WorldWideScience

Sample records for zinc sulfide phosphors

  1. Recovery of zinc in phosphor wastes via electrokinetic treatments

    International Nuclear Information System (INIS)

    Yu, M.Y.; Wang, H. Paul; Chen, C.Y.; Hsiung, T.-L.; Wei, Yu-Ling; Tai, H.-S.; Chiang, K.-C.

    2007-01-01

    Speciation of zinc in phosphor wastes during electrokinetic treatments has been studied by in situ X-ray absorption near edge structure (XANES) spectroscopy in the present work. The least-square fits of the in situ XANES spectra show that the major zinc species in the phosphor waste are ZnS (77%), ZnO (10%), and Zn(OH) 2 (13%). During the electrokinetic treatment for 90 min, 25% of ZnS and 4% of ZnO are dissolved. About 42% of zinc is enriched on the cathode under the electric field (5 V/cm). Prolonging the electrokinetic treatment time to 4 h under the electric field of 5 V/cm, at least 80% of zinc in the phosphor waste can be recovered

  2. Sulfidation of zinc plating sludge with Na2S for zinc resource recovery

    International Nuclear Information System (INIS)

    Kuchar, D.; Fukuta, T.; Onyango, M.S.; Matsuda, H.

    2006-01-01

    A high amount of zinc disposed in the landfill sites as a mixed-metal plating sludge represents a valuable zinc source. To recover zinc from the plating sludge, a sulfidation treatment is proposed in this study, while it is assumed that ZnS formed could be separated by flotation. The sulfidation treatment was conducted by contacting simulated zinc plating sludge with Na 2 S solution at S 2- to Zn 2+ molar ratio of 1.5 for a period of 1-48 h, while changing the solid to liquid (S:L) ratio from 0.25:50 to 1.00:50. The conversion of zinc compounds to ZnS was determined based on the consumption of sulfide ions. The reaction products formed by the sulfidation of zinc were identified by X-ray diffraction (XRD). As a result, it was found that the conversion of zinc compounds to ZnS increased with an increase in S:L ratio. A maximum conversion of 0.809 was obtained at an S:L ratio of 1.00:50 after 48 h. However, when the zinc sludge treated at S:L ratio of 1.00:50 for 48 h was subjected to XRD analyses, only ZnS was identified in the treated zinc sludge. The result suggested that the rest of zinc sludge remained unreacted inside the agglomerates of ZnS. The formation behavior of ZnS was predicted by Elovich equation, which was found to describe the system satisfactorily indicating the heterogeneous nature of the sludge

  3. Influence of pH-control in phosphoric acid treatment of zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Onoda, H., E-mail: onoda@kpu.ac.jp [Department of Informatics and Environmental Sciences, Kyoto Prefectural University (Japan); Chemel, M. [Ecole de Biologie Industrielle, CERGY Cedex (France)

    2017-04-15

    Zinc oxide is often used as a white pigment for cosmetics; however, it shows photocatalytic activity that causes decomposition of sebum on the skin when exposed to the ultraviolet radiation in sunlight. In this work, zinc oxide was reacted with phosphoric acid at various pH values to synthesize a novel white pigment for cosmetics. The chemical composition, powder properties, photocatalytic activities, colors, and smoothness of these pigments were studied. The obtained materials exhibited X-ray diffraction peaks relating to zinc oxide and phosphate after phosphoric acid treatment. The ratio of zinc phosphate to zinc oxide was estimated from inductively coupled plasma - atomic emission spectroscopy results. Samples treated at pH 4-7 yielded small particles with sub-micrometer sizes. The photocatalytic activity of zinc oxide became lower after phosphoric acid treatment. Samples treated at pH 4-7 showed the same reflectance as zinc oxide in both the ultraviolet and visible ranges. Adjustment of the pH was found to be important in the phosphoric acid treatment of zinc oxide. (author)

  4. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    Science.gov (United States)

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  5. Synthesis of zinc sulfide by chemical vapor deposition using an organometallic precursor: Di-tertiary-butyl-disulfide

    International Nuclear Information System (INIS)

    Vasekar, Parag; Dhakal, Tara; Ganta, Lakshmikanth; Vanhart, Daniel; Desu, Seshu

    2012-01-01

    Zinc sulfide has gained popularity in the last few years as a cadmium-free heterojunction partner for thin film solar cells and is seen as a good replacement for cadmium sulfide due to better blue photon response and non-toxicity. In this work, zinc sulfide films are prepared using an organic sulfur source. We report a simple and repeatable process for development of zinc sulfide using a cost-effective and less hazardous organic sulfur source. The development of zinc sulfide has been studied on zinc oxide-coated glass where the zinc oxide is converted into zinc sulfide. Zinc oxide grown by atomic layer deposition as well as commercially available zinc oxide-coated glass was used. The zinc sulfide synthesis has been studied and the films are characterized using scanning electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and a UV–VIS spectrophotometer. XRD, XPS and optical characterization confirm the zinc sulfide phase formation. - Highlights: ► Synthesis of ZnS using a less-hazardous precursor, di-tertiary-butyl-disulfide. ► ZnS process optimized for two types of ZnO films. ► Preliminary results for a solar cell show an efficiency of 1.09%.

  6. Reduction kinetics of zinc and cadmium sulfides with hydrogen

    International Nuclear Information System (INIS)

    Turgenev, I.S.; Kabisov, I.Kh.; Zviadadze, G.N.; Vasil'eva, O.Yu.

    1985-01-01

    Kinetics of reduction processes of zinc sulfide in the temperature range 800-1100 deg C and of cadmium sulfide 600-900 deg C has been stodied. Activation energies and reaction order in terms of hydrogen are calculated. Thermodynamic processes of reduction depend on aggregate state of the metal formed. For vaporous zinc in the temperature range 1050-950 deq C activation energy constitutes 174 kJ/mol, for liquid in the range 900-850 deg - 151 kJ/mol and reaction order in terms of hydrogen is 1.0. For vaporous cadmium in the temperature range 900-700 deg C activation energy constitutes 144 kJ/mol and reaction order in terms of hydrogen is 0.86, for liquid in the range 675-600 deg C 127 kJ/mol and 0.8 respectively. The processes of zinc and cadmium sulfide reduction proceed in kinetic regime and are limited by the rate of chemical reaction

  7. Inhibition effects of protein-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth

    International Nuclear Information System (INIS)

    Cao Ying; Wang Huajie; Cao Cui; Sun Yuanyuan; Yang Lin; Wang Baoqing; Zhou Jianguo

    2011-01-01

    In this article, a facile and environmentally friendly method was applied to fabricate BSA-conjugated amorphous zinc sulfide (ZnS) nanoparticles using bovine serum albumin (BSA) as the matrix. Transmission electron microscopy analysis indicated that the stable and well-dispersed nanoparticles with the diameter of 15.9 ± 2.1 nm were successfully prepared. The energy dispersive X-ray, X-ray powder diffraction, Fourier transform infrared spectrograph, high resolution transmission electron microscope, and selected area electron diffraction measurements showed that the obtained nanoparticles had the amorphous structure and the coordination occurred between zinc sulfide surfaces and BSA in the nanoparticles. In addition, the inhibition effects of BSA-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth were described in detail by cell viability analysis, optical and electron microscopy methods. The results showed that BSA-conjugated amorphous zinc sulfide nanoparticles could inhibit the metabolism and proliferation of human hepatocellular carcinoma cells, and the inhibition was dose dependent. The half maximal inhibitory concentration (IC50) was 0.36 mg/mL. Overall, this study suggested that BSA-conjugated amorphous zinc sulfide nanoparticles had the application potential as cytostatic agents and BSA in the nanoparticles could provide the modifiable site for the nanoparticles to improve their bioactivity or to endow them with the target function.

  8. Re-processing CRT phosphors for mercury-free applications

    International Nuclear Information System (INIS)

    Dexpert-Ghys, Jeannette; Regnier, Sophie; Canac, Sophie; Beaudette, Tristan; Guillot, Philippe; Caillier, Bruno; Mauricot, Robert; Navarro, Julien; Sekhri, Salem

    2009-01-01

    This study is part of an operation in the framework of treatment and revalorization of IEEE (Informatics, Electronics and related) wastes. It aims to recover the active phosphors in cathode ray tubes (CRTs) and to re-cycle these powders by appropriate treatments as phosphors for mercury-free applications such as plasma display panels, flat lamps, advertising and lighting. The studied waste comes from a large panel of CRTs from any supplier. Several thermo-chemical treatments have been investigated. The removal of zinc sulfide-based phosphors and the recovery of a red phosphor Y 2 O 3 :Eu 3+ has been achieved by one (basic attack) route. The photoluminescence efficiency under VUV excitation of the obtained powders is at most 30% that of a commercial phosphor. The second route (acid attack) appears less promising. It has been established that silicate-based impurities could prevent isolating the yttrium based phosphor.

  9. Re-processing CRT phosphors for mercury-free applications

    Energy Technology Data Exchange (ETDEWEB)

    Dexpert-Ghys, Jeannette, E-mail: jdexpert@cemes.f [CEMES, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse cedex 4 (France); Regnier, Sophie; Canac, Sophie [ICAM, 75 avenue de Grande Bretagne, 31300 Toulouse (France); Beaudette, Tristan; Guillot, Philippe; Caillier, Bruno [DPHE, Universite Jean Francois Champollion, place de Verdun, 81012 Albi cedex 9 (France); Mauricot, Robert; Navarro, Julien [CEMES, 29 rue Jeanne Marvig, BP 94347, 31055 Toulouse cedex 4 (France); Sekhri, Salem [ENVOI, Cheminement Glueck, 31100 Toulouse (France)

    2009-12-15

    This study is part of an operation in the framework of treatment and revalorization of IEEE (Informatics, Electronics and related) wastes. It aims to recover the active phosphors in cathode ray tubes (CRTs) and to re-cycle these powders by appropriate treatments as phosphors for mercury-free applications such as plasma display panels, flat lamps, advertising and lighting. The studied waste comes from a large panel of CRTs from any supplier. Several thermo-chemical treatments have been investigated. The removal of zinc sulfide-based phosphors and the recovery of a red phosphor Y{sub 2}O{sub 3}:Eu{sup 3+} has been achieved by one (basic attack) route. The photoluminescence efficiency under VUV excitation of the obtained powders is at most 30% that of a commercial phosphor. The second route (acid attack) appears less promising. It has been established that silicate-based impurities could prevent isolating the yttrium based phosphor.

  10. Elementary sulfur in effluent from denitrifying sulfide removal process as adsorbent for zinc(II).

    Science.gov (United States)

    Chen, Chuan; Zhou, Xu; Wang, Aijie; Wu, Dong-hai; Liu, Li-hong; Ren, Nanqi; Lee, Duu-Jong

    2012-10-01

    The denitrifying sulfide removal (DSR) process can simultaneously convert sulfide, nitrate and organic compounds into elementary sulfur (S(0)), di-nitrogen gas and carbon dioxide, respectively. However, the S(0) formed in the DSR process are micro-sized colloids with negatively charged surface, making isolation of S(0) colloids from other biological cells and metabolites difficult. This study proposed the use of S(0) in DSR effluent as a novel adsorbent for zinc removal from wastewaters. Batch and continuous tests were conducted for efficient zinc removal with S(0)-containing DSR effluent. At pHremoval rates of zinc(II) were increased with increasing pH. The formed S(0) colloids carried negative charge onto which zinc(II) ions could be adsorbed via electrostatic interactions. The zinc(II) adsorbed S(0) colloids further enhanced coagulation-sedimentation efficiency of suspended solids in DSR effluents. The DSR effluent presents a promising coagulant for zinc(II) containing wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Poly(methyl methacrylate)/layered zinc sulfide nanocomposites: Preparation, characterization and the improvements in thermal stability, flame retardant and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao; Zhou, Keqing; Jiang, Saihua [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Shi, Yongqian [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren’ai Road, Suzhou, Jiangsu 215123 (China); Wang, Bibo [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Gui, Zhou, E-mail: zgui@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren’ai Road, Suzhou, Jiangsu 215123 (China)

    2014-08-15

    Highlights: • Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method. • We prepare PMMA/LZnS nanocomposites by in situ bulk polymerization of MMA. • PMMA/LZnS nanocomposites were investigated by TGA, DSC, MCC, UV–vis and PL test. • The thermal stability, flame retardant and optical properties of PMMA are improved. - Abstract: Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method and poly(methyl methacrylate) (PMMA)/layered zinc sulfide nanocomposites were obtained by in situ bulk polymerization of methyl methacrylate (MMA). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the as-synthesized layered zinc sulfide and PMMA/layered zinc sulfide nanocomposites. Microscale combustion calorimeter (MCC), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA) were used to test the thermal properties of the composites. Ultraviolet visible (UV–vis) transmittance spectra and photoluminence (PL) spectra were obtained to investigate the optical properties of the composites. From the results, the thermal degradation temperature is increased by 20–50 °C, the peak of heat release rate (pHRR) and total heat release (THR) are both decreased by above 30%, and the photoluminence intensity is enhanced with the increasing loading of layered zinc sulfide.

  12. Poly(methyl methacrylate)/layered zinc sulfide nanocomposites: Preparation, characterization and the improvements in thermal stability, flame retardant and optical properties

    International Nuclear Information System (INIS)

    Wang, Biao; Zhou, Keqing; Jiang, Saihua; Shi, Yongqian; Wang, Bibo; Gui, Zhou; Hu, Yuan

    2014-01-01

    Highlights: • Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method. • We prepare PMMA/LZnS nanocomposites by in situ bulk polymerization of MMA. • PMMA/LZnS nanocomposites were investigated by TGA, DSC, MCC, UV–vis and PL test. • The thermal stability, flame retardant and optical properties of PMMA are improved. - Abstract: Layered zinc sulfide (LZnS) was synthesized successfully via hydrothermal method and poly(methyl methacrylate) (PMMA)/layered zinc sulfide nanocomposites were obtained by in situ bulk polymerization of methyl methacrylate (MMA). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the as-synthesized layered zinc sulfide and PMMA/layered zinc sulfide nanocomposites. Microscale combustion calorimeter (MCC), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA) were used to test the thermal properties of the composites. Ultraviolet visible (UV–vis) transmittance spectra and photoluminence (PL) spectra were obtained to investigate the optical properties of the composites. From the results, the thermal degradation temperature is increased by 20–50 °C, the peak of heat release rate (pHRR) and total heat release (THR) are both decreased by above 30%, and the photoluminence intensity is enhanced with the increasing loading of layered zinc sulfide

  13. Design and fabrication of anti-reflection coating on Gallium Phosphide, Zinc Selenide and Zinc Sulfide substrates for visible and infrared application

    Directory of Open Access Journals (Sweden)

    Mokrý P.

    2013-05-01

    Full Text Available Results of design and fabrication of a dual-band anti-reflection coating on a gallium phosphide (GaP, zinc selenide (ZnSe and zinc sulfide (ZnS substrates are presented. A multilayer stack structure of antireflection coatings made of zinc sulfide and yttrium fluoride (YF3 was theoretically designed for optical bands between 0.8 and 0.9 μm and between 9.5 and 10.5 μm. This stack was designed as efficient for these materials (GaP, ZnS, ZnSe together. Multilayer stack structure was deposited using thermal evaporation method. Theoretically predicted transmittance spectra were compared with transmitted spectra measured on coated substrates. Efficiency of anti-reflection coating is estimated and discrepancies are analyzed and discussed.

  14. Effect of ambient hydrogen sulfide on the physical properties of vacuum evaporated thin films of zinc sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Beer Pal [Department of Physics, C.C.S. University, Meerut 250004 (India)], E-mail: drbeerpal@gmail.com; Singh, Virendra [Forensic Science Laboratory, Malviya Nagar, New Delhi 110017 (India); Tyagi, R.C.; Sharma, T.P. [Department of Physics, C.C.S. University, Meerut 250004 (India)

    2008-02-15

    Evaporated thin films of zinc sulfide (ZnS) have been deposited in a low ambient atmosphere of hydrogen sulfide (H{sub 2}S {approx}10{sup -4} Torr). The H{sub 2}S atmosphere was obtained by a controlled thermal decomposition of thiourea [CS(NH{sub 2}){sub 2}] inside the vacuum chamber. It has been observed that at elevated substrates temperature of about 200 deg. C helps eject any sulfur atoms deposited due to thermal decomposition of ZnS during evaporation. The zinc ions promptly recombine with H{sub 2}S to give better stoichiometry of the deposited films. Optical spectroscopy, X-ray diffraction patterns and scanning electron micrographs depict the better crystallites and uniformity of films deposited by this technique. These deposited films were found to be more adherent to the substrates and are pinhole free, which is a very vital factor in device fabrication.

  15. Removal of metals from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation.

    Science.gov (United States)

    Ye, Maoyou; Li, Guojian; Yan, Pingfang; Ren, Jie; Zheng, Li; Han, Dajian; Sun, Shuiyu; Huang, Shaosong; Zhong, Yujian

    2017-10-01

    Mine tailings often contain significant amounts of metals and sulfide, many traditional operations used to minerals was not as good as those currently available. This study investigated metals removal from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. Metals were dissolved from the tailings by the bacteria in a bioleaching reactor. During a 10% pulp density bioleaching experiment, approximately 0.82% Pb, 97.38% Zn, and 71.37% Fe were extracted after 50 days. With the pulp density of 10% and 20%, the dissolution of metals followed shrinking core kinetic model. Metals (Pb, Zn, and Fe) present in the pregnant bioleaching leachate. Metals were next precipitated as a sulfide phase using sodium sulfide (Na 2 S). Metal precipitations were selectively and quantitatively produced from the bioleaching leachate by adding Na 2 S. More than 99% of the zinc and 75% of the iron was precipitated using 25 g/L Na 2 S in the bioleaching leachate. The results in the study were to provide useful information for recovering or removing metals from lead-zinc mine tailings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Band offset in zinc oxy-sulfide/cubic-tin sulfide interface from X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanal, K.C.; Nair, P.K.; Nair, M.T.S., E-mail: mtsn@ier.unam.mx

    2017-02-28

    Highlights: • Zinc oxy-sulfide thin films, 175–240 nm, deposited by rf-sputtering from targets of ZnO + ZnS. • Oxygen content in thin films is enhanced 3–4 times compared with that in ZnO:ZnS targets. • Thin film ZnO{sub x}S{sub 1−x} with x = 0.88–0.27 and optical band gap 2.8–3.2 eV is suitable for solar cells. • The conduction band offset with SnS of cubic structure studied by XPS are +0.41 to −0.28 eV. - Abstract: Zinc oxy-sulfide, ZnO{sub x}S{sub 1−x}, has been found to provide better band alignment in thin film solar cells of tin sulfide of orthorhombic crystalline structure. Here we examine ZnO{sub x}S{sub 1−x}/SnS-CUB interface, in which the ZnO{sub x}S{sub 1−x} thin film was deposited by radio frequency (rf) magnetron sputtering on SnS thin film of cubic (CUB) crystalline structure with a band gap (E{sub g}) of 1.72 eV, obtained via chemical deposition. X-ray photoelectron spectroscopy provides the valence band maxima of the materials and hence places the conduction band offset of 0.41 eV for SnS-CUB/ZnO{sub 0.27}S{sub 0.73} and −0.28 eV for SnS-CUB/ZnO{sub 0.88}S{sub 0.12} interfaces. Thin films of ZnO{sub x}S{sub 1−x} with 175–240 nm in thickness were deposited from targets prepared with different ZnO to ZnS molar ratios. With the target of molar ratio of 1:13.4, the thin films are of composition ZnO{sub 0.27}S{sub 0.73} with hexagonal crystalline structure and with that of 1:1.7 ratio, it is ZnO{sub 0.88}S{sub 0.12}. The optical band gap of the ZnO{sub x}S{sub 1−x} thin films varies from 2.90 eV to 3.21 eV as the sulfur to zinc ratio in the film increases from 0.12:1 to 0.73:1 as determined from X-ray diffraction patterns. Thus, band offsets sought for absorber materials and zinc oxy-sulfide in solar cells may be achieved through a choice of ZnO:ZnS ratio in the sputtering target.

  17. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy.

    Science.gov (United States)

    Han, Haisheng; Sun, Wei; Hu, Yuehua; Jia, Baoliang; Tang, Honghu

    2014-08-15

    Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600-700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO4) and silver mineral; silver jarosite decomposed into silver sulfate (Ag2SO4); and zinc ferrite (ZnO · Fe2O3) decomposed into zinc sulfate (ZnSO4) and hematite (Fe2O3). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Prediction and experimental determination of the solubility of exotic scales at high temperatures - Zinc sulfide

    DEFF Research Database (Denmark)

    Carolina Figueroa Murcia, Diana; Fosbøl, Philip Loldrup; Thomsen, Kaj

    2016-01-01

    The presence of "exotic" scale such as Zinc Sulfide (ZnS), Lead Sulfide (PbS) and Iron Sulfide (FeS) in HP/HT reservoirs has been identified. "Exotic" scale materials come as a new challenge in HP/HT reservoirs. This has led to the development of more advanced tools to predict their behavior...... at extreme conditions. The aim of this work is to include ZnS into the group of scale materials that can be modeled with the Extended UNIQUAC model. Solubility data for ZnS are scarce in the open literature. In order to improve the available data, we study the experimental behavior of ZnS solubility at high...... temperatures. The determination of the solubility of ZnS is carried out at temperatures up to 250°C. Zinc sulfide (99.99%) and ultra-pure water are placed in a vial in a reduced oxygen atmosphere. The sample is placed in a controlled bath and stirred until equilibrium is attained. The suspension is filtered...

  19. Zinc sulfide in intestinal cell granules of Ancylostoma caninum adults

    Energy Technology Data Exchange (ETDEWEB)

    Gianotti, A.J.; Clark, D.T.; Dash, J. (Portland State Univ., OR (USA))

    1991-04-01

    A source of confusion has existed since the turn of the century about the reddish brown, weakly birefringent 'sphaerocrystals' located in the intestines of strongyle nematodes, Strongylus and Ancylostoma. X-ray diffraction and energy dispersive spectrometric analyses were used for accurate determination of the crystalline order and elemental composition of the granules in the canine hookworm Ancylostoma caninum. The composition of the intestinal pigmented granules was identified unequivocally as zinc sulfide. It seems most probable that the granules serve to detoxify high levels of metallic ions (specifically zinc) present due to the large intake of host blood.

  20. Fabrication and Characterization of Zinc Sulfide Nanoparticles and Nanocomposites Prepared via a Simple Chemical Precipitation Method

    Directory of Open Access Journals (Sweden)

    Kambiz Hedayati

    2016-07-01

    Full Text Available In this research zinc sulfide (ZnS nanoparticles and nanocomposites powders were prepared by chemical precipitation method using zinc acetate and various sulfur sources. The ZnS nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible and fourier transform infra-red. The structure of nanoparticles was studied using X-ray diffraction pattern. The crystallite size of ZnS nanoparticles was calculated by Debye–Scherrer formula. Morphology of nano-crystals was observed and investigated using the scanning electron microscopy. The grain size of zinc sulfide nanoparticles were in suitable agreement with the crystalline size calculated by X-ray diffraction results. The optical properties of particles were studied with ultraviolet-visible absorption spectrum.

  1. Pyrolytically grown indium sulfide sensitized zinc oxide nanowires for solar water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Komurcu, Pelin; Can, Emre Kaan; Aydin, Erkan; Semiz, Levent [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Gurol, Alp Eren; Alkan, Fatma Merve [Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Sankir, Mehmet; Sankir, Nurdan Demirci [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey)

    2015-11-15

    Zinc oxide (ZnO) nanowires, sensitized with spray pyrolyzed indium sulfide, were obtained by chemical bath deposition. The XRD analysis indicated dominant evolution of hexagonal ZnO phase. Significant gain in photoelectrochemical current using ZnO nanowires is largely accountable to enhancement of the visible light absorption and the formation of heterostructure. The maximum photoconversion efficiency of 2.77% was calculated for the indium sulfide sensitized ZnO nanowire photoelectrodes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Solubility Measurements and Modeling of Zinc, Lead and Iron Sulfides at High Temperatures and High Pressures

    DEFF Research Database (Denmark)

    Carolina Figueroa Murcia, Diana; Fosbøl, Philip Loldrup; Thomsen, Kaj

    Solubility measurements of sulfides in aqueous solutions are necessary to understand the behaviour of these scaling minerals in geothermal and oil reservoirs. The low solubility levels of Zinc Sulfide (ZnS), Lead Sulfide (PbS) and Iron Sulfide (FeS) make the solubility measurements a challenging...... oxygen atmosphere to avoid the risk of oxidation of sulfide minerals. The solution is kept in an equilibrium cell at constant temperature and pressure with continuous stirring. The concentration of Zn2+, Pb2+, Fe2+ and S2- are measured using Inductively Coupled Plasma Optical Emission spectrometry (ICP...

  3. HISTOLOGICAL CHANGES IN POECILIA RETICULATA AFTER INTERACTION OF IONIZING RADIATION AND ZINC SULFID

    Directory of Open Access Journals (Sweden)

    Michaela Špalková

    2012-12-01

    Full Text Available In our experiment we have studied interaction of ionizing radiation and zinc at Poecilia reticulata. Fish were irradiated with a 20 Gy of gamma-rays. Zinc sulphate in concentration 25 mg.l-1 was added to water in aquarium. Food intake, clinicl symptoms and histological changes were followed after gamma-irradiation and zinc sulfid in guppy Poecilia reticulata. In the first days timidity and lethargy were observed. The most prominent clinical symptoms observed were emaciation, hampered breathing and haemorrhages. Histological findings corresponded with these symptoms.doi:10.5219/228

  4. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy

    International Nuclear Information System (INIS)

    Han, Haisheng; Sun, Wei; Hu, Yuehua; Jia, Baoliang; Tang, Honghu

    2014-01-01

    Highlights: • Jarosite precipitate hindered the recovery of valuable minerals. • Under 600–700 °C, jarosite decomposed and released the encapsulated valuable minerals. • The bared valuable minerals were easily collected by flotation process. • The new process was promising for dealing with jarosite residues. - Abstract: Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600–700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO 4 ) and silver mineral; silver jarosite decomposed into silver sulfate (Ag 2 SO 4 ); and zinc ferrite (ZnO·Fe 2 O 3 ) decomposed into zinc sulfate (ZnSO 4 ) and hematite (Fe 2 O 3 ). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy

  5. A Visual Detection System for Determining Tritium Surface Deposition Employing Phosphor Coated Materials

    International Nuclear Information System (INIS)

    Gentile, C.A.; Skinner, C.H.; Young, K.M.; Zweben, S.J.

    1999-01-01

    A method for visually observing tritium deposition on the surface of the Tokamak Fusion Test Reactor (TFTR) deuterium-tritium (D-T) tiles is being investigated at the Princeton Plasma Physics Laboratory. A green phosphor (P31, zinc sulfide: copper) similar to that used in oscilloscope screens with a wavelength peak of 530 nm was positioned on the surface of a TFTR D-T tile. The approximately 600 gram tile, which contains approximately 1.5 Ci of tritium located on the top approximately 1-50 microns of the surface, was placed in a two liter lexan chamber at Standard Temperature and Pressure (STP). The phosphor plates and phosphor powder were placed on the surface of the tile which resulted in visible light being observed, the consequence of tritium betas interacting with the phosphor. This technique provides a method of visually observing varying concentrations of tritium on the surface of D-T carbon tiles, and may be employed (in a calibrated system) to obtain quantitative data

  6. Surface stoichiometry of zinc sulfide and its effect on the adsorption behaviors of xanthate

    Directory of Open Access Journals (Sweden)

    Wang Meng

    2011-11-01

    Full Text Available Abstract In this paper, the surface stoichiometry, acid-base properties as well as the adsorption of xanthate at ZnS surfaces were studied by means of potentiometric titration, adsorption and solution speciation modeling. The surface proton binding site was determined by using Gran plot to evaluate the potentiometric titration data. Testing results implied that for stoichiometric surfaces of zinc sulfide, the proton and hydroxide determine the surface charge. For the nonstoichiometric surfaces, the surface charge is controlled by proton, hydroxide, zinc and sulfide ions depending on specific conditions. The xanthate adsorption decreases with increasing solution pH, which indicates an ion exchange reaction at the surfaces. Based on experimental results, the surface protonation, deprotonation, stoichiometry and xanthate adsorption mechanism were discussed.

  7. Anglesite and silver recovery from jarosite residues through roasting and sulfidization-flotation in zinc hydrometallurgy

    Energy Technology Data Exchange (ETDEWEB)

    Han, Haisheng; Sun, Wei, E-mail: hanhaishengjingji@126.com; Hu, Yuehua; Jia, Baoliang; Tang, Honghu

    2014-08-15

    Highlights: • Jarosite precipitate hindered the recovery of valuable minerals. • Under 600–700 °C, jarosite decomposed and released the encapsulated valuable minerals. • The bared valuable minerals were easily collected by flotation process. • The new process was promising for dealing with jarosite residues. - Abstract: Hazardous jarosite residues contain abundant valuable minerals that are difficult to be recovered by traditional flotation process. This study presents a new route, roasting combined with sulfidization-flotation, for the recovery of anglesite and silver from jarosite residues of zinc hydrometallurgy. Surface appearance and elemental distribution of jarosite residues was examined by scanning electron microscopy and energy dispersive X-ray spectrometry analysis, respectively. Decomposition and transformation mechanisms of jarosite residues were illustrated by differential thermal analysis. Results showed that after roasting combined with flotation, the grade and recovery of lead were 43.89% and 66.86%, respectively, and those of silver were 1.3 kg/t and 81.60%, respectively. At 600–700 °C, jarosite was decomposed to release encapsulated valuable minerals such as anglesite (PbSO{sub 4}) and silver mineral; silver jarosite decomposed into silver sulfate (Ag{sub 2}SO{sub 4}); and zinc ferrite (ZnO·Fe{sub 2}O{sub 3}) decomposed into zinc sulfate (ZnSO{sub 4}) and hematite (Fe{sub 2}O{sub 3}). Bared anglesite and silver minerals were modified by sodium sulfide and easily collected by flotation collectors. This study demonstrates that the combination of roasting and sulfidization-flotation provides a promising process for the recovery of zinc, lead, and silver from jarosite residues of zinc hydrometallurgy.

  8. Surface and capillary forces encountered by zinc sulfide microspheres in aqueous electrolyte.

    Science.gov (United States)

    Gillies, Graeme; Kappl, Michael; Butt, Hans-Jürgen

    2005-06-21

    The colloid probe technique was used to investigate the interactions between individual zinc sulfide (ZnS) microspheres and an air bubble in electrolyte solution. Incorporation of zinc ions into the electrolyte solution overcomes the disproportionate zinc ion dissolution and mimics high-volume-fraction conditions common in flotation. Determined interaction forces revealed a distinct lack of long-ranged hydrophobic forces, indicated by the presence of a DLVO repulsion prior to particle engulfment. Single microsphere contact angles were determined from particle-bubble interactions. Contact angles increased with decreasing radii and with surface oxidation. Surface modification by the absorption of copper and subsequently potassium O-ethyldithiocarbonate (KED) reduced repulsive forces and strongly increased contact angles.

  9. A Study on Dielectric Properties of Cadmium Sulfide-Zinc Sulfide Core-Shell Nanocomposites for Application as Nanoelectronic Filter Component in the Microwave Domain

    Science.gov (United States)

    Devi, Jutika; Datta, Pranayee

    2018-03-01

    Complex permittivities of cadmium sulfide (CdS), zinc sulfide (ZnS), and of cadmium sulfide-zinc sulfide (CdS/ZnS) core-shell nanoparticles embedded in a polyvinyl alcohol matrix (PVA) were measured in liquid phase using a VectorNetwork Analyzer in the frequency range of 500 MHz-10 GHz. These nanocomposites are modeled as an embedded capacitor, and their electric field distribution and polarization have been studied using COMSOL Multiphysics software. By varying the thickness of the shell and the number of inclusions, the capacitance values were estimated. It was observed that CdS, ZnS and CdS/ZnS core-shell nanoparticles embedded in a polyvinyl alcohol matrix show capacitive behavior. There is a strong influence of the dielectric properties in the capacitive behavior of the embedded nanocapacitor. The capping matrix, position and filling factors of nanoinclusions all affect the capacitive behavior of the tested nanocomposites. Application of the CdS, ZnS and CdS/ZnS core-shell nanocomposite as the passive low-pass filter circuit has also been investigated. From the present study, it has been found that CdS/ZnS core-shell nanoparticles embedded in PVA matrix are potential structures for application as nanoelectronic filter components in different areas of communication.

  10. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles

    Science.gov (United States)

    Deonarine, Amrika; Lau, Boris L.T.; Aiken, George R.; Ryan, Joseph N.; Hsu-Kim, Heileen

    2011-01-01

    Nanoparticulate metal sulfides such as ZnS can influence the transport and bioavailability of pollutant metals in anaerobic environments. The aim of this work was to investigate how the composition of dissolved natural organic matter (NOM) influences the stability of zinc sulfide nanoparticles as they nucleate and aggregate in water with dissolved NOM. We compared NOM fractions that were isolated from several surface waters and represented a range of characteristics including molecular weight, type of carbon, and ligand density. Dynamic light scattering was employed to monitor the growth and aggregation of Zn−S−NOM nanoparticles in supersaturated solutions containing dissolved aquatic humic substances. The NOM was observed to reduce particle growth rates, depending on solution variables such as type and concentration of NOM, monovalent electrolyte concentration, and pH. The rates of growth increased with increasing ionic strength, indicating that observed growth rates primarily represented aggregation of charged Zn−S−NOM particles. Furthermore, the observed rates decreased with increasing molecular weight and aromatic content of the NOM fractions, while carboxylate and reduced sulfur content had little effect. Differences between NOM were likely due to properties that increased electrosteric hindrances for aggregation. Overall, results of this study suggest that the composition and source of NOM are key factors that contribute to the stabilization and persistence of zinc sulfide nanoparticles in the aquatic environment.

  11. Zinc sulfide thin films deposited by RF reactive sputtering for photovoltaic applications

    International Nuclear Information System (INIS)

    Shao Lexi; Chang, K.-H.; Hwang, H.-L.

    2003-01-01

    Zinc sulfide (ZnS) thin films with nano-scale grains of about 50 nm were deposited on glass substrates at a substrate temperature of 200 deg. C via RF reactive sputtering by using zinc plate target and hydrogen sulfide gas. The structure, compositions, electrical and optical characteristics of the deposited films were investigated for the photovoltaic device applications. All films showed a near stoichiometric composition as indicated in their AES data. Distinct single crystalline phase with preferential orientation along the (0 0 0 1) plane of wurtzite or the (1 1 1) plane of zinc blende (ZB) was revealed in their X-ray diffraction (XRD) patterns, and the spacing of the planes are well matched to those of (1 1 2) plane of the chalcopyrite CuInS 2 (CIS). UV-Vis measurement showed that the films had more than 65% transmittance in the wavelength larger than 350 nm, and the fundamental absorption edge shifted to shorter wavelength with the increase of sulfur incorporated in the films, which corresponds to an increase in the energy band gap ranging from 3.59 to 3.72 eV. It was found that ZnS films are suitable for use as the buffer layer of the CIS solar cells, and it is the viable alternative for replacing CdS in the photovoltaic cell structure

  12. Synthesis and luminescent properties of Sm3+ doped zinc aluminate phosphor

    Science.gov (United States)

    Mahajan, Rubby; Kumar, Sandeep; Prakash, Ram; Kumar, Vinay

    2018-05-01

    Zinc Aluminate (ZnAl2O4) is a well-known wide band gap oxide that belongs to a class of mixed-metal oxides knows as spinels (AB2O4) where A and B are divalent and trivalent cations. Herein, the structural and photoluminescence properties of Sm3+ ion doped with ZnAl2O4 phosphors are reported. The nanophosphors were synthesized via solution combustion synthesis route at temperature 570 °C. The synthesized samples were characterized by X-ray powder diffraction (XRD), Photoluminescence (PL) spectroscopy, and Ultraviolet-visible spectroscopy. The XRD pattern confirms the cubic phase of phosphor. The calculated lattice parameter were found as a = b = c = 8.0517Å and V = 521.85Å3. The crystallite size of the phosphor was calculated using the Debye-Scherrer formula and found to be ˜19 nm. The emission spectrum at excitation wavelength of 401 nm gave the emission peaks at 563 nm, 601 nm, 648 nm, 697 nm corresponding to the transitions 4G5/2→ 6H5/2, 4G5/2→6H7/2, 4G5/2→6H9/2, 4G5/2 → 6H11/2 of Sm3+ ions, respectively. The diffuse reflectance spectrum was used to calculate the band gap of material and found to be 5.12 eV. The CIE coordinates were found to be (x = 0.56, y = 0.40) that falls in the orange red region of the color gamut. The present phosphor may have potential applications as phosphor for near UV WLED for solid state lighting.

  13. Relative flotation response of zinc sulfide: Mineral and precipitate

    Energy Technology Data Exchange (ETDEWEB)

    Rao, S.R.; Finch, J.A. [McGill Univ., Montreal, Quebec (Canada). Dept. of Mining and Metallurgical Engineering; Zhou, Z.; Xu, Z. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Chemical and Materials Engineering

    1998-04-01

    Flotation continues to extend to nonmineral applications, including recycling of materials, soil remediation, and effluent treatment. A study has been conducted to compare the floatability of fine zinc sulfide (ZnS) precipitates and sphalerite particles. The floatability of the precipitates was significantly poorer compared to sphalerite particles when xanthate was used as the collector. The floatability was improved by using dodecylamine as the collector, and the difference in floatability between the precipitates was further improved significantly by incorporating a hydrodynamic cavitation tube in a conventional (mechanical) flotation cell. The improved kinetics was attributed to in-situ gas nucleation on the precipitates.

  14. Visible-light-enhanced interactions of hydrogen sulfide with composites of zinc (oxy)hydroxide with graphite oxide and graphene.

    Science.gov (United States)

    Seredych, Mykola; Mabayoje, Oluwaniyi; Bandosz, Teresa J

    2012-01-17

    Composites of zinc(oxy)hydroxide-graphite oxide and of zinc(oxy)hydroxide-graphene were used as adsorbents of hydrogen sulfide under ambient conditions. The initial and exhausted samples were characterized by XRD, FTIR, potentiometric titration, EDX, thermal analysis, and nitrogen adsorption. An increase in the amount of H(2)S adsorbed/oxidized on their surfaces in comparison with that of pure Zn(OH)(2) is linked to the structure of the composite, the relative number of terminal hydroxyls, and the kind of graphene-based phase used. Although terminal groups are activated by a photochemical process, the graphite oxide component owing to the chemical bonds with the zinc(oxy)hydroxide phase and conductive properties helps in electron transfer, leading to more efficient oxygen activation via the formation of superoxide ions. Elemental sulfur, zinc sulfide, sulfite, and sulfate are formed on the surface. The formation of sulfur compounds on the surface of zinc(oxy)hydroxide during the course of the breakthrough experiments and thus Zn(OH)(2)-ZnS heterojunctions can also contribute to the increased surface activity of our materials. The results show the superiority of graphite oxide in the formation of composites owing to its active surface chemistry and the possibility of interface bond formation, leading to an increase in the number of electron-transfer reactions. © 2011 American Chemical Society

  15. Immersion autometallography: histochemical in situ capturing of zinc ions in catalytic zinc-sulfur nanocrystals.

    Science.gov (United States)

    Danscher, Gorm; Stoltenberg, Meredin; Bruhn, Mikkel; Søndergaard, Chris; Jensen, Dorete

    2004-12-01

    In the mid-1980s, two versions of Timm's original immersion sulfide silver method were published. The authors used immersion of tissue in a sulfide solution as opposed to Timm, who used immersion of tissue blocks in hydrogen sulfide-bubbled alcohol. The autometallography staining resulting from the "sulfide only immersion" was not particularly impressive, but the significance of this return to an old approach became obvious when Wenzel and co-workers presented their approach in connection with introduction by the Palmiter group of zinc transporter 3 (ZnT3). The Wenzel/Palmiter pictures are the first high-resolution, high-quality pictures taken from tissues in which free and loosely bound zinc ions have been captured in zinc-sulfur nanocrystals by immersion. The trick was to place formalin-fixed blocks of mouse brains in a solution containing 3% glutaraldehyde and 0.1% sodium sulfide, ingredients used for transcardial perfusion in the zinc-specific NeoTimm method. That the NeoTimm technique results in silver enhancement of zinc-sulfur nanocrystals has been proved by proton-induced X-ray multielement analyses (PIXE) and in vivo chelation with diethyldithiocarbamate (DEDTC). The aims of the present study were (a) to make the immersion-based capturing of zinc ions in zinc-sulfur nanocrystals work directly on sections and slices of fixed brain tissue, (b) to work out protocols that ensure zinc specificity and optimal quality of the staining, (c) to apply "immersion autometallography" (iZnSAMG) to other tissues that contain zinc-enriched (ZEN) cells, and (d) to make the immersion approach work on unfixed fresh tissue.

  16. Light-emitting diodes based on nontoxic zinc-alloyed silver-indium-sulfide (AIZS) nanocrystals

    Science.gov (United States)

    Bhaumik, Saikat; Guchhait, Asim; Pal, Amlan J.

    2014-04-01

    We report solution-processed growth of zinc-alloyed silver-indium-sulfide (AIZS) nanocrystals followed by fabrication and characterization of light-emitting diodes (LEDs) based on such nanostructures. While growing the low dimensional crystals, we vary the ratio between the silver and zinc contents that in turn tunes the bandgap and correspondingly their photoluminescence (PL) emission. We also dope the AIZS nanocrystals with manganese, so that their PL emission, which appears due to a radiative transition between the d-states of the dopants, becomes invariant in energy when the diameter of the quantum dots or the dopant concentration in the nanostructures varies. The LEDs fabricated with such undoped and manganese-doped AIZS nanocrystals emit electroluminescence (EL) that matches the PL spectrum of the respective nanomaterial. The results demonstrate examples of quantum dot LEDs (QDLEDs) based on nontoxic AIZS nanocrystals.

  17. Electroluminescence

    CERN Document Server

    Henisch, H K

    1962-01-01

    Electroluminescence deals with the multiplicity of forms related to electroluminescence phenomena. The book reviews some basic observations of electroluminescence, the Gudden-Pohl and Dechene effects, the electroluminescence phenomena in zinc sulfide phosphors, in silicon carbide, and in compounds composed of elements in groups III and V of the Periodic Table (such as gallium phosphide). The text also explains polarization of free charge carriers, the outline of junction breakdown theory, carrier recombination, and phosphor suspensions. The book describes the growth of zinc sulfide crystals (f

  18. Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes

    International Nuclear Information System (INIS)

    Pouretedal, Hamid Reza; Norozi, Abbas; Keshavarz, Mohammad Hossein; Semnani, Abolfazl

    2009-01-01

    Nanoparticles of zinc sulfide as undoped and doped with manganese, nickel and copper were used as photocatalyst in the photodegradation of methylene blue and safranin as color pollutants. Photoreactivity of doped zinc sulfide was varied with dopant, mole fraction of dopant to zinc ion, pH of solution, dosage of photocatalyst and concentration of dye. The characterization of nanoparticles was studied using X-ray powder diffraction (XRD) patterns and UV-vis spectra. The maximum degradation efficiency was obtained in the presence of Zn 0.98 Mn 0.02 S, Zn 0.94 Ni 0.06 S and Zn 0.90 Cu 0.10 S as nanophotocatalyst. The effect of dosage of photocatalyst was studied in the range of 20-250 mg/L. It was seen that 150.0 mg/L of photocatacyst is an optimum value for the dosage of photocatalyst. The most degradation efficiency was obtained in alkaline pH of 11.0 with study of photodegradation in pH amplitude of 2-12. The degradation efficiency was decreased in dye concentrations above of 5.0 mg/L for methylene blue and safranin dyes. In the best conditions, the degradation efficiency was obtained 87.3-95.6 and 85.4-93.2 for methylene blue and safranin, respectively

  19. Thermoluminescence dosimetric characteristics of thulium doped ZnB2O4 phosphor

    International Nuclear Information System (INIS)

    Annalakshmi, O.; Jose, M.T.; Madhusoodanan, U.; Subramanian, J.; Venkatraman, B.; Amarendra, G.; Mandal, A.B.

    2014-01-01

    Polycrystalline powder samples of rare earth doped Zinc borates were synthesized by high temperature solid state diffusion technique. Dosimetric characteristics of the phosphor like thermoluminescence glow curve, TL emission spectra, dose–response, fading studies, reproducibility and reusability studies were carried out on the synthesized phosphors. Among the different rare earth doped phosphors, thulium doped zinc borate was found to have a higher sensitivity. Hence detailed dosimetric characteristics of this phosphor were carried out. It is observed that the dose–response is linear from 10 mGy to 10 3 Gy in this phosphor. EPR measurements were carried out on unirradiated, gamma irradiated and annealed phosphors to identify the defect centers responsible for thermoluminescence. A TL model is proposed based on the EPR studies in these materials. Kinetic parameters were evaluated for the dosimetric peaks using various methods. The experimental results show that this phosphor can have potential applications in radiation dosimetry applications. -- Highlights: • Polycrystalline powder samples of rare earth doped zinc borates were synthesized. • Thulium was observed to be the most efficient dopant in ZnB 2 O 4 lattice. • TL intensity of the dosimetric peak is around 20 times that of TLD-100. • Based on EPR studies a TL mechanism is proposed in zinc borate. • Deconvolution of the glow curve carried out

  20. Study on the surface sulfidization behavior of smithsonite at high temperature

    Science.gov (United States)

    Lv, Jin-fang; Tong, Xiong; Zheng, Yong-xing; Xie, Xian; Wang, Cong-bing

    2018-04-01

    Surface sulfidization behavior of smithsonite at high temperature was investigated by X-ray powder diffractometer (XRD) along with thermodynamic calculation, X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA). The XRD and thermodynamic analyses indicated that the smithsonite was decomposed into zincite at high temperatures. After introducing a small amount of pyrite, artificial sulfides were formed at surface of the obtained zincite. The XPS analyses revealed that the sulfide species including zinc sulfide and zinc disulfide were generated at the zincite surface. The EPMA analyses demonstrated that the film of sulfides was unevenly distributed at the zincite surface. The average concentration of elemental sulfur at the sample surface increased with increasing of pyrite dosage. A suitable mole ratio of FeS2 to ZnCO3 for the surface thermal modification was determined to be about 0.3. These findings can provide theoretical support for improving the process during which the zinc recovery from refractory zinc oxide ores is achieved by xanthate flotation.

  1. Study of some thermoluminescent phosphors for the dosimetry of ionizing radiations

    International Nuclear Information System (INIS)

    Jaafari, M.

    1983-01-01

    Thermoluminescence dosimetry techniques are reviewed and interactions radiation matter are recalled. The need for new phosphors is evidenced. Numerous phosphors are examined and calcium, strontium and barium sulfides are synthetized and deposited on glass supports. The thermoluminescence of the dosimeters obtained with these materials is analyzed [fr

  2. Process for winning uranium from wet process phosphoric acid

    International Nuclear Information System (INIS)

    1980-01-01

    A process is described for winning uranium from wet process phosphoric acid by means of liquid-liquid extraction with organic phosphoric acid esters. The process is optimised by keeping the sulphate percentage in the phosphoric acid below 2% by weight, and preferably below 0.6% by weight, as compared to P 2 O 5 in the phosphoric acid. This is achieved by adding an excess of Ba and/or Ca carbonate or sulfide solution and filtering off the formed calcium and/or barium sulphate precipitates. Solid KClO 3 is then added to the filtrate to oxidise U 4+ to U 6+ . The normal extraction procedure using organic phosphoric esters as extraction liquid, can then be applied. (Th.P.)

  3. Thermoluminescence dosimetric characteristics of thulium doped ZnB{sub 2}O{sub 4} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Annalakshmi, O. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Jose, M.T., E-mail: mtj@igcar.gov.in [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Madhusoodanan, U. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Subramanian, J. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai (India); Venkatraman, B. [Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Amarendra, G. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam-603102 (India); Mandal, A.B. [Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai (India)

    2014-02-15

    Polycrystalline powder samples of rare earth doped Zinc borates were synthesized by high temperature solid state diffusion technique. Dosimetric characteristics of the phosphor like thermoluminescence glow curve, TL emission spectra, dose–response, fading studies, reproducibility and reusability studies were carried out on the synthesized phosphors. Among the different rare earth doped phosphors, thulium doped zinc borate was found to have a higher sensitivity. Hence detailed dosimetric characteristics of this phosphor were carried out. It is observed that the dose–response is linear from 10 mGy to 10{sup 3} Gy in this phosphor. EPR measurements were carried out on unirradiated, gamma irradiated and annealed phosphors to identify the defect centers responsible for thermoluminescence. A TL model is proposed based on the EPR studies in these materials. Kinetic parameters were evaluated for the dosimetric peaks using various methods. The experimental results show that this phosphor can have potential applications in radiation dosimetry applications. -- Highlights: • Polycrystalline powder samples of rare earth doped zinc borates were synthesized. • Thulium was observed to be the most efficient dopant in ZnB{sub 2}O{sub 4} lattice. • TL intensity of the dosimetric peak is around 20 times that of TLD-100. • Based on EPR studies a TL mechanism is proposed in zinc borate. • Deconvolution of the glow curve carried out.

  4. Use of biogenic sulfide for ZnS precipitation

    NARCIS (Netherlands)

    Esposito, G.; Veeken, A.; Weijma, J.; Lens, P.N.L.

    2006-01-01

    A 600 ml continuously stirred tank reactor was used to assess the performance of a zinc sulfide precipitation process using a biogenic sulfide solution (the effluent of a sulfate-reducing bioreactor) as sulfide source. In all experiments, a proportional-integral (PI) control algorithm was used to

  5. Acid production potentials of massive sulfide minerals and lead-zinc mine tailings: a medium-term study.

    Science.gov (United States)

    Çelebi, Emin Ender; Öncel, Mehmet Salim; Kobya, Mehmet

    2018-01-01

    Weathering of sulfide minerals is a principal source of acid generation. To determine acid-forming potentials of sulfide-bearing materials, two basic approaches named static and kinetic tests are available. Static tests are short-term, and easily undertaken within a few days and in a laboratory. In contrast, kinetic tests are long-term procedures and mostly carried out on site. In this study, experiments were conducted over a medium-term period of 2 months, not as short as static tests and also not as long as kinetic tests. As a result, pH and electrical conductivity oscillations as a function of time, acid-forming potentials and elemental contents of synthetically prepared rainwater leachates of massive sulfides and sulfide-bearing lead-zinc tailings from abandoned and currently used deposition areas have been determined. Although the lowest final pH of 2.70 was obtained in massive pyrite leachate, massive chalcopyrite leachate showed the highest titrable acidity of 1.764 g H 2 SO 4 /L. On the other hand, a composite of currently deposited mine tailings showed no acidic characteristic with a final pH of 7.77. The composite abandoned mine tailing leachate had a final pH of 6.70, close to the final pH of massive galena and sphalerite leachates, and produced a slight titrable acidity of 0.130 g H 2 SO 4 /L.

  6. Sulfidation treatment of molten incineration fly ashes with Na2S for zinc, lead and copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2007-04-01

    The present study focuses on the conversion of heavy metals involved in molten incineration fly ashes to metal sulfides which could be thereafter separated by flotation. The sulfidation treatment was carried out for five molten incineration fly ashes (Fly ash-A to Fly ash-E) by contacting each fly ash with Na(2)S solution for a period of 10 min to 6h. The initial molar ratio of S(2-) to Me(2+) was adjusted to 1.20. The conversion of heavy metals to metal sulfides was evaluated by measuring the S(2-) residual concentrations using an ion selective electrode. The formation of metal sulfides was studied by XRD and SEM-EDS analyses. In the case of Fly ash-A to Fly ash-D, more than 79% of heavy metals of zinc, lead and copper was converted to metal sulfides within the contacting period of 0.5h owing to a fast conversion of metal chlorides to metal sulfides. By contrast, the conversion of about 35% was achieved for Fly ash-E within the same contacting period, which was attributed to a high content of metal oxides. Further, the S(2-) to Me(2+) molar ratio was reduced to 1.00 to minimize Na(2)S consumption and the conversions obtained within the contacting period of 0.5h varied from 76% for Fly ash-D to 91% for Fly ash-C. Finally, soluble salts such as NaCl and KCl were removed during the sulfidation treatment, which brought about a significant enrichment in metals content by a factor varying from 1.5 for Fly ash-D to 4.9 for Fly ash-A.

  7. Development of a lithium fluoride zinc sulfide based neutron multiplicity counter

    Science.gov (United States)

    Cowles, Christian; Behling, Spencer; Baldez, Phoenix; Folsom, Micah; Kouzes, Richard; Kukharev, Vladislav; Lintereur, Azaree; Robinson, Sean; Siciliano, Edward; Stave, Sean; Valdez, Patrick

    2018-04-01

    The feasibility of a full-scale lithium fluoride zinc sulfide (LiF/ZnS) based neutron multiplicity counter has been demonstrated. The counter was constructed of modular neutron detecting stacks that each contain five sheets of LiF/ZnS interleaved between six sheets of wavelength shifting plastic with a photomultiplier tube on each end. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high-density polyethylene blocks in the corners to reflect high-energy neutrons and capture low-energy neutrons. The final system design was optimized via modeling and small-scale test. Measuring neutrons from a 252Cf source, the counter achieved a 36% neutron detection efficiency (ɛ) and an 11 . 7 μs neutron die-away time (τ) for a doubles figure-of-merit (ɛ2 / τ) of 109. This is the highest doubles figure-of-merit measured to-date for a 3He-free neutron multiplicity counter.

