WorldWideScience

Sample records for zinc-binding affinities independent

  1. Two zinc-binding domains in the transporter AdcA from Streptococcus pyogenes facilitate high-affinity binding and fast transport of zinc.

    Science.gov (United States)

    Cao, Kun; Li, Nan; Wang, Hongcui; Cao, Xin; He, Jiaojiao; Zhang, Bing; He, Qing-Yu; Zhang, Gong; Sun, Xuesong

    2018-04-20

    Zinc is an essential metal in bacteria. One important bacterial zinc transporter is AdcA, and most bacteria possess AdcA homologs that are single-domain small proteins due to better efficiency of protein biogenesis. However, a double-domain AdcA with two zinc-binding sites is significantly overrepresented in Streptococcus species, many of which are major human pathogens. Using molecular simulation and experimental validations of AdcA from Streptococcus pyogenes , we found here that the two AdcA domains sequentially stabilize the structure upon zinc binding, indicating an organization required for both increased zinc affinity and transfer speed. This structural organization appears to endow Streptococcus species with distinct advantages in zinc-depleted environments, which would not be achieved by each single AdcA domain alone. This enhanced zinc transport mechanism sheds light on the significance of the evolution of the AdcA domain fusion, provides new insights into double-domain transporter proteins with two binding sites for the same ion, and indicates a potential target of antimicrobial drugs against pathogenic Streptococcus species. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Mechanisms of zinc binding to the solute-binding protein AztC and transfer from the metallochaperone AztD.

    Science.gov (United States)

    Neupane, Durga P; Avalos, Dante; Fullam, Stephanie; Roychowdhury, Hridindu; Yukl, Erik T

    2017-10-20

    Bacteria can acquire the essential metal zinc from extremely zinc-limited environments by using ATP-binding cassette (ABC) transporters. These transporters are critical virulence factors, relying on specific and high-affinity binding of zinc by a periplasmic solute-binding protein (SBP). As such, the mechanisms of zinc binding and release among bacterial SBPs are of considerable interest as antibacterial drug targets. Zinc SBPs are characterized by a flexible loop near the high-affinity zinc-binding site. The function of this structure is not always clear, and its flexibility has thus far prevented structural characterization by X-ray crystallography. Here, we present intact structures for the zinc-specific SBP AztC from the bacterium Paracoccus denitrificans in the zinc-bound and apo-states. A comparison of these structures revealed that zinc loss prompts significant structural rearrangements, mediated by the formation of a sodium-binding site in the apo-structure. We further show that the AztC flexible loop has no impact on zinc-binding affinity, stoichiometry, or protein structure, yet is essential for zinc transfer from the metallochaperone AztD. We also found that 3 His residues in the loop appear to temporarily coordinate zinc and then convey it to the high-affinity binding site. Thus, mutation of any of these residues to Ala abrogated zinc transfer from AztD. Our structural and mechanistic findings conclusively identify a role for the AztC flexible loop in zinc acquisition from the metallochaperone AztD, yielding critical insights into metal binding by AztC from both solution and AztD. These proteins are highly conserved in human pathogens, making this work potentially useful for the development of novel antibiotics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Mutational analysis of the high-affinity zinc binding site validates a refined human dopamine transporter homology model.

    Directory of Open Access Journals (Sweden)

    Thomas Stockner

    Full Text Available The high-resolution crystal structure of the leucine transporter (LeuT is frequently used as a template for homology models of the dopamine transporter (DAT. Although similar in structure, DAT differs considerably from LeuT in a number of ways: (i when compared to LeuT, DAT has very long intracellular amino and carboxyl termini; (ii LeuT and DAT share a rather low overall sequence identity (22% and (iii the extracellular loop 2 (EL2 of DAT is substantially longer than that of LeuT. Extracellular zinc binds to DAT and restricts the transporter's movement through the conformational cycle, thereby resulting in a decrease in substrate uptake. Residue H293 in EL2 praticipates in zinc binding and must be modelled correctly to allow for a full understanding of its effects. We exploited the high-affinity zinc binding site endogenously present in DAT to create a model of the complete transmemberane domain of DAT. The zinc binding site provided a DAT-specific molecular ruler for calibration of the model. Our DAT model places EL2 at the transporter lipid interface in the vicinity of the zinc binding site. Based on the model, D206 was predicted to represent a fourth co-ordinating residue, in addition to the three previously described zinc binding residues H193, H375 and E396. This prediction was confirmed by mutagenesis: substitution of D206 by lysine and cysteine affected the inhibitory potency of zinc and the maximum inhibition exerted by zinc, respectively. Conversely, the structural changes observed in the model allowed for rationalizing the zinc-dependent regulation of DAT: upon binding, zinc stabilizes the outward-facing state, because its first coordination shell can only be completed in this conformation. Thus, the model provides a validated solution to the long extracellular loop and may be useful to address other aspects of the transport cycle.

  4. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity.

    Science.gov (United States)

    Abdiche, Yasmina Noubia; Yeung, Yik Andy; Chaparro-Riggers, Javier; Barman, Ishita; Strop, Pavel; Chin, Sherman Michael; Pham, Amber; Bolton, Gary; McDonough, Dan; Lindquist, Kevin; Pons, Jaume; Rajpal, Arvind

    2015-01-01

    The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG's variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG's serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates.

  5. Enrichment and Identification of the Most Abundant Zinc Binding Proteins in Developing Barley Grains by Zinc-IMAC Capture and Nano LC-MS/MS

    Directory of Open Access Journals (Sweden)

    Giuseppe Dionisio

    2018-01-01

    Full Text Available Background: Zinc accumulates in the embryo, aleurone, and subaleurone layers at different amounts in cereal grains. Our hypothesis is that zinc could be stored bound, not only to low MW metabolites/proteins, but also to high MW proteins as well. Methods: In order to identify the most abundant zinc binding proteins in different grain tissues, we microdissected barley grains into (1 seed coats; (2 aleurone/subaleurone; (3 embryo; and (4 endosperm. Initial screening for putative zinc binding proteins from the different tissue types was performed by fractionating proteins according to solubility (Osborne fractionation, and resolving those via Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE followed by polyvinylidene fluoride (PVDF membrane blotting and dithizone staining. Selected protein fractions were subjected to Zn2+-immobilized metal ion affinity chromatography, and the captured proteins were identified using nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS. Results: In the endosperm, the most abundant zinc binding proteins were the storage protein B-hordeins, gamma-, and D-hordeins, while in the embryo, 7S globulins storage proteins exhibited zinc binding. In the aleurone/subaleurone, zinc affinity captured proteins were late abundant embryogenesis proteins, dehydrins, many isoforms of non-specific lipid transfer proteins, and alpha amylase trypsin inhibitor. Conclusions: We have shown evidence that abundant barley grain proteins have been captured by Zn-IMAC, and their zinc binding properties in relationship to the possibility of zinc storage is discussed.

  6. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    Directory of Open Access Journals (Sweden)

    Person Alexandra M

    2011-11-01

    Full Text Available Abstract Background Along with high affinity binding of epibatidine (Kd1≈10 pM to α4β2 nicotinic acetylcholine receptor (nAChR, low affinity binding of epibatidine (Kd2≈1-10 nM to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after

  7. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    Science.gov (United States)

    2011-01-01

    Background Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of

  8. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains

    International Nuclear Information System (INIS)

    Vallee, B.L.; Auld, D.S.; Coleman, J.E.

    1991-01-01

    The authors recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a zinc cluster akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is ∼3.5 angstrom. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is ∼13 angstrom, and in this instance, a zinc twist is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native zinc fingers, structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent

  9. Localized frustration and binding-induced conformational change in recognition of 5S RNA by TFIIIA zinc finger.

    Science.gov (United States)

    Tan, Cheng; Li, Wenfei; Wang, Wei

    2013-12-19

    Protein TFIIIA is composed of nine tandemly arranged Cys2His2 zinc fingers. It can bind either to the 5S RNA gene as a transcription factor or to the 5S RNA transcript as a chaperone. Although structural and biochemical data provided valuable information on the recognition between the TFIIIIA and the 5S DNA/RNA, the involved conformational motions and energetic factors contributing to the binding affinity and specificity remain unclear. In this work, we conducted MD simulations and MM/GBSA calculations to investigate the binding-induced conformational changes in the recognition of the 5S RNA by the central three zinc fingers of TFIIIA and the energetic factors that influence the binding affinity and specificity at an atomistic level. Our results revealed drastic interdomain conformational changes between these three zinc fingers, involving the exposure/burial of several crucial DNA/RNA binding residues, which can be related to the competition between DNA and RNA for the binding of TFIIIA. We also showed that the specific recognition between finger 4/finger 6 and the 5S RNA introduces frustrations to the nonspecific interactions between finger 5 and the 5S RNA, which may be important to achieve optimal binding affinity and specificity.

  10. Enrichment and identification of the most abundant zinc binding proteins in developing barley grains by Zinc-IMAC capture and nano LC-MS/MS

    DEFF Research Database (Denmark)

    Dionisio, Giuseppe; Uddin, Mohammad Nasir; Vincze, Eva

    2018-01-01

    exhibited zinc binding. In the aleurone/subaleurone, zinc affinity captured proteins were late abundant embryogenesis proteins, dehydrins, many isoforms of non-specific lipid transfer proteins, and alpha amylase trypsin inhibitor. Conclusions: We have shown evidence that abundant barley grain proteins have......Background: Zinc accumulates in the embryo, aleurone, and subaleurone layers at different amounts in cereal grains. Our hypothesis is that zinc could be stored bound, not only to low MW metabolites/proteins, but also to high MW proteins as well. Methods: In order to identify the most abundant zinc...

  11. The monoclonal S9.6 antibody exhibits highly variable binding affinities towards different R-loop sequences.

    Directory of Open Access Journals (Sweden)

    Fabian König

    Full Text Available The monoclonal antibody S9.6 is a widely-used tool to purify, analyse and quantify R-loop structures in cells. A previous study using the surface plasmon resonance technology and a single-chain variable fragment (scFv of S9.6 showed high affinity (0.6 nM for DNA-RNA and also a high affinity (2.7 nM for RNA-RNA hybrids. We used the microscale thermophoresis method allowing surface independent interaction studies and electromobility shift assays to evaluate additional RNA-DNA hybrid sequences and to quantify the binding affinities of the S9.6 antibody with respect to distinct sequences and their GC-content. Our results confirm high affinity binding to previously analysed sequences, but reveals that binding affinities are highly sequence specific. Our study presents R-loop sequences that independent of GC-content and in different sequence variations exhibit either no binding, binding affinities in the micromolar range and as well high affinity binding in the nanomolar range. Our study questions the usefulness of the S9.6 antibody in the quantitative analysis of R-loop sequences in vivo.

  12. Construction of a high affinity zinc binding site in the metabotropic glutamate receptor mGluR1

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Sheppard, P O; Jensen, L B

    2001-01-01

    a molecular model of the ATD of mGluR1 based on a weak amino acid sequence similarity with a bacterial periplasmic binding protein. The ATD consists of two globular lobes, which are speculated to contract from an "open" to a "closed" conformation following agonist binding. In the present study, we have...... created a Zn(2+) binding site in mGluR1b by mutating the residue Lys(260) to a histidine. Zinc acts as a noncompetitive antagonist of agonist-induced IP accumulation on the K260H mutant with an IC(50) value of 2 microm. Alanine mutations of three potential "zinc coligands" in proximity to the introduced...

  13. Zinc Binding by Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Jasna Mrvčić

    2009-01-01

    Full Text Available Zinc is an essential trace element in all organisms. A common method for the prevention of zinc deficiency is pharmacological supplementation, especially in a highly available form of a metalloprotein complex. The potential of different microbes to bind essential and toxic heavy metals has recently been recognized. In this work, biosorption of zinc by lactic acid bacteria (LAB has been investigated. Specific LAB were assessed for their ability to bind zinc from a water solution. Significant amount of zinc ions was bound, and this binding was found to be LAB species-specific. Differences among the species in binding performance at a concentration range between 10–90 mg/L were evaluated with Langmuir model for biosorption. Binding of zinc was a fast process, strongly influenced by ionic strength, pH, biomass concentration, and temperature. The most effective metal-binding LAB species was Leuconostoc mesenteroides (27.10 mg of Zn2+ per gram of dry mass bound at pH=5 and 32 °C, during 24 h. FT-IR spectroscopy analysis and electron microscopy demonstrated that passive adsorption and active uptake of the zinc ions were involved.

  14. The artificial zinc finger coding gene 'Jazz' binds the utrophin promoter and activates transcription.

    Science.gov (United States)

    Corbi, N; Libri, V; Fanciulli, M; Tinsley, J M; Davies, K E; Passananti, C

    2000-06-01

    Up-regulation of utrophin gene expression is recognized as a plausible therapeutic approach in the treatment of Duchenne muscular dystrophy (DMD). We have designed and engineered new zinc finger-based transcription factors capable of binding and activating transcription from the promoter of the dystrophin-related gene, utrophin. Using the recognition 'code' that proposes specific rules between zinc finger primary structure and potential DNA binding sites, we engineered a new gene named 'Jazz' that encodes for a three-zinc finger peptide. Jazz belongs to the Cys2-His2 zinc finger type and was engineered to target the nine base pair DNA sequence: 5'-GCT-GCT-GCG-3', present in the promoter region of both the human and mouse utrophin gene. The entire zinc finger alpha-helix region, containing the amino acid positions that are crucial for DNA binding, was specifically chosen on the basis of the contacts more frequently represented in the available list of the 'code'. Here we demonstrate that Jazz protein binds specifically to the double-stranded DNA target, with a dissociation constant of about 32 nM. Band shift and super-shift experiments confirmed the high affinity and specificity of Jazz protein for its DNA target. Moreover, we show that chimeric proteins, named Gal4-Jazz and Sp1-Jazz, are able to drive the transcription of a test gene from the human utrophin promoter.

  15. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport

    International Nuclear Information System (INIS)

    Hempe, J.M.; Cousins, R.J.

    1991-01-01

    The mechanism of zinc absorption has not been delineated, but kinetic studies show that both passive and carrier-mediated processes are involved. The authors have identified a low molecular mass zinc-binding protein in the soluble fraction of rat intestinal mucosa that could function as an intracellular zinc carrier. The protein was not detected in liver or pancreas, suggesting a role specific to the intestine. The protein binds zinc during transmucosal zinc transport and shows signs of saturation at higher luminal zinc concentrations, characteristics consistent with a role in carrier-mediated zinc absorption. Microsequence analysis of the protein purified by gel-filtration HPCL and SDS/PAGE showed complete identity within the first 41 N-terminal amino acids with the deduced protein sequence of cysteine-rich intestinal protein. These investigators showed that the gene for this protein is developmentally regulated in neonates during the suckling period, conserved in many vertebrate species, and predominantly expressed in the small intestine. Cysteine-rich intestinal protein contains a recently identified conserved sequence of histidine and cysteine residues, the LIM motif, which our results suggest confers metal-binding properties that are important for zinc transport and/or functions of this micronutrient

  16. Solution structure of an archaeal DNA binding protein with an eukaryotic zinc finger fold.

    Directory of Open Access Journals (Sweden)

    Florence Guillière

    Full Text Available While the basal transcription machinery in archaea is eukaryal-like, transcription factors in archaea and their viruses are usually related to bacterial transcription factors. Nevertheless, some of these organisms show predicted classical zinc fingers motifs of the C2H2 type, which are almost exclusively found in proteins of eukaryotes and most often associated with transcription regulators. In this work, we focused on the protein AFV1p06 from the hyperthermophilic archaeal virus AFV1. The sequence of the protein consists of the classical eukaryotic C2H2 motif with the fourth histidine coordinating zinc missing, as well as of N- and C-terminal extensions. We showed that the protein AFV1p06 binds zinc and solved its solution structure by NMR. AFV1p06 displays a zinc finger fold with a novel structure extension and disordered N- and C-termini. Structure calculations show that a glutamic acid residue that coordinates zinc replaces the fourth histidine of the C2H2 motif. Electromobility gel shift assays indicate that the protein binds to DNA with different affinities depending on the DNA sequence. AFV1p06 is the first experimentally characterised archaeal zinc finger protein with a DNA binding activity. The AFV1p06 protein family has homologues in diverse viruses of hyperthermophilic archaea. A phylogenetic analysis points out a common origin of archaeal and eukaryotic C2H2 zinc fingers.

  17. Zinc blotting assay for detection of zinc binding prolamin in barley (Hordeum vulgare) grain

    DEFF Research Database (Denmark)

    Uddin, Mohammad Nasir; Nielsen, Ane Langkilde-Lauesen; Vincze, Eva

    2014-01-01

    In plants, zinc is commonly found bound to proteins. In barley (Hordeum vulgare), major storage proteins are alcohol-soluble prolamins known as hordeins, and some of them have the potential to bind or store zinc. 65Zn overlay and blotting techniques have been widely used for detecting zinc......-binding protein. However, to our knowledge so far this zinc blotting assay has never been applied to detect a prolamin fraction in barley grains. A radioactive zinc (65ZnCl2) blotting technique was optimized to detect zinc-binding prolamins, followed by development of an easy-to-follow nonradioactive colorimetric...... zinc blotting method with a zinc-sensing dye, dithizone. Hordeins were extracted from mature barley grain, separated by SDS-PAGE, blotted on a membrane, renatured, overlaid, and probed with zinc; subsequently, zinc-binding specificity of certain proteins was detected either by autoradiography or color...

  18. The intervening domain from MeCP2 enhances the DNA affinity of the methyl binding domain and provides an independent DNA interaction site.

    Science.gov (United States)

    Claveria-Gimeno, Rafael; Lanuza, Pilar M; Morales-Chueca, Ignacio; Jorge-Torres, Olga C; Vega, Sonia; Abian, Olga; Esteller, Manel; Velazquez-Campoy, Adrian

    2017-01-31

    Methyl-CpG binding protein 2 (MeCP2) preferentially interacts with methylated DNA and it is involved in epigenetic regulation and chromatin remodelling. Mutations in MeCP2 are linked to Rett syndrome, the leading cause of intellectual retardation in girls and causing mental, motor and growth impairment. Unstructured regions in MeCP2 provide the plasticity for establishing interactions with multiple binding partners. We present a biophysical characterization of the methyl binding domain (MBD) from MeCP2 reporting the contribution of flanking domains to its structural stability and dsDNA interaction. The flanking disordered intervening domain (ID) increased the structural stability of MBD, modified its dsDNA binding profile from an entropically-driven moderate-affinity binding to an overwhelmingly enthalpically-driven high-affinity binding. Additionally, ID provided an additional site for simultaneously and autonomously binding an independent dsDNA molecule, which is a key feature linked to the chromatin remodelling and looping activity of MeCP2, as well as its ability to interact with nucleosomes replacing histone H1. The dsDNA interaction is characterized by an unusually large heat capacity linked to a cluster of water molecules trapped within the binding interface. The dynamics of disordered regions together with extrinsic factors are key determinants of MeCP2 global structural properties and functional capabilities.

  19. USING MICROSCALE THERMOPHORESIS TO EASILY MEASURE BINDING AFFINITY

    Directory of Open Access Journals (Sweden)

    Dennis Breitsprecher*

    2018-03-01

    Full Text Available While it’s very common for biologists and chemists to test whether or not two molecules interact with each other, it’s much more useful to gather information on the nature of that interaction. How strong is it? How long will it last? What does that mean for its biological function? One way to answer these questions is to study affinity. Binding affinity is defined as the strength of the binding interaction between a single biomolecule to its binding partner, or ligand, and it can be quantifiably measured, providing information on whether or not molecules are interacting, as well as assigning a value to the affinity. When measuring binding affinity, there are several parameters to look at, but the dissociation constant (Kd, which defines the likelihood that an interaction between two molecules will break, is a very common measurement. The smaller the dissociation constant, the more tightly bound the ligand is, and the higher the affinity is between the two molecules.

  20. Fatty acid and drug binding to a low-affinity component of human serum albumin, purified by affinity chromatography

    DEFF Research Database (Denmark)

    Vorum, H; Pedersen, A O; Honoré, B

    1992-01-01

    Binding equilibria for decanoate to a defatted, commercially available human serum albumin preparation were investigated by dialysis exchange rate determinations. The binding isotherm could not be fitted by the general binding equation. It was necessary to assume that the preparation was a mixture...... of two albumin components about 40% of the albumin having high affinity and about 60% having low affinity. By affinity chromatography we succeeded in purifying the low-affinity component from the mixture. The high-affinity component, however, could not be isolated. We further analyzed the fatty acid...... and drug binding abilities of the low-affinity component. The fatty acids decanoate, laurate, myristate and palmitate were bound with higher affinity to the mixture than to the low-affinity component. Diazepam was bound with nearly the same affinity to the low-affinity component as to the albumin mixture...

  1. The serotonin transporter: Examination of the changes in transporter affinity induced by ligand binding

    International Nuclear Information System (INIS)

    Humphreys, C.J.

    1989-01-01

    The plasmalemmal serotonin transporter uses transmembrane gradients of Na + , Cl - and K + to accumulate serotonin within blood platelets. Transport is competitively inhibited by the antidepressant imipramine. Like serotonin transport, imipramine binding requires Na + . Unlike serotonin, however, imipramine does not appear to be transported. To gain insight into the mechanism of serotonin transport the author have analyzed the influences of Na + and Cl - , the two ions cotransported with serotonin, on both serotonin transport and the interaction of imipramine and other antidepressant drugs with the plasmalemmal serotonin transporter of human platelets. Additionally, the author have synthesized, purified and characterized the binding of 2-iodoimipramine to the serotonin transporter. Finally, the author have conducted a preliminary study of the inhibition of serotonin transport and imipramine binding produced by dicyclohexylcarbodiimide. My results reveal many instances of positive heterotropic cooperativity in ligand binding to the serotonin transporter. Na + binding enhances the transporters affinity for imipramine and several other antidepressant drugs, and also increases the affinity for Cl - . Cl - enhances the transporters affinity for imipramine, as well as for Na + . At concentrations in the range of its K M for transport serotonin is a competitive inhibitor of imipramine binding. At much higher concentrations, however, serotonin also inhibits imipramines dissociation rate constant. This latter effect which is Na + -independent and species specific, is apparently produced by serotonin binding at a second, low affinity site on, or near, the transporter complex. Iodoimipramine competitively inhibit both [ 3 H]imipramine binding and [ 3 H]serotonin transport

  2. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    Science.gov (United States)

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. Characterization of little skate (Leucoraja erinacea) recombinant transthyretin: Zinc-dependent 3,3',5-triiodo-l-thyronine binding.

    Science.gov (United States)

    Suzuki, Shunsuke; Kasai, Kentaro; Yamauchi, Kiyoshi

    2015-01-01

    Transthyretin (TTR) diverged from an ancestral 5-hydroxyisourate hydrolase (HIUHase) by gene duplication at some early stage of chordate evolution. To clarify how TTR had participated in the thyroid system as an extracellular thyroid hormone (TH) binding protein, TH binding properties of recombinant little skate Leucoraja erinacea TTR was investigated. At the amino acid level, skate TTR showed 37-46% identities with the other vertebrate TTRs. Because the skate TTR had a unique histidine-rich segment in the N-terminal region, it could be purified by Ni-affinity chromatography. The skate TTR was a 46-kDa homotetramer of 14.5kDa subunits, and had one order of magnitude higher affinity for 3,3',5-triiodo-l-thyronine (T3) and some halogenated phenols than for l-thyroxine. However, the skate TTR had no HIUHase activity. Ethylenediaminetetraacetic acid (EDTA) treatment inhibited [(125)I]T3 binding activity whereas the addition of Zn(2+) to the EDTA-treated TTR recovered [(125)I]T3 binding activity in a Zn(2+) concentration-dependent manner. Scatchard analysis revealed the presence of two classes of binding site for T3, with dissociation constants of 0.24 and 17nM. However, the high-affinity sites were completely abolished with 1mM EDTA, whereas the remaining low-affinity sites decreased binding capacity. The number of zinc per TTR was quantified to be 4.5-6.3. Our results suggest that skate TTR has tight Zn(2+)-binding sites, which are essential for T3 binding to at least the high-affinity sites. Zn(2+) binding to the N-terminal histidine-rich segment may play an important role in acquisition or reinforcement of TH binding ability during early evolution of TTR. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The binding of glucose to yeast hexokinase monomers is independent of ionic strength.

    Science.gov (United States)

    Mayes, E L; Hoggett, J G; Kellett, G L

    1982-05-01

    Hoggett & Kellett [Eur. J. Biochem. 66, 65-77 (1976)] have reported that the binding of glucose to the monomer of hexokinase PII isoenzyme is independent of ionic strength, in contrast to the subsequent claim of Feldman & Kramp [Biochemistry 17, 1541-1547 (1978)] that the binding is strongly dependent on ionic strength. Since measurements with native hexokinase P forms are complicated by the fact that the enzyme exists in a monomer-dimer association-dissociation equilibrium, we have now studied the binding of glucose to the proteolytically-modified S forms which are monomeric. At pH 8.5, the affinity of glucose for both SI and SII monomers is independent of salt concentration over the range of KCl concentrations 0-1.0 mol . dm-3 and is in good agreement with that of the corresponding P forms in both low and high salt. These observations confirm that the binding of glucose to hexokinase P monomers is independent of ionic strength and that the affinity of glucose for the hexokinase PII monomer is about an order of magnitude greater than that for the dimer.

  5. Accurate and sensitive quantification of protein-DNA binding affinity.

    Science.gov (United States)

    Rastogi, Chaitanya; Rube, H Tomas; Kribelbauer, Judith F; Crocker, Justin; Loker, Ryan E; Martini, Gabriella D; Laptenko, Oleg; Freed-Pastor, William A; Prives, Carol; Stern, David L; Mann, Richard S; Bussemaker, Harmen J

    2018-04-17

    Transcription factors (TFs) control gene expression by binding to genomic DNA in a sequence-specific manner. Mutations in TF binding sites are increasingly found to be associated with human disease, yet we currently lack robust methods to predict these sites. Here, we developed a versatile maximum likelihood framework named No Read Left Behind (NRLB) that infers a biophysical model of protein-DNA recognition across the full affinity range from a library of in vitro selected DNA binding sites. NRLB predicts human Max homodimer binding in near-perfect agreement with existing low-throughput measurements. It can capture the specificity of the p53 tetramer and distinguish multiple binding modes within a single sample. Additionally, we confirm that newly identified low-affinity enhancer binding sites are functional in vivo, and that their contribution to gene expression matches their predicted affinity. Our results establish a powerful paradigm for identifying protein binding sites and interpreting gene regulatory sequences in eukaryotic genomes. Copyright © 2018 the Author(s). Published by PNAS.

  6. The study of zinc ions binding to casein.

    Science.gov (United States)

    Pomastowski, P; Sprynskyy, M; Buszewski, B

    2014-08-01

    The presented research was focused on physicochemical study of casein properties and the kinetics of zinc ions binding to the protein. Moreover, a fast and simple method of casein extraction from cow's milk has been proposed. Casein isoforms, zeta potential (ζ) and particle size of the separated caseins were characterized with the use of capillary electrophoresis, zeta potential analysis and field flow fractionation (FFF) technique, respectively. The kinetics of the metal-binding process was investigated in batch adsorption experiments. Intraparticle diffusion model, first-order and zero-order kinetic models were applied to test the kinetic experimental data. Analysis of changes in infrared bands registered for casein before and after zinc binding was also performed. The obtained results showed that the kinetic process of zinc binding to casein is not homogeneous but is expressed with an initial rapid stage with about 70% of zinc ions immobilized by casein and with a much slower second step. Maximum amount of bound zinc in the experimental conditions was 30.04mgZn/g casein. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Calculation of protein-ligand binding affinities.

    Science.gov (United States)

    Gilson, Michael K; Zhou, Huan-Xiang

    2007-01-01

    Accurate methods of computing the affinity of a small molecule with a protein are needed to speed the discovery of new medications and biological probes. This paper reviews physics-based models of binding, beginning with a summary of the changes in potential energy, solvation energy, and configurational entropy that influence affinity, and a theoretical overview to frame the discussion of specific computational approaches. Important advances are reported in modeling protein-ligand energetics, such as the incorporation of electronic polarization and the use of quantum mechanical methods. Recent calculations suggest that changes in configurational entropy strongly oppose binding and must be included if accurate affinities are to be obtained. The linear interaction energy (LIE) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods are analyzed, as are free energy pathway methods, which show promise and may be ready for more extensive testing. Ultimately, major improvements in modeling accuracy will likely require advances on multiple fronts, as well as continued validation against experiment.

  8. High affinity binding of [3H]cocaine to rat liver microsomes

    International Nuclear Information System (INIS)

    El-Maghrabi, E.A.; Calligaro, D.O.; Eldefrawi, M.E.

    1988-01-01

    ] 3 H]cocaine bound reversible, with high affinity and stereospecificity to rat liver microsomes. Little binding was detected in the lysosomal, mitochondrial and nuclear fractions. The binding kinetics were slow and the kinetically calculated K/sub D/ was 2 nM. Induction of mixed function oxidases by phenobarbital did not produce significant change in [ 3 H]cocaine binding. On the other hand, chronic administration of cocaine reduced [ 3 H]cocaine binding drastically. Neither treatment affected the affinity of the liver binding protein for cocaine. Microsomes from mouse and human livers had less cocaine-binding protein and lower affinity for cocaine than those from rat liver. Binding of [ 3 H]cocaine to rat liver microsomes was insensitive to monovalent cations and > 10 fold less sensitive to biogenic amines than the cocaine receptor in rat striatum. However, the liver protein had higher affinity for cocaine and metabolites except for norcocaine. Amine uptake inhibitors displaced [ 3 H]cocaine binding to liver with a different rank order of potency than their displacement of [ 3 H]cocaine binding to striatum. This high affinity [ 3 H]cocaine binding protein in liver is not likely to be monooxygenase, but may have a role in cocaine-induced hepatotoxicity

  9. Metal binding by food components

    DEFF Research Database (Denmark)

    Tang, Ning

    for zinc binding by the investigated amino acids, peptides and proteins. The thiol group or imidazole group containing amino acids, peptides and proteins which exhibited strong zinc binding ability were further selected for interacting with zinc salts in relation to zinc absorption. The interactions...... between the above selected food components and zinc citrate or zinc phytate will lead to the enhanced solubility of zinc citrate or zinc phytate. The main driving force for this observed solubility enhancement is the complex formation between zinc and investigated food components as revealed by isothermal...... titration calorimetry and quantum mechanical calculations. This is due to the zinc binding affinity of the relatively softer ligands (investigated food components) will become much stronger than citrate or phytate when they present together in aqueous solution. This mechanism indicates these food components...

  10. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc.

    Science.gov (United States)

    Anderson, Charles T; Radford, Robert J; Zastrow, Melissa L; Zhang, Daniel Y; Apfel, Ulf-Peter; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-05-19

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling.

  11. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc

    Science.gov (United States)

    Anderson, Charles T.; Radford, Robert J.; Zastrow, Melissa L.; Zhang, Daniel Y.; Apfel, Ulf-Peter; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling. PMID:25947151

  12. Engineering of bispecific affinity proteins with high affinity for ERBB2 and adaptable binding to albumin.

    Directory of Open Access Journals (Sweden)

    Johan Nilvebrant

    Full Text Available The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein.

  13. Fragment-based quantum mechanical calculation of protein-protein binding affinities.

    Science.gov (United States)

    Wang, Yaqian; Liu, Jinfeng; Li, Jinjin; He, Xiao

    2018-04-29

    The electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method has been successfully utilized for efficient linear-scaling quantum mechanical (QM) calculation of protein energies. In this work, we applied the EE-GMFCC method for calculation of binding affinity of Endonuclease colicin-immunity protein complex. The binding free energy changes between the wild-type and mutants of the complex calculated by EE-GMFCC are in good agreement with experimental results. The correlation coefficient (R) between the predicted binding energy changes and experimental values is 0.906 at the B3LYP/6-31G*-D level, based on the snapshot whose binding affinity is closest to the average result from the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) calculation. The inclusion of the QM effects is important for accurate prediction of protein-protein binding affinities. Moreover, the self-consistent calculation of PB solvation energy is required for accurate calculations of protein-protein binding free energies. This study demonstrates that the EE-GMFCC method is capable of providing reliable prediction of relative binding affinities for protein-protein complexes. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  14. Proadifen-sensitive high affinity binding of 3H-alaproclate to liver membranes

    International Nuclear Information System (INIS)

    Ross, S.B.

    1987-01-01

    3 H-alaproclate, a selective 5 h ydroxytryptamine uptake inhibitor, was found to bind to microsomal membranes from the rat liver with high affinity (K D -=3 nM) and large capacity (B max about 2 nmol/g liver). This binding was stereoselective since S-( - )-alaproclate was 30 times more potent than the R-( + )-enantiomer to displace the 3 H-labelled racemate. Proadifen (SKF 525A), an inhibitor of cytochrome P-450, displaced the 3 H-alaproclate binding with the same, high affinity (K i =3 nM) as alaproclate itself. Repeated treatment with phenobarbital sodium (5x75 mg/kg intraperitoneally) increased the number of alaproclate binding sites 7-8 times without changing the affinity. However, most of the phenobarbital induced 3 H-alaproclate binding was not displaceable by proadifen, showing the presence of at least two different high affinity binding sites. The possible involvement of cytochrome P-450 in the alaproclate binding is discussed. (author)

  15. Sequestration of zinc oxide by fimbrial designer chelators

    DEFF Research Database (Denmark)

    Kjærgaard, Kristian; Sørensen, Jack K; Schembri, Mark

    2000-01-01

    O. Sequences responsible for ZnO adherence were identified, and distinct binding motifs were characterized. The sequences selected exhibited various degrees of affinity and specificity towards ZnO. Competitive binding experiments revealed that the sequences recognized only the oxide form of Zn. Interestingly......, one of the inserts exhibited significant homology to a specific sequence in a putative zinc-containing helicase, which suggests that searches such as this one may aid in identifying binding motifs in nature. The zinc-binding bacteria might have a use in detoxification of metal-polluted water...

  16. Two distinct affinity binding sites for IL-1 on human cell lines

    International Nuclear Information System (INIS)

    Bensimon, C.; Wakasugi, N.; Tagaya, Y.; Takakura, K.; Yodoi, J.; Tursz, T.; Wakasugi, H.

    1989-01-01

    We used two human cell lines, NK-like YT-C3 and an EBV-containing B cell line, 3B6, as models to study the receptor(s) for IL-1. Two distinct types of saturable binding sites were found on both cell lines at 37 degrees C. Between 1 pM and 100 pM of 125I-IL-1-alpha concentration, saturable binding sites were detected on the YT-C3 cells with a K of 4 x 10(-11) M. The K found for the IL-1-alpha binding sites on 3B6 cells was 7.5 x 10(-11) M. An additional binding curve was detected above 100 pM on YT-C3 cells with a K of 7 x 10(-9) M and on 3B6 cells with a K of 5 x 10(-9) M. Scatchard plot analysis revealed 600 sites/cell with high affinity binding and 7000 sites/cell with low affinity for YT-C3 cells and 300 sites/cell with high affinity binding and 6000 sites/cell with low affinity for 3B6 cells. At 37 degrees C, the internalization of 125I-labeled IL-1 occurred via both high and low affinity IL-1R on both YT-C3 and 3B6 cells, whereas the rates of internalization for high affinity binding sites on YT-C3 cells were predominant in comparison to that of low affinity binding sites. In chemical cross-linking studies of 125 I-IL-1-alpha to 3B6 and YT-C3 cells, two protein bands were immunoprecipitated with Mr around 85 to 90 kDa leading to an estimation of the Mr of the IL-1R around 68 to 72 kDa. In similar experiments, the Mr found for the IL-1R expressed on the murine T cell line EL4 was slightly higher (around 80 kDa). Whether these distinct affinity binding sites are shared by a single molecule or by various chains remains to be elucidated

  17. Peptides in headlock ? a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy

    OpenAIRE

    Braun, Michael B.; Traenkle, Bjoern; Koch, Philipp A.; Emele, Felix; Weiss, Frederik; Poetz, Oliver; Stehle, Thilo; Rothbauer, Ulrich

    2016-01-01

    Nanobodies are highly valuable tools for numerous bioanalytical and biotechnical applications. Here, we report the characterization of a nanobody that binds a short peptide epitope with extraordinary affinity. Structural analysis reveals an unusual binding mode where the extended peptide becomes part of a ?-sheet structure in the nanobody. This interaction relies on sequence-independent backbone interactions augmented by a small number of specificity-determining side chain contacts. Once boun...

  18. Reconstitution of high-affinity opioid agonist binding in brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Remmers, A.E.; Medzihradsky, F. (Univ. of Michigan Medical School, Ann Arbor (United States))

    1991-03-15

    In synaptosomal membranes from rat brain cortex, the {mu} selective agonist ({sup 3}H)dihydromorphine in the absence of sodium, and the nonselective antagonist ({sup 3}H)naltrexone in the presence of sodium, bound to two populations of opioid receptor sites with K{sub d} values of 0.69 and 8.7 nM for dihydromorphine, and 0.34 and 5.5 nM for naltrexone. The addition of 5 {mu}M guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)) strongly reduced high-affinity agonist but not antagonist binding. Exposure of the membranes to high pH reduced the number of GTP({gamma}-{sup 35}S) binding sites by 90% and low K{sub m}, opioid-sensitive GTPase activity by 95%. In these membranes, high-affinity agonist binding was abolished and modulation of residual binding by GTP({gamma}S) was diminished. Alkali treatment of the glioma cell membranes prior to fusion inhibited most of the low K{sub m} GTPase activity and prevented the reconstitution of agonist binding. The results show that high-affinity opioid agonist binding reflects the ligand-occupied receptor - guanine nucleotide binding protein complex.

  19. Investigating the DNA-binding ability of GATA-1-N-terminal zinc finger

    International Nuclear Information System (INIS)

    Wong, R.; Newton, A.; Crossley, M.; Mackay, J.

    2001-01-01

    Erythroid transcription factor GATA-1 interacts with both DNA and other proteins through its zinc finger domains (ZnFs). While it has been known for me time that the C-terminal ZnF binds DNA at GATA sites, only recently has it been observed that the N-terminal finger (NF) is capable of interacting with GATC sites. Further, a number of naturally occurring mutations in NF (V205M, G208S, R216Q, D218G) that lead to anaemia and thrombocytopenia have been identified. We are interested in characterising the NF-DNA interaction and determining the effects of mutation upon this interaction. Using nuclear magnetic resonance (NMR) spectroscopy, we have observed an interaction between recombinant NF and a 16-mer DNA duplex containing a core GATC sequence. This result forms the basis from which residues in NF involved in DNA binding can be identified, and work is being carried out to improve the quality of the NMR data with the aim of determining the solution structure of the NF-DNA complex. The DNA-binding affinity of both wild-type and mutant NFs mentioned above is also being investigated using isothermal titration calorimetry. These data suggest that the strength of the interaction between NF and the 16-mer DNA duplex is in the sub-micromolar range, and comparisons between the DNA-binding affinities of the NF mutants are being made. Together, these studies will help us to understand how GATA-1 acts as a transcriptional regulator and how mutations in NF domain of GATA-1 may lead to blood disorders

  20. Peptides in headlock--a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy.

    Science.gov (United States)

    Braun, Michael B; Traenkle, Bjoern; Koch, Philipp A; Emele, Felix; Weiss, Frederik; Poetz, Oliver; Stehle, Thilo; Rothbauer, Ulrich

    2016-01-21

    Nanobodies are highly valuable tools for numerous bioanalytical and biotechnical applications. Here, we report the characterization of a nanobody that binds a short peptide epitope with extraordinary affinity. Structural analysis reveals an unusual binding mode where the extended peptide becomes part of a β-sheet structure in the nanobody. This interaction relies on sequence-independent backbone interactions augmented by a small number of specificity-determining side chain contacts. Once bound, the peptide is fastened by two nanobody side chains that clamp it in a headlock fashion. Exploiting this unusual binding mode, we generated a novel nanobody-derived capture and detection system. Matrix-coupled nanobody enables the fast and efficient isolation of epitope-tagged proteins from prokaryotic and eukaryotic expression systems. Additionally, the fluorescently labeled nanobody visualizes subcellular structures in different cellular compartments. The high-affinity-binding and modifiable peptide tag of this system renders it a versatile and robust tool to combine biochemical analysis with microscopic studies.

  1. Binding of zinc and iron to wheat bread, wheat bran, and their components.

    Science.gov (United States)

    Ismail-Beigi, F; Faraji, B; Reinhold, J G

    1977-10-01

    Wholemeal wheat bread decreases the availability and intestinal absorption of divalent metals. To define this action further, binding of zinc in vitro to a wheat wholemeal bread (Tanok), dephytinized Tanok, and cellulose was determined at pH 5.0 to 7.5. Zinc binding by each was highly pH-dependent and reached a maximum at pH 6.5 to 7.5. Removal of phytate from Tanok did not reduce its binding capability. Wheat bran at pH 6.5 and 6.8 bound 72% of iron (0.5 microgram/ml of solution) and 82.5% of zinc (1.43 microgram/ml solution), respectively. Lignin and two of the hemicellulose fractions of wheat bran and high binding capabilities for zinc (85.6, 87.1, and 82.1%, respectively) whereas a third had a lower zinc-binding capability (38.7%). Binding of zinc to various celluloses and dextrans is also demonstrated. Formation of complexes of these metals with wheat fiber can explain, at least in part, the decreased availability of dietary iron and zinc in wholemeal wheat bread.

  2. The nuclear localization of low risk HPV11 E7 protein mediated by its zinc binding domain is independent of nuclear import receptors

    International Nuclear Information System (INIS)

    Piccioli, Zachary; McKee, Courtney H.; Leszczynski, Anna; Onder, Zeynep; Hannah, Erin C.; Mamoor, Shahan; Crosby, Lauren; Moroianu, Junona

    2010-01-01

    We investigated the nuclear import of low risk HPV11 E7 protein using 1) transfection assays in HeLa cells with EGFP fusion plasmids containing 11E7 and its domains and 2) nuclear import assays in digitonin-permeabilized HeLa cells with GST fusion proteins containing 11E7 and its domains. The EGFP-11E7 and EGFP-11cE7 39-98 localized mostly to the nucleus. The GST-11E7 and GST-11cE7 39-98 were imported into the nuclei in the presence of either Ran-GDP or RanG19V-GTP mutant and in the absence of nuclear import receptors. This suggests that 11E7 enters the nucleus via a Ran-dependent pathway, independent of nuclear import receptors, mediated by a nuclear localization signal located in its C-terminal domain (cNLS). This cNLS contains the zinc binding domain consisting of two copies of Cys-X-X-Cys motif. Mutagenesis of Cys residues in these motifs changed the localization of the EGFP-11cE7/-11E7 mutants to cytoplasmic, suggesting that the zinc binding domain is essential for nuclear localization of 11E7.

  3. Proadifen-sensitive high affinity binding of /sup 3/H-alaproclate to liver membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, S.B.

    1987-01-01

    /sup 3/H-alaproclate, a selective 5/sub h/ydroxytryptamine uptake inhibitor, was found to bind to microsomal membranes from the rat liver with high affinity (K/sub D/-=3 nM) and large capacity (B/sub max/ about 2 nmol/g liver). This binding was stereoselective since S-( - )-alaproclate was 30 times more potent than the R-( + )-enantiomer to displace the /sup 3/H-labelled racemate. Proadifen (SKF 525A), an inhibitor of cytochrome P-450, displaced the /sup 3/H-alaproclate binding with the same, high affinity (K/sub i/=3 nM) as alaproclate itself. Repeated treatment with phenobarbital sodium (5x75 mg/kg intraperitoneally) increased the number of alaproclate binding sites 7-8 times without changing the affinity. However, most of the phenobarbital induced /sup 3/H-alaproclate binding was not displaceable by proadifen, showing the presence of at least two different high affinity binding sites. The possible involvement of cytochrome P-450 in the alaproclate binding is discussed.

  4. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  5. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    International Nuclear Information System (INIS)

    Sun, Xi; Zhou, Xixi; Du, Libo; Liu, Wenlan; Liu, Yang; Hudson, Laurie G.; Liu, Ke Jian

    2014-01-01

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  6. The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.S.; Prakash, L. (Univ. of Rochester School of Medicine, NY (USA)); Weber, S. (Kodak Research Park, Rochester, NY (USA))

    1988-07-25

    The RAD18 gene of Saccharomyces cerevisiae is required for postreplication repair of UV damaged DNA. The authors have isolated the RAD18 gene, determined its nucleotide sequence and examined if deletion mutations of this gene show different or more pronounced phenotypic effects than the previously described point mutations. The RAD18 gene open reading frame encodes a protein of 487 amino acids, with a calculated molecular weight of 55,512. The RAD18 protein contains three potential zinc finger domains for nucleic acid binding, and a putative nucleotide binding sequence that is present in many proteins that bind and hydrolyze ATP. The DNA binding and nucleotide binding activities could enable the RAD18 protein to bind damaged sites in the template DNA with high affinity. Alternatively, or in addition, RAD18 protein may be a transcriptional regulator. The RAD18 deletion mutation resembles the previously described point mutations in its effects on viability, DNA repair, UV mutagenesis, and sporulation.

  7. Topography of the high-affinity lysine binding site of plasminogen as defined with a specific antibody probe

    International Nuclear Information System (INIS)

    Miles, L.A.; Plow, E.F.

    1986-01-01

    An antibody population that reacted with the high-affinity lysine binding site of human plasminogen was elicited by immunizing rabbits with an elastase degradation product containing kringles 1-3 (EDP I). This antibody was immunopurified by affinity chromatography on plasminogen-Sepharose and elution with 0.2 M 6-aminohexanoic acid. The eluted antibodies bound [ 125 I]EDP I, [ 125 I]Glu-plasminogen, and [ 125 I]Lys-plasminogen in radioimmunoassays, and binding of each ligand was at least 99% inhibited by 0.2 M 6-aminohexanoic acid. The concentrations for 50% inhibition of [ 125 I]EDP I binding by tranexamic acid, 6-aminohexanoic acid, and lysine were 2.6, 46, and l730 μM, respectively. Similar values were obtained with plasminogen and suggested that an unoccupied high-affinity lysine binding site was required for antibody recognition. The antiserum reacted exclusively with plasminogen derivatives containing the EDP I region and did not react with those lacking an EDP I region, or with tissue plasminogen activator or prothrombin, which also contains kringles. By immunoblotting analyses, a chymotryptic degradation product of M/sub r/ 20,000 was derived from EDP I that retained reactivity with the antibody. α 2 -Antiplasmin inhibited the binding of radiolabeled EDP I, Glu-plasminogen, or Lys-plasminogen by the antiserum, suggesting that the recognized site is involved in the noncovalent interaction of the inhibitor with plasminogen. The binding of [ 125 I]EDP I to fibrin was also inhibited by the antiserum. The observations provide independent evidence for the role of the high-affinity lysine binding site in the functional interactions of plasminogen with its primary substrate and inhibitor

  8. Peptides in headlock – a novel high-affinity and versatile peptide-binding nanobody for proteomics and microscopy

    Science.gov (United States)

    Braun, Michael B.; Traenkle, Bjoern; Koch, Philipp A.; Emele, Felix; Weiss, Frederik; Poetz, Oliver; Stehle, Thilo; Rothbauer, Ulrich

    2016-01-01

    Nanobodies are highly valuable tools for numerous bioanalytical and biotechnical applications. Here, we report the characterization of a nanobody that binds a short peptide epitope with extraordinary affinity. Structural analysis reveals an unusual binding mode where the extended peptide becomes part of a β-sheet structure in the nanobody. This interaction relies on sequence-independent backbone interactions augmented by a small number of specificity-determining side chain contacts. Once bound, the peptide is fastened by two nanobody side chains that clamp it in a headlock fashion. Exploiting this unusual binding mode, we generated a novel nanobody-derived capture and detection system. Matrix-coupled nanobody enables the fast and efficient isolation of epitope-tagged proteins from prokaryotic and eukaryotic expression systems. Additionally, the fluorescently labeled nanobody visualizes subcellular structures in different cellular compartments. The high-affinity-binding and modifiable peptide tag of this system renders it a versatile and robust tool to combine biochemical analysis with microscopic studies. PMID:26791954

  9. An integrative computational framework based on a two-step random forest algorithm improves prediction of zinc-binding sites in proteins.

    Directory of Open Access Journals (Sweden)

    Cheng Zheng

    Full Text Available Zinc-binding proteins are the most abundant metalloproteins in the Protein Data Bank where the zinc ions usually have catalytic, regulatory or structural roles critical for the function of the protein. Accurate prediction of zinc-binding sites is not only useful for the inference of protein function but also important for the prediction of 3D structure. Here, we present a new integrative framework that combines multiple sequence and structural properties and graph-theoretic network features, followed by an efficient feature selection to improve prediction of zinc-binding sites. We investigate what information can be retrieved from the sequence, structure and network levels that is relevant to zinc-binding site prediction. We perform a two-step feature selection using random forest to remove redundant features and quantify the relative importance of the retrieved features. Benchmarking on a high-quality structural dataset containing 1,103 protein chains and 484 zinc-binding residues, our method achieved >80% recall at a precision of 75% for the zinc-binding residues Cys, His, Glu and Asp on 5-fold cross-validation tests, which is a 10%-28% higher recall at the 75% equal precision compared to SitePredict and zincfinder at residue level using the same dataset. The independent test also indicates that our method has achieved recall of 0.790 and 0.759 at residue and protein levels, respectively, which is a performance better than the other two methods. Moreover, AUC (the Area Under the Curve and AURPC (the Area Under the Recall-Precision Curve by our method are also respectively better than those of the other two methods. Our method can not only be applied to large-scale identification of zinc-binding sites when structural information of the target is available, but also give valuable insights into important features arising from different levels that collectively characterize the zinc-binding sites. The scripts and datasets are available at http://protein.cau.edu.cn/zincidentifier/.

  10. Characteristics of high affinity and low affinity adenosine binding sites in human cerebral cortex

    International Nuclear Information System (INIS)

    John, D.; Fox, I.V.

    1986-01-01

    The binding characteristics of human brain cortical membrane fractions were evaluated to test the hypothesis that there are A 1 and A 2 adenosine binding sites. The ligands used were 2-chloro(8- 3 H) adenosine and N 6 -(adenine-2, 8- 3 H) cyclohexayladenosine. Binding of chloroadenosine to human brain cortical membranes was time dependent, reversible and concentration dependent. The kinetic constant determinations from binding studies of the adenosine receptor are presented. Utilizing tritium-cyclohexyladenosine as ligand the authors observed evidence for a high affinity binding site in human brain cortical membranes with a kd of 5 nM

  11. Recent improvements to Binding MOAD: a resource for protein–ligand binding affinities and structures

    Science.gov (United States)

    Ahmed, Aqeel; Smith, Richard D.; Clark, Jordan J.; Dunbar, James B.; Carlson, Heather A.

    2015-01-01

    For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein–ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23 269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. PMID:25378330

  12. Importance of Accurate Charges in Binding Affinity Calculations: A Case of Neuraminidase Series

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kichul; Kyun, Nack Sung; Cho, Art E. [Korea Univ., Sejong (Korea, Republic of)

    2013-02-15

    It has been shown that calculating atomic charges using quantum mechanical level theory greatly improves the accuracy of docking. A protocol was developed and shown to be effective. That this protocol works is just a manifestation of the fact that electrostatic interactions are important in protein-ligand binding. In order to investigate how the same protocol helps in prediction of binding affinities, we took a series of known cocrystal structures of influenza neuraminidase inhibitors with the receptor and performed docking with Glide SP, Glide XP, and QPLD, the last being a workflow that incorporates QM/MM calculations to replace the fixed atomic charges of force fields with quantum mechanically recalculated ones at a given docking pose, and predicted the binding affinities of each cocrystal. The correlation with experimental binding affinities considerably improved with QPLD compared to Glide SP/XP yielding r{sup 2} = 0.83. The results suggest that for binding sites, such as that of neuraminidase, which are laden with hydrophilic residues, protocols such as QPLD which utilizes QM-based atomic charges can better predict the binding affinities.

  13. Serum zinc, copper, retinol-binding protein, prealbumin, and ceruloplasmin concentrations in infants receiving intravenous zinc and copper supplementation.

    Science.gov (United States)

    Lockitch, G; Godolphin, W; Pendray, M R; Riddell, D; Quigley, G

    1983-02-01

    One hundred twenty-seven newborn infants requiring parenteral nutrition were randomly assigned to receive differing amounts of zinc (40 to 400 micrograms/kg/day) and copper (20 or 40 micrograms/kg/day) supplementation within five birth weight groups (600 to 2,500 gm). The serum zinc concentration remained relatively constant in the group receiving the most zinc supplementation after two weeks of therapy, but declined sharply in the groups receiving less supplementation. No effect of increased copper intake was noted on ceruloplasmin values, but a difference in serum copper concentrations was noted at two weeks. No correlation was noted between serum zinc and copper values or among those for serum zinc, retinol-binding protein, and prealbumin. Reference ranges were defined for serum zinc, copper, retinol-binding protein, prealbumin, and ceruloplasmin in the preterm infant.

  14. APPLICATION OF IMMUNOGLOBULIN-BINDING PROTEINS A, G, L IN THE AFFINITY CHROMATOGRAPHY

    Directory of Open Access Journals (Sweden)

    О. V. Sviatenko

    2014-04-01

    Full Text Available Proteins A, G and L are native or recombinant proteins of microbial origin that bind to mammalian immunoglobulins. Preferably recombinant variants of proteins A, G, L are used in biotechnology for affinity sorbents production. Сomparative characteristics of proteins A, G, L and affinity sorbents on the basis of them, advantages and disadvantages of these proteins application as ligands in the affinity chromatography are done. Analysis of proteins A, G, L properties is presented. Binding specificities and affinities of these proteins differ between species and antibody subclass. Protein А has high affinity to human IgG1, IgG2, IgG4, mouse IgG2a, IgG2b, IgG3, goat and sheep IgG2, dog, cat, guinea pig, rabbit IgG. Protein G binds strongly to human, mouse, cow, goat, sheep and rabbit IgG. Protein L has ability of strong binding to immunoglobulin kappa-chains of human, mouse, rat and pig. Expediency of application of affinity chromatography with usage of sorbents on the basis of immobilized proteins A, G, L are shown for isolation and purification of antibodies different classes. Previously mentioned method is used as an alternative to conventional methods of protein purification, such as ion-exchange, hydrophobic interactions, metal affinity chromatography, ethanol precipitation due to simplicity in usage, possibility of one-step purification process, obtaining of proteins high level purity, multiuse at maintenance of proper storage and usage conditions. Affinity sorbents on the basis of immobilized proteins A, G, L are used not only for antibodies purification, but also for extraction of different antibodies fractions from blood serum.

  15. Crystal structure of the UBR-box from UBR6/FBXO11 reveals domain swapping mediated by zinc binding.

    Science.gov (United States)

    Muñoz-Escobar, Juliana; Kozlov, Guennadi; Gehring, Kalle

    2017-10-01

    The UBR-box is a 70-residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N-terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR-box containing E3 ubiquitin ligase that does not bind N-terminal signals. Here, we present the crystal structure of the UBR-box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR-box fold. Analysis of the structure suggests that the absence of N-terminal residue binding arises from the lack of an amino acid binding pocket. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  16. Computational estimation of rainbow trout estrogen receptor binding affinities for environmental estrogens

    International Nuclear Information System (INIS)

    Shyu, Conrad; Cavileer, Timothy D.; Nagler, James J.; Ytreberg, F. Marty

    2011-01-01

    Environmental estrogens have been the subject of intense research due to their documented detrimental effects on the health of fish and wildlife and their potential to negatively impact humans. A complete understanding of how these compounds affect health is complicated because environmental estrogens are a structurally heterogeneous group of compounds. In this work, computational molecular dynamics simulations were utilized to predict the binding affinity of different compounds using rainbow trout (Oncorhynchus mykiss) estrogen receptors (ERs) as a model. Specifically, this study presents a comparison of the binding affinity of the natural ligand estradiol-17β to the four rainbow trout ER isoforms with that of three known environmental estrogens 17α-ethinylestradiol, bisphenol A, and raloxifene. Two additional compounds, atrazine and testosterone, that are known to be very weak or non-binders to ERs were tested. The binding affinity of these compounds to the human ERα subtype is also included for comparison. The results of this study suggest that, when compared to estradiol-17β, bisphenol A binds less strongly to all four receptors, 17α-ethinylestradiol binds more strongly, and raloxifene has a high affinity for the α subtype only. The results also show that atrazine and testosterone are weak or non-binders to the ERs. All of the results are in excellent qualitative agreement with the known in vivo estrogenicity of these compounds in the rainbow trout and other fishes. Computational estimation of binding affinities could be a valuable tool for predicting the impact of environmental estrogens in fish and other animals.

  17. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins.

    Science.gov (United States)

    Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L

    2008-02-22

    One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.

  18. Recent improvements to Binding MOAD: a resource for protein-ligand binding affinities and structures.

    Science.gov (United States)

    Ahmed, Aqeel; Smith, Richard D; Clark, Jordan J; Dunbar, James B; Carlson, Heather A

    2015-01-01

    For over 10 years, Binding MOAD (Mother of All Databases; http://www.BindingMOAD.org) has been one of the largest resources for high-quality protein-ligand complexes and associated binding affinity data. Binding MOAD has grown at the rate of 1994 complexes per year, on average. Currently, it contains 23,269 complexes and 8156 binding affinities. Our annual updates curate the data using a semi-automated literature search of the references cited within the PDB file, and we have recently upgraded our website and added new features and functionalities to better serve Binding MOAD users. In order to eliminate the legacy application server of the old platform and to accommodate new changes, the website has been completely rewritten in the LAMP (Linux, Apache, MySQL and PHP) environment. The improved user interface incorporates current third-party plugins for better visualization of protein and ligand molecules, and it provides features like sorting, filtering and filtered downloads. In addition to the field-based searching, Binding MOAD now can be searched by structural queries based on the ligand. In order to remove redundancy, Binding MOAD records are clustered in different families based on 90% sequence identity. The new Binding MOAD, with the upgraded platform, features and functionalities, is now equipped to better serve its users. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Nuclear import of high risk HPV16 E7 oncoprotein is mediated by its zinc-binding domain via hydrophobic interactions with Nup62

    Energy Technology Data Exchange (ETDEWEB)

    Eberhard, Jeremy; Onder, Zeynep; Moroianu, Junona, E-mail: moroianu@bc.edu

    2013-11-15

    We previously discovered that nuclear import of high risk HPV16 E7 is mediated by a cNLS located within the zinc-binding domain via a pathway that is independent of karyopherins/importins (Angeline et al., 2003; Knapp et al., 2009). In this study we continued our characterization of the cNLS and nuclear import pathway of HPV16 E7. We find that an intact zinc-binding domain is essential for the cNLS function in mediating nuclear import of HPV16 E7. Mutagenesis of cysteine residues to alanine in each of the two CysXXCys motifs involved in zinc-binding changes the nuclear localization of the EGFP-16E7 and 2xEGFP-16E7 mutants. We further discover that a patch of hydrophobic residues, {sub 65}LRLCV{sub 69}, within the zinc-binding domain of HPV16 E7 mediates its nuclear import via hydrophobic interactions with the FG domain of the central channel nucleoporin Nup62. - Highlights: • An intact zinc-binding domain is essential for the nuclear localization of HPV16 E7. • Identification of a hydrophobic patch that is critical for the nuclear import of HPV16 E7. • HPV16 E7 interacts via its zinc-binding domain with the FG domain of Nup62.

  20. Estrogen receptor-independent catechol estrogen binding activity: protein binding studies in wild-type, Estrogen receptor-alpha KO, and aromatase KO mice tissues.

    Science.gov (United States)

    Philips, Brian J; Ansell, Pete J; Newton, Leslie G; Harada, Nobuhiro; Honda, Shin-Ichiro; Ganjam, Venkataseshu K; Rottinghaus, George E; Welshons, Wade V; Lubahn, Dennis B

    2004-06-01

    Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.

  1. Quantifying high-affinity binding of hydrophobic ligands by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Broecker, Jana; Vargas, Carolyn; Fanghänel, Jörg; Keller, Sandro

    2012-12-18

    A fast and reliable quantification of the binding thermodynamics of hydrophobic high-affinity ligands employing a new calorimetric competition experiment is described. Although isothermal titration calorimetry is the method of choice for a quantitative characterization of intermolecular interactions in solution, a reliable determination of a dissociation constant (K(D)) is typically limited to the range 100 μM > K(D) > 1 nM. Interactions displaying higher or lower K(D) values can be assessed indirectly, provided that a suitable competing ligand is available whose K(D) falls within the directly accessible affinity window. This established displacement assay, however, requires the high-affinity ligand to be soluble at high concentrations in aqueous buffer and, consequently, poses serious problems in the study of protein binding involving small-molecule ligands dissolved in organic solvents--a familiar case in many drug-discovery projects relying on compound libraries. The calorimetric competition assay introduced here overcomes this limitation, thus allowing for a detailed thermodynamic description of high-affinity receptor-ligand interactions involving poorly water-soluble compounds. Based on a single titration of receptor into a dilute mixture of the two competing ligands, this competition assay provides accurate and precise values for the dissociation constants and binding enthalpies of both high- and moderate-affinity ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation and high-affinity protein-inhibitor interactions, and explore its potential and limitations with the aid of simulations and statistical analyses.

  2. A DSC study of zinc binding to bovine serum albumin (BSA

    Directory of Open Access Journals (Sweden)

    SANJA OSTOJIC

    2007-04-01

    Full Text Available The thermal denaturation of bovine serum albumin (BSA is a kinetically and thermodynamically controlled process. The effects of zinc binding to bovine serum albumin (BSA, followed by differential scanning calorimetry (DSC, were investigated in this work, with the purpose of obtaining a better understanding of the albumin/zinc interaction. From the DSC curves, the thermodynamic parameters of protein denaturation were obtained, i.e., the temperature of thermal transition maximum (Tm, calorimetric enthalpy (DHcal, van't Hoff enthalpy (DHvH, the number of binding sites (I, II, the binding constants for each binding site (KbI, KbII and the average number of ligands bound per mole of native protein XN. The thermodynamic data of protein unfolding showed that zinc binding to bovine serum albumin increases the stability of the protein (higher values of DHcal and the different ratio DHcal/DHvH indicates the perturbation of the protein during thermal denaturation.

  3. Defining carbohydrate binding of glucan phosphatases via Affinity gel electrophoresis

    DEFF Research Database (Denmark)

    Auger, Kyle; Raththagala, Madushi; Wilkens, Casper

    2016-01-01

    was to determine a technique to measure carbohydrate binding quickly and efficiently. We established a protocol to reproducibly and quantitatively measure the binding of the enzymes to glucans utilizing Affinity Gel Electrophoresis (AGE). The results show that the various glucan phosphatases possess differing...

  4. Sequence2Vec: A novel embedding approach for modeling transcription factor binding affinity landscape

    KAUST Repository

    Dai, Hanjun

    2017-07-26

    Motivation: An accurate characterization of transcription factor (TF)-DNA affinity landscape is crucial to a quantitative understanding of the molecular mechanisms underpinning endogenous gene regulation. While recent advances in biotechnology have brought the opportunity for building binding affinity prediction methods, the accurate characterization of TF-DNA binding affinity landscape still remains a challenging problem. Results: Here we propose a novel sequence embedding approach for modeling the transcription factor binding affinity landscape. Our method represents DNA binding sequences as a hidden Markov model (HMM) which captures both position specific information and long-range dependency in the sequence. A cornerstone of our method is a novel message passing-like embedding algorithm, called Sequence2Vec, which maps these HMMs into a common nonlinear feature space and uses these embedded features to build a predictive model. Our method is a novel combination of the strength of probabilistic graphical models, feature space embedding and deep learning. We conducted comprehensive experiments on over 90 large-scale TF-DNA data sets which were measured by different high-throughput experimental technologies. Sequence2Vec outperforms alternative machine learning methods as well as the state-of-the-art binding affinity prediction methods.

  5. Characterization of high-affinity (/sup 3/H)ouabain binding in the rat central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Hauger, R.; Luu, H.M.; Meyer, D.K.; Goodwin, F.K.; Paul, S.M.

    1985-06-01

    The characteristics of (/sup 3/H)ouabain binding were examined in various areas of rat brain. In the striatum, Scatchard analysis revealed a single class of high-affinity binding sites with an apparent binding affinity (KD) of 10.4 +/- 0.9 nM and an estimated binding capacity (Bmax) of 7.6 +/- 1.9 pmol/mg protein. Similar monophasic Scatchard plots were found in the brainstem, cerebellum, hypothalamus, and frontal cerebral cortex. (/sup 3/H)Ouabain binding to rat brain was sodium- and ATP-dependent and strongly inhibited by potassium. Proscillariden A was the most potent cardiac glycoside tested in inhibiting specific (/sup 3/H)ouabain binding to brain membranes, and the rank order of inhibitory potencies for a series of cardiac glycosides was similar to that previously reported for inhibition of heart Na,K-ATPase. To assess whether the high-affinity binding sites for (/sup 3/H)ouabain were localized to neuronal or nonneuronal membranes, the effect of discrete kainic acid lesions on striatal (/sup 3/H)ouabain binding was examined. Kainic acid lesions of the striatum reduced (/sup 3/H)ouabain binding to striatal homogenates by 79.6 +/- 1.6%. This suggests that the high-affinity (/sup 3/H)ouabain binding sites measured in our experiments are localized to neuronal elements. Thus, the high-affinity binding of (/sup 3/H)ouabain to brain membranes may selectively label a neuronal form or conformation of Na,K-ATPase.

  6. Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Bray, J.J.; Drachman, D.B.

    1982-01-01

    Antibodies directed against acetylcholine (ACh) receptors are present in the sera of nearly 90% of patients with myasthenia gravis (MG), and are involved in the pathogenesis of this autoimmune disease. However, the antibody titers measured by the standard radioimmunoassay correspond poorly with the clinical severity of the disease. To determine whether this disparity could be accounted for by differences in the binding affinities of anti-ACh receptor antibodies in different patients, we have measured the binding affinities of these autoantibodies in 15 sera from MG patients. The affinity constants (K/sub o/), as determined by Scatchard analysis, were all in the range of 10/sup 10/ M/sup -1/, comparable to the highest values reported in immunized animals. The affinity constants were truly representative of the population of autoantibodies detected by the radioimmunoassay, as shown by the remarkable linearity of the Scatchard plots (r/sup 2/>0.90) and the close correlation between the antibody titers determined by extrapolation of the Scatchard plots and by saturation analysis (r = 0.99; p < 0.001). There was only a 6-fold variation in affinity constants measured in this series of patients despite widely differing antibody titers and severity of the disease. Factors other than the titer and affinity of anti-ACh receptor antibodies may correlate better with the clinical manifestations of MG.

  7. Salt modulates the stability and lipid binding affinity of the adipocyte lipid-binding proteins

    Science.gov (United States)

    Schoeffler, Allyn J.; Ruiz, Carmen R.; Joubert, Allison M.; Yang, Xuemei; LiCata, Vince J.

    2003-01-01

    Adipocyte lipid-binding protein (ALBP or aP2) is an intracellular fatty acid-binding protein that is found in adipocytes and macrophages and binds a large variety of intracellular lipids with high affinity. Although intracellular lipids are frequently charged, biochemical studies of lipid-binding proteins and their interactions often focus most heavily on the hydrophobic aspects of these proteins and their interactions. In this study, we have characterized the effects of KCl on the stability and lipid binding properties of ALBP. We find that added salt dramatically stabilizes ALBP, increasing its Delta G of unfolding by 3-5 kcal/mol. At 37 degrees C salt can more than double the stability of the protein. At the same time, salt inhibits the binding of the fluorescent lipid 1-anilinonaphthalene-8-sulfonate (ANS) to the protein and induces direct displacement of the lipid from the protein. Thermodynamic linkage analysis of the salt inhibition of ANS binding shows a nearly 1:1 reciprocal linkage: i.e. one ion is released from ALBP when ANS binds, and vice versa. Kinetic experiments show that salt reduces the rate of association between ANS and ALBP while simultaneously increasing the dissociation rate of ANS from the protein. We depict and discuss the thermodynamic linkages among stability, lipid binding, and salt effects for ALBP, including the use of these linkages to calculate the affinity of ANS for the denatured state of ALBP and its dependence on salt concentration. We also discuss the potential molecular origins and potential intracellular consequences of the demonstrated salt linkages to stability and lipid binding in ALBP.

  8. Production and Characterization of Desmalonichrome Relative Binding Affinity for Uranyl Ions in Relation to Other Siderophores

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Kai-For; Dai, Ziyu; Wunschel, David S.

    2016-06-24

    Siderophores are Fe binding secondary metabolites that have been investigated for their uranium binding properties. Much of the previous work has focused on characterizing hydroxamate types of siderophores, such as desferrioxamine B, for their uranyl binding affinity. Carboxylate forms of these metabolites hold potential to be more efficient chelators of uranyl, yet they have not been widely studied and are more difficult to obtain. Desmalonichrome is a carboxylate siderophore which is not commercially available and so was obtained from the ascomycete fungus Fusarium oxysporum cultivated under Fe depleted conditions. The relative affinity for uranyl binding of desmalonichrome was investigated using a competitive analysis of binding affinities between uranyl acetate and different concentrations of iron(III) chloride using electrospray ionization mass spectrometry (ESI-MS). In addition to desmalonichrome, three other siderophores, including two hydroxamates (desferrioxamine B and desferrichrome) and one carboxylate (desferrichrome A) were studied to understand their relative affinities for the uranyl ion at two pH values. The binding affinities of hydroxymate siderophores to uranyl ion were found to decrease to a greater degree at lower pH as the concentration of Fe (III) ion increases. On the other hand, lowering pH has little impact on the binding affinities between carboxylate siderophores and uranyl ion. Desmalonichrome was shown to have the greatest relative affinity for uranyl at any pH and Fe(III) concentration. These results suggest that acidic functional groups in the ligands are critical for strong chelation with uranium at lower pH.

  9. Towards Automated Binding Affinity Prediction Using an Iterative Linear Interaction Energy Approach

    Directory of Open Access Journals (Sweden)

    C. Ruben Vosmeer

    2014-01-01

    Full Text Available Binding affinity prediction of potential drugs to target and off-target proteins is an essential asset in drug development. These predictions require the calculation of binding free energies. In such calculations, it is a major challenge to properly account for both the dynamic nature of the protein and the possible variety of ligand-binding orientations, while keeping computational costs tractable. Recently, an iterative Linear Interaction Energy (LIE approach was introduced, in which results from multiple simulations of a protein-ligand complex are combined into a single binding free energy using a Boltzmann weighting-based scheme. This method was shown to reach experimental accuracy for flexible proteins while retaining the computational efficiency of the general LIE approach. Here, we show that the iterative LIE approach can be used to predict binding affinities in an automated way. A workflow was designed using preselected protein conformations, automated ligand docking and clustering, and a (semi-automated molecular dynamics simulation setup. We show that using this workflow, binding affinities of aryloxypropanolamines to the malleable Cytochrome P450 2D6 enzyme can be predicted without a priori knowledge of dominant protein-ligand conformations. In addition, we provide an outlook for an approach to assess the quality of the LIE predictions, based on simulation outcomes only.

  10. Complementary three-dimensional quantitative structure-activity relationship modeling of binding affinity and functional potency

    DEFF Research Database (Denmark)

    Tosco, Paolo; Ahring, Philip K; Dyhring, Tino

    2009-01-01

    Complementary 3D-QSAR modeling of binding affinity and functional potency is proposed as a tool to pinpoint the molecular features of the ligands, and the corresponding amino acids in the receptor, responsible for high affinity binding vs those driving agonist behavior and receptor activation. Th...

  11. Characterization of a high affinity cocaine binding site in rat brain

    International Nuclear Information System (INIS)

    Calligaro, D.; Eldefrawi, M.

    1986-01-01

    Binding of [ 3 H]cocaine to synaptic membranes from whole rat brain was reversible and saturable. Nonlinear regression analysis of binding isotherms indicated two binding affinities: one with k/sub d/ = 16 nM, B/sub max/ = 0.65 pmoles/mg protein and the other with K/sub d/ = 660 nM, B/sub max/ = 5.1 pmoles/mg protein. The high-affinity binding of [ 3 H]cocaine was sensitive to the actions of trypsin and chymotrypsin but not carboxypeptidase, and was eliminated by exposure of the membranes to 95 0 C for 5 min. Specific binding at 2 nM was higher at pH 8.8 than at pH 7.0. Binding of [ 3 H]cocaine (15 nM) was inhibited by increasing concentrations of Na + ions. Several cocaine analogues, neurotransmitter uptake inhibitors and local anesthetics displaced specific [ 3 H]cocaine binding at 2 nM with various potencies. The cocaine analogue (-)-norcocaine was the most potent (IC 50 = 10 nM), while the local anesthetic tetracaine was the least potent in inhibiting [ 3 H]cocaine binding. Several biogenic amine uptake inhibitors, including tricyclic antidepressants and phencyclidine, had IC 50 values below μM concentrations

  12. Zinc ions bind to and inhibit activated protein C

    DEFF Research Database (Denmark)

    Zhu, Tianqing; Ubhayasekera, Wimal; Nickolaus, Noëlle

    2010-01-01

    fold enhanced, presumably due to the Ca2+-induced conformational change affecting the conformation of the Zn2+-binding site. The inhibition mechanism was non-competitive both in the absence and presence of Ca2+. Comparisons of sequences and structures suggested several possible sites for zinc binding...

  13. Mononuclear zinc(II) complexes of 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols: Synthesis, structural characterization, DNA binding and cheminuclease activities

    Science.gov (United States)

    Ravichandran, J.; Gurumoorthy, P.; Karthick, C.; Kalilur Rahiman, A.

    2014-03-01

    Four new zinc(II) complexes [Zn(HL1-4)Cl2] (1-4), where HL1-4 = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, have been isolated and fully characterized using various spectro-analytical techniques. The X-ray crystal structure of complex 4 shows the distorted trigonal-bipyramidal coordination geometry around zinc(II) ion. The crystal packing is stabilized by intermolecular NH⋯O hydrogen bonding interaction. The complexes display no d-d electronic band in the visible region due to d10 electronic configuration of zinc(II) ion. The electrochemical properties of the synthesized ligands and their complexes exhibit similar voltammogram at reduction potential due to electrochemically innocent Zn(II) ion, which evidenced that the electron transfer is due to the nature of the ligand. Binding interaction of complexes with calf thymus DNA was studied by UV-Vis absorption titration, viscometric titration and cyclic voltammetry. All complexes bind with CT DNA by intercalation, giving the binding affinity in the order of 2 > 1 ≫ 3 > 4. The prominent cheminuclease activity of complexes on plasmid DNA (pBR322 DNA) was observed in the absence and presence of H2O2. Oxidative pathway reveals that the underlying mechanism involves hydroxyl radical.

