WorldWideScience

Sample records for zinc sulfide phosphors

  1. Recovery of zinc in phosphor wastes via electrokinetic treatments

    International Nuclear Information System (INIS)

    Yu, M.Y.; Wang, H. Paul; Chen, C.Y.; Hsiung, T.-L.; Wei, Yu-Ling; Tai, H.-S.; Chiang, K.-C.

    2007-01-01

    Speciation of zinc in phosphor wastes during electrokinetic treatments has been studied by in situ X-ray absorption near edge structure (XANES) spectroscopy in the present work. The least-square fits of the in situ XANES spectra show that the major zinc species in the phosphor waste are ZnS (77%), ZnO (10%), and Zn(OH) 2 (13%). During the electrokinetic treatment for 90 min, 25% of ZnS and 4% of ZnO are dissolved. About 42% of zinc is enriched on the cathode under the electric field (5 V/cm). Prolonging the electrokinetic treatment time to 4 h under the electric field of 5 V/cm, at least 80% of zinc in the phosphor waste can be recovered

  2. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    Science.gov (United States)

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  3. Sulfidation of zinc plating sludge with Na2S for zinc resource recovery

    International Nuclear Information System (INIS)

    Kuchar, D.; Fukuta, T.; Onyango, M.S.; Matsuda, H.

    2006-01-01

    A high amount of zinc disposed in the landfill sites as a mixed-metal plating sludge represents a valuable zinc source. To recover zinc from the plating sludge, a sulfidation treatment is proposed in this study, while it is assumed that ZnS formed could be separated by flotation. The sulfidation treatment was conducted by contacting simulated zinc plating sludge with Na 2 S solution at S 2- to Zn 2+ molar ratio of 1.5 for a period of 1-48 h, while changing the solid to liquid (S:L) ratio from 0.25:50 to 1.00:50. The conversion of zinc compounds to ZnS was determined based on the consumption of sulfide ions. The reaction products formed by the sulfidation of zinc were identified by X-ray diffraction (XRD). As a result, it was found that the conversion of zinc compounds to ZnS increased with an increase in S:L ratio. A maximum conversion of 0.809 was obtained at an S:L ratio of 1.00:50 after 48 h. However, when the zinc sludge treated at S:L ratio of 1.00:50 for 48 h was subjected to XRD analyses, only ZnS was identified in the treated zinc sludge. The result suggested that the rest of zinc sludge remained unreacted inside the agglomerates of ZnS. The formation behavior of ZnS was predicted by Elovich equation, which was found to describe the system satisfactorily indicating the heterogeneous nature of the sludge

  4. Zinc sulfide in intestinal cell granules of Ancylostoma caninum adults

    Energy Technology Data Exchange (ETDEWEB)

    Gianotti, A.J.; Clark, D.T.; Dash, J. (Portland State Univ., OR (USA))

    1991-04-01

    A source of confusion has existed since the turn of the century about the reddish brown, weakly birefringent 'sphaerocrystals' located in the intestines of strongyle nematodes, Strongylus and Ancylostoma. X-ray diffraction and energy dispersive spectrometric analyses were used for accurate determination of the crystalline order and elemental composition of the granules in the canine hookworm Ancylostoma caninum. The composition of the intestinal pigmented granules was identified unequivocally as zinc sulfide. It seems most probable that the granules serve to detoxify high levels of metallic ions (specifically zinc) present due to the large intake of host blood.

  5. Reduction kinetics of zinc and cadmium sulfides with hydrogen

    International Nuclear Information System (INIS)

    Turgenev, I.S.; Kabisov, I.Kh.; Zviadadze, G.N.; Vasil'eva, O.Yu.

    1985-01-01

    Kinetics of reduction processes of zinc sulfide in the temperature range 800-1100 deg C and of cadmium sulfide 600-900 deg C has been stodied. Activation energies and reaction order in terms of hydrogen are calculated. Thermodynamic processes of reduction depend on aggregate state of the metal formed. For vaporous zinc in the temperature range 1050-950 deq C activation energy constitutes 174 kJ/mol, for liquid in the range 900-850 deg - 151 kJ/mol and reaction order in terms of hydrogen is 1.0. For vaporous cadmium in the temperature range 900-700 deg C activation energy constitutes 144 kJ/mol and reaction order in terms of hydrogen is 0.86, for liquid in the range 675-600 deg C 127 kJ/mol and 0.8 respectively. The processes of zinc and cadmium sulfide reduction proceed in kinetic regime and are limited by the rate of chemical reaction

  6. Relative flotation response of zinc sulfide: Mineral and precipitate

    Energy Technology Data Exchange (ETDEWEB)

    Rao, S.R.; Finch, J.A. [McGill Univ., Montreal, Quebec (Canada). Dept. of Mining and Metallurgical Engineering; Zhou, Z.; Xu, Z. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Chemical and Materials Engineering

    1998-04-01

    Flotation continues to extend to nonmineral applications, including recycling of materials, soil remediation, and effluent treatment. A study has been conducted to compare the floatability of fine zinc sulfide (ZnS) precipitates and sphalerite particles. The floatability of the precipitates was significantly poorer compared to sphalerite particles when xanthate was used as the collector. The floatability was improved by using dodecylamine as the collector, and the difference in floatability between the precipitates was further improved significantly by incorporating a hydrodynamic cavitation tube in a conventional (mechanical) flotation cell. The improved kinetics was attributed to in-situ gas nucleation on the precipitates.

  7. Influence of pH-control in phosphoric acid treatment of zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Onoda, H., E-mail: onoda@kpu.ac.jp [Department of Informatics and Environmental Sciences, Kyoto Prefectural University (Japan); Chemel, M. [Ecole de Biologie Industrielle, CERGY Cedex (France)

    2017-04-15

    Zinc oxide is often used as a white pigment for cosmetics; however, it shows photocatalytic activity that causes decomposition of sebum on the skin when exposed to the ultraviolet radiation in sunlight. In this work, zinc oxide was reacted with phosphoric acid at various pH values to synthesize a novel white pigment for cosmetics. The chemical composition, powder properties, photocatalytic activities, colors, and smoothness of these pigments were studied. The obtained materials exhibited X-ray diffraction peaks relating to zinc oxide and phosphate after phosphoric acid treatment. The ratio of zinc phosphate to zinc oxide was estimated from inductively coupled plasma - atomic emission spectroscopy results. Samples treated at pH 4-7 yielded small particles with sub-micrometer sizes. The photocatalytic activity of zinc oxide became lower after phosphoric acid treatment. Samples treated at pH 4-7 showed the same reflectance as zinc oxide in both the ultraviolet and visible ranges. Adjustment of the pH was found to be important in the phosphoric acid treatment of zinc oxide. (author)

  8. Solubility Measurements and Modeling of Zinc, Lead and Iron Sulfides at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Carolina Figueroa Murcia, Diana; Fosbøl, Philip Loldrup; Thomsen, Kaj

    Solubility measurements of sulfides in aqueous solutions are necessary to understand the behaviour of these scaling minerals in geothermal and oil reservoirs. The low solubility levels of Zinc Sulfide (ZnS), Lead Sulfide (PbS) and Iron Sulfide (FeS) make the solubility measurements a challenging...... oxygen atmosphere to avoid the risk of oxidation of sulfide minerals. The solution is kept in an equilibrium cell at constant temperature and pressure with continuous stirring. The concentration of Zn2+, Pb2+, Fe2+ and S2- are measured using Inductively Coupled Plasma Optical Emission spectrometry (ICP...

  9. Synthesis of zinc sulfide by chemical vapor deposition using an organometallic precursor: Di-tertiary-butyl-disulfide

    International Nuclear Information System (INIS)

    Vasekar, Parag; Dhakal, Tara; Ganta, Lakshmikanth; Vanhart, Daniel; Desu, Seshu

    2012-01-01

    Zinc sulfide has gained popularity in the last few years as a cadmium-free heterojunction partner for thin film solar cells and is seen as a good replacement for cadmium sulfide due to better blue photon response and non-toxicity. In this work, zinc sulfide films are prepared using an organic sulfur source. We report a simple and repeatable process for development of zinc sulfide using a cost-effective and less hazardous organic sulfur source. The development of zinc sulfide has been studied on zinc oxide-coated glass where the zinc oxide is converted into zinc sulfide. Zinc oxide grown by atomic layer deposition as well as commercially available zinc oxide-coated glass was used. The zinc sulfide synthesis has been studied and the films are characterized using scanning electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and a UV–VIS spectrophotometer. XRD, XPS and optical characterization confirm the zinc sulfide phase formation. - Highlights: ► Synthesis of ZnS using a less-hazardous precursor, di-tertiary-butyl-disulfide. ► ZnS process optimized for two types of ZnO films. ► Preliminary results for a solar cell show an efficiency of 1.09%.

  10. Inhibition effects of protein-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth

    International Nuclear Information System (INIS)

    Cao Ying; Wang Huajie; Cao Cui; Sun Yuanyuan; Yang Lin; Wang Baoqing; Zhou Jianguo

    2011-01-01

    In this article, a facile and environmentally friendly method was applied to fabricate BSA-conjugated amorphous zinc sulfide (ZnS) nanoparticles using bovine serum albumin (BSA) as the matrix. Transmission electron microscopy analysis indicated that the stable and well-dispersed nanoparticles with the diameter of 15.9 ± 2.1 nm were successfully prepared. The energy dispersive X-ray, X-ray powder diffraction, Fourier transform infrared spectrograph, high resolution transmission electron microscope, and selected area electron diffraction measurements showed that the obtained nanoparticles had the amorphous structure and the coordination occurred between zinc sulfide surfaces and BSA in the nanoparticles. In addition, the inhibition effects of BSA-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth were described in detail by cell viability analysis, optical and electron microscopy methods. The results showed that BSA-conjugated amorphous zinc sulfide nanoparticles could inhibit the metabolism and proliferation of human hepatocellular carcinoma cells, and the inhibition was dose dependent. The half maximal inhibitory concentration (IC50) was 0.36 mg/mL. Overall, this study suggested that BSA-conjugated amorphous zinc sulfide nanoparticles had the application potential as cytostatic agents and BSA in the nanoparticles could provide the modifiable site for the nanoparticles to improve their bioactivity or to endow them with the target function.

  11. Effect of ambient hydrogen sulfide on the physical properties of vacuum evaporated thin films of zinc sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Beer Pal [Department of Physics, C.C.S. University, Meerut 250004 (India)], E-mail: drbeerpal@gmail.com; Singh, Virendra [Forensic Science Laboratory, Malviya Nagar, New Delhi 110017 (India); Tyagi, R.C.; Sharma, T.P. [Department of Physics, C.C.S. University, Meerut 250004 (India)

    2008-02-15

    Evaporated thin films of zinc sulfide (ZnS) have been deposited in a low ambient atmosphere of hydrogen sulfide (H{sub 2}S {approx}10{sup -4} Torr). The H{sub 2}S atmosphere was obtained by a controlled thermal decomposition of thiourea [CS(NH{sub 2}){sub 2}] inside the vacuum chamber. It has been observed that at elevated substrates temperature of about 200 deg. C helps eject any sulfur atoms deposited due to thermal decomposition of ZnS during evaporation. The zinc ions promptly recombine with H{sub 2}S to give better stoichiometry of the deposited films. Optical spectroscopy, X-ray diffraction patterns and scanning electron micrographs depict the better crystallites and uniformity of films deposited by this technique. These deposited films were found to be more adherent to the substrates and are pinhole free, which is a very vital factor in device fabrication.

  12. HISTOLOGICAL CHANGES IN POECILIA RETICULATA AFTER INTERACTION OF IONIZING RADIATION AND ZINC SULFID

    Directory of Open Access Journals (Sweden)

    Michaela Špalková

    2012-12-01

    Full Text Available In our experiment we have studied interaction of ionizing radiation and zinc at Poecilia reticulata. Fish were irradiated with a 20 Gy of gamma-rays. Zinc sulphate in concentration 25 mg.l-1 was added to water in aquarium. Food intake, clinicl symptoms and histological changes were followed after gamma-irradiation and zinc sulfid in guppy Poecilia reticulata. In the first days timidity and lethargy were observed. The most prominent clinical symptoms observed were emaciation, hampered breathing and haemorrhages. Histological findings corresponded with these symptoms.doi:10.5219/228

  13. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy.

    Science.gov (United States)

    Han, Haisheng; Sun, Wei; Hu, Yuehua; Jia, Baoliang; Tang, Honghu

    2014-08-15

    Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600-700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO · Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Fabrication and Characterization of Zinc Sulfide Nanoparticles and Nanocomposites Prepared via a Simple Chemical Precipitation Method

    Directory of Open Access Journals (Sweden)

    Kambiz Hedayati

    2016-07-01

    Full Text Available In this research zinc sulfide (ZnS nanoparticles and nanocomposites powders were prepared by chemical precipitation method using zinc acetate and various sulfur sources. The ZnS nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible and fourier transform infra-red. The structure of nanoparticles was studied using X-ray diffraction pattern. The crystallite size of ZnS nanoparticles was calculated by Debye–Scherrer formula. Morphology of nano-crystals was observed and investigated using the scanning electron microscopy. The grain size of zinc sulfide nanoparticles were in suitable agreement with the crystalline size calculated by X-ray diffraction results. The optical properties of particles were studied with ultraviolet-visible absorption spectrum.

  15. Phosphors

    International Nuclear Information System (INIS)

    1975-01-01

    This invention relates to phosphors that can be used in fluorescent lamps and display devices. The phosphor is comprised of a halophosphate of calcium and/or strontium of apatite crystal structure activated with trivalent cerium and trivalent terbium. The phosphor can further include manganese. Preferably, the phosphor includes up to 10% by weight of one or more of the alkali metals lithium, sodium and potassium in the form of a compound or compounds thereof. The emissions appear as a number of fairly narrow discrete bands. The temperature of preparation is 1000degC (as opposed to the usual 1450degC), therefore reducing costs (less energy is needed, more crucibles are readily obtainable and there is no need for special conditions to enable crucibles to overcome thermal shock)

  16. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation.

    Science.gov (United States)

    Ye, Maoyou; Li, Guojian; Yan, Pingfang; Ren, Jie; Zheng, Li; Han, Dajian; Sun, Shuiyu; Huang, Shaosong; Zhong, Yujian

    2017-10-01

    Mine tailings often contain significant amounts of metals and sulfide, many traditional operations used to minerals was not as good as those currently available. This study investigated metals removal from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. Metals were dissolved from the tailings by the bacteria in a bioleaching reactor. During a 10% pulp density bioleaching experiment, approximately 0.82% Pb, 97.38% Zn, and 71.37% Fe were extracted after 50 days. With the pulp density of 10% and 20%, the dissolution of metals followed shrinking core kinetic model. Metals (Pb, Zn, and Fe) present in the pregnant bioleaching leachate. Metals were next precipitated as a sulfide phase using sodium sulfide (Na 2 S). Metal precipitations were selectively and quantitatively produced from the bioleaching leachate by adding Na 2 S. More than 99% of the zinc and 75% of the iron was precipitated using 25 g/L Na 2 S in the bioleaching leachate. The results in the study were to provide useful information for recovering or removing metals from lead-zinc mine tailings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Elementary sulfur in effluent from denitrifying sulfide removal process as adsorbent for zinc(II).

    Science.gov (United States)

    Chen, Chuan; Zhou, Xu; Wang, Aijie; Wu, Dong-hai; Liu, Li-hong; Ren, Nanqi; Lee, Duu-Jong

    2012-10-01

    The denitrifying sulfide removal (DSR) process can simultaneously convert sulfide, nitrate and organic compounds into elementary sulfur (S(0)), di-nitrogen gas and carbon dioxide, respectively. However, the S(0) formed in the DSR process are micro-sized colloids with negatively charged surface, making isolation of S(0) colloids from other biological cells and metabolites difficult. This study proposed the use of S(0) in DSR effluent as a novel adsorbent for zinc removal from wastewaters. Batch and continuous tests were conducted for efficient zinc removal with S(0)-containing DSR effluent. At pHremoval rates of zinc(II) were increased with increasing pH. The formed S(0) colloids carried negative charge onto which zinc(II) ions could be adsorbed via electrostatic interactions. The zinc(II) adsorbed S(0) colloids further enhanced coagulation-sedimentation efficiency of suspended solids in DSR effluents. The DSR effluent presents a promising coagulant for zinc(II) containing wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Pyrolytically grown indium sulfide sensitized zinc oxide nanowires for solar water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Komurcu, Pelin; Can, Emre Kaan; Aydin, Erkan; Semiz, Levent [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Gurol, Alp Eren; Alkan, Fatma Merve [Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Sankir, Mehmet; Sankir, Nurdan Demirci [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey)

    2015-11-15

    Zinc oxide (ZnO) nanowires, sensitized with spray pyrolyzed indium sulfide, were obtained by chemical bath deposition. The XRD analysis indicated dominant evolution of hexagonal ZnO phase. Significant gain in photoelectrochemical current using ZnO nanowires is largely accountable to enhancement of the visible light absorption and the formation of heterostructure. The maximum photoconversion efficiency of 2.77% was calculated for the indium sulfide sensitized ZnO nanowire photoelectrodes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. COMPOSITE MATERIALS BASED ON ZINC SULFIDE AND ZINC OXIDE: STRUCTURAL AND BIOCIDAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Sukhodub L.B

    2016-12-01

    Full Text Available Introduction. The widespread use of drugs with antimicrobial action has led to the formation of microorganism resistance against wide range of antibiotics. One of the approaches to dissolving this problem is the substances modification by inorganic bioactive ions in oder to initiate a controlled reaction in the bone tissues and provision of antimicrobial activity. It is known that ZnO-based materials have a pronounced biocompatibility, they are characterized by high limit strength, absolute mechanical hardness, as well as the ability to withstand the harsh operating conditions. The aim of this work is the study of structural and biocidal properties of composite material based on zinc oxide and zinc sulfide (ZnS-ZnO and its complex with an organic substance - sodium alginate (ZnS-ZnO-Alg for use in biomedical purpose. Materials and methods. For the synthesis of ZnS-ZnO composite 50 ml 0.2M solution zinc nitrate was added to the 50 ml 0.2M thiourea CS (NH ₂ ₂ solution and stirred in a shaker for 60 minutes. The formation of the compound took place when added to a mixture of 25 mas.% solution of ammonia with the subsequent heating at 80 oC for 30 minutes. Synthesis of the metalorganic complex of ZnS-ZnO-Alg was performed by above mentioned procedure, but to the thiourea solution was previously added 1 ml of 3 mas.% solution of sodium alginate under ultrasonic mixing.. For the next research composites were dried or lyophilized. Study of antibacterial activity of the ZnS-ZnO and ZnS-ZnO-Alg particles was carried out with the use of nutrient mediums: Muller Hinton, meat-pepton nutrient (MPN. As the reference cultures were used E. coli ATCC 25922, S. aureus ATCC 25923, S. aureus ATSS 29213, S. aureus ATSS-6538, C albicans ATCC 885-653. Determination of the minimum bactericidal concentration (MBC was carried out by a modified serial diluted method in liquid nutrient broth followed plating on solid Muller Hinton nutrient medium. In addition, the

  20. Synthesis and luminescent properties of Sm3+ doped zinc aluminate phosphor

    Science.gov (United States)

    Mahajan, Rubby; Kumar, Sandeep; Prakash, Ram; Kumar, Vinay

    2018-05-01

    Zinc Aluminate (ZnAl2O4) is a well-known wide band gap oxide that belongs to a class of mixed-metal oxides knows as spinels (AB2O4) where A and B are divalent and trivalent cations. Herein, the structural and photoluminescence properties of Sm3+ ion doped with ZnAl2O4 phosphors are reported. The nanophosphors were synthesized via solution combustion synthesis route at temperature 570 °C. The synthesized samples were characterized by X-ray powder diffraction (XRD), Photoluminescence (PL) spectroscopy, and Ultraviolet-visible spectroscopy. The XRD pattern confirms the cubic phase of phosphor. The calculated lattice parameter were found as a = b = c = 8.0517Å and V = 521.85Å3. The crystallite size of the phosphor was calculated using the Debye-Scherrer formula and found to be ˜19 nm. The emission spectrum at excitation wavelength of 401 nm gave the emission peaks at 563 nm, 601 nm, 648 nm, 697 nm corresponding to the transitions 4G5/2→ 6H5/2, 4G5/2→6H7/2, 4G5/2→6H9/2, 4G5/2 → 6H11/2 of Sm3+ ions, respectively. The diffuse reflectance spectrum was used to calculate the band gap of material and found to be 5.12 eV. The CIE coordinates were found to be (x = 0.56, y = 0.40) that falls in the orange red region of the color gamut. The present phosphor may have potential applications as phosphor for near UV WLED for solid state lighting.

  1. Surface stoichiometry of zinc sulfide and its effect on the adsorption behaviors of xanthate

    Directory of Open Access Journals (Sweden)

    Wang Meng

    2011-11-01

    Full Text Available Abstract In this paper, the surface stoichiometry, acid-base properties as well as the adsorption of xanthate at ZnS surfaces were studied by means of potentiometric titration, adsorption and solution speciation modeling. The surface proton binding site was determined by using Gran plot to evaluate the potentiometric titration data. Testing results implied that for stoichiometric surfaces of zinc sulfide, the proton and hydroxide determine the surface charge. For the nonstoichiometric surfaces, the surface charge is controlled by proton, hydroxide, zinc and sulfide ions depending on specific conditions. The xanthate adsorption decreases with increasing solution pH, which indicates an ion exchange reaction at the surfaces. Based on experimental results, the surface protonation, deprotonation, stoichiometry and xanthate adsorption mechanism were discussed.

  2. Prediction and experimental determination of the solubility of exotic scales at high temperatures - Zinc sulfide

    DEFF Research Database (Denmark)

    Carolina Figueroa Murcia, Diana; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2016-01-01

    The presence of "exotic" scale such as Zinc Sulfide (ZnS), Lead Sulfide (PbS) and Iron Sulfide (FeS) in HP/HT reservoirs has been identified. "Exotic" scale materials come as a new challenge in HP/HT reservoirs. This has led to the development of more advanced tools to predict their behavior...... at extreme conditions. The aim of this work is to include ZnS into the group of scale materials that can be modeled with the Extended UNIQUAC model. Solubility data for ZnS are scarce in the open literature. In order to improve the available data, we study the experimental behavior of ZnS solubility at high...... temperatures. The determination of the solubility of ZnS is carried out at temperatures up to 250°C. Zinc sulfide (99.99%) and ultra-pure water are placed in a vial in a reduced oxygen atmosphere. The sample is placed in a controlled bath and stirred until equilibrium is attained. The suspension is filtered...

  3. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Haisheng; Sun, Wei, E-mail: hanhaishengjingji@126.com; Hu, Yuehua; Jia, Baoliang; Tang, Honghu

    2014-08-15

    Highlights: • Jarosite precipitate hindered the recovery of valuable minerals. • Under 600–700 °C, jarosite decomposed and released the encapsulated valuable minerals. • The bared valuable minerals were easily collected by flotation process. • The new process was promising for dealing with jarosite residues. - Abstract: Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600–700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO{sub 4}) and silver mineral; silver jarosite decomposed into silver sulfate (Ag{sub 2}SO{sub 4}); and zinc ferrite (ZnO·Fe{sub 2}O{sub 3}) decomposed into zinc sulfate (ZnSO{sub 4}) and hematite (Fe{sub 2}O{sub 3}). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy.

  4. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy

    International Nuclear Information System (INIS)

    Han, Haisheng; Sun, Wei; Hu, Yuehua; Jia, Baoliang; Tang, Honghu

    2014-01-01

    Highlights: • Jarosite precipitate hindered the recovery of valuable minerals. • Under 600–700 °C, jarosite decomposed and released the encapsulated valuable minerals. • The bared valuable minerals were easily collected by flotation process. • The new process was promising for dealing with jarosite residues. - Abstract: Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600–700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO 4 ) and silver mineral; silver jarosite decomposed into silver sulfate (Ag 2 SO 4 ); and zinc ferrite (ZnO·Fe 2 O 3 ) decomposed into zinc sulfate (ZnSO 4 ) and hematite (Fe 2 O 3 ). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy

  5. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  6. Band offset in zinc oxy-sulfide/cubic-tin sulfide interface from X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanal, K.C.; Nair, P.K.; Nair, M.T.S., E-mail: mtsn@ier.unam.mx

    2017-02-28

    Highlights: • Zinc oxy-sulfide thin films, 175–240 nm, deposited by rf-sputtering from targets of ZnO + ZnS. • Oxygen content in thin films is enhanced 3–4 times compared with that in ZnO:ZnS targets. • Thin film ZnO{sub x}S{sub 1−x} with x = 0.88–0.27 and optical band gap 2.8–3.2 eV is suitable for solar cells. • The conduction band offset with SnS of cubic structure studied by XPS are +0.41 to −0.28 eV. - Abstract: Zinc oxy-sulfide, ZnO{sub x}S{sub 1−x}, has been found to provide better band alignment in thin film solar cells of tin sulfide of orthorhombic crystalline structure. Here we examine ZnO{sub x}S{sub 1−x}/SnS-CUB interface, in which the ZnO{sub x}S{sub 1−x} thin film was deposited by radio frequency (rf) magnetron sputtering on SnS thin film of cubic (CUB) crystalline structure with a band gap (E{sub g}) of 1.72 eV, obtained via chemical deposition. X-ray photoelectron spectroscopy provides the valence band maxima of the materials and hence places the conduction band offset of 0.41 eV for SnS-CUB/ZnO{sub 0.27}S{sub 0.73} and −0.28 eV for SnS-CUB/ZnO{sub 0.88}S{sub 0.12} interfaces. Thin films of ZnO{sub x}S{sub 1−x} with 175–240 nm in thickness were deposited from targets prepared with different ZnO to ZnS molar ratios. With the target of molar ratio of 1:13.4, the thin films are of composition ZnO{sub 0.27}S{sub 0.73} with hexagonal crystalline structure and with that of 1:1.7 ratio, it is ZnO{sub 0.88}S{sub 0.12}. The optical band gap of the ZnO{sub x}S{sub 1−x} thin films varies from 2.90 eV to 3.21 eV as the sulfur to zinc ratio in the film increases from 0.12:1 to 0.73:1 as determined from X-ray diffraction patterns. Thus, band offsets sought for absorber materials and zinc oxy-sulfide in solar cells may be achieved through a choice of ZnO:ZnS ratio in the sputtering target.

  7. Surface and capillary forces encountered by zinc sulfide microspheres in aqueous electrolyte.

    Science.gov (United States)

    Gillies, Graeme; Kappl, Michael; Butt, Hans-Jürgen

    2005-06-21

    The colloid probe technique was used to investigate the interactions between individual zinc sulfide (ZnS) microspheres and an air bubble in electrolyte solution. Incorporation of zinc ions into the electrolyte solution overcomes the disproportionate zinc ion dissolution and mimics high-volume-fraction conditions common in flotation. Determined interaction forces revealed a distinct lack of long-ranged hydrophobic forces, indicated by the presence of a DLVO repulsion prior to particle engulfment. Single microsphere contact angles were determined from particle-bubble interactions. Contact angles increased with decreasing radii and with surface oxidation. Surface modification by the absorption of copper and subsequently potassium O-ethyldithiocarbonate (KED) reduced repulsive forces and strongly increased contact angles.

  8. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles

    Science.gov (United States)

    Deonarine, Amrika; Lau, Boris L.T.; Aiken, George R.; Ryan, Joseph N.; Hsu-Kim, Heileen

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn−S−NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn−S−NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment.

  9. Zinc sulfide thin films deposited by RF reactive sputtering for photovoltaic applications

    International Nuclear Information System (INIS)

    Shao Lexi; Chang, K.-H.; Hwang, H.-L.

    2003-01-01

    Zinc sulfide (ZnS) thin films with nano-scale grains of about 50 nm were deposited on glass substrates at a substrate temperature of 200 deg. C via RF reactive sputtering by using zinc plate target and hydrogen sulfide gas. The structure, compositions, electrical and optical characteristics of the deposited films were investigated for the photovoltaic device applications. All films showed a near stoichiometric composition as indicated in their AES data. Distinct single crystalline phase with preferential orientation along the (0 0 0 1) plane of wurtzite or the (1 1 1) plane of zinc blende (ZB) was revealed in their X-ray diffraction (XRD) patterns, and the spacing of the planes are well matched to those of (1 1 2) plane of the chalcopyrite CuInS 2 (CIS). UV-Vis measurement showed that the films had more than 65% transmittance in the wavelength larger than 350 nm, and the fundamental absorption edge shifted to shorter wavelength with the increase of sulfur incorporated in the films, which corresponds to an increase in the energy band gap ranging from 3.59 to 3.72 eV. It was found that ZnS films are suitable for use as the buffer layer of the CIS solar cells, and it is the viable alternative for replacing CdS in the photovoltaic cell structure

  10. Light-emitting diodes based on nontoxic zinc-alloyed silver-indium-sulfide (AIZS) nanocrystals

    Science.gov (United States)

    Bhaumik, Saikat; Guchhait, Asim; Pal, Amlan J.

    2014-04-01

    We report solution-processed growth of zinc-alloyed silver-indium-sulfide (AIZS) nanocrystals followed by fabrication and characterization of light-emitting diodes (LEDs) based on such nanostructures. While growing the low dimensional crystals, we vary the ratio between the silver and zinc contents that in turn tunes the bandgap and correspondingly their photoluminescence (PL) emission. We also dope the AIZS nanocrystals with manganese, so that their PL emission, which appears due to a radiative transition between the d-states of the dopants, becomes invariant in energy when the diameter of the quantum dots or the dopant concentration in the nanostructures varies. The LEDs fabricated with such undoped and manganese-doped AIZS nanocrystals emit electroluminescence (EL) that matches the PL spectrum of the respective nanomaterial. The results demonstrate examples of quantum dot LEDs (QDLEDs) based on nontoxic AIZS nanocrystals.

  11. A Study on Dielectric Properties of Cadmium Sulfide-Zinc Sulfide Core-Shell Nanocomposites for Application as Nanoelectronic Filter Component in the Microwave Domain

    Science.gov (United States)

    Devi, Jutika; Datta, Pranayee

    2018-03-01

    Complex permittivities of cadmium sulfide (CdS), zinc sulfide (ZnS), and of cadmium sulfide-zinc sulfide (CdS/ZnS) core-shell nanoparticles embedded in a polyvinyl alcohol matrix (PVA) were measured in liquid phase using a VectorNetwork Analyzer in the frequency range of 500 MHz-10 GHz. These nanocomposites are modeled as an embedded capacitor, and their electric field distribution and polarization have been studied using COMSOL Multiphysics software. By varying the thickness of the shell and the number of inclusions, the capacitance values were estimated. It was observed that CdS, ZnS and CdS/ZnS core-shell nanoparticles embedded in a polyvinyl alcohol matrix show capacitive behavior. There is a strong influence of the dielectric properties in the capacitive behavior of the embedded nanocapacitor. The capping matrix, position and filling factors of nanoinclusions all affect the capacitive behavior of the tested nanocomposites. Application of the CdS, ZnS and CdS/ZnS core-shell nanocomposite as the passive low-pass filter circuit has also been investigated. From the present study, it has been found that CdS/ZnS core-shell nanoparticles embedded in PVA matrix are potential structures for application as nanoelectronic filter components in different areas of communication.

  12. Design and fabrication of anti-reflection coating on Gallium Phosphide, Zinc Selenide and Zinc Sulfide substrates for visible and infrared application

    Directory of Open Access Journals (Sweden)

    Mokrý P.

    2013-05-01

    Full Text Available Results of design and fabrication of a dual-band anti-reflection coating on a gallium phosphide (GaP, zinc selenide (ZnSe and zinc sulfide (ZnS substrates are presented. A multilayer stack structure of antireflection coatings made of zinc sulfide and yttrium fluoride (YF3 was theoretically designed for optical bands between 0.8 and 0.9 μm and between 9.5 and 10.5 μm. This stack was designed as efficient for these materials (GaP, ZnS, ZnSe together. Multilayer stack structure was deposited using thermal evaporation method. Theoretically predicted transmittance spectra were compared with transmitted spectra measured on coated substrates. Efficiency of anti-reflection coating is estimated and discrepancies are analyzed and discussed.

  13. Thermoluminescence of novel zinc oxide nano phosphors obtained by glycine-based solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: victor.orante@polimeros.uson.mx [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2015-10-15

    Full text: High-dose thermoluminescence dosimetry properties of novel zinc oxide nano phosphors synthesized by a solution combustion method in a glycine-nitrate process are presented for the very first time in this work. Sintered particles with sizes ranging between ∼500 nm and ∼2 μm were obtained by annealing the synthesized Zn O at 900 degrees C during 2 h in air. X-ray diffraction patterns indicate the presence of the Zn O hexagonal phase, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima: one located at ∼ 149 degrees C and another at ∼ 308 degrees C, the latter being the dosimetric component of the curve. The integrated Tl fading displays an asymptotic behaviour for times longer than 16 h between irradiation and the corresponding Tl readout, as well as a linear behaviour of the dose response without saturation in the studied dose interval (from 12.5 up to 400 Gy). Such features place synthesized Zn O as a promising material for high-dose radiation dosimetry applications. (Author)

  14. Thermoluminescence of novel zinc oxide nano phosphors obtained by glycine-based solution combustion synthesis

    International Nuclear Information System (INIS)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C.; Bernal, R.

    2015-10-01

    Full text: High-dose thermoluminescence dosimetry properties of novel zinc oxide nano phosphors synthesized by a solution combustion method in a glycine-nitrate process are presented for the very first time in this work. Sintered particles with sizes ranging between ∼500 nm and ∼2 μm were obtained by annealing the synthesized Zn O at 900 degrees C during 2 h in air. X-ray diffraction patterns indicate the presence of the Zn O hexagonal phase, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima: one located at ∼ 149 degrees C and another at ∼ 308 degrees C, the latter being the dosimetric component of the curve. The integrated Tl fading displays an asymptotic behaviour for times longer than 16 h between irradiation and the corresponding Tl readout, as well as a linear behaviour of the dose response without saturation in the studied dose interval (from 12.5 up to 400 Gy). Such features place synthesized Zn O as a promising material for high-dose radiation dosimetry applications. (Author)

  15. Re-processing CRT phosphors for mercury-free applications

    International Nuclear Information System (INIS)

    Dexpert-Ghys, Jeannette; Regnier, Sophie; Canac, Sophie; Beaudette, Tristan; Guillot, Philippe; Caillier, Bruno; Mauricot, Robert; Navarro, Julien; Sekhri, Salem

    2009-01-01

    This study is part of an operation in the framework of treatment and revalorization of IEEE (Informatics, Electronics and related) wastes. It aims to recover the active phosphors in cathode ray tubes (CRTs) and to re-cycle these powders by appropriate treatments as phosphors for mercury-free applications such as plasma display panels, flat lamps, advertising and lighting. The studied waste comes from a large panel of CRTs from any supplier. Several thermo-chemical treatments have been investigated. The removal of zinc sulfide-based phosphors and the recovery of a red phosphor Y 2 O 3 :Eu 3+ has been achieved by one (basic attack) route. The photoluminescence efficiency under VUV excitation of the obtained powders is at most 30% that of a commercial phosphor. The second route (acid attack) appears less promising. It has been established that silicate-based impurities could prevent isolating the yttrium based phosphor.

  16. Re-processing CRT phosphors for mercury-free applications

    Energy Technology Data Exchange (ETDEWEB)

    Dexpert-Ghys, Jeannette, E-mail: jdexpert@cemes.f [CEMES, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse cedex 4 (France); Regnier, Sophie; Canac, Sophie [ICAM, 75 avenue de Grande Bretagne, 31300 Toulouse (France); Beaudette, Tristan; Guillot, Philippe; Caillier, Bruno [DPHE, Universite Jean Francois Champollion, place de Verdun, 81012 Albi cedex 9 (France); Mauricot, Robert; Navarro, Julien [CEMES, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse cedex 4 (France); Sekhri, Salem [ENVOI, Cheminement Glueck, 31100 Toulouse (France)

    2009-12-15

    This study is part of an operation in the framework of treatment and revalorization of IEEE (Informatics, Electronics and related) wastes. It aims to recover the active phosphors in cathode ray tubes (CRTs) and to re-cycle these powders by appropriate treatments as phosphors for mercury-free applications such as plasma display panels, flat lamps, advertising and lighting. The studied waste comes from a large panel of CRTs from any supplier. Several thermo-chemical treatments have been investigated. The removal of zinc sulfide-based phosphors and the recovery of a red phosphor Y{sub 2}O{sub 3}:Eu{sup 3+} has been achieved by one (basic attack) route. The photoluminescence efficiency under VUV excitation of the obtained powders is at most 30% that of a commercial phosphor. The second route (acid attack) appears less promising. It has been established that silicate-based impurities could prevent isolating the yttrium based phosphor.

  17. Visible-light-enhanced interactions of hydrogen sulfide with composites of zinc (oxy)hydroxide with graphite oxide and graphene.

    Science.gov (United States)

    Seredych, Mykola; Mabayoje, Oluwaniyi; Bandosz, Teresa J

    2012-01-17

    Composites of zinc(oxy)hydroxide-graphite oxide and of zinc(oxy)hydroxide-graphene were used as adsorbents of hydrogen sulfide under ambient conditions. The initial and exhausted samples were characterized by XRD, FTIR, potentiometric titration, EDX, thermal analysis, and nitrogen adsorption. An increase in the amount of H(2)S adsorbed/oxidized on their surfaces in comparison with that of pure Zn(OH)(2) is linked to the structure of the composite, the relative number of terminal hydroxyls, and the kind of graphene-based phase used. Although terminal groups are activated by a photochemical process, the graphite oxide component owing to the chemical bonds with the zinc(oxy)hydroxide phase and conductive properties helps in electron transfer, leading to more efficient oxygen activation via the formation of superoxide ions. Elemental sulfur, zinc sulfide, sulfite, and sulfate are formed on the surface. The formation of sulfur compounds on the surface of zinc(oxy)hydroxide during the course of the breakthrough experiments and thus Zn(OH)(2)-ZnS heterojunctions can also contribute to the increased surface activity of our materials. The results show the superiority of graphite oxide in the formation of composites owing to its active surface chemistry and the possibility of interface bond formation, leading to an increase in the number of electron-transfer reactions. © 2011 American Chemical Society

  18. Poly(methyl methacrylate)/layered zinc sulfide nanocomposites: Preparation, characterization and the improvements in thermal stability, flame retardant and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao; Zhou, Keqing; Jiang, Saihua [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Shi, Yongqian [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren’ai Road, Suzhou, Jiangsu 215123 (China); Wang, Bibo [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Gui, Zhou, E-mail: zgui@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren’ai Road, Suzhou, Jiangsu 215123 (China)

    2014-08-15

    Highlights: • Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method. • We prepare PMMA/LZnS nanocomposites by in situ bulk polymerization of MMA. • PMMA/LZnS nanocomposites were investigated by TGA, DSC, MCC, UV–vis and PL test. • The thermal stability, flame retardant and optical properties of PMMA are improved. - Abstract: Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method and poly(methyl methacrylate) (PMMA)/layered zinc sulfide nanocomposites were obtained by in situ bulk polymerization of methyl methacrylate (MMA). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the as-synthesized layered zinc sulfide and PMMA/layered zinc sulfide nanocomposites. Microscale combustion calorimeter (MCC), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA) were used to test the thermal properties of the composites. Ultraviolet visible (UV–vis) transmittance spectra and photoluminence (PL) spectra were obtained to investigate the optical properties of the composites. From the results, the thermal degradation temperature is increased by 20–50 °C, the peak of heat release rate (pHRR) and total heat release (THR) are both decreased by above 30%, and the photoluminence intensity is enhanced with the increasing loading of layered zinc sulfide.

  19. Poly(methyl methacrylate)/layered zinc sulfide nanocomposites: Preparation, characterization and the improvements in thermal stability, flame retardant and optical properties

    International Nuclear Information System (INIS)

    Wang, Biao; Zhou, Keqing; Jiang, Saihua; Shi, Yongqian; Wang, Bibo; Gui, Zhou; Hu, Yuan

    2014-01-01

    Highlights: • Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method. • We prepare PMMA/LZnS nanocomposites by in situ bulk polymerization of MMA. • PMMA/LZnS nanocomposites were investigated by TGA, DSC, MCC, UV–vis and PL test. • The thermal stability, flame retardant and optical properties of PMMA are improved. - Abstract: Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method and poly(methyl methacrylate) (PMMA)/layered zinc sulfide nanocomposites were obtained by in situ bulk polymerization of methyl methacrylate (MMA). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the as-synthesized layered zinc sulfide and PMMA/layered zinc sulfide nanocomposites. Microscale combustion calorimeter (MCC), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA) were used to test the thermal properties of the composites. Ultraviolet visible (UV–vis) transmittance spectra and photoluminence (PL) spectra were obtained to investigate the optical properties of the composites. From the results, the thermal degradation temperature is increased by 20–50 °C, the peak of heat release rate (pHRR) and total heat release (THR) are both decreased by above 30%, and the photoluminence intensity is enhanced with the increasing loading of layered zinc sulfide

  20. Development of a lithium fluoride zinc sulfide based neutron multiplicity counter

    Science.gov (United States)

    Cowles, Christian; Behling, Spencer; Baldez, Phoenix; Folsom, Micah; Kouzes, Richard; Kukharev, Vladislav; Lintereur, Azaree; Robinson, Sean; Siciliano, Edward; Stave, Sean; Valdez, Patrick

    2018-04-01

    The feasibility of a full-scale lithium fluoride zinc sulfide (LiF/ZnS) based neutron multiplicity counter has been demonstrated. The counter was constructed of modular neutron detecting stacks that each contain five sheets of LiF/ZnS interleaved between six sheets of wavelength shifting plastic with a photomultiplier tube on each end. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high-density polyethylene blocks in the corners to reflect high-energy neutrons and capture low-energy neutrons. The final system design was optimized via modeling and small-scale test. Measuring neutrons from a 252Cf source, the counter achieved a 36% neutron detection efficiency (ɛ) and an 11 . 7 μs neutron die-away time (τ) for a doubles figure-of-merit (ɛ2 / τ) of 109. This is the highest doubles figure-of-merit measured to-date for a 3He-free neutron multiplicity counter.

  1. Sulfidation treatment of molten incineration fly ashes with Na2S for zinc, lead and copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2007-04-01

    The present study focuses on the conversion of heavy metals involved in molten incineration fly ashes to metal sulfides which could be thereafter separated by flotation. The sulfidation treatment was carried out for five molten incineration fly ashes (Fly ash-A to Fly ash-E) by contacting each fly ash with Na(2)S solution for a period of 10 min to 6h. The initial molar ratio of S(2-) to Me(2+) was adjusted to 1.20. The conversion of heavy metals to metal sulfides was evaluated by measuring the S(2-) residual concentrations using an ion selective electrode. The formation of metal sulfides was studied by XRD and SEM-EDS analyses. In the case of Fly ash-A to Fly ash-D, more than 79% of heavy metals of zinc, lead and copper was converted to metal sulfides within the contacting period of 0.5h owing to a fast conversion of metal chlorides to metal sulfides. By contrast, the conversion of about 35% was achieved for Fly ash-E within the same contacting period, which was attributed to a high content of metal oxides. Further, the S(2-) to Me(2+) molar ratio was reduced to 1.00 to minimize Na(2)S consumption and the conversions obtained within the contacting period of 0.5h varied from 76% for Fly ash-D to 91% for Fly ash-C. Finally, soluble salts such as NaCl and KCl were removed during the sulfidation treatment, which brought about a significant enrichment in metals content by a factor varying from 1.5 for Fly ash-D to 4.9 for Fly ash-A.

  2. A DNA biosensor for molecular diagnosis of Aeromonas hydrophila using zinc sulfide nanospheres

    Directory of Open Access Journals (Sweden)

    M. Negahdary

    2017-07-01

    Full Text Available Today, identification of pathogenic bacteria using modern and accurate methods is inevitable. Integration in electrochemical measurements with nanotechnology has led to the design of efficient and sensitive DNA biosensors against bacterial agents. Here, efforts were made to detect Aeromonas hydrophila using aptamers as probes and zinc sulfide (ZnS nanospheres as signal enhancers and electron transfer facilitators. After modification of the working electrode area (in a screen-printed electrode with ZnS nanospheres through electrodeposition, the coated surface of a modified electrode with ZnS nanospheres was investigated through scanning electron microscopy (SEM. The size of synthesized ZnS nanospheres was estimated at about 20–50 nm and their shape was in the form of porous plates in microscopic observations. All electrochemical measurements were performed using cyclic voltammetry (CV, electrochemical impedance spectroscopy (EIS, and constant potential amperometry (CPA techniques. The designed DNA biosensor was able to detect deoxyribonucleic acid (DNA of Aeromonas hydrophila in the range 1.0  ×  10−4 to 1.0  ×  10−9 mol L−1; the limit of detection (LOD in this study was 1  ×  10−13 mol L−1. This DNA biosensor showed satisfactory thermal and pH stability. Reproducibility for this DNA biosensor was measured and the relative standard deviation (RSD of the performance of this DNA biosensor was calculated as 5 % during 42 days.

  3. Solvothermal synthesis of Zinc sulfide decorated Graphene (ZnS/G) nanocomposites for novel Supercapacitor electrodes

    International Nuclear Information System (INIS)

    Ramachandran, Rajendran; Saranya, Murugan; Kollu, Pratap; Raghupathy, Bala P.C.; Jeong, Soon Kwan; Grace, Andrews Nirmala

    2015-01-01

    Highlights: • ZnS/G nanocomposites were prepared by a simple solvothermal process. • Electrochemical measurements were carried out in 6 M KOH electrolyte. • Cyclic voltammetry showed the excellent capacitive behavior of the composites. • A specific capacitance of 197.1 F/g was observed for ZnS/G-60 nanocomposites. - Abstract: Zinc sulfide decorated graphene nanocomposites are synthesized by a facile solvothermal approach and the prepared composites are analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), High Resolution Transmission electron microscopy (HRTEM), Fourier transform infrared (FTIR), Ultraviolet visible spectroscopy (UV), Photoluminescence spectroscopy (PL) and Raman spectrum. Results show the effective reduction of graphene oxide (GO) to graphene and decoration of ZnS nanoparticles on graphene sheets. Towards supercapacitor applications, the electrochemical measurements of different electrodes are performed in 6 M KOH electrolyte. A series of composites with different loadings of graphene is synthesized and tested for its electrochemical properties. The specific capacitance of the electrodes are evaluated from cyclic voltammetry (CV) studies and a maximum specific capacitance of 197.1 F/g is achieved in ZnS/G-60 electrode (60 indicates the weight ratio of GO) at scan rate of 5 mV s"−"1. A capacitance retention of about 94.1% is observed even after 1000 cycles for ZnS/G-60 electrode, suggesting the long time cyclic stability of the composite electrode. Galvanostatic charge–discharge curves show the highly reversible process of ZnS/G-60 electrode. Electrochemical Impedance Spectrum (EIS) shows a high conductivity of composite electrode suggesting that the composites are good candidates for energy storage.

  4. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion

    International Nuclear Information System (INIS)

    Shamsipur, Mojtaba; Rajabi, Hamid Reza

    2014-01-01

    A rapid and simple fluorescence method is presented for selective and sensitive determination of hazardous cyanide ion in aqueous solution based on functionalized zinc sulfide (ZnS) quantum dot (QD) as luminescent prob. The ultra-small ZnS QDs were synthesized using a chemical co-precipitation method in the presence of 2-mercaptoethanol (ME) as an efficient capping agent. The prepared pure ZnS QDs was applied as an optical sensor for determination of cyanide ions in aqueous solutions. ZnS nanoparticles have exhibited a strong fluorescent emission at about 424 nm. The fluorescence intensity of QDs is linearly proportional to the cyanide ion concentration in the range 2.44 × 10 −6 to 2.59 × 10 −5 M with a detection limit of 1.70 × 10 −7 M at pH 11. The designed fluorescent sensor possesses remarkable selectivity for cyanide ion over other anions such as Cl − , Br − , F − , I − , IO 3 − , ClO 4 − , BrO 3 − , CO 3 2− , NO 2 − , NO 3 − , SO 4 2− , S 2 O 4 2− , C 2 O 4 2− , SCN − , N 3 − , citrate and tartarate with negligible influences on the cyanide detection by fluorescence spectroscopy. - Highlights: • Preparation of functionalized ZnS quantum dots in aqueous media • Highly selective quantum dot based luminescent probe for determination of cyanide • Fast and sensitive determination of hazardous CN − by fluorescence quenching

  5. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion

    Energy Technology Data Exchange (ETDEWEB)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Rajabi, Hamid Reza, E-mail: h.rajabi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of)

    2014-03-01

    A rapid and simple fluorescence method is presented for selective and sensitive determination of hazardous cyanide ion in aqueous solution based on functionalized zinc sulfide (ZnS) quantum dot (QD) as luminescent prob. The ultra-small ZnS QDs were synthesized using a chemical co-precipitation method in the presence of 2-mercaptoethanol (ME) as an efficient capping agent. The prepared pure ZnS QDs was applied as an optical sensor for determination of cyanide ions in aqueous solutions. ZnS nanoparticles have exhibited a strong fluorescent emission at about 424 nm. The fluorescence intensity of QDs is linearly proportional to the cyanide ion concentration in the range 2.44 × 10{sup −6} to 2.59 × 10{sup −5} M with a detection limit of 1.70 × 10{sup −7} M at pH 11. The designed fluorescent sensor possesses remarkable selectivity for cyanide ion over other anions such as Cl{sup −}, Br{sup −}, F{sup −}, I{sup −}, IO{sub 3}{sup −}, ClO{sub 4}{sup −}, BrO{sub 3}{sup −}, CO{sub 3}{sup 2−}, NO{sub 2}{sup −}, NO{sub 3}{sup −}, SO{sub 4}{sup 2−}, S{sub 2}O{sub 4}{sup 2−}, C{sub 2}O{sub 4}{sup 2−}, SCN{sup −}, N{sub 3}{sup −}, citrate and tartarate with negligible influences on the cyanide detection by fluorescence spectroscopy. - Highlights: • Preparation of functionalized ZnS quantum dots in aqueous media • Highly selective quantum dot based luminescent probe for determination of cyanide • Fast and sensitive determination of hazardous CN{sup −} by fluorescence quenching.

  6. Processing of Copper Zinc Tin Sulfide Nanocrystal Dispersions for Thin Film Solar Cells

    Science.gov (United States)

    Williams, Bryce Arthur

    A scalable and inexpensive renewable energy source is needed to meet the expected increase in electricity demand throughout the developed and developing world in the next 15 years without contributing further to global warming through CO2 emissions. Photovoltaics may meet this need but current technologies are less than ideal requiring complex manufacturing processes and/or use of toxic, rare-earth materials. Copper zinc tin sulfide (Cu 2ZnSnS4, CZTS) solar cells offer a true "green" alternative based upon non-toxic and abundant elements. Solution-based processes utilizing CZTS nanocrystal dispersions followed by high temperature annealing have received significant research attention due to their compatibility with traditional roll-to-roll coating processes. In this work, CZTS nanocrystal (5-35 nm diameters) dispersions were utilized as a production pathway to form solar absorber layers. Aerosol-based coating methods (aerosol jet printing and ultrasonic spray coating) were optimized for formation of dense, crack-free CZTS nanocrystal coatings. The primary variables underlying determination of coating morphology within the aerosol-coating parameter space were investigated. It was found that the liquid content of the aerosol droplets at the time of substrate impingement play a critical role. Evaporation of the liquid from the aerosol droplets during coating was altered through changes to coating parameters as well as to the CZTS nanocrystal dispersions. In addition, factors influencing conversion of CZTS nanocrystal coatings into dense, large-grained polycrystalline films suitable for solar cell development during thermal annealing were studied. The roles nanocrystal size, carbon content, sodium uptake, and sulfur pressure were found to have pivotal roles in film microstructure evolution. The effects of these parameters on film morphology, grain growth rates, and chemical makeup were analyzed from electron microscopy images as well as compositional analysis

  7. Development of a lithium fluoride zinc sulfide based neutron multiplicity counter

    Energy Technology Data Exchange (ETDEWEB)

    Cowles, Christian; Behling, Spencer; Baldez, Phoenix; Folsom, Micah; Kouzes, Richard; Kukharev, Vladislav; Lintereur, Azaree; Robinson, Sean; Siciliano, Edward; Stave, Sean; Valdez, Patrick

    2018-04-01

    Past 3He shortages led to investigations into replacement options for neutron detectors in systems that previously used 3He-based technologies. The goal of this research was to investigate the feasibility of a full-scale lithium fluoride with silver activated zinc sulfide (LiF/ZnS) based neutron multiplicity counter. The LiF/ZnS based neutron multiplicity counter (LiNMC) was developed based on an iterative process between modeling and experimental measurements. Each active region of the LiNMC contains five sheets of LiF/ZnS sandwiched between six sheets of wavelength shifting plastic to form neutron detection stacks. The wavelength shifted scintillation light was collected by photomultiplier tubes located on each end of the stacks. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high density polyethylene blocks in the corners to reflect high energy neutrons and capture low energy neutrons. Preliminary calibration with a 252Cf neutron source showed that the LiNMC was able to achieve 36% neutron detection efficiency (ε) and an 11.7 μs neutron die-away time (τ) for a doubles Figure-of-merit (ε2/ τ) of 109. This is the highest doubles Figure-of-merit performance measured to-date for a 3He-free neutron multiplicity counter system. By the end of this project, the LiNMC’s basic components were integrated into a single laboratory scale system capable of proof-of-concept measurements.

  8. Acid production potentials of massive sulfide minerals and lead-zinc mine tailings: a medium-term study.

    Science.gov (United States)

    Çelebi, Emin Ender; Öncel, Mehmet Salim; Kobya, Mehmet

    2018-01-01

    Weathering of sulfide minerals is a principal source of acid generation. To determine acid-forming potentials of sulfide-bearing materials, two basic approaches named static and kinetic tests are available. Static tests are short-term, and easily undertaken within a few days and in a laboratory. In contrast, kinetic tests are long-term procedures and mostly carried out on site. In this study, experiments were conducted over a medium-term period of 2 months, not as short as static tests and also not as long as kinetic tests. As a result, pH and electrical conductivity oscillations as a function of time, acid-forming potentials and elemental contents of synthetically prepared rainwater leachates of massive sulfides and sulfide-bearing lead-zinc tailings from abandoned and currently used deposition areas have been determined. Although the lowest final pH of 2.70 was obtained in massive pyrite leachate, massive chalcopyrite leachate showed the highest titrable acidity of 1.764 g H 2 SO 4 /L. On the other hand, a composite of currently deposited mine tailings showed no acidic characteristic with a final pH of 7.77. The composite abandoned mine tailing leachate had a final pH of 6.70, close to the final pH of massive galena and sphalerite leachates, and produced a slight titrable acidity of 0.130 g H 2 SO 4 /L.