  8. Nitrogen and Sulfur Co-doped Graphene Supported Cobalt Sulfide Nanoparticles as an Efficient Air Cathode for Zinc-air Battery

    International Nuclear Information System (INIS)

    Ganesan, Pandian; Ramakrishnan, Prakash; Prabu, Moni; Shanmugam, Sangaraju

    2015-01-01

    Highlights: • CoS 2 nanoparticles supported on a nitrogen and sulfur co-doped graphene oxide is described. • Improved round trip efficiency was observed for CoS 2 (400)/N,S-GO. • CoS 2 (400)/N,S-GO possess improved durability with low over-potential. • CoS 2 (400)/N,S-GO is a promising air cathode for zinc-air battery. - ABSTRACT: Zinc-air battery is considered as one of the promising energy storage devices due to their low cost, eco-friendly and safe. Here, we present a simple approach to the preparation of cobalt sulfide nanoparticles supported on a nitrogen and sulfur co-doped graphene oxide surface. Cobalt sulfide nanoparticles dispersed on graphene oxide hybrid was successfully prepared by solid state thermolysis approach at 400 °C, using cobalt thiourea and graphene oxide. X-ray diffraction study revealed that hybrid electrode prepared at 400 °C results in pure CoS 2 phase. The hybrid CoS 2 (400)/N,S-GO electrode exhibits low over-potential gap about 0.78 V vs. Zn after 70 cycles with remarkable and robust charge and discharge profile. And also the CoS 2 (400)/N,S-GO showing deep discharge behavior with stability up to 7.5 h.

  9. Fluorescent lighting with aluminum nitride phosphors

    Science.gov (United States)

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  10. Laser discrimination by stimulated emission of a phosphor

    Science.gov (United States)

    Mathur, V. K.; Chakrabarti, K.

    1991-01-01

    A method for discriminating sources of UV, near infrared, and far infrared laser radiation was discovered. This technology is based on the use of a single magnesium sulfide phosphor doubly doped with rare earth ions, which is thermally/optically stimulated to generate colors correlatable to the incident laser radiation. The phosphor, after initial charging by visible light, exhibits green stimulated luminescence when exposed to a near infrared source (Nd: YAG laser). On exposure to far infrared sources (CO2 laser) the phosphor emission changes to orange color. A UV laser produces both an orange red as well as green color. A device using this phosphor is useful for detecting the laser and for discriminating between the near infrared, far infrared, and UV lasers. The technology is also capable of infrared laser diode beam profiling since the radiation source leaves an imprint on the phosphor that can be photographed. Continued development of the technology offers potential for discrimination between even smaller bandwidths within the infrared spectrum, a possible aid to communication or wavemixing devices that need to rapidly identify and process optical signals.

  11. Selective Sulfidation of Lead Smelter Slag with Sulfur

    Science.gov (United States)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  12. Precipitation and growth of zinc sulfide nanoparticles in the presence of thiol-containing natural organic ligands.

    Science.gov (United States)

    Lau, Boris L T; Hsu-Kim, Heileen

    2008-10-01

    In sulfidic aquatic systems, metal sulfides can control the mobility and bioavailability of trace metal pollutants such as zinc, mercury, and silver. Nanoparticles of ZnS and other metal sulfides are known to exist in oxic and anoxic waters. However, the processes that lead to their persistence in the aquatic environment are relatively unknown. The objective of this study was to evaluate the importance of dissolved natural organics in stabilizing nanoparticulate ZnS that precipitates under environmentally relevant conditions. Precipitation and growth of ZnS particles were investigated in the presence of dissolved humic acid and low-molecular weight organic acids that are prevalent in sediment porewater. Dynamic light scattering was used to monitor the hydrodynamic diameter of particles precipitating in laboratory solutions. Zn speciation was also measured by filtering the ZnS solutions (precipitation experiments and not to the dissolved organic ligands. X-ray photoelectron spectroscopy and electron microscopy were used to confirm that amorphous particles containing Zn and S were precipitating in the suspensions. Observed growth rates of ZnS particles varied by orders of magnitude, depending on the type and concentration of organic ligand in solution. In the presence of humic acid and thiol-containing ligands (cysteine, glutathione, and thioglycolate), observed growth rates decreased by 1-3 orders of magnitude relative to controls without the ligands. In contrast, growth rates of the particles were consistently within 1 order of magnitude of the ligand-free control when oxygen- and amine-containing ligands (oxalate, serine, and glycolate) were present Furthermore, particle growth rates decreased with an increase in thiol concentration and increased with NaNO3 electrolyte concentration. These studies suggest that specific surface interactions with thiol-containing organics may be one factor that contributes to the persistence of naturally occurring and anthropogenic

  13. Sol-Gel Synthesis and Luminescence of Green Light Emitting Phosphors Zn2SiO4/Mn2+

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Mn2+ doped Zn2SiO4 phosphors were synthesized by sol-gel method, and the influence of zinc source, Mn2+ dopant concentration and annealing temperature were investigated. Results show that zinc nitrate based precursor with strong green emission intensities is better than zinc acetate based precursor. The intensity of green light emission reaches a peak at 254 nm when the Mn2+ dopant concentration is about 5%( molar percentage). Structural details of the phosphors were examined through X-ray diffractometry, thermogravimetric and differential thermal analysis. The result indicates that they are both rhombohedral structures, which remain amorphous below 700 ℃and crystallize completely around 1 000℃. The luminescent properties of Zn2SiO4/Mn2+ phosphors were characterized by excitation and emission spectra.

  14. Preparation of a thin polysulfone phosphor sheet for the detection of alpha particles using adhesive process

    International Nuclear Information System (INIS)

    Seo, B. K.; Woo, Z. H.; Kim, G. H.; Chang, U. S.; Oh, W. Z.; Lee, K. W.; Han, M. J.

    2005-01-01

    According to atomic energy law and connection regs, the surface contamination of nuclear facilities should be monitored routinely. Surface contamination is divided into removable and fixed contamination. Fixed contamination is measured by a direct method with a survey meter. And removable contamination is measured by an indirect method using smear paper and a low background proportional counter. Also, in the decommissioning process of a nuclear research facilities, such as Korean Research Reactor 1 and 2 and Uranium Conversion Plant, a significant amount of nuclear wastes is produced. The wastes contaminated must be surveyed for the disposal and reuse in the future. In the previous study the medium, scintillatorembedded polymer membrane for detecting the alpharay, was prepared by impregnating organic scintillators in a membrane structure. The plastic scintillator consists of polysulfone(PSF) as a matrix with PPO as an organic scintillator and POPOP as a wave shifting agent dissolved in the matrix. But, an organic plastic scintillator was inadequate to detect the alpha particle in the alpha-beta mixing field because its light output is smaller than beta ray one. So, a thin phosphor sheet was prepared, which consisted of a very uniform deposit of silver activated zinc sulfide (ZnS(Ag)) phosphor applied to on side of clear polysulfone plastic sheet

  15. Anaerobic Digestion Alters Copper and Zinc Speciation.

    Science.gov (United States)

    Legros, Samuel; Levard, Clément; Marcato-Romain, Claire-Emmanuelle; Guiresse, Maritxu; Doelsch, Emmanuel

    2017-09-19

    Anaerobic digestion is a widely used organic waste treatment process. However, little is known on how it could alter the speciation of contaminants in organic waste. This study was focused on determining the influence of anaerobic digestion on the speciation of copper and zinc, two metals that generally occur at high concentration in organic waste. Copper and zinc speciation was investigated by X-ray absorption spectroscopy in four different raw organic wastes (predigestion) and their digested counterparts (postdigestion, i.e., digestates). The results highlighted an increase in the digestates of the proportion of amorphous or nanostructured copper sulfides as well as amorphous or nanostructured zinc sulfides and zinc phosphate as compared to raw waste. We therefore suggest that the environmental fate of these elements would be different when spreading either digestates or raw waste on cropland.

  16. Neutron scintillator using Ga-doped ZnO phosphor with high detection efficiency

    International Nuclear Information System (INIS)

    Koyama, Shin; Kinoshita, Atsushi; Fujiwara, Akihiko; Kobayashi, Haruki; Takei, Yoshinori; Nanto, Hidehito; Katagiri, Masaki

    2009-01-01

    Zinc Oxide (ZnO) family phosphors as phosphor for neutron detector have prepared using Spark Plasma Sintering (SPS) method. The optical properties of ZnO phosphor prepared are investigated. The following results were obtained. Two dominant photoluminescence (PL) emission peaks at 395 nm and 495 nm were observed. The lifetime of the PL emission peak at 395 nm (UV emission band) is about 20 ns, which is suitable for neutron detection. The Ga (30 mol%)-doped ZnO phosphor exhibited an intense UV emission band without the visible emission band. The Ga-doped ZnO phosphor can be prepared at the atmospheric pressure of about 8 Pa using SPS method. It was found that the PL intensity of UV emission band is increased with improving the crystallinity of the ZnO phosphor. (author)

  17. Luminescent sulfides of monovalent and trivalent cations

    International Nuclear Information System (INIS)

    1975-01-01

    The invention discloses a family of luminescent materials or phosphors having a rhombohedral crystal structure and consisting essentially of a mixed host sulfide of at least one monovalent host cation and at least one trivalent host cation, and containing, for each mole of phosphor, 0.0005 to 0.05 mole of at least one activating cation. The monovalent host cations may be Na, K or Rb and Cs. The trivalent host cations may be Gd, La, Lu, Sc and Y. The activating cations may be one or more of trivalent As, Bi, Ce, Dy, Er, Pr, Sb, Sm, Tb and Tm; divalent Lu, Mn, Pb and Sn; and monovalent Ag, Cu and Tl. The novel phosphors may be used in devices to convert electron-beam, ultraviolet or x-ray energy to light in the visible spectrum. Such energy conversion can be employed for example in fluoroscopic screens, and in viewing screens of cathode-ray tubes and other electron tubes

  18. Volcanogenic massive sulfide occurrence model: Chapter C in Mineral deposit models for resource assessment

    Science.gov (United States)

    Shanks, W.C. Pat; Koski, Randolph A.; Mosier, Dan L.; Schulz, Klaus J.; Morgan, Lisa A.; Slack, John F.; Ridley, W. Ian; Dusel-Bacon, Cynthia; Seal, Robert R.; Piatak, Nadine M.; Shanks, W.C. Pat; Thurston, Roland

    2012-01-01

    Volcanogenic massive sulfide deposits, also known as volcanic-hosted massive sulfide, volcanic-associated massive sulfide, or seafloor massive sulfide deposits, are important sources of copper, zinc, lead, gold, and silver (Cu, Zn, Pb, Au, and Ag). These deposits form at or near the seafloor where circulating hydrothermal fluids driven by magmatic heat are quenched through mixing with bottom waters or porewaters in near-seafloor lithologies. Massive sulfide lenses vary widely in shape and size and may be podlike or sheetlike. They are generally stratiform and may occur as multiple lenses.

  19. Phosphorus poisoning of molybdenum sulfide hydrodesulfurization catalysts supported on carbon and alumina

    NARCIS (Netherlands)

    Bouwens, S.M.A.M.; Vissers, J.P.R.; Beer, de V.H.J.; Prins, R.

    1988-01-01

    Phosphorus-containing Mo sulfide catalysts supported on ¿-Al2O3 and activated carbon were evaluated for their thiophene HDS activities. Phosphorus was added as phosphoric acid to the carrier material prior to the molybdenum component. The thiophene HDS activity of the carbon-supported catalysts was

  20. On the origin of life in the Zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth

    Directory of Open Access Journals (Sweden)

    Mulkidjanian Armen Y

    2009-08-01

    Full Text Available Abstract Background The accompanying article (A.Y. Mulkidjanian, Biology Direct 4:26 puts forward a detailed hypothesis on the role of zinc sulfide (ZnS in the origin of life on Earth. The hypothesis suggests that life emerged within compartmentalized, photosynthesizing ZnS formations of hydrothermal origin (the Zn world, assembled in sub-aerial settings on the surface of the primeval Earth. Results If life started within photosynthesizing ZnS compartments, it should have been able to evolve under the conditions of elevated levels of Zn2+ ions, byproducts of the ZnS-mediated photosynthesis. Therefore, the Zn world hypothesis leads to a set of testable predictions regarding the specific roles of Zn2+ ions in modern organisms, particularly in RNA and protein structures related to the procession of RNA and the "evolutionarily old" cellular functions. We checked these predictions using publicly available data and obtained evidence suggesting that the development of the primeval life forms up to the stage of the Last Universal Common Ancestor proceeded in zinc-rich settings. Testing of the hypothesis has revealed the possible supportive role of manganese sulfide in the primeval photosynthesis. In addition, we demonstrate the explanatory power of the Zn world concept by elucidating several points that so far remained without acceptable rationalization. In particular, this concept implies a new scenario for the separation of Bacteria and Archaea and the origin of Eukarya. Conclusion The ability of the Zn world hypothesis to generate non-trivial veritable predictions and explain previously obscure items gives credence to its key postulate that the development of the first life forms started within zinc-rich formations of hydrothermal origin and was driven by solar UV irradiation. This concept implies that the geochemical conditions conducive to the origin of life may have persisted only as long as the atmospheric CO2 pressure remained above ca. 10 bar

  1. Zinc sulfide and zinc selenide immersion gratings for astronomical high-resolution spectroscopy: evaluation of internal attenuation of bulk materials in the short near-infrared region

    Science.gov (United States)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Yasui, Chikako; Kuzmenko, Paul J.; Tokoro, Hitoshi; Terada, Hiroshi

    2009-08-01

    We measure the internal attenuation of bulk crystals of chemical vapor deposition zinc selenide (CVD-ZnS), chemical vapor deposition zinc sulfide (CVD-ZnSe), Si, and GaAs in the short near-infrared (sNIR) region to evaluate the possibility of astronomical immersion gratings with those high refractive index materials. We confirm that multispectral grade CVD-ZnS and CVD-ZnSe are best suited for the immersion gratings, with the smallest internal attenuation of αatt=0.01 to 0.03 cm-1 among the major candidates. The measured attenuation is roughly in proportion to λ-2, suggesting it is dominated by bulk scattering due to the polycrystalline grains rather than by absorption. The total transmittance in the immersion grating is estimated to be at least >80%, even for the spectral resolution of R=300,000. Two potential problems, the scattered light by the bulk material and the degradation of the spectral resolution due to the gradient illumination in the diffracted beam, are investigated and found to be negligible for usual astronomical applications. Since the remaining problem, the difficulty of cutting grooves on CVD-ZnS and CVD-ZnSe, has recently been overcome by the nanoprecision fly-cutting technique, ZnS and ZnSe immersion gratings for astronomy can be technically realized.

  2. Thermoluminescence of novel zinc oxide nano phosphors obtained by glycine-based solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: victor.orante@polimeros.uson.mx [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2015-10-15

    Full text: High-dose thermoluminescence dosimetry properties of novel zinc oxide nano phosphors synthesized by a solution combustion method in a glycine-nitrate process are presented for the very first time in this work. Sintered particles with sizes ranging between ∼500 nm and ∼2 μm were obtained by annealing the synthesized Zn O at 900 degrees C during 2 h in air. X-ray diffraction patterns indicate the presence of the Zn O hexagonal phase, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima: one located at ∼ 149 degrees C and another at ∼ 308 degrees C, the latter being the dosimetric component of the curve. The integrated Tl fading displays an asymptotic behaviour for times longer than 16 h between irradiation and the corresponding Tl readout, as well as a linear behaviour of the dose response without saturation in the studied dose interval (from 12.5 up to 400 Gy). Such features place synthesized Zn O as a promising material for high-dose radiation dosimetry applications. (Author)

  3. Thermoluminescence of novel zinc oxide nano phosphors obtained by glycine-based solution combustion synthesis

    International Nuclear Information System (INIS)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C.; Bernal, R.

    2015-10-01

    Full text: High-dose thermoluminescence dosimetry properties of novel zinc oxide nano phosphors synthesized by a solution combustion method in a glycine-nitrate process are presented for the very first time in this work. Sintered particles with sizes ranging between ∼500 nm and ∼2 μm were obtained by annealing the synthesized Zn O at 900 degrees C during 2 h in air. X-ray diffraction patterns indicate the presence of the Zn O hexagonal phase, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima: one located at ∼ 149 degrees C and another at ∼ 308 degrees C, the latter being the dosimetric component of the curve. The integrated Tl fading displays an asymptotic behaviour for times longer than 16 h between irradiation and the corresponding Tl readout, as well as a linear behaviour of the dose response without saturation in the studied dose interval (from 12.5 up to 400 Gy). Such features place synthesized Zn O as a promising material for high-dose radiation dosimetry applications. (Author)

  4. Color stable phosphors for LED lamps and methods for preparing them

    Science.gov (United States)

    Murphy, James Edward; Setlur, Anant Achyut; Camardello, Samuel Joseph

    2013-11-26

    An LED lamp includes a light source configured to emit radiation with a peak intensity at a wavelength between about 250 nm and about 550 nm; and a phosphor composition configured to be radiationally coupled to the light source. The phosphor composition includes particles of a phosphor of formula I, said particles having a coating composition disposed on surfaces thereof; ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.sub.y-)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) I wherein the coating composition comprises a material selected from aluminum oxide, magnesium oxide, calcium oxide, barium oxide, strontium oxide, zinc oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, strontium hydroxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, and combinations thereof; and A is Li, NA, K, or Rb, or a combination thereof; M is Ca, Ba, Mg, Zn, or a combination thereof; and 0

  5. Study on the sulfidation behavior of smithsonite

    International Nuclear Information System (INIS)

    Wu, Dandan; Wen, Shuming; Deng, Jiushuai; Liu, Jian; Mao, Yingbo

    2015-01-01

    Highlights: • Zeta potential showed that the pH IEP of smithsonite decreased from 7.7 to 6. • ICP test showed the gradual reduction of C S in the solution. • SEM showed that the mineral surface was partially changed to ZnS film. • XPS indicated that the presence of a characteristic signal peak of sulfur ions. - Abstract: Zinc extraction from low-grade mineral resources of oxidized zinc has recently become a focus of study. Sulfidation is an important process in oxidized ore flotation. In this study, the influence of sulfur ion adsorption on smithsonite surface was investigated with the use of zeta potential, inductively coupled plasma (ICP), scanning electron microscope (SEM), and X-ray photoelectron spectroscopic studies. Zeta potential measurements of sodium sulfide showed that sulfur ions were adsorbed onto the surface of pure smithsonite, as evidenced by the increased negative charge and the decrease in the pH IEP of smithsonite from 7.7 to 6 after sodium sulfide treatment. The ICP test revealed the gradual reduction in sulfur ion adsorption onto the surface of smithsonite in pulp sulfur. After 30 min of absorption, C S in the solution declined from 1000 × 10 −6 mol/L to 1.4 × 10 −6 mol/L. SEM results showed that the mineral surface was partially changed to ZnS film after sodium sulfide treatment, whereas EDS analysis results showed that 2% S is contained on the smithsonite surface. X-ray photoelectron spectroscopy results indicated the presence of a characteristic signal peak of sulfur ions after sulfidation. Sulfur concentration increased to 11.89%, whereas oxygen concentration decreased from 42.31% to 13.74%. Sulfur ions were not only present during chemical adsorption, but were also incorporated into the crystal lattices of minerals by the exchange reaction between S 2− and CO 3 2− ions

  6. INHIBITION OF CORROSION OF ZINC IN (HNO3 + HCl) ACID ...

    African Journals Online (AJOL)

    2015-05-01

    May 1, 2015 ... corrosion inhibitor for zinc in phosphoric acid. Vashi et al.[8-9] studied the corrosion inhibition of zinc in (HNO3 + H2SO4) and (HNO3 + H3PO4) binary acid mixture by aniline. In the present work, the role of aniline as inhibitor for corrosion of zinc in (HNO3 + HCl) binary acid mixture has been reported. 2.

  7. Chemical bath deposited zinc sulfide buffer layers for copper indium gallium sulfur-selenide solar cells and device analysis

    International Nuclear Information System (INIS)

    Kundu, Sambhu; Olsen, Larry C.

    2005-01-01

    Cadmium-free copper indium gallium sulfur-selenide (CIGSS) thin film solar cells have been fabricated using chemical bath deposited (CBD) zinc sulfide (ZnS) buffer layers. Shell Solar Industries provided high quality CIGSS absorber layers. The use of CBD-ZnS, which is a higher band gap material than CdS, improved the quantum efficiency of fabricated cells at lower wavelengths, leading to an increase in short circuit current. The best cell to date yielded an active area (0.43 cm 2 ) efficiency of 13.3%. The effect of the ZnS buffer layer thickness on device performance was studied carefully. This paper also presents a discussion of issues relevant to the use of the CBD-ZnS buffer material for improving device performance

  8. Enhanced phosphorescence and electroluminescence in triplet emitters by doping gold into cadmium selenide/zinc sulfide nanoparticles

    International Nuclear Information System (INIS)

    Liu, H.-W.; Laskar, Inamur R.; Huang, C.-P.; Cheng, J.-A.; Cheng, S.-S.; Luo, L.-Y.; Wang, H.-R.; Chen, T.-M.

    2005-01-01

    Gold-cadmium selenide/zinc sulfide (Au-CdSe/ZnS) nanocomposites (NCs) were synthesized and characterized by transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, ultraviolet-visible (UV-visible) absorption and photoluminescence (PL) emission spectroscopy. The PL intensity in the Au-CdSe/ZnS NCs system was found to be much greater than that of CdSe/ZnS nanoparticles (NPs) alone, because of the surface-enhanced Raman scattering of Au NPs. Adding Au-CdSe/ZnS NCs to the cyclometalated iridium(III) complex (Ir-complex) greatly enhanced the PL intensity of a triplet emitter. Three double-layered electroluminescence (EL) devices were fabricated where the emitting zone contains the definite mixture of Ir-complex and the NCs [molar concentration of Ir-complex/NCs = 1:0 (Blank, D-1), 1:1 (D-2) and 1:3 (D-3)] and the device D-2 exhibited optimal EL performances

  9. Development of a lithium fluoride zinc sulfide based neutron multiplicity counter

    Energy Technology Data Exchange (ETDEWEB)

    Cowles, Christian; Behling, Spencer; Baldez, Phoenix; Folsom, Micah; Kouzes, Richard; Kukharev, Vladislav; Lintereur, Azaree; Robinson, Sean; Siciliano, Edward; Stave, Sean; Valdez, Patrick

    2018-04-01

    Past 3He shortages led to investigations into replacement options for neutron detectors in systems that previously used 3He-based technologies. The goal of this research was to investigate the feasibility of a full-scale lithium fluoride with silver activated zinc sulfide (LiF/ZnS) based neutron multiplicity counter. The LiF/ZnS based neutron multiplicity counter (LiNMC) was developed based on an iterative process between modeling and experimental measurements. Each active region of the LiNMC contains five sheets of LiF/ZnS sandwiched between six sheets of wavelength shifting plastic to form neutron detection stacks. The wavelength shifted scintillation light was collected by photomultiplier tubes located on each end of the stacks. Twelve such detector stacks were placed around a sample chamber in a square arrangement with lithiated high density polyethylene blocks in the corners to reflect high energy neutrons and capture low energy neutrons. Preliminary calibration with a 252Cf neutron source showed that the LiNMC was able to achieve 36% neutron detection efficiency (ε) and an 11.7 μs neutron die-away time (τ) for a doubles Figure-of-merit (ε2/ τ) of 109. This is the highest doubles Figure-of-merit performance measured to-date for a 3He-free neutron multiplicity counter system. By the end of this project, the LiNMC’s basic components were integrated into a single laboratory scale system capable of proof-of-concept measurements.

  10. COMPOSITE MATERIALS BASED ON ZINC SULFIDE AND ZINC OXIDE: STRUCTURAL AND BIOCIDAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Sukhodub L.B

    2016-12-01

    Full Text Available Introduction. The widespread use of drugs with antimicrobial action has led to the formation of microorganism resistance against wide range of antibiotics. One of the approaches to dissolving this problem is the substances modification by inorganic bioactive ions in oder to initiate a controlled reaction in the bone tissues and provision of antimicrobial activity. It is known that ZnO-based materials have a pronounced biocompatibility, they are characterized by high limit strength, absolute mechanical hardness, as well as the ability to withstand the harsh operating conditions. The aim of this work is the study of structural and biocidal properties of composite material based on zinc oxide and zinc sulfide (ZnS-ZnO and its complex with an organic substance - sodium alginate (ZnS-ZnO-Alg for use in biomedical purpose. Materials and methods. For the synthesis of ZnS-ZnO composite 50 ml 0.2M solution zinc nitrate was added to the 50 ml 0.2M thiourea CS (NH ₂ ₂ solution and stirred in a shaker for 60 minutes. The formation of the compound took place when added to a mixture of 25 mas.% solution of ammonia with the subsequent heating at 80 oC for 30 minutes. Synthesis of the metalorganic complex of ZnS-ZnO-Alg was performed by above mentioned procedure, but to the thiourea solution was previously added 1 ml of 3 mas.% solution of sodium alginate under ultrasonic mixing.. For the next research composites were dried or lyophilized. Study of antibacterial activity of the ZnS-ZnO and ZnS-ZnO-Alg particles was carried out with the use of nutrient mediums: Muller Hinton, meat-pepton nutrient (MPN. As the reference cultures were used E. coli ATCC 25922, S. aureus ATCC 25923, S. aureus ATSS 29213, S. aureus ATSS-6538, C albicans ATCC 885-653. Determination of the minimum bactericidal concentration (MBC was carried out by a modified serial diluted method in liquid nutrient broth followed plating on solid Muller Hinton nutrient medium. In addition, the

  11. Determination of Hydrogen Sulfide in Fermentation Broths Containing SO21

    Science.gov (United States)

    Acree, T. E.; Sonoff, Elisabeth P.; Splittstoesser, D. F.

    1971-01-01

    A procedure for the determination of hydrogen sulfide in fermentation broths containing up to 100 μg of SO2 per ml is described. The method involves the sparging of H2S from the broth into a cadmium hydroxide absorption solution, the formation of methylene blue from the absorbed sulfide, and the measuring of this color spectrophotometrically. The use of cadmium hydroxide instead of zinc acetate, the common absorbent, substantially reduced the interference of SO2 with the analysis. PMID:5111300

  12. Study on the sulfidation behavior of smithsonite

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dandan; Wen, Shuming, E-mail: shmwen@126.com; Deng, Jiushuai, E-mail: dengshuai689@163.com; Liu, Jian; Mao, Yingbo

    2015-02-28

    Highlights: • Zeta potential showed that the pH{sub IEP} of smithsonite decreased from 7.7 to 6. • ICP test showed the gradual reduction of C{sub S} in the solution. • SEM showed that the mineral surface was partially changed to ZnS film. • XPS indicated that the presence of a characteristic signal peak of sulfur ions. - Abstract: Zinc extraction from low-grade mineral resources of oxidized zinc has recently become a focus of study. Sulfidation is an important process in oxidized ore flotation. In this study, the influence of sulfur ion adsorption on smithsonite surface was investigated with the use of zeta potential, inductively coupled plasma (ICP), scanning electron microscope (SEM), and X-ray photoelectron spectroscopic studies. Zeta potential measurements of sodium sulfide showed that sulfur ions were adsorbed onto the surface of pure smithsonite, as evidenced by the increased negative charge and the decrease in the pH{sub IEP} of smithsonite from 7.7 to 6 after sodium sulfide treatment. The ICP test revealed the gradual reduction in sulfur ion adsorption onto the surface of smithsonite in pulp sulfur. After 30 min of absorption, C{sub S} in the solution declined from 1000 × 10{sup −6} mol/L to 1.4 × 10{sup −6} mol/L. SEM results showed that the mineral surface was partially changed to ZnS film after sodium sulfide treatment, whereas EDS analysis results showed that 2% S is contained on the smithsonite surface. X-ray photoelectron spectroscopy results indicated the presence of a characteristic signal peak of sulfur ions after sulfidation. Sulfur concentration increased to 11.89%, whereas oxygen concentration decreased from 42.31% to 13.74%. Sulfur ions were not only present during chemical adsorption, but were also incorporated into the crystal lattices of minerals by the exchange reaction between S{sup 2−} and CO{sub 3}{sup 2−} ions.

  13. Luminescence in Sulfides: A Rich History and a Bright Future

    Directory of Open Access Journals (Sweden)

    Philippe F. Smet

    2010-04-01

    Full Text Available Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs. The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles.

  14. A study of the optical properties and adhesion of zinc sulfide anti-reflection thin film coated on a germanium substrate

    Energy Technology Data Exchange (ETDEWEB)

    Firoozifar, S.A.R. [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Behjat, A., E-mail: abehjat@yazduni.ac.ir [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of); Photonics Research Group, Engineering Research Center, Yazd University, Yazd (Iran, Islamic Republic of); Kadivar, E. [Physics Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of); Ghorashi, S.M.B.; Zarandi, M. Borhani [Atomic and Molecular Group, Faculty of Physics, Yazd University, Yazd (Iran, Islamic Republic of)

    2011-11-01

    To conduct this study, zinc sulfide (ZnS) thin films deposited on germanium (Ge) substrates were prepared by an evaporation method. The effects of deposition rate and annealing on the optical properties and adhesion of the ZnS thin films were investigated. The transmission intensity and the X-ray diffraction (XRD) pattern of the samples showed that the transmittance of the samples decreases by increasing the evaporation rates. However, with the increase of the annealing temperature, crystallinity of the thin films improves which, in turn, results in the enhancement of the transmission intensity in a far infrared region. The maximum grain size was obtained at the annealing temperature of 225 deg. C. Our experimental results also show that evaporation rate and annealing influences the adhesion of ZnS thin films to Ge substrates.

  15. Influence of mechanical activation on the Moessbauer spectra of the sulfides

    International Nuclear Information System (INIS)

    Lipka, J.; Miglierini, M.; Sitek, J.; Balaz, P.; Tkacova, K.

    1993-01-01

    Moessbauer spectroscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, electron paramagnetic resonance and X-ray diffraction were used to identify changes of surface, structure and spectroscopic properties of sulfide minerals produced by mechanical activation. In the present study we report the results of chalcopyrite (CuFeS 2 ), pyrite (FeS 2 ), cinnabar (HgS), bornite (Cu 5 FeS 4 ) and zinc sulfide (ZnS). The influence of energy input to the mill and the nature of grinding environment have been investigated upon the Fe contamination of the materials. (orig.)

  16. Influence of mechanical activation on the Moessbauer spectra of the sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Lipka, J.; Miglierini, M.; Sitek, J. (Dept. of Nuclear Physics and Technology, Slovak Technical Univ., Bratislava, Slovak Republic (Czechoslovakia)); Balaz, P.; Tkacova, K. (Mining Inst. of the Slovak Academy of Sciences, Kosice, Slovak Republic (Czechoslovakia))

    1993-04-01

    Moessbauer spectroscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, electron paramagnetic resonance and X-ray diffraction were used to identify changes of surface, structure and spectroscopic properties of sulfide minerals produced by mechanical activation. In the present study we report the results of chalcopyrite (CuFeS[sub 2]), pyrite (FeS[sub 2]), cinnabar (HgS), bornite (Cu[sub 5]FeS[sub 4]) and zinc sulfide (ZnS). The influence of energy input to the mill and the nature of grinding environment have been investigated upon the Fe contamination of the materials. (orig.).

  17. Mineralogical characterization of steel industry hazardous waste and refractory sulfide ores for zinc and gold recovery processing

    Energy Technology Data Exchange (ETDEWEB)

    Hagni, A.M.; Hagni, R.D. (Univ. of Missouri, Rolla, MO (United States). Geology Geophysics Dept.)

    1994-04-01

    The steel industry generates dust as a waste product from high temperature electric arc furnaces (EAF), which is a major step in processing scrap metal into steel. The Environmental Protection Agency (EPA) has classified EAF dust as KO61 hazardous waste, due to its lead, cadmium, and chromium content. The dust also contains valuable zinc, averaging 19%. Detailed mineralogical characterization show the zinc is present as crystals of franklinite-magnetite-jacobsite solid solutions in calcium-iron-silicate glass spheres and as zincite mostly as very small individual spheres. Much of the chromium is present in an insoluble form in solid solution in the iron spinels. This microscopic research is a valuable tool in determining treatment processes for the 600,000 tons of dust generated annually in the US. Refractory gold ores, pyrite and arsenopyrite, have been studied to determine additional, cost-effective methods of processing. One technique under investigation involves roasting sulfide mineral particles to hematite to create porosity through which a leach can permeate to recover the gold. Portlandite, Ca(OH)[sub 2], is added to the roast for retention of hazardous sulfur and arsenic. Modern microscopic and spectroscopic techniques, such electron spectroscopy for chemical analysis, cathodoluminescence microscopy, and electron microprobe, have been applied, as well as reflected light and dark field microscopy, and scanning electron microscopy to determine the mineralogy of the sulfur, arsenic, and iron phases, and the extent of porosity, permeability, and oxidation state of the ore particles at various roasting temperatures. It is concluded that mineralogical techniques can be effectively applied to the solution of environmental problems.

  18. Sulfide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp

    NARCIS (Netherlands)

    Heijs, S.K.; Azzoni, R.; Giordani, G.; Jonkers, H.M.; Nizzoli, D.; Viaroli, P.; van Gemerden, H.

    2000-01-01

    The production and consumption of sulfide and its influence on phosphorous cycling were studied in a hypertrophic coastal lagoon (Valle Smarlacca, Italy). Oxygen measurements revealed that the water phase was supersaturated except for the layer directly overlying the sediment. This layer was devoid

  19. Sulfide-induced release of phosphate from sediments of coastal lagoons and the possible relation to the disappearance of Ruppia sp.

    NARCIS (Netherlands)

    Heijs, SK; Azzoni, R; Giordani, G; Jonkers, HM; Nizzoli, D; Viaroli, P; van Gemerden, H

    2000-01-01

    The production and consumption of sulfide and its influence on phosphorous cycling were studied in a hypertrophic coastal lagoon (Valle Smarlacca, Italy). Oxygen measurements revealed that the water phase was supersaturated except for the layer directly overlying the sediment. This layer was devoid

  20. A DNA biosensor for molecular diagnosis of Aeromonas hydrophila using zinc sulfide nanospheres

    Directory of Open Access Journals (Sweden)

    M. Negahdary

    2017-07-01

    Full Text Available Today, identification of pathogenic bacteria using modern and accurate methods is inevitable. Integration in electrochemical measurements with nanotechnology has led to the design of efficient and sensitive DNA biosensors against bacterial agents. Here, efforts were made to detect Aeromonas hydrophila using aptamers as probes and zinc sulfide (ZnS nanospheres as signal enhancers and electron transfer facilitators. After modification of the working electrode area (in a screen-printed electrode with ZnS nanospheres through electrodeposition, the coated surface of a modified electrode with ZnS nanospheres was investigated through scanning electron microscopy (SEM. The size of synthesized ZnS nanospheres was estimated at about 20–50 nm and their shape was in the form of porous plates in microscopic observations. All electrochemical measurements were performed using cyclic voltammetry (CV, electrochemical impedance spectroscopy (EIS, and constant potential amperometry (CPA techniques. The designed DNA biosensor was able to detect deoxyribonucleic acid (DNA of Aeromonas hydrophila in the range 1.0  ×  10−4 to 1.0  ×  10−9 mol L−1; the limit of detection (LOD in this study was 1  ×  10−13 mol L−1. This DNA biosensor showed satisfactory thermal and pH stability. Reproducibility for this DNA biosensor was measured and the relative standard deviation (RSD of the performance of this DNA biosensor was calculated as 5 % during 42 days.

  1. Photoluminescence studies of organic phosphor coated diffusing surface using blue inorganic light-emitting diode as excitation source

    International Nuclear Information System (INIS)

    Singh, Gyanendra; Mehta, Dalip Singh

    2013-01-01

    We report the studies on photoluminescence (PL) of organic phosphor coated on a diffusing surface using a blue inorganic light-emitting diode (LED) array as an excitation source. The organic phosphor composite coated diffuser was used to scatter the directional blue light from the LED array. Some of the blue light is absorbed by the organic phosphor composite and the phosphor molecules are excited and re-emit light at longer wavelengths due to the PL process. The output light consists of scattered blue light plus phosphor generated broadband yellow light, thus making white light. The diffuser was made up of a plastic substrate coated with an organic composite of small molecule fluorescent material zinc(II)bis(8-hydroxyquinoline) (Znq 2 ) doped with different percentages of electro-phosphorescent metal complex iridium(III)bis(2-methyldibenzo-[f, h] quinoxaline) (acetylacetonate) ([Ir(MDQ) 2 (acac)]). By means of changing the concentration and the thickness of the phosphor composite material the colour coordinates of white light were achieved. The CIE coordinates and correlated colour temperature were calculated for various thicknesses and phosphor composite concentrations and the results are reported. (paper)

  2. Durable zinc oxide-containing sorbents for coal gas desulfurization

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1996-01-01

    Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

  3. Corrosion Behavior of Cu40Zn in Sulfide-Polluted 3.5% NaCl Solution

    Science.gov (United States)

    Song, Q. N.; Xu, N.; Bao, Y. F.; Jiang, Y. F.; Gu, W.; Yang, Z.; Zheng, Y. G.; Qiao, Y. X.

    2017-10-01

    The corrosion behavior of a duplex-phase brass Cu40Zn in clean and sulfide-polluted 3.5% NaCl solutions was investigated by conducting electrochemical and gravimetric measurements. The corrosion product films were analyzed by scanning electron microscopy, energy-dispersive spectroscopy and x-ray diffraction. The presence of sulfide shifted the corrosion potential of Cu40Zn toward a more negative value by 100 mV and increased the mass loss rate by a factor of 1.257 compared with the result in the clean solution. The corrosion product film in the clean solution was thin and compact; it mainly consisted of oxides, such as ZnO and Cu2O. By contrast, the film in the sulfide-polluted solution was thick and porous. It mainly contained sulfides and zinc hydroxide chloride (i.e., Zn5(OH)8Cl2·H2O). The presence of sulfide ions accelerated the corrosion damage of Cu40Zn by hindering the formation of protective oxides and promoting the formation of a defective film which consisted of sulfides and hydroxide chlorides.

  4. Differential responses of the freshwater wetland species Juncus effusus L. and Caltha palustris L. to iron supply in sulfidic environments

    International Nuclear Information System (INIS)

    Welle, Marlies E.W. van der; Niggebrugge, Karla; Lamers, Leon P.M.; Roelofs, Jan G.M.

    2007-01-01

    Sulfur pollution can lead to serious problems in freshwater wetlands, including phosphorus eutrophication and sulfide toxicity. We tested the effects of anaerobic iron-rich groundwater discharge in fens, simulated by iron injection, on two characteristic species (Juncus effusus and Caltha palustris) in a sulfidic environment. Biomass production of C. palustris roots showed an optimum response to the combined addition of iron and sulfide, with highest values at intermediate concentrations of both substances. Iron deficiency apparently occurred at low iron concentrations, while at high iron concentrations, growth was decreased. For J. effusus, in contrast, no toxic effects were found of both iron and sulfide. This could be explained by larger radial oxygen loss (ROL) of J. effusus and could not be explained by differences in phosphorous concentrations. The results of our experiments confirm that iron-rich groundwater discharge has the potential to affect vegetation composition through toxicity modification in sulfidic environments. - Toxicity of iron and sulfide are interacting with each other and have the potential to affect vegetation composition

  5. Planar measurements of spray-induced wall cooling using phosphor thermometry

    Science.gov (United States)

    Dragomirov, Plamen; Mendieta, Aldo; Abram, Christopher; Fond, Benoît; Beyrau, Frank

    2018-03-01

    The wall cooling induced by spray impingement is investigated using phosphor thermometry. Thin coatings of zinc oxide (ZnO) phosphor were applied with a transparent chemical binder onto a steel surface. Instantaneous spatially resolved temperatures were determined using the spectral intensity ratio method directly after the injection of UV-grade hexane onto the surface using a commercial gasoline injector. The investigations showed that 2D temperature measurements with high spatial and shot-to-shot precision of, respectively, 0.5 and 0.6 K can be achieved, allowing the accurate resolution of the cooling induced by the spray. The presence of a liquid film over the phosphor coating during measurements showed no noticeable influence on the measured temperatures. However, in some cases a change in the intensity ratio at the spray impingement area, in the form of a permanent "stain", could be observed after multiple injections. The formation of this stain was less likely with increasing annealing time of the coating as well as lower plate operating temperatures during the injection experiments. Finally, the experimental results indicate a noticeable influence of the thickness of the phosphor coating on the measured spray-induced wall cooling history. Hence, for quantitative analysis, a compromise between coating thickness and measurement accuracy needs to be considered for similar applications where the heat transfer rates are very high.

  6. Zinc incorporation improves biological activity of beta-tricalcium silicate resin-based cement.

    Science.gov (United States)

    Osorio, Raquel; Yamauti, Monica; Sauro, Salvatore; Watson, Tim F; Toledano, Manuel

    2014-11-01

    Matrix metalloproteinase (MMP) inhibition may improve endodontic treatment prognosis. The purpose of this study was to determine if zinc incorporation into experimental resin cements containing bioactive fillers may modulate MMP-mediated collagen degradation of dentin. Human dentin samples untreated and demineralized using 10% phosphoric acid or 0.5 mol/L EDTA were infiltrated with the following experimental resins: (1) unfilled resin, (2) resin with Bioglass 45S5 particles (OSspray, London, UK), (3) resin with beta-tricalcium silicate particles (βTCS), (4) resin with zinc-doped Bioglass 45S5, and (5) resin with zinc-doped βTCS particles. The specimens were stored in artificial saliva (for 24 hours, 1 week, and 4 weeks) and submitted to radioimmunoassay to quantify C-terminal telopeptide. Scanning electron microscopy analysis was also undertaken on dentin samples after 4 weeks of storage. Collagen degradation was prominent both in phosphoric acid and EDTA-treated dentin. Resin infiltration strongly reduced MMP activity in demineralized dentin. Resin containing Bioglass 45S5 particles exerted higher and stable protection of collagen. The presence of zinc in βTCS particles increases MMP inhibition. Different mineral precipitation was attained in dentin infiltrated with the resin cements containing bioactive fillers. MMP degradation of dentin collagen is strongly reduced after resin infiltration of dentin. Zinc incorporation in βTCS particles exerted an additional protection against MMP-mediated collagen degradation. However, it did not occur in resin containing Bioglass 45S5 particles, probably because of the formation of phosphate-zinc compounds. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Evaluation of methods for monitoring air concentrations of hydrogen sulfide

    Directory of Open Access Journals (Sweden)

    Katarzyna Janoszka

    2013-06-01

    Full Text Available The development of different branches of industry and a growing fossil fuels mining results in a considerable emission of by-products. Major air pollutants are: CO, CO₂, SO₂, SO₃, H₂S, nitrogen oxides, as well as compounds of an organic origin. The main aspects of this paper is to review and evaluate methods used for monitoring of hydrogen sulfide in the air. Different instrumental techniques were discussed, electrochemical, chromatographic and spectrophotometric (wet and dry, to select the method most suitable for monitoring low levels of hydrogen sulfide, close to its odor threshold. Based on the literature review the method for H₂S determination in the air, involving absorption in aqueous zinc acetate and reaction with N,N-dimethylo-p-phenylodiamine and FeCl₃, has been selected and preliminary verified. The adopted method allows for routine measurements of low concentration of hydrogen sulfide, close to its odor threshold in workplaces and ambient air. Med Pr 2013;64(3:449–454

  8. Hemimorphite Ores: A Review of Processing Technologies for Zinc Extraction

    Science.gov (United States)

    Chen, Ailiang; Li, Mengchun; Qian, Zhen; Ma, Yutian; Che, Jianyong; Ma, Yalin

    2016-10-01

    With the gradual depletion of zinc sulfide ores, exploration of zinc oxide ores is becoming more and more important. Hemimorphite is a major zinc oxide ore, attracting much attention in the field of zinc metallurgy although it is not the major zinc mineral. This paper presents a critical review of the treatment for extraction of zinc with emphasis on flotation, pyrometallurgical and hydrometallurgical methods based on the properties of hemimorphite. The three-dimensional framework structure of hemimorphite with complex linkage of its structural units lead to difficult desilicification before extracting zinc in the many metallurgical technologies. It is found that the flotation method is generally effective in enriching zinc minerals from hemimorphite ores into a high-grade concentrate for recovery of zinc. Pure zinc can be produced from hemimorphite or/and willemite with a reducing reagent, like methane or carbon. Leaching reagents, such as acid and alkali, can break the complex structure of hemimorphite to release zinc in the leached solution without generation of silica gel in the hydrometallurgical process. For optimal zinc extraction, combing flotation with pyrometallurgical or hydrometallurgical methods may be required.

  9. Electrochemical deposition of iron sulfide thin films and heterojunction diodes with zinc oxide

    Directory of Open Access Journals (Sweden)

    Shoichi Kawai

    2014-03-01

    Full Text Available Iron sulfide thin films were fabricated by the electrochemical deposition method from an aqueous solution containing FeSO4 and Na2S2O3. The composition ratio obtained was Fe:S:O = 36:56:8. In the photoelectrochemical measurement, a weak negative photo-current was observed for the iron sulfide films, which indicates that its conduction type is p-type. No peaks were observed in X-ray diffraction pattern, and thus the deposited films were considered to be amorphous. For a heterojunction with ZnO, rectification properties were confirmed in the current-voltage characteristics. Moreover, the current was clearly enhanced under AM1.5 illumination.

  10. Lithium-aluminum-zinc phosphate glasses activated with Tb3+ and Tb3+/Eu3+ for green laser medium, reddish-orange and white phosphor applications

    Science.gov (United States)

    Francisco-Rodriguez, H. I.; Lira, A.; Soriano-Romero, O.; Meza-Rocha, A. N.; Bordignon, S.; Speghini, A.; Lozada-Morales, R.; Caldiño, U.

    2018-05-01

    A spectroscopic analysis of Tb3+ and Tb3+/Eu3+ doped lithium-aluminum-zinc phosphate glasses is performed through their absorbance and photoluminescence spectra, and decay time profiles. Laser parameter values (stimulated emission cross section, effective bandwidth, gain bandwidth and optical gain) were obtained for the terbium 5D4 → 7F5 green emission from the Tb3+ singly-doped glass (LAZT) excited at 350 nm to judge the suitability of the glass phosphor for fiber lasers. A quantum yield of (47.68 ± 0.49)% was measured for the 5D4 level luminescence. Upon 350 nm excitation the LAZT glass phosphor emits green light with a color purity of 65.6% and chromaticity coordinates (0.285, 0.585) very close to those (0.29, 0.60) of European Broadcasting Union illuminant green. The Tb3+/Eu3+codoped glass emission color can be tuned from reddish-orange of 1865 K upon 318 nm excitation to warm white of 3599 K and neutral white of 4049 K upon 359 and 340 nm excitations, respectively. Upon Tb3+ excitation at 340 nm Eu3+ is sensitized by Tb3+ through a non-radiative energy transfer with an efficiency of 0.23-0.26. An electric dipole-dipole interaction might be the dominant mechanism in the Tb3+ to Eu3+ energy transfer taking place into Tb3+ - Eu3+ clusters.

  11. Investigation of physicochemical and pigment properties of solid solutions of cadmium, manganese, zinc sulfides

    International Nuclear Information System (INIS)

    Grigor'eva, L.I.; Ignat'eva, I.V.; Kalinskaya, T.V.

    1985-01-01

    Mixed sulfides (Cd, Mn)S and (Cd, Mn, Zn)S with manganese sulfide content upto 50 mol% are synthesized. The possibility of preparing solid solutions both on the basis of silfides (Cd, Mn)S and in the ternary system (Cd, Mn, Zn)S with the temperature of polymorphic transformation of a cubic structure into a hexagonal one, being lower (500 deg C) than in the absence of MnS, is shown by the X-ray diffraction method. The colour analysis of the pigment specimens obtained has shown that the quantity of oxidized manganese compounds, producing no effect of the system colour, should not exceed 0.05 mol% on conversion to MnS. Among the mixed specimens (Cd, Mn)S the brightest colour background is obtained for specimens calcinated at 500-550 deg C. The mixed sulfide of the composition 0.77CdSx0.15MnSx0.08ZnS, calcinated at 500 deg C, gives a pigment corresponding to a commercial one by colour

  12. Phosphors

    International Nuclear Information System (INIS)

    1975-01-01

    This invention relates to phosphors that can be used in fluorescent lamps and display devices. The phosphor is comprised of a halophosphate of calcium and/or strontium of apatite crystal structure activated with trivalent cerium and trivalent terbium. The phosphor can further include manganese. Preferably, the phosphor includes up to 10% by weight of one or more of the alkali metals lithium, sodium and potassium in the form of a compound or compounds thereof. The emissions appear as a number of fairly narrow discrete bands. The temperature of preparation is 1000degC (as opposed to the usual 1450degC), therefore reducing costs (less energy is needed, more crucibles are readily obtainable and there is no need for special conditions to enable crucibles to overcome thermal shock)

  13. A computational study of adhesion between rubber and metal sulfides at rubber–brass interface

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Chian Ye; Hirvi, Janne T.; Suvanto, Mika; Bazhenov, Andrey S. [Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu (Finland); Ajoviita, Tommi; Markkula, Katriina [R & D, Car Tyres, Nokian Tyres plc., P.O. Box 20, FI37101 Nokia (Finland); Pakkanen, Tapani A., E-mail: tapani.pakkanen@uef.fi [Department of Chemistry, University of Eastern Finland, P.O. Box 111, FI80101 Joensuu (Finland)

    2015-05-12

    Highlights: • An atomic level model for brass–rubber interactions has been presented. • The main adhesion force has been tracked to the rubber sulfur–brass zinc or brass copper interaction. • The model gives new understanding of the adhesion and can be used for further developments of the system. - Abstract: Computational study at level of density functional theory has been carried out in order to investigate the adhesion between rubber and brass plated steel cord, which has high importance in tire manufacturing. Adsorption of natural rubber based adsorbate models has been studied on zinc sulfide, ZnS(1 1 0), and copper sulfide, Cu{sub 2}S(1 1 1) and CuS(0 0 1), surfaces as the corresponding phases are formed in adhesive interlayer during rubber vulcanization. Saturated hydrocarbons exhibited weak interactions, whereas unsaturated hydrocarbons and sulfur-containing adsorbates interacted with the metal atoms of sulfide surfaces more strongly. Sulfur-containing adsorbates interacted with ZnS(1 1 0) surface stronger than unsaturated hydrocarbons, whereras both Cu{sub 2}S(1 1 1) and CuS(0 0 1) surfaces showed opposite adsorption preference as unsaturated hydrocarbons adsorbed stronger than sulfur-containing adsorbates. The different interaction strength order can play role in rubber–brass adhesion with different relative sulfide concentrations. Moreover, Cu{sub 2}S(1 1 1) surface exhibits higher adsorption energies than CuS(0 0 1) surface, possibly indicating dominant role of Cu{sub 2}S in the adhesion between rubber and brass.

  14. Evaluation of Application Methods Efficiency of Zinc and Iron for Canola(Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Ahmad BYBORDI

    2010-03-01

    Full Text Available In order to evaluation of application method efficiency of zinc and iron microelements in canola, an experiment was conducted in the Agricultural Research Station of Eastern Azerbaijan province in 2008. The experimental design was a RCBD with eight treatments (F1: control, F2: iron, F3: zinc, F4: iron + zinc in the form of soil utility, F5: iron, F6: zinc, F7: iron+ zinc in the form of solution foliar application, and F8: iron + zinc in the form of soil utility and foliar application. Analysis of variance showed that there were significant differences among treatments on given traits, antioxidant enzymes activity, fatty acids percentage, plant height, seed weight to capitulum weight ratio, protein percentage, oil percentage, oil yield, 1000 seed weight, seed yield, nitrogen, phosphorous and potassium percentage of leaves, zinc and iron content of leaves and capitulum diameters. The highest seed yield, oil yield, oil percentage, 1000 seed weight, seed weight to capitulum weight ratio and protein percentage were obtained from the soil and foliar application of iron + zinc treatments (F8. Also, the highest amounts of nitrogen, phosphorous and potassium concentration in leaves were achieved from control treatment which was an indication of non-efficiency of iron and zinc on the absorption rate of these substances in the leaves. The correlation between effective traits on the seed yield, such as, capitalism diameter, number of seed rows in capitulum, seed weight to capitulum weight ratio and 1000 seed weight were positively significant. In general, foliar and soil application of zinc and iron had the highest efficiency in aspect of seed production. The comparison of the various methods of fertilization showed that foliar application was more effective than soil application. Also, micronutrient foliar application increased concentration of elements, especially zinc and iron. Antioxidant enzymes activity was different in response to treatments also the

  15. Fundamentals of phosphors

    CERN Document Server

    Yen, William M; Yamamoto, Hajime

    2006-01-01

    Drawing from the second edition of the best-selling Handbook of Phosphors, Fundamentals of Phosphors covers the principles and mechanisms of luminescence in detail and surveys the primary phosphor materials as well as their optical properties. The book addresses cutting-edge developments in phosphor science and technology including oxynitride phosphors and the impact of lanthanide level location on phosphor performance.Beginning with an explanation of the physics underlying luminescence mechanisms in solids, the book goes on to interpret various luminescence phenomena in inorganic and organic materials. This includes the interpretation of the luminescence of recently developed low-dimensional systems, such as quantum wells and dots. The book also discusses the excitation mechanisms by cathode-ray and ionizing radiation and by electric fields to produce electroluminescence. The book classifies phosphor materials according to the type of luminescence centers employed or the class of host materials used and inte...