  14. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144

    Energy Technology Data Exchange (ETDEWEB)

    Briers, Yves [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Schmelcher, Mathias; Loessner, Martin J. [Institute of Food Science and Nutrition, ETH Zuerich, Schmelzbergstrasse 7, CH-8092 Zuerich (Switzerland); Hendrix, Jelle; Engelborghs, Yves [Laboratory of Biomolecular Dynamics, Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200G, B-3001 Leuven (Belgium); Volckaert, Guido [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium); Lavigne, Rob, E-mail: rob.lavigne@biw.kuleuven.be [Division of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, B-3001 Leuven (Belgium)

    2009-05-29

    The binding affinity of the N-terminal peptidoglycan binding domain of endolysin KZ144 (PBD{sub KZ}), originating from Pseudomonas aeruginosa bacteriophage {phi}KZ, has been examined using a fusion protein of PBD{sub KZ} and green fluorescent protein (PBD{sub KZ}-GFP). A fluorescence recovery after photobleaching analysis of bound PBD{sub KZ}-GFP molecules showed less than 10% fluorescence recovery in the bleached area within 15 min. Surface plasmon resonance analysis confirmed this apparent high binding affinity revealing an equilibrium affinity constant of 2.95 x 10{sup 7} M{sup -1} for the PBD{sub KZ}-peptidoglycan interaction. This unique domain, which binds to the peptidoglycan of all tested Gram-negative species, was harnessed to improve the specific activity of the peptidoglycan hydrolase domain KMV36C. The chimeric peptidoglycan hydrolase (PBD{sub KZ}-KMV36C) exhibits a threefold higher specific activity than the native catalytic domain (KMV36C). These results demonstrate that the modular assembly of functional domains is a rational approach to improve the specific activity of endolysins from phages infecting Gram-negatives.

  15. Phosphatidylserine and Phosphatidylethanolamine Bind to Protein Z Cooperatively and with Equal Affinity.

    Directory of Open Access Journals (Sweden)

    Tanusree Sengupta

    Full Text Available Protein Z (PZ is an anticoagulant that binds with high affinity to Protein Z-dependent protease inhibitor (ZPI and accelerates the rate of ZPI-mediated inhibition of factor Xa (fXa by more than 1000-fold in the presence of Ca2+ and phospholipids. PZ promotion of the ZPI-fXa interaction results from the anchoring of the Gla domain of PZ onto phospholipid surfaces and positioning the bound ZPI in close proximity to the Gla-anchored fXa, forming a ternary complex of PZ/ZPI/fXa. Although interaction of PZ with phospholipid membrane appears to be absolutely crucial for its cofactor activity, little is known about the binding of different phospholipids to PZ. The present study was conceived to understand the interaction of different phospholipids with PZ. Experiments with both soluble lipids and model membranes revealed that PZ binds to phosphatidylserine (PS and phosphatidylethanolamine (PE with equal affinity (Kd~48 μM; further, PS and PE bound to PZ synergistically. Equilibrium dialysis experiments revealed two lipid-binding sites for both PS and PE. PZ binds with weaker affinity to other phospholipids, e.g., phosphatidic acid, phosphatidylglycerol, phosphatidylcholine and binding of these lipids is not synergistic with respect to PS. Both PS and PE -containing membranes supported the formation of a fXa-PZ complex. PZ protection of fXa from antithrombin inhibition were also shown to be comparable in presence of both PS: PC and PE: PC membranes. These findings are particularly important and intriguing since they suggest a special affinity of PZ, in vivo, towards activated platelets, the primary membrane involved in blood coagulation process.

  16. Modulating uranium binding affinity in engineered calmodulin EF-hand peptides: effect of phosphorylation.

    Directory of Open Access Journals (Sweden)

    Romain Pardoux

    Full Text Available To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9TKE(12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d = 25±6 nM to K(d = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d = 0.25±0.06 nM. FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as(P-O and ν(s(P-O IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as(UO(2(2+ vibration (from 923 cm(-1 to 908 cm(-1 was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.

  17. Modulating uranium binding affinity in engineered Calmodulin EF-hand peptides: effect of phosphorylation

    International Nuclear Information System (INIS)

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Guilloreau, Luc; Berthomieu, Catherine; Delangle, Pascale; Adriano, Jean-Marc

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T 9 TKE 12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K d =25±6 nM to K d =5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the sub-nanomolar range (K d = 0.25±0.06 nM). FTIR analyses showed that the phospho-threonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν as (P-O) and ν s (P-O) IR modes of phospho-threonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν as (UO 2 ) 2+ vibration (from 923 cm -1 to 908 cm -1 ) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. (authors)

  18. Mycobacterium tuberculosis nucleoid-associated DNA-binding protein H-NS binds with high-affinity to the Holliday junction and inhibits strand exchange promoted by RecA protein.

    Science.gov (United States)

    Sharadamma, N; Harshavardhana, Y; Singh, Pawan; Muniyappa, K

    2010-06-01

    A number of studies have shown that the structure and composition of bacterial nucleoid influences many a processes related to DNA metabolism. The nucleoid-associated proteins modulate not only the DNA conformation but also regulate the DNA metabolic processes such as replication, recombination, repair and transcription. Understanding of how these processes occur in the context of Mycobacterium tuberculosis nucleoid is of considerable medical importance because the nucleoid structure may be constantly remodeled in response to environmental signals and/or growth conditions. Many studies have concluded that Escherichia coli H-NS binds to DNA in a sequence-independent manner, with a preference for A-/T-rich tracts in curved DNA; however, recent studies have identified the existence of medium- and low-affinity binding sites in the vicinity of the curved DNA. Here, we show that the M. tuberculosis H-NS protein binds in a more structure-specific manner to DNA replication and repair intermediates, but displays lower affinity for double-stranded DNA with relatively higher GC content. Notably, M. tuberculosis H-NS was able to bind Holliday junction (HJ), the central recombination intermediate, with substantially higher affinity and inhibited the three-strand exchange promoted by its cognate RecA. Likewise, E. coli H-NS was able to bind the HJ and suppress DNA strand exchange promoted by E. coli RecA, although much less efficiently compared to M. tuberculosis H-NS. Our results provide new insights into a previously unrecognized function of H-NS protein, with implications for blocking the genome integration of horizontally transferred genes by homologous and/or homeologous recombination.

  19. Structural basis for ubiquitin recognition by ubiquitin-binding zinc finger of FAAP20.

    Directory of Open Access Journals (Sweden)

    Aya Toma

    Full Text Available Several ubiquitin-binding zinc fingers (UBZs have been reported to preferentially bind K63-linked ubiquitin chains. In particular, the UBZ domain of FAAP20 (FAAP20-UBZ, a member of the Fanconi anemia core complex, seems to recognize K63-linked ubiquitin chains, in order to recruit the complex to DNA interstrand crosslinks and mediate DNA repair. By contrast, it is reported that the attachment of a single ubiquitin to Rev1, a translesion DNA polymerase, increases binding of Rev1 to FAAP20. To clarify the specificity of FAAP20-UBZ, we determined the crystal structure of FAAP20-UBZ in complex with K63-linked diubiquitin at 1.9 Å resolution. In this structure, FAAP20-UBZ interacts only with one of the two ubiquitin moieties. Consistently, binding assays using surface plasmon resonance spectrometry showed that FAAP20-UBZ binds ubiquitin and M1-, K48- and K63-linked diubiquitin chains with similar affinities. Residues in the vicinity of Ala168 within the α-helix and the C-terminal Trp180 interact with the canonical Ile44-centered hydrophobic patch of ubiquitin. Asp164 within the α-helix and the C-terminal loop mediate a hydrogen bond network, which reinforces ubiquitin-binding of FAAP20-UBZ. Mutations of the ubiquitin-interacting residues disrupted binding to ubiquitin in vitro and abolished the accumulation of FAAP20 to DNA damage sites in vivo. Finally, structural comparison among FAAP20-UBZ, WRNIP1-UBZ and RAD18-UBZ revealed distinct modes of ubiquitin binding. UBZ family proteins could be divided into at least three classes, according to their ubiquitin-binding modes.

  20. Prediction of DNA-binding specificity in zinc finger proteins

    Indian Academy of Sciences (India)

    2012-06-25

    Jun 25, 2012 ... Support Vector Machine (SVM) is a state-of-the-art classifica- tion technique. Using canonical binding model, the C2H2 zinc finger protein–DNA interaction interface is modelled by the pairwise amino acid–base interactions. Using a classification framework, known examples of non-binding ZF–DNA pairs.

  1. Single-experiment displacement assay for quantifying high-affinity binding by isothermal titration calorimetry.

    Science.gov (United States)

    Krainer, Georg; Keller, Sandro

    2015-04-01

    Isothermal titration calorimetry (ITC) is the gold standard for dissecting the thermodynamics of a biomolecular binding process within a single experiment. However, reliable determination of the dissociation constant (KD) from a single titration is typically limited to the range 100 μM>KD>1 nM. Interactions characterized by a lower KD can be assessed indirectly by so-called competition or displacement assays, provided that a suitable competitive ligand is available whose KD falls within the directly accessible window. However, this protocol is limited by the fact that it necessitates at least two titrations to characterize one high-affinity inhibitor, resulting in considerable consumption of both sample material and time. Here, we introduce a fast and efficient ITC displacement assay that allows for the simultaneous characterization of both a high-affinity ligand and a moderate-affinity ligand competing for the same binding site on a receptor within a single experiment. The protocol is based on a titration of the high-affinity ligand into a solution containing the moderate-affinity ligand bound to the receptor present in excess. The resulting biphasic binding isotherm enables accurate and precise determination of KD values and binding enthalpies (ΔH) of both ligands. We discuss the theoretical background underlying the approach, demonstrate its practical application to metal ion chelation, explore its potential and limitations with the aid of simulations and statistical analyses, and elaborate on potential applications to protein-inhibitor interactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Chloroquine is a zinc ionophore.

    Directory of Open Access Journals (Sweden)

    Jing Xue

    Full Text Available Chloroquine is an established antimalarial agent that has been recently tested in clinical trials for its anticancer activity. The favorable effect of chloroquine appears to be due to its ability to sensitize cancerous cells to chemotherapy, radiation therapy, and induce apoptosis. The present study investigated the interaction of zinc ions with chloroquine in a human ovarian cancer cell line (A2780. Chloroquine enhanced zinc uptake by A2780 cells in a concentration-dependent manner, as assayed using a fluorescent zinc probe. This enhancement was attenuated by TPEN, a high affinity metal-binding compound, indicating the specificity of the zinc uptake. Furthermore, addition of copper or iron ions had no effect on chloroquine-induced zinc uptake. Fluorescent microscopic examination of intracellular zinc distribution demonstrated that free zinc ions are more concentrated in the lysosomes after addition of chloroquine, which is consistent with previous reports showing that chloroquine inhibits lysosome function. The combination of chloroquine with zinc enhanced chloroquine's cytotoxicity and induced apoptosis in A2780 cells. Thus chloroquine is a zinc ionophore, a property that may contribute to chloroquine's anticancer activity.

  3. Learning a peptide-protein binding affinity predictor with kernel ridge regression

    Science.gov (United States)

    2013-01-01

    Background The cellular function of a vast majority of proteins is performed through physical interactions with other biomolecules, which, most of the time, are other proteins. Peptides represent templates of choice for mimicking a secondary structure in order to modulate protein-protein interaction. They are thus an interesting class of therapeutics since they also display strong activity, high selectivity, low toxicity and few drug-drug interactions. Furthermore, predicting peptides that would bind to a specific MHC alleles would be of tremendous benefit to improve vaccine based therapy and possibly generate antibodies with greater affinity. Modern computational methods have the potential to accelerate and lower the cost of drug and vaccine discovery by selecting potential compounds for testing in silico prior to biological validation. Results We propose a specialized string kernel for small bio-molecules, peptides and pseudo-sequences of binding interfaces. The kernel incorporates physico-chemical properties of amino acids and elegantly generalizes eight kernels, comprised of the Oligo, the Weighted Degree, the Blended Spectrum, and the Radial Basis Function. We provide a low complexity dynamic programming algorithm for the exact computation of the kernel and a linear time algorithm for it’s approximation. Combined with kernel ridge regression and SupCK, a novel binding pocket kernel, the proposed kernel yields biologically relevant and good prediction accuracy on the PepX database. For the first time, a machine learning predictor is capable of predicting the binding affinity of any peptide to any protein with reasonable accuracy. The method was also applied to both single-target and pan-specific Major Histocompatibility Complex class II benchmark datasets and three Quantitative Structure Affinity Model benchmark datasets. Conclusion On all benchmarks, our method significantly (p-value ≤ 0.057) outperforms the current state-of-the-art methods at predicting

  4. Computational design and elaboration of a de novo heterotetrameric alpha-helical protein that selectively binds an emissive abiological (porphinato)zinc chromophore.

    Science.gov (United States)

    Fry, H Christopher; Lehmann, Andreas; Saven, Jeffery G; DeGrado, William F; Therien, Michael J

    2010-03-24

    The first example of a computationally de novo designed protein that binds an emissive abiological chromophore is presented, in which a sophisticated level of cofactor discrimination is pre-engineered. This heterotetrameric, C(2)-symmetric bundle, A(His):B(Thr), uniquely binds (5,15-di[(4-carboxymethyleneoxy)phenyl]porphinato)zinc [(DPP)Zn] via histidine coordination and complementary noncovalent interactions. The A(2)B(2) heterotetrameric protein reflects ligand-directed elements of both positive and negative design, including hydrogen bonds to second-shell ligands. Experimental support for the appropriate formulation of [(DPP)Zn:A(His):B(Thr)](2) is provided by UV/visible and circular dichroism spectroscopies, size exclusion chromatography, and analytical ultracentrifugation. Time-resolved transient absorption and fluorescence spectroscopic data reveal classic excited-state singlet and triplet PZn photophysics for the A(His):B(Thr):(DPP)Zn protein (k(fluorescence) = 4 x 10(8) s(-1); tau(triplet) = 5 ms). The A(2)B(2) apoprotein has immeasurably low binding affinities for related [porphinato]metal chromophores that include a (DPP)Fe(III) cofactor and the zinc metal ion hemin derivative [(PPIX)Zn], underscoring the exquisite active-site binding discrimination realized in this computationally designed protein. Importantly, elements of design in the A(His):B(Thr) protein ensure that interactions within the tetra-alpha-helical bundle are such that only the heterotetramer is stable in solution; corresponding homomeric bundles present unfavorable ligand-binding environments and thus preclude protein structural rearrangements that could lead to binding of (porphinato)iron cofactors.

  5. Differences between high-affinity forskolin binding sites in dopamine-riche and other regions of rat brain

    International Nuclear Information System (INIS)

    Poat, J.A.; Cripps, H.E.; Iversen, L.L.

    1988-01-01

    Forskolin labelled with [ 3 H] bound to high- and low-affinity sites in the rat brain. The high-affinity site was discretely located, with highest densities in the striatum, nucleus accumbens, olfactory tubercule, substantia nigra, hippocampus, and the molecular layers of the cerebellum. This site did not correlate well with the distribution of adenylate cyclase. The high-affinity striatal binding site may be associated with a stimulatory guanine nucleotide-binding protein. Thus, the number of sites was increased by the addition of Mg 2+ and guanylyl imidodiphosphate. Cholera toxin stereotaxically injected into rat striatum increased the number of binding sites, and no further increase was noted following the subsequent addition of guanyl nucleotide. High-affinity forskolin binding sites in non-dopamine-rich brain areas (hippocampus and cerebullum) were modulated in a qualitatively different manner by guanyl nucleotides. In these areas the number of binding sites was significantly reduced by the addition of guanyl nucleotide. These results suggest that forskolin may have a potential role in identifying different functional/structural guanine nucleotide-binding proteins

  6. Takifugu rubripes cation independent mannose 6-phosphate receptor: Cloning, expression and functional characterization of the IGF-II binding domain.

    Science.gov (United States)

    A, Ajith Kumar; Nadimpalli, Siva Kumar

    2018-07-01

    Mannose 6-phosphate/IGF-II receptor mediated lysosomal clearance of insulin-like growth factor-II is significantly associated with the evolution of placental mammals. The protein is also referred to as the IGF-II receptor. Earlier studies suggested relatively low binding affinity between the receptor and ligand in prototherian and metatherian mammals. In the present study, we cloned the IGF-II binding domain of the early vertebrate fugu fish and expressed it in bacteria. A 72000Da truncated receptor containing the IGF-II binding domain was obtained. Analysis of this protein (covering domains 11-13 of the CIMPR) for its affinity to fish and human IGF-II by ligand blot assays and ELISA showed that the expressed receptor can specifically bind to both fish and human IGF-II. Additionally, a peptide-specific antibody raised against the region of the IGF-II binding domain also was able to recognize the IGF-II binding regions of mammalian and non-mammalian cation independent MPR protein. These interactions were further characterized by Surface Plasma resonance support that the receptor binds to fish IGF-II, with a dissociation constant of 548nM. Preliminary analysis suggests that the binding mechanism as well as the affinity of the fish and human receptor for IGF-II may have varied according to different evolutionary pressures. Copyright © 2018. Published by Elsevier B.V.

  7. DNA Binding in High Salt: Analysing the Salt Dependence of Replication Protein A3 from the Halophile Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Jody A. Winter

    2012-01-01

    Full Text Available Halophilic archaea maintain intracellular salt concentrations close to saturation to survive in high-salt environments and their cellular processes have adapted to function under these conditions. Little is known regarding halophilic adaptation of the DNA processing machinery, particularly intriguing since protein-DNA interactions are classically salt sensitive. To investigate such adaptation, we characterised the DNA-binding capabilities of recombinant RPA3 from Haloferax volcanii (HvRPA3. Under physiological salt conditions (3 M KCl, HvRPA3 is monomeric, binding 18 nucleotide ssDNA with nanomolar affinity, demonstrating that RPAs containing the single OB-fold/zinc finger architecture bind with broadly comparable affinity to two OB-fold/zinc finger RPAs. Reducing the salt concentration to 1 M KCl induces dimerisation of the protein, which retains its ability to bind DNA. On circular ssDNA, two concentration-dependent binding modes are observed. Conventionally, increased salt concentration adversely affects DNA binding but HvRPA3 does not bind DNA in 0.2 M KCl, although multimerisation may occlude the binding site. The single N-terminal OB-fold is competent to bind DNA in the absence of the C-terminal zinc finger, albeit with reduced affinity. This study represents the first quantitative characterisation of DNA binding in a halophilic protein in extreme salt concentrations.

  8. Zinc binding activity of human metapneumovirus M2-1 protein is indispensable for viral replication and pathogenesis in vivo.

    Science.gov (United States)

    Cai, Hui; Zhang, Yu; Ma, Yuanmei; Sun, Jing; Liang, Xueya; Li, Jianrong

    2015-06-01

    Human metapneumovirus (hMPV) is a member of the Pneumovirinae subfamily in the Paramyxoviridae family that causes respiratory tract infections in humans. Unlike members of the Paramyxovirinae subfamily, the polymerase complex of pneumoviruses requires an additional cofactor, the M2-1 protein, which functions as a transcriptional antitermination factor. The M2-1 protein was found to incorporate zinc ions, although the specific role(s) of the zinc binding activity in viral replication and pathogenesis remains unknown. In this study, we found that the third cysteine (C21) and the last histidine (H25) in the zinc binding motif (CCCH) of hMPV M2-1 were essential for zinc binding activity, whereas the first two cysteines (C7 and C15) play only minor or redundant roles in zinc binding. In addition, the zinc binding motif is essential for the oligomerization of M2-1. Subsequently, recombinant hMPVs (rhMPVs) carrying mutations in the zinc binding motif were recovered. Interestingly, rhMPV-C21S and -H25L mutants, which lacked zinc binding activity, had delayed replication in cell culture and were highly attenuated in cotton rats. In contrast, rhMPV-C7S and -C15S strains, which retained 60% of the zinc binding activity, replicated as efficiently as rhMPV in cotton rats. Importantly, rhMPVs that lacked zinc binding activity triggered high levels of neutralizing antibody and provided complete protection against challenge with rhMPV. Taken together, these results demonstrate that zinc binding activity is indispensable for viral replication and pathogenesis in vivo. These results also suggest that inhibition of zinc binding activity may serve as a novel approach to rationally attenuate hMPV and perhaps other pneumoviruses for vaccine purposes. The pneumoviruses include many important human and animal pathogens, such as human respiratory syncytial virus (hRSV), hMPV, bovine RSV, and avian metapneumovirus (aMPV). Among these viruses, hRSV and hMPV are the leading causes of acute

  9. Two high-affinity ligand binding states of uterine estrogen receptor distinguished by modulation of hydrophobic environment

    International Nuclear Information System (INIS)

    Hutchens, T.W.; Li, C.M.; Zamah, N.M.; Besch, P.K.

    1987-01-01

    The steroid binding function of soluble (cytosolic) estrogen receptors from calf uteri was evaluated under conditions known to modify the extent of hydrophobic interaction with receptor-associated proteins. Receptor preparations were equilibrated into 6 M urea buffers and control buffers by chromatography through small columns of Sephadex G-25 or by dialysis at 0.6 0 C. Equilibrium dissociation constants (K/sub d/) and binding capacities (n) of experimental and control receptor preparations were determined by 13-point Scatchard analyses using concentrations of 17β-[ 3 H]estradiol from 0.05 to 10 nM. Nonspecific binding was determined at each concentration by parallel incubations with a 200-fold molar excess of the receptor-specific competitor diethylstilbestrol. The control receptor population was consistently found to be a single class of binding sites with a high affinity for estradiol which was unaffected by G-25 chromatography, by dialysis, by dilution, or by the presence of 0.4 M KCl. However, equilibration into 6 M urea induced a discrete (10-fold) reduction in receptor affinity to reveal a second, thermodynamically stable, high-affinity binding state. The presence of 0.4 M KCl did not significantly influence the discrete change in receptor affinity induced by urea. The effects of urea on both receptor affinity and binding capacity were reversible, suggesting a lack of covalent modification. These results demonstrate nonenzymatic means by which not only the binding capacity but also the affinity of receptor for estradiol can be reversibly controlled, suggesting that high concentrations of urea might be more effectively utilized during the physicochemical characterization and purification of steroid receptor proteins

  10. Zinc-mediated Allosteric Inhibition of Caspase-6*

    Science.gov (United States)

    Velázquez-Delgado, Elih M.; Hardy, Jeanne A.

    2012-01-01

    Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation. PMID:22891250

  11. The role of CH/π interactions in the high affinity binding of streptavidin and biotin.

    Science.gov (United States)

    Ozawa, Motoyasu; Ozawa, Tomonaga; Nishio, Motohiro; Ueda, Kazuyoshi

    2017-08-01

    The streptavidin-biotin complex has an extraordinarily high affinity (Ka: 10 15 mol -1 ) and contains one of the strongest non-covalent interactions known. This strong interaction is widely used in biological tools, including for affinity tags, detection, and immobilization of proteins. Although hydrogen bond networks and hydrophobic interactions have been proposed to explain this high affinity, the reasons for it remain poorly understood. Inspired by the deceased affinity of biotin observed for point mutations of streptavidin at tryptophan residues, we hypothesized that a CH/π interaction may also contribute to the strong interaction between streptavidin and biotin. CH/π interactions were explored and analyzed at the biotin-binding site and at the interface of the subunits by the fragment molecular orbital method (FMO) and extended applications: PIEDA and FMO4. The results show that CH/π interactions are involved in the high affinity for biotin at the binding site of streptavidin. We further suggest that the involvement of CH/π interactions at the subunit interfaces and an extended CH/π network play more critical roles in determining the high affinity, rather than involvement at the binding site. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Imparting albumin-binding affinity to a human protein by mimicking the contact surface of a bacterial binding protein.

    Science.gov (United States)

    Oshiro, Satoshi; Honda, Shinya

    2014-04-18

    Attachment of a bacterial albumin-binding protein module is an attractive strategy for extending the plasma residence time of protein therapeutics. However, a protein fused with such a bacterial module could induce unfavorable immune reactions. To address this, we designed an alternative binding protein by imparting albumin-binding affinity to a human protein using molecular surface grafting. The result was a series of human-derived 6 helix-bundle proteins, one of which specifically binds to human serum albumin (HSA) with adequate affinity (KD = 100 nM). The proteins were designed by transferring key binding residues of a bacterial albumin-binding module, Finegoldia magna protein G-related albumin-binding domain (GA) module, onto the human protein scaffold. Despite 13-15 mutations, the designed proteins maintain the original secondary structure by virtue of careful grafting based on structural informatics. Competitive binding assays and thermodynamic analyses of the best binders show that the binding mode resembles that of the GA module, suggesting that the contacting surface of the GA module is mimicked well on the designed protein. These results indicate that the designed protein may act as an alternative low-risk binding module to HSA. Furthermore, molecular surface grafting in combination with structural informatics is an effective approach for avoiding deleterious mutations on a target protein and for imparting the binding function of one protein onto another.

  13. Combined copper/zinc attachment to prion protein

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Misfolding of prion protein (PrP) is responsible for diseases such as ``mad-cow disease'' in cattle and Creutzfeldt-Jacob in humans. Extensive experimental investigation has established that this protein strongly interacts with copper ions, and this ability has been linked to its still unknown function. Attachment of other metal ions (zinc, iron, manganese) have been demonstrated as well, but none of them could outcompete copper. Recent finding, however, indicates that at intermediate concentrations both copper and zinc ions can attach to the PrP at the octarepeat region, which contains high affinity metal binding sites. Based on this evidence, we have performed density functional theory simulations to investigate the combined Cu/Zn attachment. We consider all previously reported binding modes of copper at the octarepeat region and examine a possibility simultaneous Cu/Zn attachment. We find that this can indeed occur for only one of the known binding sites, when copper changes its coordination mode to allow for attachment of zinc ion. The implications of the simultaneous attachment on neural function remain to be explored.

  14. The zinc dyshomeostasis hypothesis of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Travis J A Craddock

    Full Text Available Alzheimer's disease (AD is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ, intracellular neurofibrillary tangles (NFTs composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau, and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1 used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2 performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3 used metallomic imaging mass spectrometry (MIMS to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of

  15. The zinc dyshomeostasis hypothesis of Alzheimer's disease.

    Science.gov (United States)

    Craddock, Travis J A; Tuszynski, Jack A; Chopra, Deepak; Casey, Noel; Goldstein, Lee E; Hameroff, Stuart R; Tanzi, Rudolph E

    2012-01-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized

  16. Identification of high-affinity calmodulin-binding proteins in rat liver

    International Nuclear Information System (INIS)

    Hanley, R.M.; Dedman, J.R.; Shenolikar, S.

    1987-01-01

    The Ca 2+ -dependent binding of [ 125 I] calmodulin (CaM) to hepatic proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was utilized to identify CaM binding or acceptor proteins or CAPs. Two proteins of apparent molecular weight of 60,000 (CAP-60) and 45,000 (CAP-45) comprised > 80% of the Ca 2+ -dependent CaM binding in rat liver cytosol. CAP-60 and CAP-45 were partially purified by a variety of chromatographic steps, including affinity chromatography on CaM Sepharose. CAP-60 possessed a native molecular size of 400,000, indicating it to be the CaM-binding subunit of a larger oligomeric complex. In contrast, CAP-45 was monomeric as judged by gel filtration. Neither CAP-60 nor CAP-45 possessed chromatographic properties consistent with known CaM-dependent enzymes reported in the literature. Two-dimensional peptide mapping provided convincing evidence that CAP-60 and CAP-45 were unrelated to other well-characterized CAPs, namely Ca 2+ (CaM)-dependent protein kinase II, calcineurin, or the CaM-dependent cyclic nucleotide phosphodiesterase. The relative abundance and high affinity for CaM could suggest that these novel target proteins, CAP-60 and CAP-45, represent a dominant pathway for CaM action in the mammalian liver

  17. Seeking for Non-Zinc-Binding MMP-2 Inhibitors: Synthesis, Biological Evaluation and Molecular Modelling Studies

    Directory of Open Access Journals (Sweden)

    Alessandra Ammazzalorso

    2016-10-01

    Full Text Available Matrix metalloproteinases (MMPs are an important family of zinc-containing enzymes with a central role in many physiological and pathological processes. Although several MMP inhibitors have been synthesized over the years, none reached the market because of off-target effects, due to the presence of a zinc binding group in the inhibitor structure. To overcome this problem non-zinc-binding inhibitors (NZIs have been recently designed. In a previous article, a virtual screening campaign identified some hydroxynaphtyridine and hydroxyquinoline as MMP-2 non-zinc-binding inhibitors. In the present work, simplified analogues of previously-identified hits have been synthesized and tested in enzyme inhibition assays. Docking and molecular dynamics studies were carried out to rationalize the activity data.

  18. Zinc at glutamatergic synapses.

    Science.gov (United States)

    Paoletti, P; Vergnano, A M; Barbour, B; Casado, M

    2009-01-12

    It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.

  19. Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins.

    Science.gov (United States)

    Hanas, J S; Rodgers, J S; Bantle, J A; Cheng, Y G

    1999-11-01

    The association of lead with chromatin in cells suggests that deleterious metal effects may in part be mediated through alterations in gene function. To elucidate if and how lead may alter DNA binding of cysteine-rich zinc finger proteins, lead ions were analyzed for their ability to alter the DNA binding mechanism of the Cys(2)His(2) zinc finger protein transcription factor IIIA (TFIIIA). As assayed by DNase I protection, the interaction of TFIIIA with the 50-bp internal control region of the 5S ribosomal gene was partially inhibited by 5 microM lead ions and completely inhibited by 10 to 20 microM lead ions. Preincubation of free TFIIIA with lead resulted in DNA-binding inhibition, whereas preincubation of a TFIIIA/5S RNA complex with lead did not result in DNA-binding inhibition. Because 5S RNA binds TFIIIA zinc fingers, this result is consistent with an inhibition mechanism via lead binding to zinc fingers. The complete loss of DNase I protection on the 5S gene indicates the mechanism of inhibition minimally involves the N-terminal fingers of TFIIIA. Inhibition was not readily reversible and occurred in the presence of an excess of beta-mercaptoethanol. Inhibition kinetics were fast, progressing to completion in approximately 5 min. Millimolar concentrations of sulfhydryl-specific arsenic ions were not inhibitory for TFIIIA binding. Micromolar concentrations of lead inhibited DNA binding by Sp1, another Cys(2)His(2) finger protein, but not by the nonfinger protein AP2. Inhibition of Cys(2)His(2) zinc finger transcription factors by lead ions at concentrations near those known to have deleterious physiological effects points to new molecular mechanisms for lead toxicity in promoting disease.

  20. Zinc(II) and the single-stranded DNA binding protein of bacteriophage T4

    International Nuclear Information System (INIS)

    Gauss, P.; Krassa, K.B.; McPheeters, D.S.; Nelson, M.A.; Gold, L.

    1987-01-01

    The DNA binding domain of the gene 32 protein of the bacteriophage T4 contains a single zinc-finger sequence. The gene 32 protein is an extensively studied member of a class of proteins that bind relatively nonspecifically to single-stranded DNA. The authors have sequenced and characterized mutations in gene 32 whose defective proteins are activated by increasing the Zn(II) concentration in the growth medium. The results identify a role for the gene 32 protein in activation of T4 late transcription. Several eukaryotic proteins with zinc fingers participate in activation of transcription, and the gene 32 protein of T4 should provide a simple, well-characterized system in which genetics can be utilized to study the role of a zinc finger in nucleic acid binding and gene expression

  1. Sequence-specific DNA binding by MYC/MAX to low-affinity non-E-box motifs.

    Directory of Open Access Journals (Sweden)

    Michael Allevato

    Full Text Available The MYC oncoprotein regulates transcription of a large fraction of the genome as an obligatory heterodimer with the transcription factor MAX. The MYC:MAX heterodimer and MAX:MAX homodimer (hereafter MYC/MAX bind Enhancer box (E-box DNA elements (CANNTG and have the greatest affinity for the canonical MYC E-box (CME CACGTG. However, MYC:MAX also recognizes E-box variants and was reported to bind DNA in a "non-specific" fashion in vitro and in vivo. Here, in order to identify potential additional non-canonical binding sites for MYC/MAX, we employed high throughput in vitro protein-binding microarrays, along with electrophoretic mobility-shift assays and bioinformatic analyses of MYC-bound genomic loci in vivo. We identified all hexameric motifs preferentially bound by MYC/MAX in vitro, which include the low-affinity non-E-box sequence AACGTT, and found that the vast majority (87% of MYC-bound genomic sites in a human B cell line contain at least one of the top 21 motifs bound by MYC:MAX in vitro. We further show that high MYC/MAX concentrations are needed for specific binding to the low-affinity sequence AACGTT in vitro and that elevated MYC levels in vivo more markedly increase the occupancy of AACGTT sites relative to CME sites, especially at distal intergenic and intragenic loci. Hence, MYC binds diverse DNA motifs with a broad range of affinities in a sequence-specific and dose-dependent manner, suggesting that MYC overexpression has more selective effects on the tumor transcriptome than previously thought.

  2. High-affinity binding of two molecules of cysteine proteinases to low-molecular-weight kininogen.

    Science.gov (United States)

    Turk, B.; Stoka, V.; Björk, I.; Boudier, C.; Johansson, G.; Dolenc, I.; Colic, A.; Bieth, J. G.; Turk, V.

    1995-01-01

    Human low-molecular-weight kininogen (LK) was shown by fluorescence titration to bind two molecules of cathepsins L and S and papain with high affinity. By contrast, binding of a second molecule of cathepsin H was much weaker. The 2:1 binding stoichiometry was confirmed by titration monitored by loss of enzyme activity and by sedimentation velocity experiments. The kinetics of binding of cathepsins L and S and papain showed the two proteinase binding sites to have association rate constants kass,1 = 10.7-24.5 x 10(6) M-1 s-1 and kass,2 = 0.83-1.4 x 10(6) M-1 s-1. Comparison of these kinetic constants with previous data for intact LK and its separated domains indicate that the faster-binding site is also the tighter-binding site and is present on domain 3, whereas the slower-binding, lower-affinity site is on domain 2. These results also indicate that there is no appreciable steric hindrance for the binding of proteinases between the two binding sites or from the kininogen light chain. PMID:8528085

  3. Separation of Binding Protein of Celangulin V from the Midgut of Mythimna separata Walker by Affinity Chromatography

    Directory of Open Access Journals (Sweden)

    Lina Lu

    2015-05-01

    Full Text Available Celangulin V, an insecticidal compound isolated from the root bark of Chinese bittersweet, can affect the digestive system of insects. However, the mechanism of how Celangulin V induces a series of symptoms is still unknown. In this study, affinity chromatography was conducted through coupling of Celangulin V-6-aminoacetic acid ester to the CNBr-activated Sepharose 4B. SDS-PAGE was used to analyze the collected fraction eluted by Celangulin V. Eight binding proteins (Zinc finger protein, Thioredoxin peroxidase (TPx, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH, SUMO E3 ligase RanBP2, Transmembrane protein 1, Actin, APN and V-ATPase were obtained and identified by LC/Q-TOF-MS from the midgut of Mythimna separata larvae. The potential of these proteins to serve as target proteins involved in the insecticidal activity of Celangulin V is discussed.

  4. Characterization of high affinity [3H]triazolam binding in rat brain

    International Nuclear Information System (INIS)

    Earle, M.; Concas, A.; Yamamura, H.I.

    1986-01-01

    The hypnotic Triazolam (TZ), a triazolo (1,4)-benzodiazepine, displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. Specific binding properties of this recently tritiated TZ were characterized. The authors major objectives were the direct measurement of the temperature dependence and the GABA effect on [ 3 H]TZ binding. Saturation studies showed a shift to lower affinity at 37 0 C (K/sub d/ = 0.25 +/- 0.01 nM at O 0 C; K/sub d/ = 1.46 +/- 0.03 nM at 37 0 C) while the B/sub max/ values remained unchanged (1003 +/- 37 fmoles/mg prot. at 0 0 C and 1001 +/- 43 fmoles/mg prot. at 37 0 C). Inhibition studies showed that [ 3 H]TZ binding displayed no GABA shift at 0 0 C(K/sub i/ 0.37 +/- 0.03 nM/- GABA and K/sub i/ = 0.55 +/- 0.13 nM/+GABA) but a nearly two-fold shift was apparent at 37 0 C (K/sub i/ = 2.92 +/- 0.2 nM/-GABA; K/sub i/ = 1.37 +/- 0.11 mM/+GABA). These results were also confirmed by saturation studies in the presence or absence of GABA showing a shift to higher affinity in the presence of GABA only at 37 0 C. In Ro 15-1788/[ 3 H]TZ competition experiments the presence of GABA did not affect the inhibitory potency of Ro 15-1788 on [ 3 H]TZ binding at both temperatures. In conclusion [ 3 H]TZ binding showed an extremely high affinity for benzodiazepine receptors. In contrast to reported literature, the findings suggest that TZ interacts with benzodiazepine receptors similar to other benzodiazepine agonists

  5. The N-terminus of TDP-43 promotes its oligomerization and enhances DNA binding affinity

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chung-ke [Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan (China); Wu, Tzong-Huah [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biochemistry, Academia Sinica, Taipei 115, Taiwan (China); Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan (China); Wu, Chu-Ya [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Graduate Institute of Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Chiang, Ming-hui; Toh, Elsie Khai-Woon [Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan (China); Hsu, Yin-Chih; Lin, Ku-Feng [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Liao, Yu-heng [Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan (China); Huang, Tai-huang, E-mail: bmthh@gate.sinica.edu.tw [Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan (China); Department of Physics, National Taiwan Normal University, Taipei 106, Taiwan (China); Huang, Joseph Jen-Tse, E-mail: jthuang@chem.sinica.edu.tw [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer The N-terminus of TDP-43 contains an independently folded structural domain (NTD). Black-Right-Pointing-Pointer The structural domains of TDP-43 are arranged in a beads-on-a-string fashion. Black-Right-Pointing-Pointer The NTD promotes TDP-43 oligomerization in a concentration-dependent manner. Black-Right-Pointing-Pointer The NTD may assist nucleic acid-binding activity of TDP-43. -- Abstract: TDP-43 is a DNA/RNA-binding protein associated with different neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-U). Here, the structural and physical properties of the N-terminus on TDP-43 have been carefully characterized through a combination of nuclear magnetic resonance (NMR), circular dichroism (CD) and fluorescence anisotropy studies. We demonstrate for the first time the importance of the N-terminus in promoting TDP-43 oligomerization and enhancing its DNA-binding affinity. An unidentified structural domain in the N-terminus is also disclosed. Our findings provide insights into the N-terminal domain function of TDP-43.

  6. Relationship of nonreturn rates of dairy bulls to binding affinity of heparin to sperm

    International Nuclear Information System (INIS)

    Marks, J.L.; Ax, R.L.

    1985-01-01

    The binding of the glycosaminoglycan [ 3 H] heparin to bull spermatozoa was compared with nonreturn rates of dairy bulls. Semen samples from five bulls above and five below an average 71% nonreturn rate were used. Samples consisted of first and second ejaculates on a single day collected 1 d/wk for up to 5 consecutive wk. Saturation binding assays using [ 3 H] heparin were performed to quantitate the binding characteristics of each sample. Scatchard plot analyses indicated a significant difference in the binding affinity for [ 3 H] heparin between bulls of high and low fertility. Dissociation constants were 69.0 and 119.3 pmol for bulls of high and low fertility, respectively. In contrast, the number of binding sites for [ 3 H] heparin did not differ significantly among bulls. Differences in binding affinity of [ 3 H] heparin to bull sperm might be used to predict relative fertility of dairy bulls

  7. Structure-based engineering to restore high affinity binding of an isoform-selective anti-TGFβ1 antibody

    Science.gov (United States)

    Honey, Denise M.; Best, Annie; Qiu, Huawei

    2018-01-01

    ABSTRACT Metelimumab (CAT192) is a human IgG4 monoclonal antibody developed as a TGFβ1-specific antagonist. It was tested in clinical trials for the treatment of scleroderma but later terminated due to lack of efficacy. Subsequent characterization of CAT192 indicated that its TGFβ1 binding affinity was reduced by ∼50-fold upon conversion from the parental single-chain variable fragment (scFv) to IgG4. We hypothesized this result was due to decreased conformational flexibility of the IgG that could be altered via engineering. Therefore, we designed insertion mutants in the elbow region and screened for binding and potency. Our results indicated that increasing the elbow region linker length in each chain successfully restored the isoform-specific and high affinity binding of CAT192 to TGFβ1. The crystal structure of the high binding affinity mutant displays large conformational rearrangements of the variable domains compared to the wild-type antigen-binding fragment (Fab) and the low binding affinity mutants. Insertion of two glycines in both the heavy and light chain elbow regions provided sufficient flexibility for the variable domains to extend further apart than the wild-type Fab, and allow the CDR3s to make additional interactions not seen in the wild-type Fab structure. These interactions coupled with the dramatic conformational changes provide a possible explanation of how the scFv and elbow-engineered Fabs bind TGFβ1 with high affinity. This study demonstrates the benefits of re-examining both structure and function when converting scFv to IgG molecules, and highlights the potential of structure-based engineering to produce fully functional antibodies. PMID:29333938

  8. Methods for quantifying T cell receptor binding affinities and thermodynamics

    Science.gov (United States)

    Piepenbrink, Kurt H.; Gloor, Brian E.; Armstrong, Kathryn M.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here we discuss methods to quantify the affinities and thermodynamics of interactions between soluble ectodomains of TCRs and their peptide/MHC ligands, focusing on titration calorimetry, surface plasmon resonance, and fluorescence anisotropy. As TCRs typically bind ligand with weak-to-moderate affinities, we focus the discussion on means to enhance the accuracy and precision of low affinity measurements. In addition to further elucidating the biology of the T cell mediated immune response, more reliable low affinity measurements will aid with more probing studies with mutants or altered peptides that can help illuminate the physical underpinnings of how TCRs achieve their remarkable recognition properties. PMID:21609868

  9. Zinc ion coordination as a modulating factor of the ZnuA histidine-rich loop flexibility: A molecular modeling and fluorescence spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Castelli, Silvia [Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Stella, Lorenzo [Department of Chemical Sciences and Technologies, University of Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Neuromed, IRCCS, Pozzilli 86077 (Italy); Petrarca, Patrizia [Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Battistoni, Andrea [Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), Viale delle Medaglie D' Oro 305, 00136 Rome (Italy); Desideri, Alessandro [Department of Biology, University of Rome Tor Vergata and CIBB, Center of Biostatistics and Bioinformatics, Via della Ricerca Scientifica, 00133 Rome (Italy); Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), Viale delle Medaglie D' Oro 305, 00136 Rome (Italy); Falconi, Mattia, E-mail: falconi@uniroma2.it [Department of Biology, University of Rome Tor Vergata and CIBB, Center of Biostatistics and Bioinformatics, Via della Ricerca Scientifica, 00133 Rome (Italy); Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), Viale delle Medaglie D' Oro 305, 00136 Rome (Italy)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Fluorescence data indicate that the His-loop of ZnuA interacts with Zn{sup +2} ions. Black-Right-Pointing-Pointer The ZnuA structural model proposed validates these spectroscopic findings. Black-Right-Pointing-Pointer It is proposed that a zinc loaded His-loop may facilitate the ZnuA-ZnuB recognition. -- Abstract: ZnuA is the soluble component of the high-affinity ZnuABC zinc transporter belonging to the ATP-binding cassette-type periplasmic Zn-binding proteins. The zinc transporter ZnuABC is composed by three proteins: ZnuB, the membrane permease, ZnuC, the ATPase component and ZnuA, the soluble periplasmic metal-binding protein which captures Zn and delivers it to ZnuB. The ZnuA protein contains a charged flexible loop, rich in histidines and acidic residues, showing significant species-specific differences. Various studies have established that this loop contributes to the formation of a secondary zinc binding site, which has been proposed to be important in the acquisition of periplasmic Zn for its delivery to ZnuB or for regulation of zinc uptake. Due to its high mobility the structure of the histidine-rich loop has never been solved by X-ray diffraction studies. In this paper, through a combined use of molecular modeling, mutagenesis and fluorescence spectroscopy, we confirm the presence of two zinc binding sites characterized by different affinities for the metal ion and show that the flexibility of the loop is modulated by the binding of the zinc ions to the protein. The data obtained by fluorescence spectroscopy have then be used to validate a 3D model including the unsolved histidine-rich loop.

  10. Antibody Binding Selectivity: Alternative Sets of Antigen Residues Entail High-Affinity Recognition.

    Directory of Open Access Journals (Sweden)

    Yves Nominé

    Full Text Available Understanding the relationship between protein sequence and molecular recognition selectivity remains a major challenge. The antibody fragment scFv1F4 recognizes with sub nM affinity a decapeptide (sequence 6TAMFQDPQER15 derived from the N-terminal end of human papilloma virus E6 oncoprotein. Using this decapeptide as antigen, we had previously shown that only the wild type amino-acid or conservative replacements were allowed at positions 9 to 12 and 15 of the peptide, indicating a strong binding selectivity. Nevertheless phenylalanine (F was equally well tolerated as the wild type glutamine (Q at position 13, while all other amino acids led to weaker scFv binding. The interfaces of complexes involving either Q or F are expected to diverge, due to the different physico-chemistry of these residues. This would imply that high-affinity binding can be achieved through distinct interfacial geometries. In order to investigate this point, we disrupted the scFv-peptide interface by modifying one or several peptide positions. We then analyzed the effect on binding of amino acid changes at the remaining positions, an altered susceptibility being indicative of an altered role in complex formation. The 23 starting variants analyzed contained replacements whose effects on scFv1F4 binding ranged from minor to drastic. A permutation analysis (effect of replacing each peptide position by all other amino acids except cysteine was carried out on the 23 variants using the PEPperCHIP® Platform technology. A comparison of their permutation patterns with that of the wild type peptide indicated that starting replacements at position 11, 12 or 13 modified the tolerance to amino-acid changes at the other two positions. The interdependence between the three positions was confirmed by SPR (Biacore® technology. Our data demonstrate that binding selectivity does not preclude the existence of alternative high-affinity recognition modes.

  11. Identification of an adeno-associated virus binding epitope for AVB sepharose affinity resin

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    Full Text Available Recent successes of adeno-associated virus (AAV–based gene therapy have created a demand for large-scale AAV vector manufacturing and purification techniques for use in clinical trials and beyond. During the development of purification protocols for rh.10, hu.37, AAV8, rh.64R1, AAV3B, and AAV9 vectors, based on a widely used affinity resin, AVB sepharose (GE, we found that, under the same conditions, different serotypes have different affinities to the resin, with AAV3B binding the best and AAV9 the poorest. Further analysis revealed a surface-exposed residue (amino acid number 665 in AAV8 VP1 numbering differs between the high-affinity AAV serotypes (serine in AAV3B, rh.10, and hu.37 and the low-affinity ones (asparagine in AAV8, rh.64R1, and AAV9. The residue locates within a surface-exposed, variable epitope flanked by highly conserved residues. The substitution of the epitope in AAV8, rh.64R1, and AAV9 with the corresponding epitope of AAV3B (SPAKFA resulted in greatly increased affinity to AVB sepharose with no reduction in the vectors’ in vitro potency. The presence of the newly identified AVB-binding epitope will be useful for affinity resin selection for the purification of novel AAV serotypes. It also suggests the possibility of vector engineering to yield a universal affinity chromatography purification method for multiple AAV serotypes.

  12. Normalized Synergy Predicts That CD8 Co-Receptor Contribution to T Cell Receptor (TCR and pMHC Binding Decreases As TCR Affinity Increases in Human Viral-Specific T Cells

    Directory of Open Access Journals (Sweden)

    Chad M. Williams

    2017-07-01

    Full Text Available The discovery of naturally occurring T cell receptors (TCRs that confer specific, high-affinity recognition of pathogen and cancer-associated antigens remains a major goal in cellular immunotherapies. The contribution of the CD8 co-receptor to the interaction between the TCR and peptide-bound major histocompatibility complex (pMHC has previously been correlated with the activation and responsiveness of CD8+ T cells. However, these studies have been limited to model systems of genetically engineered hybridoma TCRs or transgenic mouse TCRs against either a single epitope or an array of altered peptide ligands. CD8 contribution in a native human antigen-specific T cell response remains elusive. Here, using Hepatitis C Virus-specific precursor CTLs spanning a large range of TCR affinities, we discovered that the functional responsiveness of any given TCR correlated with the contribution of CD8 to TCR/pMHC binding. Furthermore, we found that CD8 contribution to TCR/pMHC binding in the two-dimensional (2D system was more accurately reflected by normalized synergy (CD8 cooperation normalized by total TCR/pMHC bonds rather than synergy (total CD8 cooperation alone. While synergy showed an increasing trend with TCR affinity, normalized synergy was demonstrated to decrease with the increase of TCR affinity. Critically, normalized synergy was shown to correlate with CTL functionality and peptide sensitivity, corroborating three-dimensional (3D analysis of CD8 contribution with respect to TCR affinity. In addition, we identified TCRs that were independent of CD8 for TCR/pMHC binding. Our results resolve the current discrepancy between 2D and 3D analysis on CD8 contribution to TCR/pMHC binding, and demonstrate that naturally occurring high-affinity TCRs are more capable of CD8-independent interactions that yield greater functional responsiveness even with CD8 blocking. Taken together, our data suggest that addition of the normalized synergy parameter to our

  13. The zinc fingers of the Small Optic Lobes (SOL) calpain bind polyubiquitin.

    Science.gov (United States)

    Hastings, Margaret H; Qiu, Alvin; Zha, Congyao; Farah, Carole A; Mahdid, Yacine; Ferguson, Larissa; Sossin, Wayne S

    2018-05-28

    The Small Optic Lobes (SOL) calpain is a highly conserved member of the calpain family expressed in the nervous system. A dominant negative form of the SOL calpain inhibited consolidation of one form of synaptic plasticity, non-associative facilitation, in sensory-motor neuronal cultures in Aplysia, presumably by inhibiting cleavage of protein kinase Cs (PKCs) into constitutively active protein kinase Ms (PKMs) (Hu et al, 2017a). SOL calpains have a conserved set of 5-6 N-terminal zinc fingers. Bioinformatic analysis suggests that these zinc fingers could bind to ubiquitin. In this study, we show that both the Aplysia and mouse SOL calpain (also known as Calpain 15) zinc fingers bind ubiquitinated proteins, and we confirm that Aplysia SOL binds poly- but not mono or di-ubiquitin. No specific zinc finger is required for polyubiquitin binding. Neither polyubiquitin nor calcium was sufficient to induce purified Aplysia SOL calpain to autolyse or to cleave the atypical PKC to PKM in vitro. In Aplysia, overexpression of the atypical PKC in sensory neurons leads to an activity-dependent cleavage event and an increase in nuclear ubiquitin staining. Activity-dependent cleavage is partially blocked by a dominant negative SOL calpain, but not by a dominant negative classical calpain. The cleaved PKM was stabilized by the dominant negative classical calpain and destabilized by a dominant negative form of the PKM stabilizing proteinKIdney/BRAin protein(KIBRA). These studies provide new insight into SOL calpain's function and regulation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Bioinorganic Chemistry of Parkinson's Disease: Affinity and Structural Features of Cu(I) Binding to the Full-Length β-Synuclein Protein.

    Science.gov (United States)

    Miotto, Marco C; Pavese, Mayra D; Quintanar, Liliana; Zweckstetter, Markus; Griesinger, Christian; Fernández, Claudio O

    2017-09-05

    Alterations in the levels of copper in brain tissue and formation of α-synuclein (αS)-copper complexes might play a key role in the amyloid aggregation of αS and the onset of Parkinson's disease (PD). Recently, we demonstrated that formation of the high-affinity Cu(I) complex with the N-terminally acetylated form of the protein αS substantially increases and stabilizes local conformations with α-helical secondary structure and restricted motility. In this work, we performed a detailed NMR-based structural characterization of the Cu(I) complexes with the full-length acetylated form of its homologue β-synuclein (βS), which is colocalized with αS in vivo and can bind copper ions. Our results show that, similarly to αS, the N-terminal region of βS constitutes the preferential binding interface for Cu(I) ions, encompassing two independent and noninteractive Cu(I) binding sites. According to these results, βS binds the metal ion with higher affinity than αS, in a coordination environment that involves the participation of Met-1, Met-5, and Met-10 residues (site 1). Compared to αS, the shift of His from position 50 to 65 in the N-terminal region of βS does not change the Cu(I) affinity features at that site (site 2). Interestingly, the formation of the high-affinity βS-Cu(I) complex at site 1 in the N-terminus promotes a short α-helix conformation that is restricted to the 1-5 segment of the AcβS sequence, which differs with the substantial increase in α-helix conformations seen for N-terminally acetylated αS upon Cu(I) complexation. Our NMR data demonstrate conclusively that the differences observed in the conformational transitions triggered by Cu(I) binding to AcαS and AcβS find a correlation at the level of their backbone dynamic properties; added to the potential biological implications of these findings, this fact opens new avenues of investigations into the bioinorganic chemistry of PD.

  15. Characterization of the SUMO-binding activity of the myeloproliferative and mental retardation (MYM-type zinc fingers in ZNF261 and ZNF198.

    Directory of Open Access Journals (Sweden)

    Catherine M Guzzo

    Full Text Available SUMO-binding proteins interact with SUMO modified proteins to mediate a wide range of functional consequences. Here, we report the identification of a new SUMO-binding protein, ZNF261. Four human proteins including ZNF261, ZNF198, ZNF262, and ZNF258 contain a stretch of tandem zinc fingers called myeloproliferative and mental retardation (MYM-type zinc fingers. We demonstrated that MYM-type zinc fingers from ZNF261 and ZNF198 are necessary and sufficient for SUMO-binding and that individual MYM-type zinc fingers function as SUMO-interacting motifs (SIMs. Our binding studies revealed that the MYM-type zinc fingers from ZNF261 and ZNF198 interact with the same surface on SUMO-2 recognized by the archetypal consensus SIM. We also present evidence that MYM-type zinc fingers in ZNF261 contain zinc, but that zinc is not required for SUMO-binding. Immunofluorescence microscopy studies using truncated fragments of ZNF198 revealed that MYM-type zinc fingers of ZNF198 are necessary for localization to PML-nuclear bodies (PML-NBs. In summary, our studies have identified and characterized the SUMO-binding activity of the MYM-type zinc fingers in ZNF261 and ZNF198.

  16. Convergence of Domain Architecture, Structure, and Ligand Affinity in Animal and Plant RNA-Binding Proteins.

    Science.gov (United States)

    Dias, Raquel; Manny, Austin; Kolaczkowski, Oralia; Kolaczkowski, Bryan

    2017-06-01

    Reconstruction of ancestral protein sequences using phylogenetic methods is a powerful technique for directly examining the evolution of molecular function. Although ancestral sequence reconstruction (ASR) is itself very efficient, downstream functional, and structural studies necessary to characterize when and how changes in molecular function occurred are often costly and time-consuming, currently limiting ASR studies to examining a relatively small number of discrete functional shifts. As a result, we have very little direct information about how molecular function evolves across large protein families. Here we develop an approach combining ASR with structure and function prediction to efficiently examine the evolution of ligand affinity across a large family of double-stranded RNA binding proteins (DRBs) spanning animals and plants. We find that the characteristic domain architecture of DRBs-consisting of 2-3 tandem double-stranded RNA binding motifs (dsrms)-arose independently in early animal and plant lineages. The affinity with which individual dsrms bind double-stranded RNA appears to have increased and decreased often across both animal and plant phylogenies, primarily through convergent structural mechanisms involving RNA-contact residues within the β1-β2 loop and a small region of α2. These studies provide some of the first direct information about how protein function evolves across large gene families and suggest that changes in molecular function may occur often and unassociated with major phylogenetic events, such as gene or domain duplications. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha

    Directory of Open Access Journals (Sweden)

    Masao Hattori

    2013-01-01

    Full Text Available Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (−-arctigenin, the aglycone of arctiin, was demethylated to (−-dihydroxyenterolactone (DHENL by Eubacterium (E. sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (−-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (−-arctigenin using a ligand binding screen assay method. The IC50 value of (2R,3R-2-(4-hydroxy-3-methoxybenzyl-3-(3,4-dihydroxybenzyl-butyrolactone was 7.9 × 10−4 M.

  18. Interpretation of Ocular Melanin Drug Binding Assays. Alternatives to the Model of Multiple Classes of Independent Sites.

    Science.gov (United States)

    Manzanares, José A; Rimpelä, Anna-Kaisa; Urtti, Arto

    2016-04-04

    Melanin has a high binding affinity for a wide range of drugs. The determination of the melanin binding capacity and its binding affinity are important, e.g., in the determination of the ocular drug distribution, the prediction of drug effects in the eye, and the trans-scleral drug delivery. The binding parameters estimated from a given data set vary significantly when using different isotherms or different nonlinear fitting methods. In this work, the commonly used bi-Langmuir isotherm, which assumes two classes of independent sites, is confronted with the Sips isotherm. Direct, log-log, and Scatchard plots are used, and the interpretation of the binding curves in the latter is critically analyzed. In addition to the goodness of fit, the emphasis is placed on the physical meaning of the binding parameters. The bi-Langmuir model imposes a bimodal distribution of binding energies for the sites on the melanin granules, but the actual distribution is most likely continuous and unimodal, as assumed by the Sips isotherm. Hence, the latter describes more accurately the distribution of binding energies and also the experimental results of melanin binding to drugs and metal ions. Simulations are used to show that the existence of two classes of sites cannot be confirmed on the sole basis of the shape of the binding curve in the Scatchard plot, and that serious doubts may appear on the meaning of the binding parameters of the bi-Langmuir model. Experimental results of melanin binding to chloroquine and metoprolol are used to illustrate the importance of the choice of the binding isotherm and of the method used to evaluate the binding parameters.

  19. Dextran as a Generally Applicable Multivalent Scaffold for Improving Immunoglobulin-Binding Affinities of Peptide and Peptidomimetic Ligands

    Science.gov (United States)

    2015-01-01

    Molecules able to bind the antigen-binding sites of antibodies are of interest in medicine and immunology. Since most antibodies are bivalent, higher affinity recognition can be achieved through avidity effects in which a construct containing two or more copies of the ligand engages both arms of the immunoglobulin simultaneously. This can be achieved routinely by immobilizing antibody ligands at high density on solid surfaces, such as ELISA plates, but there is surprisingly little literature on scaffolds that routinely support bivalent binding of antibody ligands in solution, particularly for the important case of human IgG antibodies. Here we show that the simple strategy of linking two antigens with a polyethylene glycol (PEG) spacer long enough to span the two arms of an antibody results in higher affinity binding in some, but not all, cases. However, we found that the creation of multimeric constructs in which several antibody ligands are displayed on a dextran polymer reliably provides much higher affinity binding than is observed with the monomer in all cases tested. Since these dextran conjugates are simple to construct, they provide a general and convenient strategy to transform modest affinity antibody ligands into high affinity probes. An additional advantage is that the antibody ligands occupy only a small number of the reactive sites on the dextran, so that molecular cargo can be attached easily, creating molecules capable of delivering this cargo to cells displaying antigen-specific receptors. PMID:25073654

  20. Toxic metals (Ni2+, Pb2+, Hg2+) binding affinity of dissolved organic matter (DOM) derived from different ages municipal landfill leachate

    Science.gov (United States)

    Rikta, S. Y.; Tareq, Shafi M.; Uddin, M. Khabir

    2018-03-01

    Solid waste production is rapidly increasing in Bangladesh and landfill leachate is the consequence of the decomposition of this waste. These leachates contain heavy metals and significant amount of dissolved organic matter (DOM). DOM is known to have considerable role in heavy metals speciation. Hence, it is important to characterize DOM/leachate and evaluate toxic metals binding affinity of DOM. The objectives of this study were to characterize the DOM in landfill leachate through physico-chemical and optical analyses and to investigate the toxic metals (Ni2+, Pb2+ and Hg2+) binding affinity of three different ages (fresh sample L-1, young sample L-2 and mature sample L-3) DOM samples. Results suggested that leachate is a potential pollutant which contained very high organic pollutant load. Conditional stability constant (Log K) and percentages of fluorophores that correspond to metal binding (% f) values indicated that young DOM sample (L-2) had the highest binding affinity to all the three metals ions. In general, DOM samples showed the following order affinity to the metal ions; Ni2+ binding affinity: L-2 > L-3 > L-1, Pb2+ binding affinity: L-2 > L-3 > L-1 and Hg2+ binding affinity: L-2 > L-1 > L-3.

  1. Irreversible blockade of the high and low affinity (3H) naloxone binding sites by C-6 derivatives of morphinane-6-ones

    International Nuclear Information System (INIS)

    Krizsan, D.; Varga, E.; Benyhe, S.; Szucs, M.; Borsodi, A.; Hosztafi, S.

    1991-01-01

    C-6 derivatives-hydrazones, phenylhydrazones, dinitrophenylhydrazones, oximes and semicarbazones - of morphinane-6-ones were synthesized and their binding characteristics were studied on rat brain membranes. The dihydromorphinone and oxymorphone derivatives compete for the ( 3 H)naloxone binding sites with high affinity, while the dihydrocodeinone and oxycodone derivatives are less potent. The affinity of the new compounds is decreased for the delta sites as compared to the parent ligands. The ligands bearing bulky substituents also bind with low affinity to the kappa sites. The modification decreased the Na + -index of compounds indicating their mixed agonist-antagonist character. The dihydromorphinone derivatives are all capable to block irreversibly the high affinity binding site of ( 3 H)naloxone, whereas the dihydrocodeinone derivatives block irreversibly the low affinity site. A possible mechanism for the inhibition is suggested

  2. Aluminium fluoride and magnesium, activators of heterotrimeric GTP-binding proteins, affect high-affinity binding of the fungal toxin fusicoccin to the fusicoccin-binding protein in oat root plasma membranes.

    NARCIS (Netherlands)

    de Boer, A.H.; Van der Molen, G.W.; Prins, H.B.A.; Korthout, H.A.A.J.; van der Hoeven, P.C.J.

    1994-01-01

    The fusicoccin-binding protein was solubilised from purified oat root plasma membranes. The solubilised protein retained full binding activity, provided that protease inhibitors were included. Sodium fluoride reduced the high-affinity [H-3]fusicoccin binding to almost zero in a

  3. Improved methods for predicting peptide binding affinity to MHC class II molecules.

    Science.gov (United States)

    Jensen, Kamilla Kjaergaard; Andreatta, Massimo; Marcatili, Paolo; Buus, Søren; Greenbaum, Jason A; Yan, Zhen; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten

    2018-01-06

    Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen-presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC-II-peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC-peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. © 2018 John Wiley & Sons Ltd.

  4. Radioisotopic investigations of zinc uptake into brain slices

    International Nuclear Information System (INIS)

    Howell, G.A.

    1983-01-01

    The presence of zinc in the vicinity of the hippocampal mossy fibers has been repeatedly demonstrated, and several lines of evidence suggest that the mossy-fiber zinc is concentrated within the terminals of mossy fibers. In search of insight into the metabolism and function of mossy-fiber zinc, the present study investigated the transport of zinc into tissue slices and the response of the zinc transport to depolarization. Kinetic analysis of zinc accumulation by mouse brain slices in vitro revealed the presence of a high affinity uptake component with an apparent Km of 17.7 μM for hippocampus, 16.6 μM< for cortex and 25 μM for striatum and a V/sub max/ of 9.2 ng/mg/hr for the hippocampus, 10.1 ng/mg/hr for cortex and 9.6 ng/mg/hr for striatum. Cytoarchitectonic differences in zinc transport between the different hippocampal subregions were found with those regions containing granule cells or mossy fiber axons accumulating greater amounts of zinc than the CA 1 region. The present finding that mossy-fiber neuropil selectivity accumulates zinc suggests the presence of a zinc-binding substance unique to mossy-fiber tissue

  5. Generation of a pair of independently binding DNA aptamers in a single round of selection using proximity ligation.

    Science.gov (United States)

    Chumphukam, O; Le, T T; Piletsky, S; Cass, A E G

    2015-05-28

    The ability to rapidly generate a pair of aptamers that bind independently to a protein target would greatly extend their use as reagents for two site ('sandwich') assays. We describe here a method to achieve this through proximity ligation. Using lysozyme as a target we demonstrate that under optimal conditions such a pair of aptamers, with nanomolar affinities, can be generated in a single round.

  6. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    International Nuclear Information System (INIS)

    Lambeau, G.; Barhanin, J.; Schweitz, H.; Qar, J.; Lazdunski, M.

    1989-01-01

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of 125 I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity

  7. Mapping of barley alpha-amylases and outer subsite mutants reveals dynamic high-affinity subsites and barriers in the long substrate binding cleft

    DEFF Research Database (Denmark)

    Kandra, L.; Abou Hachem, Maher; Gyemant, G.

    2006-01-01

    Subsite affinity maps of long substrate binding clefts in barley alpha-amylases, obtained using a series of maltooligosaccharides of degree of polymerization of 3-12, revealed unfavorable binding energies at the internal subsites -3 and -5 and at subsites -8 and +3/+4 defining these subsites...... as binding barriers. Barley a-amylase I mutants Y105A and T212Y at subsite -6 and +4 resulted in release or anchoring of bound substrate, thus modifying the affinities of other high-affinity subsites (-2 and +2) and barriers. The double mutant Y105A-T212Y displayed a hybrid subsite affinity profile......, converting barriers to binding areas. These findings highlight the dynamic binding energy distribution and the versatility of long maltooligosaccharide derivatives in mapping extended binding clefts in a-amylases....

  8. Effect of the Flexible Regions of the Oncoprotein Mouse Double Minute X on Inhibitor Binding Affinity.

    Science.gov (United States)

    Qin, Lingyun; Liu, Huili; Chen, Rong; Zhou, Jingjing; Cheng, Xiyao; Chen, Yao; Huang, Yongqi; Su, Zhengding

    2017-11-07

    The oncoprotein MdmX (mouse double minute X) is highly homologous to Mdm2 (mouse double minute 2) in terms of their amino acid sequences and three-dimensional conformations, but Mdm2 inhibitors exhibit very weak affinity for MdmX, providing an excellent model for exploring how protein conformation distinguishes and alters inhibitor binding. The intrinsic conformation flexibility of proteins plays pivotal roles in determining and predicting the binding properties and the design of inhibitors. Although the molecular dynamics simulation approach enables us to understand protein-ligand interactions, the mechanism underlying how a flexible binding pocket adapts an inhibitor has been less explored experimentally. In this work, we have investigated how the intrinsic flexible regions of the N-terminal domain of MdmX (N-MdmX) affect the affinity of the Mdm2 inhibitor nutlin-3a using protein engineering. Guided by heteronuclear nuclear Overhauser effect measurements, we identified the flexible regions that affect inhibitor binding affinity around the ligand-binding pocket on N-MdmX. A disulfide engineering mutant, N-MdmX C25-C110/C76-C88 , which incorporated two staples to rigidify the ligand-binding pocket, allowed an affinity for nutlin-3a higher than that of wild-type N-MdmX (K d ∼ 0.48 vs K d ∼ 20.3 μM). Therefore, this mutant provides not only an effective protein model for screening and designing of MdmX inhibitors but also a valuable clue for enhancing the intermolecular interactions of the pharmacophores of a ligand with pronounced flexible regions. In addition, our results revealed an allosteric ligand-binding mechanism of N-MdmX in which the ligand initially interacts with a compact core, followed by augmenting intermolecular interactions with intrinsic flexible regions. This strategy should also be applicable to many other protein targets to accelerate drug discovery.

  9. CaFE: a tool for binding affinity prediction using end-point free energy methods.

    Science.gov (United States)

    Liu, Hui; Hou, Tingjun

    2016-07-15

    Accurate prediction of binding free energy is of particular importance to computational biology and structure-based drug design. Among those methods for binding affinity predictions, the end-point approaches, such as MM/PBSA and LIE, have been widely used because they can achieve a good balance between prediction accuracy and computational cost. Here we present an easy-to-use pipeline tool named Calculation of Free Energy (CaFE) to conduct MM/PBSA and LIE calculations. Powered by the VMD and NAMD programs, CaFE is able to handle numerous static coordinate and molecular dynamics trajectory file formats generated by different molecular simulation packages and supports various force field parameters. CaFE source code and documentation are freely available under the GNU General Public License via GitHub at https://github.com/huiliucode/cafe_plugin It is a VMD plugin written in Tcl and the usage is platform-independent. tingjunhou@zju.edu.cn. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    International Nuclear Information System (INIS)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta 9 tetrahydrocannabinol (delta 9 THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5'-Trimethylammonium-delta 8 THC (TMA) is a positively charged analog of delta- 8 THC modified on the 5' carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of [ 3 H]-5'-trimethylammonium-delta- 8 THC ([ 3 H]TMA) to rat neuronal membranes. [ 3 H]TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of [ 3 H]TMA binding activity of approximately 60,000 daltons apparent molecular weight

  11. Prediction of the binding affinities of peptides to class II MHC using a regularized thermodynamic model

    Directory of Open Access Journals (Sweden)

    Mittelmann Hans D

    2010-01-01

    Full Text Available Abstract Background The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC. Results We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides. Conclusions The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at http://bordnerlab.org/RTA/.

  12. THE EFFECTS OF COPPER AND ZINC IONS DURING THEIR BINDING WITH HUMAN SERUM γ-GLOBULIN

    Directory of Open Access Journals (Sweden)

    S. B. Cheknev

    2006-01-01

    Full Text Available Abstract. Conformational changes of human serum γ-globulin were studied during and after its binding with copper and zinc ions, using molecular ultrafiltration and differential spectrophotometry. The contents of nonbound metals in the filtrate were evaluated, resp., with sodium diethyl thyocarbamate and o-phenanthroline. It has been shown that copper and zinc exhibited common biological properties during their interactions with protein, but the binding differed sufficiently under similar experimental conditions. E.g., it was confirmed that copper was more active at the external sites of γ-globulin molecule, whereas zinc demonstrated tropicity for the areas of protein intraglobular compartments. The metal-binding sites have been described that differ in their parameters of interactions with cations and their spatial location within globular domains. Approaches are suggested for dynamic analysis of saturation for these differently located sites by the metal ions. We discuss the issues of altered conformational state of the γ-globulin molecule during the binding of cations, as well as potential usage of these data in clinical immunology.

  13. Zinc: a multipurpose trace element

    Energy Technology Data Exchange (ETDEWEB)

    Stefanidou, M.; Maravelias, C.; Dona, A.; Spiliopoulou, C. [University of Athens, Department of Forensic Medicine and Toxicology, Athens (Greece)

    2006-01-01

    Zinc (Zn) is one of the most important trace elements in the body and it is essential as a catalytic, structural and regulatory ion. It is involved in homeostasis, in immune responses, in oxidative stress, in apoptosis and in ageing. Zinc-binding proteins (metallothioneins, MTs), are protective in situations of stress and in situations of exposure to toxic metals, infections and low Zn nutrition. Metallothioneins play a key role in Zn-related cell homeostasis due to their high affinity for Zn, which is in turn relevant against oxidative stress and immune responses, including natural killer (NK) cell activity and ageing, since NK activity and Zn ion bioavailability decrease in ageing. Physiological supplementation of Zn in ageing and in age-related degenerative diseases corrects immune defects, reduces infection relapse and prevents ageing. Zinc is not stored in the body and excess intakes result in reduced absorption and increased excretion. Nevertheless, there are cases of acute and chronic Zn poisoning. (orig.)

  14. Vasoactive intestinal peptide (VIP) binds to guinea pig peritoneal eosinophils: A single class of binding sites with low affinity and high capacity

    International Nuclear Information System (INIS)

    Sakakibara, H.; Shima, K.; Takamatsu, J.; Said, S.I.

    1990-01-01

    VIP binds to specific receptors on lymphocytes and mononuclear cells and exhibits antiinflammatory properties. Eosinophils (Eos) contribute to inflammatory reactions but the regulation of Eos function is incompletely understood. The authors examined the binding of monoradioiodinated VIP, [Tyr( 125 I) 10 ] VIP ( 125 I-VIP), to Eos in guinea pigs. The interaction of 125 i-VIP with Eos was rapid, reversible, saturable and linearly dependent on the number of cells. At equilibrium the binding was competitively inhibited by native peptide or by the related peptide helodermin. Scatchard analysis suggested the presence of a single class of VIP binding sites with a low affinity and a high capacity. In the presence of isobutyl-methylxanthine, VIP, PHI or helodermin did not stimulate cyclic AMP accumulation in intact Eos, while PGE 2 or 1-isoproterenol did. VIP also did not inhibit superoxide anion generation from Eos stimulated by phorbol myristate acetate. The authors conclude that: (1) VIP binds to low-affinity, specific sites on guinea pig peritoneal eosinophils; (2) this binding is not coupled to stimulation of adenylate cyclase; and (3) the possible function of these binding sites is at present unknown

  15. Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding.

    Science.gov (United States)

    Paramelle, David; Peng, Tao; Free, Paul; Fernig, David G; Lim, Sierin; Tomczak, Nikodem

    2016-01-01

    Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages' pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages' core and low non-specific binding to the cages' outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage's core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of currently

  16. Measurement of free glucocorticoids: quantifying corticosteroid-binding globulin binding affinity and its variation within and among mammalian species.

    Science.gov (United States)

    Delehanty, Brendan; Hossain, Sabrina; Jen, Chao Ching; Crawshaw, Graham J; Boonstra, Rudy

    2015-01-01

    Plasma glucocorticoids (GCs) are commonly used as measures of stress in wildlife. A great deal of evidence indicates that only free GC (GC not bound by the specific binding protein, corticosteroid-binding globulin, CBG) leaves the circulation and exerts biological effects on GC-sensitive tissues. Free hormone concentrations are difficult to measure directly, so researchers estimate free GC using two measures: the binding affinity and the binding capacity in plasma. We provide an inexpensive saturation binding method for calculating the binding affinity (equilibrium dissociation constant, K d) of CBG that can be run without specialized laboratory equipment. Given that other plasma proteins, such as albumin, also bind GCs, the method compensates for this non-specific binding. Separation of bound GC from free GC was achieved with dextran-coated charcoal. The method provides repeatable estimates (12% coefficient of variation in the red squirrel, Tamiasciurus hudsonicus), and there is little evidence of inter-individual variation in K d (range 2.0-7.3 nM for 16 Richardson's ground squirrels, Urocitellus richardsonii). The K d values of 28 mammalian species we assessed were mostly clustered around a median of 4 nM, but five species had values between 13 and 61 nM. This pattern may be distinct from birds, for which published values are more tightly distributed (1.5-5.1 nM). The charcoal separation method provides a reliable and robust method for measuring the K d in a wide range of species. It uses basic laboratory equipment to provide rapid results at very low cost. Given the importance of CBG in regulating the biological activity of GCs, this method is a useful tool for physiological ecologists.