  9. Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes

    International Nuclear Information System (INIS)

    Pouretedal, Hamid Reza; Norozi, Abbas; Keshavarz, Mohammad Hossein; Semnani, Abolfazl

    2009-01-01

    Nanoparticles of zinc sulfide as undoped and doped with manganese, nickel and copper were used as photocatalyst in the photodegradation of methylene blue and safranin as color pollutants. Photoreactivity of doped zinc sulfide was varied with dopant, mole fraction of dopant to zinc ion, pH of solution, dosage of photocatalyst and concentration of dye. The characterization of nanoparticles was studied using X-ray powder diffraction (XRD) patterns and UV-vis spectra. The maximum degradation efficiency was obtained in the presence of Zn 0.98 Mn 0.02 S, Zn 0.94 Ni 0.06 S and Zn 0.90 Cu 0.10 S as nanophotocatalyst. The effect of dosage of photocatalyst was studied in the range of 20-250 mg/L. It was seen that 150.0 mg/L of photocatacyst is an optimum value for the dosage of photocatalyst. The most degradation efficiency was obtained in alkaline pH of 11.0 with study of photodegradation in pH amplitude of 2-12. The degradation efficiency was decreased in dye concentrations above of 5.0 mg/L for methylene blue and safranin dyes. In the best conditions, the degradation efficiency was obtained 87.3-95.6 and 85.4-93.2 for methylene blue and safranin, respectively

  10. Intense pulsed light annealing of copper zinc tin sulfide nanocrystal coatings

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Bryce A.; Smeaton, Michelle A.; Holgate, Collin S.; Trejo, Nancy D.; Francis, Lorraine F., E-mail: francis@umn.edu; Aydil, Eray S., E-mail: aydil@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, Minnesota 55455 (United States)

    2016-09-15

    A promising method for forming the absorber layer in copper zinc tin sulfide [Cu{sub 2}ZnSnS{sub 4} (CZTS)] thin film solar cells is thermal annealing of coatings cast from dispersions of CZTS nanocrystals. Intense pulsed light (IPL) annealing utilizing xenon flash lamps is a potential high-throughput, low-cost, roll-to-roll manufacturing compatible alternative to thermal annealing in conventional furnaces. The authors studied the effects of flash energy density (3.9–11.6 J/cm{sup 2}) and number of flashes (1–400) during IPL annealing on the microstructure of CZTS nanocrystal coatings cast on molybdenum-coated soda lime glass substrates (Mo-coated SLG). The annealed coatings exhibited cracks with two distinct linear crack densities, 0.01 and 0.2 μm{sup −1}, depending on the flash intensity and total number of flashes. Low density cracking (0.01 μm{sup −1}, ∼1 crack per 100 μm) is caused by decomposition of CZTS at the Mo-coating interface. Vapor decomposition products at the interface cause blisters as they escape the coating. Residual decomposition products within the blisters were imaged using confocal Raman spectroscopy. In support of this hypothesis, replacing the Mo-coated SLG substrate with quartz eliminated blistering and low-density cracking. High density cracking is caused by rapid thermal expansion and contraction of the coating constricted on the substrate as it is heated and cooled during IPL annealing. Finite element modeling showed that CZTS coatings on low thermal diffusivity materials (i.e., SLG) underwent significant differential heating with respect to the substrate with rapid rises and falls of the coating temperature as the flash is turned on and off, possibly causing a build-up of tensile stress within the coating prompting cracking. Use of a high thermal diffusivity substrate, such as a molybdenum foil (Mo foil), reduces this differential heating and eliminates the high-density cracking. IPL annealing in presence of sulfur

  11. Precipitation and growth of zinc sulfide nanoparticles in the presence of thiol-containing natural organic ligands.

    Science.gov (United States)

    Lau, Boris L T; Hsu-Kim, Heileen

    2008-10-01

    In sulfidic aquatic systems, metal sulfides can control the mobility and bioavailability of trace metal pollutants such as zinc, mercury, and silver. Nanoparticles of ZnS and other metal sulfides are known to exist in oxic and anoxic waters. However, the processes that lead to their persistence in the aquatic environment are relatively unknown. The objective of this study was to evaluate the importance of dissolved natural organics in stabilizing nanoparticulate ZnS that precipitates under environmentally relevant conditions. Precipitation and growth of ZnS particles were investigated in the presence of dissolved humic acid and low-molecular weight organic acids that are prevalent in sediment porewater. Dynamic light scattering was used to monitor the hydrodynamic diameter of particles precipitating in laboratory solutions. Zn speciation was also measured by filtering the ZnS solutions (precipitation experiments and not to the dissolved organic ligands. X-ray photoelectron spectroscopy and electron microscopy were used to confirm that amorphous particles containing Zn and S were precipitating in the suspensions. Observed growth rates of ZnS particles varied by orders of magnitude, depending on the type and concentration of organic ligand in solution. In the presence of humic acid and thiol-containing ligands (cysteine, glutathione, and thioglycolate), observed growth rates decreased by 1-3 orders of magnitude relative to controls without the ligands. In contrast, growth rates of the particles were consistently within 1 order of magnitude of the ligand-free control when oxygen- and amine-containing ligands (oxalate, serine, and glycolate) were present Furthermore, particle growth rates decreased with an increase in thiol concentration and increased with NaNO3 electrolyte concentration. These studies suggest that specific surface interactions with thiol-containing organics may be one factor that contributes to the persistence of naturally occurring and anthropogenic

  12. Chemical bath deposited zinc sulfide buffer layers for copper indium gallium sulfur-selenide solar cells and device analysis

    International Nuclear Information System (INIS)

    Kundu, Sambhu; Olsen, Larry C.

    2005-01-01

    Cadmium-free copper indium gallium sulfur-selenide (CIGSS) thin film solar cells have been fabricated using chemical bath deposited (CBD) zinc sulfide (ZnS) buffer layers. Shell Solar Industries provided high quality CIGSS absorber layers. The use of CBD-ZnS, which is a higher band gap material than CdS, improved the quantum efficiency of fabricated cells at lower wavelengths, leading to an increase in short circuit current. The best cell to date yielded an active area (0.43 cm 2 ) efficiency of 13.3%. The effect of the ZnS buffer layer thickness on device performance was studied carefully. This paper also presents a discussion of issues relevant to the use of the CBD-ZnS buffer material for improving device performance

  13. Zinc sulfide and zinc selenide immersion gratings for astronomical high-resolution spectroscopy: evaluation of internal attenuation of bulk materials in the short near-infrared region

    Science.gov (United States)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Yasui, Chikako; Kuzmenko, Paul J.; Tokoro, Hitoshi; Terada, Hiroshi

    2009-08-01

    We measure the internal attenuation of bulk crystals of chemical vapor deposition zinc selenide (CVD-ZnS), chemical vapor deposition zinc sulfide (CVD-ZnSe), Si, and GaAs in the short near-infrared (sNIR) region to evaluate the possibility of astronomical immersion gratings with those high refractive index materials. We confirm that multispectral grade CVD-ZnS and CVD-ZnSe are best suited for the immersion gratings, with the smallest internal attenuation of αatt=0.01 to 0.03 cm-1 among the major candidates. The measured attenuation is roughly in proportion to λ-2, suggesting it is dominated by bulk scattering due to the polycrystalline grains rather than by absorption. The total transmittance in the immersion grating is estimated to be at least >80%, even for the spectral resolution of R=300,000. Two potential problems, the scattered light by the bulk material and the degradation of the spectral resolution due to the gradient illumination in the diffracted beam, are investigated and found to be negligible for usual astronomical applications. Since the remaining problem, the difficulty of cutting grooves on CVD-ZnS and CVD-ZnSe, has recently been overcome by the nanoprecision fly-cutting technique, ZnS and ZnSe immersion gratings for astronomy can be technically realized.

  14. On the origin of life in the Zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth

    Directory of Open Access Journals (Sweden)

    Mulkidjanian Armen Y

    2009-08-01

    Full Text Available Abstract Background The accompanying article (A.Y. Mulkidjanian, Biology Direct 4:26 puts forward a detailed hypothesis on the role of zinc sulfide (ZnS in the origin of life on Earth. The hypothesis suggests that life emerged within compartmentalized, photosynthesizing ZnS formations of hydrothermal origin (the Zn world, assembled in sub-aerial settings on the surface of the primeval Earth. Results If life started within photosynthesizing ZnS compartments, it should have been able to evolve under the conditions of elevated levels of Zn2+ ions, byproducts of the ZnS-mediated photosynthesis. Therefore, the Zn world hypothesis leads to a set of testable predictions regarding the specific roles of Zn2+ ions in modern organisms, particularly in RNA and protein structures related to the procession of RNA and the "evolutionarily old" cellular functions. We checked these predictions using publicly available data and obtained evidence suggesting that the development of the primeval life forms up to the stage of the Last Universal Common Ancestor proceeded in zinc-rich settings. Testing of the hypothesis has revealed the possible supportive role of manganese sulfide in the primeval photosynthesis. In addition, we demonstrate the explanatory power of the Zn world concept by elucidating several points that so far remained without acceptable rationalization. In particular, this concept implies a new scenario for the separation of Bacteria and Archaea and the origin of Eukarya. Conclusion The ability of the Zn world hypothesis to generate non-trivial veritable predictions and explain previously obscure items gives credence to its key postulate that the development of the first life forms started within zinc-rich formations of hydrothermal origin and was driven by solar UV irradiation. This concept implies that the geochemical conditions conducive to the origin of life may have persisted only as long as the atmospheric CO2 pressure remained above ca. 10 bar

  15. Synthesis And Characterization of Copper Zinc Tin Sulfide Nanoparticles And Thin Films

    Science.gov (United States)

    Khare, Ankur

    Copper zinc tin sulfide (Cu2ZnSnS4, or CZTS) is emerging as an alternative material to the present thin film solar cell technologies such as Cu(In,Ga)Se2 and CdTe. All the elements in CZTS are abundant, environmentally benign, and inexpensive. In addition, CZTS has a band gap of ˜1.5 eV, the ideal value for converting the maximum amount of energy from the solar spectrum into electricity. CZTS has a high absorption coefficient (>104 cm-1 in the visible region of the electromagnetic spectrum) and only a few micron thick layer of CZTS can absorb all the photons with energies above its band gap. CZT(S,Se) solar cells have already reached power conversion efficiencies >10%. One of the ways to improve upon the CZTS power conversion efficiency is by using CZTS quantum dots as the photoactive material, which can potentially achieve efficiencies greater than the present thin film technologies at a fraction of the cost. However, two requirements for quantum-dot solar cells have yet to be demonstrated. First, no report has shown quantum confinement in CZTS nanocrystals. Second, the syntheses to date have not provided a range of nanocrystal sizes, which is necessary not only for fundamental studies but also for multijunction photovoltaic architectures. We resolved these two issues by demonstrating a simple synthesis of CZTS, Cu2SnS3, and alloyed (Cu2SnS3) x(ZnS)y nanocrystals with diameters ranging from 2 to 7 nm from diethyldithiocarbamate complexes. As-synthesized nanocrystals were characterized using high resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and energy dispersive spectroscopy to confirm their phase purity. Nanocrystals of diameter less than 5 nm were found to exhibit a shift in their optical absorption spectra towards higher energy consistent with quantum confinement and previous theoretical predictions. Thin films from CZTS nanocrystals deposited on Mo-coated quartz substrates using drop casting were found to be continuous

  16. Electrochemical deposition of iron sulfide thin films and heterojunction diodes with zinc oxide

    Directory of Open Access Journals (Sweden)

    Shoichi Kawai

    2014-03-01

    Full Text Available Iron sulfide thin films were fabricated by the electrochemical deposition method from an aqueous solution containing FeSO4 and Na2S2O3. The composition ratio obtained was Fe:S:O = 36:56:8. In the photoelectrochemical measurement, a weak negative photo-current was observed for the iron sulfide films, which indicates that its conduction type is p-type. No peaks were observed in X-ray diffraction pattern, and thus the deposited films were considered to be amorphous. For a heterojunction with ZnO, rectification properties were confirmed in the current-voltage characteristics. Moreover, the current was clearly enhanced under AM1.5 illumination.

  17. Investigation of physicochemical and pigment properties of solid solutions of cadmium, manganese, zinc sulfides

    International Nuclear Information System (INIS)

    Grigor'eva, L.I.; Ignat'eva, I.V.; Kalinskaya, T.V.

    1985-01-01

    Mixed sulfides (Cd, Mn)S and (Cd, Mn, Zn)S with manganese sulfide content upto 50 mol% are synthesized. The possibility of preparing solid solutions both on the basis of silfides (Cd, Mn)S and in the ternary system (Cd, Mn, Zn)S with the temperature of polymorphic transformation of a cubic structure into a hexagonal one, being lower (500 deg C) than in the absence of MnS, is shown by the X-ray diffraction method. The colour analysis of the pigment specimens obtained has shown that the quantity of oxidized manganese compounds, producing no effect of the system colour, should not exceed 0.05 mol% on conversion to MnS. Among the mixed specimens (Cd, Mn)S the brightest colour background is obtained for specimens calcinated at 500-550 deg C. The mixed sulfide of the composition 0.77CdSx0.15MnSx0.08ZnS, calcinated at 500 deg C, gives a pigment corresponding to a commercial one by colour

  18. Autometallographic silver enhancement of zinc sulfide crystals created in cryostat sections from human brain biopsies

    DEFF Research Database (Denmark)

    Danscher, G; Juhl, S; Stoltenberg, M

    1997-01-01

    samples containing zinc-enriched (ZEN) cells, are frozen in liquid nitrogen or by CO2 gas immediately after removal. The tissue blocks are cut in a cryostat and the sections placed on glass slides. The slides are transferred to an H2S exposure chamber placed in a -15 C freezer. After 1-24 hr of gas...

  19. Zinc

    Science.gov (United States)

    ... Consumer Datos en español Health Professional Other Resources Zinc Fact Sheet for Consumers Have a question? Ask ... find out more about zinc? Disclaimer What is zinc and what does it do? Zinc is a ...

  20. Mineralogical characterization of steel industry hazardous waste and refractory sulfide ores for zinc and gold recovery processing

    Energy Technology Data Exchange (ETDEWEB)

    Hagni, A.M.; Hagni, R.D. (Univ. of Missouri, Rolla, MO (United States). Geology Geophysics Dept.)

    1994-04-01

    The steel industry generates dust as a waste product from high temperature electric arc furnaces (EAF), which is a major step in processing scrap metal into steel. The Environmental Protection Agency (EPA) has classified EAF dust as KO61 hazardous waste, due to its lead, cadmium, and chromium content. The dust also contains valuable zinc, averaging 19%. Detailed mineralogical characterization show the zinc is present as crystals of franklinite-magnetite-jacobsite solid solutions in calcium-iron-silicate glass spheres and as zincite mostly as very small individual spheres. Much of the chromium is present in an insoluble form in solid solution in the iron spinels. This microscopic research is a valuable tool in determining treatment processes for the 600,000 tons of dust generated annually in the US. Refractory gold ores, pyrite and arsenopyrite, have been studied to determine additional, cost-effective methods of processing. One technique under investigation involves roasting sulfide mineral particles to hematite to create porosity through which a leach can permeate to recover the gold. Portlandite, Ca(OH)[sub 2], is added to the roast for retention of hazardous sulfur and arsenic. Modern microscopic and spectroscopic techniques, such electron spectroscopy for chemical analysis, cathodoluminescence microscopy, and electron microprobe, have been applied, as well as reflected light and dark field microscopy, and scanning electron microscopy to determine the mineralogy of the sulfur, arsenic, and iron phases, and the extent of porosity, permeability, and oxidation state of the ore particles at various roasting temperatures. It is concluded that mineralogical techniques can be effectively applied to the solution of environmental problems.

  1. Enhanced phosphorescence and electroluminescence in triplet emitters by doping gold into cadmium selenide/zinc sulfide nanoparticles

    International Nuclear Information System (INIS)

    Liu, H.-W.; Laskar, Inamur R.; Huang, C.-P.; Cheng, J.-A.; Cheng, S.-S.; Luo, L.-Y.; Wang, H.-R.; Chen, T.-M.

    2005-01-01

    Gold-cadmium selenide/zinc sulfide (Au-CdSe/ZnS) nanocomposites (NCs) were synthesized and characterized by transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, ultraviolet-visible (UV-visible) absorption and photoluminescence (PL) emission spectroscopy. The PL intensity in the Au-CdSe/ZnS NCs system was found to be much greater than that of CdSe/ZnS nanoparticles (NPs) alone, because of the surface-enhanced Raman scattering of Au NPs. Adding Au-CdSe/ZnS NCs to the cyclometalated iridium(III) complex (Ir-complex) greatly enhanced the PL intensity of a triplet emitter. Three double-layered electroluminescence (EL) devices were fabricated where the emitting zone contains the definite mixture of Ir-complex and the NCs [molar concentration of Ir-complex/NCs = 1:0 (Blank, D-1), 1:1 (D-2) and 1:3 (D-3)] and the device D-2 exhibited optimal EL performances

  2. Structural and optical characterization of nanoparticulate manganese doped zinc silicate phosphors prepared by sol–gel and combustion methods

    Energy Technology Data Exchange (ETDEWEB)

    Mbule, P.S., E-mail: mbuleps@gmail.com [Department of Physics, CSET, University of South Africa, Johannesburg, 1710 (South Africa); Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Mothudi, B.M.; Dhlamini, M.S. [Department of Physics, CSET, University of South Africa, Johannesburg, 1710 (South Africa)

    2016-11-15

    The present study reports the synthesis, crystallographic structure and optical properties of manganese (Mn{sup 2+}) doped zinc silicate (Zn{sub 2}SiO{sub 4}) nanoparticle phosphors prepared by sol–gel and combustion methods. For samples prepared by sol–gel method, the X-ray diffraction results showed phase transformation from amorphous to α-phase Zn{sub 2}SiO{sub 4} due to annealing temperatures at 600 °C to 1100 °C, whereas for combustion samples an admixture of highly crystalline β-phase and hexagonal wurtzite structure of ZnO was observed at annealing temperature of 600 °C. Photoluminescence spectra with Mn{sup 2+} concentrations ranging from 0.015–0.09 mol% were compared for two methods. Emission band assigned to the {sup 4}T{sub 1}({sup 4}G)→{sup 6}A{sub 1}({sup 6}S) electronic transition of Mn{sup 2+} was observed with maximum intensity at ~573 nm for combustion samples and ~532 nm for sol–gel samples upon UV-excitation by a Xenon lamp. Furthermore, the photoluminescence decay curves of annealed Zn{sub 2}SiO{sub 4}:Mn{sup 2+} samples were observed to be bi-exponential. The fast and slow decay components are due to the pair or cluster formation and isolated ions at higher doping concentration, respectively. - Highlights: • Synthesis, crystallographic and optical properties of Zn{sub 2}SiO{sub 4}:Mn{sup 2+} are presented. • XRD shows amorphous diffraction peak and crystallinity improved by increase of annealing temperature. • Crystallite and particle size from XRD and SAXS techniques, respectively, are compared. • Photoluminescence (PL) spectra are compared for sol-gel and combustion method. • The photoluminescence decay curves of annealed Zn{sub 2}SiO{sub 4}:Mn{sup 2+} samples were observed to be bi-exponential.

  3. Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1

    International Nuclear Information System (INIS)

    Xiao, Xiang; Ma, Xiao-Bo; Yuan, Hang; Liu, Peng-Cheng; Lei, Yu-Bin; Xu, Hui; Du, Dao-Lin; Sun, Jian-Fan; Feng, Yu-Jie

    2015-01-01

    Highlights: • S. oneidensis MR-1 biofabricated ZnS nanocrystals using artificial wastewater. • ZnS nanocrystals were 5 nm in diameter and aggregated extracellularly. • ZnS had good catalytic activity in the degradation of RHB under UV irradiation. • Photogenerated holes mainly contributed to the degradation of RhB. - Abstract: Accumulation and utilization of heavy metals from wastewater by biological treatment system has aroused great interest. In the present study, a metal-reducing bacterium Shewanella oneidensis MR-1 was used to explore the biofabrication of ZnS nanocrystals from the artificial wastewater. The biogenic H 2 S produced via the reduction of thiosulfate precipitated the Zn(II) as sulfide extracellularly. Characterization by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscope (FESEM) confirmed the precipitates as ZnS nanocrystals. The biogenic ZnS nanocrystals appeared spherical in shape with an average diameter of 5 nm and mainly aggregated in the medium and cell surface of S. oneidensis MR-1. UV–vis DRS spectra showed ZnS nanoparticles appeared a strong absorption below 360 nm. Thus, the photocatalytic activity of ZnS was evaluated by the photodegradation of rhodamine B (RhB) under UV irradiation. The biogenic ZnS nanocrystals showed a high level of photodegradation efficiency to RhB coupled with a significant blue-shift of maximum adsorption peak. A detailed analysis indicated the photogenerated holes, rather than hydroxyl radicals, contributed to the photocatalytic decolorization of RhB. This approach of coupling biosynthesis of nanoparticles with heavy metal removal may offer a potential avenue for efficient bioremediation of heavy metal wastewater

  4. Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiang [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Ma, Xiao-Bo [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Yuan, Hang [Key Laboratory of Ion Beam Bioengineering, Institute of Technical Biology & Agriculture Engineering, Chinese Academy of Sciences, Hefei 230031 (China); Liu, Peng-Cheng; Lei, Yu-Bin; Xu, Hui [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Du, Dao-Lin, E-mail: ddl@ujs.edu.cn [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Sun, Jian-Fan [School of The Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Feng, Yu-Jie, E-mail: yujief@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2015-05-15

    Highlights: • S. oneidensis MR-1 biofabricated ZnS nanocrystals using artificial wastewater. • ZnS nanocrystals were 5 nm in diameter and aggregated extracellularly. • ZnS had good catalytic activity in the degradation of RHB under UV irradiation. • Photogenerated holes mainly contributed to the degradation of RhB. - Abstract: Accumulation and utilization of heavy metals from wastewater by biological treatment system has aroused great interest. In the present study, a metal-reducing bacterium Shewanella oneidensis MR-1 was used to explore the biofabrication of ZnS nanocrystals from the artificial wastewater. The biogenic H{sub 2}S produced via the reduction of thiosulfate precipitated the Zn(II) as sulfide extracellularly. Characterization by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), and field emission scanning electron microscope (FESEM) confirmed the precipitates as ZnS nanocrystals. The biogenic ZnS nanocrystals appeared spherical in shape with an average diameter of 5 nm and mainly aggregated in the medium and cell surface of S. oneidensis MR-1. UV–vis DRS spectra showed ZnS nanoparticles appeared a strong absorption below 360 nm. Thus, the photocatalytic activity of ZnS was evaluated by the photodegradation of rhodamine B (RhB) under UV irradiation. The biogenic ZnS nanocrystals showed a high level of photodegradation efficiency to RhB coupled with a significant blue-shift of maximum adsorption peak. A detailed analysis indicated the photogenerated holes, rather than hydroxyl radicals, contributed to the photocatalytic decolorization of RhB. This approach of coupling biosynthesis of nanoparticles with heavy metal removal may offer a potential avenue for efficient bioremediation of heavy metal wastewater.

  5. Synthesis and Characterization of Phase-pure Copper Zinc Tin Sulfide (Cu2ZnSnS4) Nanoparticles

    Science.gov (United States)

    Monahan, Bradley Michael

    Semiconductor nanoparticles have been an important area of research in many different disciplines. A substantial amount of this work has been put toward advancing the field of photovoltaics. However, current p-type photovoltaic materials can not sustain the large scale production needed for future energy demands due to their low elemental abundance. Therefore, Earth abundant semiconductor materials have become of great interest to the photovoltaic community especially, the material copper zinc tin sulfide (CZTS), also known by its mineral name kesterite. CZTS exhibits desirable properties for photovoltaics, such as elemental abundance, high absorption coefficient (~104 cm-1 ), high carrier concentration, and optimum direct band gap (1.5 eV). To date, solution based approaches for making CZTS have yielded the most promising conversion efficiencies in solar cells. To that end, the motivation of nanoparticle based inks that can be used in high throughput production are an attractive route for large scale deployment. This has driven the need to make high quality CZTS nanoparticles that possess the properties of the pure kesterite phase with high monodispersity that can be deposited into dense thin films. The inherent challenge of making a quaternary compound of a single phase has made this a difficult task; however, some of those fundamental problems are addressed in this thesis. This had resulted in the synthesis of phase-pure k-CZTS confirmed by powder X-ray diffraction, Raman spectroscopy, UV-visible absorption spectroscopy and energy dispersive x-ray spectroscopy. Furthermore, ultra-fast laser spectroscopy was done on CZTS thin films made from phase-pure kesterite nanoparticles synthesized in this work. This thesis provides new data that directly probes the lifetime of photogenerated free carriers in kesterite CZTS (k-CZTS) thin films.

  6. Synthesis of zinc sulfide nanoparticles and their incorporation into poly(hydroxybutyrate) matrix in the formation of a novel nanocomposite

    Science.gov (United States)

    Riaz, Shahina; Raza, Zulfiqar Ali; Majeed, Muhammad Irfan; Jan, Tariq

    2018-05-01

    In the present study, zinc sulfide (ZnS) nanoparticles (NPs) were successfully synthesized through a modified chemical precipitation protocol and then mediated into poly(hydroxybutyrate) (PHB) matrix to get ZnS/PHB nanocomposite. Mean diameter and zeta potential of ZnS NPs, as determined using dynamic light scattering technique (DLS), were observed to be 53 nm and ‑89 mV, respectively. The structural investigations performed using x-ray diffraction (XRD) technique depicted the phase purity of ZnS NPs exhibiting cubic crystal structure. Fourier transform infrared (FTIR) spectroscopic analysis was conducted to identify the presence or absence of bonding vibrational modes on the surface of synthesized single phase ZnS NPs. The FTIR analysis confirmed the metal to sulphur bond formation by showing the characteristic band at 1123 cm‑1. The UV–vis absorption spectra of ZnS NPs confirmed the synthesis of particles in nanoscale regime showing a λ max of 302 nm. These NPs were then successfully incorporated into PHB matrix to synthesize ZnS/PHB nanocomposite. The synthesis of nanocomposite was confirmed by EDX analysis. The chemical bonding and structural properties of ZnS/PHB nanocomposite were determined by FTIR and XRD analysis, respectively. The FTIR analysis confirmed the synthesis of ZnS/PHB nanocomposite. Moreover, XRD analysis showed that structure of nanocomposite was completely controlled by ZnS NPs as pure PHB exhibited orthorhombic crystal structure while the nanocomposite demonstrated cubic crystal structure of ZnS. Thermal properties of nanocomposite were studied through thermogravimetric analysis revealing that the incorporation of ZnS NPs into PHB matrix lead to enhance heat resistance properties of PHB.

  7. Effect of reaction parameters on photoluminescence and photocatalytic activity of zinc sulfide nanosphere synthesized by hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Chanu, T. Inakhunbi; Samanta, Dhrubajyoti [Centre for Material Science and Nanotechnology, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Sikkim 737136 (India); Tiwari, Archana [Department of Physics, Sikkim University, 737102 Sikkim (India); Chatterjee, Somenath, E-mail: somenath@gmail.com [Centre for Material Science and Nanotechnology, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Sikkim 737136 (India); Electronics & Communication Engineering Department, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Sikkim 737136 (India)

    2017-01-01

    Highlights: • ZnS nanosphere synthesis in hydrothermal method with biomolecule as capping ligand. • Effect of reaction parameters to tune the size of ZnS nanoparticles. • Obtain multiple defect emission, which arises from interstitials/vacancies. • 87% degradation of Rh-B in the presence of ZnS nanoparticles under solar radiation. - Abstract: Zinc Sulfide (ZnS) nanospheres have been synthesized using amino acid, L-Histidine as a capping agent by hydrothermal method. The as prepared ZnS have been characterised using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), Photoluminescence (PL), Fourier Transform Infra-Red spectroscopy (FTIR), UV–vis absorption spectroscopy and X-ray Photo Electron Spectroscopy (XPS). Effect of reaction parameters on particle size has been investigated. The morphology and size of the ZnS can be tuned based on the reaction parameters. ZnS nanosphere with a particle size of 5 nm is obtained when the reaction parameters are kept at 120 °C for 3 h. The PL of ZnS shows multiple defect emissions arising from interstitials/vacancies. Particle size of ZnS nanoparticles plays an important role in determining the photo catalytic activity. A chronological study on synthesis of ZnS nanosphere and its photo catalytic activity under the sunlight are discussed here, which reveals the photo degradation of Rhodamine B (RhB) upto 87% as observed with ZnS nanosphere having a particle size of 5 nm.

  8. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon Sub [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Greenhouse Gas Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Park, Moon Gyu [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of); Croiset, Eric, E-mail: ecroiset@uwaterloo.ca [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Chen, Zhongwei [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Nam, Sung Chan; Ryu, Ho-Jung [Greenhouse Gas Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Yi, Kwang Bok, E-mail: cosy32@cnu.ac.kr [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of)

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H{sub 2}S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H{sub 2}S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H{sub 2}S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H{sub 2} and CO{sub 2} on H{sub 2}S adsorption was also investigated. The presence of hydrogen in the H{sub 2}S stream had a positive effect on the removal of H{sub 2}S since it allows a reducing environment for Zn-O and Zn-S bonds, leading to more active sites (Zn{sup 2+}) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO{sub 2}) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H{sub 2}S and CO{sub 2}.

  9. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    Science.gov (United States)

    Song, Hoon Sub; Park, Moon Gyu; Croiset, Eric; Chen, Zhongwei; Nam, Sung Chan; Ryu, Ho-Jung; Yi, Kwang Bok

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H2S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H2S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H2S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H2 and CO2 on H2S adsorption was also investigated. The presence of hydrogen in the H2S stream had a positive effect on the removal of H2S since it allows a reducing environment for Znsbnd O and Znsbnd S bonds, leading to more active sites (Zn2+) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO2) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H2S and CO2.

  10. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    International Nuclear Information System (INIS)

    Song, Hoon Sub; Park, Moon Gyu; Croiset, Eric; Chen, Zhongwei; Nam, Sung Chan; Ryu, Ho-Jung; Yi, Kwang Bok

    2013-01-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H 2 S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H 2 S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H 2 S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H 2 and CO 2 on H 2 S adsorption was also investigated. The presence of hydrogen in the H 2 S stream had a positive effect on the removal of H 2 S since it allows a reducing environment for Zn-O and Zn-S bonds, leading to more active sites (Zn 2+ ) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO 2 ) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H 2 S and CO 2 .

  11. On the origin of life in the Zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth

    Directory of Open Access Journals (Sweden)

    Mulkidjanian Armen Y

    2009-08-01

    Full Text Available Abstract Background The complexity of the problem of the origin of life has spawned a large number of possible evolutionary scenarios. Their number, however, can be dramatically reduced by the simultaneous consideration of various bioenergetic, physical, and geological constraints. Results This work puts forward an evolutionary scenario that satisfies the known constraints by proposing that life on Earth emerged, powered by UV-rich solar radiation, at photosynthetically active porous edifices made of precipitated zinc sulfide (ZnS similar to those found around modern deep-sea hydrothermal vents. Under the high pressure of the primeval, carbon dioxide-dominated atmosphere ZnS could precipitate at the surface of the first continents, within reach of solar light. It is suggested that the ZnS surfaces (1 used the solar radiation to drive carbon dioxide reduction, yielding the building blocks for the first biopolymers, (2 served as templates for the synthesis of longer biopolymers from simpler building blocks, and (3 prevented the first biopolymers from photo-dissociation, by absorbing from them the excess radiation. In addition, the UV light may have favoured the selective enrichment of photostable, RNA-like polymers. Falsification tests of this hypothesis are described in the accompanying article (A.Y. Mulkidjanian, M.Y. Galperin, Biology Direct 2009, 4:27. Conclusion The suggested "Zn world" scenario identifies the geological conditions under which photosynthesizing ZnS edifices of hydrothermal origin could emerge and persist on primordial Earth, includes a mechanism of the transient storage and utilization of solar light for the production of diverse organic compounds, and identifies the driving forces and selective factors that could have promoted the transition from the first simple, photostable polymers to more complex living organisms. Reviewers This paper was reviewed by Arcady Mushegian, Simon Silver (nominated by Arcady Mushegian, Antoine

  12. Study of structural and optical properties of ZnAlQ5 (zinc aluminum quinolate) organic phosphor for OLED applications

    Science.gov (United States)

    Nagpure, I. M.; Painuly, Deepshikha; Rabanal, Maria Eugenia

    2016-05-01

    The various composition of ZnAlQ5 such as Zn1.5A10.5Q5, Zn1Al1Q5, Zn0.5Al1.5Q5 organic phosphors were prepared via simple cost effective co-precipitation method. The FTIR, SEM, photoluminescence analysis of the prepared phosphors were reported. ZnQ2 and AlQ3 were also prepared by similar method and their properties were compared with different composition of ZnAlQ5. The structural elucidation in the form of stretching frequencies of chemical bonds of the prepared phosphor was carried out using Fourier Transform Infrared Spectroscopy (FTIR). The stretching frequency analysis confirms the formation of prepared phosphor materials. The SEM analysis shows the surface morphological behavior of prepared phosphor materials. Greenish photoluminescence were observed at 505 to 510 nm for the different composition of ZnAlQ5,in which Zn1.5Al0.5Q5 shows maximum luminescence intensity at 505 nm. PL emission of ZnQ2 was observed at 515 nm, while for AlQ3 at 520 nm. The blue shift of 10 nm was observed in Zn1.5A10.5Q5 due to modification of energy level due to presence of Zn2+ and Al3+. The enhancement in PL intensity was observed in Zn1.5A10.5Q5 compared to the other composition due to transfer of energy between Zn2+ and quinolate complex. Optical properties of the prepared materials were evaluated for possible applications in organic light emitting devices (OLED).

  13. Lithium-aluminum-zinc phosphate glasses activated with Tb3+ and Tb3+/Eu3+ for green laser medium, reddish-orange and white phosphor applications

    Science.gov (United States)

    Francisco-Rodriguez, H. I.; Lira, A.; Soriano-Romero, O.; Meza-Rocha, A. N.; Bordignon, S.; Speghini, A.; Lozada-Morales, R.; Caldiño, U.

    2018-05-01

    A spectroscopic analysis of Tb3+ and Tb3+/Eu3+ doped lithium-aluminum-zinc phosphate glasses is performed through their absorbance and photoluminescence spectra, and decay time profiles. Laser parameter values (stimulated emission cross section, effective bandwidth, gain bandwidth and optical gain) were obtained for the terbium 5D4 → 7F5 green emission from the Tb3+ singly-doped glass (LAZT) excited at 350 nm to judge the suitability of the glass phosphor for fiber lasers. A quantum yield of (47.68 ± 0.49)% was measured for the 5D4 level luminescence. Upon 350 nm excitation the LAZT glass phosphor emits green light with a color purity of 65.6% and chromaticity coordinates (0.285, 0.585) very close to those (0.29, 0.60) of European Broadcasting Union illuminant green. The Tb3+/Eu3+codoped glass emission color can be tuned from reddish-orange of 1865 K upon 318 nm excitation to warm white of 3599 K and neutral white of 4049 K upon 359 and 340 nm excitations, respectively. Upon Tb3+ excitation at 340 nm Eu3+ is sensitized by Tb3+ through a non-radiative energy transfer with an efficiency of 0.23-0.26. An electric dipole-dipole interaction might be the dominant mechanism in the Tb3+ to Eu3+ energy transfer taking place into Tb3+ - Eu3+ clusters.

  14. Zinc

    Science.gov (United States)

    ... Some early research suggests that zinc supplementation increases sperm count, testosterone levels, and pregnancy rates in infertile men with low testosterone levels. Other research suggests that taking zinc can improve sperm shape in men with moderate enlargement of a ...

  15. Nitrogen and Sulfur Co-doped Graphene Supported Cobalt Sulfide Nanoparticles as an Efficient Air Cathode for Zinc-air Battery

    International Nuclear Information System (INIS)

    Ganesan, Pandian; Ramakrishnan, Prakash; Prabu, Moni; Shanmugam, Sangaraju

    2015-01-01

    Highlights: • CoS 2 nanoparticles supported on a nitrogen and sulfur co-doped graphene oxide is described. • Improved round trip efficiency was observed for CoS 2 (400)/N,S-GO. • CoS 2 (400)/N,S-GO possess improved durability with low over-potential. • CoS 2 (400)/N,S-GO is a promising air cathode for zinc-air battery. - ABSTRACT: Zinc-air battery is considered as one of the promising energy storage devices due to their low cost, eco-friendly and safe. Here, we present a simple approach to the preparation of cobalt sulfide nanoparticles supported on a nitrogen and sulfur co-doped graphene oxide surface. Cobalt sulfide nanoparticles dispersed on graphene oxide hybrid was successfully prepared by solid state thermolysis approach at 400 °C, using cobalt thiourea and graphene oxide. X-ray diffraction study revealed that hybrid electrode prepared at 400 °C results in pure CoS 2 phase. The hybrid CoS 2 (400)/N,S-GO electrode exhibits low over-potential gap about 0.78 V vs. Zn after 70 cycles with remarkable and robust charge and discharge profile. And also the CoS 2 (400)/N,S-GO showing deep discharge behavior with stability up to 7.5 h.

  16. Studying the state of the surface and internal mass of powder-like zinc and cadmium sulfides

    International Nuclear Information System (INIS)

    Bundel', A.A.; Khozhainov, Yu.M.

    1979-01-01

    The investigation on the chemical and the phase composition of the surface and the bulk of powder zinc and cadmium sulphides as a function of the conditions of ignition and physico-chemical processing carried out using electron diffraction, X-ray phase and chemical analyses. The electron diffraction analysis has shown that ignition gives rise to zinc oxide on the surface of zinc sulphide particles and in the case of cadmium sulphide, to metallic cadmium. To obtain a pure zinc sulphide, free from its oxide both on the surface and in bulk, use should be made of a deoxidized preparation and all contact with oxidizing medium in subsequent ignition should be eliminated

  17. A study of the optical properties and adhesion of zinc sulfide anti-reflection thin film coated on a germanium substrate

    Energy Technology Data Exchange (ETDEWEB)

    Firoozifar, S.A.R. [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Behjat, A., E-mail: abehjat@yazduni.ac.ir [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Photonics Research Group, Engineering Research Center, Yazd University, Yazd (Iran, Islamic Republic of); Kadivar, E. [Physics Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of); Ghorashi, S.M.B.; Zarandi, M. Borhani [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of)

    2011-11-01

    To conduct this study, zinc sulfide (ZnS) thin films deposited on germanium (Ge) substrates were prepared by an evaporation method. The effects of deposition rate and annealing on the optical properties and adhesion of the ZnS thin films were investigated. The transmission intensity and the X-ray diffraction (XRD) pattern of the samples showed that the transmittance of the samples decreases by increasing the evaporation rates. However, with the increase of the annealing temperature, crystallinity of the thin films improves which, in turn, results in the enhancement of the transmission intensity in a far infrared region. The maximum grain size was obtained at the annealing temperature of 225 deg. C. Our experimental results also show that evaporation rate and annealing influences the adhesion of ZnS thin films to Ge substrates.

  18. A new portable sulfide monitor with a zinc-oxide semiconductor sensor for daily use and field study.

    Science.gov (United States)

    Tanda, Naoko; Washio, Jumpei; Ikawa, Kyoko; Suzuki, Kengo; Koseki, Takeyoshi; Iwakura, Masaki

    2007-07-01

    For measuring oral malodor in daily clinical practice and in field study, we developed and evaluated a highly sensitive portable monitor system. We examined sensitivity and specificity of the sensor for volatile sulfur compounds (VSC) and obstructive gases, such as ethanol, acetone, and acetaldehyde. Each mouth air provided by 46 people was measured by this monitor, gas chromatography (GC), and olfactory panel and compared with each other. Based on the result, we used the monitor for mass health examination of a rural town with standardized measuring. The sensor detected hydrogen sulfide, methyl mercaptan, and dimethyl sulfide with 10-1000 times higher sensitivity than the other gases. The monitor's specificity was significantly improved by a VSC-selective filter. There were significant correlations between VSC concentration by the sulfide monitor and by GC, and by organoleptic score. Thirty-six percent of 969 examinees had oral malodor in a rural town. Seventy-eight percent of 969 examinees were motivated to take care of their oral condition by oral malodor measuring with the monitor. The portable sulfide monitor was useful to promote oral health care not only in clinics, but also in field study. The simple and quick operation system and the standardized measuring make it one of parameters of oral condition.

  19. Orange and reddish-orange light emitting phosphors: Sm{sup 3+} and Sm{sup 3+}/Eu{sup 3+} doped zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meza-Rocha, A.N., E-mail: ameza@fis.cinvestav.mx [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 México D.F., México (Mexico); Speghini, A. [Dipartimento di Biotecnologie, Universita di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); IFAC CNR, Nello Carrara Institute of Applied Physics, MDF Lab, I-50019 Sesto Fiorentino, FI (Italy); Bettinelli, M. [Dipartimento di Biotecnologie, Universita di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); Caldiño, U. [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 México D.F., México (Mexico)

    2015-11-15

    A spectroscopy study of Sm{sup 3+} and Sm{sup 3+}/Eu{sup 3+} doped zinc phosphate glasses is performed through photoluminescence spectra and decay time profile measurements. Under Sm{sup 3+} excitation at 344 nm, the Sm{sup 3+} singly doped glass shows an orange global emission with x=0.579 and y=0.414 CIE1931 chromaticity coordinates, whereas the Sm{sup 3+}/Eu{sup 3+} co-doped sample exhibits orange overall emissions (x=0.581 and y=0.398, and x=0.595 and y=0.387) and reddish-orange overall emission (x=0.634 and y=0.355) upon excitations at 344, 360 and 393 nm, respectively. Such luminescence from the co-doped sample is originated by the simultaneous emission of Sm{sup 3+} and Eu{sup 3+}. Under Sm{sup 3+} excitation at 344 and 360 nm, the Eu{sup 3+} emission is sensitized and enhanced by Sm{sup 3+} through a non-radiative energy transfer process. The non-radiative nature was inferred from the shortening of the Sm{sup 3+} lifetime observed in the Sm{sup 3+}/Eu{sup 3+} co-doped sample. An analysis of the Sm{sup 3+} emission decay time profiles using the Inokuti–Hirayama model suggests that an electric quadrupole–quadrupole interaction into Sm–Eu clusters might dominate the energy transfer process, with an efficiency of 0.17. - Highlights: • Zinc phosphate glasses are optically activated with Sm{sup 3+}/Eu{sup 3+} (ZPOSmEu). • Non-radiative energy transfer Sm{sup 3+}→Eu{sup 3+} takes place in ZPOSmEu. • ZPOSmEu overall emission can be modulated with the excitation wavelength. • ZPOSmEu might be useful as orange/reddish-orange phosphor for UV-white LEDs.

  20. Reduced Graphene Oxide-Cadmium Zinc Sulfide Nanocomposite with Controlled Band Gap for Large-Area Thin-Film Optoelectronic Device Application

    Science.gov (United States)

    Ibrahim, Sk; Chakraborty, Koushik; Pal, Tanusri; Ghosh, Surajit

    2017-12-01

    Herein, we report the one pot single step solvothermal synthesis of reduced grapheme oxide-cadmium zinc sulfide (RGO-Cd0.5Zn0.5S) composite. The reduction in graphene oxide (GO), synthesis of Cd0.5Zn0.5S (mentioned as CdZnS in the text) nanorod and decoration of CdZnS nanorods onto RGO sheet were done simultaneously. The structural, morphological and optical properties were studied thoroughly by different techniques, such as XRD, TEM, UV-Vis and PL. The PL intensity of CdZnS nanorods quenches significantly after the attachment of RGO, which confirms photoinduced charge transformation from CdZnS nanorods to RGO sheet through the interface of RGO-CdZnS. An excellent photocurrent generation in RGO-CdZnS thin-film device has been observed under simulated solar light irradiation. The photocurrent as well as photosensitivity increases linearly with the solar light intensity for all the composites. Our study establishes that the synergistic effect of RGO and CdZnS in the composite is capable of getting promising applications in the field of optoelectronic devising.

  1. Thermoluminescent phosphor

    Science.gov (United States)

    Lasky, Jerome B.; Moran, Paul R.

    1978-01-01

    A thermoluminescent phosphor comprising LiF doped with boron and magnesium is produced by diffusion of boron into a conventional LiF phosphor doped with magnesium. Where the boron dopant is made to penetrate only the outer layer of the phosphor, it can be used to detect shallowly penetrating radiation such as tritium beta rays in the presence of a background of more penetrating radiation.

  2. Zinc-doping enhanced cadmium sulfide electrochemiluminescence behavior based on Au-Cu alloy nanocrystals quenching for insulin detection.

    Science.gov (United States)

    Zhu, Wenjuan; Wang, Chao; Li, Xiaojian; Khan, Malik Saddam; Sun, Xu; Ma, Hongmin; Fan, Dawei; Wei, Qin

    2017-11-15

    Novel and sensitive sandwich-type electrochemiluminescence (ECL) immunosensor was fabricated for insulin detection. Au-ZnCd 14 S combined nitrogen doping mesoporous carbons (Au-ZnCd 14 S/NH 2 -NMCs) acted as sensing platform and Au-Cu alloy nanocrystals were employed as labels to quench the ECL of Au-ZnCd 14 S/NH 2 -NMCs. Zinc-doping promoted the ECL behavior of CdS nanocrystals, with the best ECL emission obtained when the molar ratio of Zn/Cd was 1:14. Simultaneously, the modification of gold nanoparticles (Au NPs) and combination with NH 2 -NMC further enhanced the ECL emission of ZnCd 14 S due to its excellent conductivity and large specific surface area, which is desirable for the immunosensor construction. Au-Cu alloy nanocrystals were employed in the ECL system of ZnCd 14 S/K 2 S 2 O 8 triggering ECL quenching effects. The ECL spectra of ZnCd 14 S, acting as the energy donor, exhibited well overlaps with the absorption band of Au-Cu alloy nanocrystals which acted as the energy acceptor, leading to an effective ECL resonance energy transfer (ECL-RET). On the basis of the ECL quenching effects, a sensitive ECL immunosensor for insulin detection was successfully constructed with a linear response range of insulin concentration from 0.1pg/mL to 30ng/mL and the limit of detection was calculated to be 0.03pg/mL (S/N = 3). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime.

    Science.gov (United States)

    Kaya, Cengiz; Ashraf, Muhammad; Akram, Nudrat Aisha

    2018-02-21

    In the present experiment, we aimed to test the impact of hydrogen sulfide (H 2 S) on growth, key oxidant such as hydrogen peroxide, mineral elements, and antioxidative defense in Capia-type red sweet pepper (Capsicum annuum L.) plants subjected to high concentration of zinc (Zn). A factorial experiment was designed with two Zn levels (0.05 and 0.5 mM) and 0.2 mM sodium hydrosulfide (NaHS) as a donor of H 2 S supplied in combination plus nutrient solution through the root zone. High level of Zn led to reduce dry mass, chlorophyll pigments, fruit yield, leaf maximum fluorescence, and relative water content, but enhanced endogenous hydrogen peroxide (H 2 O 2 ), free proline, malondialdehyde (MDA), electrolyte leakage (EL), H 2 S, as well as the activities of peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) enzymes. Exogenously applied NaHS significantly enhanced plant growth, fruit yield, water status, the levels of H 2 S and proline as well as the activities of different antioxidant enzymes, while it significantly suppressed EL, MDA, and H 2 O 2 contents in the pepper plants receiving low level Zn. NaHS application to the control plants did not significantly change all these parameters tested except the dry matter which increased significantly. High Zn regime led to increase intrinsic Zn levels in the leaves and roots, but it lowered leaf nitrogen (N), phosphorus (P), and iron (Fe) concentrations. However, NaHS reduces the Zn conc. and enhances Fe and N in leaf and root organs. It can be concluded that NaHS can mitigate the harmful effects of Zn on plant growth particularly by lowering the concentrations of H 2 O 2 , Zn, EL, and MDA, and enhancing the activities of enzymatic antioxidants and levels of essential nutrients in pepper plants.

  4. A Visual Detection System for Determining Tritium Surface Deposition Employing Phosphor Coated Materials

    International Nuclear Information System (INIS)

    Gentile, C.A.; Skinner, C.H.; Young, K.M.; Zweben, S.J.

    1999-01-01

    A method for visually observing tritium deposition on the surface of the Tokamak Fusion Test Reactor (TFTR) deuterium-tritium (D-T) tiles is being investigated at the Princeton Plasma Physics Laboratory. A green phosphor (P31, zinc sulfide: copper) similar to that used in oscilloscope screens with a wavelength peak of 530 nm was positioned on the surface of a TFTR D-T tile. The approximately 600 gram tile, which contains approximately 1.5 Ci of tritium located on the top approximately 1-50 microns of the surface, was placed in a two liter lexan chamber at Standard Temperature and Pressure (STP). The phosphor plates and phosphor powder were placed on the surface of the tile which resulted in visible light being observed, the consequence of tritium betas interacting with the phosphor. This technique provides a method of visually observing varying concentrations of tritium on the surface of D-T carbon tiles, and may be employed (in a calibrated system) to obtain quantitative data

  5. Functional doped metal oxide films. Zinc oxide (ZnO) as transparent conducting oxide (TCO) titanium dioxide (TiO{sub 2}) as thermographic phosphor and protective coating

    Energy Technology Data Exchange (ETDEWEB)

    Nebatti Ech-Chergui, Abdelkader

    2011-07-29

    Metalorganic chemical vapor deposition (MOCVD) was used in the present work. Un-doped and Al-doped ZnO films were developed using two reactors: Halogen Lamp Reactor (HLR) (a type of Cold Wall Reactor) and Hot Wall Reactor (HWR), and a comparison was made between them in terms of the film properties. Zinc acetylacetonate was used as precursor for ZnO films while aluminum acetylacetonate was used for doping. The amount of Al doping can be controlled by varying the gas flow rate. Well ordered films with aluminum content between 0 and 8 % were grown on borosilicate glass and silicon. The films obtained are 0.3 to 0.5 {mu}m thick, highly transparent and reproducible. The growth rate of ZnO films deposited using HLR is less than HWR. In HLR, the ZnO films are well oriented along c-axis ((002) plane). ZnO films are commonly oriented along the c-axis due to its low surface free energy. On the other hand, the HWR films are polycrystalline and with Al doping these films aligned along the a-axis ((100) plane) which is less commonly observed. The best films were obtained with the HLR method showing a minimum electrical resistivity of 2.4 m{omega}cm and transmittance of about 80 % in the visible range. The results obtained for Al-doped films using HLR are promising to be used as TCOs. The second material investigated in this work was un-doped and doped titanium dioxide (TiO{sub 2}) films- its preparation and characterization. It is well known that thermographic phosphors can be used as an optical method for the surface temperature measurement. For this application, the temperature-dependent luminescence properties of europium (III)-doped TiO{sub 2} thin films were studied. It was observed that only europium doped anatase films show the phosphorescence. Rutile phase do not show phosphorescence. The films were prepared by the sol-gel method using the dip coating technique. The structures of the films were determined by X-ray diffraction (XRD). The excitation and the emission

  6. Study of structural and optical properties of ZnAlQ{sub 5} (zinc aluminum quinolate) organic phosphor for OLED applications

    Energy Technology Data Exchange (ETDEWEB)

    Nagpure, I. M., E-mail: indrajitnagpure@gmail.com; Painuly, Deepshikha [Physics, Department of Sciences and Humanities, National Institute of Technology,Uttarakhand-246174 (India); Rabanal, Maria Eugenia [Department of Materials Science and Engineering and Chemical Engineering,University Carlos III of Madrid, Avd. Universidad 30, 28911 Leganes, Madrid (Spain)

    2016-05-06

    The various composition of ZnAlQ{sub 5} such as Zn{sub 1.5}A{sub 10.5}Q{sub 5}, Zn{sub 1}Al{sub 1}Q{sub 5}, Zn{sub 0.5}Al{sub 1.5}Q{sub 5} organic phosphors were prepared via simple cost effective co-precipitation method. The FTIR, SEM, photoluminescence analysis of the prepared phosphors were reported. ZnQ{sub 2} and AlQ{sub 3} were also prepared by similar method and their properties were compared with different composition of ZnAlQ{sub 5}. The structural elucidation in the form of stretching frequencies of chemical bonds of the prepared phosphor was carried out using Fourier Transform Infrared Spectroscopy (FTIR). The stretching frequency analysis confirms the formation of prepared phosphor materials. The SEM analysis shows the surface morphological behavior of prepared phosphor materials. Greenish photoluminescence were observed at 505 to 510 nm for the different composition of ZnAlQ{sub 5},in which Zn{sub 1.5}Al{sub 0.5}Q{sub 5} shows maximum luminescence intensity at 505 nm. PL emission of ZnQ{sub 2} was observed at 515 nm, while for AlQ{sub 3} at 520 nm. The blue shift of 10 nm was observed in Zn{sub 1.5}A{sub 10.5}Q{sub 5} due to modification of energy level due to presence of Zn{sup 2+} and Al{sup 3+}. The enhancement in PL intensity was observed in Zn{sub 1.5}A{sub 10.5}Q{sub 5} compared to the other composition due to transfer of energy between Zn{sup 2+} and quinolate complex. Optical properties of the prepared materials were evaluated for possible applications in organic light emitting devices (OLED).

  7. Selenium Sulfide

    Science.gov (United States)

    Selenium sulfide, an anti-infective agent, relieves itching and flaking of the scalp and removes the dry, ... Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium ...

  8. Language extraction from zinc sulfide

    Science.gov (United States)

    Varn, Dowman Parks

    2001-09-01

    Recent advances in the analysis of one-dimensional temporal and spacial series allow for detailed characterization of disorder and computation in physical systems. One such system that has defied theoretical understanding since its discovery in 1912 is polytypism. Polytypes are layered compounds, exhibiting crystallinity in two dimensions, yet having complicated stacking sequences in the third direction. They can show both ordered and disordered sequences, sometimes each in the same specimen. We demonstrate a method for extracting two-layer correlation information from ZnS diffraction patterns and employ a novel technique for epsilon-machine reconstruction. We solve a long-standing problem---that of determining structural information for disordered materials from their diffraction patterns---for this special class of disorder. Our solution offers the most complete possible statistical description of the disorder. Furthermore, from our reconstructed epsilon-machines we find the effective range of the interlayer interaction in these materials, as well as the configurational energy of both ordered and disordered specimens. Finally, we can determine the 'language' (in terms of the Chomsky Hierarchy) these small rocks speak, and we find that regular languages are sufficient to describe them.

  9. Use of biogenic sulfide for ZnS precipitation

    NARCIS (Netherlands)

    Esposito, G.; Veeken, A.; Weijma, J.; Lens, P.N.L.

    2006-01-01

    A 600 ml continuously stirred tank reactor was used to assess the performance of a zinc sulfide precipitation process using a biogenic sulfide solution (the effluent of a sulfate-reducing bioreactor) as sulfide source. In all experiments, a proportional-integral (PI) control algorithm was used to

  10. Oxidizer in phosphoric reactors

    International Nuclear Information System (INIS)

    Santos Benedetto, J. dos

    1985-01-01

    Oxidation during the manufacture of wet-process phosphoric acid affected the distribution of uranium and impurities between phosphoric acid and gypsum, by decreasing the uranium loss to gypsum and the impurities solubilization in phosphoric acid. (Author) [pt

  11. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: I. Iron-copper-zinc-lead sulfide solubility relations

    Science.gov (United States)

    Hemley, J.J.; Cygan, G.L.; Fein, J.B.; Robinson, G.R.; d'Angelo, W. M.

    1992-01-01

    Experimental studies, using cold-seal and extraction vessel techniques, were conducted on Fe, Pb, Zn, and Cu sulfide solubilities in chloride soultions at temperatures from 300?? to 700??C and pressures from 0.5 to 2 kbars. The solutions were buffered in pH by quartz monzonite and the pure potassium feldspar-muscovite-quartz assemblage and in fS2-fO2 largely by the assemblage pyrite-pyrrhotite-magnetite. Solubilities increase with increasing temperature and total chloride, and decrease with increasing pressure. The effect of increasing chloride concentration on solubility reflects primarily a shift to lower pH via the silicate buffer reactions. Similarity in behaviour with respect to the temperature and pressure of Fe, Zn, and Pb sulfide solubilities points to similarity in chloride speciation, and the neutral species appear to be dominant in the high-temperature region. -from Authors

  12. Study of some thermoluminescent phosphors for the dosimetry of ionizing radiations

    International Nuclear Information System (INIS)

    Jaafari, M.

    1983-01-01

    Thermoluminescence dosimetry techniques are reviewed and interactions radiation matter are recalled. The need for new phosphors is evidenced. Numerous phosphors are examined and calcium, strontium and barium sulfides are synthetized and deposited on glass supports. The thermoluminescence of the dosimeters obtained with these materials is analyzed [fr

  13. Process for winning uranium from wet process phosphoric acid

    International Nuclear Information System (INIS)

    1980-01-01

    A process is described for winning uranium from wet process phosphoric acid by means of liquid-liquid extraction with organic phosphoric acid esters. The process is optimised by keeping the sulphate percentage in the phosphoric acid below 2% by weight, and preferably below 0.6% by weight, as compared to P 2 O 5 in the phosphoric acid. This is achieved by adding an excess of Ba and/or Ca carbonate or sulfide solution and filtering off the formed calcium and/or barium sulphate precipitates. Solid KClO 3 is then added to the filtrate to oxidise U 4+ to U 6+ . The normal extraction procedure using organic phosphoric esters as extraction liquid, can then be applied. (Th.P.)