  16. Practical applications of phosphors

    CERN Document Server

    Yen, William M; Yamamoto, Hajime

    2006-01-01

    Drawn from the second edition of the best-selling Phosphor Handbook, Practical Applications of Phosphors outlines methods for the production of various phosphors and discusses a broad spectrum of applications. Beginning with methods for synthesis and related technologies, the book sets the stage by classifying and then explaining practical phosphors according to usage. It describes the operating principle and structure of phosphor devices and the phosphor characteristics required for a given device, then covers the manufacturing processes and characteristics of phosphors. The book discusses research and development currently under way on phosphors with potential for practical usage and touches briefly on phosphors that have played a historical role, but are no longer of practical use. It provides a comprehensive treatment of applications including lamps and cathode-ray tubes, x-ray and ionizing radiation, and for vacuum fluorescent and field emission displays and covers inorganic and organic electroluminescen...

  17. Thermoluminescent phosphor

    Science.gov (United States)

    Lasky, Jerome B.; Moran, Paul R.

    1978-01-01

    A thermoluminescent phosphor comprising LiF doped with boron and magnesium is produced by diffusion of boron into a conventional LiF phosphor doped with magnesium. Where the boron dopant is made to penetrate only the outer layer of the phosphor, it can be used to detect shallowly penetrating radiation such as tritium beta rays in the presence of a background of more penetrating radiation.

  18. Rare earth phosphors and phosphor screens

    International Nuclear Information System (INIS)

    Buchanan, R.A.; Maple, T.G.; Sklensky, A.F.

    1981-01-01

    Advances in the use of stabilized rare earth phosphors and of conversion screens using these materials are examined. In particular the new phosphors discussed in this invention consist of oxybromides of yttrium, lanthanum and gadolinium with a luminescent activator ion stabilized by an oxychloride or oxyfluoride surface layer and the conversion screens include trivalent cerium as the activator ion. (U.K.)

  19. Reduced Graphene Oxide-Cadmium Zinc Sulfide Nanocomposite with Controlled Band Gap for Large-Area Thin-Film Optoelectronic Device Application

    Science.gov (United States)

    Ibrahim, Sk; Chakraborty, Koushik; Pal, Tanusri; Ghosh, Surajit

    2017-12-01

    Herein, we report the one pot single step solvothermal synthesis of reduced grapheme oxide-cadmium zinc sulfide (RGO-Cd0.5Zn0.5S) composite. The reduction in graphene oxide (GO), synthesis of Cd0.5Zn0.5S (mentioned as CdZnS in the text) nanorod and decoration of CdZnS nanorods onto RGO sheet were done simultaneously. The structural, morphological and optical properties were studied thoroughly by different techniques, such as XRD, TEM, UV-Vis and PL. The PL intensity of CdZnS nanorods quenches significantly after the attachment of RGO, which confirms photoinduced charge transformation from CdZnS nanorods to RGO sheet through the interface of RGO-CdZnS. An excellent photocurrent generation in RGO-CdZnS thin-film device has been observed under simulated solar light irradiation. The photocurrent as well as photosensitivity increases linearly with the solar light intensity for all the composites. Our study establishes that the synergistic effect of RGO and CdZnS in the composite is capable of getting promising applications in the field of optoelectronic devising.

  20. Study on the effect of x-ray irradiation of seed on zinc uptake in maize (Zea Mays L.) plants

    International Nuclear Information System (INIS)

    Joshi, Gargi; Singh, K.P.; Joshi, G.C.

    2007-01-01

    The effects of irradiations by X-rays at the two dose levels (1.1 KR and 2.2 KR) of seeds on uptake of zinc ion in maize (Zea Mays L.) plants were studied. The uptake and internal distribution of zinc ion in the maize plants was carried out by incorporating radioactive zinc as zinc chloride (ZnCl 2 ) in the nutrient solution to the plants. The localization and translocation of radioactive zinc was studied employing phosphor imaging systems (FX). The radioactivity measurement has been carried out using solid scintillation counter. It was observed that zinc ions uptake was higher in plants out of 2.2 KR X-rays irradiated seeds. (author)

  1. Effect of killer impurities on laser-excited barium-doped ZnS phosphors at liquid nitrogen temperature

    Science.gov (United States)

    Kumar, Sunil; Verma, N. K.; Bhatti, H. S.

    Zinc sulphide phosphors doped with Ba, as well as killer impurities of Fe, Co and Ni, having variable concentrations, were synthesized; and using an ultraviolet laser as the excitation source, decay-curve analyses were done. Various strong emissions in these phosphors were detected and the corresponding excited-state life times were measured at liquid nitrogen temperature. Studies were carried out to see the effect of killer impurities on the phosphorescence excited-state life times. Excited-state life times were found to decrease appreciably (microsecond to nanosecond) with the addition of quenchers. These studies are quite useful and find applications in areas such as optical memories, sensors, luminescent screens, laser-beam detection and alignment, color displays, printing, etc.

  2. Orange and reddish-orange light emitting phosphors: Sm{sup 3+} and Sm{sup 3+}/Eu{sup 3+} doped zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Meza-Rocha, A.N., E-mail: ameza@fis.cinvestav.mx [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 México D.F., México (Mexico); Speghini, A. [Dipartimento di Biotecnologie, Universita di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); IFAC CNR, Nello Carrara Institute of Applied Physics, MDF Lab, I-50019 Sesto Fiorentino, FI (Italy); Bettinelli, M. [Dipartimento di Biotecnologie, Universita di Verona and INSTM, UdR Verona, Strada Le Grazie 15, I-37314 Verona (Italy); Caldiño, U. [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, P.O. Box 55-534, 09340 México D.F., México (Mexico)

    2015-11-15

    A spectroscopy study of Sm{sup 3+} and Sm{sup 3+}/Eu{sup 3+} doped zinc phosphate glasses is performed through photoluminescence spectra and decay time profile measurements. Under Sm{sup 3+} excitation at 344 nm, the Sm{sup 3+} singly doped glass shows an orange global emission with x=0.579 and y=0.414 CIE1931 chromaticity coordinates, whereas the Sm{sup 3+}/Eu{sup 3+} co-doped sample exhibits orange overall emissions (x=0.581 and y=0.398, and x=0.595 and y=0.387) and reddish-orange overall emission (x=0.634 and y=0.355) upon excitations at 344, 360 and 393 nm, respectively. Such luminescence from the co-doped sample is originated by the simultaneous emission of Sm{sup 3+} and Eu{sup 3+}. Under Sm{sup 3+} excitation at 344 and 360 nm, the Eu{sup 3+} emission is sensitized and enhanced by Sm{sup 3+} through a non-radiative energy transfer process. The non-radiative nature was inferred from the shortening of the Sm{sup 3+} lifetime observed in the Sm{sup 3+}/Eu{sup 3+} co-doped sample. An analysis of the Sm{sup 3+} emission decay time profiles using the Inokuti–Hirayama model suggests that an electric quadrupole–quadrupole interaction into Sm–Eu clusters might dominate the energy transfer process, with an efficiency of 0.17. - Highlights: • Zinc phosphate glasses are optically activated with Sm{sup 3+}/Eu{sup 3+} (ZPOSmEu). • Non-radiative energy transfer Sm{sup 3+}→Eu{sup 3+} takes place in ZPOSmEu. • ZPOSmEu overall emission can be modulated with the excitation wavelength. • ZPOSmEu might be useful as orange/reddish-orange phosphor for UV-white LEDs.

  3. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  4. Study of structural and optical properties of ZnAlQ5 (zinc aluminum quinolate) organic phosphor for OLED applications

    Science.gov (United States)

    Nagpure, I. M.; Painuly, Deepshikha; Rabanal, Maria Eugenia

    2016-05-01

    The various composition of ZnAlQ5 such as Zn1.5A10.5Q5, Zn1Al1Q5, Zn0.5Al1.5Q5 organic phosphors were prepared via simple cost effective co-precipitation method. The FTIR, SEM, photoluminescence analysis of the prepared phosphors were reported. ZnQ2 and AlQ3 were also prepared by similar method and their properties were compared with different composition of ZnAlQ5. The structural elucidation in the form of stretching frequencies of chemical bonds of the prepared phosphor was carried out using Fourier Transform Infrared Spectroscopy (FTIR). The stretching frequency analysis confirms the formation of prepared phosphor materials. The SEM analysis shows the surface morphological behavior of prepared phosphor materials. Greenish photoluminescence were observed at 505 to 510 nm for the different composition of ZnAlQ5,in which Zn1.5Al0.5Q5 shows maximum luminescence intensity at 505 nm. PL emission of ZnQ2 was observed at 515 nm, while for AlQ3 at 520 nm. The blue shift of 10 nm was observed in Zn1.5A10.5Q5 due to modification of energy level due to presence of Zn2+ and Al3+. The enhancement in PL intensity was observed in Zn1.5A10.5Q5 compared to the other composition due to transfer of energy between Zn2+ and quinolate complex. Optical properties of the prepared materials were evaluated for possible applications in organic light emitting devices (OLED).

  5. Intense pulsed light annealing of copper zinc tin sulfide nanocrystal coatings

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Bryce A.; Smeaton, Michelle A.; Holgate, Collin S.; Trejo, Nancy D.; Francis, Lorraine F., E-mail: francis@umn.edu; Aydil, Eray S., E-mail: aydil@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, Minnesota 55455 (United States)

    2016-09-15

    A promising method for forming the absorber layer in copper zinc tin sulfide [Cu{sub 2}ZnSnS{sub 4} (CZTS)] thin film solar cells is thermal annealing of coatings cast from dispersions of CZTS nanocrystals. Intense pulsed light (IPL) annealing utilizing xenon flash lamps is a potential high-throughput, low-cost, roll-to-roll manufacturing compatible alternative to thermal annealing in conventional furnaces. The authors studied the effects of flash energy density (3.9–11.6 J/cm{sup 2}) and number of flashes (1–400) during IPL annealing on the microstructure of CZTS nanocrystal coatings cast on molybdenum-coated soda lime glass substrates (Mo-coated SLG). The annealed coatings exhibited cracks with two distinct linear crack densities, 0.01 and 0.2 μm{sup −1}, depending on the flash intensity and total number of flashes. Low density cracking (0.01 μm{sup −1}, ∼1 crack per 100 μm) is caused by decomposition of CZTS at the Mo-coating interface. Vapor decomposition products at the interface cause blisters as they escape the coating. Residual decomposition products within the blisters were imaged using confocal Raman spectroscopy. In support of this hypothesis, replacing the Mo-coated SLG substrate with quartz eliminated blistering and low-density cracking. High density cracking is caused by rapid thermal expansion and contraction of the coating constricted on the substrate as it is heated and cooled during IPL annealing. Finite element modeling showed that CZTS coatings on low thermal diffusivity materials (i.e., SLG) underwent significant differential heating with respect to the substrate with rapid rises and falls of the coating temperature as the flash is turned on and off, possibly causing a build-up of tensile stress within the coating prompting cracking. Use of a high thermal diffusivity substrate, such as a molybdenum foil (Mo foil), reduces this differential heating and eliminates the high-density cracking. IPL annealing in presence of sulfur

  6. Solvothermal synthesis of Zinc sulfide decorated Graphene (ZnS/G) nanocomposites for novel Supercapacitor electrodes

    International Nuclear Information System (INIS)

    Ramachandran, Rajendran; Saranya, Murugan; Kollu, Pratap; Raghupathy, Bala P.C.; Jeong, Soon Kwan; Grace, Andrews Nirmala

    2015-01-01

    Highlights: • ZnS/G nanocomposites were prepared by a simple solvothermal process. • Electrochemical measurements were carried out in 6 M KOH electrolyte. • Cyclic voltammetry showed the excellent capacitive behavior of the composites. • A specific capacitance of 197.1 F/g was observed for ZnS/G-60 nanocomposites. - Abstract: Zinc sulfide decorated graphene nanocomposites are synthesized by a facile solvothermal approach and the prepared composites are analyzed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), High Resolution Transmission electron microscopy (HRTEM), Fourier transform infrared (FTIR), Ultraviolet visible spectroscopy (UV), Photoluminescence spectroscopy (PL) and Raman spectrum. Results show the effective reduction of graphene oxide (GO) to graphene and decoration of ZnS nanoparticles on graphene sheets. Towards supercapacitor applications, the electrochemical measurements of different electrodes are performed in 6 M KOH electrolyte. A series of composites with different loadings of graphene is synthesized and tested for its electrochemical properties. The specific capacitance of the electrodes are evaluated from cyclic voltammetry (CV) studies and a maximum specific capacitance of 197.1 F/g is achieved in ZnS/G-60 electrode (60 indicates the weight ratio of GO) at scan rate of 5 mV s"−"1. A capacitance retention of about 94.1% is observed even after 1000 cycles for ZnS/G-60 electrode, suggesting the long time cyclic stability of the composite electrode. Galvanostatic charge–discharge curves show the highly reversible process of ZnS/G-60 electrode. Electrochemical Impedance Spectrum (EIS) shows a high conductivity of composite electrode suggesting that the composites are good candidates for energy storage.

  7. Processing of Copper Zinc Tin Sulfide Nanocrystal Dispersions for Thin Film Solar Cells

    Science.gov (United States)

    Williams, Bryce Arthur

    A scalable and inexpensive renewable energy source is needed to meet the expected increase in electricity demand throughout the developed and developing world in the next 15 years without contributing further to global warming through CO2 emissions. Photovoltaics may meet this need but current technologies are less than ideal requiring complex manufacturing processes and/or use of toxic, rare-earth materials. Copper zinc tin sulfide (Cu 2ZnSnS4, CZTS) solar cells offer a true "green" alternative based upon non-toxic and abundant elements. Solution-based processes utilizing CZTS nanocrystal dispersions followed by high temperature annealing have received significant research attention due to their compatibility with traditional roll-to-roll coating processes. In this work, CZTS nanocrystal (5-35 nm diameters) dispersions were utilized as a production pathway to form solar absorber layers. Aerosol-based coating methods (aerosol jet printing and ultrasonic spray coating) were optimized for formation of dense, crack-free CZTS nanocrystal coatings. The primary variables underlying determination of coating morphology within the aerosol-coating parameter space were investigated. It was found that the liquid content of the aerosol droplets at the time of substrate impingement play a critical role. Evaporation of the liquid from the aerosol droplets during coating was altered through changes to coating parameters as well as to the CZTS nanocrystal dispersions. In addition, factors influencing conversion of CZTS nanocrystal coatings into dense, large-grained polycrystalline films suitable for solar cell development during thermal annealing were studied. The roles nanocrystal size, carbon content, sodium uptake, and sulfur pressure were found to have pivotal roles in film microstructure evolution. The effects of these parameters on film morphology, grain growth rates, and chemical makeup were analyzed from electron microscopy images as well as compositional analysis

  8. Comprehensive recovery of gold and base-metal sulfide minerals from a low-grade refractory ore

    Science.gov (United States)

    Li, Wen-juan; Liu, Shuang; Song, Yong-sheng; Wen, Jian-kang; Zhou, Gui-ying; Chen, Yong

    2016-12-01

    The comprehensive recovery of small amounts of valuable minerals such as gold and base-metal sulfide minerals from a low-grade refractory ore was investigated. The following treatment strategy was applied to a sample of this ore: gold flotation-gold concentrate leaching-lead and zinc flotation from the gold concentrate leaching residue. Closed-circuit trials of gold flotation yielded a gold concentrate that assayed at 40.23 g·t-1 Au with a recovery of 86.25%. The gold concentrate leaching rate was 98.76%. Two variants of lead-zinc flotation from the residue—preferential flotation of lead and zinc and bulk flotation of lead and zinc—were tested using the middling processing method. Foam from the reflotation was returned to the lead rougher flotation or lead-zinc bulk flotation, whereas middlings from reflotation were discarded. Sulfur concentrate was a byproduct. The combined strategy of flotation, leaching, and flotation is recommended for the treatment of this kind of ore.

  9. Oxidizer in phosphoric reactors

    International Nuclear Information System (INIS)

    Santos Benedetto, J. dos

    1985-01-01

    Oxidation during the manufacture of wet-process phosphoric acid affected the distribution of uranium and impurities between phosphoric acid and gypsum, by decreasing the uranium loss to gypsum and the impurities solubilization in phosphoric acid. (Author) [pt

  10. Controlled synthesis and relationship between luminescent properties and shape/crystal structure of Zn2SiO4:MN2+ phosphor

    International Nuclear Information System (INIS)

    Wan Junxi; Wang Zhenghua; Chen Xiangying; Mu Li; Yu Weichao; Qian Yitai

    2006-01-01

    Mn-doped Zn 2 SiO 4 phosphors with different morphology and crystal structure, which show different luminescence and photoluminescence intensity, were synthesized via a low-temperature hydrothermal route without further calcining treatment. As-synthesized zinc silicate nanostructures show green or yellow luminescence depending on their different crystal structure obtained under different preparation conditions. The yellow peak occurring at 575 nm comes from the β-phase zinc silicate, while the green peak centering at 525 nm results from the usual α-phase zinc silicate. From photoluminescence spectra, it is found that Zn 2 SiO 4 nanorods have higher photoluminescence intensity than Zn 2 SiO 4 nanoparticles. It can be ascribed to reduced surface-damaged region and high crystallinity of nanorods

  11. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion

    International Nuclear Information System (INIS)

    Shamsipur, Mojtaba; Rajabi, Hamid Reza

    2014-01-01

    A rapid and simple fluorescence method is presented for selective and sensitive determination of hazardous cyanide ion in aqueous solution based on functionalized zinc sulfide (ZnS) quantum dot (QD) as luminescent prob. The ultra-small ZnS QDs were synthesized using a chemical co-precipitation method in the presence of 2-mercaptoethanol (ME) as an efficient capping agent. The prepared pure ZnS QDs was applied as an optical sensor for determination of cyanide ions in aqueous solutions. ZnS nanoparticles have exhibited a strong fluorescent emission at about 424 nm. The fluorescence intensity of QDs is linearly proportional to the cyanide ion concentration in the range 2.44 × 10 −6 to 2.59 × 10 −5 M with a detection limit of 1.70 × 10 −7 M at pH 11. The designed fluorescent sensor possesses remarkable selectivity for cyanide ion over other anions such as Cl − , Br − , F − , I − , IO 3 − , ClO 4 − , BrO 3 − , CO 3 2− , NO 2 − , NO 3 − , SO 4 2− , S 2 O 4 2− , C 2 O 4 2− , SCN − , N 3 − , citrate and tartarate with negligible influences on the cyanide detection by fluorescence spectroscopy. - Highlights: • Preparation of functionalized ZnS quantum dots in aqueous media • Highly selective quantum dot based luminescent probe for determination of cyanide • Fast and sensitive determination of hazardous CN − by fluorescence quenching

  12. Phosphors for LED lamps

    Science.gov (United States)

    Murphy, James Edward; Manepalli, Satya Kishore; Kumar, Prasanth Nammalwar

    2013-08-13

    A phosphor, a phosphor blend including the phosphor, a phosphor prepared by a process, and a lighting apparatus including the phosphor blend are disclosed. The phosphor has the formula (Ca.sub.1-p-qCe.sub.pK.sub.q).sub.xSc.sub.y(Si.sub.1-rGa.sub.r).sub.zO.su- b.12+.delta. or derived from a process followed using disclosed amounts of reactants. In the formula, (0

  13. Further investigations into the luminescence of silver-activated ZnS:CdS phosphors containing nickel and cobalt

    International Nuclear Information System (INIS)

    Elmanharawy, M.S.; Eid, A.H.

    1978-01-01

    An attempt has been made to explain the luminescence of (ZnS : CdS : Ag : Ni : Co) phosphors using the uniform luminescence centre model of zinc sulphide. The phosphors investigated give rise to characteristic glow curves with a number of peaks depending on the cobalt content. The emitted thermoluminescence consists of two bands: a yellow band at 5900 A and another in the red region of the spectrum (7000 A). These peak wavelengths coincide reasonably well with values of 5800 A and 6800 A predicted by the uniform luminescence centre model. It is suggested that the yellow terhmoluminescence takes place with the participation of the conduction band while electron transfer via the conduction band from traps to separated luminescence centres is assumed for the red glow. (author)

  14. Effect of reaction parameters on photoluminescence and photocatalytic activity of zinc sulfide nanosphere synthesized by hydrothermal route

    Energy Technology Data Exchange (ETDEWEB)

    Chanu, T. Inakhunbi; Samanta, Dhrubajyoti [Centre for Material Science and Nanotechnology, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Sikkim 737136 (India); Tiwari, Archana [Department of Physics, Sikkim University, 737102 Sikkim (India); Chatterjee, Somenath, E-mail: somenath@gmail.com [Centre for Material Science and Nanotechnology, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Sikkim 737136 (India); Electronics & Communication Engineering Department, Sikkim Manipal Institute of Technology, Sikkim Manipal University, Sikkim 737136 (India)

    2017-01-01

    Highlights: • ZnS nanosphere synthesis in hydrothermal method with biomolecule as capping ligand. • Effect of reaction parameters to tune the size of ZnS nanoparticles. • Obtain multiple defect emission, which arises from interstitials/vacancies. • 87% degradation of Rh-B in the presence of ZnS nanoparticles under solar radiation. - Abstract: Zinc Sulfide (ZnS) nanospheres have been synthesized using amino acid, L-Histidine as a capping agent by hydrothermal method. The as prepared ZnS have been characterised using X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), Photoluminescence (PL), Fourier Transform Infra-Red spectroscopy (FTIR), UV–vis absorption spectroscopy and X-ray Photo Electron Spectroscopy (XPS). Effect of reaction parameters on particle size has been investigated. The morphology and size of the ZnS can be tuned based on the reaction parameters. ZnS nanosphere with a particle size of 5 nm is obtained when the reaction parameters are kept at 120 °C for 3 h. The PL of ZnS shows multiple defect emissions arising from interstitials/vacancies. Particle size of ZnS nanoparticles plays an important role in determining the photo catalytic activity. A chronological study on synthesis of ZnS nanosphere and its photo catalytic activity under the sunlight are discussed here, which reveals the photo degradation of Rhodamine B (RhB) upto 87% as observed with ZnS nanosphere having a particle size of 5 nm.

  15. A new portable sulfide monitor with a zinc-oxide semiconductor sensor for daily use and field study.

    Science.gov (United States)

    Tanda, Naoko; Washio, Jumpei; Ikawa, Kyoko; Suzuki, Kengo; Koseki, Takeyoshi; Iwakura, Masaki

    2007-07-01

    For measuring oral malodor in daily clinical practice and in field study, we developed and evaluated a highly sensitive portable monitor system. We examined sensitivity and specificity of the sensor for volatile sulfur compounds (VSC) and obstructive gases, such as ethanol, acetone, and acetaldehyde. Each mouth air provided by 46 people was measured by this monitor, gas chromatography (GC), and olfactory panel and compared with each other. Based on the result, we used the monitor for mass health examination of a rural town with standardized measuring. The sensor detected hydrogen sulfide, methyl mercaptan, and dimethyl sulfide with 10-1000 times higher sensitivity than the other gases. The monitor's specificity was significantly improved by a VSC-selective filter. There were significant correlations between VSC concentration by the sulfide monitor and by GC, and by organoleptic score. Thirty-six percent of 969 examinees had oral malodor in a rural town. Seventy-eight percent of 969 examinees were motivated to take care of their oral condition by oral malodor measuring with the monitor. The portable sulfide monitor was useful to promote oral health care not only in clinics, but also in field study. The simple and quick operation system and the standardized measuring make it one of parameters of oral condition.

  16. Phosphor scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1980-01-01

    A method of fabricating scintillators is described in which the phosphor is distributed within the structure in such a way as to enhance the escape of the visible wavelength radiation that would otherwise be dissipated within the scintillator body. Two embodiments of the present invention are disclosed: one in which the phosphor is distributed in a layered structure and another in which the phosphor is dispersed throughout a transparent matrix. (U.K.)

  17. Durable regenerable sorbent pellets for removal of hydrogen sulfide coal gas

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1999-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form, usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  18. Studying the state of the surface and internal mass of powder-like zinc and cadmium sulfides

    International Nuclear Information System (INIS)

    Bundel', A.A.; Khozhainov, Yu.M.

    1979-01-01

    The investigation on the chemical and the phase composition of the surface and the bulk of powder zinc and cadmium sulphides as a function of the conditions of ignition and physico-chemical processing carried out using electron diffraction, X-ray phase and chemical analyses. The electron diffraction analysis has shown that ignition gives rise to zinc oxide on the surface of zinc sulphide particles and in the case of cadmium sulphide, to metallic cadmium. To obtain a pure zinc sulphide, free from its oxide both on the surface and in bulk, use should be made of a deoxidized preparation and all contact with oxidizing medium in subsequent ignition should be eliminated

  19. Synthesis and luminescence properties of ZnAl{sub 2}O{sub 4}:RE{sup 3+} (RE = Eu, Sm) phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Cho, Shin Ho [Silla University, Busan (Korea, Republic of)

    2014-01-15

    ZnAl{sub 2}O{sub 4}:RE{sup 3+} (RE = Eu or Sm) phosphor powders were synthesized with different concentrations of activator ions by using the conventional solid-state reaction method. The effects of the concentration of activator ions on the structural, morphological, and luminescent properties of zinc aluminate phosphors were investigated. The X-ray diffraction patterns revealed that the phosphors synthesized with different concentrations of activator ions showed mixed phases of ZnAl{sub 2}O{sub 4}, ZnO, and Al{sub 2}O{sub 3}. The crystallite size was estimated using the Scherrer formula, and the maximum size was obtained for 0.20 mol of Eu{sup 3+} ions. The emission spectra of of Eu{sup 3+}-doped ZnAl{sub 2}O{sub 4} phosphors under excitation at 303 nm exhibited one intense green band at approximately 520 nm and three weak bands centered at 590, 621, and 701 nm, respectively. The intensity of all the emission bands reached a maximum for 0.05 mol of Eu{sup 3+} ions. For the Sm{sup 3+}-doped ZnAl{sub 2}O{sub 4} phosphors, a broad emission band peak at 526 nm and several weak lines in the range 470 - 700 nm were observed. The results suggest that the luminescent intensity of the phosphors can be enhanced by controlling the amount of activator ions incorporated into the host lattice.

  20. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  1. Electron-beam-pumped phosphors

    International Nuclear Information System (INIS)

    Goldhar, J.; Krupke, W.F.

    1985-01-01

    Electron-beam excitation of solid-state scintillators, or phosphors, can result in efficient generation of visible light confined to relatively narrow regions of the spectrum. The conversion efficiency can exceed 20%, and, with proper choice of phosphors, radiation can be obtained anywhere from the near infrared (IR) to the near ultraviolet (UV). These properties qualify the phosphors as a potentially useful pump source for new solid-state lasers. New phosphors are being developed for high-brightness television tubes that are capable of higher power dissipation. Here, an epitaxial film of fluorescing material is grown on a crystalline substrate with good thermal properties. For example, researchers at North American Philips Laboratories have developed a cerium-doped yttrium aluminum garnet (YAG) grown on a YAG substrate, which has operated at 1 A/cm 2 at 20 kV without observed thermal quenching. The input power is higher by almost two orders of magnitude than that which can be tolerated by a conventional television phosphor. The authors describe tests of these new phosphors

  2. High temperature thermometric phosphors

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  3. Optical, Structural and Paramagnetic Properties of Eu-Doped Ternary Sulfides ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y

    Directory of Open Access Journals (Sweden)

    Vítězslav Jarý

    2015-10-01

    Full Text Available Eu-doped ternary sulfides of general formula ALnS2 (A = Na, K, Rb; Ln = La, Gd, Lu, Y are presented as a novel interesting material family which may find usage as X-ray phosphors or solid state white light emitting diode (LED lighting. Samples were synthesized in the form of transparent crystalline hexagonal platelets by chemical reaction under the flow of hydrogen sulfide. Their physical properties were investigated by means of X-ray diffraction, time-resolved photoluminescence spectroscopy, electron paramagnetic resonance, and X-ray excited fluorescence. Corresponding characteristics, including absorption, radioluminescence, photoluminescence excitation and emission spectra, and decay kinetics curves, were measured and evaluated in a broad temperature range (8–800 K. Calculations including quantum local crystal field potential and spin-Hamiltonian for a paramagnetic particle in D3d local symmetry and phenomenological model dealing with excited state dynamics were performed to explain the experimentally observed features. Based on the results, an energy diagram of lanthanide energy levels in KLuS2 is proposed. Color model xy-coordinates are used to compare effects of dopants on the resulting spectrum. The application potential of the mentioned compounds in the field of white LED solid state lighting or X-ray phosphors is thoroughly discussed.

  4. Two mechanisms of oral malodor inhibition by zinc ions.

    Science.gov (United States)

    Suzuki, Nao; Nakano, Yoshio; Watanabe, Takeshi; Yoneda, Masahiro; Hirofuji, Takao; Hanioka, Takashi

    2018-01-18

    The aim of this study was to reveal the mechanisms by which zinc ions inhibit oral malodor. The direct binding of zinc ions to gaseous hydrogen sulfide (H2S) was assessed in comparison with other metal ions. Nine metal chlorides and six metal acetates were examined. To understand the strength of H2S volatilization inhibition, the minimum concentration needed to inhibit H2S volatilization was determined using serial dilution methods. Subsequently, the inhibitory activities of zinc ions on the growth of six oral bacterial strains related to volatile sulfur compound (VSC) production and three strains not related to VSC production were evaluated. Aqueous solutions of ZnCl2, CdCl2, CuCl2, (CH3COO)2Zn, (CH3COO)2Cd, (CH3COO)2Cu, and CH3COOAg inhibited H2S volatilization almost entirely. The strengths of H2S volatilization inhibition were in the order Ag+ > Cd2+ > Cu2+ > Zn2+. The effect of zinc ions on the growth of oral bacteria was strain-dependent. Fusobacterium nucleatum ATCC 25586 was the most sensitive, as it was suppressed by medium containing 0.001% zinc ions. Zinc ions have an inhibitory effect on oral malodor involving the two mechanisms of direct binding with gaseous H2S and suppressing the growth of VSC-producing oral bacteria.

  5. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    Science.gov (United States)

    Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.

    1988-01-01

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  6. Invisible and microscopic gold in pyrite: Methods and new data for massive sulfide ores of the Urals

    Science.gov (United States)

    Vikentyev, I. V.

    2015-07-01

    Au speciation in sulfides (including "invisible" Au), which mostly controls the loss of Au during ore dressing, is discussed. Modern methods of analysis of Au speciation, with discussion of limitations by locality and sensitivity, are reviewed. The results of sulfide investigation by the methods of scanning and transmission electron microscopy, mass spectrometric analysis with laser ablation (LA-ICP-MS), the thermochemical method (study of ionic Au speciation), and automated "quantitative mineralogy," are demonstrated for weakly metamorphosed VHMS deposits of the Urals (Galkinsk and Uchaly). Significant content of Au is scattered in sulfides, such as pyrite, chalcopyrite, and sphalerite, with quantitative predomination of pyrite. The portion of such "invisible" gold ranges from flakes) with a monocrystal diffraction pattern of some particles and a ring diffraction pattern of other particles was registered in the ores of these deposits by the methods of transmission electron microscopy. The low degree (or absence) of metamorphic recrystallization results in (1) predomination of thin intergrowths of sulfides, which is the main reason for the bad concentration of ores (especially for the Galkinsk deposit) and (2) the high portion of "invisible" gold in the massive sulfide ores, which explains the low yield of Au in copper and zinc concentrates, since it is lost in tailings with predominating pyrite.

  7. Durable regenerable sorbent pellets for removal of hydrogen sulfide from coal gas

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1997-01-01

    Pellets for removing hydrogen sulfide from a coal gasification stream at an elevated temperature are prepared in durable form usable over repeated cycles of absorption and regeneration. The pellets include a material reactive with hydrogen sulfide, in particular zinc oxide, a binder, and an inert material, in particular calcium sulfate (drierite), having a particle size substantially larger than other components of the pellets. A second inert material and a promoter may also be included. Preparation of the pellets may be carried out by dry, solid-state mixing of components, moistening the mixture, and agglomerating it into pellets, followed by drying and calcining. Pellet size is selected, depending on the type of reaction bed for which the pellets are intended. The use of inert material with a large particle size provides a stable pellet structure with increased porosity, enabling effective gas contact and prolonged mechanical durability.

  8. Study of structural and optical properties of ZnAlQ{sub 5} (zinc aluminum quinolate) organic phosphor for OLED applications

    Energy Technology Data Exchange (ETDEWEB)

    Nagpure, I. M., E-mail: indrajitnagpure@gmail.com; Painuly, Deepshikha [Physics, Department of Sciences and Humanities, National Institute of Technology,Uttarakhand-246174 (India); Rabanal, Maria Eugenia [Department of Materials Science and Engineering and Chemical Engineering,University Carlos III of Madrid, Avd. Universidad 30, 28911 Leganes, Madrid (Spain)

    2016-05-06

    The various composition of ZnAlQ{sub 5} such as Zn{sub 1.5}A{sub 10.5}Q{sub 5}, Zn{sub 1}Al{sub 1}Q{sub 5}, Zn{sub 0.5}Al{sub 1.5}Q{sub 5} organic phosphors were prepared via simple cost effective co-precipitation method. The FTIR, SEM, photoluminescence analysis of the prepared phosphors were reported. ZnQ{sub 2} and AlQ{sub 3} were also prepared by similar method and their properties were compared with different composition of ZnAlQ{sub 5}. The structural elucidation in the form of stretching frequencies of chemical bonds of the prepared phosphor was carried out using Fourier Transform Infrared Spectroscopy (FTIR). The stretching frequency analysis confirms the formation of prepared phosphor materials. The SEM analysis shows the surface morphological behavior of prepared phosphor materials. Greenish photoluminescence were observed at 505 to 510 nm for the different composition of ZnAlQ{sub 5},in which Zn{sub 1.5}Al{sub 0.5}Q{sub 5} shows maximum luminescence intensity at 505 nm. PL emission of ZnQ{sub 2} was observed at 515 nm, while for AlQ{sub 3} at 520 nm. The blue shift of 10 nm was observed in Zn{sub 1.5}A{sub 10.5}Q{sub 5} due to modification of energy level due to presence of Zn{sup 2+} and Al{sup 3+}. The enhancement in PL intensity was observed in Zn{sub 1.5}A{sub 10.5}Q{sub 5} compared to the other composition due to transfer of energy between Zn{sup 2+} and quinolate complex. Optical properties of the prepared materials were evaluated for possible applications in organic light emitting devices (OLED).

  9. Effect of particle-particle shearing on the bioleaching of sulfide minerals.

    Science.gov (United States)

    Chong, N; Karamanev, D G; Margaritis, A

    2002-11-05

    The biological leaching of sulfide minerals, used for the production of gold, copper, zinc, cobalt, and other metals, is very often carried out in slurry bioreactors, where the shearing between sulfide particles is intensive. In order to be able to improve the efficiency of the bioleaching, it is of significant importance to know the effect of particle shearing on the rate of leaching. The recently proposed concept of ore immobilization allowed us to study the effect of particle shearing on the rate of sulfide (pyrite) leaching by Thiobacillus ferrooxidans. Using this concept, we designed two very similar bioreactors, the main difference between which was the presence and absence of particle-particle shearing. It was shown that when the oxygen mass transfer was not the rate-limiting step, the rate of bioleaching in the frictionless bioreactor was 2.5 times higher than that in a bioreactor with particle friction (shearing). The concentration of free suspended cells in the frictionless bioreactor was by orders of magnitude lower than that in the frictional bioreactor, which showed that particle friction strongly reduces the microbial attachment to sulfide surface, which, in turn, reduces the rate of bioleaching. Surprisingly, it was found that formation of a layer of insoluble iron salts on the surface of sulfide particles is much slower under shearless conditions than in the presence of particle-particle shearing. This was explained by the effect of particle friction on liquid-solid mass transfer rate. The results of this study show that reduction of the particle friction during bioleaching of sulfide minerals can bring important advantages not only by increasing significantly the bioleaching rate, but also by increasing the rate of gas-liquid oxygen mass transfer, reducing the formation of iron precipitates and reducing the energy consumption. One of the efficient methods for reduction of particle friction is ore immobilization in a porous matrix. Copyright 2002

  10. Pure zinc sulfide quantum dot as highly selective luminescent probe for determination of hazardous cyanide ion

    Energy Technology Data Exchange (ETDEWEB)

    Shamsipur, Mojtaba, E-mail: mshamsipur@yahoo.com [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Rajabi, Hamid Reza, E-mail: h.rajabi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj 75918-74831 (Iran, Islamic Republic of)

    2014-03-01

    A rapid and simple fluorescence method is presented for selective and sensitive determination of hazardous cyanide ion in aqueous solution based on functionalized zinc sulfide (ZnS) quantum dot (QD) as luminescent prob. The ultra-small ZnS QDs were synthesized using a chemical co-precipitation method in the presence of 2-mercaptoethanol (ME) as an efficient capping agent. The prepared pure ZnS QDs was applied as an optical sensor for determination of cyanide ions in aqueous solutions. ZnS nanoparticles have exhibited a strong fluorescent emission at about 424 nm. The fluorescence intensity of QDs is linearly proportional to the cyanide ion concentration in the range 2.44 × 10{sup −6} to 2.59 × 10{sup −5} M with a detection limit of 1.70 × 10{sup −7} M at pH 11. The designed fluorescent sensor possesses remarkable selectivity for cyanide ion over other anions such as Cl{sup −}, Br{sup −}, F{sup −}, I{sup −}, IO{sub 3}{sup −}, ClO{sub 4}{sup −}, BrO{sub 3}{sup −}, CO{sub 3}{sup 2−}, NO{sub 2}{sup −}, NO{sub 3}{sup −}, SO{sub 4}{sup 2−}, S{sub 2}O{sub 4}{sup 2−}, C{sub 2}O{sub 4}{sup 2−}, SCN{sup −}, N{sub 3}{sup −}, citrate and tartarate with negligible influences on the cyanide detection by fluorescence spectroscopy. - Highlights: • Preparation of functionalized ZnS quantum dots in aqueous media • Highly selective quantum dot based luminescent probe for determination of cyanide • Fast and sensitive determination of hazardous CN{sup −} by fluorescence quenching.

  11. Unactivated yttrium tantalate phosphor

    International Nuclear Information System (INIS)

    Reddy, V.B.; Cheung, H.K.

    1992-01-01

    This patent describes an unactivated yttrium tantalate phosphor having M prime monoclinic structure and containing one or more additives of Rb and Al in an amount of between about 0.001 to 0.1 moles per mole of yttrium tantalate to improve brightness under X-radiation. This patent also describes an unactivated yttrium tantalate phosphor having M prime monoclinic structure and containing additives of Sr in an amount of between 0.001 to 0.1 moles per mole of yttrium tantalate and one or more of Rb and Al in an amount of between 0.001 to 0.1 moles per mole of yttrium tantalate the phosphor exhibiting a greater brightness under X-radiation than the phosphor absent Rb and Al

  12. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles

    Energy Technology Data Exchange (ETDEWEB)

    Vollenweider, Pierre, E-mail: pierre.vollenweider@wsl.c [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bernasconi, Petra [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Environmental Protection Office (AfU), Aabachstrasse 5, 6300 Zug (Switzerland); Gautschi, Hans-Peter [Centre for Microscopy and Image Analysis (CMI), University of Zurich, Gloriastrasse 30, 8006 Zuerich (Switzerland); Menard, Terry; Frey, Beat; Guenthardt-Goerg, Madeleine S. [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2011-01-15

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing {beta}-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. - Zinc contaminants translocated to symplast of aged leaves were detoxified by phytic acid ligands.

  13. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles

    International Nuclear Information System (INIS)

    Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Guenthardt-Goerg, Madeleine S.

    2011-01-01

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. - Zinc contaminants translocated to symplast of aged leaves were detoxified by phytic acid ligands.

  14. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    Science.gov (United States)

    Song, Hoon Sub; Park, Moon Gyu; Croiset, Eric; Chen, Zhongwei; Nam, Sung Chan; Ryu, Ho-Jung; Yi, Kwang Bok

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H2S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H2S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H2S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H2 and CO2 on H2S adsorption was also investigated. The presence of hydrogen in the H2S stream had a positive effect on the removal of H2S since it allows a reducing environment for Znsbnd O and Znsbnd S bonds, leading to more active sites (Zn2+) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO2) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H2S and CO2.

  15. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    International Nuclear Information System (INIS)

    Song, Hoon Sub; Park, Moon Gyu; Croiset, Eric; Chen, Zhongwei; Nam, Sung Chan; Ryu, Ho-Jung; Yi, Kwang Bok

    2013-01-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H 2 S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H 2 S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H 2 S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H 2 and CO 2 on H 2 S adsorption was also investigated. The presence of hydrogen in the H 2 S stream had a positive effect on the removal of H 2 S since it allows a reducing environment for Zn-O and Zn-S bonds, leading to more active sites (Zn 2+ ) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO 2 ) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H 2 S and CO 2 .

  16. A review of zinc oxide mineral beneficiation using flotation method.

    Science.gov (United States)

    Ejtemaei, Majid; Gharabaghi, Mahdi; Irannajad, Mehdi

    2014-04-01

    In recent years, extraction of zinc from low-grade mining tailings of oxidized zinc has been a matter of discussion. This is a material which can be processed by flotation and acid-leaching methods. Owing to the similarities in the physicochemical and surface chemistry of the constituent minerals, separation of zinc oxide minerals from their gangues by flotation is an extremely complex process. It appears that selective leaching is a promising method for the beneficiation of this type of ore. However, with the high consumption of leaching acid, the treatment of low-grade oxidized zinc ores by hydrometallurgical methods is expensive and complex. Hence, it is best to pre-concentrate low-grade oxidized zinc by flotation and then to employ hydrometallurgical methods. This paper presents a critical review on the zinc oxide mineral flotation technique. In this paper, the various flotation methods of zinc oxide minerals which have been proposed in the literature have been detailed with the aim of identifying the important factors involved in the flotation process. The various aspects of recovery of zinc from these minerals are also dealt with here. The literature indicates that the collector type, sulfidizing agent, pH regulator, depressants and dispersants types, temperature, solid pulp concentration, and desliming are important parameters in the process. The range and optimum values of these parameters, as also the adsorption mechanism, together with the resultant flotation of the zinc oxide minerals reported in the literature are summarized and highlighted in the paper. This review presents a comprehensive scientific guide to the effectiveness of flotation strategy. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Selenium Sulfide

    Science.gov (United States)

    Selenium sulfide, an anti-infective agent, relieves itching and flaking of the scalp and removes the dry, ... Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium ...

  18. Neutron diffraction investigations of the superionic conductors lithium sulfide and sodium sulfide

    International Nuclear Information System (INIS)

    Altorfer, F.

    1990-03-01

    Statics and dynamics of the superionic conductors lithium sulfide and sodium sulfide were investigated using the following experimental methods: elastic scattering on sodium sulfide powder in the temperature range 20 - 1000 C, elastic scattering on a lithium sulfide single crystal in the temperature range 20 - 700 C, inelastic scattering on a 7 Li 2 S single crystal at 10 K. 34 figs., 2 tabs., 10 refs

  19. Metabolism in the Uncultivated Giant Sulfide-Oxidizing Bacterium Thiomargarita Namibiensis Assayed Using a Redox-Sensitive Dye

    Science.gov (United States)

    Bailey, J.; Flood, B.; Ricci, E.

    2014-12-01

    The colorless sulfur bacteria are non-photosynthetic chemolithotrophs that live at interfaces between nitrate, or oxygen, and hydrogen sulfide. In sulfidic settings such as cold seeps and oxygen minimum zones, these bacteria are thought to constitute a critical node in the geochemical cycling of carbon, sulfur, nitrogen, and phosphorous. Many of these bacteria remain uncultivated and their metabolisms and physiologies are incompletely understood. Thiomargarita namibiensis is the largest of these sulfur bacteria, with individual cells reaching millimetric diameters. Despite the current inability to maintain a Thiomargarita culture in the lab, their large size allows for individual cells to be followed in time course experiments. Here we report on the novel use of a tetrazolium-based dye that measures the flux of NADH production from catabolic pathways via a colorimetric response. Staining with this dye allows for metabolism to be detected, even in the absence of observable cell division. When coupled to microscopy, this approach also allows for metabolism in Thiomargaritato be differentiated from that of epibionts or contaminants in xenic samples. The results of our tetrazolium dye-based assay suggests that Thiomargarita is the most metabolically versatile under anoxic conditions where it appears capable of using acetate, succinate, formate, thiosulfate, citrate, thiotaurine, hydrogen sulfide, and perhaps hydrogen as electron donors. Under hypoxic conditions, staining results suggest the utilization of acetate, citrate, and hydrogen sulfide. Cells incubated under oxic conditions showed the weakest tetrazolium staining response, and then only to hydrogen sulfide and questionably succinate. These initial results using a redox sensitive dye suggest that Thiomargarita is most metabolically versatile under anaerobic and hypoxic conditions. The results of this assay can be further evaluated using molecular approaches such as transcriptomics, as well as provide cultivation

  20. White light quality of phosphor converted light-emitting diodes: A phosphor materials perspective of view

    International Nuclear Information System (INIS)

    Sommer, Christian; Hartmann, Paul; Pachler, Peter; Hoschopf, Hans; Wenzl, Franz P.

    2012-01-01

    Highlights: ► We discuss the impact of the optical properties of a phosphor for colour temperature constancy in solid state lighting. ► Quantitative evaluation of permissible variations of the optical properties for batch-to-batch reproducibility. ► Quantitative evaluation of permissible variations of the optical properties upon temperature increase. ► Quantitative evaluation of permissible variations of the optical properties upon materials degradation. - Abstract: For a systematic approach to improve the white light quality of phosphor converted LEDs and to fulfil the demands for colour temperature reproducibility and constancy, it is imperative to understand how variations of the extinction coefficient and the quantum efficiency of the phosphor particles as well as variations of the excitation wavelength of the blue LED die affect the correlated colour temperature of the white LED source. Based on optical ray tracing of a phosphor converted white LED package we deduce permissible values for the variation of a given extinction coefficient and a given quantum efficiency of a phosphor material in order to maintain acceptable colour variations. These quantitative valuations of the required constancy of the optical properties of the phosphors will in particular provide some benchmarks for the synthesis of improved phosphor materials aiming at solid state lighting applications.

  1. Phosphor investigation in the production of Syrian phosphoric acid using Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Al-Hassanieh, O.; Al-Hameish, M.

    2009-06-01

    Nuclear magnetic resonance spectroscopy (NMR) was applied in this work to the industrial process of extraction of uranium from phosphoric acid and to the process of the purification of the phosphoric acid for food proposes. The structural changes of used extraction materials and the organic content of the final product was studied. 13 C , 1 H and 32 P-spectra of all material during the process were recorded. The spectra of the three used extraction materials Bis(2-ethylhexyl Phosphoric Acid)) DEHPA, TriOctyl Phosphine Oxide (TOPO) (C 8 H 1 7) 3 P=O and TriButyl Phosphate (TBP) (C 4 H 9 O) 3 P=O show a partial degradation during the process. The final product ( Phosphoric acid for Food proposes) doesn't contain any organic solvents or extraction material. (author)

  2. Radioluminescent nuclear batteries with different phosphor layers

    International Nuclear Information System (INIS)

    Hong, Liang; Tang, Xiao-Bin; Xu, Zhi-Heng; Liu, Yun-Peng; Chen, Da

    2014-01-01

    Highlights: • We present and test the electrical properties of the nuclear battery. • The best thickness range for ZnS:Cu phosphor layer is 12–14 mg cm −2 for 147 Pm radioisotope. • The best thickness range for Y 2 O 2 S:Eu phosphor layer is 17–21 mg cm −2147 Pm radioisotope. • The battery with ZnS:Cu phosphor layer can provide higher energy conversion efficiency. • The mechanism affecting the nuclear battery output performance is revealed. - Abstract: A radioluminescent nuclear battery based on the beta radioluminescence of phosphors is presented, and which consists of 147 Pm radioisotope, phosphor layers, and GaAs photovoltaic cell. ZnS:Cu and Y 2 O 2 S:Eu phosphor layers for various thickness were fabricated. To investigate the effect of phosphor layer parameters on the battery, the electrical properties were measured. Results indicate that the optimal thickness ranges for the ZnS:Cu and Y 2 O 2 S:Eu phosphor layers are 12 mg cm −2 to 14 mg cm −2 and 17 mg cm −2 to 21 mg cm −2 , respectively. ZnS:Cu phosphor layer exhibits higher fluorescence efficiency compared with the Y 2 O 2 S:Eu phosphor layer. Its spectrum properly matches the spectral response of GaAs photovoltaic cell. As a result, the battery with ZnS:Cu phosphor layer indicates higher energy conversion efficiency than that with Y 2 O 2 S:Eu phosphor layer. Additionally, the mechanism of the phosphor layer parameters that influence the output performance of the battery is discussed through the Monte Carlo method and transmissivity test

  3. Structural and optical characterization of nanoparticulate manganese doped zinc silicate phosphors prepared by sol–gel and combustion methods

    Energy Technology Data Exchange (ETDEWEB)

    Mbule, P.S., E-mail: mbuleps@gmail.com [Department of Physics, CSET, University of South Africa, Johannesburg, 1710 (South Africa); Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Mothudi, B.M.; Dhlamini, M.S. [Department of Physics, CSET, University of South Africa, Johannesburg, 1710 (South Africa)

    2016-11-15

    The present study reports the synthesis, crystallographic structure and optical properties of manganese (Mn{sup 2+}) doped zinc silicate (Zn{sub 2}SiO{sub 4}) nanoparticle phosphors prepared by sol–gel and combustion methods. For samples prepared by sol–gel method, the X-ray diffraction results showed phase transformation from amorphous to α-phase Zn{sub 2}SiO{sub 4} due to annealing temperatures at 600 °C to 1100 °C, whereas for combustion samples an admixture of highly crystalline β-phase and hexagonal wurtzite structure of ZnO was observed at annealing temperature of 600 °C. Photoluminescence spectra with Mn{sup 2+} concentrations ranging from 0.015–0.09 mol% were compared for two methods. Emission band assigned to the {sup 4}T{sub 1}({sup 4}G)→{sup 6}A{sub 1}({sup 6}S) electronic transition of Mn{sup 2+} was observed with maximum intensity at ~573 nm for combustion samples and ~532 nm for sol–gel samples upon UV-excitation by a Xenon lamp. Furthermore, the photoluminescence decay curves of annealed Zn{sub 2}SiO{sub 4}:Mn{sup 2+} samples were observed to be bi-exponential. The fast and slow decay components are due to the pair or cluster formation and isolated ions at higher doping concentration, respectively. - Highlights: • Synthesis, crystallographic and optical properties of Zn{sub 2}SiO{sub 4}:Mn{sup 2+} are presented. • XRD shows amorphous diffraction peak and crystallinity improved by increase of annealing temperature. • Crystallite and particle size from XRD and SAXS techniques, respectively, are compared. • Photoluminescence (PL) spectra are compared for sol-gel and combustion method. • The photoluminescence decay curves of annealed Zn{sub 2}SiO{sub 4}:Mn{sup 2+} samples were observed to be bi-exponential.

  4. Zinc release in the lateral nucleus of the amygdala by stimulation of the entorhinal cortex.

    Science.gov (United States)

    Takeda, Atsushi; Imano, Sachie; Itoh, Hiromasa; Oku, Naoto

    2006-11-06

    Zinc release in the lateral nucleus of the amygdala was examined using rat brain slices. The lateral and basolateral nuclei in the amygdala were evidently stained by Timm's sulfide-silver staining method. When the amygdala including both the nuclei was stimulated with 100 mM KCl by means of in vivo microdialysis, extracellular zinc concentration was increased significantly. Zinc release in the lateral nucleus of the amygdala innervated by the entorhinal cortex was next examined in brain slices double-stained with zinc and calcium indicators. Extracellular zinc signal (ZnAF-2) in the lateral nucleus was increased with intracellular calcium signal (calcium orange) during delivery of tetanic stimuli to the entorhinal cortex. Both the increases were completely inhibited by addition of 1 micro M tetrodotoxin, a sodium channel blocker. Furthermore, calcium signal in the lateral nucleus during delivery of tetanic stimuli to the entorhinal cortex was increased in the presence of 10 micro M CNQX, an AMPA/KA receptor antagonist, and this increase was facilitated by addition of 1 mM CaEDTA, a membrane-impermeable zinc chelator. The present study suggested that zinc is released in the lateral nucleus of the amygdala by depolarization of the entorhinal neurons. In the lateral nucleus, zinc released may suppress the increase in presynaptic calcium signal.

