, E-mail: chenw3@mail.nih.gov [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Feng, Yang [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Wang, Yanping [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); The Basic Research Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Zhu, Zhongyu; Dimitrov, Dimiter S. [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.

  9. Clinical evaluation of 123I-IMP SPECT in patients with various neurological diseases

    International Nuclear Information System (INIS)

    Yoneda, Naoto

    1993-01-01

    Single photon emission computed tomography with N-isopropyl-p-[ 123 I] iodoamphetamine ( 123 I-IMP SPECT) was performed in 57 patients with various neurological disease, and compared with the findings of brain CT, MRI, and EEG. The author also evaluated the relationship between the findings on 123 I-IMP SPECT and the condition of the control of the attack after treatment with antiepileptic drugs in idiopathic epileptic patients. Abnormality of accumulation of 123 I-IMP SPECT was observed in 62.3% of all cases. Focal abnormality was detected in 28.3% of all cases by brain CT and 54.1% by MRI. The detectability of focal abnormality in brain CT and MRI was found to be lower than that of 123 I-TMP SPECT. There was very little significance in detectability between 123 I-IMP SPECT and EEG. But it infers that 123 I-IMP SPECT can detect the subictal state in epileptic patients. One comparative study of the relationship between the findings on 123 I-IMP SPECT and the condition of the control of the attack by antiepileptic drugs in patients with idiopathic epilepsy, abnormality of 123 I-IMP SPECT findings was found to be higher in patients who were not controlled sufficiently than in patients who were controlled sufficiently, and a significant difference is found by X 2 test. 123 I-IMP SPECT is useful for the evaluation of treatment in patients with epilepsy. (author)

  10. Phosphorylation and interactions associated with the control of the Leishmania Poly-A Binding Protein 1 (PABP1) function during translation initiation.

    Science.gov (United States)

    de Melo Neto, Osvaldo P; da Costa Lima, Tamara D C; Merlo, Kleison C; Romão, Tatiany P; Rocha, Pollyanna O; Assis, Ludmila A; Nascimento, Larissa M; Xavier, Camila C; Rezende, Antonio M; Reis, Christian R S; Papadopoulou, Barbara

    2018-03-23

    The Poly-A Binding Protein (PABP) is a conserved eukaryotic polypeptide involved in many aspects of mRNA metabolism. During translation initiation, PABP interacts with the translation initiation complex eIF4F and enhances the translation of polyadenylated mRNAs. Schematically, most PABPs can be divided into an N-terminal RNA-binding region, a non-conserved linker segment and the C-terminal MLLE domain. In pathogenic Leishmania protozoans, three PABP homologues have been identified, with the first one (PABP1) targeted by phosphorylation and shown to co-immunoprecipitate with an eIF4F-like complex (EIF4E4/EIF4G3) implicated in translation initiation. Here, PABP1 phosphorylation was shown to be linked to logarithmic cell growth, reminiscent of EIF4E4 phosphorylation, and coincides with polysomal association. Phosphorylation targets multiple serine-proline (SP) or threonine-proline (TP) residues within the PABP1 linker region. This is an essential protein, but phosphorylation is not needed for its association with polysomes or cell viability. Mutations which do impair PABP1 polysomal association and are required for viability do not prevent phosphorylation, although further mutations lead to a presumed inactive protein largely lacking phosphorylated isoforms. Co-immunoprecipitation experiments were carried out to investigate PABP1 function further, identifying several novel protein partners and the EIF4E4/EIF4G3 complex, but no other eIF4F-like complex or subunit. A novel, direct interaction between PABP1 and EIF4E4 was also investigated and found to be mediated by the PABP1 MLLE binding to PABP Interacting Motifs (PAM2) within the EIF4E4 N-terminus. The results shown here are consistent with phosphorylation of PABP1 being part of a novel pathway controlling its function and possibly translation in Leishmania.

  11. Maintenance of the marginal-zone B cell compartment specifically requires the RNA-binding protein ZFP36L1.

    Science.gov (United States)

    Newman, Rebecca; Ahlfors, Helena; Saveliev, Alexander; Galloway, Alison; Hodson, Daniel J; Williams, Robert; Besra, Gurdyal S; Cook, Charlotte N; Cunningham, Adam F; Bell, Sarah E; Turner, Martin

    2017-06-01

    RNA-binding proteins of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU-rich elements in the 3' untranslated region and promoting mRNA decay. Here we identified an indispensable role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal-zone B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene-expression program related to signaling, cell adhesion and locomotion; it achieved this in part by limiting expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype. These mechanisms emphasize the importance of integrating transcriptional and post-transcriptional processes by RNA-binding proteins for maintaining cellular identity among closely related cell types.

  12. [Expression of IMP3 in osteosarcoma and its clinical significance].

    Science.gov (United States)

    Li, Kang-hua; Huang, Yue-ping; Zhang, Jun; Li, Guo-jun; Li, Si-hong

    2009-05-01

    To analyze the expressional variability of IMP3 between osteosarcoma and osteochondroma and explore its clinical significance. Paraffin sections from 68 patients with osteosarcoma and 20 patients with osteochondroma were examined for the expression of IMP3 by SP immunohistochemistry. The negative, weak positive, moderate positive and strong positive expression rates of IMP3 in 68 patients with osteosarcoma were 4.41% (3/68), 22.06% (15/68), 22.74% (19/68), 45.59% (31/68), respectively, which were significantly higher than those in 20 cases of osteochondroma tissues (P<0.01). The positive expression of IMP3 in osteosarcoma was negative correlation with the 3-year survival rate of osteosarcoma patients after the operation (P<0.01). The results suggest that IMP3 plays important roles in the tumorigenesis, progress and prognosis of osteosarcoma, and the expression of IMP3 may be an important feature of osteosarcoma.

  13. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    Science.gov (United States)

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  14. RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins.

    Directory of Open Access Journals (Sweden)

    Hilal Kazan

    2010-07-01

    Full Text Available Metazoan genomes encode hundreds of RNA-binding proteins (RBPs. These proteins regulate post-transcriptional gene expression and have critical roles in numerous cellular processes including mRNA splicing, export, stability and translation. Despite their ubiquity and importance, the binding preferences for most RBPs are not well characterized. In vitro and in vivo studies, using affinity selection-based approaches, have successfully identified RNA sequence associated with specific RBPs; however, it is difficult to infer RBP sequence and structural preferences without specifically designed motif finding methods. In this study, we introduce a new motif-finding method, RNAcontext, designed to elucidate RBP-specific sequence and structural preferences with greater accuracy than existing approaches. We evaluated RNAcontext on recently published in vitro and in vivo RNA affinity selected data and demonstrate that RNAcontext identifies known binding preferences for several control proteins including HuR, PTB, and Vts1p and predicts new RNA structure preferences for SF2/ASF, RBM4, FUSIP1 and SLM2. The predicted preferences for SF2/ASF are consistent with its recently reported in vivo binding sites. RNAcontext is an accurate and efficient motif finding method ideally suited for using large-scale RNA-binding affinity datasets to determine the relative binding preferences of RBPs for a wide range of RNA sequences and structures.

  15. Loss of Selenium-Binding Protein 1 Decreases Sensitivity to Clastogens and Intracellular Selenium Content in HeLa Cells.

    Science.gov (United States)

    Zhao, Changhui; Zeng, Huawei; Wu, Ryan T Y; Cheng, Wen-Hsing

    2016-01-01

    Selenium-binding protein 1 (SBP1) is not a selenoprotein but structurally binds selenium. Loss of SBP1 during carcinogenesis usually predicts poor prognosis. Because genome instability is a hallmark of cancer, we hypothesize that SBP1 sequesters cellular selenium and sensitizes cancer cells to DNA-damaging agents. To test this hypothesis, we knocked down SBP1 expression in HeLa cervical cancer cells by employing a short hairpin RNA (shRNA) approach. Reduced sensitivity to hydrogen peroxide, paraquat and camptothecin, reactive oxygen species content, and intracellular retention of selenium after selenomethionine treatment were observed in SBP1 shRNA HeLa cells. Results from Western analyses showed that treatment of HeLa cells with selenomethionine resulted in increased SBP1 protein expression in a dose-dependent manner. Knockdown of SBP1 rendered HeLa cells increased expression of glutathione peroxidase-1 but not glutathione peroxidase-4 protein levels and accelerated migration from a wound. Altogether, SBP1 retains supplemental selenium and sensitizes HeLa cancer cells to clastogens, suggesting a new cancer treatment strategy by sequestering selenium through SBP1.

  16. Structure and DNA-binding of meiosis-specific protein Hop2

    Science.gov (United States)

    Zhou, Donghua; Moktan, Hem; Pezza, Roberto

    2014-03-01

    Here we report structure elucidation of the DNA binding domain of homologous pairing protein 2 (Hop2), which is important to gene diversity when sperms and eggs are produced. Together with another protein Mnd1, Hop2 enhances the strand invasion activity of recombinase Dmc1 by over 30 times, facilitating proper synapsis of homologous chromosomes. However, the structural and biochemical bases for the function of Hop2 and Mnd1 have not been well understood. As a first step toward such understanding, we recently solved the structure for the N-terminus of Hop2 (1-84) using solution NMR. This fragment shows a typical winged-head conformation with recognized DNA binding activity. DNA interacting sites were then investigated by chemical shift perturbations in a titration experiment. Information of these sites was used to guide protein-DNA docking with MD simulation, revealing that helix 3 is stably lodged in the DNA major groove and that wing 1 (connecting strands 2 and 3) transiently comes in contact with the minor groove in nanosecond time scale. Mutagenesis analysis further confirmed the DNA binding sites in this fragment of the protein.

  17. Identification of the divergent calmodulin binding motif in yeast Ssb1/Hsp75 protein and in other HSP70 family members.

    Science.gov (United States)

    Heinen, R C; Diniz-Mendes, L; Silva, J T; Paschoalin, V M F

    2006-11-01

    Yeast soluble proteins were fractionated by calmodulin-agarose affinity chromatography and the Ca2+/calmodulin-binding proteins were analyzed by SDS-PAGE. One prominent protein of 66 kDa was excised from the gel, digested with trypsin and the masses of the resultant fragments were determined by MALDI/MS. Twenty-one of 38 monoisotopic peptide masses obtained after tryptic digestion were matched to the heat shock protein Ssb1/Hsp75, covering 37% of its sequence. Computational analysis of the primary structure of Ssb1/Hsp75 identified a unique potential amphipathic alpha-helix in its N-terminal ATPase domain with features of target regions for Ca2+/calmodulin binding. This region, which shares 89% similarity to the experimentally determined calmodulin-binding domain from mouse, Hsc70, is conserved in near half of the 113 members of the HSP70 family investigated, from yeast to plant and animals. Based on the sequence of this region, phylogenetic analysis grouped the HSP70s in three distinct branches. Two of them comprise the non-calmodulin binding Hsp70s BIP/GR78, a subfamily of eukaryotic HSP70 localized in the endoplasmic reticulum, and DnaK, a subfamily of prokaryotic HSP70. A third heterogeneous group is formed by eukaryotic cytosolic HSP70s containing the new calmodulin-binding motif and other cytosolic HSP70s whose sequences do not conform to those conserved motif, indicating that not all eukaryotic cytosolic Hsp70s are target for calmodulin regulation. Furthermore, the calmodulin-binding domain found in eukaryotic HSP70s is also the target for binding of Bag-1 - an enhancer of ADP/ATP exchange activity of Hsp70s. A model in which calmodulin displaces Bag-1 and modulates Ssb1/Hsp75 chaperone activity is discussed.

  18. Identification of the divergent calmodulin binding motif in yeast Ssb1/Hsp75 protein and in other HSP70 family members

    Directory of Open Access Journals (Sweden)

    R.C. Heinen

    2006-11-01

    Full Text Available Yeast soluble proteins were fractionated by calmodulin-agarose affinity chromatography and the Ca2+/calmodulin-binding proteins were analyzed by SDS-PAGE. One prominent protein of 66 kDa was excised from the gel, digested with trypsin and the masses of the resultant fragments were determined by MALDI/MS. Twenty-one of 38 monoisotopic peptide masses obtained after tryptic digestion were matched to the heat shock protein Ssb1/Hsp75, covering 37% of its sequence. Computational analysis of the primary structure of Ssb1/Hsp75 identified a unique potential amphipathic alpha-helix in its N-terminal ATPase domain with features of target regions for Ca2+/calmodulin binding. This region, which shares 89% similarity to the experimentally determined calmodulin-binding domain from mouse, Hsc70, is conserved in near half of the 113 members of the HSP70 family investigated, from yeast to plant and animals. Based on the sequence of this region, phylogenetic analysis grouped the HSP70s in three distinct branches. Two of them comprise the non-calmodulin binding Hsp70s BIP/GR78, a subfamily of eukaryotic HSP70 localized in the endoplasmic reticulum, and DnaK, a subfamily of prokaryotic HSP70. A third heterogeneous group is formed by eukaryotic cytosolic HSP70s containing the new calmodulin-binding motif and other cytosolic HSP70s whose sequences do not conform to those conserved motif, indicating that not all eukaryotic cytosolic Hsp70s are target for calmodulin regulation. Furthermore, the calmodulin-binding domain found in eukaryotic HSP70s is also the target for binding of Bag-1 - an enhancer of ADP/ATP exchange activity of Hsp70s. A model in which calmodulin displaces Bag-1 and modulates Ssb1/Hsp75 chaperone activity is discussed.

  19. LSD1 demethylase and the methyl-binding protein PHF20L1 prevent SET7 methyltransferase-dependent proteolysis of the stem-cell protein SOX2.

    Science.gov (United States)

    Zhang, Chunxiao; Hoang, Nam; Leng, Feng; Saxena, Lovely; Lee, Logan; Alejo, Salvador; Qi, Dandan; Khal, Anthony; Sun, Hong; Lu, Fei; Zhang, Hui

    2018-03-09

    The pluripotency-controlling stem-cell protein SRY-box 2 (SOX2) plays a pivotal role in maintaining the self-renewal and pluripotency of embryonic stem cells and also of teratocarcinoma or embryonic carcinoma cells. SOX2 is monomethylated at lysine 119 (Lys-119) in mouse embryonic stem cells by the SET7 methyltransferase, and this methylation triggers ubiquitin-dependent SOX2 proteolysis. However, the molecular regulators and mechanisms controlling SET7-induced SOX2 proteolysis are unknown. Here, we report that in human ovarian teratocarcinoma PA-1 cells, methylation-dependent SOX2 proteolysis is dynamically regulated by the LSD1 lysine demethylase and a methyl-binding protein, PHD finger protein 20-like 1 (PHF20L1). We found that LSD1 not only removes the methyl group from monomethylated Lys-117 (equivalent to Lys-119 in mouse SOX2), but it also demethylates monomethylated Lys-42 in SOX2, a reaction that SET7 also regulated and that also triggered SOX2 proteolysis. Our studies further revealed that PHF20L1 binds both monomethylated Lys-42 and Lys-117 in SOX2 and thereby prevents SOX2 proteolysis. Down-regulation of either LSD1 or PHF20L1 promoted SOX2 proteolysis, which was prevented by SET7 inactivation in both PA-1 and mouse embryonic stem cells. Our studies also disclosed that LSD1 and PHF20L1 normally regulate the growth of pluripotent mouse embryonic stem cells and PA-1 cells by preventing methylation-dependent SOX2 proteolysis. In conclusion, our findings reveal an important mechanism by which the stability of the pluripotency-controlling stem-cell protein SOX2 is dynamically regulated by the activities of SET7, LSD1, and PHF20L1 in pluripotent stem cells. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Cartilage Acidic Protein 2 a hyperthermostable, high affinity calcium-binding protein.

    Science.gov (United States)

    Anjos, Liliana; Gomes, Ana S; Melo, Eduardo P; Canário, Adelino V; Power, Deborah M

    2013-03-01

    Cartilage Acidic Protein 2 (CRTAC2) is a novel protein present from prokaryotes to vertebrates with abundant expression in the teleost fish pituitary gland and an isoform of CRTAC1, a chondrocyte marker in humans. The two proteins are non-integrins containing N-terminal integrin-like Ca(2+)-binding motifs and their structure and function remain to be assigned. Structural studies of recombinant sea bream (sb)CRTAC2 revealed it is composed of 8.8% α-helix, 33.4% β-sheet and 57.8% unordered protein. sbCRTAC2 bound Ca(2+) with high affinity (K(d)=1.46nM) and favourable Gibbs free energy (∆G=-12.4kcal/mol). The stoichiometry for Ca(2+) bound to sbCRTAC2 at saturation indicated six Ca(2+) ligand-binding sites exist per protein molecule. No conformational change in sbCRTAC2 occurred in the presence of Ca(2+). Fluorescence emission revealed that the tertiary structure of the protein is hyperthermostable between 25°C and 95°C and the fully unfolded state is only induced by chemical denaturing (4M GndCl). sbCRTAC has a widespread tissue distribution and is present as high molecular weight aggregates, although strong reducing conditions promote formation of the monomer. sbCRTAC2 promotes epithelial cell outgrowth in vitro suggesting it may share functional homology with mammalian CRTAC1, recently implicated in cell-cell and cell-matrix interactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The RNA-binding protein repertoire of Arabidopsis thaliana

    KAUST Repository

    Marondedze, Claudius; Thomas, Ludivine; Serano, Natalia Lorena Gorron; Lilley, Kathryn S.; Gehring, Christoph A

    2016-01-01

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently

  2. Contribution of the first K-homology domain of poly(C)-binding protein 1 to its affinity and specificity for C-rich oligonucleotides

    OpenAIRE

    Yoga, Yano M. K.; Traore, Daouda A. K.; Sidiqi, Mahjooba; Szeto, Chris; Pendini, Nicole R.; Barker, Andrew; Leedman, Peter J.; Wilce, Jacqueline A.; Wilce, Matthew C. J.

    2012-01-01

    Poly-C-binding proteins are triple KH (hnRNP K homology) domain proteins with specificity for single stranded C-rich RNA and DNA. They play diverse roles in the regulation of protein expression at both transcriptional and translational levels. Here, we analyse the contributions of individual αCP1 KH domains to binding C-rich oligonucleotides using biophysical and structural methods. Using surface plasmon resonance (SPR), we demonstrate that KH1 makes the most stable interactions with both RNA...

  3. Mac-2 binding protein is a cell-adhesive protein of the extracellular matrix which self-assembles into ring-like structures and binds beta1 integrins, collagens and fibronectin

    DEFF Research Database (Denmark)

    Sasaki, T; Brakebusch, C; Engel, J

    1998-01-01

    Human Mac-2 binding protein (M2BP) was prepared in recombinant form from the culture medium of 293 kidney cells and consisted of a 92 kDa subunit. The protein was obtained in a native state as indicated by CD spectroscopy, demonstrating alpha-helical and beta-type structure, and by protease resis...... in the extracellular matrix of several mouse tissues....... in solid-phase assays to collagens IV, V and VI, fibronectin and nidogen, but not to fibrillar collagens I and III or other basement membrane proteins. The protein also mediated adhesion of cell lines at comparable strength with laminin. Adhesion to M2BP was inhibited by antibodies to integrin beta1...

  4. Zinc binding activity of human metapneumovirus M2-1 protein is indispensable for viral replication and pathogenesis in vivo.

    Science.gov (United States)

    Cai, Hui; Zhang, Yu; Ma, Yuanmei; Sun, Jing; Liang, Xueya; Li, Jianrong

    2015-06-01

    Human metapneumovirus (hMPV) is a member of the Pneumovirinae subfamily in the Paramyxoviridae family that causes respiratory tract infections in humans. Unlike members of the Paramyxovirinae subfamily, the polymerase complex of pneumoviruses requires an additional cofactor, the M2-1 protein, which functions as a transcriptional antitermination factor. The M2-1 protein was found to incorporate zinc ions, although the specific role(s) of the zinc binding activity in viral replication and pathogenesis remains unknown. In this study, we found that the third cysteine (C21) and the last histidine (H25) in the zinc binding motif (CCCH) of hMPV M2-1 were essential for zinc binding activity, whereas the first two cysteines (C7 and C15) play only minor or redundant roles in zinc binding. In addition, the zinc binding motif is essential for the oligomerization of M2-1. Subsequently, recombinant hMPVs (rhMPVs) carrying mutations in the zinc binding motif were recovered. Interestingly, rhMPV-C21S and -H25L mutants, which lacked zinc binding activity, had delayed replication in cell culture and were highly attenuated in cotton rats. In contrast, rhMPV-C7S and -C15S strains, which retained 60% of the zinc binding activity, replicated as efficiently as rhMPV in cotton rats. Importantly, rhMPVs that lacked zinc binding activity triggered high levels of neutralizing antibody and provided complete protection against challenge with rhMPV. Taken together, these results demonstrate that zinc binding activity is indispensable for viral replication and pathogenesis in vivo. These results also suggest that inhibition of zinc binding activity may serve as a novel approach to rationally attenuate hMPV and perhaps other pneumoviruses for vaccine purposes. The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute

  5. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Arati; Mandon, Elisabet C.; Gilmore, Reid; Rapoport, Tom A. (UMASS, MED); (Harvard-Med)

    2017-03-12

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.

  6. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    Science.gov (United States)

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  7. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis1[OPEN

    Science.gov (United States)

    Hsiao, An-Shan; Xue, Yan

    2017-01-01

    Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis (Arabidopsis thaliana) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1. Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 (GL2), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1, smo1-1, and ACBP1+/−smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1+/−smo1-1. Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling. PMID:28500265

  8. Detergent activation of the binding protein in the folate radioassay

    International Nuclear Information System (INIS)

    Hansen, S.I.; Holm, J.; Lyngbye, J.

    1982-01-01

    A minor cow's whey protein associated with β-lactoglobulin is used as binding protein in the competitive radioassay for serum and erythrocyte folate. Seeking to optimize the assay, we tested the performance of binder solutions of increasing purity. The folate binding protein was isolated from cow's whey by means of CM-Sepharose CL-6B cation-exchange chromatography, and further purified on a methotrexate-AH-Sepharose 4B affinity matrix. In contrast to β-lactoglobulin, the purified protein did not bind folate unless the detergents cetyltrimethylammonium (10 mmol/Ll) or Triton X-100 (1 g/L) were present. Such detergent activation was not needed in the presence of serum. There seems to be a striking analogy between these phenomena and the well-known reactivation of certain purified membrane-derived enzymes by surfactants

  9. A technique for a rapid imaging of regional CBF and partition coefficient using dynamic SPECT and N-isopropyl-p-[123I]iodoamphetamine (123I-IMP)

    International Nuclear Information System (INIS)

    Itoh, Hiroshi; Iida, Hidehiro; Murakami, Matsutaro

    1993-01-01

    IMP (iodoamphetamine) is a flow tracer due to a large first pass extraction fraction and high affinity in the brain, but significant clearance from the brain causes change of distribution when the beginning time of scan is delayed. The purpose of the present study was to develop a new method to rapidly calculate a quantitative cerebral blood flow (CBF) image by taking clearance effects into account. A dynamic SPECT scan was performed on 5 subjects (4 patients with cerebral infarction and one normal volunteer) following slow intravenous infusion of 123 I-IMP. The arterial input function was obtained by frequent blood sampling and by measuring an octanol extraction ratio for each sample. Firstly, non-linear least square fitting (NLS) was performed to investigate the tracer kinetics of 123 I-IMP. The 3 compartment model analysis yielded negligibly small k 3 (retaining rate constant) (0.0056±0.0128 (ml/ml/min)), and consistent k 1 (transport rate constant) with those determined by 2 compartment model (2CM) analysis (r=0.96, p 1 was consistent with CBF measured by 15 O water PET technique. These observations suggested the validity of using 2CM for describing the IMP tracer kinetics. Secondly, a weighted integration (WI) technique has been implemented to calculate rapidly images of CBF and partition coefficient (V d ). The WI technique yielded values of CBF (k 1 ) and V d (k 1 /k 2 ). They were confirmed to be consistent with those determined by NLS technique (CBF; r=0.99, p d ; r=0.99, p 1 agreed well with PET CBF (r=0.91, p d in infarcted patients. This supports an importance for calculating V d image. V d image will provide additional clinical information because 123 I-IMP binding mechanism may be related to cell viability. (author)

  10. Molecular basis of cellular localization of poly C binding protein 1 in neuronal cells

    International Nuclear Information System (INIS)

    Berry, Andrea M.; Flock, Kelly E.; Loh, Horace H.; Ko, Jane L.

    2006-01-01

    Poly C binding protein 1 (PCBP) is involved in the transcriptional regulation of neuronal mu-opioid receptor gene. In this study, we examined the molecular basis of PCBP cellular/nuclear localization in neuronal cells using EGFP fusion protein. PCBP, containing three KH domains and a variable domain, distributed in cytoplasm and nucleus with a preferential nuclear expression. Domain-deletional analyses suggested the requirement of variable and KH3 domains for strong PCBP nuclear expression. Within the nucleus, a low nucleolar PCBP expression was observed, and PCBP variable domain contributed to this restricted nucleolar expression. Furthermore, the punctate nuclear pattern of PCBP was correlated to its single-stranded (ss) DNA binding ability, with both requiring cooperativity of at least three sequential domains. Collectively, certain PCBP domains thus govern its nuclear distribution and transcriptional regulatory activity in the nucleus of neurons, whereas the low nucleolar expression implicates the disengagement of PCBP in the ribosomal RNA synthesis

  11. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.

    Science.gov (United States)

    Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E

    2017-12-05

    Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment protein sigma1.

    Science.gov (United States)

    Chappell, J D; Gunn, V L; Wetzel, J D; Baer, G S; Dermody, T S

    1997-03-01

    The reovirus attachment protein, sigma1, determines numerous aspects of reovirus-induced disease, including viral virulence, pathways of spread, and tropism for certain types of cells in the central nervous system. The sigma1 protein projects from the virion surface and consists of two distinct morphologic domains, a virion-distal globular domain known as the head and an elongated fibrous domain, termed the tail, which is anchored into the virion capsid. To better understand structure-function relationships of sigma1 protein, we conducted experiments to identify sequences in sigma1 important for viral binding to sialic acid, a component of the receptor for type 3 reovirus. Three serotype 3 reovirus strains incapable of binding sialylated receptors were adapted to growth in murine erythroleukemia (MEL) cells, in which sialic acid is essential for reovirus infectivity. MEL-adapted (MA) mutant viruses isolated by serial passage in MEL cells acquired the capacity to bind sialic acid-containing receptors and demonstrated a dependence on sialic acid for infection of MEL cells. Analysis of reassortant viruses isolated from crosses of an MA mutant virus and a reovirus strain that does not bind sialic acid indicated that the sigma1 protein is solely responsible for efficient growth of MA mutant viruses in MEL cells. The deduced sigma1 amino acid sequences of the MA mutant viruses revealed that each strain contains a substitution within a short region of sequence in the sigma1 tail predicted to form beta-sheet. These studies identify specific sequences that determine the capacity of reovirus to bind sialylated receptors and suggest a location for a sialic acid-binding domain. Furthermore, the results support a model in which type 3 sigma1 protein contains discrete receptor binding domains, one in the head and another in the tail that binds sialic acid.

  13. Lactoferrin binding protein B - a bi-functional bacterial receptor protein.

    Directory of Open Access Journals (Sweden)

    Nicholas K H Ostan

    2017-03-01

    Full Text Available Lactoferrin binding protein B (LbpB is a bi-lobed outer membrane-bound lipoprotein that comprises part of the lactoferrin (Lf receptor complex in Neisseria meningitidis and other Gram-negative pathogens. Recent studies have demonstrated that LbpB plays a role in protecting the bacteria from cationic antimicrobial peptides due to large regions rich in anionic residues in the C-terminal lobe. Relative to its homolog, transferrin-binding protein B (TbpB, there currently is little evidence for its role in iron acquisition and relatively little structural and biophysical information on its interaction with Lf. In this study, a combination of crosslinking and deuterium exchange coupled to mass spectrometry, information-driven computational docking, bio-layer interferometry, and site-directed mutagenesis was used to probe LbpB:hLf complexes. The formation of a 1:1 complex of iron-loaded Lf and LbpB involves an interaction between the Lf C-lobe and LbpB N-lobe, comparable to TbpB, consistent with a potential role in iron acquisition. The Lf N-lobe is also capable of binding to negatively charged regions of the LbpB C-lobe and possibly other sites such that a variety of higher order complexes are formed. Our results are consistent with LbpB serving dual roles focused primarily on iron acquisition when exposed to limited levels of iron-loaded Lf on the mucosal surface and effectively binding apo Lf when exposed to high levels at sites of inflammation.

  14. Seed Dormancy in Arabidopsis Requires Self-Binding Ability of DOG1 Protein and the Presence of Multiple Isoforms Generated by Alternative Splicing.

    Directory of Open Access Journals (Sweden)

    Kazumi Nakabayashi

    2015-12-01

    Full Text Available The Arabidopsis protein DELAY OF GERMINATION 1 (DOG1 is a key regulator of seed dormancy, which is a life history trait that determines the timing of seedling emergence. The amount of DOG1 protein in freshly harvested seeds determines their dormancy level. DOG1 has been identified as a major dormancy QTL and variation in DOG1 transcript levels between accessions contributes to natural variation for seed dormancy. The DOG1 gene is alternatively spliced. Alternative splicing increases the transcriptome and proteome diversity in higher eukaryotes by producing transcripts that encode for proteins with altered or lost function. It can also generate tissue specific transcripts or affect mRNA stability. Here we suggest a different role for alternative splicing of the DOG1 gene. DOG1 produces five transcript variants encoding three protein isoforms. Transgenic dog1 mutant seeds expressing single DOG1 transcript variants from the endogenous DOG1 promoter did not complement because they were non-dormant and lacked DOG1 protein. However, transgenic plants overexpressing single DOG1 variants from the 35S promoter could accumulate protein and showed complementation. Simultaneous expression of two or more DOG1 transcript variants from the endogenous DOG1 promoter also led to increased dormancy levels and accumulation of DOG1 protein. This suggests that single isoforms are functional, but require the presence of additional isoforms to prevent protein degradation. Subsequently, we found that the DOG1 protein can bind to itself and that this binding is required for DOG1 function but not for protein accumulation. Natural variation for DOG1 binding efficiency was observed among Arabidopsis accessions and contributes to variation in seed dormancy.