  14. Practical applications of phosphors

    CERN Document Server

    Yen, William M; Yamamoto, Hajime

    2006-01-01

    Drawn from the second edition of the best-selling Phosphor Handbook, Practical Applications of Phosphors outlines methods for the production of various phosphors and discusses a broad spectrum of applications. Beginning with methods for synthesis and related technologies, the book sets the stage by classifying and then explaining practical phosphors according to usage. It describes the operating principle and structure of phosphor devices and the phosphor characteristics required for a given device, then covers the manufacturing processes and characteristics of phosphors. The book discusses research and development currently under way on phosphors with potential for practical usage and touches briefly on phosphors that have played a historical role, but are no longer of practical use. It provides a comprehensive treatment of applications including lamps and cathode-ray tubes, x-ray and ionizing radiation, and for vacuum fluorescent and field emission displays and covers inorganic and organic electroluminescen...

  15. Preparation of a thin polysulfone phosphor sheet for the detection of alpha particles using adhesive process

    International Nuclear Information System (INIS)

    Seo, B. K.; Woo, Z. H.; Kim, G. H.; Chang, U. S.; Oh, W. Z.; Lee, K. W.; Han, M. J.

    2005-01-01

    According to atomic energy law and connection regs, the surface contamination of nuclear facilities should be monitored routinely. Surface contamination is divided into removable and fixed contamination. Fixed contamination is measured by a direct method with a survey meter. And removable contamination is measured by an indirect method using smear paper and a low background proportional counter. Also, in the decommissioning process of a nuclear research facilities, such as Korean Research Reactor 1 and 2 and Uranium Conversion Plant, a significant amount of nuclear wastes is produced. The wastes contaminated must be surveyed for the disposal and reuse in the future. In the previous study the medium, scintillatorembedded polymer membrane for detecting the alpharay, was prepared by impregnating organic scintillators in a membrane structure. The plastic scintillator consists of polysulfone(PSF) as a matrix with PPO as an organic scintillator and POPOP as a wave shifting agent dissolved in the matrix. But, an organic plastic scintillator was inadequate to detect the alpha particle in the alpha-beta mixing field because its light output is smaller than beta ray one. So, a thin phosphor sheet was prepared, which consisted of a very uniform deposit of silver activated zinc sulfide (ZnS(Ag)) phosphor applied to on side of clear polysulfone plastic sheet

  16. Fluorescent lighting with aluminum nitride phosphors

    Science.gov (United States)

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  17. The thermodynamics of arsenates, selenites, and sulfates in the oxidation zone of sulfide ores. XI. Solubility of synthetic chalcomenite analog and zinc selenite at 25°C

    Science.gov (United States)

    Charykova, M. V.; Krivovichev, V. G.; Ivanova, N. M.; Semenova, V. V.

    2015-12-01

    The aim of this study is the synthesis of CuSeO3·2H2O (chalcomenite analog), ZnSeO3·2H2O, and ZnSeO3·H2O and the investigation of their solubility in water. CuSeO3·2H2O has been synthesized from solutions of Cu nitrate and Na selenite, while Zn selenites were synthesized from solutions of Zn nitrate and Na selenite. The samples obtained have been examined with X-ray diffraction and infrared and Raman spectroscopy. The solubility has been determined using the isothermal saturation method in ampoules at 25°C. The solubility has been calculated using the Geochemist's Workbench (GMB 9.0) software package. Solubility products have been calculated for CuSeO3·2H2O (10-10.63), ZnSeO3·2H2O (10-8.35), and ZnSeO3·H2O (10-7.96). The database used comprises thermodynamic characteristics of 46 elements, 47 base particles, 48 redox pairs, 551 particles in solution, and 624 solid phases. The Eh-pH diagrams of the Zn-Se-H2O and Cu-Se-H2O systems were plotted for the average contents of these elements in underground water in oxidation zones of sulfide deposits.

  18. Rare earth phosphors and phosphor screens

    International Nuclear Information System (INIS)

    Buchanan, R.A.; Maple, T.G.; Sklensky, A.F.

    1981-01-01

    Advances in the use of stabilized rare earth phosphors and of conversion screens using these materials are examined. In particular the new phosphors discussed in this invention consist of oxybromides of yttrium, lanthanum and gadolinium with a luminescent activator ion stabilized by an oxychloride or oxyfluoride surface layer and the conversion screens include trivalent cerium as the activator ion. (U.K.)

  19. Fundamentals of phosphors

    CERN Document Server

    Yen, William M; Yamamoto, Hajime

    2006-01-01

    Drawing from the second edition of the best-selling Handbook of Phosphors, Fundamentals of Phosphors covers the principles and mechanisms of luminescence in detail and surveys the primary phosphor materials as well as their optical properties. The book addresses cutting-edge developments in phosphor science and technology including oxynitride phosphors and the impact of lanthanide level location on phosphor performance.Beginning with an explanation of the physics underlying luminescence mechanisms in solids, the book goes on to interpret various luminescence phenomena in inorganic and organic materials. This includes the interpretation of the luminescence of recently developed low-dimensional systems, such as quantum wells and dots. The book also discusses the excitation mechanisms by cathode-ray and ionizing radiation and by electric fields to produce electroluminescence. The book classifies phosphor materials according to the type of luminescence centers employed or the class of host materials used and inte...

  20. Phosphor scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1980-01-01

    A method of fabricating scintillators is described in which the phosphor is distributed within the structure in such a way as to enhance the escape of the visible wavelength radiation that would otherwise be dissipated within the scintillator body. Two embodiments of the present invention are disclosed: one in which the phosphor is distributed in a layered structure and another in which the phosphor is dispersed throughout a transparent matrix. (U.K.)

  1. Thermoluminescence dosimetric characteristics of thulium doped ZnB2O4 phosphor

    International Nuclear Information System (INIS)

    Annalakshmi, O.; Jose, M.T.; Madhusoodanan, U.; Subramanian, J.; Venkatraman, B.; Amarendra, G.; Mandal, A.B.

    2014-01-01

    Polycrystalline powder samples of rare earth doped Zinc borates were synthesized by high temperature solid state diffusion technique. Dosimetric characteristics of the phosphor like thermoluminescence glow curve, TL emission spectra, dose–response, fading studies, reproducibility and reusability studies were carried out on the synthesized phosphors. Among the different rare earth doped phosphors, thulium doped zinc borate was found to have a higher sensitivity. Hence detailed dosimetric characteristics of this phosphor were carried out. It is observed that the dose–response is linear from 10 mGy to 10 3 Gy in this phosphor. EPR measurements were carried out on unirradiated, gamma irradiated and annealed phosphors to identify the defect centers responsible for thermoluminescence. A TL model is proposed based on the EPR studies in these materials. Kinetic parameters were evaluated for the dosimetric peaks using various methods. The experimental results show that this phosphor can have potential applications in radiation dosimetry applications. -- Highlights: • Polycrystalline powder samples of rare earth doped zinc borates were synthesized. • Thulium was observed to be the most efficient dopant in ZnB 2 O 4 lattice. • TL intensity of the dosimetric peak is around 20 times that of TLD-100. • Based on EPR studies a TL mechanism is proposed in zinc borate. • Deconvolution of the glow curve carried out

  2. Thermoluminescence dosimetric characteristics of thulium doped ZnB{sub 2}O{sub 4} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Annalakshmi, O. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Jose, M.T., E-mail: mtj@igcar.gov.in [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Madhusoodanan, U. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Subramanian, J. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai (India); Venkatraman, B. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Amarendra, G. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mandal, A.B. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai (India)

    2014-02-15

    Polycrystalline powder samples of rare earth doped Zinc borates were synthesized by high temperature solid state diffusion technique. Dosimetric characteristics of the phosphor like thermoluminescence glow curve, TL emission spectra, dose–response, fading studies, reproducibility and reusability studies were carried out on the synthesized phosphors. Among the different rare earth doped phosphors, thulium doped zinc borate was found to have a higher sensitivity. Hence detailed dosimetric characteristics of this phosphor were carried out. It is observed that the dose–response is linear from 10 mGy to 10{sup 3} Gy in this phosphor. EPR measurements were carried out on unirradiated, gamma irradiated and annealed phosphors to identify the defect centers responsible for thermoluminescence. A TL model is proposed based on the EPR studies in these materials. Kinetic parameters were evaluated for the dosimetric peaks using various methods. The experimental results show that this phosphor can have potential applications in radiation dosimetry applications. -- Highlights: • Polycrystalline powder samples of rare earth doped zinc borates were synthesized. • Thulium was observed to be the most efficient dopant in ZnB{sub 2}O{sub 4} lattice. • TL intensity of the dosimetric peak is around 20 times that of TLD-100. • Based on EPR studies a TL mechanism is proposed in zinc borate. • Deconvolution of the glow curve carried out.

  3. Determination of Hydrogen Sulfide in Fermentation Broths Containing SO21

    Science.gov (United States)

    Acree, T. E.; Sonoff, Elisabeth P.; Splittstoesser, D. F.

    1971-01-01

    A procedure for the determination of hydrogen sulfide in fermentation broths containing up to 100 μg of SO2 per ml is described. The method involves the sparging of H2S from the broth into a cadmium hydroxide absorption solution, the formation of methylene blue from the absorbed sulfide, and the measuring of this color spectrophotometrically. The use of cadmium hydroxide instead of zinc acetate, the common absorbent, substantially reduced the interference of SO2 with the analysis. PMID:5111300

  4. Volcanogenic massive sulfide occurrence model: Chapter C in Mineral deposit models for resource assessment

    Science.gov (United States)

    Shanks, W.C. Pat; Koski, Randolph A.; Mosier, Dan L.; Schulz, Klaus J.; Morgan, Lisa A.; Slack, John F.; Ridley, W. Ian; Dusel-Bacon, Cynthia; Seal, Robert R.; Piatak, Nadine M.; Shanks, W.C. Pat; Thurston, Roland

    2012-01-01

    Volcanogenic massive sulfide deposits, also known as volcanic-hosted massive sulfide, volcanic-associated massive sulfide, or seafloor massive sulfide deposits, are important sources of copper, zinc, lead, gold, and silver (Cu, Zn, Pb, Au, and Ag). These deposits form at or near the seafloor where circulating hydrothermal fluids driven by magmatic heat are quenched through mixing with bottom waters or porewaters in near-seafloor lithologies. Massive sulfide lenses vary widely in shape and size and may be podlike or sheetlike. They are generally stratiform and may occur as multiple lenses.

  5. Unactivated yttrium tantalate phosphor

    International Nuclear Information System (INIS)

    Reddy, V.B.; Cheung, H.K.

    1992-01-01

    This patent describes an unactivated yttrium tantalate phosphor having M prime monoclinic structure and containing one or more additives of Rb and Al in an amount of between about 0.001 to 0.1 moles per mole of yttrium tantalate to improve brightness under X-radiation. This patent also describes an unactivated yttrium tantalate phosphor having M prime monoclinic structure and containing additives of Sr in an amount of between 0.001 to 0.1 moles per mole of yttrium tantalate and one or more of Rb and Al in an amount of between 0.001 to 0.1 moles per mole of yttrium tantalate the phosphor exhibiting a greater brightness under X-radiation than the phosphor absent Rb and Al

  6. Low lag luminescent phosphors

    International Nuclear Information System (INIS)

    1976-01-01

    The addition of potassium or rubidium salts to europium-activated fluorohalide phosphors produces X-ray screens with low lag, even at very low europium concentrations. The chemical preparation and afterglow test results are described

  7. SULFIDE MINERALS IN SEDIMENTS

    Science.gov (United States)

    The formation processes of metal sulfides in sediments, especially iron sulfides, have been the subjects of intense scientific research because of linkages to the global biogeochemical cycles of iron, sulfur, carbon, and oxygen. Transition metal sulfides (e.g., NiS, CuS, ZnS, Cd...

  8. Neutron scintillator using Ga-doped ZnO phosphor with high detection efficiency

    International Nuclear Information System (INIS)

    Koyama, Shin; Kinoshita, Atsushi; Fujiwara, Akihiko; Kobayashi, Haruki; Takei, Yoshinori; Nanto, Hidehito; Katagiri, Masaki

    2009-01-01

    Zinc Oxide (ZnO) family phosphors as phosphor for neutron detector have prepared using Spark Plasma Sintering (SPS) method. The optical properties of ZnO phosphor prepared are investigated. The following results were obtained. Two dominant photoluminescence (PL) emission peaks at 395 nm and 495 nm were observed. The lifetime of the PL emission peak at 395 nm (UV emission band) is about 20 ns, which is suitable for neutron detection. The Ga (30 mol%)-doped ZnO phosphor exhibited an intense UV emission band without the visible emission band. The Ga-doped ZnO phosphor can be prepared at the atmospheric pressure of about 8 Pa using SPS method. It was found that the PL intensity of UV emission band is increased with improving the crystallinity of the ZnO phosphor. (author)

  9. Phosphors for LED lamps

    Science.gov (United States)

    Murphy, James Edward; Manepalli, Satya Kishore; Kumar, Prasanth Nammalwar

    2013-08-13

    A phosphor, a phosphor blend including the phosphor, a phosphor prepared by a process, and a lighting apparatus including the phosphor blend are disclosed. The phosphor has the formula (Ca.sub.1-p-qCe.sub.pK.sub.q).sub.xSc.sub.y(Si.sub.1-rGa.sub.r).sub.zO.su- b.12+.delta. or derived from a process followed using disclosed amounts of reactants. In the formula, (0

  10. High temperature thermometric phosphors

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  11. Laser discrimination by stimulated emission of a phosphor

    Science.gov (United States)

    Mathur, V. K.; Chakrabarti, K.

    1991-01-01

    A method for discriminating sources of UV, near infrared, and far infrared laser radiation was discovered. This technology is based on the use of a single magnesium sulfide phosphor doubly doped with rare earth ions, which is thermally/optically stimulated to generate colors correlatable to the incident laser radiation. The phosphor, after initial charging by visible light, exhibits green stimulated luminescence when exposed to a near infrared source (Nd: YAG laser). On exposure to far infrared sources (CO2 laser) the phosphor emission changes to orange color. A UV laser produces both an orange red as well as green color. A device using this phosphor is useful for detecting the laser and for discriminating between the near infrared, far infrared, and UV lasers. The technology is also capable of infrared laser diode beam profiling since the radiation source leaves an imprint on the phosphor that can be photographed. Continued development of the technology offers potential for discrimination between even smaller bandwidths within the infrared spectrum, a possible aid to communication or wavemixing devices that need to rapidly identify and process optical signals.

  12. Study on the sulfidation behavior of smithsonite

    International Nuclear Information System (INIS)

    Wu, Dandan; Wen, Shuming; Deng, Jiushuai; Liu, Jian; Mao, Yingbo

    2015-01-01

    Highlights: • Zeta potential showed that the pH IEP of smithsonite decreased from 7.7 to 6. • ICP test showed the gradual reduction of C S in the solution. • SEM showed that the mineral surface was partially changed to ZnS film. • XPS indicated that the presence of a characteristic signal peak of sulfur ions. - Abstract: Zinc extraction from low-grade mineral resources of oxidized zinc has recently become a focus of study. Sulfidation is an important process in oxidized ore flotation. In this study, the influence of sulfur ion adsorption on smithsonite surface was investigated with the use of zeta potential, inductively coupled plasma (ICP), scanning electron microscope (SEM), and X-ray photoelectron spectroscopic studies. Zeta potential measurements of sodium sulfide showed that sulfur ions were adsorbed onto the surface of pure smithsonite, as evidenced by the increased negative charge and the decrease in the pH IEP of smithsonite from 7.7 to 6 after sodium sulfide treatment. The ICP test revealed the gradual reduction in sulfur ion adsorption onto the surface of smithsonite in pulp sulfur. After 30 min of absorption, C S in the solution declined from 1000 × 10 −6 mol/L to 1.4 × 10 −6 mol/L. SEM results showed that the mineral surface was partially changed to ZnS film after sodium sulfide treatment, whereas EDS analysis results showed that 2% S is contained on the smithsonite surface. X-ray photoelectron spectroscopy results indicated the presence of a characteristic signal peak of sulfur ions after sulfidation. Sulfur concentration increased to 11.89%, whereas oxygen concentration decreased from 42.31% to 13.74%. Sulfur ions were not only present during chemical adsorption, but were also incorporated into the crystal lattices of minerals by the exchange reaction between S 2− and CO 3 2− ions

  13. Immersion autometallography: histochemical in situ capturing of zinc ions in catalytic zinc-sulfur nanocrystals.

    Science.gov (United States)

    Danscher, Gorm; Stoltenberg, Meredin; Bruhn, Mikkel; Søndergaard, Chris; Jensen, Dorete

    2004-12-01

    In the mid-1980s, two versions of Timm's original immersion sulfide silver method were published. The authors used immersion of tissue in a sulfide solution as opposed to Timm, who used immersion of tissue blocks in hydrogen sulfide-bubbled alcohol. The autometallography staining resulting from the "sulfide only immersion" was not particularly impressive, but the significance of this return to an old approach became obvious when Wenzel and co-workers presented their approach in connection with introduction by the Palmiter group of zinc transporter 3 (ZnT3). The Wenzel/Palmiter pictures are the first high-resolution, high-quality pictures taken from tissues in which free and loosely bound zinc ions have been captured in zinc-sulfur nanocrystals by immersion. The trick was to place formalin-fixed blocks of mouse brains in a solution containing 3% glutaraldehyde and 0.1% sodium sulfide, ingredients used for transcardial perfusion in the zinc-specific NeoTimm method. That the NeoTimm technique results in silver enhancement of zinc-sulfur nanocrystals has been proved by proton-induced X-ray multielement analyses (PIXE) and in vivo chelation with diethyldithiocarbamate (DEDTC). The aims of the present study were (a) to make the immersion-based capturing of zinc ions in zinc-sulfur nanocrystals work directly on sections and slices of fixed brain tissue, (b) to work out protocols that ensure zinc specificity and optimal quality of the staining, (c) to apply "immersion autometallography" (iZnSAMG) to other tissues that contain zinc-enriched (ZEN) cells, and (d) to make the immersion approach work on unfixed fresh tissue.

  14. Purification of hydrogen sulfide

    International Nuclear Information System (INIS)

    Tsao, U.

    1978-01-01

    A process is described for purifying a hydrogen sulfide gas stream containing carbon dioxide, comprising (a) passing the gas stream through a bed of solid hydrated lime to form calcium hydrosulfide and calcium carbonate and (b) regenerating hydrogen sulfide from said calcium hydrosulfide by reacting the calcium hydrosulfide with additional carbon dioxide. The process is especially applicable for use in a heavy water recovery process wherein deuterium is concentrated from a feed water containing carbon dioxide by absorption and stripping using hydrogen sulfide as a circulating medium, and the hydrogen sulfide absorbs a small quantity of carbon dioxide along with deuterium in each circulation

  15. Luminescent sulfides of monovalent and trivalent cations

    International Nuclear Information System (INIS)

    1975-01-01

    The invention discloses a family of luminescent materials or phosphors having a rhombohedral crystal structure and consisting essentially of a mixed host sulfide of at least one monovalent host cation and at least one trivalent host cation, and containing, for each mole of phosphor, 0.0005 to 0.05 mole of at least one activating cation. The monovalent host cations may be Na, K or Rb and Cs. The trivalent host cations may be Gd, La, Lu, Sc and Y. The activating cations may be one or more of trivalent As, Bi, Ce, Dy, Er, Pr, Sb, Sm, Tb and Tm; divalent Lu, Mn, Pb and Sn; and monovalent Ag, Cu and Tl. The novel phosphors may be used in devices to convert electron-beam, ultraviolet or x-ray energy to light in the visible spectrum. Such energy conversion can be employed for example in fluoroscopic screens, and in viewing screens of cathode-ray tubes and other electron tubes

  16. Phosphates and phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Becker, P [Compagnie Francaise de l' Azote, Paris (France)

    1983-01-01

    In chapter 8.5 the following aspects of uranium recovery are treated: basis of extraction process, extraction principle, solvents, strength of the acid to be treated, technology, main processes in use, impact of uranium recovery on phosphoric acid plants, and economics of uranium recovery plants.

  17. Anaerobic Digestion Alters Copper and Zinc Speciation.

    Science.gov (United States)

    Legros, Samuel; Levard, Clément; Marcato-Romain, Claire-Emmanuelle; Guiresse, Maritxu; Doelsch, Emmanuel

    2017-09-19

    Anaerobic digestion is a widely used organic waste treatment process. However, little is known on how it could alter the speciation of contaminants in organic waste. This study was focused on determining the influence of anaerobic digestion on the speciation of copper and zinc, two metals that generally occur at high concentration in organic waste. Copper and zinc speciation was investigated by X-ray absorption spectroscopy in four different raw organic wastes (predigestion) and their digested counterparts (postdigestion, i.e., digestates). The results highlighted an increase in the digestates of the proportion of amorphous or nanostructured copper sulfides as well as amorphous or nanostructured zinc sulfides and zinc phosphate as compared to raw waste. We therefore suggest that the environmental fate of these elements would be different when spreading either digestates or raw waste on cropland.

  18. INHIBITION OF CORROSION OF ZINC IN (HNO3 + HCl) ACID ...

    African Journals Online (AJOL)

    2015-05-01

    May 1, 2015 ... corrosion inhibitor for zinc in phosphoric acid. Vashi et al.[8-9] studied the corrosion inhibition of zinc in (HNO3 + H2SO4) and (HNO3 + H3PO4) binary acid mixture by aniline. In the present work, the role of aniline as inhibitor for corrosion of zinc in (HNO3 + HCl) binary acid mixture has been reported. 2.

  19. Phosphorus poisoning of molybdenum sulfide hydrodesulfurization catalysts supported on carbon and alumina

    NARCIS (Netherlands)

    Bouwens, S.M.A.M.; Vissers, J.P.R.; Beer, de V.H.J.; Prins, R.

    1988-01-01

    Phosphorus-containing Mo sulfide catalysts supported on ¿-Al2O3 and activated carbon were evaluated for their thiophene HDS activities. Phosphorus was added as phosphoric acid to the carrier material prior to the molybdenum component. The thiophene HDS activity of the carbon-supported catalysts was

  20. Improvements in phosphors

    International Nuclear Information System (INIS)

    Rabatin, J.G.

    1981-01-01

    For X-ray image converter applications, especially when used in medical radiography, it is desirable to improve the speed and brightness of response for conversion of X-rays in phosphors. The rare earth oxyhalide phosphors coactivated with a combination of rare earth activators described in this patent are capable of exhibiting low afterglow with high ultraviolet emission. They have the general formula Lnsub(1-y-w)OX:Tbsub(y)Tmsub(w) where Ln is lanthanum or gadolinium, X is chlorine and/or bromine, y is from 0.0005 to 0.010 moles per mole and w is from 0.00005 to 0.005 moles per mole of the Lnsub(1-y-w)OX host. The method of preparation and characteristics of speed, afterglow and UV emission are described. (U.K.)

  1. New greenish-yellow and yellowish-green emitting glass phosphors: Tb{sup 3+}/Eu{sup 3+} and Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} in zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Caldino, U., E-mail: cald@xanum.uam.mx [Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 Mexico D.F. (Mexico); Alvarez, E. [Departamento de Fisica, Universidad de Sonora (UNISON), Boulevard Luis Encinas y Rosales s/n, Hermosillo, Sonora 83000, Mexico (Mexico); Speghini, A. [Dipartimento di Biotecnologie, Universita di Verona, and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); IFAC CNR, Nello Carrara Institute of Applied Physics, MDF Lab, I-50019 Sesto Fiorentino, FI (Italy); Bettinelli, M. [Dipartimento di Biotecnologie, Universita di Verona, and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy)

    2013-03-15

    A spectroscopic investigation of zinc phosphate glasses activated with Eu{sup 3+}, Tb{sup 3+}/Eu{sup 3+} and Ce{sup 3+}/Tb{sup 3+}/Eu{sup 3+} ions is performed through photoluminescence spectra and decay time measurements. Greenish-yellow light emission, with x=0.42 and y=0.50 CIE1931 chromaticity coordinates, is obtained in the 5.0% Tb(PO{sub 3}){sub 3}-2.0% Eu(PO{sub 3}){sub 3} codoped zinc phosphate glass upon Tb{sup 3+} excitation at 340 nm. Such greenish-yellow luminescence is generated mainly by the {sup 5}D{sub 4}{yields}{sup 7}F{sub 6,5} and {sup 5}D{sub 0}{yields}{sup 7}F{sub 1,2} emissions of Tb{sup 3+} and Eu{sup 3+}, respectively, europium being sensitized by terbium through a non-radiative energy transfer. By codoping with 0.1 Ce(PO{sub 3}){sub 3} in addition to Tb{sup 3+}/Eu{sup 3+} yellowish-green light emission with CIE1931 chromaticity coordinates, x=0.33 and y=0.48, is achieved through non-radiative energy transfer from Ce{sup 3+} to Tb{sup 3+} and from Ce{sup 3+} via Tb{sup 3+} to Eu{sup 3+} upon 280 nm excitation (peak emission wavelength of AlGaN-based LEDs). - Highlights: Black-Right-Pointing-Pointer Zn(PO{sub 3}){sub 2} glasses are optically activated with Tb{sup 3+}/Eu{sup 3+} (ZPO5Tb2Eu) and Ce{sup 3+}/Eu{sup 3+}/Tb{sup 3+} (ZPOCe5Tb2Eu). Black-Right-Pointing-Pointer Non-radiative energy transfer Tb{sup 3+}{yields}Eu{sup 3+} takes place in ZPO5Tb2Eu. Black-Right-Pointing-Pointer Greenish-yellow light is generated by ZPO5Tb2Eu pumped with 340 nm-UV light. Black-Right-Pointing-Pointer Non-radiative energy transfer Ce{sup 3+}{yields}Tb{sup 3+} and Ce{sup 3+}{yields}Eu{sup 3+} via Tb{sup 3+} takes place in ZPOCe5Tb2Eu. Black-Right-Pointing-Pointer Yellowish-green light is generated by ZPOCe5Tb2Eu pumped with 280 nm-UV light (AlGaN-LEDs).

  2. Mesostructured metal germanium sulfides

    Energy Technology Data Exchange (ETDEWEB)

    MacLachlan, M.J.; Coombs, N.; Bedard, R.L.; White, S.; Thompson, L.K.; Ozin, G.A.

    1999-12-29

    A new class of mesostructured metal germanium sulfide materials has been prepared and characterized. The synthesis, via supramolecular assembly of well-defined germanium sulfide anionic cluster precursors and transition-metal cations in formamide, represents a new strategy for the formation of this class of solids. A variety of techniques were employed to examine the structure and composition of the materials. Structurally, the material is best described as a periodic mesostructured metal sulfide-based coordination framework akin to periodic hexagonal mesoporous silica, MCM-41. At the molecular scale, the materials strongly resemble microstructured metal germanium sulfides, in which the structure of the [Ge{sub 4}S{sub 10}]{sup 4{minus}} cluster building-blocks are intact and linked via {mu}-S-M-S bonds. Evidence for a metal-metal bond in mesostructured Cu/Ge{sub 4}S{sub 10} is also provided.

  3. Recovering uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Wet-process phosphoric acid contains a significant amount of uranium. This uranium totals more than 1,500 tons/yr in current U.S. acid output--and projections put the uranium level at 8,000 tons/yr in the year 2000. Since the phosphoric acid is a major raw material for fertilizers, uranium finds its way into those products and is effectively lost as a resource, while adding to the amount of radioactive material that can contaminate the food chain. So, resource-conservation and environmental considerations both make recovery of the uranium from phosphoric acid desirable. This paper describes the newly developed process for recovering uranium from phosphoric acid by using solvent-extraction technique. After many extractants had been tested, the researchers eventually selected the combination of di (2-ethylhexyl) phosphoric acid (DEPA) and trioctylphosphine oxide (TOPO) as the most suitable. The flowscheme of the process is included

  4. Study on the sulfidation behavior of smithsonite

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dandan; Wen, Shuming, E-mail: shmwen@126.com; Deng, Jiushuai, E-mail: dengshuai689@163.com; Liu, Jian; Mao, Yingbo

    2015-02-28

    Highlights: • Zeta potential showed that the pH{sub IEP} of smithsonite decreased from 7.7 to 6. • ICP test showed the gradual reduction of C{sub S} in the solution. • SEM showed that the mineral surface was partially changed to ZnS film. • XPS indicated that the presence of a characteristic signal peak of sulfur ions. - Abstract: Zinc extraction from low-grade mineral resources of oxidized zinc has recently become a focus of study. Sulfidation is an important process in oxidized ore flotation. In this study, the influence of sulfur ion adsorption on smithsonite surface was investigated with the use of zeta potential, inductively coupled plasma (ICP), scanning electron microscope (SEM), and X-ray photoelectron spectroscopic studies. Zeta potential measurements of sodium sulfide showed that sulfur ions were adsorbed onto the surface of pure smithsonite, as evidenced by the increased negative charge and the decrease in the pH{sub IEP} of smithsonite from 7.7 to 6 after sodium sulfide treatment. The ICP test revealed the gradual reduction in sulfur ion adsorption onto the surface of smithsonite in pulp sulfur. After 30 min of absorption, C{sub S} in the solution declined from 1000 × 10{sup −6} mol/L to 1.4 × 10{sup −6} mol/L. SEM results showed that the mineral surface was partially changed to ZnS film after sodium sulfide treatment, whereas EDS analysis results showed that 2% S is contained on the smithsonite surface. X-ray photoelectron spectroscopy results indicated the presence of a characteristic signal peak of sulfur ions after sulfidation. Sulfur concentration increased to 11.89%, whereas oxygen concentration decreased from 42.31% to 13.74%. Sulfur ions were not only present during chemical adsorption, but were also incorporated into the crystal lattices of minerals by the exchange reaction between S{sup 2−} and CO{sub 3}{sup 2−} ions.

  5. Sol-Gel Synthesis and Luminescence of Green Light Emitting Phosphors Zn2SiO4/Mn2+

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mn2+ doped Zn2SiO4 phosphors were synthesized by sol-gel method, and the influence of zinc source, Mn2+ dopant concentration and annealing temperature were investigated. Results show that zinc nitrate based precursor with strong green emission intensities is better than zinc acetate based precursor. The intensity of green light emission reaches a peak at 254 nm when the Mn2+ dopant concentration is about 5%( molar percentage). Structural details of the phosphors were examined through X-ray diffractometry, thermogravimetric and differential thermal analysis. The result indicates that they are both rhombohedral structures, which remain amorphous below 700 ℃and crystallize completely around 1 000℃. The luminescent properties of Zn2SiO4/Mn2+ phosphors were characterized by excitation and emission spectra.

  6. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Dezhao, Liu; Hansen, Michael Jørgen

    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  7. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Liu, Dezhao; Hansen, Michael Jørgen

    2012-01-01

    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  8. Study on the surface sulfidization behavior of smithsonite at high temperature

    Science.gov (United States)

    Lv, Jin-fang; Tong, Xiong; Zheng, Yong-xing; Xie, Xian; Wang, Cong-bing

    2018-04-01

    Surface sulfidization behavior of smithsonite at high temperature was investigated by X-ray powder diffractometer (XRD) along with thermodynamic calculation, X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA). The XRD and thermodynamic analyses indicated that the smithsonite was decomposed into zincite at high temperatures. After introducing a small amount of pyrite, artificial sulfides were formed at surface of the obtained zincite. The XPS analyses revealed that the sulfide species including zinc sulfide and zinc disulfide were generated at the zincite surface. The EPMA analyses demonstrated that the film of sulfides was unevenly distributed at the zincite surface. The average concentration of elemental sulfur at the sample surface increased with increasing of pyrite dosage. A suitable mole ratio of FeS2 to ZnCO3 for the surface thermal modification was determined to be about 0.3. These findings can provide theoretical support for improving the process during which the zinc recovery from refractory zinc oxide ores is achieved by xanthate flotation.

  9. Selective Sulfidation of Lead Smelter Slag with Sulfur

    Science.gov (United States)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  10. Luminescence in Sulfides: A Rich History and a Bright Future

    Directory of Open Access Journals (Sweden)

    Philippe F. Smet

    2010-04-01

    Full Text Available Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs. The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles.

  11. Titanocene sulfide chemistry

    Czech Academy of Sciences Publication Activity Database

    Horáček, Michal

    2016-01-01

    Roč. 314, MAY 2016 (2016), s. 83-102 ISSN 0010-8545 R&D Projects: GA ČR(CZ) GAP207/12/2368 Institutional support: RVO:61388955 Keywords : titanocene sulfide chemistry * photolysis * titanocene hydrosulfides Ti-(SH)n Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.324, year: 2016

  12. Electron transfer to sulfides:

    International Nuclear Information System (INIS)

    Meneses, Ana Belen; Antonello, Sabrina; Arevalo, Maria Carmen; Maran, Flavio

    2005-01-01

    The problem of characterizing the steps associated with the dissociative reduction of sulfides has been addressed. The electrochemical reduction of diphenylmethyl para-methoxyphenyl sulfide in N,N-dimethylformamide, on both glassy carbon and mercury electrodes, was chosen as a test system. The electrode process involves the slow heterogeneous outer-sphere electron transfer to the sulfide, the fast cleavage of the C-S bond, the reduction of the ensuing carbon radical, and the self-protonation triggered by the generation of the strong base Ph 2 CH - . The latter reaction is rather slow, in agreement with the large intrinsic barriers characterizing proton transfers between CH-acids and carbon bases. The dissociative reduction was studied in the presence of an exogenous acid. The results, obtained by convolution analysis, point to a stepwise DET mechanism in which the ET step is accompanied by rather large reorganization energy. Similar results were obtained on both electrode materials. Analysis of the heterogeneous electron transfer and associated C-S bond cleavage indicate that the reduction of this and other sulfides lies between the stepwise dissociative electron transfers leading to the formation of stiff π* radical anions and those going through the intermediacy of loose σ* radical anions

  13. Uranium extraction from phosphoric acid

    International Nuclear Information System (INIS)

    Lounis, A.

    1983-05-01

    A study has been carried out for the extraction of uranium from phosphoric acid produced in Algeria. First of all, the Algerian phosphoric acid produced in Algeria by SONATRACH has been characterised. This study helped us to synthesize a phosphoric acid that enabled us to pass from laboratory tests to pilot scale tests. We have then examined extraction and stripping parameters: diluent, DZEPHA/TOPO ratio and oxidising agent. The laboratory experiments enabled us to set the optimum condition for the choice of diluent, extractant concentration, ratio of the synergic mixture, oxidant concentration, redox potential. The equilibrium isotherms lead to the determination of the number of theoretical stages for the uranium extraction and stripping of uranium, then the extraction from phosphoric acid has been verified on a pilot scale (using a mixer-settler)

  14. Industrial radiography with phosphor screens

    International Nuclear Information System (INIS)

    Broadhead, P.

    1981-01-01

    An experimental system that comprises a film of low silver content and a pair of high resolution phosphor intensifying screens and a commercial industrial X-ray film of similar speed are compared for image quality. It is concluded that the use of phosphor screens offers an increase in image quality when the information is limited by the graininess or quantum mottle of a radiograph which is frequently the case in practical radiography. (author)

  15. Uranium extraction from phosphoric acid

    International Nuclear Information System (INIS)

    Araujo Figueiredo, C. de

    1984-01-01

    The recovery of uranium from phosphoric liquor by two extraction process is studied. First, uranium is reduced to tetravalent condition and is extracted by dioctypyrophosphoric acid. The re-extraction is made by concentrated phosphoric acid with an oxidizing agent. The re-extract is submitted to the second process and uranium is extracted by di-ethylhexilphosphoric acid and trioctylphosphine oxide. (M.A.C.) [pt

  16. Electron-beam-pumped phosphors

    International Nuclear Information System (INIS)

    Goldhar, J.; Krupke, W.F.

    1985-01-01

    Electron-beam excitation of solid-state scintillators, or phosphors, can result in efficient generation of visible light confined to relatively narrow regions of the spectrum. The conversion efficiency can exceed 20%, and, with proper choice of phosphors, radiation can be obtained anywhere from the near infrared (IR) to the near ultraviolet (UV). These properties qualify the phosphors as a potentially useful pump source for new solid-state lasers. New phosphors are being developed for high-brightness television tubes that are capable of higher power dissipation. Here, an epitaxial film of fluorescing material is grown on a crystalline substrate with good thermal properties. For example, researchers at North American Philips Laboratories have developed a cerium-doped yttrium aluminum garnet (YAG) grown on a YAG substrate, which has operated at 1 A/cm 2 at 20 kV without observed thermal quenching. The input power is higher by almost two orders of magnitude than that which can be tolerated by a conventional television phosphor. The authors describe tests of these new phosphors

  17. Hemimorphite Ores: A Review of Processing Technologies for Zinc Extraction

    Science.gov (United States)

    Chen, Ailiang; Li, Mengchun; Qian, Zhen; Ma, Yutian; Che, Jianyong; Ma, Yalin

    2016-10-01

    With the gradual depletion of zinc sulfide ores, exploration of zinc oxide ores is becoming more and more important. Hemimorphite is a major zinc oxide ore, attracting much attention in the field of zinc metallurgy although it is not the major zinc mineral. This paper presents a critical review of the treatment for extraction of zinc with emphasis on flotation, pyrometallurgical and hydrometallurgical methods based on the properties of hemimorphite. The three-dimensional framework structure of hemimorphite with complex linkage of its structural units lead to difficult desilicification before extracting zinc in the many metallurgical technologies. It is found that the flotation method is generally effective in enriching zinc minerals from hemimorphite ores into a high-grade concentrate for recovery of zinc. Pure zinc can be produced from hemimorphite or/and willemite with a reducing reagent, like methane or carbon. Leaching reagents, such as acid and alkali, can break the complex structure of hemimorphite to release zinc in the leached solution without generation of silica gel in the hydrometallurgical process. For optimal zinc extraction, combing flotation with pyrometallurgical or hydrometallurgical methods may be required.

  18. 21 CFR 182.1073 - Phosphoric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Phosphoric acid. 182.1073 Section 182.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is generally...

  19. 21 CFR 582.1073 - Phosphoric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is...

  20. Recovering uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Abodishish, H.A.; Ritchey, R.W.

    1982-01-01

    Precipitation of Fe 3 HN 4 H 8 (PO 4 ) 6 is prevented in the second cycle extractor, in a two cycle uranium recovery process, by washing ammonia laden organic solvent stream, from the second cycle stripper, with first cycle raffinate iron stream containing phosphoric acid, prior to passing the solvent stream into the second cycle extractor. (author)

  1. Sulfide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp

    NARCIS (Netherlands)

    Heijs, S.K.; Azzoni, R.; Giordani, G.; Jonkers, H.M.; Nizzoli, D.; Viaroli, P.; van Gemerden, H.

    2000-01-01

    The production and consumption of sulfide and its influence on phosphorous cycling were studied in a hypertrophic coastal lagoon (Valle Smarlacca, Italy). Oxygen measurements revealed that the water phase was supersaturated except for the layer directly overlying the sediment. This layer was devoid

  2. Sulfide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp.

    NARCIS (Netherlands)

    Heijs, SK; Azzoni, R; Giordani, G; Jonkers, HM; Nizzoli, D; Viaroli, P; van Gemerden, H

    2000-01-01

    The production and consumption of sulfide and its influence on phosphorous cycling were studied in a hypertrophic coastal lagoon (Valle Smarlacca, Italy). Oxygen measurements revealed that the water phase was supersaturated except for the layer directly overlying the sediment. This layer was devoid

  3. Photoluminescence studies of organic phosphor coated diffusing surface using blue inorganic light-emitting diode as excitation source

    International Nuclear Information System (INIS)

    Singh, Gyanendra; Mehta, Dalip Singh

    2013-01-01

    We report the studies on photoluminescence (PL) of organic phosphor coated on a diffusing surface using a blue inorganic light-emitting diode (LED) array as an excitation source. The organic phosphor composite coated diffuser was used to scatter the directional blue light from the LED array. Some of the blue light is absorbed by the organic phosphor composite and the phosphor molecules are excited and re-emit light at longer wavelengths due to the PL process. The output light consists of scattered blue light plus phosphor generated broadband yellow light, thus making white light. The diffuser was made up of a plastic substrate coated with an organic composite of small molecule fluorescent material zinc(II)bis(8-hydroxyquinoline) (Znq 2 ) doped with different percentages of electro-phosphorescent metal complex iridium(III)bis(2-methyldibenzo-[f, h] quinoxaline) (acetylacetonate) ([Ir(MDQ) 2 (acac)]). By means of changing the concentration and the thickness of the phosphor composite material the colour coordinates of white light were achieved. The CIE coordinates and correlated colour temperature were calculated for various thicknesses and phosphor composite concentrations and the results are reported. (paper)

  4. Application of strong phosphoric acid to radiochemistry

    International Nuclear Information System (INIS)

    Terada, Kikuo

    1977-01-01

    Not only inorganic and organic compounds but also natural substrances, such as accumulations in soil, are completely decomposed and distilled by heating with strong phosphoric acid for 30 to 50 minutes. As applications of strong phosphoric acid to radiochemistry, determination of uranium and boron by use of solubilization effect of this substance, titration of uranyl ion by use of sulfuric iron (II) contained in this substance, application to tracer experiment, and determination of radioactive ruthenium in environmental samples are reviewed. Strong phosphoric acid is also applied to activation analysis, for example, determination of N in pyrographite with iodate potassium-strong phosphoric acid method, separation of Os and Ru with sulfuric cerium (IV) - strong phosphoric acid method or potassium dechromate-strong phosphoric acid method, analysis of Se, As and Sb rocks and accumulations with ammonium bromide, sodium chloride and sodium bromide-strong phosphoric acid method. (Kanao, N.)

  5. Sulfide Mineral Surfaces

    International Nuclear Information System (INIS)

    Rosso, Kevin M.; Vaughan, David J.

    2006-01-01

    The past twenty years or so have seen dramatic development of the experimental and theoretical tools available to study the surfaces of solids at the molecular (?atomic resolution?) scale. On the experimental side, two areas of development well illustrate these advances. The first concerns the high intensity photon sources associated with synchrotron radiation; these have both greatly improved the surface sensitivity and spatial resolution of already established surface spectroscopic and diffraction methods, and enabled the development of new methods for studying surfaces. The second centers on the scanning probe microscopy (SPM) techniques initially developed in the 1980's with the first scanning tunneling microscope (STM) and atomic force microscope (AFM) experiments. The direct 'observation' of individual atoms at surfaces made possible with these methods has truly revolutionized surface science. On the theoretical side, the availability of high performance computers coupled with advances in computational modeling has provided powerful new tools to complement the advances in experiment. Particularly important have been the quantum mechanics based computational approaches such as density functional theory (DFT), which can now be easily used to calculate the equilibrium crystal structures of solids and surfaces from first principles, and to provide insights into their electronic structure. In this chapter, we review current knowledge of sulfide mineral surfaces, beginning with an overview of the principles relevant to the study of the surfaces of all crystalline solids. This includes the thermodynamics of surfaces, the atomic structure of surfaces (surface crystallography and structural stability, adjustments of atoms at the surface through relaxation or reconstruction, surface defects) and the electronic structure of surfaces. We then discuss examples where specific crystal surfaces have been studied, with the main sulfide minerals organized by structure type

  6. Sulfide Mineral Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, Kevin M.; Vaughan, David J.

    2006-08-01

    The past twenty years or so have seen dramatic development of the experimental and theoretical tools available to study the surfaces of solids at the molecular (?atomic resolution?) scale. On the experimental side, two areas of development well illustrate these advances. The first concerns the high intensity photon sources associated with synchrotron radiation; these have both greatly improved the surface sensitivity and spatial resolution of already established surface spectroscopic and diffraction methods, and enabled the development of new methods for studying surfaces. The second centers on the scanning probe microscopy (SPM) techniques initially developed in the 1980's with the first scanning tunneling microscope (STM) and atomic force microscope (AFM) experiments. The direct 'observation' of individual atoms at surfaces made possible with these methods has truly revolutionized surface science. On the theoretical side, the availability of high performance computers coupled with advances in computational modeling has provided powerful new tools to complement the advances in experiment. Particularly important have been the quantum mechanics based computational approaches such as density functional theory (DFT), which can now be easily used to calculate the equilibrium crystal structures of solids and surfaces from first principles, and to provide insights into their electronic structure. In this chapter, we review current knowledge of sulfide mineral surfaces, beginning with an overview of the principles relevant to the study of the surfaces of all crystalline solids. This includes the thermodynamics of surfaces, the atomic structure of surfaces (surface crystallography and structural stability, adjustments of atoms at the surface through relaxation or reconstruction, surface defects) and the electronic structure of surfaces. We then discuss examples where specific crystal surfaces have been studied, with the main sulfide minerals organized by

  7. Radioluminescent nuclear batteries with different phosphor layers

    International Nuclear Information System (INIS)

    Hong, Liang; Tang, Xiao-Bin; Xu, Zhi-Heng; Liu, Yun-Peng; Chen, Da

    2014-01-01

    Highlights: • We present and test the electrical properties of the nuclear battery. • The best thickness range for ZnS:Cu phosphor layer is 12–14 mg cm −2 for 147 Pm radioisotope. • The best thickness range for Y 2 O 2 S:Eu phosphor layer is 17–21 mg cm −2147 Pm radioisotope. • The battery with ZnS:Cu phosphor layer can provide higher energy conversion efficiency. • The mechanism affecting the nuclear battery output performance is revealed. - Abstract: A radioluminescent nuclear battery based on the beta radioluminescence of phosphors is presented, and which consists of 147 Pm radioisotope, phosphor layers, and GaAs photovoltaic cell. ZnS:Cu and Y 2 O 2 S:Eu phosphor layers for various thickness were fabricated. To investigate the effect of phosphor layer parameters on the battery, the electrical properties were measured. Results indicate that the optimal thickness ranges for the ZnS:Cu and Y 2 O 2 S:Eu phosphor layers are 12 mg cm −2 to 14 mg cm −2 and 17 mg cm −2 to 21 mg cm −2 , respectively. ZnS:Cu phosphor layer exhibits higher fluorescence efficiency compared with the Y 2 O 2 S:Eu phosphor layer. Its spectrum properly matches the spectral response of GaAs photovoltaic cell. As a result, the battery with ZnS:Cu phosphor layer indicates higher energy conversion efficiency than that with Y 2 O 2 S:Eu phosphor layer. Additionally, the mechanism of the phosphor layer parameters that influence the output performance of the battery is discussed through the Monte Carlo method and transmissivity test

  8. Phosphorous loads evaluation from soil

    International Nuclear Information System (INIS)

    Mezzanotte, V.

    1996-01-01

    With reference to the well known difficulty of quantifying non point phosphorous loads, as well as to their growing relative importance where point source leads decrease, a literature review has been carried out concerning soil export coefficients. On such basis, the values which seem to be the most appropriate for Italy have been estimated for different land use categories. The main mechanisms determining non point phosphorous load generation and the factors affecting their importance are also described. In the end, criteria for estimating the importance of non point sources in a basin are suggested to be used for deciding whether a traditional, parametric assessment (inevitably involving a certain error) can be acceptable or experimental measures are needed

  9. Uranium extraction in phosphoric acid

    International Nuclear Information System (INIS)

    Araujo Figueiredo, C. de

    1984-01-01

    Uranium is recovered from the phosphoric liquor produced from the concentrate obtained from phosphorus-uraniferous mineral from Itataia mines (CE, Brazil). The proposed process consists of two extraction cycles. In the first one, uranium is reduced to its tetravalent state and then extracted by dioctylpyrophosphoric acid, diluted in Kerosene. Re-extraction is carried out with concentrated phosphoric acid containing an oxidising agent to convert uranium to its hexavalent state. This extract (from the first cycle) is submitted to the second cycle where uranium is extracted with DEPA-TOPO (di-2-hexylphosphoric acid/tri-n-octyl phosphine oxide) in Kerosene. The extract is then washed and uranium is backextracted and precipitated as commercial concentrate. The organic phase is recovered. Results from discontinuous tests were satisfactory, enabling to establish operational conditions for the performance of a continuous test in a micro-pilot plant. (Author) [pt

  10. Luminescence studies on phosphor screens

    International Nuclear Information System (INIS)

    Panayiotakis, G.; Nomikos, C.; Bakas, A.; Proimos, B.

    1994-01-01

    We report our results on x-ray phosphor screens prepared of some new materials focusing attention on their efficiency under fluoroscopy conditions, on optimization conditions and on comparisons among the various materials. All data are presented in absolute values. A theoretical model is presented, that takes into account the granular structure of the screens, permitting the explanation and prediction of the luminescence properties of the screens. (authors)

  11. Luminescence studies on phosphor screens

    Energy Technology Data Exchange (ETDEWEB)

    Panayiotakis, G; Nomikos, C; Bakas, A; Proimos, B [Medical Physics Department, University of Patras, 265 00 Patras, Greece (Greece)

    1994-12-31

    We report our results on x-ray phosphor screens prepared of some new materials focusing attention on their efficiency under fluoroscopy conditions, on optimization conditions and on comparisons among the various materials. All data are presented in absolute values. A theoretical model is presented, that takes into account the granular structure of the screens, permitting the explanation and prediction of the luminescence properties of the screens. (authors). 12 refs, 3 figs.

  12. Symptomatic zinc deficiency in experimental zinc deprivation.

    OpenAIRE

    Taylor, C M; Goode, H F; Aggett, P J; Bremner, I; Walker, B E; Kelleher, J

    1992-01-01

    An evaluation of indices of poor zinc status was undertaken in five male subjects in whom dietary zinc intake was reduced from 85 mumol d-1 in an initial phase of the study to 14 mumol d-1. One of the subjects developed features consistent with zinc deficiency after receiving the low zinc diet for 12 days. These features included retroauricular acneform macullo-papular lesions on the face, neck, and shoulders and reductions in plasma zinc, red blood cell zinc, neutrophil zinc and plasma alkal...

  13. Consumption of Pt anode in phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, N.; Urata, K.; Motohira, N.; Ota, K. [Yokohama National University, Yokohama (Japan)

    1997-12-05

    Consumption of Pt anode was investigated in phosphoric acid of various concentration. In 30-70wt% phosphoric acid, Pt dissolved at the rate of 19{mu}gcm{sup -2}h{sup -1}. On the other hand, in 85 wt% phosphoric acid, the amount increased to 0.91 mgcm{sup -2}h{sup -1} which is ca. 180 and 1800 times as much as in 1M sulfuric acid and 1M alkaline solution, respectively. In the diluted phosphoric acid solution, the Pt surface was covered with Pt oxides during the electrolysis, which would prevent the surface from corrosion. However, in the concentrated phosphoric acid, no such oxide surface was observed. Concentrated phosphoric acid might form stable complex with Pt species, therefore the uncovered bare Pt surface is situated in the serious corrosion condition under the high overvoltage and Pt would dissolve into the solution directly instead of forming the Pt oxides. 11 refs., 9 figs., 1 tab.

  14. Mechanochemical reduction of copper sulfide

    DEFF Research Database (Denmark)

    Balaz, P.; Takacs, L.; Jiang, Jianzhong

    2002-01-01

    The mechanochemical reduction of copper sulfide with iron was induced in a Fritsch P-6 planetary mill, using WC vial filled with argon and WC balls. Samples milled for specific intervals were analyzed by XRD and Mossbauer spectroscopy. Most of the reaction takes place during the first 10 min...... of milling and only FeS and Cu are found after 60 min. The main chemical process is accompanied by phase transformations of the sulfide phases as a result of milling. Djurleite partially transformed to chalcocite and a tetragonal copper sulfide phase before reduction. The cubic modification of FeS was formed...... first, transforming to hexagonal during the later stages of the process. The formation of off-stoichiometric phases and the release of some elemental sulfur by copper sulfide are also probable....

  15. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    OpenAIRE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  16. Method of preparing a thermoluminescent phosphor

    Science.gov (United States)

    Lasky, Jerome B.; Moran, Paul R.

    1979-01-01

    A thermoluminescent phosphor comprising LiF doped with boron and magnesium is produced by diffusion of boron into a conventional LiF phosphor doped with magnesium. Where the boron dopant is made to penetrate only the outer layer of the phosphor, it can be used to detect shallowly penetrating radiation such as tritium beta ays in the presence of a background of more penetrating radiation.

  17. Influence of mechanical activation on the Moessbauer spectra of the sulfides

    International Nuclear Information System (INIS)

    Lipka, J.; Miglierini, M.; Sitek, J.; Balaz, P.; Tkacova, K.

    1993-01-01

    Moessbauer spectroscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, electron paramagnetic resonance and X-ray diffraction were used to identify changes of surface, structure and spectroscopic properties of sulfide minerals produced by mechanical activation. In the present study we report the results of chalcopyrite (CuFeS 2 ), pyrite (FeS 2 ), cinnabar (HgS), bornite (Cu 5 FeS 4 ) and zinc sulfide (ZnS). The influence of energy input to the mill and the nature of grinding environment have been investigated upon the Fe contamination of the materials. (orig.)

  18. Influence of mechanical activation on the Moessbauer spectra of the sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Lipka, J.; Miglierini, M.; Sitek, J. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava, Slovak Republic (Czechoslovakia)); Balaz, P.; Tkacova, K. (Mining Inst. of the Slovak Academy of Sciences, Kosice, Slovak Republic (Czechoslovakia))

    1993-04-01

    Moessbauer spectroscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, electron paramagnetic resonance and X-ray diffraction were used to identify changes of surface, structure and spectroscopic properties of sulfide minerals produced by mechanical activation. In the present study we report the results of chalcopyrite (CuFeS[sub 2]), pyrite (FeS[sub 2]), cinnabar (HgS), bornite (Cu[sub 5]FeS[sub 4]) and zinc sulfide (ZnS). The influence of energy input to the mill and the nature of grinding environment have been investigated upon the Fe contamination of the materials. (orig.).

  19. Phosphors for X-ray intensification screens

    International Nuclear Information System (INIS)

    Rebatin, J.G.

    1980-01-01

    An improved rare earth oxyhalide phosphor for x-ray intensification screens is described. The phosphors, of formula LnOX.T where Ln = La or Gd, X = Cl or Br and T = Tm or Tb, are mixed with a small amount of a trivalent antimony compound. The addition of antimony overcomes ageing due to attack by atmospheric moisture and renders the phosphor freeflowing so that dispersions can be readily made. Preferably the phosphor is washed with an aqueous solution of the antimony compound and the compound is the fluoride, chloride or butoxide, or potassium antimony tartrate. (U.K.)

  20. Durable zinc oxide-containing sorbents for coal gas desulfurization

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1996-01-01

    Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

  1. Evaluation of methods for monitoring air concentrations of hydrogen sulfide

    Directory of Open Access Journals (Sweden)

    Katarzyna Janoszka

    2013-06-01

    Full Text Available The development of different branches of industry and a growing fossil fuels mining results in a considerable emission of by-products. Major air pollutants are: CO, CO₂, SO₂, SO₃, H₂S, nitrogen oxides, as well as compounds of an organic origin. The main aspects of this paper is to review and evaluate methods used for monitoring of hydrogen sulfide in the air. Different instrumental techniques were discussed, electrochemical, chromatographic and spectrophotometric (wet and dry, to select the method most suitable for monitoring low levels of hydrogen sulfide, close to its odor threshold. Based on the literature review the method for H₂S determination in the air, involving absorption in aqueous zinc acetate and reaction with N,N-dimethylo-p-phenylodiamine and FeCl₃, has been selected and preliminary verified. The adopted method allows for routine measurements of low concentration of hydrogen sulfide, close to its odor threshold in workplaces and ambient air. Med Pr 2013;64(3:449–454

  2. Differential responses of the freshwater wetland species Juncus effusus L. and Caltha palustris L. to iron supply in sulfidic environments

    International Nuclear Information System (INIS)

    Welle, Marlies E.W. van der; Niggebrugge, Karla; Lamers, Leon P.M.; Roelofs, Jan G.M.