  17. Experimental and theoretical binding affinity between polyvinylpolypyrrolidone and selected phenolic compounds from food matrices.

    Science.gov (United States)

    Durán-Lara, Esteban F; López-Cortés, Xaviera A; Castro, Ricardo I; Avila-Salas, Fabián; González-Nilo, Fernando D; Laurie, V Felipe; Santos, Leonardo S

    2015-02-01

    Polyvinylpolypyrrolidone (PVPP) is a fining agent, widely used in winemaking and brewing, whose mode of action in removing phenolic compounds has not been fully characterised. The aim of this study was to evaluate the experimental and theoretical binding affinity of PVPP towards six phenolic compounds representing different types of phenolic species. The interaction between PVPP and phenolics was evaluated in model solutions, where hydroxyl groups, hydrophobic bonding and steric hindrance were characterised. The results of the study indicated that PVPP exhibits high affinity for quercetin and catechin, moderate affinity for epicatechin, gallic acid and lower affinity for 4-methylcatechol and caffeic acid. The affinity has a direct correlation with the hydroxylation degree of each compound. The results show that the affinity of PVPP towards phenols is related with frontier orbitals. This work demonstrates a direct correlation between the experimental affinity and the interaction energy calculations obtained through computational chemistry methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Identification and properties of very high affinity brain membrane-binding sites for a neurotoxic phospholipase from the taipan venom

    Energy Technology Data Exchange (ETDEWEB)

    Lambeau, G.; Barhanin, J.; Schweitz, H.; Qar, J.; Lazdunski, M. (Centre de Biochimie, Nice (France))

    1989-07-05

    Four new monochain phospholipases were purified from the Oxyuranus scutellatus (taipan) venom. Three of them were highly toxic when injected into mice brain. One of these neurotoxic phospholipases, OS2, was iodinated and used in binding experiments to demonstrate the presence of two families of specific binding sites in rat brain synaptic membranes. The affinities were exceptionally high, Kd1 = 1.5 +/- 0.5 pM and Kd2 = 45 +/- 10 pM, and the maximal binding capacities were Bmax 1 = 1 +/- 0.4 and Bmax 2 = 3 +/- 0.5 pmol/mg of protein. Both binding sites were sensitive to proteolysis and demonstrated to be located on proteins of Mr 85,000-88,000 and 36,000-51,000 by cross-linking and photoaffinity labeling techniques. The binding of {sup 125}I-OS2 to synaptic membranes was dependent on Ca2+ ions and enhanced by Zn2+ ions which inhibit phospholipase activity. Competition experiments have shown that, except for beta-bungarotoxin, a number of known toxic snake or bee phospholipases have very high affinities for the newly identified binding sites. A good correlation (r = 0.80) was observed between toxicity and affinity but not between phospholipase activity and affinity.

  19. Yeast DNA-repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA

    International Nuclear Information System (INIS)

    Guzder, S.N.; Sung, P.; Prakash, S.; Prakash, L.

    1993-01-01

    Xeroderma pigmentosum (XP) patients suffer from a high incidence of skin cancers due to a defect in excision repair of UV light-damaged DNA. Of the seven XP complementation groups, A--G, group A represents a severe and frequent form of the disease. The Saccharomyces cerevisiae RAD14 gene is a homolog of the XP-A correcting (XPAC) gene. Like XP-A cells, rad14-null mutants are defective in the incision step of excision repair of UV-damaged DNA. The authors have purified RAD14 protein to homogeneity from extract of a yeast strain genetically tailored to overexpress RAD14. As determined by atomic emission spectroscopy, RAD14 contains one zinc atom. They also show in vitro that RAD14 binds zinc but does not bind other divalent metal ions. In DNA mobility-shift assays, RAD14 binds specifically to UV-damaged DNA. Removal of cyclobutane pyrimidine dimers from damaged DNA by enzymatic photoreactivation has no effect on binding, strongly suggesting that RAD14 recognizes pyrimidine(6-4)pyrimidone photoproduct sites. These findings indicate that RAD14 functions in damage recognition during excision repair. 37 refs., 4 figs

  20. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    Science.gov (United States)

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H.F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites. PMID:24053696

  1. Insights into structural features determining odorant affinities to honey bee odorant binding protein 14.

    Science.gov (United States)

    Schwaighofer, Andreas; Pechlaner, Maria; Oostenbrink, Chris; Kotlowski, Caroline; Araman, Can; Mastrogiacomo, Rosa; Pelosi, Paolo; Knoll, Wolfgang; Nowak, Christoph; Larisika, Melanie

    2014-04-18

    Molecular interactions between odorants and odorant binding proteins (OBPs) are of major importance for understanding the principles of selectivity of OBPs towards the wide range of semiochemicals. It is largely unknown on a structural basis, how an OBP binds and discriminates between odorant molecules. Here we examine this aspect in greater detail by comparing the C-minus OBP14 of the honey bee (Apis mellifera L.) to a mutant form of the protein that comprises the third disulfide bond lacking in C-minus OBPs. Affinities of structurally analogous odorants featuring an aromatic phenol group with different side chains were assessed based on changes of the thermal stability of the protein upon odorant binding monitored by circular dichroism spectroscopy. Our results indicate a tendency that odorants show higher affinity to the wild-type OBP suggesting that the introduced rigidity in the mutant protein has a negative effect on odorant binding. Furthermore, we show that OBP14 stability is very sensitive to the position and type of functional groups in the odorant. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Two amino acid residues confer different binding affinities of Abelson family kinase SRC homology 2 domains for phosphorylated cortactin.

    Science.gov (United States)

    Gifford, Stacey M; Liu, Weizhi; Mader, Christopher C; Halo, Tiffany L; Machida, Kazuya; Boggon, Titus J; Koleske, Anthony J

    2014-07-11

    The closely related Abl family kinases, Arg and Abl, play important non-redundant roles in the regulation of cell morphogenesis and motility. Despite similar N-terminal sequences, Arg and Abl interact with different substrates and binding partners with varying affinities. This selectivity may be due to slight differences in amino acid sequence leading to differential interactions with target proteins. We report that the Arg Src homology (SH) 2 domain binds two specific phosphotyrosines on cortactin, a known Abl/Arg substrate, with over 10-fold higher affinity than the Abl SH2 domain. We show that this significant affinity difference is due to the substitution of arginine 161 and serine 187 in Abl to leucine 207 and threonine 233 in Arg, respectively. We constructed Abl SH2 domains with R161L and S187T mutations alone and in combination and find that these substitutions are sufficient to convert the low affinity Abl SH2 domain to a higher affinity "Arg-like" SH2 domain in binding to a phospho-cortactin peptide. We crystallized the Arg SH2 domain for structural comparison to existing crystal structures of the Abl SH2 domain. We show that these two residues are important determinants of Arg and Abl SH2 domain binding specificity. Finally, we expressed Arg containing an "Abl-like" low affinity mutant Arg SH2 domain (L207R/T233S) and find that this mutant, although properly localized to the cell periphery, does not support wild type levels of cell edge protrusion. Together, these observations indicate that these two amino acid positions confer different binding affinities and cellular functions on the distinct Abl family kinases. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Interactions of dopaminergic agonists and antagonists with dopaminergic D3 binding sites in rat striatum. Evidence that [3H]dopamine can label a high affinity agonist-binding state of the D1 dopamine receptor

    International Nuclear Information System (INIS)

    Leff, S.E.; Creese, I.

    1985-01-01

    The interactions of dopaminergic agonists and antagonists with 3 H-agonist labeled D3 dopaminergic binding sites of rat striatum have been characterized by radioligand-binding techniques. When the binding of [ 3 H]dopamine and [ 3 H]apomorphine to D2 dopamine receptors is blocked by the inclusion of D2 selective concentrations of unlabeled spiroperidol or domperidone, these ligands appear to label selectively the previously termed D3 binding site. Antagonist/[ 3 H]dopamine competition curves are of uniformly steep slope (nH . 1.0), suggesting the presence of a single D3 binding site. The relative potencies of antagonists to inhibit D3 specific [ 3 H]dopamine binding are significantly correlated with their potencies to block D1 dopamine receptors as measured by the inhibition of both dopamine-stimulated adenylate cyclase and [ 3 H]flupentixol-binding activities. The affinities of agonists to inhibit D3 specific [ 3 H]dopamine binding are also correlated with estimates of these agonists affinities for the high affinity binding component of agonist/[ 3 H]flupentixol competition curves. Both D3 specific [ 3 H] dopamine binding and the high affinity agonist-binding component of dopamine/[ 3 H]flupentixol competition curves show a similar sensitivity to guanine nucleotides. Taken together, these data strongly suggest that the D3 binding site is related to a high affinity agonist-binding state of the D1 dopamine receptor

  4. A protein engineered to bind uranyl selectively and with femtomolar affinity

    Science.gov (United States)

    Zhou, Lu; Bosscher, Mike; Zhang, Changsheng; Özçubukçu, Salih; Zhang, Liang; Zhang, Wen; Li, Charles J.; Liu, Jianzhao; Jensen, Mark P.; Lai, Luhua; He, Chuan

    2014-03-01

    Uranyl (UO22+), the predominant aerobic form of uranium, is present in the ocean at a concentration of ~3.2 parts per 109 (13.7 nM) however, the successful enrichment of uranyl from this vast resource has been limited by the high concentrations of metal ions of similar size and charge, which makes it difficult to design a binding motif that is selective for uranyl. Here we report the design and rational development of a uranyl-binding protein using a computational screening process in the initial search for potential uranyl-binding sites. The engineered protein is thermally stable and offers very high affinity and selectivity for uranyl with a Kd of 7.4 femtomolar (fM) and >10,000-fold selectivity over other metal ions. We also demonstrated that the uranyl-binding protein can repeatedly sequester 30-60% of the uranyl in synthetic sea water. The chemical strategy employed here may be applied to engineer other selective metal-binding proteins for biotechnology and remediation applications.

  5. High-affinity small molecule-phospholipid complex formation: binding of siramesine to phosphatidicacid

    DEFF Research Database (Denmark)

    Khandelia, Himanshu

    2008-01-01

    , comparable to the affinities for the binding of small molecule ligands to proteins, was measured for phosphatidic acid (PA, mole fraction of XPA ) 0.2 in phosphatidylcholine vesicles), yielding a molecular partition coefficient of 240 ( 80 × 106. An MD simulation on the siramesine:PA interaction...

  6. Enhanced binding by dextran-grafting to Protein A affinity chromatographic media.

    Science.gov (United States)

    Zhao, Lan; Zhu, Kai; Huang, Yongdong; Li, Qiang; Li, Xiunan; Zhang, Rongyue; Su, Zhiguo; Wang, Qibao; Ma, Guanghui

    2017-04-01

    Dextran-grafted Protein A affinity chromatographic medium was prepared by grafting dextran to agarose-based matrix, followed by epoxy-activation and Protein A coupling site-directed to sulfhydryl groups of cysteine molecules. An enhancement of both the binding performance and the stability was achieved for this dextran-grafted Protein A chromatographic medium. Its dynamic binding capacity was 61 mg immunoglobulin G/mL suction-dried gel, increased by 24% compared with that of the non-grafted medium. The binding capacity of dextran-grafted medium decreased about 7% after 40 cleaning-in-place cycles, much lower than that of the non-grafted medium as decreased about 15%. Confocal laser scanning microscopy results showed that immunoglobulin G was bound to both the outside and the inside of dextran-grafted medium faster than that of non-grafted one. Atomic force microscopy showed that this dextran-grafted Protein A medium had much rougher surface with a vertical coordinate range of ±80 nm, while that of non-grafted one was ±10 nm. Grafted dextran provided a more stereo surface morphology and immunoglobulin G molecules were more easily to be bound. This high-performance dextran-grafted Protein A affinity chromatographic medium has promising applications in large-scale antibody purification. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Linear Interaction Energy Based Prediction of Cytochrome P450 1A2 Binding Affinities with Reliability Estimation.

    Directory of Open Access Journals (Sweden)

    Luigi Capoferri

    Full Text Available Prediction of human Cytochrome P450 (CYP binding affinities of small ligands, i.e., substrates and inhibitors, represents an important task for predicting drug-drug interactions. A quantitative assessment of the ligand binding affinity towards different CYPs can provide an estimate of inhibitory activity or an indication of isoforms prone to interact with the substrate of inhibitors. However, the accuracy of global quantitative models for CYP substrate binding or inhibition based on traditional molecular descriptors can be limited, because of the lack of information on the structure and flexibility of the catalytic site of CYPs. Here we describe the application of a method that combines protein-ligand docking, Molecular Dynamics (MD simulations and Linear Interaction Energy (LIE theory, to allow for quantitative CYP affinity prediction. Using this combined approach, a LIE model for human CYP 1A2 was developed and evaluated, based on a structurally diverse dataset for which the estimated experimental uncertainty was 3.3 kJ mol-1. For the computed CYP 1A2 binding affinities, the model showed a root mean square error (RMSE of 4.1 kJ mol-1 and a standard error in prediction (SDEP in cross-validation of 4.3 kJ mol-1. A novel approach that includes information on both structural ligand description and protein-ligand interaction was developed for estimating the reliability of predictions, and was able to identify compounds from an external test set with a SDEP for the predicted affinities of 4.6 kJ mol-1 (corresponding to 0.8 pKi units.

  8. Quantitative analysis of EGR proteins binding to DNA: assessing additivity in both the binding site and the protein

    Directory of Open Access Journals (Sweden)

    Stormo Gary D

    2005-07-01

    Full Text Available Abstract Background Recognition codes for protein-DNA interactions typically assume that the interacting positions contribute additively to the binding energy. While this is known to not be precisely true, an additive model over the DNA positions can be a good approximation, at least for some proteins. Much less information is available about whether the protein positions contribute additively to the interaction. Results Using EGR zinc finger proteins, we measure the binding affinity of six different variants of the protein to each of six different variants of the consensus binding site. Both the protein and binding site variants include single and double mutations that allow us to assess how well additive models can account for the data. For each protein and DNA alone we find that additive models are good approximations, but over the combined set of data there are context effects that limit their accuracy. However, a small modification to the purely additive model, with only three additional parameters, improves the fit significantly. Conclusion The additive model holds very well for every DNA site and every protein included in this study, but clear context dependence in the interactions was detected. A simple modification to the independent model provides a better fit to the complete data.

  9. An in silico analysis of the binding modes and binding affinities of small molecule modulators of PDZ-peptide interactions.

    Directory of Open Access Journals (Sweden)

    Garima Tiwari

    Full Text Available Inhibitors of PDZ-peptide interactions have important implications in a variety of biological processes including treatment of cancer and Parkinson's disease. Even though experimental studies have reported characterization of peptidomimetic inhibitors of PDZ-peptide interactions, the binding modes for most of them have not been characterized by structural studies. In this study we have attempted to understand the structural basis of the small molecule-PDZ interactions by in silico analysis of the binding modes and binding affinities of a set of 38 small molecules with known K(i or K(d values for PDZ2 and PDZ3 domains of PSD-95 protein. These two PDZ domains show differential selectivity for these compounds despite having a high degree of sequence similarity and almost identical peptide binding pockets. Optimum binding modes for these ligands for PDZ2 and PDZ3 domains were identified by using a novel combination of semi-flexible docking and explicit solvent molecular dynamics (MD simulations. Analysis of the binding modes revealed most of the peptidomimectic ligands which had high K(i or K(d moved away from the peptide binding pocket, while ligands with high binding affinities remained in the peptide binding pocket. The differential specificities of the PDZ2 and PDZ3 domains primarily arise from differences in the conformation of the loop connecting βB and βC strands, because this loop interacts with the N-terminal chemical moieties of the ligands. We have also computed the MM/PBSA binding free energy values for these 38 compounds with both the PDZ domains from multiple 5 ns MD trajectories on each complex i.e. a total of 228 MD trajectories of 5 ns length each. Interestingly, computational binding free energies show good agreement with experimental binding free energies with a correlation coefficient of approximately 0.6. Thus our study demonstrates that combined use of docking and MD simulations can help in identification of potent inhibitors

  10. A single acidic residue can guide binding site selection but does not govern QacR cationic-drug affinity.

    Directory of Open Access Journals (Sweden)

    Kate M Peters

    Full Text Available Structures of the multidrug-binding repressor protein QacR with monovalent and bivalent cationic drugs revealed that the carboxylate side-chains of E90 and E120 were proximal to the positively charged nitrogens of the ligands ethidium, malachite green and rhodamine 6G, and therefore may contribute to drug neutralization and binding affinity. Here, we report structural, biochemical and in vivo effects of substituting these glutamate residues. Unexpectedly, substitutions had little impact on ligand affinity or in vivo induction capabilities. Structures of QacR(E90Q and QacR(E120Q with ethidium or malachite green took similar global conformations that differed significantly from all previously described QacR-drug complexes but still prohibited binding to cognate DNA. Strikingly, the QacR(E90Q-rhodamine 6G complex revealed two mutually exclusive rhodamine 6G binding sites. Despite multiple structural changes, all drug binding was essentially isoenergetic. Thus, these data strongly suggest that rather than contributing significantly to ligand binding affinity, the role of acidic residues lining the QacR multidrug-binding pocket is primarily to attract and guide cationic drugs to the "best available" positions within the pocket that elicit QacR induction.

  11. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    International Nuclear Information System (INIS)

    Hou, Feng; Miyakawa, Takuya; Kataoka, Michihiko; Takeshita, Daijiro; Kumashiro, Shoko; Uzura, Atsuko; Urano, Nobuyuki; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2014-01-01

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity

  12. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Feng; Miyakawa, Takuya [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kataoka, Michihiko [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Takeshita, Daijiro [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kumashiro, Shoko [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Uzura, Atsuko [Research and Development Center, Nagase and Co., Ltd., 2-2-3 Muratani, Nishi-ku, Kobe 651-2241 (Japan); Urano, Nobuyuki [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Nagata, Koji [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Shimizu, Sakayu [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Faculty of Bioenvironmental Science, Kyoto Gakuen University, Sogabe-cho, Kameoka 621-8555 (Japan); Tanokura, Masaru, E-mail: amtanok@mail.ecc.u-tokyo.ac.jp [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2014-04-18

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity.

  13. Water-Hydrogel Binding Affinity Modulates Freeze-Drying-Induced Micropore Architecture and Skeletal Myotube Formation.

    Science.gov (United States)

    Rich, Max H; Lee, Min Kyung; Marshall, Nicholas; Clay, Nicholas; Chen, Jinrong; Mahmassani, Ziad; Boppart, Marni; Kong, Hyunjoon

    2015-08-10

    Freeze-dried hydrogels are increasingly used to create 3D interconnected micropores that facilitate biomolecular and cellular transports. However, freeze-drying is often plagued by variance in micropore architecture based on polymer choice. We hypothesized that water-polymer binding affinity plays a significant role in sizes and numbers of micropores formed through freeze-drying, influencing cell-derived tissue quality. Poly(ethylene glycol)diacrylate (PEGDA) hydrogels with alginate methacrylate (AM) were used due to AM's higher binding affinity for water than PEGDA. PEGDA-AM hydrogels with larger AM concentrations resulted in larger sizes and numbers of micropores than pure PEGDA hydrogels, attributed to the increased mass of water binding to the PEGDA-AM gel. Skeletal myoblasts loaded in microporous PEGDA-AM hydrogels were active to produce 3D muscle-like tissue, while those loaded in pure PEGDA gels were localized on the gel surface. We propose that this study will be broadly useful in designing and improving the performance of various microporous gels.

  14. Zinc-mediated binding of a low-molecular-weight stabilizer of the host anti-viral factor apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G.

    Science.gov (United States)

    Radwan, Mohamed O; Sonoda, Sachiko; Ejima, Tomohiko; Tanaka, Ayumi; Koga, Ryoko; Okamoto, Yoshinari; Fujita, Mikako; Otsuka, Masami

    2016-09-15

    Apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G, A3G), is a human anti-virus restriction protein which works deaminase-dependently and -independently. A3G is known to be ubiquitinated by HIV-1 viral infectivity factor (Vif) protein, leading to proteasomal degradation. A3G contains two zinc ions at the N-terminal domain and the C-terminal domain. Four lysine residues, K(297), K(301), K(303), and K(334), are known to be required for Vif-mediated A3G ubiquitination and degradation. Previously, we reported compound SN-1, a zinc chelator that increases steady-state expression level of A3G in the presence of Vif. In this study, we prepared Biotin-SN-1, a biotinylated derivative of SN-1, to study the SN-1-A3G interaction. A pull-down assay revealed that Biotin-SN-1 bound A3G. A zinc-abstraction experiment indicated that SN-1 binds to the zinc site of A3G. We carried out a SN-1-A3G docking study using molecular operating environment. The calculations revealed that SN-1 binds to the C-terminal domain through Zn(2+), H(216), P(247), C(288), and Y(315). Notably, SN-1-binding covers the H(257), E(259), C(288), and C(291) residues that participate in zinc-mediated deamination, and the ubiquitination regions of A3G. The binding of SN-1 presumably perturbs the secondary structure between C(288) and Y(315), leading to less efficient ubiquitination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Histidine protects against zinc and nickel toxicity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    John T Murphy

    2011-03-01

    Full Text Available Zinc is an essential trace element involved in a wide range of biological processes and human diseases. Zinc excess is deleterious, and animals require mechanisms to protect against zinc toxicity. To identify genes that modulate zinc tolerance, we performed a forward genetic screen for Caenorhabditis elegans mutants that were resistant to zinc toxicity. Here we demonstrate that mutations of the C. elegans histidine ammonia lyase (haly-1 gene promote zinc tolerance. C. elegans haly-1 encodes a protein that is homologous to vertebrate HAL, an enzyme that converts histidine to urocanic acid. haly-1 mutant animals displayed elevated levels of histidine, indicating that C. elegans HALY-1 protein is an enzyme involved in histidine catabolism. These results suggest the model that elevated histidine chelates zinc and thereby reduces zinc toxicity. Supporting this hypothesis, we demonstrated that dietary histidine promotes zinc tolerance. Nickel is another metal that binds histidine with high affinity. We demonstrated that haly-1 mutant animals are resistant to nickel toxicity and dietary histidine promotes nickel tolerance in wild-type animals. These studies identify a novel role for haly-1 and histidine in zinc metabolism and may be relevant for other animals.

  16. The Binding of Biotin to Sepharose-Avidin Column: Demonstration of the Affinity Chromatography Technique

    Science.gov (United States)

    Landman, A. D.; Landman, N. N.

    1976-01-01

    Describes a biochemistry experiment that illustrates the methodology of affinity chromatography by attaching avidin, a glycoprotein in egg white, to a Sepharose matrix in order to bind biotin-containing proteins. (MLH)

  17. New approaches for the reliable in vitro assessment of binding affinity based on high-resolution real-time data acquisition of radioligand-receptor binding kinetics.

    Science.gov (United States)

    Zeilinger, Markus; Pichler, Florian; Nics, Lukas; Wadsak, Wolfgang; Spreitzer, Helmut; Hacker, Marcus; Mitterhauser, Markus

    2017-12-01

    Resolving the kinetic mechanisms of biomolecular interactions have become increasingly important in early-phase drug development. Since traditional in vitro methods belong to dose-dependent assessments, binding kinetics is usually overlooked. The present study aimed at the establishment of two novel experimental approaches for the assessment of binding affinity of both, radiolabelled and non-labelled compounds targeting the A 3 R, based on high-resolution real-time data acquisition of radioligand-receptor binding kinetics. A novel time-resolved competition assay was developed and applied to determine the K i of eight different A 3 R antagonists, using CHO-K1 cells stably expressing the hA 3 R. In addition, a new kinetic real-time cell-binding approach was established to quantify the rate constants k on and k off , as well as the dedicated K d of the A 3 R agonist [ 125 I]-AB-MECA. Furthermore, lipophilicity measurements were conducted to control influences due to physicochemical properties of the used compounds. Two novel real-time cell-binding approaches were successfully developed and established. Both experimental procedures were found to visualize the kinetic binding characteristics with high spatial and temporal resolution, resulting in reliable affinity values, which are in good agreement with values previously reported with traditional methods. Taking into account the lipophilicity of the A 3 R antagonists, no influences on the experimental performance and the resulting affinity were investigated. Both kinetic binding approaches comprise tracer administration and subsequent binding to living cells, expressing the dedicated target protein. Therefore, the experiments resemble better the true in vivo physiological conditions and provide important markers of cellular feedback and biological response.

  18. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin

    Energy Technology Data Exchange (ETDEWEB)

    Makyio, Hisayoshi [Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan); Shimabukuro, Junpei; Suzuki, Tatsuya [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Imamura, Akihiro; Ishida, Hideharu [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Kiso, Makoto [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Ando, Hiromune, E-mail: hando@gifu-u.ac.jp [Department of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193 (Japan); Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Kato, Ryuichi, E-mail: ryuichi.kato@kek.jp [Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801 (Japan)

    2016-08-26

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding site has a different carbohydrate binding affinity. - Highlights: • The six-bladed β-propeller structure of AOL was solved by seleno-sugar phasing. • The mode of fucose binding is essentially conserved at all six binding sites. • The seleno-fucosides exhibit slightly different interactions and electron densities. • These findings suggest that the affinity for fucose is not identical at each site.

  19. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin

    International Nuclear Information System (INIS)

    Makyio, Hisayoshi; Shimabukuro, Junpei; Suzuki, Tatsuya; Imamura, Akihiro; Ishida, Hideharu; Kiso, Makoto; Ando, Hiromune; Kato, Ryuichi

    2016-01-01

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding site has a different carbohydrate binding affinity. - Highlights: • The six-bladed β-propeller structure of AOL was solved by seleno-sugar phasing. • The mode of fucose binding is essentially conserved at all six binding sites. • The seleno-fucosides exhibit slightly different interactions and electron densities. • These findings suggest that the affinity for fucose is not identical at each site.

  20. A new BODIPY/nanoparticle/Ni affinity system for binding of cytochrome c

    Energy Technology Data Exchange (ETDEWEB)

    Maltas, Esra, E-mail: maltasesra@gmail.com [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Selcuk University, Faculty of Science, Department of Biochemistry, 42075 Konya (Turkey); Kursunlu, Ahmed Nuri [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Arslan, Gulsin [Selcuk University, Faculty of Science, Department of Biochemistry, 42075 Konya (Turkey); Selcuk University, Advanced Research Technology and Application Center, 42075 Konya (Turkey); Ozmen, Mustafa [Selcuk University, Faculty of Science, Department of Chemistry, 42075 Konya (Turkey); Selcuk University, Advanced Research Technology and Application Center, 42075 Konya (Turkey)

    2015-09-15

    Highlights: • BODIPY was synthesized, and then attached to magnetic nanoparticles. • Ni(II) ions were chelated on prepared material. • The binding of cytochrome c to obtained material was studied. - Abstract: In this study, 3,5-{Bis[4,4-difluoro, 8-(2,6-diethyl, 1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene)]}benzoylchloride (BODIPY) was synthesized for the improving of a new immobilized metal affinity supporting material. Firstly, the synthesized BODIPY was immobilized on iron oxide superparamagnetic nanoparticles (SPIONs) and then, Ni(II) ions were chelated with the active terminals of BODIPY on nanoparticles surfaces to prepare an immobilized metal affinity (IMA) adsorbent for protein adsorption. The amount of BODIPY coated on SPIONs was about 29.7 μM at 10 mg nanoparticles. 738 μmol of Ni(II) ions were loaded to 10 mg of the SPIONs/BODIPY. The binding amount of cytochrome c was found to be 170 μg to the SPIONs/BODIPY/Ni at pH 7.4. The binding amount of the molecules on SPIONs was analyzed by using UV–vis, fluorescence and atomic absorption spectroscopy. The characterization of the prepared surfaces was performed by FT-IR, SEM and TEM.

  1. Scaffold hopping from (5-hydroxymethyl) isophthalates to multisubstituted pyrimidines diminishes binding affinity to the C1 domain of protein kinase C.

    Science.gov (United States)

    Provenzani, Riccardo; Tarvainen, Ilari; Brandoli, Giulia; Lempinen, Antti; Artes, Sanna; Turku, Ainoleena; Jäntti, Maria Helena; Talman, Virpi; Yli-Kauhaluoma, Jari; Tuominen, Raimo K; Boije Af Gennäs, Gustav

    2018-01-01

    Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. Utilizing the crystal structure of the PKCδ C1B domain, we have developed hydrophobic isophthalic acid derivatives that modify PKC functions by binding to the C1 domain of the enzyme. In the present study, we aimed to improve the drug-like properties of the isophthalic acid derivatives by increasing their solubility and enhancing the binding affinity. Here we describe the design and synthesis of a series of multisubstituted pyrimidines as analogs of C1 domain-targeted isophthalates and characterize their binding affinities to the PKCα isoform. In contrast to our computational predictions, the scaffold hopping from phenyl to pyrimidine core diminished the binding affinity. Although the novel pyrimidines did not establish improved binding affinity for PKCα compared to our previous isophthalic acid derivatives, the present results provide useful structure-activity relationship data for further development of ligands targeted to the C1 domain of PKC.

  2. Subcellular distribution of zinc in the benign and malignant human prostate

    International Nuclear Information System (INIS)

    Leake, A.; Chrisholm, G.D.; Busuttil, A.; Habib, F.K

    1984-01-01

    The subcellular distribution of zinc and its interaction with androgens has been examined in the benign and malignant human prostate. Endogenously, most of the zinc was associated with the nuclear fraction but signigicant concentrations were also found in the cytosol. Furthermore, the epithelium contained more zinc than that found in either the stroma or the intact gland. Zinc concentrations were lower in the subcellular fractions of the cancerous tissue when compared to hyperplastic specimens. In vitro uptake of zinc into prostatic homogenates was rapid and at equilibrium the binding was stable for both the 4degC and the 37degC incubations. At low zinc concentrations (<5mM) the uptake was higher in the nucleus, whereas at higher concentraions, the cancerous tissue exhibited a greater capacity for the metal which was predominantly retained by the cytosol. Our data suggest the presence of a saturable zinc retention mechanism in the nucleus. The zinc uptake was found to be independent of any added androgen. In contrast, the total androgen uptake by the prostate was significantly enhanced by the addition of zinc. This effect was not due to increases in the nuclear and cytosolic receptor binding since zinc inhibited the binding of the androgen to these receptors. (author)

  3. Cytidine deaminases from B. subtilis and E. coli: compensating effects of changing zinc coordination and quaternary structure.

    Science.gov (United States)

    Carlow, D C; Carter, C W; Mejlhede, N; Neuhard, J; Wolfenden, R

    1999-09-21

    Cytidine deaminase from E. coli is a dimer of identical subunits (M(r) = 31 540), each containing a single zinc atom. Cytidine deaminase from B. subtilis is a tetramer of identical subunits (M(r) = 14 800). After purification from an overexpressing strain, the enzyme from B. subtilis is found to contain a single atom of zinc per enzyme subunit by flame atomic absorption spectroscopy. Fluorescence titration indicates that each of the four subunits contains a binding site for the transition state analogue inhibitor 5-fluoro-3,4-dihydrouridine. A region of amino acid sequence homology, containing residues that are involved in zinc coordination in the enzyme from E. coli, strongly suggests that in the enzyme from B. subtilis, zinc is coordinated by the thiolate side chains of three cysteine residues (Cys-53, Cys-86, and Cys-89) [Song, B. H., and Neuhard, J. (1989) Mol. Gen. Genet. 216, 462-468]. This pattern of zinc coordination appears to be novel for a hydrolytic enzyme, and might be expected to reduce the reactivity of the active site substantially compared with that of the enzyme from E. coli (His-102, Cys-129, and Cys-132). Instead, the B. subtilis and E. coli enzymes are found to be similar in their activities, and also in their relative binding affinities for a series of structurally related inhibitors with binding affinities that span a range of 6 orders of magnitude. In addition, the apparent pK(a) value of the active site is shifted upward by less than 1 unit. Sequence alignments, together with model building, suggest one possible mechanism of compensation.

  4. The N-terminal domain determines the affinity and specificity of H1 binding to chromatin

    International Nuclear Information System (INIS)

    Öberg, Christine; Belikov, Sergey

    2012-01-01

    Highlights: ► wt Human histone H1.4 and hH1.4 devoid of N-terminal domain, ΔN-hH1.4, were compared. ► Both histones bind to chromatin, however, ΔN-hH1.4 displays lower binding affinity. ► Interaction of ΔN-hH1.4 with chromatin includes a significant unspecific component. ► N-terminal domain is a determinant of specificity of histone H1 binding to chromatin. -- Abstract: Linker histone H1, one of the most abundant nuclear proteins in multicellular eukaryotes, is a key component of the chromatin structure mainly due to its role in the formation and maintenance of the 30 nm chromatin fiber. It has a three-domain structure; a central globular domain flanked by a short N-terminal domain and a long, highly basic C-terminal domain. Previous studies have shown that the binding abilities of H1 are at large determined by the properties of the C-terminal domain; much less attention has been paid to role of the N-terminal domain. We have previously shown that H1 can be reconstituted via cytoplasmic mRNA injection in Xenopus oocytes, cells that lack somatic H1. The heterologously expressed H1 proteins are incorporated into in vivo assembled chromatin at specific sites and the binding event is monitored as an increase in nucleosomal repeat length (NRL). Using this setup we have here compared the binding properties of wt-H1.4 and hH1.4 devoid of its N-terminal domain (ΔN-hH1.4). The ΔN-hH1.4 displays a drastically lower affinity for chromatin binding as compared to the wild type hH1.4. Our data also indicates that ΔN-hH1.4 is more prone to unspecific chromatin binding than the wild type. We conclude that the N-terminal domain of H1 is an important determinant of affinity and specificity of H1-chromatin interactions.

  5. Quantification of transcription factor-DNA binding affinity in a living cell.

    Science.gov (United States)

    Belikov, Sergey; Berg, Otto G; Wrange, Örjan

    2016-04-20

    The apparent dissociation constant (Kd) for specific binding of glucocorticoid receptor (GR) and androgen receptor (AR) to DNA was determined in vivo in Xenopus oocytes. The total nuclear receptor concentration was quantified as specifically retained [(3)H]-hormone in manually isolated oocyte nuclei. DNA was introduced by nuclear microinjection of single stranded phagemid DNA, chromatin is then formed during second strand synthesis. The fraction of DNA sites occupied by the expressed receptor was determined by dimethylsulphate in vivo footprinting and used for calculation of the receptor-DNA binding affinity. The forkhead transcription factor FoxA1 enhanced the DNA binding by GR with an apparent Kd of ∼1 μM and dramatically stimulated DNA binding by AR with an apparent Kd of ∼0.13 μM at a composite androgen responsive DNA element containing one FoxA1 binding site and one palindromic hormone receptor binding site known to bind one receptor homodimer. FoxA1 exerted a weak constitutive- and strongly cooperative DNA binding together with AR but had a less prominent effect with GR, the difference reflecting the licensing function of FoxA1 at this androgen responsive DNA element. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    International Nuclear Information System (INIS)

    Niles, L.P.; Hashemi, F.

    1990-01-01

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, [ 125 I]iodomelatonin, was examined using an incubation temperature (30 degree C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing [ 125 I]iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus

  7. Syntheses of 7-Substituted α-Cyperone Derivatives for Selective Sigma-1 Receptor over Cannabinoid-1 Receptor Binding Affinities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Juyoung; Shin, Younggyun; Yoon, Sunghwa [Ajou Univ., Suwon (Korea, Republic of); Kim, Keewon; Kwon, Youngbae [ChonBuk National Univ., Jeonju (Korea, Republic of)

    2013-11-15

    We have successfully synthesized seven α-cyperone derivatives and found that the presence of a hydrogen bond donor/acceptor groups at the C7 position of α-cyperone significantly affects specificity and potency of CB{sub 1} receptor binding affinity over sigma-1 receptor binding affinity. In particular, the presence of the amino moiety at the C7 position of α-cyperone is beneficial for binding to sigmia-1 receptor. The molecular mechanism of compound 8 involved in the high binding affinity to sigma-1 receptor is under investigation. We first synthesized α-cyperone 1 by following the previously reported synthetic routes.15-19 In brief, azeotropic imination of (+)-dihydrocarvone and (R)-(+)-1-phenylethylamine followed by alkylation with a slight excess of ethyl vinyl ketone (EVK) in THF at 40 .deg. C produced the Micheal adduct. The resulting adduct was hydrolyzed and then treated with sodium methoxide at room temperature to give an easily separable mixture of α-cyperone 1 and its side product. Flash chromatography resulted in pure α-cyperone 1 in a 30% yield from (+)-dihydrocarvone.

  8. Reconstitution of high affinity α2 adrenergic agonist binding by fusion with a pertussis toxin substrate

    International Nuclear Information System (INIS)

    Kim, M.H.; Neubig, R.R.

    1986-01-01

    High affinity α 2 adrenergic agonist binding is thought to occur via a coupling of the α 2 receptor with N/sub i/, the inhibitory guanyl nucleotide binding protein. Human platelet membranes pretreated at pH 11.5 exhibit a selective inactivation of agonist binding and N/sub i/. To further study the mechanism of agonist binding, alkali treated membranes (ATM) were mixed with membranes pretreated with 10 μM phenoxybenzamine to block α 2 receptors (POB-M). The combined membrane pellet was incubated in 50% polyethylene glycol (PEG) to promote membrane-membrane fusion and assayed for binding to the α 2 agonist [ 3 H]UK 14,304 (UK) and the antagonist [ 3 H] yohimbine. PEG treatment resulted in a 2-4 fold enhancement of UK binding whereas yohimbine binding was unchanged. No enhancement of UK binding was observed in the absence of PEG treatment. The reconstitution was dependent on the addition of POB-M. They found that a 1:1 ratio of POB-M:ATM was optimal. Reconstituted binding was inhibited by GppNHp. Fusion of rat C6 glioma cell membranes, which do not contain α 2 receptors, also enhanced agonist binding to ATM. Fusion of C6 membranes from cells treated with pertussis toxin did not enhance [ 3 H] UK binding. These data show that a pertussis toxin sensitive membrane component, possibly N/sub i/, can reconstitute high affinity α 2 agonist binding

  9. Comparison of high affinity binding of 3H-proadifen and 3H-(-)-cocaine t rat liver membranes

    International Nuclear Information System (INIS)

    Ross, S.B.

    1995-01-01

    The characteristics of the binding of 3 H-proadifen to rat liver membranes were studied and compared to those of 3 H-cocaine. It was found that 3 H-proadifen was bound reversibly with high affinity (K D =1.8±0.5 nM) and large capacity (B max =2010±340 pmol/g wet tissue) to liver membranes. The corresponding values for the 3 H-cocaine binding were 3.5 nM and 1000 pmol/g wet tissue. The binding of 3 H-proadifen was mainly localised to the microsomal fraction. The number of binding sites was not increased by treatment of rats with phenobarbitone. With 1 μM CdCl 2 in the incubation buffer it was possible to differentiate between two 3 H-cocaine binding sites with K d values of 1.6 and 7.7 nM and B max values of 280 and 940 pmol/g wet liver tissue. S-(-)-Alaproclate inhibited the binding of 3 H-proadifen and 3 H-cocaine inhibited the binding of 3 H-proadifen (IC 50 =10 nM) and proadifen that of 3 H-cocaine (IC 50 =1 nM). There was a high correlation coefficient (r r =0.972; P 50 =100-500 nM): chloroquine, phenoxybenzamine, amitriptyline, ajmaline, remoxipride, imipramine and (-)-alaprenolol. CdCl 2 , ZnCl 2 and CuCl 2 inhibited the binding of both ligands with low Hill coefficients, indicating heterogeneous binding sites. The inhibition curve of Cd 2+ on the cocaine binding was biphasic with a high affinity part around 50 nM and a low affinity part at 15μM. The similarity of the characteristics of the binding of these ligands with that of 3 H-alaproclate is discussed. It is suggested that all three compounds bind to the same sites, although additional binding sites seem to exist for proadifen. (au) (9 refs.)

  10. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases.

    Science.gov (United States)

    Vermeiren, Céline; Motte, Philippe; Viot, Delphine; Mairet-Coello, Georges; Courade, Jean-Philippe; Citron, Martin; Mercier, Joël; Hannestad, Jonas; Gillard, Michel

    2018-02-01

    Lilly/Avid's AV-1451 is one of the most advanced tau PET tracers in the clinic. Although results obtained in Alzheimer's disease patients are compelling, discrimination of tracer uptake in healthy individuals and patients with supranuclear palsy (PSP) is less clear as there is substantial overlap of signal in multiple brain regions. Moreover, accurate quantification of [ 18 F]AV-1451 uptake in Alzheimer's disease may not be possible. The aim of the present study was to characterize the in vitro binding of AV-1451 to understand and identify potential off-target binding that could explain the poor discrimination observed in PSP patients. [ 3 H]AV-1451 and AV-1451 were characterized in in vitro binding assays using recombinant and native proteins/tissues from postmortem samples of controls and Alzheimer's disease and PSP patients. [ 3 H]AV-1451 binds to multiple sites with nanomolar affinities in brain homogenates and to tau fibrils isolated from Alzheimer's disease or PSP patients. [ 3 H]AV-1451 also binds with similarly high affinities in brain homogenates devoid of tau pathology. This unexpected binding was demonstrated to be because of nanomolar affinities of [ 3 H]AV-1451 for monoamine oxidase A and B enzymes. High affinity of AV-1451 for monoamine oxidase proteins may limit its utility as a tau PET tracer in PSP and Alzheimer's disease because of high levels of monoamine oxidase expression in brain regions also affected by tau deposition, especially if monoamine oxidase levels change over time or with a treatment intervention. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  11. Free energy calculations offer insights into the influence of receptor flexibility on ligand-receptor binding affinities.

    Science.gov (United States)

    Dolenc, Jožica; Riniker, Sereina; Gaspari, Roberto; Daura, Xavier; van Gunsteren, Wilfred F

    2011-08-01

    Docking algorithms for computer-aided drug discovery and design often ignore or restrain the flexibility of the receptor, which may lead to a loss of accuracy of the relative free enthalpies of binding. In order to evaluate the contribution of receptor flexibility to relative binding free enthalpies, two host-guest systems have been examined: inclusion complexes of α-cyclodextrin (αCD) with 1-chlorobenzene (ClBn), 1-bromobenzene (BrBn) and toluene (MeBn), and complexes of DNA with the minor-groove binding ligands netropsin (Net) and distamycin (Dist). Molecular dynamics simulations and free energy calculations reveal that restraining of the flexibility of the receptor can have a significant influence on the estimated relative ligand-receptor binding affinities as well as on the predicted structures of the biomolecular complexes. The influence is particularly pronounced in the case of flexible receptors such as DNA, where a 50% contribution of DNA flexibility towards the relative ligand-DNA binding affinities is observed. The differences in the free enthalpy of binding do not arise only from the changes in ligand-DNA interactions but also from changes in ligand-solvent interactions as well as from the loss of DNA configurational entropy upon restraining.

  12. Fungal Zinc Homeostasis - A Tug of War Between the Pathogen and Host.

    Science.gov (United States)

    Walencik, Paulina K; Watly, Joanna; Rowinska-Zyrek, Magdalena

    2016-01-01

    In the last decade, drug resistant invasive mycoses have become significantly more common and new antifungal drugs and ways to specifically deliver them to the fungal cell are being looked for. One of the biggest obstacles in finding such comes from the fact that fungi share essential metabolic pathways with humans. One significant difference in the metabolism of those two cells that can be challenged when looking for possible selective therapeutics is the uptake of zinc, a nutrient crucial for the fungal survival and virulence. This work summarizes the recent advances in the biological inorganic chemistry of zinc metabolism in fungi. The regulation of zinc uptake, various types of its transmembrane transport, storage and the maintenance of intracellular zinc homeostasis is discussed in detail, with a special focus on the concept of a constant 'tug of war' over zinc between the fungus and its host, with the host trying to withhold essential Zn(II), and the fungus counteracting by producing high-affinity zinc binding molecules.

  13. Heparin-binding peptide as a novel affinity tag for purification of recombinant proteins.

    Science.gov (United States)

    Morris, Jacqueline; Jayanthi, Srinivas; Langston, Rebekah; Daily, Anna; Kight, Alicia; McNabb, David S; Henry, Ralph; Kumar, Thallapuranam Krishnaswamy Suresh

    2016-10-01

    Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a

  14. NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype.

    Science.gov (United States)

    Martini, Lene; Hastrup, Hanne; Holst, Birgitte; Fraile-Ramos, Alberto; Marsh, Mark; Schwartz, Thue W

    2002-07-01

    Arrestins are cytosolic proteins that, upon stimulation of seven transmembrane (7TM) receptors, terminate signaling by binding to the receptor, displacing the G protein and targeting the receptor to clathrin-coated pits. Fusion of beta-arrestin1 to the C-terminal end of the neurokinin NK1 receptor resulted in a chimeric protein that was expressed to some extent on the cell surface but also accumulated in transferrin-labeled recycling endosomes independently of agonist stimulation. As expected, the fusion protein was almost totally silenced with respect to agonist-induced signaling through the normal Gq/G11 and Gs pathways. The NK1-beta-arrestin1 fusion construct bound nonpeptide antagonists with increased affinity but surprisingly also bound two types of agonists, substance P and neurokinin A, with high, normal affinity. In the wild-type NK1 receptor, neurokinin A (NKA) competes for binding against substance P and especially against antagonists with up to 1000-fold lower apparent affinity than determined in functional assays and in homologous binding assays. When the NK1 receptor was closely fused to G proteins, this phenomenon was eliminated among agonists, but the agonists still competed with low affinity against antagonists. In contrast, in the NK1-beta-arrestin1 fusion protein, all ligands bound with similar affinity independent of the choice of radioligand and with Hill coefficients near unity. We conclude that the NK1 receptor in complex with arrestin is in a high-affinity, stable, agonist-binding form probably best suited to structural analysis and that the receptor can display binding properties that are nearly theoretically ideal when it is forced to complex with only a single intracellular protein partner.

  15. Carbon- versus sulphur-based zinc binding groups for carbonic anhydrase inhibitors?

    Science.gov (United States)

    Supuran, Claudiu T

    2018-12-01

    A set of compounds incorporating carbon-based zinc-binding groups (ZBGs), of the type PhX (X = COOH, CONH 2 , CONHNH 2 , CONHOH, CONHOMe), and the corresponding derivatives with sulphur(VI)-based ZBGs (X = SO 3 H, SO 2 NH 2 , SO 2 NHNH 2 , SO 2 NHOH, SO 2 NHOMe) were tested as inhibitors of all mammalian isoforms of carbonic anhydrase (CA, EC 4.2.1.1), CA I-XV. Three factors connected with the ZBG influenced the efficacy as CA inhibitor (CAI) of the investigated compounds: (i) the pKa of the ZBG; (ii) its geometry (tetrahedral, i.e. sulphur-based, versus trigonal, i.e. carbon-based ZBGs), and (iii) orientation of the organic scaffold induced by the nature of the ZBG. Benzenesulphonamide was the best inhibitor of all isoforms, but other ZBGs led to interesting inhibition profiles, although with an efficacy generally reduced when compared to the sulphonamide. The nature of the ZBG also influenced the CA inhibition mechanism. Most of these derivatives were zinc binders, but some of them (sulfonates, carboxylates) may interact with the enzyme by anchoring to the zinc-coordinated water molecule or by other inhibition mechanisms (occlusion of the active site entrance, out of the active site binding, etc.). Exploring structurally diverse ZBGs may lead to interesting new developments in the field of CAIs.

  16. Ribosomal binding region for the antibiotic tiamulin: stoichiometry, subunit location, and affinity for various analogs.

    Science.gov (United States)

    Högenauer, G; Ruf, C

    1981-01-01

    Equilibrium dialysis experiments with a highly purified preparation of labeled tiamulin, a semisynthetic derivative of the antibiotic pleuromutilin, and Escherichia coli ribosomes allowed the determination of two binding sites for the drug. The binding reaction showed a cooperative effect. Of the two subunits, the 50S particle was able to bind the antibiotic in a 1:1 stoichiometry. Hence, the 50S subunit contributed predominantly to the binding energy which held the antibiotic to the ribosomes. The 30S subunit, showing no strong affinity for the drug, may be needed for the generation of the second binding site in the 70S particle. If depleted of ammonium ions, 70S ribosomes lost their binding capacity for the antibiotic. The attachment sites for tiamulin could be restored by heating the ribosomes to 40 degrees C in the presence of either ammonium ions or the antibiotic. Other pleuromutilin derivatives displaced labeled tiamulin from its ribosomal binding sites. By quantifying this competition, the relative affinity of various pleuromutilin derivatives for E. coli ribosomes was determined. The binding correlated with the minimal inhibitory concentrations of these compounds against E. coli. When compared with the minimal inhibitory concentrations of these compounds against E. coli. When compared with the minimal inhibitory concentrations against E. coli. When compared with the minimal inhibitory concentrations against Staphylococcus aureus, the correlation was less strict, but the same trend prevailed. These results suggest that the antibacterial activities of various pleuromutilin derivatives on a given test organism are mainly determined by the strength of binding to the ribosomes within the bacterial cell. PMID:6751216

  17. NADP+ binding to the regulatory subunit of methionine adenosyltransferase II increases intersubunit binding affinity in the hetero-trimer.

    Directory of Open Access Journals (Sweden)

    Beatriz González

    Full Text Available Mammalian methionine adenosyltransferase II (MAT II is the only hetero-oligomer in this family of enzymes that synthesize S-adenosylmethionine using methionine and ATP as substrates. Binding of regulatory β subunits and catalytic α2 dimers is known to increase the affinity for methionine, although scarce additional information about this interaction is available. This work reports the use of recombinant α2 and β subunits to produce oligomers showing kinetic parameters comparable to MAT II purified from several tissues. According to isothermal titration calorimetry data and densitometric scanning of the stained hetero-oligomer bands on denatured gels, the composition of these oligomers is that of a hetero-trimer with α2 dimers associated to single β subunits. Additionally, the regulatory subunit is able to bind NADP(+ with a 1:1 stoichiometry, the cofactor enhancing β to α2-dimer binding affinity. Mutants lacking residues involved in NADP(+ binding and N-terminal truncations of the β subunit were able to oligomerize with α2-dimers, although the kinetic properties appeared altered. These data together suggest a role for both parts of the sequence in the regulatory role exerted by the β subunit on catalysis. Moreover, preparation of a structural model for the hetero-oligomer, using the available crystal data, allowed prediction of the regions involved in β to α2-dimer interaction. Finally, the implications that the presence of different N-terminals in the β subunit could have on MAT II behavior are discussed in light of the recent identification of several splicing forms of this subunit in hepatoma cells.

  18. Earthworm Lumbricus rubellus MT-2: Metal Binding and Protein Folding of a True Cadmium-MT

    Directory of Open Access Journals (Sweden)

    Gregory R. Kowald

    2016-01-01

    Full Text Available Earthworms express, as most animals, metallothioneins (MTs—small, cysteine-rich proteins that bind d10 metal ions (Zn(II, Cd(II, or Cu(I in clusters. Three MT homologues are known for Lumbricus rubellus, the common red earthworm, one of which, wMT-2, is strongly induced by exposure of worms to cadmium. This study concerns composition, metal binding affinity and metal-dependent protein folding of wMT-2 expressed recombinantly and purified in the presence of Cd(II and Zn(II. Crucially, whilst a single Cd7wMT-2 species was isolated from wMT-2-expressing E. coli cultures supplemented with Cd(II, expressions in the presence of Zn(II yielded mixtures. The average affinities of wMT-2 determined for either Cd(II or Zn(II are both within normal ranges for MTs; hence, differential behaviour cannot be explained on the basis of overall affinity. Therefore, the protein folding properties of Cd- and Zn-wMT-2 were compared by 1H NMR spectroscopy. This comparison revealed that the protein fold is better defined in the presence of cadmium than in the presence of zinc. These differences in folding and dynamics may be at the root of the differential behaviour of the cadmium- and zinc-bound protein in vitro, and may ultimately also help in distinguishing zinc and cadmium in the earthworm in vivo.

  19. Comparison of high affinity binding of {sup 3}H-proadifen and {sup 3}H-(-)-cocaine t rat liver membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, S.B. [Astra Arcus AB, Dept. of Neuropharmacology, Soedertaelje (Sweden)

    1995-06-01

    The characteristics of the binding of {sup 3}H-proadifen to rat liver membranes were studied and compared to those of {sup 3}H-cocaine. It was found that {sup 3}H-proadifen was bound reversibly with high affinity (K{sub D}=1.8{+-}0.5 nM) and large capacity (B{sub max}=2010{+-}340 pmol/g wet tissue) to liver membranes. The corresponding values for the {sup 3}H-cocaine binding were 3.5 nM and 1000 pmol/g wet tissue. The binding of {sup 3}H-proadifen was mainly localised to the microsomal fraction. The number of binding sites was not increased by treatment of rats with phenobarbitone. With 1 {mu}M CdCl{sub 2} in the incubation buffer it was possible to differentiate between two {sup 3}H-cocaine binding sites with K{sub d} values of 1.6 and 7.7 nM and B{sub max} values of 280 and 940 pmol/g wet liver tissue. S-(-)-Alaproclate inhibited the binding of {sup 3}H-proadifen and {sup 3}H-cocaine inhibited the binding of {sup 3}H-proadifen (IC{sub 50}=10 nM) and proadifen that of {sup 3}H-cocaine (IC{sub 50}=1 nM). There was a high correlation coefficient (r{sub r}=0.972; P<0.01; n=12) in the Spearman rank test between the inhibitory potencies of compounds examined in both systems. Beside some potent alaproclate analogues a couple of compounds had moderately high affinity (IC{sub 50}=100-500 nM): chloroquine, phenoxybenzamine, amitriptyline, ajmaline, remoxipride, imipramine and (-)-alaprenolol. CdCl{sub 2}, ZnCl{sub 2} and CuCl{sub 2} inhibited the binding of both ligands with low Hill coefficients, indicating heterogeneous binding sites. The inhibition curve of Cd{sup 2+} on the cocaine binding was biphasic with a high affinity part around 50 nM and a low affinity part at 15{mu}M. The similarity of the characteristics of the binding of these ligands with that of {sup 3}H-alaproclate is discussed. It is suggested that all three compounds bind to the same sites, although additional binding sites seem to exist for proadifen. (au) (9 refs.).

  20. Protein Cofactors Are Essential for High-Affinity DNA Binding by the Nuclear Factor κB RelA Subunit.

    Science.gov (United States)

    Mulero, Maria Carmen; Shahabi, Shandy; Ko, Myung Soo; Schiffer, Jamie M; Huang, De-Bin; Wang, Vivien Ya-Fan; Amaro, Rommie E; Huxford, Tom; Ghosh, Gourisankar

    2018-05-22

    Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro. The addition of p53 or RPS3 (ribosomal protein S3) increases RelA:DNA binding affinity 2- to >50-fold depending on the protein and ionic conditions. These cofactor proteins do not form stable ternary complexes, suggesting that they stabilize the RelA:DNA complex through dynamic interactions. Surprisingly, the RelA-DBD alone fails to bind DNA under the same solution conditions even in the presence of cofactors, suggesting an important role of the RelA-AD in DNA binding. Reduced RelA:DNA binding at a physiological ionic strength suggests that multiple cofactors might be acting simultaneously to mitigate the electrolyte effect and stabilize the RelA:DNA complex in vivo. Overall, our observations suggest that the RelA-AD and multiple cofactor proteins function cooperatively to prime the RelA-DBD and stabilize the RelA:DNA complex in cells. Our study provides a mechanism for nuclear cofactor proteins in NF-κB-dependent gene regulation.

  1. Affinity enhancement of nanobody binding to EGFR: in silico site-directed mutagenesis and molecular dynamics simulation approaches.

    Science.gov (United States)

    Farasat, Alireza; Rahbarizadeh, Fatemeh; Hosseinzadeh, Ghader; Sajjadi, Sharareh; Kamali, Mehdi; Keihan, Amir Homayoun

    2017-06-01

    Epidermal growth factor receptor (EGFR), a transmembrane glycoprotein, is overexpressed in many cancers such as head-neck, breast, prostate, and skin cancers for this reason it is a good target in cancer therapy and diagnosis. In nanobody-based cancer diagnosis and treatment, nanobodies with high affinity toward receptor (e.g. EGFR) results in effective treatment or diagnosis of cancer. In this regard, the main aim of this study is to develop a method based on molecular dynamic (MD) simulations for designing of 7D12 based nanobody with high affinity compared with wild-type nanobody. By surveying electrostatic and desolvation interactions between different residues of 7D12 and EGFR, the critical residues of 7D12 that play the main role in the binding of 7D12 to EGFR were elucidated and based on these residues, five logical variants were designed. Following the 50 ns MD simulations, pull and umbrella sampling simulation were performed for 7D12 and all its variants in complex with EGFR. Binding free energy of 7D12 (and all its variants) with EGFR was obtained by weighted histogram analysis method. According to binding free energy results, GLY101 to GLU mutation showed the highest binding affinity but this variant is unstable after 50 ns MD simulations. ALA100 to GLU mutation shows suitable binding enhancement with acceptable structural stability. Suitable position and orientation of GLU in residue 100 of 7D12 against related amino acids of EGFR formed some extra hydrogen and electrostatic interactions which resulted in binding enhancement.

  2. Prediction of trypsin/molecular fragment binding affinities by free energy decomposition and empirical scores

    Science.gov (United States)

    Benson, Mark L.; Faver, John C.; Ucisik, Melek N.; Dashti, Danial S.; Zheng, Zheng; Merz, Kenneth M.

    2012-05-01

    Two families of binding affinity estimation methodologies are described which were utilized in the SAMPL3 trypsin/fragment binding affinity challenge. The first is a free energy decomposition scheme based on a thermodynamic cycle, which included separate contributions from enthalpy and entropy of binding as well as a solvent contribution. Enthalpic contributions were estimated with PM6-DH2 semiempirical quantum mechanical interaction energies, which were modified with a statistical error correction procedure. Entropic contributions were estimated with the rigid-rotor harmonic approximation, and solvent contributions to the free energy were estimated with several different methods. The second general methodology is the empirical score LISA, which contains several physics-based terms trained with the large PDBBind database of protein/ligand complexes. Here we also introduce LISA+, an updated version of LISA which, prior to scoring, classifies systems into one of four classes based on a ligand's hydrophobicity and molecular weight. Each version of the two methodologies (a total of 11 methods) was trained against a compiled set of known trypsin binders available in the Protein Data Bank to yield scaling parameters for linear regression models. Both raw and scaled scores were submitted to SAMPL3. Variants of LISA showed relatively low absolute errors but also low correlation with experiment, while the free energy decomposition methods had modest success when scaling factors were included. Nonetheless, re-scaled LISA yielded the best predictions in the challenge in terms of RMS error, and six of these models placed in the top ten best predictions by RMS error. This work highlights some of the difficulties of predicting binding affinities of small molecular fragments to protein receptors as well as the benefit of using training data.

  3. Dynamics behind affinity maturation of an anti-HCMV antibody family influencing antigen binding

    KAUST Repository

    Di Palma, Francesco; Tramontano, Anna

    2017-01-01

    The investigation of antibody affinity maturation and its effects on antigen binding is important with respect to understanding the regulation of the immune response. To shed light on this crucial process, we analyzed two Igs neutralizing the human cytomegalovirus: the primary germline antibody M2J1 and its related mature antibody 8F9. Both antibodies target the AD-2S1 epitope of the gB envelope protein and are considered to establish similar interactions with the cognate antigen. We used molecular dynamics simulations to understand the effect of mutations on the antibody–antigen interactions. The results provide a qualitative explanation for the increased 8F9 peptide affinity compared with that of M2J1. The emerging atomistic-detailed description of these complexes reveals the molecular effects of the somatic hypermutations occurring during affinity maturation.

  4. Dynamics behind affinity maturation of an anti-HCMV antibody family influencing antigen binding

    KAUST Repository

    Di Palma, Francesco

    2017-08-03

    The investigation of antibody affinity maturation and its effects on antigen binding is important with respect to understanding the regulation of the immune response. To shed light on this crucial process, we analyzed two Igs neutralizing the human cytomegalovirus: the primary germline antibody M2J1 and its related mature antibody 8F9. Both antibodies target the AD-2S1 epitope of the gB envelope protein and are considered to establish similar interactions with the cognate antigen. We used molecular dynamics simulations to understand the effect of mutations on the antibody–antigen interactions. The results provide a qualitative explanation for the increased 8F9 peptide affinity compared with that of M2J1. The emerging atomistic-detailed description of these complexes reveals the molecular effects of the somatic hypermutations occurring during affinity maturation.

  5. The DNLZ/HEP zinc-binding subdomain is critical for regulation of the mitochondrial chaperone HSPA9.

    Science.gov (United States)

    Vu, Michael T; Zhai, Peng; Lee, Juhye; Guerra, Cecilia; Liu, Shirley; Gustin, Michael C; Silberg, Jonathan J

    2012-02-01

    Human mitochondrial DNLZ/HEP regulates the catalytic activity and solubility of the mitochondrial hsp70 chaperone HSPA9. Here, we investigate the role that the DNLZ zinc-binding and C-terminal subdomains play in regulating HSPA9. We show that truncations lacking portions of the zinc-binding subdomain (ZBS) do not affect the solubility of HSPA9 or its ATPase domain, whereas those containing the ZBS and at least 10 residues following this subdomain enhance chaperone solubility. Binding measurements further show that DNLZ requires its ZBS to form a stable complex with the HSPA9 ATPase domain, and ATP hydrolysis measurements reveal that the ZBS is critical for full stimulation of HSPA9 catalytic activity. We also examined if DNLZ is active in vivo. We found that DNLZ partially complements the growth of Δzim17 Saccharomyces cerevisiae, and we discovered that a Zim17 truncation lacking a majority of the C-terminal subdomain strongly complements growth like full-length Zim17. These findings provide direct evidence that human DNLZ is a functional ortholog of Zim17. In addition, they implicate the pair of antiparallel β-strands that coordinate zinc in Zim17/DNLZ-type proteins as critical for binding and regulating hsp70 chaperones. Copyright © 2011 The Protein Society.

  6. NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data

    DEFF Research Database (Denmark)

    Jurtz, Vanessa Isabell; Paul, Sinu; Andreatta, Massimo

    2017-01-01

    by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging......Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway....... Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified...

  7. Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes

    International Nuclear Information System (INIS)

    Csermely, P.; Szamel, M.; Resch, K.; Somogyi, J.

    1988-01-01

    In the primary structure of protein kinase C, the presence of a putative metal-binding site has been suggested. In the present report, the authors demonstrate that the most abundant intracellular heavy metal, zinc, can increase the activity of cytosolic protein kinase C. Zinc reversibly binds the enzyme to plasma membranes,and it may contribute to the calcium-induced binding as well. The intracellular heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine prevents the phorbol ester- and antigen-induced translocation of protein kinase C. This effect can be totally reversed by the concomitant addition of Zn 2+ , while Fe 2+ and Mn 2+ are only partially counteractive. The results suggest that zinc can activate protein kinase C and contributes to its binding to plasma membranes in T lymphocytes induced by Ca 2+ , phorbol ester, or antigen

  8. C-terminal substitution of MDM2 interacting peptides modulates binding affinity by distinctive mechanisms.

    Directory of Open Access Journals (Sweden)

    Christopher J Brown

    Full Text Available The complex between the proteins MDM2 and p53 is a promising drug target for cancer therapy. The residues 19-26 of p53 have been biochemically and structurally demonstrated to be a most critical region to maintain the association of MDM2 and p53. Variation of the amino acid sequence in this range obviously alters the binding affinity. Surprisingly, suitable substitutions contiguous to this region of the p53 peptides can yield tightly binding peptides. The peptide variants may differ by a single residue that vary little in their structural conformations and yet are characterized by large differences in their binding affinities. In this study a systematic analysis into the role of single C-terminal mutations of a 12 residue fragment of the p53 transactivation domain (TD and an equivalent phage optimized peptide (12/1 were undertaken to elucidate their mechanistic and thermodynamic differences in interacting with the N-terminal of MDM2. The experimental results together with atomistically detailed dynamics simulations provide insight into the principles that govern peptide design protocols with regard to protein-protein interactions and peptidomimetic design.

  9. Cost Function Network-based Design of Protein-Protein Interactions: predicting changes in binding affinity.

    Science.gov (United States)

    Viricel, Clément; de Givry, Simon; Schiex, Thomas; Barbe, Sophie

    2018-02-20

    Accurate and economic methods to predict change in protein binding free energy upon mutation are imperative to accelerate the design of proteins for a wide range of applications. Free energy is defined by enthalpic and entropic contributions. Following the recent progresses of Artificial Intelligence-based algorithms for guaranteed NP-hard energy optimization and partition function computation, it becomes possible to quickly compute minimum energy conformations and to reliably estimate the entropic contribution of side-chains in the change of free energy of large protein interfaces. Using guaranteed Cost Function Network algorithms, Rosetta energy functions and Dunbrack's rotamer library, we developed and assessed EasyE and JayZ, two methods for binding affinity estimation that ignore or include conformational entropic contributions on a large benchmark of binding affinity experimental measures. If both approaches outperform most established tools, we observe that side-chain conformational entropy brings little or no improvement on most systems but becomes crucial in some rare cases. as open-source Python/C ++ code at sourcesup.renater.fr/projects/easy-jayz. thomas.schiex@inra.fr and sophie.barbe@insa-toulouse.fr. Supplementary data are available at Bioinformatics online.

  10. Use of thermodynamic coupling between antibody-antigen binding and phospholipid acyl chain phase transition energetics to predict immunoliposome targeting affinity.

    Science.gov (United States)

    Klegerman, Melvin E; Zou, Yuejiao; Golunski, Eva; Peng, Tao; Huang, Shao-Ling; McPherson, David D

    2014-09-01

    Thermodynamic analysis of ligand-target binding has been a useful tool for dissecting the nature of the binding mechanism and, therefore, potentially can provide valuable information regarding the utility of targeted formulations. Based on a consistent coupling of antibody-antigen binding and gel-liquid crystal transition energetics observed for antibody-phosphatidylethanolamine (Ab-PE) conjugates, we hypothesized that the thermodynamic parameters and the affinity for antigen of the Ab-PE conjugates could be effectively predicted once the corresponding information for the unconjugated antibody is determined. This hypothesis has now been tested in nine different antibody-targeted echogenic liposome (ELIP) preparations, where antibody is conjugated to dipalmitoylphosphatidylethanolamine (DPPE) head groups through a thioether linkage. Predictions were satisfactory (affinity not significantly different from the population of values found) in five cases (55.6%), but the affinity of the unconjugated antibody was not significantly different from the population of values found in six cases (66.7%), indicating that the affinities of the conjugated antibody tended not to deviate appreciably from those of the free antibody. While knowledge of the affinities of free antibodies may be sufficient to judge their suitability as targeting agents, thermodynamic analysis may still provide valuable information regarding their usefulness for specific applications.

  11. Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Csermely, P.; Szamel, M.; Resch, K.; Somogyi, J.

    1988-05-15

    In the primary structure of protein kinase C, the presence of a putative metal-binding site has been suggested. In the present report, the authors demonstrate that the most abundant intracellular heavy metal, zinc, can increase the activity of cytosolic protein kinase C. Zinc reversibly binds the enzyme to plasma membranes,and it may contribute to the calcium-induced binding as well. The intracellular heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine prevents the phorbol ester- and antigen-induced translocation of protein kinase C. This effect can be totally reversed by the concomitant addition of Zn/sup 2 +/, while Fe/sup 2 +/ and Mn/sup 2 +/ are only partially counteractive. The results suggest that zinc can activate protein kinase C and contributes to its binding to plasma membranes in T lymphocytes induced by Ca/sup 2 +/, phorbol ester, or antigen.

  12. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2.

    Science.gov (United States)

    de Ávila, Maurício Boff; Xavier, Mariana Morrone; Pintro, Val Oliveira; de Azevedo, Walter Filgueira

    2017-12-09

    Here we report the development of a machine-learning model to predict binding affinity based on the crystallographic structures of protein-ligand complexes. We used an ensemble of crystallographic structures (resolution better than 1.5 Å resolution) for which half-maximal inhibitory concentration (IC 50 ) data is available. Polynomial scoring functions were built using as explanatory variables the energy terms present in the MolDock and PLANTS scoring functions. Prediction performance was tested and the supervised machine learning models showed improvement in the prediction power, when compared with PLANTS and MolDock scoring functions. In addition, the machine-learning model was applied to predict binding affinity of CDK2, which showed a better performance when compared with AutoDock4, AutoDock Vina, MolDock, and PLANTS scores. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Maximizing in vivo target clearance by design of pH-dependent target binding antibodies with altered affinity to FcRn.

    Science.gov (United States)

    Yang, Danlin; Giragossian, Craig; Castellano, Steven; Lasaro, Marcio; Xiao, Haiguang; Saraf, Himanshu; Hess Kenny, Cynthia; Rybina, Irina; Huang, Zhong-Fu; Ahlberg, Jennifer; Bigwarfe, Tammy; Myzithras, Maria; Waltz, Erica; Roberts, Simon; Kroe-Barrett, Rachel; Singh, Sanjaya

    2017-10-01

    Antibodies with pH-dependent binding to both target antigens and neonatal Fc receptor (FcRn) provide an alternative tool to conventional neutralizing antibodies, particularly for therapies where reduction in antigen level is challenging due to high target burden. However, the requirements for optimal binding kinetic framework and extent of pH dependence for these antibodies to maximize target clearance from circulation are not well understood. We have identified a series of naturally-occurring high affinity antibodies with pH-dependent target binding properties. By in vivo studies in cynomolgus monkeys, we show that pH-dependent binding to the target alone is not sufficient for effective target removal from circulation, but requires Fc mutations that increase antibody binding to FcRn. Affinity-enhanced pH-dependent FcRn binding that is double-digit nM at pH 7.4 and single-digit nM at pH 6 achieved maximal target reduction when combined with similar target binding affinities in reverse pH directions. Sustained target clearance below the baseline level was achieved 3 weeks after single-dose administration at 1.5 mg/kg. Using the experimentally derived mechanistic model, we demonstrate the essential kinetic interplay between target turnover and antibody pH-dependent binding during the FcRn recycling, and identify the key components for achieving maximal target clearance. These results bridge the demand for improved patient dosing convenience with the "know-how" of therapeutic modality by design.

  14. Using physics-based pose predictions and free energy perturbation calculations to predict binding poses and relative binding affinities for FXR ligands in the D3R Grand Challenge 2

    Science.gov (United States)

    Athanasiou, Christina; Vasilakaki, Sofia; Dellis, Dimitris; Cournia, Zoe

    2018-01-01

    Computer-aided drug design has become an integral part of drug discovery and development in the pharmaceutical and biotechnology industry, and is nowadays extensively used in the lead identification and lead optimization phases. The drug design data resource (D3R) organizes challenges against blinded experimental data to prospectively test computational methodologies as an opportunity for improved methods and algorithms to emerge. We participated in Grand Challenge 2 to predict the crystallographic poses of 36 Farnesoid X Receptor (FXR)-bound ligands and the relative binding affinities for two designated subsets of 18 and 15 FXR-bound ligands. Here, we present our methodology for pose and affinity predictions and its evaluation after the release of the experimental data. For predicting the crystallographic poses, we used docking and physics-based pose prediction methods guided by the binding poses of native ligands. For FXR ligands with known chemotypes in the PDB, we accurately predicted their binding modes, while for those with unknown chemotypes the predictions were more challenging. Our group ranked #1st (based on the median RMSD) out of 46 groups, which submitted complete entries for the binding pose prediction challenge. For the relative binding affinity prediction challenge, we performed free energy perturbation (FEP) calculations coupled with molecular dynamics (MD) simulations. FEP/MD calculations displayed a high success rate in identifying compounds with better or worse binding affinity than the reference (parent) compound. Our studies suggest that when ligands with chemical precedent are available in the literature, binding pose predictions using docking and physics-based methods are reliable; however, predictions are challenging for ligands with completely unknown chemotypes. We also show that FEP/MD calculations hold predictive value and can nowadays be used in a high throughput mode in a lead optimization project provided that crystal structures of

  15. Two distinctive β subunits are separately involved in two binding sites of imidacloprid with different affinities in Locusta migratoria manilensis.

    Science.gov (United States)

    Bao, Haibo; Liu, Yang; Zhang, Yixi; Liu, Zewen

    2017-08-01

    Due to great diversity of nicotinic acetylcholine receptor (nAChR) subtypes in insects, one β subunit may be contained in numerous nAChR subtypes. In the locust Locusta migratoria, a model insect species with agricultural importance, the third β subunits (Locβ3) was identified in this study, which reveals at least three β subunits in this insect species. Imidacloprid was found to bind nAChRs in L. migratoria central nervous system at two sites with different affinities, with K d values of 0.16 and 10.31nM. The specific antisera (L1-1, L2-1 and L3-1) were raised against fusion proteins at the large cytoplasmic loop of Locβ1, Locβ2 and Locβ3 respectively. Specific immunodepletion of Locβ1 with antiserum L1-1 resulted in the selective loss of the low affinity binding site for imidacloprid, whereas the immunodepletion of Locβ3 with L3-1 caused the selective loss of the high affinity site. Dual immunodepletion with L1-1 and L3-1 could completely abolish imidacloprid binding. In contrast, the immunodepletion of Locβ2 had no significant effect on the specific [ 3 H]imidacloprid binding. Taken together, these data indicated that Locβ1 and Locβ3 were respectively contained in the low- and high-affinity binding sites for imidacloprid in L. migratoria, which is different to the previous finding in Nilaparvata lugens that Nlβ1 was in two binding sites for imidacloprid. The involvement of two β subunits separately in two binding sites may decrease the risk of imidacloprid resistance due to putative point mutations in β subunits in L. migratoria. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. DNA Recognition by the DNA Primase of Bacteriophage T7: A Structure Function Study of the Zinc-Binding Domain

    International Nuclear Information System (INIS)

    Akabayov, B.; Lee, S.; Akabayov, S.; Rekhi, S.; Zhu, B.; Richardson, C.