  15. C/EBPβ (CCAAT/enhancer-binding protein β) mediates progesterone production through transcriptional regulation in co-operation with SF-1 (steroidogenic factor-1).

    Science.gov (United States)

    Mizutani, Tetsuya; Ju, Yunfeng; Imamichi, Yoshitaka; Osaki, Tsukasa; Yazawa, Takashi; Kawabe, Shinya; Ishikane, Shin; Matsumura, Takehiro; Kanno, Masafumi; Kamiki, Yasue; Kimura, Kohei; Minamino, Naoto; Miyamoto, Kaoru

    2014-06-15

    The transcription factor SF-1 (steroidogenic factor-1) is a master regulator of steroidogenesis. Previously, we have found that SF-1 induces the differentiation of mesenchymal stem cells into steroidogenic cells. To elucidate the molecular mechanisms of SF-1-mediated functions, we attempted to identify protein components of the SF-1 nuclear protein complex in differentiated cells. SF-1 immunoaffinity chromatography followed by MS/MS analysis was performed, and 24 proteins were identified. Among these proteins, we focused on C/EBPβ (CCAAT/enhancer-binding protein β), which is an essential transcription factor for ovulation and luteinization, as the transcriptional mechanisms of C/EBPβ working together with SF-1 are poorly understood. C/EBPβ knockdown attenuated cAMP-induced progesterone production in granulosa tumour-derived KGN cells by altering STAR (steroidogenic acute regulatory protein), CYP11A1 (cytochrome P450, family 11, subfamily A, polypeptide 1) and HSD3B2 (hydroxy-δ-5-steroid dehydrogenase, 3β- and steroid δ-isomerase 2) expression. EMSA and ChIP assays revealed novel C/EBPβ-binding sites in the upstream regions of the HSD3B2 and CYP11A1 genes. These interactions were enhanced by cAMP stimulation. Luciferase assays showed that C/EBPβ-responsive regions were found in each promoter and C/EBPβ is involved in the cAMP-induced transcriptional activity of these genes together with SF-1. These results indicate that C/EBPβ is an important mediator of progesterone production by working together with SF-1, especially under tropic hormone-stimulated conditions.

  16. Vitamin D, vitamin D binding protein, lung function and structure in COPD

    DEFF Research Database (Denmark)

    Berg, Isaac; Hanson, Corrine; Sayles, Harlan

    2013-01-01

    Vitamin D and vitamin D binding protein (DBP) have been associated with COPD and FEV1. There are limited data regarding emphysema and vitamin D and DBP.......Vitamin D and vitamin D binding protein (DBP) have been associated with COPD and FEV1. There are limited data regarding emphysema and vitamin D and DBP....

  17. Activation of the polyomavirus enhancer by a murine activator protein 1 (AP1) homolog and two contiguous proteins.

    OpenAIRE

    Martin, M E; Piette, J; Yaniv, M; Tang, W J; Folk, W R

    1988-01-01

    The polyomavirus enhancer is composed of multiple DNA sequence elements serving as binding sites for proteins present in mouse nuclear extracts that activate transcription and DNA replication. We have identified three such proteins and their binding sites and correlate them with enhancer function. Mutation of nucleotide (nt) 5140 in the enhancer alters the binding site (TGACTAA, nt 5139-5145) for polyomavirus enhancer A binding protein 1 (PEA1), a murine homolog of the human transcription fac...

  18. Sialic Acid Binding Properties of Soluble Coronavirus Spike (S1 Proteins: Differences between Infectious Bronchitis Virus and Transmissible Gastroenteritis Virus

    Directory of Open Access Journals (Sweden)

    Christine Winter

    2013-07-01

    Full Text Available The spike proteins of a number of coronaviruses are able to bind to sialic acids present on the cell surface. The importance of this sialic acid binding ability during infection is, however, quite different. We compared the spike protein of transmissible gastroenteritis virus (TGEV and the spike protein of infectious bronchitis virus (IBV. Whereas sialic acid is the only receptor determinant known so far for IBV, TGEV requires interaction with its receptor aminopeptidase N to initiate infection of cells. Binding tests with soluble spike proteins carrying an IgG Fc-tag revealed pronounced differences between these two viral proteins. Binding of the IBV spike protein to host cells was in all experiments sialic acid dependent, whereas the soluble TGEV spike showed binding to APN but had no detectable sialic acid binding activity. Our results underline the different ways in which binding to sialoglycoconjugates is mediated by coronavirus spike proteins.

  19. Serial lung imaging with 123I-IMP in localized pulmonary lesions

    International Nuclear Information System (INIS)

    Nakajo, Masayuki; Shimada, Jurio; Shimozono, Michiko; Uchiyama, Noriaki; Hiraki, Yoshiyuki; Shinohara, Shinji.

    1988-01-01

    123 I-IMP (N-isopropyl-p-[ 123 I]-iodoamphetamine) dynamic (1 frame/min for 25 mins), 30-min and 4-hr static lung imaging was performed in a total of 65 patients with roentgenographic evidence of localized pulmonary lesion (12 with pneumonia, one with lung abscess, 5 with pulmonary tuberculosis, 3 with pneumoconiosis, one with lung fluke disease and 43 with various histological types of primary lung cancer). The findings in 65 of 70 (95 %) lesions in the initial 1 or 2-min dynamic 123 I-IMP images were analogous to those obtained by 99m Tc-MAA lung perfusion imaging and decreased activity was observed in 68 of 70 (97 %) lesions, suggesting that the initial images mainly reflected the relative distribution of pulmonary arterial blood flow. However, 123 I-IMP accumulated differently according to the pathological conditions afterwards. Decrease activity from 123 I-IMP was contineously observed in a cavity of the lung abscess, 2 of 2 tuberculomas, 3 of 7 large nodules of pneumoconiosis and all of the 42 cancerous lesions which were possible to be evaluated. Gradual increased in activity relative to that of ''normal lung fields'' was observed in all 14 lesions of pneumonia; pneumonic lesions of the lung abscess, tuberculosis and lung fluke disease; 4 of 7 large nodules of pneumoconiosis; all of 8 atelectatic lesions and 32 of 44 areas surrounding cancers (most of them had roentgenographic evidence of infiltrating shadows). Thus 123 I-IMP accumulated increasingly in pneumonic and atelectatic lesions, while it appeared not to accumulate in such lesions replacing lung tissues as cavity, caseous and fibrous lesions and primary lung cancers. 123 I-IMP can be used as a new lung imaging agent to provide diagnostic informations on the property of pulmonary lesions. (author)

  20. Photoaffinity labelling of high affinity dopamine binding proteins

    International Nuclear Information System (INIS)

    Ross, G.M.; McCarry, B.E.; Mishra, R.K.

    1986-01-01

    A photoactive analogue of the dopamine agonist 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) has been synthesized and used to photoaffinity label dopamine binding proteins prepared from bovine caudate nucleus. N-(3-]N'-4-azidobenzamidol]-aminopropyl)-aminopropyl)-ADTN (AzB-AP-ADTN) was incubated with caudate membranes and irradiated with UV light. Membranes were then repeatedly washed by centrifugation to remove excess photolabel. A binding assay, using ( 3 H)-SCH 23390 (a D 1 specific antagonist), was then performed to evaluate the loss of receptor density in the photolyzed preparation. AzB-AP-ADTN irreversibly blocked ( 3 H)-SCH 23390 binding in a dose-dependent manner. Scatchard analysis revealed a decrease in the B/sub max/, with no significant change in the K/sub d/, of ( 3 H)-SCH 23390 binding. Compounds which compete for D 1 receptor binding (such as dopamine, SKF 38393 or apomorphine), proteted the SCH 23390 binding site from inactivation. This data would suggest that the novel photoaffinity ligand, AzB-AP-ADTN, can covalently label the D 1 (adenylate cyclase linked) dopamine receptor

  1. (123I)-IMP SPECT findings in Machado-Joseph disease

    International Nuclear Information System (INIS)

    Suzuki, Masahiko

    1997-01-01

    Single photon emission computed tomography (SPECT) with N-isopropyl-p-( 123 I)iodoamphetamine (IMP) was used to study the dynamics of cerebellar and brainstem metabolic function in patients with Mochado-Joseph disease (MJD), the diagnosis of which was confirmed with genetic analysis. The SPECT data obtained was analyzed semiquantitatively. In patients with MJD, ( 123 I)-IMP accumulation in the cerebellum and brainstem was decreased, and the degree of decrease reflected the clinical severity of MJD. When MJD was mild, the decrease in ( 123 I)-IMP accumulation was much greater in the brainstem than in the cerebellum. However, the decrease in ( 123 I)-IMP accumulation in the cerebellum and brainstem was not correlated with the severity of atrophy or with the number of CAG repeats. ( 123 I)-IMP SPECT was useful for evaluating the decrease in cerebellum and brainstem function in patients with MJD. Results of this study suggest that the functional decrease in MJD may begin in the brainstem. (author)

  2. Effect of benzimidazol-derivatives on the DNA-protein binding formation after UV-radiation of chromatin

    International Nuclear Information System (INIS)

    Mil', E.M.; Binyukov, V.I.; Zhil'tsova, V.M.; Stolyarova, L.G.; Kuznetsov, Yu.V.

    1991-01-01

    Effect of benzimidazol-derivatives on the DNA-protein binding formation was studied after UV-radiation of chromatin. These derivatives were shown to protect chromatin from UV-induced DNA-protein binding formation. Structural analog contained two aminomethyl residuals sensibilized additional binding formation in chromatin. Results suggested, that benzimidazol interacted with DNA, while aminomethyl groups interacted with protein and sensibilized binding of DNA, whilt aminomethyl groups interacted with protein and sensibilized binding of DNA with histone H1

  3. The mycobacterial DNA-binding protein 1 (MDP1 from Mycobacterium bovis BCG influences various growth characteristics

    Directory of Open Access Journals (Sweden)

    Maurischat Sven

    2008-06-01

    Full Text Available Abstract Background Pathogenic mycobacteria such as M. tuberculosis, M. bovis or M. leprae are characterised by their extremely slow growth rate which plays an important role in mycobacterial virulence and eradication of the bacteria. Various limiting factors influence the generation time of mycobacteria, and the mycobacterial DNA-binding protein 1 (MDP1 has also been implicated in growth regulation. Our strategy to investigate the role of MDP1 in mycobacterial growth consisted in the generation and characterisation of a M. bovis BCG derivative expressing a MDP1-antisense gene. Results The expression rate of the MDP1 protein in the recombinant M. bovis BCG containing the MDP1-antisense plasmid was reduced by about 50% compared to the reference strain M. bovis BCG containing the empty vector. In comparison to this reference strain, the recombinant M. bovis BCG grew faster in broth culture and reached higher cell masses in stationary phase. Likewise its intracellular growth in mouse and human macrophages was ameliorated. Bacterial clumping in broth culture was reduced by the antisense plasmid. The antisense plasmid increased the susceptibility of the bacteria towards Ampicillin. 2-D protein gels of bacteria maintained under oxygen-poor conditions demonstrated a reduction in the number and the intensity of many protein spots in the antisense strain compared to the reference strain. Conclusion The MDP1 protein has a major impact on various growth characteristics of M. bovis BCG. It plays an important role in virulence-related traits such as aggregate formation and intracellular multiplication. Its impact on the protein expression in a low-oxygen atmosphere indicates a role in the adaptation to the hypoxic conditions present in the granuloma.

  4. Transcriptional regulation of the HMGA1 gene by octamer-binding proteins Oct-1 and Oct-2.

    Directory of Open Access Journals (Sweden)

    Eusebio Chiefari

    Full Text Available The High-Mobility Group AT-Hook 1 (HMGA1 protein is an architectural transcription factor that binds to AT-rich sequences in the promoter region of DNA and functions as a specific cofactor for gene activation. Previously, we demonstrated that HMGA1 is a key regulator of the insulin receptor (INSR gene and an important downstream target of the INSR signaling cascade. Moreover, from a pathogenic point of view, overexpression of HMGA1 has been associated with human cancer, whereas functional variants of the HMGA1 gene have been recently linked to type 2 diabetes mellitus and metabolic syndrome. However, despite of this biological and pathological relevance, the mechanisms that control HMGA1 gene expression remain unknown. In this study, to define the molecular mechanism(s that regulate HMGA1 gene expression, the HMGA1 gene promoter was investigated by transient transfection of different cell lines, either before or after DNA and siRNA cotransfections. An octamer motif was identified as an important element of transcriptional regulation of this gene, the interaction of which with the octamer transcription factors Oct-1 and Oct-2 is crucial in modulating HMGA1 gene and protein expression. Additionally, we demonstrate that HMGA1 binds its own promoter and contributes to its transactivation by Oct-2 (but not Oct-1, supporting its role in an auto-regulatory circuit. Overall, our results provide insight into the transcriptional regulation of the HMGA1 gene, revealing a differential control exerted by both Oct-1 and Oct-2. Furthermore, they consistently support the hypothesis that a putative defect in Oct-1 and/or Oct-2, by affecting HMGA1 expression, may cause INSR dysfunction, leading to defects of the INSR signaling pathway.

  5. Parasites causing cerebral falciparum malaria bind multiple endothelial receptors and express EPCR and ICAM-1-binding PfEMP1

    DEFF Research Database (Denmark)

    Tuikue Ndam, Nicaise; Moussiliou, Azizath; Lavstsen, Thomas

    2017-01-01

    Background: Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates the binding and accumulation of infected erythrocytes (IE) to blood vessels and tissues. Specific interactions have been described between PfEMP1 and human endothelial proteins CD36, intercellular adhesion molecule-1...

  6. Quantitative assessment of cerebral blood flow by 123I-IMP SPECT

    International Nuclear Information System (INIS)

    Moriwaki, Hiroshi; Matsumoto, Masayasu; Hashikawa, Kazuo

    1993-01-01

    To establish a noninvasive, quantitative method for measuring regional cerebral blood flow (rCBF) by N-isopropyl-p-[ 123 I]iodoamphetamine ( 123 I-IMP) SPECT, we attempted to employ continuous venous sampling instead of arterial sampling. Forty two patients with cerebrovascular disease were classified into two groups, with (group II: n=35) and without (group I: n=7) hand warming. In group II, either hand was warmed, wrapping in a hot blanket (group IIA) or immersed in a 44degC water bath (group IIB). Immediately after intravenous bolus injection of 222 MBq IMP, arterial and venous blood samples were collected continuously for 5 min from the radial artery and the cubital vein, respectively. By octanol extraction, IMP was divided into the unmetabolized and metabolized fractions. The ratio of 123 I-IMP of venous blood to arterial blood (pass ratio, referred to as %PR) was calculated in the whole blood, unmetabolized, and metabolized fractions. Using these parameters, we assessed the possibility to estimate the amount of unmetabolized IMP fraction of arterial blood, usually used as an input function, from venous samples. In group I, %PR demonstrated a considerable variation between individuals (whole IMP, 47.5±24.6%; unmetabolized IMP, 46.0±24.5%; metabolized IMP, 51.8±27.4%). In group II, especially in group IIB, both increase of %PR value and the decrease in variation (whole, 77.9±5.6%; unmetabolized, 75.7±5.7%; metabolized, 86.7±8.7%) were observed, permitting the further calculation based on the assumption that %PR value was constant in each IMP fraction. The coefficient of variation of the difference between estimated arterial IMP radioactivity from venous samples and actual arterial IMP was 9.0% and 7.5%. The use of venous sampling coupled with a hand warming technique allowed the estimation of the arterial unmetabolized IMP radioactivity from venous samples with a reliability of 90% or more. (author)

  7. The 1.1 Å resolution structure of a periplasmic phosphate-binding protein from Stenotrophomonas maltophilia: a crystallization contaminant identified by molecular replacement using the entire Protein Data Bank.

    Science.gov (United States)

    Keegan, Ronan; Waterman, David G; Hopper, David J; Coates, Leighton; Taylor, Graham; Guo, Jingxu; Coker, Alun R; Erskine, Peter T; Wood, Steve P; Cooper, Jonathan B

    2016-08-01

    During efforts to crystallize the enzyme 2,4-dihydroxyacetophenone dioxygenase (DAD) from Alcaligenes sp. 4HAP, a small number of strongly diffracting protein crystals were obtained after two years of crystal growth in one condition. The crystals diffracted synchrotron radiation to almost 1.0 Å resolution and were, until recently, assumed to be formed by the DAD protein. However, when another crystal form of this enzyme was eventually solved at lower resolution, molecular replacement using this new structure as the search model did not give a convincing solution with the original atomic resolution data set. Hence, it was considered that these crystals might have arisen from a protein impurity, although molecular replacement using the structures of common crystallization contaminants as search models again failed. A script to perform molecular replacement using MOLREP in which the first chain of every structure in the PDB was used as a search model was run on a multi-core cluster. This identified a number of prokaryotic phosphate-binding proteins as scoring highly in the MOLREP peak lists. Calculation of an electron-density map at 1.1 Å resolution based on the solution obtained with PDB entry 2q9t allowed most of the amino acids to be identified visually and built into the model. A BLAST search then indicated that the molecule was most probably a phosphate-binding protein from Stenotrophomonas maltophilia (UniProt ID B4SL31; gene ID Smal_2208), and fitting of the corresponding sequence to the atomic resolution map fully corroborated this. Proteins in this family have been linked to the virulence of antibiotic-resistant strains of pathogenic bacteria and with biofilm formation. The structure of the S. maltophilia protein has been refined to an R factor of 10.15% and an Rfree of 12.46% at 1.1 Å resolution. The molecule adopts the type II periplasmic binding protein (PBP) fold with a number of extensively elaborated loop regions. A fully dehydrated phosphate

  8. DNA binding sites recognised in vitro by a knotted class 1 homeodomain protein encoded by the hooded gene, k, in barley (Hordeum vulgare)

    DEFF Research Database (Denmark)

    Krusell, L; Rasmussen, I; Gausing, K

    1997-01-01

    of knotted1 from maize was isolated from barley seedlings and expressed as a maltose binding protein fusion in E. coli. The purified HvH21-fusion protein selected DNA fragments with 1-3 copies of the sequence TGAC. Gel shift experiments showed that the TGAC element was required for binding and the results...

  9. Further structural insights into the binding of complement factor H by complement regulator-acquiring surface protein 1 (CspA) of Borrelia burgdorferi

    International Nuclear Information System (INIS)

    Caesar, Joseph J. E.; Wallich, Reinhard; Kraiczy, Peter; Zipfel, Peter F.; Lea, Susan M.

    2013-01-01

    B. burgdorferi binds complement factor H using a dimeric surface protein, CspA (BbCRASP-1). Presented here is a new structure of CspA that suggests that there is a degree of flexibility between subunits which may have implications for complement regulator binding. Borrelia burgdorferi has evolved many mechanisms of evading the different immune systems across its range of reservoir hosts, including the capture and presentation of host complement regulators factor H and factor H-like protein-1 (FHL-1). Acquisition is mediated by a family of complement regulator-acquiring surface proteins (CRASPs), of which the atomic structure of CspA (BbCRASP-1) is known and shows the formation of a homodimeric species which is required for binding. Mutagenesis studies have mapped a putative factor H binding site to a cleft between the two subunits. Presented here is a new atomic structure of CspA which shows a degree of flexibility between the subunits which may be critical for factor H scavenging by increasing access to the binding interface and allows the possibility that the assembly can clamp around the bound complement regulators

  10. The Y-Box Binding Protein 1 Suppresses Alzheimer's Disease Progression in Two Animal Models.

    Directory of Open Access Journals (Sweden)

    N V Bobkova

    Full Text Available The Y-box binding protein 1 (YB-1 is a member of the family of DNA- and RNA binding proteins. It is involved in a wide variety of DNA/RNA-dependent events including cell proliferation and differentiation, stress response, and malignant cell transformation. Previously, YB-1 was detected in neurons of the neocortex and hippocampus, but its precise role in the brain remains undefined. Here we show that subchronic intranasal injections of recombinant YB-1, as well as its fragment YB-11-219, suppress impairment of spatial memory in olfactory bulbectomized (OBX mice with Alzheimer's type degeneration and improve learning in transgenic 5XFAD mice used as a model of cerebral amyloidosis. YB-1-treated OBX and 5XFAD mice showed a decreased level of brain β-amyloid. In OBX animals, an improved morphological state of neurons was revealed in the neocortex and hippocampus; in 5XFAD mice, a delay in amyloid plaque progression was observed. Intranasally administered YB-1 penetrated into the brain and could enter neurons. In vitro co-incubation of YB-1 with monomeric β-amyloid (1-42 inhibited formation of β-amyloid fibrils, as confirmed by electron microscopy. This suggests that YB-1 interaction with β-amyloid prevents formation of filaments that are responsible for neurotoxicity and neuronal death. Our data are the first evidence for a potential therapeutic benefit of YB-1 for treatment of Alzheimer's disease.

  11. Co-ordinate control of synthesis of mitochondrial and non-mitochondrial hemoproteins: a binding site for the HAP1 (CYP1) protein in the UAS region of the yeast catalase T gene (CTT1).

    Science.gov (United States)

    Winkler, H; Adam, G; Mattes, E; Schanz, M; Hartig, A; Ruis, H

    1988-01-01

    Control of expression of the Saccharomyces cerevisiae CTT1 (catalase T) gene by the HAP1 (CYP1) gene, a mediator of heme control of mitochondrial cytochromes, was studied. Expression of a CTT1-lacZ fusion in a hap1 mutant showed that the CTT1 promoter is under HAP1 control. As demonstrated by a gel retardation assay, the HAP1 protein binds to a heme control region of the CTT1 gene. This binding in vitro is stimulated by hemin. The HAP1-binding sequence was localized by using DNA fragments spanning different regions, by DNase I footprinting and by methylation interference of DNA-protein binding. The binding site was compared to the HAP1-binding sequences previously characterized in detail (UAS1CYC1, UASCYC7). There is strikingly little similarity between the three sequences, which have only four of those 23 bp in common which are protected from DNase I digestion. However, the pattern of major and minor groove contacts in the complex is quite similar in all three cases. The results obtained show that there is true co-ordinate control of expression of mitochondrial cytochromes and at least some extra-mitochondrial hemoproteins. Heme acts as a metabolic signal in this coordination, which is mediated by the HAP1 protein. Images PMID:2844525

  12. Spread of clonally related Escherichia coli harboring an IncA/C1 plasmid encoding IMP-8 and its recruitment into an unrelated MCR-1-containing isolate.

    Science.gov (United States)

    Elena, Alan; Cejas, Daniela; Magariños, Francisco; Jewtuchowicz, Virginia; Facente, Andrea; Gutkind, Gabriel; Di Conza, José; Radice, Marcela

    2018-04-16

    Ten IMP-8-producing Escherichia coli isolates were recovered from the surveillance cultures of a neonatal intensive care unit, of which eight were clonally related. A 168.2-kb- bla IMP-8 plasmid was fully sequenced, and it corresponded to the recently described IncA/C1-ST13. This plasmid was detected in all isolates, even in those no clonally related. One unrelated isolate was also resistant to colistin and positive for mcr-1. This marker was located in a 62.7-kb-IncI2 plasmid, which was also fully sequenced. Copyright © 2018 American Society for Microbiology.

  13. DNA-binding proteins essential for protein-primed bacteriophage ø29 DNA replication

    Directory of Open Access Journals (Sweden)

    Margarita Salas

    2016-08-01

    Full Text Available Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5’ ends of the DNA. This protein, called terminal protein (TP, is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3’-5’ exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding

  14. Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus

    DEFF Research Database (Denmark)

    Deng, Ling; Kenchappa, Chandra Shekar; Peng, Xu

    2012-01-01

    CRISPR loci are essential components of the adaptive immune system of archaea and bacteria. They consist of long arrays of repeats separated by DNA spacers encoding guide RNAs (crRNA), which target foreign genetic elements. Cbp1 (CRISPR DNA repeat binding protein) binds specifically to the multiple...... direct repeats of CRISPR loci of members of the acidothermophilic, crenarchaeal order Sulfolobales. cbp1 gene deletion from Sulfolobus islandicus REY15A produced a strong reduction in pre-crRNA yields from CRISPR loci but did not inhibit the foreign DNA targeting capacity of the CRISPR/Cas system....... Conversely, overexpression of Cbp1 in S. islandicus generated an increase in pre-crRNA yields while the level of reverse strand transcripts from CRISPR loci remained unchanged. It is proposed that Cbp1 modulates production of longer pre-crRNA transcripts from CRISPR loci. A possible mechanism...

  15. Galactic cosmic ray gradients, field-aligned and latitudinal, among Voyagers 1/2 and IMP-8

    International Nuclear Information System (INIS)

    Roelof, E.C.; Decker, R.B.; Krimigis, S.M.; Venkatesan, D.; Lazarus, A.J.

    1982-01-01

    The tandem Earth-Jupiter trajectories of the Voyager 1/2 spacecraft, combined with baseline measurements from the earth-orbiting IMP-7/8 spacecraft, provide the first opportunity for unambiguously separating latitude from radial or field-aligned effects in galactic cosmic ray gradients. Anti-coincidence solid-state detectors on the Voyager 1/2 LECP experiment measure nucleons > or approximately 20 MeV/nuc with large (28 cm 2 ) omnidirectional geometry factors. Anti-coincidence scintillators on the IMP-7/8 CPME with omnidirectional geometry factors comparable to those on Voyager measure nucleons > or approximately 35 MeV/nuc. Because the Voyagers are well-connected via the interplanetary magnetic field (IMF) to the near-Earth vicinity throughout their transit from 1-5 AU (September 1977 - February 1979), we obtained the first direct measurement of field-aligned gradients, i.e., those that do not depend upon ''corotation'' from one spacecraft to another over many days. Another new result is the unambiguous identification of nonuniform latitudinal gradients approximately 2-5% degree -1 in structures lasting 10-30 days. There is additional evidence for somewhat smaller latitudinal gradients, north to south and probably mixed with small field-aligned gradients -1 , which persist for several solar rotations

  16. Aluminium fluoride and magnesium, activators of heterotrimeric GTP-binding proteins, affect high-affinity binding of the fungal toxin fusicoccin to the fusicoccin-binding protein in oat root plasma membranes.

    NARCIS (Netherlands)

    de Boer, A.H.; Van der Molen, G.W.; Prins, H.B.A.; Korthout, H.A.A.J.; van der Hoeven, P.C.J.

    1994-01-01

    The fusicoccin-binding protein was solubilised from purified oat root plasma membranes. The solubilised protein retained full binding activity, provided that protease inhibitors were included. Sodium fluoride reduced the high-affinity [H-3]fusicoccin binding to almost zero in a

  17. Radiometric immunosorbent assay for the detection of anti-hormone-binding protein antibodies

    International Nuclear Information System (INIS)

    Pierce, E.A.; Dame, M.C.; DeLuca, H.F.

    1986-01-01

    A radiometric immunosorbent assay (RISA) for the detection of monoclonal antibodies to hormone-binding proteins has been developed. The assay involves incubating hybridoma supernatants in microtiter wells that have been coated with goat anti-mouse IgG antibodies. Any mouse IgG in the test supernatant is thus specifically retained in the wells. Radioactive ligand-binding protein complexes are then incubated in the wells. The presence of anti-binding protein antibodies in the supernatant is indicated by specific retention of radioactive ligand-binding protein complexes in the wells. Crude antigen preparations, such as tissue homogenates, can be used to detect antibodies. The assay is capable of detecting antibody at concentrations 20 ng/ml (approx. 100 pM IgG). The RISA has been used successfully to screen for monoclonal antibodies to the intracellular receptor for 1,25-dihydroxyvitamin D 3 and should be useful for the detection of antibodies to ligand-binding proteins in general

  18. Selecting for Fast Protein-Protein Association As Demonstrated on a Random TEM1 Yeast Library Binding BLIP.

    Science.gov (United States)

    Cohen-Khait, Ruth; Schreiber, Gideon

    2018-04-27

    Protein-protein interactions mediate the vast majority of cellular processes. Though protein interactions obey basic chemical principles also within the cell, the in vivo physiological environment may not allow for equilibrium to be reached. Thus, in vitro measured thermodynamic affinity may not provide a complete picture of protein interactions in the biological context. Binding kinetics composed of the association and dissociation rate constants are relevant and important in the cell. Therefore, changes in protein-protein interaction kinetics have a significant impact on the in vivo activity of the proteins. The common protocol for the selection of tighter binders from a mutant library selects for protein complexes with slower dissociation rate constants. Here we describe a method to specifically select for variants with faster association rate constants by using pre-equilibrium selection, starting from a large random library. Toward this end, we refine the selection conditions of a TEM1-β-lactamase library against its natural nanomolar affinity binder β-lactamase inhibitor protein (BLIP). The optimal selection conditions depend on the ligand concentration and on the incubation time. In addition, we show that a second sort of the library helps to separate signal from noise, resulting in a higher percent of faster binders in the selected library. Fast associating protein variants are of particular interest for drug development and other biotechnological applications.