    2007-01-01

    Sulfur pollution can lead to serious problems in freshwater wetlands, including phosphorus eutrophication and sulfide toxicity. We tested the effects of anaerobic iron-rich groundwater discharge in fens, simulated by iron injection, on two characteristic species (Juncus effusus and Caltha palustris) in a sulfidic environment. Biomass production of C. palustris roots showed an optimum response to the combined addition of iron and sulfide, with highest values at intermediate concentrations of both substances. Iron deficiency apparently occurred at low iron concentrations, while at high iron concentrations, growth was decreased. For J. effusus, in contrast, no toxic effects were found of both iron and sulfide. This could be explained by larger radial oxygen loss (ROL) of J. effusus and could not be explained by differences in phosphorous concentrations. The results of our experiments confirm that iron-rich groundwater discharge has the potential to affect vegetation composition through toxicity modification in sulfidic environments. - Toxicity of iron and sulfide are interacting with each other and have the potential to affect vegetation composition

  3. Color stable phosphors for LED lamps and methods for preparing them

    Science.gov (United States)

    Murphy, James Edward; Setlur, Anant Achyut; Camardello, Samuel Joseph

    2013-11-26

    An LED lamp includes a light source configured to emit radiation with a peak intensity at a wavelength between about 250 nm and about 550 nm; and a phosphor composition configured to be radiationally coupled to the light source. The phosphor composition includes particles of a phosphor of formula I, said particles having a coating composition disposed on surfaces thereof; ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.sub.y-)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) I wherein the coating composition comprises a material selected from aluminum oxide, magnesium oxide, calcium oxide, barium oxide, strontium oxide, zinc oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, strontium hydroxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, and combinations thereof; and A is Li, NA, K, or Rb, or a combination thereof; M is Ca, Ba, Mg, Zn, or a combination thereof; and 0

  4. Thiosulfate leaching of gold from sulfide wastes

    Energy Technology Data Exchange (ETDEWEB)

    Block-Bolten, A.; Torma, A.E.

    1986-07-01

    The kinetics of gold extraction from lead-zinc sulfide flotation tailings by thiosulfate leachants has been investigated. The order of reaction as well as the overall reaction rate constant were, with respect to thiosulfate concentration, calculated to be n=0.75 and k=1.05 x 10/sup -6/ mol/sup 1/4/ dm/sup 5/4/ min/sup -1/. The apparent activation energy was found to be ..delta..E/sub a/=48.53 kJ and the frequency factor A=7.5 x 10/sup 2/ mol dm/sup -3/ min/sup -1/. This activation energy value suggests chemical control of the reaction mechanism. Optimum leach temperature of 50/sup 0/C was established. Gold extractions as high as 99% have been realized in two step countercurrent leachings. Change in pH throughout the leaching process was found to be an excellent indicator for the progress of the extraction. A preliminary economic evaluation of the process is given.

  5. Zinc Signals and Immunity.

    Science.gov (United States)

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  6. A Reaction Involving Oxygen and Metal Sulfides.

    Science.gov (United States)

    Hill, William D. Jr.

    1986-01-01

    Describes a procedure for oxygen generation by thermal decomposition of potassium chlorate in presence of manganese dioxide, reacted with various sulfides. Provides a table of sample product yields for various sulfides. (JM)

  7. Planar measurements of spray-induced wall cooling using phosphor thermometry

    Science.gov (United States)

    Dragomirov, Plamen; Mendieta, Aldo; Abram, Christopher; Fond, Benoît; Beyrau, Frank

    2018-03-01

    The wall cooling induced by spray impingement is investigated using phosphor thermometry. Thin coatings of zinc oxide (ZnO) phosphor were applied with a transparent chemical binder onto a steel surface. Instantaneous spatially resolved temperatures were determined using the spectral intensity ratio method directly after the injection of UV-grade hexane onto the surface using a commercial gasoline injector. The investigations showed that 2D temperature measurements with high spatial and shot-to-shot precision of, respectively, 0.5 and 0.6 K can be achieved, allowing the accurate resolution of the cooling induced by the spray. The presence of a liquid film over the phosphor coating during measurements showed no noticeable influence on the measured temperatures. However, in some cases a change in the intensity ratio at the spray impingement area, in the form of a permanent "stain", could be observed after multiple injections. The formation of this stain was less likely with increasing annealing time of the coating as well as lower plate operating temperatures during the injection experiments. Finally, the experimental results indicate a noticeable influence of the thickness of the phosphor coating on the measured spray-induced wall cooling history. Hence, for quantitative analysis, a compromise between coating thickness and measurement accuracy needs to be considered for similar applications where the heat transfer rates are very high.

  8. Sulfide-conducting solid electrolytes

    International Nuclear Information System (INIS)

    Kalinina, L.A.; Shirokova, G.I.; Murin, I.V.; Ushakova, Yu.N.; Fominykh, E.G.; Lyalina, M.Yu.

    2000-01-01

    Feasibility of sulfide transfer in phases on the basis of BaZrS 3 and MLn 2 S 4 ( M = Ca, Ba; Ln = La, Y, Tm, Nd, Sm, Pr) is considered. Solid solution regions on the basis of ternary compounds are determined. Systematic study of the phases is carried out making use of the methods of conductometry, emf in chemical concentration chains without/with transfer, potentiostatic chronoamperometry. Possible mechanism of defect formation during successive alloying of ternary sulfides by binary ones in suggested [ru

  9. Nanostructured metal sulfides for energy storage

    Science.gov (United States)

    Rui, Xianhong; Tan, Huiteng; Yan, Qingyu

    2014-08-01

    Advanced electrodes with a high energy density at high power are urgently needed for high-performance energy storage devices, including lithium-ion batteries (LIBs) and supercapacitors (SCs), to fulfil the requirements of future electrochemical power sources for applications such as in hybrid electric/plug-in-hybrid (HEV/PHEV) vehicles. Metal sulfides with unique physical and chemical properties, as well as high specific capacity/capacitance, which are typically multiple times higher than that of the carbon/graphite-based materials, are currently studied as promising electrode materials. However, the implementation of these sulfide electrodes in practical applications is hindered by their inferior rate performance and cycling stability. Nanostructures offering the advantages of high surface-to-volume ratios, favourable transport properties, and high freedom for the volume change upon ion insertion/extraction and other reactions, present an opportunity to build next-generation LIBs and SCs. Thus, the development of novel concepts in material research to achieve new nanostructures paves the way for improved electrochemical performance. Herein, we summarize recent advances in nanostructured metal sulfides, such as iron sulfides, copper sulfides, cobalt sulfides, nickel sulfides, manganese sulfides, molybdenum sulfides, tin sulfides, with zero-, one-, two-, and three-dimensional morphologies for LIB and SC applications. In addition, the recently emerged concept of incorporating conductive matrices, especially graphene, with metal sulfide nanomaterials will also be highlighted. Finally, some remarks are made on the challenges and perspectives for the future development of metal sulfide-based LIB and SC devices.

  10. 30 CFR 250.504 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  11. 30 CFR 250.808 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S...

  12. 30 CFR 250.604 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  13. Pretreatment of industrial phosphoric acid by Algerian filter-aids

    International Nuclear Information System (INIS)

    Mellah, A.; Setti, Louisa; Chegrouche, Salah

    1993-01-01

    The present work involves the filtration of industrial phosphoric acid by different filter-aids such as kieselguhr, celite and bleaching clay. The retention of substances contained in wet phosphoric acid was determined using the three filter-aids. Thus, the phosphoric acid, obtained by filtration on kieselguhr has the same specifications as technical phosphoric acid produced by Rhone-Poulenc (France) as standard

  14. Method of purifying phosphoric acid after solvent extraction

    International Nuclear Information System (INIS)

    Kouloheris, A.P.; Lefever, J.A.

    1979-01-01

    A method of purifying phosphoric acid after solvent extraction is described. The phosphoric acid is contacted with a sorbent which sorbs or takes up the residual amount of organic carrier and the phosphoric acid separated from the organic carrier-laden sorbent. The method is especially suitable for removing residual organic carrier from phosphoric acid after solvent extraction uranium recovery. (author)

  15. 46 CFR 151.50-23 - Phosphoric acid.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Phosphoric acid. 151.50-23 Section 151.50-23 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term phosphoric acid as used in this subpart shall include, in addition to phosphoric acid, aqueous solutions of...

  16. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  17. Production of zinc pellets

    Science.gov (United States)

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  18. Phosphorous-Containing Polymers for Regenerative Medicine

    Science.gov (United States)

    Watson, Brendan M.; Kasper, F. Kurtis; Mikos, Antonios G.

    2014-01-01

    Disease and injury have resulted in a large, unmet need for functional tissue replacements. Polymeric scaffolds can be used to deliver cells and bioactive signals to address this need for regenerating damaged tissue. Phosphorous-containing polymers have been implemented to improve and accelerate the formation of native tissue both by mimicking the native role of phosphorous groups in the body and by attachment of other bioactive molecules. This manuscript reviews the synthesis, properties, and performance of phosphorous-containing polymers that can be useful in regenerative medicine applications. PMID:24565855

  19. STUDY OF HYDROGEN SULFIDE REMOVAL FROM GROUNDWATER

    Directory of Open Access Journals (Sweden)

    T. Lupascu

    2013-06-01

    Full Text Available The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground water, after its treatment by hydrogen peroxide, proves greater efficiency than in the case of modified carbonic adsorbents. As a result of used treatment, hydrogen sulfide is completely oxidized to sulfates

  20. Improvements in x-ray image converters and phosphors

    International Nuclear Information System (INIS)

    Rabatin, J.G.

    1981-01-01

    Improvements to an X-ray image converter comprising crystals of rare earth phosphor admixtures are described. The phosphor admixtures utilize thulium-activated lanthanum and/or gadolinium oxyhalide phosphor material to increase the relative speed and resolution of an X-ray image compared with conventional rare earth phosphors. Examples of various radiographic screens containing one or more of the phosphor materials are given. (U.K.)

  1. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    Science.gov (United States)

    Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.

    1988-01-01

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  2. Dietary phytate, zinc and hidden zinc deficiency.

    Science.gov (United States)

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Characteristics of the Panasonic UD-802 phosphors

    International Nuclear Information System (INIS)

    Ben-Shachar, B.; Catchen, G.L.; Hoffman, J.M.

    1989-01-01

    Several basic dosimetric characteristics of Li 2 B 4 O 7 :Cu and CaSO 4 :Tm phosphors in Panasonic UD-802 dosemeters were measured. The TL dose response linearity was determined over the useful range of personnel and environmental dosimetry (0.005 - 10 mGy), and the minimum measurable doses were calculated. The intrinsic ultraviolet (UV) radiation sensitivity of both phosphors was checked before and after γ irradiation for the purpose of re-assessing high doses. The results indicate that Li 2 B 4 O 7 :Cu is UV sensitive and, therefore, re-assessment is not applicable. Although the CaSO 4 :Tm phosphor exhibited UV sensitivity after γ irradiation, the results were not consistent with those reported earlier and more study is required. The fading of both phosphors was evaluated in Panasonic UD-801 dosemeters for periods up to 90 days. (author)

  4. Phosphate Phosphors for Solid-State Lighting

    CERN Document Server

    Shinde, Kartik N; Swart, H C; Park, Kyeongsoon

    2012-01-01

    The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  5. Electrolyte Additives for Phosphoric Acid Fuel Cells

    DEFF Research Database (Denmark)

    Gang, Xiao; Hjuler, H.A.; Olsen, C.A.

    1993-01-01

    , as a fuel-cell performance with the modified electrolytes. Specific conductivity measurements of some of the modified phosphoric acid electrolytes are reported. At a given temperature, the conductivity of the C4F9SO3K-modified electrolyte decreases with an increasing amount of the additive; the conductivity...... of the remains at the same value as the conductivity of the pure phosphoric acid. At a given composition, the conductivity of any modified electrolyte increases with temperature. We conclude that the improved cell performance for modified electrolytes is not due to any increase in conductivity.......Electrochemical characteristics of a series of modified phosphoric acid electrolytes containing fluorinated car on compounds and silicone fluids as additives are presented. When used in phosphoric acid fuel cells, the modified electrolytes improve the performance due to the enhanced oxygen...

  6. Evaluation of Application Methods Efficiency of Zinc and Iron for Canola(Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Ahmad BYBORDI

    2010-03-01

    Full Text Available In order to evaluation of application method efficiency of zinc and iron microelements in canola, an experiment was conducted in the Agricultural Research Station of Eastern Azerbaijan province in 2008. The experimental design was a RCBD with eight treatments (F1: control, F2: iron, F3: zinc, F4: iron + zinc in the form of soil utility, F5: iron, F6: zinc, F7: iron+ zinc in the form of solution foliar application, and F8: iron + zinc in the form of soil utility and foliar application. Analysis of variance showed that there were significant differences among treatments on given traits, antioxidant enzymes activity, fatty acids percentage, plant height, seed weight to capitulum weight ratio, protein percentage, oil percentage, oil yield, 1000 seed weight, seed yield, nitrogen, phosphorous and potassium percentage of leaves, zinc and iron content of leaves and capitulum diameters. The highest seed yield, oil yield, oil percentage, 1000 seed weight, seed weight to capitulum weight ratio and protein percentage were obtained from the soil and foliar application of iron + zinc treatments (F8. Also, the highest amounts of nitrogen, phosphorous and potassium concentration in leaves were achieved from control treatment which was an indication of non-efficiency of iron and zinc on the absorption rate of these substances in the leaves. The correlation between effective traits on the seed yield, such as, capitalism diameter, number of seed rows in capitulum, seed weight to capitulum weight ratio and 1000 seed weight were positively significant. In general, foliar and soil application of zinc and iron had the highest efficiency in aspect of seed production. The comparison of the various methods of fertilization showed that foliar application was more effective than soil application. Also, micronutrient foliar application increased concentration of elements, especially zinc and iron. Antioxidant enzymes activity was different in response to treatments also the

  7. BWR zinc addition Sourcebook

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Alfred J.

    2014-01-01

    Boiling Water Reactors (BWRs) have been injecting zinc into the primary coolant via the reactor feedwater system for over 25 years for the purpose of controlling primary system radiation fields. The BWR zinc injection process has evolved since the initial application at the Hope Creek Nuclear Station in 1986. Key transitions were from the original natural zinc oxide (NZO) to depleted zinc oxide (DZO), and from active zinc injection of a powdered zinc oxide slurry (pumped systems) to passive injection systems (zinc pellet beds). Zinc addition has continued through various chemistry regimes changes, from normal water chemistry (NWC) to hydrogen water chemistry (HWC) and HWC with noble metals (NobleChem™) for mitigation of intergranular stress corrosion cracking (IGSCC) of reactor internals and primary system piping. While past reports published by the Electric Power Research Institute (EPRI) document specific industry experience related to these topics, the Zinc Sourcebook was prepared to consolidate all of the experience gained over the past 25 years. The Zinc Sourcebook will benefit experienced BWR Chemistry, Operations, Radiation Protection and Engineering personnel as well as new people entering the nuclear power industry. While all North American BWRs implement feedwater zinc injection, a number of other BWRs do not inject zinc. This Sourcebook will also be a valuable resource to plants considering the benefits of zinc addition process implementation, and to gain insights on industry experience related to zinc process control and best practices. This paper presents some of the highlights from the Sourcebook. (author)

  8. Method of capturing or trapping zinc using zinc getter materials

    Science.gov (United States)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  9. Leaching of strontium sulfide from produced clinker in conversion furnace

    International Nuclear Information System (INIS)

    Ghorbanian, S. A.; Salehpour, A. R.; Radpour, S. R.

    2009-01-01

    Iran is rich in mineral resources one of which is mineral Celestine. Basing on current estimations, the capacity of mineral Celestine is over two million tons, 75-95% of which is strontium sulfate. However; in industries such as Color cathode Ray Tubes, pyrochemical processes, ceramics, paint production, zinc purification processes; strontium sulfate is not a direct feed, rather it is largely consumed in the form of strontium carbonate. Two conventional methods are used to produce strontium carbonate from the sulfate; that is direct reaction and black ash methods. Strontium sulfide, as an intermediate component has a key role in black ash process including strontium sulfate reduction by coke, hence producing and leaching the strontium sulfide by hot water. Finally the reaction of strontium sulfate with sodium carbonate lead to strontium carbonate. In this paper, a system was designed to analyze and optimize the process parameters of strontium sulfide production which is less expensive and available solvent in water. Fundamentally, when strontium sulfide becomes in contact with strontium sulfate; Sr(SH) 2 , and Sr(OH) 2 , are produced. The solubility of strontium sulfide depends on water temperature and the maximum solubility achieved at 90 d egree C . The results showed that in the experimental scale, at water to SrS ratio of 6; they sediment for 45 minutes at 95 d egree C in five operational stages; the separation of 95 and 97.1 percent of imported SrS is possible in effluent of fourth and fifth stages, respectively. Thus; four leaching stages could be recommended for pilot scale plants. Also, the results show that at water to SrS ratio of 8, 40 minutes sedimentation at 85-95 d egree C in one operational stage, the separation of 95 percent separation of inputted SrS, is possible. Solvent leaching process is continued till no smell of sulfur components is felt. It could be used as a key role to determine the number of leaching stages in experiments. Finally, the

  10. Luminescence Studies on Lamp Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, J.S.; Godbole, S.V.; Varadharajan, G.; Page, A.G

    1998-07-01

    Photoluminescence and thermoluminescence of cerium magnesium aluminate CeMgAl{sub 11}O{sub 17}(Eu,Tb) and calcium halophosphate Ca{sub 5}(PO{sub 4}){sub 3}(F,Cl):Mn,Sb, two fluorescent materials currently in use for the commercial production of lamps in India, have been studied for possible applications in radiation and ultraviolet dosimetry. Cerium magnesium aluminate is highly sensitive to the visible spectral region. It has a linear response to 254 nm UV radiation over a wide range. Its UV sensitivity is significantly higher as compared to that of other known phosphors; however, its UV response is rate-dependent and may not play a significant role in UV dosimetry. Photoluminescence of CeMg aluminate is characteristic of Eu{sup 2+} and Tb{sup 3+} dopants, whereas the thermoluminescence emission of the UV irradiated powder at room temperature is dominated by Eu{sup 2+} dopant. Calcium halophosphate is insensitive to room lights, has a linear gamma response over 0.2-10{sup 2} Gy and may be useful in the case of radiation accidents. (author)

  11. Luminescence Studies on Lamp Phosphors

    International Nuclear Information System (INIS)

    Nagpal, J.S.; Godbole, S.V.; Varadharajan, G.; Page, A.G.

    1998-01-01

    Photoluminescence and thermoluminescence of cerium magnesium aluminate CeMgAl 11 O 17 (Eu,Tb) and calcium halophosphate Ca 5 (PO 4 ) 3 (F,Cl):Mn,Sb, two fluorescent materials currently in use for the commercial production of lamps in India, have been studied for possible applications in radiation and ultraviolet dosimetry. Cerium magnesium aluminate is highly sensitive to the visible spectral region. It has a linear response to 254 nm UV radiation over a wide range. Its UV sensitivity is significantly higher as compared to that of other known phosphors; however, its UV response is rate-dependent and may not play a significant role in UV dosimetry. Photoluminescence of CeMg aluminate is characteristic of Eu 2+ and Tb 3+ dopants, whereas the thermoluminescence emission of the UV irradiated powder at room temperature is dominated by Eu 2+ dopant. Calcium halophosphate is insensitive to room lights, has a linear gamma response over 0.2-10 2 Gy and may be useful in the case of radiation accidents. (author)

  12. MULTI-PHOTON PHOSPHOR FEASIBILITY RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    R. Graham; W. Chow

    2003-05-01

    Development of multi-photon phosphor materials for discharge lamps represents a goal that would achieve up to a doubling of discharge (fluorescent) lamp efficacy. This report reviews the existing literature on multi-photon phosphors, identifies obstacles in developing such phosphors, and recommends directions for future research to address these obstacles. To critically examine issues involved in developing a multi-photon phosphor, the project brought together a team of experts from universities, national laboratories, and an industrial lamp manufacturer. Results and findings are organized into three categories: (1) Multi-Photon Systems and Processes, (2) Chemistry and Materials Issues, and (3) Concepts and Models. Multi-Photon Systems and Processes: This category focuses on how to use our current understanding of multi-photon phosphor systems to design new phosphor systems for application in fluorescent lamps. The quickest way to develop multi-photon lamp phosphors lies in finding sensitizer ions for Gd{sup 3+} and identifying activator ions to red shift the blue emission from Pr{sup 3+} due to the {sup 1}S{sub 0} {yields} {sup 1}I{sub 6} transition associated with the first cascading step. Success in either of these developments would lead to more efficient fluorescent lamps. Chemistry and Materials Issues: The most promising multi-photon phosphors are found in fluoride hosts. However, stability of fluorides in environments typically found in fluorescent lamps needs to be greatly improved. Experimental investigation of fluorides in actual lamp environments needs to be undertaken while working on oxide and oxyfluoride alternative systems for backup. Concepts and Models: Successful design of a multi-photon phosphor system based on cascading transitions of Gd{sup 3+} and Pr{sup 3+} depends critically on how the former can be sensitized and the latter can sensitize an activator ion. Methods to predict energy level diagrams and Judd-Ofelt parameters of multi

  13. Zinc at glutamatergic synapses.

    Science.gov (United States)

    Paoletti, P; Vergnano, A M; Barbour, B; Casado, M

    2009-01-12

    It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.

  14. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Directory of Open Access Journals (Sweden)

    Sanchi Nenkova

    2011-04-01

    Full Text Available Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of copper sulfides in the lignocellulosic matrix were investigated. The modification with a system of 2 components: cupric sulfate pentahydrate (CuSO4. 5H2O and sodium thiosulfate pentahydrate (Na2S2O3.5H2O for wood fibers is preferred. Optimal parameters were established for the process: 40 % of the reduction system; hydromodule M=1:6; and ratio of cupric sulfate pentahydrate:sodium thiosulfate pentahydrate = 1:2. The coordinative connection of copper ions with oxygen atoms of cellulose OH groups and aromatic nucleus in lignin macromolecule was observed.

  15. Chemical dissolution of sulfide minerals

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1977-01-01

    Chemical dissolution treatments involving the use of aqua regia, 4 N HNO3, H2O2-ascorbic acid, oxalic acid, KClO3+HCl, and KClO3+HCl followed by 4 N HNO3 were applied to specimens of nine common sulfide minerals (galena, chalcopyrite, cinnabar, molybdenite, orpiment, pyrite, stibnite, sphalerite, and tetrahedrite) mixed individually with a clay loam soil. The resultant decrease in the total sulfur content of the mixture, as determined by using the Leco induction furnace, was used to evaluate the effectiveness of each chemical treatment. A combination of KClO3+HCl followed by 4 N HNO3 boiling gently for 20 min has been shown to be very effective in dissolving all the sulfide minerals. This treatment is recommended to dissolve metals residing in sulfide minerals admixed with secondary weathering products, as one step in a fractionation scheme whereby metals in soluble and adsorbed forms, and those associated with organic materials and secondary oxides, are first removed by other chemical extractants.

  16. Sulfide intrusion and detoxification in seagrasses ecosystems

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    Sulfide intrusion in seagrasses represents a global threat to seagrasses and thereby an important parameter in resilience of seagrass ecosystems. In contrast seegrasses colonize and grow in hostile sediments, where they are constantly exposed to invasion of toxic gaseous sulfide. Remarkably little...... strategies of seagrasses to sustain sulfide intrusion. Using stable isotope tracing, scanning electron microscopy with x-ray analysis, tracing sulfur compounds combined with ecosystem parameters we found different spatial, intraspecific and interspecific strategies to cope with sulfidic sediments. 1...... not present in terrestrial plants at that level. Sulfide is not necessarily toxic but used as sulfur nutrition, presupposing healthy seagrass ecosystems that can support detoxification mechanisms. Presence or absence of those mechanisms determines susceptibility of seagrass ecosystems to sediment sulfide...

  17. Phosphor blends for high-CRI fluorescent lamps

    Science.gov (United States)

    Setlur, Anant Achyut [Niskayuna, NY; Srivastava, Alok Mani [Niskayuna, NY; Comanzo, Holly Ann [Niskayuna, NY; Manivannan, Venkatesan [Clifton Park, NY; Beers, William Winder [Chesterland, OH; Toth, Katalin [Pomaz, HU; Balazs, Laszlo D [Budapest, HU

    2008-06-24

    A phosphor blend comprises at least two phosphors each selected from one of the groups of phosphors that absorb UV electromagnetic radiation and emit in a region of visible light. The phosphor blend can be applied to a discharge gas radiation source to produce light sources having high color rendering index. A phosphor blend is advantageously includes the phosphor (Tb,Y,LuLa,Gd).sub.x(Al,Ga).sub.yO.sub.12:Ce.sup.3+, wherein x is in the range from about 2.8 to and including 3 and y is in the range from about 4 to and including 5.

  18. Zinc oxide overdose

    Science.gov (United States)

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  19. Zinc and gastrointestinal disease

    Institute of Scientific and Technical Information of China (English)

    Sonja; Skrovanek; Katherine; DiGuilio; Robert; Bailey; William; Huntington; Ryan; Urbas; Barani; Mayilvaganan; Giancarlo; Mercogliano; James; M; Mullin

    2014-01-01

    This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases.

  20. Neutron diffraction investigations of the superionic conductors lithium sulfide and sodium sulfide

    International Nuclear Information System (INIS)

    Altorfer, F.

    1990-03-01

    Statics and dynamics of the superionic conductors lithium sulfide and sodium sulfide were investigated using the following experimental methods: elastic scattering on sodium sulfide powder in the temperature range 20 - 1000 C, elastic scattering on a lithium sulfide single crystal in the temperature range 20 - 700 C, inelastic scattering on a 7 Li 2 S single crystal at 10 K. 34 figs., 2 tabs., 10 refs

  1. Corrosion Behavior of Cu40Zn in Sulfide-Polluted 3.5% NaCl Solution

    Science.gov (United States)

    Song, Q. N.; Xu, N.; Bao, Y. F.; Jiang, Y. F.; Gu, W.; Yang, Z.; Zheng, Y. G.; Qiao, Y. X.

    2017-10-01

    The corrosion behavior of a duplex-phase brass Cu40Zn in clean and sulfide-polluted 3.5% NaCl solutions was investigated by conducting electrochemical and gravimetric measurements. The corrosion product films were analyzed by scanning electron microscopy, energy-dispersive spectroscopy and x-ray diffraction. The presence of sulfide shifted the corrosion potential of Cu40Zn toward a more negative value by 100 mV and increased the mass loss rate by a factor of 1.257 compared with the result in the clean solution. The corrosion product film in the clean solution was thin and compact; it mainly consisted of oxides, such as ZnO and Cu2O. By contrast, the film in the sulfide-polluted solution was thick and porous. It mainly contained sulfides and zinc hydroxide chloride (i.e., Zn5(OH)8Cl2·H2O). The presence of sulfide ions accelerated the corrosion damage of Cu40Zn by hindering the formation of protective oxides and promoting the formation of a defective film which consisted of sulfides and hydroxide chlorides.

  2. Sulfidation behavior of Fe20Cr alloys

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser

    2001-01-01

    Alloys for use in high temperature environments rely on the formation of an oxide layer for their protection. Normally, these protective oxides are Cr 2 O 3 , Al 2 O 3 and, some times, SiO 2 . Many industrial gaseous environments contain sulfur. Sulfides, formed in the presence of sulfur are thermodynamically less stable, have lower melting points and deviate much more stoichiometrically, compared to the corresponding oxides. The mechanism of sulfidation of various metals is as yet not clear, in spite of the concerted efforts during the last decade. To help address this situation, the sulfidation behavior of Fe20Cr has been studied as a function of compositional modifications and surface state of the alloy. The alloys Fe20Cr, Fe20Cr0.7Y, Fe20Cr5Al and Fe20Cr5Al0.6Y were prepared and three sets of sulfidation tests were carried out. In the first set, the alloys were sulfidized at 700 deg C and 800 deg C for 10h. In the second set, the alloys were pre-oxidized at 1000 deg C and then sulfidized at 800 deg C for up to 45h. In the third set of tests, the initial stages of sulfidation of the alloys was studied. All the tests were carried out in a thermobalance, in flowing H 2 /2%H 2 S, and the sulfidation behavior determined as mass change per unit area. Scanning electron microscopy coupled to energy dispersive spectroscopy and X-ray diffraction analysis were used to characterize the reaction products. The addition of Y and Al increased sulfidation resistance of Fe20Cr. The addition of Y altered the species that diffused predominantly during sulfide growth. It changed from predominant cationic diffusion to predominant anionic diffusion. The addition of Al caused an even greater increase in sulfidation resistance of Fe20Cr, with the parabolic rate constant decreasing by three orders of magnitude. Y addition to the FeCrAl alloy did not cause any appreciable alteration in sulfidation resistance. Pre-oxidation of the FeCrAl and FeCrAlY alloys resulted in an extended

  3. Color stable manganese-doped phosphors

    Science.gov (United States)

    Lyons, Robert Joseph [Burnt Hills, NY; Setlur, Anant Achyut [Niskayuna, NY; Deshpande, Anirudha Rajendra [Twinsburg, OH; Grigorov, Ljudmil Slavchev [Sofia, BG

    2012-08-28

    A process for preparing color stable Mn.sup.+4 doped phosphors includes providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof. A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor composition radiationally coupled to the light source, and which includes a color stable Mn.sup.+4 doped phosphor.

  4. Synthesis and luminescence properties of ZnAl{sub 2}O{sub 4}:RE{sup 3+} (RE = Eu, Sm) phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Cho, Shin Ho [Silla University, Busan (Korea, Republic of)

    2014-01-15

    ZnAl{sub 2}O{sub 4}:RE{sup 3+} (RE = Eu or Sm) phosphor powders were synthesized with different concentrations of activator ions by using the conventional solid-state reaction method. The effects of the concentration of activator ions on the structural, morphological, and luminescent properties of zinc aluminate phosphors were investigated. The X-ray diffraction patterns revealed that the phosphors synthesized with different concentrations of activator ions showed mixed phases of ZnAl{sub 2}O{sub 4}, ZnO, and Al{sub 2}O{sub 3}. The crystallite size was estimated using the Scherrer formula, and the maximum size was obtained for 0.20 mol of Eu{sup 3+} ions. The emission spectra of of Eu{sup 3+}-doped ZnAl{sub 2}O{sub 4} phosphors under excitation at 303 nm exhibited one intense green band at approximately 520 nm and three weak bands centered at 590, 621, and 701 nm, respectively. The intensity of all the emission bands reached a maximum for 0.05 mol of Eu{sup 3+} ions. For the Sm{sup 3+}-doped ZnAl{sub 2}O{sub 4} phosphors, a broad emission band peak at 526 nm and several weak lines in the range 470 - 700 nm were observed. The results suggest that the luminescent intensity of the phosphors can be enhanced by controlling the amount of activator ions incorporated into the host lattice.

  5. Study on the effect of x-ray irradiation of seed on zinc uptake in maize (Zea Mays L.) plants

    International Nuclear Information System (INIS)

    Joshi, Gargi; Singh, K.P.; Joshi, G.C.

    2007-01-01

    The effects of irradiations by X-rays at the two dose levels (1.1 KR and 2.2 KR) of seeds on uptake of zinc ion in maize (Zea Mays L.) plants were studied. The uptake and internal distribution of zinc ion in the maize plants was carried out by incorporating radioactive zinc as zinc chloride (ZnCl 2 ) in the nutrient solution to the plants. The localization and translocation of radioactive zinc was studied employing phosphor imaging systems (FX). The radioactivity measurement has been carried out using solid scintillation counter. It was observed that zinc ions uptake was higher in plants out of 2.2 KR X-rays irradiated seeds. (author)

  6. A review of zinc oxide mineral beneficiation using flotation method.

    Science.gov (United States)

    Ejtemaei, Majid; Gharabaghi, Mahdi; Irannajad, Mehdi

    2014-04-01

    In recent years, extraction of zinc from low-grade mining tailings of oxidized zinc has been a matter of discussion. This is a material which can be processed by flotation and acid-leaching methods. Owing to the similarities in the physicochemical and surface chemistry of the constituent minerals, separation of zinc oxide minerals from their gangues by flotation is an extremely complex process. It appears that selective leaching is a promising method for the beneficiation of this type of ore. However, with the high consumption of leaching acid, the treatment of low-grade oxidized zinc ores by hydrometallurgical methods is expensive and complex. Hence, it is best to pre-concentrate low-grade oxidized zinc by flotation and then to employ hydrometallurgical methods. This paper presents a critical review on the zinc oxide mineral flotation technique. In this paper, the various flotation methods of zinc oxide minerals which have been proposed in the literature have been detailed with the aim of identifying the important factors involved in the flotation process. The various aspects of recovery of zinc from these minerals are also dealt with here. The literature indicates that the collector type, sulfidizing agent, pH regulator, depressants and dispersants types, temperature, solid pulp concentration, and desliming are important parameters in the process. The range and optimum values of these parameters, as also the adsorption mechanism, together with the resultant flotation of the zinc oxide minerals reported in the literature are summarized and highlighted in the paper. This review presents a comprehensive scientific guide to the effectiveness of flotation strategy. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. White light quality of phosphor converted light-emitting diodes: A phosphor materials perspective of view

    International Nuclear Information System (INIS)

    Sommer, Christian; Hartmann, Paul; Pachler, Peter; Hoschopf, Hans; Wenzl, Franz P.

    2012-01-01

    Highlights: ► We discuss the impact of the optical properties of a phosphor for colour temperature constancy in solid state lighting. ► Quantitative evaluation of permissible variations of the optical properties for batch-to-batch reproducibility. ► Quantitative evaluation of permissible variations of the optical properties upon temperature increase. ► Quantitative evaluation of permissible variations of the optical properties upon materials degradation. - Abstract: For a systematic approach to improve the white light quality of phosphor converted LEDs and to fulfil the demands for colour temperature reproducibility and constancy, it is imperative to understand how variations of the extinction coefficient and the quantum efficiency of the phosphor particles as well as variations of the excitation wavelength of the blue LED die affect the correlated colour temperature of the white LED source. Based on optical ray tracing of a phosphor converted white LED package we deduce permissible values for the variation of a given extinction coefficient and a given quantum efficiency of a phosphor material in order to maintain acceptable colour variations. These quantitative valuations of the required constancy of the optical properties of the phosphors will in particular provide some benchmarks for the synthesis of improved phosphor materials aiming at solid state lighting applications.

  8. Two mechanisms of oral malodor inhibition by zinc ions.

    Science.gov (United States)

    Suzuki, Nao; Nakano, Yoshio; Watanabe, Takeshi; Yoneda, Masahiro; Hirofuji, Takao; Hanioka, Takashi

    2018-01-18

    The aim of this study was to reveal the mechanisms by which zinc ions inhibit oral malodor. The direct binding of zinc ions to gaseous hydrogen sulfide (H2S) was assessed in comparison with other metal ions. Nine metal chlorides and six metal acetates were examined. To understand the strength of H2S volatilization inhibition, the minimum concentration needed to inhibit H2S volatilization was determined using serial dilution methods. Subsequently, the inhibitory activities of zinc ions on the growth of six oral bacterial strains related to volatile sulfur compound (VSC) production and three strains not related to VSC production were evaluated. Aqueous solutions of ZnCl2, CdCl2, CuCl2, (CH3COO)2Zn, (CH3COO)2Cd, (CH3COO)2Cu, and CH3COOAg inhibited H2S volatilization almost entirely. The strengths of H2S volatilization inhibition were in the order Ag+ > Cd2+ > Cu2+ > Zn2+. The effect of zinc ions on the growth of oral bacteria was strain-dependent. Fusobacterium nucleatum ATCC 25586 was the most sensitive, as it was suppressed by medium containing 0.001% zinc ions. Zinc ions have an inhibitory effect on oral malodor involving the two mechanisms of direct binding with gaseous H2S and suppressing the growth of VSC-producing oral bacteria.

  9. Effect of particle-particle shearing on the bioleaching of sulfide minerals.

    Science.gov (United States)

    Chong, N; Karamanev, D G; Margaritis, A

    2002-11-05

    The biological leaching of sulfide minerals, used for the production of gold, copper, zinc, cobalt, and other metals, is very often carried out in slurry bioreactors, where the shearing between sulfide particles is intensive. In order to be able to improve the efficiency of the bioleaching, it is of significant importance to know the effect of particle shearing on the rate of leaching. The recently proposed concept of ore immobilization allowed us to study the effect of particle shearing on the rate of sulfide (pyrite) leaching by Thiobacillus ferrooxidans. Using this concept, we designed two very similar bioreactors, the main difference between which was the presence and absence of particle-particle shearing. It was shown that when the oxygen mass transfer was not the rate-limiting step, the rate of bioleaching in the frictionless bioreactor was 2.5 times higher than that in a bioreactor with particle friction (shearing). The concentration of free suspended cells in the frictionless bioreactor was by orders of magnitude lower than that in the frictional bioreactor, which showed that particle friction strongly reduces the microbial attachment to sulfide surface, which, in turn, reduces the rate of bioleaching. Surprisingly, it was found that formation of a layer of insoluble iron salts on the surface of sulfide particles is much slower under shearless conditions than in the presence of particle-particle shearing. This was explained by the effect of particle friction on liquid-solid mass transfer rate. The results of this study show that reduction of the particle friction during bioleaching of sulfide minerals can bring important advantages not only by increasing significantly the bioleaching rate, but also by increasing the rate of gas-liquid oxygen mass transfer, reducing the formation of iron precipitates and reducing the energy consumption. One of the efficient methods for reduction of particle friction is ore immobilization in a porous matrix. Copyright 2002

  10. Zinc in human serum

    International Nuclear Information System (INIS)

    Kiilerich, S.

    1987-01-01

    The zinc ion is essential for the living organism. Many pathological conditions have been described as a consequence of zinc deficiency. As zinc constitutes less than 0.01 per cent of the body weight, it conventionally belongs to the group of trace elements. The method of atomic absorption spectrophotometry is used to measure the concentration of zinc in serum and urine from healthy persons. The assumptions of the method is discussed. The importance of proteinbinding, diet and the diurnal variation of serum zinc concentration is presented. Serum versus plasma zinc concentration is discussed. Reference serum zinc values from 104 normal subjects are given. Zinc in serum is almost entirely bound to proteins. A preliminary model for the estimation of the distribution of zinc between serum albumin and α 2 -macroglobulin is set up. This estimate has been examined by an ultracentrufugation method. The binding of zinc to a α 2 -macroglobulin in normal persons is appoximately 7 per cent, in patients with cirrhosis of the liver of alcoholic origin approximately 6 per cent, in patients with insulin dependent diabetes mellitus approximately 5 per cent, and in patients with chronic renal failure approximately 2 per cent. It is concluded, therefore, that for clinical purposes it is sufficient to use the concentration of total serum zinc corrected for the concentration of serum albumin. (author)

  11. High efficiency nitride based phosphores for white LEDs

    NARCIS (Netherlands)

    Li, Yuan Qiang; Hintzen, H.T.J.M.

    2008-01-01

    In this overview paper, novel rare-earth doped silicon nitride based phosphors for white LEDs applications have been demonstrated. The luminescence properties of orange-red-emitting phosphors (M2Si5N8:Eu2+) and green-to-yellow emitting phosphors (MSi2N2O2:Eu2+, M = Ca, Sr, Ba) are discussed in

  12. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles

    Energy Technology Data Exchange (ETDEWEB)

    Vollenweider, Pierre, E-mail: pierre.vollenweider@wsl.c [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bernasconi, Petra [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Environmental Protection Office (AfU), Aabachstrasse 5, 6300 Zug (Switzerland); Gautschi, Hans-Peter [Centre for Microscopy and Image Analysis (CMI), University of Zurich, Gloriastrasse 30, 8006 Zuerich (Switzerland); Menard, Terry; Frey, Beat; Guenthardt-Goerg, Madeleine S. [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2011-01-15

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing {beta}-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. - Zinc contaminants translocated to symplast of aged leaves were detoxified by phytic acid ligands.

  13. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles

    International Nuclear Information System (INIS)

    Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Guenthardt-Goerg, Madeleine S.

    2011-01-01

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. - Zinc contaminants translocated to symplast of aged leaves were detoxified by phytic acid ligands.

  14. Sulfide toxicity kinetics of a uasb reactor

    Directory of Open Access Journals (Sweden)

    D. R. Paula Jr.

    2009-12-01

    Full Text Available The effect of sulfide toxicity on kinetic parameters of anaerobic organic matter removal in a UASB (up-flow anaerobic sludge blanket reactor is presented. Two lab-scale UASB reactors (10.5 L were operated continuously during 12 months. The reactors were fed with synthetic wastes prepared daily using glucose, ammonium acetate, methanol and nutrient solution. One of the reactors also received increasing concentrations of sodium sulfide. For both reactors, the flow rate of 16 L.d-1 was held constant throughout the experiment, corresponding to a hydraulic retention time of 15.6 hours. The classic model for non-competitive sulfide inhibition was applied to the experimental data for determining the overall kinetic parameter of specific substrate utilization (q and the sulfide inhibition coefficient (Ki. The application of the kinetic parameters determined allows prediction of methanogenesis inhibition and thus the adoption of operating parameters to minimize sulfide toxicity in UASB reactors.

  15. Phosphor investigation in the production of Syrian phosphoric acid using Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Al-Hassanieh, O.; Al-Hameish, M.

    2009-06-01

    Nuclear magnetic resonance spectroscopy (NMR) was applied in this work to the industrial process of extraction of uranium from phosphoric acid and to the process of the purification of the phosphoric acid for food proposes. The structural changes of used extraction materials and the organic content of the final product was studied. 13 C , 1 H and 32 P-spectra of all material during the process were recorded. The spectra of the three used extraction materials Bis(2-ethylhexyl Phosphoric Acid)) DEHPA, TriOctyl Phosphine Oxide (TOPO) (C 8 H 1 7) 3 P=O and TriButyl Phosphate (TBP) (C 4 H 9 O) 3 P=O show a partial degradation during the process. The final product ( Phosphoric acid for Food proposes) doesn't contain any organic solvents or extraction material. (author)

  16. Process for recovering a uranium containing concentrate and purified phosphoric acid from a wet process phosphoric acid containing uranium

    International Nuclear Information System (INIS)

    Weterings, C.A.M.; Janssen, J.A.

    1985-01-01

    A process is claimed for recovering from a wet process phosphoric acid which contains uranium, a uranium containing concentrate and a purified phosphoric acid. The wet process phosphoric acid is treated with a precipitant in the presence of a reducing agent and an aliphatic ketone

  17. Process for recovering a uranium containing concentrate and purified phosphoric acid from a wet process phosphoric acid containing uranium

    Energy Technology Data Exchange (ETDEWEB)

    Weterings, C.A.M.; Janssen, J.A.

    1985-04-30

    A process is claimed for recovering from a wet process phosphoric acid which contains uranium, a uranium containing concentrate and a purified phosphoric acid. The wet process phosphoric acid is treated with a precipitant in the presence of a reducing agent and an aliphatic ketone.

  18. Pretreatment of phosphoric acid for uranium recovery by the wet phosphoric acid process

    International Nuclear Information System (INIS)

    Chern, S.L.P.; Chen, Y.C.L.; Chang, S.S.H.; Kuo, T.S.; Ting, G.C.M.

    1980-01-01

    The proposal deals with reprocessing of phosphoric acid arising from uranium separation according to the wet phosphoric acid process and being intended for recycling. In detail, the sludge will be removed by means of an inclined separating device containing corrugated plates, then the organic impurities are washed out with kerosene in suitable facilities, and the crude phase remaining in the settling tank will be separated from the kerosene in a separating centrifuge. The method has only got low cost of installation. (UWI) [de

  19. A survey of phosphors novel for thermography

    Energy Technology Data Exchange (ETDEWEB)

    Bruebach, J., E-mail: bruebach@ekt.tu-darmstadt.d [Fachgebiet Reaktive Stroemungen und Messtechnik, Center of Smart Interfaces Technische Universitaet Darmstadt, Petersenstrasse 32, 64287 Darmstadt (Germany); Kissel, T. [Fachgebiet Reaktive Stroemungen und Messtechnik, Center of Smart Interfaces Technische Universitaet Darmstadt, Petersenstrasse 32, 64287 Darmstadt (Germany); Frotscher, M. [Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie, Technische Universitaet Darmstadt, Petersenstrasse 18, 64287 Darmstadt (Germany); Euler, M. [Fachgebiet Reaktive Stroemungen und Messtechnik, Center of Smart Interfaces Technische Universitaet Darmstadt, Petersenstrasse 32, 64287 Darmstadt (Germany); Albert, B. [Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie, Technische Universitaet Darmstadt, Petersenstrasse 18, 64287 Darmstadt (Germany); Dreizler, A. [Fachgebiet Reaktive Stroemungen und Messtechnik, Center of Smart Interfaces Technische Universitaet Darmstadt, Petersenstrasse 32, 64287 Darmstadt (Germany)

    2011-04-15

    With regard to phosphor thermometry, seven luminescent ceramic materials were synthesised and characterised, namely CaMoO{sub 4}:Eu{sup 3+}, CaTiO{sub 3}:Pr{sup 3+}, LaPO{sub 4}:Eu{sup 3+}, LaVO{sub 4}:Eu{sup 3+}, LiAl{sub 5}O{sub 8}:Fe{sup 3+}, TiMg{sub 2}O{sub 4}:Mn{sup 4+} and ZnGa{sub 2}O{sub 4}:Mn{sup 2+}. In this context, emission spectra and temperature lifetime characteristics are presented. Thus, a survey of phosphors novel for thermography is given in order to encourage further studies and more detailed characterisations of the respective materials. - Research Highlights: Seven phosphor materials novel for thermometry were synthesised. These materials were characterised diffractometrically as well as concerning their emission spectra and lifetime temperature characteristics. The number of phosphor materials characterised for thermometry purposes was extended by seven materials.

  20. Phosphate phosphors for solid-state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Kartik N. [N.S. Science and Arts College, Bhadrawati (India). Dept. of Physics; Swart, H.C. [University of the Orange Free State, Bloemfontein (South Africa). Dept. of Physics; Dhoble, S.J. [R.T.M. Nagpur Univ. (India). Dept. of Physics; Park, Kyeongsoon [Sejong Univ., Seoul (Korea, Republic of). Faculty of Nanotechnology and Advanced Materials Engineering

    2012-07-01

    Essential information for students in researchers working towards new and more efficient solid-state lighting. Comprehensive survey based on the authors' long experience. Useful both for teaching and reference. The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  1. doped LiMgPO4 phosphor

    Indian Academy of Sciences (India)

    attention because of their remarkable luminescence proper- ties and .... Figure 1. (a) X-ray diffraction patterns of LiMgPO4:Tb3+ phosphor and (b) standard data. ICDD file. .... ground signal which affects the signal to noise ratio [17]. MDD was ...

  2. Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1999-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  3. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1997-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  4. Intravascular imaging with a storage phosphor detector

    Energy Technology Data Exchange (ETDEWEB)

    Shikhaliev, Polad M; Petrek, Peter; Matthews, Kenneth L II; Fritz, Shannon G [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA (United States); Bujenovic, L Steven [PET Imaging Center, Our Lady of the Lake Medical Center, Baton Rouge, LA (United States); Xu Tong, E-mail: pshikhal@lsu.ed [Department of Physics, Carleton University, Ottawa (Canada)

    2010-05-21

    The aim of this study is to develop and test an intravascular positron imaging system based on a storage phosphor detector for imaging and detecting vulnerable plaques of human coronary arteries. The radiotracer F18-FDG accumulates in vulnerable plaques with inflammation of the overlying cap. The vulnerable plaques can, therefore, be imaged by recording positrons emitted from F18-FDG with a detector inserted into the artery. A prototype intravascular detector was constructed based on storage phosphor. The detector uses a flexible storage phosphor tube with 55 mm length, 2 mm diameter and 0.28 mm wall thickness. The intravascular detector is guided into the vessel using x-ray fluoroscopy and the accumulated x-ray signal must be erased prior to positron imaging. For this purpose, a light diffuser, 0.9 mm in diameter and 55 mm in length, was inserted into the detector tube. The light diffuser was connected to a laser source through a 2 m long optical fiber. The diffuser redirected the 0.38 W laser light to the inner surface of the phosphor detector to erase it. A heart phantom with 300 cm{sup 3} volume and three coronary arteries with 3.2 mm diameter and with several plaques was constructed. FDG solution with 0.5 {mu}Ci cm{sup -3} activity concentration was filled in the heart and coronary arteries. The detector was inserted in a coronary artery and the signal from the plaques and surrounding background activity was recorded for 2 min. Then the phosphor detector was extracted and read out using a storage phosphor reader. The light diffuser erased the signal resulting from fluoroscopic exposure to level below that encountered during positron imaging. Vulnerable plaques with area activities higher than 1.2 nCi mm{sup -2} were visualized by the detector. This activity is a factor of 10-20 lower than that expected in human vulnerable plaques. The detector was able to image the internal surface of the coronary vessels with 50 mm length and 360{sup 0} circumference. Spatial

  5. High Extraction Phosphors for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Chris [Phosphortech Corporation, Kennesaw, GA (United States); Menkara, Hisham [Phosphortech Corporation, Kennesaw, GA (United States); Wagner, Brent [Phosphortech Corporation, Kennesaw, GA (United States)

    2011-09-01

    We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the anti-quenching behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, large nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material

  6. Interaction between nanoparticles generated by zinc chloride treatment and oxidative responses in rat liver

    Directory of Open Access Journals (Sweden)

    Azzouz I

    2013-12-01

    Full Text Available Inès Azzouz, Hamdi Trabelsi, Amel Hanini, Soumaya Ferchichi, Olfa Tebourbi, Mohsen Sakly, Hafedh AbdelmelekLaboratory of Integrative Physiology, Faculty of Sciences of Bizerte, Carthage University, TunisiaAbstract: The aim of the present study was to investigate the interaction of zinc chloride (3 mg/kg, intraperitoneally [ip] in rat liver in terms of the biosynthesis of nanoparticles. Zinc treatment increased zinc content in rat liver. Analysis of fluorescence revealed the presence of red fluorescence in the liver following zinc treatment. Interestingly, the co-exposure to zinc (3 mg/kg, ip and selenium (0.20 mg/L, per os [by mouth] led to a higher intensity of red fluorescence compared to zinc-treated rats. In addition, X-ray diffraction measurements carried out on liver fractions of zinc-treated rats point to the biosynthesis of zinc sulfide and/or selenide nanocomplexes at nearly 51.60 nm in size. Moreover, co-exposure led to nanocomplexes of about 72.60 nm in size. The interaction of zinc with other mineral elements (S, Se generates several nanocomplexes, such as ZnS and/or ZnSe. The nanocomplex ZnX could interact directly with enzyme activity or indirectly by the disruption of mineral elements' bioavailability in cells. Subacute zinc or selenium treatment decreased malondialdehyde levels, indicating a drop in lipid peroxidation. In addition, antioxidant enzyme assays showed that treatment with zinc or co-treatment with zinc and selenium increased the activities of glutathione peroxidase, catalase, and superoxide dismutase. Consequently, zinc complexation with sulfur and/or selenium at nanoscale level could enhance antioxidative responses, which is correlated to the ratio of number of ZnX nanoparticles (X=sulfur or X=selenium to malondialdehyde level in rat liver.Keywords: nanocomplexes biosynthesis, antioxidative responses, X-ray diffraction, fluorescence microscopy, liver

  7. Recuperation of uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Cordero, G.; Jodra, L.G.; Otero, J.L.; Josa, J.M.

    1977-01-01

    The Spanish capacity for phosphoric acid production is 500.000 t P 2 O 5 /yr. This acid has an average concentration of 365 g U 3 O 8 / t P 2 O 5 . Therefore about 180 t U 3 O 8 /yr are dissolved. In 1969, the Junta de Energia Nuclear (JEN) developed, in bench scale, a solvent extraction process to recover the uranium from the phosphoric acid. The solvent used was a synergistic mixture of D2EHPA and TOPO. The results were very promising with good recovery and very high quality for the uranium concentrate. Later, the J.E.N. continued the studies in a pilot plant scale. For this purpose, was built an experimental facility in Huelva; it can treat about 7 cu. m/day of brown acid. Fosforico Espanol, S.A. (FESA) collaborated in the studies and agreed to setting up these installations in their factory. They also provided fresh phosphoric acid for the tests. In this pilot plant we studied the following stages: a) Clarification and conditioning of the phosphoric acid; b) Uranium extraction followed by stripping in a reducing medium; c) Purification by extraction and washing; d) Obtention of the concentrate by stripping with ammonia and CO 2 gas, followed by crystallization of the ammonium uranyl tricarbonate (AUT); and e) Calcination of the concentrate to decompose the AUT to uranium oxides. The results confirmed the laboratory test data. Recuperation levels were between 85 and 90%. The AUT calcined at 550 0 C. gave a product with 96-98% U 3 O 8 . In view of the pilot plant results we have prepared a black book for an industrial plant to treat about 3700 cu. m/day of phosphoric acid. At the present time the financial aspects of this installation are being studied [es

  8. A computational study of adhesion between rubber and metal sulfides at rubber–brass interface

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Chian Ye; Hirvi, Janne T.; Suvanto, Mika; Bazhenov, Andrey S. [Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu (Finland); Ajoviita, Tommi; Markkula, Katriina [R & D, Car Tyres, Nokian Tyres plc., P.O. Box 20, FI37101 Nokia (Finland); Pakkanen, Tapani A., E-mail: tapani.pakkanen@uef.fi [Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu (Finland)

    2015-05-12

    Highlights: • An atomic level model for brass–rubber interactions has been presented. • The main adhesion force has been tracked to the rubber sulfur–brass zinc or brass copper interaction. • The model gives new understanding of the adhesion and can be used for further developments of the system. - Abstract: Computational study at level of density functional theory has been carried out in order to investigate the adhesion between rubber and brass plated steel cord, which has high importance in tire manufacturing. Adsorption of natural rubber based adsorbate models has been studied on zinc sulfide, ZnS(1 1 0), and copper sulfide, Cu{sub 2}S(1 1 1) and CuS(0 0 1), surfaces as the corresponding phases are formed in adhesive interlayer during rubber vulcanization. Saturated hydrocarbons exhibited weak interactions, whereas unsaturated hydrocarbons and sulfur-containing adsorbates interacted with the metal atoms of sulfide surfaces more strongly. Sulfur-containing adsorbates interacted with ZnS(1 1 0) surface stronger than unsaturated hydrocarbons, whereras both Cu{sub 2}S(1 1 1) and CuS(0 0 1) surfaces showed opposite adsorption preference as unsaturated hydrocarbons adsorbed stronger than sulfur-containing adsorbates. The different interaction strength order can play role in rubber–brass adhesion with different relative sulfide concentrations. Moreover, Cu{sub 2}S(1 1 1) surface exhibits higher adsorption energies than CuS(0 0 1) surface, possibly indicating dominant role of Cu{sub 2}S in the adhesion between rubber and brass.

  9. Further investigations into the luminescence of silver-activated ZnS:CdS phosphors containing nickel and cobalt

    International Nuclear Information System (INIS)

    Elmanharawy, M.S.; Eid, A.H.

    1978-01-01

    An attempt has been made to explain the luminescence of (ZnS : CdS : Ag : Ni : Co) phosphors using the uniform luminescence centre model of zinc sulphide. The phosphors investigated give rise to characteristic glow curves with a number of peaks depending on the cobalt content. The emitted thermoluminescence consists of two bands: a yellow band at 5900 A and another in the red region of the spectrum (7000 A). These peak wavelengths coincide reasonably well with values of 5800 A and 6800 A predicted by the uniform luminescence centre model. It is suggested that the yellow terhmoluminescence takes place with the participation of the conduction band while electron transfer via the conduction band from traps to separated luminescence centres is assumed for the red glow. (author)

  10. Effect of killer impurities on laser-excited barium-doped ZnS phosphors at liquid nitrogen temperature

    Science.gov (United States)

    Kumar, Sunil; Verma, N. K.; Bhatti, H. S.