  5. Concentration and wavelength dependent frequency downshifting photoluminescence from a Tb3+ doped yttria nano-phosphor: A photochromic phosphor

    Science.gov (United States)

    Yadav, Ram Sagar; Rai, Shyam Bahadur

    2018-03-01

    In this article, the Tb3+ doped Y2O3 nano-phosphor has been synthesized through solution combustion method. The structural measurements of the nano-phosphor have been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques, which reveal nano-crystalline nature. The Fourier transform infrared (FTIR) measurements reveal the presence of different molecular species in the nano-phosphor. The UV-Vis-NIR absorption spectrum of the nano-phosphor shows large number of bands due to charge transfer band (CTB) and 4f-4f electronic transitions of Tb3+ ion. The Tb3+ doped Y2O3 nano-phosphor emits intense green downshifting photoluminescence centered at 543 nm due to 5D4 → 7F5 transition on excitation with 350 nm. The emission intensity of the nano-phosphor is optimized at 1.0 mol% concentration of Tb3+ ion. When the as-synthesized nano-phosphor is annealed at higher temperature the emission intensity of the nano-phosphor enhances upto 5 times. The enhancement in the emission intensity is due to an increase in crystallinity of the nano-phosphor, reduction in surface defects and optical quenching centers. The CIE diagram reveals that the Tb3+ doped nano-phosphor samples show the photochromic nature (color tunability) with a change in the concentration of Tb3+ ion and excitation wavelength. The lifetime measurement indicates an increase in the lifetime for the annealed sample. Thus, the Tb3+ doped Y2O3 nano-phosphor may be used in photochromic displays and photonic devices.

  6. MULTI-PHOTON PHOSPHOR FEASIBILITY RESEARCH

    Energy Technology Data Exchange (ETDEWEB)

    R. Graham; W. Chow

    2003-05-01

    Development of multi-photon phosphor materials for discharge lamps represents a goal that would achieve up to a doubling of discharge (fluorescent) lamp efficacy. This report reviews the existing literature on multi-photon phosphors, identifies obstacles in developing such phosphors, and recommends directions for future research to address these obstacles. To critically examine issues involved in developing a multi-photon phosphor, the project brought together a team of experts from universities, national laboratories, and an industrial lamp manufacturer. Results and findings are organized into three categories: (1) Multi-Photon Systems and Processes, (2) Chemistry and Materials Issues, and (3) Concepts and Models. Multi-Photon Systems and Processes: This category focuses on how to use our current understanding of multi-photon phosphor systems to design new phosphor systems for application in fluorescent lamps. The quickest way to develop multi-photon lamp phosphors lies in finding sensitizer ions for Gd{sup 3+} and identifying activator ions to red shift the blue emission from Pr{sup 3+} due to the {sup 1}S{sub 0} {yields} {sup 1}I{sub 6} transition associated with the first cascading step. Success in either of these developments would lead to more efficient fluorescent lamps. Chemistry and Materials Issues: The most promising multi-photon phosphors are found in fluoride hosts. However, stability of fluorides in environments typically found in fluorescent lamps needs to be greatly improved. Experimental investigation of fluorides in actual lamp environments needs to be undertaken while working on oxide and oxyfluoride alternative systems for backup. Concepts and Models: Successful design of a multi-photon phosphor system based on cascading transitions of Gd{sup 3+} and Pr{sup 3+} depends critically on how the former can be sensitized and the latter can sensitize an activator ion. Methods to predict energy level diagrams and Judd-Ofelt parameters of multi

  7. Phosphor blends for high-CRI fluorescent lamps

    Science.gov (United States)

    Setlur, Anant Achyut [Niskayuna, NY; Srivastava, Alok Mani [Niskayuna, NY; Comanzo, Holly Ann [Niskayuna, NY; Manivannan, Venkatesan [Clifton Park, NY; Beers, William Winder [Chesterland, OH; Toth, Katalin [Pomaz, HU; Balazs, Laszlo D [Budapest, HU

    2008-06-24

    A phosphor blend comprises at least two phosphors each selected from one of the groups of phosphors that absorb UV electromagnetic radiation and emit in a region of visible light. The phosphor blend can be applied to a discharge gas radiation source to produce light sources having high color rendering index. A phosphor blend is advantageously includes the phosphor (Tb,Y,LuLa,Gd).sub.x(Al,Ga).sub.yO.sub.12:Ce.sup.3+, wherein x is in the range from about 2.8 to and including 3 and y is in the range from about 4 to and including 5.

  8. Recovering uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Wet-process phosphoric acid contains a significant amount of uranium. This uranium totals more than 1,500 tons/yr in current U.S. acid output--and projections put the uranium level at 8,000 tons/yr in the year 2000. Since the phosphoric acid is a major raw material for fertilizers, uranium finds its way into those products and is effectively lost as a resource, while adding to the amount of radioactive material that can contaminate the food chain. So, resource-conservation and environmental considerations both make recovery of the uranium from phosphoric acid desirable. This paper describes the newly developed process for recovering uranium from phosphoric acid by using solvent-extraction technique. After many extractants had been tested, the researchers eventually selected the combination of di (2-ethylhexyl) phosphoric acid (DEPA) and trioctylphosphine oxide (TOPO) as the most suitable. The flowscheme of the process is included

  9. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles.

    Science.gov (United States)

    Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Günthardt-Goerg, Madeleine S

    2011-01-01

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. High-temperature removal of H2S from syngas by means of zinc-contaminated soils

    International Nuclear Information System (INIS)

    Tzu-Hsing Ko; Hsin-Ta Hsueh

    2006-01-01

    Hydrogen sulfide (H 2 S) is one of the most common compounds and can be easily found in advanced power generation plants, such as integrated gasification combined cycle (IGCC) and molten-carbonate fuel cell (MCFC) plants. Generally, in these systems raw materials with high heating value (HHV) or biomass were gasified under high temperature and produced a useful mixture gas. During the gasification, hydrogen sulfide accompanies with a great quantity of reductive gases at high temperature including CO, H 2 , CH 4 and N 2 , etc. This mixture gas is so-call syngas. Syngas is a valuable resource for electric power generation. Prior to using, H 2 S needs to be removed because its harmful effect. In addition, H 2 S is not only the malodorous and corrosive gas but also is the sources of the acid rain when it is oxidized into SO 2 and reacted with water. It has been known for many years that certain soils have the ability to absorb reductive sulfur-containing species such as hydrogen sulfide (H 2 S), carbonyl sulfide (COS), carbon disulfide (CS 2 ), dimethyl sulfide (CH 3 SCH 3 ) and dimethyl disulfide (CH 3 SSCH 3 ) at room temperature. Therefore, soils could act as an important sorption media for the removal of waste gases before they are released into the atmosphere. In this study, we further use the contaminated soils as regenerable sorbent for the removal of H 2 S from syngas under high temperature. Results indicate that contaminated soils could be used to remove H 2 S as well as maintain at least 90% regeneration efficiency after regeneration cycles. Additionally, zinc and iron appeared to be the major active species to react with H 2 S. The chemical structure of zinc and iron after removal of H 2 S could be expressed as ZnS and FeS. In addition to removal of H 2 S, it is also established that contaminated soil can be used for application which reduce the problem of heavy metal contaminated soils (Full text of contribution)

  11. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase*

    Science.gov (United States)

    Mishanina, Tatiana V.; Yadav, Pramod K.; Ballou, David P.; Banerjee, Ruma

    2015-01-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be −123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  12. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    Science.gov (United States)

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-09

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. 46 CFR 151.50-23 - Phosphoric acid.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Phosphoric acid. 151.50-23 Section 151.50-23 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term phosphoric acid as used in this subpart shall include, in addition to phosphoric acid, aqueous solutions of...

  14. Synthesis and Characterization of Phase-pure Copper Zinc Tin Sulfide (Cu2ZnSnS4) Nanoparticles

    Science.gov (United States)

    Monahan, Bradley Michael

    Semiconductor nanoparticles have been an important area of research in many different disciplines. A substantial amount of this work has been put toward advancing the field of photovoltaics. However, current p-type photovoltaic materials can not sustain the large scale production needed for future energy demands due to their low elemental abundance. Therefore, Earth abundant semiconductor materials have become of great interest to the photovoltaic community especially, the material copper zinc tin sulfide (CZTS), also known by its mineral name kesterite. CZTS exhibits desirable properties for photovoltaics, such as elemental abundance, high absorption coefficient (~104 cm-1 ), high carrier concentration, and optimum direct band gap (1.5 eV). To date, solution based approaches for making CZTS have yielded the most promising conversion efficiencies in solar cells. To that end, the motivation of nanoparticle based inks that can be used in high throughput production are an attractive route for large scale deployment. This has driven the need to make high quality CZTS nanoparticles that possess the properties of the pure kesterite phase with high monodispersity that can be deposited into dense thin films. The inherent challenge of making a quaternary compound of a single phase has made this a difficult task; however, some of those fundamental problems are addressed in this thesis. This had resulted in the synthesis of phase-pure k-CZTS confirmed by powder X-ray diffraction, Raman spectroscopy, UV-visible absorption spectroscopy and energy dispersive x-ray spectroscopy. Furthermore, ultra-fast laser spectroscopy was done on CZTS thin films made from phase-pure kesterite nanoparticles synthesized in this work. This thesis provides new data that directly probes the lifetime of photogenerated free carriers in kesterite CZTS (k-CZTS) thin films.

  15. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hoon Sub [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Greenhouse Gas Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Park, Moon Gyu [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of); Croiset, Eric, E-mail: ecroiset@uwaterloo.ca [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Chen, Zhongwei [Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L3G1 (Canada); Nam, Sung Chan; Ryu, Ho-Jung [Greenhouse Gas Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Yi, Kwang Bok, E-mail: cosy32@cnu.ac.kr [Department of Chemical Engineering Education, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 (Korea, Republic of)

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H{sub 2}S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H{sub 2}S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H{sub 2}S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H{sub 2} and CO{sub 2} on H{sub 2}S adsorption was also investigated. The presence of hydrogen in the H{sub 2}S stream had a positive effect on the removal of H{sub 2}S since it allows a reducing environment for Zn-O and Zn-S bonds, leading to more active sites (Zn{sup 2+}) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO{sub 2}) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H{sub 2}S and CO{sub 2}.

  16. Visual tritium imaging of In-Vessel surfaces

    International Nuclear Information System (INIS)

    Gentile, C. A.; Zweben, S. J.; Skinner, C. H.; Young, K. M.; Langish, S. W.; Nishi, M. F.; Shu, W. M.; Parker, J.; Isobe, K.

    2000-01-01

    A imaging detector has been developed for the purpose of providing a non-destructive, real time method of determining tritium concentrations on the surface of internal TFTR vacuum vessel components. The detector employs a green phosphor screen (P31, zinc sulfide: copper) with a wave length peak of 530 nm, a charge-coupled device (CCD) camera linked to a computer, and a detection chamber for inserting components recovered from the vacuum vessel. This detector is capable of determining tritium concentrations on the surfaces. The detector provides a method of imaging tritium deposition on the surfaces in a fairly rapid fashion

  17. Visual tritium imaging of in-vessel surfaces

    International Nuclear Information System (INIS)

    Gentile, C.A.; Zweben, S.J.; Skinner, C.H.; Young, K.M.; Langish, S.W.; Nishi, M.F.; Shu, W.M.; Parker, J.; Isobe, K.

    2000-01-01

    An imaging detector has been developed for the purpose of providing a non-destructive, real time method of determining tritium concentrations on the surface of internal TFTR vacuum vessel components. The detector employs a green phosphor screen (P31, zinc sulfide: copper) with a wave length peak of 530 nm, a charge-coupled device (CCD) camera linked to a computer, and a detection chamber for inserting components recovered from the vacuum vessel. This detector is capable of determining tritium concentrations on the surfaces. The detector provides a method of imaging tritium deposition on the surfaces in a fairly rapid fashion

  18. Tuning the diurnal natural daylight with phosphor converted white LED – Advent of new phosphor blend composition

    International Nuclear Information System (INIS)

    Kim, Yoon Hwa; Arunkumar, Paulraj; Park, Seung Hyok; Yoon, Ho Shin; Im, Won Bin

    2015-01-01

    Highlights: • Designed phosphor blend that mimics diurnal daylight for health benefits. • Developed new phosphor blend composition that mimics natural sunlight under near UV. • The phosphor blend also exhibits high CRI (≥90) under blue LED excitation. • Fabricated WLED exhibited ∼91% spectral resemblance with daylight at 4500 K. • While ∼39.2% spectral resemblance were observed for YAG:Ce 3+ at 4500 K. - Abstract: We demonstrate the feasibility of developing phosphor converted white LED (pc-WLED) that mimics diurnal natural daylight with the newly designed phosphor blend in the color temperature (CCT) 2700–6000 K for health benefits. Natural daylight (sunlight) spectrum possesses broad emission in the visible region and closely approximates black body radiator, with color rendition index (CRI) of 100 under wide CCT (2500–6500 K). Current white light LEDs although are efficient and durable, they are not broad enough compared to daylight. We report new phosphor blend based on Sr 3 MgSi 2 O 8 :Eu 2+ blue phosphor with broad emission and high CRI ≥ 96 under both near UV and blue excitation. The fabricated WLED has exhibited ∼91% spectral resemblance with natural daylight compared to 39.2% for YAG:Ce 3+ white LED at 4500 K. The developed phosphor blend tunes the spectrum in wider CCT and would be a prospective candidate for full spectrum daylight WLED

  19. Application of strong phosphoric acid to radiochemistry

    International Nuclear Information System (INIS)

    Terada, Kikuo

    1977-01-01

    Not only inorganic and organic compounds but also natural substrances, such as accumulations in soil, are completely decomposed and distilled by heating with strong phosphoric acid for 30 to 50 minutes. As applications of strong phosphoric acid to radiochemistry, determination of uranium and boron by use of solubilization effect of this substance, titration of uranyl ion by use of sulfuric iron (II) contained in this substance, application to tracer experiment, and determination of radioactive ruthenium in environmental samples are reviewed. Strong phosphoric acid is also applied to activation analysis, for example, determination of N in pyrographite with iodate potassium-strong phosphoric acid method, separation of Os and Ru with sulfuric cerium (IV) - strong phosphoric acid method or potassium dechromate-strong phosphoric acid method, analysis of Se, As and Sb rocks and accumulations with ammonium bromide, sodium chloride and sodium bromide-strong phosphoric acid method. (Kanao, N.)

  20. SULFIDE MINERALS IN SEDIMENTS

    Science.gov (United States)

    The formation processes of metal sulfides in sediments, especially iron sulfides, have been the subjects of intense scientific research because of linkages to the global biogeochemical cycles of iron, sulfur, carbon, and oxygen. Transition metal sulfides (e.g., NiS, CuS, ZnS, Cd...

  1. 21 CFR 182.1073 - Phosphoric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Phosphoric acid. 182.1073 Section 182.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is generally...

  2. 21 CFR 582.1073 - Phosphoric acid.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is...

  3. Tuning the diurnal natural daylight with phosphor converted white LED – Advent of new phosphor blend composition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Hwa [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of); Research Institute, Force4 Corp., Daechon-dong, Buk-gu, Gwangju 500-470 (Korea, Republic of); Arunkumar, Paulraj [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of); Park, Seung Hyok; Yoon, Ho Shin [Research Institute, Force4 Corp., Daechon-dong, Buk-gu, Gwangju 500-470 (Korea, Republic of); Im, Won Bin, E-mail: imwonbin@jnu.ac.kr [School of Materials Science and Engineering, Chonnam National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757 (Korea, Republic of)

    2015-03-15

    Highlights: • Designed phosphor blend that mimics diurnal daylight for health benefits. • Developed new phosphor blend composition that mimics natural sunlight under near UV. • The phosphor blend also exhibits high CRI (≥90) under blue LED excitation. • Fabricated WLED exhibited ∼91% spectral resemblance with daylight at 4500 K. • While ∼39.2% spectral resemblance were observed for YAG:Ce{sup 3+} at 4500 K. - Abstract: We demonstrate the feasibility of developing phosphor converted white LED (pc-WLED) that mimics diurnal natural daylight with the newly designed phosphor blend in the color temperature (CCT) 2700–6000 K for health benefits. Natural daylight (sunlight) spectrum possesses broad emission in the visible region and closely approximates black body radiator, with color rendition index (CRI) of 100 under wide CCT (2500–6500 K). Current white light LEDs although are efficient and durable, they are not broad enough compared to daylight. We report new phosphor blend based on Sr{sub 3}MgSi{sub 2}O{sub 8}:Eu{sup 2+} blue phosphor with broad emission and high CRI ≥ 96 under both near UV and blue excitation. The fabricated WLED has exhibited ∼91% spectral resemblance with natural daylight compared to 39.2% for YAG:Ce{sup 3+} white LED at 4500 K. The developed phosphor blend tunes the spectrum in wider CCT and would be a prospective candidate for full spectrum daylight WLED.

  4. Color stable manganese-doped phosphors

    Science.gov (United States)

    Lyons, Robert Joseph [Burnt Hills, NY; Setlur, Anant Achyut [Niskayuna, NY; Deshpande, Anirudha Rajendra [Twinsburg, OH; Grigorov, Ljudmil Slavchev [Sofia, BG

    2012-08-28

    A process for preparing color stable Mn.sup.+4 doped phosphors includes providing a phosphor of formula I; A.sub.x[MF.sub.y]:Mn.sup.+4 I and contacting the phosphor in particulate form with a saturated solution of a composition of formula II in aqueous hydrofluoric acid; A.sub.x[MF.sub.y]; II wherein A is Li, Na, K, Rb, Cs, NR.sub.4 or a combination thereof; M is Si, Ge, Sn, Ti, Zr, Al, Ga, In, Sc, Y, La, Nb, Ta, Bi, Gd, or a combination thereof; R is H, lower alkyl, or a combination thereof; x is the absolute value of the charge of the [MF.sub.y] ion; and y is 5, 6 or 7. In particular embodiments, M is Si, Ge, Sn, Ti, Zr, or a combination thereof. A lighting apparatus capable of emitting white light includes a semiconductor light source; and a phosphor composition radiationally coupled to the light source, and which includes a color stable Mn.sup.+4 doped phosphor.

  5. Improvements in x-ray image converters and phosphors

    International Nuclear Information System (INIS)

    Rabatin, J.G.

    1981-01-01

    Improvements to an X-ray image converter comprising crystals of rare earth phosphor admixtures are described. The phosphor admixtures utilize thulium-activated lanthanum and/or gadolinium oxyhalide phosphor material to increase the relative speed and resolution of an X-ray image compared with conventional rare earth phosphors. Examples of various radiographic screens containing one or more of the phosphor materials are given. (U.K.)

  6. Leaching of strontium sulfide from produced clinker in conversion furnace

    International Nuclear Information System (INIS)

    Ghorbanian, S. A.; Salehpour, A. R.; Radpour, S. R.

    2009-01-01

    Iran is rich in mineral resources one of which is mineral Celestine. Basing on current estimations, the capacity of mineral Celestine is over two million tons, 75-95% of which is strontium sulfate. However; in industries such as Color cathode Ray Tubes, pyrochemical processes, ceramics, paint production, zinc purification processes; strontium sulfate is not a direct feed, rather it is largely consumed in the form of strontium carbonate. Two conventional methods are used to produce strontium carbonate from the sulfate; that is direct reaction and black ash methods. Strontium sulfide, as an intermediate component has a key role in black ash process including strontium sulfate reduction by coke, hence producing and leaching the strontium sulfide by hot water. Finally the reaction of strontium sulfate with sodium carbonate lead to strontium carbonate. In this paper, a system was designed to analyze and optimize the process parameters of strontium sulfide production which is less expensive and available solvent in water. Fundamentally, when strontium sulfide becomes in contact with strontium sulfate; Sr(SH) 2 , and Sr(OH) 2 , are produced. The solubility of strontium sulfide depends on water temperature and the maximum solubility achieved at 90 d egree C . The results showed that in the experimental scale, at water to SrS ratio of 6; they sediment for 45 minutes at 95 d egree C in five operational stages; the separation of 95 and 97.1 percent of imported SrS is possible in effluent of fourth and fifth stages, respectively. Thus; four leaching stages could be recommended for pilot scale plants. Also, the results show that at water to SrS ratio of 8, 40 minutes sedimentation at 85-95 d egree C in one operational stage, the separation of 95 percent separation of inputted SrS, is possible. Solvent leaching process is continued till no smell of sulfur components is felt. It could be used as a key role to determine the number of leaching stages in experiments. Finally, the

  7. Uranium extraction from phosphoric acid

    International Nuclear Information System (INIS)

    Lounis, A.

    1983-05-01

    A study has been carried out for the extraction of uranium from phosphoric acid produced in Algeria. First of all, the Algerian phosphoric acid produced in Algeria by SONATRACH has been characterised. This study helped us to synthesize a phosphoric acid that enabled us to pass from laboratory tests to pilot scale tests. We have then examined extraction and stripping parameters: diluent, DZEPHA/TOPO ratio and oxidising agent. The laboratory experiments enabled us to set the optimum condition for the choice of diluent, extractant concentration, ratio of the synergic mixture, oxidant concentration, redox potential. The equilibrium isotherms lead to the determination of the number of theoretical stages for the uranium extraction and stripping of uranium, then the extraction from phosphoric acid has been verified on a pilot scale (using a mixer-settler)

  8. Phosphors for X-ray intensification screens

    International Nuclear Information System (INIS)

    Rebatin, J.G.

    1980-01-01

    An improved rare earth oxyhalide phosphor for x-ray intensification screens is described. The phosphors, of formula LnOX.T where Ln = La or Gd, X = Cl or Br and T = Tm or Tb, are mixed with a small amount of a trivalent antimony compound. The addition of antimony overcomes ageing due to attack by atmospheric moisture and renders the phosphor freeflowing so that dispersions can be readily made. Preferably the phosphor is washed with an aqueous solution of the antimony compound and the compound is the fluoride, chloride or butoxide, or potassium antimony tartrate. (U.K.)

  9. Supergene Nonsulfide Zinc-Lead Deposits: The Examples of Jabali (Yemen) and Yanque (Peru)

    OpenAIRE

    Mondillo, Nicola

    2013-01-01

    “Nonsulfide zinc” is a very general term, referred to a group of ore deposits consisting of Zn-oxidized minerals, mainly represented by smithsonite, hydrozincite, hemimorphite, sauconite and willemite, which are markedly different from sphalerite ores, typically exploited for zinc. Locally, Ag minerals can occur too. The supergene nonsulfide deposits form from low-temperature oxidation of sulfide-bearing concentrations. Objective of this study is to increase the knowledge on the geology, mine...

  10. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent. Volume 1, Bench-scale testing and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research & Development Center (AMAX R&D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  11. Interaction between nanoparticles generated by zinc chloride treatment and oxidative responses in rat liver

    Directory of Open Access Journals (Sweden)

    Azzouz I

    2013-12-01

    Full Text Available Inès Azzouz, Hamdi Trabelsi, Amel Hanini, Soumaya Ferchichi, Olfa Tebourbi, Mohsen Sakly, Hafedh AbdelmelekLaboratory of Integrative Physiology, Faculty of Sciences of Bizerte, Carthage University, TunisiaAbstract: The aim of the present study was to investigate the interaction of zinc chloride (3 mg/kg, intraperitoneally [ip] in rat liver in terms of the biosynthesis of nanoparticles. Zinc treatment increased zinc content in rat liver. Analysis of fluorescence revealed the presence of red fluorescence in the liver following zinc treatment. Interestingly, the co-exposure to zinc (3 mg/kg, ip and selenium (0.20 mg/L, per os [by mouth] led to a higher intensity of red fluorescence compared to zinc-treated rats. In addition, X-ray diffraction measurements carried out on liver fractions of zinc-treated rats point to the biosynthesis of zinc sulfide and/or selenide nanocomplexes at nearly 51.60 nm in size. Moreover, co-exposure led to nanocomplexes of about 72.60 nm in size. The interaction of zinc with other mineral elements (S, Se generates several nanocomplexes, such as ZnS and/or ZnSe. The nanocomplex ZnX could interact directly with enzyme activity or indirectly by the disruption of mineral elements' bioavailability in cells. Subacute zinc or selenium treatment decreased malondialdehyde levels, indicating a drop in lipid peroxidation. In addition, antioxidant enzyme assays showed that treatment with zinc or co-treatment with zinc and selenium increased the activities of glutathione peroxidase, catalase, and superoxide dismutase. Consequently, zinc complexation with sulfur and/or selenium at nanoscale level could enhance antioxidative responses, which is correlated to the ratio of number of ZnX nanoparticles (X=sulfur or X=selenium to malondialdehyde level in rat liver.Keywords: nanocomplexes biosynthesis, antioxidative responses, X-ray diffraction, fluorescence microscopy, liver

  12. Preparation and study of the properties of indium phosphide thin films impregnated with cadmium and zinc

    International Nuclear Information System (INIS)

    Moutinho, H.R.

    1984-01-01

    Indium phosphide thin films were deposited by vacuum evaporation of indium and phosphorous, using the three-temperature method. The effects of the introduction of cadmium and zinc, group II impurities, on the properties of these films were studied. The introduction of cadmium was achieved by coevaporation of this element during the film deposition. The introduction of zinc was done by diffusion of this element in intrinsic films. Analyses of these films were carried out by the study of the composition, morphology, structure, optical properties and electrical properties. The introduction of cadmium led to the reduction of grain size and increase in the bandgap and in certain cases, even change in morphology. Phases of CdP2 and β-CdP2 were detected and the resistivity increased by some orders of magnitude. The introduction of zinc did not change the morphology, crystalline structure and bandgap. However, a new energy level corresponding to the zinc acceptor level was found and the resistivity increased by some orders of magnitude. (Author) [pt

  13. Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc

    International Nuclear Information System (INIS)

    Bambic, Dustin G.; Alpers, Charles N.; Green, Peter G.; Fanelli, Eileen; Silk, Wendy K.

    2006-01-01

    Seasonal and spatial variations in metal concentrations and pH were found in a stream at a restored copper mine site located near a massive sulfide deposit in the Foothill copper-zinc belt of the Sierra Nevada, California. At the mouth of the stream, copper concentrations increased and pH decreased with increased streamflow after the onset of winter rain and, unexpectedly, reached extreme values 1 or 2 months after peaks in the seasonal hydrographs. In contrast, aqueous zinc and sulfate concentrations were highest during low-flow periods. Spatial variation was assessed in 400 m of reach encompassing an acidic, metal-laden seep. At this seep, pH remained low (2-3) throughout the year, and copper concentrations were highest. In contrast, the zinc concentrations increased with downstream distance. These spatial patterns were caused by immobilization of copper by hydrous ferric oxides in benthic sediments, coupled with increasing downstream supply of zinc from groundwater seepage. - Seasonal hydrology and benthic sediments control copper and zinc concentrations in a stream through a restored mine site

  14. Risedronate/zinc-hydroxyapatite based nanomedicine for osteoporosis

    Energy Technology Data Exchange (ETDEWEB)

    Khajuria, Deepak Kumar, E-mail: deepak_kumarkhajuria@yahoo.co.in [Laboratory for Integrative Multiscale Engineering Materials and Systems, Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore 560027 (India); Disha, Choudhary [Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore 560027 (India); Vasireddi, Ramakrishna [Laboratory for Integrative Multiscale Engineering Materials and Systems, Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Razdan, Rema [Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore 560027 (India); Mahapatra, D. Roy [Laboratory for Integrative Multiscale Engineering Materials and Systems, Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2016-06-01

    Targeting of superior osteogenic drugs to bone is an ideal approach for treatment of osteoporosis. Here, we investigated the potential of using risedronate/zinc-hydroxyapatite (ZnHA) nanoparticles based formulation in a rat model of experimental osteoporosis. Risedronate, a targeting moiety that has a strong affinity for bone, was loaded to ZnHA nanoparticles by adsorption method. Prepared risedronate/ZnHA drug formulation was characterized by field-emission scanning electron microscopy, X-ray diffraction analysis and fourier transform infrared spectroscopy. In vivo performance of the prepared risedronate/ZnHA nanoparticles was tested in an experimental model of postmenopausal osteoporosis. Therapy with risedronate/ZnHA drug formulation prevented increase in serum levels of bone-specific alkaline phosphatase and tartrate-resistant acid phosphatase 5b better than risedronate/HA or risedronate. With respect to improvement in the mechanical strength of the femoral mid-shaft and correction of increase in urine calcium and creatinine levels, the therapy with risedronate/ZnHA drug formulation was more effective than risedronate/HA or risedronate therapy. Moreover, risedronate/ZnHA drug therapy preserved the cortical and trabecular bone microarchitecture better than risedronate/HA or risedronate therapy. Furthermore, risedronate/ZnHA drug formulation showed higher values of calcium/phosphorous ratio and zinc content. The results strongly implicate that risedronate/ZnHA drug formulation has a therapeutic advantage over risedronate or risedronate/HA therapy for the treatment of osteoporosis. - Highlights: • Risedronate functionalized zinc-hydroxyapatite nanoparticles were prepared. • Risedronate was used as a carrier to deliver zinc-hydroxyapatite nanoparticles to bones. • Application of risedronate/ZnHA drug formulation in osteoporosis is described.

  15. Method of preparing a thermoluminescent phosphor

    Science.gov (United States)

    Lasky, Jerome B.; Moran, Paul R.

    1979-01-01

    A thermoluminescent phosphor comprising LiF doped with boron and magnesium is produced by diffusion of boron into a conventional LiF phosphor doped with magnesium. Where the boron dopant is made to penetrate only the outer layer of the phosphor, it can be used to detect shallowly penetrating radiation such as tritium beta ays in the presence of a background of more penetrating radiation.

  16. Nanostructured metal sulfides for energy storage

    Science.gov (United States)

    Rui, Xianhong; Tan, Huiteng; Yan, Qingyu

    2014-08-01

    Advanced electrodes with a high energy density at high power are urgently needed for high-performance energy storage devices, including lithium-ion batteries (LIBs) and supercapacitors (SCs), to fulfil the requirements of future electrochemical power sources for applications such as in hybrid electric/plug-in-hybrid (HEV/PHEV) vehicles. Metal sulfides with unique physical and chemical properties, as well as high specific capacity/capacitance, which are typically multiple times higher than that of the carbon/graphite-based materials, are currently studied as promising electrode materials. However, the implementation of these sulfide electrodes in practical applications is hindered by their inferior rate performance and cycling stability. Nanostructures offering the advantages of high surface-to-volume ratios, favourable transport properties, and high freedom for the volume change upon ion insertion/extraction and other reactions, present an opportunity to build next-generation LIBs and SCs. Thus, the development of novel concepts in material research to achieve new nanostructures paves the way for improved electrochemical performance. Herein, we summarize recent advances in nanostructured metal sulfides, such as iron sulfides, copper sulfides, cobalt sulfides, nickel sulfides, manganese sulfides, molybdenum sulfides, tin sulfides, with zero-, one-, two-, and three-dimensional morphologies for LIB and SC applications. In addition, the recently emerged concept of incorporating conductive matrices, especially graphene, with metal sulfide nanomaterials will also be highlighted. Finally, some remarks are made on the challenges and perspectives for the future development of metal sulfide-based LIB and SC devices.

  17. The Influence of Phosphor and Binder Chemistry on the Aging Characteristics of Remote Phosphor Products

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Lynn; Yaga, Robert; Lamvik, Michael; Mills, Karmann; Fletcher, B.

    2017-06-30

    The influence of phosphor and binder layer chemistries on the lumen maintenance and color stability of remote phosphor disks were examined using wet high-temperature operational lifetime testing (WHTOL). As part of the experimental matrix, two different correlated color temperature (CCT) values, 2700 K and 5000 K, were studied and each had a different binder chemistry. The 2700 K samples used a urethane binder whereas the 5000 K samples used an acrylate binder. Experimental conditions were chosen to enable study of the binder and phosphor chemistries and to minimize photo-oxidation of the polycarbonate substrate. Under the more severe WHTOL conditions of 85°C and 85% relative humidity (RH), absorption in the binder layer significantly reduced luminous flux and produced a blue color shift. The milder WHTOL conditions of 75°C and 75% RH, resulted in chemical changes in the binder layer that may alter its index of refraction. As a result, lumen maintenance remained high, but a slight yellow shift was found. The aging of remote phosphor products provides insights into the impact of materials on the performance of phosphors in an LED lighting system.

  18. Flux synthesis of (3,4)-connected zinc phosphites with different framework topologies

    International Nuclear Information System (INIS)

    Lin Zhien; Dehnen, Stefanie

    2009-01-01

    Two three-dimensional open-framework zinc phosphites, H 2 aem.Zn 3 (HPO 3 ) 4 .0.5H 2 O (1) and H 2 apm.Zn 3 (HPO 3 ) 4 (2), have been synthesized by a phosphorous acid flux method, where aem=4-(2-aminoethyl)morpholine and apm=4-(3-aminopropyl)morpholine. Compound 1 crystallizes in the monoclinic system, P2 1 /c, a=9.5852(7) A, b=20.3941(8) A, c=10.5339(8) A, β=94.125(9) o , V=2053.8(2) A 3 , Z=4, R 1 =0.0319, wR 2 =0.0628. Compound 2 crystallizes in the monoclinic system, P2 1 /n, a=8.589(2) A, b=14.020(3) A, c=16.606(3) A, β=97.190(8) o , V=1983.9(7) A 3 , Z=4, R 1 =0.0692, wR 2 =0.1479. Both compounds are based on (3,4)-connected networks with 8- and 12-ring channels, which are constructed from Zn 3 (HPO 3 ) 4 clusters as the same secondary building units. These inorganic clusters are spatially organized by different structure-directing agents into different three-dimensional frameworks. - Graphical abstract: Two three-dimensional open-framework zinc phosphites have been synthesized by a phosphorous acid flux method. The two compounds are constructed from Zn 3 (HPO 3 ) 4 clusters and have noz and pcu topologies, respectively.

  19. Synthesis of zinc sulfide nanoparticles and their incorporation into poly(hydroxybutyrate) matrix in the formation of a novel nanocomposite

    Science.gov (United States)

    Riaz, Shahina; Raza, Zulfiqar Ali; Majeed, Muhammad Irfan; Jan, Tariq

    2018-05-01

    In the present study, zinc sulfide (ZnS) nanoparticles (NPs) were successfully synthesized through a modified chemical precipitation protocol and then mediated into poly(hydroxybutyrate) (PHB) matrix to get ZnS/PHB nanocomposite. Mean diameter and zeta potential of ZnS NPs, as determined using dynamic light scattering technique (DLS), were observed to be 53 nm and ‑89 mV, respectively. The structural investigations performed using x-ray diffraction (XRD) technique depicted the phase purity of ZnS NPs exhibiting cubic crystal structure. Fourier transform infrared (FTIR) spectroscopic analysis was conducted to identify the presence or absence of bonding vibrational modes on the surface of synthesized single phase ZnS NPs. The FTIR analysis confirmed the metal to sulphur bond formation by showing the characteristic band at 1123 cm‑1. The UV–vis absorption spectra of ZnS NPs confirmed the synthesis of particles in nanoscale regime showing a λ max of 302 nm. These NPs were then successfully incorporated into PHB matrix to synthesize ZnS/PHB nanocomposite. The synthesis of nanocomposite was confirmed by EDX analysis. The chemical bonding and structural properties of ZnS/PHB nanocomposite were determined by FTIR and XRD analysis, respectively. The FTIR analysis confirmed the synthesis of ZnS/PHB nanocomposite. Moreover, XRD analysis showed that structure of nanocomposite was completely controlled by ZnS NPs as pure PHB exhibited orthorhombic crystal structure while the nanocomposite demonstrated cubic crystal structure of ZnS. Thermal properties of nanocomposite were studied through thermogravimetric analysis revealing that the incorporation of ZnS NPs into PHB matrix lead to enhance heat resistance properties of PHB.

  20. Purification of hydrogen sulfide

    International Nuclear Information System (INIS)

    Tsao, U.

    1978-01-01

    A process is described for purifying a hydrogen sulfide gas stream containing carbon dioxide, comprising (a) passing the gas stream through a bed of solid hydrated lime to form calcium hydrosulfide and calcium carbonate and (b) regenerating hydrogen sulfide from said calcium hydrosulfide by reacting the calcium hydrosulfide with additional carbon dioxide. The process is especially applicable for use in a heavy water recovery process wherein deuterium is concentrated from a feed water containing carbon dioxide by absorption and stripping using hydrogen sulfide as a circulating medium, and the hydrogen sulfide absorbs a small quantity of carbon dioxide along with deuterium in each circulation

  1. Consumption of Pt anode in phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Kamiya, N.; Urata, K.; Motohira, N.; Ota, K. [Yokohama National University, Yokohama (Japan)

    1997-12-05

    Consumption of Pt anode was investigated in phosphoric acid of various concentration. In 30-70wt% phosphoric acid, Pt dissolved at the rate of 19{mu}gcm{sup -2}h{sup -1}. On the other hand, in 85 wt% phosphoric acid, the amount increased to 0.91 mgcm{sup -2}h{sup -1} which is ca. 180 and 1800 times as much as in 1M sulfuric acid and 1M alkaline solution, respectively. In the diluted phosphoric acid solution, the Pt surface was covered with Pt oxides during the electrolysis, which would prevent the surface from corrosion. However, in the concentrated phosphoric acid, no such oxide surface was observed. Concentrated phosphoric acid might form stable complex with Pt species, therefore the uncovered bare Pt surface is situated in the serious corrosion condition under the high overvoltage and Pt would dissolve into the solution directly instead of forming the Pt oxides. 11 refs., 9 figs., 1 tab.

  2. Process for recovering a uranium containing concentrate and purified phosphoric acid from a wet process phosphoric acid containing uranium

    International Nuclear Information System (INIS)

    Weterings, C.A.M.; Janssen, J.A.

    1985-01-01

    A process is claimed for recovering from a wet process phosphoric acid which contains uranium, a uranium containing concentrate and a purified phosphoric acid. The wet process phosphoric acid is treated with a precipitant in the presence of a reducing agent and an aliphatic ketone

  3. Process for recovering a uranium containing concentrate and purified phosphoric acid from a wet process phosphoric acid containing uranium

    Energy Technology Data Exchange (ETDEWEB)

    Weterings, C.A.M.; Janssen, J.A.

    1985-04-30

    A process is claimed for recovering from a wet process phosphoric acid which contains uranium, a uranium containing concentrate and a purified phosphoric acid. The wet process phosphoric acid is treated with a precipitant in the presence of a reducing agent and an aliphatic ketone.

  4. On the origin of life in the Zinc world: 1. Photosynthesizing, porous edifices built of hydrothermally precipitated zinc sulfide as cradles of life on Earth

    Directory of Open Access Journals (Sweden)

    Mulkidjanian Armen Y

    2009-08-01

    Full Text Available Abstract Background The complexity of the problem of the origin of life has spawned a large number of possible evolutionary scenarios. Their number, however, can be dramatically reduced by the simultaneous consideration of various bioenergetic, physical, and geological constraints. Results This work puts forward an evolutionary scenario that satisfies the known constraints by proposing that life on Earth emerged, powered by UV-rich solar radiation, at photosynthetically active porous edifices made of precipitated zinc sulfide (ZnS similar to those found around modern deep-sea hydrothermal vents. Under the high pressure of the primeval, carbon dioxide-dominated atmosphere ZnS could precipitate at the surface of the first continents, within reach of solar light. It is suggested that the ZnS surfaces (1 used the solar radiation to drive carbon dioxide reduction, yielding the building blocks for the first biopolymers, (2 served as templates for the synthesis of longer biopolymers from simpler building blocks, and (3 prevented the first biopolymers from photo-dissociation, by absorbing from them the excess radiation. In addition, the UV light may have favoured the selective enrichment of photostable, RNA-like polymers. Falsification tests of this hypothesis are described in the accompanying article (A.Y. Mulkidjanian, M.Y. Galperin, Biology Direct 2009, 4:27. Conclusion The suggested "Zn world" scenario identifies the geological conditions under which photosynthesizing ZnS edifices of hydrothermal origin could emerge and persist on primordial Earth, includes a mechanism of the transient storage and utilization of solar light for the production of diverse organic compounds, and identifies the driving forces and selective factors that could have promoted the transition from the first simple, photostable polymers to more complex living organisms. Reviewers This paper was reviewed by Arcady Mushegian, Simon Silver (nominated by Arcady Mushegian, Antoine

  5. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Dezhao, Liu; Hansen, Michael Jørgen

    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  6. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Liu, Dezhao; Hansen, Michael Jørgen

    2012-01-01

    Observed hydrogen sulfide uptake rates in a biofilter treating waste air from a pig farm were too high to be explained within conventional limits of sulfide solubility, diffusion in a biofilm and bacterial metabolism. Clone libraries of 16S and 18S rRNA genes from the biofilter found no sulfide...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  7. Method of purifying phosphoric acid after solvent extraction

    International Nuclear Information System (INIS)

    Kouloheris, A.P.; Lefever, J.A.

    1979-01-01

    A method of purifying phosphoric acid after solvent extraction is described. The phosphoric acid is contacted with a sorbent which sorbs or takes up the residual amount of organic carrier and the phosphoric acid separated from the organic carrier-laden sorbent. The method is especially suitable for removing residual organic carrier from phosphoric acid after solvent extraction uranium recovery. (author)

  8. Multimicronutrient Slow-Release Fertilizer of Zinc, Iron, Manganese, and Copper

    Directory of Open Access Journals (Sweden)

    Siladitya Bandyopadhyay

    2014-01-01

    Full Text Available The process for the production of a slow-release micronutrient fertilizer is described. The compound contains zinc, iron, manganese, and copper as micronutrients and is produced by polymerizing a system containing phosphoric acid, zinc oxide, hematite, pyrolusite, copper sulfate, and magnesium oxide followed by neutralization of the polyphosphate chain with ammonium hydroxide. Changes in temperature, density, and viscosity of the reaction system during polymerization were studied. Reaction kinetics was studied at three different temperatures. Rate curves revealed a multistage process with essentially linear rates at each stage. Thus, each stage displayed zero order kinetics. The product was crystalline and revealed ordering of P-O-P chains. It had low solubility in water but high solubility in 0.33 M citric acid and 0.005 M DTPA. Three different field trials showed significant yield increments using the slow-release micronutrient fertilizer compared to the conventional micronutrients. Yield increments in rice were in the range of 10–55% over control (with no micronutrient and up to 17% over the conventional micronutrient fertilizers. There were significant increases in total uptake of zinc, iron, and manganese in the grain. Slow-release fertilizers also produced significant yield increases in potato as well as significant increase in vitamin C content of the tuber.

  9. Thiosulfate leaching of gold from sulfide wastes

    Energy Technology Data Exchange (ETDEWEB)

    Block-Bolten, A.; Torma, A.E.

    1986-07-01

    The kinetics of gold extraction from lead-zinc sulfide flotation tailings by thiosulfate leachants has been investigated. The order of reaction as well as the overall reaction rate constant were, with respect to thiosulfate concentration, calculated to be n=0.75 and k=1.05 x 10/sup -6/ mol/sup 1/4/ dm/sup 5/4/ min/sup -1/. The apparent activation energy was found to be ..delta..E/sub a/=48.53 kJ and the frequency factor A=7.5 x 10/sup 2/ mol dm/sup -3/ min/sup -1/. This activation energy value suggests chemical control of the reaction mechanism. Optimum leach temperature of 50/sup 0/C was established. Gold extractions as high as 99% have been realized in two step countercurrent leachings. Change in pH throughout the leaching process was found to be an excellent indicator for the progress of the extraction. A preliminary economic evaluation of the process is given.

  10. White light-emitting diodes (LEDs) using (oxy)nitride phosphors

    International Nuclear Information System (INIS)

    Xie, R-J; Hirosaki, N; Sakuma, K; Kimura, N

    2008-01-01

    (Oxy)nitride phosphors have attracted great attention recently because they are promising luminescent materials for phosphor-converted white light-emitting diodes (LEDs). This paper reports the luminescent properties of (oxy)nitride phosphors in the system of M-Si-Al-O-N (M = Li, Ca or Sr), and optical properties of white LEDs using a GaN-based blue LED and (oxy)nitride phosphors. The phosphors show high conversion efficiency of blue light, suitable emission colours and small thermal quenching. The bichromatic white LEDs exhibit high luminous efficacy (∼55 lm W -1 ) and the multi-phosphor converted white LEDs show high colour rendering index (Ra 82-95). The results indicate that (oxy)nitride phosphors demonstrate their superior suitability to use as down-conversion luminescent materials in white LEDs

  11. [Change traits of phosphorous consumption structure in China and their effects on environmental phosphorous loads].

    Science.gov (United States)

    Ma, Dun-Chao; Hu, Shan-Ying; Chen, Ding-Jiang; Li, You-Run

    2012-04-01

    Substance flow analysis was used to construct a model to analyze change traits of China's phosphorous (P) consumption structure from 1980 to 2008 and their influences on environmental phosphorous loads, then the correlation between several socioeconomic factors and phosphorous consumption pollution was investigated. It is found that phosphorous nutrient inputs of urban life and rural life on a per capita level climbed to 1.20 kg x a(-1) and 0.99 kg x a(-1) from 0.83 kg x a(-1) and 0.75 kg x a(-1) respectively, but phosphorous recycling ratios of urban life fell to 15.6% from 62.6%. P inputs of animal husbandry and planting also kept increasing, but the recycling ratio of the former decreased from 67.5% to 40.5%, meanwhile much P input of the latter was left in agricultural soil. Correlation coefficients were all above 0.90, indicating that population, urbanization level, development levels of planting and animal husbandry were important incentives for P consumption pollution in China. Environmental Kuznets curve showed that China still stayed in the early development stage, promoting economic growth at an expense of environmental quality. This study demonstrates that China's P consumption system is being transformed into a linear and open structure, and that P nutrient loss and environmental P loads increase continually.

  12. ZnS nanoflakes deposition by modified chemical method

    International Nuclear Information System (INIS)

    Desai, Mangesh A.; Sartale, S. D.

    2014-01-01

    We report deposition of zinc sulfide nanoflakes on glass substrates by modified chemical method. The modified chemical method involves adsorption of zinc–thiourea complex on the substrate and its dissociation in presence of hydroxide ions to release sulfur ions from thiourea which react with zinc ions present in the complex to form zinc sulfide nanoflakes at room temperature. Influence of zinc salt and thiourea concentrations ratios on the morphology of the films was investigated by scanning electron microscope (SEM). The ratio of zinc and thiourea in the zinc–thiourea complex significantly affect the size of the zinc sulfide nanoflakes, especially width and density of the nanoflakes. The X-ray diffraction analysis exhibits polycrystalline nature of the zinc sulfide nanoflakes with hexagonal phase

  13. Continuous fabrication of a MnS/Co nanofibrous air electrode for wide integration of rechargeable zinc-air batteries.

    Science.gov (United States)

    Wang, Yang; Fu, Jing; Zhang, Yining; Li, Matthew; Hassan, Fathy Mohamed; Li, Guang; Chen, Zhongwei

    2017-10-26

    Exploring highly efficient bifunctional electrocatalysts toward the oxygen reduction and evolution reactions is essential for the realization of high-performance rechargeable zinc-air batteries. Herein, a novel nanofibrous bifunctional electrocatalyst film, consisting of metallic manganese sulfide and cobalt encapsulated by nitrogen-doped carbon nanofibers (CMS/NCNF), is prepared through a continuous electrospinning method followed by carbonization treatment. The CMS/NCNF bifunctional catalyst shows both comparable ORR and OER performances to those of commercial precious metal-based catalysts. Furthermore, the free-standing CMS/NCNF fibrous thin film is directly used as the air electrode in a solid-state zinc-air battery, which exhibits superior flexibility while retaining stable battery performance at different bending angles. This study provides a versatile design route for the rational design of free-standing bifunctional catalysts for direct use as the air electrode in rechargeable zinc-air batteries.

  14. Modeling granular phosphor screens by Monte Carlo methods

    International Nuclear Information System (INIS)

    Liaparinos, Panagiotis F.; Kandarakis, Ioannis S.; Cavouras, Dionisis A.; Delis, Harry B.; Panayiotakis, George S.

    2006-01-01

    The intrinsic phosphor properties are of significant importance for the performance of phosphor screens used in medical imaging systems. In previous analytical-theoretical and Monte Carlo studies on granular phosphor materials, values of optical properties, and light interaction cross sections were found by fitting to experimental data. These values were then employed for the assessment of phosphor screen imaging performance. However, it was found that, depending on the experimental technique and fitting methodology, the optical parameters of a specific phosphor material varied within a wide range of values, i.e., variations of light scattering with respect to light absorption coefficients were often observed for the same phosphor material. In this study, x-ray and light transport within granular phosphor materials was studied by developing a computational model using Monte Carlo methods. The model was based on the intrinsic physical characteristics of the phosphor. Input values required to feed the model can be easily obtained from tabulated data. The complex refractive index was introduced and microscopic probabilities for light interactions were produced, using Mie scattering theory. Model validation was carried out by comparing model results on x-ray and light parameters (x-ray absorption, statistical fluctuations in the x-ray to light conversion process, number of emitted light photons, output light spatial distribution) with previous published experimental data on Gd 2 O 2 S:Tb phosphor material (Kodak Min-R screen). Results showed the dependence of the modulation transfer function (MTF) on phosphor grain size and material packing density. It was predicted that granular Gd 2 O 2 S:Tb screens of high packing density and small grain size may exhibit considerably better resolution and light emission properties than the conventional Gd 2 O 2 S:Tb screens, under similar conditions (x-ray incident energy, screen thickness)

  15. Uranium recovery from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    McCullough, J.F.; Phillips, J.F. Jr.; Tate, L.R.

    1979-01-01

    A method of recovering uranium from wet-process phosphoric acid is claimed where the acid is treated with a mixture of an ammonium salt or ammonia, a reducing agent, and then a miscible solvent. Solids are separated from the phosphoric acid liquid phase. The solid consists of a mixture of metal phosphates and uranium. It is washed free of adhering phosphoric acid with fresh miscible solvent. The solid is dried and dissolved in acid whereupon uranium is recovered from the solution. Miscible solvent and water are distilled away from the phosphoric acid. The distillate is rectified and water discarded. All miscible solvent is recovered for recycle. 5 claims

  16. Microbial control of hydrogen sulfide production

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J. [Univ. of Oklahoma, Tulsa, OK (United States)] [and others

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  17. Phosphorous-Containing Polymers for Regenerative Medicine

    Science.gov (United States)

    Watson, Brendan M.; Kasper, F. Kurtis; Mikos, Antonios G.

    2014-01-01

    Disease and injury have resulted in a large, unmet need for functional tissue replacements. Polymeric scaffolds can be used to deliver cells and bioactive signals to address this need for regenerating damaged tissue. Phosphorous-containing polymers have been implemented to improve and accelerate the formation of native tissue both by mimicking the native role of phosphorous groups in the body and by attachment of other bioactive molecules. This manuscript reviews the synthesis, properties, and performance of phosphorous-containing polymers that can be useful in regenerative medicine applications. PMID:24565855

  18. Preparation of high purification and food grade phosphoric acid from technical grade phosphoric acid by liquid-liquid detraction method

    International Nuclear Information System (INIS)

    Alimoradi, M.; Borji, F.; Kishani, A.

    2002-01-01

    Pay attention to increasing consumption of high purification and food grade phosphoric acid in various industries and food industries and on in on hand and lack of preparation between production and distribution of this products its purification is so vital. In this article of liquid-liquid extraction method with normal hexane-mixture of ammonia and acetone-diisopropyl alcohol and normal butanol solvents and these determination of distribution coefficient each one with ph-me try titration we can evaluate effectiveness and sufficiency each one. Because of proper coefficient distribution and its local production of normal butanol solvent and low price is the best solvent. To phosphoric acid modifying coefficient distribution for extraction of phosphoric acid we can add a little value sulfuric acid to the mixture and to remove flouride impurity we add a little Na 2 O. After extraction stage extracted phosphoric acid in the normal strips by evaluating with distilled water and then by passing the carbon active bed and following passes of cationic resine column and concentrated with vacuum distillation. Conclusion of this article is produce of phosphoric acid 85% w/w and food grade from impure phosphoric acid 52% w/w with technical grade

  19. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains

    International Nuclear Information System (INIS)

    Vallee, B.L.; Auld, D.S.; Coleman, J.E.

    1991-01-01

    The authors recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a zinc cluster akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is ∼3.5 angstrom. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is ∼13 angstrom, and in this instance, a zinc twist is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native zinc fingers, structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent

  20. Mesostructured metal germanium sulfides

    Energy Technology Data Exchange (ETDEWEB)

    MacLachlan, M.J.; Coombs, N.; Bedard, R.L.; White, S.; Thompson, L.K.; Ozin, G.A.

    1999-12-29

    A new class of mesostructured metal germanium sulfide materials has been prepared and characterized. The synthesis, via supramolecular assembly of well-defined germanium sulfide anionic cluster precursors and transition-metal cations in formamide, represents a new strategy for the formation of this class of solids. A variety of techniques were employed to examine the structure and composition of the materials. Structurally, the material is best described as a periodic mesostructured metal sulfide-based coordination framework akin to periodic hexagonal mesoporous silica, MCM-41. At the molecular scale, the materials strongly resemble microstructured metal germanium sulfides, in which the structure of the [Ge{sub 4}S{sub 10}]{sup 4{minus}} cluster building-blocks are intact and linked via {mu}-S-M-S bonds. Evidence for a metal-metal bond in mesostructured Cu/Ge{sub 4}S{sub 10} is also provided.

  1. Pretreatment of industrial phosphoric acid by Algerian filter-aids

    International Nuclear Information System (INIS)

    Mellah, A.; Setti, Louisa; Chegrouche, Salah

    1993-01-01

    The present work involves the filtration of industrial phosphoric acid by different filter-aids such as kieselguhr, celite and bleaching clay. The retention of substances contained in wet phosphoric acid was determined using the three filter-aids. Thus, the phosphoric acid, obtained by filtration on kieselguhr has the same specifications as technical phosphoric acid produced by Rhone-Poulenc (France) as standard

  2. Uranium extraction from phosphoric acid

    International Nuclear Information System (INIS)

    Araujo Figueiredo, C. de

    1984-01-01

    The recovery of uranium from phosphoric liquor by two extraction process is studied. First, uranium is reduced to tetravalent condition and is extracted by dioctypyrophosphoric acid. The re-extraction is made by concentrated phosphoric acid with an oxidizing agent. The re-extract is submitted to the second process and uranium is extracted by di-ethylhexilphosphoric acid and trioctylphosphine oxide. (M.A.C.) [pt

  3. Phosphate Phosphors for Solid-State Lighting

    CERN Document Server

    Shinde, Kartik N; Swart, H C; Park, Kyeongsoon

    2012-01-01

    The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  4. X-ray investigation of phosphors for black-white television

    International Nuclear Information System (INIS)

    Lazowy, B.