  19. The Plasmodium falciparum exported protein PF3D7_0402000 binds to erythrocyte ankyrin and band 4.1

    Energy Technology Data Exchange (ETDEWEB)

    Shakya, Bikash; Penn, Wesley D.; Nakayasu, Ernesto S.; Lacount, Douglas J.

    2017-09-01

    Plasmodium falciparum extensively modifies the infected red blood cell (RBC), resulting in changes in deformability, shape and surface properties. These alterations suggest that the RBC cytoskeleton is a major target for modification during infection. However, the molecular mechanisms leading to these changes are largely unknown. To begin to address this question, we screened for exported P. falciparum proteins that bound to the erythrocyte cytoskeleton proteins ankyrin 1 (ANK1) and band 4.1 (4.1R), which form critical interactions with other cytoskeletal proteins that contribute to the deformability and stability of RBCs. Yeast two-hybrid screens with ANK1 and 4.1R identified eight interactions with P. falciparum exported proteins, including an interaction between 4.1R and PF3D7_0402000 (PFD0090c). This interaction was first identified in a large-scale screen (Vignali et al., Malaria J, 7:211, 2008), which also reported an interaction between PF3D7_0402000 and ANK1. We confirmed the interactions of PF3D7_0402000 with 4.1R and ANK1 in pair-wise yeast two-hybrid and co-precipitation assays. In both cases, an intact PHIST domain in PF3D7_0402000 was required for binding. Complex purification followed by mass spectrometry analysis provided additional support for the interaction of PF3D7_0402000 with ANK1 and 4.1R. RBC ghost cells loaded with maltose-binding protein (MBP)-PF3D7_0402000 passed through a metal microsphere column less efficiently than mock- or MBP-loaded controls, consistent with an effect of PF3D7_0402000 on RBC rigidity or membrane stability. This study confirmed the interaction of PF3D7_0402000 with 4.1R in multiple independent assays, provided the first evidence that PF3D7_0402000 also binds to ANK1, and suggested that PF3D7_0402000 affects deformability or membrane stability of uninfected RBC ghosts.

  20. AHM1, a Novel Type of Nuclear Matrix–Localized, MAR Binding Protein with a Single AT Hook and a J Domain–Homologous Region

    Science.gov (United States)

    Morisawa, Gaku; Han-yama, Atsushi; Moda, Ichiro; Tamai, Atsushi; Iwabuchi, Masaki; Meshi, Tetsuo

    2000-01-01

    Interactions between the nuclear matrix and special regions of chromosomal DNA called matrix attachment regions (MARs) have been implicated in various nuclear functions. We have identified a novel protein from wheat, AT hook–containing MAR binding protein1 (AHM1), that binds preferentially to MARs. A multidomain protein, AHM1 has the special combination of a J domain–homologous region and a Zn finger–like motif (a J-Z array) and an AT hook. For MAR binding, the AT hook at the C terminus was essential, and an internal portion containing the Zn finger–like motif was additionally required in vivo. AHM1 was found in the nuclear matrix fraction and was localized in the nucleoplasm. AHM1 fused to green fluorescent protein had a speckled distribution pattern inside the nucleus. AHM1 is most likely a nuclear matrix component that functions between intranuclear framework and MARs. J-Z arrays can be found in a group of (hypothetical) proteins in plants, which may share some functions, presumably to recruit specific Hsp70 partners as co-chaperones. PMID:11041885

  1. Ligand size is a major determinant of specificity in periplasmic oxyanion-binding proteins: the 1.2 A resolution crystal structure of Azotobacter vinelandii ModA.

    Science.gov (United States)

    Lawson, D M; Williams, C E; Mitchenall, L A; Pau, R N

    1998-12-15

    . Periplasmic receptors constitute a diverse class of binding proteins that differ widely in size, sequence and ligand specificity. Nevertheless, almost all of them display a common beta/alpha folding motif and have similar tertiary structures consisting of two globular domains. The ligand is bound at the bottom of a deep cleft, which lies at the interface between these two domains. The oxyanion-binding proteins are notable in that they can discriminate between very similar ligands. . Azotobacter vinelandii is unusual in that it possesses two periplasmic molybdate-binding proteins. The crystal structure of one of these with bound ligand has been determined at 1.2 A resolution. It superficially resembles the structure of sulphate-binding protein (SBP) from Salmonella typhimurium and uses a similar constellation of hydrogen-bonding interactions to bind its ligand. However, the detailed interactions are distinct from those of SBP and the more closely related molybdate-binding protein of Escherichia coli. . Despite differences in the residues involved in binding, the volumes of the binding pockets in the A. vinelandii and E. coli molybdate-binding proteins are similar and are significantly larger than that of SBP. We conclude that the discrimination between molybdate and sulphate shown by these binding proteins is largely dependent upon small differences in the sizes of these two oxyanions.

  2. Structure of the caspase-recruitment domain from a zebrafish guanylate-binding protein

    International Nuclear Information System (INIS)

    Jin, Tengchuan; Huang, Mo; Smith, Patrick; Jiang, Jiansheng; Xiao, T. Sam

    2013-01-01

    The crystal structure of the first zebrafish caspase-recruitment domain at 1.47 Å resolution illustrates a six-helix bundle fold similar to that of the human NLRP1 CARD. The caspase-recruitment domain (CARD) mediates homotypic protein–protein interactions that assemble large oligomeric signaling complexes such as the inflammasomes during innate immune responses. Structural studies of the mammalian CARDs demonstrate that their six-helix bundle folds belong to the death-domain superfamily, whereas such studies have not been reported for other organisms. Here, the zebrafish interferon-induced guanylate-binding protein 1 (zIGBP1) was identified that contains an N-terminal GTPase domain and a helical domain typical of the mammalian guanylate-binding proteins, followed by a FIIND domain and a C-terminal CARD similar to the mammalian inflammasome proteins NLRP1 and CARD8. The structure of the zIGBP1 CARD as a fusion with maltose-binding protein was determined at 1.47 Å resolution. This revealed a six-helix bundle fold similar to the NLRP1 CARD structure with the bent α1 helix typical of all known CARD structures. The zIGBP1 CARD surface contains a positively charged patch near its α1 and α4 helices and a negatively charged patch near its α2, α3 and α5 helices, which may mediate its interaction with partner domains. Further studies using binding assays and other analyses will be required in order to address the physiological function(s) of this zebrafish protein

  3. Drosophila DNA-Binding Proteins in Polycomb Repression

    Directory of Open Access Journals (Sweden)

    Maksim Erokhin

    2018-01-01

    Full Text Available The formation of individual gene expression patterns in different cell types is required during differentiation and development of multicellular organisms. Polycomb group (PcG proteins are key epigenetic regulators responsible for gene repression, and dysregulation of their activities leads to developmental abnormalities and diseases. PcG proteins were first identified in Drosophila, which still remains the most convenient system for studying PcG-dependent repression. In the Drosophila genome, these proteins bind to DNA regions called Polycomb response elements (PREs. A major role in the recruitment of PcG proteins to PREs is played by DNA-binding factors, several of which have been characterized in detail. However, current knowledge is insufficient for comprehensively describing the mechanism of this process. In this review, we summarize and discuss the available data on the role of DNA-binding proteins in PcG recruitment to chromatin.

  4. Loss of sialic acid binding domain redirects protein σ1 to enhance M cell-directed vaccination.

    Directory of Open Access Journals (Sweden)

    Dagmara Zlotkowska

    Full Text Available Ovalbumin (OVA genetically fused to protein sigma 1 (pσ1 results in tolerance to both OVA and pσ1. Pσ1 binds in a multi-step fashion, involving both protein- and carbohydrate-based receptors. To assess the relative pσ1 components responsible for inducing tolerance and the importance of its sialic binding domain (SABD for immunization, modified OVA-pσ1, termed OVA-pσ1(short, was deleted of its SABD, but with its M cell targeting moiety intact, and was found to be immunostimulatory and enhanced CD4(+ and CD8(+ T cell proliferation. When used to nasally immunize mice given with and without cholera toxin (CT adjuvant, elevated SIgA and serum IgG responses were induced, and OVA-pσ1(s was more efficient for immunization than native OVA+CT. The immune antibodies (Abs were derived from elevated Ab-forming cells in the upper respiratory tissues and submaxillary glands and were supported by mixed Th cell responses. Thus, these studies show that pσ1(s can be fused to vaccines to effectively elicit improved SIgA responses.

  5. microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein

    OpenAIRE

    Pinder, Benjamin D; Smibert, Craig A

    2012-01-01

    Argonaute 1 directly interacts with the RNA binding protein Smaug in Drosophila, is thereby recruited to the Smaug target nanos mRNA and is required for Smaug-mediated translational repression of the nanos mRNA.

  6. Effect of cobratoxin binding on the normal mode vibration within acetylcholine binding protein.

    Science.gov (United States)

    Bertaccini, Edward J; Lindahl, Erik; Sixma, Titia; Trudell, James R

    2008-04-01

    Recent crystal structures of the acetylcholine binding protein (AChBP) have revealed surprisingly small structural alterations upon ligand binding. Here we investigate the extent to which ligand binding may affect receptor dynamics. AChBP is a homologue of the extracellular component of ligand-gated ion channels (LGICs). We have previously used an elastic network normal-mode analysis to propose a gating mechanism for the LGICs and to suggest the effects of various ligands on such motions. However, the difficulties with elastic network methods lie in their inability to account for the modest effects of a small ligand or mutation on ion channel motion. Here, we report the successful application of an elastic network normal mode technique to measure the effects of large ligand binding on receptor dynamics. The present calculations demonstrate a clear alteration in the native symmetric motions of a protein due to the presence of large protein cobratoxin ligands. In particular, normal-mode analysis revealed that cobratoxin binding to this protein significantly dampened the axially symmetric motion of the AChBP that may be associated with channel gating in the full nAChR. The results suggest that alterations in receptor dynamics could be a general feature of ligand binding.

  7. Binding free energy analysis of protein-protein docking model structures by evERdock.

    Science.gov (United States)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  8. Site-directed antibody immobilization using a protein A-gold binding domain fusion protein for enhanced SPR immunosensing.

    Science.gov (United States)

    de Juan-Franco, Elena; Caruz, Antonio; Pedrajas, J R; Lechuga, Laura M

    2013-04-07

    We have implemented a novel strategy for the oriented immobilization of antibodies onto a gold surface based on the use of a fusion protein, the protein A-gold binding domain (PAG). PAG consists of a gold binding peptide (GBP) coupled to the immunoglobulin-binding domains of staphylococcal protein A. This fusion protein provides an easy and fast oriented immobilization of antibodies preserving its native structure, while leaving the antigen binding sites (Fab) freely exposed. Using this immobilization strategy, we have demonstrated the performance of the immunosensing of the human Growth Hormone by SPR. A limit of detection of 90 ng mL(-1) was obtained with an inter-chip variability lower than 7%. The comparison of this method with other strategies for the direct immobilization of antibodies over gold surfaces has showed the enhanced sensitivity provided by the PAG approach.

  9. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays

    Science.gov (United States)

    Popescu, Sorina C.; Popescu, George V.; Bachan, Shawn; Zhang, Zimei; Seay, Montrell; Gerstein, Mark; Snyder, Michael; Dinesh-Kumar, S. P.

    2007-01-01

    Calmodulins (CaMs) are the most ubiquitous calcium sensors in eukaryotes. A number of CaM-binding proteins have been identified through classical methods, and many proteins have been predicted to bind CaMs based on their structural homology with known targets. However, multicellular organisms typically contain many CaM-like (CML) proteins, and a global identification of their targets and specificity of interaction is lacking. In an effort to develop a platform for large-scale analysis of proteins in plants we have developed a protein microarray and used it to study the global analysis of CaM/CML interactions. An Arabidopsis thaliana expression collection containing 1,133 ORFs was generated and used to produce proteins with an optimized medium-throughput plant-based expression system. Protein microarrays were prepared and screened with several CaMs/CMLs. A large number of previously known and novel CaM/CML targets were identified, including transcription factors, receptor and intracellular protein kinases, F-box proteins, RNA-binding proteins, and proteins of unknown function. Multiple CaM/CML proteins bound many binding partners, but the majority of targets were specific to one or a few CaMs/CMLs indicating that different CaM family members function through different targets. Based on our analyses, the emergent CaM/CML interactome is more extensive than previously predicted. Our results suggest that calcium functions through distinct CaM/CML proteins to regulate a wide range of targets and cellular activities. PMID:17360592

  10. The Role of Y-Box Binding Protein 1 in Kidney Injury: Friend or Foe?

    Science.gov (United States)

    Ke, Ben; Fan, Chuqiao; Tu, Weiping; Fang, Xiangdong

    2018-01-01

    Y-box-binding protein 1 (YB-1) is a multifunctional protein involved in various cellular processes via the transcriptional and translational regulation of target gene expression. YB-1 promotes acute or chronic kidney injury through multiple molecular pathways; however, accumulating evidence suggests that significantly increased YB-1 levels are of great importance in renoprotection. In addition, YB-1 may contribute to obesity-related kidney disease by promoting adipogenesis. Thus, the role of YB-1 in kidney injury is complicated, and no comprehensive review is currently available. In this review, we summarise recent progress in our understanding of the function of YB-1 in kidney injury and provide an overview of the dual role of YB-1 in kidney disease. Moreover, we propose that YB-1 is a potential therapeutic target to restrict kidney disease. © 2018 The Author(s). Published by S. Karger AG, Basel.

  11. Factors Affecting the Binding of a Recombinant Heavy Metal-Binding Domain (CXXC motif Protein to Heavy Metals

    Directory of Open Access Journals (Sweden)

    Kamala Boonyodying

    2012-06-01

    Full Text Available A number of heavy metal-binding proteins have been used to study bioremediation. CXXC motif, a metal binding domain containing Cys-X-X-Cys motif, has been identified in various organisms. These proteins are capable of binding various types of heavy metals. In this study, heavy metal binding domain (CXXC motif recombinant protein encoded from mcsA gene of S. aureus were cloned and overexpressed in Escherichia coli. The factors involved in the metal-binding activity were determined in order to analyze the potential of recombinant protein for bioremediation. A recombinant protein can be bound to Cd2+, Co2+, Cu2+ and Zn2+. The thermal stability of a recombinant protein was tested, and the results showed that the metal binding activity to Cu2+ and Zn2+ still exist after treating the protein at 85ºC for 30 min. The temperature and pH that affected the metal binding activity was tested and the results showed that recombinant protein was still bound to Cu2+ at 65ºC, whereas a pH of 3-7 did not affect the metal binding E. coli harboring a pRset with a heavy metal-binding domain CXXC motif increased the resistance of heavy metals against CuCl2 and CdCl2. This study shows that metal binding domain (CXXC motif recombinant protein can be effectively bound to various types of heavy metals and may be used as a potential tool for studying bioremediation.

  12. Predicting the binding patterns of hub proteins: a study using yeast protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Carson M Andorf

    Full Text Available Protein-protein interactions are critical to elucidating the role played by individual proteins in important biological pathways. Of particular interest are hub proteins that can interact with large numbers of partners and often play essential roles in cellular control. Depending on the number of binding sites, protein hubs can be classified at a structural level as singlish-interface hubs (SIH with one or two binding sites, or multiple-interface hubs (MIH with three or more binding sites. In terms of kinetics, hub proteins can be classified as date hubs (i.e., interact with different partners at different times or locations or party hubs (i.e., simultaneously interact with multiple partners.Our approach works in 3 phases: Phase I classifies if a protein is likely to bind with another protein. Phase II determines if a protein-binding (PB protein is a hub. Phase III classifies PB proteins as singlish-interface versus multiple-interface hubs and date versus party hubs. At each stage, we use sequence-based predictors trained using several standard machine learning techniques.Our method is able to predict whether a protein is a protein-binding protein with an accuracy of 94% and a correlation coefficient of 0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data; distinguish date hubs/party hubs with 69% accuracy and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC curve of 0.84. Because our method is based on sequence information alone, it can be used even in settings where reliable protein-protein interaction data or structures of protein-protein complexes are unavailable to obtain useful insights into the functional and evolutionary characteristics of proteins and their interactions.We provide a web server for our three-phase approach: http://hybsvm.gdcb.iastate.edu.

  13. ATP-Binding Cassette Proteins: Towards a Computational View of Mechanism

    Science.gov (United States)

    Liao, Jielou

    2004-03-01

    Many large machine proteins can generate mechanical force and undergo large-scale conformational changes (LSCC) to perform varying biological tasks in living cells by utilizing ATP. Important examples include ATP-binding cassette (ABC) transporters. They are membrane proteins that couple ATP binding and hydrolysis to the translocation of substrates across membranes [1]. To interpret how the mechanical force generated by ATP binding and hydrolysis is propagated, a coarse-grained ATP-dependent harmonic network model (HNM) [2,3] is applied to the ABC protein, BtuCD. This protein machine transports vitamin B12 across membranes. The analysis shows that subunits of the protein move against each other in a concerted manner. The lowest-frequency modes of the BtuCD protein are found to link the functionally critical domains, and are suggested to be responsible for large-scale ATP-coupled conformational changes. [1] K. P. Locher, A. T. Lee and D. C. Rees. Science 296, 1091-1098 (2002). [2] Atilgan, A. R., S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin, and I. Bahar. Biophys. J. 80, 505-515(2002); M. M Tirion, Phys. Rev. Lett. 77, 1905-1908 (1996). [3] J. -L. Liao and D. N. Beratan, 2003, to be published.

  14. SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G.

    Science.gov (United States)

    Bergmann, Simone; Eichhorn, Inga; Kohler, Thomas P; Hammerschmidt, Sven; Goldmann, Oliver; Rohde, Manfred; Fulde, Marcus

    2017-01-01

    The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm -positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis , respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis . The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis.

  15. Exploring the binding sites and binding mechanism for hydrotrope encapsulated griseofulvin drug on γ-tubulin protein.

    Directory of Open Access Journals (Sweden)

    Shubhadip Das

    Full Text Available The protein γ-tubulin plays an important role in centrosomal clustering and this makes it an attractive therapeutic target for treating cancers. Griseofulvin, an antifungal drug, has recently been used to inhibit proliferation of various types of cancer cells. It can also affect the microtubule dynamics by targeting the γ-tubulin protein. So far, the binding pockets of γ-tubulin protein are not properly identified and the exact mechanism by which the drug binds to it is an area of intense speculation and research. The aim of the present study is to investigate the binding mechanism and binding affinity of griseofulvin on γ-tubulin protein using classical molecular dynamics simulations. Since the drug griseofulvin is sparingly soluble in water, here we also present a promising approach for formulating and achieving delivery of hydrophobic griseofulvin drug via hydrotrope sodium cumene sulfonate (SCS cluster. We observe that the binding pockets of γ-tubulin protein are mainly formed by the H8, H9 helices and S7, S8, S14 strands and the hydrophobic interactions between the drug and γ-tubulin protein drive the binding process. The release of the drug griseofulvin from the SCS cluster is confirmed by the coordination number analysis. We also find hydrotrope-induced alteration of the binding sites of γ-tubulin protein and the weakening of the drug-protein interactions.

  16. Expression, purification, crystallization and structure of human adipocyte lipid-binding protein (aP2)

    International Nuclear Information System (INIS)

    Marr, Eric; Tardie, Mark; Carty, Maynard; Brown Phillips, Tracy; Wang, Ing-Kae; Soeller, Walt; Qiu, Xiayang; Karam, George

    2006-01-01

    The crystal structure of human adipocyte lipid-binding protein (aP2) with a bound palmitate is reported at 1.5 Å resolution. Human adipocyte lipid-binding protein (aP2) belongs to a family of intracellular lipid-binding proteins involved in the transport and storage of lipids. Here, the crystal structure of human aP2 with a bound palmitate is described at 1.5 Å resolution. Unlike the known crystal structure of murine aP2 in complex with palmitate, this structure shows that the fatty acid is in a folded conformation and that the loop containing Phe57 acts as a lid to regulate ligand binding by excluding solvent exposure to the central binding cavity

  17. Detection of secondary binding sites in proteins using fragment screening.

    Science.gov (United States)

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  18. IMP - INTEGRATED MISSION PROGRAM

    Science.gov (United States)

    Dauro, V. A.

    1994-01-01

    IMP is a simulation language that is used to model missions around the Earth, Moon, Mars, or other planets. It has been used to model missions for the Saturn Program, Apollo Program, Space Transportation System, Space Exploration Initiative, and Space Station Freedom. IMP allows a user to control the mission being simulated through a large event/maneuver menu. Up to three spacecraft may be used: a main, a target and an observer. The simulation may begin at liftoff, suborbital, or orbital. IMP incorporates a Fehlberg seventh order, thirteen evaluation Runge-Kutta integrator with error and step-size control to numerically integrate the equations of motion. The user may choose oblate or spherical gravity for the central body (Earth, Mars, Moon or other) while a spherical model is used for the gravity of an additional perturbing body. Sun gravity and pressure and Moon gravity effects are user-selectable. Earth/Mars atmospheric effects can be included. The optimum thrust guidance parameters are calculated automatically. Events/maneuvers may involve many velocity changes, and these velocity changes may be impulsive or of finite duration. Aerobraking to orbit is also an option. Other simulation options include line-of-sight communication guidelines, a choice of propulsion systems, a soft landing on the Earth or Mars, and rendezvous with a target vehicle. The input/output is in metric units, with the exception of thrust and weight which are in English units. Input is read from the user's input file to minimize real-time keyboard input. Output includes vehicle state, orbital and guide parameters, event and total velocity changes, and propellant usage. The main output is to the user defined print file, but during execution, part of the input/output is also displayed on the screen. An included FORTRAN program, TEKPLOT, will display plots on the VDT as well as generating a graphic file suitable for output on most laser printers. The code is double precision. IMP is written in

  19. Structural Basis for a Ribofuranosyl Binding Protein: Insights into the Furanose Specific Transport

    Energy Technology Data Exchange (ETDEWEB)

    Bagaria, A.; Swaminathan, S.; Kumaran, D.; Burley, S. K.

    2011-04-01

    The ATP-binding cassette transporters (ABC-transporters) are members of one of the largest protein superfamilies, with representatives in all extant phyla. These integral membrane proteins utilize the energy of ATP hydrolysis to carry out certain biological processes, including translocation of various substrates across membranes and non-transport related processes such as translation of RNA and DNA repair. Typically, such transport systems in bacteria consist of an ATP binding component, a transmembrane permease, and a periplasmic receptor or binding protein. Soluble proteins found in the periplasm of gram-negative bacteria serve as the primary receptors for transport of many compounds, such as sugars, small peptides, and some ions. Ligand binding activates these periplasmic components, permitting recognition by the membrane spanning domain, which supports for transport and, in some cases, chemotaxis. Transport and chemotaxis processes appear to be independent of one another, and a few mutants of bifunctional periplasmic components reveal the absence of one or the other function. Previously published high-resolution X-ray structures of various periplasmic ligand binding proteins include Arabinose binding protein (ABP), Allose binding protein (ALBP), Glucose-galactose binding protein (GBP) and Ribose binding protein (RBP). Each of these proteins consists of two structurally similar domains connected by a three-stranded hinge region, with ligand buried between the domains. Upon ligand binding and release, various conformational changes have been observed. For RBP, open (apo) and closed (ligand bound) conformations have been reported and so for MBP. The closed/active form of the protein interacts with the integral membrane component of the system in both transport and chemotaxis. Herein, we report 1.9{angstrom} resolution X-ray structure of the R{sub f}BP periplasmic component of an ABC-type sugar transport system from Hahella chejuensis (UniProt Id Q2S7D2) bound to

  20. Chemical shift assignments of the first and second RRMs of Nrd1, a fission yeast MAPK-target RNA binding protein.

    Science.gov (United States)

    Kobayashi, Ayaho; Kanaba, Teppei; Satoh, Ryosuke; Ito, Yutaka; Sugiura, Reiko; Mishima, Masaki

    2017-10-01

    Negative regulator differentiation 1 (Nrd1), a fission yeast RNA binding protein, modulates cytokinesis and sexual development and contributes to stress granule formation in response to environmental stresses. Nrd1 comprises four RRM domains and binds and stabilizes Cdc4 mRNA that encodes the myosin II light chain. Nrd1 binds the Cpc2 fission-yeast RACK1 homolog, and the interaction promotes Nrd1 localization to stress granules. Interestingly, Pmk1 mitogen-activated protein kinase phosphorylates Thr40 in the unstructured N-terminal region and Thr126 in the first RRM domain of Nrd1. Phosphorylation significantly reduces RNA-binding activity and likely modulates Nrd1 function. To reveal the relationship between the structure and function of Nrd1 and how phosphorylation affects structure, we used heteronuclear NMR techniques to investigate the three-dimensional structure of Nrd1. Here we report the 1 H, 13 C, and 15 N resonance assignments of RRM1-RRM2 (residues 108-284) comprising the first and second RRMs obtained using heteronuclear NMR techniques. Secondary structures derived from the chemical shifts are reported. These data should contribute to the understanding of the three-dimensional structure of the RRM1-RRM2 region of Nrd1 and the perturbation caused by phosphorylation.

  1. Purification, characterization and molecular cloning of TGP1, a novel G-DNA binding protein from Tetrahymena thermophila.

    OpenAIRE

    Lu, Q; Schierer, T; Kang, S G; Henderson, E

    1998-01-01

    G-DNA, a polymorphic family of four-stranded DNA structures, has been proposed to play roles in a variety of biological processes including telomere function, meiotic recombination and gene regulation. Here we report the purification and cloning of TGP1, a G-DNA specific binding protein from Tetrahymena thermophila. TGP1 was purified by three-column chromatographies, including a G-DNA affinity column. Two major proteins (approximately 80 and approximately 40 kDa) were present in the most high...

  2. SCOWLP classification: Structural comparison and analysis of protein binding regions

    Directory of Open Access Journals (Sweden)

    Anders Gerd

    2008-01-01

    Full Text Available Abstract Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions

  3. Trans-acting translational regulatory RNA binding proteins.

    Science.gov (United States)

    Harvey, Robert F; Smith, Tom S; Mulroney, Thomas; Queiroz, Rayner M L; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa; Lilley, Kathryn S; Willis, Anne E

    2018-05-01

    The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans-acting regulatory RNA-binding proteins (RBPs) are necessary to provide mRNA-specific translation, and these interact with 5' and 3' untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans-acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans-acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans-acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Translation Regulation Translation > Translation Mechanisms. © 2018 Medical Research Council and University of Cambridge. WIREs RNA published by Wiley Periodicals, Inc.

  4. Detection of P. aeruginosa harboring bla CTX-M-2, bla GES-1 and bla GES-5, bla IMP-1 and bla SPM-1 causing infections in Brazilian tertiary-care hospital

    Science.gov (United States)

    2012-01-01

    Background Nosocomial infections caused by Pseudomonas aeruginosa presenting resistance to beta-lactam drugs are one of the most challenging targets for antimicrobial therapy, leading to substantial increase in mortality rates in hospitals worldwide. In this context, P. aeruginosa harboring acquired mechanisms of resistance, such as production of metallo-beta-lactamase (MBLs) and extended-spectrum beta-lactamases (ESBLs) have the highest clinical impact. Hence, this study was designed to investigate the presence of genes codifying for MBLs and ESBLs among carbapenem resistant P. aeruginosa isolated in a Brazilian 720-bed teaching tertiary care hospital. Methods Fifty-six carbapenem-resistant P. aeruginosa strains were evaluated for the presence of MBL and ESBL genes. Strains presenting MBL and/or ESBL genes were submitted to pulsed-field gel electrophoresis for genetic similarity evaluation. Results Despite the carbapenem resistance, genes for MBLs (blaSPM-1 or blaIMP-1) were detected in only 26.7% of isolates. Genes encoding ESBLs were detected in 23.2% of isolates. The blaCTX-M-2 was the most prevalent ESBL gene (19.6%), followed by blaGES-1 and blaGES-5 detected in one isolate each. In all isolates presenting MBL phenotype by double-disc synergy test (DDST), the blaSPM-1 or blaIMP-1 genes were detected. In addition, blaIMP-1 was also detected in three isolates which did not display any MBL phenotype. These isolates also presented the blaCTX-M-2 gene. The co-existence of blaCTX-M-2 with blaIMP-1 is presently reported for the first time, as like as co-existence of blaGES-1 with blaIMP-1. Conclusions In this study MBLs production was not the major mechanism of resistance to carbapenems, suggesting the occurrence of multidrug efflux pumps, reduction in porin channels and production of other beta-lactamases. The detection of blaCTX-M-2,blaGES-1 and blaGES-5 reflects the recent emergence of ESBLs among antimicrobial resistant P. aeruginosa and the extraordinary

  5. Detection of P. aeruginosa harboring bla CTX-M-2, bla GES-1 and bla GES-5, bla IMP-1 and bla SPM-1 causing infections in Brazilian tertiary-care hospital

    Directory of Open Access Journals (Sweden)

    Polotto Milena

    2012-08-01

    Full Text Available Abstract Background Nosocomial infections caused by Pseudomonas aeruginosa presenting resistance to beta-lactam drugs are one of the most challenging targets for antimicrobial therapy, leading to substantial increase in mortality rates in hospitals worldwide. In this context, P. aeruginosa harboring acquired mechanisms of resistance, such as production of metallo-beta-lactamase (MBLs and extended-spectrum beta-lactamases (ESBLs have the highest clinical impact. Hence, this study was designed to investigate the presence of genes codifying for MBLs and ESBLs among carbapenem resistant P. aeruginosa isolated in a Brazilian 720-bed teaching tertiary care hospital. Methods Fifty-six carbapenem-resistant P. aeruginosa strains were evaluated for the presence of MBL and ESBL genes. Strains presenting MBL and/or ESBL genes were submitted to pulsed-field gel electrophoresis for genetic similarity evaluation. Results Despite the carbapenem resistance, genes for MBLs (blaSPM-1 or blaIMP-1 were detected in only 26.7% of isolates. Genes encoding ESBLs were detected in 23.2% of isolates. The blaCTX-M-2 was the most prevalent ESBL gene (19.6%, followed by blaGES-1 and blaGES-5 detected in one isolate each. In all isolates presenting MBL phenotype by double-disc synergy test (DDST, the blaSPM-1 or blaIMP-1 genes were detected. In addition, blaIMP-1 was also detected in three isolates which did not display any MBL phenotype. These isolates also presented the blaCTX-M-2 gene. The co-existence of blaCTX-M-2 with blaIMP-1 is presently reported for the first time, as like as co-existence of blaGES-1 with blaIMP-1. Conclusions In this study MBLs production was not the major mechanism of resistance to carbapenems, suggesting the occurrence of multidrug efflux pumps, reduction in porin channels and production of other beta-lactamases. The detection of blaCTX-M-2,blaGES-1 and blaGES-5 reflects the recent emergence of ESBLs among antimicrobial resistant P. aeruginosa and

  6. Specific DNA binding of a potential transcriptional regulator, inosine 5'-monophosphate dehydrogenase-related protein VII, to the promoter region of a methyl coenzyme m reductase I-encoding operon retrieved from Methanothermobacter thermautotrophicus strain DeltaH.