    Zinc sulphide phosphors doped with Ba, as well as killer impurities of Fe, Co and Ni, having variable concentrations, were synthesized; and using an ultraviolet laser as the excitation source, decay-curve analyses were done. Various strong emissions in these phosphors were detected and the corresponding excited-state life times were measured at liquid nitrogen temperature. Studies were carried out to see the effect of killer impurities on the phosphorescence excited-state life times. Excited-state life times were found to decrease appreciably (microsecond to nanosecond) with the addition of quenchers. These studies are quite useful and find applications in areas such as optical memories, sensors, luminescent screens, laser-beam detection and alignment, color displays, printing, etc.

  11. Sulfidation/oxidation resistant alloys

    International Nuclear Information System (INIS)

    Smith, G.D.; Tassen, C.S.

    1989-01-01

    The patent describes a nickel-base, high chromium alloy. It is characterized by excellent resistance to sulfidation and oxidation at elevated temperatures as high as 2000 degrees F. (1093 degrees C.) and higher, a stress-rupture life of about 200 hours or more at a temperature at least as high as 1800 degrees F. (990:0083 degrees C.) and under a stress of 2000 psi, good tensile strength and good ductility both at room and elevated temperature. The alloy consists essentially of about 27 to 35% chromium, about 2.5 to 5% aluminum, about 2.5 to about 6% iron, 0.5 to 2.5% columbium, up to 0.1% carbon, up to 1% each of titanium and zirconium, up to 0.05% cerium, up to 0.05% yttrium, up to 1% silicon, up to 1% manganese, and the balance nickel

  12. Iron-sulfide crystals in probe deposits

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming

    1998-01-01

    Iron-sulfides were observed in deposits collected on a probe inserted at the top of the furnace of a coal-fired power station in Denmark. The chemical composition of the iron-sulfides is equivalent to pyrrhotite (FeS). The pyrrhotites are present as crystals and, based on the shape of the crystals......: (1) impact of low viscous droplets of iron sulfide; and (2) sulfur diffusion. Previous research on the influence of pyrite on slagging focused on the decomposition of pyrite into pyrrhotite and especially on the oxidation stage of this product during impact on the heat transfer surfaces...

  13. Microbial control of hydrogen sulfide production

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J. [Univ. of Oklahoma, Tulsa, OK (United States)] [and others

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  14. Invisible and microscopic gold in pyrite: Methods and new data for massive sulfide ores of the Urals

    Science.gov (United States)

    Vikentyev, I. V.

    2015-07-01

    Au speciation in sulfides (including "invisible" Au), which mostly controls the loss of Au during ore dressing, is discussed. Modern methods of analysis of Au speciation, with discussion of limitations by locality and sensitivity, are reviewed. The results of sulfide investigation by the methods of scanning and transmission electron microscopy, mass spectrometric analysis with laser ablation (LA-ICP-MS), the thermochemical method (study of ionic Au speciation), and automated "quantitative mineralogy," are demonstrated for weakly metamorphosed VHMS deposits of the Urals (Galkinsk and Uchaly). Significant content of Au is scattered in sulfides, such as pyrite, chalcopyrite, and sphalerite, with quantitative predomination of pyrite. The portion of such "invisible" gold ranges from flakes) with a monocrystal diffraction pattern of some particles and a ring diffraction pattern of other particles was registered in the ores of these deposits by the methods of transmission electron microscopy. The low degree (or absence) of metamorphic recrystallization results in (1) predomination of thin intergrowths of sulfides, which is the main reason for the bad concentration of ores (especially for the Galkinsk deposit) and (2) the high portion of "invisible" gold in the massive sulfide ores, which explains the low yield of Au in copper and zinc concentrates, since it is lost in tailings with predominating pyrite.

  15. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    2015-01-01

    Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field...... as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic sediments....

  16. Chelators for investigating zinc metalloneurochemistry

    OpenAIRE

    Radford, Robert John; Lippard, Stephen J.

    2013-01-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals o...

  17. Zinc triggers microglial activation.

    Science.gov (United States)

    Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A

    2008-05-28

    Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.

  18. Crossett Hydrogen Sulfide Air Sampling Report

    Science.gov (United States)

    This report summarizes the results of the EPA’s hydrogen sulfide air monitoring conducted along Georgia Pacific’s wastewater treatment system and in surrounding Crossett, AR, neighborhoods in 2017.

  19. Uranium recovery from wet process phosphoric acid

    International Nuclear Information System (INIS)

    1980-01-01

    In the field of metallurgy, specifically processes for recovering uranium from wet process phosphoric acid solution derived from the acidulation of uraniferous phosphate ores, problems of imbalance of ion exchange agents, contamination of recycled phosphoric acid with process organics and oxidizing agents, and loss and contamination of uranium product, are solved by removing organics from the raffinate after ion exchange conversion of uranium to uranous form and recovery thereof by ion exchange, and returning organics to the circuit to balance mono and disubstituted ester ion exchange agents; then oxidatively stripping uranium from the agent using hydrogen peroxide; then after ion exchange recovery of uranyl and scrubbing, stripping with sodium carbonate and acidifying the strip solution and using some of it for the scrubbing; regenerating the sodium loaded agent and recycling it to the uranous recovery step. Economic recovery of uranium as a by-product of phosphate fertilizer production is effected. (author)

  20. The Influence of Phosphor and Binder Chemistry on the Aging Characteristics of Remote Phosphor Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Lynn; Yaga, Robert; Lamvik, Michael; Mills, Karmann; Fletcher, B.

    2017-06-30

    The influence of phosphor and binder layer chemistries on the lumen maintenance and color stability of remote phosphor disks were examined using wet high-temperature operational lifetime testing (WHTOL). As part of the experimental matrix, two different correlated color temperature (CCT) values, 2700 K and 5000 K, were studied and each had a different binder chemistry. The 2700 K samples used a urethane binder whereas the 5000 K samples used an acrylate binder. Experimental conditions were chosen to enable study of the binder and phosphor chemistries and to minimize photo-oxidation of the polycarbonate substrate. Under the more severe WHTOL conditions of 85°C and 85% relative humidity (RH), absorption in the binder layer significantly reduced luminous flux and produced a blue color shift. The milder WHTOL conditions of 75°C and 75% RH, resulted in chemical changes in the binder layer that may alter its index of refraction. As a result, lumen maintenance remained high, but a slight yellow shift was found. The aging of remote phosphor products provides insights into the impact of materials on the performance of phosphors in an LED lighting system.

  1. [Change traits of phosphorous consumption structure in China and their effects on environmental phosphorous loads].

    Science.gov (United States)

    Ma, Dun-Chao; Hu, Shan-Ying; Chen, Ding-Jiang; Li, You-Run

    2012-04-01

    Substance flow analysis was used to construct a model to analyze change traits of China's phosphorous (P) consumption structure from 1980 to 2008 and their influences on environmental phosphorous loads, then the correlation between several socioeconomic factors and phosphorous consumption pollution was investigated. It is found that phosphorous nutrient inputs of urban life and rural life on a per capita level climbed to 1.20 kg x a(-1) and 0.99 kg x a(-1) from 0.83 kg x a(-1) and 0.75 kg x a(-1) respectively, but phosphorous recycling ratios of urban life fell to 15.6% from 62.6%. P inputs of animal husbandry and planting also kept increasing, but the recycling ratio of the former decreased from 67.5% to 40.5%, meanwhile much P input of the latter was left in agricultural soil. Correlation coefficients were all above 0.90, indicating that population, urbanization level, development levels of planting and animal husbandry were important incentives for P consumption pollution in China. Environmental Kuznets curve showed that China still stayed in the early development stage, promoting economic growth at an expense of environmental quality. This study demonstrates that China's P consumption system is being transformed into a linear and open structure, and that P nutrient loss and environmental P loads increase continually.

  2. Ultraviolet dosimetry using thermoluminescent phosphors - an update

    International Nuclear Information System (INIS)

    Nagpal, J.S.

    1998-04-01

    Intrinsic response of various thermoluminescent (TL) materials such as CaSO 4 (Dy, Eu, Mn, Sm, Tb, or Tm), LiF (Mg, Cu, P), Mg 2 SiO 4 :Tb, CaF 2 :Dy, CaF 2 :Tb, ThO 2 :Tb and Al 2 O 3 (Si, Ti); cathodoluminescent phosphors Y 3 Al 5 O 12 :Ce, Y 3 Al 5 O 12 :Tb and Y(V,P)O 4 :Eu; and fluorescent lamp phosphors calcium halophosphate (Mn,Sb) and Ce Mg aluminate (Eu, Tb) to ultraviolet (UV) radiations has been studied. Intrinsic TL response of most of the phosphors is rate (radiant flux) dependent. For the first time, UV response of the materials is reported for a fixed total radiant energy (total UV dose), at a single radiant flux (260 μW.cm -2 ), for an appropriate comparison. A wide range of UV sensitivity is observed. Studies conducted using UV radiation from two unfiltered low pressure mercury lamps show significant differences in glow curves, as compared to those obtained with nearly monochromatic UV radiations. Photons of wavelength 365 nm induce bleaching of TL induced by 254 nm photons, in most of the materials. Sequential/tandem exposures to 254 nm and 365 nm photons have yielded new but alarming results in CaF 2 :Tb. Preferential induction and bleaching of specific TL glow peaks by 365 nm and 254 nm photons are interesting characteristics discovered in CaSO 4 :Eu. Photoluminescence studies of Tb 3+ and Eu 3+ activated phosphors have augmented the inferences drawn from the bleaching effects produced by 365 nm photons. Earlier work carried out on phototransferred thermoluminescence of CaSO 4 :Dy-teflon dosimeters, TLD-100, Mg 2 SiO 4 :Tb and Al 2 O 3 (Si,Ti) has also been reviewed. (author)

  3. Phosphor for thermoluminescent type radiation dosimeter

    International Nuclear Information System (INIS)

    Nada, N.; Yamashita, T.

    1975-01-01

    This has the accumulation effect of radiation energy and is mainly used as the element for thermoluminescent type radiation dosimeters. It has as the principal constituent a phosphor consisting of calcium sulfate as the principal constituent and other impurity elements such as dysprosium, thulium and the like. It is more sensitive by the order of 1 to 2 or more figures than the conventional ones and is excellent in the retention of absorbed radiation energy. (U.S.)

  4. Thermoluminescence of calcium-based phosphors

    International Nuclear Information System (INIS)

    Sunta, C.M.

    1985-01-01

    The paper reviews the thermoluminescence (TL) properties of calcium fluoride, calcium sulphate and calcium carbonate phosphors. In the case of the calcium fluoride mineral phosphor the main emitter of TL is the cerium impurity. Based on the TL emission spectra, two types of Ce 3+ centres can be easily distinguished; those associated with O 2- compensating ion and those which have either no local compensators or are associated with F - interstitial ions at the adjacent vacant body centre position. The spectra undergo remarkable changes at high doses. Such changes are associated with the probabilities of charge trapping at different types of traps and also with the probabilities of recombination at different types of luminescent centres. Some of the traps and recombination centres are spatially associated while others are distributed randomly. In calcium carbonate mineral, Mn 2+ is invariably the emitting impurity. Mn 2+ can be used as an efficient dopant for TL emission in all the three calcium based TL phosphors. A co-dopant like Ce 3+ intensifies the luminescence yield from Mn 2+ . Models of different types of electron and hole trapping centres are given. (author)

  5. Air-water transfer of hydrogen sulfide

    DEFF Research Database (Denmark)

    Yongsiri, C.; Vollertsen, J.; Rasmussen, M. R.

    2004-01-01

    The emissions process of hydrogen sulfide was studied to quantify air–water transfer of hydrogen sulfide in sewer networks. Hydrogen sulfide transfer across the air–water interface was investigated at different turbulence levels (expressed in terms of the Froude number) and pH using batch...... experiments. By means of the overall mass–transfer coefficient (KLa), the transfer coefficient of hydrogen sulfide (KLaH2S), referring to total sulfide, was correlated to that of oxygen (KLaO2) (i.e., the reaeration coefficient). Results demonstrate that both turbulence and pH in the water phase play...... a significant role for KLaH2S. An exponential expression is a suitable representation for the relationship between KLaH2S and the Froude number at all pH values studied (4.5 to 8.0). Because of the dissociation of hydrogen sulfide, KLaH2S increased with decreasing pH at a constant turbulence level. Relative...

  6. Zinc release in the lateral nucleus of the amygdala by stimulation of the entorhinal cortex.

    Science.gov (United States)

    Takeda, Atsushi; Imano, Sachie; Itoh, Hiromasa; Oku, Naoto

    2006-11-06

    Zinc release in the lateral nucleus of the amygdala was examined using rat brain slices. The lateral and basolateral nuclei in the amygdala were evidently stained by Timm's sulfide-silver staining method. When the amygdala including both the nuclei was stimulated with 100 mM KCl by means of in vivo microdialysis, extracellular zinc concentration was increased significantly. Zinc release in the lateral nucleus of the amygdala innervated by the entorhinal cortex was next examined in brain slices double-stained with zinc and calcium indicators. Extracellular zinc signal (ZnAF-2) in the lateral nucleus was increased with intracellular calcium signal (calcium orange) during delivery of tetanic stimuli to the entorhinal cortex. Both the increases were completely inhibited by addition of 1 micro M tetrodotoxin, a sodium channel blocker. Furthermore, calcium signal in the lateral nucleus during delivery of tetanic stimuli to the entorhinal cortex was increased in the presence of 10 micro M CNQX, an AMPA/KA receptor antagonist, and this increase was facilitated by addition of 1 mM CaEDTA, a membrane-impermeable zinc chelator. The present study suggested that zinc is released in the lateral nucleus of the amygdala by depolarization of the entorhinal neurons. In the lateral nucleus, zinc released may suppress the increase in presynaptic calcium signal.

  7. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles.

    Science.gov (United States)

    Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Günthardt-Goerg, Madeleine S

    2011-01-01

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Investigation of saturation effects in ceramic phosphors for laser lighting

    DEFF Research Database (Denmark)

    Krasnoshchoka, Anastasiia; Thorseth, Anders; Dam-Hansen, Carsten

    2017-01-01

    We report observation of saturation effects in a Ce:LuAG and Eu-doped nitride ceramic phosphor for conversion of blue laser light for white light generation. The luminous flux from the phosphors material increases linearly with the input power until saturation effects limit the conversion....... It is shown, that the temperature of the phosphor layer influences the saturation power level and the conversion efficiency. It is also shown that the correlated color temperature (CCT), phosphor conversion efficiency and color rendering index (CRI) are dependent both on incident power and spot size diameter...... of the illumination. A phosphor conversion efficiency up to 140.8 lm/W with CRI of 89.4 was achieved. The saturation in a ceramic phosphor, when illuminated by high intensity laser diodes, is estimated to play the main role in limiting the available luminance from laser based lighting systems....

  9. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs

    NARCIS (Netherlands)

    Klatt, Judith M.; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2S: (i) H2S accelerated the recovery of

  10. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors

    NARCIS (Netherlands)

    Villa Gomez, D.K.; Cassidy, J.; Keesman, K.J.; Sampaio, R.M.; Lens, P.N.L.

    2014-01-01

    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4 2- ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing

  11. Metabolism in the Uncultivated Giant Sulfide-Oxidizing Bacterium Thiomargarita Namibiensis Assayed Using a Redox-Sensitive Dye

    Science.gov (United States)

    Bailey, J.; Flood, B.; Ricci, E.

    2014-12-01

    The colorless sulfur bacteria are non-photosynthetic chemolithotrophs that live at interfaces between nitrate, or oxygen, and hydrogen sulfide. In sulfidic settings such as cold seeps and oxygen minimum zones, these bacteria are thought to constitute a critical node in the geochemical cycling of carbon, sulfur, nitrogen, and phosphorous. Many of these bacteria remain uncultivated and their metabolisms and physiologies are incompletely understood. Thiomargarita namibiensis is the largest of these sulfur bacteria, with individual cells reaching millimetric diameters. Despite the current inability to maintain a Thiomargarita culture in the lab, their large size allows for individual cells to be followed in time course experiments. Here we report on the novel use of a tetrazolium-based dye that measures the flux of NADH production from catabolic pathways via a colorimetric response. Staining with this dye allows for metabolism to be detected, even in the absence of observable cell division. When coupled to microscopy, this approach also allows for metabolism in Thiomargaritato be differentiated from that of epibionts or contaminants in xenic samples. The results of our tetrazolium dye-based assay suggests that Thiomargarita is the most metabolically versatile under anoxic conditions where it appears capable of using acetate, succinate, formate, thiosulfate, citrate, thiotaurine, hydrogen sulfide, and perhaps hydrogen as electron donors. Under hypoxic conditions, staining results suggest the utilization of acetate, citrate, and hydrogen sulfide. Cells incubated under oxic conditions showed the weakest tetrazolium staining response, and then only to hydrogen sulfide and questionably succinate. These initial results using a redox sensitive dye suggest that Thiomargarita is most metabolically versatile under anaerobic and hypoxic conditions. The results of this assay can be further evaluated using molecular approaches such as transcriptomics, as well as provide cultivation

  12. Counter current extraction of phosphoric acid: Food grade acid production

    International Nuclear Information System (INIS)

    Shlewit, H.; AlIbrahim, M.

    2009-01-01

    Extraction, scrubbing and stripping of phosphoric acid from the Syrian wet-phosphoric acid was carried out using Micro-pilot plant of mixer settler type of 8 l/h capacity. Tributyl phosphate (TBP)/di-isopropyl ether (DIPE) in kerosene was used as extractant. Extraction and stripping equilibrium curves were evaluated. The number of extraction and stripping stages to achieve the convenient and feasible yield was determined. Detailed flow sheet was suggested for the proposed continuous process. Data obtained include useful information for the design of phosphoric acid extraction plant. The produced phosphoric acid was characterized using different analytical techniques. (author)

  13. Uranium recovery from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    McCullough, J.F.; Phillips, J.F. Jr.; Tate, L.R.

    1979-01-01

    A method of recovering uranium from wet-process phosphoric acid is claimed where the acid is treated with a mixture of an ammonium salt or ammonia, a reducing agent, and then a miscible solvent. Solids are separated from the phosphoric acid liquid phase. The solid consists of a mixture of metal phosphates and uranium. It is washed free of adhering phosphoric acid with fresh miscible solvent. The solid is dried and dissolved in acid whereupon uranium is recovered from the solution. Miscible solvent and water are distilled away from the phosphoric acid. The distillate is rectified and water discarded. All miscible solvent is recovered for recycle. 5 claims

  14. Method of recovering phosphoric acid type decontaminating electrolytes by electrodeposition

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Wada, Koichi; Kobayashi, Toshio.

    1985-01-01

    Purpose: To recoving phosphoric acid type highly concentrated decontaminating liquid used for the electrolytic decontamination of contaminated equipments, components, etc in nuclear power plants or the like through electrodeposition by diaphragm electrolysis. Method: Before supplying phosphoric acid decontaminating liquid at high concentration used in the electrolytic decontaminating step to an electrodeposition recovering tank, phosphoric acid in the decontaminating electrolyte is extracted with solvents and decomposed liquid extracts (electrolyte reduced with the phosphoric acid component) are supplied to the cathode chamber of the electrodeposition recovering tank, where phosphoric acid is back-extracted with water from the solvents after extraction of phosphoric acid. Then, the back-extracted liquids (aqueous phosphoric acid solution scarcely containing metal ions) are sent to the anode chamber of the electrodeposition recovering tank. Metal ions in the liquid are captured by electrodeposition in the cathode chamber, as well as phosphoric acid in the liquids is concentrated to the initial concentration of the electrolyte in the anode chamber for reuse as the decontaminating electrolyte. As the phosphoric acid extracting agent used in the electrodeposition recovering step for the decontaminating electrolyte, water-insoluble and non-combustible tributyl phosphate (TBP) is most effective. (Horiuchi, T.)

  15. Point defect engineering strategies to retard phosphorous diffusion in germanium

    KAUST Repository

    Tahini, H. A.; Chroneos, Alexander I.; Grimes, Robin W.; Schwingenschlö gl, Udo; Bracht, Hartmut A.

    2013-01-01

    The diffusion of phosphorous in germanium is very fast, requiring point defect engineering strategies to retard it in support of technological application. Density functional theory corroborated with hybrid density functional calculations are used to investigate the influence of the isovalent codopants tin and hafnium in the migration of phosphorous via the vacancy-mediated diffusion process. The migration energy barriers for phosphorous are increased significantly in the presence of oversized isovalent codopants. Therefore, it is proposed that tin and in particular hafnium codoping are efficient point defect engineering strategies to retard phosphorous migration. © the Owner Societies 2013.

  16. Tm3+ activated lanthanum phosphate: a blue PDP phosphor

    International Nuclear Information System (INIS)

    Rao, R.P.

    2005-01-01

    Plasma display panels (PDPs) are gaining attention due to their high performance and scalability as a medium for large format TVs. The performance and life of a PDP strongly depends upon the nature of phosphors. Currently, Eu 2+ activated barium magnesium aluminate (BAM) is being used as a blue component. Because of its low life, efforts are being made to explore new blue emitting phosphors. One of the alternatives to BAM is Tm 3+ activated lanthanum phosphate (LPTM) phosphor. LPTM phosphor samples are prepared by a solid-state as well as sol-gel process in presence of flux. The phosphor of the present investigation, having uniform and spherical shape particles in the range of 0.1-2 μm, is appropriate for thin phosphor screens required for PDP applications. It exhibits a narrow band emission in the blue region, peaking at 452 nm and also a number of narrow bands in the UV region when excited by 147 and 173 nm radiation from a xenon gas mixture. Various possible transitions responsible for UV and visible emission from Tm 3+ ion are presented. These phosphors also exhibit good color saturation and better stability when excited with VUV radiation. To achieve higher brightness, they are blended with other UV excited blue emitting phosphors such as BAM. Results related to morphology, excitation, after glow decay, emission and degradation of these phosphors in the powder form as well as in plasma display panels are presented and discussed

  17. Zinc phosphate conversion coatings

    Science.gov (United States)

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  18. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase*

    Science.gov (United States)

    Mishanina, Tatiana V.; Yadav, Pramod K.; Ballou, David P.; Banerjee, Ruma

    2015-01-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be −123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  19. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    Science.gov (United States)

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-09

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Experimental simulations of sulfide formation in the solar nebula.

    Science.gov (United States)

    Lauretta, D S; Lodders, K; Fegley, B

    1997-07-18

    Sulfurization of meteoritic metal in H2S-H2 gas produced three different sulfides: monosulfide solid solution [(Fe,Ni)1-xS], pentlandite [(Fe,Ni)9-xS8], and a phosphorus-rich sulfide. The composition of the remnant metal was unchanged. These results are contrary to theoretical predictions that sulfide formation in the solar nebula produced troilite (FeS) and enriched the remaining metal in nickel. The experimental sulfides are chemically and morphologically similar to sulfide grains in the matrix of the Alais (class CI) carbonaceous chondrite, suggesting that these meteoritic sulfides may be condensates from the solar nebula.

  1. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains

    International Nuclear Information System (INIS)

    Vallee, B.L.; Auld, D.S.; Coleman, J.E.

    1991-01-01

    The authors recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a zinc cluster akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is ∼3.5 angstrom. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is ∼13 angstrom, and in this instance, a zinc twist is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native zinc fingers, structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent

  2. Supergene Nonsulfide Zinc-Lead Deposits: The Examples of Jabali (Yemen) and Yanque (Peru)

    OpenAIRE

    Mondillo, Nicola

    2013-01-01

    “Nonsulfide zinc” is a very general term, referred to a group of ore deposits consisting of Zn-oxidized minerals, mainly represented by smithsonite, hydrozincite, hemimorphite, sauconite and willemite, which are markedly different from sphalerite ores, typically exploited for zinc. Locally, Ag minerals can occur too. The supergene nonsulfide deposits form from low-temperature oxidation of sulfide-bearing concentrations. Objective of this study is to increase the knowledge on the geology, mine...

  3. Controlled synthesis and relationship between luminescent properties and shape/crystal structure of Zn2SiO4:MN2+ phosphor

    International Nuclear Information System (INIS)

    Wan Junxi; Wang Zhenghua; Chen Xiangying; Mu Li; Yu Weichao; Qian Yitai

    2006-01-01

    Mn-doped Zn 2 SiO 4 phosphors with different morphology and crystal structure, which show different luminescence and photoluminescence intensity, were synthesized via a low-temperature hydrothermal route without further calcining treatment. As-synthesized zinc silicate nanostructures show green or yellow luminescence depending on their different crystal structure obtained under different preparation conditions. The yellow peak occurring at 575 nm comes from the β-phase zinc silicate, while the green peak centering at 525 nm results from the usual α-phase zinc silicate. From photoluminescence spectra, it is found that Zn 2 SiO 4 nanorods have higher photoluminescence intensity than Zn 2 SiO 4 nanoparticles. It can be ascribed to reduced surface-damaged region and high crystallinity of nanorods

  4. Zinc in diet

    Science.gov (United States)

    ... Effects Symptoms of zinc deficiency include: Frequent infections Hypogonadism in males Loss of hair Poor appetite Problems with the ... any medical emergency or for the diagnosis or treatment of any medical condition. A licensed physician should ...

  5. Sulfide Precipitation in Wastewater at Short Timescales

    DEFF Research Database (Denmark)

    Kiilerich, Bruno; van de Ven, Wilbert; Nielsen, Asbjørn Haaning

    2017-01-01

    Abatement of sulfides in sewer systems using iron salts is a widely used strategy. When dosing at the end of a pumping main, the reaction kinetics of sulfide precipitation becomes important. Traditionally the reaction has been assumed to be rapid or even instantaneous. This work shows that this i......Abatement of sulfides in sewer systems using iron salts is a widely used strategy. When dosing at the end of a pumping main, the reaction kinetics of sulfide precipitation becomes important. Traditionally the reaction has been assumed to be rapid or even instantaneous. This work shows...... that this is not the case for sulfide precipitation by ferric iron. Instead, the reaction time was found to be on a timescale where it must be considered when performing end-of-pipe treatment. For real wastewaters at pH 7, a stoichiometric ratio around 14 mol Fe(II) (mol S(−II))−1 was obtained after 1.5 s, while the ratio...

  6. Determination of surface temperatures in combustion environments using thermographic phosphors; Wandtemperaturmessungen in Verbrennungsumgebungen mithilfe thermographischer Phosphore

    Energy Technology Data Exchange (ETDEWEB)

    Bruebach, J.; Kissel, T. [TU Darmstadt (Germany). FG Energie- und Kraftwerkstechnik; Dreizler, A. [TU Darmstadt (Germany). FG Reaktive Stroemungen und Messtechnik

    2009-07-01

    A phosphor thermometry system was characterised with regard to all sources of systematic errors. Exemplary, the point measurement of a surface temperature and the determination of wall-normal temperature gradients within an optically accessible combustion chamber are outlined. Furthermore, the temporal temperature characteristic at the quartz ring of an optically accessible engine is presented. (orig.)

  7. Uranium recovery from wet process phosphoric acid

    International Nuclear Information System (INIS)

    Carrington, O.F.; Pyrih, R.Z.; Rickard, R.S.

    1981-01-01

    Improvement in the process for recovering uranium from wetprocess phosphoric acid solution derived from the acidulation of uraniferous phosphate ores by the use of two ion exchange liquidliquid solvent extraction circuits in which in the first circuit (A) the uranium is reduced to the uranous form; (B) the uranous uranium is recovered by liquid-liquid solvent extraction using a mixture of mono- and di-(Alkyl-phenyl) esters of orthophosphoric acid as the ion exchange agent; and (C) the uranium oxidatively stripped from the agent with phosphoric acid containing an oxidizing agent to convert uranous to uranyl ions, and in the second circuit (D) recovering the uranyl uranium from the strip solution by liquid-liquid solvent extraction using di(2ethylhexyl)phosphoric acid in the presence of trioctylphosphine oxide as a synergist; (E) scrubbing the uranium loaded agent with water; (F) stripping the loaded agent with ammonium carbonate, and (G) calcining the formed ammonium uranyl carbonate to uranium oxide, the improvement comprising: (1) removing the organics from the raffinate of step (B) before recycling the raffinate to the wet-process plant, and returning the recovered organics to the circuit to substantially maintain the required balance between the mono and disubstituted esters; (2) using hydogren peroxide as the oxidizing agent in step (C); (3) using an alkali metal carbonate as the stripping agent in step (F) following by acidification of the strip solution with sulfuric acid; (4) using some of the acidified strip solution as the scrubbing agent in step (E) to remove phosphorus and other impurities; and (5) regenerating the alkali metal loaded agent from step (F) before recycling it to the second circuit

  8. Mortality among sulfide ore miners

    International Nuclear Information System (INIS)

    Ahlman, K.; Koskela, R.S.; Kuikka, P.; Koponen, M.; Annanmaeki, M.

    1991-01-01

    Lung cancer mortality was studied during 1965-1985 in Outokumpu township in North Karelia, where an old copper mine was located. Age-specific lung cancer death rates (1968-1985) were higher among the male population of Outokumpu than among the North Karelian male population of the same age excluding the Outokumpu district (p less than .01). Of all 106 persons who died from lung cancer during 1965-1985 in Outokumpu township, 47 were miners of the old mine, 39 of whom had worked there for at least three years and been heavily exposed to radon daughters and silica dust. The study cohort consisted of 597 miners first employed between 1954 and 1973 by a new copper mine and a zinc mine, and employed there for at least 3 years. The period of follow-up was 1954-1986. The number of person-years was 14,782. The total number of deaths was 102; the expected number was 72.8 based on the general male population and 97.8 based on the mortality of the male population of North Karelia. The excess mortality among miners was due mainly to ischemic heart disease (IHD); 44 were observed, the expected number was 22.1, based on the general male population, and the North Karelian expected number was 31.2 (p less than .05). Of the 44 miners who died from IHD, 20 were drillers or chargers exposed to nitroglycerin in dynamite charges, but also to several simultaneous stress factors including PAHs, noise, vibration, heavy work, accident risk, and working alone. Altogether 16 tumors were observed in the cohort. Ten of these were lung cancers, the expected number being 4.3. Miners who had died from lung cancer were 35-64 years old, and had entered mining work between 1954 and 1960. Five of the ten lung cancer cases came from the zinc mine (1.7 expected). Three of them were conductors of diesel-powered ore trains

  9. Selective growth of gold onto copper indium sulfide selenide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Elena; Parisi, Juergen; Kolny-Olesiak, Joanna [Oldenburg Univ. (Germany). Inst. of Physics, Energy and Semiconductor Research

    2013-05-15

    Hybrid nanostructures are interesting materials for numerous applications in chemistry, physics, and biology, due to their novel properties and multiple functionalities. Here, we present a synthesis of metal-semiconductor hybrid nanostructures composed of nontoxic I-III-VI semiconductor nanoparticles and gold. Copper indium sulfide selenide (CuInSSe) nanocrystals with zinc blende structure and trigonal pyramidal shape, capped with dodecanethiol, serve as an original semiconductor part of a new hybrid nanostructure. Metallic gold nanocrystals selectively grow onto vertexes of these CuInSSe pyramids. The hybrid nanostructures were studied by transmission electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and UV-Vis-absorption spectroscopy, which allowed us conclusions about their growth mechanism. Hybrid nanocrystals are generated by replacement of a sacrificial domain in the CuInSSe part. At the same time, small selenium nanocrystals form that stay attached to the remaining CuInSSe/Au particles. Additionally, we compare the synthesis and properties of CuInSSe-based hybrid nanostructures with those of copper indium disulfide (CuInS{sub 2}). CuInS{sub 2}/Au nanostructures grow by a different mechanism (surface growth) and do not show any selectivity. (orig.)

  10. Functional consortium for denitrifying sulfide removal process.

    Science.gov (United States)

    Chen, Chuan; Ren, Nanqi; Wang, Aijie; Liu, Lihong; Lee, Duu-Jong

    2010-03-01

    Denitrifying sulfide removal (DSR) process simultaneously converts sulfide, nitrate, and chemical oxygen demand from industrial wastewaters to elemental sulfur, nitrogen gas, and carbon dioxide, respectively. This investigation utilizes a dilution-to-extinction approach at 10(-2) to 10(-6) dilutions to elucidate the correlation between the composition of the microbial community and the DSR performance. In the original suspension and in 10(-2) dilution, the strains Stenotrophomonas sp., Thauera sp., and Azoarcus sp. are the heterotrophic denitrifiers and the strains Paracoccus sp. and Pseudomonas sp. are the sulfide-oxidizing denitrifers. The 10(-4) dilution is identified as the functional consortium for the present DSR system, which comprises two functional strains, Stenotrophomonas sp. strain Paracoccus sp. At 10(-6) dilution, all DSR performance was lost. The functions of the constituent cells in the DSR granules were discussed based on data obtained using the dilution-to-extinction approach.

  11. Concentration and wavelength dependent frequency downshifting photoluminescence from a Tb3+ doped yttria nano-phosphor: A photochromic phosphor

    Science.gov (United States)

    Yadav, Ram Sagar; Rai, Shyam Bahadur

    2018-03-01

    In this article, the Tb3+ doped Y2O3 nano-phosphor has been synthesized through solution combustion method. The structural measurements of the nano-phosphor have been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques, which reveal nano-crystalline nature. The Fourier transform infrared (FTIR) measurements reveal the presence of different molecular species in the nano-phosphor. The UV-Vis-NIR absorption spectrum of the nano-phosphor shows large number of bands due to charge transfer band (CTB) and 4f-4f electronic transitions of Tb3+ ion. The Tb3+ doped Y2O3 nano-phosphor emits intense green downshifting photoluminescence centered at 543 nm due to 5D4 → 7F5 transition on excitation with 350 nm. The emission intensity of the nano-phosphor is optimized at 1.0 mol% concentration of Tb3+ ion. When the as-synthesized nano-phosphor is annealed at higher temperature the emission intensity of the nano-phosphor enhances upto 5 times. The enhancement in the emission intensity is due to an increase in crystallinity of the nano-phosphor, reduction in surface defects and optical quenching centers. The CIE diagram reveals that the Tb3+ doped nano-phosphor samples show the photochromic nature (color tunability) with a change in the concentration of Tb3+ ion and excitation wavelength. The lifetime measurement indicates an increase in the lifetime for the annealed sample. Thus, the Tb3+ doped Y2O3 nano-phosphor may be used in photochromic displays and photonic devices.

  12. Production and Preservation of Sulfide Layering in Mercury's Magma Ocean

    Science.gov (United States)

    Boukare, C.-E.; Parman, S. W.; Parmentier, E. M.; Anzures, B. A.

    2018-05-01

    Mercury's magma ocean (MMO) would have been sulfur-rich. At some point during MMO solidification, it likely became sulfide saturated. Here we present physiochemical models exploring sulfide layer formation and stability.

  13. Phosphor Scanner For Imaging X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.

    1992-01-01

    Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.

  14. Analysis of phosphoric ore bacterial and eucaryal microbial diversity ...

    African Journals Online (AJOL)

    These findings provided new opportunities into phosphoric ore microbiology that could be useful in biological system removing waste gases generated from the phosphoric industry. Keywords: Microbial community, bacteria, archaea, eucarya, mining residue. African Journal of Biotechnology, Vol 13(30) 3023-3029 ...

  15. World wide IFC phosphoric acid fuel cell implementation

    Energy Technology Data Exchange (ETDEWEB)

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  16. Separation of rare earths from solutions of phosphoric acid

    International Nuclear Information System (INIS)

    Jones, E.A.

    1977-01-01

    Rare earths are separated from 6M phosphoric acid by adsorption onto cation resin BIORAD AG50W-X8. The phosphoric acid is then washed from the column, and the rare earths are eluted with 4M hydrochloric acid

  17. Acute inhalation toxicity of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Hahn, F.F.; Barr, E.B. [and others

    1995-12-01

    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  18. Girdler-sulfide process physical properties

    International Nuclear Information System (INIS)

    Neuburg, H.J.; Atherley, J.F.; Walker, L.G.

    1977-05-01

    Physical properties of pure hydrogen sulfide and of gaseous and liquid solutions of the H 2 S-H 2 O system have been formulated. Tables for forty-nine different properties in the pressure and temperature range of interest to the Girdler-Sulfide (GS) process for heavy water production are given. All properties are presented in SI units. A computer program capable of calculating properties of the pure components as well as gaseous mixtures and liquid solutions at saturated and non-saturated conditions is included. (author)

  19. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    OpenAIRE

    Veldkamp, T.; Diepen, van, J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Livestock Research to determine the bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens. A precise estimate of the bioavailability of zinc sources is required both for fulf...

  20. Photoluminescence of phosphors for PDP with VUV excitation

    International Nuclear Information System (INIS)

    Lu, H.-C.; Chen, H.-K.; Tseng, T.-Y.; Kuo, W.-L.; Alam, M.S.; Cheng, B.-M.

    2005-01-01

    In a plasma display panel (PDP) He-Xe or Ne-Xe gaseous mixtures are subjected to electric discharge between two glass panels, so to generate VUV light. Red, green and blue phosphors absorb this VUV radiation and re-radiate the energy as visible light to produce the colors that appear on the screen. The phosphor plays an important role in the working of a PDP. To improve the efficiency of phosphors, we have established a photoluminescence end station coupled to the beam line of a synchrotron to study the luminescence of PDP phosphors. This luminescence is analyzed with a 0.32 m monochromator having maximum resolution 0.04 nm, and is monitored with a photomultiplier tube operated in a photon-counting mode. Preliminary data demonstrate the powerful performance of this end-station for studying PDP phosphors

  1. Thermal and Electrical Conductivity Measurements of CDA 510 Phosphor Bronze

    Science.gov (United States)

    Tuttle, James E.; Canavan, Edgar; DiPirro, Michael

    2009-01-01

    Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, there is significant variation among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). The heat conducted into the JWST instrument stage is dominated by these harnesses, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to just keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment which measured the electrical and thermal conductivity of this material between 4 and 295 Kelvin.

  2. Pretreatment of phosphoric acid of Annaba

    International Nuclear Information System (INIS)

    Kada, R.

    1990-03-01

    The most important step in the process of uranium recovery from phosphoric acid is the pretreatment operation. In this study, the adsorption of organic matters on activated carbon was carried out in a batch process and in a fixed bed column. First, the chemical and physical characterization of phosphoric acid, activated carbon and gypsum were performed. In addition, the organic matters were qualitatively analysed and a new and original quantitative method was experimented. Next, the various operating parameters such as agitation speed, granulometry, temperature, solid/liquid ratio, initial concentration, acid flowrate, and bed height were optimized. The experimental equilibrium isotherm was compared to the Langmuir, Freundlich, and Redlich-Peterson theoretical isotherms. It was noticed that the three models did not fit the experimental isotherm in the total concentration range. Thus, an original bilinear model was proposed. The influence of the operating conditions on the adsorption kinetics was also investigated. As a result of that, a new mathematical model was proposed to determine both the liquid and solid phases mass transfer and the solid phase diffusion coefficient. Finally, adsorption of organic matters on a fixed bed process allowed computation of the number of transfer units (NTU), the height of adsorption zone and the degree of saturation of activated carbon

  3. Modeling granular phosphor screens by Monte Carlo methods

    International Nuclear Information System (INIS)

    Liaparinos, Panagiotis F.; Kandarakis, Ioannis S.; Cavouras, Dionisis A.; Delis, Harry B.; Panayiotakis, George S.

    2006-01-01

    The intrinsic phosphor properties are of significant importance for the performance of phosphor screens used in medical imaging systems. In previous analytical-theoretical and Monte Carlo studies on granular phosphor materials, values of optical properties, and light interaction cross sections were found by fitting to experimental data. These values were then employed for the assessment of phosphor screen imaging performance. However, it was found that, depending on the experimental technique and fitting methodology, the optical parameters of a specific phosphor material varied within a wide range of values, i.e., variations of light scattering with respect to light absorption coefficients were often observed for the same phosphor material. In this study, x-ray and light transport within granular phosphor materials was studied by developing a computational model using Monte Carlo methods. The model was based on the intrinsic physical characteristics of the phosphor. Input values required to feed the model can be easily obtained from tabulated data. The complex refractive index was introduced and microscopic probabilities for light interactions were produced, using Mie scattering theory. Model validation was carried out by comparing model results on x-ray and light parameters (x-ray absorption, statistical fluctuations in the x-ray to light conversion process, number of emitted light photons, output light spatial distribution) with previous published experimental data on Gd 2 O 2 S:Tb phosphor material (Kodak Min-R screen). Results showed the dependence of the modulation transfer function (MTF) on phosphor grain size and material packing density. It was predicted that granular Gd 2 O 2 S:Tb screens of high packing density and small grain size may exhibit considerably better resolution and light emission properties than the conventional Gd 2 O 2 S:Tb screens, under similar conditions (x-ray incident energy, screen thickness)

  4. Tuning the diurnal natural daylight with phosphor converted white LED – Advent of new phosphor blend composition

    International Nuclear Information System (INIS)

    Kim, Yoon Hwa; Arunkumar, Paulraj; Park, Seung Hyok; Yoon, Ho Shin; Im, Won Bin

    2015-01-01

    Highlights: • Designed phosphor blend that mimics diurnal daylight for health benefits. • Developed new phosphor blend composition that mimics natural sunlight under near UV. • The phosphor blend also exhibits high CRI (≥90) under blue LED excitation. • Fabricated WLED exhibited ∼91% spectral resemblance with daylight at 4500 K. • While ∼39.2% spectral resemblance were observed for YAG:Ce 3+ at 4500 K. - Abstract: We demonstrate the feasibility of developing phosphor converted white LED (pc-WLED) that mimics diurnal natural daylight with the newly designed phosphor blend in the color temperature (CCT) 2700–6000 K for health benefits. Natural daylight (sunlight) spectrum possesses broad emission in the visible region and closely approximates black body radiator, with color rendition index (CRI) of 100 under wide CCT (2500–6500 K). Current white light LEDs although are efficient and durable, they are not broad enough compared to daylight. We report new phosphor blend based on Sr 3 MgSi 2 O 8 :Eu 2+ blue phosphor with broad emission and high CRI ≥ 96 under both near UV and blue excitation. The fabricated WLED has exhibited ∼91% spectral resemblance with natural daylight compared to 39.2% for YAG:Ce 3+ white LED at 4500 K. The developed phosphor blend tunes the spectrum in wider CCT and would be a prospective candidate for full spectrum daylight WLED

  5. Tuning the diurnal natural daylight with phosphor converted white LED – Advent of new phosphor blend composition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Hwa [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of); Research Institute, Force4 Corp., Daechon-dong, Buk-gu, Gwangju 500-470 (Korea, Republic of); Arunkumar, Paulraj [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of); Park, Seung Hyok; Yoon, Ho Shin [Research Institute, Force4 Corp., Daechon-dong, Buk-gu, Gwangju 500-470 (Korea, Republic of); Im, Won Bin, E-mail: imwonbin@jnu.ac.kr [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of)

    2015-03-15

    Highlights: • Designed phosphor blend that mimics diurnal daylight for health benefits. • Developed new phosphor blend composition that mimics natural sunlight under near UV. • The phosphor blend also exhibits high CRI (≥90) under blue LED excitation. • Fabricated WLED exhibited ∼91% spectral resemblance with daylight at 4500 K. • While ∼39.2% spectral resemblance were observed for YAG:Ce{sup 3+} at 4500 K. - Abstract: We demonstrate the feasibility of developing phosphor converted white LED (pc-WLED) that mimics diurnal natural daylight with the newly designed phosphor blend in the color temperature (CCT) 2700–6000 K for health benefits. Natural daylight (sunlight) spectrum possesses broad emission in the visible region and closely approximates black body radiator, with color rendition index (CRI) of 100 under wide CCT (2500–6500 K). Current white light LEDs although are efficient and durable, they are not broad enough compared to daylight. We report new phosphor blend based on Sr{sub 3}MgSi{sub 2}O{sub 8}:Eu{sup 2+} blue phosphor with broad emission and high CRI ≥ 96 under both near UV and blue excitation. The fabricated WLED has exhibited ∼91% spectral resemblance with natural daylight compared to 39.2% for YAG:Ce{sup 3+} white LED at 4500 K. The developed phosphor blend tunes the spectrum in wider CCT and would be a prospective candidate for full spectrum daylight WLED.

  6. Zinc incorporation improves biological activity of beta-tricalcium silicate resin-based cement.

    Science.gov (United States)

    Osorio, Raquel; Yamauti, Monica; Sauro, Salvatore; Watson, Tim F; Toledano, Manuel

    2014-11-01

    Matrix metalloproteinase (MMP) inhibition may improve endodontic treatment prognosis. The purpose of this study was to determine if zinc incorporation into experimental resin cements containing bioactive fillers may modulate MMP-mediated collagen degradation of dentin. Human dentin samples untreated and demineralized using 10% phosphoric acid or 0.5 mol/L EDTA were infiltrated with the following experimental resins: (1) unfilled resin, (2) resin with Bioglass 45S5 particles (OSspray, London, UK), (3) resin with beta-tricalcium silicate particles (βTCS), (4) resin with zinc-doped Bioglass 45S5, and (5) resin with zinc-doped βTCS particles. The specimens were stored in artificial saliva (for 24 hours, 1 week, and 4 weeks) and submitted to radioimmunoassay to quantify C-terminal telopeptide. Scanning electron microscopy analysis was also undertaken on dentin samples after 4 weeks of storage. Collagen degradation was prominent both in phosphoric acid and EDTA-treated dentin. Resin infiltration strongly reduced MMP activity in demineralized dentin. Resin containing Bioglass 45S5 particles exerted higher and stable protection of collagen. The presence of zinc in βTCS particles increases MMP inhibition. Different mineral precipitation was attained in dentin infiltrated with the resin cements containing bioactive fillers. MMP degradation of dentin collagen is strongly reduced after resin infiltration of dentin. Zinc incorporation in βTCS particles exerted an additional protection against MMP-mediated collagen degradation. However, it did not occur in resin containing Bioglass 45S5 particles, probably because of the formation of phosphate-zinc compounds. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Modeling Sulfides, pH and Hydrogen Sulfide Gas in the Sewers of San Francisco

    DEFF Research Database (Denmark)

    Vollertsen, Jes; Revilla, Nohemy; Hvitved-Jacobsen, Thorkild

    2015-01-01

    An extensive measuring campaign targeted on sewer odor problems was undertaken in San Francisco. It was assessed whether a conceptual sewer process model could reproduce the measured concentrations of total sulfide in the wastewater and H2S gas in the sewer atmosphere, and to which degree...... such simulations have potential for further improving odor and sulfide management. The campaign covered measurement of wastewater sulfide by grab sampling and diurnal sampling, and H2S gas in the sewer atmosphere was logged. The tested model was based on the Wastewater Aerobic/Anaerobic Transformations in Sewers...... (WATS) sewer process concept, which never had been calibrated to such an extensive dataset. The study showed that the model was capable of reproducing the general levels of wastewater sulfide, wastewater pH, and sewer H2S gas. It could also reproduce the general variability of these parameters, albeit...

  8. Relationship between maternal serum zinc, cord blood zinc and ...

    African Journals Online (AJOL)

    Background: Adequate in utero supply of zinc is essential for optimal fetal growth because of the role of zinc in cellular division, growth and differentiation. Low maternal serum zinc has been reported to be associated with low birth weight and the later is associated with increased morbidity and mortality in newborns.

  9. The study and microstructure analysis of zinc and zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pešlová, F.; Kliber, J.

    2015-01-01

    Roč. 54, č. 1 (2015), s. 43-46 ISSN 0543-5846 Grant - others:KEGA(SK) KEGA 007 TnUAD-4/2013 Institutional support: RVO:68081723 Keywords : zinc * production of zinc oxide * microstructure * chemical composition * zinc slag Subject RIV: JG - Metal lurgy Impact factor: 0.959, year: 2014

  10. Reaction between Hydrogen Sulfide and Limestone Calcines

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Svoboda, Karel; Trnka, Otakar; Čermák, Jiří

    2002-01-01

    Roč. 41, č. 10 (2002), s. 2392-2398 ISSN 0888-5885 R&D Projects: GA AV ČR IAA4072711; GA AV ČR IAA4072801 Keywords : hydrogen sulfide * limestone calcines * desulfurization Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.247, year: 2002

  11. Microaeration reduces hydrogen sulfide in biogas

    Science.gov (United States)

    Although there are a variety of biological and chemical treatments for removal of hydrogen sulfide (H2S) from biogas, all require some level of chemical or water inputs and maintenance. In practice, managing biogas H2S remains a significant challenge for agricultural digesters where labor and opera...

  12. Support Effect in Hydrodesulfurization over Ruthenium Sulfide

    Czech Academy of Sciences Publication Activity Database

    Gulková, Daniela; Kaluža, Luděk; Vít, Zdeněk; Zdražil, Miroslav

    2009-01-01

    Roč. 51, č. 2 (2009), s. 146-149 ISSN 1337-7027 R&D Projects: GA ČR GA104/06/0705 Institutional research plan: CEZ:AV0Z40720504 Keywords : ruthenium sulfide * hydrodesulfurization * support effect Subject RIV: CC - Organic Chemistry

  13. Monitoring sulfide and sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  14. Acid volatile sulfide (AVS)- a comment

    NARCIS (Netherlands)

    Meysman, F.J.R.; Middelburg, J.J.

    2005-01-01

    The review by Rickard and Morse (this volume) adequately summarizes our current understanding with respect to acid-volatile sulfides (AVS). At the same time, this review addresses some of the misunderstandings with regard to measurements and dynamics of this important sedimentary sulfur pool. In

  15. Carbon a support for sulfide catalysts

    NARCIS (Netherlands)

    Vissers, J.P.R.; Lensing, T.J.; Mercx, F.P.M.; Beer, de V.H.J.; Prins, R.

    1983-01-01

    Two types of carbon materials, carbon black composite and carbon covered alumina, were studied for-their use as support for sulfide catalysts. The following parameters were varied: type of carbon black, carbon coverage of the alumina and carbon pretreatment. Pore size distributions were determined

  16. High Efficiency Colloidal Quantum Dot Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Kahen, Keith

    2013-12-31

    The project showed that non-Cd containing, InP-based nanocrystals (semiconductor materials with dimensions of ~6 nm) have high potential for enabling next-generation, nanocrystal-based, on chip phosphors for solid state lighting. Typical nanocrystals fall short of the requirements for on chip phosphors due to their loss of quantum efficiency under the operating conditions of LEDs, such as, high temperature (up to 150 °C) and high optical flux (up to 200 W/cm2). The InP-based nanocrystals invented during this project maintain high quantum efficiency (>80%) in polymer-based films under these operating conditions for emission wavelengths ranging from ~530 to 620 nm. These nanocrystals also show other desirable attributes, such as, lack of blinking (a common problem with nanocrystals which limits their performance) and no increase in the emission spectral width from room to 150 °C (emitters with narrower spectral widths enable higher efficiency LEDs). Prior to these nanocrystals, no nanocrystal system (regardless of nanocrystal type) showed this collection of properties; in fact, other nanocrystal systems are typically limited to showing only one desirable trait (such as high temperature stability) but being deficient in other properties (such as high flux stability). The project showed that one can reproducibly obtain these properties by generating a novel compositional structure inside of the nanomaterials; in addition, the project formulated an initial theoretical framework linking the compositional structure to the list of high performance optical properties. Over the course of the project, the synthetic methodology for producing the novel composition was evolved to enable the synthesis of these nanomaterials at a cost approximately equal to that required for forming typical conventional nanocrystals. Given the above results, the last major remaining step prior to scale up of the nanomaterials is to limit the oxidation of these materials during the tens of

  17. Zinc biofortification of cereals

    DEFF Research Database (Denmark)

    Palmgren, Michael; Clemens, Stephan; Williams, Lorraine E.

    2008-01-01

    The goal of biofortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. Cereals serve as the main staple food for a large proportion of the world population but have the shortcoming, from a nutrition perspective, of being low in zinc...... and other essential nutrients. Major bottlenecks in plant biofortification appear to be the root-shoot barrier and - in cereals - the process of grain filling. New findings demonstrate that the root-shoot distribution of zinc is controlled mainly by heavy metal transporting P1B-ATPases and the metal...... tolerance protein (MTP) family. A greater understanding of zinc transport is important to improve crop quality and also to help alleviate accumulation of any toxic metals....

  18. The quality study of recycled glass phosphor waste for LED

    Science.gov (United States)

    Tsai, Chun-Chin; Chen, Guan-Hao; Yue, Cheng-Feng; Chen, Cin-Fu; Cheng, Wood-Hi

    2017-02-01

    To study the feasibility and quality of recycled glass phosphor waste for LED packaging, the experiments were conducted to compare optical characteristics between fresh color conversion layer and that made of recycled waste. The fresh color conversion layer was fabricated through sintering pristine mixture of Y.A.G. powder [yellow phosphor (Y3AlO12 : Ce3+). Those recycled waste glass phosphor re-melted to form Secondary Molten Glass Phosphor (S.M.G.P.). The experiments on such low melting temperature glass results showed that transmission rates of S.M.G.P. are 9% higher than those of first-sintered glass phosphor, corresponding to 1.25% greater average bubble size and 36% more bubble coverage area in S.M.G.P. In the recent years, high power LED modules and laser projectors have been requiring higher thermal stability by using glass phosphor materials for light mixing. Nevertheless, phosphor and related materials are too expensive to expand their markets. It seems a right trend and research goal that recycling such waste of high thermal stability and quality materials could be preferably one of feasible cost-down solutions. This technical approach could bring out brighter future for solid lighting and light source module industries.

  19. Compact fluorescent lamp phosphors in accidental radiation monitoring

    International Nuclear Information System (INIS)

    Murthy, K. V. R.; Pallavi, S. P.; Ghildiyal, R.; Parmar, M. C.; Patel, Y. S.; Ravi Kumar, V.; Sai Prasad, A. S.; Natarajan, V.; Page, A. G.

    2006-01-01

    The application of lamp phosphors for accidental dosimetry is a new concept. Since the materials used in fluorescent lamps are good photo luminescent materials, if one can either use the inherent defects present in the phosphor or add suitable modifiers to induce thermoluminescence (TL) in these phosphors, then the device (fluorescent lamp) can be used as an accidental dosemeter. In continuation of our search for a suitable phosphor material, which can serve both as an efficient lamp phosphor and as a good radiation monitoring device, detailed examination has been carried out on cerium and terbium-doped lanthanum phosphate material. A 90 Sr beta source with 50 mCi strength (1.85 GBq) was used as the irradiation source for TL studies. The TL response as a function of dose received was examined for all phosphors used and it was observed that the intensity of the TL peak vs. dose received was a linear function in the dose range 0.1-200 Gy in each case. Incidentally LaPO 4 :Ce,Tb is a component of the compact fluorescent lamp marketed recently as an energy bright light source. Besides having very good luminescence efficiency, good dosimetric properties of these phosphors render them useful for their use in accidental dosimetry also. (authors)

  20. Radioactivity measurements using storage phosphor technology

    International Nuclear Information System (INIS)

    Cheng, Y.T.; Hwang, J.; Hutchinson, M.R.