    1975-01-01

    The investigations of phosphors made by means of the powder diffraction method are presented. The diffraction patterns has been obtained by means of the DRON-1 diffractometer, using the Ksub(α) copper radiation and a nickel filter. Reflex intensity was estimated, indexing was made and lattice constants for particular structure types were calculated. The objects of the investigations were the phosphors from various firms of white luminescence and home phosphors of white, blue and yellow luminescence. On the base of the results it was found that all investigated phosphors of yellow luminescence belonged to the hexagonal system. These phosphors, depending on baking conditions, have structure of regular symmetry. The phosphors of white luminescence are a mixture of hexagonal and regular phase and any changes in elementary cell sizes were not observed. All phosphors of white luminescence have analogous structure, positions of all reflexes are identical, negligible differences in their intensities occur only, which proves somewhat different arrangement of atoms in mixed crystals. (author)

  5. Pretreatment of phosphoric acid for uranium recovery by the wet phosphoric acid process

    International Nuclear Information System (INIS)

    Chern, S.L.P.; Chen, Y.C.L.; Chang, S.S.H.; Kuo, T.S.; Ting, G.C.M.

    1980-01-01

    The proposal deals with reprocessing of phosphoric acid arising from uranium separation according to the wet phosphoric acid process and being intended for recycling. In detail, the sludge will be removed by means of an inclined separating device containing corrugated plates, then the organic impurities are washed out with kerosene in suitable facilities, and the crude phase remaining in the settling tank will be separated from the kerosene in a separating centrifuge. The method has only got low cost of installation. (UWI) [de

  6. Thermoluminescence of europium-doped zinc oxide exposed to beta particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Iriqui R, J. L.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83000 Hermosillo, Sonora (Mexico); Castano, V. M., E-mail: jorgeiriqui@gimmunison.com [UNAM, Instituto de Fisica, Centro de Fisica Aplicada y Tecnologia Avanzada, Apdo. Postal 1-1010, 76000 Queretaro, Qro. (Mexico)

    2015-10-15

    Full text: Zn O is a promising material for a range of optoelectronics applications, due to its direct wide band gap (E{sub g} ∼3.3 eV at 300 K) and large exciton binding energy (60 MeV). Its applications include UV light emitters, varistors, surface acoustic wave devices, piezoelectric transducers, and chemical and gas sensing. Rare-earth activation of phosphors has long been seen as an effective process since coupling energy into the rare-earth-ion site, either by ionization, charge exchange or a resonance energy process, results in light production. It is reported that Europium modifies the response thermoluminescence (Tl) for pure zinc oxide, when is irradiated with X-ray, created a peak at 365 degrees C. In this work, Zn O:Eu phosphors were synthesized by a chemical method. Some samples were exposed to beta particle irradiation for doses ranging from 1 up to 100 Gy. Tl response as a function of dose is linear throughout the studied dose range. The glow curve exhibits three maxima, centered at 176, 279 and 340 degrees C. The reusability studies obtained after ten repeated cycles of annealing irradiation readout for the Zn O:Eu shows that the variation in the Tl response is ten percent and tends to stabilization. The results indicate that these new Zn O:Eu phosphors are promising detectors and dosimeters for beta radiation. The structural and morphological characterization was carried out by X-ray diffraction and scanning electron microscopy, respectively. (Author)

  7. Compact fluorescent lamp phosphors in accidental radiation monitoring

    International Nuclear Information System (INIS)

    Murthy, K. V. R.; Pallavi, S. P.; Ghildiyal, R.; Parmar, M. C.; Patel, Y. S.; Ravi Kumar, V.; Sai Prasad, A. S.; Natarajan, V.; Page, A. G.

    2006-01-01

    The application of lamp phosphors for accidental dosimetry is a new concept. Since the materials used in fluorescent lamps are good photo luminescent materials, if one can either use the inherent defects present in the phosphor or add suitable modifiers to induce thermoluminescence (TL) in these phosphors, then the device (fluorescent lamp) can be used as an accidental dosemeter. In continuation of our search for a suitable phosphor material, which can serve both as an efficient lamp phosphor and as a good radiation monitoring device, detailed examination has been carried out on cerium and terbium-doped lanthanum phosphate material. A 90 Sr beta source with 50 mCi strength (1.85 GBq) was used as the irradiation source for TL studies. The TL response as a function of dose received was examined for all phosphors used and it was observed that the intensity of the TL peak vs. dose received was a linear function in the dose range 0.1-200 Gy in each case. Incidentally LaPO 4 :Ce,Tb is a component of the compact fluorescent lamp marketed recently as an energy bright light source. Besides having very good luminescence efficiency, good dosimetric properties of these phosphors render them useful for their use in accidental dosimetry also. (authors)

  8. Thermodynamics Calculation and Experimental Study on Separation of Bismuth from a Bismuth Glance Concentrate Through a Low-Temperature Molten Salt Smelting Process

    Science.gov (United States)

    Yang, Jian-Guang; He, De-Wen; Tang, Chao-Bo; Chen, Yong-Ming; Sun, Ya-Hui; Tang, Mo-Tang

    2011-08-01

    The main purpose of this study is to characterize and separate bismuth from a bismuth glance concentrate through a low-temperature, sulfur-fixing smelting process. This article reports on a study conducted on the optimization of process parameters, such as Na2CO3 and zinc oxide wt pct in charging, smelting temperature, smelting duration on the bismuth yield, resultant crude bismuth grade, and sulfur-fixing rate. A maximum bismuth recovery of 97.31 pct, crude bismuth grade of 96.93 pct, and 98.23 pct sulfur-fixing rate are obtained when a charge (containing 63.50 wt pct of Na2CO3 and 22.50 wt pct of bismuth glance, as well as 5 pct in excess of the stoichiometric requirement of zinc oxide dosage) is smelted at 1000 K (727 °C) for 150 minutes. This smelting operation is free from atmospheric pollution because zinc oxide is used as the sulfur-fixing agent, which can capture sulfur from bismuth sulfide and form the more thermodynamic-stable compound, zinc sulfide. The solid residue is subjected to a mineral dressing operation to obtain suspension, which is filtered to produce a cake, representing the solid particles of zinc sulfide. Based on the results of the chemical content analysis of the as-resultant zinc sulfide, more than 93 pct zinc sulfide can be recovered, and the recovered zinc sulfide grade can reach 60.20 pct. This material can be sold as zinc sulfide concentrate or roasted to be regenerated as zinc oxide.

  9. Effect of grinding on photostimuable phosphors for x-ray screens

    International Nuclear Information System (INIS)

    Rao, R.B.

    1988-01-01

    Luminescence efficiency of a phosphor can be improved by minimizing the energy losses during excitation. The loss of excitation energy in the case of powdered samples is mainly due to scattering of incident radiation by the particles of phosphor. Thus, while considering the industrial applications of polycrystalline phosphors in lamps, screens, paints, etc., the effect of particle size on the light output has to be specially studied. It is very well established that the radiographic imaging with photostimuable (PS) phosphors has many advantages over conventional photographic film screens. In the new type of computer radiography, PS phosphors are to be used as memory materials for temporary storage of the x-ray image. Eu(2+) doped barium fluorohalide phosphors are most suitable for this purpose. The spatial resolution from the image plate can be improved to a certain extent with phosphors comprising fine particles. The fineness of the particles can be achieved by various means such as grinding, fast cooling after firing or incorporation of some flux materials during the firing processes. But the efficiency of the phosphor deteriorates with grinding. Fast cooling is a complicated process in the case of Eu(2+) doped phosphors. Incorporation of flux materials may change the characteristics of phosphor materials. In the present investigation, effect of grinding (ball milling) on particle size distribution, shape of the particles and luminescent properties of BaFCl phosphors have been studied

  10. High efficiency nitride based phosphores for white LEDs

    NARCIS (Netherlands)

    Li, Yuan Qiang; Hintzen, H.T.J.M.

    2008-01-01

    In this overview paper, novel rare-earth doped silicon nitride based phosphors for white LEDs applications have been demonstrated. The luminescence properties of orange-red-emitting phosphors (M2Si5N8:Eu2+) and green-to-yellow emitting phosphors (MSi2N2O2:Eu2+, M = Ca, Sr, Ba) are discussed in

  11. Tm3+ activated lanthanum phosphate: a blue PDP phosphor

    International Nuclear Information System (INIS)

    Rao, R.P.

    2005-01-01

    Plasma display panels (PDPs) are gaining attention due to their high performance and scalability as a medium for large format TVs. The performance and life of a PDP strongly depends upon the nature of phosphors. Currently, Eu 2+ activated barium magnesium aluminate (BAM) is being used as a blue component. Because of its low life, efforts are being made to explore new blue emitting phosphors. One of the alternatives to BAM is Tm 3+ activated lanthanum phosphate (LPTM) phosphor. LPTM phosphor samples are prepared by a solid-state as well as sol-gel process in presence of flux. The phosphor of the present investigation, having uniform and spherical shape particles in the range of 0.1-2 μm, is appropriate for thin phosphor screens required for PDP applications. It exhibits a narrow band emission in the blue region, peaking at 452 nm and also a number of narrow bands in the UV region when excited by 147 and 173 nm radiation from a xenon gas mixture. Various possible transitions responsible for UV and visible emission from Tm 3+ ion are presented. These phosphors also exhibit good color saturation and better stability when excited with VUV radiation. To achieve higher brightness, they are blended with other UV excited blue emitting phosphors such as BAM. Results related to morphology, excitation, after glow decay, emission and degradation of these phosphors in the powder form as well as in plasma display panels are presented and discussed

  12. Air-water transfer of hydrogen sulfide

    DEFF Research Database (Denmark)

    Yongsiri, C.; Vollertsen, J.; Rasmussen, M. R.

    2004-01-01

    The emissions process of hydrogen sulfide was studied to quantify air–water transfer of hydrogen sulfide in sewer networks. Hydrogen sulfide transfer across the air–water interface was investigated at different turbulence levels (expressed in terms of the Froude number) and pH using batch...... experiments. By means of the overall mass–transfer coefficient (KLa), the transfer coefficient of hydrogen sulfide (KLaH2S), referring to total sulfide, was correlated to that of oxygen (KLaO2) (i.e., the reaeration coefficient). Results demonstrate that both turbulence and pH in the water phase play...... a significant role for KLaH2S. An exponential expression is a suitable representation for the relationship between KLaH2S and the Froude number at all pH values studied (4.5 to 8.0). Because of the dissociation of hydrogen sulfide, KLaH2S increased with decreasing pH at a constant turbulence level. Relative...

  13. Method of recovering phosphoric acid type decontaminating electrolytes by electrodeposition

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Wada, Koichi; Kobayashi, Toshio.

    1985-01-01

    Purpose: To recoving phosphoric acid type highly concentrated decontaminating liquid used for the electrolytic decontamination of contaminated equipments, components, etc in nuclear power plants or the like through electrodeposition by diaphragm electrolysis. Method: Before supplying phosphoric acid decontaminating liquid at high concentration used in the electrolytic decontaminating step to an electrodeposition recovering tank, phosphoric acid in the decontaminating electrolyte is extracted with solvents and decomposed liquid extracts (electrolyte reduced with the phosphoric acid component) are supplied to the cathode chamber of the electrodeposition recovering tank, where phosphoric acid is back-extracted with water from the solvents after extraction of phosphoric acid. Then, the back-extracted liquids (aqueous phosphoric acid solution scarcely containing metal ions) are sent to the anode chamber of the electrodeposition recovering tank. Metal ions in the liquid are captured by electrodeposition in the cathode chamber, as well as phosphoric acid in the liquids is concentrated to the initial concentration of the electrolyte in the anode chamber for reuse as the decontaminating electrolyte. As the phosphoric acid extracting agent used in the electrodeposition recovering step for the decontaminating electrolyte, water-insoluble and non-combustible tributyl phosphate (TBP) is most effective. (Horiuchi, T.)

  14. Rare-earth doped phosphors: oldies or goldies?

    International Nuclear Information System (INIS)

    Moine, B.; Bizarri, G.

    2003-01-01

    The scientific research on phosphors has a long history starting more than 100 years ago. But recently the appearance of new kinds of displays and lighting devices (plasma display, fluorescent lamp without mercury, etc.) induced an increase of the research of new phosphors with better luminous efficiency than those available up to now. It has been shown that the behavior of 'classical' phosphors in a plasma display panel is quite different than in a cathode ray tube and that the vacuum ultraviolet (VUV) excitation process has to be studied with care in order to improve the phosphors efficiency. That is particularly true in PDPs. It is well established now that a good phosphor for electronic or ultraviolet excitation is not necessarily a good choice for excitation in VUV. This is probably due to the fact that the excitation process is very different in that case and also because the penetration depth of the VUV photons is extremely small inducing a large contribution of the surface of the phosphor. We will illustrate this with some examples. Methods to accelerate luminous intensity decrease under VUV excitation will be described. Low efficiency, fast aging process are both drawbacks that can be solved only in the framework of fundamental studies. Quantum cutting emission may be a solution for the first one but no satisfactory process was proposed for the moment to solve the second

  15. White-electroluminescent device with horizontally patterned blue/yellow phosphor-layer structure

    International Nuclear Information System (INIS)

    Won Park, Boo; Sik Choi, Nam; Won Park, Kwang; Mo Son, So; Kim, Jong Su; Kyun Shon, Pong

    2007-01-01

    White-electroluminescent (EL) devices with stripe-patterned and square-patterned phosphor-layer structures are fabricated through a screen printing method: electrode/BaTiO 3 insulator layer/patterned blue ZnS:Cu, Cl and yellow ZnS:Cu, Mn phosphor layer/ITO PET substrate. The luminous intensities of EL devices with stripe-patterned and square-patterned phosphor-layer structures are 33% and 23% higher than a conventional device with the phosphor-layer structure without any patterns using the phosphor blend. It can be explained in terms of the absorption of the emitted blue light of blue phosphor layer by the yellow-emitting phosphor layer. The EL device of our patterned phosphor-layer structure gives the possibility to enhance the luminance

  16. Photoluminescence of phosphors for PDP with VUV excitation

    International Nuclear Information System (INIS)

    Lu, H.-C.; Chen, H.-K.; Tseng, T.-Y.; Kuo, W.-L.; Alam, M.S.; Cheng, B.-M.

    2005-01-01

    In a plasma display panel (PDP) He-Xe or Ne-Xe gaseous mixtures are subjected to electric discharge between two glass panels, so to generate VUV light. Red, green and blue phosphors absorb this VUV radiation and re-radiate the energy as visible light to produce the colors that appear on the screen. The phosphor plays an important role in the working of a PDP. To improve the efficiency of phosphors, we have established a photoluminescence end station coupled to the beam line of a synchrotron to study the luminescence of PDP phosphors. This luminescence is analyzed with a 0.32 m monochromator having maximum resolution 0.04 nm, and is monitored with a photomultiplier tube operated in a photon-counting mode. Preliminary data demonstrate the powerful performance of this end-station for studying PDP phosphors

  17. Sulfidation behavior of Fe20Cr alloys

    International Nuclear Information System (INIS)

    Pillis, Marina Fuser

    2001-01-01

    Alloys for use in high temperature environments rely on the formation of an oxide layer for their protection. Normally, these protective oxides are Cr 2 O 3 , Al 2 O 3 and, some times, SiO 2 . Many industrial gaseous environments contain sulfur. Sulfides, formed in the presence of sulfur are thermodynamically less stable, have lower melting points and deviate much more stoichiometrically, compared to the corresponding oxides. The mechanism of sulfidation of various metals is as yet not clear, in spite of the concerted efforts during the last decade. To help address this situation, the sulfidation behavior of Fe20Cr has been studied as a function of compositional modifications and surface state of the alloy. The alloys Fe20Cr, Fe20Cr0.7Y, Fe20Cr5Al and Fe20Cr5Al0.6Y were prepared and three sets of sulfidation tests were carried out. In the first set, the alloys were sulfidized at 700 deg C and 800 deg C for 10h. In the second set, the alloys were pre-oxidized at 1000 deg C and then sulfidized at 800 deg C for up to 45h. In the third set of tests, the initial stages of sulfidation of the alloys was studied. All the tests were carried out in a thermobalance, in flowing H 2 /2%H 2 S, and the sulfidation behavior determined as mass change per unit area. Scanning electron microscopy coupled to energy dispersive spectroscopy and X-ray diffraction analysis were used to characterize the reaction products. The addition of Y and Al increased sulfidation resistance of Fe20Cr. The addition of Y altered the species that diffused predominantly during sulfide growth. It changed from predominant cationic diffusion to predominant anionic diffusion. The addition of Al caused an even greater increase in sulfidation resistance of Fe20Cr, with the parabolic rate constant decreasing by three orders of magnitude. Y addition to the FeCrAl alloy did not cause any appreciable alteration in sulfidation resistance. Pre-oxidation of the FeCrAl and FeCrAlY alloys resulted in an extended

  18. High Extraction Phosphors for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Chris [Phosphortech Corporation, Kennesaw, GA (United States); Menkara, Hisham [Phosphortech Corporation, Kennesaw, GA (United States); Wagner, Brent [Phosphortech Corporation, Kennesaw, GA (United States)

    2011-09-01

    We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the anti-quenching behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, large nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material

  19. Anomalous concentrations of zinc and copper in highmoor peat bog, southeast coast of Lake Baikal

    Science.gov (United States)

    Bobrov, V. A.; Bogush, A. A.; Leonova, G. A.; Krasnobaev, V. A.; Anoshin, G. N.

    2011-08-01

    When examining the peat deposit discovered in Vydrinaya bog, South Baikal region, the authors encountered anomalous Zn and Cu concentrations for highmoors being up to 600-500 ppm on a dry matter basis in the Early Holocene beds (360-440 cm) formed 11 000-8500 years ago. It has been demonstrated that Zn and Cu are present inside the plant cells of peat moss in the form of authigenic sulfide minerals of micron size. Apart from Zn and Cu, native Ag particles (5-7 um) have been encountered in the peat of the Vydrinaya bog at a depth of 390-410 cm; these particles formed inside the organic matter of the plasma membrane of peat moss containing Ca, Al, S, and Cu. This study suggests probable patterns of the formation of zinc sulfides, copper sulfides, and native silver in peat moss. The results obtained indicate that biogenic mineral formation plays a significant role in this system, which is a very important argument in the discussion on the ore genesis, in which physicochemical processes are normally favored, while the role of living matter is quite frequently disregarded.

  20. Electrolyte Additives for Phosphoric Acid Fuel Cells

    DEFF Research Database (Denmark)

    Gang, Xiao; Hjuler, H.A.; Olsen, C.A.

    1993-01-01

    , as a fuel-cell performance with the modified electrolytes. Specific conductivity measurements of some of the modified phosphoric acid electrolytes are reported. At a given temperature, the conductivity of the C4F9SO3K-modified electrolyte decreases with an increasing amount of the additive; the conductivity...... of the remains at the same value as the conductivity of the pure phosphoric acid. At a given composition, the conductivity of any modified electrolyte increases with temperature. We conclude that the improved cell performance for modified electrolytes is not due to any increase in conductivity.......Electrochemical characteristics of a series of modified phosphoric acid electrolytes containing fluorinated car on compounds and silicone fluids as additives are presented. When used in phosphoric acid fuel cells, the modified electrolytes improve the performance due to the enhanced oxygen...

  1. Sulfide intrusion and detoxification in seagrasses ecosystems

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    Sulfide intrusion in seagrasses represents a global threat to seagrasses and thereby an important parameter in resilience of seagrass ecosystems. In contrast seegrasses colonize and grow in hostile sediments, where they are constantly exposed to invasion of toxic gaseous sulfide. Remarkably little...... strategies of seagrasses to sustain sulfide intrusion. Using stable isotope tracing, scanning electron microscopy with x-ray analysis, tracing sulfur compounds combined with ecosystem parameters we found different spatial, intraspecific and interspecific strategies to cope with sulfidic sediments. 1...... not present in terrestrial plants at that level. Sulfide is not necessarily toxic but used as sulfur nutrition, presupposing healthy seagrass ecosystems that can support detoxification mechanisms. Presence or absence of those mechanisms determines susceptibility of seagrass ecosystems to sediment sulfide...

  2. Industrial radiography with phosphor screens

    International Nuclear Information System (INIS)

    Broadhead, P.

    1981-01-01

    An experimental system that comprises a film of low silver content and a pair of high resolution phosphor intensifying screens and a commercial industrial X-ray film of similar speed are compared for image quality. It is concluded that the use of phosphor screens offers an increase in image quality when the information is limited by the graininess or quantum mottle of a radiograph which is frequently the case in practical radiography. (author)

  3. 30 CFR 250.504 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  4. 30 CFR 250.604 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  5. Phosphate phosphors for solid-state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, Kartik N. [N.S. Science and Arts College, Bhadrawati (India). Dept. of Physics; Swart, H.C. [University of the Orange Free State, Bloemfontein (South Africa). Dept. of Physics; Dhoble, S.J. [R.T.M. Nagpur Univ. (India). Dept. of Physics; Park, Kyeongsoon [Sejong Univ., Seoul (Korea, Republic of). Faculty of Nanotechnology and Advanced Materials Engineering

    2012-07-01

    Essential information for students in researchers working towards new and more efficient solid-state lighting. Comprehensive survey based on the authors' long experience. Useful both for teaching and reference. The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  6. Carbon steel protection in G.S. (Girlder sulfide) plants. Iron sulfide scales formation conditions. Pt. 1

    International Nuclear Information System (INIS)

    Bruzzoni, P.; Burkart, A.L.; Garavaglia, R.N.

    1981-11-01

    An ASTM A 516 degree 60 carbon steel superficial protection technique submitted to a hydrogen-water sulfide corrosive medium at 2 MPa of pressure and 40-125 deg C forming on itself an iron sulfide layer was tested. Studies on pH influence, temperature, passivating mean characteristics and exposure time as well as the mechanical resistance of sulfide layers to erosion are included. (Author) [es

  7. 30 CFR 250.808 - Hydrogen sulfide.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S...

  8. A SrBPO5: Eu2+ phosphor for neutron imaging

    International Nuclear Information System (INIS)

    Sakasai, K.; Katagiri, M.; Toh, K.; Nakamura, T.

    2001-01-01

    A SrBPO 5 : Eu 2+ phosphor material has been investigated for neutron imaging. This phosphor showed photostimulated luminescence (PSL) by illumination of 635 nm laser light after X-ray irradiation. The spectral characteristics of the phosphor were similar to those of BaFBr: Eu 2+ , which is a commonly used phosphor of imaging plates. In addition, we found that this phosphor also showed PSL for neutron irradiation. It comes from the fact that it contains atomic boron in base matrix. Therefore, this phosphor can be used for neutron imaging without adding neutron sensitive materials such as Gd in commercially available neutron imaging plates. The PSL intensity and the neutron detection will be increased by using enriched boron instead of natural boron. (author)

  9. Mechanochemical reduction of copper sulfide

    DEFF Research Database (Denmark)

    Balaz, P.; Takacs, L.; Jiang, Jianzhong

    2002-01-01

    The mechanochemical reduction of copper sulfide with iron was induced in a Fritsch P-6 planetary mill, using WC vial filled with argon and WC balls. Samples milled for specific intervals were analyzed by XRD and Mossbauer spectroscopy. Most of the reaction takes place during the first 10 min...... of milling and only FeS and Cu are found after 60 min. The main chemical process is accompanied by phase transformations of the sulfide phases as a result of milling. Djurleite partially transformed to chalcocite and a tetragonal copper sulfide phase before reduction. The cubic modification of FeS was formed...... first, transforming to hexagonal during the later stages of the process. The formation of off-stoichiometric phases and the release of some elemental sulfur by copper sulfide are also probable....

  10. Modeling Sulfides, pH and Hydrogen Sulfide Gas in the Sewers of San Francisco

    DEFF Research Database (Denmark)

    Vollertsen, Jes; Revilla, Nohemy; Hvitved-Jacobsen, Thorkild

    2015-01-01

    An extensive measuring campaign targeted on sewer odor problems was undertaken in San Francisco. It was assessed whether a conceptual sewer process model could reproduce the measured concentrations of total sulfide in the wastewater and H2S gas in the sewer atmosphere, and to which degree...... such simulations have potential for further improving odor and sulfide management. The campaign covered measurement of wastewater sulfide by grab sampling and diurnal sampling, and H2S gas in the sewer atmosphere was logged. The tested model was based on the Wastewater Aerobic/Anaerobic Transformations in Sewers...... (WATS) sewer process concept, which never had been calibrated to such an extensive dataset. The study showed that the model was capable of reproducing the general levels of wastewater sulfide, wastewater pH, and sewer H2S gas. It could also reproduce the general variability of these parameters, albeit...

  11. Encapsulation of strontium aluminate phosphors to enhance water resistance and luminescence

    International Nuclear Information System (INIS)

    Zhu Yong; Zeng Jianghua; Li Wenyu; Xu Li; Guan Qiu; Liu Yingliang

    2009-01-01

    Strontium aluminate SrAl 2 O 4 :Eu 2+ ,Dy 3+ phosphors are chemically unstable against water or even moisture. To enhance the water resistance of the phosphors, an encapsulation was performed by direct surface reactions with phosphoric acid (H 3 PO 4 ). The morphology, surface structure, surface element composition, water resistance, luminescence, and photoacoustic spectrum of the phosphors before and after encapsulation were discussed. Experimental results showed that phosphors were perfectly encapsulated by amorphous layers in nanoscale and crystalline layers in microscale under different conditions. The water resistance of phosphors was greatly enhanced by the two types of layer. More importantly, the amorphous layers enhanced the luminescence of phosphors markedly. The possible mechanism for the enhancements was also proposed.

  12. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    2015-01-01

    Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field...... as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic sediments....

  13. Photocatalytic effects for the TiO2-coated phosphor materials

    International Nuclear Information System (INIS)

    Yoon, Jin-Ho; Jung, Sang-Chul; Kim, Jung-Sik

    2011-01-01

    Research highlights: → The photocatalytic behavior of the coupling of TiO 2 with phosphorescent materials. → The photobleaching of an MB aqueous solution under visible light irradiation. → The ALD TiO 2 -coated phosphor composite showed much higher photocatalytic reactivity. → The light emitted from the phosphors contributed to the photo-generation. - Abstract: This study investigated the photocatalytic behavior of the coupling of TiO 2 with phosphorescent materials. A TiO 2 thin film was deposited on CaAl 2 O 4 :Eu 2+ ,Nd 3+ phosphor particles by using atomic layer deposition (ALD), and its photocatalytic reaction was investigated by the photobleaching of an aqueous solution of methylene-blue (MB) under visible light irradiation. To clarify the mechanism of the TiO 2 -phosphorescent materials, two different samples of TiO 2 -coated phosphor and TiO 2 -Al 2 O 3 -coated phosphor particles were prepared. The photocatalytic mechanisms of the ALD TiO 2 -coated phosphor powders were different from those of the pure TiO 2 and TiO 2 -Al 2 O 3 -coated phosphor. The absorbance in a solution of the ALD TiO 2 -coated phosphor decreased much faster than that of pure TiO 2 under visible irradiation. In addition, the ALD TiO 2 -coated phosphor showed moderately higher photocatalytic degradation of MB solution than the TiO 2 -Al 2 O 3 -coated phosphor did. The TiO 2 -coated phosphorescent materials were characterized by transmission electron microscopy (TEM), Auger electron spectroscopy (AES) and X-ray photon spectroscopy (XPS).

  14. Preparation and luminescence of green-emitting ZnAl{sub 2}O{sub 4}:Mn{sup 2+} phosphor thin films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ing-Bang [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Chang, Yee-Shin [Department of Electronic Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Chen, Hao-Long [Department of Electronic Engineering, Kao Yuan University, Lujhu, Kaohsiung 821, Taiwan (China); Hwang, Ching Chiang [Department of Biotechnology, Mingdao University, Chang-Hua 52345, Taiwan (China); Jian, Chen-Jhu; Chen, Yu-Shiang [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Tsai, Mu-Tsun, E-mail: mttsai@ms23.hinet.net [Department of Materials Science and Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China)

    2014-11-03

    Nanocrystalline Mn{sup 2+}-doped zinc spinel (ZnAl{sub 2}O{sub 4}:Mn{sup 2+}) green-emitting phosphor films were deposited on silicon substrate by sol–gel spin coating and subsequent heat treatment up to 1000 °C. The effects of dopant concentration and heat treatment on the optical and structural properties were investigated. The variations in sol viscosity with time, film thickness with number of layers were also examined. Thin films were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray microscopy, atomic force microscopy, and photoluminescence spectrum. Single-phase ZnAl{sub 2}O{sub 4} started to crystallize at around 600 °C, with a normal spinel structure. On annealing at 1000 °C, the films had smooth surfaces with a nanocrystalline structure. Under UV or visible light excitation, the phosphor films exhibited an intense green emission band peaking at around 512 nm, corresponding to the typical {sup 4}T{sub 1} → {sup 6}A{sub 1} transition of tetrahedral Mn{sup 2+} ions. The most intense green emission was obtained by exciting at 456 nm. The emission intensity of films was highly dependent upon the excitation wavelength, crystallinity, dopant content, and deposition conditions. The results show that the ZnAl{sub 2}O{sub 4}:Mn{sup 2+} films have good potential for use as a green phosphor for displays and/or white light-emitting diodes. - Highlights: • ZnAl2O4:Mn2 + thin film phosphors have been synthesized by a sol–gel process. • The most intense green emission was obtained by exciting at 456 nm. • Photoluminescence is highly dependent on the crystallinity and doping content. • Emission intensity can also be modulated by controlling the film thickness.

  15. Investigation of the synergic effect of some neutral organophosphoric compounds on the extraction of uranium from phosphoric acid solutions by D1-(2-Ethyl Hexyl) phosphoric acid

    International Nuclear Information System (INIS)

    Stas, J.; Khorfan, S.; Koudsi, Y.

    1998-05-01

    The extraction of uranium (VI) from pure phosphoric acid media by D2EHPA/Kerosene has been studied. The mechanism of the extraction was found as follows: The logarithm of the equilibrium constant of the extraction (LogKex) was found (3.06), (3.32), (3.24), (3.3) for the following phosphoric acid concentrations respectively (1), (2), (3), (4) Mol/1, and the enthalpy change DELTA H was found (-100.68 kj/mol). (-76 kj/mol) for (1), (2) mol/1 phosphoric acid concentrations. The synergic effect of TOPO, TBP, and TBPI with DEHPA have been studied during the extraction of uranium from pure phosphoric acid and Syrian commercial phosphoric acid. The synergic effect increases as follows: TBP< TBPI<< TOPO (In pure phosphoric acid), TBPI approx TBP<< TOPO (In Syrian commercial phosphoric acid). The difficulty of extracting uranium (VI) from Syrian commercial phosphoric acid in comparison with pure phosphoric acid is due to the presence of several impurities capable of complexing uranium, and a small amounts of solid and organic matters, all these are factors which reduce the distribution coefficient of uranium. (Author)

  16. STUDY OF HYDROGEN SULFIDE REMOVAL FROM GROUNDWATER

    Directory of Open Access Journals (Sweden)

    T. Lupascu

    2013-06-01

    Full Text Available The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground water, after its treatment by hydrogen peroxide, proves greater efficiency than in the case of modified carbonic adsorbents. As a result of used treatment, hydrogen sulfide is completely oxidized to sulfates

  17. A survey of phosphors novel for thermography

    Energy Technology Data Exchange (ETDEWEB)

    Bruebach, J., E-mail: bruebach@ekt.tu-darmstadt.d [Fachgebiet Reaktive Stroemungen und Messtechnik, Center of Smart Interfaces Technische Universitaet Darmstadt, Petersenstrasse 32, 64287 Darmstadt (Germany); Kissel, T. [Fachgebiet Reaktive Stroemungen und Messtechnik, Center of Smart Interfaces Technische Universitaet Darmstadt, Petersenstrasse 32, 64287 Darmstadt (Germany); Frotscher, M. [Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie, Technische Universitaet Darmstadt, Petersenstrasse 18, 64287 Darmstadt (Germany); Euler, M. [Fachgebiet Reaktive Stroemungen und Messtechnik, Center of Smart Interfaces Technische Universitaet Darmstadt, Petersenstrasse 32, 64287 Darmstadt (Germany); Albert, B. [Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie, Technische Universitaet Darmstadt, Petersenstrasse 18, 64287 Darmstadt (Germany); Dreizler, A. [Fachgebiet Reaktive Stroemungen und Messtechnik, Center of Smart Interfaces Technische Universitaet Darmstadt, Petersenstrasse 32, 64287 Darmstadt (Germany)

    2011-04-15

    With regard to phosphor thermometry, seven luminescent ceramic materials were synthesised and characterised, namely CaMoO{sub 4}:Eu{sup 3+}, CaTiO{sub 3}:Pr{sup 3+}, LaPO{sub 4}:Eu{sup 3+}, LaVO{sub 4}:Eu{sup 3+}, LiAl{sub 5}O{sub 8}:Fe{sup 3+}, TiMg{sub 2}O{sub 4}:Mn{sup 4+} and ZnGa{sub 2}O{sub 4}:Mn{sup 2+}. In this context, emission spectra and temperature lifetime characteristics are presented. Thus, a survey of phosphors novel for thermography is given in order to encourage further studies and more detailed characterisations of the respective materials. - Research Highlights: Seven phosphor materials novel for thermometry were synthesised. These materials were characterised diffractometrically as well as concerning their emission spectra and lifetime temperature characteristics. The number of phosphor materials characterised for thermometry purposes was extended by seven materials.

  18. Characteristics of the Panasonic UD-802 phosphors

    International Nuclear Information System (INIS)

    Ben-Shachar, B.; Catchen, G.L.; Hoffman, J.M.

    1989-01-01

    Several basic dosimetric characteristics of Li 2 B 4 O 7 :Cu and CaSO 4 :Tm phosphors in Panasonic UD-802 dosemeters were measured. The TL dose response linearity was determined over the useful range of personnel and environmental dosimetry (0.005 - 10 mGy), and the minimum measurable doses were calculated. The intrinsic ultraviolet (UV) radiation sensitivity of both phosphors was checked before and after γ irradiation for the purpose of re-assessing high doses. The results indicate that Li 2 B 4 O 7 :Cu is UV sensitive and, therefore, re-assessment is not applicable. Although the CaSO 4 :Tm phosphor exhibited UV sensitivity after γ irradiation, the results were not consistent with those reported earlier and more study is required. The fading of both phosphors was evaluated in Panasonic UD-801 dosemeters for periods up to 90 days. (author)

  19. Improvements in phosphors

    International Nuclear Information System (INIS)

    Rabatin, J.G.

    1981-01-01

    For X-ray image converter applications, especially when used in medical radiography, it is desirable to improve the speed and brightness of response for conversion of X-rays in phosphors. The rare earth oxyhalide phosphors coactivated with a combination of rare earth activators described in this patent are capable of exhibiting low afterglow with high ultraviolet emission. They have the general formula Lnsub(1-y-w)OX:Tbsub(y)Tmsub(w) where Ln is lanthanum or gadolinium, X is chlorine and/or bromine, y is from 0.0005 to 0.010 moles per mole and w is from 0.00005 to 0.005 moles per mole of the Lnsub(1-y-w)OX host. The method of preparation and characteristics of speed, afterglow and UV emission are described. (U.K.)

  20. Autometallographic silver enhancement of zinc sulfide crystals created in cryostat sections from human brain biopsies

    DEFF Research Database (Denmark)

    Danscher, G; Juhl, S; Stoltenberg, M

    1997-01-01

    samples containing zinc-enriched (ZEN) cells, are frozen in liquid nitrogen or by CO2 gas immediately after removal. The tissue blocks are cut in a cryostat and the sections placed on glass slides. The slides are transferred to an H2S exposure chamber placed in a -15 C freezer. After 1-24 hr of gas...

  1. Symptomatic zinc deficiency in experimental zinc deprivation.

    OpenAIRE

    Taylor, C M; Goode, H F; Aggett, P J; Bremner, I; Walker, B E; Kelleher, J

    1992-01-01

    An evaluation of indices of poor zinc status was undertaken in five male subjects in whom dietary zinc intake was reduced from 85 mumol d-1 in an initial phase of the study to 14 mumol d-1. One of the subjects developed features consistent with zinc deficiency after receiving the low zinc diet for 12 days. These features included retroauricular acneform macullo-papular lesions on the face, neck, and shoulders and reductions in plasma zinc, red blood cell zinc, neutrophil zinc and plasma alkal...

  2. Nature and origin of the nonsulfide zinc deposits in the Sierra Mojada District, Coahuila, Mexico: constraints from regional geology, petrography, and isotope analyses

    Science.gov (United States)

    Kyle, J. Richard; Ahn, Hyein; Gilg, H. Albert

    2018-02-01

    The Sierra Mojada District comprises multiple types of near-surface mineral concentrations ranging from polymetallic sulfide zones, "nonsulfide Zn" (NSZ) deposits, and a silver-rich Pb carbonate deposit hosted by lower Cretaceous carbonate strata. Hypogene concentrations of Fe-Zn-Pb-Cu-Ag sulfides and sulfosalts are locally preserved and are associated with hydrothermal dolomite and silica. Alteration mineralogy and sulfur isotope data suggest primary Zn-Pb-Ag mineralization from circa 200 °C hydrothermal fluids. The NSZ deposits dominantly consist of smithsonite and hemimorphite associated with local Mn-Fe oxides. The Red Zinc Zone consists of strata-bound zones dominantly of hemimorphite that fills pores in residual and resedimented Fe oxides. The White Zinc Zone shows local dissolution features, including internal sediments interbanded with and cemented by smithsonite. Similar Pb isotopic compositions of smithsonite, hemimorphite, and cerussite to Sierra Mojada galena document that the NSZ deposits originated from polymetallic carbonate-replacement sulfide deposits, with flow of metal-bearing groundwater being controlled by local topography and structural features in this extensional terrane. Oxygen isotope values for Sierra Mojada smithsonite are relatively constant (δ18OVSMOW = 20.9 to 23.3‰) but are unusually low compared to other supergene smithsonites. Using δ18OVSMOW (- 8‰) of modern groundwater at nearby Cuatrociénegas, smithsonite formational temperatures are calculated to have been between 26 to 35 °C. Smithsonite precipitation was favored by near-neutral conditions typical of carbonate terranes, whereas hemimorphite precipitated by reaction with wallrock silica and locally, or episodically, more acidic conditions resulting from sulfide oxidation. Transition to, and stabilization of, the modern desert climate over the past 9000 years from the Late Pleistocene wetter, cooler climate of northern Mexico resulted in episodic drawdown of the water

  3. Angle-resolved photoluminescence spectrum of a uniform phosphor layer

    Science.gov (United States)

    Fujieda, Ichiro; Ohta, Masamichi

    2017-10-01

    A photoluminescence spectrum depends on an emission angle due to self-absorption in a phosphor material. Assuming isotropic initial emission and Lambert-Beer's law, we have derived simple expressions for the angle-resolved spectra emerging from the top and bottom surfaces of a uniform phosphor layer. The transmittance of an excitation light through the phosphor layer can be regarded as a design parameter. For a strongly-absorbing phosphor layer, the forward flux is less intense and more red-shifted than the backward flux. The red-shift is enhanced as the emission direction deviates away from the plane normal. When we increase the transmittance, the backward flux decreases monotonically. The forward flux peaks at a certain transmittance value. The two fluxes become similar to each other for a weakly-absorbing phosphor layer. We have observed these behaviors in experiment. In a practical application, self-absorption decreases the efficiency of conversion and results in angle-dependent variations in chromaticity coordinates. A patterned phosphor layer with a secondary optical element such as a remote reflector alleviates these problems.

  4. Investigation of saturation effects in ceramic phosphors for laser lighting

    DEFF Research Database (Denmark)

    Krasnoshchoka, Anastasiia; Thorseth, Anders; Dam-Hansen, Carsten

    2017-01-01

    We report observation of saturation effects in a Ce:LuAG and Eu-doped nitride ceramic phosphor for conversion of blue laser light for white light generation. The luminous flux from the phosphors material increases linearly with the input power until saturation effects limit the conversion....... It is shown, that the temperature of the phosphor layer influences the saturation power level and the conversion efficiency. It is also shown that the correlated color temperature (CCT), phosphor conversion efficiency and color rendering index (CRI) are dependent both on incident power and spot size diameter...... of the illumination. A phosphor conversion efficiency up to 140.8 lm/W with CRI of 89.4 was achieved. The saturation in a ceramic phosphor, when illuminated by high intensity laser diodes, is estimated to play the main role in limiting the available luminance from laser based lighting systems....

  5. Asupan vitamin, mineral, rasio asupan kalsium dan fosfor dan hubungannya dengan kepadatan mineral tulang kalkaneus wanita

    Directory of Open Access Journals (Sweden)

    Rita Ramayulis

    2011-03-01

    Full Text Available Background: The prevalence of osteoporosis as defined by bone mineral density (BMD > - 2.5 below the average of young women in Indonesia is not yet known; however the risk for the prevalence of osteoporosis is relatively high. Nutrients especially micronutrients have an important role in maintaining bone status. Yet, until today millions of people have micronutrient deficiency in vitamin and mineral such as calcium, zinc and beta-carotene. Objective: To identify the relationship between intake of vitamin A, C and mineral calcium, phosphor, zinc and ratio of intake of calcium and phosphor and BMD. Method: The study was observational with cross sectional design. Subject of the study were young women of 35 – 40 years old at Health Fitness Centre of the Ministry of Health in 2007.  There were as many as 102 subjects purposively taken. The dependent variable of the study was BMD and the independent variables were intake of vitamin A, C, and mineral calcium, phosphor, zinc and ratio of calcium and phosphor intake. The confounding variables were nutritional status, exercise, smoking, alcohol consumption, caffeine consumption, genetic, disease and medication factors. Intake data were obtained through blood record and food frequency methods. Data analysis used chi square, Fisher’s exact test and independent t-test. Results: The proportion of BMD of young women was 6,9% osteoporosis, 32,4% osteopenia and 60,8% normal. Young women with good intake of vitamin A and C, calcium, phosphor, zinc had average score of BMD as much as 0,35 point; 0,36 point and 0,97 point; 1,02 point; 1,26 point subsequently higher than those with less intake. Young women with ratio of good calcium and phosphor intake had BMD score as much as 1,13 point lower than those with ratio of poor calcium and phosphor intake. However, the relationship between intake of vitamin A, C, calcium, phosphor, zinc and ratio of calcium and phosphor intake and BMD was statistically insignificant

  6. Electron transfer to sulfides:

    International Nuclear Information System (INIS)

    Meneses, Ana Belen; Antonello, Sabrina; Arevalo, Maria Carmen; Maran, Flavio

    2005-01-01

    The problem of characterizing the steps associated with the dissociative reduction of sulfides has been addressed. The electrochemical reduction of diphenylmethyl para-methoxyphenyl sulfide in N,N-dimethylformamide, on both glassy carbon and mercury electrodes, was chosen as a test system. The electrode process involves the slow heterogeneous outer-sphere electron transfer to the sulfide, the fast cleavage of the C-S bond, the reduction of the ensuing carbon radical, and the self-protonation triggered by the generation of the strong base Ph 2 CH - . The latter reaction is rather slow, in agreement with the large intrinsic barriers characterizing proton transfers between CH-acids and carbon bases. The dissociative reduction was studied in the presence of an exogenous acid. The results, obtained by convolution analysis, point to a stepwise DET mechanism in which the ET step is accompanied by rather large reorganization energy. Similar results were obtained on both electrode materials. Analysis of the heterogeneous electron transfer and associated C-S bond cleavage indicate that the reduction of this and other sulfides lies between the stepwise dissociative electron transfers leading to the formation of stiff π* radical anions and those going through the intermediacy of loose σ* radical anions

  7. Zinc

    Science.gov (United States)

    ... Consumer Datos en español Health Professional Other Resources Zinc Fact Sheet for Consumers Have a question? Ask ... find out more about zinc? Disclaimer What is zinc and what does it do? Zinc is a ...

  8. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs

    NARCIS (Netherlands)

    Klatt, Judith M.; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos

    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2S: (i) H2S accelerated the recovery of

  9. Zinc (hydr)oxide/graphite oxide/AuNPs composites: role of surface features in H₂S reactive adsorption.

    Science.gov (United States)

    Giannakoudakis, Dimitrios A; Bandosz, Teresa J

    2014-12-15

    Zinc hydroxide/graphite oxide/AuNPs composites with various levels of complexity were synthesized using an in situ precipitation method. Then they were used as H2S adsorbents in visible light. The materials' surfaces were characterized before and after H2S adsorption by various physical and chemical methods (XRD, FTIR, thermal analysis, potentiometric titration, adsorption of nitrogen and SEM/EDX). Significant differences in surface features and synergistic effects were found depending on the materials' composition. Addition of graphite oxide and the deposition of gold nanoparticles resulted in a marked increase in the adsorption capacity in comparison with that on the zinc hydroxide and zinc hydroxide/AuNP. Addition of AuNPs to zinc hydroxide led to a crystalline ZnO/AuNP composite while the zinc hydroxide/graphite oxide/AuNP composite was amorphous. The ZnOH/GO/AuNPs composite exhibited the greatest H2S adsorption capacity due to the increased number of OH terminal groups and the conductive properties of GO that facilitated the electron transfer and consequently the formation of superoxide ions promoting oxidation of hydrogen sulfide. AuNPs present in the composite increased the conductivity, helped with electron transfer to oxygen, and prevented the fast recombination of the electrons and holes. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Synthesis and photoluminescence properties of Eu{sup 3+}, Sm{sup 3+} and Pr{sup 3+} doped Ca{sub 2}ZnWO{sub 6} phosphors for phosphor converted LED

    Energy Technology Data Exchange (ETDEWEB)

    Dabre, K.V. [Department of Physics, Arts, Commerce and Science College, Koradi, Nagpur-441111, Maharashtra (India); Dhoble, S.J., E-mail: sjdhoble@rediffmail.com [Department of Physics, R.T.M. Nagpur University, Nagpur-440033, Maharashtra (India)

    2014-06-01

    In this work, we report on the synthesis and photoluminescence (PL) properties of rare earth (Eu{sup 3+}, Sm{sup 3+} and Pr{sup 3+}) doped double perovskite tungstate Ca{sub 2}ZnWO{sub 6} phosphor. The phosphors were synthesized by two step modified solid state method. Phase purity and formation of phosphor were confirmed by XRD technique. PL spectra of Eu{sup 3+}, Sm{sup 3+} and Pr{sup 3+} doped phosphor show intense emission peaks in red region at 615, 604 and 650 nm respectively, upon the visible excitation of 466 nm (Eu{sup 3+}), 410 nm (Sm{sup 3+}) and 491 nm (Pr{sup 3+}). The CIE coordinates of the phosphors are in the yellow (Sm{sup 3+} doped sample) and orange (Eu{sup 3+} and Pr{sup 3+} doped sample) regions near the edge of color space which confirms their applicability in LEDs. -- Highlights: •Eu{sup 3+}, Sm{sup 3+} and Pr{sup 3+} doped and undoped samples of Ca{sub 2}ZnWO{sub 6} phosphor synthesized by Solid state method. •The phosphors have intense excitation in violet and blue region of visible spectrum. •Phosphors show intense emission peaks in red region. •CIE coordinates of phosphors are lie in yellow (Sm{sup 3+} doped phosphor) and orange (Eu{sup 3+} and Pr{sup 3+} doped phosphor) region near to edge of color space.

  11. Technetium behavior in sulfide and ferrous iron solutions

    International Nuclear Information System (INIS)

    Lee, S.Y.; Bondietti, E.A.

    1982-01-01

    Pertechnetate oxyanion ( 99 TcO 4- ), a potentially mobile species in leachate from a breached radioactive waste repository, was removed from a brine solution by precipitation with sulfide, iron, and ferrous sulfide at environmental pH's. Maghemite (ν-Fe 2 O 3 ) and geothite (α-FeOOH) were the dominant minerals in the precipitate obtained from the TcO 4- -ferrous iron reaction. The observation of small particle size and poor crystallinity of the minerals formed in the presence of Tc suggested that the Tc was incorporated into the mineral structure after reduction to a lower valence state. Amorphous ferrous sulfide, an initial phase precipitating in the TcO 4- -ferrous iron-sulfide reaction, was transformed to goethite and hematite (α-Fe 2 O 3 ) on aging. The black precipitate obtained from the TcO 4- -sulfide reaction was poorly crystallized technetium sulfide (Tc 2 S 7 ) which was insoluble in both acid and alkaline solution in the absence of strong oxidents. The results suggested that ferrous- and/or sulfide-bearing groundwaters and minerals in host rocks or backfill barriers could reduce the mobility of Tc through the formation of less-soluble Tc-bearing iron and/or sulfide minerals

  12. Root Associated Bacillus sp. Improves Growth, Yield and Zinc Translocation for Basmati Rice (Oryza sativa) Varieties

    Science.gov (United States)

    Shakeel, Muhammad; Rais, Afroz; Hassan, Muhammad Nadeem; Hafeez, Fauzia Yusuf

    2015-01-01

    Plant associated rhizobacteria prevailing in different agro-ecosystems exhibit multiple traits which could be utilized in various aspect of sustainable agriculture. Two hundred thirty four isolates were obtained from the roots of basmati-385 and basmati super rice varieties growing in clay loam and saline soil at different locations of Punjab (Pakistan). Out of 234 isolates, 27 were able to solubilize zinc (Zn) from different Zn ores like zinc phosphate [Zn3 (PO4)2], zinc carbonate (ZnCO3) and zinc oxide (ZnO). The strain SH-10 with maximum Zn solubilization zone of 24 mm on Zn3 (PO4)2ore and strain SH-17 with maximum Zn solubilization zone of 14–15 mm on ZnO and ZnCO3ores were selected for further studies. These two strains solubilized phosphorous (P) and potassium (K) in vitro with a solubilization zone of 38–46 mm and 47–55 mm respectively. The strains also suppressed economically important rice pathogens Pyricularia oryzae and Fusarium moniliforme by 22–29% and produced various biocontrol determinants in vitro. The strains enhanced Zn translocation toward grains and increased yield of basmati-385 and super basmati rice varieties by 22–49% and 18–47% respectively. The Zn solubilizing strains were identified as Bacillus sp. and Bacillus cereus by 16S rRNA gene analysis. PMID:26635754

  13. Carbon steel protection in G.S. (Girlder sulfide) plants. Pressure influence on iron sulfide scales formation. Pt. 5

    International Nuclear Information System (INIS)

    Delfino, C.A.; Lires, O.A.; Rojo, E.A.

    1987-01-01

    In order to protect carbon steel towers and piping of Girlder sulfide (G.S.) experimental heavy water plants against corrosion produced by the action of aqueous solutions of hydrogen sulfide, a method, previously published, was developed. Carbon steel, exposed to saturated aqueous solutions of hydrogen sulfide, forms iron sulfide scales. In oxygen free solutions evolution of corrosion follows the sequence: mackinawite → cubic ferrous sulfide → troilite → pyrrotite → pyrite. Scales formed by pyrrotite-pyrite or pyrite are the most protective layers (these are obtained at 130 deg C, 2MPa, for periods of 14 days). Experiments, at 125 deg C and periods of 10-25 days, were performed in two different ways: 1- constant pressure operations at 0.5 and 1.1 MPa. 2- variable pressure operation between 0.3-1 MPa. In all cases pyrrotite-pyrite scales were obtained. (Author) [es

  14. Fate of Zinc and Silver Engineered Nanoparticles in ...

    Science.gov (United States)

    Engineered zinc oxide (ZnO) and silver (Ag) nanoparticles (NPs) used in consumer products are largely released into the environment through the wastewater stream. Limited information is available regarding the transformations they undergo during their transit through sewerage systems before reaching wastewater treatment plants. To address this knowledge gap, laboratory-scale systems fed with raw wastewater were used to evaluate the transformation of ZnO- and Ag-NPs within sewerage transfer networks. Two experimental systems were established and spiked with either Ag- and ZnO-NPs or with their dissolved salts, and the wastewater influent and effluent samples from both systems were thoroughly characterised. X-ray absorption spectroscopy (XAS) was used to assess the extent of the chemical transformation of both forms of Zn and Ag during transport through the model systems. The results indicated that both ZnO- and Ag-NPs underwent significant transformation during their transport through the sewerage network. Reduced sulphur species represented the most important endpoint for these NPs in the sewer with slight differences in terms of speciation; ZnO converted largely to Zn sulfide, while Ag was also sorbed to cysteine and histidine. Importantly, both ionic Ag and Ag-NPs formed secondary Ag sulfide nanoparticles in the sewerage network as revealed by TEM analysis. Ag-cysteine was also shown to be a major species in biofilms. These results were verified in the

  15. Experimental simulations of sulfide formation in the solar nebula.

    Science.gov (United States)

    Lauretta, D S; Lodders, K; Fegley, B

    1997-07-18

    Sulfurization of meteoritic metal in H2S-H2 gas produced three different sulfides: monosulfide solid solution [(Fe,Ni)1-xS], pentlandite [(Fe,Ni)9-xS8], and a phosphorus-rich sulfide. The composition of the remnant metal was unchanged. These results are contrary to theoretical predictions that sulfide formation in the solar nebula produced troilite (FeS) and enriched the remaining metal in nickel. The experimental sulfides are chemically and morphologically similar to sulfide grains in the matrix of the Alais (class CI) carbonaceous chondrite, suggesting that these meteoritic sulfides may be condensates from the solar nebula.