    Science.gov (United States)

    Shinzato, Naoya; Enoki, Miho; Sato, Hiroaki; Nakamura, Kohei; Matsui, Toru; Kamagata, Yoichi

    2008-10-01

    Two methyl coenzyme M reductases (MCRs) encoded by the mcr and mrt operons of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus DeltaH are expressed in response to H(2) availability. In the present study, cis elements and trans-acting factors responsible for the gene expression of MCRs were investigated by using electrophoretic mobility shift assay (EMSA) and affinity particle purification. A survey of their operator regions by EMSA with protein extracts from mrt-expressing cultures restricted them to 46- and 41-bp-long mcr and mrt upstream regions, respectively. Affinity particle purification of DNA-binding proteins conjugated with putative operator regions resulted in the retrieval of a protein attributed to IMP dehydrogenase-related protein VII (IMPDH VII). IMPDH VII is predicted to have a winged helix-turn-helix DNA-binding motif and two cystathionine beta-synthase domains, and it has been suspected to be an energy-sensing module. EMSA with oligonucleotide probes with unusual sequences showed that the binding site of IMPDH VII mostly overlaps the factor B-responsible element-TATA box of the mcr operon. The results presented here suggest that IMPDH VII encoded by MTH126 is a plausible candidate for the transcriptional regulator of the mcr operon in this methanogen.

  7. Predicting Flavin and Nicotinamide Adenine Dinucleotide-Binding Sites in Proteins Using the Fragment Transformation Method

    Directory of Open Access Journals (Sweden)

    Chih-Hao Lu

    2015-01-01

    Full Text Available We developed a computational method to identify NAD- and FAD-binding sites in proteins. First, we extracted from the Protein Data Bank structures of proteins that bind to at least one of these ligands. NAD-/FAD-binding residue templates were then constructed by identifying binding residues through the ligand-binding database BioLiP. The fragment transformation method was used to identify structures within query proteins that resembled the ligand-binding templates. By comparing residue types and their relative spatial positions, potential binding sites were identified and a ligand-binding potential for each residue was calculated. Setting the false positive rate at 5%, our method predicted NAD- and FAD-binding sites at true positive rates of 67.1% and 68.4%, respectively. Our method provides excellent results for identifying FAD- and NAD-binding sites in proteins, and the most important is that the requirement of conservation of residue types and local structures in the FAD- and NAD-binding sites can be verified.

  8. IMp: The customizable LEGO® Pinned Insect Manipulator

    Directory of Open Access Journals (Sweden)

    Steen Dupont

    2015-02-01

    Full Text Available We present a pinned insect manipulator (IMp constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble.

  9. IMp: The customizable LEGO® Pinned Insect Manipulator

    Science.gov (United States)

    Dupont, Steen; Price, Benjamin; Blagoderov, Vladimir

    2015-01-01

    Abstract We present a pinned insect manipulator (IMp) constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble. PMID:25685035

  10. Huntingtin-associated protein-1 (HAP1) regulates endocytosis and interacts with multiple trafficking-related proteins.

    Science.gov (United States)

    Mackenzie, Kimberly D; Lim, Yoon; Duffield, Michael D; Chataway, Timothy; Zhou, Xin-Fu; Keating, Damien J

    2017-07-01

    Huntingtin-associated protein 1 (HAP1) was initially identified as a binding partner of huntingtin, mutations in which underlie Huntington's disease. Subcellular localization and protein interaction data indicate that HAP1 may be important in vesicle trafficking, cell signalling and receptor internalization. In this study, a proteomics approach was used for the identification of novel HAP1-interacting partners to attempt to shed light on the physiological function of HAP1. Using affinity chromatography with HAP1-GST protein fragments bound to Sepharose columns, this study identified a number of trafficking-related proteins that bind to HAP1. Interestingly, many of the proteins that were identified by mass spectrometry have trafficking-related functions and include the clathrin light chain B and Sec23A, an ER to Golgi trafficking vesicle coat component. Using co-immunoprecipitation and GST-binding assays the association between HAP1 and clathrin light chain B has been validated in vitro. This study also finds that HAP1 co-localizes with clathrin light chain B. In line with a physiological function of the HAP1-clathrin interaction this study detected a dramatic reduction in vesicle retrieval and endocytosis in adrenal chromaffin cells. Furthermore, through examination of transferrin endocytosis in HAP1 -/- cortical neurons, this study has determined that HAP1 regulates neuronal endocytosis. In this study, the interaction between HAP1 and Sec23A was also validated through endogenous co-immunoprecipitation in rat brain homogenate. Through the identification of novel HAP1 binding partners, many of which have putative trafficking roles, this study provides us with new insights into the mechanisms underlying the important physiological function of HAP1 as an intracellular trafficking protein through its protein-protein interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Molecular cloning of the gene for the human placental GTP-binding protein Gp (G25K): Identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42

    International Nuclear Information System (INIS)

    Shinjo, K.; Koland, J.G.; Hart, M.J.; Narasimhan, V.; Cerione, R.A.; Johnson, D.I.; Evans, T.

    1990-01-01

    The authors have isolated cDNA clones from a human placental library that code for a low molecular weight GTP-binding protein originally designated G p (also called G25K). This identification is based on comparisons with the available peptide sequences for the purified human G p protein and the use of two highly specific anti-peptide antibodies. The predicted amino acid sequence of the protein is very similar to those of various members of the ras superfamily of low molecular weight GTP-binding proteins, including the N-, Ki-, and Ha-ras proteins (30-35% identical), the rho proteins and the rac proteins. The highest degree of sequence identity (80%) is found with the Saccharomyces cerevisiae cell division-cycle protein CDC42. The human placental gene, which they designate CDC42Hs, complements the cdc42-1 mutation in S. cerevisiae, which suggests that this GTP-binding protein is the human homolog of the yeast protein

  12. Pharmacophore screening of the protein data bank for specific binding site chemistry.

    Science.gov (United States)

    Campagna-Slater, Valérie; Arrowsmith, Andrew G; Zhao, Yong; Schapira, Matthieu

    2010-03-22

    A simple computational approach was developed to screen the Protein Data Bank (PDB) for putative pockets possessing a specific binding site chemistry and geometry. The method employs two commonly used 3D screening technologies, namely identification of cavities in protein structures and pharmacophore screening of chemical libraries. For each protein structure, a pocket finding algorithm is used to extract potential binding sites containing the correct types of residues, which are then stored in a large SDF-formatted virtual library; pharmacophore filters describing the desired binding site chemistry and geometry are then applied to screen this virtual library and identify pockets matching the specified structural chemistry. As an example, this approach was used to screen all human protein structures in the PDB and identify sites having chemistry similar to that of known methyl-lysine binding domains that recognize chromatin methylation marks. The selected genes include known readers of the histone code as well as novel binding pockets that may be involved in epigenetic signaling. Putative allosteric sites were identified on the structures of TP53BP1, L3MBTL3, CHEK1, KDM4A, and CREBBP.

  13. microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein.

    Science.gov (United States)

    Pinder, Benjamin D; Smibert, Craig A

    2013-01-01

    Argonaute (Ago) proteins are typically recruited to target messenger RNAs via an associated small RNA such as a microRNA (miRNA). Here, we describe a new mechanism of Ago recruitment through the Drosophila Smaug RNA-binding protein. We show that Smaug interacts with the Ago1 protein, and that Ago1 interacts with and is required for the translational repression of the Smaug target, nanos mRNA. The Ago1/nanos mRNA interaction does not require a miRNA, but it does require Smaug. Taken together, our data suggest a model whereby Smaug directly recruits Ago1 to nanos mRNA in a miRNA-independent manner, thereby repressing translation.

  14. Analysis of NFU-1 metallocofactor binding-site substitutions-impacts on iron-sulfur cluster coordination and protein structure and function.

    Science.gov (United States)

    Wesley, Nathaniel A; Wachnowsky, Christine; Fidai, Insiya; Cowan, J A

    2017-11-01

    Iron-sulfur (Fe/S) clusters are ancient prosthetic groups found in numerous metalloproteins and are conserved across all kingdoms of life due to their diverse, yet essential functional roles. Genetic mutations to a specific subset of mitochondrial Fe/S cluster delivery proteins are broadly categorized as disease-related under multiple mitochondrial dysfunction syndrome (MMDS), with symptoms indicative of a general failure of the metabolic system. Multiple mitochondrial dysfunction syndrome 1 (MMDS1) arises as a result of the missense mutation in NFU1, an Fe/S cluster scaffold protein, which substitutes a glycine near the Fe/S cluster-binding pocket to a cysteine (p.Gly208Cys). This substitution has been shown to promote protein dimerization such that cluster delivery to NFU1 is blocked, preventing downstream cluster trafficking. However, the possibility of this additional cysteine, located adjacent to the cluster-binding site, serving as an Fe/S cluster ligand has not yet been explored. To fully understand the consequences of this Gly208Cys replacement, complementary substitutions at the Fe/S cluster-binding pocket for native and Gly208Cys NFU1 were made, along with six other variants. Herein, we report the results of an investigation on the effect of these substitutions on both cluster coordination and NFU1 structure and function. The data suggest that the G208C substitution does not contribute to cluster binding. Rather, replacement of the glycine at position 208 changes the oligomerization state as a result of global structural alterations that result in the downstream effects manifest as MMDS1, but does not perturb the coordination chemistry of the Fe-S cluster. © 2017 Federation of European Biochemical Societies.

  15. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun; Peng, Chengbin; Li, Yue

    2016-01-01

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  16. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun

    2016-02-02

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  17. An overview of the prediction of protein DNA-binding sites.

    Science.gov (United States)

    Si, Jingna; Zhao, Rui; Wu, Rongling

    2015-03-06

    Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  18. Tetrodotoxin- and tributyltin-binding abilities of recombinant pufferfish saxitoxin and tetrodotoxin binding proteins of Takifugu rubripes.

    Science.gov (United States)

    Satone, Hina; Nonaka, Shohei; Lee, Jae Man; Shimasaki, Yohei; Kusakabe, Takahiro; Kawabata, Shun-Ichiro; Oshima, Yuji

    2017-01-01

    We investigated the ability of recombinant pufferfish saxitoxin and tetrodotoxin binding protein types 1 and 2 of Takifugu rubripes (rTrub.PSTBP1 and rTrub.PSTBP2) to bind to tetrodotoxin (TTX) and tributyltin. Both rTrub.PSTBPs bound to tributyltin in an ultrafiltration binding assay but lost this ability on heat denaturation. In contrast, only rTrub.PSTBP2 bound to TTX even heat denaturation. This result suggests that the amino acid sequence of PSTBP2 may be contributed for its affinity for TTX. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Cuz1/Ynl155w, a Zinc-dependent Ubiquitin-binding Protein, Protects Cells from Metalloid-induced Proteotoxicity*

    Science.gov (United States)

    Hanna, John; Waterman, David; Isasa, Marta; Elsasser, Suzanne; Shi, Yuan; Gygi, Steven; Finley, Daniel

    2014-01-01

    Protein misfolding is a universal threat to cells. The ubiquitin-proteasome system mediates a cellular stress response capable of eliminating misfolded proteins. Here we identify Cuz1/Ynl155w as a component of the ubiquitin system, capable of interacting with both the proteasome and Cdc48. Cuz1/Ynl155w is regulated by the transcription factor Rpn4, and is required for cells to survive exposure to the trivalent metalloids arsenic and antimony. A related protein, Yor052c, shows similar phenotypes, suggesting a multicomponent stress response pathway. Cuz1/Ynl155w functions as a zinc-dependent ubiquitin-binding protein. Thus, Cuz1/Ynl155w is proposed to protect cells from metalloid-induced proteotoxicity by delivering ubiquitinated substrates to Cdc48 and the proteasome for destruction. PMID:24297164

  20. Proteomic strategy for the analysis of the polychlorobiphenyl-degrading cyanobacterium Anabaena PD-1 exposed to Aroclor 1254.

    Directory of Open Access Journals (Sweden)

    Hangjun Zhang

    Full Text Available The cyanobacterium Anabaena PD-1, which was originally isolated from polychlorobiphenyl (PCB-contaminated paddy soils, has capabilities for dechlorinatin and for degrading the commercial PCB mixture Aroclor 1254. In this study, 25 upregulated proteins were identified using 2D electrophoresis (2-DE coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS. These proteins were involved in (i PCB degradation (i.e., 3-chlorobenzoate-3,4-dioxygenase; (ii transport processes [e.g., ATP-binding cassette (ABC transporter substrate-binding protein, amino acid ABC transporter substrate-binding protein, peptide ABC transporter substrate-binding protein, putrescine-binding protein, periplasmic solute-binding protein, branched-chain amino acid uptake periplasmic solute-binding protein, periplasmic phosphate-binding protein, phosphonate ABC transporter substrate-binding protein, and xylose ABC transporter substrate-binding protein]; (iii energetic metabolism (e.g., methanol/ethanol family pyrroloquinoline quinone (PQQ-dependent dehydrogenase, malate-CoA ligase subunit beta, enolase, ATP synthase β subunit, FOF1 ATP synthase subunit beta, ATP synthase α subunit, and IMP cyclohydrolase; (iv electron transport (cytochrome b6f complex Fe-S protein; (v general stress response (e.g., molecular chaperone DnaK, elongation factor G, and translation elongation factor thermostable; (vi carbon metabolism (methanol dehydrogenase and malate-CoA ligase subunit beta; and (vii nitrogen reductase (nitrous oxide reductase. The results of real-time polymerase chain reaction showed that the genes encoding for dioxygenase, ABC transporters, transmembrane proteins, electron transporter, and energetic metabolism proteins were significantly upregulated during PCB degradation. These genes upregulated by 1.26- to 8.98-fold. These findings reveal the resistance and adaptation of cyanobacterium to the presence of PCBs, shedding light on the

  1. Serial lung imaging with /sup 123/I-IMP in localized pulmonary lesions

    Energy Technology Data Exchange (ETDEWEB)

    Nakajo, Masayuki; Shimada, Jurio; Shimozono, Michiko; Uchiyama, Noriaki; Hiraki, Yoshiyuki; Shinohara, Shinji.

    1988-05-01

    /sup 123/I-IMP (N-isopropyl-p-(/sup 123/I)-iodoamphetamine) dynamic (1 frame/min for 25 mins), 30-min and 4-hr static lung imaging was performed in a total of 65 patients with roentgenographic evidence of localized pulmonary lesion (12 with pneumonia, one with lung abscess, 5 with pulmonary tuberculosis, 3 with pneumoconiosis, one with lung fluke disease and 43 with various histological types of primary lung cancer). The findings in 65 of 70 (95 %) lesions in the initial 1 or 2-min dynamic /sup 123/I-IMP images were analogous to those obtained by /sup 99m/Tc-MAA lung perfusion imaging and decreased activity was observed in 68 of 70 (97 %) lesions, suggesting that the initial images mainly reflected the relative distribution of pulmonary arterial blood flow. However, /sup 123/I-IMP accumulated differently according to the pathological conditions afterwards. Decrease activity from /sup 123/I-IMP was contineously observed in a cavity of the lung abscess, 2 of 2 tuberculomas, 3 of 7 large nodules of pneumoconiosis and all of the 42 cancerous lesions which were possible to be evaluated. Gradual increased in activity relative to that of ''normal lung fields'' was observed in all 14 lesions of pneumonia; pneumonic lesions of the lung abscess, tuberculosis and lung fluke disease; 4 of 7 large nodules of pneumoconiosis; all of 8 atelectatic lesions and 32 of 44 areas surrounding cancers (most of them had roentgenographic evidence of infiltrating shadows). Thus /sup 123/I-IMP accumulated increasingly in pneumonic and atelectatic lesions, while it appeared not to accumulate in such lesions replacing lung tissues as cavity, caseous and fibrous lesions and primary lung cancers. /sup 123/I-IMP can be used as a new lung imaging agent to provide diagnostic informations on the property of pulmonary lesions.

  2. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules.

    Science.gov (United States)

    Zhu, Jinwei; Shang, Yuan; Xia, Caihao; Wang, Wenning; Wen, Wenyu; Zhang, Mingjie

    2011-11-25

    Membrane-associated guanylate kinases (MAGUKs) are a large family of scaffold proteins that play essential roles in tissue developments, cell-cell communications, cell polarity control, and cellular signal transductions. Despite extensive studies over the past two decades, the functions of the signature guanylate kinase domain (GK) of MAGUKs are poorly understood. Here we show that the GK domain of DLG1/SAP97 binds to asymmetric cell division regulatory protein LGN in a phosphorylation-dependent manner. The structure of the DLG1 SH3-GK tandem in complex with a phospho-LGN peptide reveals that the GMP-binding site of GK has evolved into a specific pSer/pThr-binding pocket. Residues both N- and C-terminal to the pSer are also critical for the specific binding of the phospho-LGN peptide to GK. We further demonstrate that the previously reported GK domain-mediated interactions of DLGs with other targets, such as GKAP/DLGAP1/SAPAP1 and SPAR, are also phosphorylation dependent. Finally, we provide evidence that other MAGUK GKs also function as phospho-peptide-binding modules. The discovery of the phosphorylation-dependent MAGUK GK/target interactions indicates that MAGUK scaffold-mediated signalling complex organizations are dynamically regulated.

  3. Titration calorimetry of anesthetic-protein interaction: negative enthalpy of binding and anesthetic potency.

    Science.gov (United States)

    Ueda, I; Yamanaka, M

    1997-04-01

    Anesthetic potency increases at lower temperatures. In contrast, the transfer enthalpy of volatile anesthetics from water to macromolecules is usually positive. The transfer decreases at lower temperature. It was proposed that a few selective proteins bind volatile anesthetics with negative delta H, and these proteins are involved in signal transduction. There has been no report on direct estimation of binding delta H of anesthetics to proteins. This study used isothermal titration calorimetry to analyze chloroform binding to bovine serum albumin. The calorimetrically measured delta H cal was -10.37 kJ.mol-1. Thus the negative delta H of anesthetic binding is not limited to signal transduction proteins. The binding was saturable following Fermi-Dirac statistics and is characterized by the Langmuir adsorption isotherms, which is interfacial. The high-affinity association constant, K, was 2150 +/- 132 M-1 (KD = 0.47 mM) with the maximum binding number, Bmax = 3.7 +/- 0.2. The low-affinity K was 189 +/- 3.8 M-1 (KD = 5.29 mM), with a Bmax of 13.2 +/- 0.3. Anesthetic potency is a function of the activity of anesthetic molecules, not the concentration. Because the sign of delta H determines the temperature dependence of distribution of anesthetic molecules, it is irrelevant to the temperature dependence of anesthetic potency.

  4. Urinary liver-type fatty acid-binding protein predicts progression to nephropathy in type 1 diabetic patients

    DEFF Research Database (Denmark)

    Nielsen, Stine Elkjaer; Sugaya, Takeshi; Hovind, Peter

    2010-01-01

    Urinary liver-type fatty acid-binding protein (u-LFABP) is a marker of tubulointerstitial inflammation and has been shown to be increased in patients with type 1 diabetes and is further increased in patients who progress to micro- and macroalbuminuria. Our aim was to evaluate u-LFABP as a predictor...... of progression to micro- and macroalbuminuria in type 1 diabetes....

  5. Dominant Alcohol-Protein Interaction via Hydration-Enabled Enthalpy-Driven Binding Mechanism

    Science.gov (United States)

    Chong, Yuan; Kleinhammes, Alfred; Tang, Pei; Xu, Yan; Wu, Yue

    2015-01-01

    Water plays an important role in weak associations of small drug molecules with proteins. Intense focus has been on binding-induced structural changes in the water network surrounding protein binding sites, especially their contributions to binding thermodynamics. However, water is also tightly coupled to protein conformations and dynamics, and so far little is known about the influence of water-protein interactions on ligand binding. Alcohols are a type of low-affinity drugs, and it remains unclear how water affects alcohol-protein interactions. Here, we present alcohol adsorption isotherms under controlled protein hydration using in-situ NMR detection. As functions of hydration level, Gibbs free energy, enthalpy, and entropy of binding were determined from the temperature dependence of isotherms. Two types of alcohol binding were found. The dominant type is low-affinity nonspecific binding, which is strongly dependent on temperature and the level of hydration. At low hydration levels, this nonspecific binding only occurs above a threshold of alcohol vapor pressure. An increased hydration level reduces this threshold, with it finally disappearing at a hydration level of h~0.2 (g water/g protein), gradually shifting alcohol binding from an entropy-driven to an enthalpy-driven process. Water at charged and polar groups on the protein surface was found to be particularly important in enabling this binding. Although further increase in hydration has smaller effects on the changes of binding enthalpy and entropy, it results in significant negative change in Gibbs free energy due to unmatched enthalpy-entropy compensation. These results show the crucial role of water-protein interplay in alcohol binding. PMID:25856773

  6. Synergistic inhibition of the intrinsic factor X activation by protein S and C4b-binding protein

    NARCIS (Netherlands)

    Koppelman, S.J.

    1995-01-01

    The complement protein C4b-binding protein plays an important role in the regulation of the protein C anticoagulant pathway. C4b-binding protein can bind to protein S, thereby inhibiting the cofactor activity of protein S for activated protein C. In this report, we describe a new role for

  7. Parkinson Disease Protein DJ-1 Binds Metals and Protects against Metal-induced Cytotoxicity*

    Science.gov (United States)

    Björkblom, Benny; Adilbayeva, Altynai; Maple-Grødem, Jodi; Piston, Dominik; Ökvist, Mats; Xu, Xiang Ming; Brede, Cato; Larsen, Jan Petter; Møller, Simon Geir

    2013-01-01

    The progressive loss of motor control due to reduction of dopamine-producing neurons in the substantia nigra pars compacta and decreased striatal dopamine levels are the classically described features of Parkinson disease (PD). Neuronal damage also progresses to other regions of the brain, and additional non-motor dysfunctions are common. Accumulation of environmental toxins, such as pesticides and metals, are suggested risk factors for the development of typical late onset PD, although genetic factors seem to be substantial in early onset cases. Mutations of DJ-1 are known to cause a form of recessive early onset Parkinson disease, highlighting an important functional role for DJ-1 in early disease prevention. This study identifies human DJ-1 as a metal-binding protein able to evidently bind copper as well as toxic mercury ions in vitro. The study further characterizes the cytoprotective function of DJ-1 and PD-mutated variants of DJ-1 with respect to induced metal cytotoxicity. The results show that expression of DJ-1 enhances the cells' protective mechanisms against induced metal toxicity and that this protection is lost for DJ-1 PD mutations A104T and D149A. The study also shows that oxidation site-mutated DJ-1 C106A retains its ability to protect cells. We also show that concomitant addition of dopamine exposure sensitizes cells to metal-induced cytotoxicity. We also confirm that redox-active dopamine adducts enhance metal-catalyzed oxidation of intracellular proteins in vivo by use of live cell imaging of redox-sensitive S3roGFP. The study indicates that even a small genetic alteration can sensitize cells to metal-induced cell death, a finding that may revive the interest in exogenous factors in the etiology of PD. PMID:23792957

  8. Inhibition of platelet [3H]- imipramine binding by human plasma protein fractions

    International Nuclear Information System (INIS)

    Strijewski, A.; Chudzik, J.; Tang, S.W.

    1988-01-01

    Inhibition of high-affinity [ 3 H]-imipramine binding to platelet membranes by human plasma fractions and isolated plasma proteins was investigated. Several plasma proteins were found to contribute to the observed apparent inhibition and this contribution was assessed in terms of inhibitor units. Alpha 1 acid glycoprotein, high density and low density lipoprotein, IgG and α 1 -antitrypsin were identified as effective non-specific inhibitors. Alpha-1-acid glycoprotein was confirmed to be the most potent plasma protein inhibitor. Cohn fractions were evaluated for the presence of the postulated endocoid of [ 3 H]-imipramine binding site

  9. Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis.

    Science.gov (United States)

    Lung, Shiu-Cheung; Liao, Pan; Yeung, Edward C; Hsiao, An-Shan; Xue, Yan; Chye, Mee-Len

    2017-07-01

    Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis ( Arabidopsis thaliana ) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1 Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 ( GL2 ), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1 , smo1-1 , and ACBP1 +/- smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1 +/- smo1-1 Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling. © 2017 American Society of Plant Biologists. All Rights Reserved.

  10. The group B streptococcal alpha C protein binds alpha1beta1-integrin through a novel KTD motif that promotes internalization of GBS within human epithelial cells.

    Science.gov (United States)

    Bolduc, Gilles R; Madoff, Lawrence C

    2007-12-01

    Group B Streptococcus (GBS) is the leading cause of bacterial pneumonia, sepsis and meningitis among neonates and a cause of morbidity among pregnant women and immunocompromised adults. GBS epithelial cell invasion is associated with expression of alpha C protein (ACP). Loss of ACP expression results in a decrease in GBS internalization and translocation across human cervical epithelial cells (ME180). Soluble ACP and its 170 amino acid N-terminal region (NtACP), but not the repeat protein RR', bind to ME180 cells and reduce internalization of wild-type GBS to levels obtained with an ACP-deficient isogenic mutant. In the current study, ACP colocalized with alpha(1)beta(1)-integrin, resulting in integrin clustering as determined by laser scanning confocal microscopy. NtACP contains two structural domains, D1 and D2. D1 is structurally similar to fibronectin's integrin-binding region (FnIII10). D1's (KT)D146 motif is structurally similar to the FnIII10 (RG)D1495 integrin-binding motif, suggesting that ACP binds alpha(1)beta(1)-integrin via the D1 domain. The (KT)D146A mutation within soluble NtACP reduced its ability to bind alpha(1)beta(1)-integrin and inhibit GBS internalization within ME180 cells. Thus ACP binding to human epithelial cell integrins appears to contribute to GBS internalization within epithelial cells.

  11. Urinary liver-type fatty acid-binding protein predicts progression to nephropathy in type 1 diabetic patients

    DEFF Research Database (Denmark)

    Nielsen, Stine Elkjaer; Sugaya, Takeshi; Hovind, Peter

    2010-01-01

    Urinary liver-type fatty acid-binding protein (u-LFABP) is a marker of tubulointerstitial inflammation and has been shown to be increased in patients with type 1 diabetes and is further increased in patients who progress to micro- and macroalbuminuria. Our aim was to evaluate u-LFABP as a predictor...

  12. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    Science.gov (United States)

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  13. Binding of rare earths to serum proteins and DNA

    International Nuclear Information System (INIS)

    Rosoff, B.; Spencer, H.

    1979-01-01

    In order to investigate further the physiological behavior of rare earths and rare earth chelates, studies of the binding of 46 Sc, 91 Y, and 140 La to serum proteins and to nucleic acids were performed using the methods of equilibrium dialysis and ultrafiltration. The binding of lanthanum and yttrium as the chlorides to α-globulin increased as the free rare earth concentration increased. When scandium and lanthanum were chelated in nitrilotriacetate (NTA) the binding to α-globulin was considerably less and there was no binding to albumin. The binding of 46 Sc chelated to ethylenediamine di(O-hydroxyphenylacetate) (EDDHA) was five times greater than of 46 Sc chloride. When the free scandium concentration was increased, the moles bound per mole of protein increased proportionally and the binding was reversible. Scandium was 100% filterable from a mixture of human serum and from the scandium chelates with high stability constants scandium diethylenetriaminepentaacetate (ScDTPA), scandium ethylenediaminetetraacetate (ScEDTA) and scandium cyclohexane trans-1,2-diaminetetraacetate (ScCDTA) respectively. In contrast, only 2% of the scandium was filterable when scandium nitrilotriacetate, a scandium chelate of low stability constant, was used. (Auth.)

  14. Structural basis for the binding of the neutralizing antibody, 7D11, to the poxvirus L1 protein

    International Nuclear Information System (INIS)

    Su, Hua-Poo; Golden, Joseph W.; Gittis, Apostolos G.; Hooper, Jay W.; Garboczi, David N.