    2009-01-01

    Synthesis of oligoribonucleotide primers for lagging-strand DNA synthesis in the DNA replication system of bacteriophage T7 is catalyzed by the primase domain of the gene 4 helicase-primase. The primase consists of a zinc-binding domain (ZBD) and an RNA polymerase (RPD) domain. The ZBD is responsible for recognition of a specific sequence in the ssDNA template whereas catalytic activity resides in the RPD. The ZBD contains a zinc ion coordinated with four cysteine residues. We have examined the ligation state of the zinc ion by X-ray absorption spectroscopy and biochemical analysis of genetically altered primases. The ZBD of primase engaged in catalysis exhibits considerable asymmetry in coordination to zinc, as evidenced by a gradual increase in electron density of the zinc together with elongation of the zinc-sulfur bonds. Both wild-type primase and primase reconstituted from purified ZBD and RPD have a similar electronic change in the level of the zinc ion as well as the configuration of the ZBD. Single amino acid replacements in the ZBD (H33A and C36S) result in the loss of both zinc binding and its structural integrity. Thus the zinc in the ZBD may act as a charge modulation indicator for the surrounding sulfur atoms necessary for recognition of specific DNA sequences.

  17. Competition effects in cation binding to humic acid: Conditional affinity spectra for fixed total metal concentration conditions

    Science.gov (United States)

    David, Calin; Mongin, Sandrine; Rey-Castro, Carlos; Galceran, Josep; Companys, Encarnació; Garcés, José Luis; Salvador, José; Puy, Jaume; Cecilia, Joan; Lodeiro, Pablo; Mas, Francesc

    2010-09-01

    Information on the Pb and Cd binding to a purified Aldrich humic acid (HA) is obtained from the influence of different fixed total metal concentrations on the acid-base titrations of this ligand. NICA (Non-Ideal Competitive Adsorption) isotherm has been used for a global quantitative description of the binding, which has then been interpreted by plotting the Conditional Affinity Spectra of the H + binding at fixed total metal concentrations (CAScTM). This new physicochemical tool, here introduced, allows the interpretation of binding results in terms of distributions of proton binding energies. A large increase in the acidity of the phenolic sites as the total metal concentration increases, especially in presence of Pb, is revealed from the shift of the CAScTM towards lower affinities. The variance of the CAScTM distribution, which can be used as a direct measure of the heterogeneity, also shows a significant dependence on the total metal concentration. A discussion of the factors that influence the heterogeneity of the HA under the conditions of each experiment is provided, so that the smoothed pattern exhibited by the titration curves can be justified.

  18. Substrate binding activates the designed triple mutant of the colicin E7 metallonuclease

    Czech Academy of Sciences Publication Activity Database

    Németh, E.; Körtvélyesi, T.; Kožíšek, Milan; Thulstrup, P. W.; Christensen, H. E. M.; Asaka, M. N.; Nagata, K.; Gyurcsik, B.

    2014-01-01

    Roč. 19, č. 8 (2014), s. 1295-1303 ISSN 0949-8257 Grant - others:OPPC(XE) CZ.2.16/3.1.00/24016; Seventh Framework Programme of the European Union(XE) FP7-312284 Institutional support: RVO:61388963 Keywords : binding affinity * calorimetry * zinc nuclease * substrate induced folding * protein engineering Subject RIV: CE - Biochemistry Impact factor: 2.538, year: 2014

  19. -NH-dansyl isocolchicine exhibits a significantly improved tubulin-binding affinity and microtubule inhibition in comparison to isocolchicine by binding tubulin through its A and B rings.

    Science.gov (United States)

    Das, Lalita; Datta, Ajit B; Gupta, Suvroma; Poddar, Asim; Sengupta, Suparna; Janik, Mark E; Bhattacharyya, Bhabatarak

    2005-03-08

    Structure-activity relationship studies have established that the A and C rings of colchicine comprise the minimum structural feature necessary for high affinity drug-tubulin binding. Thus, colchicine acts as a bifunctional ligand by making two points of attachment to the protein. Furthermore, analogues belonging to the iso series of colchicine are virtually inactive in binding to tubulin and inhibiting microtubule assembly. In the present study, we found that the substitution of a hydrophobic dansyl group on the B-ring side chain (C7 position) of isocolchicine reverses the structural alterations at the C ring and the newly synthesized -NH-dansyl isocolchicine restores the lost biological activity of the compound. It inhibits microtubule assembly efficiently with an IC(50) value of 10 microM and competes with [(3)H]colchicine for binding to tubulin. Moreover, although -NH-dansyl colchicine binding to tubulin involves two steps, the -NH-dansyl isocolchicine-tubulin interaction has been found to occur via a one-step process. Also, the affinity constant of the -NH-dansyl isocolchicine-tubulin interaction is roughly only 3 times lower than that of the -NH-dansyl colchicine-tubulin interaction. These results suggest that the enhanced microtubule inhibitory ability of -NH-dansyl isocolchicine is therefore related to the affinity of the drug-tubulin interaction and not to any conformational changes upon binding tubulin. We also observed that the competition of -NH-dansyl isocolchicine with [(3)H]colchicine for binding to tubulin was dependent on the tubulin concentration. In conclusion, this paper for the first time indicates that a biologically active bifuntional colchicine analogue can be designed where the drug binds tubulin through its A and B rings, while the C ring remains inactive.

  20. An HIV-1 encoded peptide mimics the DNA binding loop of NF-κB and binds thioredoxin with high affinity

    International Nuclear Information System (INIS)

    Su Guoping; Wang Min; Taylor, Ethan Will

    2005-01-01

    Pro-fs is a human immunodeficiency virus type 1 (HIV-l)-encoded putative selenoprotein, predicted by a theoretical analysis of the viral genome; it is potentially expressed by a -1 frameshift from the protease coding region. Pro-fs has significant sequence similarity to the DNA binding loop of nuclear factor kappa B (NF-κB), which is known to bind thioredoxin (Trx). We hypothesize that the putative HIV-1 pro-fs gene product functions by mimicry of NF-κB via binding to Trx. The hypothesis was tested in vitro by co-immunoprecipitation and GST-pull down assays, using a purified mutant pro-fs protein, in which the two potential selenocysteine residues were mutated to cysteines, in order to permit expression in bacteria. Both experiments showed that pro-fs binds to human wild type Trx (Trx-wt) with high affinity. Mutation of the two conserved cysteine residues in the Trx active site redox center to serine (Ser) (Trx-CS) weakened but failed to abolish the interaction. In pro-fs-transfected 293T cells, using confocal microscopy and fluorescence resonance energy transfer (FRET), we have observed that pro-fs localizes in cell nuclei and forms oligomers. Upon stimulation by phorbol 12-myristate 13-acetate (PMA), Trx translocates into cell nuclei. Significant FRET efficiency was detected in the nuclei of PMA-stimulated 293T cells co-expressing fluorescence-tagged pro-fs and Trx-wt or Trx-CS. These results indicate that in living cells the double cysteine mutant of pro-fs binds to both Trx and Trx-CS with high affinity, suggesting that Trx-pro-fs binding is a structurally-specific interaction, involving more of the Trx molecule than just its active site cysteine residues. These results establish the capacity for functional mimicry of the Trx binding ability of the NF-κB/Rel family of transcription factors by the putative HIV-1 pro-fs protein

  1. Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes.

    Science.gov (United States)

    Csermely, P; Szamel, M; Resch, K; Somogyi, J

    1988-05-15

    In the primary structure of protein kinase C, the presence of a putative metal-binding site has been suggested (Parker, P.J., Coussens, L., Totty, N., Rhee, L., Young, S., Chen, E., Stabel, S., Waterfield, M.D., and Ullrich, A. (1986) Science 233, 853-859). In the present report, we demonstrate that the most abundant intracellular heavy metal, zinc, can increase the activity of cytosolic protein kinase C. Zinc reversibly binds the enzyme to plasma membranes, and it may contribute to the calcium-induced binding as well. The intracellular heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine prevents the phorbol ester- and antigen-induced translocation of protein kinase C. This effect can be totally reversed by the concomitant addition of Zn2+, while Fe2+ and Mn2+ are only partially counteractive. Our results suggest that zinc can activate protein kinase C and contributes to its binding to plasma membranes in T lymphocytes induced by Ca2+, phorbol ester, or antigen.

  2. ANALYSIS OF DRUG-PROTEIN BINDING BY ULTRAFAST AFFINITY CHROMATOGRAPHY USING IMMOBILIZED HUMAN SERUM ALBUMIN

    Science.gov (United States)

    Mallik, Rangan; Yoo, Michelle J.; Briscoe, Chad J.; Hage, David S.

    2010-01-01

    Human serum albumin (HSA) was explored for use as a stationary phase and ligand in affinity microcolumns for the ultrafast extraction of free drug fractions and the use of this information for the analysis of drug-protein binding. Warfarin, imipramine, and ibuprofen were used as model analytes in this study. It was found that greater than 95% extraction of all these drugs could be achieved in as little as 250 ms on HSA microcolumns. The retained drug fraction was then eluted from the same column under isocratic conditions, giving elution in less than 40 s when working at 4.5 mL/min. The chromatographic behavior of this system gave a good fit with that predicted by computer simulations based on a reversible, saturable model for the binding of an injected drug with immobilized HSA. The free fractions measured by this method were found to be comparable to those determined by ultrafiltration, and equilibrium constants estimated by this approach gave good agreement with literature values. Advantages of this method include its speed and the relatively low cost of microcolumns that contain HSA. The ability of HSA to bind many types of drugs also creates the possibility of using the same affinity microcolumn to study and measure the free fractions for a variety of pharmaceutical agents. These properties make this technique appealing for use in drug binding studies and in the high-throughput screening of new drug candidates. PMID:20227701

  3. VP24-Karyopherin Alpha Binding Affinities Differ between Ebolavirus Species, Influencing Interferon Inhibition and VP24 Stability.

    Science.gov (United States)

    Schwarz, Toni M; Edwards, Megan R; Diederichs, Audrey; Alinger, Joshua B; Leung, Daisy W; Amarasinghe, Gaya K; Basler, Christopher F

    2017-02-15

    Zaire ebolavirus (EBOV), Bundibugyo ebolavirus (BDBV), and Reston ebolavirus (RESTV) belong to the same genus but exhibit different virulence properties. VP24 protein, a structural protein present in all family members, blocks interferon (IFN) signaling and likely contributes to virulence. Inhibition of IFN signaling by EBOV VP24 (eVP24) involves its interaction with the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear transporters. Here, we evaluated eVP24, BDBV VP24 (bVP24), and RESTV VP24 (rVP24) interactions with three NPI-1 subfamily KPNAs (KPNA1, KPNA5, and KPNA6). Using purified proteins, we demonstrated that each VP24 binds to each of the three NPI-1 KPNAs. bVP24, however, exhibited approximately 10-fold-lower KPNA binding affinity than either eVP24 or rVP24. Cell-based assays also indicate that bVP24 exhibits decreased KPNA interaction, decreased suppression of IFN induced gene expression, and a decreased half-life in transfected cells compared to eVP24 or rVP24. Amino acid sequence alignments between bVP24 and eVP24 also identified residues within and surrounding the previously defined eVP24-KPNA5 binding interface that decrease eVP24-KPNA affinity or bVP24-KPNA affinity. VP24 mutations that lead to reduced KPNA binding affinity also decrease IFN inhibition and shorten VP24 half-lives. These data identify novel functional differences in VP24-KPNA interaction and reveal a novel impact of the VP24-KPNA interaction on VP24 stability. The interaction of Ebola virus (EBOV) VP24 protein with host karyopherin alpha (KPNA) proteins blocks type I interferon (IFN) signaling, which is a central component of the host innate immune response to viral infection. Here, we quantitatively compared the interactions of VP24 proteins from EBOV and two members of the Ebolavirus genus, Bundibugyo virus (BDBV) and Reston virus (RESTV). The data reveal lower binding affinity of the BDBV VP24 (bVP24) for KPNAs and demonstrate that the interaction with KPNA modulates inhibition

  4. Affinity maturation of a portable Fab–RNA module for chaperone-assisted RNA crystallography

    Science.gov (United States)

    Koirala, Deepak; Shelke, Sandip A; Dupont, Marcel; Ruiz, Stormy; DasGupta, Saurja; Bailey, Lucas J; Benner, Steven A; Piccirilli, Joseph A

    2018-01-01

    Abstract Antibody fragments such as Fabs possess properties that can enhance protein and RNA crystallization and therefore can facilitate macromolecular structure determination. In particular, Fab BL3–6 binds to an AAACA RNA pentaloop closed by a GC pair with ∼100 nM affinity. The Fab and hairpin have served as a portable module for RNA crystallization. The potential for general application make it desirable to adjust the properties of this crystallization module in a manner that facilitates its use for RNA structure determination, such as ease of purification, surface entropy or binding affinity. In this work, we used both in vitro RNA selection and phage display selection to alter the epitope and paratope sides of the binding interface, respectively, for improved binding affinity. We identified a 5′-GNGACCC-3′ consensus motif in the RNA and S97N mutation in complimentarity determining region L3 of the Fab that independently impart about an order of magnitude improvement in affinity, resulting from new hydrogen bonding interactions. Using a model RNA, these modifications facilitated crystallization under a wider range of conditions and improved diffraction. The improved features of the Fab–RNA module may facilitate its use as an affinity tag for RNA purification and imaging and as a chaperone for RNA crystallography. PMID:29309709

  5. Determining the binding affinity of therapeutic monoclonal antibodies towards their native unpurified antigens in human serum.

    Directory of Open Access Journals (Sweden)

    Christine Bee

    Full Text Available Monoclonal antibodies (mAbs are a growing segment of therapeutics, yet their in vitro characterization remains challenging. While it is essential that a therapeutic mAb recognizes the native, physiologically occurring epitope, the generation and selection of mAbs often rely on the use of purified recombinant versions of the antigen that may display non-native epitopes. Here, we present a method to measure both, the binding affinity of a therapeutic mAb towards its native unpurified antigen in human serum, and the antigen's endogenous concentration, by combining the kinetic exclusion assay and Biacore's calibration free concentration analysis. To illustrate the broad utility of our method, we studied a panel of mAbs raised against three disparate soluble antigens that are abundant in the serum of healthy donors: proprotein convertase subtilisin/kexin type 9 (PCSK9, progranulin (PGRN, and fatty acid binding protein (FABP4. We also determined the affinity of each mAb towards its purified recombinant antigen and assessed whether the interactions were pH-dependent. Of the six mAbs studied, three did not appear to discriminate between the serum and recombinant forms of the antigen; one mAb bound serum antigen with a higher affinity than recombinant antigen; and two mAbs displayed a different affinity for serum antigen that could be explained by a pH-dependent interaction. Our results highlight the importance of taking pH into account when measuring the affinities of mAbs towards their serum antigens, since the pH of serum samples becomes increasingly alkaline upon aerobic handling.

  6. High- and low-affinity binding of S-citalopram to the human serotonin transporter mutated at 20 putatively important amino acid positions

    DEFF Research Database (Denmark)

    Plenge, Per; Wiborg, Ove

    2005-01-01

    of presumed importance. Binding of S-citalopram, both to the high-affinity-binding site and to the allosteric binding site, was measured in these mutants with the purpose of investigating the connection between the two binding sites. The amino acid substitutions did not introduce large changes in the two...

  7. A statistical model for investigating binding probabilities of DNA nucleotide sequences using microarrays.

    Science.gov (United States)

    Lee, Mei-Ling Ting; Bulyk, Martha L; Whitmore, G A; Church, George M

    2002-12-01

    There is considerable scientific interest in knowing the probability that a site-specific transcription factor will bind to a given DNA sequence. Microarray methods provide an effective means for assessing the binding affinities of a large number of DNA sequences as demonstrated by Bulyk et al. (2001, Proceedings of the National Academy of Sciences, USA 98, 7158-7163) in their study of the DNA-binding specificities of Zif268 zinc fingers using microarray technology. In a follow-up investigation, Bulyk, Johnson, and Church (2002, Nucleic Acid Research 30, 1255-1261) studied the interdependence of nucleotides on the binding affinities of transcription proteins. Our article is motivated by this pair of studies. We present a general statistical methodology for analyzing microarray intensity measurements reflecting DNA-protein interactions. The log probability of a protein binding to a DNA sequence on an array is modeled using a linear ANOVA model. This model is convenient because it employs familiar statistical concepts and procedures and also because it is effective for investigating the probability structure of the binding mechanism.

  8. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity

    Science.gov (United States)

    Keefe, Andrew J.; Jiang, Shaoyi

    2012-01-01

    Treatment with therapeutic proteins is an attractive approach to targeting a number of challenging diseases. Unfortunately, the native proteins themselves are often unstable in physiological conditions, reducing bioavailability and therefore increasing the dose that is required. Conjugation with poly(ethylene glycol) (PEG) is often used to increase stability, but this has a detrimental effect on bioactivity. Here, we introduce conjugation with zwitterionic polymers such as poly(carboxybetaine). We show that poly(carboxybetaine) conjugation improves stability in a manner similar to PEGylation, but that the new conjugates retain or even improve the binding affinity as a result of enhanced protein-substrate hydrophobic interactions. This chemistry opens a new avenue for the development of protein therapeutics by avoiding the need to compromise between stability and affinity.

  9. Binding affinity and decontamination of dermal decontamination gel to model chemical warfare agent simulants.

    Science.gov (United States)

    Cao, Yachao; Elmahdy, Akram; Zhu, Hanjiang; Hui, Xiaoying; Maibach, Howard

    2018-05-01

    Six chemical warfare agent simulants (trimethyl phosphate, dimethyl adipate, 2-chloroethyl methyl sulfide, diethyl adipate, chloroethyl phenyl sulfide and diethyl sebacate) were studied in in vitro human skin to explore relationship between dermal penetration/absorption and the mechanisms of simulant partitioning between stratum corneum (SC) and water as well as between dermal decontamination gel (DDGel) and water. Both binding affinity to and decontamination of simulants using DDGel were studied. Partition coefficients of six simulants between SC and water (Log P SC/w ) and between DDGel and water (Log P DDGel/w ) were determined. Results showed that DDGel has a similar or higher binding affinity to each simulant compared to SC. The relationship between Log P octanol/water and Log P SC/w as well as between Log P octanol/water and Log P DDGel/w demonstrated that partition coefficient of simulants correlated to their lipophilicity or hydrophilicity. Decontamination efficiency results with DDGel for these simulants were consistent with binding affinity results. Amounts of percentage dose of chemicals in DDGel of trimethyl phosphate, dimethyl adipate, 2-chloroethyl methyl sulfide, diethyl adipate, chloroethyl phenyl sulfide and diethyl sebacate were determined to be 61.15, 85.67, 75.91, 53.53, 89.89 and 76.58, with corresponding amounts absorbed in skin of 0.96, 0.65, 1.68, 0.72, 0.57 and 1.38, respectively. In vitro skin decontamination experiments coupled with a dermal absorption study demonstrated that DDGel can efficiently remove chemicals from skin surface, back-extract from the SC, and significantly reduced chemical penetration into skin or systemic absorption for all six simulants tested. Therefore, DDGel offers a great potential as a NextGen skin Decon platform technology for both military and civilian use. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Dansyl labeling to modulate the relative affinity of bile acids for the binding sites of human serum albumin.

    Science.gov (United States)

    Rohacova, Jana; Sastre, German; Marin, M Luisa; Miranda, Miguel A

    2011-09-08

    Binding of natural bile acids to human serum albumin (HSA) is an important step in enterohepatic circulation and provides a measure of liver function. In this article, we report on the use of four dansyl (Dns) derivatives of cholic acid (ChA) to demonstrate a regiodifferentiation in their relative affinity for the two binding sites of HSA. Using both steady-state and time-resolved fluorescence, formation of Dns-ChA@HSA complexes was confirmed; the corresponding binding constants were determined, and their distribution between bulk solution and HSA microenvironment was estimated. By means of energy transfer from Trp to the Dns moiety, donor-acceptor distances were estimated (21-25 Å) and found to be compatible with both site 1 and site 2 occupancies. Nevertheless, titration using warfarin and ibuprofen as specific displacement probes clearly indicated that 3α- and 3β-Dns-ChA bind to HSA at site 2, whereas their C-7 regioisomers bind to HSA at site 1. Furthermore, the C-3-labeled compounds are displaced by lithocholic acid, whereas they are insensitive to ChA, confirming the assumption that the former binds to HSA at site 2. Thus, Dns labeling provides a useful tool to modulate the relative affinity of ChA to the major binding sites of HSA and, in combination with other fluorescent ChA analogs, to mimic the binding behavior of natural bile acids.

  11. The relationship between seminal plasma zinc levels and high molecular weight zinc binding protein and sperm motility in Iraqi infertile men

    International Nuclear Information System (INIS)

    AbdulRasheed, Omar F

    2009-01-01

    To evaluate the relationship between sperm motility and total seminal plasma zinc concentration and high molecular weight zinc bound protein values in infertile Iraqi men. A case-control study was conducted at the Chemistry and Biochemistry Department, College of Medicine, Al-Nahrain University, Baghdad, Iraq between March 2005 to February 2006. The subjects for the study included 60 infertile male patients who were recruited Al-Kadhimiya Teaching Hospital, and Institute of Embryo Research and Infertility Treatment, Baghdad, Iraq. They were categorized according to their seminal parameters to oligozoospermia (n=32), azoospermia (n=22), and asthenozoospermia (n=6). Thirty nine fertile men (age range 31.87 +/- 3.76 years) were selected as controls, whose partners had conceived within the last year before participation with this study, and having normal spermiogram parameters. Seminal plasma zinc concentration and high molecular weight zinc binding proteins (HMW-Zn) were assayed in the ejaculates of fertile and infertile men. The seminal plasma zinc levels were 181.92 +/- 23.40 ug/mL in the oligozoospermia group, 178.50 +/- 18.61 ug/mL in the azoospermia group, 195.33 +/- 13.00 ug/mL in the asthenozoospermia group, and 184.66 +/- 21.31 ug/mL in the control group. The HMW-Zn% is a good index of sperm function rather than the total seminal plasma zinc levels. (author)

  12. Epitope structure and binding affinity of single chain llama anti-β-amyloid antibodies revealed by proteolytic excision affinity-mass spectrometry.

    Science.gov (United States)

    Paraschiv, Gabriela; Vincke, Cécile; Czaplewska, Paulina; Manea, Marilena; Muyldermans, Serge; Przybylski, Michael

    2013-01-01

    ß-Amyloid (Aß) immunotherapy has become a promising strategy for reducing the level of Aß in brain. New immunological approaches have been recently proposed for rapid, early diagnosis, and molecular treatment of neurodegenerative diseases related to Alzheimer's Disease (AD). The combination of proteolytic epitope excision and extraction and mass spectrometry using digestion with various proteases has been shown to be an efficient tool for the identification and molecular characterization of antigenic determinants. Here, we report the identification of the Aβ epitope recognized by the variable domain of single chain llama anti-Aβ-antibodies, termed Aβ-nanobodies, that have been discovered in the blood of camelids and found to be promising candidates for immunotherapy of AD. The epitope recognized by two Aβ-specific nanobodies was identified by proteolytic epitope extraction- and excision-mass spectrometry using a series of proteases (trypsin, chymotrypsin, GluC-protease, and LysC-protease). Matrix-assisted laser desorption ionization--mass spectrometric analysis of the affinity--elution fraction provided the epitope, Aβ(17-28), in the mid- to carboxy-terminal domain of Aβ, which has been shown to exert an Aß-fibril inhibiting effect. Affinity studies of the synthetic epitope confirmed that the Aβ(17-28) peptide is the minimal fragment that binds to the nanobodies. The interactions between the nanobodies and full length Aβ(1-40) or Aβ-peptides containing or lacking the epitope sequence were further characterized by enzyme linked immunosorbent assay and bioaffinity analysis. Determinations of binding affinities between the Aβ-nanobodies and Aβ(1-40) and the Aβ(17-28) epitope provided K(D) values of approximately 150 and 700 nmol, respectively. Thus, the knowledge of the epitope may be highly useful for future studies of Aβ-aggregation (oligomerization and fibril formation) and for designing new aggregation inhibitors. Copyright © 2012 John Wiley

  13. Effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13

    International Nuclear Information System (INIS)

    Aston, John E.; Apel, William A.; Lee, Brady D.; Peyton, Brent M.

    2010-01-01

    Research highlights: →At. caldus sorbs lead, zinc, and copper across a range of pH and temperature. →At. caldus shows a relatively high sorption capacity for zinc and copper at low pH. → Lead, zinc, and copper sorption decreases in tertiary mixtures. → Copper appears to sorb via a different mechanism(s) than lead or zinc. - Abstract: This study describes the effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13 with a Langmuir model. Copper exhibited the highest loading capacity, 4.76 ± 0.28 mmol g -1 , to viable cells at pH 5.5. The highest k L (binding-site affinity) observed was 61.2 ± 3.0 L mmol -1 to dehydrated cells at pH 4.0. The pHs that maximized loading capacities and binding-site affinities were generally between 4.0 and 5.5, where the sum of free-proton and complexed-metal concentrations was near a minimum. Of additional importance, lead, zinc, and copper sorbed to viable cells at pH values as low as 1.5. Previous studies with other acidithiobacilli did not measure viable-cell sorption below pH 4.0. In separate experiments, desorption studies showed that far less copper was recovered from viable cells than any other metal or cell condition, suggesting that uptake may play an important role in copper sorption by At. caldus strain BC13. To reflect an applied system, the sorption of metal mixtures was also studied. In these experiments, lead, zinc, and copper sorption from a tertiary mixture were 40.2 ± 4.3%, 28.7 ± 3.8%, and 91.3 ± 3.0%, respectively, of that sorbed in single-metal systems.

  14. The binding affinity of a soluble TCR-Fc fusion protein is significantly improved by crosslinkage with an anti-C{beta} antibody

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Tatsuhiko; Horii, Masae; Kobayashi, Eiji [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Jin, Aishun [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Department of Immunology, College of Basic Medical Sciences, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin 150081 (China); Kishi, Hiroyuki, E-mail: immkishi@med.u-toyama.ac.jp [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Muraguchi, Atsushi [Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer A novel soluble TCR composed of TCR V and C regions with Ig Fc region is generated. Black-Right-Pointing-Pointer TCR-Fc protein immobilized by an anti-C{beta} antibody bound to a p/MHC tetramer. Black-Right-Pointing-Pointer Binding affinity of TCR-Fc was markedly increased by binding with anti-C{beta} antibody. -- Abstract: The identification and cloning of tumor antigen-specific T cell receptors (TCRs) and the production of the soluble form of the TCR (sTCR) contributed to the development of diagnostic and therapeutic tools for cancer. Recently, several groups have reported the development of technologies for the production of sTCRs. The native sTCR has a very low binding affinity for the antigenic peptide/MHC (p/MHC) complex. In this study, we established a technology to produce high affinity, functional sTCRs. We generated a novel sTCR-Fc fusion protein composed of the TCR V and C regions of the TCR linked to the immunoglobulin (Ig) Fc region. A Western blot analysis revealed that the molecular weight of the fusion protein was approximately 60 kDa under reducing conditions and approximately 100-200 kDa under non-reducing conditions. ELISAs using various antibodies showed that the structure of each domain of the TCR-Fc protein was intact. The TCR-Fc protein immobilized by an anti-C{beta} antibody effectively bound to a p/MHC tetramer. An SPR analysis showed that the TCR-Fc protein had a low binding affinity (KD; 1.1 Multiplication-Sign 10{sup -5} M) to the p/MHC monomer. Interestingly, when the TCR-Fc protein was pre-incubated with an anti-C{beta} antibody, its binding affinity for p/MHC increased by 5-fold (2.2 Multiplication-Sign 10{sup -6} M). We demonstrated a novel method for constructing a functional soluble TCR using the Ig Fc region and showed that the binding affinity of the functional sTCR-Fc was markedly increased by an anti-C{beta} antibody, which is probably due to the stabilization of the V

  15. Profiling of Parkin-binding partners using tandem affinity purification.

    Directory of Open Access Journals (Sweden)

    Alessandra Zanon

    Full Text Available Parkinson's disease (PD is a progressive neurodegenerative disorder affecting approximately 1-2% of the general population over age 60. It is characterized by a rather selective loss of dopaminergic neurons in the substantia nigra and the presence of α-synuclein-enriched Lewy body inclusions. Mutations in the Parkin gene (PARK2 are the major cause of autosomal recessive early-onset parkinsonism. The Parkin protein is an E3 ubiquitin ligase with various cellular functions, including the induction of mitophagy upon mitochondrial depolarizaton, but the full repertoire of Parkin-binding proteins remains poorly defined. Here we employed tandem affinity purification interaction screens with subsequent mass spectrometry to profile binding partners of Parkin. Using this approach for two different cell types (HEK293T and SH-SY5Y neuronal cells, we identified a total of 203 candidate Parkin-binding proteins. For the candidate proteins and the proteins known to cause heritable forms of parkinsonism, protein-protein interaction data were derived from public databases, and the associated biological processes and pathways were analyzed and compared. Functional similarity between the candidates and the proteins involved in monogenic parkinsonism was investigated, and additional confirmatory evidence was obtained using published genetic interaction data from Drosophila melanogaster. Based on the results of the different analyses, a prioritization score was assigned to each candidate Parkin-binding protein. Two of the top ranking candidates were tested by co-immunoprecipitation, and interaction to Parkin was confirmed for one of them. New candidates for involvement in cell death processes, protein folding, the fission/fusion machinery, and the mitophagy pathway were identified, which provide a resource for further elucidating Parkin function.

  16. Profiling of Parkin-Binding Partners Using Tandem Affinity Purification

    Science.gov (United States)

    Blankenburg, Hagen; Doncheva, Nadezhda T.; Schwienbacher, Christine; Serafin, Alice; Alexa, Adrian; Weichenberger, Christian X.; Albrecht, Mario; Klein, Christine; Hicks, Andrew A.; Pramstaller, Peter P.

    2013-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting approximately 1–2% of the general population over age 60. It is characterized by a rather selective loss of dopaminergic neurons in the substantia nigra and the presence of α-synuclein-enriched Lewy body inclusions. Mutations in the Parkin gene (PARK2) are the major cause of autosomal recessive early-onset parkinsonism. The Parkin protein is an E3 ubiquitin ligase with various cellular functions, including the induction of mitophagy upon mitochondrial depolarizaton, but the full repertoire of Parkin-binding proteins remains poorly defined. Here we employed tandem affinity purification interaction screens with subsequent mass spectrometry to profile binding partners of Parkin. Using this approach for two different cell types (HEK293T and SH-SY5Y neuronal cells), we identified a total of 203 candidate Parkin-binding proteins. For the candidate proteins and the proteins known to cause heritable forms of parkinsonism, protein-protein interaction data were derived from public databases, and the associated biological processes and pathways were analyzed and compared. Functional similarity between the candidates and the proteins involved in monogenic parkinsonism was investigated, and additional confirmatory evidence was obtained using published genetic interaction data from Drosophila melanogaster. Based on the results of the different analyses, a prioritization score was assigned to each candidate Parkin-binding protein. Two of the top ranking candidates were tested by co-immunoprecipitation, and interaction to Parkin was confirmed for one of them. New candidates for involvement in cell death processes, protein folding, the fission/fusion machinery, and the mitophagy pathway were identified, which provide a resource for further elucidating Parkin function. PMID:24244333

  17. Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides.

    Science.gov (United States)

    Zorzi, Alessandro; Middendorp, Simon J; Wilbs, Jonas; Deyle, Kaycie; Heinis, Christian

    2017-07-17

    The rapid renal clearance of peptides in vivo limits this attractive platform for the treatment of a broad range of diseases that require prolonged drug half-lives. An intriguing approach for extending peptide circulation times works through a 'piggy-back' strategy in which peptides bind via a ligand to the long-lived serum protein albumin. In accordance with this strategy, we developed an easily synthesized albumin-binding ligand based on a peptide-fatty acid chimera that has a high affinity for human albumin (K d =39 nM). This ligand prolongs the elimination half-life of cyclic peptides in rats 25-fold to over seven hours. Conjugation to a peptide factor XII inhibitor developed for anti-thrombotic therapy extends the half-life from 13 minutes to over five hours, inhibiting coagulation for eight hours in rabbits. This high-affinity albumin ligand could potentially extend the half-life of peptides in human to several days, substantially broadening the application range of peptides as therapeutics.

  18. Acylated heptapeptide binds albumin with high affinity and application as tag furnishes long-acting peptides

    Science.gov (United States)

    Zorzi, Alessandro; Middendorp, Simon J.; Wilbs, Jonas; Deyle, Kaycie; Heinis, Christian

    2017-07-01

    The rapid renal clearance of peptides in vivo limits this attractive platform for the treatment of a broad range of diseases that require prolonged drug half-lives. An intriguing approach for extending peptide circulation times works through a `piggy-back' strategy in which peptides bind via a ligand to the long-lived serum protein albumin. In accordance with this strategy, we developed an easily synthesized albumin-binding ligand based on a peptide-fatty acid chimera that has a high affinity for human albumin (Kd=39 nM). This ligand prolongs the elimination half-life of cyclic peptides in rats 25-fold to over seven hours. Conjugation to a peptide factor XII inhibitor developed for anti-thrombotic therapy extends the half-life from 13 minutes to over five hours, inhibiting coagulation for eight hours in rabbits. This high-affinity albumin ligand could potentially extend the half-life of peptides in human to several days, substantially broadening the application range of peptides as therapeutics.

  19. The components of the unique Zur regulon of Cupriavidus metallidurans mediate cytoplasmic zinc handling.

    Science.gov (United States)

    Bütof, Lucy; Schmidt-Vogler, Christopher; Herzberg, Martin; Große, Cornelia; Nies, Dietrich H

    2017-08-14

    Zinc is an essential trace element and at the same time it is toxic at high concentrations. In the beta-proteobacterium Cupriavidus metallidurans the highly efficient removal of surplus zinc from the periplasm is responsible for its outstanding metal resistance. Rather than having a typical Zur-dependent, high-affinity ATP-binding cassette transporter of the ABC protein superfamily for zinc uptake at low concentrations, C. metallidurans instead has the secondary zinc importer ZupT of the ZRT/IRT (ZIP) family. It is important to understand, therefore, how this zinc-resistant bacterium copes when it is exposed to low zinc concentrations. Members of the Zur regulon in C. metallidurans were identified by comparing the transcriptomes of a Δ zur mutant and its parent strain. The consensus sequence of the Zur-binding box was derived for the zupTp promoter-regulatory region using a truncation assay. The motif was used to predict possible Zur-boxes upstream of Zur regulon members. Binding of Zur to these boxes was confirmed. Two Zur-boxes upstream of the cobW 1 gene, encoding a putative zinc chaperone, proved to be required for complete repression of cobW 1 and its downstream genes in cells cultivated in mineral salts medium. A Zur box upstream of each of zur-cobW 2 , cobW 3 and zupT permitted low-expression level of these genes plus their up-regulation under zinc starvation conditions. This demonstrates a compartmentalization of zinc homeostasis in C. metallidurans with the periplasm being responsible for removal of surplus zinc and cytoplasmic components for management of zinc as an essential co-factor, with both compartments connected by ZupT. Importance Elucidating zinc homeostasis is necessary to understand both host-pathogen interactions and performance of free-living bacteria in their natural environment. Escherichia coli acquires zinc under low zinc concentrations by the Zur-controlled ZnuABC importer of the ABC superfamily, and this was also the paradigm for other

  20. Activation of Fetal γ-globin Gene Expression via Direct Protein Delivery of Synthetic Zinc-finger DNA-Binding Domains

    Directory of Open Access Journals (Sweden)

    Mir A Hossain

    2016-01-01

    Full Text Available Reactivation of γ-globin expression has been shown to ameliorate disease phenotypes associated with mutations in the adult β-globin gene, including sickle cell disease. Specific mutations in the promoter of the γ-globin genes are known to prevent repression of the genes in the adult and thus lead to hereditary persistence of fetal hemoglobin. One such hereditary persistence of fetal hemoglobin is associated with a sequence located 567 bp upstream of the Gγ-globin gene which assembles a GATA-containing repressor complex. We generated two synthetic zinc-finger DNA-binding domains (ZF-DBDs targeting this sequence. The -567Gγ ZF-DBDs associated with high affinity and specificity with the target site in the γ-globin gene promoter. We delivered the -567Gγ ZF-DBDs directly to primary erythroid cells. Exposure of these cells to the recombinant -567Gγ ZF-DBDs led to increased expression of the γ-globin gene. Direct protein delivery of ZF-DBDs that compete with transcription regulatory proteins will have broad implications for modulating gene expression in analytical or therapeutic settings.

  1. Simple and Efficient Purification of Recombinant Proteins Using the Heparin-Binding Affinity Tag.

    Science.gov (United States)

    Jayanthi, Srinivas; Gundampati, Ravi Kumar; Kumar, Thallapuranam Krishnaswamy Suresh

    2017-11-01

    Heparin, a member of the glycosaminoglycan family, is known to interact with more than 400 different types of proteins. For the past few decades, significant progress has been made to understand the molecular details involved in heparin-protein interactions. Based on the structural knowledge available from the FGF1-heparin interaction studies, we have designed a novel heparin-binding peptide (HBP) affinity tag that can be used for the simple, efficient, and cost-effective purification of recombinant proteins of interest. HBP-tagged fusion proteins can be purified by heparin Sepharose affinity chromatography using a simple sodium chloride gradient to elute the bound fusion protein. In addition, owing to the high density of positive charges on the HBP tag, recombinant target proteins are preferably expressed in their soluble forms. The purification of HBP-fusion proteins can also be achieved in the presence of chemical denaturants, including urea. Additionally, polyclonal antibodies raised against the affinity tag can be used to detect HBP-fused target proteins with high sensitivity. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  2. Binding affinity toward human prion protein of some anti-prion compounds - Assessment based on QSAR modeling, molecular docking and non-parametric ranking.

    Science.gov (United States)

    Kovačević, Strahinja; Karadžić, Milica; Podunavac-Kuzmanović, Sanja; Jevrić, Lidija

    2018-01-01

    The present study is based on the quantitative structure-activity relationship (QSAR) analysis of binding affinity toward human prion protein (huPrP C ) of quinacrine, pyridine dicarbonitrile, diphenylthiazole and diphenyloxazole analogs applying different linear and non-linear chemometric regression techniques, including univariate linear regression, multiple linear regression, partial least squares regression and artificial neural networks. The QSAR analysis distinguished molecular lipophilicity as an important factor that contributes to the binding affinity. Principal component analysis was used in order to reveal similarities or dissimilarities among the studied compounds. The analysis of in silico absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters was conducted. The ranking of the studied analogs on the basis of their ADMET parameters was done applying the sum of ranking differences, as a relatively new chemometric method. The main aim of the study was to reveal the most important molecular features whose changes lead to the changes in the binding affinities of the studied compounds. Another point of view on the binding affinity of the most promising analogs was established by application of molecular docking analysis. The results of the molecular docking were proven to be in agreement with the experimental outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Occupancy of a C2-C2 type 'zinc-finger' protein domain by copper. Direct observation by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Hutchens, T W; Allen, M H; Li, C M; Yip, T T

    1992-09-07

    The metal ion specificity of most 'zinc-finger' metal binding domains is unknown. The human estrogen receptor protein contains two different C2-C2 type 'zinc-finger' sequences within its DNA-binding domain (ERDBD). Copper inhibits the function of this protein by mechanisms which remain unclear. We have used electrospray ionization mass spectrometry to evaluate directly the 71-residue ERDBD (K180-M250) in the absence and presence of Cu(II) ions. The ERDBD showed a high affinity for Cu and was completely occupied with 4 Cu bound; each Cu ion was evidently bound to only two ligand residues (net loss of only 2 Da per bound Cu). The Cu binding stoichiometry was confirmed by atomic absorption. These results (i) provide the first direct physical evidence for the ability of the estrogen receptor DNA-binding domain to bind Cu and (ii) document a twofold difference in the Zn- and Cu-binding capacity. Differences in the ERDBD domain structure with bound Zn and Cu are predicted. Given the relative intracellular contents of Zn and Cu, our findings demonstrate the need to investigate further the Cu occupancy of this and other zinc-finger domains both in vitro and in vivo.

  4. Substituting random forest for multiple linear regression improves binding affinity prediction of scoring functions: Cyscore as a case study.

    Science.gov (United States)

    Li, Hongjian; Leung, Kwong-Sak; Wong, Man-Hon; Ballester, Pedro J

    2014-08-27

    State-of-the-art protein-ligand docking methods are generally limited by the traditionally low accuracy of their scoring functions, which are used to predict binding affinity and thus vital for discriminating between active and inactive compounds. Despite intensive research over the years, classical scoring functions have reached a plateau in their predictive performance. These assume a predetermined additive functional form for some sophisticated numerical features, and use standard multivariate linear regression (MLR) on experimental data to derive the coefficients. In this study we show that such a simple functional form is detrimental for the prediction performance of a scoring function, and replacing linear regression by machine learning techniques like random forest (RF) can improve prediction performance. We investigate the conditions of applying RF under various contexts and find that given sufficient training samples RF manages to comprehensively capture the non-linearity between structural features and measured binding affinities. Incorporating more structural features and training with more samples can both boost RF performance. In addition, we analyze the importance of structural features to binding affinity prediction using the RF variable importance tool. Lastly, we use Cyscore, a top performing empirical scoring function, as a baseline for comparison study. Machine-learning scoring functions are fundamentally different from classical scoring functions because the former circumvents the fixed functional form relating structural features with binding affinities. RF, but not MLR, can effectively exploit more structural features and more training samples, leading to higher prediction performance. The future availability of more X-ray crystal structures will further widen the performance gap between RF-based and MLR-based scoring functions. This further stresses the importance of substituting RF for MLR in scoring function development.

  5. VP24-Karyopherin Alpha Binding Affinities Differ between Ebolavirus Species, Influencing Interferon Inhibition and VP24 Stability

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Toni M.; Edwards, Megan R.; Diederichs, Audrey; Alinger, Joshua B.; Leung, Daisy W.; Amarasinghe, Gaya K.; Basler, Christopher F.; Lyles, Douglas S.

    2016-12-14

    ABSTRACT

    Zaire ebolavirus(EBOV),Bundibugyo ebolavirus(BDBV), andReston ebolavirus(RESTV) belong to the same genus but exhibit different virulence properties. VP24 protein, a structural protein present in all family members, blocks interferon (IFN) signaling and likely contributes to virulence. Inhibition of IFN signaling by EBOV VP24 (eVP24) involves its interaction with the NPI-1 subfamily of karyopherin alpha (KPNA) nuclear transporters. Here, we evaluated eVP24, BDBV VP24 (bVP24), and RESTV VP24 (rVP24) interactions with three NPI-1 subfamily KPNAs (KPNA1, KPNA5, and KPNA6). Using purified proteins, we demonstrated that each VP24 binds to each of the three NPI-1 KPNAs. bVP24, however, exhibited approximately 10-fold-lower KPNA binding affinity than either eVP24 or rVP24. Cell-based assays also indicate that bVP24 exhibits decreased KPNA interaction, decreased suppression of IFN induced gene expression, and a decreased half-life in transfected cells compared to eVP24 or rVP24. Amino acid sequence alignments between bVP24 and eVP24 also identified residues within and surrounding the previously defined eVP24-KPNA5 binding interface that decrease eVP24-KPNA affinity or bVP24-KPNA affinity. VP24 mutations that lead to reduced KPNA binding affinity also decrease IFN inhibition and shorten VP24 half-lives. These data identify novel functional differences in VP24-KPNA interaction and reveal a novel impact of the VP24-KPNA interaction on VP24 stability.

    IMPORTANCEThe interaction of Ebola virus (EBOV) VP24 protein with host karyopherin alpha (KPNA) proteins blocks type I interferon (IFN) signaling, which is a central component of the host innate immune response to viral infection. Here, we quantitatively compared the

  6. Ligand binding and thermostability of different allosteric states of the insulin zinc-hexamer

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2006-01-01

    The influence of ligand binding and conformation state on the thermostability of hexameric zinc-insulin was studied by differential scanning calorimetry (DSC). The insulin hexamer exists in equilibrium between the forms T6, T3R3, and R6. Phenolic ligands induce and stabilize the T3R3- and R6-stat...

  7. Hierarchy and Assortativity as New Tools for Binding-Affinity Investigation: The Case of the TBA Aptamer-Ligand Complex.

    Science.gov (United States)

    Cataldo, Rosella; Alfinito, Eleonora; Reggiani, Lino

    2017-12-01

    Aptamers are single stranded DNA, RNA, or peptide sequences having the ability to bind several specific targets (proteins, molecules as well as ions). Therefore, aptamer production and selection for therapeutic and diagnostic applications is very challenging. Usually, they are generated in vitro, although computational approaches have been recently developed for the in silico production. Despite these efforts, the mechanism of aptamer-ligand formation is not completely clear, and producing high-affinity aptamers is still quite difficult. This paper aims to develop a computational model able to describe aptamer-ligand affinity. Topological tools, such as the conventional degree distribution, the rank-degree distribution (hierarchy), and the node assortativity are employed. In doing so, the macromolecules tertiary-structures are mapped into appropriate graphs. These graphs reproduce the main topological features of the macromolecules, by preserving the distances between amino acids (nucleotides). Calculations are applied to the thrombin binding aptamer (TBA), and the TBA-thrombin complex produced in the presence of Na + or K + . The topological analysis is able to detect several differences between complexes obtained in the presence of the two cations, as expected by previous investigations. These results support graph analysis as a novel computational tool for testing affinity. Otherwise, starting from the graphs, an electrical network can be obtained by using the specific electrical properties of amino acids and nucleobases. Therefore, a further analysis concerns with the electrical response, revealing that the resistance is sensitively affected by the presence of sodium or potassium, thus suggesting resistance as a useful physical parameter for testing binding affinity.

  8. Identification of a High Affinity Nucleocapsid Protein Binding Element from The Bovine Leukemia Virus Genome

    Science.gov (United States)

    Yildiz, F. Zehra; Babalola, Kathleen; Summers, Michael F.

    2012-01-01

    Retroviral genome recognition is mediated by interactions between the nucleocapsid (NC) domain of the virally encoded Gag polyprotein and cognate RNA packaging elements that, for most retroviruses, appear to reside primarily within the 5′-untranslated region (5′-UTR) of the genome. Recent studies suggest that a major packaging determinant of Bovine Leukemia Virus (BLV), a member of the human T-cell leukemia virus (HTLV)/BLV family and a non-primate animal model for HTLV-induced leukemogenesis, resides within the gag open reading frame. We have prepared and purified the recombinant BLV NC protein and conducted electrophoretic mobility shift and isothermal titration calorimetry studies with RNA fragments corresponding to these proposed packaging elements. The gag-derived RNAs did not exhibit significant affinity for NC, suggesting an alternate role in packaging. However, an 83-nucleotide fragment of the 5′-UTR that resides just upstream of the gag start codon binds NC stoichiometrically and with high affinity (Kd = 136 ± 21 nM). These nucleotides were predicted to form tandem hairpin structures, and studies with smaller fragments indicate that the NC binding site resides exclusively within the distal hairpin (residues G369- U399, Kd = 67 ± 8 nM at physiological ionic strength). Unlike all other structurally characterized retroviral NC binding RNAs, this fragment is not expected to contain exposed guanosines, suggesting that RNA binding may be mediated by a previously uncharacterized mechanism. PMID:22846919

  9. Benzodiazepines have high-affinity binding sites and induce melanogenesis in B16/C3 melanoma cells.

    OpenAIRE

    Matthew, E; Laskin, J D; Zimmerman, E A; Weinstein, I B; Hsu, K C; Engelhardt, D L

    1981-01-01

    We found that two markers of differentiation, tyrosinase (monophenol, dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) activity and melanin synthesis, are induced by diazepam in B16/C3 mouse melanoma cells. We also demonstrated high-affinity binding sites for [3H]diazepam in these cells by radioreceptor assay, and we visualized binding to the cell surface by fluorescence microscopy with a benzodiazepine analog conjugated to a fluorescein-labeled protein. Our studies also showed tha...

  10. Synthesis and binding affinity of an iodinated juvenile hormone

    Energy Technology Data Exchange (ETDEWEB)

    Prestwich, G.D.; Eng, W.S.; Robles, S.; Vogt, R.G.; Wisniewski, J.R.; Wawrzenczyk, C.

    1988-01-25

    The synthesis of the first iodinated juvenile hormone (JH) in enantiomerically enriched form is reported. This chiral compound, 12-iodo-JH I, has an iodine atom replacing a methyl group of the natural insect juvenile hormone, JH I, which is important in regulating morphogenesis and reproduction in the Lepidoptera. The unlabeled compound shows approximately 10% of the relative binding affinity for the larval hemolymph JH binding protein (JHBP) of Manduca sexta, which specifically binds natural /sup 3/H-10R,11S-JH I (labeled at 58 Ci/mmol) with a KD of 8 X 10(-8) M. It is also approximately one-tenth as biologically active as JH I in the black Manduca and epidermal commitment assays. The 12-hydroxy and 12-oxo compounds are poor competitors and are also biologically inactive. The radioiodinated (/sup 125/I)12-iodo-JH I can be prepared in low yield at greater than 2500 Ci/mmol by nucleophilic displacement using no-carrier-added /sup 125/I-labeled sodium iodide in acetone; however, synthesis using sodium iodide carrier to give the approximately 50 Ci/mmol radioiodinated ligand proceeds in higher radiochemical yield with fewer by-products and provides a radioligand which is more readily handled in binding assays. The KD of (/sup 125/I)12-iodo-JH I was determined for hemolymph JHBP of three insects: M. sexta, 795 nM; Galleria mellonella, 47 nM; Locusta migratoria, 77 nM. The selectivity of 12-iodo-JH I for the 32-kDa JHBP of M. sexta was demonstrated by direct autoradiography of a native polyacrylamide gel electrophoresis gel of larval hemolymph incubated with the radioiodinated ligand. Thus, the in vitro and in vivo activity of 12-iodo-JH I indicate that it can serve as an important new gamma-emitting probe in the search for JH receptor proteins in target tissues.

  11. Zinc-fingers and homeoboxes 1 (ZHX1) binds DNA methyltransferase (DNMT) 3B to enhance DNMT3B-mediated transcriptional repression

    International Nuclear Information System (INIS)

    Kim, Sung-Hak; Park, Jinah; Choi, Moon-Chang; Kim, Hwang-Phill; Park, Jung-Hyun; Jung, Yeonjoo; Lee, Ju-Hee; Oh, Do-Youn; Im, Seock-Ah; Bang, Yung-Jue; Kim, Tae-You

    2007-01-01

    DNA methyltransferases (DNMT) 3B is a de novo DNMT that represses transcription independent of DNMT activity. In order to gain a better insight into DNMT3B-mediated transcriptional repression, we performed a yeast two-hybrid analysis using DNMT3B as a bait. Of the various binding candidates, ZHX1, a member of zinc-finger and homeobox protein, was found to interact with DNMT3B in vivo and in vitro. N-terminal PWWP domain of DNMT3B was required for its interaction with homeobox motifs of ZHX1. ZHX1 contains nuclear localization signal at C-terminal homeobox motif, and both ZHX1 and DNMT3B were co-localized in nucleus. Furthermore, we found that ZHX1 enhanced the transcriptional repression mediated by DNMT3B when DNMT3B is directly targeted to DNA. These results showed for First the direct linkage between DNMT and zinc-fingers homeoboxes protein, leading to enhanced gene silencing by DNMT3B

  12. The regiochemical distribution of positive charges along cholesterol polyamine carbamates plays significant roles in modulating DNA binding affinity and lipofection.

    Science.gov (United States)

    Geall, A J; Eaton, M A; Baker, T; Catterall, C; Blagbrough, I S

    1999-10-15

    We have quantified the effects of the regiochemical distribution of positive charges along the polyamine moiety in lipopolyamines for DNA molecular recognition. High affinity binding leads to charge neutralisation, DNA condensation and ultimately to lipofection. Binding affinities for calf thymus DNA were determined using an ethidium bromide displacement assay and condensation was detected by changes in turbidity using light scattering. The in vitro transfection competence of cholesterol polyamine carbamates was measured in CHO cells. In the design of DNA condensing and transfecting agents for non-viral gene therapy, the interrelationship of ammonium ions, not just their number, must be considered.

  13. High-affinity DNA-binding Domains of Replication Protein A (RPA) Direct SMARCAL1-dependent Replication Fork Remodeling*

    Science.gov (United States)

    Bhat, Kamakoti P.; Bétous, Rémy; Cortez, David

    2015-01-01

    SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. PMID:25552480

  14. High-affinity DNA-binding domains of replication protein A (RPA) direct SMARCAL1-dependent replication fork remodeling.

    Science.gov (United States)

    Bhat, Kamakoti P; Bétous, Rémy; Cortez, David

    2015-02-13

    SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Peptide Binding to HLA Class I Molecules: Homogenous, High-Throughput Screening, and Affinity Assays

    DEFF Research Database (Denmark)

    Harndahl, Mikkel; Justesen, Sune Frederik Lamdahl; Lamberth, Kasper

    2009-01-01

    , better signal-to-background ratios, and a higher capacity. They also describe an efficient approach to screen peptides for binding to HLA molecules. For the occasional user, this will serve as a robust, simple peptide-HLA binding assay. For the more dedicated user, it can easily be performed in a high-throughput...... the luminescent oxygen channeling immunoassay technology (abbreviated LOCI and commercialized as AlphaScreen (TM)). Compared with an enzyme-linked immunosorbent assay-based peptide-HLA class I binding assay, the LOCI assay yields virtually identical affinity measurements, although having a broader dynamic range...... screening mode using standard liquid handling robotics and 384-well plates. We have successfully applied this assay to more than 60 different HLA molecules, leading to more than 2 million measurements. (Journal of Biomolecular Screening 2009: 173-180)...

  16. A soluble, high-affinity, interleukin-4-binding protein is present in the biological fluids of mice

    International Nuclear Information System (INIS)

    Fernandez-Botran, R.; Vitetta, E.S.

    1990-01-01

    Cytokines such as interleukin 4 (IL-4) play a key role in the regulation of immune responses, but little is known about how their multiple activities are regulated in vivo. In this report, we demonstrate that an IL-4-binding protein (IL-4BP) is constitutively present in the biological fluids of mice (serum, ascites fluid, and urine). Binding of 125 I-labeled IL-4 to the IL-4BP is specific and saturable and can be inhibited by an excess of unlabeled IL-4 but not IL-2. The IL-4BP binds IL-4 with an affinity similar to that reported for the cellular IL-4 with an affinity similar to that reported for the cellular IL-4 receptor (K d ∼7 x 10 -11 M) and has a molecular mass of 30-40 kDa and pI values of 3.6-4.8. IL-4BP-containing biological fluids or purified IL-4BP competitively inhibit the binding of 125 I-labeled IL-4 to mouse T or B cells and inhibit the biological activity of IL-4 but not IL-2. The serum levels of IL-4BP in severe combined immunodeficiency (SCID) mice are lower than those of normal mice. The above findings suggest that IL-4BP plays an important immunoregulatory role in vivo

  17. Fc-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides

    Directory of Open Access Journals (Sweden)

    Weonu Choe

    2016-12-01

    Full Text Available The rapidly increasing application of antibodies has inspired the development of several novel methods to isolate and target antibodies using smart biomaterials that mimic the binding of Fc-receptors to antibodies. The Fc-binding domain of antibodies is the primary binding site for e.g., effector proteins and secondary antibodies, whereas antigens bind to the Fab region. Protein A, G, and L, surface proteins expressed by pathogenic bacteria, are well known to bind immunoglobulin and have been widely exploited in antibody purification strategies. Several difficulties are encountered when bacterial proteins are used in antibody research and application. One of the major obstacles hampering the use of bacterial proteins is sample contamination with trace amounts of these proteins, which can invoke an immune response in the host. Many research groups actively develop synthetic ligands that are able to selectively and strongly bind to antibodies. Among the reported ligands, peptides that bind to the Fc-domain of antibodies are attractive tools in antibody research. Besides their use as high affinity ligands in antibody purification chromatography, Fc-binding peptides are applied e.g., to localize antibodies on nanomaterials and to increase the half-life of proteins in serum. In this review, recent developments of Fc-binding peptides are presented and their binding characteristics and diverse applications are discussed.

  18. Using affinity capillary electrophoresis and computational models for binding studies of heparinoids with p-selectin and other proteins.

    Science.gov (United States)

    Mozafari, Mona; Balasupramaniam, Shantheya; Preu, Lutz; El Deeb, Sami; Reiter, Christian G; Wätzig, Hermann

    2017-06-01

    A fast and precise affinity capillary electrophoresis (ACE) method has been developed and applied for the investigation of the binding interactions between P-selectin and heparinoids as potential P-selectin inhibitors in the presence and absence of calcium ions. Furthermore, model proteins and vitronectin were used to appraise the binding behavior of P-selectin. The normalized mobility ratios (∆R/R f ), which provided information about the binding strength and the overall charge of the protein-ligand complex, were used to evaluate the binding affinities. It was found that P-selectin interacts more strongly with heparinoids in the presence of calcium ions. P-selectin was affected by heparinoids at the concentration of 3 mg/L. In addition, the results of the ACE experiments showed that among other investigated proteins, albumins and vitronectin exhibited strong interactions with heparinoids. Especially with P-selectin and vitronectin, the interaction may additionally induce conformational changes. Subsequently, computational models were applied to interpret the ACE experiments. Docking experiments explained that the binding of heparinoids on P-selectin is promoted by calcium ions. These docking models proved to be particularly well suited to investigate the interaction of charged compounds, and are therefore complementary to ACE experiments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Estrogen Receptor Binding Affinity of Food Contact Material Components Estimated by QSAR.

    Science.gov (United States)

    Sosnovcová, Jitka; Rucki, Marián; Bendová, Hana

    2016-09-01

    The presented work characterized components of food contact materials (FCM) with potential to bind to estrogen receptor (ER) and cause adverse effects in the human organism. The QSAR Toolbox, software application designed to identify and fill toxicological data gaps for chemical hazard assessment, was used. Estrogen receptors are much less of a lock-and-key interaction than highly specific ones. The ER is nonspecific enough to permit binding with a diverse array of chemical structures. There are three primary ER binding subpockets, each with different requirements for hydrogen bonding. More than 900 compounds approved as of FCM components were evaluated for their potential to bind on ER. All evaluated chemicals were subcategorized to five groups with respect to the binding potential to ER: very strong, strong, moderate, weak binder, and no binder to ER. In total 46 compounds were characterized as potential disturbers of estrogen receptor. Among the group of selected chemicals, compounds with high and even very high affinity to the ER binding subpockets were found. These compounds may act as gene activators and cause adverse effects in the organism, particularly during pregnancy and breast-feeding. It should be considered to carry out further in vitro or in vivo tests to confirm their potential to disturb the regulation of physiological processes in humans by abnormal ER signaling and subsequently remove these chemicals from the list of approved food contact materials. Copyright© by the National Institute of Public Health, Prague 2016

  20. [3H]naloxone as an opioid receptor label: Analysis of binding site heterogeneity and use for determination of opioid affinities of casomorphin analogues

    International Nuclear Information System (INIS)

    Schnittler, M.; Repke, H.; Liebmann, C.; Schrader, U.; Schulze, H.P.; Neubert, K.

    1990-01-01

    The nonselective antagonist [ 3 H]naloxone was used to identify opioid receptors in rat brain membranes. The multiple naloxone binding sites were related to different opioid receptors by means of selective opiod ligands as well as various β-casomorphin analogues. Analysis of binding site heterogeneity was performed using several computer curve fitting methods. The results indicate that structurally modified casomorphin peptides are able to discriminate between μ 1 and μ 2 binding sites. The affinities to the μ sites obtained with [ 3 H]naloxone as label are in a good agreement with those from experiments with the μ selective radioligand [ 3 H]DAGO. The μ 1 site affinities of these casomorphin derivatives are well correlated with their antinociceptive potencies. This finding suggests the mediation of the analgesic activity via the high-affinity μ 1 subtype. (author)

  1. Radioiodinated ligands for the estrogen receptor: Effect of different 7-cyanoalkyl chains on the binding affinity of novel iodovinyl-6-dehydroestradiols

    International Nuclear Information System (INIS)

    Neto, Carina; Oliveira, Maria Cristina; Gano, Lurdes; Marques, Fernanda; Santos, Isabel; Morais, Goreti Ribeiro; Yasuda, Takumi; Thiemann, Thies; Botelho, Filomena; Oliveira, Carlos F.

    2009-01-01

    Three novel 17α-ethynyl-Δ 6,7 -estra-3,17β-diols and their 17α-[ 125 I]-iodovinyl derivatives, containing different C7-cyanoalkyl chains, were studied as potential radioligands for the estrogen receptor. The influence of the chain length on the biological behaviour of the compounds was assessed through in vitro ER binding assays of the ethynyl derivatives and breast cancer cell uptake studies of the 17α-[ 125 I]-iodovinyl-Δ 6,7 -estra-3,17β-diols. A difference in alkyl chain induced a decrease in ER binding affinities of substances, however, the receptor-binding affinities (RBA) of all compounds were lower than that of estradiol itself. In addition, a non-specific cell binding was observed which is in accordance with the encountered ethynyl RBA values suggesting that the uptake is not ER mediated

  2. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  3. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-01-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  4. NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data.

    Science.gov (United States)

    Jurtz, Vanessa; Paul, Sinu; Andreatta, Massimo; Marcatili, Paolo; Peters, Bjoern; Nielsen, Morten

    2017-11-01

    Cytotoxic T cells are of central importance in the immune system's response to disease. They recognize defective cells by binding to peptides presented on the cell surface by MHC class I molecules. Peptide binding to MHC molecules is the single most selective step in the Ag-presentation pathway. Therefore, in the quest for T cell epitopes, the prediction of peptide binding to MHC molecules has attracted widespread attention. In the past, predictors of peptide-MHC interactions have primarily been trained on binding affinity data. Recently, an increasing number of MHC-presented peptides identified by mass spectrometry have been reported containing information about peptide-processing steps in the presentation pathway and the length distribution of naturally presented peptides. In this article, we present NetMHCpan-4.0, a method trained on binding affinity and eluted ligand data leveraging the information from both data types. Large-scale benchmarking of the method demonstrates an increase in predictive performance compared with state-of-the-art methods when it comes to identification of naturally processed ligands, cancer neoantigens, and T cell epitopes. Copyright © 2017 by The American Association of Immunologists, Inc.

  5. Contribution of the first K-homology domain of poly(C)-binding protein 1 to its affinity and specificity for C-rich oligonucleotides.

    Science.gov (United States)

    Yoga, Yano M K; Traore, Daouda A K; Sidiqi, Mahjooba; Szeto, Chris; Pendini, Nicole R; Barker, Andrew; Leedman, Peter J; Wilce, Jacqueline A; Wilce, Matthew C J

    2012-06-01

    Poly-C-binding proteins are triple KH (hnRNP K homology) domain proteins with specificity for single stranded C-rich RNA and DNA. They play diverse roles in the regulation of protein expression at both transcriptional and translational levels. Here, we analyse the contributions of individual αCP1 KH domains to binding C-rich oligonucleotides using biophysical and structural methods. Using surface plasmon resonance (SPR), we demonstrate that KH1 makes the most stable interactions with both RNA and DNA, KH3 binds with intermediate affinity and KH2 only interacts detectibly with DNA. The crystal structure of KH1 bound to a 5'-CCCTCCCT-3' DNA sequence shows a 2:1 protein:DNA stoichiometry and demonstrates a molecular arrangement of KH domains bound to immediately adjacent oligonucleotide target sites. SPR experiments, with a series of poly-C-sequences reveals that cytosine is preferred at all four positions in the oligonucleotide binding cleft and that a C-tetrad binds KH1 with 10 times higher affinity than a C-triplet. The basis for this high affinity interaction is finally detailed with the structure determination of a KH1.W.C54S mutant bound to 5'-ACCCCA-3' DNA sequence. Together, these data establish the lead role of KH1 in oligonucleotide binding by αCP1 and reveal the molecular basis of its specificity for a C-rich tetrad.

  6. Structural analogs of human insulin-like growth factor I with reduced affinity for serum binding proteins and the type 2 insulin-like growth factor receptor

    International Nuclear Information System (INIS)

    Bayne, M.L.; Applebaum, J.; Chicchi, G.G.; Hayes, N.S.; Green, B.G.; Cascieri, M.A.

    1988-01-01

    Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. [Phe -1 , Val 1 , Asn 2 , Gln 3 , His 4 , Ser 8 , His 9 , Glu 12 , Tyr 15 , Leu 16 ]IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has >1000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. [Gln 3 , Ala 4 ] IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. [Tyr 15 , Leu 16 ] IGH-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. The peptide in which these four-point mutations are combined, [Gln 3 , Ala 4 , Tyr 15 ,Leu 16 ]IGF-I, has 600-fold reduced affinity for the serum binding proteins. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, These peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I

  7. Communication between the Zinc and Nickel Sites in Dimeric HypA: Metal Recognition and pH Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Herbst, R.; Perovic, I; Martin-Diaconescu, V; O’Brien, K; Chivers, P; Sondej Pochapsky, S; Pochapsky, T; Maroney, M

    2010-01-01

    Helicobacter pylori, a pathogen that colonizes the human stomach, requires the nickel-containing metalloenzymes urease and NiFe-hydrogenase to survive this low pH environment. The maturation of both enzymes depends on the metallochaperone, HypA. HypA contains two metal sites, an intrinsic zinc site and a low-affinity nickel binding site. X-ray absorption spectroscopy (XAS) shows that the structure of the intrinsic zinc site of HypA is dynamic and able to sense both nickel loading and pH changes. At pH 6.3, an internal pH that occurs during acid shock, the zinc site undergoes unprecedented ligand substitutions to convert from a Zn(Cys){sub 4} site to a Zn(His){sub 2}(Cys){sub 2} site. NMR spectroscopy shows that binding of Ni(II) to HypA results in paramagnetic broadening of resonances near the N-terminus. NOEs between the {beta}-CH{sub 2} protons of Zn cysteinyl ligands are consistent with a strand-swapped HypA dimer. Addition of nickel causes resonances from the zinc binding motif and other regions to double, indicating more than one conformation can exist in solution. Although the structure of the high-spin, 5-6 coordinate Ni(II) site is relatively unaffected by pH, the nickel binding stoichiometry is decreased from one per monomer to one per dimer at pH = 6.3. Mutation of any cysteine residue in the zinc binding motif results in a zinc site structure similar to that found for holo-WT-HypA at low pH and is unperturbed by the addition of nickel. Mutation of the histidines that flank the CXXC motifs results in a zinc site structure that is similar to holo-WT-HypA at neutral pH (Zn(Cys){sub 4}) and is no longer responsive to nickel binding or pH changes. Using an in vitro urease activity assay, it is shown that the recombinant protein is sufficient for recovery of urease activity in cell lysate from a HypA deletion mutant, and that mutations in the zinc-binding motif result in a decrease in recovered urease activity. The results are interpreted in terms of a model

  8. Communication between the Zinc and Nickel Sites in Dimeric HypA: Metal Recognition and pH Sensing

    International Nuclear Information System (INIS)

    Herbst, R.; Perovic, I.; Martin-Diaconescu, V.; O'Brien, K.; Chivers, P.; Sondej Pochapsky, S.; Pochapsky, T.; Maroney, M.

    2010-01-01

    Helicobacter pylori, a pathogen that colonizes the human stomach, requires the nickel-containing metalloenzymes urease and NiFe-hydrogenase to survive this low pH environment. The maturation of both enzymes depends on the metallochaperone, HypA. HypA contains two metal sites, an intrinsic zinc site and a low-affinity nickel binding site. X-ray absorption spectroscopy (XAS) shows that the structure of the intrinsic zinc site of HypA is dynamic and able to sense both nickel loading and pH changes. At pH 6.3, an internal pH that occurs during acid shock, the zinc site undergoes unprecedented ligand substitutions to convert from a Zn(Cys) 4 site to a Zn(His) 2 (Cys) 2 site. NMR spectroscopy shows that binding of Ni(II) to HypA results in paramagnetic broadening of resonances near the N-terminus. NOEs between the β-CH 2 protons of Zn cysteinyl ligands are consistent with a strand-swapped HypA dimer. Addition of nickel causes resonances from the zinc binding motif and other regions to double, indicating more than one conformation can exist in solution. Although the structure of the high-spin, 5-6 coordinate Ni(II) site is relatively unaffected by pH, the nickel binding stoichiometry is decreased from one per monomer to one per dimer at pH = 6.3. Mutation of any cysteine residue in the zinc binding motif results in a zinc site structure similar to that found for holo-WT-HypA at low pH and is unperturbed by the addition of nickel. Mutation of the histidines that flank the CXXC motifs results in a zinc site structure that is similar to holo-WT-HypA at neutral pH (Zn(Cys) 4 ) and is no longer responsive to nickel binding or pH changes. Using an in vitro urease activity assay, it is shown that the recombinant protein is sufficient for recovery of urease activity in cell lysate from a HypA deletion mutant, and that mutations in the zinc-binding motif result in a decrease in recovered urease activity. The results are interpreted in terms of a model wherein HypA controls the

  9. Affinities and densities of high-affinity [3H]muscimol (GABA-A) binding sites and of central benzodiazepine receptors are unchanged in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy

    International Nuclear Information System (INIS)

    Butterworth, R.F.; Lavoie, J.; Giguere, J.F.; Pomier-Layrargues, G.

    1988-01-01

    The integrity of GABA-A receptors and of central benzodiazepine receptors was evaluated in membrane preparations from prefrontal cortex and caudate nuclei obtained at autopsy from nine cirrhotic patients who died in hepatic coma and an equal number of age-matched control subjects. Histopathological studies revealed Alzheimer Type II astrocytosis in all cases in the cirrhotic group; controls were free from neurological, psychiatric or hepatic diseases. Binding to GABA-A receptors was studied using [ 3 H]muscimol as radioligand. The integrity of central benzodiazepine receptors was evaluated using [ 3 H]flunitrazepam and [ 3 H]Ro15-1788. Data from saturation binding assays was analyzed by Scatchard plot. No modifications of either affinities (Kd) or densities (Bmax) of [ 3 H]muscimol of central benzodiazepine binding sites were observed. These findings do not support recent suggestions that alterations of either high-affinity GABA or benzodiazepine receptors play a significant role in the pathogenesis of hepatic encephalopathy

  10. Binding affinity and adhesion force of organophosphate hydrolase enzyme with soil particles related to the isoelectric point of the enzyme.

    Science.gov (United States)

    Islam, Shah Md Asraful; Yeasmin, Shabina; Islam, Md Saiful; Islam, Md Shariful

    2017-07-01

    The binding affinity of organophosphate hydrolase enzyme (OphB) with soil particles in relation to the isoelectric point (pI) was studied. Immobilization of OphB with soil particles was observed by confocal microscopy, Fourier transform infrared spectroscopy (FT-IR), and Atomic force microscopy (AFM). The calculated pI of OphB enzyme was increased from 8.69 to 8.89, 9.04 and 9.16 by the single, double and triple mutant of OphB enzyme, respectively through the replacement of negatively charged aspartate with positively charged histidine. Practically, the binding affinity was increased to 5.30%, 11.50%, and 16.80% for single, double and triple mutants, respectively. In contrast, enzyme activity of OphB did not change by the mutation of the enzyme. On the other hand, adhesion forces were gradually increased for wild type OphB enzyme (90 pN) to 96, 100 and 104 pN for single, double and triple mutants of OphB enzyme, respectively. There was an increasing trend of binding affinity and adhesion force by the increase of isoelectric point (pI) of OphB enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. FMRFamide: low affinity inhibition of opioid binding to rabbit brain membranes

    International Nuclear Information System (INIS)

    Zhu, X.Z.; Raffa, R.B.

    1986-01-01

    FMRFamide (Phe-Met-Arg-Phe-NH 2 ) was first isolated from the ganglia of molluscs by Price and Greenberg in 1977. The peptide was subsequently shown to have diverse actions on various types of molluscan and mammalian tissues. The presence of immunoreactive FMRFamide-like material (irFMRF) in multiple areas of rat brain, spinal cord, and gastrointestinal tract suggests that irFMRF may have a physiological role in mammals. Tang, Yang and Costa recently demonstrated that FMRFamide attenuates morphine antinociception in rats and postulated, based on this and several other lines of evidence, that irFMRF might be an endogenous opioid antagonist. In the present study, they tested the ability of FMRFamide to inhibit the binding of opioid receptor ligands to rabbit membrane preparations. FMRFamide inhibited the specific binding of both 3 [H]-dihydromorphine and 3 [H]-ethylketocyclazocine (IC 50 = 14 μM and 320 μM, respectively) in a dose-related manner, suggesting that FMRFamide may affect binding to at least two types of opioid receptors (mu and kappa). These data are consistent with the concept that irFMRF might act as an endogenous opioid antagonist. However, the low affinity of FMRFamide leaves open the possibility of another mechanism of opioid antagonism, such as neuromodulation

  12. FMRFamide: low affinity inhibition of opioid binding to rabbit brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X.Z.; Raffa, R.B.

    1986-03-05

    FMRFamide (Phe-Met-Arg-Phe-NH/sub 2/) was first isolated from the ganglia of molluscs by Price and Greenberg in 1977. The peptide was subsequently shown to have diverse actions on various types of molluscan and mammalian tissues. The presence of immunoreactive FMRFamide-like material (irFMRF) in multiple areas of rat brain, spinal cord, and gastrointestinal tract suggests that irFMRF may have a physiological role in mammals. Tang, Yang and Costa recently demonstrated that FMRFamide attenuates morphine antinociception in rats and postulated, based on this and several other lines of evidence, that irFMRF might be an endogenous opioid antagonist. In the present study, they tested the ability of FMRFamide to inhibit the binding of opioid receptor ligands to rabbit membrane preparations. FMRFamide inhibited the specific binding of both /sup 3/(H)-dihydromorphine and /sup 3/(H)-ethylketocyclazocine (IC/sub 50/ = 14 ..mu..M and 320 ..mu..M, respectively) in a dose-related manner, suggesting that FMRFamide may affect binding to at least two types of opioid receptors (mu and kappa). These data are consistent with the concept that irFMRF might act as an endogenous opioid antagonist. However, the low affinity of FMRFamide leaves open the possibility of another mechanism of opioid antagonism, such as neuromodulation.

  13. A viral, transporter associated with antigen processing (TAP)-independent, high affinity ligand with alternative interactions endogenously presented by the nonclassical human leukocyte antigen E class I molecule.