  16. A more rugged ZnS(Ag) alpha scintillation detector

    International Nuclear Information System (INIS)

    McElhaney, S.A.; Ramsey, J.A.; Bauer, M.L.; Chiles, M.M.

    1990-01-01

    Conventional alpha scintillation detectors comprise a phosphor-coated light-pipe covered by a thin aluminized Mylar layer. This opaque radiation entrance window serves as a shield against ambient light entering the detector with minimum alpha attenuation. Unfortunately, Mylar is extremely fragile and easily punctured or torn by sticks, stones, and screws encountered during regular radiation surveys. The authors have been developing an alpha scintillation detector more rugged and durable than conventional models. This paper presents the scintillator assembly, which consists of a mixture of silver-activated zinc sulfide [ZnS(Ag)] and clear epoxy. The ZnS(Ag) scintillation powder is mixed with a low-viscosity, optically transparent epoxy and poured into a glass-smooth mold of desired shape and size

  17. Oxycarbonitride phosphors and light emitting devices using the same

    Science.gov (United States)

    Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi

    2013-10-08

    Disclosed herein is a novel family of oxycarbidonitride phosphor compositions and light emitting devices incorporating the same. Within the sextant system of M--Al--Si--O--N--C--Ln and quintuplet system of M--Si--O--N--C--Ln (M=alkaline earth element, Ln=rare earth element), the phosphors are composed of either one single crystalline phase or two crystalline phases with high chemical and thermal stability. In certain embodiments, the disclosed phosphor of silicon oxycarbidonitrides emits green light at wavelength between 530-550 nm. In further embodiments, the disclosed phosphor compositions emit blue-green to yellow light in a wavelength range of 450-650 nm under near-UV and blue light excitation.

  18. The quality study of recycled glass phosphor waste for LED

    Science.gov (United States)

    Tsai, Chun-Chin; Chen, Guan-Hao; Yue, Cheng-Feng; Chen, Cin-Fu; Cheng, Wood-Hi

    2017-02-01

    To study the feasibility and quality of recycled glass phosphor waste for LED packaging, the experiments were conducted to compare optical characteristics between fresh color conversion layer and that made of recycled waste. The fresh color conversion layer was fabricated through sintering pristine mixture of Y.A.G. powder [yellow phosphor (Y3AlO12 : Ce3+). Those recycled waste glass phosphor re-melted to form Secondary Molten Glass Phosphor (S.M.G.P.). The experiments on such low melting temperature glass results showed that transmission rates of S.M.G.P. are 9% higher than those of first-sintered glass phosphor, corresponding to 1.25% greater average bubble size and 36% more bubble coverage area in S.M.G.P. In the recent years, high power LED modules and laser projectors have been requiring higher thermal stability by using glass phosphor materials for light mixing. Nevertheless, phosphor and related materials are too expensive to expand their markets. It seems a right trend and research goal that recycling such waste of high thermal stability and quality materials could be preferably one of feasible cost-down solutions. This technical approach could bring out brighter future for solid lighting and light source module industries.

  19. Spectral properties of Dy3+ doped ZnAl2O4 phosphor

    Science.gov (United States)

    Prakash, Ram; Kumar, Sandeep; Mahajan, Rubby; Khajuria, Pooja; Kumar, Vinay; Choudhary, R. J.; Phase, D. M.

    2018-05-01

    Herein, Dy3+ doped ZnAl2O4 phosphor was synthesized by the solution combustion method. The synthesized phosphor was characterized by X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The phase purity of the phosphor was confirmed by the XRD studies that showed cubic symmetry of the synthesized phosphor. Under UV excitation (388 nm) the PL emission spectrum of the phosphor shows characteristic transition from the Dy3+ ion. A band gap of 5.2 eV was estimated from the diffused reflectance spectroscopy. The surface properties of the phosphor were studied using the X-ray photoelectron spectroscopy.

  20. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors

    NARCIS (Netherlands)

    Villa Gomez, D.K.; Cassidy, J.; Keesman, K.J.; Sampaio, R.M.; Lens, P.N.L.

    2014-01-01

    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4 2- ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing

  1. Thermal and Electrical Conductivity Measurements of CDA 510 Phosphor Bronze

    Science.gov (United States)

    Tuttle, James E.; Canavan, Edgar; DiPirro, Michael

    2009-01-01

    Many cryogenic systems use electrical cables containing phosphor bronze wire. While phosphor bronze's electrical and thermal conductivity values have been published, there is significant variation among different phosphor bronze formulations. The James Webb Space Telescope (JWST) will use several phosphor bronze wire harnesses containing a specific formulation (CDA 510, annealed temper). The heat conducted into the JWST instrument stage is dominated by these harnesses, and approximately half of the harness conductance is due to the phosphor bronze wires. Since the JWST radiators are expected to just keep the instruments at their operating temperature with limited cooling margin, it is important to know the thermal conductivity of the actual alloy being used. We describe an experiment which measured the electrical and thermal conductivity of this material between 4 and 295 Kelvin.

  2. Adsorption of sulfide ions on cerussite surfaces and implications for flotation

    International Nuclear Information System (INIS)

    Feng, Qicheng; Wen, Shuming; Zhao, Wenjuan; Deng, Jiushuai; Xian, Yongjun

    2016-01-01

    Highlights: • A new discussion on the lead sulfide species is introduced. • The Na_2S concentration determines cerussite sulfidization. • The activity of lead sulfide species also determines cerussite sulfidization. • Disulfide and polysulfide in lead sulfide species affect its activity. - Abstract: The adsorption of sulfide ions on cerussite surfaces and implications for flotation were studied by X-ray photoelectron spectroscopy (XPS) analysis, micro-flotation tests, and surface adsorption experiments. The XPS analysis results indicated that lead sulfide species formed on the mineral surface after treatment by Na_2S, and the increase in the Na_2S concentration was beneficial for sulfidization. In addition to the content of lead sulfide species, its activity, which was determined by the proportion of sulfide, disulfide and polysulfide, also played an important role in cerussite sulfidization. Micro-flotation tests results demonstrated that insufficient or excessive addition of Na_2S in pulp solutions has detrimental effects on flotation performance, which was attributed to the dosage of Na_2S and the activity of lead sulfide species formed on the mineral surface. Surface adsorption experiments of sulfide ions determined the residual S concentrations in pulp solutions and provided a quantitative illustration for the inhibition of cerussite flotation by excessive sulfide ions. Moreover, it also revealed that sulfide ions in the pulp solution were transformed onto the mineral surface and formed lead sulfide species. These results showed that both of lead sulfide species and its activity acted as an important role in sulfidization flotation process of cerussite.

  3. Adsorption of sulfide ions on cerussite surfaces and implications for flotation

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Qicheng [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Wen, Shuming, E-mail: fqckmust@126.com [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhao, Wenjuan [Kunming Metallurgical Research Institute, Kunming 650031 (China); Deng, Jiushuai; Xian, Yongjun [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2016-01-01

    Highlights: • A new discussion on the lead sulfide species is introduced. • The Na{sub 2}S concentration determines cerussite sulfidization. • The activity of lead sulfide species also determines cerussite sulfidization. • Disulfide and polysulfide in lead sulfide species affect its activity. - Abstract: The adsorption of sulfide ions on cerussite surfaces and implications for flotation were studied by X-ray photoelectron spectroscopy (XPS) analysis, micro-flotation tests, and surface adsorption experiments. The XPS analysis results indicated that lead sulfide species formed on the mineral surface after treatment by Na{sub 2}S, and the increase in the Na{sub 2}S concentration was beneficial for sulfidization. In addition to the content of lead sulfide species, its activity, which was determined by the proportion of sulfide, disulfide and polysulfide, also played an important role in cerussite sulfidization. Micro-flotation tests results demonstrated that insufficient or excessive addition of Na{sub 2}S in pulp solutions has detrimental effects on flotation performance, which was attributed to the dosage of Na{sub 2}S and the activity of lead sulfide species formed on the mineral surface. Surface adsorption experiments of sulfide ions determined the residual S concentrations in pulp solutions and provided a quantitative illustration for the inhibition of cerussite flotation by excessive sulfide ions. Moreover, it also revealed that sulfide ions in the pulp solution were transformed onto the mineral surface and formed lead sulfide species. These results showed that both of lead sulfide species and its activity acted as an important role in sulfidization flotation process of cerussite.

  4. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: I. Iron-copper-zinc-lead sulfide solubility relations

    Science.gov (United States)

    Hemley, J.J.; Cygan, G.L.; Fein, J.B.; Robinson, G.R.; d'Angelo, W. M.

    1992-01-01

    Experimental studies, using cold-seal and extraction vessel techniques, were conducted on Fe, Pb, Zn, and Cu sulfide solubilities in chloride soultions at temperatures from 300?? to 700??C and pressures from 0.5 to 2 kbars. The solutions were buffered in pH by quartz monzonite and the pure potassium feldspar-muscovite-quartz assemblage and in fS2-fO2 largely by the assemblage pyrite-pyrrhotite-magnetite. Solubilities increase with increasing temperature and total chloride, and decrease with increasing pressure. The effect of increasing chloride concentration on solubility reflects primarily a shift to lower pH via the silicate buffer reactions. Similarity in behaviour with respect to the temperature and pressure of Fe, Zn, and Pb sulfide solubilities points to similarity in chloride speciation, and the neutral species appear to be dominant in the high-temperature region. -from Authors

  5. High temperature thermometric phosphors for use in a temperature sensor

    Science.gov (United States)

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  6. Raman Spectra of Luminescent Graphene Oxide (GO-Phosphor Hybrid Nanoscrolls

    Directory of Open Access Journals (Sweden)

    Janardhanan. R. Rani

    2015-12-01

    Full Text Available Graphene oxide (GO-phosphor hybrid nanoscrolls were synthesized using a simple chemical method. The GO-phosphor ratio was varied to find the optimum ratio for enhanced optical characteristics of the hybrid. A scanning electron microscope analysis revealed that synthesized GO scrolls achieved a length of over 20 μm with interior cavities. The GO-phosphor hybrid is extensively analyzed using Raman spectroscopy, suggesting that various Raman combination modes are activated with the appearance of a low-frequency radial breathing-like mode (RBLM of the type observed in carbon nanotubes. All of the synthesized GO-phosphor hybrids exhibit an intense luminescent emission around 540 nm along with a broad emission at approximately 400 nm, with the intensity ratio varying with the GO-phosphor ratio. The photoluminescence emissions were gauged using Commission Internationale d'Eclairage (CIE coordinates and at an optimum ratio. The coordinates shift to the white region of the color spectra. Our study suggests that the GO-phosphor hybrid nanoscrolls are suitable candidates for light-emitting applications.

  7. On the feasibility of infrared phosphors in super-slow particle searches

    International Nuclear Information System (INIS)

    Hagstrom, R.; Rugari, A.D.

    1984-01-01

    This chapter proposes that super-slow projectiles will produce ionization signals in media with narrow bandgaps. A specific choice of narrow bandgap phosphors is recommended which would be economically suitable for use as detectors. Topics considered include the possibilities for practical detectors, a description of detectors based on narrow bandgap phosphors, the experimental determination of relevant properties of narrow bandgap phosphors, and the observation of ionizing particles using narrow bandgap phosphors. It is determined that the temperature dependence of the glow of the phosphors is strong enough that a reduction of operating temperature by about 60 C could be sufficient to produce the desired signal to background ratio

  8. Dietary phytate, zinc and hidden zinc deficiency.

    Science.gov (United States)

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Recuperation of uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Cordero, G.; Jodra, L.G.; Otero, J.L.; Josa, J.M.

    1977-01-01

    The Spanish capacity for phosphoric acid production is 500.000 t P 2 O 5 /yr. This acid has an average concentration of 365 g U 3 O 8 / t P 2 O 5 . Therefore about 180 t U 3 O 8 /yr are dissolved. In 1969, the Junta de Energia Nuclear (JEN) developed, in bench scale, a solvent extraction process to recover the uranium from the phosphoric acid. The solvent used was a synergistic mixture of D2EHPA and TOPO. The results were very promising with good recovery and very high quality for the uranium concentrate. Later, the J.E.N. continued the studies in a pilot plant scale. For this purpose, was built an experimental facility in Huelva; it can treat about 7 cu. m/day of brown acid. Fosforico Espanol, S.A. (FESA) collaborated in the studies and agreed to setting up these installations in their factory. They also provided fresh phosphoric acid for the tests. In this pilot plant we studied the following stages: a) Clarification and conditioning of the phosphoric acid; b) Uranium extraction followed by stripping in a reducing medium; c) Purification by extraction and washing; d) Obtention of the concentrate by stripping with ammonia and CO 2 gas, followed by crystallization of the ammonium uranyl tricarbonate (AUT); and e) Calcination of the concentrate to decompose the AUT to uranium oxides. The results confirmed the laboratory test data. Recuperation levels were between 85 and 90%. The AUT calcined at 550 0 C. gave a product with 96-98% U 3 O 8 . In view of the pilot plant results we have prepared a black book for an industrial plant to treat about 3700 cu. m/day of phosphoric acid. At the present time the financial aspects of this installation are being studied [es

  10. Process for recovering yttrium and lanthanides from wet-process phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, J.A.; Weterings, C.A.

    1983-06-28

    Process for recovering yttrium and lanthanides from wet-process phosphoric acid by adding a flocculant to the phosphoric acid, separating out the resultant precipitate and then recovering yttrium and lanthanides from the precipitate. Uranium is recovered from the remaining phosphoric acid.

  11. Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms.

    Science.gov (United States)

    Edwards, Chad D; Beatty, Joseph C; Loiselle, Jacqueline B R; Vlassov, Katya A; Lefebvre, Daniel D

    2013-07-15

    Cadmium is a non-essential metal that is toxic because of its interference with essential metals such as iron, calcium and zinc causing numerous detrimental metabolic and cellular effects. The amount of this metal in the environment has increased dramatically since the advent of the industrial age as a result of mining activities, the use of fertilizers and sewage sludge in farming, and discharges from manufacturing activities. The metal bioremediation utility of phototrophic microbes has been demonstrated through their ability to detoxify Hg(II) into HgS under aerobic conditions. Metal sulfides are generally very insoluble and therefore, biologically unavailable. When Cd(II) was exposed to cells it was bioconverted into CdS by the green alga Chlamydomonas reinhardtii, the red alga Cyanidioschyzon merolae, and the cyanobacterium, Synechoccocus leopoliensis. Supplementation of the two eukaryotic algae with extra sulfate, but not sulfite or cysteine, increased their cadmium tolerances as well as their abilities to produce CdS, indicating an involvement of sulfate assimilation in the detoxification process. However, the combined activities of extracted serine acetyl-transferase (SAT) and O-acetylserine(thiol)lyase (OASTL) used to monitor sulfate assimilation, was not significantly elevated during cell treatments that favored sulfide biosynthesis. It is possible that the prolonged incubation of the experiments occurring over two days could have compensated for the low rates of sulfate assimilation. This was also the case for S. leopoliensis where sulfite and cysteine as well as sulfate supplementation enhanced CdS synthesis. In general, conditions that increased cadmium sulfide production also resulted in elevated cysteine desulfhydrase activities, strongly suggesting that cysteine is the direct source of sulfur for CdS synthesis. Cadmium(II) tolerance and CdS formation were significantly enhanced by sulfate supplementation, thus indicating that algae and cyanobacteria

  12. Development of BaSO4:Eu thermoluminescence phosphor

    International Nuclear Information System (INIS)

    Madhusoodanan, U.; Jose, M.T.; Lakshmanan, A.R.

    1999-01-01

    A highly sensitive thermoluminescence (TL) phosphor based on BaSO 4 :Eu was developed following the coprecipitation technique and firing in argon atmosphere at 1123 K. Photoluminescence studies confirm that firing in argon atmosphere instead of air increased the incorporation of Eu ions in 2+ valence state. At low γ-ray doses, its TL sensitivity is nearly 2 to 3 times higher than that of CaSO 4 :Dy phosphor. The other salient features of this BaSO 4 :Eu TL phosphor are a constant glow curve shape and a nearly linear γ-ray dose response

  13. Counter current extraction of phosphoric acid: Food grade acid production

    International Nuclear Information System (INIS)

    Shlewit, H.; AlIbrahim, M.

    2009-01-01

    Extraction, scrubbing and stripping of phosphoric acid from the Syrian wet-phosphoric acid was carried out using Micro-pilot plant of mixer settler type of 8 l/h capacity. Tributyl phosphate (TBP)/di-isopropyl ether (DIPE) in kerosene was used as extractant. Extraction and stripping equilibrium curves were evaluated. The number of extraction and stripping stages to achieve the convenient and feasible yield was determined. Detailed flow sheet was suggested for the proposed continuous process. Data obtained include useful information for the design of phosphoric acid extraction plant. The produced phosphoric acid was characterized using different analytical techniques. (author)

  14. Point defect engineering strategies to retard phosphorous diffusion in germanium

    KAUST Repository

    Tahini, H. A.; Chroneos, Alexander I.; Grimes, Robin W.; Schwingenschlö gl, Udo; Bracht, Hartmut A.

    2013-01-01

    The diffusion of phosphorous in germanium is very fast, requiring point defect engineering strategies to retard it in support of technological application. Density functional theory corroborated with hybrid density functional calculations are used to investigate the influence of the isovalent codopants tin and hafnium in the migration of phosphorous via the vacancy-mediated diffusion process. The migration energy barriers for phosphorous are increased significantly in the presence of oversized isovalent codopants. Therefore, it is proposed that tin and in particular hafnium codoping are efficient point defect engineering strategies to retard phosphorous migration. © the Owner Societies 2013.

  15. Phosphor Scanner For Imaging X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.

    1992-01-01

    Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.

  16. Synthesis and luminescence properties of Eu"2"+ doped CaSO_4 phosphor

    International Nuclear Information System (INIS)

    Aghalte, G.A.; Dhoble, S.J.; Pawar, N.R.

    2016-01-01

    Eu"2"+ doped CaSO_4 Phosphor were synthesized by precipitation method. PL analysis of Eu"2"+ activated CaSO_4 phosphor exhibited characteristic emission properties; CaSO_4:Eu Phosphor has received considerable attention because of its high sensitivity to X-ray and λ ray irradiation. CaSO_4:Eu phosphor powder was successfully synthesized by the wet chemical co-precipitation method. The structure morphology and luminescent properties of the phosphor were characterized by X-ray diffraction, scanning electron microscopy and photoluminescence spectroscopy

  17. Purification of di-nonyl phenyl phosphoric acid (DNPPA) for synergistic extraction of uranium from strong phosphoric acid

    International Nuclear Information System (INIS)

    Singh, D.K.; Vijayalakshmi, R.; Singh, H.; Sharma, J.N.; Ruhela, R.

    2009-01-01

    Di-nonyl phenyl phosphoric acid (DNPPA) obtained from various synthesis methods is always associated with impurities such as mono-nonyl phenyl phosphoric acid and nonyl phenol which need to be separated for its effective use in the extraction of uranium from strong phosphoric acid. Two methods of purification namely liquid-solid separation method using neodymium salt and liquid-liquid separation method using methylene glycol have been described. In the liquid solid separation method the purity of DNPPA obtained was about 95% with less than 1.0% monoester, however it heavily suffers in the recovery aspect which is of the order of 50-60%. The methylene glycol treatment method, results in high purity and recovery of the product. Purity obtained was about 95.0% diester and less than 0.5% monoester and recovery was more than 90%. Analysis of DNPPA was done by potentiometric titration method using autotitrator. (author)

  18. Photoluminescence and cathodoluminescence of Mn doped zinc silicate nanophosphors for green and yellow field emissions displays

    Science.gov (United States)

    Omri, K.; Alyamani, A.; Mir, L. El

    2018-02-01

    Mn2+-doped Zn2SiO4 (ZSM2+) was synthesized by a facile sol-gel technique. The obtained samples were characterized by X-ray diffraction (XRD), Raman spectroscopy, photoluminescence (PL) and cathodoluminescence (CL) techniques. Under UV excitation, spectra showed that the α-ZSM2+ phosphor exhibited a strong green emission around 525 nm and reached the highest luminescence intensity with the Mn doping concentration of 5 at.%. However, for the β-ZSM2+ phase, an interesting yellow emission band centered at 575 nm of Mn2+ at the Zn2+ tetrahedral sites was observed. In addition, an unusual red shift with increasing Mn2+ content was also found and attributed to an exchange interaction between Mn2+. Both PL and CL spectra exhibit an intense green and yellow emission centered at 525 and 573 nm, respectively, due to the 4T1 (4G)-6A1 (6S) transition of Mn2+. Furthermore, these results indicated that the Mn2+-doped zinc silicate phosphors may have potential applications in green and yellow emissions displays like field emission displays (FEDs).

  19. Self-adaptive phosphor coating technology for wafer-level scale chip packaging

    International Nuclear Information System (INIS)

    Zhou Linsong; Rao Haibo; Wang Wei; Wan Xianlong; Liao Junyuan; Wang Xuemei; Zhou Da; Lei Qiaolin

    2013-01-01

    A new self-adaptive phosphor coating technology has been successfully developed, which adopted a slurry method combined with a self-exposure process. A phosphor suspension in the water-soluble photoresist was applied and exposed to LED blue light itself and developed to form a conformal phosphor coating with self-adaptability to the angular distribution of intensity of blue light and better-performing spatial color uniformity. The self-adaptive phosphor coating technology had been successfully adopted in the wafer surface to realize a wafer-level scale phosphor conformal coating. The first-stage experiments show satisfying results and give an adequate demonstration of the flexibility of self-adaptive coating technology on application of WLSCP. (semiconductor devices)

  20. Microaeration for hydrogen sulfide removal in UASB reactor.

    Science.gov (United States)

    Krayzelova, Lucie; Bartacek, Jan; Kolesarova, Nina; Jenicek, Pavel

    2014-11-01

    The removal of hydrogen sulfide from biogas by microaeration was studied in Up-flow Anaerobic Sludge Blanket (UASB) reactors treating synthetic brewery wastewater. A fully anaerobic UASB reactor served as a control while air was dosed into a microaerobic UASB reactor (UMSB). After a year of operation, sulfur balance was described in both reactors. In UASB, sulfur was mainly presented in the effluent as sulfide (49%) and in biogas as hydrogen sulfide (34%). In UMSB, 74% of sulfur was detected in the effluent (41% being sulfide and 33% being elemental sulfur), 10% accumulated in headspace as elemental sulfur and 9% escaped in biogas as hydrogen sulfide. The efficiency of hydrogen sulfide removal in UMSB was on average 73%. Microaeration did not cause any decrease in COD removal or methanogenic activity in UMSB and the elemental sulfur produced by microaeration did not accumulate in granular sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Sulfide toxicity kinetics of a uasb reactor

    Directory of Open Access Journals (Sweden)

    D. R. Paula Jr.

    2009-12-01

    Full Text Available The effect of sulfide toxicity on kinetic parameters of anaerobic organic matter removal in a UASB (up-flow anaerobic sludge blanket reactor is presented. Two lab-scale UASB reactors (10.5 L were operated continuously during 12 months. The reactors were fed with synthetic wastes prepared daily using glucose, ammonium acetate, methanol and nutrient solution. One of the reactors also received increasing concentrations of sodium sulfide. For both reactors, the flow rate of 16 L.d-1 was held constant throughout the experiment, corresponding to a hydraulic retention time of 15.6 hours. The classic model for non-competitive sulfide inhibition was applied to the experimental data for determining the overall kinetic parameter of specific substrate utilization (q and the sulfide inhibition coefficient (Ki. The application of the kinetic parameters determined allows prediction of methanogenesis inhibition and thus the adoption of operating parameters to minimize sulfide toxicity in UASB reactors.

  2. Sulfide Precipitation in Wastewater at Short Timescales

    DEFF Research Database (Denmark)

    Kiilerich, Bruno; van de Ven, Wilbert; Nielsen, Asbjørn Haaning

    2017-01-01

    Abatement of sulfides in sewer systems using iron salts is a widely used strategy. When dosing at the end of a pumping main, the reaction kinetics of sulfide precipitation becomes important. Traditionally the reaction has been assumed to be rapid or even instantaneous. This work shows that this i......Abatement of sulfides in sewer systems using iron salts is a widely used strategy. When dosing at the end of a pumping main, the reaction kinetics of sulfide precipitation becomes important. Traditionally the reaction has been assumed to be rapid or even instantaneous. This work shows...... that this is not the case for sulfide precipitation by ferric iron. Instead, the reaction time was found to be on a timescale where it must be considered when performing end-of-pipe treatment. For real wastewaters at pH 7, a stoichiometric ratio around 14 mol Fe(II) (mol S(−II))−1 was obtained after 1.5 s, while the ratio...

  3. Influence of acids on the zinc conversion process with molybdate

    International Nuclear Information System (INIS)

    Silva, Cosmelina Goncalves da; Margarit-Mattos, Isabel Cristina Pereira; Mattos, Oscar Rosa; Barcia, Oswaldo Esteves

    2010-01-01

    Molybdate conversion coatings have been evaluated as possible alternative to the chromate ones. The acid used in the pH adjustment of the conversion baths exerts great influence on the anti corrosive properties of these coatings. The aim of this work was to verify the role of phosphoric and sulfuric acids on the zinc conversion process with molybdate. The techniques used were: chronopotentiometry, electrochemical impedance spectroscopy (EIS) and interfacial pH measurements. The surface characterization was made with scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The chronopotentiometry results have shown that the influence of the variation of the electrode rotation speed on the conversion process is acid-dependent: the acid influences the mass transport during the conversion. The EIS measures have suggested that the conversion mechanism does not change with the acid, being the coatings thicker when H_2SO_4 is used than the obtained with H_3PO_4. The pH interfacial results have shown a pH increase more significant for the bath with H_2SO_4, indicating a fastest kinetic of zinc dissolution. It was identified the presence of Mo in all analyzed coatings, for both acids, and P in those obtained with H_3PO_4. (author)

  4. Low lag luminescent phosphors

    International Nuclear Information System (INIS)

    1976-01-01

    The addition of potassium or rubidium salts to europium-activated fluorohalide phosphors produces X-ray screens with low lag, even at very low europium concentrations. The chemical preparation and afterglow test results are described

  5. FABRICATION OF ZNS THIN FILM FOR INORGANIC EL BY THE VACCUUM EVAPORATION

    OpenAIRE

    龍見, 雅美; 島谷, 圭市; 小西, 信行; 元木, 健作

    2008-01-01

    "Zinc sulfide is a typical material for inorganic electroluminescent(EL) device. Recently very high luminance and life time e has been reported on an inorganic EL device based on thin film zinc sulfide material. The present study tries to realize high quality zinc sulfide thin film for EL device. The thin film was grown by the vacuum evaporation method. In order to obtain stoichiometric thin film, the vacuum evaporation was carried out in a quasi-closed vessel under a condition of sulfur atmo...

  6. Thermoluminescence of calcium-based phosphors

    International Nuclear Information System (INIS)

    Sunta, C.M.

    1985-01-01

    The paper reviews the thermoluminescence (TL) properties of calcium fluoride, calcium sulphate and calcium carbonate phosphors. In the case of the calcium fluoride mineral phosphor the main emitter of TL is the cerium impurity. Based on the TL emission spectra, two types of Ce 3+ centres can be easily distinguished; those associated with O 2- compensating ion and those which have either no local compensators or are associated with F - interstitial ions at the adjacent vacant body centre position. The spectra undergo remarkable changes at high doses. Such changes are associated with the probabilities of charge trapping at different types of traps and also with the probabilities of recombination at different types of luminescent centres. Some of the traps and recombination centres are spatially associated while others are distributed randomly. In calcium carbonate mineral, Mn 2+ is invariably the emitting impurity. Mn 2+ can be used as an efficient dopant for TL emission in all the three calcium based TL phosphors. A co-dopant like Ce 3+ intensifies the luminescence yield from Mn 2+ . Models of different types of electron and hole trapping centres are given. (author)

  7. Comparison between mixed and spatially separated remote phosphor fabricated via a screen-printing process

    Science.gov (United States)

    Kim, Byung-Ho; Hwang, Jonghee; Lee, Young Jin; Kim, Jin-Ho; Jeon, Dae-Woo; Lee, Mi Jai

    2016-08-01

    We developed a fabrication method for remote phosphor by a screen-printing process, using green phosphor, red phosphor, and thermally stable glass frit. The glass frit was introduced for long-term stability. The optical properties of the remote phosphor were observed via an integrating sphere; the photoluminescence spectrum dramatically changed on incorporating a minor amount of the red phosphor. These unique optical properties were elucidated using four factors: phosphor ratio, scattering induced by packing density, light intensity per unit volume, and reabsorption. The thermal stability of the remote phosphor was investigated at 500°C, demonstrating its outstanding thermal properties.

  8. Luminescent properties of phosphor converted LED using an orange-emitting Rb{sub 2}CaP{sub 2}O{sub 7}:Eu{sup 2+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hee Jo; Yim, Dong Kyun [Department of Materials Science and Engineering, College of Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Cho, In-Sun [Department of Mechanical Engineering, Stanford University, CA 94305 (United States); Roh, Hee-Suk; Kim, Ju Seong [Department of Materials Science and Engineering, College of Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kim, Dong-Wan, E-mail: dwkim@ajou.ac.kr [Department of Materials Science and Engineering, Ajou University, Woncheon-dong, San 5, Yeongtong-gu, Suwon 443-749 (Korea, Republic of); Hong, Kug Sun, E-mail: kshongss@plaza.snu.ac.kr [Department of Materials Science and Engineering, College of Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Phase-pure Rb{sub 2}CaP{sub 2}O{sub 7}:Eu{sup 2+} powders were synthesized by a solid state reaction process. ► The optimum emission intensity was observed at the Eu{sup 2+} ion concentration of 0.006. ► The dipole–dipole interaction was the major concentration quenching mechanism. ► The pc-LED coated with Rb{sub 2}CaP{sub 2}O{sub 7}:Eu{sup 2+} had higher CRI than commercial red phosphor. -- Abstract: A series of orange-emitting Rb{sub 2}CaP{sub 2}O{sub 7}:Eu{sup 2+} phosphors were synthesized by a conventional solid-state reaction method. The as-prepared phosphors were characterized by X-ray powder diffraction (XRD), fluorescence spectroscopy, and spectroradiometry. XRD showed that all prepared samples exhibited a monoclinic Rb{sub 2}CaP{sub 2}O{sub 7} phase. Fluorescence spectroscopy showed that the photoluminescence efficiency of Rb{sub 2}Ca{sub 1−x}P{sub 2}O{sub 7}:Eu{sub x}{sup 2+} phosphors increased with increasing Eu{sup 2+} concentration until x = 0.006, then decreased at higher concentrations, due to a concentration quenching effect. The thermal activation energy was also measured to be 0.40 eV. Furthermore, a phosphor-converted LED (pc-LED) coated with Rb{sub 2}Ca{sub 0.994}P{sub 2}O{sub 7}:Eu{sub 0.006}{sup 2+} was fabricated, which exhibited bright orange emission under a forward bias, from 200 to 300 mA. The color rendering index (CRI) of pc-LED coated with Rb{sub 2}Ca{sub 0.994}P{sub 2}O{sub 7}:Eu{sub 0.006}{sup 2+} was higher than the CRI of pc-LED coated with commercial red phosphor, due to the broad emission band of Rb{sub 2}CaP{sub 2}O{sub 7}:Eu{sup 2+} phosphor. In applying with three-band pc-LEDs, moreover, white pc-LED using Rb{sub 2}CaP{sub 2}O{sub 7}:Eu{sup 2+} phosphor had a higher CRI, than using commercial phosphor. These results indicated that Rb{sub 2}CaP{sub 2}O{sub 7}:Eu{sup 2+} phosphor could be a good candidate for a near-UV based w-LED.

  9. Recovering of uranium from phosphoric acid produced by the wet process

    International Nuclear Information System (INIS)

    Barreiro, A.J.; Lyon, W.L.; Holleman, R.A.; Randell, C.C.

    1977-01-01

    Process for recovering uranium as from an aqueous solution of phosphoric acid arising from a wet process, with a scrubbing agent essentially composed of a hydrocarbon whose boiling point is situated between 150 0 C and 300 0 C, which reacts with the contaminents formed in the sludge in the phosphoric acid, in an efficient enough quantity to wash the contamination products forming the phosphoric acid sludge, give a sludge phase and a purified phosphoric acid phase, after which the sludge phase is extracted [fr

  10. Synthesis of novel Dy3+ activated phosphate phosphors for NUV excited LED

    International Nuclear Information System (INIS)

    Shinde, K.N.; Dhoble, S.J.; Kumar, Animesh

    2011-01-01

    The new trivalent dysprosium activated X 6 AlP 5 O 20 (where X=Sr, Ba, Ca and Mg) phosphors were prepared by the combustion method. The prepared phosphors are characterized by XRD, photoluminescence and SEM techniques. Excited by 350 nm near-ultraviolet (NUV) light, the phosphors show an efficient blue and yellow band emissions, which originates from the 4 F 9/2 → 6 H 15/2 and 4 F 9/2 → 6 H 13/2 transitions of Dy 3+ ion, respectively. The excitation spectra of the phosphors are broadband extending from 340 to 400 nm, which are characteristics of NUV excited LED. The effect of the Dy 3+ concentration on the luminescence properties of X 6 AlP 5 O 20 :Dy 3+ (where X=Sr, Ba, Ca and Mg) phosphors is studied. Ca 6 AlP 5 O 20 phosphors show strong PL emission intensity around 25 times more as compared to Ba 6 AlP 5 O 20 , Sr 6 AlP 5 O 20 and Mg 6 AlP 5 O 20 phosphors. The investigated prepared phosphors are suitable for a NUV excited LED. - Research highlights: → Novel Dy 3+ activated X 6 AlP 5 O 20 (where X=Sr,Ba,Ca and Mg) phosphors were prepared by combustion method which is very low cost and time saving synthesis method. → The excitation spectra of the phosphors are broad band extending from 340 nm to 400 nm, which is characteristics of NUV excited LED. → PL emission spectra show two emissions (485 and 573 nm) and X 6 AlP 5 O 20 :Dy 3+ 0.5 mol% (where X=Sr,Ba,Ca and Mg) phosphors shows strongest PL emission intensity. → SEM analysis indicates that phosphor particles have irregular shape, porous morphology and less than 3-4 μm in size, which is suitable for the solid state lighting (coating purpose).

  11. Iron-sulfide crystals in probe deposits

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming

    1998-01-01

    Iron-sulfides were observed in deposits collected on a probe inserted at the top of the furnace of a coal-fired power station in Denmark. The chemical composition of the iron-sulfides is equivalent to pyrrhotite (FeS). The pyrrhotites are present as crystals and, based on the shape of the crystals......: (1) impact of low viscous droplets of iron sulfide; and (2) sulfur diffusion. Previous research on the influence of pyrite on slagging focused on the decomposition of pyrite into pyrrhotite and especially on the oxidation stage of this product during impact on the heat transfer surfaces...

  12. Blue emitting KSCN:xCe phosphor for solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Chikte, Devayani, E-mail: devi.awade@gmail.com [G.N. Khalsa College, Matunga, Mumbai 400019 (India); Omanwar, S.K. [Department of Physics, S.G.B. Amravati University, Amravati (India); Moharil, S.V. [Department of Physics, R.T.M. Nagpur University, Nagpur 440010 (India)

    2014-01-15

    The intense blue emitting phosphor KSCN:xCe (x=0.005, 0.01, 0.02, 0.04) is synthesized by a simple, time saving, economical method of re-crystallization through aqueous solution at 353 K. Photoluminescence measurements showed that the said phosphor exhibits emission with good intensity peaking at 450 nm corresponding to d→f transitions of Ce{sup 3+} ion. The excitation spectra monitored at 450 nm shows small peak at 282 nm and broad intense excitation band peaking at 350 nm. The latter lies in near ultraviolet (350–410 nm) emission of UV LED. The phosphor KSCN:0.02Ce{sup 3+} shows CIE 1931 color coordinates as (0.1484, 0.0602) whereas the commercial blue phosphor BAM:Eu{sup 2+} shows the color co-ordinates as (0.1417, 0.1072), respectively, indicating better color purity for KSCN: 0.02Ce{sup 3+} compared to the BAM:Eu{sup 2+} phosphor. The color coordinates of KSCN: 0.02Ce{sup 3+} phosphor (0.1484, 0.0602) are nearer to the color coordinate for blue color suggested by the color systems EBUPAL/SECAM, sRGB Blue as well as Adobe blue(0.15, 0.06). -- Highlights: • Novel phosphor KSCN:xCe prepared for the first time. • Method is simple, time saving, economical, easy to handle. • Intense, blue, Characteristic Ce{sup 3+} emission at 450 nm. • nUV excitation, suitable for solid state lighting.

  13. Sulfide-conducting solid electrolytes

    International Nuclear Information System (INIS)

    Kalinina, L.A.; Shirokova, G.I.; Murin, I.V.; Ushakova, Yu.N.; Fominykh, E.G.; Lyalina, M.Yu.

    2000-01-01

    Feasibility of sulfide transfer in phases on the basis of BaZrS 3 and MLn 2 S 4 ( M = Ca, Ba; Ln = La, Y, Tm, Nd, Sm, Pr) is considered. Solid solution regions on the basis of ternary compounds are determined. Systematic study of the phases is carried out making use of the methods of conductometry, emf in chemical concentration chains without/with transfer, potentiostatic chronoamperometry. Possible mechanism of defect formation during successive alloying of ternary sulfides by binary ones in suggested [ru

  14. Anoxic sulfide biooxidation using nitrite as electron acceptor

    International Nuclear Information System (INIS)

    Mahmood, Qaisar; Zheng Ping; Cai Jing; Wu Donglei; Hu, Baolan; Li Jinye

    2007-01-01

    Biotechnology can be used to assess the well being of ecosystems, transform pollutants into benign substances, generate biodegradable materials from renewable sources, and develop environmentally safe manufacturing and disposal processes. Simultaneous elimination of sulfide and nitrite from synthetic wastewaters was investigated using a bioreactor. A laboratory scale anoxic sulfide-oxidizing (ASO) reactor was operated for 135 days to evaluate the potential for volumetric loading rates, effect of hydraulic retention time (HRT) and substrate concentration on the process performance. The maximal sulfide and nitrite removal rates were achieved to be 13.82 and 16.311 kg/(m 3 day), respectively, at 0.10 day HRT. The process can endure high sulfide concentrations, as the sulfide removal percentage always remained higher than 88.97% with influent concentration up to 1920 mg/L. Incomplete sulfide oxidation took place due to lower consumed nitrite to sulfide ratios of 0.93. It also tolerated high nitrite concentration up to 2265.25 mg/L. The potential achieved by decreasing HRT at fixed substrate concentration is higher than that by increasing substrate concentration at fixed HRT. The process can bear short HRT of 0.10 day but careful operation is needed. Nitrite conversion was more sensitive to HRT than sulfide conversion when HRT was decreased from 1.50 to 0.08 day. Stoichiometric analyses and results of batch experiments show that major part of sulfide (89-90%) was reduced by nitrite while some autooxidation (10-11%) was resulted from presence of small quantities of dissolved oxygen in the influent wastewater. There was ammonia amassing in considerably high amounts in the bioreactor when the influent nitrite concentration reached above 2265.25 mg/L. High ammonia concentrations (200-550 mg/L) in the bioreactor contributed towards the overall inhibition of the process. Present biotechnology exhibits practical value with a high potential for simultaneous removal of nitrite

  15. Oxidation and Precipitation of Sulfide in Sewer Networks

    DEFF Research Database (Denmark)

    Nielsen, A. H.

    risks and corrosion of concrete and metals. Most of the problems relate to the buildup of hydrogen sulfide in the atmosphere of sewer networks. In this respect, the processes of the sulfur cycle are of fundamental importance in ultimately determining the extent of such problems. This study focused...... calibrated and validated against field data. In the extension to the WATS model, sulfur transformations were described by six processes: 1. Sulfide production taking place in the biofilm and sediments covering the permanently wetted sewer walls; 2. Biological sulfide oxidation in the permanently wetted...... to the sewer atmosphere, potentially resulting in concrete corrosion. The extended WATS model represents a major improvement over previously developed models for prediction of sulfide buildup in sewer networks. Compared to such models, the major processes governing sulfide buildup in sewer networks...

  16. Kinetic Spectrophotometric Determination of Trace Amounts of Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Barzegar, Mohsen [Tarbiat Modarres University, Tehran (Iran, Islamic Republic of); Jabbari, Ali [K. N. Toosi University, Tehran (Iran, Islamic Republic of); Esmaeili, Majid [Razi University, Kermanshah (Iran, Islamic Republic of)

    2003-09-15

    A method for the determination of trace amount of sulfide based on the addition reaction of sulfide with methyl green at pH 7.5 and 25 .deg. C is described. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of the dyestuff at 637 nm by the initial rate and fixed time method. The calibration graph is linear in the range 30-1200 ppb. The theoretical limit of detection was 0.014 ppm. Seven replicate analysis of a sample solution containing 0.70 ppm sulfide gave a relative standard deviation of 1.5%. The interfering effects of various ions on sulfide determination have been reported and procedures for removal of interference have been described. The proposed method was applied successfully to the determination of sulfide in tap and wastewater samples.

  17. Kinetic Spectrophotometric Determination of Trace Amounts of Sulfide

    International Nuclear Information System (INIS)

    Barzegar, Mohsen; Jabbari, Ali; Esmaeili, Majid

    2003-01-01

    A method for the determination of trace amount of sulfide based on the addition reaction of sulfide with methyl green at pH 7.5 and 25 .deg. C is described. The reaction is monitored spectrophotometrically by measuring the decrease in absorbance of the dyestuff at 637 nm by the initial rate and fixed time method. The calibration graph is linear in the range 30-1200 ppb. The theoretical limit of detection was 0.014 ppm. Seven replicate analysis of a sample solution containing 0.70 ppm sulfide gave a relative standard deviation of 1.5%. The interfering effects of various ions on sulfide determination have been reported and procedures for removal of interference have been described. The proposed method was applied successfully to the determination of sulfide in tap and wastewater samples

  18. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    OpenAIRE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  19. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Chiao-Wen Yeh

    2010-03-01

    Full Text Available White light-emitting diodes (WLEDs have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV LEDs and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED or polymer light-emitting diode (PLED, have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450-480 nm and nUV (380-400 nm LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+ is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  20. Light Converting Inorganic Phosphors for White Light-Emitting Diodes

    Science.gov (United States)

    Chen, Lei; Lin, Chun-Che; Yeh, Chiao-Wen; Liu, Ru-Shi

    2010-01-01

    White light-emitting diodes (WLEDs) have matched the emission efficiency of florescent lights and will rapidly spread as light source for homes and offices in the next 5 to 10 years. WLEDs provide a light element having a semiconductor light emitting layer (blue or near-ultraviolet (nUV) LEDs) and photoluminescence phosphors. These solid-state LED lamps, rather than organic light emitting diode (OLED) or polymer light-emitting diode (PLED), have a number of advantages over conventional incandescent bulbs and halogen lamps, such as high efficiency to convert electrical energy into light, reliability and long operating lifetime. To meet with the further requirement of high color rendering index, warm light with low color temperature, high thermal stability and higher energy efficiency for WLEDs, new phosphors that can absorb excitation energy from blue or nUV LEDs and generate visible emissions efficiently are desired. The criteria of choosing the best phosphors, for blue (450−480 nm) and nUV (380−400 nm) LEDs, strongly depends on the absorption and emission of the phosphors. Moreover, the balance of light between the emission from blue-nUV LEDs and the emissions from phosphors (such as yellow from Y3Al5O12:Ce3+) is important to obtain white light with proper color rendering index and color temperature. Here, we will review the status of phosphors for LEDs and prospect the future development.

  1. Radiation-induced defects in manganese-doped lithium tetraborate phosphor.

    Science.gov (United States)

    Annalakshmi, O; Jose, M T; Madhusoodanan, U; Sridevi, J; Venkatraman, B; Amarendra, G; Mandal, A B

    2015-01-01

    Lithium tetraborate doped with manganese synthesised by solid-state sintering technique exhibits a dosimetric peak at 280°C. The high-temperature glow curve results in no fading for three months. The sensitivity of Li2B4O7:Mn is determined to be 0.9 times that of TLD-100. The infrared spectrum of this phosphor indicates the presence of bond vibrations corresponding to BO4 tetrahedral and BO3 triangles. The mechanism for thermoluminescence in this phosphor was proposed based on the thermoluminescence (TL) emission spectra, kinetic analysis of TL glow curves and electron paramagnetic resonance (EPR) measurements on non-irradiated and gamma-irradiated phosphors. It was identified that oxygen vacancies and Boron oxygen hole centre (BOHC) are the electron and hole trap centres for TL in this phosphor. When the phosphor is heated, the electrons are released from the electron trap and recombine with the trapped holes. The excitation energy during the recombination is transferred to the nearby Mn(2+) ions, which emit light at 580 nm. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. New Silicate Phosphors for a White LED(Electronic Displays)

    OpenAIRE

    Toda, Kenji; Kawakami, Yoshitaka; Kousaka, Shin-ichiro; Ito, Yutaka; Komeno, Akira; Uematsu, Kazuyoshi; Sato, Mineo

    2006-01-01

    We focus on the development of new silicate phosphors for a white LED. In the europium doped silicate system, four LED phosphor candidates-Li_2SrSiO_4:Eu^, Ba_9Sc_2Si_6O_:Eu^, Ca_3Si_2O_7:Eu^ and Ba_2MgSi_2O_7:Eu^ were found. Luminescent properties under near UV and visible excitation were investigated for the new Eu^ doped LED silicate phosphors. These new phosphors have a relatively strong absorption band in a long wavelength region.

  3. A novel red-emitting phosphor for white light-emitting diodes

    International Nuclear Information System (INIS)

    Ren, Fuqiang; Chen, Donghua

    2010-01-01

    A novel red-emitting phosphor of Eu 3+ -activated molybdate was prepared at 850 o C by a modified solid-state reaction. Photoluminescence (PL) results showed that the phosphor can be efficiently excited by UV-visible light from 350 to 550 nm, and exhibited bright red emission at 614 nm. XPS are taken to investigate the structure and compositions of this material. The crystallization and particle sizes of the phosphor have been investigated by using powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM images show that the grain size of the phosphor is about 30 nm which is in full agreement with the theoretical calculation data from the XRD patterns.

  4. Catalytic oxidation of sulfide in drinking water treatment: activated carbon as catalyst; Katalytische Oxidation von Sulfid bei der Trinkwasseraufbereitung: Aktivkohle als Katalysator

    Energy Technology Data Exchange (ETDEWEB)

    Hultsch, V; Grischek, T; Wolff, D; Worch, E [Technische Univ. Dresden (Germany). Inst. fuer Wasserchemie; Gun, J [Hebrew Univ. of Jerusalem (Israel). Div. of Environmental Sciences, Fredy and Nadine Herrmann School of Applied Science

    2001-07-01

    In regions with warm climate and limited water resources high sulfide concentrations in groundwater can cause problems during drinking water treatment. Aeration of the raw water is not always sufficient to ensure the hydrogen sulfide concentration below the odour threshold value for hydrogen sulfide. As an alternative, activated carbon can be used as a catalyst for sulfide oxidation of raw water. The use of different types of activated carbon was investigated in kinetic experiments. Both Catalytic Carbon from Calgon Carbon and granulated activated carbon from Norit showed high catalytic activities. The results of the experiments are discussed with regard to the practical use of activated carbon for the elimination of hydrogen sulfide during drinking water treatment. (orig.)

  5. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    Science.gov (United States)

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  6. A Reaction Involving Oxygen and Metal Sulfides.

    Science.gov (United States)

    Hill, William D. Jr.

    1986-01-01

    Describes a procedure for oxygen generation by thermal decomposition of potassium chlorate in presence of manganese dioxide, reacted with various sulfides. Provides a table of sample product yields for various sulfides. (JM)

  7. Zinc content of selected tissues and taste perception in rats fed zinc deficient and zinc adequate rations

    International Nuclear Information System (INIS)

    Boeckner, L.S.; Kies, C.

    1986-01-01

    The objective of the study was to determine the effects of feeding zinc sufficient and zinc deficient rations on taste sensitivity and zinc contents of selected organs in rats. The 36 Sprague-Dawley male weanling rats were divided into 2 groups and fed zinc deficient or zinc adequate rations. The animals were subjected to 4 trial periods in which a choice of deionized distilled water or a solution of quinine sulfate at 1.28 x 10 -6 was given. A randomized schedule for rat sacrifice was used. No differences were found between zinc deficient and zinc adequate rats in taste preference aversion scores for quinine sulfate in the first three trial periods; however, in the last trial period rats in the zinc sufficient group drank somewhat less water containing quinine sulfate as a percentage of total water consumption than did rats fed the zinc deficient ration. Significantly higher zinc contents of kidney, brain and parotid salivary glands were seen in zinc adequate rats compared to zinc deficient rats at the end of the study. However, liver and tongue zinc levels were lower for both groups at the close of the study than were those of rats sacrificed at the beginning of the study

  8. Separation of rare earths from solutions of phosphoric acid

    International Nuclear Information System (INIS)

    Jones, E.A.

    1977-01-01

    Rare earths are separated from 6M phosphoric acid by adsorption onto cation resin BIORAD AG50W-X8. The phosphoric acid is then washed from the column, and the rare earths are eluted with 4M hydrochloric acid

  9. Azo dye decolorization assisted by chemical and biogenic sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Prato-Garcia, Dorian [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, San Luis Potosí 78216 (Mexico); Buitrón, Germán, E-mail: gbuitronm@ii.unam.mx [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico)

    2013-04-15

    Highlights: ► Azo dyes were reduced efficiently by chemical and biogenic sulfide. ► Biogenic sulfide was more efficient than chemical sulfide. ► There was no competition between dyes and sulfate for reducing equivalents. ► Aromatic amines barely affected the sulfate-reducing process. -- Abstract: The effectiveness of chemical and biogenic sulfide in decolorizing three sulfonated azo dyes and the robustness of a sulfate-reducing process for simultaneous decolorization and sulfate removal were evaluated. The results demonstrated that decolorization of azo dyes assisted by chemical sulfide and anthraquinone-2,6-disulfonate (AQDS) was effective. In the absence of AQDS, biogenic sulfide was more efficient than chemical sulfide for decolorizing the azo dyes. The performance of sulfate-reducing bacteria in attached-growth sequencing batch reactors suggested the absence of competition between the studied azo dyes and the sulfate-reducing process for the reducing equivalents. Additionally, the presence of chemical reduction by-products had an almost negligible effect on the sulfate removal rate, which was nearly constant (94%) after azo dye injection.

  10. Simultaneous removal of sulfide, nitrate and acetate: Kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wang Aijie, E-mail: waj0578@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Liu Chunshuang; Ren Nanqi; Han Hongjun [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Lee Duujong [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090 (China); Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China)

    2010-06-15

    Biological removal of sulfide, nitrate and chemical oxygen demand (COD) simultaneously from industrial wastewaters to elementary sulfur (S{sup 0}), N{sub 2}, and CO{sub 2}, or named the denitrifying sulfide (DSR) process, is a cost effective and environmentally friendly treatment process for high strength sulfide and nitrate laden organic wastewater. Kinetic model for the DSR process was established for the first time on the basis of Activated Sludge Model No. 1 (ASM1). The DSR experiments were conducted at influent sulfide concentrations of 200-800 mg/L, whose results calibrate the model parameters. The model correlates well with the DSR process dynamics. By introducing the switch function and the inhibition function, the competition between autotrophic and heterotrophic denitrifiers is quantitatively described and the degree of inhibition of sulfide on heterotrophic denitrifiers is realized. The model output indicates that the DSR reactor can work well at 0.5 < C/S < 3.0 with influent sulfide concentration of 400-1000 mg/L. At >1000 mg/L influent sulfide, however, the DSR system will break down.

  11. Surface-Plasmon-Enhanced Emissions of Phosphors with Au Nanoparticles Embedded in ITO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ja-Yeon [Korea Photonics Technology Institute (KOPTI), Gwangju (Korea, Republic of); Oh, Seung Jong; Park, Hyun-Sun; Kim, Min-Woo; Cho, Yoo-Hyun; Kwon, Min-Ki [Chosun University, Gwangju (Korea, Republic of)

    2017-03-15

    Au nanoparticles were embedded in a transparent conducting layer of indium tin oxide in order to evaluate the feasibility of applying a surface-plasmon (SP)-enhanced phosphor to light-emitting diodes (LEDs). The efficiency of the phosphor was improved by energy matching between the phosphor and the SP of the Au nanoparticles. After the density of the Au nanoparticles and the thickness of the spacer layer had been optimized, the efficiency of a green phosphor was improved by 64% compared to that of an isolated green phosphor. This work provides a way to fabricate high-efficiency LEDs with high color-rendering indices and wide color gamuts in white LEDs.

  12. Use of sulfide-containing liquors for removing mercury from flue gases

    Science.gov (United States)

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  13. Advanced zirconia-coated carbonyl-iron particles for acidic magnetorheological finishing of chemical-vapor-deposited ZnS and other IR materials

    Science.gov (United States)

    Salzman, S.; Giannechini, L. J.; Romanofsky, H. J.; Golini, N.; Taylor, B.; Jacobs, S. D.; Lambropoulos, J. C.