    2007-01-01

    Medical countermeasures to prevent or treat smallpox are needed due to the potential use of poxviruses as biological weapons. Safety concerns with the currently available smallpox vaccine indicate a need for research on alternative poxvirus vaccine strategies. Molecular vaccines involving the use of proteins and/or genes and recombinant antibodies are among the strategies under current investigation. The poxvirus L1 protein, encoded by the L1R open reading frame, is the target of neutralizing antibodies and has been successfully used as a component of both protein subunit and DNA vaccines. L1-specific monoclonal antibodies (e.g., mouse monoclonal antibody mAb-7D11, mAb-10F5) with potent neutralizing activity bind L1 in a conformation-specific manner. This suggests that proper folding of the L1 protein used in molecular vaccines will affect the production of neutralizing antibodies and protection. Here, we co-crystallized the Fab fragment of mAb-7D11 with the L1 protein. The crystal structure of the complex between Fab-7D11 and L1 reveals the basis for the conformation-specific binding as recognition of a discontinuous epitope containing two loops that are held together by a disulfide bond. The structure of this important conformational epitope of L1 will contribute to the development of molecular poxvirus vaccines and also provides a novel target for anti-poxvirus drugs. In addition, the sequence and structure of Fab-7D11 will contribute to the development of L1-targeted immunotherapeutics

  15. Involvement of C-Terminal Histidines in Soybean PM1 Protein Oligomerization and Cu2+ Binding.

    Science.gov (United States)

    Liu, Guobao; Liu, Ke; Gao, Yang; Zheng, Yizhi

    2017-06-01

    Late embryogenesis abundant (LEA) proteins are widely distributed among plant species, where they contribute to abiotic stress tolerance. LEA proteins can be classified into seven groups according to conserved sequence motifs. The PM1 protein from soybean, which belongs to the Pfam LEA_1 group, has been shown previously to be at least partially natively unfolded, to bind metal ions and potentially to stabilize proteins and membranes. Here, we investigated the role of the PM1 C-terminal domain and in particular the multiple histidine residues in this half of the protein. We constructed recombinant plasmids expressing full-length PM1 and two truncated forms, PM1-N and PM1-C, which represent the N- and C-terminal halves of the protein, respectively. Immunoblotting and cross-linking experiments showed that full-length PM1 forms oligomers and high molecular weight (HMW) complexes in vitro and in vivo, while PM1-C, but not PM1-N, also formed oligomers and HMW complexes in vitro. When the histidine residues in PM1 and PM1-C were chemically modified, oligomerization was abolished, suggesting that histidines play a key role in this process. Furthermore, we demonstrated that high Cu2+ concentrations promote oligomerization and induce PM1 and PM1-C to form HMW complexes. Therefore, we speculate that PM1 proteins not only maintain ion homeostasis in the cytoplasm, but also potentially stabilize and protect other proteins during abiotic stress by forming a large, oligomeric molecular shield around biological targets. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Selective regulation of YB-1 mRNA translation by the mTOR signaling pathway is not mediated by 4E-binding protein.

    Science.gov (United States)

    Lyabin, D N; Ovchinnikov, L P

    2016-03-02

    The Y-box binding protein 1 (YB-1) is a key regulator of gene expression at the level of both translation and transcription. The mode of its action on cellular events depends on its subcellular distribution and the amount in the cell. So far, the regulatory mechanisms of YB-1 synthesis have not been adequately studied. Our previous finding was that selective inhibition of YB-1 mRNA translation was caused by suppression of activity of the mTOR signaling pathway. It was suggested that this event may be mediated by phosphorylation of the 4E-binding protein (4E-BP). Here, we report that 4E-BP alone can only slightly inhibit YB-1 synthesis both in the cell and in vitro, although it essentially decreases binding of the 4F-group translation initiation factors to mRNA. With inhibited mTOR kinase, the level of mRNA binding to the eIF4F-group factors was decreased, while that to 4E-BP1 was increased, as was observed for both mTOR kinase-sensitive mRNAs and those showing low sensitivity. This suggests that selective inhibition of translation of YB-1 mRNA, and probably some other mRNAs as well, by mTOR kinase inhibitors is not mediated by the action of the 4E-binding protein upon functions of the 4F-group translation initiation factors.

  17. Fatty acid-binding protein in liver and small intestine of the preruminant calf

    International Nuclear Information System (INIS)

    Jenkins, K.J.

    1986-01-01

    Cytosol obtained from differential centrifugation of homogenates from liver and small intestine mucosa was incubated with 1-[ 14 C] oleic acid or 1-[ 14 C] palmitic acid and filtered through Sephadex G-75. Elution profiles for both tissues showed radioactivity in two main peaks, the first corresponding to binding of fatty acid to high molecular weight proteins and the second to a protein fraction with a molecular weight of approximately 12,000 daltons. The low molecular weight fraction had high fatty acid-binding activity, which was greater for oleic than palmitic acid. The findings demonstrate the presence of fatty acid-binding protein in liver and intestinal mucosa of the preruminant calf

  18. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E.; Korgsdam, A.-M.; Jørgensen, H.F.

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...... was validated by the identification of known prokaryotic and eukaryotic DNA-binding proteins, and its use provided evidence that poly(ADP-ribose) polymerase exhibits DNA sequence-specific binding to DNA....

  19. Screening and identification of T helper 1 and linear immunodominant antibody-binding epitopes in spike 1 domain and membrane protein of feline infectious peritonitis virus.

    Science.gov (United States)

    Takano, Tomomi; Morioka, Hiroyuki; Gomi, Kohji; Tomizawa, Keisuke; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2014-04-01

    Feline infectious peritonitis virus (FIP virus: FIPV) causes a fatal disease in wild and domestic cats. The development of an FIP-preventive vaccine requires an antigen that does not induce antibody-dependent enhancement, and T helper (Th)1 activity plays an important role in protect against FIPV infection. In the present study, we identified synthetic peptides including Th1 and a linear immunodominant antibody-binding epitope in the S1 domain and M protein of FIPV. We also identified peptides that strongly induce Th1 activity from those derived from the structural proteins (S, M, and N proteins) of FIPV based on this and previous studies (Satoh et al. [19]). No Th1 epitope-containing peptide was identified in the peptides derived from the S1 domain of type I FIPV. In contrast, 7 Th1 epitope-containing peptides were identified in the S1 domain of type II FIPV, and no linear immunodominant antibody-binding epitope was contained in any of these peptides. Eleven Th1 epitope-containing peptides common to each serotype were identified in the M protein-derived peptides, and 2 peptides (M-11 and M-12) contained the linear immunodominant antibody-binding epitope. Of the peptides derived from the S, M, and N proteins of FIPV, those that induced significantly stronger Th1 activity than that of the FIPV antigen were rescreened, and 4 peptides were identified. When 3 of these peptides (M-9, I-S2-15, and II-S1-24) were selected and administered with CpG-ODNs to SPF cats, M-9 and II-S1-24 induced Th1 activity. Our results may provide important information for the development of a peptide-based vaccine against FIPV infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Contribution of cellular retinol-binding protein type 1 to retinol metabolism during mouse development.

    Science.gov (United States)

    Matt, Nicolas; Schmidt, Carsten K; Dupé, Valérie; Dennefeld, Christine; Nau, Heinz; Chambon, Pierre; Mark, Manuel; Ghyselinck, Norbert B

    2005-05-01

    Within cells, retinol (ROL) is bound to cytoplasmic proteins (cellular retinol-binding proteins [CRBPs]), whose proposed function is to protect it from unspecific enzymes through channeling to retinoid-metabolizing pathways. We show that, during development, ROL and retinyl ester levels are decreased in CRBP type 1 (CRBP1) -deficient embryos and fetuses by 50% and 80%, respectively. The steady state level of retinoic acid (RA) is also decreased but to a lesser extent. However, CRBP1-null fetuses do not exhibit the abnormalities characteristic of a vitamin A-deficiency syndrome. Neither CRBP1 deficiency alters the expression patterns of RA-responding genes during development, nor does CRBP1 availability modify the expression of an RA-dependent gene in primary embryonic fibroblasts treated with ROL. Therefore, CRBP1 is required in prenatal life to maintain normal amounts of ROL and to ensure its efficient storage but seems of secondary importance for RA synthesis, at least under conditions of maternal vitamin A sufficiency. Copyright 2005 Wiley-Liss, Inc.

  1. Expression of ErbB3-binding protein-1 (EBP1 during primordial follicle formation: role of estradiol-17ß.

    Directory of Open Access Journals (Sweden)

    Anindit Mukherjee

    Full Text Available The formation of primordial follicles involves the interaction between the oocytes and surrounding somatic cells, which differentiate into granulosa cells. Estradiol-17ß (E promotes primordial follicle formation in vivo and in vitro; however, the underlying mechanisms are poorly understood. The expression of an ERBB3-binding protein 1 (EBP1 is downregulated in 8-day old hamster ovaries concurrent with the increase in serum estradiol levels and the formation of primordial follicles. The objectives of the present study were to determine the spatio-temporal expression and putative E regulation of EBP1 in ovarian cells during perinatal development with respect to primordial follicle formation. Hamster EBP1 nucleic acid and amino acid sequences were more than 93% and 98% similar, respectively, to those of mouse and human, and contained nucleolar localization signal, RNA-binding domain and several phosphorylation sites. EBP1 protein was present in somatic cells and oocytes from E15, and declined in oocytes by P1 and in somatic cells by P5. Thereafter, EBP1 expression increased through P7 with a transient decline on P8 primarily in interstitial cells. EBP1 mRNA levels mirrored protein expression pattern. E treatment on P1 and P4 upregulated EBP1 expression by P8 whereas E treatment on P4 downregulated it by 72 h suggesting a compensatory upregulation due to E pretreatment. Treatment with an FSH-antiserum, which suppressed primordial follicle formation, prevented the decline in EBP1 levels, and the effect was reversed by E treatment. Therefore, the results provide the first evidence that EBP1 may play an important role in mediating the effect of E in the differentiation of somatic cells into granulosa cells during primordial follicle formation.

  2. Direct interaction between EgFABP1, a fatty acid binding protein from Echinococcus granulosus, and phospholipid membranes.

    Directory of Open Access Journals (Sweden)

    Jorge L Porfido

    Full Text Available Growth and maintenance of hydatid cysts produced by Echinococcus granulosus have a high requirement for host lipids for biosynthetic processes, membrane building and possibly cellular and developmental signalling. This requires a high degree of lipid trafficking facilitated by lipid transporter proteins. Members of the fatty acid binding protein (FABP family have been identified in Echinococcus granulosus, one of which, EgFABP1 is expressed at the tegumental level in the protoscoleces, but it has also been described in both hydatid cyst fluid and secretions of protoscoleces. In spite of a considerable amount of structural and biophysical information on the FABPs in general, their specific functions remain mysterious.We have investigated the way in which EgFABP1 may interact with membranes using a variety of fluorescence-based techniques and artificial small unilamellar vesicles. We first found that bacterial recombinant EgFABP1 is loaded with fatty acids from the synthesising bacteria, and that fatty acid binding increases its resistance to proteinases, possibly due to subtle conformational changes induced on EgFABP1. By manipulating the composition of lipid vesicles and the ionic environment, we found that EgFABP1 interacts with membranes in a direct contact, collisional, manner to exchange ligand, involving both ionic and hydrophobic interactions. Moreover, we observed that the protein can compete with cytochrome c for association with the surface of small unilamellar vesicles (SUVs.This work constitutes a first approach to the understanding of protein-membrane interactions of EgFABP1. The results suggest that this protein may be actively involved in the exchange and transport of fatty acids between different membranes and cellular compartments within the parasite.

  3. DNABP: Identification of DNA-Binding Proteins Based on Feature Selection Using a Random Forest and Predicting Binding Residues.

    Science.gov (United States)

    Ma, Xin; Guo, Jing; Sun, Xiao

    2016-01-01

    DNA-binding proteins are fundamentally important in cellular processes. Several computational-based methods have been developed to improve the prediction of DNA-binding proteins in previous years. However, insufficient work has been done on the prediction of DNA-binding proteins from protein sequence information. In this paper, a novel predictor, DNABP (DNA-binding proteins), was designed to predict DNA-binding proteins using the random forest (RF) classifier with a hybrid feature. The hybrid feature contains two types of novel sequence features, which reflect information about the conservation of physicochemical properties of the amino acids, and the binding propensity of DNA-binding residues and non-binding propensities of non-binding residues. The comparisons with each feature demonstrated that these two novel features contributed most to the improvement in predictive ability. Furthermore, to improve the prediction performance of the DNABP model, feature selection using the minimum redundancy maximum relevance (mRMR) method combined with incremental feature selection (IFS) was carried out during the model construction. The results showed that the DNABP model could achieve 86.90% accuracy, 83.76% sensitivity, 90.03% specificity and a Matthews correlation coefficient of 0.727. High prediction accuracy and performance comparisons with previous research suggested that DNABP could be a useful approach to identify DNA-binding proteins from sequence information. The DNABP web server system is freely available at http://www.cbi.seu.edu.cn/DNABP/.

  4. Ligand Binding Domain Protein in Tetracycline-Inducible Expression

    African Journals Online (AJOL)

    Purpose: To investigate tetracycline-inducible expression system for producing clinically usable, highquality liver X receptor ligand-binding domain recombinant protein. Methods: In this study, we have expressed and purified the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a tetracycline ...

  5. A peptide affinity column for the identification of integrin alpha IIb-binding proteins.

    Science.gov (United States)

    Daxecker, Heide; Raab, Markus; Bernard, Elise; Devocelle, Marc; Treumann, Achim; Moran, Niamh

    2008-03-01

    To understand the regulation of integrin alpha(IIb)beta(3), a critical platelet adhesion molecule, we have developed a peptide affinity chromatography method using the known integrin regulatory motif, LAMWKVGFFKR. Using standard Fmoc chemistry, this peptide was synthesized onto a Toyopearl AF-Amino-650 M resin on a 6-aminohexanoic acid (Ahx) linker. Peptide density was controlled by acetylation of 83% of the Ahx amino groups. Four recombinant human proteins (CIB1, PP1, ICln and RN181), previously identified as binding to this integrin regulatory motif, were specifically retained by the column containing the integrin peptide but not by a column presenting an irrelevant peptide. Hemoglobin, creatine kinase, bovine serum albumin, fibrinogen and alpha-tubulin failed to bind under the chosen conditions. Immunodetection methods confirmed the binding of endogenous platelet proteins, including CIB1, PP1, ICln RN181, AUP-1 and beta3-integrin, from a detergent-free platelet lysate. Thus, we describe a reproducible method that facilitates the reliable extraction of specific integrin-binding proteins from complex biological matrices. This methodology may enable the sensitive and specific identification of proteins that interact with linear, membrane-proximal peptide motifs such as the integrin regulatory motif LAMWKVGFFKR.

  6. Integrated maintenance program (IMP)

    International Nuclear Information System (INIS)

    Zemdegs, R.T.; Chout, Q.B.

    1998-01-01

    Approaches to the maintenance of nuclear power plants have undergone significant change in the past several decades. The traditional breakdown approach has been displaced by preventive (calendar-based) maintenance and more recently, by condition-based maintenance (CBM). This is largely driven by the fact that traditional maintenance programs, derived primarily from equipment vendor recommendations, are generally unsuccessful in controlling maintenance costs or equipment failures. Many advances in the maintenance field have taken place since the maintenance plans for Ontario Hydro's nuclear plants were initially established. Ontario Hydro nuclear plant operating costs can be substantially reduced and Incapability Factor improved with the application of modern maintenance processes and tools. Pickering is designated as the lead station for IMP. Of immediate concern is the fact that Pickering Nuclear Division has been experiencing a significant backlog of Operating Preventive Maintenance Callups. This backlog, over 2000, is unacceptable to both station management and the nuclear regulator, the Atomic Energy Control Board. In addition there are over 500 callups in various stages of revision (in hyperspace) without an adequate control nor reporting system to manage their completion. There is also considerable confusion about the classification of l icensing c allups, e.g. callups which are mandatory as a result of legal requirements. Furthermore the ineffectiveness of the Preventive Maintenance (PM) has been the subject of peer audits and Atomic Energy Control Board (AECB) findings over the past several years. The current preventive maintenance ratio PM2 /(PM+CM3) at Pickering ND is less than 20%, due to the current high load of equipment breakdown. This past summer, an Independent Integrated Performance Assessment (IIPA) review at Ontario Hydro confirmed these concerns. Over the past several years, Ontario Hydro nuclear staff have evaluated several programs to improve

  7. An Overview of the Prediction of Protein DNA-Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-03-01

    Full Text Available Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  8. STRUCTURAL FEATURES OF PLANT CHITINASES AND CHITIN-BINDING PROTEINS

    NARCIS (Netherlands)

    BEINTEMA, JJ

    1994-01-01

    Structural features of plant chitinases and chitin-binding proteins are discussed. Many of these proteins consist of multiple domains,of which the chitin-binding hevein domain is a predominant one. X-ray and NMR structures of representatives of the major classes of these proteins are available now,

  9. Binding proteins of somatomedins and their functions

    International Nuclear Information System (INIS)

    Kostelecka, Z.; Blahovec, J.

    1998-01-01

    In this paper the functions of binding proteins are discussed. One variable that provides insulin-like growth factors (IGFs) control at the extracellular level is the presence of high-affinity, soluble insulin-like growth factor proteins (IGFBPs). IGFBP-1 inhibits IGF effect on human osteosarcoma cells. Increased concentration of IGFBP-3 inhibits the proliferation of breast cancer cell line MCF 7 either directly or by competition for IGF receptors. Maybe IGFBPs work as anti-mitogens and IGFs are potential promotors of cancer growth

  10. A tool for calculating binding-site residues on proteins from PDB structures

    Directory of Open Access Journals (Sweden)

    Hu Jing

    2009-08-01

    Full Text Available Abstract Background In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB that consists of the protein of interest and its interacting partner(s and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. Results In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. Conclusion The developed tool is very useful for the research on protein binding site analysis and prediction.

  11. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.

    Science.gov (United States)

    Ogawara, Hiroshi

    2016-09-01

    PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.

  12. Determinants of RNA binding and translational repression by the Bicaudal-C regulatory protein.

    Science.gov (United States)

    Zhang, Yan; Park, Sookhee; Blaser, Susanne; Sheets, Michael D

    2014-03-14

    Bicaudal-C (Bic-C) RNA binding proteins function as important translational repressors in multiple biological contexts within metazoans. However, their RNA binding sites are unknown. We recently demonstrated that Bic-C functions in spatially regulated translational repression of the xCR1 mRNA during Xenopus development. This repression contributes to normal development by confining the xCR1 protein, a regulator of key signaling pathways, to specific cells of the embryo. In this report, we combined biochemical approaches with in vivo mRNA reporter assays to define the minimal Bic-C target site within the xCR1 mRNA. This 32-nucleotide Bic-C target site is predicted to fold into a stem-loop secondary structure. Mutational analyses provided evidence that this stem-loop structure is important for Bic-C binding. The Bic-C target site was sufficient for Bic-C mediated repression in vivo. Thus, we describe the first RNA binding site for a Bic-C protein. This identification provides an important step toward understanding the mechanisms by which evolutionarily conserved Bic-C proteins control cellular function in metazoans.

  13. Functional interaction of the DNA-binding transcription factor Sp1 through its DNA-binding domain with the histone chaperone TAF-I.

    Science.gov (United States)

    Suzuki, Toru; Muto, Shinsuke; Miyamoto, Saku; Aizawa, Kenichi; Horikoshi, Masami; Nagai, Ryozo

    2003-08-01

    Transcription involves molecular interactions between general and regulatory transcription factors with further regulation by protein-protein interactions (e.g. transcriptional cofactors). Here we describe functional interaction between DNA-binding transcription factor and histone chaperone. Affinity purification of factors interacting with the DNA-binding domain of the transcription factor Sp1 showed Sp1 to interact with the histone chaperone TAF-I, both alpha and beta isoforms. This interaction was specific as Sp1 did not interact with another histone chaperone CIA nor did other tested DNA-binding regulatory factors (MyoD, NFkappaB, p53) interact with TAF-I. Interaction of Sp1 and TAF-I occurs both in vitro and in vivo. Interaction with TAF-I results in inhibition of DNA-binding, and also likely as a result of such, inhibition of promoter activation by Sp1. Collectively, we describe interaction between DNA-binding transcription factor and histone chaperone which results in negative regulation of the former. This novel regulatory interaction advances our understanding of the mechanisms of eukaryotic transcription through DNA-binding regulatory transcription factors by protein-protein interactions, and also shows the DNA-binding domain to mediate important regulatory interactions.

  14. Targeted disruption of py235ebp-1: Invasion of erythrocytes by Plasmodium yoelii using an alternative py235 erythrocyte binding protein

    KAUST Repository

    Ogun, Solabomi A.

    2011-02-17

    Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene) that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2) is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this functional

  15. Targeted disruption of py235ebp-1: Invasion of erythrocytes by Plasmodium yoelii using an alternative py235 erythrocyte binding protein

    KAUST Repository

    Ogun, Solabomi A.; Tewari, Rita; Otto, Thomas D.; Howell, Steven A.; Knuepfer, Ellen; Cunningham, Deirdre A.; Xu, Zhengyao; Pain, Arnab; Holder, Anthony A.

    2011-01-01

    Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene) that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2) is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this functional

  16. Targeted disruption of py235ebp-1: invasion of erythrocytes by Plasmodium yoelii using an alternative Py235 erythrocyte binding protein.

    Directory of Open Access Journals (Sweden)

    Solabomi A Ogun

    2011-02-01

    Full Text Available Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2 is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this

  17. An MHC-I cytoplasmic domain/HIV-1 Nef fusion protein binds directly to the mu subunit of the AP-1 endosomal coat complex.

    Directory of Open Access Journals (Sweden)

    Rajendra Kumar Singh

    2009-12-01

    Full Text Available The down-regulation of the major histocompatibility complex class I (MHC-I from the surface of infected cells by the Nef proteins of primate immunodeficiency viruses likely contributes to pathogenesis by providing evasion of cell-mediated immunity. HIV-1 Nef-induced down-regulation involves endosomal trafficking and a cooperative interaction between the cytoplasmic domain (CD of MHC-I, Nef, and the clathrin adaptor protein complex-1 (AP-1. The CD of MHC-I contains a key tyrosine within the sequence YSQA that is required for down-regulation by Nef, but this sequence does not conform to the canonical AP-binding tyrosine-based motif Yxxphi, which mediates binding to the medium (micro subunits of AP complexes. We previously proposed that Nef allows the MHC-I CD to bind the mu subunit of AP-1 (micro1 as if it contained a Yxxphimotif.Here, we show that a direct interaction between the MHC-I CD/Nef and micro1 plays a primary role in the down-regulation of MHC-I: GST pulldown assays using recombinant proteins indicated that most of the MHC-I CD and Nef residues that are required for the down-regulation in human cells contribute to direct interactions with a truncated version of micro1. Specifically, the tyrosine residue of the YSQA sequence in the MHC-I CD as well as Nef residues E62-65 and P78 each contributed to the interaction between MHC-I CD/Nef and micro1 in vitro, whereas Nef M20 had little to no role. Conversely, residues F172/D174 and V392/L395 of the binding pocket on micro1 for Yxxphi motifs were required for a robust interaction.These data indicate that the MHC-I cytoplasmic domain, Nef, and the C-terminal two thirds of the mu subunit of AP-1 are sufficient to constitute a biologically relevant interaction. The data also reveal an unexpected role for a hydrophobic pocket in micro1 for interaction with MHC-I CD/Nef.

  18. Datin, a yeast poly(dA:dT)-binding protein, behaves as an activator of the wild-type ILV1 promoter and interacts synergistically with Reb1p

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Remacle, J E; Kielland-Brandt, Morten

    1998-01-01

    A cis-acting element required for GCN4-independent basal-level transcription of ILV1 was previously identified in our laboratories as a binding site for the REB1 protein (Reb1p). Further deletion analysis of the ILV1 promoter region identified a second element also required for GCN4-independent...... basal-level ILV1 expression. This second element is an A.T-rich tract (26 As out of 32 nucleotides) situated 15 bp downstream of the Reb1p-binding site. Deletion of both the Reblp site and the poly(dA:dT) element totally eliminates basal activity of the ILV1 promoter. We show that the two elements act...... synergistically to control ILV1 expression and that the synergistic effect is distance dependent. We demonstrate that (i) datin (Dat1p), the only known poly (dA:dT)-binding protein in yeast, specifically binds to the ILV1 poly(dA:dT) element in vitro; (ii) Dat1p functions as a trans-activating factor in the ILV1...

  19. The calcium-binding protein ALG-2 regulates protein secretion and trafficking via interactions with MISSL and MAP1B proteins.

    Science.gov (United States)

    Takahara, Terunao; Inoue, Kuniko; Arai, Yumika; Kuwata, Keiko; Shibata, Hideki; Maki, Masatoshi

    2017-10-13

    Mobilization of intracellular calcium is essential for a wide range of cellular processes, including signal transduction, apoptosis, and vesicular trafficking. Several lines of evidence have suggested that apoptosis-linked gene 2 (ALG-2, also known as PDCD6 ), a calcium-binding protein, acts as a calcium sensor linking calcium levels with efficient vesicular trafficking, especially at the endoplasmic reticulum (ER)-to-Golgi transport step. However, how ALG-2 regulates these processes remains largely unclear. Here, we report that M APK1- i nteracting and s pindle- s tabilizing (MISS)- l ike (MISSL), a previously uncharacterized protein, interacts with ALG-2 in a calcium-dependent manner. Live-cell imaging revealed that upon a rise in intracellular calcium levels, GFP-tagged MISSL (GFP-MISSL) dynamically relocalizes in a punctate pattern and colocalizes with ALG-2. MISSL knockdown caused disorganization of the components of the ER exit site, the ER-Golgi intermediate compartment, and Golgi. Importantly, knockdown of either MISSL or ALG-2 attenuated the secretion of se creted a lkaline p hosphatase (SEAP), a model secreted cargo protein, with similar reductions in secretion by single- and double-protein knockdowns, suggesting that MISSL and ALG-2 act in the same pathway to regulate the secretion process. Furthermore, ALG-2 or MISSL knockdown delayed ER-to-Golgi transport of procollagen type I. We also found that ALG-2 and MISSL interact with microtubule-associated protein 1B (MAP1B) and that MAP1B knockdown reverts the reduced secretion of SEAP caused by MISSL or ALG-2 depletion. These results suggest that a change in the intracellular calcium level plays a role in regulation of the secretory pathway via interaction of ALG-2 with MISSL and MAP1B. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Plant RNA binding proteins for control of RNA virus infection

    Directory of Open Access Journals (Sweden)

    Sung Un eHuh

    2013-12-01

    Full Text Available Plant RNA viruses have effective strategies to infect host plants through either direct or indirect interactions with various host proteins, thus suppressing the host immune system. When plant RNA viruses enter host cells exposed RNAs of viruses are recognized by the host immune system through processes such as siRNA-dependent silencing. Interestingly, some host RNA binding proteins have been involved in the inhibition of RNA virus replication, movement, and translation through RNA-specific binding. Host plants intensively use RNA binding proteins for defense against viral infections in nature. In this mini review, we will summarize the function of some host RNA binding proteins which act in a sequence-specific binding manner to the infecting virus RNA. It is important to understand how plants effectively suppresses RNA virus infections via RNA binding proteins, and this defense system can be potentially developed as a synthetic virus defense strategy for use in crop engineering.

  1. Regulation and function of the CD3¿ DxxxLL motif: a binding site for adaptor protein-1 and adaptor protein-2 in vitro

    DEFF Research Database (Denmark)

    Dietrich, J; Kastrup, J; Nielsen, B L

    1997-01-01

    /CD3gamma chimeras; and in vitro by binding CD3gamma peptides to clathrin-coated vesicle adaptor proteins (APs). We find that the CD3gamma D127xxxLL131/132 sequence represents one united motif for binding of both AP-1 and AP-2, and that this motif functions as an active sorting motif in monomeric CD4...... and for AP binding in vitro. Furthermore, we provide evidence indicating that phosphorylation of CD3gamma S126 in the context of the complete TCR induces a conformational change that exposes the DxxxLL sequence for AP binding. Exposure of the DxxxLL motif causes an increase in the TCR internalization rate...

  2. Fragile X mental retardation protein: A paradigm for translational control by RNA-binding proteins.

    Science.gov (United States)

    Chen, Eileen; Joseph, Simpson

    2015-07-01

    Translational control is a common mechanism used to regulate gene expression and occur in bacteria to mammals. Typically in translational control, an RNA-binding protein binds to a unique sequence in the mRNA to regulate protein synthesis by the ribosomes. Alternatively, a protein may bind to or modify a translation factor to globally regulate protein synthesis by the cell. Here, we review translational control by the fragile X mental retardation protein (FMRP), the absence of which causes the neurological disease, fragile X syndrome (FXS). Copyright © 2015 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  3. HIF-1-dependent regulation of lifespan in Caenorhabditis elegans by the acyl-CoA-binding protein MAA-1

    DEFF Research Database (Denmark)

    Shamalnasab, Mehrnaz; Dhaoui, Manel; Thondamal, Manjunatha

    2017-01-01

    In yeast, the broadly conserved acyl-CoA-binding protein (ACBP) is a negative regulator of stress resistance and longevity. Here, we have turned to the nematode C. elegans as a model organism in which to determine whether ACBPs play similar roles in multicellular organisms. We systematically...... inactivated each of the seven C. elegans ACBP paralogs and found that one of them, maa-1 (which encodes membrane-associated ACBP 1), is indeed involved in the regulation of longevity. In fact, loss of maa-1 promotes lifespan extension and resistance to different types of stress. Through genetic and gene...... of the proteome. Our work extends to C. elegans the role of ACBP in aging, implicates HIF-1 in the increase of lifespan of maa-1-deficient worms, and sheds light on the anti-aging function of HIF-1. Given that both ACBP and HIF-1 are highly conserved, our results suggest the possible involvement of these proteins...