    Science.gov (United States)

    Lorente, Elena; Infantes, Susana; Abia, David; Barnea, Eilon; Beer, Ilan; García, Ruth; Lasala, Fátima; Jiménez, Mercedes; Mir, Carmen; Morreale, Antonio; Admon, Arie; López, Daniel

    2012-10-12

    The transporter associated with antigen processing (TAP) enables the flow of viral peptides generated in the cytosol by the proteasome and other proteases to the endoplasmic reticulum, where they complex with nascent human leukocyte antigen (HLA) class I. Later, these peptide-HLA class I complexes can be recognized by CD8(+) lymphocytes. Cancerous cells and infected cells in which TAP is blocked, as well as individuals with unusable TAP complexes, are able to present peptides on HLA class I by generating them through TAP-independent processing pathways. Here, we identify a physiologically processed HLA-E ligand derived from the D8L protein in TAP-deficient vaccinia virus-infected cells. This natural high affinity HLA-E class I ligand uses alternative interactions to the anchor motifs previously described to be presented on nonclassical HLA class I molecules. This octameric peptide was also presented on HLA-Cw1 with similar binding affinity on both classical and nonclassical class I molecules. In addition, this viral peptide inhibits HLA-E-mediated cytolysis by natural killer cells. Comparison between the amino acid sequences of the presenting HLA-E and HLA-Cw1 alleles revealed a shared structural motif in both HLA class molecules, which could be related to their observed similar cross-reactivity affinities. This motif consists of several residues located on the floor of the peptide-binding site. These data expand the role of HLA-E as an antigen-presenting molecule.

  14. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015

    Science.gov (United States)

    Xu, Xianjin; Yan, Chengfei; Zou, Xiaoqin

    2017-08-01

    The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.

  15. ZipA binds to FtsZ with high affinity and enhances the stability of FtsZ protofilaments.

    Directory of Open Access Journals (Sweden)

    Anuradha Kuchibhatla

    Full Text Available A bacterial membrane protein ZipA that tethers FtsZ to the membrane is known to promote FtsZ assembly. In this study, the binding of ZipA to FtsZ was monitored using fluorescence spectroscopy. ZipA was found to bind to FtsZ with high affinities at three different (6.0, 6.8 and 8.0 pHs, albeit the binding affinity decreased with increasing pH. Further, thick bundles of FtsZ protofilaments were observed in the presence of ZipA under the pH conditions used in this study indicating that ZipA can promote FtsZ assembly and stabilize FtsZ polymers under unfavorable conditions. Bis-ANS, a hydrophobic probe, decreased the interaction of FtsZ and ZipA indicating that the interaction between FtsZ and ZipA is hydrophobic in nature. ZipA prevented the dilution induced disassembly of FtsZ polymers suggesting that it stabilizes FtsZ protofilaments. Fluorescein isothiocyanate-labeled ZipA was found to be uniformly distributed along the length of the FtsZ protofilaments indicating that ZipA stabilizes FtsZ protofilaments by cross-linking them.

  16. A Novel Carbohydrate-binding Module from Sugar Cane Soil Metagenome Featuring Unique Structural and Carbohydrate Affinity Properties*

    Science.gov (United States)

    Campos, Bruna Medeia; Alvarez, Thabata Maria; Zanphorlin, Letícia Maria; Ematsu, Gabriela Cristina; Barud, Hernane; Polikarpov, Igor; Ruller, Roberto; Gilbert, Harry J.; Zeri, Ana Carolina de Mattos; Squina, Fabio Marcio

    2016-01-01

    Carbohydrate-binding modules (CBMs) are appended to glycoside hydrolases and can contribute to the degradation of complex recalcitrant substrates such as the plant cell wall. For application in bioethanol production, novel enzymes with high catalytic activity against recalcitrant lignocellulosic material are being explored and developed. In this work, we report the functional and structural study of CBM_E1, which was discovered through a metagenomics approach and is the founding member of a novel CBM family, CBM81. CBM_E1, which is linked to an endoglucanase, displayed affinity for mixed linked β1,3-β1,4-glucans, xyloglucan, Avicel, and cellooligosaccharides. The crystal structure of CBM_E1 in complex with cellopentaose displayed a canonical β-sandwich fold comprising two β-sheets. The planar ligand binding site, observed in a parallel orientation with the β-strands, is a typical feature of type A CBMs, although the expected affinity for bacterial crystalline cellulose was not detected. Conversely, the binding to soluble glucans was enthalpically driven, which is typical of type B modules. These unique properties of CBM_E1 are at the interface between type A and type B CBMs. PMID:27621314

  17. A peptide affinity column for the identification of integrin alpha IIb-binding proteins.

    Science.gov (United States)

    Daxecker, Heide; Raab, Markus; Bernard, Elise; Devocelle, Marc; Treumann, Achim; Moran, Niamh

    2008-03-01

    To understand the regulation of integrin alpha(IIb)beta(3), a critical platelet adhesion molecule, we have developed a peptide affinity chromatography method using the known integrin regulatory motif, LAMWKVGFFKR. Using standard Fmoc chemistry, this peptide was synthesized onto a Toyopearl AF-Amino-650 M resin on a 6-aminohexanoic acid (Ahx) linker. Peptide density was controlled by acetylation of 83% of the Ahx amino groups. Four recombinant human proteins (CIB1, PP1, ICln and RN181), previously identified as binding to this integrin regulatory motif, were specifically retained by the column containing the integrin peptide but not by a column presenting an irrelevant peptide. Hemoglobin, creatine kinase, bovine serum albumin, fibrinogen and alpha-tubulin failed to bind under the chosen conditions. Immunodetection methods confirmed the binding of endogenous platelet proteins, including CIB1, PP1, ICln RN181, AUP-1 and beta3-integrin, from a detergent-free platelet lysate. Thus, we describe a reproducible method that facilitates the reliable extraction of specific integrin-binding proteins from complex biological matrices. This methodology may enable the sensitive and specific identification of proteins that interact with linear, membrane-proximal peptide motifs such as the integrin regulatory motif LAMWKVGFFKR.

  18. Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening.

    Science.gov (United States)

    Ain, Qurrat Ul; Aleksandrova, Antoniya; Roessler, Florian D; Ballester, Pedro J

    2015-01-01

    Docking tools to predict whether and how a small molecule binds to a target can be applied if a structural model of such target is available. The reliability of docking depends, however, on the accuracy of the adopted scoring function (SF). Despite intense research over the years, improving the accuracy of SFs for structure-based binding affinity prediction or virtual screening has proven to be a challenging task for any class of method. New SFs based on modern machine-learning regression models, which do not impose a predetermined functional form and thus are able to exploit effectively much larger amounts of experimental data, have recently been introduced. These machine-learning SFs have been shown to outperform a wide range of classical SFs at both binding affinity prediction and virtual screening. The emerging picture from these studies is that the classical approach of using linear regression with a small number of expert-selected structural features can be strongly improved by a machine-learning approach based on nonlinear regression allied with comprehensive data-driven feature selection. Furthermore, the performance of classical SFs does not grow with larger training datasets and hence this performance gap is expected to widen as more training data becomes available in the future. Other topics covered in this review include predicting the reliability of a SF on a particular target class, generating synthetic data to improve predictive performance and modeling guidelines for SF development. WIREs Comput Mol Sci 2015, 5:405-424. doi: 10.1002/wcms.1225 For further resources related to this article, please visit the WIREs website.

  19. The Binding of Four Licorice Flavonoids to Bovine Serum Albumin by Multi-Spectroscopic and Molecular Docking Methods: Structure-Affinity Relationship

    Science.gov (United States)

    Hou, J.; Liang, Q.; Shao, S.

    2017-03-01

    Flavanones are the main compound of licorice, and the C'-4 position substitution is a significant structural feature for their biological activity. The ability of three selected flavanones (liquiritigenin, liquiritin, and liquiritin apioside) bearing different substituents (hydroxyl groups, glucose, and glucose-apiose sugar moiety) at the C'-4 position and a chalcone ( isoliquiritigenin, an isomer of liquiritigenin) to bind bovine serum albumin (BSA) was studied by multispectroscopic and molecular docking methods under physiological conditions. The binding mechanism of fl avonoids to BSA can be explained by the formation of a flavonoids-BSA complex, and the binding affinity is the strongest for isoliquiritigenin, followed by liquiritin apioside, liquiritin, and liquiritigenin. The thermodynamic analysis and the molecular docking indicated that the interaction between flavonoids and BSA was dominated by the hydrophobic force and hydrogen bonds. The competitive experiments as well as the molecular docking results suggested the most possible binding site of licorice flavonoids on BSA at subdomain IIA. These results revealed that the basic skeleton structure and the substituents at the C'-4 position of flavanones significantly affect the structure-affinity relationships of the licorice flavonoid binding to BSA.

  20. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.

    Science.gov (United States)

    Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P

    2015-11-01

    Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The

  1. Interdependence of free zinc changes and protein complex assembly - insights into zinc signal regulation.

    Science.gov (United States)

    Kocyła, Anna; Adamczyk, Justyna; Krężel, Artur

    2018-01-24

    Cellular zinc (Zn(ii)) is bound with proteins that are part of the proteomes of all domains of life. It is mostly utilized as a catalytic or structural protein cofactor, which results in a vast number of binding architectures. The Zn(ii) ion is also important for the formation of transient protein complexes with a Zn(ii)-dependent quaternary structure that is formed upon cellular zinc signals. The mechanisms by which proteins associate with and dissociate from Zn(ii) and the connection with cellular Zn(ii) changes remain incompletely understood. In this study, we aimed to examine how zinc protein domains with various Zn(ii)-binding architectures are formed under free Zn(ii) concentration changes and how formation of the Zn(ii)-dependent assemblies is related to the protein concentration and reactivity. To accomplish these goals we chose four zinc domains with different Zn(ii)-to-protein binding stoichiometries: classical zinc finger (ZnP), LIM domain (Zn 2 P), zinc hook (ZnP 2 ) and zinc clasp (ZnP 1 P 2 ) folds. Our research demonstrated a lack of changes in the saturation level of intraprotein zinc binding sites, despite various peptide concentrations, while homo- and heterodimers indicated a concentration-dependent tendency. In other words, at a certain free Zn(ii) concentration, the fraction of a formed dimeric complex increases or decreases with subunit concentration changes. Secondly, even small or local changes in free Zn(ii) may significantly affect protein saturation depending on its architecture, function and subcellular concentration. In our paper, we indicate the importance of interdependence of free Zn(ii) availability and protein subunit concentrations for cellular zinc signal regulation.

  2. Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.

    Science.gov (United States)

    Basu, Koli; Garnham, Christopher P; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-15

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.

  3. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    DEFF Research Database (Denmark)

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-01-01

    the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance...... of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. RESULTS: The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation...... between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance...

  4. Growth-inhibitory and metal-binding proteins in Chlorella vulgaris exposed to cadmium or zinc

    International Nuclear Information System (INIS)

    Huang Zhiyong; Li Lianping; Huang Gaoling; Yan Qingpi; Shi Bing; Xu Xiaoqin

    2009-01-01

    Phytochelatins, with the general structure of (γ-Glu-Cys)n-Gly (n = 2-11), are usually recognized as being strongly induced by metals in microalgae and play an important role in the detoxification of heavy metals in environment. However, there have been few studies on metallothionein (MT) synthesis in Chlorella vulgaris (C. vulgaris) exposed to heavy metals. The present study describes the growth inhibition of C. vulgaris exposed to different concentrations of cadmium and zinc, and the induction of metal-binding MT-like proteins in the cells. The amounts of metal-binding proteins, induced in the alga exposed to different concentrations of Cd and Zn, were analyzed with a size-exclusion HPLC coupled to ICP-MS. After being purified with a gel filtration column (Sephadex G-75, 3.5 cm x 80 cm) and a desalting column (G-25, 1.5 cm x 30 cm), the isoforms and sub-isoforms of Zn-binding protein were characterized by a reverse phase-HPLC coupled to electrospray ionization and a triple quadrupole mass spectrometer (HPLC-ESI-MS/MS). In addition, the ultraviolet spectra of purified Zn-binding proteins were analyzed in media with different pH values. The results showed that the significant inhibitory effects (at p -1 of Cd, and 60 and 80 μmol l -1 of Zn were added. The Cd/Zn-binding proteins induced in C. vulgaris exposed to Cd and Zn were referred to as Cd/Zn-MT-like proteins in which the mean molecular mass of the apo-MT-like was 6152 Da. The induced Cd/Zn-MT-like proteins might be involved in the detoxification of heavy metals, such as cadmium and zinc, by the alga

  5. Growth-inhibitory and metal-binding proteins in Chlorella vulgaris exposed to cadmium or zinc

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zhiyong [College of Bioengineering, Jimei University, Xiamen, 361021 (China)], E-mail: zhyhuang@jmu.edu.cn; Li Lianping; Huang Gaoling [College of Bioengineering, Jimei University, Xiamen, 361021 (China); Yan Qingpi [College of fisheries, Jimei University, Xiamen, 361021 (China); Shi Bing; Xu Xiaoqin [Xiamen Products Quality Inspection Institute, Xiamen, 361004 (China)

    2009-01-18

    Phytochelatins, with the general structure of ({gamma}-Glu-Cys)n-Gly (n = 2-11), are usually recognized as being strongly induced by metals in microalgae and play an important role in the detoxification of heavy metals in environment. However, there have been few studies on metallothionein (MT) synthesis in Chlorella vulgaris (C. vulgaris) exposed to heavy metals. The present study describes the growth inhibition of C. vulgaris exposed to different concentrations of cadmium and zinc, and the induction of metal-binding MT-like proteins in the cells. The amounts of metal-binding proteins, induced in the alga exposed to different concentrations of Cd and Zn, were analyzed with a size-exclusion HPLC coupled to ICP-MS. After being purified with a gel filtration column (Sephadex G-75, 3.5 cm x 80 cm) and a desalting column (G-25, 1.5 cm x 30 cm), the isoforms and sub-isoforms of Zn-binding protein were characterized by a reverse phase-HPLC coupled to electrospray ionization and a triple quadrupole mass spectrometer (HPLC-ESI-MS/MS). In addition, the ultraviolet spectra of purified Zn-binding proteins were analyzed in media with different pH values. The results showed that the significant inhibitory effects (at p < 0.05) on the cell growth were observed when excessive metals such as 80 {mu}mol l{sup -1} of Cd, and 60 and 80 {mu}mol l{sup -1} of Zn were added. The Cd/Zn-binding proteins induced in C. vulgaris exposed to Cd and Zn were referred to as Cd/Zn-MT-like proteins in which the mean molecular mass of the apo-MT-like was 6152 Da. The induced Cd/Zn-MT-like proteins might be involved in the detoxification of heavy metals, such as cadmium and zinc, by the alga.

  6. Motif III in superfamily 2 "helicases" helps convert the binding energy of ATP into a high-affinity RNA binding site in the yeast DEAD-box protein Ded1.

    Science.gov (United States)

    Banroques, Josette; Doère, Monique; Dreyfus, Marc; Linder, Patrick; Tanner, N Kyle

    2010-03-05

    Motif III in the putative helicases of superfamily 2 is highly conserved in both its sequence and its structural context. It typically consists of the sequence alcohol-alanine-alcohol (S/T-A-S/T). Historically, it was thought to link ATPase activity with a "helicase" strand displacement activity that disrupts RNA or DNA duplexes. DEAD-box proteins constitute the largest family of superfamily 2; they are RNA-dependent ATPases and ATP-dependent RNA binding proteins that, in some cases, are able to disrupt short RNA duplexes. We made mutations of motif III (S-A-T) in the yeast DEAD-box protein Ded1 and analyzed in vivo phenotypes and in vitro properties. Moreover, we made a tertiary model of Ded1 based on the solved structure of Vasa. We used Ded1 because it has relatively high ATPase and RNA binding activities; it is able to displace moderately stable duplexes at a large excess of substrate. We find that the alanine and the threonine in the second and third positions of motif III are more important than the serine, but that mutations of all three residues have strong phenotypes. We purified the wild-type and various mutants expressed in Escherichia coli. We found that motif III mutations affect the RNA-dependent hydrolysis of ATP (k(cat)), but not the affinity for ATP (K(m)). Moreover, mutations alter and reduce the affinity for single-stranded RNA and subsequently reduce the ability to disrupt duplexes. We obtained intragenic suppressors of the S-A-C mutant that compensate for the mutation by enhancing the affinity for ATP and RNA. We conclude that motif III and the binding energy of gamma-PO(4) of ATP are used to coordinate motifs I, II, and VI and the two RecA-like domains to create a high-affinity single-stranded RNA binding site. It also may help activate the beta,gamma-phosphoanhydride bond of ATP. (c) 2009 Elsevier Ltd. All rights reserved.

  7. Lectin affinity electrophoresis.

    Science.gov (United States)

    Kobayashi, Yuka

    2014-01-01

    An interaction or a binding event typically changes the electrophoretic properties of a molecule. Affinity electrophoresis methods detect changes in the electrophoretic pattern of molecules (mainly macromolecules) that occur as a result of biospecific interactions or complex formation. Lectin affinity electrophoresis is a very effective method for the detection and analysis of trace amounts of glycobiological substances. It is particularly useful for isolating and separating the glycoisomers of target molecules. Here, we describe a sensitive technique for the detection of glycoproteins separated by agarose gel-lectin affinity electrophoresis that uses antibody-affinity blotting. The technique is tested using α-fetoprotein with lectin (Lens culinaris agglutinin and Phaseolus vulgaris agglutinin)-agarose gels.

  8. Relative binding affinity of carboxylate-, phosphonate-, and bisphosphonate-functionalized gold nanoparticles targeted to damaged bone tissue

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Ryan D. [Rush University Medical Center, Department of Anatomy and Cell Biology (United States); Cole, Lisa E.; Roeder, Ryan K., E-mail: rroeder@nd.edu [University of Notre Dame, Department of Aerospace and Mechanical Engineering Bioengineering Graduate Program (United States)

    2012-10-15

    Functionalized Au NPs have received considerable recent interest for targeting and labeling cells and tissues. Damaged bone tissue can be targeted by functionalizing Au NPs with molecules exhibiting affinity for calcium. Therefore, the relative binding affinity of Au NPs surface functionalized with either carboxylate (l-glutamic acid), phosphonate (2-aminoethylphosphonic acid), or bisphosphonate (alendronate) was investigated for targeted labeling of damaged bone tissue in vitro. Targeted labeling of damaged bone tissue was qualitatively verified by visual observation and backscattered electron microscopy, and quantitatively measured by the surface density of Au NPs using field-emission scanning electron microscopy. The surface density of functionalized Au NPs was significantly greater within damaged tissue compared to undamaged tissue for each functional group. Bisphosphonate-functionalized Au NPs exhibited a greater surface density labeling damaged tissue compared to glutamic acid- and phosphonic acid-functionalized Au NPs, which was consistent with the results of previous work comparing the binding affinity of the same functionalized Au NPs to synthetic hydroxyapatite crystals. Targeted labeling was enabled not only by the functional groups but also by the colloidal stability in solution. Functionalized Au NPs were stabilized by the presence of the functional groups, and were shown to remain well dispersed in ionic (phosphate buffered saline) and serum (fetal bovine serum) solutions for up to 1 week. Therefore, the results of this study suggest that bisphosphonate-functionalized Au NPs have potential for targeted delivery to damaged bone tissue in vitro and provide motivation for in vivo investigation.

  9. Binding of (/sup 3/H)imipramine to human platelet membranes with compensation for saturable binding to filters and its implication for binding studies with brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, O.M.; Wood, K.M.; Williams, D.C.

    1984-08-01

    Apparent specific binding of (/sup 3/H)imipramine to human platelet membranes at high concentrations of imipramine showed deviation from that expected of a single binding site, a result consistent with a low-affinity binding site. The deviation was due to displaceable, saturable binding to the glass fibre filters used in the assays. Imipramine, chloripramine, desipramine, and fluoxetine inhibited binding to filters whereas 5-hydroxytryptamine and ethanol were ineffective. Experimental conditions were developed that eliminated filter binding, allowing assay of high- and low-affinity binding to membranes. Failure to correct for filter binding may lead to overestimation of binding parameters, Bmax and KD for high-affinity binding to membranes, and may also be misinterpreted as indicating a low-affinity binding component in both platelet and brain membranes. Low-affinity binding (KD less than 2 microM) of imipramine to human platelet membranes was demonstrated and its significance discussed.

  10. Affinity chromatographic purification of tetrodotoxin by use of tetrodotoxin-binding high molecular weight substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands.

    Science.gov (United States)

    Shiomi, K; Yamaguchi, S; Shimakura, K; Nagashima, Y; Yamamori, K; Matsui, T

    1993-12-01

    A purification method for tetrodotoxin (TTX), based on affinity chromatography using the TTX-binding high mol. wt substances in the body fluid of shore crab (Hemigrapsus sanguineus) as ligands, was developed. This method was particularly useful for analysis of TTX in biological samples with low concentrations of TTX. The affinity gel prepared was highly specific for TTX, having no ability to bind 4-epi-TTX and anhydro-TTX as well as saxitoxin.

  11. Regulation of S100A8/A9 (calprotectin) binding to tumor cells by zinc ion and its implication for apoptosis-inducing activity.

    Science.gov (United States)

    Nakatani, Yuichi; Yamazaki, Masatoshi; Chazin, Walter J; Yui, Satoru

    2005-10-24

    S100A8/A9 (calprotectin), which is released by neutrophils under inflammatory conditions, has the capacity to induce apoptosis in various cells. We previously reported that S100A8/A9 induces apoptosis of EL-4 lymphoma cells via the uptake of extracellular zinc in a manner similar to DTPA, a membrane-impermeable zinc chelator. In this study, S100A8/A9-induced apoptosis was examined in several cell lines that are weakly sensitive to DTPA, suggesting S100A8/A9 is directly responsible for apoptosis in these cells. Since zinc inhibits apoptosis of MM46, one of these cells, the regulation by zinc of the capacity of S100A8/A9 to bind MM46 cells was studied. When MM46 cells were incubated with S100A8/A9 in standard or zinc-depleted medium, the amounts of S100A8/A9 bound to cells was markedly lower at 3 h than at 1 h. In contrast, when MM46 cells were incubated with S100A8/A9 in the presence of high levels of zinc, binding to cells was the same at 1 and 3 h. When the cells were permeabilized with saponin prior to analysis, a larger amount of cell-associated S100A8/A9 was detected at 3 h. The amount was further increased in cells treated with chloroquine, suggesting that S100A8/A9 was internalized and degraded in lysosomes. Although it has been reported that S100A8/A9 binds to heparan sulfate on cell membranes, the amount of S100A8/A9 bound to MM46 cells was not reduced by heparinase treatment, but was reduced by trypsin treatment. These results suggest that S100A8/A9 induces apoptosis by direct binding to MM46 cells, and that this activity is regulated by zinc.

  12. Cyr61/CCN1 displays high-affinity binding to the somatomedin B(1-44 domain of vitronectin.

    Directory of Open Access Journals (Sweden)

    Ivo M B Francischetti

    2010-02-01

    Full Text Available Cyr61 is a member of the CCN (Cyr61, connective tissue growth, NOV family of extracellular-associated (matricellular proteins that present four distinct functional modules, namely insulin-like growth factor binding protein (IGFBP, von Willebrand factor type C (vWF, thrombospondin type 1 (TSP, and C-terminal growth factor cysteine knot (CT domain. While heparin sulphate proteoglycans reportedly mediate the interaction of Cyr61 with the matrix and cell surface, the role of other extracellular associated proteins has not been revealed.In this report, surface plasmon resonance (SPR experiments and solid-phase binding assays demonstrate that recombinant Cyr61 interacts with immobilized monomeric or multimeric vitronectin (VTNC with K(D in the nanomolar range. Notably, the binding site for Cyr61 was identified as the somatomedin B domain (SMTB(1-44 of VTNC, which mediates its interaction with PAI-1, uPAR, and integrin alphav beta3. Accordingly, PAI-1 outcompetes Cyr61 for binding to immobilized SMTB(1-44, and Cyr61 attenuates uPAR-mediated U937 adhesion to VTNC. In contrast, isothermal titration calorimetry shows that Cyr61 does not display high-affinity binding for SMTB(1-44 in solution. Nevertheless, competitive ELISA revealed that multimeric VTNC, heat-modified monomeric VTNC, or SMTB(1-44 at high concentrations attenuate Cyr61 binding to immobilized VTNC, while monomeric VTNC was ineffective. Therefore, immobilization of VTNC exposes cryptic epitopes that recognize Cyr61 with high affinity, as reported for a number of antibodies, beta-endorphin, and other molecules.The finding that Cyr61 interacts with the SMTB(1-44 domain suggests that VTNC represent a point of anchorage for CCN family members to the matrix. Results are discussed in the context of the role of CCN and VTNC in matrix biology and angiogenesis.

  13. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy

    Science.gov (United States)

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere. PMID:29386985

  14. Comparative analysis the binding affinity of mycophenolic sodium and meprednisone with human serum albumin: Insight by NMR relaxation data and docking simulation.

    Science.gov (United States)

    Ma, Xiaoli; He, Jiawei; Yan, Jin; Wang, Qing; Li, Hui

    2016-03-25

    Mycophenolic sodium is an immunosuppressive agent that is always combined administration with corticosteroid in clinical practice. Considering the distribution and side-effect of the drug may change when co-administrated drug exist, this paper comparatively analyzed the binding ability of mycophenolic sodium and meprednisone toward human serum albumin by nuclear magnetic resonance relaxation data and docking simulation. The nuclear magnetic resonance approach was based on the analysis of proton selective and non-selective relaxation rate enhancement of the ligand in the absence and presence of macromolecules. The contribution of the bound ligand fraction to the observed relaxation rate in relation to protein concentration allowed the calculation of the affinity index. This approach allowed the comparison of the binding affinity of mycophenolic sodium and meprednisone. Molecular modeling was operated to simulate the binding model of ligand and albumin through Autodock 4.2.5. Competitive binding of mycophenolic sodium and meprednisone was further conducted through fluorescence spectroscopy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Affinity purification of human granulocyte macrophage colony-stimulating factor receptor alpha-chain. Demonstration of binding by photoaffinity labeling

    International Nuclear Information System (INIS)

    Chiba, S.; Shibuya, K.; Miyazono, K.; Tojo, A.; Oka, Y.; Miyagawa, K.; Takaku, F.

    1990-01-01

    The human granulocyte macrophage colony-stimulating factor (GM-CSF) receptor alpha-chain, a low affinity component of the receptor, was solubilized and affinity-purified from human placenta using biotinylated GM-CSF. Scatchard analysis of 125 I-GM-CSF binding to the placental membrane extract disclosed that the GM-CSF receptor had a dissociation constant (Kd) of 0.5-0.8 nM, corresponding to the Kd value of the GM-CSF receptor alpha-chain on the intact placental membrane. Affinity labeling of the solubilized protein using a photoreactive cross-linking agent, N-hydroxysuccinimidyl-4-azidobenzoate (HSAB), demonstrated a single specific band of 70-95 kDa representing a ligand-receptor complex. Approximately 2 g of the placental membrane extract was subjected to a biotinylated GM-CSF-fixed streptavidin-agarose column, resulting in a single major band at 70 kDa on a silver-stained sodium dodecyl sulfate gel. The radioiodination for the purified material disclosed that the purified protein had an approximate molecular mass of 70 kDa and a pI of 6.6. Binding activity of the purified material was demonstrated by photoaffinity labeling using HSAB- 125 I-GM-CSF, producing a similar specific band at 70-95 kDa as was demonstrated for the crude protein

  16. Covalent labeling of the beta-adrenergic ligand-binding site with para-(bromoacetamidyl)benzylcarazolol. A highly potent beta-adrenergic affinity label

    International Nuclear Information System (INIS)

    Dickinson, K.E.; Heald, S.L.; Jeffs, P.W.; Lefkowitz, R.J.; Caron, M.G.

    1985-01-01

    Para-(Bromoacetamidyl)benzylcarazolol (pBABC) was synthesized and found to be an extremely potent affinity label for beta-adrenergic receptors. Its interaction with mammalian (rabbit and hamster lung) and nonmammalian (turkey and frog erythrocyte) beta-adrenergic receptors was similar, displaying EC 50 values of 400-900 pM for inhibiting 125 I-cyanopindolol binding to these receptors. pBABC reduced the number of beta-adrenergic receptors in frog erythrocyte membranes, without any change in the affinity of the remaining sites for [ 125 I]iodocyanopindolol. pBABC has been radioiodinated. As assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, this affinity probe specifically labeled the beta-adrenergic peptide of a purified preparation of hamster lung, with high efficiency (approximately 40%) and with a pharmacological specificity characteristic of an interaction at the beta 2-adrenergic receptor ligand-binding site. Comparison of the proteolyzed products derived from purified receptor labeled with [ 125 I]pBABC and with the photoaffinity agent [ 125 I]p-azidobenzylcarazolol suggested that covalent labeling of the beta-adrenergic receptor by these probes occurs at similar domains of the beta-adrenergic receptor

  17. Different endothelin receptor affinities in dog tissues

    International Nuclear Information System (INIS)

    Loeffler, B.M.L.; Loehrer, W.

    1991-01-01

    Endothelin (ET) is a long-lasting potent vasoconstrictor-peptide. Here the authors report different binding affinities of endothelin-1 (ET-1) to ET-receptors of various dog tissues. Crude microsomal fractions were prepared after homogenisation of dog tissues in 50 mM Tris/HCl, 20 mM MnCl2, 1 mM EDTA, pH 7.4 by differential centrifugation. Aliquots of microsomal fractions (70 micrograms of protein) were incubated at 25 degrees C for 180 min in the presence of 20 pM 125I-ET-1 and various concentrations of cold ET-1. Four different ET-1 receptor binding affinities were found: adrenals, cerebrum, liver, heart, skeletal muscle and stomach microsomal membranes contained high affinity binding sites (Kd 50 - 80 pM, Bmax 60 - 250 fmol/mg). In cerebellum and spleen medium affinity ET-1 receptors (Kd 350 pM, Bmax 880 and 1200 fmol/mg respectively) were present. In comparison lung and kidney microsomes contained a low affinity ET-1 receptor (Kd 800 and 880 pM, Bmax 1600 and 350 fmol/mg). Receptors of even lower affinity were present in heart, intestine and liver microsomes with Kd values of 3 - 6 nM

  18. Muscarinic cholinergic receptor binding sites differentiated by their affinity for pirenzepine do not interconvert

    International Nuclear Information System (INIS)

    Gil, D.W.; Wolfe, B.B.

    1986-01-01

    Although it has been suggested by many investigators that subtypes of muscarinic cholinergic receptors exist, physical studies of solubilized receptors have indicated that only a single molecular species may exist. To test the hypothesis that the putative muscarinic receptor subtypes in rat forebrain are interconvertible states of the same receptor, the selective antagonist pirenzepine (PZ) was used to protect muscarinic receptors from blockade by the irreversible muscarinic receptor antagonist propylbenzilylcholine mustard (PBCM). If interconversion of high (M1) and low (M2) affinity binding sites for PZ occurs, incubation of cerebral cortical membranes with PBCM in the presence of PZ should not alter the proportions of M1 and M2 binding sites that are unalkylated (i.e., protected). If, on the other hand, the binding sites are not interconvertible, PZ should be able to selectively protect M1 sites and alter the proportions of unalkylated M1 and M2 binding sites. In the absence of PZ, treatment of cerebral cortical membranes with 20 nM PBCM at 4 degrees C for 50 min resulted in a 69% reduction in the density of M1 binding sites and a 55% reduction in the density of M2 binding sites with no change in the equilibrium dissociation constants of the radioligands [ 3 H]quinuclidinyl benzilate or [ 3 H]PZ. The reasons for this somewhat selective effect of PBCM are not apparent. In radioligand binding experiments using cerebral cortical membranes, PZ inhibited the binding of [ 3 H]quinuclidinyl benzilate in a biphasic manner

  19. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-Affinity γ-Hydroxybutyrate (GHB) Binding Sites

    DEFF Research Database (Denmark)

    Vogensen, Stine B.; Marek, Ales; Bay, Tina

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screen...

  20. Purification and characterization of a new type lactose-binding Ulex europaeus lectin by affinity chromatography.

    Science.gov (United States)

    Konami, Y; Yamamoto, K; Osawa, T

    1991-02-01

    A new type lactose-binding lectin was purified from extracts of Ulex europaeus seeds by affinity chromatography on a column of galactose-Sepharose 4B, followed by gel filtration on Sephacryl S-300. This lectin, designated as Ulex europaeus lectin III (UEA-III), was found to be inhibited by lactose. The dimeric lectin is a glycoprotein with a molecular mass of 70,000 Da; it consists of two apparently identical subunits of a molecular mass of 34,000 Da. Compositional analysis showed that this lectin contains 30% carbohydrate and a large amount of aspartic acid, serine and valine, but no sulfur-containing amino acids. The N-terminal amino-acid sequences of L-fucose-binding Ulex europaeus lectin I (UEA-I) and di-N-acetylchitobiose-binding Ulex europaeus lectin II (UEA-II), both of which we have already purified and characterized, and that of UEA-III were determined and compared.

  1. Binding Affinity of a Highly Sensitive Au/Ag/Au/Chitosan-Graphene Oxide Sensor Based on Direct Detection of Pb2+ and Hg2+ Ions

    Directory of Open Access Journals (Sweden)

    Nur Hasiba Kamaruddin

    2017-10-01

    Full Text Available The study of binding affinity is essential in surface plasmon resonance (SPR sensing because it allows researchers to quantify the affinity between the analyte and immobilised ligands of an SPR sensor. In this study, we demonstrate the derivation of the binding affinity constant, K, for Pb2+ and Hg2+ ions according to their SPR response using a gold/silver/gold/chitosan–graphene oxide (Au/Ag/Au/CS–GO sensor for the concentration range of 0.1–5 ppm. The higher affinity of Pb2+ to binding with the CS–GO sensor explains the outstanding sensitivity of 2.05 °ppm−1 against 1.66 °ppm−1 of Hg2+. The maximum signal-to-noise ratio (SNR upon detection of Pb2+ is 1.53, and exceeds the suggested logical criterion of an SNR. The Au/Ag/Au/CS–GO SPR sensor also exhibits excellent repeatability in Pb2+ due to the strong bond between its functional groups and this cation. The adsorption data of Pb2+ and Hg2+ on the CS–GO sensor fits well with the Langmuir isotherm model where the affinity constant, K, of Pb2+ and Hg2+ ions is computed. The affinity of Pb2+ ions to the Au/Ag/Au/CS–GO sensor is significantly higher than that of Hg2+ based on the value of K, 7 × 105 M−1 and 4 × 105 M−1, respectively. The higher shift in SPR angles due to Pb2+ and Hg2+ compared to Cr3+, Cu2+ and Zn2+ ions also reveals the greater affinity of the CS–GO SPR sensor to them, thus supporting the rationale for obtaining K for these two heavy metals. This study provides a better understanding on the sensing performance of such sensors in detecting heavy metal ions.

  2. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method.

    Science.gov (United States)

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole

    2007-07-04

    Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. The SMM-align method was shown to outperform other

  3. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method

    Directory of Open Access Journals (Sweden)

    Lund Ole

    2007-07-01

    Full Text Available Abstract Background Antigen presenting cells (APCs sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC and three mouse H2-IA alleles. Results The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR, we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. Conclusion

  4. Conformational changes associated with the binding of zinc acetate at the putative active site of XcTcmJ, a cupin from Xanthomonas campestris pv. campestris

    International Nuclear Information System (INIS)

    Axelrod, Herbert L.; Kozbial, Piotr; McMullan, Daniel; Krishna, S. Sri; Miller, Mitchell D.; Abdubek, Polat; Acosta, Claire; Astakhova, Tamara; Carlton, Dennis; Caruthers, Jonathan; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Elias, Ylva; Feuerhelm, Julie; Grzechnik, Slawomir K.; Grant, Joanna C.; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kumar, Abhinav; Marciano, David; Morse, Andrew T.; Murphy, Kevin D.; Nigoghossian, Edward; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Reyes, Ron; Rife, Christopher L.; Tien, Henry J.; Trout, Christina V.; Bedem, Henry van den; Weekes, Dana; White, Aprilfawn; Xu, Qingping; Zubieta, Chloe; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2009-01-01

    The crystal structure of an RmlC-type cupin with zinc acetate bound at the putative active site reveals significant differences from a previous structure without any bound ligand. The functional implications of the ligand-induced conformational changes are discussed. In the plant pathogen Xanthomonas campestris pv. campestris, the product of the tcmJ gene, XcTcmJ, encodes a protein belonging to the RmlC family of cupins. XcTcmJ was crystallized in a monoclinic space group (C2) in the presence of zinc acetate and the structure was determined to 1.6 Å resolution. Previously, the apo structure has been reported in the absence of any bound metal ion [Chin et al. (2006 ▶), Proteins, 65, 1046–1050]. The most significant difference between the apo structure and the structure of XcTcmJ described here is a reorganization of the binding site for zinc acetate, which was most likely acquired from the crystallization solution. This site is located in the conserved metal ion-binding domain at the putative active site of XcTcmJ. In addition, an acetate was also bound within coordination distance of the zinc. In order to accommodate this binding, rearrangement of a conserved histidine ligand is required as well as several nearby residues within and around the putative active site. These observations indicate that binding of zinc serves a functional role in this cupin protein

  5. Investigations into the binding affinities of different human 5-HT4 receptor splice variants.

    Science.gov (United States)

    Irving, Helen R; Tochon-Danguy, Nathalie; Chinkwo, Kenneth A; Li, Jian G; Grabbe, Carmen; Shapiro, Marina; Pouton, Colin W; Coupar, Ian M

    2010-01-01

    This study examined whether the drug-receptor-binding sites of 5 selected human 5-HT(4) receptor splice variants [h5-HT4(a), h5-HT4(b), h5-HT4(c), h5-HT4(d) and h5-HT4(g)] display preferential affinities towards agonists. The agonists selected on the basis of chemical diversity and clinical relevance were: 5-HT4 benzamides, renzapride, zacopride and prucalopride; the benzimidazolones, DAU 6236 and BIMU 1; the aromatic ketone, RS67333, and the indole carbazimidamide tegaserod. The rank order of affinities ranging across the splice variants was: tegaserod (pKi: 7.38-7.91) > or = Y-36912 (pKi: 7.03-7.85) = BIMU 1 (pKi: 6.92-7.78) > or = DAU 6236 (pKi: 6.79-7.99) > or = 5-HT (pKi: 5.82-7.29) > or = 5-MeOT (pKi: 5.64-6.83) > or = renzapride (pKi: 4.85-5.56). We obtained affinity values for the 5-HT4(b), (d) and (g) variants for RS67333 (pKi: 7:48-8.29), prucalopride (pKi: 6.86-7.37) and zacopride (pKi: 5.88-7.0). These results indicate that the ligands interact with the same conserved site in each splice variant. Some splice variants have a higher affinity for certain agonists and the direction of selectivity followed a common trend of lowest affinity at the (d) variant. However, this trend was not evident in functional experiments. Our findings suggest that it may be possible to design splice variant selective ligands, which may be of relevance for experimental drugs but may be difficult to develop clinically. 2010 S. Karger AG, Basel.

  6. Comparison and analysis on the serum-binding characteristics of aspirin-zinc complex and aspirin.

    Science.gov (United States)

    Zhang, Hua-Xin; Zhang, Qun; Wang, Hong-Lin; Li, Li-Wei

    2017-09-01

    This study was designed to compare the protein-binding characteristics of aspirin-zinc complex (AZN) with those of aspirin itself. AZN was synthesized and interacted with a model transport protein, human serum albumin (HSA). Three-dimensional fluorescence, ultraviolet-visible and circular dichroism (CD) spectra were used to characterize the interaction of AZN with HSA under physiological conditions. The interaction mechanism was explored using a fluorescence quenching method and thermodynamic calculation. The binding site and binding locality of AZN on HSA were demonstrated using a fluorescence probe technique and Förster non-radiation energy transfer theory. Synchronous fluorescence and CD spectra were employed to reveal the effect of AZN on the native conformation of the protein. The HSA-binding results for AZN were compared with those for aspirin under consistent experimental conditions, and indicated that aspirin acts as a guide in AZN when binding to Sudlow's site I, in subdomain IIA of the HSA molecule. Moreover, compared with aspirin, AZN showed greater observed binding constants with, but smaller changes in the α-helicity of, HSA, which proved that AZN might be easier to transport and have less toxicity in vivo. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Design, Synthesis, and in Vitro Pharmacology of New Radiolabeled γ-Hydroxybutyric Acid Analogues Including Photolabile Analogues with Irreversible Binding to the High-Affinity γ-Hydroxybutyric Acid Binding Sites

    DEFF Research Database (Denmark)

    Sabbatini, Paola; Wellendorph, Petrine; Høg, Signe

    2010-01-01

    γ-Hydroxybutyric acid (GHB) is a psychotropic compound endogenous to the brain. Despite its potential physiological significance, the complete molecular mechanisms of action remain unexplained. To facilitate the isolation and identification of the high-affinity GHB binding site, we herein report ...

  8. A moonlighting function of Mycobacterium smegmatis Ku in zinc homeostasis?

    Science.gov (United States)

    Kushwaha, Ambuj K; Deochand, Dinesh K; Grove, Anne

    2015-02-01

    Ku protein participates in DNA double-strand break repair via the nonhomologous end-joining pathway. The three-dimensional structure of eukaryotic Ku reveals a central core consisting of a β-barrel domain and pillar and bridge regions that combine to form a ring-like structure that encircles DNA. Homologs of Ku are encoded by a subset of bacterial species, and they are predicted to conserve this core domain. In addition, the bridge region of Ku from some bacteria is predicted from homology modeling and sequence analyses to contain a conventional HxxC and CxxC (where x is any residue) zinc-binding motif. These potential zinc-binding sites have either deteriorated or been entirely lost in Ku from other organisms. Using an in vitro metal binding assay, we show that Mycobacterium smegmatis Ku binds two zinc ions. Zinc binding modestly stabilizes the Ku protein (by ∼3°C) and prevents cysteine oxidation, but it has little effect on DNA binding. In vivo, zinc induces significant upregulation of the gene encoding Ku (∼sixfold) as well as a divergently oriented gene encoding a predicted zinc-dependent MarR family transcription factor. Notably, overexpression of Ku confers zinc tolerance on Escherichia coli. We speculate that zinc-binding sites in Ku proteins from M. smegmatis and other mycobacterial species have been evolutionarily retained to provide protection against zinc toxicity without compromising the function of Ku in DNA double-strand break repair. © 2014 The Protein Society.

  9. Inhibitory GTP binding protein G/sub i/ regulates β-adrenoceptor affinity towards β-agonists

    International Nuclear Information System (INIS)

    Marbach, I.; Levitzki, A.

    1987-01-01

    Treatment of S-49 lymphoma cell membranes with pertussis toxin (PT) causes a three-fold reduction of β-adrenoceptor (βAR) affinity towards isoproterenol. A similar treatment with cholera toxin (CT) does not cause such a modulation. The effects were studied by the detailed analysis of 125 I-cyanopindolol (CYP) binding curves in the absence and presence of increasing agonist concentrations. Thus, the authors were able to compare in detail the effects of G/sub s/ and G/sub i/ on the agonist-associated state of the βAR. In contrast to these findings, PT treatment does not have any effect on the displacement of 125 I-CYP by (-)isoproterenol. These results demonstrate that the inhibitory GTP protein G/sub i/ modulates the βAR affinity towards β-agonists. This might be due to the association of G/sub i/ with the agonist-bound βAR x G/sub s/ x C complex within the membrane. This hypothesis, as well as others, is under investigation

  10. Determination of High-affinity Antibody-antigen Binding Kinetics Using Four Biosensor Platforms.

    Science.gov (United States)

    Yang, Danlin; Singh, Ajit; Wu, Helen; Kroe-Barrett, Rachel

    2017-04-17

    Label-free optical biosensors are powerful tools in drug discovery for the characterization of biomolecular interactions. In this study, we describe the use of four routinely used biosensor platforms in our laboratory to evaluate the binding affinity and kinetics of ten high-affinity monoclonal antibodies (mAbs) against human proprotein convertase subtilisin kexin type 9 (PCSK9). While both Biacore T100 and ProteOn XPR36 are derived from the well-established Surface Plasmon Resonance (SPR) technology, the former has four flow cells connected by serial flow configuration, whereas the latter presents 36 reaction spots in parallel through an improvised 6 x 6 crisscross microfluidic channel configuration. The IBIS MX96 also operates based on the SPR sensor technology, with an additional imaging feature that provides detection in spatial orientation. This detection technique coupled with the Continuous Flow Microspotter (CFM) expands the throughput significantly by enabling multiplex array printing and detection of 96 reaction sports simultaneously. In contrast, the Octet RED384 is based on the BioLayer Interferometry (BLI) optical principle, with fiber-optic probes acting as the biosensor to detect interference pattern changes upon binding interactions at the tip surface. Unlike the SPR-based platforms, the BLI system does not rely on continuous flow fluidics; instead, the sensor tips collect readings while they are immersed in analyte solutions of a 384-well microplate during orbital agitation. Each of these biosensor platforms has its own advantages and disadvantages. To provide a direct comparison of these instruments' ability to provide quality kinetic data, the described protocols illustrate experiments that use the same assay format and the same high-quality reagents to characterize antibody-antigen kinetics that fit the simple 1:1 molecular interaction model.

  11. New horizons in mouse immunoinformatics: reliable in silico prediction of mouse class I histocompatibility major complex peptide binding affinity.

    Science.gov (United States)

    Hattotuwagama, Channa K; Guan, Pingping; Doytchinova, Irini A; Flower, Darren R

    2004-11-21

    Quantitative structure-activity relationship (QSAR) analysis is a main cornerstone of modern informatic disciplines. Predictive computational models, based on QSAR technology, of peptide-major histocompatibility complex (MHC) binding affinity have now become a vital component of modern day computational immunovaccinology. Historically, such approaches have been built around semi-qualitative, classification methods, but these are now giving way to quantitative regression methods. The additive method, an established immunoinformatics technique for the quantitative prediction of peptide-protein affinity, was used here to identify the sequence dependence of peptide binding specificity for three mouse class I MHC alleles: H2-D(b), H2-K(b) and H2-K(k). As we show, in terms of reliability the resulting models represent a significant advance on existing methods. They can be used for the accurate prediction of T-cell epitopes and are freely available online ( http://www.jenner.ac.uk/MHCPred).

  12. Differences in receptor binding affinity of several phytocannabinoids do not explain their effects on neural cell cultures.

    Science.gov (United States)

    Rosenthaler, Sarah; Pöhn, Birgit; Kolmanz, Caroline; Huu, Chi Nguyen; Krewenka, Christopher; Huber, Alexandra; Kranner, Barbara; Rausch, Wolf-Dieter; Moldzio, Rudolf

    2014-01-01

    Phytocannabinoids are potential candidates for neurodegenerative disease treatment. Nonetheless, the exact mode of action of major phytocannabinoids has to be elucidated, but both, receptor and non-receptor mediated effects are discussed. Focusing on the often presumed structure-affinity-relationship, Ki values of phytocannabinoids cannabidiol (CBD), cannabidivarin (CBDV), cannabichromene (CBC), cannabigerol (CBG), cannabinol (CBN), THC acid (THCA) and THC to human CB1 and CB2 receptors were detected by using competitive inhibition between radioligand [(3)H]CP-55,940 and the phytocannabinoids. The resulting Ki values to CB1 range from 23.5 nM (THCA) to 14711 nM (CBDV), whereas Ki values to CB2 range from 8.5 nM (THC) to 574.2 nM (CBDV). To study the relationship between binding affinity and effects on neurons, we investigated possible CB1 related cytotoxic properties in murine mesencephalic primary cell cultures and N18TG2 neuroblastoma cell line. Most of the phytocannabinoids did not affect the number of dopaminergic neurons in primary cultures, whereas propidium iodide and resazurin formation assays revealed cytotoxic properties of CBN, CBDV and CBG. However, THC showed positive effects on N18TG2 cell viability at a concentration of 10 μM, whereas CBC and THCA also displayed slightly positive activities. These findings are not linked to the receptor binding affinity therewith pointing to another mechanism than a receptor mediated one. [Corrected] Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Tuning affinity and reversibility for O2 binding in dinuclear Co(II) complexes

    DEFF Research Database (Denmark)

    Vad, Mads Sørensen; Johansson, Frank Bartnik; Seidler-Egdal, Rune Kirk

    2013-01-01

    The O2 binding affinity of a series of dicobalt(II) complexes can be tuned between p(O2)50% = 2.3 × 10−3 and 700 × 10−3 atm at 40 °C by varying the number of H and Cl atoms in the bridging acetato ligands of [Co2(bpbp)(CH(3−n)ClnCO2)(CH3CN)2]2+, where bpbp− = 2,6-bis(N,N-bis(2-pyridylmethyl)amino...

  14. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    Science.gov (United States)

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  15. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism

    Directory of Open Access Journals (Sweden)

    Artur Krężel

    2017-06-01

    Full Text Available Recent discoveries in zinc biology provide a new platform for discussing the primary physiological functions of mammalian metallothioneins (MTs and their exquisite zinc-dependent regulation. It is now understood that the control of cellular zinc homeostasis includes buffering of Zn2+ ions at picomolar concentrations, extensive subcellular re-distribution of Zn2+, the loading of exocytotic vesicles with zinc species, and the control of Zn2+ ion signalling. In parallel, characteristic features of human MTs became known: their graded affinities for Zn2+ and the redox activity of their thiolate coordination environments. Unlike the single species that structural models of mammalian MTs describe with a set of seven divalent or eight to twelve monovalent metal ions, MTs are metamorphic. In vivo, they exist as many species differing in redox state and load with different metal ions. The functions of mammalian MTs should no longer be considered elusive or enigmatic because it is now evident that the reactivity and coordination dynamics of MTs with Zn2+ and Cu+ match the biological requirements for controlling—binding and delivering—these cellular metal ions, thus completing a 60-year search for their functions. MT represents a unique biological principle for buffering the most competitive essential metal ions Zn2+ and Cu+. How this knowledge translates to the function of other families of MTs awaits further insights into the specifics of how their properties relate to zinc and copper metabolism in other organisms.

  16. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism.

    Science.gov (United States)

    Krężel, Artur; Maret, Wolfgang

    2017-06-09

    Recent discoveries in zinc biology provide a new platform for discussing the primary physiological functions of mammalian metallothioneins (MTs) and their exquisite zinc-dependent regulation. It is now understood that the control of cellular zinc homeostasis includes buffering of Zn 2+ ions at picomolar concentrations, extensive subcellular re-distribution of Zn 2+ , the loading of exocytotic vesicles with zinc species, and the control of Zn 2+ ion signalling. In parallel, characteristic features of human MTs became known: their graded affinities for Zn 2+ and the redox activity of their thiolate coordination environments. Unlike the single species that structural models of mammalian MTs describe with a set of seven divalent or eight to twelve monovalent metal ions, MTs are metamorphic. In vivo, they exist as many species differing in redox state and load with different metal ions. The functions of mammalian MTs should no longer be considered elusive or enigmatic because it is now evident that the reactivity and coordination dynamics of MTs with Zn 2+ and Cu⁺ match the biological requirements for controlling-binding and delivering-these cellular metal ions, thus completing a 60-year search for their functions. MT represents a unique biological principle for buffering the most competitive essential metal ions Zn 2+ and Cu⁺. How this knowledge translates to the function of other families of MTs awaits further insights into the specifics of how their properties relate to zinc and copper metabolism in other organisms.

  17. Autoradiographic imaging and quantification of the high-affinity GHB binding sites in rodent brain using (3)H-HOCPCA

    DEFF Research Database (Denmark)

    Klein, A B; Bay, T; Villumsen, I S

    2016-01-01

    analogue, 3-hydroxycyclopent-1-enecarboxylic acid (HOCPCA) as a tritiated version ((3)H-HOCPCA) to radioactively label the specific GHB high-affinity binding site and gain further insight into the density, distribution and developmental profile of this protein. We show that, in low nanomolar concentrations...... brain development. Due to the high sensitivity of this radioligand, we were able to detect low levels of specific binding already at E15 in mouse brain, which increased progressively until adulthood. Collectively, we show that (3)H-HOCPCA is a highly sensitive radioligand, offering advantages over...

  18. Characterization of taurine binding, uptake, and release in the rat hypothalamus

    International Nuclear Information System (INIS)

    Hanretta, A.T.

    1985-01-01

    The neurotransmitter criteria of specific receptors, inactivation, and release were experimentally examined for taurine in the hypothalamus. Specific membrane binding and synaptosomal uptake of taurine both displayed high affinity and low affinity systems. The neurotransmitter criterion of release was studied in superfused synaptosomes. Exposure of synaptosomes which had been preloaded with a concentration of [ 3 H]taurine in the high affinity uptake range (1.5 μM) to either 56 mM K + or 100 μM veratridine evoked a Ca 2+ -independent release. Exposure of synaptosomes which had been preloaded with a concentration of [ 3 H]taurine in the low affinity uptake range (2 mM) to 56 mM K + induced a Ca 2+ -independent release, whereas 100 + M veratridine did not, either in the presence or absence of Ca 2+ . Based on these results, as well as other observations, a model is proposed in which the high affinity uptake system is located on neuronal membranes and the low affinity uptake system is located on glial membranes. The mechanisms of binding, uptake, and release in relation to the cellular location of each are discussed. We conclude that the neurotransmitter criterion of activation by re-uptake is satisfied for taurine in the hypothalamus. However, the failure to demonstrate both a specific taurine receptor site and a Ca 2+ -dependent evoked release, necessitates that we conclude that taurine appears not to function as a hypothalamic neurotransmitter, at least not in the classical sense

  19. High affinity [3H]glibenclamide binding sites in rat neuronal and cardiac tissue: Localization and developmental characteristics

    International Nuclear Information System (INIS)

    Miller, J.A.; Velayo, N.L.; Dage, R.C.; Rampe, D.

    1991-01-01

    We examined the binding of the antidiabetic sulfonylurea [3H] glibenclamide to rat brain and heart membranes. High affinity binding was observed in adult rat forebrain (Kd = 137.3 pM, maximal binding site density = 91.8 fmol/mg of protein) and ventricle (Kd = 77.1 pM, maximal binding site density = 65.1 fmol/mg of protein). Binding site density increased approximately 250% in forebrain membranes during postnatal development but was constant in ventricular membranes. Quantitative autoradiography was used to examine the regional distribution of [3H] glibenclamide binding sites in sections from rat brain, spinal cord and heart. The greatest density of binding in adult brain was found in the substantia nigra and globus pallidus, whereas the other areas displayed heterogenous binding. In agreement with the membrane binding studies, 1-day-old rat brain had significantly fewer [3H]glibenclamide binding sites than adult brain. Additionally, the pattern of distribution of these sites was qualitatively different from that of the adult. In adult rat spinal cord, moderate binding densities were observed in spinal cord gray and displayed a rostral to caudal gradient. In adult rat heart, moderate binding densities were observed and the sites were distributed homogeneously. In conclusion, significant development of [3H]glibenclamide binding sites was seen in the brain but not the heart during postnatal maturation. Furthermore, a heterogeneous distribution of binding sites was observed in both the brain and spinal cord of adult rats

  20. Leaf-specific pathogenesis-related 10 homolog, PgPR-10.3, shows in silico binding affinity with several biologically important molecules

    Directory of Open Access Journals (Sweden)

    Jin Haeng Han

    2015-10-01

    Conclusion: Although ginseng PR-10.3 gene is expressed in all organs of 3-wk-old plantlets, its expression is restricted to leaves in mature 2-yr-old ginseng plants. The putative binding property of PgPR-10.3 with Re is intriguing. Further verification of binding affinity with other biologically important molecules in the large hydrophobic cavity of PgPR-10.3 may provide an insight into the biological features of PR-10 proteins.

  1. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo.

    Science.gov (United States)

    Wall, Jonathan S; Williams, Angela; Richey, Tina; Stuckey, Alan; Huang, Ying; Wooliver, Craig; Macy, Sallie; Heidel, Eric; Gupta, Neil; Lee, Angela; Rader, Brianna; Martin, Emily B; Kennel, Stephen J

    2013-01-01

    Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant "binding site barrier" effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.

  2. Nuclear import of cutaneous beta genus HPV8 E7 oncoprotein is mediated by hydrophobic interactions between its zinc-binding domain and FG nucleoporins

    Energy Technology Data Exchange (ETDEWEB)

    Onder, Zeynep; Moroianu, Junona, E-mail: moroianu@bc.edu

    2014-01-20

    We have previously discovered and characterized the nuclear import pathways for the E7 oncoproteins of mucosal alpha genus HPVs, type 16 and 11. Here we investigated the nuclear import of cutaneous beta genus HPV8 E7 protein using confocal microscopy after transfections of HeLa cells with EGFP-8E7 and mutant plasmids and nuclear import assays in digitonin-permeabilized HeLa cells. We determined that HPV8 E7 contains a nuclear localization signal (NLS) within its zinc-binding domain that mediates its nuclear import. Furthermore, we discovered that a mostly hydrophobic patch {sub 65}LRLFV{sub 69} within the zinc-binding domain is essential for the nuclear import and localization of HPV8 E7 via hydrophobic interactions with the FG nucleoporins Nup62 and Nup153. Substitution of the hydrophobic residues within the {sub 65}LRLFV{sub 69} patch to alanines, and not R66A mutation, disrupt the interactions between the 8E7 zinc-binding domain and Nup62 and Nup153 and consequently inhibit nuclear import of HPV8 E7. - Highlights: • HPV8 E7 has a cNLS within its zinc-binding domain that mediates its nuclear import. • Discovery of a hydrophobic patch that is critical for the nuclear import of HPV8 E7. • HPV8 E7 nuclear import is mediated by hydrophobic interactions with FG-Nups, Nup62 and Nup153.

  3. A Rac1--GDP trimer complex binds zinc with tetrahedral and octahedral coordination, displacing magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Prehna, G.; Stebbins, C

    2007-01-01

    The Rho family of small GTPases represent well characterized signaling molecules that regulate many cellular functions such as actin cytoskeletal arrangement and the cell cycle by acting as molecular switches. A Rac1-GDP-Zn complex has been crystallized in space group P3221 and its crystal structure has been solved at 1.9 {angstrom} resolution. These trigonal crystals reveal the unexpected ability of Rac1 to coordinate Zn atoms in a tetrahedral fashion by use of its biologically relevant switch I and switch II regions. Upon coordination of zinc, the switch I region is stabilized in the GDP-bound conformation and contributes to a Rac1 trimer in the asymmetric unit. Zinc coordination causes switch II to adopt a novel conformation with a symmetry-related molecule. Additionally, zinc was found to displace magnesium from its octahedral coordination at switch I, although GDP binding remained stable. This structure represents the first reported Rac1-GDP-Zn complex, which further underscores the conformational flexibility and versatility of the small GTPase switch regions.

  4. A Rac1-GDP Trimer Complex Binds Zinc with Tetrahedral and Octahedral Coordination, Displacing Magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Prehna,G.; Stebbins, E.

    2007-01-01

    The Rho family of small GTPases represent well characterized signaling molecules that regulate many cellular functions such as actin cytoskeletal arrangement and the cell cycle by acting as molecular switches. A Rac1-GDP-Zn complex has been crystallized in space group P3{sub 2}21 and its crystal structure has been solved at 1.9 {angstrom} resolution. These trigonal crystals reveal the unexpected ability of Rac1 to coordinate Zn atoms in a tetrahedral fashion by use of its biologically relevant switch I and switch II regions. Upon coordination of zinc, the switch I region is stabilized in the GDP-bound conformation and contributes to a Rac1 trimer in the asymmetric unit. Zinc coordination causes switch II to adopt a novel conformation with a symmetry-related molecule. Additionally, zinc was found to displace magnesium from its octahedral coordination at switch I, although GDP binding remained stable. This structure represents the first reported Rac1-GDP-Zn complex, which further underscores the conformational flexibility and versatility of the small GTPase switch regions.

  5. Metal cofactor modulated folding and target recognition of HIV-1 NCp7.

    Science.gov (United States)

    Ren, Weitong; Ji, Dongqing; Xu, Xiulian

    2018-01-01

    The HIV-1 nucleocapsid 7 (NCp7) plays crucial roles in multiple stages of HIV-1 life cycle, and its biological functions rely on the binding of zinc ions. Understanding the molecular mechanism of how the zinc ions modulate the conformational dynamics and functions of the NCp7 is essential for the drug development and HIV-1 treatment. In this work, using a structure-based coarse-grained model, we studied the effects of zinc cofactors on the folding and target RNA(SL3) recognition of the NCp7 by molecular dynamics simulations. After reproducing some key properties of the zinc binding and folding of the NCp7 observed in previous experiments, our simulations revealed several interesting features in the metal ion modulated folding and target recognition. Firstly, we showed that the zinc binding makes the folding transition states of the two zinc fingers less structured, which is in line with the Hammond effect observed typically in mutation, temperature or denaturant induced perturbations to protein structure and stability. Secondly, We showed that there exists mutual interplay between the zinc ion binding and NCp7-target recognition. Binding of zinc ions enhances the affinity between the NCp7 and the target RNA, whereas the formation of the NCp7-RNA complex reshapes the intrinsic energy landscape of the NCp7 and increases the stability and zinc affinity of the two zinc fingers. Thirdly, by characterizing the effects of salt concentrations on the target RNA recognition, we showed that the NCp7 achieves optimal balance between the affinity and binding kinetics near the physiologically relevant salt concentrations. In addition, the effects of zinc binding on the inter-domain conformational flexibility and folding cooperativity of the NCp7 were also discussed.

  6. Metal cofactor modulated folding and target recognition of HIV-1 NCp7.

    Directory of Open Access Journals (Sweden)

    Weitong Ren

    Full Text Available The HIV-1 nucleocapsid 7 (NCp7 plays crucial roles in multiple stages of HIV-1 life cycle, and its biological functions rely on the binding of zinc ions. Understanding the molecular mechanism of how the zinc ions modulate the conformational dynamics and functions of the NCp7 is essential for the drug development and HIV-1 treatment. In this work, using a structure-based coarse-grained model, we studied the effects of zinc cofactors on the folding and target RNA(SL3 recognition of the NCp7 by molecular dynamics simulations. After reproducing some key properties of the zinc binding and folding of the NCp7 observed in previous experiments, our simulations revealed several interesting features in the metal ion modulated folding and target recognition. Firstly, we showed that the zinc binding makes the folding transition states of the two zinc fingers less structured, which is in line with the Hammond effect observed typically in mutation, temperature or denaturant induced perturbations to protein structure and stability. Secondly, We showed that there exists mutual interplay between the zinc ion binding and NCp7-target recognition. Binding of zinc ions enhances the affinity between the NCp7 and the target RNA, whereas the formation of the NCp7-RNA complex reshapes the intrinsic energy landscape of the NCp7 and increases the stability and zinc affinity of the two zinc fingers. Thirdly, by characterizing the effects of salt concentrations on the target RNA recognition, we showed that the NCp7 achieves optimal balance between the affinity and binding kinetics near the physiologically relevant salt concentrations. In addition, the effects of zinc binding on the inter-domain conformational flexibility and folding cooperativity of the NCp7 were also discussed.

  7. Engineered α4β2 nicotinic acetylcholine receptors as models for measuring agonist binding and effect at the orthosteric low-affinity α4-α4 interface

    DEFF Research Database (Denmark)

    Ahring, Philip K.; Olsen, Jeppe A.; Nielsen, Elsebet O.

    2015-01-01

    The nicotinic acetylcholine receptor alpha 4 beta 2 is important for normal mammalian brain function and is known to express in two different stoichiometries, (alpha 4)(2)(beta 2)(3) and (alpha 4)(3)(beta 2)(2). While these are similar in many aspects, the (alpha 4)(3)(beta 2)(2) stoichiometry...... differs by harboring a third orthosteric acetylcholine binding site located at the alpha 4-alpha 4 interface. Interestingly, the third binding site has, so far, only been documented using electrophysiological assays, actual binding affinities of nicotinic receptor ligands to this site are not known....... The present study was therefore aimed at determining binding affinities of nicotinic ligands to the alpha 4-alpha 4 interface. Given that epibatidine shows large functional potency differences at alpha 4-beta 2 vs. alpha 4-alpha 4 interfaces, biphasic binding properties would be expected at (alpha 4)(3)(beta...

  8. Enhanced binding affinity, remarkable selectivity, and high capacity of CO 2 by dual functionalization of a rht-type metal-organic framework

    KAUST Repository

    Li, Baiyan; Zhang, Zhijuan; Li, Yi; Yao, Kexin; Zhu, Yihan; Deng, Zhiyong; Yang, Fen; Zhou, Xiaojing; Li, Guanghua; Wu, Haohan; Nijem, Nour; Chabal, Yves Jean; Lai, Zhiping; Han, Yu; Shi, Zhan; Feng, Shouhua; Li, Jing

    2011-01-01

    Open and friendly: The smallest member of the rht-type metal-organic frameworks (MOFs, see picture) constructed by a hexacarboxylate ligand with a nitrogen-rich imino triazine backbone shows a significantly enhanced gas binding affinity relative

  9. Specificity and affinity quantification of flexible recognition from underlying energy landscape topography.

    Directory of Open Access Journals (Sweden)

    Xiakun Chu

    2014-08-01

    Full Text Available Flexibility in biomolecular recognition is essential and critical for many cellular activities. Flexible recognition often leads to moderate affinity but high specificity, in contradiction with the conventional wisdom that high affinity and high specificity are coupled. Furthermore, quantitative understanding of the role of flexibility in biomolecular recognition is still challenging. Here, we meet the challenge by quantifying the intrinsic biomolecular recognition energy landscapes with and without flexibility through the underlying density of states. We quantified the thermodynamic intrinsic specificity by the topography of the intrinsic binding energy landscape and the kinetic specificity by association rate. We found that the thermodynamic and kinetic specificity are strongly correlated. Furthermore, we found that flexibility decreases binding affinity on one hand, but increases binding specificity on the other hand, and the decreasing or increasing proportion of affinity and specificity are strongly correlated with the degree of flexibility. This shows more (less flexibility leads to weaker (stronger coupling between affinity and specificity. Our work provides a theoretical foundation and quantitative explanation of the previous qualitative studies on the relationship among flexibility, affinity and specificity. In addition, we found that the folding energy landscapes are more funneled with binding, indicating that binding helps folding during the recognition. Finally, we demonstrated that the whole binding-folding energy landscapes can be integrated by the rigid binding and isolated folding energy landscapes under weak flexibility. Our results provide a novel way to quantify the affinity and specificity in flexible biomolecular recognition.

  10. Zinc Bioavailability from Phytate-Rich Foods and Zinc Supplements. Modeling the Effects of Food Components with Oxygen, Nitrogen, and Sulfur Donor Ligands.

    Science.gov (United States)

    Tang, Ning; Skibsted, Leif H

    2017-10-04

    Aqueous solubility of zinc phytate (K sp = (2.6 ± 0.2) × 10 -47 mol 7 /L 7 ), essential for zinc bioavailability from plant foods, was found to decrease with increasing temperature corresponding to ΔH dis of -301 ± 22 kJ/mol and ΔS dis of -1901 ± 72 J/(mol K). Binding of zinc to phytate was found to be exothermic for the stronger binding site and endothermic for the weaker binding site. The solubility of the slightly soluble zinc citrate and insoluble zinc phytate was found to be considerably enhanced by the food components with oxygen donor, nitrogen donor, and sulfur donor ligands. The driving force for the enhanced solubility is mainly due to the complex formation between zinc and the investigated food components rather than ligand exchange and ternary complex formation as revealed by quantum mechanical calculations and isothermal titration calorimetry. Histidine and citrate are promising ligands for improving zinc absorption from phytate-rich foods.

  11. Sugar-Binding Profiles of Chitin-Binding Lectins from the Hevein Family: A Comprehensive Study

    Directory of Open Access Journals (Sweden)

    Yoko Itakura

    2017-05-01

    Full Text Available Chitin-binding lectins form the hevein family in plants, which are defined by the presence of single or multiple structurally conserved GlcNAc (N-acetylglucosamine-binding domains. Although they have been used as probes for chito-oligosaccharides, their detailed specificities remain to be investigated. In this study, we analyzed six chitin-binding lectins, DSA, LEL, PWM, STL, UDA, and WGA, by quantitative frontal affinity chromatography. Some novel features were evident: WGA showed almost comparable affinity for pyridylaminated chitotriose and chitotetraose, while LEL and UDA showed much weaker affinity, and DSA, PWM, and STL had no substantial affinity for the former. WGA showed selective affinity for hybrid-type N-glycans harboring a bisecting GlcNAc residue. UDA showed extensive binding to high-mannose type N-glycans, with affinity increasing with the number of Man residues. DSA showed the highest affinity for highly branched N-glycans consisting of type II LacNAc (N-acetyllactosamine. Further, multivalent features of these lectins were investigated by using glycoconjugate and lectin microarrays. The lectins showed substantial binding to immobilized LacNAc as well as chito-oligosaccharides, although the extents to which they bound varied among them. WGA showed strong binding to heavily sialylated glycoproteins. The above observations will help interpret lectin-glycoprotein interactions in histochemical studies and glyco-biomarker investigations.

  12. Evidence that the low-affinity folate-binding protein in erythrocyte hemolysate is identical to hemoglobin

    International Nuclear Information System (INIS)

    Hansen, S.I.; Holm, J.; Lyngbye, J.

    1981-01-01

    Gel filtration studies on erythrocyte hemolysate demonstrated the presence of a folate binding protein, apparently of the low-affinity type, that co-elutes with hemoglobin. Further, the folate binder eluted with a low salt concentration after DEAE-Sepharose CL-6B anion-exchange chromatography of erythrocyte hemolysate at pH 6.3. The chromatographic behavior of hemoglobin labeled with [3H]folate was so similar to that of the present binder as to suggest that the folate binder in erythrocytes is in fact hemoglobin

  13. [Cell-ELA-based determination of binding affinity of DNA aptamer against U87-EGFRvIII cell].

    Science.gov (United States)

    Tan, Yan; Liang, Huiyu; Wu, Xidong; Gao, Yubo; Zhang, Xingmei

    2013-05-01

    A15, a DNA aptamer with binding specificity for U87 glioma cells stably overexpressing the epidermal growth factor receptor variant III (U87-EGFRvIII), was generated by cell systematic evolution of ligands by exponential enrichment (cell-SELEX) using a random nucleotide library. Subsequently, we established a cell enzyme-linked assay (cell-ELA) to detect the affinity of A15 compared to an EGFR antibody. We used A15 as a detection probe and cultured U87-EGFRvIII cells as targets. Our data indicate that the equilibrium dissociation constants (K(d)) for A15 were below 100 nmol/L and had similar affinity compared to an EGFR antibody for U87-EGFRvIII. We demonstrated that the cell-ELA was a useful method to determine the equilibrium dissociation constants (K(d)) of aptamers generated by cell-SELEX.

  14. Septide and neurokinin A are high-affinity ligands on the NK-1 receptor: evidence from homologous versus heterologous binding analysis.

    Science.gov (United States)

    Hastrup, H; Schwartz, T W

    1996-12-16

    The three main tachykinins, substance P, neurokinin A (NKA), and neurokinin B, are believed to be selective ligands for respectively the NK-1, NK-2 and NK-3 receptors. However, NKA also has actions which cannot be mediated through its normal NK-2 receptor and the synthetic peptide [pGlu6,Pro9]-Substance P9-11--called septide--is known to have tachykinin-like actions despite its apparent lack of binding to any known tachykinin receptor. In the cloned NK-1 receptor expressed in COS-7 cells NKA and septide as expected were poor competitors for radiolabeled substance P. However, by using radiolabeled NKA and septide directly, it was found that both peptides in homologous binding assays as well as in competition against each other in fact bound to the NK-1 receptor with high affinity: Kd values of 0.51 +/- 0.15 nM (NKA) and 0.55 +/- 0.03 nM (septide). It is concluded that NKA and septide are high-affinity ligands for the NK-1 receptor but that they are poor competitors for substance P, which in contrast competes very well for binding with both NKA and septide.

  15. Unraveling a Hotspot for TCR Recognition on HLA-A2: Evidence Against the Existence of Peptide-independent TCR Binding Determinants

    International Nuclear Information System (INIS)

    Gagnon, Susan J.; Borbulevych, Oleg Y.; Davis-Harrison, Rebecca L.; Baxter, Tiffany K.; Clemens, John R.; Armstrong, Kathryn M.; Turner, Richard V.; Damirjian, Marale; Biddison, William E.; Baker, Brian M.

    2005-01-01

    T cell receptor (TCR) recognition of peptide takes place in the context of the major histocompatibility complex (MHC) molecule, which accounts for approximately two-thirds of the peptide/MHC buried surface. Using the class I MHC HLA-A2 and a large panel of mutants, we have previously shown that surface mutations that disrupt TCR recognition vary with the identity of the peptide. The single exception is Lys66 on the HLA-A2 α1 helix, which when mutated to alanine disrupts recognition for 93% of over 250 different T cell clones or lines, independent of which peptide is bound. Thus, Lys66 could serve as a peptide-independent TCR binding determinant. Here, we have examined the role of Lys66 in TCR recognition of HLA-A2 in detail. The structure of a peptide/HLA-A2 molecule with the K66A mutation indicates that although the mutation induces no major structural changes, it results in the exposure of a negatively charged glutamate (Glu63) underneath Lys66. Concurrent replacement of Glu63 with glutamine restores TCR binding and function for T cells specific for five different peptides presented by HLA-A2. Thus, the positive charge on Lys66 does not serve to guide all TCRs onto the HLA-A2 molecule in a manner required for productive signaling. Furthermore, electrostatic calculations indicate that Lys66 does not contribute to the stability of two TCR-peptide/HLA-A2 complexes. Our findings are consistent with the notion that each TCR arrives at a unique solution of how to bind a peptide/MHC, most strongly influenced by the chemical and structural features of the bound peptide. This would not rule out an intrinsic affinity of TCRs for MHC molecules achieved through multiple weak interactions, but for HLA-A2 the collective mutational data place limits on the role of any single MHC amino acid side-chain in driving TCR binding in a peptide-independent fashion.