    2015-10-01

    We present a modified version of zirconia-coated carbonyl-iron (CI) particles that were invented at the University of Rochester in 2008. The amount of zirconia on the coating is increased to further protect the iron particles from corrosion when introduced to an acidic environment. Five low-pH, magnetorheological (MR) fluids were made with five acids: acetic, hydrochloric, nitric, phosphoric, and hydrofluoric. All fluids were based on the modified zirconia-coated CI particles. Off-line viscosity and pH stability were measured for all acidic MR fluids to determine the ideal fluid composition for acidic MR finishing of chemical-vapor-deposited (CVD) zinc sulfide (ZnS) and other infrared (IR) optical materials, such as hot-isostatic-pressed (HIP) ZnS, CVD zinc selenide (ZnSe), and magnesium fluoride (MgF2). Results show significant reduction in surface artifacts (millimeter-size, pebble-like structures on the finished surface) for several standard-grade CVD ZnS substrates and good surface roughness for the non-CVD MgF2 substrate when MR finished with our advanced acidic MR fluid.

  14. Ultraviolet /UV/ sensitive phosphors for silicon imaging detectors

    Science.gov (United States)

    Viehmann, W.; Cowens, M. W.; Butner, C. L.

    1981-01-01

    The fluorescence properties of UV sensitive organic phosphors and the radiometric properties of phosphor coated silicon detectors in the VUV, UV, and visible wavelengths are described. With evaporated films of coronene and liumogen, effective quantum efficiencies of up to 20% have been achieved on silicon photodiodes in the vacuum UV. With thin films of methylmethacrylate (acrylic), which are doped with organic laser dyes and deposited from solution, detector quantum efficiencies of the order of 15% for wavelengths of 120-165 nm and of 40% for wavelengths above 190 nm have been obtained. The phosphor coatings also act as antireflection coatings and thereby enhance the response of coated devices throughout the visible and near IR.

  15. Phosphorous loads evaluation from soil

    International Nuclear Information System (INIS)

    Mezzanotte, V.

    1996-01-01

    With reference to the well known difficulty of quantifying non point phosphorous loads, as well as to their growing relative importance where point source leads decrease, a literature review has been carried out concerning soil export coefficients. On such basis, the values which seem to be the most appropriate for Italy have been estimated for different land use categories. The main mechanisms determining non point phosphorous load generation and the factors affecting their importance are also described. In the end, criteria for estimating the importance of non point sources in a basin are suggested to be used for deciding whether a traditional, parametric assessment (inevitably involving a certain error) can be acceptable or experimental measures are needed

  16. Thermoelectric properties of non-stoichiometric lanthanum sulfides

    International Nuclear Information System (INIS)

    Shapiro, E.; Danielson, L.R.

    1983-01-01

    The lanthanum sulfides are promising candidate materials for high-efficiency thermoelectric applications at temperatures up to 1300 0 C. The nonstoichiometric lanthanum sulfides (LaS /SUB x/ , where 1.33 2 //rho/ can be chosen. The thermal conductivity remains approximately constant with stoichiometry, so a material with an optimum value of α 2 //rho/ should possess the optimum figure-of-merit. Data for the Seebeck coefficient and electrical resistivity of non-stoichiometric lanthanum sulfides is presented, together with structural properties of these materials

  17. Techniques involved in the preparation of radioluminescent sources with promethium-147 and gaseous tritium radionuclides

    International Nuclear Information System (INIS)

    Seshadri, N.K.; Subramanian, T.K.; Ravi, S.; Mathew, K.M.; Chinnayan, C.

    2001-01-01

    Beta radiation emanating from promethium-147 and gaseous tritium in close proximity with zinc sulphide phosphor will provide self sustained light sources and are used for, nocturnal illumination of liquid crystal display digital watches and clocks, product advertisements, telephone numbers, exit signs etc. In this paper a procedure for activation of zinc sulphide phosphor with promethium-147 and development of gaseous tritium light sources with respect to thickness of phosphor coating and its effect on light output is described. A typical light source was constructed with promethium-147 activated zinc sulphide to find the overall efficiency of conversion of beta energy to visible light. (author)

  18. Analysis of phosphoric ore bacterial and eucaryal microbial diversity ...

    African Journals Online (AJOL)

    These findings provided new opportunities into phosphoric ore microbiology that could be useful in biological system removing waste gases generated from the phosphoric industry. Keywords: Microbial community, bacteria, archaea, eucarya, mining residue. African Journal of Biotechnology, Vol 13(30) 3023-3029 ...

  19. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, M.H.; Jha, M.C.

    1989-10-01

    AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

  20. Intravascular imaging with a storage phosphor detector

    Energy Technology Data Exchange (ETDEWEB)

    Shikhaliev, Polad M; Petrek, Peter; Matthews, Kenneth L II; Fritz, Shannon G [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA (United States); Bujenovic, L Steven [PET Imaging Center, Our Lady of the Lake Medical Center, Baton Rouge, LA (United States); Xu Tong, E-mail: pshikhal@lsu.ed [Department of Physics, Carleton University, Ottawa (Canada)

    2010-05-21

    The aim of this study is to develop and test an intravascular positron imaging system based on a storage phosphor detector for imaging and detecting vulnerable plaques of human coronary arteries. The radiotracer F18-FDG accumulates in vulnerable plaques with inflammation of the overlying cap. The vulnerable plaques can, therefore, be imaged by recording positrons emitted from F18-FDG with a detector inserted into the artery. A prototype intravascular detector was constructed based on storage phosphor. The detector uses a flexible storage phosphor tube with 55 mm length, 2 mm diameter and 0.28 mm wall thickness. The intravascular detector is guided into the vessel using x-ray fluoroscopy and the accumulated x-ray signal must be erased prior to positron imaging. For this purpose, a light diffuser, 0.9 mm in diameter and 55 mm in length, was inserted into the detector tube. The light diffuser was connected to a laser source through a 2 m long optical fiber. The diffuser redirected the 0.38 W laser light to the inner surface of the phosphor detector to erase it. A heart phantom with 300 cm{sup 3} volume and three coronary arteries with 3.2 mm diameter and with several plaques was constructed. FDG solution with 0.5 {mu}Ci cm{sup -3} activity concentration was filled in the heart and coronary arteries. The detector was inserted in a coronary artery and the signal from the plaques and surrounding background activity was recorded for 2 min. Then the phosphor detector was extracted and read out using a storage phosphor reader. The light diffuser erased the signal resulting from fluoroscopic exposure to level below that encountered during positron imaging. Vulnerable plaques with area activities higher than 1.2 nCi mm{sup -2} were visualized by the detector. This activity is a factor of 10-20 lower than that expected in human vulnerable plaques. The detector was able to image the internal surface of the coronary vessels with 50 mm length and 360{sup 0} circumference. Spatial

  1. Development of BaSO sub 4 :Eu thermoluminescence phosphor

    CERN Document Server

    Madhusoodanan, U; Lakshmanan, A R

    1999-01-01

    A highly sensitive thermoluminescence (TL) phosphor based on BaSO sub 4 :Eu was developed following the coprecipitation technique and firing in argon atmosphere at 1123 K. Photoluminescence studies confirm that firing in argon atmosphere instead of air increased the incorporation of Eu ions in 2+ valence state. At low gamma-ray doses, its TL sensitivity is nearly 2 to 3 times higher than that of CaSO sub 4 :Dy phosphor. The other salient features of this BaSO sub 4 :Eu TL phosphor are a constant glow curve shape and a nearly linear gamma-ray dose response.

  2. Comparison of Carbon XANES Spectra from an Iron Sulfide from Comet Wild 2 with an Iron Sulfide Interplanetary Dust Particle

    Science.gov (United States)

    Wirick, S.; Flynn, G. J.; Keller, L. P.; Sanford, S. A.; Zolensky, M. E.; Messenger, Nakamura K.; Jacobsen, C.

    2008-01-01

    Among one of the first particles removed from the aerogel collector from the Stardust sample return mission was an approx. 5 micron sized iron sulfide. The majority of the spectra from 5 different sections of this particle suggests the presence of aliphatic compounds. Due to the heat of capture in the aerogel we initially assumed these aliphatic compounds were not cometary but after comparing these results to a heated iron sulfide interplanetary dust particle (IDP) we believe our initial interpretation of these spectra was not correct. It has been suggested that ice coating on iron sulfides leads to aqueous alteration in IDP clusters which can then lead to the formation of complex organic compounds from unprocessed organics in the IDPs similar to unprocessed organics found in comets [1]. Iron sulfides have been demonstrated to not only transform halogenated aliphatic hydrocarbons but also enhance the bonding of rubber to steel [2,3]. Bromfield and Coville (1997) demonstrated using Xray photoelectron spectroscopy that "the surface enhancement of segregated sulfur to the surface of sulfided precipitated iron catalysts facilitates the formation of a low-dimensional structure of extraordinary properties" [4]. It may be that the iron sulfide acts in some way to protect aliphatic compounds from alteration due to heat.

  3. Rare Earth Doped Lanthanum Calcium Borate Polycrystalline Red Phosphors

    Directory of Open Access Journals (Sweden)

    H. H. Xiong

    2014-01-01

    Full Text Available Single-phased Sm3+ doped lanthanum calcium borate (SmxLa2−xCaB10O19, SLCB, x=0.06 polycrystalline red phosphor was prepared by solid-state reaction method. The phosphor has two main excitation peaks located at 398.5 nm and 469.0 nm, which are nicely in accordance with the emitting wavelengths of commercial near-UV and blue light emitting diode chips. Under the excitation of 398.0 nm, the dominant red emission of Sm3+ in SLCB phosphor is centered at 598.0 nm corresponding to the transition of 4G5/2 → 6H7/2. The Eu3+ fluorescence in the red spectral region is applied as a spectroscopic probe to reveal the local site symmetry in the host lattice and, hence, Judd-Ofelt parameters Ωt  (t=2, 4 of Eu3+ in the phosphor matrix are derived to be 3.62×10-20 and 1.97×10-20 cm2, indicating a high asymmetrical and strong covalent environment around rare earth luminescence centers. Herein, the red phosphors are promising good candidates employed in white light emitting diodes (LEDs illumination.

  4. Photoluminescence studies on holmium (III) and praseodymium (III) doped calcium borophosphate (CBP) phosphors

    Science.gov (United States)

    Reddy Prasad, V.; Damodaraiah, S.; Devara, S. N.; Ratnakaram, Y. C.

    2018-05-01

    Using solid state reaction method, Ho3+ and Pr3+ doped calcium borophosphate (CBP) phosphors were prepared. These phosphors were characterized using XRD, SEM, FT-IR, 31P solid state NMR, photoluminescence (PL) and decay profiles. Structural details were discussed from XRD and FT-IR spectra. From 31P NMR spectra of these phosphors, mono-phosphate complexes Q0-(PO43-) were observed. Photoluminescence spectra were measured for both Ho3+ and Pr3+ doped calcium borophosphate phosphors and the spectra were studied for different concentrations. Decay curves were obtained for the excited level, 5F4+5S2 of Ho3+ and 1D2 level of Pr3+ in these calcium borophosphate phosphors and lifetimes were measured. CIE color chromaticity diagrams are drawn for these two rare earth ions in calcium borophosphate phosphors. Results show that Ho3+ and Pr3+ doped CBP phosphors might be served as green and red luminescence materials.

  5. Preparation of red phosphor (Y, Gd)BO3:Eu by soft chemistry methods

    International Nuclear Information System (INIS)

    Cui Xiangzhong; Zhuang Weidong; Yu Zhijian; Xia Tian; Huang Xiaowei; Li Hongwei

    2008-01-01

    The three soft chemistry methods were employed to prepare the red phosphor (Y, Gd)BO 3 :Eu, such as coprecipitation-combustion method, salt assisted combustion method and emulsion method. The main factors affecting particle size, particle distribution and luminescent properties of the product were investigated in detail, and as a result, the preparation processes were optimized. The phosphors were characterized by X-ray diffraction (XRD), scanning electronic microscope (SEM), transmission electronic microscope (TEM) and vacuum ultraviolet (VUV) spectra. Results reveal that phosphors with different morphology, small particle size and high luminescence intensity could be obtained by soft chemistry methods. The difference between the luminescence properties of phosphors in this work and commercial rare earth borate phosphor is discussed. The phosphor with grain shape and high luminescence intensity could be prepared by coprecipitation-combustion method, nanophosphor could be prepared by salt assisted combustion method, and spherical phosphor with a narrow size distribution could be obtained by using emulsion method

  6. World wide IFC phosphoric acid fuel cell implementation

    Energy Technology Data Exchange (ETDEWEB)

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  7. The critical importance of pulp concentration on the flotation of galena from a low grade lead–zinc ore

    Directory of Open Access Journals (Sweden)

    Xianping Luo

    2016-04-01

    Full Text Available The Qixia orebody is a complex lead–zinc sulfide system with pyrite gangue and minor amounts of copper. In order to improve the flotation results, laboratory scale flotation testing of ore samples taken from this operation was performed. Flotation tests used a sequential recovery protocol for selective flotation of first the lead and thereafter the zinc. The key parameters that influence flotation performance of lead mineral were tested in this paper. The test data show that, for comparable collector, grinding time, flotation pH and solid-in-pulp concentration, the increase of solid-in-pulp concentration has the most significant effect on the recovery and selective separation of lead mineral. The increase of solid-in-pulp concentration from 27% to 55% makes the recovery of lead mineral increased from 60% to 80% and the lead grade increased from 27.5% to 29.1%.

  8. Simultaneous removal of sulfide, nitrate and acetate: Kinetic modeling

    International Nuclear Information System (INIS)

    Wang Aijie; Liu Chunshuang; Ren Nanqi; Han Hongjun; Lee Duujong

    2010-01-01

    Biological removal of sulfide, nitrate and chemical oxygen demand (COD) simultaneously from industrial wastewaters to elementary sulfur (S 0 ), N 2 , and CO 2 , or named the denitrifying sulfide (DSR) process, is a cost effective and environmentally friendly treatment process for high strength sulfide and nitrate laden organic wastewater. Kinetic model for the DSR process was established for the first time on the basis of Activated Sludge Model No. 1 (ASM1). The DSR experiments were conducted at influent sulfide concentrations of 200-800 mg/L, whose results calibrate the model parameters. The model correlates well with the DSR process dynamics. By introducing the switch function and the inhibition function, the competition between autotrophic and heterotrophic denitrifiers is quantitatively described and the degree of inhibition of sulfide on heterotrophic denitrifiers is realized. The model output indicates that the DSR reactor can work well at 0.5 1000 mg/L influent sulfide, however, the DSR system will break down.

  9. Hydrogen sulfide oxidation without oxygen - oxidation products and pathways

    International Nuclear Information System (INIS)

    Fossing, H.

    1992-01-01

    Hydrogen sulfide oxidation was studied in anoxic marine sediments-both in undisturbed sediment cores and in sediment slurries. The turn over of hydrogen sulfide was followed using 35 S-radiolabeled hydrogen sulfide which was injected into the sediment. However, isotope exchange reactions between the reduced sulfur compounds, in particular between elemental sulfur and hydrogen sulfide, influenced on the specific radioactivity of these pools. It was, therefore, not possible to measure the turn over rates of the reduced sulfur pools by the radiotracer technique but merely to use the radioisotope to demonstrate some of the oxidation products. Thiosulfate was one important intermediate in the anoxic oxidation of hydrogen sulfide and was continuously turned over by reduction, oxidation and disproportionation. The author discusses the importance of isotope exchange and also presents the results from experiments in which both 35 S-radiolabeled elemental sulfur, radiolabeled hydrogen sulfide and radiolabeled thiosulfate were used to study the intermediates in the oxidative pathways of the sulfur cycle

  10. Initiation in the study of uranium recovery from the phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Anchondo Adalid, J M

    1974-01-01

    The loss of considerable amounts of uranium in the Mexican phosphoric acid industry makes it important to study economic methods of recovery; the studies can serve as a basis for the construction and operation of a pilot plant as a normal preliminary to larger-scale projects. Routine experimental techniques for solvent extraction were employed. Extraction efficiencies of the order of 90-95% were obtained using 0.09-0.18M solutions of a mixture of phosphoric octyl esters applied to 4 and 6M solutions of phosphoric acid (reagent grade) containing uranium in concentrations of 0.05-0.50g of U/sub 3/O/sub 8/ per litre of acid. The conclusion was reached that phosphoric octyl esters can be used for recovering uranium in satisfactory quantities from phosphoric acid solutions by means of solvent extraction, and that the uranium can be separated from the solvent by the established procedures.

  11. Initiation in the study of uranium recovery from the phosphoric acid

    International Nuclear Information System (INIS)

    Anchondo Adalid, J.M.

    1974-01-01

    The loss of considerable amounts of uranium in the Mexican phosphoric acid industry makes it important to study economic methods of recovery; the studies can serve as a basis for the construction and operation of a pilot plant as a normal preliminary to larger-scale projects. Routine experimental techniques for solvent extraction were employed. Extraction efficiencies of the order of 90-95% were obtained using 0.09-0.18M solutions of a mixture of phosphoric octyl esters applied to 4 and 6M solutions of phosphoric acid (reagent grade) containing uranium in concentrations of 0.05-0.50g of U 3 O 8 per litre of acid. The conclusion was reached that phosphoric octyl esters can be used for recovering uranium in satisfactory quantities from phosphoric acid solutions by means of solvent extraction, and that the uranium can be separated from the solvent by the established procedures. (author)

  12. Method for the recovery of uranium from a concentrate using pure phosphoric acid

    International Nuclear Information System (INIS)

    1980-01-01

    Procedure for the recovery of an uranium bearing concentrate and pure phosphoric acid from a wet process phosphoric acid from the treatment fluid with a precipitation means in conjunction with an organic diluent, the thus formed precipitate to separate and from the remaining mixture of phosphoric acid and diluent the phosphoric acid to extract, characterised in that one applies an inorganic fluorine compound. (G.C.)

  13. Reduction of produced elementary sulfur in denitrifying sulfide removal process.

    Science.gov (United States)

    Zhou, Xu; Liu, Lihong; Chen, Chuan; Ren, Nanqi; Wang, Aijie; Lee, Duu-Jong

    2011-05-01

    Denitrifying sulfide removal (DSR) processes simultaneously convert sulfide, nitrate, and chemical oxygen demand from industrial wastewater into elemental sulfur, dinitrogen gas, and carbon dioxide, respectively. The failure of a DSR process is signaled by high concentrations of sulfide in reactor effluent. Conventionally, DSR reactor failure is blamed for overcompetition for heterotroph to autotroph communities. This study indicates that the elementary sulfur produced by oxidizing sulfide that is a recoverable resource from sulfide-laden wastewaters can be reduced back to sulfide by sulfur-reducing Methanobacterium sp. The Methanobacterium sp. was stimulated with excess organic carbon (acetate) when nitrite was completely consumed by heterotrophic denitrifiers. Adjusting hydraulic retention time of a DSR reactor when nitrite is completely consumed provides an additional control variable for maximizing DSR performance.

  14. Phosphates and phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Becker, P [Compagnie Francaise de l' Azote, Paris (France)

    1983-01-01

    In chapter 8.5 the following aspects of uranium recovery are treated: basis of extraction process, extraction principle, solvents, strength of the acid to be treated, technology, main processes in use, impact of uranium recovery on phosphoric acid plants, and economics of uranium recovery plants.

  15. Synthesis And Characterization of Copper Zinc Tin Sulfide Nanoparticles And Thin Films

    Science.gov (United States)

    Khare, Ankur

    Copper zinc tin sulfide (Cu2ZnSnS4, or CZTS) is emerging as an alternative material to the present thin film solar cell technologies such as Cu(In,Ga)Se2 and CdTe. All the elements in CZTS are abundant, environmentally benign, and inexpensive. In addition, CZTS has a band gap of ˜1.5 eV, the ideal value for converting the maximum amount of energy from the solar spectrum into electricity. CZTS has a high absorption coefficient (>104 cm-1 in the visible region of the electromagnetic spectrum) and only a few micron thick layer of CZTS can absorb all the photons with energies above its band gap. CZT(S,Se) solar cells have already reached power conversion efficiencies >10%. One of the ways to improve upon the CZTS power conversion efficiency is by using CZTS quantum dots as the photoactive material, which can potentially achieve efficiencies greater than the present thin film technologies at a fraction of the cost. However, two requirements for quantum-dot solar cells have yet to be demonstrated. First, no report has shown quantum confinement in CZTS nanocrystals. Second, the syntheses to date have not provided a range of nanocrystal sizes, which is necessary not only for fundamental studies but also for multijunction photovoltaic architectures. We resolved these two issues by demonstrating a simple synthesis of CZTS, Cu2SnS3, and alloyed (Cu2SnS3) x(ZnS)y nanocrystals with diameters ranging from 2 to 7 nm from diethyldithiocarbamate complexes. As-synthesized nanocrystals were characterized using high resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and energy dispersive spectroscopy to confirm their phase purity. Nanocrystals of diameter less than 5 nm were found to exhibit a shift in their optical absorption spectra towards higher energy consistent with quantum confinement and previous theoretical predictions. Thin films from CZTS nanocrystals deposited on Mo-coated quartz substrates using drop casting were found to be continuous

  16. Does the oral zinc tolerance test measure zinc absorption

    Energy Technology Data Exchange (ETDEWEB)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi /sup 65/ZnCl/sub 2/ and a non-absorbed marker, /sup 51/CrCl/sub 3/, dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with /sup 65/Zn and /sup 51/Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and /sup 65/Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and /sup 65/Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption.

  17. Does the oral zinc tolerance test measure zinc absorption

    International Nuclear Information System (INIS)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi 65 ZnCl 2 and a non-absorbed marker, 51 CrCl 3 , dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with 65 Zn and 51 Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and 65 Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and 65 Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption

  18. Enhanced sulfidation xanthate flotation of malachite using ammonium ions as activator.

    Science.gov (United States)

    Wu, Dandan; Ma, Wenhui; Mao, Yingbo; Deng, Jiushuai; Wen, Shuming

    2017-05-18

    In this study, ammonium ion was used to enhance the sulfidation flotation of malachite. The effect of ammonium ion on the sulfidation flotation of malachite was investigated using microflotation test, inductively coupled plasma (ICP) analysis, zeta potential measurements, and scanning electron microscope analysis (SEM). The results of microflotation test show that the addition of sodium sulfide and ammonium sulfate resulted in better sulfidation than the addition of sodium sulfide alone. The results of ICP analysis indicate that the dissolution of enhanced sulfurized malachite surface is significantly decreased. Zeta potential measurements indicate that a smaller isoelectric point value and a large number of copper-sulfide films formed on the malachite surface by enhancing sulfidation resulted in a large amount of sodium butyl xanthate absorbed onto the enhanced sulfurized malachite surface. EDS semi-quantitative analysis and XPS analysis show that malachite was easily sulfurized by sodium sulfide with ammonium ion. These results show that the addition of ammonium ion plays a significant role in the sulfidation of malachite and results in improved flotation performance.

  19. Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium

    Energy Technology Data Exchange (ETDEWEB)

    Le Pape, Pierre, E-mail: pierrelp.hm@gmail.com [Sorbonne Universités – Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR IRD 206, UPMC Université Paris VI, 4 place Jussieu, 75252 Paris cedex 05 (France); Battaglia-Brunet, Fabienne; Parmentier, Marc; Joulian, Catherine; Gassaud, Cindy [French Geological Survey (BRGM), 3 av. Claude Guillemin, 45060, BP 36009, Orléans Cedex 2 (France); Fernandez-Rojo, Lidia [HydroSciences Montpellier, UMR 5569 CNRS-IRD-UM, CC57, 163 rue Auguste Broussonet, 34090 Montpellier (France); Guigner, Jean-Michel; Ikogou, Maya; Stetten, Lucie [Sorbonne Universités – Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR IRD 206, UPMC Université Paris VI, 4 place Jussieu, 75252 Paris cedex 05 (France); Olivi, Luca [Sincrotrone Trieste ELETTRA, I-34012 Trieste (Italy); Casiot, Corinne [HydroSciences Montpellier, UMR 5569 CNRS-IRD-UM, CC57, 163 rue Auguste Broussonet, 34090 Montpellier (France); Morin, Guillaume [Sorbonne Universités – Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR IRD 206, UPMC Université Paris VI, 4 place Jussieu, 75252 Paris cedex 05 (France)

    2017-01-05

    Highlights: • SRB activity is evidenced at acidic pH in acid mine drainage water. • Total arsenic and zinc removal from solution is observed. • As, Zn and Fe are observed to precipitate as biogenic sulfides. • Amorphous orpiment (As{sup III}{sub 2}S{sub 3}) and realgar (As{sup II}S) are observed as main As-bearing sulfides. • A mechanism is proposed for the reduction of As{sub 2}S{sub 3} to AsS by biogenic H{sub 2}S under acidic conditions. - Abstract: Acid mine drainages (AMD) are major sources of pollution to the environment. Passive bio-remediation technologies involving sulfate-reducing bacteria (SRB) are promising for treating arsenic contaminated waters. However, mechanisms of biogenic As-sulfide formation need to be better understood to decontaminate AMDs in acidic conditions. Here, we show that a high-As AMD effluent can be decontaminated by an indigenous SRB consortium. AMD water from the Carnoulès mine (Gard, France) was incubated with the consortium under anoxic conditions and As, Zn and Fe concentrations, pH and microbial activity were monitored during 94 days. Precipitated solids were analyzed using electron microscopy (SEM/TEM-EDXS), and Extended X-Ray Absorption Fine Structure (EXAFS) spectroscopy at the As K-edge. Total removal of arsenic and zinc from solution (1.06 and 0.23 mmol/L, respectively) was observed in two of the triplicates. While Zn precipitated as ZnS nanoparticles, As precipitated as amorphous orpiment (am-As{sup III}{sub 2}S{sub 3}) (33–73%), and realgar (As{sup II}S) (0–34%), the latter phase exhibiting a particular nanowire morphology. A minor fraction of As is also found as thiol-bound As{sup III} (14–23%). We propose that the formation of the As{sup II}S nanowires results from As{sup III}{sub 2}S{sub 3} reduction by biogenic H{sub 2}S, enhancing the efficiency of As removal. The present description of As immobilization may help to set the basis for bioremediation strategies using SRB.

  20. Physiological behavior of hydrogen sulfide in rice plant. Part 5. Effect of hydrogen sulfide on respiration of rice roots

    Energy Technology Data Exchange (ETDEWEB)

    Okajima, H; Takagi, S

    1955-01-01

    The inhibitory effects of hydrogen sulfide on the respiration of rice plant roots were investigated using Warburg's manometory technique. Hydrogen sulfide inhibited not only aerobic respiration but anaerobic respiration process of roots. Inhibitory action of hydrogen sulfide and potassium cyanide on the respiration were apparently reversible, but the style of recovery reaction from inhibition was somewhat different in each case. Oxygen consumption of roots was increased by addition of ammonium salts, but the same effects were not recognized by the addition of any other salt examined (except nitrate salts). There was close relationship between respiration of roots and assimilation of nitrogen by roots. The increased oxygen uptake by addition of ammonium salt was also inhibited by hydrogen sulfide. The reactivation of this reaction occurred with the recovery of endogenous respiration of roots. 19 references, 8 figures, 3 tables.

  1. Enhanced sulfidation xanthate flotation of malachite using ammonium ions as activator

    OpenAIRE

    Dandan Wu; Wenhui Ma; Yingbo Mao; Jiushuai Deng; Shuming Wen

    2017-01-01

    In this study, ammonium ion was used to enhance the sulfidation flotation of malachite. The effect of ammonium ion on the sulfidation flotation of malachite was investigated using microflotation test, inductively coupled plasma (ICP) analysis, zeta potential measurements, and scanning electron microscope analysis (SEM). The results of microflotation test show that the addition of sodium sulfide and ammonium sulfate resulted in better sulfidation than the addition of sodium sulfide alone. The ...

  2. Formation of Copper Sulfide Precipitate in Solid Iron

    Science.gov (United States)

    Urata, Kentaro; Kobayashi, Yoshinao

    The growth rate of copper sulfide precipitates has been measured in low carbon steel samples such as Fe-0.3mass%Cu-0.03mass%S-0.1mass%C and Fe-0.1mass%Cu-0.01mass%S- 0.1mass%C. Heat-treatment of the samples was conducted at 1273, 1423 and 1573 K for 100 s - 14.4 ks for precipitation of copper sulfides and then the samples were observed by a scanning electron microscope and a transmission electron microscope to measure the diameter of copper sulfides precipitated in the samples. The growth rate of copper sulfide has been found to be well described by the Ostwald growth model, as follows: R\

  3. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    Science.gov (United States)

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Novel Transparent Phosphor Conversion Matrix with High Thermal Conductivity for Next Generation Phosphor-Converted LED-based Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Bockstaller, Michael [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2017-02-06

    The low thermal conductivity of state-of-the-art polymer encapsulants (k ~ 0.15 Wm-1K-1) limits the efficiency and power density of current phosphor conversion light emitting diodes (pc-LEDs). The technical objective of this project was to demonstrate synthesis and processing schemes for the fabrication of polymer hybrid encapsulants with a thermal conductivity exceeding k = 0.4 Wm-1K-1 for LED applications. The ‘hybrid polymer’ approach encompasses the dispersion of high thermal conductivity particle fillers (zinc oxide, ZnO as well as the alpha-polymorph of alumina, Al2O3) within a polysiloxane matrix (poly(dimethylsiloxane), PDMS as well as poly(phenyl methyl siloxane), PPMS) to increase the thermal conductivity while maintaining optical transparency and photothermal stability at levels consistent with LED applications. To accomplish this goal, a novel synthesis method for the fabrication of nanosized ZnO particles was developed and a novel surface chemistry was established to modify the surface of zinc oxide particle fillers and thus to enable their dispersion in poly(dimethyl siloxane) (PDMS) matrix polymers. Molecular dynamics and Mie simulations were used to optimize ligand structure and to enable the concurrent mixing of particles in PDMS/PPMS embedding media while also minimizing the thermal boundary resistance as well as optical scattering of particle fillers. Using this approach the synthesis of PDMS/ZnO hybrid encapsulants exhibiting a thermal conductivity of 0.64 Wm-1K-1 and optical transparency > 0.7 mm-1 was demonstrated. A forming process based on micromolding was developed to demonstrate the forming of particle filled PDMS into film and lens shapes. Photothermal stability testing revealed stability of the materials for approximately 4000 min when exposed to blue light LED (450 nm, 30 W/cm2). One postgraduate and seven graduate students were supported by the project. The research performed within this project led to fifteen publications in peer

  5. An experimental study of Fe-Ni exchange between sulfide melt and olivine at upper mantle conditions: implications for mantle sulfide compositions and phase equilibria

    Science.gov (United States)

    Zhang, Zhou; von der Handt, Anette; Hirschmann, Marc M.

    2018-03-01

    The behavior of nickel in the Earth's mantle is controlled by sulfide melt-olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe-Ni composition of molten sulfide in the Earth's upper mantle via sulfide melt-olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt X_{{{Ni}}}^{{{Sulfide}}}={{Ni}}/{{Ni+{Fe}}} (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of {f_{{{O}2}}} on Fe-Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31-46, 1995), "zero time" experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0 ± 1.0 log units more reduced than the fayalite-magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ - 1 or more oxidized (suite 4). For the reduced (suites 1-3) experiments, Fe-Ni distribution coefficients K_{{D}}{}={(X_{{{Ni}}}^{{{sulfide}}}/X_{{{Fe}}}^{{{sulfide}}})}/{(X_{{{Ni}}^{{{olivine}}}/X_{{{Fe}}}^{{{olivine}}})}} are small, averaging 10.0 ± 5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of K D (21.1-25.2). Compared to previous determinations at 100 kPa, values of K D from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem

  6. Thermoluminescence properties of zinc oxide obtained by solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: victor.orante@polimeros.uson.mx [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2014-08-15

    High-dose thermoluminescence dosimetry properties of novel zinc oxide obtained by solution combustion synthesis in a glycine-nitrate process, with a non-stoichiometric value of the elemental stoichiometric coefficient (Φ{sub c}) are presented in this work. Zn O powder samples obtained were annealed afterwards at 900 grades C during 2 h in air. Sintered particles of sizes between ∼ 0.5 and ∼ 2 μm were obtained, according to scanning electron microscopy results. X-ray diffraction indicates the presence of the hexagonal phase of Zn O for the powder samples obtained, before and after thermal annealing, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima; one located at ∼ 149 grades C and another at ∼ 308 grades C, being the latter the dosimetric component of the curve. Dosimetric characterization of non-stoichiometric zinc oxide provided experimental evidence like asymptotic behavior of the Tl signal fading for times greater than 16 h between irradiation and the corresponding Tl readout, as well as the linear behaviour of the dose response without saturation in the dose interval studied (from 12.5 up to 400 Gy). Such characteristics place Zn O phosphors obtained in this work as a promising material for high-dose radiation dosimetry applications (e.g., radiotherapy and food industry). (author)

  7. Thermoluminescence properties of zinc oxide obtained by solution combustion synthesis

    International Nuclear Information System (INIS)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C.; Bernal, R.

    2014-08-01

    High-dose thermoluminescence dosimetry properties of novel zinc oxide obtained by solution combustion synthesis in a glycine-nitrate process, with a non-stoichiometric value of the elemental stoichiometric coefficient (Φ c ) are presented in this work. Zn O powder samples obtained were annealed afterwards at 900 grades C during 2 h in air. Sintered particles of sizes between ∼ 0.5 and ∼ 2 μm were obtained, according to scanning electron microscopy results. X-ray diffraction indicates the presence of the hexagonal phase of Zn O for the powder samples obtained, before and after thermal annealing, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima; one located at ∼ 149 grades C and another at ∼ 308 grades C, being the latter the dosimetric component of the curve. Dosimetric characterization of non-stoichiometric zinc oxide provided experimental evidence like asymptotic behavior of the Tl signal fading for times greater than 16 h between irradiation and the corresponding Tl readout, as well as the linear behaviour of the dose response without saturation in the dose interval studied (from 12.5 up to 400 Gy). Such characteristics place Zn O phosphors obtained in this work as a promising material for high-dose radiation dosimetry applications (e.g., radiotherapy and food industry). (author)

  8. Method of capturing or trapping zinc using zinc getter materials

    Science.gov (United States)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  9. TL dosimetric characterization of gamma irradiated SrSO{sub 4}:Eu phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Jayasudha, S., E-mail: jsnair.india@gmail.com [Mahatma Gandhi College, Kesavadasapuram, Pattom Palace P.O., Thiruvananthapuram 695004 (India); Madhukumar, K.; Nair, C.M.K.; Nair, Resmi G. [Mahatma Gandhi College, Kesavadasapuram, Pattom Palace P.O., Thiruvananthapuram 695004 (India); Rajesh, S. [Department of Materials & Ceramic Engineering, University of Aveiro, Aveiro 3810-193 (Portugal); Elias, T.S. [State Institute of Cancer Research, Medical College P.O., Thiruvananthapuram 695011 (India); Anandakumar, V.M. [Mahatma Gandhi College, Kesavadasapuram, Pattom Palace P.O., Thiruvananthapuram 695004 (India); State Institute of Cancer Research, Medical College P.O., Thiruvananthapuram 695011 (India); Department of Materials & Ceramic Engineering, University of Aveiro, Aveiro 3810-193 (Portugal); Gopakumar, N. [Mahatma Gandhi College, Kesavadasapuram, Pattom Palace P.O., Thiruvananthapuram 695004 (India)

    2017-03-15

    Thermoluminescence (TL) characteristics of SrSO{sub 4}:Eu nanostructured phosphor under gamma excitation has been studied and their suitability for environmental radiation dosimetry applications is discussed. The dopant level is tuned for optimum TL response. The effect of radiation dose and heating rate were investigated. The phosphor preserves linearity in the low dose region, 0.1 Gy to 20 Gy. PL studies of irradiated and un-irradiated phosphors reveal that the dopant Eu exists in divalent state and are the luminescence emission centres in the material. The fading properties of SrSO{sub 4}:Eu phosphor are observed to be better than that of the commercial dosimeters TLD-200 and TLD-400. The kinetic parameters are calculated using Chen's method and initial rise method and verified by Computerized Glow curve Deconvolution (CGCD). The sensitivity of the synthesized phosphor is found to be very high when compared with that of the commercial standard dosimeter CaSO{sub 4}:Dy. The phosphor is found to be stable for short term radiation monitoring.

  10. Nanoporous gold-based microbial biosensor for direct determination of sulfide.

    Science.gov (United States)

    Liu, Zhuang; Ma, Hanyue; Sun, Huihui; Gao, Rui; Liu, Honglei; Wang, Xia; Xu, Ping; Xun, Luying

    2017-12-15

    Environmental pollution caused by sulfide compounds has become a major problem for public health. Hence, there is an urgent need to explore a sensitive, selective, and simple sulfide detection method for environmental monitoring and protection. Here, a novel microbial biosensor was developed using recombinant Escherichia coli BL21 (E. coli BL21) expressing sulfide:quinone oxidoreductase (SQR) for sulfide detection. As an important enzyme involved in the initial step of sulfide metabolism, SQR oxidizes sulfides to polysulfides and transfers electrons to the electron transport chain. Nanoporous gold (NPG) with its unique properties was selected for recombinant E. coli BL21 cells immobilization, and then glassy carbon electrode (GCE) was modified by the resulting E. coli/NPG biocomposites to construct an E. coli/NPG/GCE bioelectrode. Due to the catalytic oxidation properties of NPG for sulfide, the electrochemical reaction of the E. coli/NPG/GCE bioelectrode is attributed to the co-catalysis of SQR and NPG. For sulfide detection, the E. coli/NPG/GCE bioelectrode showed a good linear response ranging from 50μM to 5mM, with a high sensitivity of 18.35μAmM -1 cm -2 and a low detection limit of 2.55μM. The anti-interference ability of the E. coli/NPG/GCE bioelectrode is better than that of enzyme-based inhibitive biosensors. Further, the E. coli/NPG/GCE bioelectrode was successfully applied to the detection of sulfide in wastewater. These unique properties potentially make the E. coli/NPG/GCE bioelectrode an excellent choice for reliable sulfide detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Directory of Open Access Journals (Sweden)

    Sanchi Nenkova

    2011-04-01

    Full Text Available Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of copper sulfides in the lignocellulosic matrix were investigated. The modification with a system of 2 components: cupric sulfate pentahydrate (CuSO4. 5H2O and sodium thiosulfate pentahydrate (Na2S2O3.5H2O for wood fibers is preferred. Optimal parameters were established for the process: 40 % of the reduction system; hydromodule M=1:6; and ratio of cupric sulfate pentahydrate:sodium thiosulfate pentahydrate = 1:2. The coordinative connection of copper ions with oxygen atoms of cellulose OH groups and aromatic nucleus in lignin macromolecule was observed.

  12. A novel KMgPO{sub 4}:Tb{sup 3+}(KMPT) phosphor for radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Palan, C.B., E-mail: chetanpalan27@gmail.com [Department of Physics, Sant Gadge Baba Amravati University, Amravati 44602 (India); Bajaj, N.S. [Department of Physics, Toshniwal ACS College, Sengaon, Hingoli 431542 (India); Soni, A. [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Mumbai 400094 (India); Omanwar, S.K. [Department of Physics, Sant Gadge Baba Amravati University, Amravati 44602 (India)

    2016-08-15

    The polycrystalline sample of KMgPO{sub 4}:Tb{sup 3+}(KMPT) phosphor was successfully synthesized by using solid state method. The X-ray powder diffraction, photoluminescence (PL) emission and excitation spectra, thermoluminescence (TL) and optically stimulated luminescence (OSL) were thoroughly measured. The PL spectra of as-prepared KMPT phosphor showed characteristic blue-green emission, when excited by 226 nm under UV excitation. The optimum PL intensity was observed at 0.01 mol concentration of Tb{sup 3+}ions and this phosphor used for remaining studies. The TL glow curve of KMPT phosphor consist two characterized peaks, which were deconvoluted and the kinetic parameters i.e. trap depth or activation energy, order of kinetic and frequency factor determined by using peak shape method. TL sensitivity of KMPT phosphors was found to be 10% than that of TL sensitivity of TLD-500 phosphor. The OSL sensitivity of KMPT was 0.92 times than OSL sensitivity of α-Al{sub 2}O{sub 3}:C phosphor. The OSL decay curve KMPT phosphor consist of three component having photoionization cross sections were found to be 0.26548×10{sup −17}, 0.220×10{sup −17}, 2.92×10{sup −17} cm{sup 2}. The KMPT phosphor showed linear dose response in range 100–6000 mGy and fading of KMPT phosphor was found to be 31% in 15 days. The Minimum detectable dose (MDD) was found to be 0.39 mGy with corresponding 3σ back ground. The phosphor shows good dosimetry properties such as sensitivity, dose response, MDD, Fading.

  13. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    OpenAIRE

    Veldkamp, T.; Diepen, van, J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Livestock Research to determine the bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens. A precise estimate of the bioavailability of zinc sources is required both for fulf...

  14. Cuprous sulfide as a film insulation for superconductors

    International Nuclear Information System (INIS)

    Wagner, G.R.; Uphoff, J.H.; Vecchio, P.D.

    1982-01-01

    The LCP test coil utilizes a conductor of forced-flow design having 486 strands of multifilametary Nb 3 Sn compacted in a stainless steel sheath. The impetus for the work reported here stemmed from the need for some form of insulation for those strands to prevent sintering during reaction and to reduce ac losses. The work reported here experimented with cuprous sulfide coatings at various coating rates and thicknesses. Two solenoids that were wound with cuprous sulfide-coated wires and heat-treated at 700 degrees C were found to demonstrate that the film is effective in providing turn-to-turn insulation for less than about 0.5V between turns. The sulfide layer provided a metal-semiconductor junction which became conducting at roughly 0.5V. Repeated cycling of the coil voltage in excess of that value produced no damage to the sulfide layer. The junction provided self-protection for the coil as long as the upper allowable current density in the sulfide was not exceeded. No training was apparent up to 6.4 T

  15. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    International Nuclear Information System (INIS)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-01-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T 1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T 1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T 1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used. [copyright] 2001 American Institute of Physics

  16. Remediation of Sulfidic Wastewater by Aeration in the Presence of Ultrasonic Vibration

    Directory of Open Access Journals (Sweden)

    F. Ahmad

    2018-06-01

    Full Text Available In the current study, the aerial oxidation of sodium sulfide in the presence of ultrasonic vibration is investigated. Sulfide analysis was carried out by the methylene blue method. Sodium sulfide is oxidized to elemental sulfur in the presence of ultrasonic vibration. The influence of air flow rate, initial sodium sulfide concentration and ultrasonic vibration intensity on the oxidation of sodium sulfide was investigated. The rate law equation regarding the oxidation of sulfide was determined from the experimental data. The order of reaction with respect to sulfide and oxygen was found to be 0.36 and 0.67 respectively. The overall reaction followed nearly first order kinetics.

  17. Girdler-sulfide process physical properties

    International Nuclear Information System (INIS)

    Neuburg, H.J.; Atherley, J.F.; Walker, L.G.

    1977-05-01

    Physical properties of pure hydrogen sulfide and of gaseous and liquid solutions of the H 2 S-H 2 O system have been formulated. Tables for forty-nine different properties in the pressure and temperature range of interest to the Girdler-Sulfide (GS) process for heavy water production are given. All properties are presented in SI units. A computer program capable of calculating properties of the pure components as well as gaseous mixtures and liquid solutions at saturated and non-saturated conditions is included. (author)

  18. Hydrogen sulfide production from cysteine and homocysteine by periodontal and oral bacteria.

    Science.gov (United States)

    Yoshida, Akihiro; Yoshimura, Mamiko; Ohara, Naoya; Yoshimura, Shigeru; Nagashima, Shiori; Takehara, Tadamichi; Nakayama, Koji

    2009-11-01

    Hydrogen sulfide is one of the predominant volatile sulfur compounds (VSCs) produced by oral bacteria. This study developed and evaluated a system for detecting hydrogen sulfide production by oral bacteria. L-methionine-alpha-deamino-gamma-mercaptomethane-lyase (METase) and beta carbon-sulfur (beta C-S) lyase were used to degrade homocysteine and cysteine, respectively, to produce hydrogen sulfide. Enzymatic reactions resulting in hydrogen sulfide production were assayed by reaction with bismuth trichloride, which forms a black precipitate when mixed with hydrogen sulfide. The enzymatic activities of various oral bacteria that result in hydrogen sulfide production and the capacity of bacteria from periodontal sites to form hydrogen sulfide in reaction mixtures containing L-cysteine or DL-homocysteine were assayed. With L-cysteine as the substrate, Streptococcus anginosus FW73 produced the most hydrogen sulfide, whereas Porphyromonas gingivalis American Type Culture Collection (ATCC) 33277 and W83 and Fusobacterium nucleatum ATCC 10953 produced approximately 35% of the amount produced by the P. gingivalis strains. Finally, the hydrogen sulfide found in subgingival plaque was analyzed. Using bismuth trichloride, the hydrogen sulfide produced by oral bacteria was visually detectable as a black precipitate. Hydrogen sulfide production by oral bacteria was easily analyzed using bismuth trichloride. However, further innovation is required for practical use.

  19. Phosphor plate mammography: contrast studies and clinical experience

    International Nuclear Information System (INIS)

    Chang, C.H.J.; Martin, N.L.; Templeton, A.W.; Cook, L.T.; Harrison, L.A.; McFadden, M.A.; Dwyer, S.J. III; Spicer, J.; Crystal, J.M.

    1992-01-01

    Mammography and accurate microcalcification detection require very good spatial resolution. We have compared the diagnostic capabilities of reduced-exposure, third-generation, 5 cycles/mm computed radiography (CR) phosphor plates with conventional screen-film in 67 patients. No difference in diagnostic accuracy was detected. The digital characteristics of storage phosphor plates erabled us to study the relationship between contrast and spatial resolution. We developed a computer program to identify a single 100 μm pixel in a digital image and assign various gray levels to that pixel. Using this model, we determined that, for our 5 cycles/mm CR system, the imaged contrast of a 100 μm object was 62% of the original contrast. Current 5 cycles/mm phosphor plate systems cannot adequately detect microcalcifications that approximate 100 μm or smaller unless a magnification technique is used. (orig.)

  20. Persistent phosphors for painting, medical and biological applications

    International Nuclear Information System (INIS)

    Nazarov, M.

    2013-01-01

    Multiphase micro and nanoparticle persistent phosphors are synthesized and applied for different fields including painting, medical and biological investigations. A lot of examples show a broad range of applications of persistent luminescence from bulk materials to high tech products, especially in medicine. The development of high efficiency nanosized phosphor makes it possible to propose persistent materials as very good candidates for photodynamic therapy of cancer. An artificial block from slag, concrete, and sand covered with SrAl 2 O 4 :Eu 2+ , Dy 3+ based phosphor is prepared, and a new direction in biology for algae cultivation and artificial reef is discussed. For the first time, underwater luminescence is experimentally studied under real sea conditions. Bright blue-green long-lasting afterglow is registered at a depth of 5 m. The fishes are attracted by the light of the artificial reef. (author)

  1. Measurement of thermal neutron fluence with CaSO4 thermoluminescent phosphors

    International Nuclear Information System (INIS)

    Liu Jinhua; Su Jingling; Wei Zemin

    1984-01-01

    During neutron irradiation, some TL phosphors were activated. After leaving the irradiation field the TL phosphor produced self-irradiation. The TL output of self-dose was only related to the original neutron fluence and independent of the γ-radiation. Several CaSO 4 TL phosphors were made. They were CaSO 4 :Dy, CaSO 4 :Dy-Teflon, CaSO 4 :Dy mixed with Dy 2 O 3 , CaSO 4 :Mn mixed with Dy 2 O 3 . The linearity, and lower detection limits of these TL phosphors were measured. The thermal neutron response of CaSO 4 :Mn mixed with Dy 2 O 3 was 64 R/(10 10 cm -2 ) and the lower detection limit was 1.3x10 5 cm -2

  2. Zinc electrode - its behaviour in the nickel oxide-zinc accumulator

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Certain aspects of zinc electrode reaction and behavior are investigated in view of their application to batteries. The properties of the zinc electrode in a battery system are discussed, emphasizing porous structure. Shape change is emphasized as the most important factor leading to limited battery cycle life. It is shown that two existing models of shape change based on electroosmosis and current distribution are unable to consistently describe observed phenomena. The first stages of electrocrystallization are studied and the surface reactions between the silver substrate and the deposited zinc layer are investigated. The reaction mechanism of zinc and amalgamated zinc in an alkaline electrolyte is addressed, and the batter system is studied to obtain information on cycling behavior and on the shape change phenomenon. The effect on cycle behavior of diferent amalgamation techniques of the zinc electrode and several additives is addressed. Impedance measurements on zinc electrodes are considered, and battery behavior is correlated with changes in the zinc electrode during cycling. 193 references.

  3. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    NARCIS (Netherlands)

    Veldkamp, T.; Diepen, van J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR

  4. Simulation and optimisation of a position sensitive scintillation detector with wavelength shifting fibers for thermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Herzkamp, Matthias; Engels, Ralf; Kemmerling, Guenter [ZEA-2, Forschungszentrum Juelich (Germany); Brueckel, Thomas [JCNS, Forschungszentrum Juelich (Germany); Stahl, Achim [III. Physikalisches Institut B, RWTH Aachen (Germany); Waasen, Stefan van [ZEA-2, Forschungszentrum Juelich (Germany); Faculty of Engineering, University of Duisburg-Essen (Germany)

    2015-07-01

    In neutron scattering experiments it is important to have position sensitive large scale detectors for thermal neutrons. A detector based on a neutron scintillator with wave length shifting fibers is a new kind of such a detector. We present the simulation of the detector based on the microscopic structure of the scintillation material of the mentioned detector. It consists of a converter and a scintillation powder bound in a matrix. The converter in our case is lithium fluoride with enriched lithium 6, to convert thermal neutrons into high energetic alpha and triton particles. The scintillation material is silver doped zinc sulfide. We show that pulse height spectra obtained by these scintillators can be be explained by the simple model of randomly distributed spheres of zinc sulfide and lithium fluoride. With this model, it is possible to optimise the mass ratio of zinc sulfide to lithium fluoride with respect to detection efficiency and/or energy deposition in zinc sulfide.

  5. Sulfidation of alumina-supported iron and iron-molybdenum oxide catalysts

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Crajé, M.W.J.; Hadders, R.H.; Gerkema, E.; Beer, de V.H.J.; Kraan, van der A.M.

    1990-01-01

    The transition of alumina-supported iron and iron-molybdenum catalysts from the oxidic precursor to the sulfided catalysts was systematically studied by means of in-situ Mössbauer spectroscopy at room temperature. This enabled the adjudgement of various sulfidic phases in the sulfided catalysts. The

  6. A novel orange emissive phosphor SrWO4:Sm3+ for white light-emitting diodes

    International Nuclear Information System (INIS)

    Ju Zhenghua; Wei Ruiping; Ma Jingxin; Pang Chaoran; Liu Weisheng

    2010-01-01

    Research highlights: → A novel orange emissive phosphor SrWO 4 :Sm 3+ was firstly reported. → The optics properties of Sm 3+ -doped SrWO 4 phosphor were successfully discussed. → The temperature-dependent luminescence indicates the phosphor exhibits a small thermal-quenching property. → The phosphor is a potential candidate as orange-emitting component for white LED. - Abstract: A novel orange emissive phosphor, Sm 3+ -doped SrWO 4 , was synthesized by high temperature solid-state reaction in air atmosphere. The excitation spectra show that the phosphors can be efficiently excited by ultraviolet and near-ultraviolet light, the optimized concentration is 4 mol%. Three emission peaks locate at 562, 596 and 642 nm, corresponding to CIE chromaticity coordinates of (x = 0.54, y = 0.46), which indicates the orange light emitting. The decay curves are well fitted with triple-exponential decay models. The quantum yield of the Sr 0.96 Sm 0.04 WO 4 phosphor is about 70.65% under excitation of 377 nm. Furthermore, the temperature-dependent luminescence indicates the phosphor exhibits a small thermal-quenching property. So the phosphor is able to be applied to UV-LED chip-based white light-emitting diodes.

  7. Method for separating mono- and di-octylphenyl phosphoric acid esters

    International Nuclear Information System (INIS)

    Arnold, W.D. Jr.