  4. Structure and functional analysis of the RNA- and viral phosphoprotein-binding domain of respiratory syncytial virus M2-1 protein.

    Directory of Open Access Journals (Sweden)

    Marie-Lise Blondot

    Full Text Available Respiratory syncytial virus (RSV protein M2-1 functions as an essential transcriptional cofactor of the viral RNA-dependent RNA polymerase (RdRp complex by increasing polymerase processivity. M2-1 is a modular RNA binding protein that also interacts with the viral phosphoprotein P, another component of the RdRp complex. These binding properties are related to the core region of M2-1 encompassing residues S58 to K177. Here we report the NMR structure of the RSV M2-1(58-177 core domain, which is structurally homologous to the C-terminal domain of Ebola virus VP30, a transcription co-factor sharing functional similarity with M2-1. The partial overlap of RNA and P interaction surfaces on M2-1(58-177, as determined by NMR, rationalizes the previously observed competitive behavior of RNA versus P. Using site-directed mutagenesis, we identified eight residues located on these surfaces that are critical for an efficient transcription activity of the RdRp complex. Single mutations of these residues disrupted specifically either P or RNA binding to M2-1 in vitro. M2-1 recruitment to cytoplasmic inclusion bodies, which are regarded as sites of viral RNA synthesis, was impaired by mutations affecting only binding to P, but not to RNA, suggesting that M2-1 is associated to the holonucleocapsid by interacting with P. These results reveal that RNA and P binding to M2-1 can be uncoupled and that both are critical for the transcriptional antitermination function of M2-1.

  5. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin

    Science.gov (United States)

    Lu, C.; Fedoroff, N.

    2000-01-01

    Both physiological and genetic evidence indicate interconnections among plant responses to different hormones. We describe a pleiotropic recessive Arabidopsis transposon insertion mutation, designated hyponastic leaves (hyl1), that alters the plant's responses to several hormones. The mutant is characterized by shorter stature, delayed flowering, leaf hyponasty, reduced fertility, decreased rate of root growth, and an altered root gravitropic response. It also exhibits less sensitivity to auxin and cytokinin and hypersensitivity to abscisic acid (ABA). The auxin transport inhibitor 2,3,5-triiodobenzoic acid normalizes the mutant phenotype somewhat, whereas another auxin transport inhibitor, N-(1-naph-thyl)phthalamic acid, exacerbates the phenotype. The gene, designated HYL1, encodes a 419-amino acid protein that contains two double-stranded RNA (dsRNA) binding motifs, a nuclear localization motif, and a C-terminal repeat structure suggestive of a protein-protein interaction domain. We present evidence that the HYL1 gene is ABA-regulated and encodes a nuclear dsRNA binding protein. We hypothesize that the HYL1 protein is a regulatory protein functioning at the transcriptional or post-transcriptional level.

  6. The 18-kilodalton Chlamydia trachomatis histone H1-like protein (Hc1) contains a potential N-terminal dimerization site and a C-terminal nucleic acid-binding domain

    DEFF Research Database (Denmark)

    Pedersen, Lotte Bang; Birkelund, S; Holm, A

    1996-01-01

    The Chlamydia trachomatis histone H1-like protein (Hc1) is a DNA-binding protein specific for the metabolically inactive chlamydial developmental form, the elementary body. Hc1 induces DNA condensation in Escherichia coli and is a strong inhibitor of transcription and translation. These effects may......-hydroxysuccinimide ester), purified recombinant Hc1 was found to form dimers. The dimerization site was located in the N-terminal part of Hc1 (Hc1(2-57)). Moreover, circular dichroism measurements indicated an overall alpha-helical structure of this region. By using limited proteolysis, Southwestern blotting, and gel...... retardation assays, Hc1(53-125) was shown to contain a domain capable of binding both DNA and RNA. Under the same conditions, Hc1(2-57) had no nucleic acid-binding activity. Electron microscopy of Hc1-DNA and Hc1(53-125)-DNA complexes revealed differences suggesting that the N-terminal part of Hc1 may affect...

  7. Role of a guanine nucleotide-binding protein in α1-adrenergic receptor-mediated Ca2+ mobilization in DDT1 MF-2 cells

    International Nuclear Information System (INIS)

    Cornett, L.E.; Norris, J.S.

    1987-01-01

    In this study the mechanisms involved in α 1 -adrenergic receptor-mediated Ca 2+ mobilization at the level of the plasma membrane were investigated. Stimulation of 45 Ca 2+ efflux from saponin-permeabilized DDT 1 MF-2 cells was observed with the addition of either the α 1 -adrenergic agonist phenylephrine and guanosine-5'-triphosphate or the nonhydrolyzable guanine nucleotide guanylyl-imidodiphosphate. In the presence of [ 32 P] NAD, pertussis toxin was found to catalyze ADP-ribosylation of a M/sub r/ = 40,500 (n = 8) peptide in membranes prepared from DDT 1 , MF-2 cells, possibly the α-subunit of N/sub i/. However, stimulation of unidirectional 45 Ca 2+ efflux by phenylephrine was not affected by previous treatment of cells with 100 ng/ml pertussis toxin. These data suggest that the putative guanine nucleotide-binding protein which couples the α 1 -adrenergic receptor to Ca 2+ mobilization in DDT 1 MF-2 cells is not a pertussis toxin substrate and may possibly be an additional member of guanine nucleotide binding protein family

  8. The effects of GH and hormone replacement therapy on serum concentrations of mannan-binding lectin, surfactant protein D and vitamin D binding protein in Turner syndrome

    DEFF Research Database (Denmark)

    Gravholt, Claus Højbjerg; Leth-Larsen, Rikke; Lauridsen, Anna Lis

    2004-01-01

    function. In the present study we examined whether GH or hormone replacement therapy (HRT) in Turner syndrome (TS) influence the serum concentrations of MBL and two other proteins partaking in the innate immune defence, surfactant protein D (SP-D) and vitamin D binding protein (DBP). DESIGN: Study 1...

  9. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il Hwan; Pham, Van; Jablonka, Willy; Goodman, Walter G.; Ribeiro, José M. C.; Andersen, John F.

    2017-07-27

    Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes, Culex, and Anopheles mosquito species. Using isothermal titration calorimetry, we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary “long” D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.

  10. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone.

    Science.gov (United States)

    Kim, Il Hwan; Pham, Van; Jablonka, Willy; Goodman, Walter G; Ribeiro, José M C; Andersen, John F

    2017-09-15

    Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes , Culex , and Anopheles mosquito species. Using isothermal titration calorimetry, we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary "long" D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10 R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.

  11. Conformational Dynamics of the Receptor Protein Galactose/Glucose Binding Protein

    Science.gov (United States)

    Messina, Troy; Talaga, David

    2006-03-01

    We have performed time-correlated single photon counting (TCSPC) anisotropy and Stokes Shift measurements on bulk solutions of galactose/glucose binding protein. Site-directed mutagenesis was used to provide a single cysteine amino acid near the sugar-binding center of the protein (glutamine 26 to cysteine -- Q26C). The cysteine was covalently labeled with the environmentally-sensitive fluorophore acrylodan, and a long-lived ruthenium complex was covalently attached to the N-terminus to provide a fluorescent reference. The TCSPC data were analyzed using global convolute-and-compare fitting routines over the entire glucose titration and temperature range to provide minimal reduced chi-squared values and the highest time resolution possible. Using a standard ligand-binding model, the resulting distributions show that the closed (ligand-bound) conformation exists even at zero glucose concentration. At 20^oC, the relative abundance of this conformation is as high as 40%. The temperature dependence of this conformational study will be discussed and related to the ligand-binding free energy surface.

  12. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    Science.gov (United States)

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  13. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    Directory of Open Access Journals (Sweden)

    Mihaly Varadi

    Full Text Available Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  14. Medida Interpessoal de Psicopatia (IM-P: estudo preliminar no contexto brasileiro Interpersonal Measure of Psychopathy (IM-P: preliminary study in the Brazilian context

    Directory of Open Access Journals (Sweden)

    Tárcia Rita Davoglio

    2011-01-01

    Full Text Available INTRODUÇÃO: A observação direta do comportamento interpessoal é um recurso importante na descrição e diagnóstico da personalidade psicopática. A Medida Interpessoal de Psicopatia (Interpersonal Measure of Psychopathy, IM-P é um instrumento psicométrico composto por 21 itens, desenvolvido para ser utilizado em associação com outras escalas de avaliação da psicopatia. Foca-se, especificamente, nos comportamentos interpessoais e aspectos não verbais evidentes na interação do entrevistador com indivíduos que apresentam características psicopáticas. OBJETIVO: Descrever resultados preliminares sobre a investigação de aspectos interpessoais da psicopatia mediante a utilização da IM-P, incluindo as etapas de tradução/adaptação e avaliação de confiabilidade interavaliadores da IM-P, em uma amostra de adolescentes brasileiros. MÉTODO: Trata-se de estudo transversal, descritivo e correlacional realizado com 20 adolescentes masculinos cumprindo medida socioeducativa com privação de liberdade na Região Metropolitana de Porto Alegre (RS. Após os procedimentos de tradução da escala, treinamento dos pesquisadores e teste piloto por meio de uma entrevista semiestruturada, a IM-P foi pontuada por três juízes independentes. RESULTADOS: Os resultados estatísticos, obtidos através do coeficiente de concordância de Kendall, revelaram grau de concordância interavaliadores elevado e satisfatório para os escores totais da IM-P (W = 0,84; p INTRODUCTION: The direct observation of interpersonal behaviors is an important resource in the description and diagnosis of the psychopathic personality. The Interpersonal Measure of Psychopathy (IM-P is a psychometric instrument comprised of 21 items, designed to be applied in association with other instruments that also evaluate psychopaths. It focuses specifically on interpersonal and non-verbal behaviors that become evident during the interaction between the interviewer and individuals

  15. IMp: The customizable LEGO(®) Pinned Insect Manipulator.

    Science.gov (United States)

    Dupont, Steen; Price, Benjamin; Blagoderov, Vladimir

    2015-01-01

    We present a pinned insect manipulator (IMp) constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble.

  16. Integrating protein structures and precomputed genealogies in the Magnum database: Examples with cellular retinoid binding proteins

    Directory of Open Access Journals (Sweden)

    Bradley Michael E

    2006-02-01

    Full Text Available Abstract Background When accurate models for the divergent evolution of protein sequences are integrated with complementary biological information, such as folded protein structures, analyses of the combined data often lead to new hypotheses about molecular physiology. This represents an excellent example of how bioinformatics can be used to guide experimental research. However, progress in this direction has been slowed by the lack of a publicly available resource suitable for general use. Results The precomputed Magnum database offers a solution to this problem for ca. 1,800 full-length protein families with at least one crystal structure. The Magnum deliverables include 1 multiple sequence alignments, 2 mapping of alignment sites to crystal structure sites, 3 phylogenetic trees, 4 inferred ancestral sequences at internal tree nodes, and 5 amino acid replacements along tree branches. Comprehensive evaluations revealed that the automated procedures used to construct Magnum produced accurate models of how proteins divergently evolve, or genealogies, and correctly integrated these with the structural data. To demonstrate Magnum's capabilities, we asked for amino acid replacements requiring three nucleotide substitutions, located at internal protein structure sites, and occurring on short phylogenetic tree branches. In the cellular retinoid binding protein family a site that potentially modulates ligand binding affinity was discovered. Recruitment of cellular retinol binding protein to function as a lens crystallin in the diurnal gecko afforded another opportunity to showcase the predictive value of a browsable database containing branch replacement patterns integrated with protein structures. Conclusion We integrated two areas of protein science, evolution and structure, on a large scale and created a precomputed database, known as Magnum, which is the first freely available resource of its kind. Magnum provides evolutionary and structural

  17. Contribution of Human Oral Cells to Astringency by Binding Salivary Protein/Tannin Complexes.

    Science.gov (United States)

    Soares, Susana; Ferrer-Galego, Raúl; Brandão, Elsa; Silva, Mafalda; Mateus, Nuno; Freitas, Victor de

    2016-10-10

    The most widely accepted mechanism to explain astringency is the interaction and precipitation of salivary proteins by food tannins, in particular proline-rich proteins. However, other mechanisms have been arising to explain astringency, such as binding of tannins to oral cells. In this work, an experimental method was adapted to study the possible contribution of both salivary proteins and oral cells to astringency induced by grape seed procyanidin fractions. Overall, in the absence of salivary proteins, the extent of procyanidin complexation with oral cells increased with increasing procyanidin degree of polymerization (mDP). Procyanidin fractions rich in monomers were the ones with the lowest ability to bind to oral cells. In the presence of salivary proteins and for procyanidins with mDP 2 the highest concentrations (1.5 and 2.0 mM) resulted in an increased binding of procyanidins to oral cells. This was even more evident for fractions III and IV at 1.0 mM and upper concentrations. Regarding the salivary proteins affected, it was possible to observe a decrease of P-B peptide and aPRP proteins for fractions II and III. This decrease is greater as the procyanidins' mDP increases. In fact, for fraction IV an almost total depletion of all salivary proteins was observed. This decrease is due to the formation of insoluble salivary protein/procyanidin complexes. Altogether, these data suggest that some procyanidins are able to bind to oral cells and that the salivary proteins interact with procyanidins forming salivary protein/procyanidin complexes that are also able to link to oral cells. The procyanidins that remain unbound to oral cells are able to bind to salivary proteins forming a large network of salivary protein/procyanidin complexes. Overall, the results presented herein provide one more step to understand food oral astringency onset.

  18. STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) Interacts with Protein Kinase SnRK11[OPEN

    Science.gov (United States)

    Nietzsche, Madlen; Guerra, Tiziana; Fernie, Alisdair R.

    2018-01-01

    Sucrose nonfermenting related kinase1 (SnRK1) is a conserved energy sensor kinase that regulates cellular adaptation to energy deficit in plants. Activation of SnRK1 leads to the down-regulation of ATP-consuming biosynthetic processes and the stimulation of energy-generating catabolic reactions by transcriptional reprogramming and posttranslational modifications. Although considerable progress has been made during the last years in understanding the SnRK1 signaling pathway, many of its components remain unidentified. Here, we show that the catalytic α-subunits KIN10 and KIN11 of the Arabidopsis (Arabidopsis thaliana) SnRK1 complex interact with the STOREKEEPER RELATED1/G-Element Binding Protein (STKR1) inside the plant cell nucleus. Overexpression of STKR1 in transgenic Arabidopsis plants led to reduced growth, a delay in flowering, and strongly attenuated senescence. Metabolite profiling revealed that the transgenic lines exhausted their carbohydrates during the dark period to a greater extent than the wild type and accumulated a range of amino acids. At the global transcriptome level, genes affected by STKR1 overexpression were broadly associated with systemic acquired resistance, and transgenic plants showed enhanced resistance toward a virulent strain of the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. We discuss a possible connection of STKR1 function, SnRK1 signaling, and plant immunity. PMID:29192025

  19. Mannan-binding proteins from boar seminal plasma

    Czech Academy of Sciences Publication Activity Database

    Jelínková-Slavíčková, Petra; Liberda, J.; Maňásková, Pavla; Ryšlavá, H.; Jonáková, Věra; Tichá, M.

    2004-01-01

    Roč. 62, 1-2 (2004), s. 167-182 ISSN 0165-0378. [Congress of the European Society for Reproductive & Developmental Immunology /4./. Rhodes, 04.06.2003-06.06.2003] R&D Projects: GA ČR GA303/02/0433; GA ČR GP303/02/P069; GA MŠk VS96141; GA MZd NJ7463 Institutional research plan: CEZ:AV0Z5052915 Keywords : boar seminal plasma proteins * mannan-binding proteins * oviductal epithelium Subject RIV: CE - Biochemistry Impact factor: 2.726, year: 2004

  20. Transcriptional autorepression of Msx1 gene is mediated by interactions of Msx1 protein with a multi-protein transcriptional complex containing TATA-binding protein, Sp1 and cAMP-response-element-binding protein-binding protein (CBP/p300).

    OpenAIRE

    Shetty, S; Takahashi, T; Matsui, H; Ayengar, R; Raghow, R

    1999-01-01

    The TATA-less murine Msx1 promoter contains two Msx1-binding motifs, located at -568 to -573 and +25 to +30, and is subject to potent autorepression [Takahashi, Guron, Shetty, Matsui and Raghow (1997) J. Biol. Chem. 272, 22667-22678]. To investigate the molecular mechanism by which Msx1 represses the activity of its own promoter, we transfected C2C12 myoblasts with Msx1-promoter-luciferase constructs and assessed reporter gene activity, with and without the exogenous expression of Msx1. We de...

  1. In vitro binding of germanium to proteins of rice shoots

    International Nuclear Information System (INIS)

    Matsumoto, Hideaki; Takahashi, Eiichi

    1976-01-01

    The possibility of in vitro binding between proteins of rice shoots and germanium (Ge) was investigated. The proteins in mixtures of aqueous extracts of rice shoots and radioactive germanium ( 68 GeO 2 ) were fractionated. The binding of radioactivity to the proteins was observed even after 5 successive fractionation steps from the original mixtures. At the final fractionation step using polyacrylamide gel electrophoresis, a constant proportionality between protein concentration and associated radioactivity was found in most samples although not all. These results indicate that the binding of 68 Ge to proteins is not due to the simple adsorption by proteins. (auth.)

  2. New Parameters for Higher Accuracy in the Computation of Binding Free Energy Differences upon Alanine Scanning Mutagenesis on Protein-Protein Interfaces.

    Science.gov (United States)

    Simões, Inês C M; Costa, Inês P D; Coimbra, João T S; Ramos, Maria J; Fernandes, Pedro A

    2017-01-23

    Knowing how proteins make stable complexes enables the development of inhibitors to preclude protein-protein (P:P) binding. The identification of the specific interfacial residues that mostly contribute to protein binding, denominated as hot spots, is thus critical. Here, we refine an in silico alanine scanning mutagenesis protocol, based on a residue-dependent dielectric constant version of the Molecular Mechanics/Poisson-Boltzmann Surface Area method. We have used a large data set of structurally diverse P:P complexes to redefine the residue-dependent dielectric constants used in the determination of binding free energies. The accuracy of the method was validated through comparison with experimental data, considering the per-residue P:P binding free energy (ΔΔG binding ) differences upon alanine mutation. Different protocols were tested, i.e., a geometry optimization protocol and three molecular dynamics (MD) protocols: (1) one using explicit water molecules, (2) another with an implicit solvation model, and (3) a third where we have carried out an accelerated MD with explicit water molecules. Using a set of protein dielectric constants (within the range from 1 to 20) we showed that the dielectric constants of 7 for nonpolar and polar residues and 11 for charged residues (and histidine) provide optimal ΔΔG binding predictions. An overall mean unsigned error (MUE) of 1.4 kcal mol -1 relative to the experiment was achieved in 210 mutations only with geometry optimization, which was further reduced with MD simulations (MUE of 1.1 kcal mol -1 for the MD employing explicit solvent). This recalibrated method allows for a better computational identification of hot spots, avoiding expensive and time-consuming experiments or thermodynamic integration/ free energy perturbation/ uBAR calculations, and will hopefully help new drug discovery campaigns in their quest of searching spots of interest for binding small drug-like molecules at P:P interfaces.

  3. Change of conformation and internal dynamics of supercoiled DNA upon binding of Escherichia coli single-strand binding protein

    International Nuclear Information System (INIS)

    Langowski, J.; Benight, A.S.; Fujimoto, B.S.; Schurr, J.M.; Schomburg, U.

    1985-01-01

    The influence of Escherichia coli single-strand binding (SSB) protein on the conformation and internal dynamics of pBR322 and pUC8 supercoiled DNAs has been investigated by using dynamic light scattering at 632.8 and 351.1 nm and time-resolved fluorescence polarization anisotropy of intercalated ethidium. SSB protein binds to both DNAs up to a stoichiometry that is sufficient to almost completely relax the superhelical turns. Upon saturation binding, the translational diffusion coefficients (D 0 ) of both DNAs decrease by approximately 20%. Apparent diffusion coefficients (D/sub app/) obtained from dynamic light scattering display the well-known increase with K 2 (K = scattering vector), leveling off toward a plateau value (D/sub plat/) at high K 2 . For both DNAs, the difference D/sub plat/ - D 0 increases upon relaxation of supercoils by SSB protein, which indicates a corresponding enhancement of the subunit mobilities in internal motions. Fluorescence polarization anisotropy measurements on free and complexed pBR322 DNA indicate a (predominantly) uniform torsional rigidity for the saturated DNA/SSB protein complex that is significantly reduced compared to the free DNA. These observations are all consistent with the notion that binding of SSB protein is accompanied by a gradual loss of supercoils and saturates when the superhelical twist is largely removed

  4. Sampling protein motion and solvent effect during ligand binding

    Science.gov (United States)

    Limongelli, Vittorio; Marinelli, Luciana; Cosconati, Sandro; La Motta, Concettina; Sartini, Stefania; Mugnaini, Laura; Da Settimo, Federico; Novellino, Ettore; Parrinello, Michele

    2012-01-01

    An exhaustive description of the molecular recognition mechanism between a ligand and its biological target is of great value because it provides the opportunity for an exogenous control of the related process. Very often this aim can be pursued using high resolution structures of the complex in combination with inexpensive computational protocols such as docking algorithms. Unfortunately, in many other cases a number of factors, like protein flexibility or solvent effects, increase the degree of complexity of ligand/protein interaction and these standard techniques are no longer sufficient to describe the binding event. We have experienced and tested these limits in the present study in which we have developed and revealed the mechanism of binding of a new series of potent inhibitors of Adenosine Deaminase. We have first performed a large number of docking calculations, which unfortunately failed to yield reliable results due to the dynamical character of the enzyme and the complex role of the solvent. Thus, we have stepped up the computational strategy using a protocol based on metadynamics. Our approach has allowed dealing with protein motion and solvation during ligand binding and finally identifying the lowest energy binding modes of the most potent compound of the series, 4-decyl-pyrazolo[1,5-a]pyrimidin-7-one. PMID:22238423

  5. Rational design of a conformation-switchable Ca2+- and Tb3+-binding protein without the use of multiple coupled metal-binding sites.

    Science.gov (United States)

    Li, Shunyi; Yang, Wei; Maniccia, Anna W; Barrow, Doyle; Tjong, Harianto; Zhou, Huan-Xiang; Yang, Jenny J

    2008-10-01

    Ca2+, as a messenger of signal transduction, regulates numerous target molecules via Ca2+-induced conformational changes. Investigation into the determinants for Ca2+-induced conformational change is often impeded by cooperativity between multiple metal-binding sites or protein oligomerization in naturally occurring proteins. To dissect the relative contributions of key determinants for Ca2+-dependent conformational changes, we report the design of a single-site Ca2+-binding protein (CD2.trigger) created by altering charged residues at an electrostatically sensitive location on the surface of the host protein rat Cluster of Differentiation 2 (CD2).CD2.trigger binds to Tb3+ and Ca2+ with dissociation constants of 0.3 +/- 0.1 and 90 +/- 25 microM, respectively. This protein is largely unfolded in the absence of metal ions at physiological pH, but Tb3+ or Ca2+ binding results in folding of the native-like conformation. Neutralization of the charged coordination residues, either by mutation or protonation, similarly induces folding of the protein. The control of a major conformational change by a single Ca2+ ion, achieved on a protein designed without reliance on sequence similarity to known Ca2+-dependent proteins and coupled metal-binding sites, represents an important step in the design of trigger proteins.

  6. Expression, purification, crystallization and preliminary X-ray diffraction studies of the human keratin 4-binding domain of serine-rich repeat protein 1 from Streptococcus agalactiae

    International Nuclear Information System (INIS)

    Sundaresan, Ramya; Samen, Ulrike; Ponnuraj, Karthe

    2011-01-01

    Expression, purification and crystallization of Srr-1-K4BD, a human keratin 4-binding domain of serine-rich repeat protein 1 from S. agalactiae, was carried out. Native crystals of Srr-1-K4BD diffracted to 3.8 Å resolution using synchrotron radiation. Serine-rich repeat protein 1 (Srr-1) is a surface protein from Streptococcus agalactiae. A 17 kDa region of this protein has been identified to bind to human keratin 4 (K4) and is termed the Srr-1 K4-binding domain (Srr-1-K4BD). Recombinant Srr-1-K4BD was overexpressed in Escherichia coli BL21 (DE3) cells. Native and selenomethionine-substituted proteins were prepared using Luria–Bertani (LB) and M9 minimal media, respectively. A two-step purification protocol was carried out to obtain a final homogenous sample of Srr-1-K4BD. Crystals of native Srr-1-K4BD were obtained using PEG 3350 as a precipitant. The crystals diffracted to 3.8 Å resolution using synchrotron radiation and belonged to space group P2 1 , with unit-cell parameters a = 47.56, b = 59.48, c = 94.71 Å, β = 93.95°

  7. Probing binding hot spots at protein-RNA recognition sites.

    Science.gov (United States)

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Lipid-protein nanodiscs for cell-free production of integral membrane proteins in a soluble and folded state: comparison with detergent micelles, bicelles and liposomes.

    Science.gov (United States)

    Lyukmanova, E N; Shenkarev, Z O; Khabibullina, N F; Kopeina, G S; Shulepko, M A; Paramonov, A S; Mineev, K S; Tikhonov, R V; Shingarova, L N; Petrovskaya, L E; Dolgikh, D A; Arseniev, A S; Kirpichnikov, M P

    2012-03-01

    Production of integral membrane proteins (IMPs) in a folded state is a key prerequisite for their functional and structural studies. In cell-free (CF) expression systems membrane mimicking components could be added to the reaction mixture that promotes IMP production in a soluble form. Here lipid-protein nanodiscs (LPNs) of different lipid compositions (DMPC, DMPG, POPC, POPC/DOPG) have been compared with classical membrane mimicking media such as detergent micelles, lipid/detergent bicelles and liposomes by their ability to support CF synthesis of IMPs in a folded and soluble state. Three model membrane proteins of different topology were used: homodimeric transmembrane (TM) domain of human receptor tyrosine kinase ErbB3 (TM-ErbB3, 1TM); voltage-sensing domain of K(+) channel KvAP (VSD, 4TM); and bacteriorhodopsin from Exiguobacterium sibiricum (ESR, 7TM). Structural and/or functional properties of the synthesized proteins were analyzed. LPNs significantly enhanced synthesis of the IMPs in a soluble form regardless of the lipid composition. A partial disintegration of LPNs composed of unsaturated lipids was observed upon co-translational IMP incorporation. Contrary to detergents the nanodiscs resulted in the synthesis of ~80% active ESR and promoted correct folding of the TM-ErbB3. None of the tested membrane mimetics supported CF synthesis of correctly folded VSD, and the protocol of the domain refolding was developed. The use of LPNs appears to be the most promising approach to CF production of IMPs in a folded state. NMR analysis of (15)N-Ile-TM-ErbB3 co-translationally incorporated into LPNs shows the great prospects of this membrane mimetics for structural studies of IMPs produced by CF systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. The fission yeast RNA binding protein Mmi1 regulates meiotic genes by controlling intron specific splicing and polyadenylation coupled RNA turnover.

    Directory of Open Access Journals (Sweden)

    Huei-Mei Chen

    Full Text Available The polyA tails of mRNAs are monitored by the exosome as a quality control mechanism. We find that fission yeast, Schizosaccharomyces pombe, adopts this RNA quality control mechanism to regulate a group of 30 or more meiotic genes at the level of both splicing and RNA turnover. In vegetative cells the RNA binding protein Mmi1 binds to the primary transcripts of these genes. We find the novel motif U(U/C/GAAAC highly over-represented in targets of Mmi1. Mmi1 can specifically regulate the splicing of particular introns in a transcript: it inhibits the splicing of introns that are in the vicinity of putative Mmi1 binding sites, while allowing the splicing of other introns that are far from such sites. In addition, binding of Mmi1, particularly near the 3' end, alters 3' processing to promote extremely long polyA tails of up to a kilobase. The hyperadenylated transcripts are then targeted for degradation by the nuclear exonuclease Rrp6. The nuclear polyA binding protein Pab2 assists this hyperadenylation-mediated RNA decay. Rrp6 also targets other hyperadenylated transcripts, which become hyperadenylated in an unknown, but Mmi1-independent way. Thus, hyperadenylation may be a general signal for RNA degradation. In addition, binding of Mmi1 can affect the efficiency of 3' cleavage. Inactivation of Mmi1 in meiosis allows meiotic expression, through splicing and RNA stabilization, of at least 29 target genes, which are apparently constitutively transcribed.

  10. The Arabidopsis GAGA-Binding Factor BASIC PENTACYSTEINE6 Recruits the POLYCOMB-REPRESSIVE COMPLEX1 Component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA Motifs.