  16. Fundamentals of affinity cell separations.

    Science.gov (United States)

    Zhang, Ye; Lyons, Veronica; Pappas, Dimitri

    2018-03-01

    Cell separations using affinity methods continue to be an enabling science for a wide variety of applications. In this review, we discuss the fundamental aspects of affinity separation, including the competing forces for cell capture and elution, cell-surface interactions, and models for cell adhesion. Factors affecting separation performance such as bond affinity, contact area, and temperature are presented. We also discuss and demonstrate the effects of nonspecific binding on separation performance. Metrics for evaluating cell separations are presented, along with methods of comparing separation techniques for cell isolation using affinity capture. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain

    DEFF Research Database (Denmark)

    Jensen, R B; Lykke-Andersen, K; Frandsen, G I

    2000-01-01

    domain are separated by a region without homology to other known proteins. Zac promoter/beta-glucuronidase reporter assays revealed highest expression levels in flowering tissue, rosettes and roots. ZAC protein was immuno-detected mainly in association with membranes and fractionated with Golgi...... and plasma membrane marker proteins. ZAC membrane association was confirmed in assays by a fusion between ZAC and the green fluorescence protein and prompted an analysis of the in vitro phospholipid-binding ability of ZAC. Phospholipid dot-blot and liposome-binding assays indicated that fusion proteins...... zinc finger motif, but proteins containing only the zinc finger domain (residues 1-105) did not bind PI-3-P. Recombinant ZAC possessed GTPase-activating activity on Arabidopsis ARF proteins. These data identify a novel PI-3-P-binding protein region and thereby provide evidence...

  18. Active site - a site of binding of affinity inhibitors in baker's yeast inorganic pyrophosphatase

    International Nuclear Information System (INIS)

    Svyato, I.E.; Sklyankina, V.A.; Avaeva, S.M.

    1986-01-01

    The interaction of the enzyme-substrate complex with methyl phosphate, O-phosphoethanolamine, O-phosphopropanolamine, N-acetylphosphoserine, and phosphoglyolic acid, as well as pyrophosphatase, modified by monoesters of phosphoric acid, with pyrophosphate and tripolyphosphate, was investigated. It was shown that the enzyme containing the substrate in the active site does not react with monophosphates, but modified pyrophosphatase entirely retains the ability to bind polyanions to the regulatory site. It is concluded that the inactivation of baker's yeast inorganic pyrophosphatase by monoesters of phosphoric acid, which are affinity inhibitors of it, is the result of modification of the active site of the enzyme

  19. Understanding Zinc Quantification with Existing and Advanced Ditopic Fluorescent Zinpyr Sensors

    Science.gov (United States)

    Buccella, Daniela; Horowitz, Joshua A.; Lippard, Stephen J.

    2011-01-01

    Treatment of aqueous zinc solutions with incremental additions of a ditopic fluorescent sensor of the Zinpyr family, based on pyridine/pyrazine-containing metal recognition units, affords a fluorescence titration curve with a sharp maximum at a sensor:Zn2+ ratio of 0.5 (Zhang, X-a.; Hayes, D.; Smith, S. J.; Friedle, S.; Lippard, S. J. J. Am. Chem Soc. 2008, 130, 15788–15789). This fluorescence response enables the quantification of readily chelatable zinc in biological samples by a simple titration protocol. In the present work a new set of ditopic fluorescence zinc sensors functionalized with pyridine/pyrazine-containing metal chelating units is described, and through detailed studies the principles governing the characteristic “OFF-ON-OFF” fluorescence behavior and quantification capabilities of the family are delineated. Incorporation of carboxylate/ester groups in the 6 position of the fluorescein allows for control of the spatial distribution of the sensor for selective extra- or intracellular imaging of mobile zinc, without introducing significant changes in zinc-binding properties. A combination of spectrophotometric and potentiometric measurements provided a complete description of the H+ and Zn2+ binding properties of the compounds and their correlation with the observed fluorescence profile. The first zinc-binding event has an apparent affinity, K1′, of 1.9–3.1×109 M−1, whereas for coordination of the second Zn2+ ion, responsible for fluorescence turn on, the apparent formation constant K2′ is 5.5–6.9×107 M−1. A detailed chemical and mathematical analysis of the system demonstrated that the difference in emission efficiencies of the dimetalated (LZn2) vs. monometalated (LZn) and metal free (L) forms, a consequence of the combined quenching effects of the two metal-chelating units, significantly influences the shape of the titration curve. The scope of the titration method was investigated mathematically, and a lower boundary for the

  20. Structural Basis of Low-Affinity Nickel Binding to the Nickel-Responsive Transcription Factor NikR from Escherichia coli

    International Nuclear Information System (INIS)

    Phillips, C.; Schreiter, E.; Stultz, C.; Drennan, C.

    2010-01-01

    Escherichia coli NikR regulates cellular nickel uptake by binding to the nik operon in the presence of nickel and blocking transcription of genes encoding the nickel uptake transporter. NikR has two binding affinities for the nik operon: a nanomolar dissociation constant with stoichiometric nickel and a picomolar dissociation constant with excess nickel (Bloom, S. L., and Zamble, D. B. (2004) Biochemistry 43, 10029-10038; Chivers, P. T., and Sauer, R. T. (2002) Chem. Biol. 9, 1141-1148). While it is known that the stoichiometric nickel ions bind at the NikR tetrameric interface (Schreiter, E. R., et al. (2003) Nat. Struct. Biol. 10, 794-799; Schreiter, E. R., et al. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 13676-13681), the binding sites for excess nickel ions have not been fully described. Here we have determined the crystal structure of NikR in the presence of excess nickel to 2.6 (angstrom) resolution and have obtained nickel anomalous data (1.4845 (angstrom)) in the presence of excess nickel for both NikR alone and NikR cocrystallized with a 30-nucleotide piece of double-stranded DNA containing the nik operon. These anomalous data show that excess nickel ions do not bind to a single location on NikR but instead reveal a total of 22 possible low-affinity nickel sites on the NikR tetramer. These sites, for which there are six different types, are all on the surface of NikR, and most are found in both the NikR alone and NikR-DNA structures. Using a combination of crystallographic data and molecular dynamics simulations, the nickel sites can be described as preferring octahedral geometry, utilizing one to three protein ligands (typically histidine) and at least two water molecules.

  1. Effects of pH and ionic strength on the thermodynamics of human serum albumin-photosensitizer binding

    International Nuclear Information System (INIS)

    Jones, Cecil L.; Dickson, TiReJe; Hayes, Ronald; Thomas, Lana

    2012-01-01

    Highlights: ► The pH dependence of entropy and enthalpy changes was determined for zinc phthalocyanine tetrasulfonic acid, ZnPcS 4 binding to human serum albumin, HSA. ► The ionic strength dependence of entropy and enthalpy changes was determined for ZnPcS 4 acid binding to HSA. ► The primary driving force governing the interaction between ZnPcS 4 and HSA over the range of pH and ionic strength was solution dynamics. ► The interplay between entropy and enthalpy changes was demonstrated. - Abstract: Fluorescence spectroscopy was used to measure the effects of pH and ionic strength on thermodynamic parameters governing the interaction of human serum albumin with zinc phthalocyanine tetrasulfonic acid. Fluorescence emission of zinc phthalocyanine increases at 686 nm with increasing concentrations of the protein. The non-linear correlation between protein concentration and emission of the photosensitizer was fitted using Chipman's analysis to calculate the binding affinities. The standard enthalpy and entropy changes were estimated from van’t Hoff analysis of data that were acquired from temperature ramping studies. Results show that reaction is primarily driven by solution dynamics and that the change in enthalpy for the system becomes increasingly unfavorable with increasing pH and ionic strength. The effect of ionic strength on the entropy change for binding is shown to be significantly greater than the effects of pH. The interplay between entropy and enthalpy changes is demonstrated.

  2. Various Bee Pheromones Binding Affinity, Exclusive Chemosensillar Localization, and Key Amino Acid Sites Reveal the Distinctive Characteristics of Odorant-Binding Protein 11 in the Eastern Honey Bee, Apis cerana.

    Science.gov (United States)

    Song, Xin-Mi; Zhang, Lin-Ya; Fu, Xiao-Bin; Wu, Fan; Tan, Jing; Li, Hong-Liang

    2018-01-01

    Odorant-binding proteins (OBPs) are the critical elements responsible for binding and transporting odors and pheromones in the sensitive olfactory system in insects. Honey bees are representative social insects that have complex odorants and pheromone communication systems relative to solitary insects. Here, we first cloned and characterized OBP11 ( AcerOBP11 ), from the worker bees antennae of Eastern honey bee, Apis cerana . Based on sequence and phylogenetic analysis, most sequences homologous to AcerOBP11 belong to the typical OBPs family. The transcriptional expression profiles showed that AcerOBP11 was expressed throughout the developmental stages and highly specifically expressed in adult antennae. Using immunofluorescence localization, AcerOBP11 in worker bee's antennae was only localized in the sensilla basiconica (SB) near the fringe of each segment. Fluorescence ligand-binding assay showed that AcerOBP11 protein had strong binding affinity with the tested various bee pheromones components, including the main queen mandibular pheromones (QMPs), methyl p-hydroxybenzoate (HOB), and ( E )-9-oxo-2-decanoic acid (9-ODA), alarm pheromone (n-hexanol), and worker pheromone components. AcerOBP11 also had strong binding affinity to plant volatiles, such as 4-Allylveratrole. Based on the docking and site-directed mutagenesis, two key amino acid residues (Ile97 and Ile140) were involved in the binding of AcerOBP11 to various bee pheromones. Taken together, we identified that AcerOBP11 was localized in a single type of antennal chemosensilla and had complex ligand-binding properties, which confer the dual-role with the primary characteristics of sensing various bee pheromones and secondary characteristics of sensing general odorants. This study not only prompts the theoretical basis of OBPs-mediated bee pheromones recognition of honey bee, but also extends the understanding of differences in pheromone communication between social and solitary insects.

  3. Various Bee Pheromones Binding Affinity, Exclusive Chemosensillar Localization, and Key Amino Acid Sites Reveal the Distinctive Characteristics of Odorant-Binding Protein 11 in the Eastern Honey Bee, Apis cerana

    Directory of Open Access Journals (Sweden)

    Xin-Mi Song

    2018-04-01

    Full Text Available Odorant-binding proteins (OBPs are the critical elements responsible for binding and transporting odors and pheromones in the sensitive olfactory system in insects. Honey bees are representative social insects that have complex odorants and pheromone communication systems relative to solitary insects. Here, we first cloned and characterized OBP11 (AcerOBP11, from the worker bees antennae of Eastern honey bee, Apis cerana. Based on sequence and phylogenetic analysis, most sequences homologous to AcerOBP11 belong to the typical OBPs family. The transcriptional expression profiles showed that AcerOBP11 was expressed throughout the developmental stages and highly specifically expressed in adult antennae. Using immunofluorescence localization, AcerOBP11 in worker bee's antennae was only localized in the sensilla basiconica (SB near the fringe of each segment. Fluorescence ligand-binding assay showed that AcerOBP11 protein had strong binding affinity with the tested various bee pheromones components, including the main queen mandibular pheromones (QMPs, methyl p-hydroxybenzoate (HOB, and (E-9-oxo-2-decanoic acid (9-ODA, alarm pheromone (n-hexanol, and worker pheromone components. AcerOBP11 also had strong binding affinity to plant volatiles, such as 4-Allylveratrole. Based on the docking and site-directed mutagenesis, two key amino acid residues (Ile97 and Ile140 were involved in the binding of AcerOBP11 to various bee pheromones. Taken together, we identified that AcerOBP11 was localized in a single type of antennal chemosensilla and had complex ligand-binding properties, which confer the dual-role with the primary characteristics of sensing various bee pheromones and secondary characteristics of sensing general odorants. This study not only prompts the theoretical basis of OBPs-mediated bee pheromones recognition of honey bee, but also extends the understanding of differences in pheromone communication between social and solitary insects.

  4. A binding-site barrier affects imaging efficiency of high affinity amyloid-reactive peptide radiotracers in vivo.

    Directory of Open Access Journals (Sweden)

    Jonathan S Wall

    Full Text Available Amyloid is a complex pathology associated with a growing number of diseases including Alzheimer's disease, type 2 diabetes, rheumatoid arthritis, and myeloma. The distribution and extent of amyloid deposition in body organs establishes the prognosis and can define treatment options; therefore, determining the amyloid load by using non-invasive molecular imaging is clinically important. We have identified a heparin-binding peptide designated p5 that, when radioiodinated, was capable of selectively imaging systemic visceral AA amyloidosis in a murine model of the disease. The p5 peptide was posited to bind effectively to amyloid deposits, relative to similarly charged polybasic heparin-reactive peptides, because it adopted a polar α helix secondary structure. We have now synthesized a variant, p5R, in which the 8 lysine amino acids of p5 have been replaced with arginine residues predisposing the peptide toward the α helical conformation in an effort to enhance the reactivity of the peptide with the amyloid substrate. The p5R peptide had higher affinity for amyloid and visualized AA amyloid in mice by using SPECT/CT imaging; however, the microdistribution, as evidenced in micro-autoradiographs, was dramatically altered relative to the p5 peptide due to its increased affinity and a resultant "binding site barrier" effect. These data suggest that radioiodinated peptide p5R may be optimal for the in vivo detection of discreet, perivascular amyloid, as found in the brain and pancreatic vasculature, by using molecular imaging techniques; however, peptide p5, due to its increased penetration, may yield more quantitative imaging of expansive tissue amyloid deposits.

  5. Computing the binding affinity of a ligand buried deep inside a protein with the hybrid steered molecular dynamics

    International Nuclear Information System (INIS)

    Villarreal, Oscar D.; Yu, Lili; Rodriguez, Roberto A.; Chen, Liao Y.

    2017-01-01

    Computing the ligand-protein binding affinity (or the Gibbs free energy) with chemical accuracy has long been a challenge for which many methods/approaches have been developed and refined with various successful applications. False positives and, even more harmful, false negatives have been and still are a common occurrence in practical applications. Inevitable in all approaches are the errors in the force field parameters we obtain from quantum mechanical computation and/or empirical fittings for the intra- and inter-molecular interactions. These errors propagate to the final results of the computed binding affinities even if we were able to perfectly implement the statistical mechanics of all the processes relevant to a given problem. And they are actually amplified to various degrees even in the mature, sophisticated computational approaches. In particular, the free energy perturbation (alchemical) approaches amplify the errors in the force field parameters because they rely on extracting the small differences between similarly large numbers. In this paper, we develop a hybrid steered molecular dynamics (hSMD) approach to the difficult binding problems of a ligand buried deep inside a protein. Sampling the transition along a physical (not alchemical) dissociation path of opening up the binding cavity- -pulling out the ligand- -closing back the cavity, we can avoid the problem of error amplifications by not relying on small differences between similar numbers. We tested this new form of hSMD on retinol inside cellular retinol-binding protein 1 and three cases of a ligand (a benzylacetate, a 2-nitrothiophene, and a benzene) inside a T4 lysozyme L99A/M102Q(H) double mutant. In all cases, we obtained binding free energies in close agreement with the experimentally measured values. This indicates that the force field parameters we employed are accurate and that hSMD (a brute force, unsophisticated approach) is free from the problem of error amplification suffered by

  6. Quantitative relationship between antibody affinity and antibody avidity

    International Nuclear Information System (INIS)

    Griswold, W.R.

    1987-01-01

    The relationship between antibody avidity, measured by the dissociation of the antigen-antibody bond in antigen excess, and antibody affinity was studied. Complexes of radiolabelled antigen and antibody of known affinity were prepared in vitro and allowed to stand for seven days to reach equilibrium. Then nonlabelled antigen in one hundred fold excess was added to dissociate the complexes. After an appropriate incubation the fraction of antigen bound to antibody was measured by the ammonium sulfate precipitation method. The dissociation index was the fraction bound in the experimental sample divided by the fraction bound in the control. The correlation coefficient between the dissociation index and the antibody binding constant was 0.92 for early dissociation and 0.98 for late dissociation. The regression equation relating the binding constant to the dissociation index was K = 6.4(DI) + 6.25, where DI is the late dissociation index and K is the logarithm to the base 10 of the binding constant. There is a high correlation between avidity and affinity of antibody. Antibody affinity can be estimated from avidity data. The stability of antigen-antibody complexes can be predicted from antibody affinity

  7. High-Affinity Low-Capacity and Low-Affinity High-Capacity N-Acetyl-2-Aminofluorene (AAF) Macromolecular Binding Sites Are Revealed During the Growth Cycle of Adult Rat Hepatocytes in Primary Culture.

    Science.gov (United States)

    Koch, Katherine S; Moran, Tom; Shier, W Thomas; Leffert, Hyam L

    2018-05-01

    Long-term cultures of primary adult rat hepatocytes were used to study the effects of N-acetyl-2-aminofluorene (AAF) on hepatocyte proliferation during the growth cycle; on the initiation of hepatocyte DNA synthesis in quiescent cultures; and, on hepatocyte DNA replication following the initiation of DNA synthesis. Scatchard analyses were used to identify the pharmacologic properties of radiolabeled AAF metabolite binding to hepatocyte macromolecules. Two classes of growth cycle-dependent AAF metabolite binding sites-a high-affinity low-capacity site (designated Site I) and a low-affinity high-capacity site (designated Site II)-associated with two spatially distinct classes of macromolecular targets, were revealed. Based upon radiolabeled AAF metabolite binding to purified hepatocyte genomic DNA or to DNA, RNA, proteins, and lipids from isolated nuclei, Site IDAY 4 targets (KD[APPARENT] ≈ 2-4×10-6 M and BMAX[APPARENT] ≈ 6 pmol/106 cells/24 h) were consistent with genomic DNA; and with AAF metabolized by a nuclear cytochrome P450. Based upon radiolabeled AAF binding to total cellular lysates, Site IIDAY 4 targets (KD[APPARENT] ≈ 1.5×10-3 M and BMAX[APPARENT] ≈ 350 pmol/106 cells/24 h) were consistent with cytoplasmic proteins; and with AAF metabolized by cytoplasmic cytochrome P450s. DNA synthesis was not inhibited by concentrations of AAF that saturated DNA binding in the neighborhood of the Site I KD. Instead, hepatocyte DNA synthesis inhibition required higher concentrations of AAF approaching the Site II KD. These observations raise the possibility that carcinogenic DNA adducts derived from AAF metabolites form below concentrations of AAF that inhibit replicative and repair DNA synthesis.

  8. In vitro assessment of zinc binding to protein foods as a potential index of zinc bioavailability. Comparison of in vitro and in vivo data

    International Nuclear Information System (INIS)

    Jones, A.O.L.; Fox, M.R.S.; Fry, B.E. Jr.

    1985-01-01

    An in vitro equilibrium dialysis test for estimating the strength of zinc binding to protein foods was developed for predicting zinc bioavailability. Soy flour, soy concentrate, casein, and dried egg white were labeled with 65 ZnCl 2 before dialysis. The conditions included 24-h dialysis at pH 7.4 against 0.05 M tris(hydroxymethyl)aminomethane buffer (Tris), Tris plus 0.01 M L-histidine hydrochloride (Tris-His), and Tris plus 0.01 M Na 2 EDTA (Tris-EDTA). Dialyzate and retentate 65 Zn were measured. The protein foods retained 65 Zn in the following decreasing order according to treatment: Tris > Tris-His > Tris-EDTA. The bioavailability of residual 65 Zn in casein, egg white, soy concentrate, and soy flour after each buffer treatment was determined by giving single doses of the protein foods to young Japanese quail. For these protein foods, the best agreement between in vitro and in vivo data was with Tris-His-dialyzable 65 Zn values and the whole-body 65 Zn retentions from the labeled casein and egg white (no treatment). The data suggest that this in vitro test could be useful for preliminary assessment of zinc bioavailability of protein foods

  9. Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP+

    Science.gov (United States)

    Schindler, Christina; Rippmann, Friedrich; Kuhn, Daniel

    2018-01-01

    Physics-based free energy simulations have increasingly become an important tool for predicting binding affinity and the recent introduction of automated protocols has also paved the way towards a more widespread use in the pharmaceutical industry. The D3R 2016 Grand Challenge 2 provided an opportunity to blindly test the commercial free energy calculation protocol FEP+ and assess its performance relative to other affinity prediction methods. The present D3R free energy prediction challenge was built around two experimental data sets involving inhibitors of farnesoid X receptor (FXR) which is a promising anticancer drug target. The FXR binding site is predominantly hydrophobic with few conserved interaction motifs and strong induced fit effects making it a challenging target for molecular modeling and drug design. For both data sets, we achieved reasonable prediction accuracy (RMSD ≈ 1.4 kcal/mol, rank 3-4 according to RMSD out of 20 submissions) comparable to that of state-of-the-art methods in the field. Our D3R results boosted our confidence in the method and strengthen our desire to expand its applications in future in-house drug design projects.

  10. Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP.

    Science.gov (United States)

    Schindler, Christina; Rippmann, Friedrich; Kuhn, Daniel

    2018-01-01

    Physics-based free energy simulations have increasingly become an important tool for predicting binding affinity and the recent introduction of automated protocols has also paved the way towards a more widespread use in the pharmaceutical industry. The D3R 2016 Grand Challenge 2 provided an opportunity to blindly test the commercial free energy calculation protocol FEP+ and assess its performance relative to other affinity prediction methods. The present D3R free energy prediction challenge was built around two experimental data sets involving inhibitors of farnesoid X receptor (FXR) which is a promising anticancer drug target. The FXR binding site is predominantly hydrophobic with few conserved interaction motifs and strong induced fit effects making it a challenging target for molecular modeling and drug design. For both data sets, we achieved reasonable prediction accuracy (RMSD ≈ 1.4 kcal/mol, rank 3-4 according to RMSD out of 20 submissions) comparable to that of state-of-the-art methods in the field. Our D3R results boosted our confidence in the method and strengthen our desire to expand its applications in future in-house drug design projects.

  11. High-throughput bioscreening system utilizing high-performance affinity magnetic carriers exhibiting minimal non-specific protein binding

    International Nuclear Information System (INIS)

    Hanyu, Naohiro; Nishio, Kosuke; Hatakeyama, Mamoru; Yasuno, Hiroshi; Tanaka, Toshiyuki; Tada, Masaru; Nakagawa, Takashi; Sandhu, Adarsh; Abe, Masanori; Handa, Hiroshi

    2009-01-01

    For affinity purification of drug target protein we have developed magnetic carriers, narrow in size distribution (184±9 nm), which exhibit minimal non-specific binding of unwanted proteins. The carriers were highly dispersed in aqueous solutions and highly resistant to organic solvents, which enabled immobilization of various hydrophobic chemicals as probes on the carrier surfaces. Utilizing the carriers we have automated the process of separation and purification of the target proteins that had been done by manual operation previously.

  12. Predicting success of oligomerized pool engineering (OPEN for zinc finger target site sequences

    Directory of Open Access Journals (Sweden)

    Goodwin Mathew J

    2010-11-01

    Full Text Available Abstract Background Precise and efficient methods for gene targeting are critical for detailed functional analysis of genomes and regulatory networks and for potentially improving the efficacy and safety of gene therapies. Oligomerized Pool ENgineering (OPEN is a recently developed method for engineering C2H2 zinc finger proteins (ZFPs designed to bind specific DNA sequences with high affinity and specificity in vivo. Because generation of ZFPs using OPEN requires considerable effort, a computational method for identifying the sites in any given gene that are most likely to be successfully targeted by this method is desirable. Results Analysis of the base composition of experimentally validated ZFP target sites identified important constraints on the DNA sequence space that can be effectively targeted using OPEN. Using alternate encodings to represent ZFP target sites, we implemented Naïve Bayes and Support Vector Machine classifiers capable of distinguishing "active" targets, i.e., ZFP binding sites that can be targeted with a high rate of success, from those that are "inactive" or poor targets for ZFPs generated using current OPEN technologies. When evaluated using leave-one-out cross-validation on a dataset of 135 experimentally validated ZFP target sites, the best Naïve Bayes classifier, designated ZiFOpT, achieved overall accuracy of 87% and specificity+ of 90%, with an ROC AUC of 0.89. When challenged with a completely independent test set of 140 newly validated ZFP target sites, ZiFOpT performance was comparable in terms of overall accuracy (88% and specificity+ (92%, but with reduced ROC AUC (0.77. Users can rank potentially active ZFP target sites using a confidence score derived from the posterior probability returned by ZiFOpT. Conclusion ZiFOpT, a machine learning classifier trained to identify DNA sequences amenable for targeting by OPEN-generated zinc finger arrays, can guide users to target sites that are most likely to function

  13. Domain interplay in the urokinase receptor. Requirement for the third domain in high affinity ligand binding and demonstration of ligand contact sites in distinct receptor domains

    DEFF Research Database (Denmark)

    Behrendt, N; Ronne, E; Dano, K

    1996-01-01

    by chemical cross-linking, but quantitative binding/competition studies showed that the apparent ligand affinity was 100- to 1000-fold lower than that of the intact suPAR. This loss of affinity was comparable with the loss found after cleavage between the first domain (D1) and D(2 + 3), using chymotrypsin...

  14. Computational prediction of binding affinity for CYP1A2-ligand complexes using empirical free energy calculations

    DEFF Research Database (Denmark)

    Poongavanam, Vasanthanathan; Olsen, Lars; Jørgensen, Flemming Steen

    2010-01-01

    , and methods based on statistical mechanics. In the present investigation, we started from an LIE model to predict the binding free energy of structurally diverse compounds of cytochrome P450 1A2 ligands, one of the important human metabolizing isoforms of the cytochrome P450 family. The data set includes both...... substrates and inhibitors. It appears that the electrostatic contribution to the binding free energy becomes negligible in this particular protein and a simple empirical model was derived, based on a training set of eight compounds. The root mean square error for the training set was 3.7 kJ/mol. Subsequent......Predicting binding affinities for receptor-ligand complexes is still one of the challenging processes in computational structure-based ligand design. Many computational methods have been developed to achieve this goal, such as docking and scoring methods, the linear interaction energy (LIE) method...

  15. Toward Fast and Accurate Binding Affinity Prediction with pmemdGTI: An Efficient Implementation of GPU-Accelerated Thermodynamic Integration.

    Science.gov (United States)

    Lee, Tai-Sung; Hu, Yuan; Sherborne, Brad; Guo, Zhuyan; York, Darrin M

    2017-07-11

    We report the implementation of the thermodynamic integration method on the pmemd module of the AMBER 16 package on GPUs (pmemdGTI). The pmemdGTI code typically delivers over 2 orders of magnitude of speed-up relative to a single CPU core for the calculation of ligand-protein binding affinities with no statistically significant numerical differences and thus provides a powerful new tool for drug discovery applications.

  16. Photoaffinity labeling of mammalian α1-adrenergic receptors: identification of the ligand binding subunit with a high affinity radioiodinated probe

    International Nuclear Information System (INIS)

    Leeb-Lundberg, L.M.F.; Dickinson, K.E.J.; Heald, S.L.

    1984-01-01

    A description is given of the synthesised and characterization of a novel high affinity radioiodinated α 1 -adrenergic receptor photoaffinity probe, 4-amino-6,7-dimethoxy-2-[4-[5-(4-azido-3-[ 125 I]iodophenyl)pentanoyl]-1-piperazinyl] quinazoline. In the absence of light, this ligand binds with high affinity (K/sub d/ = 130 pm) in a reverisble and saturable manner to sites in rat hepatic plasma membranes. The binding is stereoselective and competitively inhibited by adrenergic agonists and antagonists with an α 1 -adrenergic specificity. Upon photolysis, this ligand incorporates irreversibly into plasma membranes prepared from several mammalian tissues including rat liver, rat, guinea pig, and rabbit spleen, rabbit lung, and rabbit aorta vascular smooth muscle cells, also with typical α 1 -adrenergic specificity. Autoradiograms of such membrane samples subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveal a major specifically labeled polypeptide at M/sub 4/ = 78,000-85,000, depending on the tissue used, in addition to some lower molecular weight peptides. Protease inhibitors, in particular EDTA, a metalloprotease inhibitor, dramatically increases the predominance of the M/sub r/ = 78,000-85,000 polypeptide while attenuating the labeling of the lower molecular weight bands. This new high affinity radioiodinated photoaffinity probe should be of great value for the molecular characterization of the α 1 -adrenergic receptor

  17. Haemoglobin Rahere (beta Lys-Thr): A new high affinity haemoglobin associated with decreased 2, 3-diphosphoglycerate binding and relative polycythaemia.

    Science.gov (United States)

    Lorkin, P A; Stephens, A D; Beard, M E; Wrigley, P F; Adams, L; Lehmann, H

    1975-01-01

    A new haemoglobin with increased oxygen affinity, beta82 (EF6) lysine leads to threonine (Hb Rahere), was found during the investigation of a patient who was found to have a raised haemoglobin concentration after a routine blood count. The substitution affects one of the 2, 3-diphosphoglycerate binding sites, resulting in an increased affinity for oxygen, but both the haem-haem interaction and the alkaline Bohr effect are normal in the haemolysate. This variant had the same mobility as haemoglobin A on electrophoresis at alkaline pH but was detected by measuring the whole blood oxygen affinity; it could be separated from haemoglobin A, however, by electrophoresis in agar at acid pH. The raised haemoglobin concentration was mainly due to a reduction in plasma volume (a relative polycythaemia) and was associated with a persistently raised white blood count. This case emphasises the need to measure the oxygen affinity of haemoglobin in all patients with absolute or relative polycythaemia when some obvious cause is not evident. PMID:124

  18. Monastrol, a 3,4-dihydropyrimidin-2(1H)-thione, as structural scaffold for the development of modulators for GHB high-affinity binding sites and α1β2δ GABAA receptors

    DEFF Research Database (Denmark)

    Damgaard, Maria; Al-Khawaja, Anas; Nittegaard-Nielsen, Mia

    2017-01-01

    -affinity binding and is furthermore reported as an allosteric modulator selective for the α1β2δ GABAARs. Therefore, structural determinants for selectivity at the two targets were investigated. 39 structural diverse monastrol analogues were synthesized by employing the Biginelli cyclocondensation and examined......-affinity binding. However, three analogues of monastrol (11, 12 and 24) enhanced the maximal binding of [(3)H]NCS-382 to a higher maximal level than seen for monastrol itself. Selected compounds were further characterized as modulators at α1β2δ, α1β2γ2s and α1β2 GABAARs. Most of these modulators were shown to have...... δ-specific GABA-potentiating effects. The dual effect shown for monastrol to modulate the GHB high-affinity binding and α1β2δ GABAAR activity was also shown for the compounds 11, 18 and 24. Compound 29 displayed minimal modulatory effect on GABAARs and therefore appears to be a GHB high...

  19. Rapid Diagnostic Assay for Intact Influenza Virus Using a High Affinity Hemagglutinin Binding Protein.

    Science.gov (United States)

    Anderson, Caitlin E; Holstein, Carly A; Strauch, Eva-Maria; Bennett, Steven; Chevalier, Aaron; Nelson, Jorgen; Fu, Elain; Baker, David; Yager, Paul

    2017-06-20

    Influenza is a ubiquitous and recurring infection that results in approximately 500 000 deaths globally each year. Commercially available rapid diagnostic tests are based upon detection of the influenza nucleoprotein, which are limited in that they are unable to differentiate by species and require an additional viral lysis step. Sample preprocessing can be minimized or eliminated by targeting the intact influenza virus, thereby reducing assay complexity and leveraging the large number of hemagglutinin proteins on the surface of each virus. Here, we report the development of a paper-based influenza assay that targets the hemagglutinin protein; the assay employs a combination of antibodies and novel computationally designed, recombinant affinity proteins as the capture and detection agents. This system leverages the customizability of recombinant protein design to target the conserved receptor-binding pocket of the hemagglutinin protein and to match the trimeric nature of hemagglutinin for improved avidity. Using this assay, we demonstrate the first instance of intact influenza virus detection using a combination of antibody and affinity proteins within a porous network. The recombinant head region binder based assays yield superior analytical sensitivity as compared to the antibody based assay, with lower limits of detection of 3.54 × 10 7 and 1.34 × 10 7 CEID 50 /mL for the mixed and all binder stacks, respectively. Not only does this work describe the development of a novel influenza assay, it also demonstrates the power of recombinant affinity proteins for use in rapid diagnostic assays.

  20. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi

    2016-03-18

    Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remains unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.

  1. Rationalization of chirality induction and inversion in a zinc trisporphyrinate by a chiral monoalcohol.

    Science.gov (United States)

    Li, Li; Hu, Chuanjiang; Shi, Bo; Wang, Yong

    2016-05-10

    A new host-guest system is formed between a benzene tricarboxamide linked zinc trisporphyrinate and a chiral monoalcohol (1-phenylethylalcohol). CD spectra show the chirality induction and inversion processes, which are controlled by the corresponding 1 : 1 and 1 : 2 coordination complexes. The binding constants calculated by UV-vis and CD spectral data are much larger than that for [Zn(TPP)] (TPP = tetraphenylporphyrin). The crystallographic structure of the host-guest complex reveals that multiple intramolecular hydrogen bonds and π-π interactions could contribute to its high binding affinity to 1-phenylethylalcohol. The DFT calculations suggest that the spatial orientations of porphyrin moieties change from the 1 : 1 complex to the 1 : 2 complex. The chirality induction and inversion processes are rationalized by the summation of pairwise interactions among multichromophores according to pairwise additivity.

  2. Vasorelaxant potencies and receptor binding affinities of atrial natriuretic hormone (ANH) analogues

    International Nuclear Information System (INIS)

    Bush, E.N.; Green, E.M.; Artman, L.D.; Devine, E.M.; Sarin, V.; Rockway, T.W.; Connolly, P.J.; Kiso, Y.; Holleman, W.H.

    1986-01-01

    ANH (1-28) (α-rat ANP) produces hypotensive effects in vivo, presumably via interaction with specific receptors. Vasorelaxant potencies (pD 2 ) and intrinsic activities of ANH analogues were measured in histamine constricted rabbit aorta rings. Binding affinities (K/sub I/) of the compounds were studied in rabbit aorta renal cortex and adrenal, using the radio-ligand 125 I-Tyr 28 -ANH (1-28). Significant correlations (r 2 s in aorta, and the log D/sub I/s in each of the three tissues were observed for the following cyclic compounds, listed in order of potency: ANH (1-28) greater than or equal to ANH (6-28) greater than or equal to Met 12 -ANH (1-28) (α-human ANP) greater than or equal to cyclohexyl-Ala (Cha) 8 -ANH (5-28) > Lys 11 -ANH (5-28) = ANH (5-28) (atriopeptin III) = ANH (5-27) (atriopeptin II) = Cha 21 -ANH (5-28) greater than or equal to ANH (7-28) > Cha 15 -ANH (5-28) = Pro 10 -ANH (5-28) = ANH (5-25) (atriopeptin I) = Asn 13 -ANH (5-28) = Tyr 9 -ANH (5-28) > des-Gly 9 -ANH (5-28) > ANH (7-23) = Pro 10 -ANH (7-23) greater than or equal to (D)Ala 9 -ANH (7-23) > Pro 9 -ANH (7-13). In summary, the affinities of several ANH analogues for both vascular and nonvascular receptors agree with their vasorelaxant potencies

  3. Competitive binding affinity of two lanthanum(III) macrocycle complexes toward DNA and bovine serum albumin in water

    Energy Technology Data Exchange (ETDEWEB)

    Asadi, Zahra; Mosallaei, Hamta; Sedaghat, Moslem [Shiraz Univ. (Iran, Islamic Republic of). Dept. of Chemistry; Yousefi, Reza [Shiraz Univ. (Iran, Islamic Republic of). Protein Chemistry Lab. (PCL)

    2017-11-15

    In the present study, two water-soluble lanthanum(III) hexaaza Schiff base complexes were synthesized and characterized and also theoretically investigated. The interactions of these complexes with DNA and bovine serum albumin (BSA) were studied using different spectroscopic assessments and docking simulation analysis. The DNA docking studies suggested that these two complexes are able to interact with DNA through the minor groove, and also the binding affinity is in the order of La(L{sup 1}) > La(L{sup 2}). Furthermore, the spectral titration was carried out and viscosity measurements were taken. In this regard, protein-binding studies revealed that these complexes quench the intrinsic fluorescence of BSA, and indicated that the possible binding site is located on the vicinity of Trp 213, which is further validated by docking simulation analysis. The in vitro anticancer activities of these complexes indicated that the La(L{sup 1}) complex is more effective than the other one and also exhibits a better interaction with DNA.

  4. Tyrosine Phosphorylation of the Lyn Src Homology 2 (SH2) Domain Modulates Its Binding Affinity and Specificity*

    Science.gov (United States)

    Jin, Lily L.; Wybenga-Groot, Leanne E.; Tong, Jiefei; Taylor, Paul; Minden, Mark D.; Trudel, Suzanne; McGlade, C. Jane; Moran, Michael F.

    2015-01-01

    Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y194 impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y194 on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases. PMID:25587033

  5. Cartilage Acidic Protein 2 a hyperthermostable, high affinity calcium-binding protein.

    Science.gov (United States)

    Anjos, Liliana; Gomes, Ana S; Melo, Eduardo P; Canário, Adelino V; Power, Deborah M

    2013-03-01

    Cartilage Acidic Protein 2 (CRTAC2) is a novel protein present from prokaryotes to vertebrates with abundant expression in the teleost fish pituitary gland and an isoform of CRTAC1, a chondrocyte marker in humans. The two proteins are non-integrins containing N-terminal integrin-like Ca(2+)-binding motifs and their structure and function remain to be assigned. Structural studies of recombinant sea bream (sb)CRTAC2 revealed it is composed of 8.8% α-helix, 33.4% β-sheet and 57.8% unordered protein. sbCRTAC2 bound Ca(2+) with high affinity (K(d)=1.46nM) and favourable Gibbs free energy (∆G=-12.4kcal/mol). The stoichiometry for Ca(2+) bound to sbCRTAC2 at saturation indicated six Ca(2+) ligand-binding sites exist per protein molecule. No conformational change in sbCRTAC2 occurred in the presence of Ca(2+). Fluorescence emission revealed that the tertiary structure of the protein is hyperthermostable between 25°C and 95°C and the fully unfolded state is only induced by chemical denaturing (4M GndCl). sbCRTAC has a widespread tissue distribution and is present as high molecular weight aggregates, although strong reducing conditions promote formation of the monomer. sbCRTAC2 promotes epithelial cell outgrowth in vitro suggesting it may share functional homology with mammalian CRTAC1, recently implicated in cell-cell and cell-matrix interactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Estimation of apparent binding constant of complexes of selected acyclic nucleoside phosphonates with beta-cyclodextrin by affinity capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Šolínová, Veronika; Mikysková, Hana; Kaiser, Martin Maxmilian; Janeba, Zlatko; Holý, Antonín; Kašička, Václav

    2016-01-01

    Roč. 37, č. 2 (2016), s. 239-247 ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA13-17224S; GA ČR(CZ) GA15-01948S Institutional support: RVO:61388963 Keywords : acyclic nucleoside phosphonates * affinity capillary electrophoresis * binding constant * nucleotide analogs * beta-cyclodextrin Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 2.744, year: 2016

  7. Direct binding of radioiodinated monoclonal antibody to tumor cells: significance of antibody purity and affinity for drug targeting or tumor imaging

    International Nuclear Information System (INIS)

    Kennel, S.J.; Foote, L.J.; Lankford, P.K.; Johnson, M.; Mitchell, T.; Braslawsky, G.R.

    1983-01-01

    For MoAb to be used efficiently for drug targeting and tumor imaging, the fraction of antibody binding to tumor cells must be maximized. The authors have studied the binding of 125 I MoAb in three different tumor systems. The fraction of antibody that could be bound to the cell surface was directly proportional to the antibody purity. The affinity constant also limits the fraction of antibody that can bind to cells at a given antigen concentration. Rearrangement of the standard expression for univalent equilibrium binding between two reactants shows that in antigen excess, the maximum fraction of antibody that can bind =Ka[Ag total]/1 + Ka[Ag total]. Binding data using four different MoAb with three cell systems confirm this relationship. Estimates for reasonable concentrations of tumor antigens in vivo indicate that antibodies with binding constants less than 10 8 M -1 are not likely to be useful for drug targeting or tumor imaging

  8. Structural considerations for functional anti-EGFR × anti-CD3 bispecific diabodies in light of domain order and binding affinity.

    Science.gov (United States)

    Asano, Ryutaro; Nagai, Keisuke; Makabe, Koki; Takahashi, Kento; Kumagai, Takashi; Kawaguchi, Hiroko; Ogata, Hiromi; Arai, Kyoko; Umetsu, Mitsuo; Kumagai, Izumi

    2018-03-02

    We previously reported a functional humanized bispecific diabody (bsDb) that targeted EGFR and CD3 (hEx3-Db) and enhancement of its cytotoxicity by rearranging the domain order in the V domain. Here, we further dissected the effect of domain order in bsDbs on their cross-linking ability and binding kinetics to elucidate general rules regarding the design of functional bsDbs. Using Ex3-Db as a model system, we first classified the four possible domain orders as anti-parallel (where both chimeric single-chain components are variable heavy domain (VH)-variable light domain (VL) or VL-VH order) and parallel types (both chimeric single-chain components are mixed with VH-VL and VL-VH order). Although anti-parallel Ex3-Dbs could cross-link the soluble target antigens, their cross-linking ability between soluble targets had no correlation with their growth inhibitory effects. In contrast, the binding affinity of one of the two constructs with a parallel-arrangement V domain was particularly low, and structural modeling supported this phenomenon. Similar results were observed with E2x3-Dbs, in which the V region of the anti-EGFR antibody clone in hEx3 was replaced with that of another anti-EGFR clone. Only anti-parallel types showed affinity-dependent cancer inhibitory effects in each molecule, and E2x3-LH (both components in VL-VH order) showed the most intense anti-tumor activity in vitro and in vivo . Our results showed that, in addition to rearranging the domain order of bsDbs, increasing their binding affinity may be an ideal strategy for enhancing the cytotoxicity of anti-parallel constructs and that E2x3-LH is particularly attractive as a candidate next-generation anti-cancer drug.

  9. Specificity of Bacillus thuringiensis endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts

    International Nuclear Information System (INIS)

    Hofmann, C.; Vanderbruggen, H.; Hoefte, H.; Van Rie, J.; Jansens, S.; Van Mellaert, H.

    1988-01-01

    Binding studies were performed with two 125 I-labeled Bacillus thuringiensis δ-endotoxins on brush border membrane vesicles prepared from the larval midgut of the tobacco hornworm Manduca sexta or the cabbage butterfly Pieris brassicae. One δ-endotoxin, Bt2-protoxin, is a 130-kDa recombinant crystalline protein from B. thuringiensis subsp. berliner. It kills larvae of both insect species. The active Bt2-toxin is a 60-kDa proteolytic fragment of the Bt2-protoxin. It binds saturably and with high affinity to brush border membrane vesicles from the midgut of both species. The other δ-endotoxin, Bt4412-protoxin, is a 136-kDa crystalline protein from B. thuringiensis subsp. thuringiensis, which is highly toxic for P. brassicae, but not for M. sexta larvae. Bt4412-toxin, obtained after proteolytic activation of Bt4412-protoxin, shows high-affinity saturable binding to P. brassicae vesicles but not to M. sexta vesicles. The correlation between toxicity and specific binding is further strengthened by competition studies. Other B. thuringiensis δ-endotoxins active against M. sexta compete for binding of 125 I-labeled Bt2-toxin to M. sexta vesicles, whereas toxins active against dipteran or coleopteran larvae do not compete. Bt2-toxin and Bt4412-toxin bind to different sites on P. brassicae vesicles

  10. Inhibition of Enterococcus faecium adherence to collagen by antibodies against high-affinity binding subdomains of Acm.

    Science.gov (United States)

    Nallapareddy, Sreedhar R; Sillanpää, Jouko; Ganesh, Vannakambadi K; Höök, Magnus; Murray, Barbara E

    2007-06-01

    Strains of Enterococcus faecium express a cell wall-anchored protein, Acm, which mediates adherence to collagen. Here, we (i) identify the minimal and high-affinity binding subsegments of Acm and (ii) show that anti-Acm immunoglobulin Gs (IgGs) purified against these subsegments reduced E. faecium TX2535 strain collagen adherence up to 73 and 50%, respectively, significantly more than the total IgGs against the full-length Acm A domain (28%) (P Acm adherence with functional subsegment-specific antibodies raises the possibility of their use as therapeutic or prophylactic agents.

  11. The AT-Hook motif as a versatile minor groove anchor for promoting DNA binding of transcription factor fragments? ?Electronic supplementary information (ESI) available: Peptide synthesis, full experimental procedures and analytical data of the peptides and products obtained. See DOI: 10.1039/c5sc01415h Click here for additional data file.

    OpenAIRE

    Rodr?guez, J?ssica; Mosquera, Jes?s; Couceiro, Jose R.; V?zquez, M. Eugenio; Mascare?as, Jos? L.

    2015-01-01

    We report the development of chimeric DNA binding peptides comprising a DNA binding fragment of natural transcription factors (the basic region of a bZIP protein or a monomeric zinc finger module) and an AT-Hook peptide motif. The resulting peptide conjugates display high DNA affinity and excellent sequence selectivity. Furthermore, the AT-Hook motif also favors the cell internalization of the conjugates.

  12. Sequence-selective topoisomerase II inhibition by anthracycline derivatives in SV40 DNA: Relationship with DNA binding affinity and cytotoxicity

    International Nuclear Information System (INIS)

    Capranico, G.; Kohn, K.W.; Pommier, Y.; Zunino, F.

    1990-01-01

    Topoisomerase II mediated double-strand breaks produced by anthracycline analogues were studied in SV40 DNA. The compounds included doxorubicin, daunorubicin, two doxorubicin stereoisomers (4'-epimer and β-anomer), and five chromophore-modified derivatives, with a wide range of cytotoxic activity and DNA binding affinity. Cleavage of 32 P-end-labeled DNA fragments was visualized by autoradiography of agarose and polyacrylamide gels. Structure-activity relationships indicated that alterations in the chromophore structure greatly affected drug action on topoisomerase II. In particular, removal of substituents on position 4 of the D ring resulted in more active inducers of cleavage with lower DNA binding affinity. The stereochemistry between the sugar and the chromophore was also essential for activity. All the active anthracyclines induced a single region of prominent cleavage in the entire SV40 DNA, which resulted from a cluster of sites between nucleotides 4237 and 4294. DNA cleavage intensity patterns exhibited differences among analogues and were also dependent upon drug concentration. Intensity at a given site dependent on both stimulatory and suppressive effects depending upon drug concentration and DNA sequence. A good correlation was found between cytotoxicity and intensity of topoisomerase II mediated DNA breakage

  13. Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae.

    Science.gov (United States)

    Schothorst, Joep; Zeebroeck, Griet V; Thevelein, Johan M

    2017-03-02

    Multiple types of nutrient transceptors, membrane proteins that combine a transporter and receptor function, have now been established in a variety of organisms. However, so far all established transceptors utilize one of the macronutrients, glucose, amino acids, ammonium, nitrate, phosphate or sulfate, as substrate. This is also true for the Saccharomyces cerevisiae transceptors mediating activation of the PKA pathway upon re-addition of a macronutrient to glucose-repressed cells starved for that nutrient, re-establishing a fermentable growth medium. We now show that the yeast high-affinity iron transporter Ftr1 and high-affinity zinc transporter Zrt1 function as transceptors for the micronutrients iron and zinc . We show that replenishment of iron to iron-starved cells or zinc to zinc-starved cells triggers within 1-2 minutes a rapid surge in trehalase activity, a well-established PKA target. The activation with iron is dependent on Ftr1 and with zinc on Zrt1, and we show that it is independent of intracellular iron and zinc levels. Similar to the transceptors for macronutrients, Ftr1 and Zrt1 are strongly induced upon iron and zinc starvation, respectively, and they are rapidly downregulated by substrate-induced endocytosis. Our results suggest that transceptor-mediated signaling to the PKA pathway may occur in all cases where glucose-repressed yeast cells have been starved first for an essential nutrient, causing arrest of growth and low activity of the PKA pathway, and subsequently replenished with the lacking nutrient to re-establish a fermentable growth medium. The broadness of the phenomenon also makes it likely that nutrient transceptors use a common mechanism for signaling to the PKA pathway.

  14. Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Joep Schothort

    2017-03-01

    Full Text Available Multiple types of nutrient transceptors, membrane proteins that combine a transporter and receptor function, have now been established in a variety of organisms. However, so far all established transceptors utilize one of the macronutrients, glucose, amino acids, ammonium, nitrate, phosphate or sulfate, as substrate. This is also true for the Saccharomyces cerevisiae transceptors mediating activation of the PKA pathway upon re-addition of a macronutrient to glucose-repressed cells starved for that nutrient, re-establishing a fermentable growth medium. We now show that the yeast high-affinity iron transporter Ftr1 and high-affinity zinc transporter Zrt1 function as transceptors for the micronutrients iron and zinc. We show that replenishment of iron to iron-starved cells or zinc to zinc-starved cells triggers within 1-2 minutes a rapid surge in trehalase activity, a well-established PKA target. The activation with iron is dependent on Ftr1 and with zinc on Zrt1, and we show that it is independent of intracellular iron and zinc levels. Similar to the transceptors for macronutrients, Ftr1 and Zrt1 are strongly induced upon iron and zinc starvation, respectively, and they are rapidly downregulated by substrate-induced endocytosis. Our results suggest that transceptor-mediated signaling to the PKA pathway may occur in all cases where glucose-repressed yeast cells have been starved first for an essential nutrient, causing arrest of growth and low activity of the PKA pathway, and subsequently replenished with the lacking nutrient to re-establish a fermentable growth medium. The broadness of the phenomenon also makes it likely that nutrient transceptors use a common mechanism for signaling to the PKA pathway.

  15. Isolation and partial characterization of gypsy moth BTR-270, an anionic brush border membrane glycoconjugate that binds Bacillus thuringiensis Cry1A toxins with high affinity

    Science.gov (United States)

    Algimantas P. Valaitis; Jeremy L. Jenkins; Mi Kyong Lee; Donald H. Dean; Karen J. Garner

    2001-01-01

    BTR-270, a gypsy moth (Lymantria dispar) brush border membrane molecule that binds Bacillus thuringiensis (Bt) Cry1A toxins with high affinity, was purified by preparative gel electrophoresis. Rabbit antibodies specific for the Bt toxin-binding molecule were raised. Attempts to label BTR-270 by protein-directed techniques were...

  16. Predicting binding poses and affinities for protein - ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation

    Science.gov (United States)

    Grudinin, Sergei; Kadukova, Maria; Eisenbarth, Andreas; Marillet, Simon; Cazals, Frédéric

    2016-09-01

    The 2015 D3R Grand Challenge provided an opportunity to test our new model for the binding free energy of small molecules, as well as to assess our protocol to predict binding poses for protein-ligand complexes. Our pose predictions were ranked 3-9 for the HSP90 dataset, depending on the assessment metric. For the MAP4K dataset the ranks are very dispersed and equal to 2-35, depending on the assessment metric, which does not provide any insight into the accuracy of the method. The main success of our pose prediction protocol was the re-scoring stage using the recently developed Convex-PL potential. We make a thorough analysis of our docking predictions made with AutoDock Vina and discuss the effect of the choice of rigid receptor templates, the number of flexible residues in the binding pocket, the binding pocket size, and the benefits of re-scoring. However, the main challenge was to predict experimentally determined binding affinities for two blind test sets. Our affinity prediction model consisted of two terms, a pairwise-additive enthalpy, and a non pairwise-additive entropy. We trained the free parameters of the model with a regularized regression using affinity and structural data from the PDBBind database. Our model performed very well on the training set, however, failed on the two test sets. We explain the drawback and pitfalls of our model, in particular in terms of relative coverage of the test set by the training set and missed dynamical properties from crystal structures, and discuss different routes to improve it.

  17. Mutational analysis of affinity and selectivity of kringle-tetranectin interaction. Grafting novel kringle affinity ontp the trtranectin lectin scaffold

    DEFF Research Database (Denmark)

    Graversen, Jonas Heilskov; Jacobsen, C; Sigurskjold, B W

    2000-01-01

    -type lectin-like domain of tetranectin, involving Lys-148, Glu-150, and Asp-165, which mediates calcium-sensitive binding to plasminogen kringle 4. Here, we investigate the effect of conservative substitutions of these and a neighboring amino acid residue. Substitution of Thr-149 in tetranectin...... with a tyrosine residue considerably increases the affinity for plasminogen kringle 4, and, in addition, confers affinity for plasminogen kringle 2. As shown by isothermal titration calorimetry analysis, this new interaction is stronger than the binding of wild-type tetranectin to plasminogen kringle 4...

  18. Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites.

    OpenAIRE

    Erspamer, V; Melchiorri, P; Falconieri-Erspamer, G; Negri, L; Corsi, R; Severini, C; Barra, D; Simmaco, M; Kreil, G

    1989-01-01

    Deltorphins are endogenous linear heptapeptides, isolated from skin extracts of frogs belonging to the genus Phyllomedusa, that have a higher affinity and selectivity for delta opioid binding sites than any other natural compound known. Two deltorphins with the sequence Tyr-Ala-Phe-Asp(or Glu)-Val-Val-Gly-NH2 have been isolated from skin extracts of Phyllomedusa bicolor. The alanine in position 2 is in the D configuration. These peptides, [D-Ala2]deltorphins I and II, show an even higher affi...

  19. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    International Nuclear Information System (INIS)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N.; Moran, Jeffery H.; Prather, Paul L.

    2013-01-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB 1 Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB 2 Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB 2 Rs (hCB 2 Rs). The affinity of cannabinoids for hCB 2 Rs was determined by competition binding studies employing CHO-hCB 2 membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB 2 cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB 2 Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB 2 Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ 9 -tetrahydrocannabinol (Δ 9 -THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB 2 R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB 2 Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB 2 Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB 1 and CB 2 Rs. - Highlights: • JWH-018 and JWH-073 are synthetic cannabinoids present in abused K2

  20. Mechanistic Inferences from the Binding of Ligands to LpxC, A Metal-Dependent Deacetylase

    International Nuclear Information System (INIS)

    Gennadios, H.; Whittington, D.; Li, X.; Fierke, C.; Christianson, D.

    2006-01-01

    The metal-dependent deacetylase LpxC catalyzes the first committed step of lipid A biosynthesis in Gram-negative bacteria. Accordingly, LpxC is an attractive target for the development of inhibitors that may serve as potential new antibiotics for the treatment of Gram-negative bacterial infections. Here, we report the 2.7 Angstroms resolution X-ray crystal structure of LpxC complexed with the substrate analogue inhibitor TU-514 and the 2.0 Angstroms resolution structure of LpxC complexed with imidazole. The X-ray crystal structure of LpxC complexed with TU-514 allows for a detailed examination of the coordination geometry of the catalytic zinc ion and other enzyme-inhibitor interactions in the active site. The hydroxamate group of TU-514 forms a bidentate chelate complex with the zinc ion and makes hydrogen bond interactions with conserved active site residues E78, H265, and T191. The inhibitor C-4 hydroxyl group makes direct hydrogen bond interactions with E197 and H58. Finally, the C-3 myristate moiety of the inhibitor binds in the hydrophobic tunnel of the active site. These intermolecular interactions provide a foundation for understanding structural aspects of enzyme-substrate and enzyme-inhibitor affinity. Comparison of the TU-514 complex with cacodylate and imidazole complexes suggests a possible substrate diphosphate binding site and highlights residues that may stabilize the tetrahedral intermediate and its flanking transition states in catalysis. Evidence of a catalytic zinc ion in the native zinc enzyme coordinated by H79, H238, D242, and two water molecules with square pyramidal geometry is also presented. These results suggest that the native state of this metallohydrolase may contain a pentacoordinate zinc ion, which contrasts with the native states of archetypical zinc hydrolases such as thermolysin and carboxypeptidase A

  1. Probing the structural basis of oxygen binding in a cofactor-independent dioxygenase.

    Science.gov (United States)

    Li, Kunhua; Fielding, Elisha N; Condurso, Heather L; Bruner, Steven D

    2017-07-01

    The enzyme DpgC is included in the small family of cofactor-independent dioxygenases. The chemistry of DpgC is uncommon as the protein binds and utilizes dioxygen without the aid of a metal or organic cofactor. Previous structural and biochemical studies identified the substrate-binding mode and the components of the active site that are important in the catalytic mechanism. In addition, the results delineated a putative binding pocket and migration pathway for the co-substrate dioxygen. Here, structural biology is utilized, along with site-directed mutagenesis, to probe the assigned dioxygen-binding pocket. The key residues implicated in dioxygen trafficking were studied to probe the process of binding, activation and chemistry. The results support the proposed chemistry and provide insight into the general mechanism of dioxygen binding and activation.

  2. Synthetic Polymer Affinity Ligand for Bacillus thuringiensis ( Bt) Cry1Ab/Ac Protein: The Use of Biomimicry Based on the Bt Protein-Insect Receptor Binding Mechanism.

    Science.gov (United States)

    Liu, Mingming; Huang, Rong; Weisman, Adam; Yu, Xiaoyang; Lee, Shih-Hui; Chen, Yalu; Huang, Chao; Hu, Senhua; Chen, Xiuhua; Tan, Wenfeng; Liu, Fan; Chen, Hao; Shea, Kenneth J

    2018-05-24

    We report a novel strategy for creating abiotic Bacillus thuringiensis ( Bt) protein affinity ligands by biomimicry of the recognition process that takes place between Bt Cry1Ab/Ac proteins and insect receptor cadherin-like Bt-R 1 proteins. Guided by this strategy, a library of synthetic polymer nanoparticles (NPs) was prepared and screened for binding to three epitopes 280 FRGSAQGIEGS 290 , 368 RRPFNIGINNQQ 379 and 436 FRSGFSNSSVSIIR 449 located in loop α8, loop 2 and loop 3 of domain II of Bt Cry1Ab/Ac proteins. A negatively charged and hydrophilic nanoparticle (NP12) was found to have high affinity to one of the epitopes, 368 RRPFNIGINNQQ 379 . This same NP also had specific binding ability to both Bt Cry1Ab and Bt Cry1Ac, proteins that share the same epitope, but very low affinity to Bt Cry2A, Bt Cry1C and Bt Cry1F closely related proteins that lack epitope homology. To locate possible NP- Bt Cry1Ab/Ac interaction sites, NP12 was used as a competitive inhibitor to block the binding of 865 NITIHITDTNNK 876 , a specific recognition site in insect receptor Bt-R 1 , to 368 RRPFNIGINNQQ 379 . The inhibition by NP12 reached as high as 84%, indicating that NP12 binds to Bt Cry1Ab/Ac proteins mainly via 368 RRPFNIGINNQQ 379 . This epitope region was then utilized as a "target" or "bait" for the separation and concentration of Bt Cry1Ac protein from the extract of transgenic Bt cotton leaves by NP12. This strategy, based on the antigen-receptor recognition mechanism, can be extended to other biotoxins and pathogen proteins when designing biomimic alternatives to natural protein affinity ligands.

  3. A kinetic analysis of kappa-opioid agonist binding using the selective radioligand (/sup 3/H)U69593

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.A.; Hunter, J.C.; Hill, R.G.; Hughes, J.

    1989-07-01

    The interaction of the nonselective opioid ligand (3H)bremazocine and of the kappa-opioid (3H)U69593 with the kappa-receptor was investigated in guinea-pig cortical membranes. Each radioligand bound to a single population of high-affinity sites, although (3H)U69593 apparently recognised only 70% of those sites labelled by (3H)bremazocine. Naloxone and the kappa-selective ligands U69593 and PD117302 exhibited full inhibition of the binding of both radioligands. Kinetic analysis demonstrated biphasic rates of association and dissociation for both (3H)bremazocine and (3H)U69593. Detailed analysis of the binding of (3H)U69593 revealed that the fast rate of association was dependent on radioligand concentration, in contrast to the slow rate, which was independent of ligand concentration. Guanylyl-5'-imidodiphosphate (GppNHp) inhibited binding of (3H)U69593; saturation analysis demonstrated that the inhibitory effects of GppNHp resulted in a decrease in affinity without any significant change in binding capacity. GppNHp attenuated the formation of the slow component of (3H)U69593 binding, while accelerating the fast component. The data are consistent with the formation of a high-affinity complex between the kappa-receptor and a guanine nucleotide binding protein. Guanine nucleotides promote the dissociation of this ternary complex and the stabilisation of a lower-affinity state of the receptor.

  4. Molecular Structure-Affinity Relationship of Flavonoids in Lotus Leaf (Nelumbo nucifera Gaertn.) on Binding to Human Serum Albumin and Bovine Serum Albumin by Spectroscopic Method.

    Science.gov (United States)

    Tang, Xiaosheng; Tang, Ping; Liu, Liangliang

    2017-06-23

    Lotus leaf has gained growing popularity as an ingredient in herbal formulations due to its various activities. As main functional components of lotus leaf, the difference in structure of flavonoids affected their binding properties and activities. In this paper, the existence of 11 flavonoids in lotus leaf extract was confirmed by High Performance Liquid Chromatography (HPLC) analysis and 11 flavonoids showed various contents in lotus leaf. The interactions between lotus leaf extract and two kinds of serum albumins (human serum albumin (HSA) and bovine serum albumin (BSA)) were investigated by spectroscopic methods. Based on the fluorescence quenching, the interactions between these flavonoids and serum albumins were further checked in detail. The relationship between the molecular properties of flavonoids and their affinities for serum albumins were analyzed and compared. The hydroxylation on 3 and 3' position increased the affinities for serum albumins. Moreover, both of the methylation on 3' position of quercetin and the C₂=C₃ double bond of apigenin and quercetin decreased the affinities for HSA and BSA. The glycosylation lowered the affinities for HSA and BSA depending on the type of sugar moiety. It revealed that the hydrogen bond force played an important role in binding flavonoids to HSA and BSA.

  5. LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.

    Science.gov (United States)

    Marshall, J C; Shakespear, R A; Odell, W D

    1976-11-01

    Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.

  6. Mobile trap algorithm for zinc detection using protein sensors

    International Nuclear Information System (INIS)

    Inamdar, Munish V.; Lastoskie, Christian M.; Fierke, Carol A.; Sastry, Ann Marie

    2007-01-01

    We present a mobile trap algorithm to sense zinc ions using protein-based sensors such as carbonic anhydrase (CA). Zinc is an essential biometal required for mammalian cellular functions although its intracellular concentration is reported to be very low. Protein-based sensors like CA molecules are employed to sense rare species like zinc ions. In this study, the zinc ions are mobile targets, which are sought by the mobile traps in the form of sensors. Particle motions are modeled using random walk along with the first passage technique for efficient simulations. The association reaction between sensors and ions is incorporated using a probability (p 1 ) upon an ion-sensor collision. The dissociation reaction of an ion-bound CA molecule is modeled using a second, independent probability (p 2 ). The results of the algorithm are verified against the traditional simulation techniques (e.g., Gillespie's algorithm). This study demonstrates that individual sensor molecules can be characterized using the probability pair (p 1 ,p 2 ), which, in turn, is linked to the system level chemical kinetic constants, k on and k off . Further investigations of CA-Zn reaction using the mobile trap algorithm show that when the diffusivity of zinc ions approaches that of sensor molecules, the reaction data obtained using the static trap assumption differ from the reaction data obtained using the mobile trap formulation. This study also reveals similar behavior when the sensor molecule has higher dissociation constant. In both the cases, the reaction data obtained using the static trap formulation reach equilibrium at a higher number of complex molecules (ion-bound sensor molecules) compared to the reaction data from the mobile trap formulation. With practical limitations on the number sensors that can be inserted/expressed in a cell and stochastic nature of the intracellular ionic concentrations, fluorescence from the number of complex sensor molecules at equilibrium will be the measure

  7. SKF 525-A and cytochrome P-450 ligands inhibit with high affinity the binding of [3H]dextromethorphan and σligands to guinea pig brain

    International Nuclear Information System (INIS)

    Klein, M.; Canoll, P.D.; Musacchio, J.M.

    1991-01-01

    The DM 1 /σ 1 site binds dextromethorphan (DM) and σ receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of [ 3 H]dextromethorphan, [ 3 H]3-(3-Hydroxyphenyl)-N-(1-propyl)piperidine and (+)-[ 3 H]1,3-Di-o-tolyl-guanidine ([ 3 H]DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drug has identical nM K i values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM 1 σ 1 site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed K i values of 9-13 and 3-4 μM respectively against the three labeled ligands. These results, the broad specificity of the DM 1 /σ 1 binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor

  8. Screening method of carbohydrate-binding proteins in biological sources by capillary affinity electrophoresis and its application to determination of Tulipa gesneriana agglutinin in tulip bulbs.

    Science.gov (United States)

    Nakajima, Kazuki; Kinoshita, Mitsuhiro; Oda, Yasuo; Masuko, Takashi; Kaku, Hanae; Shibuya, Naoto; Kakehi, Kazuaki

    2004-09-01

    We developed capillary affinity electrophoresis (CAE) to analyze the molecular interaction between carbohydrate chains and proteins in solution state. A mixture of oligosaccharides derived from a glycoprotein was labeled with 8-aminopyrene-1,3,6-trisulfonate (APTS), and used as glycan library without isolation. Interaction of a carbohydrate-binding protein with each oligosaccharide in the mixture could be simultaneously observed, and relative affinities of oligosaccharides toward the protein were accurately determined. In this study, we applied CAE to detect the presence of lectins in some plants (Japanese elderberry bark and tulip bulb). In the crude extract of the elderberry bark, binding activity toward sialo-carbohydrate chains could be easily detected. We also examined the presence of lectins in the crude extract of tulip bulbs and determined the detailed carbohydrate-binding specificity of Tulipa gesneriana agglutinin (TGA), one of the lectins from tulip bulbs. Kinetic studies demonstrated that TGA showed novel carbohydrate-binding specificity and preferentially recognized triantennary oligosaccharides with Gal residues at nonreducing termini and a Fuc residue linked through alpha(1-6) linkage at chitobiose portion of the reducing termini but not tetraantennary carbohydrates. The results described here indicate that CAE will be a valuable method for both screening of lectins in natural sources and determination of their detailed carbohydrate-binding specificities.

  9. Affinity labeling of Escherichia coli phenylalanyl-tRNA synthetase at the binding site for tRNA

    International Nuclear Information System (INIS)

    Hountondji, C.; Schmitter, J.M.; Beauvallet, C.; Blanquet, S.

    1987-01-01

    Periodate-oxidized tRNA/sup Phe/ (tRNA/sub ox//sup Phe/) behaves as a specific affinity label of tetrameric Escherichia coli phenylalanyl-tRNA synthetase (PheRS). Reaction of the α 2 β 2 enzyme with tRNA/sub ox//sup Phe/ results in the loss of tRNA/sup Phe/ aminoacylation activity with covalent attachment of 2 mol of tRNA dialdehyde/mol of enzyme, in agreement with the stoichiometry of tRNA binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the PheRS-[ 14 C]tRNA/sub ox//sup Phe/ covalent complex indicates that the large (α, M/sub r/ 87K) subunit of the enzyme interacts with the 3'-adenosine of tRNA/sub ox//sup Phe/. The [ 14 C]tRNA-labeled chymotryptic peptides of PheRS were purified by both gel filtration and reverse-phase high-performance liquid chromatography. The radioactivity was almost equally distributed among three peptides: Met-Lys[Ado]-Phe, Ala-Asp-Lys[Ado]-Leu, and Lys-Ile-Lys[Ado]-Ala. These sequences correspond to residues 1-3, 59-62, and 104-107, respectively, in the N-terminal region of the 795 amino acid sequence of the α subunit. It is noticeable that the labeled peptide Ala-Asp-Lys-Leu is adjacent to residues 63-66 (Arg-Val-Thr-Lys). The latter sequence was just predicted to resemble the proposed consensus tRNA CCA binding region Lys-Met-Ser-Lys-Ser, as deduced from previous affinity labeling studies on E. coli methionyl- and tyrosyl-tRNA synthetases

  10. Water soluble peripheral and non-peripheral tetrasubstituted zinc phthalocyanines: Synthesis, photochemistry and bovine serum albumin binding behavior

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Volkan; Çakır, Dilek [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Pişkin, Mehmet [Department of Food Technology, Çanakkale Vocational School of Technical Sciences, Çanakkale Onsekiz Mart University, 17100 Çanakkale (Turkey); Durmuş, Mahmut [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze 41400, Kocaeli (Turkey); Bıyıklıoğlu, Zekeriya, E-mail: zekeriya_61@yahoo.com [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2014-10-15

    The new peripherally and non-peripherally tetra-1,3-bis[3-(diethylamino)phenoxy]propan-2-ol substituted zinc(II) phthalocyanine complexes (2a and 3a) and their quaternized amphiphilic derivatives (2b and 3b) have been synthesized and characterized using UV–vis, FT-IR, {sup 1}H-NMR, {sup 13}C-NMR, MS spectroscopic data and elemental analysis for the first time. The quaternized complexes (2b and 3b) show excellent solubility in water and DMSO which makes them potential photosensitizers for use in photodynamic therapy (PDT) of cancer. The photochemical (singlet oxygen generation and photodegradation under light irradiation) properties of these novel phthalocyanines are investigated in dimethylsulfoxide (DMSO) for non-quaternized complexes and in DMSO, phosphate buffered solution (PBS) or PBS+triton X-100 (TX) solution for quaternized complexes. In this study, the effects of the aggregation of the molecules, quaternization, position of the substituents (peripherally or non-peripherally) and nature of the solvents (DMSO, PBS or PBS+triton X-100) on the photochemical parameters of the zinc (II) phthalocyanines are also reported. In addition, a spectroscopic investigation of the binding behavior of the quaternized zinc(II) phthalocyanine complexes to bovine serum albumin (BSA) is also presented in this work. - Highlights: • Synthesis of zinc phthalocyanines is performed. • Photophysical and photochemical properties of phthalocyanines are studied. • Photodynamic therapy studies are performed.

  11. Water soluble peripheral and non-peripheral tetrasubstituted zinc phthalocyanines: Synthesis, photochemistry and bovine serum albumin binding behavior

    International Nuclear Information System (INIS)

    Çakır, Volkan; Çakır, Dilek; Pişkin, Mehmet; Durmuş, Mahmut; Bıyıklıoğlu, Zekeriya

    2014-01-01

    The new peripherally and non-peripherally tetra-1,3-bis[3-(diethylamino)phenoxy]propan-2-ol substituted zinc(II) phthalocyanine complexes (2a and 3a) and their quaternized amphiphilic derivatives (2b and 3b) have been synthesized and characterized using UV–vis, FT-IR, 1 H-NMR, 13 C-NMR, MS spectroscopic data and elemental analysis for the first time. The quaternized complexes (2b and 3b) show excellent solubility in water and DMSO which makes them potential photosensitizers for use in photodynamic therapy (PDT) of cancer. The photochemical (singlet oxygen generation and photodegradation under light irradiation) properties of these novel phthalocyanines are investigated in dimethylsulfoxide (DMSO) for non-quaternized complexes and in DMSO, phosphate buffered solution (PBS) or PBS+triton X-100 (TX) solution for quaternized complexes. In this study, the effects of the aggregation of the molecules, quaternization, position of the substituents (peripherally or non-peripherally) and nature of the solvents (DMSO, PBS or PBS+triton X-100) on the photochemical parameters of the zinc (II) phthalocyanines are also reported. In addition, a spectroscopic investigation of the binding behavior of the quaternized zinc(II) phthalocyanine complexes to bovine serum albumin (BSA) is also presented in this work. - Highlights: • Synthesis of zinc phthalocyanines is performed. • Photophysical and photochemical properties of phthalocyanines are studied. • Photodynamic therapy studies are performed

  12. Differential sensitivities of cellular XPA and PARP-1 to arsenite inhibition and zinc rescue.

    Science.gov (United States)

    Ding, Xiaofeng; Zhou, Xixi; Cooper, Karen L; Huestis, Juliana; Hudson, Laurie G; Liu, Ke Jian

    2017-09-15

    Arsenite directly binds to the zinc finger domains of the DNA repair protein poly (ADP ribose) polymerase (PARP)-1, and inhibits PARP-1 activity in the base excision repair (BER) pathway. PARP inhibition by arsenite enhances ultraviolet radiation (UVR)-induced DNA damage in keratinocytes, and the increase in DNA damage is reduced by zinc supplementation. However, little is known about the effects of arsenite and zinc on the zinc finger nucleotide excision repair (NER) protein xeroderma pigmentosum group A (XPA). In this study, we investigated the difference in response to arsenite exposure between XPA and PARP-1, and the differential effectiveness of zinc supplementation in restoring protein DNA binding and DNA damage repair. Arsenite targeted both XPA and PARP-1 in human keratinocytes, resulting in zinc loss from each protein and a pronounced decrease in XPA and PARP-1 binding to chromatin as demonstrated by Chip-on-Western assays. Zinc effectively restored DNA binding of PARP-1 and XPA to chromatin when zinc concentrations were equal to those of arsenite. In contrast, zinc was more effective in rescuing arsenite-augmented direct UVR-induced DNA damage than oxidative DNA damage. Taken together, our findings indicate that arsenite interferes with PARP-1 and XPA binding to chromatin, and that zinc supplementation fully restores DNA binding activity to both proteins in the cellular context. Interestingly, rescue of arsenite-inhibited DNA damage repair by supplemental zinc was more sensitive for DNA damage repaired by the XPA-associated NER pathway than for the PARP-1-dependent BER pathway. This study expands our understanding of arsenite's role in DNA repair inhibition and co-carcinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Ligand binding affinity at the insulin receptor isoform A (IR-A and subsequent IR-A tyrosine phosphorylation kinetics are important determinants of mitogenic biological outcomes.

    Directory of Open Access Journals (Sweden)

    Harinda eRajapaksha

    2015-07-01

    Full Text Available The insulin receptor (IR is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A arises from alternative splicing of exon 11 and has different ligand binding and signalling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival and migration by activating some unique signalling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signalling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signalling (MAPK and Akt and receptor internalisation rates (related to mitogenic signalling. We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic ([His4, Tyr15, Thr49, Ile51] IGF-I, qIGF-I or metabolic (S597 peptide biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signalling through the IR-A. The 3-fold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316 and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and the kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I.

  14. Pseudo-affinity chromatography of rumen microbial cellulase on ...

    African Journals Online (AJOL)

    Pseudo-affinity chromatography of rumen microbial cellulase on Sepharose- Cibacron Blue F3GA. ... African Journal of Biotechnology ... Pseudo affinity adsorption of bioproducts on Sepharose-cibacron blue F3-GA was subjected to rumen microbial enzyme evaluation through batch binding and column chromatography of ...

  15. High-affinity binding of [3H]estradiol-17 beta by an estrogen receptor in the liver of the turtle

    International Nuclear Information System (INIS)

    Ho, S.M.; Fehrer, S.; Yu, M.; Liang, L.C.; Press, D.