    1995-01-01

    We propose to apply a recently developed charged particle radiation imaging concept in bio-medical research for fast, cost-effective characterization of radionuclides in contaminated sites and environmental samples. This concept utilizes sensors with storage photostimulable phosphor (SPP) technology as radiation detectors. They exhibit high sensitivity for all types of radiation and the response is linear over a wide dynamic range (>10 5 ), essential for quantitative analysis. These new sensors have an active area of up to 35 cm x 43 cm in size and a spatial resolution as fine as 50 μm. They offer considerable promise as large area detectors for fast characterization of radionuclides with an added ability to locate and identify hot spots

  1. Photovoltaic cells employing zinc phosphide

    Science.gov (United States)

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  2. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs

  3. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs refer

  4. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    NARCIS (Netherlands)

    Veldkamp, T.; Diepen, van J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR

  5. Sol–gel synthesis and luminescence of undoped and Mn-doped zinc orthosilicate phosphor nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    El Ghoul, J., E-mail: ghoultn@yahoo.fr [Laboratoire de Physique des Matériaux et des Nanomatériaux Appliquée à l’Environnement, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig, 6072 Gabès (Tunisia); El Mir, L. [Laboratoire de Physique des Matériaux et des Nanomatériaux Appliquée à l’Environnement, Faculté des Sciences de Gabès, Cité Erriadh Manara Zrig, 6072 Gabès (Tunisia); Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Sciences, Departement of Physics, Riyadh 11623 (Saudi Arabia)

    2014-04-15

    Zn{sub 2}SiO{sub 4} and Zn{sub 2}SiO{sub 4}:Mn particles embedded in SiO{sub 2} host matrix prepared by sol gel method under supercritical conditions of ethyl alcohol in two steps. Were prepared by a simple solid-phase reaction under natural atmosphere at 1200 °C after the incorporation of ZnO and ZnO:Mn nanoparticles, respectively, in silica monolith. In the case of SiO{sub 2}/Zn{sub 2}SiO{sub 4} nanocomposite, the powder with an average particle size of 80 nm shows a strong luminescence band centred at around 760 nm in the visible range. In addition, the PL spectrum for the SiO{sub 2}/Zn{sub 2}SiO{sub 4}:Mn nanocomposite showed that a dominant peak at 525 nm appeared, which originated from the {sup 4}T{sub 1}–{sup 6}A{sub 1} transitions of Mn{sup 2+} ions. The luminescence properties of nanocomposites were characterized by emission and excitation spectra as well their dependencies of upon temperature and power excitation density. -- Highlights: • The Synthesis of Zn{sub 2}SiO{sub 4} nanocomposites. • Structural and optical characterizations of Zn{sub 2}SiO{sub 4} and Zn{sub 2}SiO{sub 4}:Mn nanocomposites. • The willemite α-Zn{sub 2}SiO{sub 4} structure was formed to the heat treatment temperature 1200 °C. • The powder exhibits a nanometric size. • Strong bands of luminescence have appeared.

  6. Development of BaSO4:Eu thermoluminescence phosphor

    International Nuclear Information System (INIS)

    Madhusoodanan, U.; Jose, M.T.; Lakshmanan, A.R.

    1999-01-01

    A highly sensitive thermoluminescence (TL) phosphor based on BaSO 4 :Eu was developed following the coprecipitation technique and firing in argon atmosphere at 1123 K. Photoluminescence studies confirm that firing in argon atmosphere instead of air increased the incorporation of Eu ions in 2+ valence state. At low γ-ray doses, its TL sensitivity is nearly 2 to 3 times higher than that of CaSO 4 :Dy phosphor. The other salient features of this BaSO 4 :Eu TL phosphor are a constant glow curve shape and a nearly linear γ-ray dose response

  7. Development of BaSO sub 4 :Eu thermoluminescence phosphor

    CERN Document Server

    Madhusoodanan, U; Lakshmanan, A R

    1999-01-01

    A highly sensitive thermoluminescence (TL) phosphor based on BaSO sub 4 :Eu was developed following the coprecipitation technique and firing in argon atmosphere at 1123 K. Photoluminescence studies confirm that firing in argon atmosphere instead of air increased the incorporation of Eu ions in 2+ valence state. At low gamma-ray doses, its TL sensitivity is nearly 2 to 3 times higher than that of CaSO sub 4 :Dy phosphor. The other salient features of this BaSO sub 4 :Eu TL phosphor are a constant glow curve shape and a nearly linear gamma-ray dose response.

  8. Comparison between mixed and spatially separated remote phosphor fabricated via a screen-printing process

    Science.gov (United States)

    Kim, Byung-Ho; Hwang, Jonghee; Lee, Young Jin; Kim, Jin-Ho; Jeon, Dae-Woo; Lee, Mi Jai

    2016-08-01

    We developed a fabrication method for remote phosphor by a screen-printing process, using green phosphor, red phosphor, and thermally stable glass frit. The glass frit was introduced for long-term stability. The optical properties of the remote phosphor were observed via an integrating sphere; the photoluminescence spectrum dramatically changed on incorporating a minor amount of the red phosphor. These unique optical properties were elucidated using four factors: phosphor ratio, scattering induced by packing density, light intensity per unit volume, and reabsorption. The thermal stability of the remote phosphor was investigated at 500°C, demonstrating its outstanding thermal properties.

  9. Zinc in multiple sclerosis

    DEFF Research Database (Denmark)

    Bredholt, Mikkel; Fredriksen, Jette Lautrup

    2016-01-01

    In the last 35 years, zinc (Zn) has been examined for its potential role in the disease multiple sclerosis (MS). This review gives an overview of the possible role of Zn in the pathogenesis of MS as well as a meta-analysis of studies having measured Zn in serum or plasma in patients with MS...

  10. Zinc bioavailability in the chick

    International Nuclear Information System (INIS)

    Hempe, J.M.

    1987-01-01

    Methods for assessing zinc bioavailability were evaluated in the chick. A low-zinc chick diet was developed using rehydrated, spray-dried egg white autoclaved at 121 C for 30 min as the primary protein source. The relative bioavailability of zinc from soy flour and beef was determined by whole-body retention of extrinsic 65 Zn, and in slope ratio assays for growth rate and tissue zinc. Compared to zinc carbonate added to an egg white-based diet, all methods gave similar estimates of approximately 100% zinc bioavailability for beef but estimates for soy flour varied widely. The slope ratio assay for growth rate gave the best estimate of zinc bioavailability for soy flour. True absorption, as measured by percent isotope retention from extrinsically labeled soy flour, was 47%

  11. Analysis of phosphoric ore bacterial and eucaryal microbial diversity ...

    African Journals Online (AJOL)

    SAM

    Received 30 July, 2013; Accepted 4 July, 2014. The aim ... using the single strand conformation polymorphism (SSCP) technique and ... Phosphoric industry generates a considerable quantity of ..... This phenomenon could well be the case for.

  12. The preparation of 32P labelled phosphorous acid

    International Nuclear Information System (INIS)

    Henderson, D.; Jenkinson, A.; Sorby, P.

    1986-11-01

    Phosphorous acid labelled with 32 P has been prepared, on a small scale, starting from neutron-irradiated phosphorus. The compound is intended for tracer studies in the development of novel fungicides

  13. Oxycarbonitride phosphors and light emitting devices using the same

    Science.gov (United States)

    Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi

    2013-10-08

    Disclosed herein is a novel family of oxycarbidonitride phosphor compositions and light emitting devices incorporating the same. Within the sextant system of M--Al--Si--O--N--C--Ln and quintuplet system of M--Si--O--N--C--Ln (M=alkaline earth element, Ln=rare earth element), the phosphors are composed of either one single crystalline phase or two crystalline phases with high chemical and thermal stability. In certain embodiments, the disclosed phosphor of silicon oxycarbidonitrides emits green light at wavelength between 530-550 nm. In further embodiments, the disclosed phosphor compositions emit blue-green to yellow light in a wavelength range of 450-650 nm under near-UV and blue light excitation.

  14. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Volume 1, Bench-scale testing and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  15. Quantitative Characterization of Phosphor Detector for Fusion Plasmas

    International Nuclear Information System (INIS)

    Baciero, A.; Zurro, B.; McCarthy, K. J.

    2004-01-01

    Experiments made to characterize phosphor screens with application as broadband radiation detectors, are described. Several radiation sources, covering the spectral range between the ultraviolet and X ray, were used. In addition, details are given of three original phosphor-screen-based detectors that were designed for use as broadband detectors in magnetically confined fusion devices. The first measurements obtained with these detectors in plasmas created in the TJ-II stellarator device are presented together with the analysis performed. (Author)

  16. Phosphors containing boron and metals of Group IIIA and IIIB

    Science.gov (United States)

    Setlur, Anant Achyut; Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-10-31

    A phosphor comprises: (a) at least a first metal selected from the group consisting of yttrium and elements of lanthanide series other than europium; (b) at least a second metal selected from the group consisting of aluminum, gallium, indium, and scandium; (c) boron; and (d) europium. The phosphor is used in light source that comprises a UV radiation source to convert UV radiation to visible light.

  17. Activated phosphors having matrices of yttrium-transition metal compound

    International Nuclear Information System (INIS)

    De Kalb, E.L.; Fassel, V.A.

    1975-01-01

    A method is described for preparing a phosphor composition containing a lanthanide activator element with a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO 4 with a portion of the rare earth replaced with one or more of the transition elements. On x-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence

  18. Hydrogen sulfide concentration in Beaver Dam Creek

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1979-01-01

    Concentration-time profiles calculated with LODIPS for various hypothetical releases of hydrogen sulfide from the heavy water extraction facility predict lethal conditions for swamp fish from releases as small as 568 kg discharged over a period of 30 minutes or from releases of 1818 kg discharged over a period of 6 hours or less. The necessary volatilization and oxidation coefficients for LODIPS were derived from field measurements following planned releases of H 2 S. Upsets in the operation of the wastewater strippers in the Girdler-Sulfide (GS) heavy water extraction facility in D Area have released significant amounts of dissolved H 2 S to Beaver Dam Creek. Because H 2 S is toxic to fish in concentrations as low as 1 mg/liter, the downstream environmental impact of H 2 S releases from D Area was evaluated

  19. Iron-sulfide redox flow batteries

    Science.gov (United States)

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  20. Hydrogen sulfide prodrugs—a review

    Directory of Open Access Journals (Sweden)

    Yueqin Zheng

    2015-09-01

    Full Text Available Hydrogen sulfide (H2S is recognized as one of three gasotransmitters together with nitric oxide (NO and carbon monoxide (CO. As a signaling molecule, H2S plays an important role in physiology and shows great potential in pharmaceutical applications. Along this line, there is a need for the development of H2S prodrugs for various reasons. In this review, we summarize different H2S prodrugs, their chemical properties, and some of their potential therapeutic applications.

  1. High temperature thermometric phosphors for use in a temperature sensor

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  2. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Chiao-Wen Yeh

    2010-03-01

    Full Text Available White light-emitting diodes (WLEDs have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV LEDs and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED or polymer light-emitting diode (PLED, have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450-480 nm and nUV (380-400 nm LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+ is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  3. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    Science.gov (United States)

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450−480 nm) and nUV (380−400 nm) LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+) is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  4. Angle-resolved photoluminescence spectrum of a uniform phosphor layer

    Science.gov (United States)

    Fujieda, Ichiro; Ohta, Masamichi

    2017-10-01

    A photoluminescence spectrum depends on an emission angle due to self-absorption in a phosphor material. Assuming isotropic initial emission and Lambert-Beer's law, we have derived simple expressions for the angle-resolved spectra emerging from the top and bottom surfaces of a uniform phosphor layer. The transmittance of an excitation light through the phosphor layer can be regarded as a design parameter. For a strongly-absorbing phosphor layer, the forward flux is less intense and more red-shifted than the backward flux. The red-shift is enhanced as the emission direction deviates away from the plane normal. When we increase the transmittance, the backward flux decreases monotonically. The forward flux peaks at a certain transmittance value. The two fluxes become similar to each other for a weakly-absorbing phosphor layer. We have observed these behaviors in experiment. In a practical application, self-absorption decreases the efficiency of conversion and results in angle-dependent variations in chromaticity coordinates. A patterned phosphor layer with a secondary optical element such as a remote reflector alleviates these problems.

  5. Rare-earth doped phosphors: oldies or goldies?

    International Nuclear Information System (INIS)

    Moine, B.; Bizarri, G.

    2003-01-01

    The scientific research on phosphors has a long history starting more than 100 years ago. But recently the appearance of new kinds of displays and lighting devices (plasma display, fluorescent lamp without mercury, etc.) induced an increase of the research of new phosphors with better luminous efficiency than those available up to now. It has been shown that the behavior of 'classical' phosphors in a plasma display panel is quite different than in a cathode ray tube and that the vacuum ultraviolet (VUV) excitation process has to be studied with care in order to improve the phosphors efficiency. That is particularly true in PDPs. It is well established now that a good phosphor for electronic or ultraviolet excitation is not necessarily a good choice for excitation in VUV. This is probably due to the fact that the excitation process is very different in that case and also because the penetration depth of the VUV photons is extremely small inducing a large contribution of the surface of the phosphor. We will illustrate this with some examples. Methods to accelerate luminous intensity decrease under VUV excitation will be described. Low efficiency, fast aging process are both drawbacks that can be solved only in the framework of fundamental studies. Quantum cutting emission may be a solution for the first one but no satisfactory process was proposed for the moment to solve the second

  6. Optical, Structural and Paramagnetic Properties of Eu-Doped Ternary Sulfides ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y

    Directory of Open Access Journals (Sweden)

    Vítězslav Jarý

    2015-10-01

    Full Text Available Eu-doped ternary sulfides of general formula ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y are presented as a novel interesting material family which may find usage as X-ray phosphors or solid state white light emitting diode (LED lighting. Samples were synthesized in the form of transparent crystalline hexagonal platelets by chemical reaction under the flow of hydrogen sulfide. Their physical properties were investigated by means of X-ray diffraction, time-resolved photoluminescence spectroscopy, electron paramagnetic resonance, and X-ray excited fluorescence. Corresponding characteristics, including absorption, radioluminescence, photoluminescence excitation and emission spectra, and decay kinetics curves, were measured and evaluated in a broad temperature range (8–800 K. Calculations including quantum local crystal field potential and spin-Hamiltonian for a paramagnetic particle in D3d local symmetry and phenomenological model dealing with excited state dynamics were performed to explain the experimentally observed features. Based on the results, an energy diagram of lanthanide energy levels in KLuS2 is proposed. Color model xy-coordinates are used to compare effects of dopants on the resulting spectrum. The application potential of the mentioned compounds in the field of white LED solid state lighting or X-ray phosphors is thoroughly discussed.

  7. Technique of proton and phosphorous MR spectroscopy; Technik der Protonen- und Phosphor-MR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Backens, M. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2017-06-15

    Magnetic resonance spectroscopy (MRS) is an important non-invasive method that can reveal the concentration and spatial distribution of particular biochemically relevant tissue metabolites. Proton MRS is routinely applicable in the clinical setting providing good quality results even with a moderate magnetic field strength of 1.5 T. Relative values of metabolite concentrations are mostly used for the assessment of metabolic disorders. Absolute quantification of metabolites can be achieved by means of internal or external reference scans. Phosphorous MRS extends the range of detectable molecules to energy and cell membrane metabolism. The lower detection limit of metabolite concentrations is in the range of some mmol/kg. Depending on the magnetic field strength, MRS enables a spatial resolution of a few milliliters. The use of phosphorous MRS is considerably limited because higher field strengths of at least 3.0 T and additional expensive hardware for signal processing are required. (orig.) [German] Die MR-Spektroskopie (MRS) ist eine wichtige nichtinvasive Untersuchungsmethode, die Konzentration und raeumliche Verteilung einiger biochemisch relevanter Metaboliten im Gewebe ermitteln kann. Die Protonenspektroskopie ist klinisch etabliert, in der Routine einfach durchfuehrbar und liefert bereits bei einer Magnetfeldstaerke von 1,5 T qualitativ gute Ergebnisse. Fuer die Beurteilung von Stoffwechselveraenderungen werden Metabolitenkonzentrationen meist als Relativwerte angegeben. Mithilfe interner oder externer Referenzmessungen sind auch absolute Metabolitenkonzentrationen berechenbar. Die Phosphorspektroskopie erweitert den Bereich der detektierbaren Molekuele auf den Energie- und Zellmembranstoffwechsel. Die minimale nachweisbare Metabolitenkonzentration liegt bei einigen mmol/kg. Abhaengig von der Magnetfeldstaerke ist eine raeumliche Aufloesung der MRS von wenigen Millilitern erreichbar. Der Einsatz der Phosphor-MRS wird dadurch erheblich eingeschraenkt, dass sie

  8. Risedronate/zinc-hydroxyapatite based nanomedicine for osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Khajuria, Deepak Kumar, E-mail: deepak_kumarkhajuria@yahoo.co.in [Laboratory for Integrative Multiscale Engineering Materials and Systems, Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore 560027 (India); Disha, Choudhary [Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore 560027 (India); Vasireddi, Ramakrishna [Laboratory for Integrative Multiscale Engineering Materials and Systems, Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Razdan, Rema [Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore 560027 (India); Mahapatra, D. Roy [Laboratory for Integrative Multiscale Engineering Materials and Systems, Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2016-06-01

    Targeting of superior osteogenic drugs to bone is an ideal approach for treatment of osteoporosis. Here, we investigated the potential of using risedronate/zinc-hydroxyapatite (ZnHA) nanoparticles based formulation in a rat model of experimental osteoporosis. Risedronate, a targeting moiety that has a strong affinity for bone, was loaded to ZnHA nanoparticles by adsorption method. Prepared risedronate/ZnHA drug formulation was characterized by field-emission scanning electron microscopy, X-ray diffraction analysis and fourier transform infrared spectroscopy. In vivo performance of the prepared risedronate/ZnHA nanoparticles was tested in an experimental model of postmenopausal osteoporosis. Therapy with risedronate/ZnHA drug formulation prevented increase in serum levels of bone-specific alkaline phosphatase and tartrate-resistant acid phosphatase 5b better than risedronate/HA or risedronate. With respect to improvement in the mechanical strength of the femoral mid-shaft and correction of increase in urine calcium and creatinine levels, the therapy with risedronate/ZnHA drug formulation was more effective than risedronate/HA or risedronate therapy. Moreover, risedronate/ZnHA drug therapy preserved the cortical and trabecular bone microarchitecture better than risedronate/HA or risedronate therapy. Furthermore, risedronate/ZnHA drug formulation showed higher values of calcium/phosphorous ratio and zinc content. The results strongly implicate that risedronate/ZnHA drug formulation has a therapeutic advantage over risedronate or risedronate/HA therapy for the treatment of osteoporosis. - Highlights: • Risedronate functionalized zinc-hydroxyapatite nanoparticles were prepared. • Risedronate was used as a carrier to deliver zinc-hydroxyapatite nanoparticles to bones. • Application of risedronate/ZnHA drug formulation in osteoporosis is described.

  9. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  10. Comprehensive recovery of gold and base-metal sulfide minerals from a low-grade refractory ore

    Science.gov (United States)

    Li, Wen-juan; Liu, Shuang; Song, Yong-sheng; Wen, Jian-kang; Zhou, Gui-ying; Chen, Yong

    2016-12-01

    The comprehensive recovery of small amounts of valuable minerals such as gold and base-metal sulfide minerals from a low-grade refractory ore was investigated. The following treatment strategy was applied to a sample of this ore: gold flotation-gold concentrate leaching-lead and zinc flotation from the gold concentrate leaching residue. Closed-circuit trials of gold flotation yielded a gold concentrate that assayed at 40.23 g·t-1 Au with a recovery of 86.25%. The gold concentrate leaching rate was 98.76%. Two variants of lead-zinc flotation from the residue—preferential flotation of lead and zinc and bulk flotation of lead and zinc—were tested using the middling processing method. Foam from the reflotation was returned to the lead rougher flotation or lead-zinc bulk flotation, whereas middlings from reflotation were discarded. Sulfur concentrate was a byproduct. The combined strategy of flotation, leaching, and flotation is recommended for the treatment of this kind of ore.

  11. Simultaneous removal of sulfide, nitrate and acetate: Kinetic modeling

    International Nuclear Information System (INIS)

    Wang Aijie; Liu Chunshuang; Ren Nanqi; Han Hongjun; Lee Duujong

    2010-01-01

    Biological removal of sulfide, nitrate and chemical oxygen demand (COD) simultaneously from industrial wastewaters to elementary sulfur (S 0 ), N 2 , and CO 2 , or named the denitrifying sulfide (DSR) process, is a cost effective and environmentally friendly treatment process for high strength sulfide and nitrate laden organic wastewater. Kinetic model for the DSR process was established for the first time on the basis of Activated Sludge Model No. 1 (ASM1). The DSR experiments were conducted at influent sulfide concentrations of 200-800 mg/L, whose results calibrate the model parameters. The model correlates well with the DSR process dynamics. By introducing the switch function and the inhibition function, the competition between autotrophic and heterotrophic denitrifiers is quantitatively described and the degree of inhibition of sulfide on heterotrophic denitrifiers is realized. The model output indicates that the DSR reactor can work well at 0.5 1000 mg/L influent sulfide, however, the DSR system will break down.

  12. Microaeration for hydrogen sulfide removal in UASB reactor.

    Science.gov (United States)

    Krayzelova, Lucie; Bartacek, Jan; Kolesarova, Nina; Jenicek, Pavel

    2014-11-01

    The removal of hydrogen sulfide from biogas by microaeration was studied in Up-flow Anaerobic Sludge Blanket (UASB) reactors treating synthetic brewery wastewater. A fully anaerobic UASB reactor served as a control while air was dosed into a microaerobic UASB reactor (UMSB). After a year of operation, sulfur balance was described in both reactors. In UASB, sulfur was mainly presented in the effluent as sulfide (49%) and in biogas as hydrogen sulfide (34%). In UMSB, 74% of sulfur was detected in the effluent (41% being sulfide and 33% being elemental sulfur), 10% accumulated in headspace as elemental sulfur and 9% escaped in biogas as hydrogen sulfide. The efficiency of hydrogen sulfide removal in UMSB was on average 73%. Microaeration did not cause any decrease in COD removal or methanogenic activity in UMSB and the elemental sulfur produced by microaeration did not accumulate in granular sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Reduction of produced elementary sulfur in denitrifying sulfide removal process.

    Science.gov (United States)

    Zhou, Xu; Liu, Lihong; Chen, Chuan; Ren, Nanqi; Wang, Aijie; Lee, Duu-Jong

    2011-05-01

    Denitrifying sulfide removal (DSR) processes simultaneously convert sulfide, nitrate, and chemical oxygen demand from industrial wastewater into elemental sulfur, dinitrogen gas, and carbon dioxide, respectively. The failure of a DSR process is signaled by high concentrations of sulfide in reactor effluent. Conventionally, DSR reactor failure is blamed for overcompetition for heterotroph to autotroph communities. This study indicates that the elementary sulfur produced by oxidizing sulfide that is a recoverable resource from sulfide-laden wastewaters can be reduced back to sulfide by sulfur-reducing Methanobacterium sp. The Methanobacterium sp. was stimulated with excess organic carbon (acetate) when nitrite was completely consumed by heterotrophic denitrifiers. Adjusting hydraulic retention time of a DSR reactor when nitrite is completely consumed provides an additional control variable for maximizing DSR performance.

  14. Preparation of high purification and food grade phosphoric acid from technical grade phosphoric acid by liquid-liquid detraction method

    International Nuclear Information System (INIS)

    Alimoradi, M.; Borji, F.; Kishani, A.

    2002-01-01

    Pay attention to increasing consumption of high purification and food grade phosphoric acid in various industries and food industries and on in on hand and lack of preparation between production and distribution of this products its purification is so vital. In this article of liquid-liquid extraction method with normal hexane-mixture of ammonia and acetone-diisopropyl alcohol and normal butanol solvents and these determination of distribution coefficient each one with ph-me try titration we can evaluate effectiveness and sufficiency each one. Because of proper coefficient distribution and its local production of normal butanol solvent and low price is the best solvent. To phosphoric acid modifying coefficient distribution for extraction of phosphoric acid we can add a little value sulfuric acid to the mixture and to remove flouride impurity we add a little Na 2 O. After extraction stage extracted phosphoric acid in the normal strips by evaluating with distilled water and then by passing the carbon active bed and following passes of cationic resine column and concentrated with vacuum distillation. Conclusion of this article is produce of phosphoric acid 85% w/w and food grade from impure phosphoric acid 52% w/w with technical grade

  15. Does the oral zinc tolerance test measure zinc absorption

    Energy Technology Data Exchange (ETDEWEB)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi /sup 65/ZnCl/sub 2/ and a non-absorbed marker, /sup 51/CrCl/sub 3/, dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with /sup 65/Zn and /sup 51/Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and /sup 65/Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and /sup 65/Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption.

  16. Does the oral zinc tolerance test measure zinc absorption

    International Nuclear Information System (INIS)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi 65 ZnCl 2 and a non-absorbed marker, 51 CrCl 3 , dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with 65 Zn and 51 Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and 65 Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and 65 Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption

  17. Study of phosphors determination in biological samples

    International Nuclear Information System (INIS)

    Oliveira, Rosangela Magda de.

    1994-01-01

    In this paper, phosphors determination by neutron activation analysis in milk and bone samples was studied employing both instrumental and radiochemical separation methods. The analysis with radiochemistry separation consisted of the simultaneous irradiation of the samples and standards during 30 minutes, dissolution of the samples, hold back carrier, addition precipitation of phosphorus with ammonium phosphomolibdate (A.M.P.) and phosphorus-32 by counting by using Geiger-Mueller detector. The instrumental analysis consisted of the simultaneous irradiation of the samples and standards during 30 minutes, transfer of the samples into a counting planchet and measurement of the beta radiation emitted by phosphorus-32, after a suitable decay period. After the phosphorus analysis methods were established they were applied to both commercial milk and animal bone samples, and data obtained in the instrumental and radiochemical separation methods for each sample, were compared between themselves. In this work, it became possible to obtain analysis methods for phosphorus that can be applied independently of the sample quantity available, and the phosphorus content in the samples or interference that can be present in them. (author). 51 refs., 7 figs., 4 tabs

  18. Phosphoric acid fuel cell platinum use study

    Science.gov (United States)

    Lundblad, H. L.

    1983-05-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  19. Nanostructured silver sulfide: synthesis of various forms and their application

    Science.gov (United States)

    Sadovnikov, S. I.; Rempel, A. A.; Gusev, A. I.

    2018-04-01

    The results of experimental studies on nanostructured silver sulfide are analyzed and generalized. The influence of small particle size on nonstoichiometry of silver sulfide is discussed. Methods for the synthesis of various forms of nanostructured Ag2S including nanopowders, stable colloidal solutions, quantum dots, core–shell nanoparticles and heteronanostructures are described. The advantages and drawbacks of different synthetic procedures are analyzed. Main fields of application of nanostructured silver sulfide are considered. The bibliography includes 184 references.

  20. Carbon steel protection in G.S. (Girlder sulfide) plants. Iron sulfide scales formation conditions. Pt. 1

    International Nuclear Information System (INIS)

    Bruzzoni, P.; Burkart, A.L.; Garavaglia, R.N.

    1981-11-01

    An ASTM A 516 degree 60 carbon steel superficial protection technique submitted to a hydrogen-water sulfide corrosive medium at 2 MPa of pressure and 40-125 deg C forming on itself an iron sulfide layer was tested. Studies on pH influence, temperature, passivating mean characteristics and exposure time as well as the mechanical resistance of sulfide layers to erosion are included. (Author) [es

  1. 76 FR 64022 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Science.gov (United States)

    2011-10-17

    ... Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting AGENCY: Environmental Protection Agency (EPA). ACTION: Lifting of Administrative Stay for Hydrogen Sulfide. SUMMARY: EPA is announcing... (EPCRA) section 313 toxic chemical release reporting requirements for hydrogen sulfide (Chemical...

  2. Chloroquine is a zinc ionophore.

    Directory of Open Access Journals (Sweden)

    Jing Xue

    Full Text Available Chloroquine is an established antimalarial agent that has been recently tested in clinical trials for its anticancer activity. The favorable effect of chloroquine appears to be due to its ability to sensitize cancerous cells to chemotherapy, radiation therapy, and induce apoptosis. The present study investigated the interaction of zinc ions with chloroquine in a human ovarian cancer cell line (A2780. Chloroquine enhanced zinc uptake by A2780 cells in a concentration-dependent manner, as assayed using a fluorescent zinc probe. This enhancement was attenuated by TPEN, a high affinity metal-binding compound, indicating the specificity of the zinc uptake. Furthermore, addition of copper or iron ions had no effect on chloroquine-induced zinc uptake. Fluorescent microscopic examination of intracellular zinc distribution demonstrated that free zinc ions are more concentrated in the lysosomes after addition of chloroquine, which is consistent with previous reports showing that chloroquine inhibits lysosome function. The combination of chloroquine with zinc enhanced chloroquine's cytotoxicity and induced apoptosis in A2780 cells. Thus chloroquine is a zinc ionophore, a property that may contribute to chloroquine's anticancer activity.

  3. Innovative uses for zinc in dermatology.

    Science.gov (United States)

    Bae, Yoon Soo; Hill, Nikki D; Bibi, Yuval; Dreiher, Jacob; Cohen, Arnon D

    2010-07-01

    Severe zinc deficiency states, such as acrodermatitis enteropathica, are associated with a variety of skin manifestations, such as perioral, acral, and perineal dermatitis. These syndromes can be reversed with systemic zinc repletion. In addition to skin pathologies that are clearly zinc-dependent, many dermatologic conditions (eg, dandruff, acne, and diaper rash) have been associated and treated with zinc. Success rates for treatment with zinc vary greatly depending on the disease, mode of administration, and precise zinc preparation used. With the exception of systemic zinc deficiency states, there is little evidence that convincingly demonstrates the efficacy of zinc as a reliable first-line treatment for most dermatologic conditions. However, zinc may be considered as an adjunctive treatment modality. Further research is needed to establish the indications for zinc treatment in dermatology, optimal mode of zinc delivery, and best type of zinc compound to be used. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Quantifying microorganisms during biooxidation of arsenite and bioleaching of zinc sulfide

    NARCIS (Netherlands)

    Dinkla, I.J.T.; Gonzalez Contreras, P.A.; Gahan, C.S.; Weijma, J.; Buisman, C.J.N.; Henssen, M.J.C.; Sandström, A.

    2013-01-01

    The development of molecular tools for the detection and quantification of both species as well as functional traits, aids in a better understanding and control of microbial processes. Presently, these methods can also be used to assess the activity of these organisms or functions, even in complex

  5. Zinc Sulfide Buffer Layer for CIGS Solar Cells Prepared by Chemical Bath Deposition

    Directory of Open Access Journals (Sweden)

    Rui-Wei You

    2016-11-01

    Full Text Available In this study, ZnS thin films were successfully synthesized by chemical bath deposition (CBD with starting materials of NH2-NH2, SC(NH22, and ZnSO4‧7H2O. ZnS thin films were deposited with different time on glass substrates by CBD at 80oC and pH=9. Based on X-ray diffraction (XRD patterns, it is found that the ZnS thin films exhibit cubic polycrystalline phase. It was found that the optimum deposition time is 90 min for preparing ZnS thin film that is suitable as buffer layer for CuIn1-xGaxSe2 solar cells. The thin film deposited for 90 min has high transmittance up to 80% in the spectra range from 350 nm to 800 nm, and the optical band gap is about 3.59 eV.

  6. Effect of substrate baking temperature on zinc sulfide and germanium thin films optical parameters

    Science.gov (United States)

    Liu, Fang; Gao, Jiaobo; Yang, Chongmin; Zhang, Jianfu; Liu, Yongqiang; Liu, Qinglong; Wang, Songlin; Mi, Gaoyuan; Wang, Huina

    2016-10-01

    ZnS and Ge are very normal optical thin film materials in Infrared wave. Studying the influence of different substrate baking temperature to refractive index and actual deposition rates is very important to promote optical thin film quality. In the same vacuum level, monitoring thickness and evaporation rate, we use hot evaporation to deposit ZnS thin film materials and use ion-assisted electron beam to deposit Ge thin film materials with different baking temperature. We measure the spectral transmittance with the spectrophotometer and calculate the actual deposition rates and the refractive index in different temperature. With the higher and higher temperature in a particular range, ZnS and Ge refractive index become higher and actual deposition rates become smaller. The refractive index of Ge film material change with baking temperature is more sensitive than ZnS. However, ZnS film actual deposition rates change with baking temperature is more sensitive than Ge.

  7. Synthesis and characterization of semiconductor zinc sulfide nanotubes by soft-template method

    Institute of Scientific and Technical Information of China (English)

    Lü Ruitao; CAO Chuanbao; ZHAI Huazhang; ZHU Hesun

    2004-01-01

    ZnS nanotubes have been successfully synthesized from solutions containing a surfactant, Triton X-100 (t-octyl-(OCH2CH2)xOH, x=9, 10). X-ray diffraction (XRD), transmission electron microscope (TEM) and selected area electron diffraction (SAED) are employed to characterize the structure and morphology of as-synthesized product. XRD and SAED pattern indicate that as-obtained products consist of pure polycrystalline cubic-phase ZnS structures. TEM images reveal that most of the products are tubular structures, with diameters ranging between 37-52 nm and lengths up to 3 μm. The wall thickness of as-obtained ZnS nanotube is around 9 nm. The growth mechanism of ZnS nanotubes has also be proposed.

  8. Effect of γ-quanta on electroluminescent emitters with zinc sulfide luminophores

    International Nuclear Information System (INIS)

    Vershchagin, I.K.; Kokin, S.M.; Pautkina, A.V.

    1993-01-01

    The electroluminescent light sources used in data processing systems can operate under various conditions, particularly in the presence of a significant background radiation. In this work, the authors have investigated the effect of γ-irradiation on the main properties of electroluminescent emitters (ELE) prepared from polycrystalline luminophores of various grades. Such emitters are plane structures consisting of transparent and opaque electrodes and a layer of the luminophore distributed in the dielectric. The ELE were excited with a sinusoidal voltage (220 V; 0.4-1 kHz) at room temperature

  9. Luminescence of single crystals of manganese doped zinc indium binary sulfides

    International Nuclear Information System (INIS)

    Arama, Efim; Vovc, Victor; Gheorghita, Eugene Iv.; Pintea, Valentina

    2013-01-01

    Radiative recombination spectra of Mn-doped ZnIn 2 S 4 single crystals have been analyzed in the work. The emission spectra interval close to its maximum (1,91±0,2) eV contains a number of the special features which were identified by us as intra-center transitions. We attribute the special features observed on the complex emission spectra to this type of transition by their decomposition into simple lines, using Alentsev -Foch method. (authors)

  10. Mechanochemistry of Chitosan-Coated Zinc Sulfide (ZnS) Nanocrystals for Bio-imaging Applications

    Science.gov (United States)

    Bujňáková, Zdenka; Dutková, Erika; Kello, Martin; Mojžiš, Ján; Baláž, Matej; Baláž, Peter; Shpotyuk, Oleh

    2017-05-01

    The ZnS nanocrystals were prepared in chitosan solution (0.1 wt.%) using a wet ultra-fine milling. The obtained suspension was stable and reached high value of zeta potential (+57 mV). The changes in FTIR spectrum confirmed the successful surface coating of ZnS nanoparticles by chitosan. The prepared ZnS nanocrystals possessed interesting optical properties verified in vitro. Four cancer cells were selected (CaCo-2, HCT116, HeLa, and MCF-7), and after their treatment with the nanosuspension, the distribution of ZnS in the cells was studied using a fluorescence microscope. The particles were clearly seen; they passed through the cell membrane and accumulated in cytosol. The biological activity of the cells was not influenced by nanoparticles, they did not cause cell death, and only the granularity of cells was increased as a consequence of cellular uptake. These results confirm the potential of ZnS nanocrystals using in bio-imaging applications.

  11. Rare Earth Doped Lanthanum Calcium Borate Polycrystalline Red Phosphors

    Directory of Open Access Journals (Sweden)

    H. H. Xiong

    2014-01-01

    Full Text Available Single-phased Sm3+ doped lanthanum calcium borate (SmxLa2−xCaB10O19, SLCB, x=0.06 polycrystalline red phosphor was prepared by solid-state reaction method. The phosphor has two main excitation peaks located at 398.5 nm and 469.0 nm, which are nicely in accordance with the emitting wavelengths of commercial near-UV and blue light emitting diode chips. Under the excitation of 398.0 nm, the dominant red emission of Sm3+ in SLCB phosphor is centered at 598.0 nm corresponding to the transition of 4G5/2 → 6H7/2. The Eu3+ fluorescence in the red spectral region is applied as a spectroscopic probe to reveal the local site symmetry in the host lattice and, hence, Judd-Ofelt parameters Ωt  (t=2, 4 of Eu3+ in the phosphor matrix are derived to be 3.62×10-20 and 1.97×10-20 cm2, indicating a high asymmetrical and strong covalent environment around rare earth luminescence centers. Herein, the red phosphors are promising good candidates employed in white light emitting diodes (LEDs illumination.

  12. Iron sulfide crystal growth: a literature review

    International Nuclear Information System (INIS)

    Dewar, E.J.

    1977-04-01

    Iron pyrite (FeS 2 ) is often found on trays and in heat exchangers in Girdler-Sulfide (G.S.) plants used to extract D 2 O from fresh water. A critical review of the literature was made to find: (i) what is known about FeS 2 crystal growth; (ii) which techniques could be used to study FeS 2 crystal growth experimentally; (iii) potential chemical additives that could be used in trace amounts to poison FeS 2 crystals and reduce their growth rate in G.S. plants. (author)

  13. Sulfide geochronlogy along the Southwest Indian Ridge

    Science.gov (United States)

    Yang, W.; Tao, C.; Li, H.; Liang, J.; Liao, S.

    2017-12-01

    Dragon Flag and Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones in the ultraslow-spreading Southwest Indian Ridge (SWIR). Ten subsamples from active and inactive vents of Dragon Flag hydrothermal field and twenty-eight subsamples from Duanqiao hydrothermal field were dated using the 230Th/238U method. Four main episodes of hydrothermal activity of Duanqiao were determined according to the restricted results: 68.9-84.3, 43.9-48.4, 25.3-34.8, and 0.7-17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. And sulfide samples from the nearby Dragon Flag filed at the same time and the results show that the ages of most sulfides from Dragon Flag field range from 1.496(±0.176) to 5.416 (±0.116) kyrs with the oldest age estimated at 15.997 (±0.155) kyrs Münch et al. (2001) reconstructed the evolution history of Mt. Jourdanne hydrothermal field. The age dating results indicate activity in two episodes, at 70-40 and 27-13 kyrs. The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. All these results suggest that hydrothermal activity of Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. Mt. Jourdanne is situated on an axial volcanic ridge which has both volcanic and tectonic activity. This is necessary to develop the heat source and pathways for the fluid convection, which enables the hydrothermal circulation. Hydrothermal activity in Dragon Flag Field is located next to the detachment fault termination. The detachment fault system provides a pathway for hydrothermal convection. Such style of heat source can contribute to continuous hydrothermal activity for over 1000 years. Duanqiao field is located near the central volcano and there is a hot

  14. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    Science.gov (United States)

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  15. Uptake and partitioning of zinc in Lemnaceae.

    Science.gov (United States)

    Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John

    2011-11-01

    Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility.

  16. Fate of Zinc and Silver Engineered Nanoparticles in ...

    Science.gov (United States)

    Engineered zinc oxide (ZnO) and silver (Ag) nanoparticles (NPs) used in consumer products are largely released into the environment through the wastewater stream. Limited information is available regarding the transformations they undergo during their transit through sewerage systems before reaching wastewater treatment plants. To address this knowledge gap, laboratory-scale systems fed with raw wastewater were used to evaluate the transformation of ZnO- and Ag-NPs within sewerage transfer networks. Two experimental systems were established and spiked with either Ag- and ZnO-NPs or with their dissolved salts, and the wastewater influent and effluent samples from both systems were thoroughly characterised. X-ray absorption spectroscopy (XAS) was used to assess the extent of the chemical transformation of both forms of Zn and Ag during transport through the model systems. The results indicated that both ZnO- and Ag-NPs underwent significant transformation during their transport through the sewerage network. Reduced sulphur species represented the most important endpoint for these NPs in the sewer with slight differences in terms of speciation; ZnO converted largely to Zn sulfide, while Ag was also sorbed to cysteine and histidine. Importantly, both ionic Ag and Ag-NPs formed secondary Ag sulfide nanoparticles in the sewerage network as revealed by TEM analysis. Ag-cysteine was also shown to be a major species in biofilms. These results were verified in the

  17. Inhibitory zinc-enriched terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Danscher, G; Jo, S M; Varea, E

    2001-01-01

    The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution...

  18. Zinc: an essential oligoelement

    OpenAIRE

    Rubio, C.; González Weller, D.; Martín-Izquierdo, R. E.; Revert, C.; Rodríguez, I.; Hardisson, A.

    2007-01-01

    En este artículo se hace una revisión exhaustiva del zinc, elemento metálico esencial para el funcionamiento del organismo. Repasamos y reflejamos aspectos relacionados con la farmacocinética, con las fuentes dietéticas más importantes, así como las IDR (Ingestas Dietéticas Recomendadas) del mismo. También se hace mención a los signos y síntomas relacionados tanto con una ingesta deficiente, como con posibles efectos tóxicos, derivados de ingestas excesivas.This article comprehensively review...

  19. Cadmium and zinc

    International Nuclear Information System (INIS)

    Safaya, N.M.; McLean, J.E.; Halverson, G.A.

    1987-01-01

    Cadmium and zinc are naturally occurring trace metals that are often considered together because of their close geochemical association and similarities in chemical reactivity. The loss of two electrons from an atom of Cd or Zn imparts to each an electron configuration with completely filled d orbitals; this results in a highly stable 2/sup +/ oxidation state. But Cd and Zn differ greatly in their significance to biological systems. Whereas Zn is an essential nutrient for plants, animals, and humans, Cd is best known for its toxicity to plants and as a causative agent of several disease syndromes in animals and humans

  20. Microbial selenium sulfide reduction for selenium recovery from wastewater

    NARCIS (Netherlands)

    Hageman, S.P.W.; Weijden, van der R.D.; Stams, A.J.M.; Cappellen, van P.; Buisman, C.J.N.

    2017-01-01

    Microbial reduction of selenium sulfide (SeS2) is a key step in a new treatment process to recover selenium from selenate and selenite streams. In this process, selenate is first reduced to selenite, and subsequently selenite is reduced by sulfide and precipitates from the solution as SeS2. The

  1. Recent findings on sinks for sulfide in gravity sewer networks

    DEFF Research Database (Denmark)

    Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2006-01-01

    summarizes this newly obtained knowledge and emphasizes important implications of the findings. Model simulations of the in-sewer processes important for the sulfur cycle showed that sulfide oxidation in the wetted biofilm is typically the most important sink for dissolved sulfide in gravity sewers. However...

  2. Technetium behavior in sulfide and ferrous iron solutions

    International Nuclear Information System (INIS)

    Lee, S.Y.; Bondietti, E.A.

    1982-01-01

    Pertechnetate oxyanion ( 99 TcO 4- ), a potentially mobile species in leachate from a breached radioactive waste repository, was removed from a brine solution by precipitation with sulfide, iron, and ferrous sulfide at environmental pH's. Maghemite (ν-Fe 2 O 3 ) and geothite (α-FeOOH) were the dominant minerals in the precipitate obtained from the TcO 4- -ferrous iron reaction. The observation of small particle size and poor crystallinity of the minerals formed in the presence of Tc suggested that the Tc was incorporated into the mineral structure after reduction to a lower valence state. Amorphous ferrous sulfide, an initial phase precipitating in the TcO 4- -ferrous iron-sulfide reaction, was transformed to goethite and hematite (α-Fe 2 O 3 ) on aging. The black precipitate obtained from the TcO 4- -sulfide reaction was poorly crystallized technetium sulfide (Tc 2 S 7 ) which was insoluble in both acid and alkaline solution in the absence of strong oxidents. The results suggested that ferrous- and/or sulfide-bearing groundwaters and minerals in host rocks or backfill barriers could reduce the mobility of Tc through the formation of less-soluble Tc-bearing iron and/or sulfide minerals

  3. Sulfidation of carbon-supported iron oxide catalysts

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Hadders, R.H.; Gerkema, E.; Beer, de V.H.J.; Oers, van E.M.; Kraan, van der A.M.

    1989-01-01

    The sulfidation of carbon-supported iron oxide catalysts was studied by means of in-situ Mössbauer spectroscopy at temperatures down to 4.2 K. The catalysts were dried in two different ways and then sulfided in a flow of 10% H2S in H2 at temperatures between 293 and 773 K. Thiophene

  4. Thermoluminescence properties of zinc oxide obtained by solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: victor.orante@polimeros.uson.mx [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2014-08-15

    High-dose thermoluminescence dosimetry properties of novel zinc oxide obtained by solution combustion synthesis in a glycine-nitrate process, with a non-stoichiometric value of the elemental stoichiometric coefficient (Φ{sub c}) are presented in this work. Zn O powder samples obtained were annealed afterwards at 900 grades C during 2 h in air. Sintered particles of sizes between ∼ 0.5 and ∼ 2 μm were obtained, according to scanning electron microscopy results. X-ray diffraction indicates the presence of the hexagonal phase of Zn O for the powder samples obtained, before and after thermal annealing, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima; one located at ∼ 149 grades C and another at ∼ 308 grades C, being the latter the dosimetric component of the curve. Dosimetric characterization of non-stoichiometric zinc oxide provided experimental evidence like asymptotic behavior of the Tl signal fading for times greater than 16 h between irradiation and the corresponding Tl readout, as well as the linear behaviour of the dose response without saturation in the dose interval studied (from 12.5 up to 400 Gy). Such characteristics place Zn O phosphors obtained in this work as a promising material for high-dose radiation dosimetry applications (e.g., radiotherapy and food industry). (author)

  5. Thermoluminescence properties of zinc oxide obtained by solution combustion synthesis

    International Nuclear Information System (INIS)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C.; Bernal, R.

    2014-08-01

    High-dose thermoluminescence dosimetry properties of novel zinc oxide obtained by solution combustion synthesis in a glycine-nitrate process, with a non-stoichiometric value of the elemental stoichiometric coefficient (Φ c ) are presented in this work. Zn O powder samples obtained were annealed afterwards at 900 grades C during 2 h in air. Sintered particles of sizes between ∼ 0.5 and ∼ 2 μm were obtained, according to scanning electron microscopy results. X-ray diffraction indicates the presence of the hexagonal phase of Zn O for the powder samples obtained, before and after thermal annealing, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima; one located at ∼ 149 grades C and another at ∼ 308 grades C, being the latter the dosimetric component of the curve. Dosimetric characterization of non-stoichiometric zinc oxide provided experimental evidence like asymptotic behavior of the Tl signal fading for times greater than 16 h between irradiation and the corresponding Tl readout, as well as the linear behaviour of the dose response without saturation in the dose interval studied (from 12.5 up to 400 Gy). Such characteristics place Zn O phosphors obtained in this work as a promising material for high-dose radiation dosimetry applications (e.g., radiotherapy and food industry). (author)

  6. Influence of acids on the zinc conversion process with molybdate

    International Nuclear Information System (INIS)

    Silva, Cosmelina Goncalves da; Margarit-Mattos, Isabel Cristina Pereira; Mattos, Oscar Rosa; Barcia, Oswaldo Esteves

    2010-01-01

    Molybdate conversion coatings have been evaluated as possible alternative to the chromate ones. The acid used in the pH adjustment of the conversion baths exerts great influence on the anti corrosive properties of these coatings. The aim of this work was to verify the role of phosphoric and sulfuric acids on the zinc conversion process with molybdate. The techniques used were: chronopotentiometry, electrochemical impedance spectroscopy (EIS) and interfacial pH measurements. The surface characterization was made with scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The chronopotentiometry results have shown that the influence of the variation of the electrode rotation speed on the conversion process is acid-dependent: the acid influences the mass transport during the conversion. The EIS measures have suggested that the conversion mechanism does not change with the acid, being the coatings thicker when H_2SO_4 is used than the obtained with H_3PO_4. The pH interfacial results have shown a pH increase more significant for the bath with H_2SO_4, indicating a fastest kinetic of zinc dissolution. It was identified the presence of Mo in all analyzed coatings, for both acids, and P in those obtained with H_3PO_4. (author)

  7. Process for recovery of uranium from wet process phosphoric acid

    International Nuclear Information System (INIS)

    Wiewiorowski, T.K.; Thornsberry, W.L. Jr.

    1978-01-01

    Process is claimed for the recovery of uranium from wet process phosphoric acid solution in which an organic extractant, containing uranium values and dissolved iron impurities and comprising a dialkylphosphoric acid and a trialkylphosphine oxide dissolved in a water immiscible organic solvent, is contacted with a substantially iron-free dilute aqueous phosphoric acid to remove said iron impurities. The removed impurities are bled from the system by feeding the resulting iron-loaded phosphoric acid to a secondary countercurrent uranium extraction operation from which they leave as part of the uranium-depleted acid raffinate. Also, process for recovering uranium in which the extractant, after it has been stripped of uranium values by aqueous ammonium carbonate, is contacted with a dilute aqueous acid selected from the group consisting of H 2 SO 4 , HCl, HNO 3 and iron-free H 3 PO 4 to improve the extraction efficiency of the organic extractant

  8. Stacking dependence of carrier transport properties in multilayered black phosphorous

    Science.gov (United States)

    Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.

    2016-02-01

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  9. Persistent phosphors for painting, medical and biological applications

    International Nuclear Information System (INIS)

    Nazarov, M.

    2013-01-01

    Multiphase micro and nanoparticle persistent phosphors are synthesized and applied for different fields including painting, medical and biological investigations. A lot of examples show a broad range of applications of persistent luminescence from bulk materials to high tech products, especially in medicine. The development of high efficiency nanosized phosphor makes it possible to propose persistent materials as very good candidates for photodynamic therapy of cancer. An artificial block from slag, concrete, and sand covered with SrAl 2 O 4 :Eu 2+ , Dy 3+ based phosphor is prepared, and a new direction in biology for algae cultivation and artificial reef is discussed. For the first time, underwater luminescence is experimentally studied under real sea conditions. Bright blue-green long-lasting afterglow is registered at a depth of 5 m. The fishes are attracted by the light of the artificial reef. (author)

  10. Phosphor plate mammography: contrast studies and clinical experience

    International Nuclear Information System (INIS)

    Chang, C.H.J.; Martin, N.L.; Templeton, A.W.; Cook, L.T.; Harrison, L.A.; McFadden, M.A.; Dwyer, S.J. III; Spicer, J.; Crystal, J.M.

    1992-01-01

    Mammography and accurate microcalcification detection require very good spatial resolution. We have compared the diagnostic capabilities of reduced-exposure, third-generation, 5 cycles/mm computed radiography (CR) phosphor plates with conventional screen-film in 67 patients. No difference in diagnostic accuracy was detected. The digital characteristics of storage phosphor plates erabled us to study the relationship between contrast and spatial resolution. We developed a computer program to identify a single 100 μm pixel in a digital image and assign various gray levels to that pixel. Using this model, we determined that, for our 5 cycles/mm CR system, the imaged contrast of a 100 μm object was 62% of the original contrast. Current 5 cycles/mm phosphor plate systems cannot adequately detect microcalcifications that approximate 100 μm or smaller unless a magnification technique is used. (orig.)

  11. Ultraviolet /UV/ sensitive phosphors for silicon imaging detectors

    Science.gov (United States)

    Viehmann, W.; Cowens, M. W.; Butner, C. L.

    1981-01-01

    The fluorescence properties of UV sensitive organic phosphors and the radiometric properties of phosphor coated silicon detectors in the VUV, UV, and visible wavelengths are described. With evaporated films of coronene and liumogen, effective quantum efficiencies of up to 20% have been achieved on silicon photodiodes in the vacuum UV. With thin films of methylmethacrylate (acrylic), which are doped with organic laser dyes and deposited from solution, detector quantum efficiencies of the order of 15% for wavelengths of 120-165 nm and of 40% for wavelengths above 190 nm have been obtained. The phosphor coatings also act as antireflection coatings and thereby enhance the response of coated devices throughout the visible and near IR.

  12. White-electroluminescent device with horizontally patterned blue/yellow phosphor-layer structure

    International Nuclear Information System (INIS)

    Won Park, Boo; Sik Choi, Nam; Won Park, Kwang; Mo Son, So; Kim, Jong Su; Kyun Shon, Pong

    2007-01-01

    White-electroluminescent (EL) devices with stripe-patterned and square-patterned phosphor-layer structures are fabricated through a screen printing method: electrode/BaTiO 3 insulator layer/patterned blue ZnS:Cu, Cl and yellow ZnS:Cu, Mn phosphor layer/ITO PET substrate. The luminous intensities of EL devices with stripe-patterned and square-patterned phosphor-layer structures are 33% and 23% higher than a conventional device with the phosphor-layer structure without any patterns using the phosphor blend. It can be explained in terms of the absorption of the emitted blue light of blue phosphor layer by the yellow-emitting phosphor layer. The EL device of our patterned phosphor-layer structure gives the possibility to enhance the luminance

  13. Zinc in Infection and Inflammation

    Directory of Open Access Journals (Sweden)

    Nour Zahi Gammoh

    2017-06-01

    Full Text Available Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB, a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  14. Zinc in Infection and Inflammation.

    Science.gov (United States)

    Gammoh, Nour Zahi; Rink, Lothar

    2017-06-17

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  15. Influence of Water Salinity on Air Purification from Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Leybovych L.I.

    2015-12-01

    Full Text Available Mathematical modeling of «sliding» water drop motion in the air flow was performed in software package FlowVision. The result of mathematical modeling of water motion in a droplet with diameter 100 microns at the «sliding» velocity of 15 m/s is shown. It is established that hydrogen sulfide oxidation occurs at the surface of phases contact. The schematic diagram of the experimental setup for studying air purification from hydrogen sulfide is shown. The results of the experimental research of hydrogen sulfide oxidation by tap and distilled water are presented. The dependence determining the share of hydrogen sulfide oxidized at the surface of phases contact from the dimensionless initial concentration of hydrogen sulfide in the air has been obtained.

  16. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Directory of Open Access Journals (Sweden)

    Christopher S. Williams

    1999-06-01

    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.

  17. Oxidation and Precipitation of Sulfide in Sewer Networks

    DEFF Research Database (Denmark)

    Nielsen, A. H.

    risks and corrosion of concrete and metals. Most of the problems relate to the buildup of hydrogen sulfide in the atmosphere of sewer networks. In this respect, the processes of the sulfur cycle are of fundamental importance in ultimately determining the extent of such problems. This study focused...... calibrated and validated against field data. In the extension to the WATS model, sulfur transformations were described by six processes: 1. Sulfide production taking place in the biofilm and sediments covering the permanently wetted sewer walls; 2. Biological sulfide oxidation in the permanently wetted...... to the sewer atmosphere, potentially resulting in concrete corrosion. The extended WATS model represents a major improvement over previously developed models for prediction of sulfide buildup in sewer networks. Compared to such models, the major processes governing sulfide buildup in sewer networks...

  18. Kinetic Spectrophotometric Determination of Trace Amounts of Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Barzegar, Mohsen [Tarbiat Modarres University, Tehran (Iran, Islamic Republic of); Jabbari, Ali [K. N. Toosi University, Tehran (Iran, Islamic Republic of); Esmaeili, Majid [Razi University, Kermanshah (Iran, Islamic Republic of)

    2003-09-15

    A method for the determination of trace amount of sulfide based on the addition reaction of sulfide with methyl green at pH 7.5 and 25 .deg. C is described. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of the dyestuff at 637 nm by the initial rate and fixed time method. The calibration graph is linear in the range 30-1200 ppb. The theoretical limit of detection was 0.014 ppm. Seven replicate analysis of a sample solution containing 0.70 ppm sulfide gave a relative standard deviation of 1.5%. The interfering effects of various ions on sulfide determination have been reported and procedures for removal of interference have been described. The proposed method was applied successfully to the determination of sulfide in tap and wastewater samples.