    Science.gov (United States)

    Hecker, Andreas; Brand, Luise H; Peter, Sébastien; Simoncello, Nathalie; Kilian, Joachim; Harter, Klaus; Gaudin, Valérie; Wanke, Dierk

    2015-07-01

    Polycomb-repressive complexes (PRCs) play key roles in development by repressing a large number of genes involved in various functions. Much, however, remains to be discovered about PRC-silencing mechanisms as well as their targeting to specific genomic regions. Besides other mechanisms, GAGA-binding factors in animals can guide PRC members in a sequence-specific manner to Polycomb-responsive DNA elements. Here, we show that the Arabidopsis (Arabidopsis thaliana) GAGA-motif binding factor protein basic pentacysteine6 (BPC6) interacts with like heterochromatin protein1 (LHP1), a PRC1 component, and associates with vernalization2 (VRN2), a PRC2 component, in vivo. By using a modified DNA-protein interaction enzyme-linked immunosorbant assay, we could show that BPC6 was required and sufficient to recruit LHP1 to GAGA motif-containing DNA probes in vitro. We also found that LHP1 interacts with VRN2 and, therefore, can function as a possible scaffold between BPC6 and VRN2. The lhp1-4 bpc4 bpc6 triple mutant displayed a pleiotropic phenotype, extreme dwarfism and early flowering, which disclosed synergistic functions of LHP1 and group II plant BPC members. Transcriptome analyses supported this synergy and suggested a possible function in the concerted repression of homeotic genes, probably through histone H3 lysine-27 trimethylation. Hence, our findings suggest striking similarities between animal and plant GAGA-binding factors in the recruitment of PRC1 and PRC2 components to Polycomb-responsive DNA element-like GAGA motifs, which must have evolved through convergent evolution. © 2015 American Society of Plant Biologists. All Rights Reserved.

  11. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    Science.gov (United States)

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  12. Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein.

    Directory of Open Access Journals (Sweden)

    Vesa Kirjavainen

    Full Text Available Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS O-antigen (O-ag and outer core (OC do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp, an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host.

  13. A microscopic insight from conformational thermodynamics to functional ligand binding in proteins.

    Science.gov (United States)

    Sikdar, Samapan; Chakrabarti, J; Ghosh, Mahua

    2014-12-01

    We show that the thermodynamics of metal ion-induced conformational changes aid to understand the functions of protein complexes. This is illustrated in the case of a metalloprotein, alpha-lactalbumin (aLA), a divalent metal ion binding protein. We use the histograms of dihedral angles of the protein, generated from all-atom molecular dynamics simulations, to calculate conformational thermodynamics. The thermodynamically destabilized and disordered residues in different conformational states of a protein are proposed to serve as binding sites for ligands. This is tested for β-1,4-galactosyltransferase (β4GalT) binding to the Ca(2+)-aLA complex, in which the binding residues are known. Among the binding residues, the C-terminal residues like aspartate (D) 116, glutamine (Q) 117, tryptophan (W) 118 and leucine (L) 119 are destabilized and disordered and can dock β4GalT onto Ca(2+)-aLA. No such thermodynamically favourable binding residues can be identified in the case of the Mg(2+)-aLA complex. We apply similar analysis to oleic acid binding and predict that the Ca(2+)-aLA complex can bind to oleic acid through the basic histidine (H) 32 of the A2 helix and the hydrophobic residues, namely, isoleucine (I) 59, W60 and I95, of the interfacial cleft. However, the number of destabilized and disordered residues in Mg(2+)-aLA are few, and hence, the oleic acid binding to Mg(2+)-bound aLA is less stable than that to the Ca(2+)-aLA complex. Our analysis can be generalized to understand the functionality of other ligand bound proteins.

  14. Characterization of Staphylococcus aureus Primosomal DnaD Protein: Highly Conserved C-Terminal Region Is Crucial for ssDNA and PriA Helicase Binding but Not for DnaA Protein-Binding and Self-Tetramerization.

    Directory of Open Access Journals (Sweden)

    Yen-Hua Huang

    Full Text Available The role of DnaD in the recruitment of replicative helicase has been identified. However, knowledge of the DNA, PriA, and DnaA binding mechanism of this protein for the DnaA- and PriA-directed replication primosome assemblies is limited. We characterized the DNA-binding properties of DnaD from Staphylococcus aureus (SaDnaD and analyzed its interactions with SaPriA and SaDnaA. The gel filtration chromatography analysis of purified SaDnaD and its deletion mutant proteins (SaDnaD1-195, SaDnaD1-200 and SaDnaD1-204 showed a stable tetramer in solution. This finding indicates that the C-terminal region aa 196-228 is not crucial for SaDnaD oligomerization. SaDnaD forms distinct complexes with ssDNA of different lengths. In fluorescence titrations, SaDnaD bound to ssDNA with a binding-site size of approximately 32 nt. A stable complex of SaDnaD1-195, SaDnaD1-200, and SaDnaD1-204 with ssDNA dT40 was undetectable, indicating that the C-terminal region of SaDnaD (particularly aa 205-228 is crucial for ssDNA binding. The SPR results revealed that SaDnaD1-195 can interact with SaDnaA but not with SaPriA, which may indicate that DnaD has different binding sites for PriA and DnaA. Both SaDnaD and SaDnaDY176A mutant proteins, but not SaDnaD1-195, can significantly stimulate the ATPase activity of SaPriA. Hence, the stimulation effect mainly resulted from direct contact within the protein-protein interaction, not via the DNA-protein interaction. Kinetic studies revealed that the SaDnaD-SaPriA interaction increases the Vmax of the SaPriA ATPase fivefold without significantly affecting the Km. These results indicate that the conserved C-terminal region is crucial for ssDNA and PriA helicase binding, but not for DnaA protein-binding and self-tetramerization.

  15. Blocking Breast Cancer Metastasis by Targeting RNA-Binding Protein HuR

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0730 TITLE: Blocking Breast Cancer Metastasis by Targeting RNA-Binding Protein HuR PRINCIPAL INVESTIGATOR: Danny Welch...NUMBER Blocking Breast Cancer Metastasis by Targeting RNA-Binding Protein HuR 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...increased aggressiveness in breast cancer , the primary objective of this proposal is to assess whether HuR (or analogs) prevent and/or treat metastasis and/or

  16. Spectroscopic study of drug-binding characteristics of unmodified and pNPA-based acetylated human serum albumin: Does esterase activity affect microenvironment of drug binding sites on the protein?

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Nastaran [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ashrafi-Kooshk, Mohammad Reza [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ghobadi, Sirous [Department of Biology, Faculty of Sciences, Razi University, Kermanshah (Iran, Islamic Republic of); Shahlaei, Mohsen [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Khodarahmi, Reza, E-mail: rkhodarahmi@mbrc.ac.ir [Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Faculty of Pharmaceutical Sciences, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of)

    2015-04-15

    Human serum albumin (HSA) is the most prominent extracellular protein in blood plasma. There are several binding sites on the protein which provide accommodation for structurally-unrelated endogenous and exogenous ligands and a wide variety of drugs. “Esterase-like” activity (hydrolysis of p-nitrophenyl esters) by the protein has been also reported. In the current study, we set out to investigate the interaction of indomethacin and ibuprofen with the unmodified and modified HSA (pNPA-modified HSA) using various spectroscopic techniques. Fluorescence data showed that 1:1 binding of drug to HSA is associated with quenching of the protein intrinsic fluorescence. Decrease of protein surface hydrophobicity (PSH), alteration in drug binding affinity and change of the protein stability, after esterase-like activity and permanent acetylation of HSA, were also documented. Analysis of the quenching and thermodynamic parameters indicated that forces involved in drug–HSA interactions change upon the protein modification. - Highlights: • Binding propensity of indomethacin extremely decreased upon the protein acetylation. • There is no ibuprofen binding after protein acetylation. • Protein stability changes upon drug binding as well as protein acetylation. • Drug pharmacokinetics may be influenced under co-administration of HSA-modifier drugs.

  17. Spectroscopic study of drug-binding characteristics of unmodified and pNPA-based acetylated human serum albumin: Does esterase activity affect microenvironment of drug binding sites on the protein?

    International Nuclear Information System (INIS)

    Moradi, Nastaran; Ashrafi-Kooshk, Mohammad Reza; Ghobadi, Sirous; Shahlaei, Mohsen; Khodarahmi, Reza

    2015-01-01

    Human serum albumin (HSA) is the most prominent extracellular protein in blood plasma. There are several binding sites on the protein which provide accommodation for structurally-unrelated endogenous and exogenous ligands and a wide variety of drugs. “Esterase-like” activity (hydrolysis of p-nitrophenyl esters) by the protein has been also reported. In the current study, we set out to investigate the interaction of indomethacin and ibuprofen with the unmodified and modified HSA (pNPA-modified HSA) using various spectroscopic techniques. Fluorescence data showed that 1:1 binding of drug to HSA is associated with quenching of the protein intrinsic fluorescence. Decrease of protein surface hydrophobicity (PSH), alteration in drug binding affinity and change of the protein stability, after esterase-like activity and permanent acetylation of HSA, were also documented. Analysis of the quenching and thermodynamic parameters indicated that forces involved in drug–HSA interactions change upon the protein modification. - Highlights: • Binding propensity of indomethacin extremely decreased upon the protein acetylation. • There is no ibuprofen binding after protein acetylation. • Protein stability changes upon drug binding as well as protein acetylation. • Drug pharmacokinetics may be influenced under co-administration of HSA-modifier drugs

  18. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism)

    Energy Technology Data Exchange (ETDEWEB)

    Daughaday, W.H.; Trivedi, B.

    1987-07-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, the authors have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of /sup 125/I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Results are expressed as percent of specifically bound /sup 125/I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. They suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor.

  19. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism)

    International Nuclear Information System (INIS)

    Daughaday, W.H.; Trivedi, B.

    1987-01-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, the authors have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of 125 I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Results are expressed as percent of specifically bound 125 I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. They suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor

  20. Quantifying drug-protein binding in vivo

    International Nuclear Information System (INIS)

    Buchholz, B; Bench, G; Keating III, G; Palmblad, M; Vogel, J; Grant, P G; Hillegonds, D

    2004-01-01

    Accelerator mass spectrometry (AMS) provides precise quantitation of isotope labeled compounds that are bound to biological macromolecules such as DNA or proteins. The sensitivity is high enough to allow for sub-pharmacological (''micro-'') dosing to determine macromolecular targets without inducing toxicities or altering the system under study, whether it is healthy or diseased. We demonstrated an application of AMS in quantifying the physiologic effects of one dosed chemical compound upon the binding level of another compound in vivo at sub-toxic doses [4].We are using tissues left from this study to develop protocols for quantifying specific binding to isolated and identified proteins. We also developed a new technique to quantify nanogram to milligram amounts of isolated protein at precisions that are comparable to those for quantifying the bound compound by AMS

  1. Identification and characterization of riboflavin-binding proteins in human circulation

    International Nuclear Information System (INIS)

    Innis-Whitehouse, W.S.A.

    1988-01-01

    Riboflavin binding by plasma proteins from healthy human subjects was examined by equilibrium dialysis and binding was observed to vary over a greater than 10-fold range. Upon fractionation of plasma by gel filtration, the major riboflavin-binding components eluted with albumin and gamma-globulins. Albumin was purified and found to bind riboflavin only very weakly, although FMN and photo-chemical degradation products were more tightly bound. Most of the binding occurred in the gamma-globulin fraction and was attributed to immunoglobulins because the binding proteins and immunoglobulins copurified using various methods, were removed by treatment of plasma with protein A-agarose, and were coincident upon immuno-electrophoresis followed by autoradiography to detect [2- 14 C]-riboflavin. Binding differences among plasma samples were reflected in the binding recovered with the immunoglobulin fractions; however, there was not a direct relationship between the amount of immunoglobulin and the amount of [2- 14 C]riboflavin bound. Hence, it appeared that the binding was due to a subfraction of immunoglobulins

  2. Localization of calcium-binding proteins and GABA transporter (GAT-1) messenger RNA in the human subthalamic nucleus

    International Nuclear Information System (INIS)

    Augood, S.J.; Waldvogel, H.J.; Muenkle, M.C.; Faull, R.L.M.; Emson, P.C.

    1999-01-01

    The distribution of messenger RNA encoding the human GAT-1 (a high-affinity GABA transporter) was investigated in the subthalamic nucleus of 10 neurologically normal human post mortem cases. Further, the distribution of messenger RNA and protein encoding the three neuronally expressed calcium-binding proteins (calbindin D28k, parvalbumin and calretinin) was similarly investigated using in situ hybridization and immunohistochemical techniques. Cellular sites of calbindin D28k, parvalbumin, calretinin and GAT-1 messenger RNA expression were localized using human-specific oligonucleotide probes radiolabelled with [ 35 S]dATP. Sites of protein localization were visualized using specific anti-calbindin D28k, anti-parvalbumin and anti-calretinin antisera. Examination of emulsion-coated tissue sections processed for in situ hybridization revealed an intense signal for GAT-1 messenger RNA within the human subthalamic nucleus, indeed the majority of Methylene Blue-counterstained cells were enriched in this transcript. Further, a marked heterogeneity was noted with regard to the expression of the messenger RNA's encoding the three calcium-binding proteins; this elliptical nucleus was highly enriched in parvalbumin messenger RNA-positive neurons and calretinin mRNA-positive cells but not calbindin messenger RNA-positive cells. Indeed, only an occasional calbindin messenger RNA-positive cell was detected within the mediolateral extent of the nucleus. In marked contrast, numerous parvalbumin messenger RNA-positive cells and calretinin messenger RNA-positive cells were detected and they were topographically distributed; parvalbumin messenger RNA-positive cells were highly enriched in the dorsal subthalamic nucleus extending mediolaterally; calretinin messenger RNA-positive cells were more enriched ventrally although some degree of overlap was apparent. Computer-assisted analysis of the average cross-sectional somatic area of parvalbumin, calretinin and GAT-1 messenger RNA

  3. Analysis of a two-domain binding site for the urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein.

    Science.gov (United States)

    Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C

    2001-07-01

    The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.

  4. Akt regulates the subcellular localization of the Rab27a-binding protein JFC1 by phosphorylation.

    Science.gov (United States)

    Johnson, Jennifer L; Pacquelet, Sandrine; Lane, William S; Eam, Boreth; Catz, Sergio D

    2005-08-01

    Here, we show that the Rab27a-binding protein JFC1/Slp1 (synaptotagmin-like protein) is regulated by Akt-mediated phosphorylation. Using the phosphatase and tensin homolog-null LNCaP cells and the phosphatidylinositol 3-kinase inhibitor LY294002, we show that the phosphorylation of endogenous JFC1 is dependent on the phosphatidylinositol 3-kinase/Akt pathway. JFC1 was phosphorylated in cells expressing a constitutively active Akt, confirming that it is an Akt substrate in vivo. Direct phosphorylation of JFC1 by Akt was confirmed in vitro. Using microcapillary high-performance liquid chromatography tandem mass spectrometry, we identified five Akt-phosphorylation sites in JFC1. By mutagenesis analysis and subsequent immunoprecipitation (IP), we established that Akt phosphorylates JFC1 at serine 241. JFC1 and Rab27a colocalize in the proximity of the plasma membrane in LNCaP cells. The interaction was confirmed by IP analysis and was abolished by the point mutation W83S in JFC1. Phosphorylation did not alter the ability of JFC1 to bind to Rab27a. Instead, phosphorylation by Akt dramatically decreased when JFC1 was bound to Rab27a. Finally, we show that as a consequence of in vivo phosphorylation, JFC1 dissociates from the membrane, promoting JFC1 redistribution to the cytosol. Our results suggest that Akt regulates JFC1/Slp1 function by phosphorylation and may have implications on Rab27a-containing vesicle secretion.

  5. Polyamine binding to proteins in oat and Petunia protoplasts

    Science.gov (United States)

    Mizrahi, Y.; Applewhite, P. B.; Galston, A. W.

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.

  6. Functional characterization of the ER stress induced X-box-binding protein-1 (Xbp-1 in the porcine system

    Directory of Open Access Journals (Sweden)

    Jin Dong-Il

    2011-05-01

    Full Text Available Abstract Background The unfolded protein response (UPR is an evolutionary conserved adaptive reaction for increasing cell survival under endoplasmic reticulum (ER stress conditions. X-box-binding protein-1 (Xbp1 is a key transcription factor of UPR that activates genes involved in protein folding, secretion, and degradation to restore ER function. The UPR induced by ER stress was extensively studied in diseases linked to protein misfolding and aggregations. However, in the porcine system, genes in the UPR pathway were not investigated. In this study, we isolated and characterized the porcine Xbp1 (pXbp1 gene in ER stress using porcine embryonic fibroblast (PEF cells and porcine organs. ER stress was induced by the treatment of tunicamycin and cell viability was investigated by the MTT assay. For cloning and analyzing the expression pattern of pXbp1, RT-PCR analysis and Western blot were used. Knock-down of pXbp1 was performed by the siRNA-mediated gene silencing. Results We found that the pXbp1 mRNA was the subject of the IRE1α-mediated unconventional splicing by ER stress. Knock-down of pXbp1 enhanced ER stress-mediated cell death in PEF cells. In adult organs, pXbp1 mRNA and protein were expressed and the spliced forms were detected. Conclusions It was first found that the UPR mechanisms and the function of pXbp1 in the porcine system. These results indicate that pXbp1 plays an important role during the ER stress response like other animal systems and open a new opportunity for examining the UPR pathway in the porcine model system.

  7. Crystal structure of importin-{alpha} complexed with a classic nuclear localization sequence obtained by oriented peptide library screening

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, A.A.S.; Fontes, M.R.M. [UNESP, Universidade Estadual Paulista, Botucatu, SP (Brazil); Yang, S.N.Y. [University of Melbourne, Melbourne (Australia); Harris, J.M. [Queensland University of Technology, Brisbane (Australia); Jans, D.A. [Monash University, Clayton (Australia); Kobe, B. [University of Queensland, Brisbane, QU (Australia)

    2012-07-01

    Full text: Importin-{alpha} (Imp{alpha}) plays a role in the classical nuclear import pathway, binding to cargo proteins with activities in the nucleus. Different Imp{alpha} paralogs responsible for specific cargos can be found in a single organism. The cargos contain nuclear localization sequences (NLSs), which are characterized by one or two clusters of basic amino acids (monopartite and bipartite NLSs, respectively). In this work we present the crystal structure of Imp{alpha} from M. musculus (residues 70-529, lacking the auto inhibitory domain) bound to a NLS peptide (pepTM). The peptide corresponds to the optimal sequence obtained by an oriented peptide library experiment designed to probe the specificity of the major NLS binding site. The peptide library used five degenerate positions and identified the sequence KKKRR as the optimal sequence for binding to this site for mouse Imp{alpha} (70-529). The protein was obtained using an E. coli expression system and purified by affinity chromatography followed by an ion exchange chromatography. A single crystal of Imp{alpha} -pepTM complex was grown by the hanging drop method. The data were collected using the Synchrotron Radiation Source LNLS, Brazil and processed to 2.3. Molecular replacement techniques were used to determine the crystal structure. Electron density corresponding to the peptide was present in both major and minor binding sites The peptide is bound to Imp{alpha} similar as the simian virus 40 (SV40) large tumour (T)-antigen NLS. Binding assays confirmed that the peptide bound to Imp{alpha} with low nM affinities. This is the first time that structural information has been linked to an oriented peptide library screening approach for importin-{alpha}; the results will contribute to understanding of the sequence determinants of classical NLSs, and may help identify as yet unidentified classical NLSs in novel proteins. (author)

  8. Two CGTCA motifs and a GHF1/Pit1 binding site mediate cAMP-dependent protein kinase A regulation of human growth hormone gene expression in rat anterior pituitary GC cells.

    Science.gov (United States)

    Shepard, A R; Zhang, W; Eberhardt, N L

    1994-01-21

    We established the cis-acting elements which mediate cAMP responsiveness of the human growth hormone (hGH) gene in transiently transfected rat anterior pituitary tumor GC cells. Analysis of the intact hGH gene or hGH 5'-flanking DNA (5'-FR) coupled to the hGh cDNA or chloramphenicol acetyltransferase or luciferase genes, indicated that cAMP primarily stimulated hGH promoter activity. Cotransfection of a protein kinase A inhibitory protein cDNA demonstrated that the cAMP response was mediated by protein kinase A. Mutational analysis of the hGH promoter identified two core cAMP response element motifs (CGTCA) located at nucleotides -187/-183 (distal cAMP response element; dCRE) and -99/-95 (proximal cAMP response element; pCRE) and a pituitary-specific transcription factor (GHF1/Pit1) binding site at nucleotides -123/-112 (dGHF1) which were required for cAMP responsiveness. GHF1 was not a limiting factor, since overexpression of GHF1 in cotransfections increased basal but not forskolin induction levels. Gel shift analyses indicated that similar, ubiquitous, thermostable protein(s) specifically bound the pCRE and dCRE motifs. The CGTCA motif-binding factors were cAMP response element binding protein (CREB)/activating transcription factor-1 (ATF-1)-related, since the DNA-protein complex was competed by unlabeled CREB consensus oligonucleotide, specifically supershifted by antisera to CREB and ATF-1 but not ATF-2, and was bound by purified CREB with the same relative binding affinity (pCRE < dCRE < CREB) and mobility as the GC nuclear extract. UV cross-linking and Southwestern blot analyses revealed multiple DNA-protein interactions of which approximately 100- and approximately 45-kDa proteins were predominant; the approximately 45-kDa protein may represent CREB. These results indicate that CREB/ATF-1-related factors act coordinately with the cell-specific factor GHF1 to mediate cAMP-dependent regulation of hGH-1 gene transcription in anterior pituitary somatotrophs.

  9. Sequence similarity between the erythrocyte binding domain of the Plasmodium vivax Duffy binding protein and the V3 loop of HIV-1 strain MN reveals a functional heparin binding motif involved in binding to the Duffy antigen receptor for chemokines

    Directory of Open Access Journals (Sweden)

    Bolton Michael J

    2011-11-01

    Full Text Available Abstract Background The HIV surface glycoprotein gp120 (SU, gp120 and the Plasmodium vivax Duffy binding protein (PvDBP bind to chemokine receptors during infection and have a site of amino acid sequence similarity in their binding domains that often includes a heparin binding motif (HBM. Infection by either pathogen has been found to be inhibited by polyanions. Results Specific polyanions that inhibit HIV infection and bind to the V3 loop of X4 strains also inhibited DBP-mediated infection of erythrocytes and DBP binding to the Duffy Antigen Receptor for Chemokines (DARC. A peptide including the HBM of PvDBP had similar affinity for heparin as RANTES and V3 loop peptides, and could be specifically inhibited from heparin binding by the same polyanions that inhibit DBP binding to DARC. However, some V3 peptides can competitively inhibit RANTES binding to heparin, but not the PvDBP HBM peptide. Three other members of the DBP family have an HBM sequence that is necessary for erythrocyte binding, however only the protein which binds to DARC, the P. knowlesi alpha protein, is inhibited by heparin from binding to erythrocytes. Heparitinase digestion does not affect the binding of DBP to erythrocytes. Conclusion The HBMs of DBPs that bind to DARC have similar heparin binding affinities as some V3 loop peptides and chemokines, are responsible for specific sulfated polysaccharide inhibition of parasite binding and invasion of red blood cells, and are more likely to bind to negative charges on the receptor than cell surface glycosaminoglycans.

  10. Membrane-associated 41-kDa GTP-binding protein in collagen-induced platelet activation

    International Nuclear Information System (INIS)

    Walker, G.; Bourguignon, L.Y.

    1990-01-01

    Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation

  11. Membrane-associated 41-kDa GTP-binding protein in collagen-induced platelet activation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, G.; Bourguignon, L.Y. (Univ. of Miami Medical School, FL (USA))

    1990-08-01

    Initially we established that the binding of collagen to human blood platelets stimulates both the rapid loss of PIP2 and the generation of inositol-4,5-bisphosphate (IP2) and inositol-1,4,5-triphosphate (IP3). These results indicate that the binding of collagen stimulates inositol phospholipid-specific phospholipase C during platelet activation. The fact that GTP or GTP-gamma-S augments, and pertussis toxin inhibits, collagen-induced IP3 formation suggests that a GTP-binding protein or (or proteins) may be directly involved in the regulation of phospholipase C-mediated phosphoinositide turnover in human platelets. We have used several complementary techniques to isolate and characterize a platelet 41-kDa polypeptide (or polypeptides) that has a number of structural and functional similarities to the regulatory alpha i subunit of the GTP-binding proteins isolated from bovine brain. This 41-kDa polypeptide (or polypeptides) is found to be closely associated with at least four membrane glycoproteins (e.g., gp180, gp110, gp95, and gp75) in a 330-kDa complex that can be dissociated by treatment with high salt plus urea. Most important, we have demonstrated that antilymphoma 41-kDa (alpha i subunit of GTP-binding proteins) antibody cross-reacts with the platelet 41-kDa protein (or proteins) and the alpha i subunit of bovine brain Gi alpha proteins, and blocks GTP/collagen-induced IP3 formation. These data provide strong evidence that the 41-kDa platelet GTP-binding protein (or proteins) is directly involved in collagen-induced signal transduction during platelet activation.

  12. Lectin binding assays for in-process monitoring of sialylation in protein production.

    Science.gov (United States)

    Xu, Weiduan; Chen, Jianmin; Yamasaki, Glenn; Murphy, John E; Mei, Baisong

    2010-07-01

    Many therapeutic proteins require appropriate glycosylation for their biological activities and plasma half life. Coagulation factor VIII (FVIII) is a glycoprotein which has extensive post-translational modification by N-linked glycosylation. The terminal sialic acid in the N-linked glycans of FVIII is required for maximal circulatory half life. The extent of FVIII sialylation can be determined by high pH anion-exchange chromatography coupled with a pulse electrochemical detector (HPAEC-PED), but this requires a large amount of purified protein. Using FVIII as a model, the objective of the present study was to develop assays that enable detection and prediction of sialylation deficiency at an early stage in the process and thus prevent downstream product quality excursions. Lectin ECA (Erythrina Cristagalli) binds to unsialylated Galbeta1-4 GlcNAc and the ECA-binding level (i.e., terminal Gal(beta1-4) exposure) is inversely proportional to the level of sialylation. By using ECA, a cell-based assay was developed to measure the global sialylation profile in FVIII producing cells. To examine the Galbeta1-4 exposure on the FVIII molecule in bioreactor tissue culture fluid (TCF), an ELISA-based ECA-FVIII binding assay was developed. The ECA-binding specificity in both assays was assessed by ECA-specific sugar inhibitors and neuraminidase digestion. The ECA-binding specificity was also independently confirmed by a ST3GAL4 siRNA knockdown experiment. To establish the correlation between Galbeta1-4 exposure and the HPAEC-PED determined FVIII sialylation value, the FVIII containing bioreactor TCF and the purified FVIII samples were tested with ECA ELISA binding assay. The results indicated an inverse correlation between ECA binding and the corresponding HPAEC-PED sialylation value. The ECA-binding assays are cost effective and can be rapidly performed, thereby making them effective for in-process monitoring of protein sialylation.

  13. Nucleolin: acharan sulfate–binding protein on the surface of cancer cells

    Science.gov (United States)

    Joo, Eun Ji; ten Dam, Gerdy B.; van Kuppevelt, Toin H.; Toida, Toshihiko; Linhardt, Robert J.; Kim, Yeong Shik

    2005-01-01

    Glycosaminoglycans (GAGs) are complex polysaccharides that participate in the regulation of physiological processes through the interactions with a wide variety of proteins. Acharan sulfate (AS), isolated from the giant African snail Achatina fulica, primarily consists of the repeating disaccharide structure α-D-N-acetylglucosaminyl (1→4) 2-sulfoiduronic acid. Exogenous AS was injected subcutaneously near the tumor tissue in C57BL/6 mice that had been implanted with Lewis lung carcinoma cells (LLCs). The location of AS in the tumor was assessed by staining of sectioned tissues with alcian blue and periodic acid–Schiff (PAS) reagent. In vitro assays indicated binding of cells to 50 μg/ml AS (or heparin) after a 5-h incubation. Immunofluorescence assays, using anti-AS antibody, detected AS at the cell surface. The outer-surface of LLCs were next biotinylated to identify the AS-binding proteins. Biotinylated cells were lysed, and the lysates were fractionated on the AS affinity column using a stepwise salt gradient (0, 0.1, 0.3, 0.5, 0.7, 1.0, and 2.0 M). The fractions were analyzed by SDS–PAGE with silver staining and western blotting. We focused on the proteins with high affinity for AS (eluting at 1 M NaCl) and detected only two bands by western blotting. ESI Q-TOF MS analysis of one of these bands, molecular weight ~110 kDa, showed it to be nucleolin. A phosphorylated form of nucleolin on the surface of cells acts as a cell surface receptor for a variety of ligands, including growth factors (i.e., basic fibroblast growth factor) and chemokines (i.e., midkine). These results show that nucleolin is one of several AS-binding proteins and suggest that AS might demonstrate its tumor growth inhibitory activity by binding the nucleolin receptor protein on the surface of cancer cells. PMID:15329357

  14. Predicting nucleic acid binding interfaces from structural models of proteins.

    Science.gov (United States)

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.

  15. Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues.

    Science.gov (United States)

    Schulz, Timothy A; Choi, Mal-Gi; Raychaudhuri, Sumana; Mears, Jason A; Ghirlando, Rodolfo; Hinshaw, Jenny E; Prinz, William A

    2009-12-14

    Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein-related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We find that the core lipid-binding domain found in all ORPs can simultaneously bind two membranes. Using Osh4p/Kes1p as a representative ORP, we show that ORPs have at least two membrane-binding surfaces; one near the mouth of the sterol-binding pocket and a distal site that can bind a second membrane. The distal site is required for the protein to function in cells and, remarkably, regulates the rate at which Osh4p extracts and delivers sterols in a phosphoinositide-dependent manner. Together, these findings suggest a new model of how ORPs could sense and regulate the lipid composition of adjacent membranes.

  16. In vitro gibberellin A1 binding in Zea mays L

    International Nuclear Information System (INIS)

    Keith, B.; Rappaport, L.