    1988-01-01

    Specific [3H]estradiol-17 beta ([3H]E2) binding activity (EBA) with characteristics of an estrogen receptor (ER) was demonstrated in cytosols and nuclear extracts of the female turtle, Chrysemys picta. Three different receptor assays (dextran-coated charcoal assay, hydroxylapatite batch procedure, and DNA-cellulose chromatography) were evaluated in terms of their applicability in analyzing large numbers of samples. For the measurement of cytosolic EBA, the hydroxylapatite batch procedure was found to be the most reliable assay. On the other hand, the dextran-coated charcoal assay was found to be the most appropriate method for the measurement of nuclear EBA. Turtle hepatic EBA binds [3H]E2 with high affinity (cytosolic, 17.4 +/- 2.8 X 10(9) M-1; nuclear, 17.7 +/- 1.9 X 10(9) M-1), limited capacity (cytosolic, 133.7 +/- 4.6 fmol/g tissue; nuclear, 81.1 +/- 9.0 fmol/g tissue), and strict steroid specificity. The EBA bound natural estrogens (E2, estrone, estriol) as well as the nonsteroidal estrogen, diethylstilbestrol, but exhibited little affinity for androgens, progesterone, or corticosterone. The turtle hepatic EBA resembled mammalian and avian ERs in terms of binding characteristics; however, unlike mammalian and avian ERs it was shown to be heat-labile. Incubation at 30 degrees caused rapid loss of [3H]E2 binding activity in both cytosolic and nuclear fractions. The exchange between [3H]E2 and the endogenously bound estrogen was slow at 4 and 15 degrees, but the exchange process was facilitated in the presence of the chaotropic salt, NaSCN. Establishment of quantitation methods for both cytosolic and nuclear forms of EBA will enable future investigation of the mechanism and regulation of estrogen action in the liver of this turtle species

  16. Tyrosine phosphorylation of the Lyn Src homology 2 (SH2) domain modulates its binding affinity and specificity.

    Science.gov (United States)

    Jin, Lily L; Wybenga-Groot, Leanne E; Tong, Jiefei; Taylor, Paul; Minden, Mark D; Trudel, Suzanne; McGlade, C Jane; Moran, Michael F

    2015-03-01

    Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y(194) impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y(194) on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Does the oral zinc tolerance test measure zinc absorption

    Energy Technology Data Exchange (ETDEWEB)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi /sup 65/ZnCl/sub 2/ and a non-absorbed marker, /sup 51/CrCl/sub 3/, dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with /sup 65/Zn and /sup 51/Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and /sup 65/Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and /sup 65/Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption.

  18. Does the oral zinc tolerance test measure zinc absorption

    International Nuclear Information System (INIS)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi 65 ZnCl 2 and a non-absorbed marker, 51 CrCl 3 , dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with 65 Zn and 51 Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and 65 Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and 65 Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption

  19. Labeling by [3H]1,3-di(2-tolyl)guanidine of two high affinity binding sites in guinea pig brain: Evidence for allosteric regulation by calcium channel antagonists and pseudoallosteric modulation by sigma ligands

    International Nuclear Information System (INIS)

    Rothman, R.B.; Reid, A.; Mahboubi, A.; Kim, C.H.; De Costa, B.R.; Jacobson, A.E.; Rice, K.C.

    1991-01-01

    Equilibrium binding studies with the sigma receptor ligand [ 3 H]1,3-di(2-tolyl)guanidine ([ 3 H]DTG) demonstrated two high affinity binding sites in membranes prepared from guinea pig brain. The apparent Kd values of DTG for sites 1 and 2 were 11.9 and 37.6 nM, respectively. The corresponding Bmax values were 1045 and 1423 fmol/mg of protein. Site 1 had high affinity for (+)-pentazocine, haloperidol, (R)-(+)-PPP, carbepentane, and other sigma ligands, suggesting a similarity with the dextromethorphan/sigma 1 binding site described by Musacchio et al. [Life Sci. 45:1721-1732 (1989)]. Site 2 had high affinity for DTG and haloperidol (Ki = 36.1 nM) and low affinity for most other sigma ligands. Kinetic experiments demonstrated that [ 3 H]DTG dissociated in a biphasic manner from both site 1 and site 2. DTG and haloperidol increased the dissociation rate of [ 3 H]DTG from site 1 and site 2, demonstrating the presence of pseudoallosteric interactions. Inorganic calcium channel blockers such as Cd2+ selectively increased the dissociation rate of [ 3 H]DTG from site 2, suggesting an association of this binding site with calcium channels

  20. Structural analysis of dihydrofolate reductases enables rationalization of antifolate binding affinities and suggests repurposing possibilities.

    Science.gov (United States)

    Bhosle, Amrisha; Chandra, Nagasuma

    2016-03-01

    Antifolates are competitive inhibitors of dihydrofolate reductase (DHFR), a conserved enzyme that is central to metabolism and widely targeted in pathogenic diseases, cancer and autoimmune disorders. Although most clinically used antifolates are known to be target specific, some display a fair degree of cross-reactivity with DHFRs from other species. A method that enables identification of determinants of affinity and specificity in target DHFRs from different species and provides guidelines for the design of antifolates is currently lacking. To address this, we first captured the potential druggable space of a DHFR in a substructure called the 'supersite' and classified supersites of DHFRs from 56 species into 16 'site-types' based on pairwise structural similarity. Analysis of supersites across these site-types revealed that DHFRs exhibit varying extents of dissimilarity at structurally equivalent positions in and around the binding site. We were able to explain the pattern of affinities towards chemically diverse antifolates exhibited by DHFRs of different site-types based on these structural differences. We then generated an antifolate-DHFR network by mapping known high-affinity antifolates to their respective supersites and used this to identify antifolates that can be repurposed based on similarity between supersites or antifolates. Thus, we identified 177 human-specific and 458 pathogen-specific antifolates, a large number of which are supported by available experimental data. Thus, in the light of the clinical importance of DHFR, we present a novel approach to identifying differences in the druggable space of DHFRs that can be utilized for rational design of antifolates. © 2016 Federation of European Biochemical Societies.

  1. Affinity of the enantiomers of. alpha. - and. beta. -cyclazocine for binding to the phencyclidine and. mu. opioid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Todd, S.L.; Balster, R.L.; Martin, B.R. (Virginia Commonwealth Univ., Richmond (USA))

    1990-01-01

    The enantiomers in the {alpha} and {beta} series of cyclazocine were evaluated for their ability to bind to phencyclidine (PCP) and {mu}-opioid receptors in order to determine their receptor selectivity. The affinity of (-)-{beta}-cyclazocine for the PCP receptor was 1.5 greater than PCP itself. In contrast, (-)-{alpha}-cyclazocine, (+)-{alpha}-cyclazocine, and (+)-{beta}-cyclazocine were 3-, 5- and 138-fold less potent than PCP, respectively. Scatchard analysis of saturable binding of ({sup 3}H)Tyr-D-Ala-Gly-N-MePhe-Gly-ol (DAMGO) also exhibited a homogeneous population of binding sites with an apparent K{sub D} of 1.9 nM and an estimated Bmax of 117 pM. (3H)Tyr-D-Ala-Gly-N-MePhe-Gly-ol (DAMGO) binding studies revealed that (-)-{alpha}-cyclazocine (K{sub D} = 0.48 nM) was 31-, 1020- and 12,600-fold more potent than (-)-{beta}-cyclazocine, (+)-{alpha}-cyclazocine and (+)-{beta}-cyclazocine, respectively, for binding to the {mu}-opioid receptor. These data show that, although (-)-{beta}-cyclazocine is a potent PCP receptor ligand consistent with its potent PCP-like discriminative stimulus effects, it shows little selectivity for PCP receptor since it also potently displaces {mu}-opioid binding. However, these cyclazocine isomers, due to their extraordinary degree of stereoselectivity, may be useful in characterizing the structural requirements for benzomorphans having activity at the PCP receptor.

  2. Differences in serotonin transporter binding affinity in patients with major depressive disorder and night eating syndrome.

    Science.gov (United States)

    Lundgren, J D; Amsterdam, J; Newberg, A; Allison, K C; Wintering, N; Stunkard, A J

    2009-03-01

    We examined serotonin transporter (SERT) binding affinity using single photon emission computed tomography (SPECT) in patients with major depressive disorder (MDD) and night eating syndrome (NES). There are similarities between MDD and NES in affective symptoms, appetite disturbance, nighttime awakenings, and, particularly, response to selective serotonin reuptake inhibitors (SSRIs). Six non-depressed patients with NES and seven patients with MDD underwent SPECT brain imaging with 123I-ADAM, a radiopharmaceutical agent selective for SERT sites. Uptake ratios of 123I-ADAM SERT binding were obtained for the midbrain, basal ganglia, and temporal lobe regions compared to the cerebellum reference region. Patients with NES had significantly greater SERT uptake ratios (effect size range 0.64-0.84) in the midbrain, right temporal lobe, and left temporal lobe regions than those with MDD whom we had previously studied. Pathophysiological differences in SERT uptake between patients with NES and MDD suggest these are distinct clinical syndromes.

  3. Specificity and affinity quantification of protein-protein interactions.

    Science.gov (United States)

    Yan, Zhiqiang; Guo, Liyong; Hu, Liang; Wang, Jin

    2013-05-01

    Most biological processes are mediated by the protein-protein interactions. Determination of the protein-protein structures and insight into their interactions are vital to understand the mechanisms of protein functions. Currently, compared with the isolated protein structures, only a small fraction of protein-protein structures are experimentally solved. Therefore, the computational docking methods play an increasing role in predicting the structures and interactions of protein-protein complexes. The scoring function of protein-protein interactions is the key responsible for the accuracy of the computational docking. Previous scoring functions were mostly developed by optimizing the binding affinity which determines the stability of the protein-protein complex, but they are often lack of the consideration of specificity which determines the discrimination of native protein-protein complex against competitive ones. We developed a scoring function (named as SPA-PP, specificity and affinity of the protein-protein interactions) by incorporating both the specificity and affinity into the optimization strategy. The testing results and comparisons with other scoring functions show that SPA-PP performs remarkably on both predictions of binding pose and binding affinity. Thus, SPA-PP is a promising quantification of protein-protein interactions, which can be implemented into the protein docking tools and applied for the predictions of protein-protein structure and affinity. The algorithm is implemented in C language, and the code can be downloaded from http://dl.dropbox.com/u/1865642/Optimization.cpp.

  4. Recombinant spider silk genetically functionalized with affinity domains.

    Science.gov (United States)

    Jansson, Ronnie; Thatikonda, Naresh; Lindberg, Diana; Rising, Anna; Johansson, Jan; Nygren, Per-Åke; Hedhammar, My

    2014-05-12

    Functionalization of biocompatible materials for presentation of active protein domains is an area of growing interest. Herein, we describe a strategy for functionalization of recombinant spider silk via gene fusion to affinity domains of broad biotechnological use. Four affinity domains of different origin and structure; the IgG-binding domains Z and C2, the albumin-binding domain ABD, and the biotin-binding domain M4, were all successfully produced as soluble silk fusion proteins under nondenaturing purification conditions. Silk films and fibers produced from the fusion proteins were demonstrated to be chemically and thermally stable. Still, the bioactive domains are concluded to be folded and accessible, since their respective targets could be selectively captured from complex samples, including rabbit serum and human plasma. Interestingly, materials produced from mixtures of two different silk fusion proteins displayed combined binding properties, suggesting that tailor-made materials with desired stoichiometry and surface distributions of several binding domains can be produced. Further, use of the IgG binding ability as a general mean for presentation of desired biomolecules could be demonstrated for a human vascular endothelial growth factor (hVEGF) model system, via a first capture of anti-VEGF IgG to silk containing the Z-domain, followed by incubation with hVEGF. Taken together, this study demonstrates the potential of recombinant silk, genetically functionalized with affinity domains, for construction of biomaterials capable of presentation of almost any desired biomolecule.

  5. Accurate and Reliable Prediction of the Binding Affinities of Macrocycles to Their Protein Targets.

    Science.gov (United States)

    Yu, Haoyu S; Deng, Yuqing; Wu, Yujie; Sindhikara, Dan; Rask, Amy R; Kimura, Takayuki; Abel, Robert; Wang, Lingle

    2017-12-12

    Macrocycles have been emerging as a very important drug class in the past few decades largely due to their expanded chemical diversity benefiting from advances in synthetic methods. Macrocyclization has been recognized as an effective way to restrict the conformational space of acyclic small molecule inhibitors with the hope of improving potency, selectivity, and metabolic stability. Because of their relatively larger size as compared to typical small molecule drugs and the complexity of the structures, efficient sampling of the accessible macrocycle conformational space and accurate prediction of their binding affinities to their target protein receptors poses a great challenge of central importance in computational macrocycle drug design. In this article, we present a novel method for relative binding free energy calculations between macrocycles with different ring sizes and between the macrocycles and their corresponding acyclic counterparts. We have applied the method to seven pharmaceutically interesting data sets taken from recent drug discovery projects including 33 macrocyclic ligands covering a diverse chemical space. The predicted binding free energies are in good agreement with experimental data with an overall root-mean-square error (RMSE) of 0.94 kcal/mol. This is to our knowledge the first time where the free energy of the macrocyclization of linear molecules has been directly calculated with rigorous physics-based free energy calculation methods, and we anticipate the outstanding accuracy demonstrated here across a broad range of target classes may have significant implications for macrocycle drug discovery.

  6. Understanding Ion Binding Affinity and Selectivity in β-Parvalbumin Using Molecular Dynamics and Mean Spherical Approximation Theory.

    Science.gov (United States)

    Kucharski, Amir N; Scott, Caitlin E; Davis, Jonathan P; Kekenes-Huskey, Peter M

    2016-08-25

    Parvalbumin (PV) is a globular calcium (Ca(2+))-selective protein expressed in a variety of biological tissues. Our computational studies of the rat β-parvalbumin (β-PV) isoform seek to elucidate the molecular thermodynamics of Ca(2+) versus magnesium (Mg(2+)) binding at the protein's two EF-hand motifs. Specifically, we have utilized molecular dynamics (MD) simulations and a mean-field electrolyte model (mean spherical approximation (MSA) theory) to delineate how the EF-hand scaffold controls the "local" thermodynamics of Ca(2+) binding selectivity over Mg(2+). Our MD simulations provide the probability density of metal-chelating oxygens within the EF-hand scaffolds for both Ca(2+) and Mg(2+), as well the conformational strain induced by Mg(2+) relative to Ca(2+) binding. MSA theory utilizes the binding domain oxygen and charge distributions to predict the chemical potential of ion binding, as well as their corresponding concentrations within the binding domain. We find that the electrostatic and steric contributions toward ion binding were similar for Mg(2+) and Ca(2+), yet the latter was 5.5 kcal/mol lower in enthalpy when internal strain within the EF hand was considered. We therefore speculate that beyond differences in dehydration energies for the Ca(2+) versus Mg(2+), strain induced in the β-PV EF hand by cation binding significantly contributes to the nearly 10,000-fold difference in binding affinity reported in the literature. We further complemented our analyses of local factors governing cation binding selectivity with whole-protein (global) contributions, such as interhelical residue-residue contacts and solvent exposure of hydrophobic surface. These contributions were found to be comparable for both Ca(2+)- and Mg(2+)-bound β-PV, which may implicate local factors, EF-hand strain, and dehydration, in providing the primary means of selectivity. We anticipate these methods could be used to estimate metal binding thermodynamics across a broad range of

  7. Residues in the H+ Translocation Site Define the pKa for Sugar Binding to LacY†

    Science.gov (United States)

    Smirnova, Irina; Kasho, Vladimir; Sugihara, Junichi; Choe, Jun-Yong; Kaback, H. Ronald

    2009-01-01

    A remarkably high pKa of approximately 10.5 has been determined for sugar-binding affinity to the lactose permease of Escherichia coli (LacY), indicating that, under physiological conditions, substrate binds to fully protonated LacY. We have now systematically tested site-directed replacements for the residues involved in sugar binding, as well as H+ translocation and coupling, in order to determine which residues may be responsible for this alkaline pKa. Mutations in the sugar-binding site (Glu126, Trp151, Glu269) markedly decrease affinity for sugar but do not alter the pKa for binding. In contrast, replacements for residues involved in H+ translocation (Arg302, Tyr236, His322, Asp240, Glu325, Lys319) exhibit pKa values for sugar binding that are either shifted toward neutral pH or independent of pH. Values for the apparent dissociation constant for sugar binding (Kdapp) increase greatly for all mutants except neutral replacements for Glu325 or Lys319, which are characterized by remarkably high affinity sugar binding (i.e., low Kdapp) from pH 5.5 to pH 11. The pH dependence of the on- and off-rate constants for sugar binding measured directly by stopped-flow fluorometry implicates koff as a major factor for the affinity change at alkaline pH and confirms the effects of pH on Kdapp inferred from steady-state fluorometry. These results indicate that the high pKa for sugar binding by wild-type LacY cannot be ascribed to any single amino acid residue but appears to reside within a complex of residues involved in H+ translocation. There is structural evidence for water bound in this complex, and the water could be the site of protonation responsible for the pH dependence of sugar binding. PMID:19689129

  8. Crystal structure of the high-affinity Na+,K+-ATPase–ouabain complex with Mg2+ bound in the cation binding site

    DEFF Research Database (Denmark)

    Laursen, Mette; Yatime, Laure; Nissen, Poul

    2013-01-01

    of ouabain and the side chains of αM1, αM2, and αM6. Furthermore, the structure reveals that cation transport site II is occupied by Mg2+, and crystallographic studies indicate that Rb+ and Mn2+, but not Na+, bind to this site. Comparison with the low-affinity [K2]E2–MgFx–ouabain structure [Ogawa et al...

  9. Human metabolites of synthetic cannabinoids JWH-018 and JWH-073 bind with high affinity and act as potent agonists at cannabinoid type-2 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Moran, Jeffery H. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Arkansas Department of Public Health, Public Health Laboratory, Little Rock, AR 72205 (United States); Prather, Paul L., E-mail: pratherpaull@uams.edu [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2013-06-01

    K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsic activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018

  10. Capillary electrophoresis-based assessment of nanobody affinity and purity

    NARCIS (Netherlands)

    Haselberg, Rob; Oliveira, Sabrina; van der Meel, Roy; Somsen, Govert W; de Jong, Gerhardus J

    2014-01-01

    Drug purity and affinity are essential attributes during development and production of therapeutic proteins. In this work, capillary electrophoresis (CE) was used to determine both the affinity and composition of the biotechnologically produced "nanobody" EGa1, the binding fragment of a

  11. Zinc finger arrays binding human papillomavirus types 16 and 18 genomic DNA: precursors of gene-therapeutics for in-situ reversal of associated cervical neoplasia

    Directory of Open Access Journals (Sweden)

    Wayengera Misaki

    2012-07-01

    Full Text Available Abstract Background Human papillomavirus (HPV types 16 and 18 are the high-risk, sexually transmitted infectious causes of most cervical intraepithelial neoplasias (CIN or cancers. While efficacious vaccines to reduce the sexual acquisition of these high-risk HPVs have recently been introduced, no virus-targeted therapies exist for those already exposed and infected. Considering the oncogenic role of the transforming (E6 and E7 genes of high-risk HPVs in the slow pathogenesis of cervical cancer, we hypothesize that timely disruption or abolition of HPV genome expression within pre-cancerous lesions identified at screening may reverse neoplasia. We aimed to derive model zinc finger nucleases (ZFNs for mutagenesis of the genomes of two high-risk HPV (types 16 & 18. Methods and results Using ZiFiT software and the complete genomes of HPV types16 and 18, we computationally generated the consensus amino acid sequences of the DNA-binding domains (F1, F2, & F3 of (i 296 & 327 contextually unpaired (or single three zinc-finger arrays (sZFAs and (ii 9 & 13 contextually paired (left and right three- zinc-finger arrays (pZFAs that bind genomic DNA of HPV-types 16 and 18 respectively, inclusive of the E7 gene (s/pZFAHpV/E7. In the absence of contextually paired three-zinc-finger arrays (pZFAs that bind DNA corresponding to the genomic context of the E6 gene of either HPV type, we derived the DNA binding domains of another set of 9 & 14 contextually unpaired E6 gene-binding ZFAs (sZFAE6 to aid the future quest for paired ZFAs to target E6 gene sequences in both HPV types studied (pZFAE6. This paper presents models for (i synthesis of hybrid ZFNs that cleave within the genomic DNA of either HPV type, by linking the gene sequences of the DNA-cleavage domain of the FokI endonuclease FN to the gene sequences of a member of the paired-HPV-binding ZFAs (pZFAHpV/E7 + FN, and (ii delivery of the same into precancerous lesions using HPV-derived viral plasmids or

  12. Mechanochemical regulations of RPA's binding to ssDNA

    Science.gov (United States)

    Chen, Jin; Le, Shimin; Basu, Anindita; Chazin, Walter J.; Yan, Jie

    2015-03-01

    Replication protein A (RPA) is a ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein that serves to protect ssDNA from degradation and annealing, and as a template for recruitment of many downstream factors in virtually all DNA transactions in cell. During many of these transactions, DNA is tethered and is likely subject to force. Previous studies of RPA's binding behavior on ssDNA were conducted in the absence of force; therefore the RPA-ssDNA conformations regulated by force remain unclear. Here, using a combination of atomic force microscopy imaging and mechanical manipulation of single ssDNA tethers, we show that force mediates a switch of the RPA bound ssDNA from amorphous aggregation to a much more regular extended conformation. Further, we found an interesting non-monotonic dependence of the binding affinity on monovalent salt concentration in the presence of force. In addition, we discovered that zinc in micromolar concentrations drives ssDNA to a unique, highly stiff and more compact state. These results provide new mechanochemical insights into the influences and the mechanisms of action of RPA on large single ssDNA.

  13. Labeling by ( sup 3 H)1,3-di(2-tolyl)guanidine of two high affinity binding sites in guinea pig brain: Evidence for allosteric regulation by calcium channel antagonists and pseudoallosteric modulation by sigma ligands

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, R.B.; Reid, A.; Mahboubi, A.; Kim, C.H.; De Costa, B.R.; Jacobson, A.E.; Rice, K.C. (National Institute of Mental Health, Bethesda, MD (USA))

    1991-02-01

    Equilibrium binding studies with the sigma receptor ligand ({sup 3}H)1,3-di(2-tolyl)guanidine (({sup 3}H)DTG) demonstrated two high affinity binding sites in membranes prepared from guinea pig brain. The apparent Kd values of DTG for sites 1 and 2 were 11.9 and 37.6 nM, respectively. The corresponding Bmax values were 1045 and 1423 fmol/mg of protein. Site 1 had high affinity for (+)-pentazocine, haloperidol, (R)-(+)-PPP, carbepentane, and other sigma ligands, suggesting a similarity with the dextromethorphan/sigma 1 binding site described by Musacchio et al. (Life Sci. 45:1721-1732 (1989)). Site 2 had high affinity for DTG and haloperidol (Ki = 36.1 nM) and low affinity for most other sigma ligands. Kinetic experiments demonstrated that ({sup 3}H)DTG dissociated in a biphasic manner from both site 1 and site 2. DTG and haloperidol increased the dissociation rate of ({sup 3}H)DTG from site 1 and site 2, demonstrating the presence of pseudoallosteric interactions. Inorganic calcium channel blockers such as Cd2+ selectively increased the dissociation rate of ({sup 3}H)DTG from site 2, suggesting an association of this binding site with calcium channels.

  14. Specific capture of uranyl protein targets by metal affinity chromatography

    International Nuclear Information System (INIS)

    Basset, C.; Dedieu, A.; Guerin, P.; Quemeneur, E.; Meyer, D.; Vidaud, C.

    2008-01-01

    To improve general understanding of biochemical mechanisms in the field of uranium toxicology, the identification of protein targets needs to be intensified. Immobilized metal affinity chromatography (IMAC) has been widely developed as a powerful tool for capturing metal binding proteins from biological extracts. However uranyl cations (UO 2 2+ ) have particular physico-chemical characteristics which prevent them from being immobilized on classical metal chelating supports. We report here on the first development of an immobilized uranyl affinity chromatography method, based on the cation-exchange properties of amino-phosphonate groups for uranyl binding. The cation distribution coefficient and loading capacity on the support were determined. Then the stability of the uranyl-bonded phase under our chromatographic conditions was optimized to promote affinity mechanisms. The successful enrichment of uranyl binding proteins from human serum was then proven using proteomic and mass spectral analysis. (authors)

  15. Affinity-based, biophysical methods to detect and analyze ligand binding to recombinant proteins: matching high information content with high throughput.

    Science.gov (United States)

    Holdgate, Geoff A; Anderson, Malcolm; Edfeldt, Fredrik; Geschwindner, Stefan

    2010-10-01

    Affinity-based technologies have become impactful tools to detect, monitor and characterize molecular interactions using recombinant target proteins. This can aid the understanding of biological function by revealing mechanistic details, and even more importantly, enables the identification of new improved ligands that can modulate the biological activity of those targets in a desired fashion. The selection of the appropriate technology is a key step in that process, as each one of the currently available technologies offers a characteristic type of biophysical information about the ligand-binding event. Alongside the indisputable advantages of each of those technologies they naturally display diverse restrictions that are quite frequently related to the target system to be studied but also to the affinity, solubility and molecular size of the ligands. This paper discusses some of the theoretical and experimental aspects of the most common affinity-based methods, what type of information can be gained from each one of those approaches, and what requirements as well as limitations are expected from working with recombinant proteins on those platforms and how those can be optimally addressed.

  16. Effects of local anesthetics on cholinergic agonist binding affinity of central nervous system. cap alpha. -bungarotoxin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, R.L.; Bennett, E.L.

    1979-12-01

    In general, pharmacological effects of local anesthetics may be attributed to their ability to reversibly block the propagation of nerve and muscle action potentials. At physiologically potent concentrations, local anesthetics (LA) also act as noncompetitive antagonists of the physiological response of post-synaptic nicotinic acetylcholine receptors (nAChR) to cholinergic agonists, and increase agonist binding affinities of nAChR from electric organ. It is postulated that the primary site of LA action on nAChR function is at the receptor-coupled ionophore. Furthermore, LA-nAChR ionophore interactions are thought to accelerate physiological desensitization of nAChR, manifest biochemically as increased affinity of nAChR for agonist. Specific receptors for ..cap alpha..-bungarotoxin (..cap alpha..-Bgt), a potent competitive antagonist at nAChR sites in the periphery, have been detected in rat central nervous system membrane preparations. The affinity of these central ..cap alpha..-Bgt receptors (..cap alpha..-BgtR) for cholinergic agonists is found to increase on exposure to agonist. Nevertheless, on the basis of inconsistent pharmacological and physiological results, uncertainty remains regarding the relationship between ..cap alpha..-BgtR and authentic nAChR in the CNS, despite a wide body of biochemical and histological evidence consistent with their identity. Reasoning that if CNS ..cap alpha..-BgtR are true in nAChR, coupled to functional ion channels, LA might be expected to cause biochemically measurable increases in ..cap alpha..-BgtR affinity for cholinergic agonists, we have undertaken a study of the effects of LA on the ability of acetylcholine (ACh) to inhibit interaction of ..cap alpha..-BgtR with /sup 3/H-labeled ..cap alpha..-Bgt.

  17. Characterization of a human coagulation factor Xa-binding site on Viperidae snake venom phospholipases A2 by affinity binding studies and molecular bioinformatics

    Directory of Open Access Journals (Sweden)

    Gowda Veerabasappa T

    2007-12-01

    Full Text Available Abstract Background The snake venom group IIA secreted phospholipases A2 (SVPLA2, present in the Viperidae snake family exhibit a wide range of toxic and pharmacological effects. They exert their different functions by catalyzing the hydrolysis of phospholipids (PL at the membrane/water interface and by highly specific direct binding to: (i presynaptic membrane-bound or intracellular receptors; (ii natural PLA2-inhibitors from snake serum; and (iii coagulation factors present in human blood. Results Using surface plasmon resonance (SPR protein-protein interaction measurements and an in vitro biological test of inhibition of prothrombinase activity, we identify a number of Viperidae venom SVPLA2s that inhibit blood coagulation through direct binding to human blood coagulation factor Xa (FXa via a non-catalytic, PL-independent mechanism. We classify the SVPLA2s in four groups, depending on the strength of their binding. Molecular electrostatic potentials calculated at the surface of 3D homology-modeling models show a correlation with inhibition of prothrombinase activity. In addition, molecular docking simulations between SVPLA2 and FXa guided by the experimental data identify the potential FXa binding site on the SVPLA2s. This site is composed of the following regions: helices A and B, the Ca2+ loop, the helix C-β-wing loop, and the C-terminal fragment. Some of the SVPLA2 binding site residues belong also to the interfacial binding site (IBS. The interface in FXa involves both, the light and heavy chains. Conclusion We have experimentally identified several strong FXa-binding SVPLA2s that disrupt the function of the coagulation cascade by interacting with FXa by the non-catalytic PL-independent mechanism. By theoretical methods we mapped the interaction sites on both, the SVPLA2s and FXa. Our findings may lead to the design of novel, non-competitive FXa inhibitors.

  18. [3H]cytisine binding to nicotinic cholinergic receptors in brain

    International Nuclear Information System (INIS)

    Pabreza, L.A.; Dhawan, S.; Kellar, K.J.

    1991-01-01

    Cytisine, a ganglionic agonist, competes with high affinity for brain nicotinic cholinergic receptors labeled by any of several nicotinic 3 H-agonist ligands. Here we have examined the binding of [ 3 H]cytisine in rat brain homogenates. [ 3 H]Cytisine binds with high affinity (Kd less than 1 nM), and specific binding represented 60-90% of total binding at all concentrations examined up to 15 nM. The nicotinic cholinergic agonists nicotine, acetylcholine, and carbachol compete with high affinity for [ 3 H]cytisine binding sites, whereas among nicotinic receptor antagonists only dihydro-beta-erythroidine competes with high affinity (in the nanomolar range). Comparison of binding in several brain regions showed that [ 3 H]cytisine binding is higher in the thalamus, striatum, and cortex than in the hippocampus, cerebellum, or hypothalamus. The pharmacology and brain regional distribution of [ 3 H]cytisine binding sites are those predicted for neuronal nicotinic receptor agonist recognition sites. The high affinity and low nonspecific binding of [ 3 H]cytisine should make it a very useful ligand for studying neuronal nicotinic receptors

  19. Change in Allosteric Network Affects Binding Affinities of PDZ Domains: Analysis through Perturbation Response Scanning

    Science.gov (United States)

    Gerek, Z. Nevin; Ozkan, S. Banu

    2011-01-01

    The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS) that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain). With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i) dynamics plays a key role in allosteric regulations of PDZs, (ii) the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii) this might be the mechanism that each PDZ uses to tailor their binding specificities regulation. PMID:21998559

  20. The Role of Metal Binding in the Amyotrophic Lateral Sclerosis-Related Aggregation of Copper-Zinc Superoxide Dismutase

    Directory of Open Access Journals (Sweden)

    Ivana Sirangelo

    2017-08-01

    Full Text Available Protein misfolding and conformational changes are common hallmarks in many neurodegenerative diseases involving formation and deposition of toxic protein aggregates. Although many players are involved in the in vivo protein aggregation, physiological factors such as labile metal ions within the cellular environment are likely to play a key role. In this review, we elucidate the role of metal binding in the aggregation process of copper-zinc superoxide dismutase (SOD1 associated to amyotrophic lateral sclerosis (ALS. SOD1 is an extremely stable Cu-Zn metalloprotein in which metal binding is crucial for folding, enzymatic activity and maintenance of the native conformation. Indeed, demetalation in SOD1 is known to induce misfolding and aggregation in physiological conditions in vitro suggesting that metal binding could play a key role in the pathological aggregation of SOD1. In addition, this study includes recent advances on the role of aberrant metal coordination in promoting SOD1 aggregation, highlighting the influence of metal ion homeostasis in pathologic aggregation processes.

  1. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Science.gov (United States)

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  2. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.

    Science.gov (United States)

    Hattotuwagama, Channa K; Doytchinova, Irini A; Flower, Darren R

    2007-01-01

    Quantitative structure-activity relationship (QSAR) analysis is a cornerstone of modern informatics. Predictive computational models of peptide-major histocompatibility complex (MHC)-binding affinity based on QSAR technology have now become important components of modern computational immunovaccinology. Historically, such approaches have been built around semiqualitative, classification methods, but these are now giving way to quantitative regression methods. We review three methods--a 2D-QSAR additive-partial least squares (PLS) and a 3D-QSAR comparative molecular similarity index analysis (CoMSIA) method--which can identify the sequence dependence of peptide-binding specificity for various class I MHC alleles from the reported binding affinities (IC50) of peptide sets. The third method is an iterative self-consistent (ISC) PLS-based additive method, which is a recently developed extension to the additive method for the affinity prediction of class II peptides. The QSAR methods presented here have established themselves as immunoinformatic techniques complementary to existing methodology, useful in the quantitative prediction of binding affinity: current methods for the in silico identification of T-cell epitopes (which form the basis of many vaccines, diagnostics, and reagents) rely on the accurate computational prediction of peptide-MHC affinity. We have reviewed various human and mouse class I and class II allele models. Studied alleles comprise HLA-A*0101, HLA-A*0201, HLA-A*0202, HLA-A*0203, HLA-A*0206, HLA-A*0301, HLA-A*1101, HLA-A*3101, HLA-A*6801, HLA-A*6802, HLA-B*3501, H2-K(k), H2-K(b), H2-D(b) HLA-DRB1*0101, HLA-DRB1*0401, HLA-DRB1*0701, I-A(b), I-A(d), I-A(k), I-A(S), I-E(d), and I-E(k). In this chapter we show a step-by-step guide into predicting the reliability and the resulting models to represent an advance on existing methods. The peptides used in this study are available from the AntiJen database (http://www.jenner.ac.uk/AntiJen). The PLS method

  3. Chitovibrin: a chitin-binding lectin from Vibrio parahemolyticus.

    Science.gov (United States)

    Gildemeister, O S; Zhu, B C; Laine, R A

    1994-12-01

    A novel 134 kDa, calcium-independent chitin-binding lectin, 'chitovibrin', is secreted by the marine bacterium Vibrio parahemolyticus, inducible with chitin or chitin-oligomers. Chitovibrin shows no apparent enzymatic activity but exhibits a strong affinity for chitin and chito-oligomers > dp9. The protein has an isoelectric pH of 3.6, shows thermal tolerance, binds chitin with an optimum at pH 6 and is active in 0-4 M NaCl. Chitovibrin appears to be completely different from other reported Vibrio lectins and may function to bind V. parahemolyticus to chitin substrates, or to capture or sequester chito-oligomers. It may be a member of a large group of recently described proteins in Vibrios related to a complex chitinoclastic (chitinivorous) system.

  4. IGF binding proteins.

    Science.gov (United States)

    Bach, Leon A

    2017-12-18

    Insulin-like growth factor binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellularly; (ii) interaction with and modulation of other growth factor pathways including EGF, TGF- and VEGF; and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.

  5. Calcium-dependent and -independent binding of the pentraxin serum amyloid P component to glycosaminoglycans and amyloid proteins

    DEFF Research Database (Denmark)

    Danielsen, B; Sørensen, I J; Nybo, Mads

    1997-01-01

    precursor protein beta2M was observed. This binding was also enhanced at slightly acid pH, most pronounced at pH 5.0. The results of this study indicate that SAP can exhibit both Ca2(+)-dependent and -independent binding to ligands involved in amyloid fibril formation and that the binding is enhanced under...... and beta2M) by ELISA. An increase in the dose-dependent binding of SAP to heparan sulfate, AA-protein and beta2M was observed as the pH decreased from 8.0 to 5.0. Furthermore, a lower, but significant Ca2(+)-independent binding of SAP to heparan sulfate, dermatan sulfate, AA protein and the amyloid...

  6. Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites.

    Science.gov (United States)

    Erspamer, V; Melchiorri, P; Falconieri-Erspamer, G; Negri, L; Corsi, R; Severini, C; Barra, D; Simmaco, M; Kreil, G

    1989-07-01

    Deltorphins are endogenous linear heptapeptides, isolated from skin extracts of frogs belonging to the genus Phyllomedusa, that have a higher affinity and selectivity for delta opioid binding sites than any other natural compound known. Two deltorphins with the sequence Tyr-Ala-Phe-Asp(or Glu)-Val-Val-Gly-NH2 have been isolated from skin extracts of Phyllomedusa bicolor. The alanine in position 2 is in the D configuration. These peptides, [D-Ala2]deltorphins I and II, show an even higher affinity for delta receptors than the previously characterized deltorphin, which contains D-methionine as the second amino acid. These peptides show some similarity to another constituent of Phyllomedusa skin, dermorphin, which is highly selective for mu-opioid receptors. These peptides all have the N-terminal sequence Tyr-D-Xaa-Phe, where D-Xaa is either D-alanine or D-methionine. While this structure seems to be capable of activating both mu and delta opioid receptors, differences in the C-terminal regions of these peptides are probably responsible for the observed high receptor selectivity of dermorphin and deltorphin.

  7. Zinc in human serum

    International Nuclear Information System (INIS)

    Kiilerich, S.

    1987-01-01

    The zinc ion is essential for the living organism. Many pathological conditions have been described as a consequence of zinc deficiency. As zinc constitutes less than 0.01 per cent of the body weight, it conventionally belongs to the group of trace elements. The method of atomic absorption spectrophotometry is used to measure the concentration of zinc in serum and urine from healthy persons. The assumptions of the method is discussed. The importance of proteinbinding, diet and the diurnal variation of serum zinc concentration is presented. Serum versus plasma zinc concentration is discussed. Reference serum zinc values from 104 normal subjects are given. Zinc in serum is almost entirely bound to proteins. A preliminary model for the estimation of the distribution of zinc between serum albumin and α 2 -macroglobulin is set up. This estimate has been examined by an ultracentrufugation method. The binding of zinc to a α 2 -macroglobulin in normal persons is appoximately 7 per cent, in patients with cirrhosis of the liver of alcoholic origin approximately 6 per cent, in patients with insulin dependent diabetes mellitus approximately 5 per cent, and in patients with chronic renal failure approximately 2 per cent. It is concluded, therefore, that for clinical purposes it is sufficient to use the concentration of total serum zinc corrected for the concentration of serum albumin. (author)

  8. Modulation of DNA binding by gene-specific transcription factors.

    Science.gov (United States)

    Schleif, Robert F

    2013-10-01

    The transcription of many genes, particularly in prokaryotes, is controlled by transcription factors whose activity can be modulated by controlling their DNA binding affinity. Understanding the molecular mechanisms by which DNA binding affinity is regulated is important, but because forming definitive conclusions usually requires detailed structural information in combination with data from extensive biophysical, biochemical, and sometimes genetic experiments, little is truly understood about this topic. This review describes the biological requirements placed upon DNA binding transcription factors and their consequent properties, particularly the ways that DNA binding affinity can be modulated and methods for its study. What is known and not known about the mechanisms modulating the DNA binding affinity of a number of prokaryotic transcription factors, including CAP and lac repressor, is provided.

  9. Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches.

    Science.gov (United States)

    Idili, Andrea; Plaxco, Kevin W; Vallée-Bélisle, Alexis; Ricci, Francesco

    2013-12-23

    Naturally occurring chemoreceptors almost invariably employ structure-switching mechanisms, an observation that has inspired the use of biomolecular switches in a wide range of artificial technologies in the areas of diagnostics, imaging, and synthetic biology. In one mechanism for generating such behavior, clamp-based switching, binding occurs via the clamplike embrace of two recognition elements onto a single target molecule. In addition to coupling recognition with a large conformational change, this mechanism offers a second advantage: it improves both affinity and specificity simultaneously. To explore the physics of such switches we have dissected here the thermodynamics of a clamp-switch that recognizes a target DNA sequence through both Watson-Crick base pairing and triplex-forming Hoogsteen interactions. When compared to the equivalent linear DNA probe (which relies solely on Watson-Crick interactions), the extra Hoogsteen interactions in the DNA clamp-switch increase the probe's affinity for its target by ∼0.29 ± 0.02 kcal/mol/base. The Hoogsteen interactions of the clamp-switch likewise provide an additional specificity check that increases the discrimination efficiency toward a single-base mismatch by 1.2 ± 0.2 kcal/mol. This, in turn, leads to a 10-fold improvement in the width of the "specificity window" of this probe relative to that of the equivalent linear probe. Given these attributes, clamp-switches should be of utility not only for sensing applications but also, in the specific field of DNA nanotechnology, for applications calling for a better control over the building of nanostructures and nanomachines.

  10. DNA Mismatch Binding and Antiproliferative Activity of Rhodium Metalloinsertors

    Science.gov (United States)

    Ernst, Russell J.; Song, Hang; Barton, Jacqueline K.

    2009-01-01

    Deficiencies in mismatch repair (MMR) are associated with carcinogenesis. Rhodium metalloinsertors bind to DNA base mismatches with high specificity and inhibit cellular proliferation preferentially in MMR-deficient cells versus MMR-proficient cells. A family of chrysenequinone diimine complexes of rhodium with varying ancillary ligands that serve as DNA metalloinsertors has been synthesized, and both DNA mismatch binding affinities and antiproliferative activities against the human colorectal carcinoma cell lines HCT116N and HCT116O, an isogenic model system for MMR deficiency, have been determined. DNA photocleavage experiments reveal that all complexes bind to the mismatch sites with high specificities; DNA binding affinities to oligonucleotides containing single base CA and CC mismatches, obtained through photocleavage titration or competition, vary from 104 to 108 M−1 for the series of complexes. Significantly, binding affinities are found to be inversely related to ancillary ligand size and directly related to differential inhibition of the HCT116 cell lines. The observed trend in binding affinity is consistent with the metalloinsertion mode where the complex binds from the minor groove with ejection of mismatched base pairs. The correlation between binding affinity and targeting of the MMR-deficient cell line suggests that rhodium metalloinsertors exert their selective biological effects on MMR-deficient cells through mismatch binding in vivo. PMID:19175313

  11. ZINC MITIGATION INTERIM REPORT - THERMODYNAMIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.

    2010-12-17

    An experimental program was initiated in order to develop and validate conditions that will effectively trap Zn vapors that are released during extraction. The proposed work is broken down into three tasks. The first task is to determine the effectiveness of various pore sizes of filter elements. The second task is to determine the effect of filter temperature on zinc vapor deposition. The final task is to determine whether the zinc vapors can be chemically bound. The approach for chemically binding the zinc vapors has two subtasks, the first is a review of literature and thermodynamic calculations and the second is an experimental approach using the best candidates. This report details the results of the thermodynamic calculations to determine feasibility of chemically binding the zinc vapors within the furnace module, specifically the lithium trap (1). A review of phase diagrams, literature, and thermodynamic calculations was conducted to determine if there are suitable materials to capture zinc vapor within the lithium trap of the extraction basket. While numerous elements exist that form compounds with zinc, many of these also form compounds with hydrogen or the water that is present in the TPBARs. This relatively comprehensive review of available data indicates that elemental cobalt and copper and molybdenum trioxide (MoO3) may have the requisite properties to capture zinc and yet not be adversely affected by the extraction gases and should be considered for testing.

  12. Affinity crosslinking of /sup 125/I-human beta-endorphin to cell lines possessing either mu or delta type opioid binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Keren, O.; Gioannini, T.L.; Hiller, J.M.; Simon, E.J.

    1986-01-01

    Affinity crosslinking of human /sup 125/I-beta-Endorphin to cell lines possessing either mu or delta binding sites was carried out. Autoradiography of SDS-PAGE gels from these crosslinked cell lines revealed that these two sites contain major peptide subunits that differ in molecular size. This confirms our earlier finding in mammalian brain which demonstrated separate and distinct subunits for mu and delta opioid receptors.

  13. Calculating the Na⁺ translocating V-ATPase catalytic site affinity for substrate binding by homology modeled NtpA monomer using molecular dynamics/free energy calculation.

    Science.gov (United States)

    Muhammed, Zahed; Arai, Satoshi; Saijo, Shinya; Yamato, Ichiro; Murata, Takeshi; Suenaga, Atsushi

    2012-07-01

    Vacuolar ATPase (V-ATPase) of Enterococcus hirae is composed of a soluble catalytic domain (V₁; NtpA₃-B₃-D-G) and an integral membrane domain (V₀; NtpI-K₁₀) connected by a central and two peripheral stalks (NtpC, NtpD-G and NtpE-F). Recently nucleotide binding of catalytic NtpA monomer has been reported (Arai et al.). In the present study, we calculated the nucleotide binding affinity of NtpA by molecular dynamics (MD) simulation/free energy calculation using MM-GBSA approach based on homology modeled structure of NtpA monomer docked with ATP analogue, adenosine 5'-[β, γ-imido] triphosphate (AMP-PNP). The calculated binding free energies showed qualitatively good agreement with experimental data. The calculation was cross-validated further by the rigorous method, thermodynamic integration (TI) simulation. Finally, the interaction between NtpA and nucleotides at the atomic level was investigated by the analyses of components of free energy and the optimized model structures obtained from MD simulations, suggesting that electrostatic contribution is responsible for the difference in nucleotide binding to NtpA monomer. This is the first observation and suggestion to explain the difference of nucleotide binding properties in V-ATPase NtpA subunit, and our method can be a valuable primary step to predict nucleotide binding affinity to other subunits (NtpAB, NtpA₃B₃) and to explore subunit interactions and eventually may help to understand energy transduction mechanism of E. hirae V-ATPase. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The creation of the artificial RING finger from the cross-brace zinc finger by α-helical region substitution

    International Nuclear Information System (INIS)

    Miyamoto, Kazuhide; Togiya, Kayo

    2010-01-01

    The creation of the artificial RING finger as ubiquitin-ligating enzyme (E3) has been demonstrated. In this study, by the α-helical region substitution between the EL5 RING finger and the Williams-Beuren syndrome transcription factor (WSTF) PHD finger, the artificial E3 (WSTF PHD R ING finger) was newly created. The experiments of the chemical modification of residues Cys and the circular dichroism spectra revealed that the WSTF PHD R ING finger binds two zinc atoms and adopts the zinc-dependent ordered-structure. In the substrate-independent ubiquitination assay, the WSTF PHD R ING finger functions as E3 and was poly- or mono-ubiquitinated. The present strategy is very simple and convenient, and consequently it might be widely applicable to the creation of various artificial E3 RING fingers with the specific ubiquitin-conjugating enzyme (E2)-binding capability.

  15. Chemical Editing of Macrocyclic Natural Products and Kinetic Profiling Reveal Slow, Tight-Binding Histone Deacetylase Inhibitors with Picomolar Affinities

    DEFF Research Database (Denmark)

    Kitir, Betül; Maolanon, Alex R.; Ohm, Ragnhild G.

    2017-01-01

    medicines. Therefore, detailed mechanistic information and precise characterization of the chemical probes used to investigate the effects of HDAC enzymes are vital. We interrogated Nature's arsenal of macrocyclic nonribosomal peptide HDAC inhibitors by chemical synthesis and evaluation of more than 30...... natural products and analogues. This furnished surprising trends in binding affinities for the various macrocycles, which were then exploited for the design of highly potent class I and IIb HDAC inhibitors. Furthermore, thorough kinetic investigation revealed unexpected inhibitory mechanisms of important...

  16. A study of the uptake of chloroquine in malaria-infected erythrocytes. High and low affinity uptake and the influence of glucose and its analogues.

    Science.gov (United States)

    Diribe, C O; Warhurst, D C

    1985-09-01

    A study of concentration- and substrate-dependence of chloroquine uptake has been carried out on mouse erythrocytes infected with the chloroquine-sensitive NK65 and the chloroquine-resistant RC strains of Plasmodium berghei. The presence of drug binding sites of high and low affinity in such strains of P. berghei was confirmed. High affinity uptake sites in cells parasitized with chloroquine-sensitive and chloroquine-resistant parasites have similar characteristics, but in the sensitive strain the major component of chloroquine-uptake is at high affinity and dependent on the availability of ATP whilst in the resistant strain the major component of uptake is at low affinity and independent of energy. An absolute increase in the quantity of the low affinity site in erythrocytes parasitized with chloroquine-resistant P. berghei was noted, which may be related to an increase in quantity of parasite membrane.

  17. Nanosensing of Pesticides by Zinc Oxide Quantum Dot: An Optical and Electrochemical Approach for the Detection of Pesticides in Water.

    Science.gov (United States)

    Sahoo, Dibakar; Mandal, Abhishek; Mitra, Tapas; Chakraborty, Kaushik; Bardhan, Munmun; Dasgupta, Anjan Kumar

    2018-01-17

    Present study reveals the low concentrations (∼4 ppm) of pesticide sensing vis-à-vis degradation of pesticides with the help of nontoxic zinc oxide quantum dots (QD). In our study, we have taken four different pesticides viz., aldrin, tetradifon, glyphosate, and atrazine, which are widely used in agriculture and have structural dissimilarities/diversity. By using optical sensing techniques such as steady state and time-resolved fluorescence, we have analyzed the detailed exciton dynamics of QD in the presence of different pesticides. It has been found that the pesticide containing good leaving groups (-Cl) can interact with QD promptly and has high binding affinity (∼10 7 M -1 ). The different binding signatures of QD with different pesticides enable us to differentiate between the pesticides. Time resolved fluorescence spectroscopy provides significant variance (∼150-300 ns) for different pesticides. Furthermore, a large variation (10 5 Ω to 7 × 10 4 Ω) in the resistance of QD in the presence of different pesticides was revealed by electrochemical sensing technique. Moreover, during the interaction with pesticides, QD can also act as a photocatalyst to degrade pesticides. Present investigation explored the fact that the rate of degradation is positively affected by the binding affinity, i.e., the greater the binding, the greater is the degradation. What is more, both optical and electrochemical measurements of QD, in tandem, as described in our study could be utilized as the pattern recognition sensor for detection of several pesticides.

  18. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orcutt, Kelly Davis; Slusarczyk, Adrian L. [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cieslewicz, Maryelise [Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ruiz-Yi, Benjamin [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bhushan, Kumar R. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Frangioni, John V. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Wittrup, K. Dane, E-mail: wittrup@mit.ed [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-02-15

    Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2{+-}1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a {sup 111}In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.

  19. Photoaffinity labelling of high affinity dopamine binding proteins

    International Nuclear Information System (INIS)

    Ross, G.M.; McCarry, B.E.; Mishra, R.K.

    1986-01-01

    A photoactive analogue of the dopamine agonist 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) has been synthesized and used to photoaffinity label dopamine binding proteins prepared from bovine caudate nucleus. N-(3-]N'-4-azidobenzamidol]-aminopropyl)-aminopropyl)-ADTN (AzB-AP-ADTN) was incubated with caudate membranes and irradiated with UV light. Membranes were then repeatedly washed by centrifugation to remove excess photolabel. A binding assay, using ( 3 H)-SCH 23390 (a D 1 specific antagonist), was then performed to evaluate the loss of receptor density in the photolyzed preparation. AzB-AP-ADTN irreversibly blocked ( 3 H)-SCH 23390 binding in a dose-dependent manner. Scatchard analysis revealed a decrease in the B/sub max/, with no significant change in the K/sub d/, of ( 3 H)-SCH 23390 binding. Compounds which compete for D 1 receptor binding (such as dopamine, SKF 38393 or apomorphine), proteted the SCH 23390 binding site from inactivation. This data would suggest that the novel photoaffinity ligand, AzB-AP-ADTN, can covalently label the D 1 (adenylate cyclase linked) dopamine receptor

  20. A Novel Affinity Tag, ABTAG, and Its Application to the Affinity Screening of Single-Domain Antibodies Selected by Phage Display

    Directory of Open Access Journals (Sweden)

    Greg Hussack

    2017-10-01

    Full Text Available ABTAG is a camelid single-domain antibody (sdAb that binds to bovine serum albumin (BSA with low picomolar affinity. In surface plasmon resonance (SPR analyses using BSA surfaces, bound ABTAG can be completely dissociated from the BSA surfaces at low pH, over multiple cycles, without any reduction in the capacity of the BSA surfaces to bind ABTAG. A moderate throughput, SPR-based, antibody screening assay exploiting the unique features of ABTAG is described. Anti-carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6 sdAbs were isolated from a phage-displayed sdAb library derived from the heavy chain antibody repertoire of a llama immunized with CEACAM6. Following one or two rounds of panning, enriched clones were expressed as ABTAG fusions in microtiter plate cultures. The sdAb-ABTAG fusions from culture supernatants were captured on BSA surfaces and CEACAM6 antigen was then bound to the captured molecules. The SPR screening method gives a read-out of relative expression levels of the fusion proteins and kinetic and affinity constants for CEACAM6 binding by the captured molecules. The library was also panned and screened by conventional methods and positive clones were subcloned and expressed for SPR analysis. Compared to conventional panning and screening, the SPR-based ABTAG method yielded a considerably higher diversity of binders, some with affinities that were three orders of magnitude higher affinity than those identified by conventional panning.

  1. Assessment of a recombinant androgen receptor binding assay: initial steps towards validation.

    Science.gov (United States)

    Freyberger, Alexius; Weimer, Marc; Tran, Hoai-Son; Ahr, Hans-Jürgen

    2010-08-01

    Despite more than a decade of research in the field of endocrine active compounds with affinity for the androgen receptor (AR), still no validated recombinant AR binding assay is available, although recombinant AR can be obtained from several sources. With funding from the European Union (EU)-sponsored 6th framework project, ReProTect, we developed a model protocol for such an assay based on a simple AR binding assay recently developed at our institution. Important features of the protocol were the use of a rat recombinant fusion protein to thioredoxin containing both the hinge region and ligand binding domain (LBD) of the rat AR (which is identical to the human AR-LBD) and performance in a 96-well plate format. Besides two reference compounds [dihydrotestosterone (DHT), androstenedione] ten test compounds with different affinities for the AR [levonorgestrel, progesterone, prochloraz, 17alpha-methyltestosterone, flutamide, norethynodrel, o,p'-DDT, dibutylphthalate, vinclozolin, linuron] were used to explore the performance of the assay. At least three independent experiments per compound were performed. The AR binding properties of reference and test compounds were well detected, in terms of the relative ranking of binding affinities, there was good agreement with published data obtained from experiments using recombinant AR preparations. Irrespective of the chemical nature of the compound, individual IC(50)-values for a given compound varied by not more than a factor of 2.6. Our data demonstrate that the assay reliably ranked compounds with strong, weak, and no/marginal affinity for the AR with high accuracy. It avoids the manipulation and use of animals, as a recombinant protein is used and thus contributes to the 3R concept. On the whole, this assay is a promising candidate for further validation. Copyright 2009 Elsevier Inc. All rights reserved.

  2. The solution structure of the N-terminal zinc finger of GATA-1 reveals a specific binding face for the transcriptional co-factor FOG

    International Nuclear Information System (INIS)

    Kowalski, K.; Czolij, R.; King, G.F.; Crossley, M.; Mackay, J.P.

    1999-01-01

    Zinc fingers (ZnFs) are generally regarded as DNA-binding motifs. However, a number of recent reports have implicated particular ZnFs in the mediation of protein-protein interactions. The N-terminal ZnF of GATA-1 (NF) is one such finger, having been shown to interact with a number of other proteins, including the recently discovered transcriptional co-factor FOG. Here we solve the three-dimensional structure of the NF in solution using multidimensional 1H/15N NMR spectroscopy, and we use 1H/15N spin relaxation measurements to investigate its backbone dynamics. The structure consists of two distorted β-hairpins and a single α-helix, and is similar to that of the C-terminal ZnF of chicken GATA-1. Comparisons of the NF structure with those of other C4-type zinc binding motifs, including hormone receptor and LIM domains, also reveal substantial structural homology. Finally, we use the structure to map the spatial locations of NF residues shown by mutagenesis to be essential for FOG binding, and demonstrate that these residues all lie on a single face of the NF. Notably, this face is well removed from the putative DNA- binding face of the NF, an observation which is suggestive of simultaneous roles for the NF; that is, stabilisation of GATA-1 DNA complexes and recruitment of FOG to GATA-1-controlled promoter regions

  3. Ligand binding and crystal structures of the substrate-binding domain of the ABC transporter OpuA.

    Directory of Open Access Journals (Sweden)

    Justina C Wolters

    2010-04-01

    Full Text Available The ABC transporter OpuA from Lactococcus lactis transports glycine betaine upon activation by threshold values of ionic strength. In this study, the ligand binding characteristics of purified OpuA in a detergent-solubilized state and of its substrate-binding domain produced as soluble protein (OpuAC was characterized.The binding of glycine betaine to purified OpuA and OpuAC (K(D = 4-6 microM did not show any salt dependence or cooperative effects, in contrast to the transport activity. OpuAC is highly specific for glycine betaine and the related proline betaine. Other compatible solutes like proline and carnitine bound with affinities that were 3 to 4 orders of magnitude lower. The low affinity substrates were not noticeably transported by membrane-reconstituted OpuA. OpuAC was crystallized in an open (1.9 A and closed-liganded (2.3 A conformation. The binding pocket is formed by three tryptophans (Trp-prism coordinating the quaternary ammonium group of glycine betaine in the closed-liganded structure. Even though the binding site of OpuAC is identical to that of its B. subtilis homolog, the affinity for glycine betaine is 4-fold higher.Ionic strength did not affect substrate binding to OpuA, indicating that regulation of transport is not at the level of substrate binding, but rather at the level of translocation. The overlap between the crystal structures of OpuAC from L.lactis and B.subtilis, comprising the classical Trp-prism, show that the differences observed in the binding affinities originate from outside of the ligand binding site.

  4. Development of an aptamer-based affinity purification method for vascular endothelial growth factor

    Directory of Open Access Journals (Sweden)

    Maren Lönne

    2015-12-01

    Full Text Available Since aptamers bind their targets with high affinity and specificity, they are promising alternative ligands in protein affinity purification. As aptamers are chemically synthesized oligonucleotides, they can be easily produced in large quantities regarding GMP conditions allowing their application in protein production for therapeutic purposes. Several advantages of aptamers compared to antibodies are described in general within this paper. Here, an aptamer directed against the human Vascular Endothelial Growth Factor (VEGF was used as affinity ligand for establishing a purification platform for VEGF in small scale. The aptamer was covalently immobilized on magnetic beads in a controlled orientation resulting in a functional active affinity matrix. Target binding was optimized by introduction of spacer molecules and variation of aptamer density. Further, salt-induced target elution was demonstrated as well as VEGF purification from a complex protein mixture proving the specificity of protein-aptamer binding.

  5. Entrapment of alpha1-acid glycoprotein in high-performance affinity columns for drug-protein binding studies.

    Science.gov (United States)

    Bi, Cong; Jackson, Abby; Vargas-Badilla, John; Li, Rong; Rada, Giana; Anguizola, Jeanethe; Pfaunmiller, Erika; Hage, David S

    2016-05-15

    A slurry-based method was developed for the entrapment of alpha1-acid glycoprotein (AGP) for use in high-performance affinity chromatography to study drug interactions with this serum protein. Entrapment was achieved based on the physical containment of AGP in hydrazide-activated porous silica supports and by using mildly oxidized glycogen as a capping agent. The conditions needed for this process were examined and optimized. When this type of AGP column was used in binding studies, the association equilibrium constant (Ka) measured by frontal analysis at pH 7.4 and 37°C for carbamazepine with AGP was found to be 1.0 (±0.5)×10(5)M(-1), which agreed with a previously reported value of 1.0 (±0.1)×10(5)M(-1). Binding studies based on zonal elution were conducted for several other drugs with such columns, giving equilibrium constants that were consistent with literature values. An entrapped AGP column was also used in combination with a column containing entrapped HSA in a screening assay format to compare the binding of various drugs to AGP and HSA. These results also agreed with previous data that have been reported in literature for both of these proteins. The same entrapment method could be extended to other proteins and to the investigation of additional types of drug-protein interactions. Potential applications include the rapid quantitative analysis of biological interactions and the high-throughput screening of drug candidates for their binding to a given protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Vacuolar zinc transporter Zrc1 is required for detoxification of excess intracellular zinc in the human fungal pathogen Cryptococcus neoformans.

    Science.gov (United States)

    Cho, Minsu; Hu, Guanggan; Caza, Mélissa; Horianopoulos, Linda C; Kronstad, James W; Jung, Won Hee

    2018-01-01

    Zinc is an important transition metal in all living organisms and is required for numerous biological processes. However, excess zinc can also be toxic to cells and cause cellular stress. In the model fungus Saccharomyces cerevisiae, a vacuolar zinc transporter, Zrc1, plays important roles in the storage and detoxification of excess intracellular zinc to protect the cell. In this study, we identified an ortholog of the S. cerevisiae ZRC1 gene in the human fungal pathogen Cryptococcus neoformans. Zrc1 was localized in the vacuolar membrane in C. neoformans, and a mutant lacking ZRC1 showed significant growth defects under high-zinc conditions. These results suggested a role for Zrc1 in zinc detoxification. However, contrary to our expectation, the expression of Zrc1 was induced in cells grown in zinc-limited conditions and decreased upon the addition of zinc. These expression patterns were similar to those of Zip1, the high-affinity zinc transporter in the plasma membrane of C. neoformans. Furthermore, we used the zrc1 mutant in a murine model of cryptococcosis to examine whether a mammalian host could inhibit the survival of C. neoformans using zinc toxicity. We found that the mutant showed no difference in virulence compared with the wildtype strain. This result suggests that Zrc1-mediated zinc detoxification is not required for the virulence of C. neoformans, and imply that zinc toxicity may not be an important aspect of the host immune response to the fungus.

  7. Affinity Electrophoresis for Analysis of Catalytic Module-Carbohydrate Interactions

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Svensson, Birte

    2017-01-01

    Affinity electrophoresis has long been used to study the interaction between proteins and large soluble ligands. The technique has been found to have great utility for the examination of polysaccharide binding by proteins, particularly carbohydrate binding modules (CBMs). In recent years, carbohy...

  8. Is the sex hormone binding globulin related to preeclampsia independent of insulin resistance

    International Nuclear Information System (INIS)

    Rahmanian, M.; Salari, Z.; Mirmohammadkhani, M.; Ghorbani, R.

    2014-01-01

    Objective: To evaluate the association between Sex Hormone Binding Globulin and preeclampsia in Iranian women considering the probable confounding effect of insulin resistance. Methods: The case-control study was conducted at the Semnan University of Medical Sciences, Iran, and comprised pregnant women who received prenatal care at Amiralmomenin Hospital in 2011. Cases represented patients admitted because of preeclampsia, while controls were randomly selected eligible pregnant women without hypertension and/or proteinuria. Fasting blood sugar and insulin were assessed for all participants as well as their blood concentration of Sex Hormone Binding Globulin. The Homeostasis Model Assessment of Insulin Resistance Score was used. The correlation between dependant and independent variables was reported by crude and adjusted odds ratio applying logistic regression models. SPSS 16.0 was used for statistical analysis. Results: Of the 100 pregnant women in the study, 45(45%) were cases. Insulin resistance was found to be significantly more frequent in the cases compared to the controls (adjusted odds ratio=2.78; 95% Confidence Interval: 1.11, 6.90; p<0.01). There was a significant reverse correlation between level of Sex Hormone Binding Globulin in blood and being a case of preeclampsia (adjusted odds ratio=0.99; 95% Confidence Interval: 0.98, 1.00; p=0.04). Conclusion: Independent of insulin resistance, every 1nmol/l increase in Sex Hormone Binding Globulin, decreases the odds of preeclampsia by 1%, notifying Sex Hormone Binding Globulin as an important biomarker about its etiology and prediction. (author)

  9. Goatpoxvirus ATPase activity is increased by dsDNA and decreased by zinc ion.

    Science.gov (United States)

    Lee, Ming-Liang; Hsu, Wei-Li; Wang, Chi-Young; Chen, Hui-Yu; Lin, Fong-Yuan; Chang, Ming-Huang; Chang, Hong-You; Wong, Min-Liang; Chan, Kun-Wei

    2016-10-01

    Viral-encoded ATPase can act as a part of molecular motor in genome packaging of DNA viruses, such as vaccinia virus and adenovirus, by ATP hydrolysis and interaction with DNA. Poxviral ATPase (also called A32) is involved in genomic double-stranded DNA (dsDNA) encapsidation, and inhibition of the expression of A32 causes formation of immature virions lacking viral DNA. However, the role of A32 in goatpoxvirus genome packaging and its dsDNA binding property are not known. In this study, purified recombinant goatpoxvirus A32 protein (rA32) was examined for its dsDNA binding property as well as the effect of dsDNA on ATP hydrolysis. We found that rA32 could bind dsDNA, and its ATPase activity was significant increased with dsDNA binding. Effects of magnesium and calcium ions on ATP hydrolysis were investigated also. The ATPase activity was dramatically enhanced by dsDNA in the presence of Mg(2+); in contrast, ATPase function was not altered by Ca(2+). Furthermore, the enzyme activity of rA32 was completely blocked by Zn(2+). Regarding DNA-protein interaction, the rA32-ATP-Mg(2+) showed lower dsDNA binding affinity than that of rA32-ATP-Ca(2+). The DNA-protein binding was stronger in the presence of zinc ion. Our results implied that A32 may play a role in viral genome encapsidation and DNA condensation.

  10. A novel zinc finger protein Zfp277 mediates transcriptional repression of the Ink4a/arf locus through polycomb repressive complex 1

    DEFF Research Database (Denmark)

    Negishi, Masamitsu; Saraya, Atsunori; Mochizuki, Shinobu

    2010-01-01

    . METHODOLOGY/PRINCIPAL FINDINGS: We examined the function of Zinc finger domain-containing protein 277 (Zfp277), a novel zinc finger protein that interacts with the PcG protein Bmi1. Zfp277 binds to the Ink4a/Arf locus in a Bmi1-independent manner and interacts with polycomb repressor complex (PRC) 1 through...... is essential for the recruitment of PRC1 to the Ink4a/Arf locus. Our findings also highlight dynamic regulation of both Zfp277 and PcG proteins by the oxidative stress pathways....

  11. Ferromagnetic Levan Composite: An Affinity Matrix to Purify Lectin

    Directory of Open Access Journals (Sweden)

    Renata Angeli

    2009-01-01

    Full Text Available A simple and inexpensive procedure used magnetite and levan to synthesize a composite recovered by a magnetic field. Lectins from Canavalia ensiformis (Con A and Cratylia mollis (Cramoll 1 and Cramoll 1,4 did bind specifically to composite. The magnetic property of derivative favored washing out contaminating proteins and recovery of pure lectins with glucose elution. Cramoll 1 was purified by this affinity binding procedure in two steps instead of a previous three-step protocol with ammonium sulfate fractionation, affinity chromatography on Sephadex G-75, and ion exchange chromatography through a CM-cellulose column.

  12. Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel that Evolved by Gene Duplication

    Energy Technology Data Exchange (ETDEWEB)

    Pejcha, Robert; Ludwig, Martha L. (Michigan)

    2010-03-08

    Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two ({beta}{alpha}){sub 8} barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys){sub 3}Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E {center_dot} Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.

  13. Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel that Evolved by Gene Duplication

    International Nuclear Information System (INIS)

    Pejcha, Robert; Ludwig, Martha L.

    2005-01-01

    Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two (βα) 8 barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys) 3 Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E · Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.

  14. Cobalamin-independent methionine synthase (MetE: a face-to-face double barrel that evolved by gene duplication.

    Directory of Open Access Journals (Sweden)

    Robert Pejchal

    2005-02-01

    Full Text Available Cobalamin-independent methionine synthase (MetE catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH, both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two (betaalpha(8 barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys(3Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E.Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.

  15. Mutation of a zinc-binding residue in the glycine receptor α1 subunit changes ethanol sensitivity in vitro and alcohol consumption in vivo.

    Science.gov (United States)

    McCracken, Lindsay M; Blednov, Yuri A; Trudell, James R; Benavidez, Jillian M; Betz, Heinrich; Harris, R Adron

    2013-02-01

    Ethanol is a widely used drug, yet an understanding of its sites and mechanisms of action remains incomplete. Among the protein targets of ethanol are glycine receptors (GlyRs), which are potentiated by millimolar concentrations of ethanol. In addition, zinc ions also modulate GlyR function, and recent evidence suggests that physiologic concentrations of zinc enhance ethanol potentiation of GlyRs. Here, we first built a homology model of a zinc-bound GlyR using the D80 position as a coordination site for a zinc ion. Next, we investigated in vitro the effects of zinc on ethanol action at recombinant wild-type (WT) and mutant α1 GlyRs containing the D80A substitution, which eliminates zinc potentiation. At D80A GlyRs, the effects of 50 and 200 mM ethanol were reduced as compared with WT receptors. Also, in contrast to what was seen with WT GlyRs, neither adding nor chelating zinc changed the magnitude of ethanol enhancement of mutant D80A receptors. Next, we evaluated the in vivo effects of the D80A substitution by using heterozygous Glra1(D80A) knock-in (KI) mice. The KI mice showed decreased ethanol consumption and preference, and they displayed increased startle responses compared with their WT littermates. Other behavioral tests, including ethanol-induced motor incoordination and strychnine-induced convulsions, revealed no differences between the KI and WT mice. Together, our findings indicate that zinc is critical in determining the effects of ethanol at GlyRs and suggest that zinc binding at the D80 position may be important for mediating some of the behavioral effects of ethanol action at GlyRs.

  16. X-ray Absorption Spectroscopy of the Zinc-Binding Sites in the Class B2 Metallo-B-lactamsase ImiS from Aeromonas veronii bv. sobria

    Energy Technology Data Exchange (ETDEWEB)

    Costello,A.; Sharma, N.; Yang, K.; Crowder, M.; Tierney, D.

    2006-01-01

    X-ray absorption spectroscopy was used to investigate the metal-binding sites of ImiS from Aeromonas veronii bv. sobria in catalytically active (1-Zn), product-inhibited (1-Zn plus imipenem), and inactive (2-Zn) forms. The first equivalent of zinc(II) was found to bind to the consensus Zn{sub 2} site. The reaction of 1-Zn ImiS with imipenem leads to a product-bound species, coordinated to Zn via a carboxylate group. The inhibitory binding site of ImiS was examined by a comparison of wild-type ImiS with 1 and 2 equiv of bound zinc. 2-Zn ImiS extended X-ray absorption fine structure data support a binding site that is distant from the active site and contains both one sulfur donor and one histidine ligand. On the basis of the amino acid sequence of ImiS and the crystal structure of CphA [Garau et al. (2005) J. Mol. Biol. 345, 785-795], we propose that the inhibitory binding site is formed by M146, found on the B2-distinct {alpha}3 helix, and H118, a canonical Zn{sub 1} ligand, proposed to help activate the nucleophilic water. The mutation of M146 to isoleucine abolishes metal inhibition. This is the first characterization of ImiS with the native metal Zn and establishes, for the first time, the location of the inhibitory metal site.

  17. Influence of bone affinity on the skeletal distribution of fluorescently labeled bisphosphonates in vivo.

    Science.gov (United States)

    Roelofs, Anke J; Stewart, Charlotte A; Sun, Shuting; Błażewska, Katarzyna M; Kashemirov, Boris A; McKenna, Charles E; Russell, R Graham G; Rogers, Michael J; Lundy, Mark W; Ebetino, Frank H; Coxon, Fraser P

    2012-04-01

    Bisphosphonates are widely used antiresorptive drugs that bind to calcium. It has become evident that these drugs have differing affinities for bone mineral; however, it is unclear whether such differences affect their distribution on mineral surfaces. In this study, fluorescent conjugates of risedronate, and its lower-affinity analogues deoxy-risedronate and 3-PEHPC, were used to compare the localization of compounds with differing mineral affinities in vivo. Binding to dentine in vitro confirmed differences in mineral binding between compounds, which was influenced predominantly by the characteristics of the parent compound but also by the choice of fluorescent tag. In growing rats, all compounds preferentially bound to forming endocortical as opposed to resorbing periosteal surfaces in cortical bone, 1 day after administration. At resorbing surfaces, lower-affinity compounds showed preferential binding to resorption lacunae, whereas the highest-affinity compound showed more uniform labeling. At forming surfaces, penetration into the mineralizing osteoid was found to inversely correlate with mineral affinity. These differences in distribution at resorbing and forming surfaces were not observed at quiescent surfaces. Lower-affinity compounds also showed a relatively higher degree of labeling of osteocyte lacunar walls and labeled lacunae deeper within cortical bone, indicating increased penetration of the osteocyte canalicular network. Similar differences in mineralizing surface and osteocyte network penetration between high- and low-affinity compounds were evident 7 days after administration, with fluorescent conjugates at forming surfaces buried under a new layer of bone. Fluorescent compounds were incorporated into these areas of newly formed bone, indicating that "recycling" had occurred, albeit at very low levels. Taken together, these findings indicate that the bone mineral affinity of bisphosphonates is likely to influence their distribution within the

  18. Different roles suggested by sex-biased expression and pheromone binding affinity among three pheromone binding proteins in the pink rice borer, Sesamia inferens (Walker) (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Jin, Jun-Yan; Li, Zhao-Qun; Zhang, Ya-Nan; Liu, Nai-Yong; Dong, Shuang-Lin

    2014-07-01

    Pheromone binding proteins (PBPs) are thought to bind and transport hydrophobic sex pheromone molecules across the aqueous sensillar lymph to specific pheromone receptors on the dendritic membrane of olfactory neurons. A maximum of 3 PBP genes have been consistently identified in noctuid species, and each of them shares high identity with its counterparts in other species within the family. The functionality differences of the 3 proteins are poorly understood. In the present study, 3 PBP cDNAs (SinfPBP1, 2, 3) were identified from the pink rice borer, Sesamia inferens, for the first time. The quantitative real-time PCR indicated that the 3 PBPs displayed similar temporal but very different sex related expression profiles. Expression of SinfPBP1 and SinfPBP2 were highly and moderately male biased, respectively, while SinfPBP3 was slightly female biased, as SinfPBPs were expressed at very different levels (PBP1>PBP2≫PBP3) in male antennae, but at similar levels in female antennae. Furthermore, the 3 SinfPBPs displayed different ligand binding profiles in fluorescence competitive binding assays. SinfPBP1 exhibited high and similar binding affinities to all 3 sex pheromone components (Ki=0.72-1.60 μM), while SinfPBP2 showed selective binding to the alcohol and aldehyde components (Ki=0.78-1.71 μM), and SinfPBP3 showed no obvious binding to the 3 sex pheromone components. The results suggest that SinfPBP1 plays a major role in the reception of female sex pheromones in S. inferens, while SinfPBP3 plays a least role (if any) and SinfPBP2 functions as a recognizer of alcohol and aldehyde components. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Structural Basis for Ubiquitin Recognition and Autoubiquitination by Rabex-5

    International Nuclear Information System (INIS)

    Lee, S.; Tsai, Y.; Mattera, R.; Smith, W.; Kostelansky, M.; Weissman, A.; Bonifacino, J.; Hurley, J.