  19. Kinetic Spectrophotometric Determination of Trace Amounts of Sulfide

    International Nuclear Information System (INIS)

    Barzegar, Mohsen; Jabbari, Ali; Esmaeili, Majid

    2003-01-01

    A method for the determination of trace amount of sulfide based on the addition reaction of sulfide with methyl green at pH 7.5 and 25 .deg. C is described. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of the dyestuff at 637 nm by the initial rate and fixed time method. The calibration graph is linear in the range 30-1200 ppb. The theoretical limit of detection was 0.014 ppm. Seven replicate analysis of a sample solution containing 0.70 ppm sulfide gave a relative standard deviation of 1.5%. The interfering effects of various ions on sulfide determination have been reported and procedures for removal of interference have been described. The proposed method was applied successfully to the determination of sulfide in tap and wastewater samples

  20. Method for the recovery of uranium from a concentrate using pure phosphoric acid

    International Nuclear Information System (INIS)

    1980-01-01

    Procedure for the recovery of an uranium bearing concentrate and pure phosphoric acid from a wet process phosphoric acid from the treatment fluid with a precipitation means in conjunction with an organic diluent, the thus formed precipitate to separate and from the remaining mixture of phosphoric acid and diluent the phosphoric acid to extract, characterised in that one applies an inorganic fluorine compound. (G.C.)

  1. Reactivity of the cadmium ion in concentrated phosphoric acid solutions.

    Science.gov (United States)

    De Gyves, J; Gonzales, J; Louis, C; Bessiere, J

    1989-07-01

    The solvation transfer coefficients which characterize the changes of ion reactivity with phosphoric acid concentration have been calculated for cadmium from the constants of the successive chloride complexes, and for silver and diethyldithiophosphate from potentiometric measurements. They evidence the strong desolvation of the cadmium species in concentrated phosphoric acid media, causing a remarkable increase of its reactivity. They allow the results of liquid-liquid extraction, precipitation and flotation reactions to be correctly interpreted and their changes to be foreseen when the reagents are modified.

  2. Phosphoric acid fuel cell R and D activities at KACST

    International Nuclear Information System (INIS)

    Ghouse, M.; Aba-Oud, H.; Ba-Junaid, M.; Al-Garni, M.; Quadri, M.I.

    1993-01-01

    The PAFC (Phosphoric Acid Fuel Cell) activities are directed towards the development of components of single cell and experimental stacks at KACST. The main aim of the present task is to design and construct a 1 kW PAFC Stack and demonstrate it by integrating with an electrolyser using a DC current generated by a photovoltaic power source. This paper describes the preparation of porous teflon bonded gas diffusion carbon electrodes and their evaluation as single phosphoric acid fuel cells using hydrogen as a fuel and oxygen/air as an oxidant. 6 figs., 2 tabs., 15 refs

  3. Cadmium elemination from phosphoric acid by ionic flotation

    International Nuclear Information System (INIS)

    Brikci-Nigassa, Mounir; Hamouche, Hafida

    1995-11-01

    The ion flotation process for the recovery of cadmium from wet phosphoric acid (30%P2O5) has been studied. This technique combines a chemical recation between the collector and the cadmium to form a precipitate (sublate) which is carried to the surface of the solution by air bubbles. the resulting foam containing the cadmium may then separated from solution. The influence of parameters such as collector and cadmium concentration as well as iron content have been investigated for the case a synthetic acid (30% P2O5). The result have been applied to the industrial phosphoric acid produced from Djebel Onk's phosphates (Algeria)

  4. Transport of phosphoric acid through supported liquid membrane

    International Nuclear Information System (INIS)

    Zayzafoon, G.; Yassine, T.; Baidoun, R.

    2003-01-01

    The transport of phosphhoric acid through liquid membranes of amylalkohol, 1-octanol and 2-octanol was studied. It was found that phosphoric acid is transfered from feed side to strip side and the transport increased with the concentration of phosphoric acid up to 5M. The permeability in each membrane was determined for 5M phosphoic acid. It was found that the permeability values are 1.45 x 10 1 0 m 2 s 1 for amylakohol and ∼ 1x10 1 0 m 2 s 1 for each of 1-octanol and 2-octanol

  5. Properties of precipitates formed during ammonization of extractional phosphoric acid

    International Nuclear Information System (INIS)

    Zakharova, B.S.; Komissarova, L.N.; Naumov, S.V.; Traskin, V.Yu.

    1992-01-01

    Dimensions of precipitated rare-earth phosphate particles -(0.1 μm)- are near the boundary of colloidal system sedimentation stability range at neutralization of extraction phosphoric acid. Thus, formation of multiple aggregates of colloidal particles results in immediate sedimentation of the precipitate. Processes occurring within the system may be described using second order reaction equation. Average efficient size of precipitates grows at reduction of reaction mixture pH. About 30% of rare-earth elements and yttrium in the extraction phosphoric acid is extracted from it; concentration of rare-earth elements, yttrium and scandium in precipitate is maximum 2 mass. %

  6. Anoxic sulfide biooxidation using nitrite as electron acceptor

    International Nuclear Information System (INIS)

    Mahmood, Qaisar; Zheng Ping; Cai Jing; Wu Donglei; Hu, Baolan; Li Jinye

    2007-01-01

    Biotechnology can be used to assess the well being of ecosystems, transform pollutants into benign substances, generate biodegradable materials from renewable sources, and develop environmentally safe manufacturing and disposal processes. Simultaneous elimination of sulfide and nitrite from synthetic wastewaters was investigated using a bioreactor. A laboratory scale anoxic sulfide-oxidizing (ASO) reactor was operated for 135 days to evaluate the potential for volumetric loading rates, effect of hydraulic retention time (HRT) and substrate concentration on the process performance. The maximal sulfide and nitrite removal rates were achieved to be 13.82 and 16.311 kg/(m 3 day), respectively, at 0.10 day HRT. The process can endure high sulfide concentrations, as the sulfide removal percentage always remained higher than 88.97% with influent concentration up to 1920 mg/L. Incomplete sulfide oxidation took place due to lower consumed nitrite to sulfide ratios of 0.93. It also tolerated high nitrite concentration up to 2265.25 mg/L. The potential achieved by decreasing HRT at fixed substrate concentration is higher than that by increasing substrate concentration at fixed HRT. The process can bear short HRT of 0.10 day but careful operation is needed. Nitrite conversion was more sensitive to HRT than sulfide conversion when HRT was decreased from 1.50 to 0.08 day. Stoichiometric analyses and results of batch experiments show that major part of sulfide (89-90%) was reduced by nitrite while some autooxidation (10-11%) was resulted from presence of small quantities of dissolved oxygen in the influent wastewater. There was ammonia amassing in considerably high amounts in the bioreactor when the influent nitrite concentration reached above 2265.25 mg/L. High ammonia concentrations (200-550 mg/L) in the bioreactor contributed towards the overall inhibition of the process. Present biotechnology exhibits practical value with a high potential for simultaneous removal of nitrite

  7. Zinc as a Gatekeeper of Immune Function

    Directory of Open Access Journals (Sweden)

    Inga Wessels

    2017-11-01

    Full Text Available After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14, zinc “exporters” (ZnT 1–10, and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.

  8. Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable zinc-air batteries.

    Science.gov (United States)

    Wang, Yang; Fu, Jing; Zhang, Yining; Li, Matthew; Hassan, Fathy Mohamed; Li, Guang; Chen, Zhongwei

    2017-10-26

    Exploring highly efficient bifunctional electrocatalysts toward the oxygen reduction and evolution reactions is essential for the realization of high-performance rechargeable zinc-air batteries. Herein, a novel nanofibrous bifunctional electrocatalyst film, consisting of metallic manganese sulfide and cobalt encapsulated by nitrogen-doped carbon nanofibers (CMS/NCNF), is prepared through a continuous electrospinning method followed by carbonization treatment. The CMS/NCNF bifunctional catalyst shows both comparable ORR and OER performances to those of commercial precious metal-based catalysts. Furthermore, the free-standing CMS/NCNF fibrous thin film is directly used as the air electrode in a solid-state zinc-air battery, which exhibits superior flexibility while retaining stable battery performance at different bending angles. This study provides a versatile design route for the rational design of free-standing bifunctional catalysts for direct use as the air electrode in rechargeable zinc-air batteries.

  9. Purification of di-nonyl phenyl phosphoric acid (DNPPA) for synergistic extraction of uranium from strong phosphoric acid

    International Nuclear Information System (INIS)

    Singh, D.K.; Vijayalakshmi, R.; Singh, H.; Sharma, J.N.; Ruhela, R.

    2009-01-01

    Di-nonyl phenyl phosphoric acid (DNPPA) obtained from various synthesis methods is always associated with impurities such as mono-nonyl phenyl phosphoric acid and nonyl phenol which need to be separated for its effective use in the extraction of uranium from strong phosphoric acid. Two methods of purification namely liquid-solid separation method using neodymium salt and liquid-liquid separation method using methylene glycol have been described. In the liquid solid separation method the purity of DNPPA obtained was about 95% with less than 1.0% monoester, however it heavily suffers in the recovery aspect which is of the order of 50-60%. The methylene glycol treatment method, results in high purity and recovery of the product. Purity obtained was about 95.0% diester and less than 0.5% monoester and recovery was more than 90%. Analysis of DNPPA was done by potentiometric titration method using autotitrator. (author)

  10. Process for recovering yttrium and lanthanides from wet-process phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, J.A.; Weterings, C.A.

    1983-06-28

    Process for recovering yttrium and lanthanides from wet-process phosphoric acid by adding a flocculant to the phosphoric acid, separating out the resultant precipitate and then recovering yttrium and lanthanides from the precipitate. Uranium is recovered from the remaining phosphoric acid.

  11. Blue- and red-emitting phosphor nanoparticles embedded in a porous matrix

    Energy Technology Data Exchange (ETDEWEB)

    Taghavinia, N. [Physics Department, Sharif University of Technology, Tehran P.O. Box 11365-9161, Tehran 14588 (Iran, Islamic Republic of) and Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588 (Iran, Islamic Republic of)]. E-mail: taghavinia@sharif.edu; Lerondel, G. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Univ. de Technologie de Troyes, 10010 Troyes cedex (France); Makino, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Yao, T. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2006-05-01

    Eu{sup 3+}- and Ce{sup 3+}-doped yttrium silicate, as well as Eu{sup 2+}-doped zinc silicate nanoparticles, were grown in a porous SiO{sub 2} matrix using an impregnation method. For Y{sub 2}Si{sub 2}O{sub 7}:Eu{sup 3+}, particles of about 50 nm size were obtained that exhibited several photoluminescence (PL) peaks in red. Different peaks showed slightly different decay times; however, their excitation mechanism was found the same. Increasing the Eu concentration increased the PL intensity while reducing the decay time. Y{sub 2}Si{sub 2}O{sub 7}:Ce{sup 3+} nanoparticles in the porous matrix showed bright blue emission, consisting of two peaks at 358 nm and 378 nm. Re-impregnation process was found effective in changing the relative intensity of the two peaks. Zn{sub 2}SiO{sub 4}:Eu{sup 2+} nanoparticles in porous glass consisted of amorphous particles of about 20 nm size inside the porous matrix. The luminescence was a broad peak centered at 418 nm. These phosphor systems, together with our previously reported Zn{sub 2}SiO{sub 4}:Mn{sup 2+} in porous SiO{sub 2} structure, comprise a red-green-blue system that can be used in display applications.

  12. Carbon steel protection in G.S. (Girlder sulfide) plants. Pressure influence on iron sulfide scales formation. Pt. 5

    International Nuclear Information System (INIS)

    Delfino, C.A.; Lires, O.A.; Rojo, E.A.

    1987-01-01

    In order to protect carbon steel towers and piping of Girlder sulfide (G.S.) experimental heavy water plants against corrosion produced by the action of aqueous solutions of hydrogen sulfide, a method, previously published, was developed. Carbon steel, exposed to saturated aqueous solutions of hydrogen sulfide, forms iron sulfide scales. In oxygen free solutions evolution of corrosion follows the sequence: mackinawite → cubic ferrous sulfide → troilite → pyrrotite → pyrite. Scales formed by pyrrotite-pyrite or pyrite are the most protective layers (these are obtained at 130 deg C, 2MPa, for periods of 14 days). Experiments, at 125 deg C and periods of 10-25 days, were performed in two different ways: 1- constant pressure operations at 0.5 and 1.1 MPa. 2- variable pressure operation between 0.3-1 MPa. In all cases pyrrotite-pyrite scales were obtained. (Author) [es

  13. Root Associated Bacillus sp. Improves Growth, Yield and Zinc Translocation for Basmati Rice (Oryza sativa) Varieties

    Science.gov (United States)

    Shakeel, Muhammad; Rais, Afroz; Hassan, Muhammad Nadeem; Hafeez, Fauzia Yusuf

    2015-01-01

    Plant associated rhizobacteria prevailing in different agro-ecosystems exhibit multiple traits which could be utilized in various aspect of sustainable agriculture. Two hundred thirty four isolates were obtained from the roots of basmati-385 and basmati super rice varieties growing in clay loam and saline soil at different locations of Punjab (Pakistan). Out of 234 isolates, 27 were able to solubilize zinc (Zn) from different Zn ores like zinc phosphate [Zn3 (PO4)2], zinc carbonate (ZnCO3) and zinc oxide (ZnO). The strain SH-10 with maximum Zn solubilization zone of 24 mm on Zn3 (PO4)2ore and strain SH-17 with maximum Zn solubilization zone of 14–15 mm on ZnO and ZnCO3ores were selected for further studies. These two strains solubilized phosphorous (P) and potassium (K) in vitro with a solubilization zone of 38–46 mm and 47–55 mm respectively. The strains also suppressed economically important rice pathogens Pyricularia oryzae and Fusarium moniliforme by 22–29% and produced various biocontrol determinants in vitro. The strains enhanced Zn translocation toward grains and increased yield of basmati-385 and super basmati rice varieties by 22–49% and 18–47% respectively. The Zn solubilizing strains were identified as Bacillus sp. and Bacillus cereus by 16S rRNA gene analysis. PMID:26635754

  14. Preparation and study of the properties of indium phosphide thin films impregnated with cadmium and zinc

    International Nuclear Information System (INIS)

    Moutinho, H.R.

    1984-01-01

    Indium phosphide thin films were deposited by vacuum evaporation of indium and phosphorous, using the three-temperature method. The effects of the introduction of cadmium and zinc, group II impurities, on the properties of these films were studied. The introduction of cadmium was achieved by coevaporation of this element during the film deposition. The introduction of zinc was done by diffusion of this element in intrinsic films. Analyses of these films were carried out by the study of the composition, morphology, structure, optical properties and electrical properties. The introduction of cadmium led to the reduction of grain size and increase in the bandgap and in certain cases, even change in morphology. Phases of CdP2 and β-CdP2 were detected and the resistivity increased by some orders of magnitude. The introduction of zinc did not change the morphology, crystalline structure and bandgap. However, a new energy level corresponding to the zinc acceptor level was found and the resistivity increased by some orders of magnitude. (Author) [pt

  15. Preparation and luminescence of green-emitting ZnAl{sub 2}O{sub 4}:Mn{sup 2+} phosphor thin films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ing-Bang [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Chang, Yee-Shin [Department of Electronic Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Chen, Hao-Long [Department of Electronic Engineering, Kao Yuan University, Lujhu, Kaohsiung 821, Taiwan (China); Hwang, Ching Chiang [Department of Biotechnology, Mingdao University, Chang-Hua 52345, Taiwan (China); Jian, Chen-Jhu; Chen, Yu-Shiang [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Tsai, Mu-Tsun, E-mail: mttsai@ms23.hinet.net [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China)

    2014-11-03

    Nanocrystalline Mn{sup 2+}-doped zinc spinel (ZnAl{sub 2}O{sub 4}:Mn{sup 2+}) green-emitting phosphor films were deposited on silicon substrate by sol–gel spin coating and subsequent heat treatment up to 1000 °C. The effects of dopant concentration and heat treatment on the optical and structural properties were investigated. The variations in sol viscosity with time, film thickness with number of layers were also examined. Thin films were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray microscopy, atomic force microscopy, and photoluminescence spectrum. Single-phase ZnAl{sub 2}O{sub 4} started to crystallize at around 600 °C, with a normal spinel structure. On annealing at 1000 °C, the films had smooth surfaces with a nanocrystalline structure. Under UV or visible light excitation, the phosphor films exhibited an intense green emission band peaking at around 512 nm, corresponding to the typical {sup 4}T{sub 1} → {sup 6}A{sub 1} transition of tetrahedral Mn{sup 2+} ions. The most intense green emission was obtained by exciting at 456 nm. The emission intensity of films was highly dependent upon the excitation wavelength, crystallinity, dopant content, and deposition conditions. The results show that the ZnAl{sub 2}O{sub 4}:Mn{sup 2+} films have good potential for use as a green phosphor for displays and/or white light-emitting diodes. - Highlights: • ZnAl2O4:Mn2 + thin film phosphors have been synthesized by a sol–gel process. • The most intense green emission was obtained by exciting at 456 nm. • Photoluminescence is highly dependent on the crystallinity and doping content. • Emission intensity can also be modulated by controlling the film thickness.

  16. Cathodic hydrogen charging of zinc

    International Nuclear Information System (INIS)

    Panagopoulos, C.N.; Georgiou, E.P.; Chaliampalias, D.

    2014-01-01

    Highlights: •Incorporation of hydrogen into zinc and formation of zinc hydrides. •Investigation of surface residual stresses due to hydrogen diffusion. •Effect of hydrogen diffusion and hydride formation on mechanical properties of Zn. •Hydrogen embrittlement phenomena in zinc. -- Abstract: The effect of cathodic hydrogen charging on the structural and mechanical characteristics of zinc was investigated. Hardening of the surface layers of zinc, due to hydrogen incorporation and possible formation of ZnH 2 , was observed. In addition, the residual stresses brought about by the incorporation of hydrogen atoms into the metallic matrix, were calculated by analyzing the obtained X-ray diffraction patterns. Tensile testing of the as-received and hydrogen charged specimens revealed that the ductility of zinc decreased significantly with increasing hydrogen charging time, for a constant value of charging current density, and with increasing charging current density, for a constant value of charging time. However, the ultimate tensile strength of this material was slightly affected by the hydrogen charging procedure. The cathodically charged zinc exhibited brittle transgranular fracture at the surface layers and ductile intergranular fracture at the deeper layers of the material

  17. Electrodeposition of zinc--nickel alloys coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dini, J W; Johnson, H R

    1977-10-01

    One possible substitute for cadmium in some applications is a zinc--nickel alloy deposit. Previous work by others showed that electrodeposited zinc--nickel coatings containing about 85 percent zinc and 15 percent nickel provided noticeably better corrosion resistance than pure zinc. Present work which supports this finding also shows that the corrosion resistance of the alloy deposit compares favorably with cadmium.

  18. Occupational exposure to hydrogen sulfide: management of hydrogen sulfide exposure victims (Preprint No. SA-5)

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1989-04-01

    National Institute of Occupational Safety and Health, U.S.A. has listed 73 industries with potential exposure to hydrogen sulphide. Though the toxicity of hydrogen sulfide is known to mankind since the beginning of seventeenth century the exact mode of its toxicity and effective therapeutic regimen remains unclear as yet. This paper presents current thoughts on the toxicity of this substance and a discussion on the role of various antidotes used in H 2 S poisoning. (autho r)

  19. Novel Transparent Phosphor Conversion Matrix with High Thermal Conductivity for Next Generation Phosphor-Converted LED-based Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Bockstaller, Michael [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-02-06

    The low thermal conductivity of state-of-the-art polymer encapsulants (k ~ 0.15 Wm-1K-1) limits the efficiency and power density of current phosphor conversion light emitting diodes (pc-LEDs). The technical objective of this project was to demonstrate synthesis and processing schemes for the fabrication of polymer hybrid encapsulants with a thermal conductivity exceeding k = 0.4 Wm-1K-1 for LED applications. The ‘hybrid polymer’ approach encompasses the dispersion of high thermal conductivity particle fillers (zinc oxide, ZnO as well as the alpha-polymorph of alumina, Al2O3) within a polysiloxane matrix (poly(dimethylsiloxane), PDMS as well as poly(phenyl methyl siloxane), PPMS) to increase the thermal conductivity while maintaining optical transparency and photothermal stability at levels consistent with LED applications. To accomplish this goal, a novel synthesis method for the fabrication of nanosized ZnO particles was developed and a novel surface chemistry was established to modify the surface of zinc oxide particle fillers and thus to enable their dispersion in poly(dimethyl siloxane) (PDMS) matrix polymers. Molecular dynamics and Mie simulations were used to optimize ligand structure and to enable the concurrent mixing of particles in PDMS/PPMS embedding media while also minimizing the thermal boundary resistance as well as optical scattering of particle fillers. Using this approach the synthesis of PDMS/ZnO hybrid encapsulants exhibiting a thermal conductivity of 0.64 Wm-1K-1 and optical transparency > 0.7 mm-1 was demonstrated. A forming process based on micromolding was developed to demonstrate the forming of particle filled PDMS into film and lens shapes. Photothermal stability testing revealed stability of the materials for approximately 4000 min when exposed to blue light LED (450 nm, 30 W/cm2). One postgraduate and seven graduate students were supported by the project. The research performed within this project led to fifteen publications in peer

  20. Azo dye decolorization assisted by chemical and biogenic sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Prato-Garcia, Dorian [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, San Luis Potosí 78216 (Mexico); Buitrón, Germán, E-mail: gbuitronm@ii.unam.mx [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico)

    2013-04-15

    Highlights: ► Azo dyes were reduced efficiently by chemical and biogenic sulfide. ► Biogenic sulfide was more efficient than chemical sulfide. ► There was no competition between dyes and sulfate for reducing equivalents. ► Aromatic amines barely affected the sulfate-reducing process. -- Abstract: The effectiveness of chemical and biogenic sulfide in decolorizing three sulfonated azo dyes and the robustness of a sulfate-reducing process for simultaneous decolorization and sulfate removal were evaluated. The results demonstrated that decolorization of azo dyes assisted by chemical sulfide and anthraquinone-2,6-disulfonate (AQDS) was effective. In the absence of AQDS, biogenic sulfide was more efficient than chemical sulfide for decolorizing the azo dyes. The performance of sulfate-reducing bacteria in attached-growth sequencing batch reactors suggested the absence of competition between the studied azo dyes and the sulfate-reducing process for the reducing equivalents. Additionally, the presence of chemical reduction by-products had an almost negligible effect on the sulfate removal rate, which was nearly constant (94%) after azo dye injection.

  1. Simultaneous removal of sulfide, nitrate and acetate: Kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wang Aijie, E-mail: waj0578@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Liu Chunshuang; Ren Nanqi; Han Hongjun [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Lee Duujong [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2010-06-15

    Biological removal of sulfide, nitrate and chemical oxygen demand (COD) simultaneously from industrial wastewaters to elementary sulfur (S{sup 0}), N{sub 2}, and CO{sub 2}, or named the denitrifying sulfide (DSR) process, is a cost effective and environmentally friendly treatment process for high strength sulfide and nitrate laden organic wastewater. Kinetic model for the DSR process was established for the first time on the basis of Activated Sludge Model No. 1 (ASM1). The DSR experiments were conducted at influent sulfide concentrations of 200-800 mg/L, whose results calibrate the model parameters. The model correlates well with the DSR process dynamics. By introducing the switch function and the inhibition function, the competition between autotrophic and heterotrophic denitrifiers is quantitatively described and the degree of inhibition of sulfide on heterotrophic denitrifiers is realized. The model output indicates that the DSR reactor can work well at 0.5 < C/S < 3.0 with influent sulfide concentration of 400-1000 mg/L. At >1000 mg/L influent sulfide, however, the DSR system will break down.

  2. Zinc and cadmium monosalicylates

    International Nuclear Information System (INIS)

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K.

    1984-01-01

    Zinc and cadmium monosalicylates of the composition MSal, where M-Zn or Cd, Sal - twice deprotonated residue of salicylic acid O-HOC 6 H 4 COOH (H 2 Sal), are singled out and characterized. When studying thermograms, thermogravigrams, IR absorption spectra, roentgenograms of cadmium salicylate compounds (Cd(OC 6 H 4 COO) and products of their thepmal transformations, the processes of thermal decomposition of the compounds have been characterized. The process of cadmium monosalicylate decomposition takes place in one stage. Complete loss of salicylate acido group occurs in the range of 320-460 deg. At this decomposition stage cadmium oxide is formed. A supposition is made that cadmium complex has tetrahedral configuration, at that, each salicylate group plays the role of tetradentate-bridge ligand. The compound evidently has a polymer structure

  3. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Science.gov (United States)

    2010-10-01

    ... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and... containment system must be: (a) Lined with natural rubber or neoprene; (b) Lined with a material approved for phosphoric acid tanks by the Commandant (CG-522); or (c) Made of a stainless steel that resists corrosion by...

  4. Characterization of metallic surfaces in phosphorous-bronze ordered packings

    International Nuclear Information System (INIS)

    Sandru, Claudia; Titescu, Gh.

    1997-01-01

    Copper and its alloys, particularly the phosphorous bronze, are characterized by a high water wettability as compared with other materials. This feature led to utilization of phosphorous bronze in fabrication of contact elements, a packing type equipping the distillation columns. For heavy water separation by isotopic distillation under vacuum, ordered packings of phosphorous bronze networks were fabricated. The superior performances of these packings are determined by the material and also by the geometrical form and the state of the metallic surface. Thus, a procedure of evaluating the wettability has been developed, based on tests of the network material. The results of the tests constitute a criterion of rating the functional performances of packings, particularly of their efficiencies. Also, investigation techniques of the chemical composition and of the thickness of superficial layer on the packing were developed. It was found that the packing surface presents a layer of about 5-20 μm formed mainly by oxides of copper, tin, and, depending on the packing treatment, of oxides of other elements coming from the treatment agent. The paper presents characterization of phosphorous bronze treated with potassium permanganate, a specific treatment for improving the functional performances of the packings used in the heavy water concentration and re-concentration installations

  5. Comparison of different phosphorous adsorption models in acid ...

    African Journals Online (AJOL)

    This study was designed to compare the phosphorous fixation capacity of three soils series named Tyele, Minkonmingon and Mekoto in the south region of Cameroon and to determine the soil properties that are the main predictors of the P activity of those soils. Five adsorption equations viz. Linear, Langmuir, Van Huay, ...

  6. Fluoride removal performance of phosphoric acid treated lime ...

    African Journals Online (AJOL)

    Fluoride in drinking water above permissible levels is responsible for dental and skeletal fluorosis. In this study, removal of fluoride ions from water using phosphoric acid treated lime was investigated in continuous and point-of-use system operations. In the continuous column operations, fluoride removal performance was ...

  7. Method for recovery of uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Duarte Neto, J.

    1984-01-01

    The results of a method for recuperation of uranium from phosphoric acid by humid way are presented. The extracting mixture used was di-ethylhexylphosphoric acid (D 2 EHPA) and trioctylphosphine oxide (TOPO). An installation in micro-pilot scale was made to get and visualize data for continuous process. (M.A.C.) [pt

  8. Effect of nitrogen and phosphorous on Farm Plantations in various ...

    African Journals Online (AJOL)

    use

    of different suitable species of plants. The results of the soil analysis of various Agro ecological zones and the consequent recommendation of the associated suitable species, aids the agrofarmers to pick out the best possible option. Key words: Soil analysis, agro-ecological zones, agroforestry, nitrogen and phosphorous.

  9. Corrosion of graphite composites in phosphoric acid fuel cells

    Science.gov (United States)

    Christner, L. G.; Dhar, H. P.; Farooque, M.; Kush, A. K.

    1986-01-01

    Polymers, polymer-graphite composites and different carbon materials are being considered for many of the fuel cell stack components. Exposure to concentrated phosphoric acid in the fuel cell environment and to high anodic potential results in corrosion. Relative corrosion rates of these materials, failure modes, plausible mechanisms of corrosion and methods for improvement of these materials are investigated.

  10. Natural Radiation in byproducts of the production of phosphoric acid

    International Nuclear Information System (INIS)

    Silveira, Marcilei A. Guazzelli da; Cardoso, L.L.; Medina, N.H.

    2014-01-01

    Natural radiation is the largest source of radiation exposure to which man is subject. It is formed basically by cosmic radiation and the radionuclides present in the Earth crust, as 40 K and the elements of the decay series of 232 Th and 238 U. Phosphate ores, which constitutes the raw material for the production of phosphoric acid, have a high rate of natural radiation from the decay series of 232 Th and 238 U. Phosphogypsum, which is naturally radioactivity, is a by-product of the production of phosphoric acid by the wet method. For each ton of phosphoric acid it is produced about 4.5 tons of phosphogypsum. This work presents the analysis of samples collected in all stages of the manufacturing process of phosphoric acid, which generates the phosphogypsum. Gamma-ray spectrometry was used to measure the concentration of the elements of the decay series of 232 Th and 238 U. All analyzed samples showed a high concentration of radionuclides, promoting the need for further steps in the process in order to reduce the presence of such radionuclides in the phosphogypsum. The results indicate the radionuclide 238 U has higher contribution in some samples of the intermediate stages of the process. All samples exceeded the international average range of human exposure to terrestrial gamma radiation, which is 0.3 to 1.0 mSv/year. (author)

  11. Extraction studies on rare earths using dinonyl phenyl phosphoric acid

    International Nuclear Information System (INIS)

    Anitha, M.; Singh, D.K.; Kotekar, M.K.; Vijayalakshmi, R.; Singh, H.

    2011-01-01

    Rare earths are widely used in phosphor materials, magnetic substances, alloys, catalyst, lasers, superconductors, solid oxide fuel cells and in nuclear applications. The high value of these elements depends on their effective separation into high purity compounds. The separation into individual rare earths is very difficult to achieve, due to the very low separation factors between two adjacent rare earths arising due to similar chemical properties. Taking the advantage of variation in basicity, the separation is generally accomplished by solvent extraction or ion exchange. There are several references on the separation of rare earth in different media employing various types of extractants such as 2-ethylhexyl 2-ethyhexylphosphonic acid (EHEHPA) and di-2-ethyl hexyl phosphoric acid (D2EHPA) which have been widely used for the separation and purification of rare earths. Dinonyl phenyl phosphoric acid (DNPPA) is an organo phosphorus extractant (pKa = 2.54) and is an aromatic analogue of D2EHPA, which extracts metal ion by cation exchange mechanism. DNPPA was explored to recover rare earths from phosphate media such as wet process phosphoric acid and merchant grade acid. However, there is no information available in literature on DNPPA for RE extraction from chloride medium. Therefore, an attempt has been made in the present study to investigate the feasibility of using DNPPA for extraction of La(III), Dy(III) and Y(III) from chloride medium

  12. Spectral modulation through controlling anions in nanocaged phosphors

    NARCIS (Netherlands)

    Bian, H.; Liu, Y.; Yan, D.; Zhu, H.; Liu, C.; Xu, C.S.; Liu, Y.; Zhang, H.; Wang, X.

    2013-01-01

    A new approach has been proposed and validated to modulate the emission spectra of europium-doped 12CaO center dot 7Al(2)O(3) phosphors by tuning the nonradiative and radiative transition rates, realized by controlling the sort and amount of the encaged anions. A single wavelength at 255 nm can

  13. Kinetic parameters and TL mechanism in cadmium tetra borate phosphor

    International Nuclear Information System (INIS)

    Annalakshmi, O.; Jose, M.T.; Sridevi, J.; Venkatraman, B.; Amarendra, G.; Mandal, A.B.

    2014-01-01

    Polycrystalline powder samples of cadmium tetra borate were synthesized by a simple solid state sintering technique and gamma irradiated sample showed a simple Thermoluminescence (TL) glow peak around 460 K. The TL kinetic parameters of gamma irradiated phosphor were determined by initial rise (IR), isothermal decay (ID), peak shape (PS), variable heating rate (VHR) and glow curve de-convolution method. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were calculated by IR, ID, PS and VHR methods are in the order of ∼1.05 eV, 10 9 –10 12 s −1 and 1.58, respectively. From the results of TL and PL emission studies carried out on the phosphor revealed that the defect centers related to TL is different from that for PL. EPR measurements were carried out to identify the defect centers formed in cadmium tetra borate phosphor on gamma irradiation. Based on EPR studies the mechanism for TL process in cadmium tetra borate is proposed in this paper -- Highlights: • Polycrystalline powder samples of undoped cadmium tetra borate synthesized. • Cadmium tetra borate phosphor exhibits a dosimetric peak at 458 K. • Kinetic parameters of the trap responsible for TL evaluated. • TL mechanism is proposed from TL to EPR correlation studies

  14. Kinetic parameters and TL mechanism in cadmium tetra borate phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Annalakshmi, O. [Radiological Safety Division, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Jose, M.T., E-mail: mtj@igcar.gov.in [Radiological Safety Division, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Sridevi, J. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai 600 020, Tamilnadhu (India); Venkatraman, B. [Radiological Safety Division, Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Amarendra, G. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mandal, A.B. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai 600 020, Tamilnadhu (India)

    2014-03-15

    Polycrystalline powder samples of cadmium tetra borate were synthesized by a simple solid state sintering technique and gamma irradiated sample showed a simple Thermoluminescence (TL) glow peak around 460 K. The TL kinetic parameters of gamma irradiated phosphor were determined by initial rise (IR), isothermal decay (ID), peak shape (PS), variable heating rate (VHR) and glow curve de-convolution method. The kinetic parameters such as activation energy (E), frequency factor (s) and order of kinetics (b) were calculated by IR, ID, PS and VHR methods are in the order of ∼1.05 eV, 10{sup 9}–10{sup 12} s{sup −1} and 1.58, respectively. From the results of TL and PL emission studies carried out on the phosphor revealed that the defect centers related to TL is different from that for PL. EPR measurements were carried out to identify the defect centers formed in cadmium tetra borate phosphor on gamma irradiation. Based on EPR studies the mechanism for TL process in cadmium tetra borate is proposed in this paper -- Highlights: • Polycrystalline powder samples of undoped cadmium tetra borate synthesized. • Cadmium tetra borate phosphor exhibits a dosimetric peak at 458 K. • Kinetic parameters of the trap responsible for TL evaluated. • TL mechanism is proposed from TL to EPR correlation studies.

  15. Interactions among sulfide-oxidizing bacteria

    Science.gov (United States)

    Poplawski, R.

    1985-01-01

    The responses of different phototrophic bacteria in a competitive experimental system are studied, one in which primary factors such as H2S or light limited photometabolism. Two different types of bacteria shared one limited source of sulfide under specific conditions of light. The selection of a purple and a green sulfur bacteria and the cyanobacterium was based on their physiological similarity and also on the fact that they occur together in microbial mats. They all share anoxygenic photosynthesis, and are thus probably part of an evolutionary continuum of phototrophic organisms that runs from, strictly anaerobic physiology to the ability of some cyanobacteria to shift between anoxygenic bacterial style photosynthesis and the oxygenic kind typical of eukaryotes.

  16. Eelgrass fairy rings: sulfide as inhibiting agent

    DEFF Research Database (Denmark)

    Borum, Jens; Raun, Ane-Marie Løvendahl; Hasler-Sheetal, Harald

    2014-01-01

    specifically, for the apparent die- off of eelgrass shoots on the inner side of the rings. The fairy rings were up to 15 m in diameter consisting of 0.3- to 1-m-wide zones of sea grass shoots at densities of up to 1,200 shoots m−2 and rooted in an up to 10-cm-thick sediment layer. On the outer side, shoots...... expanded over the bare chalk plates. On the inner side, shoots were smaller, had lower absolute and specific leaf growth, shoot density was lower and the sediment eroded leaving the bare chalk with scattered boulders behind. Sediment organic matter and nutrients and tissue nutrient contents were...... substantial invasion of sulfide from the sediment. neither the clonal growth pattern of eelgrass, sediment burial of shoots, hydrodynamic forcing nor nutrient limitation could explain the ring-shaped pattern. We conclude that the most likely explanation must be found in invasion of eelgrass shoots by toxic...

  17. On the pelletizing of sulfide molybdenite concentrate

    International Nuclear Information System (INIS)

    Palant, A.A.

    2007-01-01

    Investigation results are discussed on the process of pelletizing with the use of various binders (water, syrup, sulfite-alcoholic residue and bentonite) for flotation sulfide molybdenite concentrate (∼84 % MoS 2 ) of the Mongolian deposit. It is established that with the use of syrup rather strong pellets (>300 g/p) of desired size (2-3 mm) can be obtained at a binder flowrate of 1 kg per 100 kg of concentrate. The main advantage of using syrup instead of bentonite lies in the fact that in this instance no depletion of a molybdenum calcine obtained by oxidizing roasting of raw ore takes place due to syrup complete burning out. This affects positively subsequent hydrometallurgical conversion because of decreasing molybdenum losses with waste cakes [ru

  18. Modulated structure calculated for superconducting hydrogen sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Arnab; Tse, John S.; Yao, Yansun [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK (Canada)

    2017-09-11

    Compression of hydrogen sulfide using first principles metadynamics and molecular dynamics calculations revealed a modulated structure with high proton mobility which exhibits a diffraction pattern matching well with experiment. The structure consists of a sublattice of rectangular meandering SH{sup -} chains and molecular-like H{sub 3}S{sup +} stacked alternately in tetragonal and cubic slabs forming a long-period modulation. The novel structure offers a new perspective on the possible origin of the superconductivity at very high temperatures in which the conducting electrons in the SH chains are perturbed by the fluxional motions of the H{sub 3}S resulting in strong electron-phonon coupling. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Synthesis and luminescence properties of Eu"2"+ doped CaSO_4 phosphor

    International Nuclear Information System (INIS)

    Aghalte, G.A.; Dhoble, S.J.; Pawar, N.R.

    2016-01-01

    Eu"2"+ doped CaSO_4 Phosphor were synthesized by precipitation method. PL analysis of Eu"2"+ activated CaSO_4 phosphor exhibited characteristic emission properties; CaSO_4:Eu Phosphor has received considerable attention because of its high sensitivity to X-ray and λ ray irradiation. CaSO_4:Eu phosphor powder was successfully synthesized by the wet chemical co-precipitation method. The structure morphology and luminescent properties of the phosphor were characterized by X-ray diffraction, scanning electron microscopy and photoluminescence spectroscopy

  20. On the feasibility of infrared phosphors in super-slow particle searches

    International Nuclear Information System (INIS)

    Hagstrom, R.; Rugari, A.D.

    1984-01-01

    This chapter proposes that super-slow projectiles will produce ionization signals in media with narrow bandgaps. A specific choice of narrow bandgap phosphors is recommended which would be economically suitable for use as detectors. Topics considered include the possibilities for practical detectors, a description of detectors based on narrow bandgap phosphors, the experimental determination of relevant properties of narrow bandgap phosphors, and the observation of ionizing particles using narrow bandgap phosphors. It is determined that the temperature dependence of the glow of the phosphors is strong enough that a reduction of operating temperature by about 60 C could be sufficient to produce the desired signal to background ratio

  1. Mechanism of hydrodenitrogenation on phosphides and sulfides.

    Science.gov (United States)

    Oyama, S Ted; Lee, Yong-Kul

    2005-02-17

    The mechanism of hydrodenitrogenation (HDN) of 2-methylpiperidine was studied over a silica-supported nickel phosphide catalyst (Ni2P/SiO2, Ni/P = 1/2) and a commercial Ni-Mo-S/Al2O3 catalyst in a three-phase trickle-bed reactor operated at 3.1 MPa and 450-600 K. Analysis of the product distribution as a function of contact time indicated that the reaction proceeded in both cases predominantly by a substitution mechanism, with a smaller contribution of an elimination mechanism. Fourier transform infrared spectroscopy (FTIR) of the 2-methylpiperidine indicated that at reaction conditions a piperidinium ion intermediate was formed on both the sulfide and the phosphide. It is concluded that the mechanism of HDN on nickel phosphide is very similar to that on sulfides. The mechanism on the nickel phosphide was also probed by comparing the reactivity of piperidine and several of its derivatives in the presence of 3000 ppm S. The relative elimination rates depended on the structure of the molecules, and followed the sequence: 4-methylpiperidine approximately piperidine > 3-methylpiperidine > 2,6-dimethylpiperidine > 2-methylpiperidine. [Chemical structure: see text] This order of reactivity was not dependent on the number of alpha-H or beta-H atoms in the molecules, ruling out their reaction through a single, simple mechanism. It is likely that the unhindered piperidine molecules reacted by an S(N)2 substitution process and the more hindered 2,6-dimethylpiperidine reacted by an E2 elimination process.

  2. New cyclic sulfides, garlicnins I2, M, N, and O, from Allium sativum.

    Science.gov (United States)

    Nohara, Toshihiro; Ono, Masateru; Nishioka, Naho; Masuda, Fuka; Fujiwara, Yukio; Ikeda, Tsuyoshi; Nakano, Daisuke; Kinjo, Junei

    2018-01-01

    One atypical thiolane-type sulfide, garlicnin I 2 (1), two 3,4-dimethylthiolane-type sulfides, garlicnins M (2) and N (3), and one thiabicyclic-type sulfide, garlicnin O (4), were isolated from the acetone extracts of Chinese garlic bulbs, Allium sativum and their structures were characterized. Hypothetical pathways for the production of the respective sulfides were discussed.

  3. Optimization of the superconducting phase of hydrogen sulfide

    Science.gov (United States)

    Degtyarenko, N. N.; Masur, E. A.

    2015-12-01

    The electron and phonon spectra, as well as the densities of electron and phonon states of the SH3 phase and the stable orthorhombic structure of hydrogen sulfide SH2, are calculated for the pressure interval 100-225 GPa. It is found that the I4/ mmm phase can be responsible for the superconducting properties of metallic hydrogen sulfide along with the SH3 phase. Sequential stages for obtaining and conservation of the SH2 phase are proposed. The properties of two (SH2 and SH3) superconducting phases of hydrogen sulfide are compared.

  4. Process for scavenging hydrogen sulfide from hydrocarbon gases

    International Nuclear Information System (INIS)

    Fox, I.

    1981-01-01

    A process for scavenging hydrogen sulfide from hydrocarbon gases utilizes iron oxide particles of unique chemical and physical properties. These particles have large surface area, and are comprised substantially of amorphous Fe 2 O 3 containing a crystalline phase of Fe 2 O 3 , Fe 3 O 4 and combinations thereof. In scavenging hydrogen sulfide, the iron oxide particles are suspended in a liquid which enters into intimate mixing contact with hydrocarbon gases; the hydrogen sulfide is reacted at an exceptional rate and only acid-stable reaction products are formed. Thereafter, the sweetened hydrocarbon gases are collected

  5. Sulfidization of an aluminocobaltomolybdenum catalyst using the 35S radioisotope

    International Nuclear Information System (INIS)

    Isagulyants, G.V.; Greish, A.A.; Kogan, V.M.

    1987-01-01

    It has been established that in aluminocobaltomolybdenum catalyst sulfidized with elemental sulfur there are two types of sulfur, free and bound. The maximum amount of bound sulfur in ACM catalyst is 6.6 wt. %, which corresponds to practically complete sulfidation of the ACM catalyst. In the presence of hydrogen an equilibrium distribution of bound sulfur is achieved in a granule of ACM catalyst irrespective of the temperature of sulfidation. In a nitrogen atmosphere it is primarily the surface layers of the catalyst that are sulfured

  6. Sulfide Oxidation in the Anoxic Black-Sea Chemocline

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; FOSSING, H.; WIRSEN, CO

    1991-01-01

    per day, occurred in anoxic water at the top of the sulfide zone concurrent with the highest rates of dark CO2 assimilation. The main soluble oxidized products of sulfide were thiosulfate (68-82%) and sulfate. Indirect evidence was presented for the formation of elemental sulfur which accumulated...... that the measured H2S oxidation rates were 4-fold higher than could be explained by the downward flux of organic carbon and too high to balance the availability of electron acceptors such as oxidized iron or manganese. A nitrate maximum at the lower boundary of the O2 zone did not extend down to the sulfide zone....

  7. Thermoelectric properties of non-stoichiometric lanthanum sulfides

    International Nuclear Information System (INIS)

    Shapiro, E.; Danielson, L.R.

    1983-01-01

    The lanthanum sulfides are promising candidate materials for high-efficiency thermoelectric applications at temperatures up to 1300 0 C. The nonstoichiometric lanthanum sulfides (LaS /SUB x/ , where 1.33 2 //rho/ can be chosen. The thermal conductivity remains approximately constant with stoichiometry, so a material with an optimum value of α 2 //rho/ should possess the optimum figure-of-merit. Data for the Seebeck coefficient and electrical resistivity of non-stoichiometric lanthanum sulfides is presented, together with structural properties of these materials

  8. Denitrifying sulfide removal process on high-salinity wastewaters.

    Science.gov (United States)

    Liu, Chunshuang; Zhao, Chaocheng; Wang, Aijie; Guo, Yadong; Lee, Duu-Jong

    2015-08-01

    Denitrifying sulfide removal (DSR) process comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide, and acetate into nitrogen gas, elemental sulfur (S(0)), and carbon dioxide, respectively. Sulfide- and nitrate-laden wastewaters at 2-35 g/L NaCl were treated by DSR process. A C/N ratio of 3:1 was proposed to maintain high S(0) conversion rate. The granular sludge with a compact structure and smooth outer surface was formed. The microbial communities of DSR consortium via high-throughput sequencing method suggested that salinity shifts the predominating heterotrophic denitrifiers at 10 g/L NaCl.

  9. Investigation of the synergic effect of some neutral organophosphoric compounds on the extraction of uranium from phosphoric acid solutions by D1-(2-Ethyl Hexyl) phosphoric acid

    International Nuclear Information System (INIS)

    Stas, J.; Khorfan, S.; Koudsi, Y.

    1998-05-01

    The extraction of uranium (VI) from pure phosphoric acid media by D2EHPA/Kerosene has been studied. The mechanism of the extraction was found as follows: The logarithm of the equilibrium constant of the extraction (LogKex) was found (3.06), (3.32), (3.24), (3.3) for the following phosphoric acid concentrations respectively (1), (2), (3), (4) Mol/1, and the enthalpy change DELTA H was found (-100.68 kj/mol). (-76 kj/mol) for (1), (2) mol/1 phosphoric acid concentrations. The synergic effect of TOPO, TBP, and TBPI with DEHPA have been studied during the extraction of uranium from pure phosphoric acid and Syrian commercial phosphoric acid. The synergic effect increases as follows: TBP< TBPI<< TOPO (In pure phosphoric acid), TBPI approx TBP<< TOPO (In Syrian commercial phosphoric acid). The difficulty of extracting uranium (VI) from Syrian commercial phosphoric acid in comparison with pure phosphoric acid is due to the presence of several impurities capable of complexing uranium, and a small amounts of solid and organic matters, all these are factors which reduce the distribution coefficient of uranium. (Author)

  10. Rare earth activated yttrium aluminate phosphors with modulated luminescence.

    Science.gov (United States)

    Muresan, L E; Popovici, E J; Perhaita, I; Indrea, E; Oro, J; Casan Pastor, N

    2016-06-01

    Yttrium aluminate (Y3 A5 O12 ) was doped with different rare earth ions (i.e. Gd(3+) , Ce(3+) , Eu(3+) and/or Tb(3+) ) in order to obtain phosphors (YAG:RE) with general formula,Y3-x-a Gdx REa Al5 O12 (x = 0; 1.485; 2.97 and a = 0.03). The synthesis of the phosphor samples was done using the simultaneous addition of reagents technique. This study reveals new aspects regarding the influence of different activator ions on the morpho-structural and luminescent characteristics of garnet type phosphor. All YAG:RE phosphors are well crystallized powders containing a cubic-Y3 Al5 O12 phase as major component along with monoclinic-Y4 Al2 O9 and orthorhombic-YAlO3 phases as the impurity. The crystallites dimensions of YAG:RE phosphors vary between 38 nm and 88 nm, while the unit cell slowly increase as the ionic radius of the activator increases. Under UV excitation, YAG:Ce exhibits yellow emission due to electron transition in Ce(3+) from the 5d level to the ground state levels ((2) F5/2 , (2) F7/2 ). The emission intensity of Ce(3+) is enhanced in the presence of the Tb(3+) ions and is decreased in the presence of Eu(3+) ions due to some radiative or non-radiative processes that take place between activator ions. By varying the rare earth ions, the emission colour can be modulated from green to white and red. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Use of sulfide-containing liquors for removing mercury from flue gases

    Science.gov (United States)

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  12. Remediation of Sulfidic Wastewater by Aeration in the Presence of Ultrasonic Vibration

    Directory of Open Access Journals (Sweden)

    F. Ahmad

    2018-06-01

    Full Text Available In the current study, the aerial oxidation of sodium sulfide in the presence of ultrasonic vibration is investigated. Sulfide analysis was carried out by the methylene blue method. Sodium sulfide is oxidized to elemental sulfur in the presence of ultrasonic vibration. The influence of air flow rate, initial sodium sulfide concentration and ultrasonic vibration intensity on the oxidation of sodium sulfide was investigated. The rate law equation regarding the oxidation of sulfide was determined from the experimental data. The order of reaction with respect to sulfide and oxygen was found to be 0.36 and 0.67 respectively. The overall reaction followed nearly first order kinetics.

  13. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, M.H.; Jha, M.C.

    1989-10-01

    AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

  14. Effect of grinding on photostimuable phosphors for x-ray screens

    International Nuclear Information System (INIS)

    Rao, R.B.

    1988-01-01

    Luminescence efficiency of a phosphor can be improved by minimizing the energy losses during excitation. The loss of excitation energy in the case of powdered samples is mainly due to scattering of incident radiation by the particles of phosphor. Thus, while considering the industrial applications of polycrystalline phosphors in lamps, screens, paints, etc., the effect of particle size on the light output has to be specially studied. It is very well established that the radiographic imaging with photostimuable (PS) phosphors has many advantages over conventional photographic film screens. In the new type of computer radiography, PS phosphors are to be used as memory materials for temporary storage of the x-ray image. Eu(2+) doped barium fluorohalide phosphors are most suitable for this purpose. The spatial resolution from the image plate can be improved to a certain extent with phosphors comprising fine particles. The fineness of the particles can be achieved by various means such as grinding, fast cooling after firing or incorporation of some flux materials during the firing processes. But the efficiency of the phosphor deteriorates with grinding. Fast cooling is a complicated process in the case of Eu(2+) doped phosphors. Incorporation of flux materials may change the characteristics of phosphor materials. In the present investigation, effect of grinding (ball milling) on particle size distribution, shape of the particles and luminescent properties of BaFCl phosphors have been studied

  15. Maternal Zinc Intakes and Homeostatic Adjustments during Pregnancy and Lactation

    OpenAIRE

    Donangelo, Carmen Marino; King, Janet C.

    2012-01-01

    Zinc plays critical roles during embryogenesis, fetal growth, and milk secretion, which increase the zinc need for pregnancy and lactation. Increased needs can be met by increasing the dietary zinc intake, along with making homeostatic adjustments in zinc utilization. Potential homeostatic adjustments include changes in circulating zinc, increased zinc absorption, decreased zinc losses, and changes in whole body zinc kinetics. Although severe zinc deficiency during pregnancy has devastating e...

  16. Structural and luminescence properties of yellow Y3Al5012:Ce3+ thin film phosphors prepared by Pulsed Laser Deposition

    CSIR Research Space (South Africa)

    Dejene, FB

    2012-07-01

    Full Text Available of the phosphore/epoxy hybrid system is the difficulty of achieving uniform emission of white light from the LED. In order to overcome the challenges of using mixtures of phosphore powders and epoxies thin film phosphore has been used. In this study, YAG phosphore...

  17. Photoluminescence studies on holmium (III) and praseodymium (III) doped calcium borophosphate (CBP) phosphors

    Science.gov (United States)

    Reddy Prasad, V.; Damodaraiah, S.; Devara, S. N.; Ratnakaram, Y. C.

    2018-05-01

    Using solid state reaction method, Ho3+ and Pr3+ doped calcium borophosphate (CBP) phosphors were prepared. These phosphors were characterized using XRD, SEM, FT-IR, 31P solid state NMR, photoluminescence (PL) and decay profiles. Structural details were discussed from XRD and FT-IR spectra. From 31P NMR spectra of these phosphors, mono-phosphate complexes Q0-(PO43-) were observed. Photoluminescence spectra were measured for both Ho3+ and Pr3+ doped calcium borophosphate phosphors and the spectra were studied for different concentrations. Decay curves were obtained for the excited level, 5F4+5S2 of Ho3+ and 1D2 level of Pr3+ in these calcium borophosphate phosphors and lifetimes were measured. CIE color chromaticity diagrams are drawn for these two rare earth ions in calcium borophosphate phosphors. Results show that Ho3+ and Pr3+ doped CBP phosphors might be served as green and red luminescence materials.

  18. Encapsulation of strontium aluminate phosphors to enhance water resistance and luminescence

    International Nuclear Information System (INIS)

    Zhu Yong; Zeng Jianghua; Li Wenyu; Xu Li; Guan Qiu; Liu Yingliang

    2009-01-01

    Strontium aluminate SrAl 2 O 4 :Eu 2+ ,Dy 3+ phosphors are chemically unstable against water or even moisture. To enhance the water resistance of the phosphors, an encapsulation was performed by direct surface reactions with phosphoric acid (H 3 PO 4 ). The morphology, surface structure, surface element composition, water resistance, luminescence, and photoacoustic spectrum of the phosphors before and after encapsulation were discussed. Experimental results showed that phosphors were perfectly encapsulated by amorphous layers in nanoscale and crystalline layers in microscale under different conditions. The water resistance of phosphors was greatly enhanced by the two types of layer. More importantly, the amorphous layers enhanced the luminescence of phosphors markedly. The possible mechanism for the enhancements was also proposed.

  19. Preparation of red phosphor (Y, Gd)BO3:Eu by soft chemistry methods

    International Nuclear Information System (INIS)

    Cui Xiangzhong; Zhuang Weidong; Yu Zhijian; Xia Tian; Huang Xiaowei; Li Hongwei

    2008-01-01

    The three soft chemistry methods were employed to prepare the red phosphor (Y, Gd)BO 3 :Eu, such as coprecipitation-combustion method, salt assisted combustion method and emulsion method. The main factors affecting particle size, particle distribution and luminescent properties of the product were investigated in detail, and as a result, the preparation processes were optimized. The phosphors were characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), transmission electronic microscope (TEM) and vacuum ultraviolet (VUV) spectra. Results reveal that phosphors with different morphology, small particle size and high luminescence intensity could be obtained by soft chemistry methods. The difference between the luminescence properties of phosphors in this work and commercial rare earth borate phosphor is discussed. The phosphor with grain shape and high luminescence intensity could be prepared by coprecipitation-combustion method, nanophosphor could be prepared by salt assisted combustion method, and spherical phosphor with a narrow size distribution could be obtained by using emulsion method

  20. White light-emitting diodes (LEDs) using (oxy)nitride phosphors

    International Nuclear Information System (INIS)

    Xie, R-J; Hirosaki, N; Sakuma, K; Kimura, N

    2008-01-01

    (Oxy)nitride phosphors have attracted great attention recently because they are promising luminescent materials for phosphor-converted white light-emitting diodes (LEDs). This paper reports the luminescent properties of (oxy)nitride phosphors in the system of M-Si-Al-O-N (M = Li, Ca or Sr), and optical properties of white LEDs using a GaN-based blue LED and (oxy)nitride phosphors. The phosphors show high conversion efficiency of blue light, suitable emission colours and small thermal quenching. The bichromatic white LEDs exhibit high luminous efficacy (∼55 lm W -1 ) and the multi-phosphor converted white LEDs show high colour rendering index (Ra 82-95). The results indicate that (oxy)nitride phosphors demonstrate their superior suitability to use as down-conversion luminescent materials in white LEDs

  1. Effect of zinc from zinc sulfate on trace mineral concentrations of milk ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... It suggests that supplementation of ewes diet with zinc sulfate could be an effective way to increase zinc ... alkaline phosphates activity. Zinc supplements were .... Similar results have been reported previously when dairy cows.

  2. Studies on nanocrystalline zinc coating

    Indian Academy of Sciences (India)

    Wintec

    The particles size was also characterized by TEM analysis. Keywords. Electrochemical ... netic materials for magnetic recording, and electrocatalyst for hydrogen .... polarization behaviour was studied in the test electrolyte for zinc deposit of ...