    1987-01-01

    The first and second leaf sheaths of Zea mays L. cv Golden Jubilee were extracted and the extract centrifuged at 100,000g to yield a supernatant or cytosol fraction. Binding of [ 3 H]gibberellin A 1 (GA 1 ) to a soluble macromolecular component present in the cytosol was demonstrated at 4 0 C by Sephadex G-200 chromatography. The binding component was of high molecular weight (HMW) and greater than 500 kilodaltons. The HMW component was shown to be a protein and the 3 H-activity bound to this protein was largely [ 3 H]GA 1 and not a metabolite. Binding was pH sensitive but only a small percentage (20%) appeared to be exchangeable on addition of unlabeled GA 1 . Both biologically active and inactive GAs and non-GAs were able to inhibit GA 1 binding. [ 3 H]GA 1 binding to an intermediate molecular weight (IMW) fraction (40-100 kilodaltons) was also detected, provided cytosol was first desalted using Sephadex G-200 chromatography. Gel filtration studies suggest that the HMW binding component is an aggregate derived from the IMW fraction. The HMW binding fraction can be separated into two components using anion exchange chromatography

  17. Analysis of electric moments of RNA-binding proteins: implications for mechanism and prediction

    Directory of Open Access Journals (Sweden)

    Sarai Akinori

    2011-02-01

    Full Text Available Abstract Background Protein-RNA interactions play important role in many biological processes such as gene regulation, replication, protein synthesis and virus assembly. Although many structures of various types of protein-RNA complexes have been determined, the mechanism of protein-RNA recognition remains elusive. We have earlier shown that the simplest electrostatic properties viz. charge, dipole and quadrupole moments, calculated from backbone atomic coordinates of proteins are biased relative to other proteins, and these quantities can be used to identify DNA-binding proteins. Closely related, RNA-binding proteins are investigated in this study. In particular, discrimination between various types of RNA-binding proteins, evolutionary conservation of these bulk electrostatic features and effect of conformational changes by complex formation are investigated. Basic binding mechanism of a putative RNA-binding protein (HI1333 from Haemophilus influenza is suggested as a potential application of this study. Results We found that similar to DNA-binding proteins (DBPs, RNA-binding proteins (RBPs also show significantly higher values of electric moments. However, higher moments in RBPs are found to strongly depend on their functional class: proteins binding to ribosomal RNA (rRNA constitute the only class with all three of the properties (charge, dipole and quadrupole moments being higher than control proteins. Neural networks were trained using leave-one-out cross-validation to predict RBPs from control data as well as pair-wise classification capacity between proteins binding to various RNA types. RBPs and control proteins reached up to 78% accuracy measured by the area under the ROC curve. Proteins binding to rRNA are found to be best distinguished (AUC = 79%. Changes in dipole and quadrupole moments between unbound and bound structures were small and these properties are found to be robust under complex formation. Conclusions Bulk electric

  18. A Venom Gland Extracellular Chitin-Binding-Like Protein from Pupal Endoparasitoid Wasps, Pteromalus Puparum, Selectively Binds Chitin

    Directory of Open Access Journals (Sweden)

    Yu Zhu

    2015-11-01

    Full Text Available Chitin-binding proteins (CBPs are present in many species and they act in a variety of biological processes. We analyzed a Pteromalus puparum venom apparatus proteome and transcriptome and identified a partial gene encoding a possible CBP. Here, we report cloning a full-length cDNA of a sequence encoding a chitin-binding-like protein (PpCBP from P. puparum, a pupal endoparasitoid of Pieris rapae. The cDNA encoded a 96-amino-acid protein, including a secretory signal peptide and a chitin-binding peritrophin-A domain. Phylogenetic analysis of chitin binding domains (CBDs of cuticle proteins and peritrophic matrix proteins in selected insects revealed that the CBD of PpCBP clustered with the CBD of Nasonia vitripennis. The PpCBP is specifically expressed in the venom apparatus of P. puparum, mostly in the venom gland. PpCBP expression was highest at day one after adult eclosion and much lower for the following five days. We produced a recombinant PpCBP and binding assays showed the recombinant protein selectively binds chitin but not cellulose in vitro. We infer that PpCBP serves a structural role in the venom reservoir, or may be injected into the host to help wound healing of the host exoskeleton.

  19. Estrogen receptor-independent catechol estrogen binding activity: protein binding studies in wild-type, Estrogen receptor-alpha KO, and aromatase KO mice tissues.

    Science.gov (United States)

    Philips, Brian J; Ansell, Pete J; Newton, Leslie G; Harada, Nobuhiro; Honda, Shin-Ichiro; Ganjam, Venkataseshu K; Rottinghaus, George E; Welshons, Wade V; Lubahn, Dennis B

    2004-06-01

    Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.

  20. Crystallization and preliminary crystallographic analysis of recombinant immunoglobulin G-binding protein from Streptococcus suis

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Abdul Hamid; Chu, Fuliang; Feng, Youjun; Zhang, Qinagmin [Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Qi, Jianxun [Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Gao, George Fu, E-mail: gaof@im.ac.cn [Center for Molecular Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China)

    2008-08-01

    Crystallization of recombinant IgG-binding protein expressed in Escherichia coli using the hanging-drop vapour-diffusion method is described. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c = 78.17 Å. Streptococcus suis, an important zoonotic pathogen, expresses immunoglobulin G-binding protein, which is thought to be helpful to the organism in eluding the host defence system. Recombinant IgG-binding protein expressed in Escherichia coli has been crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 38.98, b = 43.94, c = 78.17 Å and one molecule in the asymmetric unit. Diffraction data were collected to 2.60 Å resolution.

  1. Properties of Folate Binding Protein Purified from Cow’s Milk

    Directory of Open Access Journals (Sweden)

    SUBANDRATE

    2012-09-01

    Full Text Available Folic acid played an important role in the metabolism of the body. To measure the serum folic acid levels could use the folate binding protein (FBP from cow’s milk with a technique analogous to ELISA. The aims of this study were to identify characteristics of FBP from cow’s milk and binding capacity of FBP to folic acid and to purify FBP from other whey protein passed through DEAE-cellulose chromatography column. Each of DEAE-cellulose peaks was passed in affinity chromatography column. FBP was released from affinity column with sodium acetate buffer pH 3.5. The purity of obtained FBP was demonstrated by a single spot in SDS-PAGE analysis and the estimated molecular weight of FBP was around 31 kDa. Our study indicated that 1 mol FBP bound 1 mol folic acid. Alkylation with iodoacetic acid decreased the binding capacity of FBP which suggested the presence of a–SH or imidazol group in its active site. The importance of disulfide bridge was proven by decreasing of folate binding capacity of FBP after -mercaptoethanol treatment. In contrary, the folate binding didn need Ca2+ ion, as indicated by EDTA test which gave the same result as control.

  2. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    International Nuclear Information System (INIS)

    Westberg, Johan A.; Jiang, Ji; Andersson, Leif C.

    2011-01-01

    Highlights: → Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. → Central iron atom of heme and cysteine-114 of STC1 are essential for binding. → STC1 binds Fe 2+ and Fe 3+ heme. → STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys 114 as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H 2 O 2 induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  3. Study of 123I-IMP SPECT on diabetic patients

    International Nuclear Information System (INIS)

    Kinoshita, Ikuo; Takeo, Goh; Iwanaga, Keisuke; Uotani, Shigeo; Nakamura, Minoru; Sohda, Masanori; Ohe, Haruto; Toshimitsu, Takashi; Ohe, Nobuharu

    1991-01-01

    The involvement of peripheral nerves and nerve roots often leads to neurological manifestations which have frequently been described in association with diabetes mellitus. Whether there is any specific involvement of the central nervous system in this process has yet to be determined. Recently, many reports have suggested that significant neurophysiologic abnormalities in the central nervous system can sometimes be found in diabetic patients. In order to accurately examine the existence of central nervous system involvement in patients with diabetes mellitus, comparisons of 123 I-IMP (IMP) washout rates were made between normal adults (n=19, average age 43.3 years) and diabetic patients (n=23, average age 43.3 years), and these results were graphically demonstrated by color images. Early images were obtained 30 minutes after intravenous injection, while delayed images were made 4 hours after injection. The IMP washout rate was obtained by subtracting the values of the delayed image with the early image. The standard deviation (SD) of the IMP washout rate for each patient was compared to the averaged SD obtained from healthy adults. After calculating the deviation from SD levels of healthy adults, we made an image of the patient's IMP washout rates. These images were divided into seven degrees (I, II: normal, III, IV: borderline, V∼VII: abnormal) and the ratio of each degree was expressed by a histogram in each cerebral hemisphere as the washout rate index. In 23 diabetic subjects, seven patients were found to be borderline while sixteen patients were abnormal. These impairments were not related either to the presence of diabetic triopathy or the duration of disease. By utilising such a noninvasive method, we were able to accurately evaluate the extent of diabetic central neuropathy. Therefore this subtraction method, which uses the specificity of IMP SPECT, is thus considered to be highly useful for broad clinical application. (author)

  4. A tetrodotoxin-binding protein in the hemolymph of shore crab Hemigrapsus sanguineus: purification and properties.

    Science.gov (United States)

    Nagashima, Yuji; Yamamoto, Kazuhiko; Shimakura, Kuniyoshi; Shiomi, Kazuo

    2002-06-01

    The shore crab Hemigrapsus sanguineus hemolymph contains soluble proteins that bind tetrodotoxin (TTX) and are responsible for high resistance of the crab to TTX. The TTX-binding protein was purified from the hemolymph by ultrafiltration, lectin affinity chromatography and gel filtration HPLC. The purified protein gave only one band in native-polyacrylamide gel electrophoresis (PAGE), confirming its homogeneity. Its molecular weight was estimated to be about 400k by gel filtration HPLC, while it was estimated to be about 82k under non-reducing conditions and about 72 and 82k under reducing conditions by SDS-PAGE, indicating that the TTX-binding protein was composed of at least two distinct subunits. The TTX-binding protein was an acidic glycoprotein with pI 3.5, abundant in Asp and Glu but absent in Trp, and contained 6% reducing sugar and 12% amino sugar. The protein selectively bound to TTX, with a neutralizing ability of 6.7 mouse unit TTX/mg protein, but not to paralytic shellfish poisoning toxins. However, its neutralizing activity was almost lost by treatments with enzymes (protease XIV, thermolysin, trypsin, amyloglucosidase and alpha-amylase) and denaturing agents (1% SDS, 1% dithiothreitol, 8 M urea and 6 M guanidine hydrochloride), suggesting the involvement of both proteinaceous and sugar moieties in the binding to TTX and the importance of the steric conformation of the TTX-binding protein. Copright 2002 Elsevier Science Ltd.

  5. Esophageal cancer alters the expression of nuclear pore complex binding protein Hsc70 and eIF5A-1.

    Science.gov (United States)

    Moghanibashi, Mehdi; Rastgar Jazii, Ferdous; Soheili, Zahra-Soheila; Zare, Maryam; Karkhane, Aliasghar; Parivar, Kazem; Mohamadynejad, Parisa

    2013-06-01

    Nuclear pore complex (NPC) is the only corridor for macromolecules exchange between nucleus and cytoplasm. NPC and its components, nucleoporins, play important role in the diverse physiological processes including macromolecule exchange, chromosome segregation, apoptosis and gene expression. Recent reports also suggest involvement of nucleoporins in carcinogenesis. Applying proteomics, we analyzed expression pattern of the NPC components in a newly established esophageal cancer cell line from Persia (Iran), the high-risk region for esophageal cancer. Our results indicate overexpression of Hsc70 and downregulation of subunit alpha type-3 of proteasome, calpain small subunit 1, and eIF5A-1. Among these proteins, Hsc70 and eIF5A-1 are in direct interaction with NPC and involved in the nucleocytoplasmic exchange. Hsc70 plays a critical role as a chaperone in the formation of a cargo-receptor complex in nucleocytoplasmic transport. On the other hand, it is an NPC-associated protein that binds to nucleoporins and contributes in recycling of the nucleocytoplasmic transport receptors in mammals and affects transport of proteins between nucleus and cytoplasm. The other nuclear pore interacting protein: eIF5A-1 binds to the several nucleoporins and participates in nucleocytoplasmic transport. Altered expression of Hsc70 and eIF5A-1 may cause defects in nucleocytoplasmic transport and play a role in esophageal carcinogenesis.

  6. The PP1 binding code: a molecular-lego strategy that governs specificity.

    Science.gov (United States)

    Heroes, Ewald; Lesage, Bart; Görnemann, Janina; Beullens, Monique; Van Meervelt, Luc; Bollen, Mathieu

    2013-01-01

    Ser/Thr protein phosphatase 1 (PP1) is a single-domain hub protein with nearly 200 validated interactors in vertebrates. PP1-interacting proteins (PIPs) are ubiquitously expressed but show an exceptional diversity in brain, testis and white blood cells. The binding of PIPs is mainly mediated by short motifs that dock to surface grooves of PP1. Although PIPs often contain variants of the same PP1 binding motifs, they differ in the number and combination of docking sites. This molecular-lego strategy for binding to PP1 creates holoenzymes with unique properties. The PP1 binding code can be described as specific, universal, degenerate, nonexclusive and dynamic. PIPs control associated PP1 by interference with substrate recruitment or access to the active site. In addition, some PIPs have a subcellular targeting domain that promotes dephosphorylation by increasing the local concentration of PP1. The diversity of the PP1 interactome and the properties of the PP1 binding code account for the exquisite specificity of PP1 in vivo. © 2012 The Authors Journal compilation © 2012 FEBS.

  7. Clinical research on quantitative imaging of cerebral blood flow using 123I-IMP

    International Nuclear Information System (INIS)

    Kinoshita, Hirofumi

    1987-01-01

    Cerebral blood flow measurement was performed using N-Isopropyl-p-( 123 I)-Iodoam-phetamine (IMP) and rotating gammacamera emission computed tomography (ECT), and a new quantitative profile curve was designed. There was a good correlation between the cerebral blood flow measured by intravenous Xe-133 method and that measured by IMP method in ten normal volunteers. IMP-ECT was performed in 40 patients with various cerebral diseases. The following results were obtained: 1. Minimum recognizable cerebral blood flow difference was 5 ml/100 g/min. 2. Quantitative redistribution was observed in approximately half of the cases which showed qualitative redistribution. 3. The incidence of crossed cerebellar diaschiasis was high among patients with significant cerebral disease (8 cases/10 cases). (author)

  8. The stress granule protein Vgl1 and poly(A)-binding protein Pab1 are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Morita, Takahiro; Satoh, Ryosuke; Umeda, Nanae; Kita, Ayako; Sugiura, Reiko

    2012-01-01

    Highlights: ► Stress granules (SGs) as a mechanism of doxorubicin tolerance. ► We characterize the role of stress granules in doxorubicin tolerance. ► Deletion of components of SGs enhances doxorubicin sensitivity in fission yeast. ► Doxorubicin promotes SG formation when combined with heat shock. ► Doxorubicin regulates stress granule assembly independent of eIF2α phosphorylation. -- Abstract: Doxorubicin is an anthracycline antibiotic widely used for chemotherapy. Although doxorubicin is effective in the treatment of several cancers, including solid tumors and leukemias, the basis of its mechanism of action is not completely understood. Here, we describe the effects of doxorubicin and its relationship with stress granules formation in the fission yeast, Schizosaccharomyces pombe. We show that disruption of genes encoding the components of stress granules, including vgl1 + , which encodes a multi-KH type RNA-binding protein, and pab1 + , which encodes a poly(A)-binding protein, resulted in greater sensitivity to doxorubicin than seen in wild-type cells. Disruption of the vgl1 + and pab1 + genes did not confer sensitivity to other anti-cancer drugs such as cisplatin, 5-fluorouracil, and paclitaxel. We also showed that doxorubicin treatment promoted stress granule formation when combined with heat shock. Notably, doxorubicin treatment did not induce hyperphosphorylation of eIF2α, suggesting that doxorubicin is involved in stress granule assembly independent of eIF2α phosphorylation. Our results demonstrate the usefulness of fission yeast for elucidating the molecular targets of doxorubicin toxicity and suggest a novel drug-resistance mechanism involving stress granule assembly.

  9. Enhancement of the infectivity of SARS-CoV in BALB/c mice by IMP dehydrogenase inhibitors, including ribavirin.

    Science.gov (United States)

    Barnard, Dale L; Day, Craig W; Bailey, Kevin; Heiner, Matthew; Montgomery, Robert; Lauridsen, Larry; Winslow, Scott; Hoopes, Justin; Li, Joseph K-K; Lee, Jongdae; Carson, Dennis A; Cottam, Howard B; Sidwell, Robert W

    2006-08-01

    Because of the conflicting data concerning the SARS-CoV inhibitory efficacy of ribavirin, an inosine monophosphate (IMP) dehydrogenase inhibitor, studies were done to evaluate the efficacy of ribavirin and other IMP dehydrogenase inhibitors (5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide (EICAR), mizoribine, and mycophenolic acid) in preventing viral replication in the lungs of BALB/c mice, a replication model for severe acute respiratory syndrome (SARS) infections (Subbarao, K., McAuliffe, J., Vogel, L., Fahle, G., Fischer, S., Tatti, K., Packard, M., Shieh, W.J., Zaki, S., Murphy, B., 2004. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus (SARS-CoV) in the respiratory tract of mice. J. Virol. 78, 3572-3577). Ribavirin given at 75 mg/kg 4 h prior to virus exposure and then given twice daily for 3 days beginning at day 0 was found to increase virus lung titers and extend the length of time that virus could be detected in the lungs of mice. Other IMP dehydrogenase inhibitors administered near maximum tolerated doses using the same dosing regimen as for ribavirin were found to slightly enhance virus replication in the lungs. In addition, ribavirin treatment seemed also to promote the production of pro-inflammatory cytokines 4 days after cessation of treatment, although after 3 days of treatment ribavirin inhibited pro-inflammatory cytokine production in infected mice, significantly reducing the levels of the cytokines IL-1alpha, interleukin-5 (IL-5), monocyte chemotactic protein-1 (MCP-1), and granulocyte-macrophage colony stimulating factor (GM-CSF). These findings suggest that ribavirin may actually contribute to the pathogenesis of SARS-CoV by prolonging and/or enhancing viral replication in the lungs. By not inhibiting viral replication in the lungs of infected mice, ribavirin treatment may have provided a continual source of stimulation for the inflammatory response

  10. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  11. Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs.

    Science.gov (United States)

    Kazakov, Alexei S; Sokolov, Andrei S; Vologzhannikova, Alisa A; Permyakova, Maria E; Khorn, Polina A; Ismailov, Ramis G; Denessiouk, Konstantin A; Denesyuk, Alexander I; Rastrygina, Victoria A; Baksheeva, Viktoriia E; Zernii, Evgeni Yu; Zinchenko, Dmitry V; Glazatov, Vladimir V; Uversky, Vladimir N; Mirzabekov, Tajib A; Permyakov, Eugene A; Permyakov, Sergei E

    2017-01-01

    Interleukin-11 (IL-11) is a hematopoietic cytokine engaged in numerous biological processes and validated as a target for treatment of various cancers. IL-11 contains intrinsically disordered regions that might recognize multiple targets. Recently we found that aside from IL-11RA and gp130 receptors, IL-11 interacts with calcium sensor protein S100P. Strict calcium dependence of this interaction suggests a possibility of IL-11 interaction with other calcium sensor proteins. Here we probed specificity of IL-11 to calcium-binding proteins of various types: calcium sensors of the EF-hand family (calmodulin, S100B and neuronal calcium sensors: recoverin, NCS-1, GCAP-1, GCAP-2), calcium buffers of the EF-hand family (S100G, oncomodulin), and a non-EF-hand calcium buffer (α-lactalbumin). A specific subset of the calcium sensor proteins (calmodulin, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants of 1-19 μM. These proteins share several amino acid residues belonging to conservative structural motifs of the EF-hand proteins, 'black' and 'gray' clusters. Replacements of the respective S100P residues by alanine drastically decrease its affinity to IL-11, suggesting their involvement into the association process. Secondary structure and accessibility of the hinge region of the EF-hand proteins studied are predicted to control specificity and selectivity of their binding to IL-11. The IL-11 interaction with the EF-hand proteins is expected to occur under numerous pathological conditions, accompanied by disintegration of plasma membrane and efflux of cellular components into the extracellular milieu.

  12. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingzhan; Shi, Kaichuang; Yoo, Dongwan, E-mail: dyoo@illinois.edu

    2016-02-15

    Type I interferons (IFN-α/β) are the major components of the innate immune response of hosts, and in turn many viruses have evolved to modulate the host response during infection. We found that the IFN-β production was significantly suppressed during PEDV infection in cells. To identify viral IFN antagonists and to study their suppressive function, viral coding sequences for the entire structural and nonstructural proteins were cloned and expressed. Of 16 PEDV nonstructural proteins (nsps), nsp1, nsp3, nsp7, nsp14, nsp15 and nsp16 were found to inhibit the IFN-β and IRF3 promoter activities. The sole accessory protein ORF3, structure protein envelope (E), membrane (M), and nucleocapsid (N) protein were also shown to inhibit such activities. PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP) by degrading CBP. A further study showed that the CBP degradation by nsp1 was proteasome-dependent. Our data demonstrate that PEDV modulates the host innate immune responses by degrading CBP and suppressing ISGs expression. - Highlights: • PEDV modulates the host innate immune system by suppressing the type I interferon production and ISGs expression. • Ten viral proteins were identified as IFN antagonists, and nsp1 was the most potent viral IFN antagonist. • PEDV nsp1 did not interfere the IRF3 phosphorylation and nuclear translocation but interrupted the enhanceosome assembly of IRF3 and CREB-binding protein (CBP). • PEDV nsp1 caused the CBP degradation in the nucleus, which may be the key mechanism for PEDV-mediated IFN downregulation.

  13. Identification of the DNA-Binding Domains of Human Replication Protein A That Recognize G-Quadruplex DNA

    Directory of Open Access Journals (Sweden)

    Aishwarya Prakash

    2011-01-01

    Full Text Available Replication protein A (RPA, a key player in DNA metabolism, has 6 single-stranded DNA-(ssDNA- binding domains (DBDs A-F. SELEX experiments with the DBDs-C, -D, and -E retrieve a 20-nt G-quadruplex forming sequence. Binding studies show that RPA-DE binds preferentially to the G-quadruplex DNA, a unique preference not observed with other RPA constructs. Circular dichroism experiments show that RPA-CDE-core can unfold the G-quadruplex while RPA-DE stabilizes it. Binding studies show that RPA-C binds pyrimidine- and purine-rich sequences similarly. This difference between RPA-C and RPA-DE binding was also indicated by the inability of RPA-CDE-core to unfold an oligonucleotide containing a TC-region 5′ to the G-quadruplex. Molecular modeling studies of RPA-DE and telomere-binding proteins Pot1 and Stn1 reveal structural similarities between the proteins and illuminate potential DNA-binding sites for RPA-DE and Stn1. These data indicate that DBDs of RPA have different ssDNA recognition properties.

  14. Modification of DNA radiolysis by DNA-binding proteins: Structural aspects

    International Nuclear Information System (INIS)

    Davidkova, M.; Stisova, V.; Goffinont, S.; Gillard, N.; Castaing, B.; Spotheim-Maurizot, M.

    2006-01-01

    Formation of specific complexes between proteins and their cognate DNA modulates the yields and the location of radiation damage on both partners of the complex. The radiolysis of DNA-protein complexes is studied for: (1) the Escherichia coli lactose operator-repressor complex, (2) the complex between DNA bearing an analogue of an abasic site and the repair protein Fpg of Lactococcus lactis. Experimental patterns of DNA damages are presented and compared to predicted damage distribution obtained using an improved version of the stochastic model RADACK. The same method is used for predicting the location of damages on the proteins. At doses lower than a threshold that depends on the system, proteins protect their specific binding site on DNA while at high doses, the studied complexes are disrupted mainly through protein damage. The loss of binding ability is the functional consequence of the amino-acids modification by OH . radicals. Many of the most probably damaged amino acids are essential for the DNA-protein interaction and within a complex are protected by DNA. (authors)

  15. Mapping the Binding Interface of VEGF and a Monoclonal Antibody Fab-1 Fragment with Fast Photochemical Oxidation of Proteins (FPOP) and Mass Spectrometry

    Science.gov (United States)

    Zhang, Ying; Wecksler, Aaron T.; Molina, Patricia; Deperalta, Galahad; Gross, Michael L.

    2017-05-01

    We previously analyzed the Fab-1:VEGF (vascular endothelial growth factor) system described in this work, with both native top-down mass spectrometry and bottom-up mass spectrometry (carboxyl-group or GEE footprinting) techniques. This work continues bottom-up mass spectrometry analysis using a fast photochemical oxidation of proteins (FPOP) platform to map the solution binding interface of VEGF and a fragment antigen binding region of an antibody (Fab-1). In this study, we use FPOP to compare the changes in solvent accessibility by quantitating the extent of oxidative modification in the unbound versus bound states. Determining the changes in solvent accessibility enables the inference of the protein binding sites (epitope and paratopes) and a comparison to the previously published Fab-1:VEGF crystal structure, adding to the top-down and bottom-up data. Using this method, we investigated peptide-level and residue-level changes in solvent accessibility between the unbound proteins and bound complex. Mapping these data onto the Fab-1:VEGF crystal structure enabled successful characterization of both the binding region and regions of remote conformation changes. These data, coupled with our previous higher order structure (HOS) studies, demonstrate the value of a comprehensive toolbox of methods for identifying the putative epitopes and paratopes for biotherapeutic antibodies.

  16. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes.

    Science.gov (United States)

    Storey, Stephen M; McIntosh, Avery L; Huang, Huan; Landrock, Kerstin K; Martin, Gregory G; Landrock, Danilo; Payne, H Ross; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2012-04-15

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2/SCP-x/L-FABP null

  17. Characterization and immunohistochemical localization of rat salivary cobalamin-binding protein and comparison with human salivary haptocorrin

    DEFF Research Database (Denmark)

    Nexø, Ebba; Poulsen, Steen Seier

    1985-01-01

    Rat saliva contains a cobalamin-binding protein that binds cobalamin as well as cobinamide. The protein binds cobalamin with an affinity constant of 8 X 10(10) l X mol-1, and it binds cobalamin over a more narrow pH range (pH 7.5-10) than does human haptocorrin. It has a Stokes radius of 2.45 nm...

  18. Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae

    Science.gov (United States)

    Zhang, S.; Lockshin, C.; Herbert, A.; Winter, E.; Rich, A.

    1992-01-01

    A putative Z-DNA binding protein, named zuotin, was purified from a yeast nuclear extract by means of a Z-DNA binding assay using [32P]poly(dG-m5dC) and [32P]oligo(dG-Br5dC)22 in the presence of B-DNA competitor. Poly(dG-Br5dC) in the Z-form competed well for the binding of a zuotin containing fraction, but salmon sperm DNA, poly(dG-dC) and poly(dA-dT) were not effective. Negatively supercoiled plasmid pUC19 did not compete, whereas an otherwise identical plasmid pUC19(CG), which contained a (dG-dC)7 segment in the Z-form was an excellent competitor. A Southwestern blot using [32P]poly(dG-m5dC) as a probe in the presence of MgCl2 identified a protein having a molecular weight of 51 kDa. The 51 kDa zuotin was partially sequenced at the N-terminal and the gene, ZUO1, was cloned, sequenced and expressed in Escherichia coli; the expressed zuotin showed similar Z-DNA binding activity, but with lower affinity than zuotin that had been partially purified from yeast. Zuotin was deduced to have a number of potential phosphorylation sites including two CDC28 (homologous to the human and Schizosaccharomyces pombe cdc2) phosphorylation sites. The hexapeptide motif KYHPDK was found in zuotin as well as in several yeast proteins, DnaJ of E.coli, csp29 and csp32 proteins of Drosophila and the small t and large T antigens of the polyoma virus. A 60 amino acid segment of zuotin has similarity to several histone H1 sequences. Disruption of ZUO1 in yeast resulted in a slow growth phenotype.

  19. Multiple Plasmodium falciparum erythrocyte membrane protein 1 variants per genome can bind IgM via its Fc fragment Fcμ

    DEFF Research Database (Denmark)

    Jeppesen, Anine; Ditlev, Sisse Bolm; Soroka, Vladyslav

    2015-01-01

    with severe clinical manifestations, such as cerebral malaria in children and placental malaria in pregnant women. PfEMP1 that can bind the Fc part of IgM (Fcμ) characterizes one such type, although the functional significance of this IgM binding to PfEMP1 remains unclear. In this study, we report...... resemble the rosette-mediating and IgM-binding PfEMP1 HB3VAR06, but none of them mediated formation of rosettes. We could map the capacity for Fc-specific IgM binding to DBLε domains near the C terminus for three of the four PfEMP1 proteins tested. Our study provides new evidence regarding Fc...

  20. IMP and NLHIAL annual report (1999)

    International Nuclear Information System (INIS)

    2000-07-01

    In the year of 1999, HIRFL-CSR, a new project proposed by IMP and NLHIAL was approved by the Chinese government, and started to build up. The research result, and activities of IMP and NLHIAL during the year of 1999 was summarized. The contents were divided into two parts. Part A presented by National Laboratory of Heavy Ion Accelerator in Lanzhou (NLHIAL). It includes experimental nuclear physics and nuclear chemistry, application of heavy ion physics, accelerator and the others. Part B presented by Institute of Modern Physics. It includes theoretical nuclear physics, experimental nuclear physics and nuclear chemistry. Application of heavy ion physics and nuclear technique, computer technique and electronics, accelerator and the others