    2006-01-01

    Rabex-5 is an exchange factor for Rab5, a master regulator of endosomal trafficking. Rabex-5 binds monoubiquitin, undergoes covalent ubiquitination and contains an intrinsic ubiquitin ligase activity, all of which require an N-terminal A20 zinc finger followed immediately by a helix. The structure of the N-terminal portion of Rabex-5 bound to ubiquitin at 2.5-Angstroms resolution shows that Rabex-5-ubiquitin interactions occur at two sites. The first site is a new type of ubiquitin-binding domain, an inverted ubiquitin-interacting motif, which binds with ∼29-μM affinity to the canonical Ile44 hydrophobic patch on ubiquitin. The second is a diaromatic patch on the A20 zinc finger, which binds with ∼22-μM affinity to a polar region centered on Asp58 of ubiquitin. The A20 zinc-finger diaromatic patch mediates ubiquitin-ligase activity by directly recruiting a ubiquitin-loaded ubiquitin-conjugating enzyme

  20. Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 zinc-binding Bbox1 domain.

    Directory of Open Access Journals (Sweden)

    Yunjie Zhao

    Full Text Available The zinc-binding Bbox1 domain in protein MID1, a member of the TRIM family of proteins, facilitates the ubiquitination of the catalytic subunit of protein phosphatase 2A and alpha4, a protein regulator of PP2A. The natural mutation of residue A130 to a valine or threonine disrupts substrate recognition and catalysis. While NMR data revealed the A130T mutant Bbox1 domain failed to coordinate both structurally essential zinc ions and resulted in an unfolded structure, the unfolding mechanism is unknown. Principle component analysis revealed that residue A130 served as a hinge point between the structured β-strand-turn-β-strand (β-turn-β and the lasso-like loop sub-structures that constitute loop1 of the ββα-RING fold that the Bbox1 domain adopts. Backbone RMSD data indicate significant flexibility and departure from the native structure within the first 5 ns of the molecular dynamics (MD simulation for the A130V mutant (>6 Å and after 30 ns for A130T mutant (>6 Å. Overall RMSF values were higher for the mutant structures and showed increased flexibility around residues 125 and 155, regions with zinc-coordinating residues. Simulated pKa values of the sulfhydryl group of C142 located near A130 suggested an increased in value to ~9.0, paralleling the increase in the apparent dielectric constants for the small cavity near residue A130. Protonation of the sulfhydryl group would disrupt zinc-coordination, directly contributing to unfolding of the Bbox1. Together, the increased motion of residues of loop 1, which contains four of the six zinc-binding cysteine residues, and the increased pKa of C142 could destabilize the structure of the zinc-coordinating residues and contribute to the unfolding.

  1. Protoporphyrinogen oxidase: high affinity tetrahydrophthalimide radioligand for the inhibitor/herbicide-binding site in mouse liver mitochondria.

    Science.gov (United States)

    Birchfield, N B; Casida, J E

    1996-01-01

    Protoporphyrinogen oxidase (protox), the last common enzyme in heme and chlorophyll biosynthesis, is the target of several classes of herbicides acting as inhibitors in both plants and mammals. N-(4-Chloro-2-fluoro-5-(propargyloxy)phenyl)-3,4,5,6-tetrahydro phthalimide (a potent protox inhibitor referred to as THP) was synthesized as a candidate radioligand ([3H]-THP) by selective catalytic reduction of 3,6-dihydrophthalic anhydride (DHPA) with tritium gas followed by condensation in 45% yield with 4-chloro-2-fluoro-5-(propargyloxy)aniline. Insertion of tritium at the 3 and 6 carbons of DHPA as well as the expected 4 and 5 carbons resulted in high specific activity [3H]THP (92 Ci/mmol). This radioligand undergoes rapid, specific, saturable, and reversible binding to the inhibitor/herbicide binding site of the protox component of cholate-solubilized mouse liver mitochondria with an apparent Kd of 0.41 nM and Bmax of 0.40 pmol/mg of protein. In the standard assay, mouse preparation (150 micrograms of protein) and [3H]THP (0.5 nM) are incubated in 500 microL of phosphate buffer at pH 7.2 for 15 min at 25 degrees C followed by addition of ammonium sulfate and filtration with glass fiber filters. The potencies of five nitrodiphenyl ethers and two other herbicides as inhibitors of [3H]THP binding correlate well with those for inhibition of protox activity (r2 = 0.97, n = 7), thus validating the binding assay as relevant to enzyme inhibition. It is also suitable to determine in vivo block as illustrated by an approximately 50% decrease in [3H]THP binding in liver mitochondria from mice treated ip with oxyfluorfen at 4 mg/kg. This is the first report of a binding assay for protox in mammals. The high affinity and specific activity of [3H]THP facilitate quantitation of protox and therefore research on a sensitive inhibition site for porphyrin biosynthesis.

  2. Follicle-stimulating hormone (FSH) unmasks specific high affinity FSH-binding sites in cell-free membrane preparations of porcine granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ford, K.A.; LaBarbera, A.R.

    1988-11-01

    The purpose of these studies was to determine whether changes in FSH receptors correlated with FSH-induced attenuation of FSH-responsive adenylyl cyclase in immature porcine granulosa cells. Cells were incubated with FSH (1-1000 ng/ml) for up to 24 h, treated with acidified medium (pH 3.5) to remove FSH bound to cells, and incubated with (125I)iodo-porcine FSH to quantify FSH-binding sites. FSH increased binding of FSH in a time-, temperature-, and FSH concentration-dependent manner. FSH (200 ng/ml) increased binding approximately 4-fold within 16 h. Analysis of equilibrium saturation binding data indicated that the increase in binding sites reflected a 2.3-fold increase in receptor number and a 5.4-fold increase in apparent affinity. The increase in binding did not appear to be due to 1) a decrease in receptor turnover, since the basal rate of turnover appeared to be very slow; 2) an increase in receptor synthesis, since agents that inhibit protein synthesis and glycosylation did not block the increase in binding; or 3) an increase in intracellular receptors, since agents that inhibit cytoskeletal components had no effect. Agents that increase intracellular cAMP did not affect FSH binding. The increase in binding appeared to result from unmasking of cryptic FSH-binding sites, since FSH increased binding in cell-free membrane preparations to the same extent as in cells. Unmasking of cryptic sites was hormone specific, and the sites bound FSH specifically. Unmasking of sites was reversible in a time- and temperature-dependent manner after removal of bound FSH. The similarity between the FSH dose-response relationships for unmasking of FSH-binding sites and attenuation of FSH-responsive cAMP production suggests that the two processes are functionally linked.

  3. DNA-binding protects p53 from interactions with cofactors involved in transcription-independent functions.

    Science.gov (United States)

    Lambrughi, Matteo; De Gioia, Luca; Gervasio, Francesco Luigi; Lindorff-Larsen, Kresten; Nussinov, Ruth; Urani, Chiara; Bruschi, Maurizio; Papaleo, Elena

    2016-11-02

    Binding-induced conformational changes of a protein at regions distant from the binding site may play crucial roles in protein function and regulation. The p53 tumour suppressor is an example of such an allosterically regulated protein. Little is known, however, about how DNA binding can affect distal sites for transcription factors. Furthermore, the molecular details of how a local perturbation is transmitted through a protein structure are generally elusive and occur on timescales hard to explore by simulations. Thus, we employed state-of-the-art enhanced sampling atomistic simulations to unveil DNA-induced effects on p53 structure and dynamics that modulate the recruitment of cofactors and the impact of phosphorylation at Ser215. We show that DNA interaction promotes a conformational change in a region 3 nm away from the DNA binding site. Specifically, binding to DNA increases the population of an occluded minor state at this distal site by more than 4-fold, whereas phosphorylation traps the protein in its major state. In the minor conformation, the interface of p53 that binds biological partners related to p53 transcription-independent functions is not accessible. Significantly, our study reveals a mechanism of DNA-mediated protection of p53 from interactions with partners involved in the p53 transcription-independent signalling. This also suggests that conformational dynamics is tightly related to p53 signalling. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Mechanisms of inhibition of zinc-finger transcription factors by selenium compounds ebselen and selenite.

    Science.gov (United States)

    Larabee, Jason L; Hocker, James R; Hanas, Jay S

    2009-03-01

    The anti-inflammatory selenium compounds, ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one) and selenite, were found to alter the DNA binding mechanisms and structures of cysteine-rich zinc-finger transcription factors. As assayed by DNase I protection, DNA binding by TFIIIA (transcription factor IIIA, prototypical Cys(2)His(2) zinc finger protein), was inhibited by micromolar amounts of ebselen. In a gel shift assay, ebselen inhibited the Cys(2)His(2) zinc finger-containing DNA binding domain (DBD) of the NF-kappaB mediated transcription factor Sp1. Ebselen also inhibited DNA binding by the p50 subunit of the pro-inflammatory Cys-containing NF-kappaB transcription factor. Electrospray ionization mass spectrometry (ESI-MS) was utilized to elucidate mechanisms of chemical interaction between ebselen and a zinc-bound Cys(2)His(2) zinc finger polypeptide modeled after the third finger of Sp1 (Sp1-3). Exposing Sp1-3 to micromolar amounts of ebselen resulted in Zn(2+) release from this peptide and the formation of a disulfide bond by oxidation of zinc finger SH groups, the likely mechanism for DNA binding inhibition. Selenite was shown by ESI-MS to also eject zinc from Sp1-3 as well as induce disulfide bond formation through SH oxidation. The selenite-dependent inhibition/oxidation mechanism differed from that of ebselen by inducing the formation of a stable selenotrisulfide bond. Selenite-induced selenotrisulfide formation was dependent upon the structure of the Cys(2)His(2) zinc finger as alteration in the finger structure enhanced this reaction as well as selenite-dependent zinc release. Ebselen and selenite-dependent inhibition/oxidation of Cys-rich zinc finger proteins, with concomitant release of zinc and finger structural changes, points to mechanisms at the atomic and protein level for selenium-induced alterations in Cys-rich proteins, and possible amelioration of certain inflammatory, neurodegenerative, and oncogenic responses.

  5. Multilayer affinity adsorption of albumin on polymer brushes modified membranes in a continuous-flow system.

    Science.gov (United States)

    Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui

    2018-02-23

    Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Zinc as a Gatekeeper of Immune Function

    Directory of Open Access Journals (Sweden)

    Inga Wessels

    2017-11-01

    Full Text Available After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14, zinc “exporters” (ZnT 1–10, and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.

  7. Binding affinities of Schiff base Fe(II) complex with BSA and calf-thymus DNA: Spectroscopic investigations and molecular docking analysis

    Science.gov (United States)

    Rudra, Suparna; Dasmandal, Somnath; Patra, Chiranjit; Kundu, Arjama; Mahapatra, Ambikesh

    2016-09-01

    The binding interaction of a synthesized Schiff base Fe(II) complex with biological macromolecules viz., bovine serum albumin (BSA) and calf thymus(ct)-DNA have been investigated using different spectroscopic techniques coupled with viscosity measurements at physiological pH and 298 K. Regular amendments in emission intensities of BSA upon the action of the complex indicate significant interaction between them, and the binding interaction have been characterized by Stern Volmer plots and thermodynamic binding parameters. On the basis of this quenching technique one binding site with binding constant (Kb = (7.6 ± 0.21) × 105) between complex and protein have been obtained at 298 K. Time-resolved fluorescence studies have also been encountered to understand the mechanism of quenching induced by the complex. Binding affinities of the complex to the fluorophores of BSA namely tryptophan (Trp) and tyrosine (Tyr) have been judged by synchronous fluorescence studies. Secondary structural changes of BSA rooted by the complex has been revealed by CD spectra. On the other hand, hypochromicity of absorption spectra of the complex with the addition of ct-DNA and the gradual reduction in emission intensities of ethidium bromide bound ct-DNA in presence of the complex indicate noticeable interaction between ct-DNA and the complex with the binding constant (4.2 ± 0.11) × 106 M- 1. Life-time measurements have been studied to determine the relative amplitude of binding of the complex to ct-DNA base pairs. Mode of binding interaction of the complex with ct-DNA has been deciphered by viscosity measurements. CD spectra have also been used to understand the changes in ct-DNA structure upon binding with the metal complex. Density functional theory (DFT) and molecular docking analysis have been employed in highlighting the interactive phenomenon and binding location of the complex with the macromolecules.

  8. Human leucocyte antigen class I-redirected anti-tumour CD4+ T cells require a higher T cell receptor binding affinity for optimal activity than CD8+ T cells.

    Science.gov (United States)

    Tan, M P; Dolton, G M; Gerry, A B; Brewer, J E; Bennett, A D; Pumphrey, N J; Jakobsen, B K; Sewell, A K

    2017-01-01

    CD4 + T helper cells are a valuable component of the immune response towards cancer. Unfortunately, natural tumour-specific CD4 + T cells occur in low frequency, express relatively low-affinity T cell receptors (TCRs) and show poor reactivity towards cognate antigen. In addition, the lack of human leucocyte antigen (HLA) class II expression on most cancers dictates that these cells are often unable to respond to tumour cells directly. These deficiencies can be overcome by transducing primary CD4 + T cells with tumour-specific HLA class I-restricted TCRs prior to adoptive transfer. The lack of help from the co-receptor CD8 glycoprotein in CD4 + cells might result in these cells requiring a different optimal TCR binding affinity. Here we compared primary CD4 + and CD8 + T cells expressing wild-type and a range of affinity-enhanced TCRs specific for the HLA A*0201-restricted NY-ESO-1- and gp100 tumour antigens. Our major findings are: (i) redirected primary CD4 + T cells expressing TCRs of sufficiently high affinity exhibit a wide range of effector functions, including cytotoxicity, in response to cognate peptide; and (ii) optimal TCR binding affinity is higher in CD4 + T cells than CD8 + T cells. These results indicate that the CD4 + T cell component of current adoptive therapies using TCRs optimized for CD8 + T cells is below par and that there is room for substantial improvement. © 2016 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.

  9. Mutations in the putative zinc-binding motif of UL52 demonstrate a complex interdependence between the UL5 and UL52 subunits of the human herpes simplex virus type 1 helicase/primase complex.

    Science.gov (United States)

    Chen, Yan; Carrington-Lawrence, Stacy D; Bai, Ping; Weller, Sandra K

    2005-07-01

    Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase-primase (UL5/8/52) complex. UL5 contains seven motifs found in helicase superfamily 1, and UL52 contains conserved motifs found in primases. The contributions of each subunit to the biochemical activities of the complex, however, remain unclear. We have previously demonstrated that a mutation in the putative zinc finger at UL52 C terminus abrogates not only primase but also ATPase, helicase, and DNA-binding activities of a UL5/UL52 subcomplex, indicating a complex interdependence between the two subunits. To test this hypothesis and to further investigate the role of the zinc finger in the enzymatic activities of the helicase-primase, a series of mutations were constructed in this motif. They differed in their ability to complement a UL52 null virus: totally defective, partial complementation, and potentiating. In this study, four of these mutants were studied biochemically after expression and purification from insect cells infected with recombinant baculoviruses. All mutants show greatly reduced primase activity. Complementation-defective mutants exhibited severe defects in ATPase, helicase, and DNA-binding activities. Partially complementing mutants displayed intermediate levels of these activities, except that one showed a wild-type level of helicase activity. These data suggest that the UL52 zinc finger motif plays an important role in the activities of the helicase-primase complex. The observation that mutations in UL52 affected helicase, ATPase, and DNA-binding activities indicates that UL52 binding to DNA via the zinc finger may be necessary for loading UL5. Alternatively, UL5 and UL52 may share a DNA-binding interface.

  10. Potential ecological risk assessment and predicting zinc accumulation in soils

    OpenAIRE

    Baran, Agnieszka; Wieczorek, Jerzy; Mazurek, Ryszard; Urbański, Krzysztof; Klimkowicz-Pawlas, Agnieszka

    2017-01-01

    The aims of this study were to investigate zinc content in the studied soils; evaluate the efficiency of geostatistics in presenting spatial variability of zinc in the soils; assess bioavailable forms of zinc in the soils and to assess soil–zinc binding ability; and to estimate the potential ecological risk of zinc in soils. The study was conducted in southern Poland, in the Malopolska Province. This area is characterized by a great diversity of geological structures and types of land use and...

  11. Structure of the Mr 140,000 growth hormone-dependent insulin-like growth factor binding protein complex: Determination by reconstitution and affinity-labeling

    International Nuclear Information System (INIS)

    Baxter, R.C.; Martin, J.L.

    1989-01-01

    To determine the structure of the high molecular weight, growth hormone-dependent complex between the insulin-like growth factors (IGF-I and IGF-II) and their binding proteins in human serum, we have reconstituted the complex from its purified component proteins and analyzed it by gel electrophoresis and autoradiography after covalent cross-linking. The proteins tested in reconstitution mixtures were an acid-labile Mr 84,000-86,000 glycoprotein doublet (alpha subunit), an acid-stable Mr 47,000-53,000 glycoprotein doublet with IGF-binding activity (BP-53 or beta subunit), and IGF-I or IGF-II (gamma subunit). In incubations containing any one of the three subunits 125I-labeled and the other two unlabeled, identical 125I-labeled alpha-beta-gamma complexes of Mr 140,000 were formed. Minor bands of Mr 120,000 and 90,000 were also seen, thought to represent a partially deglycosylated form of the alpha-beta-gamma complex, and an alpha-gamma complex arising as a cross-linking artifact. When serum samples from subjects of various growth hormone status were affinity-labeled with IGF-II tracer, a growth hormone-dependent Mr 140,000 band was seen, corresponding to the reconstituted alpha-beta-gamma complex. Other growth hormone-dependent labeled bands, of Mr 90,000 (corresponding to alpha-gamma), Mr 55,000-60,000 (corresponding to labeled beta-subunit doublet), and smaller bands of Mr 38,000, 28,000, and 23,000-25,000 (corresponding to labeled beta-subunit degradation products), were also seen in the affinity-labeled serum samples and in the complex reconstituted from pure proteins. All were immunoprecipitable with an anti-BP-53 antiserum. We conclude that the growth hormone-dependent Mr 140,000 IGF-binding protein complex in human serum has three components: the alpha (acid-labile) subunit, the beta (binding) subunit, and the gamma (growth factor) subunit

  12. Analysis of drug-protein binding using on-line immunoextraction and high-performance affinity microcolumns: Studies with normal and glycated human serum albumin.

    Science.gov (United States)

    Matsuda, Ryan; Jobe, Donald; Beyersdorf, Jared; Hage, David S

    2015-10-16

    A method combining on-line immunoextraction microcolumns with high-performance affinity chromatography (HPAC) was developed and tested for use in examining drug-protein interactions with normal or modified proteins. Normal human serum albumin (HSA) and glycated HSA were used as model proteins for this work. High-performance immunoextraction microcolumns with sizes of 1.0-2.0 cm × 2.1mm i.d. and containing anti-HSA polyclonal antibodies were developed and tested for their ability to bind normal HSA or glycated HSA. These microcolumns were able to extract up to 82-93% for either type of protein at 0.05-0.10 mL/min and had a binding capacity of 0.34-0.42 nmol HSA for a 1.0 cm × 2.1mm i.d. microcolumn. The immunoextraction microcolumns and their adsorbed proteins were tested for use in various approaches for drug binding studies. Frontal analysis was used with the adsorbed HSA/glycated HSA to measure the overall affinities of these proteins for the drugs warfarin and gliclazide, giving comparable values to those obtained previously using similar protein preparations that had been covalently immobilized within HPAC columns. Zonal elution competition studies with gliclazide were next performed to examine the specific interactions of this drug at Sudlow sites I and II of the adsorbed proteins. These results were also comparable to those noted in prior work with covalently immobilized samples of normal HSA or glycated HSA. These experiments indicated that drug-protein binding studies can be carried out by using on-line immunoextraction microcolumns with HPAC. The same method could be used in the future with clinical samples and other drugs or proteins of interest in pharmaceutical studies or biomedical research. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Osteopontin binding to the alpha 4 integrin requires highest affinity integrin conformation, but is independent of post-translational modifications of osteopontin

    DEFF Research Database (Denmark)

    Hui, Tommy; Sørensen, Esben Skipper; Rittling, Susan R.

    2015-01-01

    Osteopontin (OPN) is a ligand for the α4 integrin, but the physiological importance of this binding is not well understood. Here, we have assessed the effect of posttranslational modifications on OPN binding to the α4 integrin on cultured human leukocyte cell lines, and compared OPN interaction...

  14. Antisymmetric tensor generalizations of affine vector fields.

    Science.gov (United States)

    Houri, Tsuyoshi; Morisawa, Yoshiyuki; Tomoda, Kentaro

    2016-02-01

    Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank- p antisymmetric affine tensor fields in n -dimensions is bounded by ( n + 1)!/ p !( n - p )!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes.

  15. Cyclic AMP Pathway Activation and Extracellular Zinc Induce Rapid Intracellular Zinc Mobilization in Candida albicans

    Science.gov (United States)

    Kjellerup, Lasse; Winther, Anne-Marie L.; Wilson, Duncan; Fuglsang, Anja T.

    2018-01-01

    Zinc is an essential micronutrient, required for a range of zinc-dependent enzymes and transcription factors. In mammalian cells, zinc serves as a second messenger molecule. However, a role for zinc in signaling has not yet been established in the fungal kingdom. Here, we used the intracellular zinc reporter, zinbo-5, which allowed visualization of zinc in the endoplasmic reticulum and other components of the internal membrane system in Candida albicans. We provide evidence for a link between cyclic AMP/PKA- and zinc-signaling in this major human fungal pathogen. Glucose stimulation, which triggers a cyclic AMP spike in this fungus resulted in rapid intracellular zinc mobilization and this “zinc flux” could be stimulated with phosphodiesterase inhibitors and blocked via inhibition of adenylate cyclase or PKA. A similar mobilization of intracellular zinc was generated by stimulation of cells with extracellular zinc and this effect could be reversed with the chelator EDTA. However, zinc-induced zinc flux was found to be cyclic AMP independent. In summary, we show that activation of the cyclic AMP/PKA pathway triggers intracellular zinc mobilization in a fungus. To our knowledge, this is the first described link between cyclic AMP signaling and zinc homeostasis in a human fungal pathogen. PMID:29619016

  16. Specific insulin binding in bovine chromaffin cells; demonstration of preferential binding to adrenalin-storing cells

    International Nuclear Information System (INIS)

    Serck-Hanssen, G.; Soevik, O.

    1987-01-01

    Insulin binding was studied in subpopulations of bovine chromaffin cells enriched in adrenalin-producing cells (A-cells) or noradrenalin-producing cells (NA-cells). Binding of 125 I-insulin was carried out at 15 0 C for 3 hrs in the absence or presence of excess unlabeled hormone. Four fractions of cells were obtained by centrifugation on a stepwise bovine serum albumin gradient. The four fractions were all shown to bind insulin in a specific manner and the highest binding was measured in the cell layers of higher densities, containing mainly A-cells. The difference in binding of insulin to the four subpopulations of chromaffin cells seemed to be related to differences in numbers of receptors as opposed to receptor affinities. The authors conclude that bovine chromaffin cells possess high affinity binding sites for insulin and that these binding sites are mainly confined to A-cells. 24 references, 2 figures, 1 table

  17. Weak affinity chromatography for evaluation of stereoisomers in early drug discovery.

    Science.gov (United States)

    Duong-Thi, Minh-Dao; Bergström, Maria; Fex, Tomas; Svensson, Susanne; Ohlson, Sten; Isaksson, Roland

    2013-07-01

    In early drug discovery (e.g., in fragment screening), recognition of stereoisomeric structures is valuable and guides medicinal chemists to focus only on useful configurations. In this work, we concurrently screened mixtures of stereoisomers and estimated their affinities to a protein target (thrombin) using weak affinity chromatography-mass spectrometry (WAC-MS). Affinity determinations by WAC showed that minor changes in stereoisomeric configuration could have a major impact on affinity. The ability of WAC-MS to provide instant information about stereoselectivity and binding affinities directly from analyte mixtures is a great advantage in fragment library screening and drug lead development.

  18. The application of magnetic force differentiation for the measurement of the affinity of peptide libraries

    International Nuclear Information System (INIS)

    Shang Hao; Kirkham, Perry M.; Myers, Tina M.; Cassell, Gail H.; Lee, Gil U.

    2005-01-01

    A new method has been developed for measuring the binding affinity of phage displayed peptides and a target protein using magnetic particles. The specific interaction between the phage displayed peptides and the target protein was subject to a force generated by the magnetic particle. The binding affinity was obtained by analyzing the force-bond lifetime

  19. Co-evolution of affinity and stability of grafted amyloid-motif domain antibodies.

    Science.gov (United States)

    Julian, Mark C; Lee, Christine C; Tiller, Kathryn E; Rabia, Lilia A; Day, Evan K; Schick, Arthur J; Tessier, Peter M

    2015-10-01

    An attractive approach for designing lead antibody candidates is to mimic natural protein interactions by grafting peptide recognition motifs into the complementarity-determining regions (CDRs). We are using this approach to generate single-domain (VH) antibodies specific for amyloid-forming proteins such as the Alzheimer's Aβ peptide. Here, we use random mutagenesis and yeast surface display to improve the binding affinity of a lead VH domain grafted with Aβ residues 33-42 in CDR3. Interestingly, co-selection for improved Aβ binding and VH display on the surface of yeast yields antibody domains with improved affinity and reduced stability. The highest affinity VH domains were strongly destabilized on the surface of yeast as well as unfolded when isolated as autonomous domains. In contrast, stable VH domains with improved affinity were reliably identified using yeast surface display by replacing the display antibody that recognizes a linear epitope tag at the terminus of both folded and unfolded VH domains with a conformational ligand (Protein A) that recognizes a discontinuous epitope on the framework of folded VH domains. Importantly, we find that selection for improved stability using Protein A without simultaneous co-selection for improved Aβ binding leads to strong enrichment for stabilizing mutations that reduce antigen binding. Our findings highlight the importance of simultaneously optimizing affinity and stability to improve the rapid isolation of well-folded and specific antibody fragments. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Extreme disorder in an ultrahigh-affinity protein complex

    Science.gov (United States)

    Borgia, Alessandro; Borgia, Madeleine B.; Bugge, Katrine; Kissling, Vera M.; Heidarsson, Pétur O.; Fernandes, Catarina B.; Sottini, Andrea; Soranno, Andrea; Buholzer, Karin J.; Nettels, Daniel; Kragelund, Birthe B.; Best, Robert B.; Schuler, Benjamin

    2018-03-01

    Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes.

  1. Preliminary assessment of extrastriatal dopamine d-2 receptor binding in the rodent and nonhuman primate brains using the high affinity radioligand, {sup 18}F-fallypride

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Jogeshwar E-mail: jogeshwar-mukherjee@ketthealth.com; Yang, Z.-Y.; Brown, Terry; Lew, Robert; Wernick, Miles; Ouyang Xiaohu; Yasillo, Nicholas; Chen, C.-T.; Mintzer, Robert; Cooper, Malcolm

    1999-07-01

    We have identified the value of {sup 18}F-fallypride {l_brace}(S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[{sup 18}F]fluoropropyl)-2,3-dim= ethoxybenzamide{r_brace}, as a dopamine D-2 receptor radiotracer for the study of striatal and extrastriatal receptors. Fallypride exhibits high affinities for D-2 and D-3 subtypes and low affinity for D-4 ({sup 3}H-spiperone IC{sub 50}s: D-2=0.05 nM [rat striata], D-3=0.30 nM [SF9 cell lines, rat recombinant], and D-4=240 nM [CHO cell lines, human recombinant]). Biodistribution in the rat brain showed localization of {sup 18}F-fallypride in striata and extrastriatal regions such as the frontal cortex, parietal cortex, amygdala, hippocampus, thalamus, and hypothalamus. In vitro autoradiographic studies in sagittal slices of the rat brain showed localization of {sup 18}F-fallypride in striatal and several extrastriatal regions, including the medulla. Positron emission tomography (PET) experiments with {sup 18}F-fallypride in male rhesus monkeys were carried out in a PET VI scanner. In several PET experiments, apart from the specific binding seen in the striatum, specific binding of {sup 18}F-fallypride was also identified in extracellular regions (in a lower brain slice, possibly the thalamus). Specific binding in the extrastriata was, however, significantly lower compared with that observed in the striata of the monkeys (extrastriata/cerebellum = 2, striata/cerebellum = 10). Postmortem analysis of the monkey brain revealed significant {sup 18}F-fallypride binding in the striata, whereas binding was also observed in extrastriatal regions such as the thalamus, cortical areas, and brain stem.

  2. Crystal structure of the high-affinity Na+K+-ATPase-ouabain complex with Mg2+ bound in the cation binding site.

    Science.gov (United States)

    Laursen, Mette; Yatime, Laure; Nissen, Poul; Fedosova, Natalya U

    2013-07-02

    The Na(+),K(+)-ATPase maintains electrochemical gradients for Na(+) and K(+) that are critical for animal cells. Cardiotonic steroids (CTSs), widely used in the clinic and recently assigned a role as endogenous regulators of intracellular processes, are highly specific inhibitors of the Na(+),K(+)-ATPase. Here we describe a crystal structure of the phosphorylated pig kidney Na(+),K(+)-ATPase in complex with the CTS representative ouabain, extending to 3.4 Å resolution. The structure provides key details on CTS binding, revealing an extensive hydrogen bonding network formed by the β-surface of the steroid core of ouabain and the side chains of αM1, αM2, and αM6. Furthermore, the structure reveals that cation transport site II is occupied by Mg(2+), and crystallographic studies indicate that Rb(+) and Mn(2+), but not Na(+), bind to this site. Comparison with the low-affinity [K2]E2-MgF(x)-ouabain structure [Ogawa et al. (2009) Proc Natl Acad Sci USA 106(33):13742-13747) shows that the CTS binding pocket of [Mg]E2P allows deep ouabain binding with possible long-range interactions between its polarized five-membered lactone ring and the Mg(2+). K(+) binding at the same site unwinds a turn of αM4, dragging residues Ile318-Val325 toward the cation site and thereby hindering deep ouabain binding. Thus, the structural data establish a basis for the interpretation of the biochemical evidence pointing at direct K(+)-Mg(2+) competition and explain the well-known antagonistic effect of K(+) on CTS binding.

  3. The dynamics of metric-affine gravity

    International Nuclear Information System (INIS)

    Vitagliano, Vincenzo; Sotiriou, Thomas P.; Liberati, Stefano

    2011-01-01

    Highlights: → The role and the dynamics of the connection in metric-affine theories is explored. → The most general second order action does not lead to a dynamical connection. → Including higher order invariants excites new degrees of freedom in the connection. → f(R) actions are also discussed and shown to be a non- representative class. - Abstract: Metric-affine theories of gravity provide an interesting alternative to general relativity: in such an approach, the metric and the affine (not necessarily symmetric) connection are independent quantities. Furthermore, the action should include covariant derivatives of the matter fields, with the covariant derivative naturally defined using the independent connection. As a result, in metric-affine theories a direct coupling involving matter and connection is also present. The role and the dynamics of the connection in such theories is explored. We employ power counting in order to construct the action and search for the minimal requirements it should satisfy for the connection to be dynamical. We find that for the most general action containing lower order invariants of the curvature and the torsion the independent connection does not carry any dynamics. It actually reduces to the role of an auxiliary field and can be completely eliminated algebraically in favour of the metric and the matter field, introducing extra interactions with respect to general relativity. However, we also show that including higher order terms in the action radically changes this picture and excites new degrees of freedom in the connection, making it (or parts of it) dynamical. Constructing actions that constitute exceptions to this rule requires significant fine tuned and/or extra a priori constraints on the connection. We also consider f(R) actions as a particular example in order to show that they constitute a distinct class of metric-affine theories with special properties, and as such they cannot be used as representative toy

  4. Analysis of Biological Interactions by Affinity Chromatography: Clinical and Pharmaceutical Applications.

    Science.gov (United States)

    Hage, David S

    2017-06-01

    The interactions between biochemical and chemical agents in the body are important in many clinical processes. Affinity chromatography and high-performance affinity chromatography (HPAC), in which a column contains an immobilized biologically related binding agent, are 2 methods that can be used to study these interactions. This review presents various approaches that can be used in affinity chromatography and HPAC to characterize the strength or rate of a biological interaction, the number and types of sites that are involved in this process, and the interactions between multiple solutes for the same binding agent. A number of applications for these methods are examined, with an emphasis on recent developments and high-performance affinity methods. These applications include the use of these techniques for fundamental studies of biological interactions, high-throughput screening of drugs, work with modified proteins, tools for personalized medicine, and studies of drug-drug competition for a common binding agent. The wide range of formats and detection methods that can be used with affinity chromatography and HPAC for examining biological interactions makes these tools attractive for various clinical and pharmaceutical applications. Future directions in the development of small-scale columns and the coupling of these methods with other techniques, such as mass spectrometry or other separation methods, should continue to increase the flexibility and ease with which these approaches can be used in work involving clinical or pharmaceutical samples. © 2016 American Association for Clinical Chemistry.

  5. Selective induction of high-ouabain-affinity isoform of Na+-K+-ATPase by thyroid hormone

    International Nuclear Information System (INIS)

    Haber, R.S.; Loeb, J.N.

    1988-01-01

    The administration of thyroid hormone is known to result in an induction of the Na + -K + -adenosinetriphosphatase (Na + -K + -ATPase) in rat skeletal muscle and other thyroid hormone-responsive tissues. Since the Na + -K + -ATPase in a variety of mammalian tissues has recently been reported to exist in at least two forms distinguishable by differing affinities for the inhibitory cardiac glycoside ouabain. The authors have studied the effects of 3,3',5-triiodo-L-thyronine (T 3 ) treatment on these two forms of the enzyme in rat diaphragm. The inhibition of Na + -K + -ATPase activity in a crude membrane fraction by varying concentrations of ouabain conformed to a biphasic pattern consistent with the presence of two distinct isoforms with inhibition constants (K I s) for ouabain of ∼10 -7 and 10 -4 M, respectively. Measurement of the specific binding of [ 3 H]ouabain to these membranes confirmed the presence of a class of high-affinity ouabain binding sites with a dissociation constant (K d ) of slightly less than 10 -7 M, whose maximal binding capacity was increased by T 3 treatment by 185%. Binding studies in unfractionated homogenates of diaphragm similarly demonstrated the presence of high-affinity sites whose maximal binding capacity was increased by T 3 treatment. Quantitation of both the high- and low-ouabain-affinity forms of the Na + -K + -ATPase by ouabain-dependent phosphorylation from [ 32 P]orthophosphate confirmed that T 3 treatment markedly increased the number of high-affinity sites while having little effect on the number of low-affinity sites. These observations provide, to our knowledge, the first demonstration that these two forms of the Na + -K + -ATPase are subject to selective hormonal induction

  6. eMatchSite: sequence order-independent structure alignments of ligand binding pockets in protein models.

    Directory of Open Access Journals (Sweden)

    Michal Brylinski

    2014-09-01

    Full Text Available Detecting similarities between ligand binding sites in the absence of global homology between target proteins has been recognized as one of the critical components of modern drug discovery. Local binding site alignments can be constructed using sequence order-independent techniques, however, to achieve a high accuracy, many current algorithms for binding site comparison require high-quality experimental protein structures, preferably in the bound conformational state. This, in turn, complicates proteome scale applications, where only various quality structure models are available for the majority of gene products. To improve the state-of-the-art, we developed eMatchSite, a new method for constructing sequence order-independent alignments of ligand binding sites in protein models. Large-scale benchmarking calculations using adenine-binding pockets in crystal structures demonstrate that eMatchSite generates accurate alignments for almost three times more protein pairs than SOIPPA. More importantly, eMatchSite offers a high tolerance to structural distortions in ligand binding regions in protein models. For example, the percentage of correctly aligned pairs of adenine-binding sites in weakly homologous protein models is only 4-9% lower than those aligned using crystal structures. This represents a significant improvement over other algorithms, e.g. the performance of eMatchSite in recognizing similar binding sites is 6% and 13% higher than that of SiteEngine using high- and moderate-quality protein models, respectively. Constructing biologically correct alignments using predicted ligand binding sites in protein models opens up the possibility to investigate drug-protein interaction networks for complete proteomes with prospective systems-level applications in polypharmacology and rational drug repositioning. eMatchSite is freely available to the academic community as a web-server and a stand-alone software distribution at http://www.brylinski.org/ematchsite.

  7. Enhanced binding affinity, remarkable selectivity, and high capacity of CO 2 by dual functionalization of a rht-type metal-organic framework

    KAUST Repository

    Li, Baiyan

    2011-12-23

    Open and friendly: The smallest member of the rht-type metal-organic frameworks (MOFs, see picture) constructed by a hexacarboxylate ligand with a nitrogen-rich imino triazine backbone shows a significantly enhanced gas binding affinity relative to all other isoreticular rht-type MOFs. The high adsorption capacity and remarkable selectivity of CO 2 are attributed to the high density of open metal and Lewis basic sites in the framework. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Modeling DNA affinity landscape through two-round support vector regression with weighted degree kernels

    KAUST Repository

    Wang, Xiaolei

    2014-12-12

    Background: A quantitative understanding of interactions between transcription factors (TFs) and their DNA binding sites is key to the rational design of gene regulatory networks. Recent advances in high-throughput technologies have enabled high-resolution measurements of protein-DNA binding affinity. Importantly, such experiments revealed the complex nature of TF-DNA interactions, whereby the effects of nucleotide changes on the binding affinity were observed to be context dependent. A systematic method to give high-quality estimates of such complex affinity landscapes is, thus, essential to the control of gene expression and the advance of synthetic biology. Results: Here, we propose a two-round prediction method that is based on support vector regression (SVR) with weighted degree (WD) kernels. In the first round, a WD kernel with shifts and mismatches is used with SVR to detect the importance of subsequences with different lengths at different positions. The subsequences identified as important in the first round are then fed into a second WD kernel to fit the experimentally measured affinities. To our knowledge, this is the first attempt to increase the accuracy of the affinity prediction by applying two rounds of string kernels and by identifying a small number of crucial k-mers. The proposed method was tested by predicting the binding affinity landscape of Gcn4p in Saccharomyces cerevisiae using datasets from HiTS-FLIP. Our method explicitly identified important subsequences and showed significant performance improvements when compared with other state-of-the-art methods. Based on the identified important subsequences, we discovered two surprisingly stable 10-mers and one sensitive 10-mer which were not reported before. Further test on four other TFs in S. cerevisiae demonstrated the generality of our method. Conclusion: We proposed in this paper a two-round method to quantitatively model the DNA binding affinity landscape. Since the ability to modify

  9. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    OpenAIRE

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screen...

  10. Mechanism of sequence-specific template binding by the DNA primase of bacteriophage T7

    KAUST Repository

    Lee, Seung-Joo

    2010-03-28

    DNA primases catalyze the synthesis of the oligoribonucleotides required for the initiation of lagging strand DNA synthesis. Biochemical studies have elucidated the mechanism for the sequence-specific synthesis of primers. However, the physical interactions of the primase with the DNA template to explain the basis of specificity have not been demonstrated. Using a combination of surface plasmon resonance and biochemical assays, we show that T7 DNA primase has only a slightly higher affinity for DNA containing the primase recognition sequence (5\\'-TGGTC-3\\') than for DNA lacking the recognition site. However, this binding is drastically enhanced by the presence of the cognate Nucleoside triphosphates (NTPs), Adenosine triphosphate (ATP) and Cytosine triphosphate (CTP) that are incorporated into the primer, pppACCA. Formation of the dimer, pppAC, the initial step of sequence-specific primer synthesis, is not sufficient for the stable binding. Preformed primers exhibit significantly less selective binding than that observed with ATP and CTP. Alterations in subdomains of the primase result in loss of selective DNA binding. We present a model in which conformational changes induced during primer synthesis facilitate contact between the zinc-binding domain and the polymerase domain. The Author(s) 2010. Published by Oxford University Press.

  11. Immobilizing affinity proteins to nitrocellulose: a toolbox for paper-based assay developers.

    Science.gov (United States)

    Holstein, Carly A; Chevalier, Aaron; Bennett, Steven; Anderson, Caitlin E; Keniston, Karen; Olsen, Cathryn; Li, Bing; Bales, Brian; Moore, David R; Fu, Elain; Baker, David; Yager, Paul

    2016-02-01

    To enable enhanced paper-based diagnostics with improved detection capabilities, new methods are needed to immobilize affinity reagents to porous substrates, especially for capture molecules other than IgG. To this end, we have developed and characterized three novel methods for immobilizing protein-based affinity reagents to nitrocellulose membranes. We have demonstrated these methods using recombinant affinity proteins for the influenza surface protein hemagglutinin, leveraging the customizability of these recombinant "flu binders" for the design of features for immobilization. The three approaches shown are: (1) covalent attachment of thiolated affinity protein to an epoxide-functionalized nitrocellulose membrane, (2) attachment of biotinylated affinity protein through a nitrocellulose-binding streptavidin anchor protein, and (3) fusion of affinity protein to a novel nitrocellulose-binding anchor protein for direct coupling and immobilization. We also characterized the use of direct adsorption for the flu binders, as a point of comparison and motivation for these novel methods. Finally, we demonstrated that these novel methods can provide improved performance to an influenza hemagglutinin assay, compared to a traditional antibody-based capture system. Taken together, this work advances the toolkit available for the development of next-generation paper-based diagnostics.

  12. Thermodynamics of ligand binding to acyl-coenzyme A binding protein studied by titration calorimetry

    DEFF Research Database (Denmark)

    Færgeman, Nils J.; Sigurskjold, B W; Kragelund, B B

    1996-01-01

    Ligand binding to recombinant bovine acyl-CoA binding protein (ACBP) was examined using isothermal microcalorimetry. Microcalorimetric measurements confirm that the binding affinity of acyl-CoA esters for ACBP is strongly dependent on the length of the acyl chain with a clear preference for acyl-...

  13. Efficacy of antipsychotic agents at human 5-HT(1A) receptors determined by [3H]WAY100,635 binding affinity ratios: relationship to efficacy for G-protein activation.

    Science.gov (United States)

    Newman-Tancredi, A; Verrièle, L; Touzard, M; Millan, M J

    2001-10-05

    5-HT(1A) receptors are implicated in the aetiology of schizophrenia. Herein, the influence of 15 antipsychotics on the binding of the selective 'neutral' antagonist, [3H]WAY100,635 ([3H]N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl)-cyclo-hexanecarboxamide), was examined at human 5-HT(1A) receptors expressed in Chinese Hamster Ovary cells. In competition binding experiments, 5-HT displayed biphasic isotherms which were shifted to the right in the presence of the G-protein uncoupling agent, GTPgammaS (100 microM). In analogy, the isotherms of ziprasidone, quetiapine and S16924 (((R-2-[1-[2-(2,3-dihydro-benzo[1,4]dioxin-5-yloxy)-ethyl]-pyrrolidin-3yl]-1-(4-fluoro-phenyl)-ethanone), were displaced to the right by GTPgammaS, consistent with agonist actions. Binding of several other antipsychotics, such as ocaperidone, olanzapine and risperidone, was little influenced by GTPgammaS. Isotherms of the neuroleptics, haloperidol, chlorpromazine and thioridazine were shifted to the left in the presence of GTPgammaS, suggesting inverse agonist properties. For most ligands, the magnitude of affinity changes induced by GTPgammaS (alteration in pK(i) values) correlated well with their previously determined efficacies in [35S]GTPgammaS binding studies [Eur. J. Pharmacol. 355 (1998) 245]. In contrast, the affinity of the 'atypical' antipsychotic agent, clozapine, which is a known partial agonist at 5-HT(1A) receptors, was less influenced by GTPgammaS. When the ratio of high-/low-affinity values was plotted against efficacy, hyperbolic isotherms were obtained, consistent with a modified ternary complex model which assumes that receptors can adopt active conformations in the absence of agonist. In conclusion, modulation of [3H]-WAY100,635 binding by GTPgammaS differentiated agonist vs. inverse agonist properties of antipsychotics at 5-HT(1A) receptors. These may contribute to differing profiles of antipsychotic activity.

  14. Functional display of platelet-binding VWF fragments on filamentous bacteriophage.

    Directory of Open Access Journals (Sweden)

    Andrew Yee

    Full Text Available von Willebrand factor (VWF tethers platelets to sites of vascular injury via interaction with the platelet surface receptor, GPIb. To further define the VWF sequences required for VWF-platelet interaction, a phage library displaying random VWF protein fragments was screened against formalin-fixed platelets. After 3 rounds of affinity selection, DNA sequencing of platelet-bound clones identified VWF peptides mapping exclusively to the A1 domain. Aligning these sequences defined a minimal, overlapping segment spanning P1254-A1461, which encompasses the C1272-C1458 cystine loop. Analysis of phage carrying a mutated A1 segment (C1272/1458A confirmed the requirement of the cystine loop for optimal binding. Four rounds of affinity maturation of a randomly mutagenized A1 phage library identified 10 and 14 unique mutants associated with enhanced platelet binding in the presence and absence of botrocetin, respectively, with 2 mutants (S1370G and I1372V common to both conditions. These results demonstrate the utility of filamentous phage for studying VWF protein structure-function and identify a minimal, contiguous peptide that bind to formalin-fixed platelets, confirming the importance of the VWF A1 domain with no evidence for another independently platelet-binding segment within VWF. These findings also point to key structural elements within the A1 domain that regulate VWF-platelet adhesion.

  15. Molecular basis for the wide range of affinity found in Csr/Rsm protein-RNA recognition.

    Science.gov (United States)

    Duss, Olivier; Michel, Erich; Diarra dit Konté, Nana; Schubert, Mario; Allain, Frédéric H-T

    2014-04-01

    The carbon storage regulator/regulator of secondary metabolism (Csr/Rsm) type of small non-coding RNAs (sRNAs) is widespread throughout bacteria and acts by sequestering the global translation repressor protein CsrA/RsmE from the ribosome binding site of a subset of mRNAs. Although we have previously described the molecular basis of a high affinity RNA target bound to RsmE, it remains unknown how other lower affinity targets are recognized by the same protein. Here, we have determined the nuclear magnetic resonance solution structures of five separate GGA binding motifs of the sRNA RsmZ of Pseudomonas fluorescens in complex with RsmE. The structures explain how the variation of sequence and structural context of the GGA binding motifs modulate the binding affinity for RsmE by five orders of magnitude (∼10 nM to ∼3 mM, Kd). Furthermore, we see that conformational adaptation of protein side-chains and RNA enable recognition of different RNA sequences by the same protein contributing to binding affinity without conferring specificity. Overall, our findings illustrate how the variability in the Csr/Rsm protein-RNA recognition allows a fine-tuning of the competition between mRNAs and sRNAs for the CsrA/RsmE protein.

  16. Expression of zinc finger E-box-binding homeobox factor 1 in epithelial ovarian cancer: A clinicopathological analysis of 238 patients

    OpenAIRE

    LI, XIUFANG; HUANG, RUIXIA; LI, RUTH HOLM; TROPE, CLAES G.; NESLAND, JAHN M.; SUO, ZHENHE

    2015-01-01

    A growing body of evidence indicates that aberrant activation of epithelial-to-mesenchymal transition (EMT) plays a key role in tumor cell invasion and metastasis. Zinc finger E-box-binding homeobox factor 1 (ZEB1), as a crucial mediator of EMT, contributes to the malignant progression of various epithelial tumors. To determine whether ZEB1 is involved in the progression of ovarian cancer, we immunohistochemically evaluated the expression of ZEB1 in 238 cases of epithelial ovarian cancer (EOC...

  17. Insulin-like growth factor (IGF)-I binding to a cell membrane associated IGF binding protein-3 acid-labile subunit complex in human anterior pituitary gland

    NARCIS (Netherlands)

    Wilczak, N; Kuhl, N; Chesik, D; Geerts, A; Luiten, P; De Keyser, J

    The binding characteristics of [(125) I]insulin-like growth factor (IGF)-I were studied in human brain and pituitary gland. Competition binding studies with DES(1-3)IGF-I and R-3 -IGF-I, which display high affinity for the IGF-I receptor and low affinity for IGF binding proteins (IGFBPs), were

  18. Biophysical and computational comparison on the binding affinity of three important nutrients to β-lactoglobulin: folic acid, ascorbic acid and vitamin K3.

    Science.gov (United States)

    Shahraki, Somaye; Heydari, Ali; Saeidifar, Maryam; Gomroki, Masoumeh

    2017-11-06

    Small globular protein, β-lactoglobulin (βLG), which has significant affinity toward many drugs, is the most abundant whey protein in milk. In this study, the interaction of βLG with three important nutrients, ascorbic acid (ASC), folic acid (FOL), and vitamin K3 (VK3) was investigated by spectroscopic methods (UV-visible and fluorescence) along with molecular docking technique. The results of fluorescence measurements showed that studied nutrients strongly quenched βLG fluorescence in static (FOL and ACS) or static-dynamic combined quenching (VK3) mode. The values of binding constants (K βLG-ASC  ~ 4.34 × 10 4  M -1 , K βLG-FOL ~ 1.67 × 10 4  M -1 and K βLG-VK3 ~ 13.49 × 10 4  M -1 at 310 K) suggested that VK3 and FOL had stronger binding affinity toward βLG than ASC. Thermodynamic analysis indicated that hydrophobic interactions are the major forces in the stability of FOL-βLG complex with enthalpy- and entropy-driving mode while, hydrogen bonds and van der Waals interactions play a major role for βLG-ASC and βLG-VK3 associations. The results of 3D fluorescence FT-IR and UV-Visible measurements indicated that the binding of above nutrients to βLG may induce conformational and micro-environmental changes of protein. Also, there is a reciprocal complement between spectroscopic techniques and molecular docking modeling. The docking results indicate that the ASC, FOL, and VK3 bind to residues located in the subdomain B of βLG. Finally, this report suggests that βLG could be used as an effective carrier of above nutrients in functional foods.

  19. The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes

    DEFF Research Database (Denmark)

    Morrill, Johan; Kulcinskaja, Evelina; Sulewska, Anna Maria

    2015-01-01

    β-Mannans are abundant and diverse plant structural and storage polysaccharides. Certain human gut microbiota members including health-promoting Bifidobacterium spp. catabolize dietary mannans. Little insight is available on the enzymology of mannan deconstruction in the gut ecological niche. Here....... Surface plasmon resonance analysis confirmed the binding of the CBM10 to manno-oligosaccharides, albeit with slightly lower affinity than the catalytic module of the enzyme. This is the first example of a low-affinity mannan-specific CBM, which forms a subfamily of CBM10 together with close homologs...

  20. In silico binding affinity studies of N-9 substituted 6-(4-(4-propoxyphenylpiperazin-1-yl-9H-purine derivatives-Target for P70-S6K1 & PI3K-δ kinases

    Directory of Open Access Journals (Sweden)

    Manjunath G. Sunagar

    2018-03-01

    Full Text Available P70-S6K1 & PI3K-δ kinases are identified to be involved in many physiological processes associated with cancer, therefore many of the inhibitors being designed to target these kinases are in clinical trials. In the current study we have exploited the N-9 substituted 6-(4-(4-propoxyphenyl piperazin-1-yl-9H-purine derivatives for their inhibitory properties with the above kinases. We have used an in silico docking study with seventeen purine derivatives for their binding affinity calculations. The binding affinities of these small molecules with P70-S6K1 & PI3K-δ were performed using AutoDock Vina. Among all the compounds, PP16 showed highest binding affinity of −14.7 kcal/mol with P70-S6K1 kinase & −17.2 kcal/mol with PI3K-δ kinases as compared to the molecules under clinical trials (PF-4708671 & IC-87114. Docking studies revealed that N-9 coumarine substituted purine derivative could be one of the potential ligands for the inhibition of P70-S6K1 & PI3K-δ kinases. Hence, this compound can be further investigated by in vitro and in vivo experiments for further validation.

  1. Engineering cofactor and ligand binding in an artificial neuroglobin

    Science.gov (United States)

    Zhang, Lei

    HP-7 is one artificial mutated oxygen transport protein, which operates via a mechanism akin to human neuroglobin and cytoglobin. This protein destabilizes one of two heme-ligating histidine residues by coupling histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Replacement of these glutamate residues with alanine, which has a neutral hydrophobicity, slows gaseous ligand binding 22-fold, increases the affinity of the distal histidine ligand by a factor of thirteen, and decreases the binding affinity of carbon monoxide, a nonreactive oxygen analogue, three-fold. Paradoxically, it also decreases heme binding affinity by a factor of three in the reduced state and six in the oxidized state. Application of a two-state binding model, in which an initial pentacoordinate binding event is followed by a protein conformational change to hexacoordinate, provides insight into the mechanism of this seemingly counterintuitive result: the initial pentacoordinate encounter complex is significantly destabilized by the loss of the glutamate side chains, and the increased affinity for the distal histidine only partially compensates. These results point to the importance of considering each oxidation and conformational state in the design of functional artificial proteins. We have also examined the effects these mutations have on function. The K d of the nonnreactive oxygen analogue carbon monoxide (CO) is only decreased three-fold, despite the large increase in distal histidine affinity engendered by the 22-fold decrease in the histidine ligand off-rate. This is a result of the four-fold increase in affinity for CO binding to the pentacoordinate state. Oxygen binds to HP7 with a Kd of 117 µM, while the mutant rapidly oxidizes when exposed to oxygen. EPR analysis of both ferric hemoproteins demonstrates that the mutation increases disorder at the heme binding site. NMR-detected deuterium exchange demonstrates that the mutation causes a

  2. Extreme disorder in an ultrahigh-affinity protein complex

    DEFF Research Database (Denmark)

    Borgia, Alessandro; Borgia, Madeleine B; Bugge, Katrine

    2018-01-01

    Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions...... with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring...... or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex...

  3. Structural determinants for binding to angiotensin converting enzyme 2 (ACE2 and angiotensin receptors

    Directory of Open Access Journals (Sweden)

    Daniel eClayton

    2015-01-01

    Full Text Available Angiotensin converting enzyme 2 (ACE2 is a zinc carboxypeptidase involved in the renin angiotensin system (RAS and inactivates the potent vasopressive peptide angiotensin II (Ang II by removing the C-terminal phenylalanine residue to yield Ang1-7. This conversion inactivates the vasoconstrictive action of Ang II and yields a peptide that acts as a vasodilatory molecule at the Mas receptor and potentially other receptors. Given the growing complexity of RAS and level of cross-talk between ligands and their corresponding enzymes and receptors, the design of molecules with selectivity for the major RAS binding partners to control cardiovascular tone is an on-going challenge. In previous studies we used single β-amino acid substitutions to modulate the structure of Ang II and its selectivity for ACE2, AT1R and angiotensin type 2 (AT2R receptor. We showed that modification at the C-terminus of Ang II generally resulted in more pronounced changes to secondary structure and ligand binding, and here we further explore this region for the potential to modulate ligand specificity. In this study, 1 a library of forty-seven peptides derived from the C-terminal tetra-peptide sequence (-IHPF of Ang II was synthesised and assessed for ACE2 binding, 2 the terminal group requirements for high affinity ACE2 binding were explored by and N- and C-terminal modification, 3 high affinity ACE2 binding chimeric AngII analogues were then synthesized and assessed, 4 the structure of the full-length Ang II analogues were assessed by circular dichroism, and 5 the Ang II analogues were assessed for AT1R/AT2R selectivity by cell-based assays. Studies on the C-terminus of Ang II demonstrated varied specificity at different residue positions for ACE2 binding and four Ang II chimeric peptides were identified as selective ligands for the AT2 receptor. Overall, these results provide insight into the residue and structural requirements for ACE2 binding and angiotensin receptor

  4. Investigation of the binding affinity in vitamin B12-Bovine serum albumin system using various spectroscopic methods

    Science.gov (United States)

    Makarska-Bialokoz, Magdalena

    2017-09-01

    The binding affinity between vitamin B12 (VitB12) and bovine serum albumin (BSA) has been investigated in aqueous solution at pH = 7.4, employing UV-vis absorption and steady-state, synchronous and three-dimensional fluorescence spectra techniques. Representative effects noted for BSA intrinsic fluorescence resulting from the interactions with VitB12 confirm the formation of π-π stacked non-covalent and non-fluorescent complexes in the system VitB12-BSA. All the determined parameters, the binding, fluorescence quenching and bimolecular quenching rate constants (of the order of 104 L mol- 1, 103 L mol- 1 and 1011 L mol- 1 s- 1, respectively), as well as Förster resonance energy transfer parameters validate the mechanism of static quenching. The interaction with VitB12 induces folding of the polypeptide chains around Trp residues of BSA, resulting in a more hydrophobic surrounding. Presented outcomes suggest that the addition of VitB12 can lead to the more organized BSA conformation and its more folded tertiary structure, what could influence the physiological functions of bovine serum albumin, notably in case of its overuse or abnormal metabolism.

  5. Prediction of N-Methyl-D-Aspartate Receptor GluN1-Ligand Binding Affinity by a Novel SVM-Pose/SVM-Score Combinatorial Ensemble Docking Scheme.

    Science.gov (United States)

    Leong, Max K; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng

    2017-01-06

    The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r 2  = 0.928-0.988,  = 0.894-0.954, RMSE = 0.002-0.412, s = 0.001-0.214), and the predicted pK i values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r 2  = 0.967,  = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q 2  = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery.

  6. Zinc-decorated silica-coated magnetic nanoparticles for protein binding and controlled release.

    Science.gov (United States)

    Bele, Marjan; Hribar, Gorazd; Campelj, Stanislav; Makovec, Darko; Gaberc-Porekar, Vladka; Zorko, Milena; Gaberscek, Miran; Jamnik, Janko; Venturini, Peter

    2008-05-01

    The aim of this study was to be able to reversibly bind histidine-rich proteins to the surface of maghemite magnetic nanoparticles via coordinative bonding using Zn ions as the anchoring points. We showed that in order to adsorb Zn ions on the maghemite, the surface of the latter needs to be modified. As silica is known to strongly adsorb zinc ions, we chose to modify the maghemite nanoparticles with a nanometre-thick silica layer. This layer appeared to be thin enough for the maghemite nanoparticles to preserve their superparamagnetic nature. As a model the histidine-rich protein bovine serum albumin (BSA) was used. The release of the BSA bound to Zn-decorated silica-coated maghemite nanoparticles was analysed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We demonstrated that the bonding of the BSA to such modified magnetic nanoparticles is highly reversible and can be controlled by an appropriate change of the external conditions, such as a pH decrease or the presence/supply of other chelating compounds.

  7. Tritium NMR spectroscopy of ligand binding to maltose-binding protein

    International Nuclear Information System (INIS)

    Gehring, K.; Williams, P.G.; Pelton, J.G.; Morimoto, H.; Wemmer, D.E.

    1991-01-01

    Tritium-labeled α- and β-maltodextrins have been used to study their complexes with maltose-binding protein (MBP), a 40-kDa bacterial protein. Five substrates, from maltose to maltohexaose, were labeled at their reducing ends and their binding studied. Tritium NMR specctroscopy of the labeled sugars showed large upfield chamical shift changes upon binding and strong anomeric specficity. At 10 degrees C, MBP bound α-maltose with 2.7 ± 0.5-fold higher affinity than β-maltose, and, for longer maltodextrins, the ratio of affinities was even larger. The maximum chemical shift change was 2.2 ppm, suggesting that the reducing end of bound α-maltodextrin makes close contact with an aromatic residue in the MBP-binding site. Experiments with maltotriose (and longer maltodextrins) also revealed the presence of two bound β-maltotriose resonances in rapid exchange. The authors interpret these two resonances as arising from two distinct sugar-protein complexes. In one complex, the β-maltodextrin is bound by its reducing end, and, in the other complex, the β-maltodextrin is bound by the middle glucose residue(s). This interpretation also suggests how MBP is able to bind both linear and circular maltodextrins

  8. Modulation of microtubule assembly by the HIV-1 Tat protein is strongly dependent on zinc binding to Tat

    Directory of Open Access Journals (Sweden)

    Muller Sylviane

    2008-07-01

    Full Text Available Abstract Background During HIV-1 infection, the Tat protein plays a key role by transactivating the transcription of the HIV-1 proviral DNA. In addition, Tat induces apoptosis of non-infected T lymphocytes, leading to a massive loss of immune competence. This apoptosis is notably mediated by the interaction of Tat with microtubules, which are dynamic components essential for cell structure and division. Tat binds two Zn2+ ions through its conserved cysteine-rich region in vitro, but the role of zinc in the structure and properties of Tat is still controversial. Results To investigate the role of zinc, we first characterized Tat apo- and holo-forms by fluorescence correlation spectroscopy and time-resolved fluorescence spectroscopy. Both of the Tat forms are monomeric and poorly folded but differ by local conformational changes in the vicinity of the cysteine-rich region. The interaction of the two Tat forms with tubulin dimers and microtubules was monitored by analytical ultracentrifugation, turbidity measurements and electron microscopy. At 20°C, both of the Tat forms bind tubulin dimers, but only the holo-Tat was found to form discrete complexes. At 37°C, both forms promoted the nucleation and increased the elongation rates of tubulin assembly. However, only the holo-Tat increased the amount of microtubules, decreased the tubulin critical concentration, and stabilized the microtubules. In contrast, apo-Tat induced a large amount of tubulin aggregates. Conclusion Our data suggest that holo-Tat corresponds to the active form, responsible for the Tat-mediated apoptosis.

  9. The N-terminal domain of the repressor of Staphylococcus aureus phage Φ11 possesses an unusual dimerization ability and DNA binding affinity.

    Directory of Open Access Journals (Sweden)

    Anindya Biswas

    Full Text Available Bacteriophage Φ11 uses Staphylococcus aureus as its host and, like lambdoid phages, harbors three homologous operators in between its two divergently oriented repressor genes. None of the repressors of Φ11, however, showed binding to all three operators, even at high concentrations. To understand why the DNA binding mechanism of Φ11 repressors does not match that of lambdoid phage repressors, we studied the N-terminal domain of the Φ11 lysogenic repressor, as it harbors a putative helix-turn-helix motif. Our data revealed that the secondary and tertiary structures of the N-terminal domain were different from those of the full-length repressor. Nonetheless, the N-terminal domain was able to dimerize and bind to the operators similar to the intact repressor. In addition, the operator base specificity, binding stoichiometry, and binding mechanism of this domain were nearly identical to those of the whole repressor. The binding affinities of the repressor and its N-terminal domain were reduced to a similar extent when the temperature was increased to 42°C. Both proteins also adequately dislodged a RNA polymerase from a Φ11 DNA fragment carrying two operators and a promoter. Unlike the intact repressor, the binding of the N-terminal domain to two adjacent operator sites was not cooperative in nature. Taken together, we suggest that the dimerization and DNA binding abilities of the N-terminal domain of the Φ11 repressor are distinct from those of the DNA binding domains of other phage repressors.

  10. Improved scFv Anti-HIV-1 p17 Binding Affinity Guided from the Theoretical Calculation of Pairwise Decomposition Energies and Computational Alanine Scanning

    Directory of Open Access Journals (Sweden)

    Panthip Tue-ngeun

    2013-01-01

    Full Text Available Computational approaches have been used to evaluate and define important residues for protein-protein interactions, especially antigen-antibody complexes. In our previous study, pairwise decomposition of residue interaction energies of single chain Fv with HIV-1 p17 epitope variants has indicated the key specific residues in the complementary determining regions (CDRs of scFv anti-p17. In this present investigation in order to determine whether a specific side chain group of residue in CDRs plays an important role in bioactivity, computational alanine scanning has been applied. Molecular dynamics simulations were done with several complexes of original scFv anti-p17 and scFv anti-p17mutants with HIV-1 p17 epitope variants with a production run up to 10 ns. With the combination of pairwise decomposition residue interaction and alanine scanning calculations, the point mutation has been initially selected at the position MET100 to improve the residue binding affinity. The calculated docking interaction energy between a single mutation from methionine to either arginine or glycine has shown the improved binding affinity, contributed from the electrostatic interaction with the negative favorably interaction energy, compared to the wild type. Theoretical calculations agreed well with the results from the peptide ELISA results.

  11. Znu is the predominant zinc importer in Yersinia pestis during in vitro growth but is not essential for virulence.

    Science.gov (United States)

    Desrosiers, Daniel C; Bearden, Scott W; Mier, Ildefonso; Abney, Jennifer; Paulley, James T; Fetherston, Jacqueline D; Salazar, Juan C; Radolf, Justin D; Perry, Robert D

    2010-12-01

    Little is known about Zn homeostasis in Yersinia pestis, the plague bacillus. The Znu ABC transporter is essential for zinc (Zn) uptake and virulence in a number of bacterial pathogens. Bioinformatics analysis identified ZnuABC as the only apparent high-affinity Zn uptake system in Y. pestis. Mutation of znuACB caused a growth defect in Chelex-100-treated PMH2 growth medium, which was alleviated by supplementation with submicromolar concentrations of Zn. Use of transcriptional reporters confirmed that Zur mediated Zn-dependent repression and that it can repress gene expression in response to Zn even in the absence of Znu. Virulence testing in mouse models of bubonic and pneumonic plague found only a modest increase in survival in low-dose infections by the znuACB mutant. Previous studies of cluster 9 (C9) transporters suggested that Yfe, a well-characterized C9 importer for manganese (Mn) and iron in Y. pestis, might function as a second, high-affinity Zn uptake system. Isothermal titration calorimetry revealed that YfeA, the solute-binding protein component of Yfe, binds Mn and Zn with comparably high affinities (dissociation constants of 17.8 ± 4.4 nM and 6.6 ± 1.2 nM, respectively), although the complete Yfe transporter could not compensate for the loss of Znu in in vitro growth studies. Unexpectedly, overexpression of Yfe interfered with the znu mutant's ability to grow in low concentrations of Zn, while excess Zn interfered with the ability of Yfe to import iron at low concentrations; these results suggest that YfeA can bind Zn in the bacterial cell but that Yfe is incompetent for transport of the metal. In addition to Yfe, we have now eliminated MntH, FetMP, Efe, Feo, a substrate-binding protein, and a putative nickel transporter as the unidentified, secondary Zn transporter in Y. pestis. Unlike other bacterial pathogens, Y. pestis does not require Znu for high-level infectivity and virulence; instead, it appears to possess a novel class of transporter

  12. Bifunctional avidin with covalently modifiable ligand binding site.

    Directory of Open Access Journals (Sweden)

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  13. Binding of streptomycin with bovine serum albumin: Energetics and conformational aspects

    International Nuclear Information System (INIS)

    Jha, Niki S.; Kishore, Nand

    2009-01-01

    Thermodynamics of the binding of antibiotic streptomycin to bovine serum albumin have been studied using isothermal titration calorimetry in combination with fluorescence, UV-vis and circular dichroism spectroscopies. The values of van't Hoff enthalpy calculated from the temperature dependence of the binding constant do not agree with the calorimetric enthalpies indicating temperature dependent conformational changes in the protein upon binding. With increase in the ionic strength, reduction in the binding affinity of streptomycin to BSA is observed suggesting the predominance of electrostatic interactions in the binding. The contribution of hydrophobic interactions in the binding is also demonstrated by decrease in binding affinity in the presence of tetrabutylammonium bromide (TBAB). The value of binding affinity in the presence of sucrose indicates that hydrogen bonding is not a significant contribution in complexation. The results have permitted quantitative evaluation of the interaction of streptomycin with bovine serum albumin

  14. Structure-activity studies of dicationically substituted bis-benzimidazoles against Giardia lamblia: correlation of antigiardial activity with DNA binding affinity and giardial topoisomerase II inhibition.

    Science.gov (United States)

    Bell, C A; Dykstra, C C; Naiman, N A; Cory, M; Fairley, T A; Tidwell, R R

    1993-01-01

    Nine dicationically substituted bis-benzimidazoles were examined for their in vitro activities against Giardia lamblia WB (ATCC 30957). The potential mechanisms of action of these compounds were evaluated by investigating the relationship among in vitro antigiardial activity and the affinity of the molecules for DNA and their ability to inhibit the activity of giardial topoisomerase II. Each compound demonstrated antigiardial activity, as measured by assessing the incorporation of [methyl-3H]thymidine by giardial trophozoites exposed to the test agents. Three compounds exhibited excellent in vitro antigiardial activities, with 50% inhibitory concentrations which compared very favorably with those of two currently used drugs, quinacrine HCl and metronidazole. Putative mechanisms of action for these compounds were suggested by the strong correlation observed among in vitro antigiardial activity and the affinity of the molecules for natural and synthetic DNA and their ability to inhibit the relaxation activity of giardial topoisomerase II. A strong correlation between the DNA binding affinity of these compounds and their inhibition of giardial topoisomerase II activity was also observed. Images PMID:8109934

  15. A novel thiolated human-like collage zinc complex as a promising zinc supplement: physicochemical characteristics and biocompatibility.

    Science.gov (United States)

    Zhu, Chenhui; Ma, Xiaoxuan; Wang, Yonghui; Mi, Yu; Fan, Daidi; Deng, Jianjun; Xue, Wenjiao

    2014-11-01

    To improve zinc binding ability to human-like collagen (HLC) and stability of metal complex, HLC was thiolated by mercaptosuccinylation reaction with S-acetylmercaptosuccinic anhydride (S-AMSA) at pH8.0. One mole of thiolated HLC-Zn (SHLC-Zn) complex possessed 24.3mol zinc ions when pH was 8.0 and zinc concentration was 15 mM. The physicochemical properties and biocompatibility of thiolated HLC-Zn (SHLC-Zn) complex were investigated by UV-vis, CD, electrophoresis analysis, differential scanning calorimetry (DSC) and cell viability assay, respectively. The results showed that SHLC-Zn complex(1) exhibited higher zinc ions than that of native HLC and still maintained the secondary structure of HLC though interaction occurred between SHLC and zinc ions, (2) increased the apparent molecular weight when compared with native HLC, (3) exhibited greater thermal stability than native HLC, and (4) presented toxicity free for BHK cells. This study suggests that the SHLC-Zn complex is a potential nutrition as well as zinc supplement in the medical application. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Affinity monolith chromatography: A review of general principles and applications.

    Science.gov (United States)

    Li, Zhao; Rodriguez, Elliott; Azaria, Shiden; Pekarek, Allegra; Hage, David S

    2017-11-01

    Affinity monolith chromatography, or AMC, is a liquid chromatographic method in which the support is a monolith and the stationary phase is a biological-binding agent or related mimic. AMC has become popular for the isolation of biochemicals, for the measurement of various analytes, and for studying biological interactions. This review will examine the principles and applications of AMC. The materials that have been used to prepare AMC columns will be discussed, which have included various organic polymers, silica, agarose, and cryogels. Immobilization schemes that have been used in AMC will also be considered. Various binding agents and applications that have been reported for AMC will then be described. These applications will include the use of AMC for bioaffinity chromatography, immunoaffinity chromatography, dye-ligand affinity chromatography, and immobilized metal-ion affinity chromatography. The use of AMC with chiral stationary phases and as a tool to characterize biological interactions will also be examined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A DFT and semiempirical model-based study of opioid receptor affinity and selectivity in a group of molecules with a morphine structural core.

    Science.gov (United States)

    Bruna-Larenas, Tamara; Gómez-Jeria, Juan S

    2012-01-01

    We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31G(∗∗) levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.

  18. A DFT and Semiempirical Model-Based Study of Opioid Receptor Affinity and Selectivity in a Group of Molecules with a Morphine Structural Core

    Directory of Open Access Journals (Sweden)

    Tamara Bruna-Larenas

    2012-01-01

    Full Text Available We report the results of a search for model-based relationships between mu, delta, and kappa opioid receptor binding affinity and molecular structure for a group of molecules having in common a morphine structural core. The wave functions and local reactivity indices were obtained at the ZINDO/1 and B3LYP/6-31 levels of theory for comparison. New developments in the expression for the drug-receptor interaction energy expression allowed several local atomic reactivity indices to be included, such as local electronic chemical potential, local hardness, and local electrophilicity. These indices, together with a new proposal for the ordering of the independent variables, were incorporated in the statistical study. We found and discussed several statistically significant relationships for mu, delta, and kappa opioid receptor binding affinity at both levels of theory. Some of the new local reactivity indices incorporated in the theory appear in several equations for the first time in the history of model-based equations. Interaction pharmacophores were generated for mu, delta, and kappa receptors. We discuss possible differences regulating binding and selectivity in opioid receptor subtypes. This study, contrarily to the statistically backed ones, is able to provide a microscopic insight of the mechanisms involved in the binding process.

  19. High-affinity receptors for bombesin-like peptides in normal guinea pig lung membranes

    International Nuclear Information System (INIS)

    Lach, E.; Trifilieff, A.; Landry, Y.; Gies, J.P.

    1991-01-01

    The binding of the radiolabeled bombesin analogue [ 125 I-Tyr 4 ]bombesin to guinea-pig lung membranes was investigated. Binding of [ 125 I-Tyr 4 ]bombesin was specific, saturable, reversible and linearly related to the protein concentration. Scatchard analysis of equilibrium binding data at 25C indicated the presence of a single class of non-interacting binding sites for bombesin (B max = 7.7 fmol/mg protein). The value of the equilibrium dissociation constant (K D = 90 pM) agrees with a high-affinity binding site. Bombesin and structurally related peptides such as [ 125 I-Tyr 4 ]bombesin, neuromedin B and neuromedin C inhibited the binding of [ 125 I-Tyr 4 ]bombesin in an order of potencies as follows: [ 125 I-Tyr 4 ]bombesin > bombesin ≥ neuromedin C much-gt neuromedin B. These results indicate that guinea-pig lung membranes possess a single class of bombesin receptors with a high affinity for bombesin and a lower one for neuromedin B

  20. Agonist-induced affinity alterations of a central nervous system. cap alpha. -bungarotoxin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, R.J.; Bennett, E.L.

    1979-01-01

    The ability of cholinergic agonists to block the specific interaction of ..cap alpha..-bungarotoxin (..cap alpha..-Bgt) with membrane-bound sites derived from rat brain is enhanced when membranes are preincubated with agonist. Thus, pretreatment of ..cap alpha..-Bgt receptors with agonist (but not antagonist) causes transformation of sites to a high-affinity form toward agonist. This change in receptor state occurs with a half-time on the order of minutes, and is fully reversible on dilution of agonist. The results are consistent with the identity of ..cap alpha..-Bgt binding sites as true central nicotinic acetylcholine receptors. Furthermore, this agonist-induced alteration in receptor state may represent an in vitro correlate of physiological desensitization. As determined from the effects of agonist on toxin binding isotherms, and on the rate of toxin binding to specific sites, agonist inhibition of toxin binding to the high-affinity state is non-competitive. This result suggests that there may exist discrete toxin-binding and agonist-binding sites on central toxin receptors.