  3. Enhanced sulfidation xanthate flotation of malachite using ammonium ions as activator

    OpenAIRE

    Dandan Wu; Wenhui Ma; Yingbo Mao; Jiushuai Deng; Shuming Wen

    2017-01-01

    In this study, ammonium ion was used to enhance the sulfidation flotation of malachite. The effect of ammonium ion on the sulfidation flotation of malachite was investigated using microflotation test, inductively coupled plasma (ICP) analysis, zeta potential measurements, and scanning electron microscope analysis (SEM). The results of microflotation test show that the addition of sodium sulfide and ammonium sulfate resulted in better sulfidation than the addition of sodium sulfide alone. The ...

  4. Organically pillared layered zinc hydroxides

    International Nuclear Information System (INIS)

    Kongshaug, K.O.; Fjellvaag, Helmer

    2004-01-01

    The two organically pillared layered zinc hydroxides [Zn 2 (OH) 2 (ndc)], CPO-6, and [Zn 3 (OH) 4 (bpdc)], CPO-7, were obtained in hydrothermal reactions between 2,6-naphthalenedicarboxylic acid (ndc) and zinc nitrate (CPO-6) and 4,4'biphenyldicarboxylate (bpdc) and zinc nitrate (CPO-7), respectively. In CPO-6, the tetrahedral zinc atoms are connected by two μ 2 -OH groups and two carboxylate oxygen atoms, forming infinite layers extending parallel to the bc-plane. These layers are pillared by ndc to form a three-dimensional structure. In CPO-7, the zinc hydroxide layers are containing four-, five- and six coordinated zinc atoms, and the layers are built like stairways running along the [001] direction. Each step is composed of three infinite chains running in the [010] direction. Both crystal structures were solved from conventional single crystal data. Crystal data for CPO-6: Monoclinic space group P2 1 /c (No. 14), a=11.9703(7), b=7.8154(5), c=6.2428(4) A, β=90.816(2) deg., V=583.97(6) A 3 and Z=4. Crystal data for CPO-7: Monoclinic space group C2/c (No. 15), a=35.220(4), b=6.2658(8), c=14.8888(17) A, β=112.580(4) deg., V=3033.8(6) A 3 and Z=8. The compounds were further characterized by thermogravimetric- and chemical analysis

  5. Instrument for Airborne Measurement of Carbonyl Sulfide, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop small, low power instrumentation for the real-time direct measurement of carbonyl sulfide (OCS) in the atmosphere, especially...

  6. New sulfide catalysts for the hydroliquefaction of coal

    NARCIS (Netherlands)

    Vissers, J.P.R.; Oers, van E.M.; Beer, de V.H.J.; Prins, R.

    1987-01-01

    Possibilities for the preparation of new metal sulfide catalyst systems based on carbon carriers having favourable textural and surface properties have been explored, and attention has been given to the characterization (structure) and evaluation (hydrosulfurization activity) of these catalysts. Two

  7. Formation of Copper Sulfide Precipitate in Solid Iron

    Science.gov (United States)

    Urata, Kentaro; Kobayashi, Yoshinao

    The growth rate of copper sulfide precipitates has been measured in low carbon steel samples such as Fe-0.3mass%Cu-0.03mass%S-0.1mass%C and Fe-0.1mass%Cu-0.01mass%S- 0.1mass%C. Heat-treatment of the samples was conducted at 1273, 1423 and 1573 K for 100 s - 14.4 ks for precipitation of copper sulfides and then the samples were observed by a scanning electron microscope and a transmission electron microscope to measure the diameter of copper sulfides precipitated in the samples. The growth rate of copper sulfide has been found to be well described by the Ostwald growth model, as follows: R\

  8. Optimization of biological sulfide removal in a CSTR bioreactor.

    Science.gov (United States)

    Roosta, Aliakbar; Jahanmiri, Abdolhossein; Mowla, Dariush; Niazi, Ali; Sotoodeh, Hamidreza

    2012-08-01

    In this study, biological sulfide removal from natural gas in a continuous bioreactor is investigated for estimation of the optimal operational parameters. According to the carried out reactions, sulfide can be converted to elemental sulfur, sulfate, thiosulfate, and polysulfide, of which elemental sulfur is the desired product. A mathematical model is developed and was used for investigation of the effect of various parameters on elemental sulfur selectivity. The results of the simulation show that elemental sulfur selectivity is a function of dissolved oxygen, sulfide load, pH, and concentration of bacteria. Optimal parameter values are calculated for maximum elemental sulfur selectivity by using genetic algorithm as an adaptive heuristic search. In the optimal conditions, 87.76% of sulfide loaded to the bioreactor is converted to elemental sulfur.

  9. Effect of zinc sources on yield and utilization of zinc in rice-wheat sequence

    International Nuclear Information System (INIS)

    Deb, D.L.

    1990-01-01

    A field experiment was conducted on an inceptisol of Delhi to evaluate three sources of zinc, namely, zinc sulphate, zincated urea and zinc oxide on yield and utilization of zinc in rice-wheat sequence. Results indicated that, amongst the three zinc sources, zinc sulphate and zincated urea gave the best performance in increasing the grain yield of rice whereas zinc oxide depressed the grain yield of wheat significantly when compared to other treatments. The highest Zn derived from fertilizer and its utilization was obtained with zinc sulphate for both rice and wheat crops. (author). 9 refs., 4 tabs

  10. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  11. Hydrogen sulfide oxidation without oxygen - oxidation products and pathways

    International Nuclear Information System (INIS)

    Fossing, H.

    1992-01-01

    Hydrogen sulfide oxidation was studied in anoxic marine sediments-both in undisturbed sediment cores and in sediment slurries. The turn over of hydrogen sulfide was followed using 35 S-radiolabeled hydrogen sulfide which was injected into the sediment. However, isotope exchange reactions between the reduced sulfur compounds, in particular between elemental sulfur and hydrogen sulfide, influenced on the specific radioactivity of these pools. It was, therefore, not possible to measure the turn over rates of the reduced sulfur pools by the radiotracer technique but merely to use the radioisotope to demonstrate some of the oxidation products. Thiosulfate was one important intermediate in the anoxic oxidation of hydrogen sulfide and was continuously turned over by reduction, oxidation and disproportionation. The author discusses the importance of isotope exchange and also presents the results from experiments in which both 35 S-radiolabeled elemental sulfur, radiolabeled hydrogen sulfide and radiolabeled thiosulfate were used to study the intermediates in the oxidative pathways of the sulfur cycle

  12. Bioavailability and stability of mercury sulfide in Armuchee (USA) soil

    International Nuclear Information System (INIS)

    Han, Fengxiang; Shiyab, Safwan; Su, Yi; Monts, David L.; Waggoner, Charles A.; Matta, Frank B.

    2007-01-01

    Because of the adverse effects of elemental mercury and mercury compounds upon human health, the U.S. Department of Energy (DOE) is engaged in an on-going effort to monitor and remediate mercury-contaminated DOE sites. In order to more cost effectively implement those extensive remediation efforts, it is necessary to obtain an improved understanding of the role that mercury and mercury compounds play in the ecosystem. We have conducted pilot scale experiments to study the bioavailability of mercury sulfide in an Armuchee (eastern US ) soil. The effects of plants and incubation time on chemical stability and bioavailability of HgS under simulated conditions of the ecosystem have been examined, as has the dynamics of the dissolution of mercury sulfide by various extractants. The results show that mercury sulfide in contaminated Armuchee soil was still to some extent bioavailable to plants. After planting, soil mercury sulfide is more easily dissolved by both 4 M and 12 M nitric acid than pure mercury sulfide reagent. Dissolution kinetics of soil mercury sulfide and pure chemical reagent by nitric acid are different. Mercury release by EDTA from HgS-contaminated soil increased with time of reaction and soil mercury level. Chelating chemicals increase the solubility and bioavailability of mercury in HgS-contaminated soil. (authors)

  13. Laser cleaning of sulfide scale on compressor impeller blade

    International Nuclear Information System (INIS)

    Tang, Q.H.; Zhou, D.; Wang, Y.L.; Liu, G.F.

    2015-01-01

    Highlights: • The effects of sulfide layers and fluence values on the mechanism of laser cleaning were experimentally established. • The specimen surface with sulfide scale becomes slightly smoother than that before laser cleaning. • The mechanism of laser cleaning the sulfide scale of stainless steel is spallation without oxidization. • It would avoid chemical waste and dust pollution using a fiber laser instead of using nitric acids or sandblasting. - Abstract: Sulfide scale on the surface of a compressor impeller blade can considerably reduce the impeller performance and its service life. To prepare for subsequent remanufacturing, such as plasma spraying, it needs to be removed completely. In the corrosion process on an FV(520)B stainless steel, sulfide scale is divided into two layers because of different outward diffusion rates of Cr, Ni and Fe. In this paper, the cleaning threshold values of the upper and inner layers and the damage threshold value of the substrate were investigated using a pulsed fiber laser. To obtain experimental evidence, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and 3D surface profilometry were employed to investigate the two kinds of sulfide layers on specimens before, during, and after laser cleaning.

  14. Hydrogen sulfide production from subgingival plaque samples.

    Science.gov (United States)

    Basic, A; Dahlén, G

    2015-10-01

    Periodontitis is a polymicrobial anaerobe infection. Little is known about the dysbiotic microbiota and the role of bacterial metabolites in the disease process. It is suggested that the production of certain waste products in the proteolytic metabolism may work as markers for disease severity. Hydrogen sulfide (H2S) is a gas produced by degradation of proteins in the subgingival pocket. It is highly toxic and believed to have pro-inflammatory properties. We aimed to study H2S production from subgingival plaque samples in relation to disease severity in subjects with natural development of the disease, using a colorimetric method based on bismuth precipitation. In remote areas of northern Thailand, adults with poor oral hygiene habits and a natural development of periodontal disease were examined for their oral health status. H2S production was measured with the bismuth method and subgingival plaque samples were analyzed for the presence of 20 bacterial species with the checkerboard DNA-DNA hybridization technique. In total, 43 subjects were examined (age 40-60 years, mean PI 95 ± 6.6%). Fifty-six percent had moderate periodontal breakdown (CAL > 3  7 mm) on at least one site. Parvimonas micra, Filifactor alocis, Porphyromonas endodontalis and Fusobacterium nucleatum were frequently detected. H2S production could not be correlated to periodontal disease severity (PPD or CAL at sampled sites) or to a specific bacterial composition. Site 21 had statistically lower production of H2S (p = 0.02) compared to 16 and 46. Betel nut chewers had statistically significant lower H2S production (p = 0.01) than non-chewers. Rapid detection and estimation of subgingival H2S production capacity was easily and reliably tested by the colorimetric bismuth sulfide precipitation method. H2S may be a valuable clinical marker for degradation of proteins in the subgingival pocket. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Physiological behavior of hydrogen sulfide in rice plant. Part 5. Effect of hydrogen sulfide on respiration of rice roots

    Energy Technology Data Exchange (ETDEWEB)

    Okajima, H; Takagi, S

    1955-01-01

    The inhibitory effects of hydrogen sulfide on the respiration of rice plant roots were investigated using Warburg's manometory technique. Hydrogen sulfide inhibited not only aerobic respiration but anaerobic respiration process of roots. Inhibitory action of hydrogen sulfide and potassium cyanide on the respiration were apparently reversible, but the style of recovery reaction from inhibition was somewhat different in each case. Oxygen consumption of roots was increased by addition of ammonium salts, but the same effects were not recognized by the addition of any other salt examined (except nitrate salts). There was close relationship between respiration of roots and assimilation of nitrogen by roots. The increased oxygen uptake by addition of ammonium salt was also inhibited by hydrogen sulfide. The reactivation of this reaction occurred with the recovery of endogenous respiration of roots. 19 references, 8 figures, 3 tables.

  16. Phosphors for solid-state lighting: New systems, deeper understanding

    Science.gov (United States)

    Denault, Kristin Ashley

    We explore the structure-composition-property relationships in phosphor materials using a multitude of structural and optical characterization methods including high resolution synchrotron X-ray and neutron powder diffraction and total scattering, low-temperature heat capacity, temperature- and time-resolved photoluminescence, and density functional theory calculations. We describe the development of several new phosphor compositions and provide an in-depth description of the structural and optical properties. We show structural origins of improved thermal performance of photoluminescence and methods for determining structural rigidity in phosphor hosts that may lead to improved luminescent properties. New white light generation strategies are also explored. We begin by presenting the development of a green-yellow emitting oxyfluoride solid-solution phosphor Sr2Ba(AlO4F)1- x(SiO5)x:Ce3+. An examination of the host lattice, and the local structure around the Ce3+ activator ions points to how chemical substitutions play a crucial role in tuning the optical properties of the phosphor. The emission wavelength can be tuned from green to yellow by tuning the composition, x. Photoluminescent quantum yield is determined to be 70+/-5% for some of the examples in the series with excellent thermal properties. Phosphor-converted LED devices are fabricated using an InGaN LED and are shown to exhibit high color rendering white light. Next, we identify two new phosphor solid-solution systems, (Ba1- xSrx)9 Sc2Si6O24:Ce3+,Li+ and Ba9(Y1-ySc y)2Si6O24:Ce3+. The substitution of Sr for Ba in (Ba1-xSrx ) 9Sc2Si6O24:Ce 3+,Li + results in a decrease of the alkaline earth-oxygen bond distances at all three crystallographic sites, leading to changes in optical properties. The room temperature photoluminescent measurements show the structure has three excitation peaks corresponding to Ce3+ occupying the three independent alkaline earth sites. The emission of (Ba 1- xSrx) 9Sc2Si 6O24:Ce3

  17. Zinc content of selected tissues and taste perception in rats fed zinc deficient and zinc adequate rations

    International Nuclear Information System (INIS)

    Boeckner, L.S.; Kies, C.

    1986-01-01

    The objective of the study was to determine the effects of feeding zinc sufficient and zinc deficient rations on taste sensitivity and zinc contents of selected organs in rats. The 36 Sprague-Dawley male weanling rats were divided into 2 groups and fed zinc deficient or zinc adequate rations. The animals were subjected to 4 trial periods in which a choice of deionized distilled water or a solution of quinine sulfate at 1.28 x 10 -6 was given. A randomized schedule for rat sacrifice was used. No differences were found between zinc deficient and zinc adequate rats in taste preference aversion scores for quinine sulfate in the first three trial periods; however, in the last trial period rats in the zinc sufficient group drank somewhat less water containing quinine sulfate as a percentage of total water consumption than did rats fed the zinc deficient ration. Significantly higher zinc contents of kidney, brain and parotid salivary glands were seen in zinc adequate rats compared to zinc deficient rats at the end of the study. However, liver and tongue zinc levels were lower for both groups at the close of the study than were those of rats sacrificed at the beginning of the study

  18. Anomalous concentrations of zinc and copper in highmoor peat bog, southeast coast of Lake Baikal

    Science.gov (United States)

    Bobrov, V. A.; Bogush, A. A.; Leonova, G. A.; Krasnobaev, V. A.; Anoshin, G. N.

    2011-08-01

    When examining the peat deposit discovered in Vydrinaya bog, South Baikal region, the authors encountered anomalous Zn and Cu concentrations for highmoors being up to 600-500 ppm on a dry matter basis in the Early Holocene beds (360-440 cm) formed 11 000-8500 years ago. It has been demonstrated that Zn and Cu are present inside the plant cells of peat moss in the form of authigenic sulfide minerals of micron size. Apart from Zn and Cu, native Ag particles (5-7 um) have been encountered in the peat of the Vydrinaya bog at a depth of 390-410 cm; these particles formed inside the organic matter of the plasma membrane of peat moss containing Ca, Al, S, and Cu. This study suggests probable patterns of the formation of zinc sulfides, copper sulfides, and native silver in peat moss. The results obtained indicate that biogenic mineral formation plays a significant role in this system, which is a very important argument in the discussion on the ore genesis, in which physicochemical processes are normally favored, while the role of living matter is quite frequently disregarded.

  19. Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms.

    Science.gov (United States)

    Edwards, Chad D; Beatty, Joseph C; Loiselle, Jacqueline B R; Vlassov, Katya A; Lefebvre, Daniel D

    2013-07-15

    Cadmium is a non-essential metal that is toxic because of its interference with essential metals such as iron, calcium and zinc causing numerous detrimental metabolic and cellular effects. The amount of this metal in the environment has increased dramatically since the advent of the industrial age as a result of mining activities, the use of fertilizers and sewage sludge in farming, and discharges from manufacturing activities. The metal bioremediation utility of phototrophic microbes has been demonstrated through their ability to detoxify Hg(II) into HgS under aerobic conditions. Metal sulfides are generally very insoluble and therefore, biologically unavailable. When Cd(II) was exposed to cells it was bioconverted into CdS by the green alga Chlamydomonas reinhardtii, the red alga Cyanidioschyzon merolae, and the cyanobacterium, Synechoccocus leopoliensis. Supplementation of the two eukaryotic algae with extra sulfate, but not sulfite or cysteine, increased their cadmium tolerances as well as their abilities to produce CdS, indicating an involvement of sulfate assimilation in the detoxification process. However, the combined activities of extracted serine acetyl-transferase (SAT) and O-acetylserine(thiol)lyase (OASTL) used to monitor sulfate assimilation, was not significantly elevated during cell treatments that favored sulfide biosynthesis. It is possible that the prolonged incubation of the experiments occurring over two days could have compensated for the low rates of sulfate assimilation. This was also the case for S. leopoliensis where sulfite and cysteine as well as sulfate supplementation enhanced CdS synthesis. In general, conditions that increased cadmium sulfide production also resulted in elevated cysteine desulfhydrase activities, strongly suggesting that cysteine is the direct source of sulfur for CdS synthesis. Cadmium(II) tolerance and CdS formation were significantly enhanced by sulfate supplementation, thus indicating that algae and cyanobacteria

  20. Integrated process using non-stoichiometric sulfides or oxides of potassium for making less active metals and hydrocarbons

    International Nuclear Information System (INIS)

    Swanson, R.

    1984-01-01

    Disclosed is a combinative integrated chemical process using inorganic reactants and yielding, if desired, organic products. The process involves first the production of elemental potassium by the thermal or thermal-reduced pressure decomposition of potassium oxide or potassium sulfide and distillation of the potassium. This elemental potassium is then used to reduce ores or ore concentrates of copper, zinc, lead, magnesium, cadmium, iron, arsenic, antimony or silver to yield one or more of these less active metals in elemental form. Process potassium can also be used to produce hydrogen by reaction with water or potassium hydroxide. This hydrogen is reacted with potassium to produce potassium hydride. Heating the latter with carbon produces potassium acetylide which forms acetylene when treated with water. Acetylene is hydrogenated to ethene or ethane with process hydrogen. Using Wurtz-Fittig reaction conditions, the ethane can be upgraded to a mixture of hydrocarbons boiling in the fuel range

  1. Kinetic study of ion exchange in phosphoric acid chelating resin

    International Nuclear Information System (INIS)

    Brikci-Nigassa, Mounir; Hamouche, Hafida

    1995-11-01

    Uranium may be recovered as a by product of wet phosphoric acid using a method based on specific ion exchange resins. These resins called chelates contain amino-phosphonic functional groups. The resin studied in this work is a purolite S-940; uranium may be loaded on this resin from 30% P2O5 phosphoric acid in its reduced state. The influence of different parameters on the successive steps of the process have been studied in batch experiments: uranium reduction, loading and oxydation. Uranium may be eluted with ammonium carbonate and the resin regeneration may be done with hydrochloric acid.Ferric ions reduce the effective resin capacity considerably and inert fixation conditions are proposed to enhance uranium loading

  2. Polycrystalline Silicon Gettered by Porous Silicon and Heavy Phosphorous Diffusion

    Institute of Scientific and Technical Information of China (English)

    LIU Zuming(刘祖明); Souleymane K Traore; ZHANG Zhongwen(张忠文); LUO Yi(罗毅)

    2004-01-01

    The biggest barrier for photovoltaic (PV) utilization is its high cost, so the key for scale PV utilization is to further decrease the cost of solar cells. One way to improve the efficiency, and therefore lower the cost, is to increase the minority carrier lifetime by controlling the material defects. The main defects in grain boundaries of polycrystalline silicon gettered by porous silicon and heavy phosphorous diffusion have been studied. The porous silicon was formed on the two surfaces of wafers by chemical etching. Phosphorous was then diffused into the wafers at high temperature (900℃). After the porous silicon and diffusion layers were removed, the minority carrier lifetime was measured by photo-conductor decay. The results show that the lifetime's minority carriers are increased greatly after such treatment.

  3. X-ray image converters utilizing rare earth phosphor mixtures

    International Nuclear Information System (INIS)

    Rabatin, J.G.

    1982-01-01

    In an X-ray screen comprising a transparent support with a photographic film on each side, each film has a coating of a phosphor mixture comprising polyhedral Gd 2 O 2 S:Tb of average size 6 to 20 μ and plate-like LnOX:Tm of average size 2 to 12 μ wherein Ln=La or Gd, X=Cl or Br and Tm is present from 0.05 to 1 mole %. The mixture gives improved resolution and reduces the problem of light crossing over the transparent support. According to whether blue sensitive or green sensitive film is used, the ratio of phosphors is varied. U.V. absorbing and light reflecting layers may be incorporated in the structure. (author)

  4. Comparison of Carbon XANES Spectra from an Iron Sulfide from Comet Wild 2 with an Iron Sulfide Interplanetary Dust Particle

    Science.gov (United States)

    Wirick, S.; Flynn, G. J.; Keller, L. P.; Sanford, S. A.; Zolensky, M. E.; Messenger, Nakamura K.; Jacobsen, C.

    2008-01-01

    Among one of the first particles removed from the aerogel collector from the Stardust sample return mission was an approx. 5 micron sized iron sulfide. The majority of the spectra from 5 different sections of this particle suggests the presence of aliphatic compounds. Due to the heat of capture in the aerogel we initially assumed these aliphatic compounds were not cometary but after comparing these results to a heated iron sulfide interplanetary dust particle (IDP) we believe our initial interpretation of these spectra was not correct. It has been suggested that ice coating on iron sulfides leads to aqueous alteration in IDP clusters which can then lead to the formation of complex organic compounds from unprocessed organics in the IDPs similar to unprocessed organics found in comets [1]. Iron sulfides have been demonstrated to not only transform halogenated aliphatic hydrocarbons but also enhance the bonding of rubber to steel [2,3]. Bromfield and Coville (1997) demonstrated using Xray photoelectron spectroscopy that "the surface enhancement of segregated sulfur to the surface of sulfided precipitated iron catalysts facilitates the formation of a low-dimensional structure of extraordinary properties" [4]. It may be that the iron sulfide acts in some way to protect aliphatic compounds from alteration due to heat.

  5. Modeling Phosphorous Losses from Seasonal Manure Application Schemes

    Science.gov (United States)

    Menzies, E.; Walter, M. T.

    2015-12-01

    Excess nutrient loading, especially nitrogen and phosphorus, to surface waters is a common and significant problem throughout the United States. While pollution remediation efforts are continuously improving, the most effective treatment remains to limit the source. Appropriate timing of fertilizer application to reduce nutrient losses is currently a hotly debated topic in the Northeastern United States; winter spreading of manure is under special scrutiny. We plan to evaluate the loss of phosphorous to surface waters from agricultural systems under varying seasonal fertilization schemes in an effort to determine the impacts of fertilizers applied throughout the year. The Cayuga Lake basin, located in the Finger Lakes region of New York State, is a watershed dominated by agriculture where a wide array of land management strategies can be found. The evaluation will be conducted on the Fall Creek Watershed, a large sub basin in the Cayuga Lake Watershed. The Fall Creek Watershed covers approximately 33,000 ha in central New York State with approximately 50% of this land being used for agriculture. We plan to use the Soil and Water Assessment Tool (SWAT) to model a number of seasonal fertilization regimes such as summer only spreading and year round spreading (including winter applications), as well as others. We will use the model to quantify the phosphorous load to surface waters from these different fertilization schemes and determine the impacts of manure applied at different times throughout the year. More detailed knowledge about how seasonal fertilization schemes impact phosphorous losses will provide more information to stakeholders concerning the impacts of agriculture on surface water quality. Our results will help farmers and extensionists make more informed decisions about appropriate timing of manure application for reduced phosphorous losses and surface water degradation as well as aid law makers in improving policy surrounding manure application.

  6. Thermoluminescent phosphors for ultraviolet radiation dosimetry - a review

    International Nuclear Information System (INIS)

    Nagpal, J.S.

    2001-01-01

    Intrinsic TL response of CaSO 4 , CaF 2 , Al 2 O 3 (Si,Ti), Mg 2 SiO 4 : Tb and lamp phosphors to ultraviolet radiation is reviewed. Taking into consideration the characteristics such as afterglow at RT, rate/flux dependence, linearity of response, useful range, spectral dependence and effect of sequential/tandem UV exposures CaF 2 :Eu 2+ is an ideal TL dosemeter for UV radiation dosimetry. (author)

  7. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    OpenAIRE

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incand...

  8. Ultraviolet downconverting phosphor for use with silicon CCD imagers

    Science.gov (United States)

    Blouke, M. M.; Cowens, M. W.; Hall, J. E.; Westphal, J. A.; Christensen, A. B.

    1980-01-01

    The properties and application of a UV downconverting phosphor (coronene) to silicon charge coupled devices are discussed. Measurements of the absorption spectrum have been extended to below 1000 A, and preliminary results indicate the existence of useful response to at least 584 A. The average conversion efficiency of coronene was measured to be approximately 20% at 2537 A. Imagery at 3650 A using a backside illuminated 800 x 800 CCD coated with coronene is presented.

  9. The study and microstructure analysis of zinc and zinc oxide

    Directory of Open Access Journals (Sweden)

    N. Luptáková

    2015-01-01

    Full Text Available The given paper is closely connected with the process of the manufacturing of ZnO. The purity of the metal zinc has crucial influence on the quality of ZnO. ZnO can be produced by pyrometallurgical combustion of zinc and hard zinc. But this mentioned method of preparation leads to the creation of the enormous amount of waste including chemical complexes. On the basis of the occurrence of the residual content of other elements, it is possible to make prediction about the material behavior in the metallographic process. The input and finally materials were investigated and this investigation was done from the aspect of structural and chemical composition of the materials.

  10. Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc

    International Nuclear Information System (INIS)

    Bambic, Dustin G.; Alpers, Charles N.; Green, Peter G.; Fanelli, Eileen; Silk, Wendy K.

    2006-01-01

    Seasonal and spatial variations in metal concentrations and pH were found in a stream at a restored copper mine site located near a massive sulfide deposit in the Foothill copper-zinc belt of the Sierra Nevada, California. At the mouth of the stream, copper concentrations increased and pH decreased with increased streamflow after the onset of winter rain and, unexpectedly, reached extreme values 1 or 2 months after peaks in the seasonal hydrographs. In contrast, aqueous zinc and sulfate concentrations were highest during low-flow periods. Spatial variation was assessed in 400 m of reach encompassing an acidic, metal-laden seep. At this seep, pH remained low (2-3) throughout the year, and copper concentrations were highest. In contrast, the zinc concentrations increased with downstream distance. These spatial patterns were caused by immobilization of copper by hydrous ferric oxides in benthic sediments, coupled with increasing downstream supply of zinc from groundwater seepage. - Seasonal hydrology and benthic sediments control copper and zinc concentrations in a stream through a restored mine site

  11. Zinc (hydr)oxide/graphite oxide/AuNPs composites: role of surface features in H₂S reactive adsorption.

    Science.gov (United States)

    Giannakoudakis, Dimitrios A; Bandosz, Teresa J

    2014-12-15

    Zinc hydroxide/graphite oxide/AuNPs composites with various levels of complexity were synthesized using an in situ precipitation method. Then they were used as H2S adsorbents in visible light. The materials' surfaces were characterized before and after H2S adsorption by various physical and chemical methods (XRD, FTIR, thermal analysis, potentiometric titration, adsorption of nitrogen and SEM/EDX). Significant differences in surface features and synergistic effects were found depending on the materials' composition. Addition of graphite oxide and the deposition of gold nanoparticles resulted in a marked increase in the adsorption capacity in comparison with that on the zinc hydroxide and zinc hydroxide/AuNP. Addition of AuNPs to zinc hydroxide led to a crystalline ZnO/AuNP composite while the zinc hydroxide/graphite oxide/AuNP composite was amorphous. The ZnOH/GO/AuNPs composite exhibited the greatest H2S adsorption capacity due to the increased number of OH terminal groups and the conductive properties of GO that facilitated the electron transfer and consequently the formation of superoxide ions promoting oxidation of hydrogen sulfide. AuNPs present in the composite increased the conductivity, helped with electron transfer to oxygen, and prevented the fast recombination of the electrons and holes. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Determination of vanadium in Syrian commercial and raffinate phosphoric acid

    International Nuclear Information System (INIS)

    Al-Merey, R.

    2002-04-01

    This study presents two methods for vanadium determination in Syrian commercial phosphoric acid. The vanadium (V) in the oxidized commercial phosphoric acid by ammonium persulfate solution is extracted from 5-M hydrochloride acid medium using N-benzoyl-N-phenyl hydroxyl amine (BPHA) in chloroform as an extracting solution. The first method, the extract vanadium as VOL 2 Cl is changed to V 2 O 3 L 4 complex by the addition of benzimidazole in 1-butanol to the violet organic layer. The absorbance is then measured at 440 nm (the molar absorptivity was found to be 3865 M -1 cm -1 ), where Beer law is applicable up to 36-μg ml -1 . the accuracy, precision and detection limit were found to be 3.7%, 77 ppb and 37 ppb, respectively. the second method, the organic layer is heated to evaporate chloroform, the residue is digested using 20% ammonium persulfate and 2-M sulfuric acid solutions. The vanadium concentration is measured spectrophotometrically by oxidizing gallic acid with persulfate (S 2 O 8 2- ) anion in phosphoric acid medium, where the vanadium (V) acts as a catalyst in the oxidation reaction. This method has a high sensitivity (∼10 -12 ) with accuracy and precision 5% and 0.621 ppb, respectively. Also Beer law at λ m ax=415 nm (ε=∼2 x 10 6 M -1 ) is applicable in the range 2.58-33.3 ppb. (author)

  13. Simple preparation of LiF:Mg,Ti phosphor

    International Nuclear Information System (INIS)

    Moharil, S.V.; Shahare, D.I.; Upaded, S.V.; Deshmukh, B.T.

    1993-01-01

    LiF-TLD 100 is a low-impedance (Z eff = 8.2) tissue equivalent material which is widely used in thermoluminescence (TL) dosimetry of ionizing radiations and personnel monitoring. Mg and Ti have been found to be the major impurities which impart the Tl characteristics. Recipes for the preparation of this phosphor, have not been found to be satisfactory for routine manufacture; there have always been problems associated with reproducibility and even with batch homogeneity. One of the reasons for this is that most procedures start either from readily available LiF or by melting the synthesized LiF, or both. The background impurities in the starting LiF powder can mask the intentional impurities, particularly Ti which has to be doped in rather small concentrations (10 p.p.m.). Melting LiF can again be tricky, as the LiF melt is volatile and highly corrosive. In this letter we report the preparation of LiF: Mg, Ti. The impurities were incorporated during the synthesis of LiF. The phosphor was prepared by heat treatments in ambient air without melting the compound. The characteristics of the prepared phosphors were studied and compared with those of LiF-TLD 100. (author)

  14. Instense red phosphors for UV light emitting diode devices.

    Science.gov (United States)

    Cao, Fa-Bin; Tian, Yan-Wen; Chen, Yong-Jie; Xiao, Lin-Jiu; Liu, Yun-Yi

    2010-03-01

    Ca(x)Sr1-x-1.5y-0.5zMoO4:yEu3+ zNa+ red phosphors were prepared by solid-state reaction using Na+ as charge supply for LEDs (light emitting diodes). The content of charge compensator, Ca2+ concentration, synthesis temperature, reaction time, and Eu3+ concentration were the keys to improving the properties of luminescence and crystal structure of red phosphors. The photoluminescence spectra shows the red phosphors are effectively excited at 616 nm by 311 nm, 395 nm, and 465 nm light. The wavelengths of 395 and 465 nm nicely match the widely applied emission wavelengths of ultraviolet or blue LED chips. Its chromaticity coordinates (CIE) are calculated to be x = 0.65, y = 0.32. Bright red light can be observed by the naked eye from the LED-based Ca0.60Sr0.25MoO4:0.08Eu3+ 0.06Na+.

  15. Technology of uranium recovery from wet-process phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Katsutoshi [Saga Univ. (Japan). Faculty of Science and Engineering; Nakashio, Fumiyuki

    1982-12-01

    Rock phosphate contains from 0.005 to 0.02 wt.% of uranium. Though the content is a mere 5 to 10 % of that in uranium ore, the total recovery of uranium is significant since it is used for fertilizer manufacture in a large quantity. Wet-process phosphoric acid is produced by the reaction of rock phosphate with sulfuric acid. The recovery of uranium from this phosphoric acid is mostly by solvent extraction at present. According to U/sup 4 +/ or UO/sub 2//sup 2 +/ as the form of its existence, the technique of solvent extraction differs. The following matters are described: processing of rock phosphate; recovery techniques including the extraction by OPPA-octyl pyrophosphoric acid for U/sup 4 +/, and by mixed DEHPA-Di-(2)-ethylhexyl phosphoric acid and TOPO-tryoctyl phosphine oxide for UO/sub 2//sup 2 +/, and by OPAP-octylphenyl acid phosphate for U/sup 4 +/; the recent progress of the technology as seen in patents.

  16. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    Science.gov (United States)

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. Adsorption of sulfide ions on cerussite surfaces and implications for flotation

    International Nuclear Information System (INIS)

    Feng, Qicheng; Wen, Shuming; Zhao, Wenjuan; Deng, Jiushuai; Xian, Yongjun

    2016-01-01

    Highlights: • A new discussion on the lead sulfide species is introduced. • The Na_2S concentration determines cerussite sulfidization. • The activity of lead sulfide species also determines cerussite sulfidization. • Disulfide and polysulfide in lead sulfide species affect its activity. - Abstract: The adsorption of sulfide ions on cerussite surfaces and implications for flotation were studied by X-ray photoelectron spectroscopy (XPS) analysis, micro-flotation tests, and surface adsorption experiments. The XPS analysis results indicated that lead sulfide species formed on the mineral surface after treatment by Na_2S, and the increase in the Na_2S concentration was beneficial for sulfidization. In addition to the content of lead sulfide species, its activity, which was determined by the proportion of sulfide, disulfide and polysulfide, also played an important role in cerussite sulfidization. Micro-flotation tests results demonstrated that insufficient or excessive addition of Na_2S in pulp solutions has detrimental effects on flotation performance, which was attributed to the dosage of Na_2S and the activity of lead sulfide species formed on the mineral surface. Surface adsorption experiments of sulfide ions determined the residual S concentrations in pulp solutions and provided a quantitative illustration for the inhibition of cerussite flotation by excessive sulfide ions. Moreover, it also revealed that sulfide ions in the pulp solution were transformed onto the mineral surface and formed lead sulfide species. These results showed that both of lead sulfide species and its activity acted as an important role in sulfidization flotation process of cerussite.

  18. Adsorption of sulfide ions on cerussite surfaces and implications for flotation

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Qicheng [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Wen, Shuming, E-mail: fqckmust@126.com [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhao, Wenjuan [Kunming Metallurgical Research Institute, Kunming 650031 (China); Deng, Jiushuai; Xian, Yongjun [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2016-01-01

    Highlights: • A new discussion on the lead sulfide species is introduced. • The Na{sub 2}S concentration determines cerussite sulfidization. • The activity of lead sulfide species also determines cerussite sulfidization. • Disulfide and polysulfide in lead sulfide species affect its activity. - Abstract: The adsorption of sulfide ions on cerussite surfaces and implications for flotation were studied by X-ray photoelectron spectroscopy (XPS) analysis, micro-flotation tests, and surface adsorption experiments. The XPS analysis results indicated that lead sulfide species formed on the mineral surface after treatment by Na{sub 2}S, and the increase in the Na{sub 2}S concentration was beneficial for sulfidization. In addition to the content of lead sulfide species, its activity, which was determined by the proportion of sulfide, disulfide and polysulfide, also played an important role in cerussite sulfidization. Micro-flotation tests results demonstrated that insufficient or excessive addition of Na{sub 2}S in pulp solutions has detrimental effects on flotation performance, which was attributed to the dosage of Na{sub 2}S and the activity of lead sulfide species formed on the mineral surface. Surface adsorption experiments of sulfide ions determined the residual S concentrations in pulp solutions and provided a quantitative illustration for the inhibition of cerussite flotation by excessive sulfide ions. Moreover, it also revealed that sulfide ions in the pulp solution were transformed onto the mineral surface and formed lead sulfide species. These results showed that both of lead sulfide species and its activity acted as an important role in sulfidization flotation process of cerussite.

  19. Chemical and colloidal aspects of collectorless flotation behavior of sulfide and non-sulfide minerals.

    Science.gov (United States)

    Aghazadeh, Sajjad; Mousavinezhad, Seyed Kamal; Gharabaghi, Mahdi

    2015-11-01

    Flotation has been widely used for separation of valuable minerals from gangues based on their surface characterizations and differences in hydrophobicity on mineral surfaces. As hydrophobicity of minerals widely differs from each other, their separation by flotation will become easier. Collectors are chemical materials which are supposed to make selectively valuable minerals hydrophobic. In addition, there are some minerals which based on their surface and structural features are intrinsically hydrophobic. However, their hydrophobicities are not strong enough to be floatable in the flotation cell without collectors such as sulfide minerals, coal, stibnite, and so forth. To float these minerals in a flotation cell, their hydrophobicity should be increased in specific conditions. Various parameters including pH, Eh, size distribution, mill types, mineral types, ore characterization, and type of reaction in flotation cells affect the hydrophobicity of minerals. Surface analysis results show that when sulfide minerals experience specific flotation conditions, the reactions on the surface of these minerals increase the amount of sulfur on the surface. These phenomenons improve the hydrophobicity of these minerals due to strong hydrophobic feature of sulfurs. Collectorless flotation reduces chemical material consumption amount, increases flotation selectivity (grade increases), and affects the equipment quantities; however, it can also have negative effects. Some minerals with poor surface floatability can be increased by adding some ions to the flotation system. Depressing undesirable minerals in flotation is another application of collectorless flotation.

  20. Silver sulfide nanoparticle assembly obtained by reacting an assembled silver nanoparticle template with hydrogen sulfide gas.

    Science.gov (United States)

    Chen, Rui; Nuhfer, Noel T; Moussa, Laura; Morris, Hannah R; Whitmore, Paul M

    2008-11-12

    A fast, simple procedure is described for obtaining an assembly of silver sulfide nanoparticles (Ag(2)S NPs) on a glass substrate through reaction of a template of an assembled layer of silver nanoparticles (Ag NPs) with hydrogen sulfide (H(2)S) gas. The Ag NP template was prepared by assembling a monolayer of spherical Ag NPs (mean diameter of 7.4 nm) on a polyethylenimine-treated glass substrate. Exposure to pure H(2)S for 10 min converted the Ag NPs of the template to Ag(2)S NPs. The resulting Ag(2)S NP assembly, which retains the template nanostructure and particle distribution, was characterized by optical absorption spectroscopy, atomic force microscopy, transmission electron microscopy (TEM), scanning high resolution TEM, energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. The Ag(2)S NPs have a crystal structure of monoclinic acanthite, and while they retained the spherical shape of the original Ag NPs, their mean particle size increased to 8.4 nm due to changes to the crystal structure when the Ag NPs are converted into Ag(2)S NPs. The measured optical absorption edge of the Ag(2)S NP assembly indicated an indirect interband transition with a band gap energy of 1.71 eV. The Ag(2)S NP assembly absorbed light with wavelengths below 725 nm, and the absorbance increased monotonically toward the UV region.

  1. Spectral properties of Dy3+ doped ZnAl2O4 phosphor

    Science.gov (United States)

    Prakash, Ram; Kumar, Sandeep; Mahajan, Rubby; Khajuria, Pooja; Kumar, Vinay; Choudhary, R. J.; Phase, D. M.

    2018-05-01

    Herein, Dy3+ doped ZnAl2O4 phosphor was synthesized by the solution combustion method. The synthesized phosphor was characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The phase purity of the phosphor was confirmed by the XRD studies that showed cubic symmetry of the synthesized phosphor. Under UV excitation (388 nm) the PL emission spectrum of the phosphor shows characteristic transition from the Dy3+ ion. A band gap of 5.2 eV was estimated from the diffused reflectance spectroscopy. The surface properties of the phosphor were studied using the X-ray photoelectron spectroscopy.

  2. Critical issues in enhancing brightness in thin film phosphors for flat-panel display applications

    International Nuclear Information System (INIS)

    Singh, R.K.; Chen, Z.; Kumar, D.; Cho, K.; Ollinger, M.

    2002-01-01

    Thin film phosphors have potential applications in field emission flat-panel displays. However, they are limited by the lower cathodoluminescent brightness in comparison to phosphor powders. In this paper, we have investigated the critical parameters that need to be optimized to increase the brightness of phosphor thin films. Specifically, we studied the role of surface roughness and optical properties of the substrate on the brightness of the phosphor films. Thin Y 2 O 3 :Eu phosphor films were deposited on various substrates (lanthanum aluminate, quartz, sapphire, and silicon) with thicknesses varying from 50 to 500 nm. A model that accounts for diffuse and specular or scattering effects has been developed to understand the effects of the microstructure on the emission characteristics of the cathodoluminescent films. The results from the model show that both the optical properties of the substrate and the surface roughness of the films play a critical role in controlling the brightness of laser deposited phosphor films

  3. A SrBPO5: Eu2+ phosphor for neutron imaging

    International Nuclear Information System (INIS)

    Sakasai, K.; Katagiri, M.; Toh, K.; Nakamura, T.

    2001-01-01

    A SrBPO 5 : Eu 2+ phosphor material has been investigated for neutron imaging. This phosphor showed photostimulated luminescence (PSL) by illumination of 635 nm laser light after X-ray irradiation. The spectral characteristics of the phosphor were similar to those of BaFBr: Eu 2+ , which is a commonly used phosphor of imaging plates. In addition, we found that this phosphor also showed PSL for neutron irradiation. It comes from the fact that it contains atomic boron in base matrix. Therefore, this phosphor can be used for neutron imaging without adding neutron sensitive materials such as Gd in commercially available neutron imaging plates. The PSL intensity and the neutron detection will be increased by using enriched boron instead of natural boron. (author)

  4. Impact of residual elements on zinc quality in the production of zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Dymáček, Petr; Pešlová, F.; Jurkovič, Z.; Barborák, O.; Stodola, J.

    2016-01-01

    Roč. 55, č. 3 (2016), s. 407-410 ISSN 0543-5846 Institutional support: RVO:68081723 Keywords : zinc * metallography * microstructure of zinc * zinc oxide * production of zinc oxide Subject RIV: JG - Metallurgy Impact factor: 0.959, year: 2014

  5. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    Science.gov (United States)

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  6. Activation mechanism of ammonium ions on sulfidation of malachite (-201) surface by DFT study

    Science.gov (United States)

    Wu, Dandan; Mao, Yingbo; Deng, Jiushuai; Wen, Shuming

    2017-07-01

    The activation mechanism of ammonium ions on the sulfidation of malachite (-201) was determined by density functional theory (DFT) calculations. Results of DFT calculations indicated that interlayer sulfidation occurs during the sulfidation process of malachite (-201). The absorption of both the ammonium ion and sulfide ion on the malachite (-201) surface is stronger than that of sulfur ion. After sulfidation was activated with ammonium ion, the Cu 3d orbital peak is closer to the Fermi level and characterized by a stronger peak value. Therefore, the addition of ammonium ions activated the sulfidation of malachite (-201), thereby improving the flotation performance.

  7. Zinc: a multipurpose trace element

    Energy Technology Data Exchange (ETDEWEB)

    Stefanidou, M.; Maravelias, C.; Dona, A.; Spiliopoulou, C. [University of Athens, Department of Forensic Medicine and Toxicology, Athens (Greece)

    2006-01-01

    Zinc (Zn) is one of the most important trace elements in the body and it is essential as a catalytic, structural and regulatory ion. It is involved in homeostasis, in immune responses, in oxidative stress, in apoptosis and in ageing. Zinc-binding proteins (metallothioneins, MTs), are protective in situations of stress and in situations of exposure to toxic metals, infections and low Zn nutrition. Metallothioneins play a key role in Zn-related cell homeostasis due to their high affinity for Zn, which is in turn relevant against oxidative stress and immune responses, including natural killer (NK) cell activity and ageing, since NK activity and Zn ion bioavailability decrease in ageing. Physiological supplementation of Zn in ageing and in age-related degenerative diseases corrects immune defects, reduces infection relapse and prevents ageing. Zinc is not stored in the body and excess intakes result in reduced absorption and increased excretion. Nevertheless, there are cases of acute and chronic Zn poisoning. (orig.)

  8. Calculated energy dependence of CaSO4:Dy TL phosphor and phosphor embedded Teflon for X and gamma rays

    International Nuclear Information System (INIS)

    Chang, J.-K.; Nam, Y.-M.; Kim, J.-L.; Chang, S.-Y.; Kim, B.-H.

    2001-01-01

    The energy dependence of a CaSO 4 :Dy TL phosphor for 21 monoenergetic photons of energy ranging from 0.01 to 3 MeV was calculated by using MCNP4A code. The calculation results show good agreement with those of other authors within ± 5% relative error. Calculations and experiments are also performed to determine the energy dependence of CaSO 4 : Dy phosphor with Dy concentrations from 0.01 to 1.5 mol %, and with the compositions of TL-Teflon from 10 to 90 wt %. The calculated energy responses show good agreement with the experiment results within ± 20% relative error except for a concentration lower than 0.1 mol % Dy and the low energy regions of M30 (Eave.=20 keV) and M60 (Eave.=34 keV). For the TL-Teflon mixture, the energy dependence shows an decreasing trend with the increase of Teflon concentration in MCNP calculation but shows no dependence for TL-Teflon mixture proportions in experiment. These differences are due to the non-homogeneous distribution of Dy concentration and the effect of large grain size in the phosphors. The energy dependence of the 30 wt/o CaSO 4 (0.1 mol%;Dy) and 70 wt/o Teflon that is placed behind the filters of plastic, aluminum, copper, tin and lead with a thickness from 0.1 to 2 mm were calculated, respectively

  9. Synthesis and complex forming property of phosphor acid derivatives

    International Nuclear Information System (INIS)

    Babaev, B.N.

    2004-01-01

    Full text:With the aim to get new effective and selective extra gents of noble and non-ferrous metals from acid solution and industrial sewage, research of the dependence of 'structure effectiveness' the various phosphor acid derivatives with logical changeable structure (thio phosphor acids, derivatives of dialkoxythiophosphor, O-alkyl-methylphosphon, alkylphenylphosphon, diphenylphosphine acids also 4 methyl-1,3,2 dioxaphosphorinane) which contain different functional groups, the remains of heterocyclic amines and alkaloids, new derivatives of some analytical reagents were synthesized. The structure of synthesized compounds is approved by the results of IR-, PMR-, mass-spectrum analyze. Researching mass-spectrum decay of synthesized phosphor acid derivatives we defined that differing from O-dihexyl-S-propargyl-benzylthio phosphat, mass spectrum decay of O-dialkyl-S-(piperdynobutin-2-il)thio phosphat is characterized by the appearing [M-H] + ions and during the decay ions with high intensiveness are formed. Fragmentation of M + O-alkyl-O-(aminoalkyl)phenylphosphonate proceeds in various directions and characterized with the great number of phosphor containing ions, the possession of the second phenyl radical in the molecule of diphenylphosphon acid derivatives changes the fragmentation of molecular ion of diphenylphosphon acid derivatives. The process of extraction of noble (Au, Ag, Pt, Pd, Os) metals from hydrochloric-sulphur-nitrogen acid medium was analyzed by radioactive indicator's method. It was noticed that structure, strength, conformation of compounds, the temperature, of acid medium (0,1-10 M) and the nature of acids (HCL, H 2 SO 4 , HNO 3 ) could have strong influence to the effectiveness of metal extraction. During the research of metals extraction from pure solutions we can see the followings: 1) There are such substances, which can be used as effective group reagent towards the Au, Ag and Pd. 2) Derivatives with acetylene extract ions of gold from

  10. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    Science.gov (United States)

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  11. Zinc blotting assay for detection of zinc binding prolamin in barley (Hordeum vulgare) grain

    DEFF Research Database (Denmark)

    Uddin, Mohammad Nasir; Nielsen, Ane Langkilde-Lauesen; Vincze, Eva

    2014-01-01

    In plants, zinc is commonly found bound to proteins. In barley (Hordeum vulgare), major storage proteins are alcohol-soluble prolamins known as hordeins, and some of them have the potential to bind or store zinc. 65Zn overlay and blotting techniques have been widely used for detecting zinc......-binding protein. However, to our knowledge so far this zinc blotting assay has never been applied to detect a prolamin fraction in barley grains. A radioactive zinc (65ZnCl2) blotting technique was optimized to detect zinc-binding prolamins, followed by development of an easy-to-follow nonradioactive colorimetric...... zinc blotting method with a zinc-sensing dye, dithizone. Hordeins were extracted from mature barley grain, separated by SDS-PAGE, blotted on a membrane, renatured, overlaid, and probed with zinc; subsequently, zinc-binding specificity of certain proteins was detected either by autoradiography or color...

  12. Multimicronutrient Slow-Release Fertilizer of Zinc, Iron, Manganese, and Copper

    Directory of Open Access Journals (Sweden)

    Siladitya Bandyopadhyay

    2014-01-01

    Full Text Available The process for the production of a slow-release micronutrient fertilizer is described. The compound contains zinc, iron, manganese, and copper as micronutrients and is produced by polymerizing a system containing phosphoric acid, zinc oxide, hematite, pyrolusite, copper sulfate, and magnesium oxide followed by neutralization of the polyphosphate chain with ammonium hydroxide. Changes in temperature, density, and viscosity of the reaction system during polymerization were studied. Reaction kinetics was studied at three different temperatures. Rate curves revealed a multistage process with essentially linear rates at each stage. Thus, each stage displayed zero order kinetics. The product was crystalline and revealed ordering of P-O-P chains. It had low solubility in water but high solubility in 0.33 M citric acid and 0.005 M DTPA. Three different field trials showed significant yield increments using the slow-release micronutrient fertilizer compared to the conventional micronutrients. Yield increments in rice were in the range of 10–55% over control (with no micronutrient and up to 17% over the conventional micronutrient fertilizers. There were significant increases in total uptake of zinc, iron, and manganese in the grain. Slow-release fertilizers also produced significant yield increases in potato as well as significant increase in vitamin C content of the tuber.

  13. Study of the behavior to corrosion of samples of nuclear grade aluminium sheathed in nickel-phosphorous alloys obtained autocatalytically

    International Nuclear Information System (INIS)

    Castro, Maria Eugenia; Barbero, Jose Alfredo; Bubach, Ernesto

    2006-01-01

    One of the ways to protect an industrially important metallic material against corrosion is by covering the piece with an approximately 1 μm layer of a material whose resistance to corrosion is greater than the element being protected. The mechanism by which the anticorrosive protection is obtained is with the formation of a pore free physical barrier without defects that impedes the arrival of the agents responsible for the electrochemical attack. Other sacrifice anodes such as aluminum or zinc have protective forms based on their dissolution as a consequence of their less electrochemically noble behavior to preserve the material. This work studies the resistance to the corrosion of metallic coatings on nuclear grade aluminum substrates. The focus is on coating nickel-phosphorous (ni-P) alloys obtained autocatalytically from aluminum 6061. A comparative study is carried out of a series of electroless nickel coatings containing different amounts of the latter element, but without surpassing the threshold of 12%. The work includes the study of another nickel coating, Vitrovac 0080 (without phosphorous content) in order to compare structures and anticorrosive properties. These materials are also compared with the Al6061 substrate without any kind of coating. The study is carried out with surface characterization of each one of the samples with or without coating using a series of complementary techniques, such as chemical and electrochemical techniques (linear-sweep voltammetry, cyclic voltammetry, determination of the polarization resistance) and physical techniques (SEM microscopy, determination of micro-hardness). The correlation of variables is carried out later as a function of the phosphorous content of the test samples. The structures obtained from the coatings are amorphous. They have no pores or faults and have high hardness values. The electrochemical study proves that the anticorrosive protection capacity of the Ni-P alloy increases along with the

  14. 21 CFR 582.5985 - Zinc chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is...

  15. 21 CFR 182.8985 - Zinc chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc chloride. 182.8985 Section 182.8985 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is generally recognized as safe when used in...

  16. 21 CFR 558.78 - Bacitracin zinc.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Bacitracin zinc. 558.78 Section 558.78 Food and... in Animal Feeds § 558.78 Bacitracin zinc. (a) Specifications. Type A medicated articles containing bacitracin zinc equivalent to 10, 25, 40, or 50 grams per pound bacitracin. (b) Approvals. See No. 046573 in...

  17. Study of phase transformation processes in steel after phosphor ion implantation and following thermal treatment

    International Nuclear Information System (INIS)

    Zhetbaev, A.K.; Vereshchak, N.F.; Satpaev, K.K.; Dosmagambetov, T.D.; Serikbaeva, Z.T.

    1999-01-01

    In the paper process of phase transformation after phosphor ion implantation in steel-45 and annealing in vacuum at 1000 deg C and irradiation by various doses of phosphor ions with energy 100 keV an accelerator are researched by conversion electron method. The phosphor overall solubility in iron is equal 4.53 %. Implantation dose below 6·10 17 ions/cm 2 allows increase phosphor ions content in implantation region to 35 %. Therefore, iron phosphides (Fe 3 P, Fe 2 P and Fe P) forming are possible. (author)

  18. Recovering of uranium from phosphoric acid produced by the wet process

    International Nuclear Information System (INIS)

    Barreiro, A.J.; Lyon, W.L.; Holleman, R.A.; Randell, C.C.

    1977-01-01

    Process for recovering uranium as from an aqueous solution of phosphoric acid arising from a wet process, with a scrubbing agent essentially composed of a hydrocarbon whose boiling point is situated between 150 0 C and 300 0 C, which reacts with the contaminents formed in the sludge in the phosphoric acid, in an efficient enough quantity to wash the contamination products forming the phosphoric acid sludge, give a sludge phase and a purified phosphoric acid phase, after which the sludge phase is extracted [fr

  19. TL-OSL study of Li{sub 3}PO{sub 4}: Mg, Cu phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Rahangdale, S. R., E-mail: sachin.rahangdale1@gmail.com; Wankhede, S. P. [Department of Physics, K.D.K.College of Engineering, Nagpur (India); Dhabekar, B. S. [RPAD, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Palikundwar, U. A.; Moharil, S. V. [Department of Physics, RTM Nagpur University, Nagpur, 440010 (India)

    2015-08-28

    In the present work, we report the thermoluminescence and optically stimulated luminescence properties of Mg and Cu doped Li{sub 3}PO{sub 4} phosphor. The phosphor was synthesized by precipitation method. The thermoluminescence dosimetric peak temperature for the phosphor varies with concentrations of Mg and Cu. Li{sub 3}PO{sub 4} shows good response to 470nm optical stimulation. The OSL sensitivity of the phosphor is approximately 12 times than that of standard Lithium magnesium phosphate. This study may help to develop this material for the application in real time dosimetry using optically stimulated luminescence.

  20. New Silicate Phosphors for a White LED(Electronic Displays)

    OpenAIRE

    Toda, Kenji; Kawakami, Yoshitaka; Kousaka, Shin-ichiro; Ito, Yutaka; Komeno, Akira; Uematsu, Kazuyoshi; Sato, Mineo

    2006-01-01

    We focus on the development of new silicate phosphors for a white LED. In the europium doped silicate system, four LED phosphor candidates-Li_2SrSiO_4:Eu^, Ba_9Sc_2Si_6O_:Eu^, Ca_3Si_2O_7:Eu^ and Ba_2MgSi_2O_7:Eu^ were found. Luminescent properties under near UV and visible excitation were investigated for the new Eu^ doped LED silicate phosphors. These new phosphors have a relatively strong absorption band in a long wavelength region.