    1977-01-01

    A method for separating mono-octylphenyl phosphoric acid ester and di-octylphenyl phosphoric acid ester from a mixture thereof comprises reacting the ester mixture with a source of lithium or sodium ions to form a mixture of the phosphate salts; contacting the salt mixture with an organic solvent which causes the dioctylphenyl phosphate salt to be dissolved in the organic solvent phase and the mono-octylphenyl phosphate salt to exist in a solid phase; separating the phases; recovering the phosphate salts from their respective phases; and acidifying the recovered salts to form the original phosphoric acid esters

  8. Red coloration by heat treatment of the coprecipitate of cadmium sulfide and mercury(II) sulfide prepared from the nitrates

    International Nuclear Information System (INIS)

    Nakahara, Fujiya

    1979-01-01

    The effects of starting salts on the color, particle size and crystal structure of mercury-cadmium-sulfide pigments were investigated. The coprecipitate (N-S) of cadmium sulfide and mercury (II) sulfide was prepared by adding sodium sulfide solution to a mixed cadmium-mercury (II) nitrate solution. The coprecipitate (C-S) of cadmium sulfide and mercury (II) sulfide was also prepared from the mixed solution of their chlorides by the same method as described above. The coprecipitated products were heat-treated (calcination or hydrothermal treatment) at 350 0 C for 2 hours and subsequent changes in powder properties of both products were compared from each other. The powder properties of N-S, C-S and their heat-treated products were investigated by spectral reflectance, electron microscopy, X-ray diffraction and specific surface area measurements. Sample (N-C) obtained by the calcination of N-S was brown, indicating no red coloration, but the calcined product (C-C) of C-S developed a red color. Cl - and hot water were found to be effective for the red color development of the pigment. The effectiveness was confirmed by calcining N-S in the presence of NaCl or by treating it hydrothermally. It was found that halides other than NaCl, (e.g., NH 4 Cl, KCl, KBr and KI), were also effective for the color development of the pigment. The red samples are solid solutions with a basically hexagonal CdS structure, and it appears that CdS takes up HgS without any apparent structural changes. The particle size of the red samples are larger than those of the non red samples. (author)

  9. Uranium extraction in phosphoric acid

    International Nuclear Information System (INIS)

    Araujo Figueiredo, C. de

    1984-01-01

    Uranium is recovered from the phosphoric liquor produced from the concentrate obtained from phosphorus-uraniferous mineral from Itataia mines (CE, Brazil). The proposed process consists of two extraction cycles. In the first one, uranium is reduced to its tetravalent state and then extracted by dioctylpyrophosphoric acid, diluted in Kerosene. Re-extraction is carried out with concentrated phosphoric acid containing an oxidising agent to convert uranium to its hexavalent state. This extract (from the first cycle) is submitted to the second cycle where uranium is extracted with DEPA-TOPO (di-2-hexylphosphoric acid/tri-n-octyl phosphine oxide) in Kerosene. The extract is then washed and uranium is backextracted and precipitated as commercial concentrate. The organic phase is recovered. Results from discontinuous tests were satisfactory, enabling to establish operational conditions for the performance of a continuous test in a micro-pilot plant. (Author) [pt

  10. A method for measuring sulfide toxicity in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Livshits, Leonid; Gross, Einav

    2017-01-01

    Cysteine catabolism by gut microbiota produces high levels of sulfide. Excessive sulfide can interfere with colon function, and therefore may be involved in the etiology and risk of relapse of ulcerative colitis, an inflammatory bowel disease affecting millions of people worldwide. Therefore, it is crucial to understand how cells/animals regulate the detoxification of sulfide generated by bacterial cysteine catabolism in the gut. Here we describe a simple and cost-effective way to explore the mechanism of sulfide toxicity in the nematode Caenorhabditis elegans ( C. elegans ). •A rapid cost-effective method to quantify and study sulfide tolerance in C. elegans and other free-living nematodes.•A cost effective method to measure the concentration of sulfide in the inverted plate assay.

  11. Quantitative Characterization of Phosphor Detector for Fusion Plasmas

    International Nuclear Information System (INIS)

    Baciero, A.; Zurro, B.; McCarthy, K. J.

    2004-01-01

    Experiments made to characterize phosphor screens with application as broadband radiation detectors, are described. Several radiation sources, covering the spectral range between the ultraviolet and X ray, were used. In addition, details are given of three original phosphor-screen-based detectors that were designed for use as broadband detectors in magnetically confined fusion devices. The first measurements obtained with these detectors in plasmas created in the TJ-II stellarator device are presented together with the analysis performed. (Author)

  12. Influence of Water Salinity on Air Purification from Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Leybovych L.I.

    2015-12-01

    Full Text Available Mathematical modeling of «sliding» water drop motion in the air flow was performed in software package FlowVision. The result of mathematical modeling of water motion in a droplet with diameter 100 microns at the «sliding» velocity of 15 m/s is shown. It is established that hydrogen sulfide oxidation occurs at the surface of phases contact. The schematic diagram of the experimental setup for studying air purification from hydrogen sulfide is shown. The results of the experimental research of hydrogen sulfide oxidation by tap and distilled water are presented. The dependence determining the share of hydrogen sulfide oxidized at the surface of phases contact from the dimensionless initial concentration of hydrogen sulfide in the air has been obtained.

  13. Effect of consuming zinc-fortified bread on serum zinc and iron status of zinc-deficient women: A double blind, randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Akbar Badii

    2012-01-01

    Full Text Available After iron deficiency, zinc deficiency is the major micronutrient deficiency in developing countries, and staple food fortification is an effective strategy to prevent and improve it among at-risk-populations. No action has been taken to reduce zinc deficiency via flour fortification so far in Iran, and little is known about the influence of zinc fortification of flour on serum zinc and the iron status, and also about the optimum and effective amount of zinc compound that is used in food fortification. The objective of this study is to evaluate the influence of consuming zinc-fortified breads on the zinc and iron status in the blood serum. In this study, three types of bread were prepared from non-fortified and fortified flours, with 50 and 100 ppm elemental zinc in the form of sulfate. Eighty zinc-deficient women aged 19 to 49 years were randomly assigned to three groups; The volunteers received, daily, (1 a non-fortified bread, (2 a high-zinc bread, and (3 a low-zinc bread for one month. Serum zinc and iron were measured by Atomic Absorption before and after the study. Results showed a significant increase in serum zinc and iron levels in all groups (p 0.05. Absorption of zinc and iron in the group that consumed high-zinc bread was significantly greater than that in the group that received low-zinc bread (p < 0.01. It was concluded that fortification of flour with 50-100 ppm zinc was an effective way to achieve adequate zinc intake and absorption in zinc-deficient people. It also appeared that consuming zinc-fortified bread improved iron absorption.

  14. Electroluminescent efficiency of alternating current thick film devices using ZnS:Cu,Cl phosphor

    International Nuclear Information System (INIS)

    Sharma, Gaytri; Han, Sang Do; Kim, Jung Duk; Khatkar, Satyender P.; Rhee, Young Woo

    2006-01-01

    ZnS:Cu,Cl phosphor is prepared with the help of low intensity milling of the precursor material in two step firing process. The synthesized phosphor is used for the preparation of alternating current thick film electroluminescent (ACTFEL) devices with screen-printing method. The commission international de l'Eclairge (CIE) color co-ordinates of the ACTFEL devices prepared by these phosphor layers shows a shift from bluish-green to green region with the change in the amount of Cu in the phosphor. The various parameters to improve the efficiency and luminance of the devices have also been investigated. The brightness of the ac thick film EL device depends on the particle size of the phosphor, crystallinity, amount of binding material and applied voltage. The EL device fabricated with phosphor having average particle size of 25 μm shows maximum luminescence, when 60% phosphor concentration is used with respect to binding material. EL intensity is also linearly dependent on frequency. It is due the increase of excitation chances of the host matrix or dopant ions with increasing frequency

  15. High-efficient, bicolor-emitting GdVO_4:Dy"3"+ phosphor under near ultraviolet excitation

    International Nuclear Information System (INIS)

    Lu, Jinjin; Zhou, Jia; Jia, Huayu; Tian, Yue

    2015-01-01

    Bicolor emitting GdVO_4:Dy"3"+ phosphor with short columniation-shape was prepared via a simple co-precipitation process. The optimal doping concentration for obtaining maximal luminescent intensity was confirmed to be 0.3 mol% and the electric dipole–dipole interaction is responsible for concentration quenching of Dy"3"+ emission in GdVO_4 phosphor. In order to evaluate the luminescent performance of as-prepared phosphor, the luminescent efficiency and color coordinates were studied. The results show that luminescent efficiency of this phosphor is very high under near UV excitation and twice times higher than commercial Y_2O_2S:Eu"3"+ phosphor. In addition, the color coordinates for optimal Dy"3"+ concentration are (0.339, 0.379), which are close to equal energy point. Therefore, the GdVO_4:Dy"3"+ phosphor may have potential application for solid state lighting.

  16. Sulfidation of carbon-supported iron oxide catalysts

    NARCIS (Netherlands)

    Ramselaar, W.L.T.M.; Hadders, R.H.; Gerkema, E.; Beer, de V.H.J.; Oers, van E.M.; Kraan, van der A.M.

    1989-01-01

    The sulfidation of carbon-supported iron oxide catalysts was studied by means of in-situ Mössbauer spectroscopy at temperatures down to 4.2 K. The catalysts were dried in two different ways and then sulfided in a flow of 10% H2S in H2 at temperatures between 293 and 773 K. Thiophene

  17. Optimization of the superconducting phase of hydrogen sulfide

    Science.gov (United States)

    Degtyarenko, N. N.; Masur, E. A.

    2015-12-01

    The electron and phonon spectra, as well as the densities of electron and phonon states of the SH3 phase and the stable orthorhombic structure of hydrogen sulfide SH2, are calculated for the pressure interval 100-225 GPa. It is found that the I4/ mmm phase can be responsible for the superconducting properties of metallic hydrogen sulfide along with the SH3 phase. Sequential stages for obtaining and conservation of the SH2 phase are proposed. The properties of two (SH2 and SH3) superconducting phases of hydrogen sulfide are compared.

  18. Chemical dissolution of sulfide minerals

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1977-01-01

    Chemical dissolution treatments involving the use of aqua regia, 4 N HNO3, H2O2-ascorbic acid, oxalic acid, KClO3+HCl, and KClO3+HCl followed by 4 N HNO3 were applied to specimens of nine common sulfide minerals (galena, chalcopyrite, cinnabar, molybdenite, orpiment, pyrite, stibnite, sphalerite, and tetrahedrite) mixed individually with a clay loam soil. The resultant decrease in the total sulfur content of the mixture, as determined by using the Leco induction furnace, was used to evaluate the effectiveness of each chemical treatment. A combination of KClO3+HCl followed by 4 N HNO3 boiling gently for 20 min has been shown to be very effective in dissolving all the sulfide minerals. This treatment is recommended to dissolve metals residing in sulfide minerals admixed with secondary weathering products, as one step in a fractionation scheme whereby metals in soluble and adsorbed forms, and those associated with organic materials and secondary oxides, are first removed by other chemical extractants.

  19. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples

    International Nuclear Information System (INIS)

    Thorson, Megan K.; Ung, Phuc; Leaver, Franklin M.; Corbin, Teresa S.; Tuck, Kellie L.; Graham, Bim; Barrios, Amy M.

    2015-01-01

    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil. - Highlights: • Lanthanide–azide based sulfide sensors were synthesized and characterized. • The probes have excitation and emission profiles compatible with sulfide-contaminated samples from the petrochemical industry. • A terbium-based probe was used to measure the sulfide concentration in oil refinery wastewater. • A europium-based probe had compatibility with partially refined crude oil samples.

  20. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples

    Energy Technology Data Exchange (ETDEWEB)

    Thorson, Megan K. [Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84108 (United States); Ung, Phuc [Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052 (Australia); Leaver, Franklin M. [Water & Energy Systems Technology, Inc., Kaysville, UT 84037 (United States); Corbin, Teresa S. [Quality Services Laboratory, Tesoro Refining and Marketing, Salt Lake City, UT 84103 (United States); Tuck, Kellie L., E-mail: kellie.tuck@monash.edu [School of Chemistry, Monash University, Victoria 3800 (Australia); Graham, Bim, E-mail: bim.graham@monash.edu [Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052 (Australia); Barrios, Amy M., E-mail: amy.barrios@utah.edu [Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84108 (United States)

    2015-10-08

    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil. - Highlights: • Lanthanide–azide based sulfide sensors were synthesized and characterized. • The probes have excitation and emission profiles compatible with sulfide-contaminated samples from the petrochemical industry. • A terbium-based probe was used to measure the sulfide concentration in oil refinery wastewater. • A europium-based probe had compatibility with partially refined crude oil samples.

  1. Radiation effects in zinc oxide: zinc under bombardment with KeV ions

    International Nuclear Information System (INIS)

    Hastings, J.W.L.

    1967-01-01

    The energy loss, light output, depth of deterioration and the deterioration constant have been determined as a function of energy for various atomic projectiles impinging upon samples of a powdered Zn:Zn phosphor at energies below 105 KeV. The energy loss was observed as a reduction in the light output when projectiles traversed thin regions of previously damaged phosphor. The energy losses for heavier projectiles ( 14 N, 40 Ar, 84 Kr), relative to hydrogen, were found to be lower than those predicted for an amorphous stopping medium. The light output for a given projectile was found to be approximately proportional to the amount of energy lost in electronic collisions. When a phosphor is subjected to prolonged bombardment by heavy ions the deterioration depth is fairly well defined and its value was determined by a measurement of the energy loss of a hydrogen beam in traversing the damaged region. The depths are very large, are proportional to the projectile velocity and seem to be determined to a significant degree by electronic stopping. The deterioration constant, C, is a measure of the ability of a projectile to deteriorate a phosphor and its value is proportional to the number of defects introduced in unit distance along the trajectory of the projectile. The constant was determined from measurements of the efficiencies η, and η o , of partly damaged and undamaged phosphor, respectively, using the observed relationship, C (η/η o - 1) n -1 where n is the irradiation dose. The relative magnitudes of the C values for 14 N, 40 Ar were found to be in agreement with measured nuclear energy loss cross sections for these projectiles. (author)

  2. The solubility of iron sulfides and their role in mass transport in Girdler-Sulfide heavy water plants

    International Nuclear Information System (INIS)

    Tewari, P.H.; Wallace, G.; Campbell, A.B.

    1978-04-01

    The solubilities of several iron sulfides, mackinawite FeSsub((1-x)), troilite FeS, pyrrhotite Fesub((1-x))S (monoclinic and hexagonal), and pyrite FeS 2 have been determined in aqueous H 2 S solution at 0.1 MPa and 1.8 MPa H 2 S pressures between 25 deg and 125 deg C. The dependence of solubility on the pH of the medium has also been studied. It is concluded that since mackinawite is the most soluble of the iron sulfides, and has the highest dissolution rate and the steepest decline in solubility with temperature, its prolonged formation during plant operation should be avoided to minimize iron transport from lower to higher temperature areas in Girdler-Sulfide (G.S.) heavy water plants. This can be achieved by a preconditioning of carbon steel surfaces to convert mackinawite to pyrrhotite and pyrite

  3. Promotion of Crystal Growth on Biomass-based Carbon using Phosphoric Acid Treatments

    Directory of Open Access Journals (Sweden)

    Liwei Yu

    2015-02-01

    Full Text Available The effect of phosphoric acid treatments on graphitic microcrystal growth of biomass-based carbons was investigated using X-ray diffraction, infrared spectroscopy, and Raman spectroscopy. Although biomass-based carbons are believed to be hard to graphitize even after heat treatments well beyond 2000 °C, we found that graphitic microcrystals of biomass-based carbons were significantly promoted by phosphoric acid treatments above 800 °C. Moreover, twisted spindle-like whiskers were formed on the surface of the carbons. This suggests that phosphorus-containing groups turn graphitic microcrystalline domains into graphite during phosphoric acid treatments. In addition, the porous texture of the phosphoric acid-treated carbon has the advantage of micropore development.

  4. Phosphors for near UV-Emitting LED's for Efficacious Generation of White Light

    Energy Technology Data Exchange (ETDEWEB)

    McKittrick, Joanna [Univ. of California, San Diego, CA (United States)

    2013-09-30

    1) We studied phosphors for near-UV (nUV) LED application as an alternative to blue LEDs currently being used in SSL systems. We have shown that nUV light sources could be very efficient at high current and will have significantly less binning at both the chip and phosphor levels. We identified phosphor blends that could yield 4100K lamps with a CRI of approximately 80 and LPWnUV,opt equal to 179 for the best performing phosphor blend. Considering the fact that the lamps were not optimized for light coupling, the results are quite impressive. The main bottleneck is an optimum blue phosphor with a peak near 440 nm with a full width half maximum of about 25 nm and a quantum efficiency of >95%. Unfortunately, that may be a very difficult task when we want to excite a phosphor at ~400 nm with a very small margin for Stokes shift. Another way is to have all the phosphors in the blend having the excitation peak at 400 nm or slightly shorter wavelength. This could lead to a white light source with no body color and optimum efficacy due to no self-absorption effects by phosphors in the blend. This is even harder than finding an ideal blue phosphor, but not necessarily impossible. 2) With the phosphor blends identified, light sources using nUV LEDs at high current could be designed with comparable efficacy to those using blue LEDs. It will allow us to design light sources with multiple wattages using the same chips and phosphor blends simply by varying the input current. In the case of blue LEDs, this is not currently possible because varying the current will lower the efficacy at high current and alter the color point. With improvement of phosphor blends, control over CRI could improve. Less binning at the chip level and also at the phosphor blend level could reduce the cost of SSL light sources. 3) This study provided a deeper understanding of phosphor characteristics needed for LEDs in general and nUV LEDs in particular. Two students received Ph.D. degrees and three

  5. Laser cleaning of sulfide scale on compressor impeller blade

    International Nuclear Information System (INIS)

    Tang, Q.H.; Zhou, D.; Wang, Y.L.; Liu, G.F.

    2015-01-01

    Highlights: • The effects of sulfide layers and fluence values on the mechanism of laser cleaning were experimentally established. • The specimen surface with sulfide scale becomes slightly smoother than that before laser cleaning. • The mechanism of laser cleaning the sulfide scale of stainless steel is spallation without oxidization. • It would avoid chemical waste and dust pollution using a fiber laser instead of using nitric acids or sandblasting. - Abstract: Sulfide scale on the surface of a compressor impeller blade can considerably reduce the impeller performance and its service life. To prepare for subsequent remanufacturing, such as plasma spraying, it needs to be removed completely. In the corrosion process on an FV(520)B stainless steel, sulfide scale is divided into two layers because of different outward diffusion rates of Cr, Ni and Fe. In this paper, the cleaning threshold values of the upper and inner layers and the damage threshold value of the substrate were investigated using a pulsed fiber laser. To obtain experimental evidence, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and 3D surface profilometry were employed to investigate the two kinds of sulfide layers on specimens before, during, and after laser cleaning.

  6. Luminescence and electron degradation properties of Bi doped CaO phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, 11115 Omdurman (Sudan); Kroon, R.E.; Coetsee, E.; Ntwaeaborwa, O.M. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Seed Ahmed, H.A.A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, 11115 Omdurman (Sudan); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa)

    2015-11-30

    Graphical abstract: - Highlights: • Blue emitting Ca{sub 1−x}O:Bi{sub x=0.5%} phosphor powder was successfully prepared. • Strong blue near-UV emission was obtained. • Electron beam induced cathodoluminescence intensity degradation occurred. • XPS was successfully used to explain the degradation process. - Abstract: Ca{sub 1−x}O:Bi{sub x=0.5%} phosphor powder was successfully synthesized by the sol-gel combustion method. The structure, morphology and luminescent properties of the phosphor were characterized by X-ray diffraction, scanning electron microscopy, photoluminescence and cathodoluminescence (CL) spectroscopy. The results showed that the Ca{sub 1−x}O:Bi{sub x=0.5%} consisted of single face-centred cubic crystals and that the phosphor particles were uniformly distributed. When the phosphor was excited by a xenon lamp at 355 nm, or a 325 nm He–Cd laser, or electron beam, it emitted strongly in the blue near-UV range with a wavelength of 395 nm ({sup 3}P{sub 1} → {sup 1}S{sub 0} transition of Bi{sup 3+}). The CL intensity was monitored as a function of the accelerating voltage and also as a function of the beam current. The powder was also subjected to a prolonged electron beam irradiation to study the electron beam induced CL intensity degradation. X-ray photoelectron spectroscopy was used to analyze the Ca{sub 1−x}O:Bi{sub x=0.5%} phosphor sample surface before and after degradation.

  7. Production of zinc pellets

    Science.gov (United States)

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  8. Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication

    KAUST Repository

    Chi, Yu-Chieh

    2015-12-21

    An advanced light-fidelity (Li-Fi) system based on the blue Gallium nitride (GaN) laser diode (LD) with a compact white-light phosphorous diffuser is demonstrated for fusing the indoor white-lighting and visible light communication (VLC). The phosphorous diffuser adhered blue GaN LD broadens luminescent spectrum and diverges beam spot to provide ample functionality including the completeness of Li-Fi feature and the quality of white-lighting. The phosphorous diffuser diverged white-light spot covers a radiant angle up to 120o with CIE coordinates of (0.34, 0.37). On the other hand, the degradation on throughput frequency response of the blue LD is mainly attributed to the self-feedback caused by the reflection from the phosphor-air interface. It represents the current state-of-the-art performance on carrying 5.2-Gbit/s orthogonal frequency-division multiplexed 16-quadrature-amplitude modulation (16-QAM OFDM) data with a bit error rate (BER) of 3.1 × 10−3 over a 60-cm free-space link. This work aims to explore the plausibility of the phosphorous diffuser diverged blue GaN LD for future hybrid white-lighting and VLC systems.

  9. Luminescence properties of dysprosium doped calcium magnesium silicate phosphor by solid state reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Ishwar Prasad, E-mail: ishwarprasad1986@gmail.com [School of Studies in Physics & Astrophysics, Pt. Ravishankar Shukla University, Raipur, C.G. 492010 (India); Chandrakar, Priya; Baghel, R.N.; Bisen, D.P.; Brahme, Nameeta [School of Studies in Physics & Astrophysics, Pt. Ravishankar Shukla University, Raipur, C.G. 492010 (India); Tamrakar, Raunak Kumar [Department of Applied Physics, Bhilai Institute of Technology, Durg, C.G. 491001 (India)

    2015-11-15

    Dysprosium doped calcium magnesium silicate (CaMgSi{sub 2}O{sub 6}:Dy{sup 3+}) white light emitting phosphor was synthesized by solid state reaction process. The crystal structure of sintered phosphor was monoclinic structure with space group C2/c. Chemical composition of the sintered CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor was confirmed by EDX. The prepared CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor was excited from 352 nm and their corresponding emission spectra were recorded at blue (470 nm), yellow (570 nm) and red (675 nm) line due to the {sup 4}F{sub 9/2} → {sup 6}H{sub 15/2}, {sup 4}F{sub 9/2} → {sup 6}H{sub 13/2}, {sup 4}F{sub 9/2} → {sup 6}H{sub 11/2} transitions of Dy{sup 3+} ions. The combination of these three emissions constituted as white light confirmed by the Commission Internationale de L'Eclairage (CIE) chromatic coordinate diagram. The possible mechanism of the white light emitting long lasting CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor was also investigated. Investigation on afterglow property show that phosphor held fast and slow decay process. The peak of mechanoluminescence (ML) intensity increases linearly with increasing impact velocity of the moving piston. Thus the present investigation indicates that the local piezoelectricity-induced electron bombardment model is responsible to produce ML in prepared CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor. - Highlights: • The crystal structure of CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor is consistent with standard monoclinic structure. • CIE coordinates of CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor is suitable as white light emitting phosphor. • The local piezoelectricity-induced electron bombardment model is responsible to produce ML in CaMgSi{sub 2}O{sub 6}:Dy{sup 3+} phosphor.

  10. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport

    International Nuclear Information System (INIS)

    Hempe, J.M.; Cousins, R.J.

    1991-01-01

    The mechanism of zinc absorption has not been delineated, but kinetic studies show that both passive and carrier-mediated processes are involved. The authors have identified a low molecular mass zinc-binding protein in the soluble fraction of rat intestinal mucosa that could function as an intracellular zinc carrier. The protein was not detected in liver or pancreas, suggesting a role specific to the intestine. The protein binds zinc during transmucosal zinc transport and shows signs of saturation at higher luminal zinc concentrations, characteristics consistent with a role in carrier-mediated zinc absorption. Microsequence analysis of the protein purified by gel-filtration HPCL and SDS/PAGE showed complete identity within the first 41 N-terminal amino acids with the deduced protein sequence of cysteine-rich intestinal protein. These investigators showed that the gene for this protein is developmentally regulated in neonates during the suckling period, conserved in many vertebrate species, and predominantly expressed in the small intestine. Cysteine-rich intestinal protein contains a recently identified conserved sequence of histidine and cysteine residues, the LIM motif, which our results suggest confers metal-binding properties that are important for zinc transport and/or functions of this micronutrient

  11. Effect of Sodium Sulfide on Ni-Containing Carbon Monoxide Dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Jian Feng; Paul A. Lindahl

    2004-07-28

    OAK-B135 The structure of the active-site C-cluster in CO dehydrogenase from Carboxythermus hydrogenoformans includes a {mu}{sup 2}-sulfide ion bridged to the Ni and unique Fe, while the same cluster in enzymes from Rhodospirillum rubrum (CODH{sub Rr}) and Moorella thermoacetica (CODH{sub Mt}) lack this ion. This difference was investigated by exploring the effects of sodium sulfide on activity and spectral properties. Sulfide partially inhibited the CO oxidation activity of CODH{sub Rr} and generated a lag prior to steady-state. CODH{sub Mt} was inhibited similarly but without a lag. Adding sulfide to CODH{sub Mt} in the C{sub red1} state caused the g{sub av} = 1.82 EPR signal to decline and new features to appear, including one with g = 1.95, 1.85 and (1.70 or 1.62). Removing sulfide caused the g{sub av} = 1.82 signal to reappear and activity to recover. Sulfide did not affect the g{sub av} = 1.86 signal from the C{sub red2} state. A model was developed in which sulfide binds reversibly to C{sub red1}, inhibiting catalysis. Reducing this adduct causes sulfide to dissociate, C{sub red2} to develop, and activity to recover. Using this model, apparent K{sub I} values are 40 {+-} 10 nM for CODH{sub Rr} and 60 {+-} 30 {micro}M for CODH{sub Mt}. Effects of sulfide are analogous to those of other anions, including the substrate hydroxyl group, suggesting that these ions also bridge the Ni and unique Fe. This proposed arrangement raises the possibility that CO binding labilizes the bridging hydroxyl and increases its nucleophilic tendency towards attacking Ni-bound carbonyl.

  12. Sulfide-iron interactions in domestic wastewater from a gravity sewer

    NARCIS (Netherlands)

    Nielsen, A.H.; Lens, P.N.L.; Vollertsen, J.; Hvitved-Jacobsen, Th.

    2005-01-01

    Interactions between iron and sulfide in domestic wastewater from a gravity sewer were investigated with particular emphasis on redox cycling of iron and iron sulfide formation. The concentration ranges of iron and total sulfide in the experiments were 0.4-5.4 mg Fe L-1 and 0-5.1 mg S L-1,

  13. Flocculation of suspended matter in a crude wet phosphoric acid (Algeria)

    International Nuclear Information System (INIS)

    Brikci Nigassa, M.; Bensebaa, A.

    1994-11-01

    Prior to the recovery of uranium, a pre-treatment of the phosphoric acid is necessary to remove soluble impurities of different origins. In this work, synthetic flocculants have been used. the influence of operating conditions on flocculation and filtration, such as, type of flocculants, polymer concentration, temperature, mixing and time of agitation, has been studied for both aged and fresh phosphoric acid. It has been shown that synthetic flocculants can be used for flocculation ins a phosphoric acid medium and that flocculation and filtration processes are strongly linked

  14. Zinc Signals and Immunity.

    Science.gov (United States)

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  15. Scaling Up: Kilolumen Solid-State Lighting Exceeding 100 LPW via Remote Phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Waqidi Falicoff

    2008-09-15

    This thirty-month project was successful in attaining its ambitious objectives of demonstrating a radically novel 'remote-phosphor' LED light source that can out-perform conventional conformal coated phosphor LED sources. Numerous technical challenges were met with innovative techniques and optical configurations. This product development program for a new generation of solid-state light sources has attained unprecedented luminosity (over 1 kilo-lumen) and efficacy (based on the criterion lumens per 100mw radiant blue). LPI has successfully demonstrated its proprietary technology for optical synthesis of large uniform sources out of the light output of an array of separated LEDs. Numerous multiple blue LEDs illuminate single a phosphor patch. By separating the LEDs from the phosphor, the phosphor and LEDs operate cooler and with higher efficiency over a wide range of operating conditions (from startup to steady state). Other benefits of the system include: better source uniformity, more types of phosphor can be used (chemical interaction and high temperatures are no longer an issue), and the phosphor can be made up from a pre-manufactured sheet (thereby lowering cost and complexity of phosphor deposition). Several laboratory prototypes were built and operated at the expected high performance level. The project fully explored two types of remote phosphor system: transmissive and reflective. The first was found to be well suited for a replacement for A19 type incandescent bulbs, as it was able to replicate the beam pattern of a traditional filament bulb. The second type has the advantages that it is pre-collimate source that has an adjustable color temperature. The project was divided in two phases: Phase I explored a transmissive design and Phase II of the project developed reflective architectures. Additionally, in Phase II the design of a spherical emitting transmissive remote phosphor bulb was developed that is suitable for replacement of A19 and

  16. Zinc in Cellular Regulation: The Nature and Significance of "Zinc Signals".

    Science.gov (United States)

    Maret, Wolfgang

    2017-10-31

    In the last decade, we witnessed discoveries that established Zn 2+ as a second major signalling metal ion in the transmission of information within cells and in communication between cells. Together with Ca 2+ and Mg 2+ , Zn 2+ covers biological regulation with redox-inert metal ions over many orders of magnitude in concentrations. The regulatory functions of zinc ions, together with their functions as a cofactor in about three thousand zinc metalloproteins, impact virtually all aspects of cell biology. This article attempts to define the regulatory functions of zinc ions, and focuses on the nature of zinc signals and zinc signalling in pathways where zinc ions are either extracellular stimuli or intracellular messengers. These pathways interact with Ca 2+ , redox, and phosphorylation signalling. The regulatory functions of zinc require a complex system of precise homeostatic control for transients, subcellular distribution and traffic, organellar homeostasis, and vesicular storage and exocytosis of zinc ions.

  17. Zero- and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission.

    Science.gov (United States)

    Ding, Yamei; Chang, Qing; Xiu, Fei; Chen, Yingying; Liu, Zhengdong; Ban, Chaoyi; Cheng, Shuai; Liu, Juqing; Huang, Wei

    2018-03-01

    Carbon nanomaterials are promising phosphors for white light emission. A facile single-step synthesis method has been developed to prepare zero- and two-dimensional hybrid carbon phosphors for the first time. Zero-dimensional carbon dots (C-dots) emit bright blue luminescence under 365 nm UV light and two-dimensional nanoplates improve the dispersity and film forming ability of C-dots. As a proof-of-concept application, the as-prepared hybrid carbon phosphors emit bright white luminescence in the solid state, and the phosphor-coated blue LEDs exhibit high colorimetric purity white light-emission with a color coordinate of (0.3308, 0.3312), potentially enabling the successful application of white emitting phosphors in the LED field.

  18. TL-OSL study of Li{sub 3}PO{sub 4}: Mg, Cu phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Rahangdale, S. R., E-mail: sachin.rahangdale1@gmail.com; Wankhede, S. P. [Department of Physics, K.D.K.College of Engineering, Nagpur (India); Dhabekar, B. S. [RPAD, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Palikundwar, U. A.; Moharil, S. V. [Department of Physics, RTM Nagpur University, Nagpur, 440010 (India)

    2015-08-28

    In the present work, we report the thermoluminescence and optically stimulated luminescence properties of Mg and Cu doped Li{sub 3}PO{sub 4} phosphor. The phosphor was synthesized by precipitation method. The thermoluminescence dosimetric peak temperature for the phosphor varies with concentrations of Mg and Cu. Li{sub 3}PO{sub 4} shows good response to 470nm optical stimulation. The OSL sensitivity of the phosphor is approximately 12 times than that of standard Lithium magnesium phosphate. This study may help to develop this material for the application in real time dosimetry using optically stimulated luminescence.

  19. Effect of Consuming Zinc-fortified Bread on Serum Zinc and Iron Status of Zinc-deficient Women: A Double Blind, Randomized Clinical Trial.

    Science.gov (United States)

    Badii, Akbar; Nekouei, Niloufar; Fazilati, Mohammad; Shahedi, Mohammad; Badiei, Sajad

    2012-03-01

    After iron deficiency, zinc deficiency is the major micronutrient deficiency in developing countries, and staple food fortification is an effective strategy to prevent and improve it among at-risk-populations. No action has been taken to reduce zinc deficiency via flour fortification so far in Iran, and little is known about the influence of zinc fortification of flour on serum zinc and the iron status, and also about the optimum and effective amount of zinc compound that is used in food fortification. The objective of this study is to evaluate the influence of consuming zinc-fortified breads on the zinc and iron status in the blood serum. In this study, three types of bread were prepared from non-fortified and fortified flours, with 50 and 100 ppm elemental zinc in the form of sulfate. Eighty zinc-deficient women aged 19 to 49 years were randomly assigned to three groups; The volunteers received, daily, (1) a non-fortified bread, (2) a high-zinc bread, and (3) a low-zinc bread for one month. Serum zinc and iron were measured by Atomic Absorption before and after the study. Results showed a significant increase in serum zinc and iron levels in all groups (p 0.05). Absorption of zinc and iron in the group that consumed high-zinc bread was significantly greater than that in the group that received low-zinc bread (p bread improved iron absorption.

  20. A ground electromagnetic survey used to map sulfides and acid sulfate ground waters at the abandoned Cabin Branch Mine, Prince William Forest Park, northern Virginia gold-pyrite belt

    Science.gov (United States)

    Wynn, Jeffrey C.

    2000-01-01

    INTRODUCTION AND BACKGROUND: Prince William Forest Park is situated at the northeastern end of the Virginia Gold-Pyrite belt northwest of the town of Dumfries, VA. The U. S. Marine Corps Reservation at Quantico borders the park on the west and south, and occupies part of the same watershed. Two abandoned mines are found within the park: the Cabin Branch pyrite mine, a historic source of acid mine drainage, and the Greenwood gold mine, a source of mercury contamination. Both are within the watershed of Quantico Creek (Fig.1). The Cabin Branch mine (also known as the Dumfries mine) lies about 2.4 km northwest of the town of Dumfries. It exploited a 300 meter-long, lens-shaped body of massive sulfide ore hosted by metamorphosed volcanic rocks; during its history over 200,000 tons of ore were extracted and processed locally. The site became part of the National Capitol Region of the National Park Service in 1940 and is currently managed by the National Park Service. In 1995 the National Park Service, in cooperation with the Virginia Department of Mines, Minerals, and Energy reclaimed the Cabin Branch site. The Virginia Gold-Pyrite belt, also known as the central Virginia volcanic-plutonic belt, is host to numerous abandoned metal mines (Pavlides and others, 1982), including the Cabin Branch deposit. The belt itself extends from its northern terminus near Cabin Branch, about 50 km south of Washington, D.C., approximately 175 km to the southwest into central Virginia. It is underlain by metamorphosed volcanic and clastic (non-carbonate) sedimentary rocks, originally deposited approximately 460 million years ago during the Ordovician Period (Horton and others, 1998). Three kinds of deposits are found in the belt: volcanic-associated massive sulfide deposits, low-sulfide quartz-gold vein deposits, and gold placer deposits. The massive sulfide deposits such as Cabin Branch were historically mined for their sulfur, copper, zinc, and lead contents, but also yielded byproduct

  1. Selective growth of gold onto copper indium sulfide selenide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Elena; Parisi, Juergen; Kolny-Olesiak, Joanna [Oldenburg Univ. (Germany). Inst. of Physics, Energy and Semiconductor Research

    2013-05-15

    Hybrid nanostructures are interesting materials for numerous applications in chemistry, physics, and biology, due to their novel properties and multiple functionalities. Here, we present a synthesis of metal-semiconductor hybrid nanostructures composed of nontoxic I-III-VI semiconductor nanoparticles and gold. Copper indium sulfide selenide (CuInSSe) nanocrystals with zinc blende structure and trigonal pyramidal shape, capped with dodecanethiol, serve as an original semiconductor part of a new hybrid nanostructure. Metallic gold nanocrystals selectively grow onto vertexes of these CuInSSe pyramids. The hybrid nanostructures were studied by transmission electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and UV-Vis-absorption spectroscopy, which allowed us conclusions about their growth mechanism. Hybrid nanocrystals are generated by replacement of a sacrificial domain in the CuInSSe part. At the same time, small selenium nanocrystals form that stay attached to the remaining CuInSSe/Au particles. Additionally, we compare the synthesis and properties of CuInSSe-based hybrid nanostructures with those of copper indium disulfide (CuInS{sub 2}). CuInS{sub 2}/Au nanostructures grow by a different mechanism (surface growth) and do not show any selectivity. (orig.)

  2. Technique of proton and phosphorous MR spectroscopy; Technik der Protonen- und Phosphor-MR-Spektroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Backens, M. [Universitaetsklinikum des Saarlandes, Klinik fuer Diagnostische und Interventionelle Neuroradiologie, Homburg/Saar (Germany)

    2017-06-15

    Magnetic resonance spectroscopy (MRS) is an important non-invasive method that can reveal the concentration and spatial distribution of particular biochemically relevant tissue metabolites. Proton MRS is routinely applicable in the clinical setting providing good quality results even with a moderate magnetic field strength of 1.5 T. Relative values of metabolite concentrations are mostly used for the assessment of metabolic disorders. Absolute quantification of metabolites can be achieved by means of internal or external reference scans. Phosphorous MRS extends the range of detectable molecules to energy and cell membrane metabolism. The lower detection limit of metabolite concentrations is in the range of some mmol/kg. Depending on the magnetic field strength, MRS enables a spatial resolution of a few milliliters. The use of phosphorous MRS is considerably limited because higher field strengths of at least 3.0 T and additional expensive hardware for signal processing are required. (orig.) [German] Die MR-Spektroskopie (MRS) ist eine wichtige nichtinvasive Untersuchungsmethode, die Konzentration und raeumliche Verteilung einiger biochemisch relevanter Metaboliten im Gewebe ermitteln kann. Die Protonenspektroskopie ist klinisch etabliert, in der Routine einfach durchfuehrbar und liefert bereits bei einer Magnetfeldstaerke von 1,5 T qualitativ gute Ergebnisse. Fuer die Beurteilung von Stoffwechselveraenderungen werden Metabolitenkonzentrationen meist als Relativwerte angegeben. Mithilfe interner oder externer Referenzmessungen sind auch absolute Metabolitenkonzentrationen berechenbar. Die Phosphorspektroskopie erweitert den Bereich der detektierbaren Molekuele auf den Energie- und Zellmembranstoffwechsel. Die minimale nachweisbare Metabolitenkonzentration liegt bei einigen mmol/kg. Abhaengig von der Magnetfeldstaerke ist eine raeumliche Aufloesung der MRS von wenigen Millilitern erreichbar. Der Einsatz der Phosphor-MRS wird dadurch erheblich eingeschraenkt, dass sie

  3. Zinc

    Science.gov (United States)

    ... Some early research suggests that zinc supplementation increases sperm count, testosterone levels, and pregnancy rates in infertile men with low testosterone levels. Other research suggests that taking zinc can improve sperm shape in men with moderate enlargement of a ...

  4. Contrast and decay of cathodoluminescence from phosphor particles in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Engelsen, Daniel den; Harris, Paul G.; Ireland, Terry G., E-mail: terry.ireland@brunel.ac.uk; Fern, George R.; Silver, Jack

    2015-10-15

    Cathodoluminescence (CL) studies are reported on phosphors in a field emission scanning electron microscope (FESEM). ZnO: Zn and other luminescent powders manifest a bright ring around the periphery of the particles: this ring enhances the contrast. Additionally, particles resting on top of others are substantially brighter than underlying ones. These phenomena are explained in terms of the combined effects of electrons backscattered out of the particles, together with light absorption by the substrate. The contrast is found to be a function of the particle size and the energy of the primary electrons. Some phosphor materials exhibit a pronounced comet-like structure at high scan rates in a CL-image, because the particle continues to emit light after the electron beam has moved to a position without phosphor material. Image analysis has been used to study the loss of brightness along the tail and hence to determine the decay time of the materials. The effect of phosphor saturation on the determination of decay times by CL-microscopy was also investigated. - Highlights: • Contrast enhancement are observed in secondary electron and cathodoluminescent images of phosphor particles sitting on top of others. • Backscattered electrons largely explain the observed contrast enhancement. • After glow effects in CL-micrographs of phosphors enable the determination of decay times. • Phosphor saturation can be used to determine the decay time of individual spectral transitions.

  5. Relationship between maternal serum zinc, cord blood zinc and ...

    African Journals Online (AJOL)

    Background: Adequate in utero supply of zinc is essential for optimal fetal growth because of the role of zinc in cellular division, growth and differentiation. Low maternal serum zinc has been reported to be associated with low birth weight and the later is associated with increased morbidity and mortality in newborns.

  6. Optimization of biological sulfide removal in a CSTR bioreactor.

    Science.gov (United States)

    Roosta, Aliakbar; Jahanmiri, Abdolhossein; Mowla, Dariush; Niazi, Ali; Sotoodeh, Hamidreza

    2012-08-01

    In this study, biological sulfide removal from natural gas in a continuous bioreactor is investigated for estimation of the optimal operational parameters. According to the carried out reactions, sulfide can be converted to elemental sulfur, sulfate, thiosulfate, and polysulfide, of which elemental sulfur is the desired product. A mathematical model is developed and was used for investigation of the effect of various parameters on elemental sulfur selectivity. The results of the simulation show that elemental sulfur selectivity is a function of dissolved oxygen, sulfide load, pH, and concentration of bacteria. Optimal parameter values are calculated for maximum elemental sulfur selectivity by using genetic algorithm as an adaptive heuristic search. In the optimal conditions, 87.76% of sulfide loaded to the bioreactor is converted to elemental sulfur.

  7. Process for scavenging hydrogen sulfide from hydrocarbon gases

    International Nuclear Information System (INIS)

    Fox, I.

    1981-01-01

    A process for scavenging hydrogen sulfide from hydrocarbon gases utilizes iron oxide particles of unique chemical and physical properties. These particles have large surface area, and are comprised substantially of amorphous Fe 2 O 3 containing a crystalline phase of Fe 2 O 3 , Fe 3 O 4 and combinations thereof. In scavenging hydrogen sulfide, the iron oxide particles are suspended in a liquid which enters into intimate mixing contact with hydrocarbon gases; the hydrogen sulfide is reacted at an exceptional rate and only acid-stable reaction products are formed. Thereafter, the sweetened hydrocarbon gases are collected

  8. Denitrifying sulfide removal process on high-salinity wastewaters.

    Science.gov (United States)

    Liu, Chunshuang; Zhao, Chaocheng; Wang, Aijie; Guo, Yadong; Lee, Duu-Jong

    2015-08-01

    Denitrifying sulfide removal (DSR) process comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide, and acetate into nitrogen gas, elemental sulfur (S(0)), and carbon dioxide, respectively. Sulfide- and nitrate-laden wastewaters at 2-35 g/L NaCl were treated by DSR process. A C/N ratio of 3:1 was proposed to maintain high S(0) conversion rate. The granular sludge with a compact structure and smooth outer surface was formed. The microbial communities of DSR consortium via high-throughput sequencing method suggested that salinity shifts the predominating heterotrophic denitrifiers at 10 g/L NaCl.

  9. Bioavailability assessment of toxic metals using the technique "acid-volatile sulfide (AVS)-simultaneously extracted metals (SEM)" in marine sediments collected in Todos os Santos Bay, Brazil.

    Science.gov (United States)

    Silva, Jucelino B; Nascimento, Rodrigo A; de Oliva, Sergio T; de Oliveira, Olívia M C; Ferreira, Sergio L C

    2015-10-01

    This paper reports the bioavailability of the metals (cadmium, copper, zinc, lead, and nickel) in sediment samples collected in seven stations from the São Paulo Estuary, Todos os Santos Bay, Brazil. The bioavailability was determined by employing the technique "acid-volatile sulfide (AVS) and simultaneously extracted metal (SEM)". The elements cadmium, copper, lead, and zinc were determined using differential pulse anodic stripping voltammetry (DPASV), while nickel was quantified utilizing electrothermal atomic absorption spectrometry (ET AAS). The accuracy of these methods was confirmed using a certified reference material of estuarine sediment (NIST 1646). The sulfide was quantified using potentiometry with selective electrode and the organic matter determination employing an indirect volumetric method using potassium dichromate and iron(II) sulfate solutions. The bioavailability of the metals was estimated by relationship between the concentration of AVS and the sum of the concentrations of the simultaneously extracted metals (ΣSEM), considering a significant toxicity when (ΣSEM)/(AVS) is higher than 1. The bioavailability values in the seven stations studied varied from 0.93 to 1.31 (June, 2014) and from 0.34 to 0.58 (September, 2014). These results demonstrated a critical condition of toxicity (bioavailability >1) in six of the seven sediment samples collected during the rainy season (June, 2014). In the other period (September, 2014), the bioavailability was always lower than 1 for all sediment samples collected in the seven stations. The individual values of the concentrations of the five metals were compared with the parameters PEL (probable effects level) and TEL (threshold effects level), which are commonly employed for characterization of ecological risk in environmental systems. This comparison revealed that all metals have concentrations lower than the PEL and only zinc and lead in some stations have contents higher than the TEL. The

  10. Monitoring sulfide and sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  11. Structural and spectral properties of MgZnO2:Sm3+ phosphor

    Science.gov (United States)

    Rajput, Preasha; Sharma, Pallavi; Biswas, Pankaj; Kamni

    2018-05-01

    The samarium doped MgZnO2 phosphor was synthesized by the low-cost combustion method. The powder X-ray diffraction (XRD) analysis confirmed the crystallinity and phase purity of the phosphor. The lattice parameters were determined by indexing the diffraction peaks. The photoluminescence (PL) study revealed that the phosphor exhibited a broad excitation band in the UV region ranging between 200 to 350 nm. The 601 nm emission was ascribed to 4G5/2 to 6H7/2 transitions of the Sm3+ ion. The optical bandgap of MgZnO2:Sm3+ was obtained to be 3.56 eV. The phosphor can be projected as a useful material in X- and gamma-ray scintillators.

  12. Critical issues in enhancing brightness in thin film phosphors for flat-panel display applications

    International Nuclear Information System (INIS)

    Singh, R.K.; Chen, Z.; Kumar, D.; Cho, K.; Ollinger, M.

    2002-01-01

    Thin film phosphors have potential applications in field emission flat-panel displays. However, they are limited by the lower cathodoluminescent brightness in comparison to phosphor powders. In this paper, we have investigated the critical parameters that need to be optimized to increase the brightness of phosphor thin films. Specifically, we studied the role of surface roughness and optical properties of the substrate on the brightness of the phosphor films. Thin Y 2 O 3 :Eu phosphor films were deposited on various substrates (lanthanum aluminate, quartz, sapphire, and silicon) with thicknesses varying from 50 to 500 nm. A model that accounts for diffuse and specular or scattering effects has been developed to understand the effects of the microstructure on the emission characteristics of the cathodoluminescent films. The results from the model show that both the optical properties of the substrate and the surface roughness of the films play a critical role in controlling the brightness of laser deposited phosphor films

  13. Is succession in wet calcareous dune slacks affected by free sulfide?

    NARCIS (Netherlands)

    Adema, EB; van Gemerden, H; Grootjans, AP; Adema, Erwin B.; Grootjans, Ab P.; Rapson, G.

    Consequences of sulfide toxicity on succession in wet calcareous dune slacks were investigated. Sulfide may exert an inhibitory effect on dune slack plants, but several pioneer species exhibit ROL (Radial Oxygen Loss) and thereby protect themselves against free sulfide. Under oxic conditions free

  14. BWR zinc addition Sourcebook

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Alfred J.

    2014-01-01

    Boiling Water Reactors (BWRs) have been injecting zinc into the primary coolant via the reactor feedwater system for over 25 years for the purpose of controlling primary system radiation fields. The BWR zinc injection process has evolved since the initial application at the Hope Creek Nuclear Station in 1986. Key transitions were from the original natural zinc oxide (NZO) to depleted zinc oxide (DZO), and from active zinc injection of a powdered zinc oxide slurry (pumped systems) to passive injection systems (zinc pellet beds). Zinc addition has continued through various chemistry regimes changes, from normal water chemistry (NWC) to hydrogen water chemistry (HWC) and HWC with noble metals (NobleChem™) for mitigation of intergranular stress corrosion cracking (IGSCC) of reactor internals and primary system piping. While past reports published by the Electric Power Research Institute (EPRI) document specific industry experience related to these topics, the Zinc Sourcebook was prepared to consolidate all of the experience gained over the past 25 years. The Zinc Sourcebook will benefit experienced BWR Chemistry, Operations, Radiation Protection and Engineering personnel as well as new people entering the nuclear power industry. While all North American BWRs implement feedwater zinc injection, a number of other BWRs do not inject zinc. This Sourcebook will also be a valuable resource to plants considering the benefits of zinc addition process implementation, and to gain insights on industry experience related to zinc process control and best practices. This paper presents some of the highlights from the Sourcebook. (author)

  15. Mechanoluminescence and photoluminescence of Pr3+ activated KMgF3 phosphor

    International Nuclear Information System (INIS)

    Dhoble, S.J.; Kher, R.S.; Furetta, C.

    2003-01-01

    A Czochralski method for the preparation of crystalline KMgF 3 : Pr phosphors are reported. Photoluminescence (PL) and mechanoluminescence (ML) characteristics are studied. Photoluminescence of Pr 3+ activated KMgF 3 shows the strong emission of Pr 3+ ions were observed at 498 and 650 nm by excitation of 213 mn. ML of KMgF 3 : Pr 3+ shows two peaks, which have been observed in ML intensity versus time curve. The ML peak shows the recombination of electrons with free radical (anion radical produced by γ-irradiation) released from two type traps during the mechanical pressure applied on KMgF 3 : Pr 3+ phosphor. It has a supra linear ML response with γ-ray exposure and a negligible fading. These properties of phosphor should be suitable in dosimetry of ionization relation using ML technique. Therefore the KMgF 3 : Pr 3+ phosphor proposed for ML dosimetry of ionization radiations. (Author)

  16. Titanocene sulfide chemistry

    Czech Academy of Sciences Publication Activity Database

    Horáček, Michal

    2016-01-01

    Roč. 314, MAY 2016 (2016), s. 83-102 ISSN 0010-8545 R&D Projects: GA ČR(CZ) GAP207/12/2368 Institutional support: RVO:61388955 Keywords : titanocene sulfide chemistry * photolysis * titanocene hydrosulfides Ti-(SH)n Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.324, year: 2016

  17. Concurrent reduction and distillation: an improved technique for the recovery and chemical refinement of the isotopes of cadmium and zinc

    International Nuclear Information System (INIS)

    Caudill, H.H.; McBride, L.E.; McDaniel, E.W.

    1982-01-01

    The Electromagnetic Isotope Separations Program of the Oak Ridge National Laboratory has been involved in the separation, chemical recovery, and refinement of the stable isotopes of cadmium and zinc since 1946. Traditionally, the chemical refinement procedures for these elements consisted of ion exchange separations using anion exchange resins followed by pH-controlled hydrogen sulfide precipitations. The procedures were quite time-consuming and made it difficult to remove trace quantities of sulfur which interferes in subsequent attempts to prepare rolled metal foils. As demands for 113 Cd and 68 Zn (a precursor for the production of the radiopharmaceutical 67 Ga) increased, it became evident that a quicker, more efficient refinement procedure was needed. Details of an improved method, which employs concurrent hydrogen reduction and distillation in the recovery and refinement of isotopically enriched zinc, are described. Modifications of the procedure suitable for the refinement of cadmium isotopes are also described. 3 figures, 1 table

  18. Zinc at glutamatergic synapses.

    Science.gov (United States)

    Paoletti, P; Vergnano, A M; Barbour, B; Casado, M

    2009-01-12

    It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.

  19. Rare earth activated yttrium aluminate phosphors with modulated luminescence.

    Science.gov (United States)

    Muresan, L E; Popovici, E J; Perhaita, I; Indrea, E; Oro, J; Casan Pastor, N

    2016-06-01

    Yttrium aluminate (Y3 A5 O12 ) was doped with different rare earth ions (i.e. Gd(3+) , Ce(3+) , Eu(3+) and/or Tb(3+) ) in order to obtain phosphors (YAG:RE) with general formula,Y3-x-a Gdx REa Al5 O12 (x = 0; 1.485; 2.97 and a = 0.03). The synthesis of the phosphor samples was done using the simultaneous addition of reagents technique. This study reveals new aspects regarding the influence of different activator ions on the morpho-structural and luminescent characteristics of garnet type phosphor. All YAG:RE phosphors are well crystallized powders containing a cubic-Y3 Al5 O12 phase as major component along with monoclinic-Y4 Al2 O9 and orthorhombic-YAlO3 phases as the impurity. The crystallites dimensions of YAG:RE phosphors vary between 38 nm and 88 nm, while the unit cell slowly increase as the ionic radius of the activator increases. Under UV excitation, YAG:Ce exhibits yellow emission due to electron transition in Ce(3+) from the 5d level to the ground state levels ((2) F5/2 , (2) F7/2 ). The emission intensity of Ce(3+) is enhanced in the presence of the Tb(3+) ions and is decreased in the presence of Eu(3+) ions due to some radiative or non-radiative processes that take place between activator ions. By varying the rare earth ions, the emission colour can be modulated from green to white and red. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Characterization of metallic surfaces in phosphorous-bronze ordered packings

    International Nuclear Information System (INIS)

    Sandru, Claudia; Titescu, Gh.

    1997-01-01

    Copper and its alloys, particularly the phosphorous bronze, are characterized by a high water wettability as compared with other materials. This feature led to utilization of phosphorous bronze in fabrication of contact elements, a packing type equipping the distillation columns. For heavy water separation by isotopic distillation under vacuum, ordered packings of phosphorous bronze networks were fabricated. The superior performances of these packings are determined by the material and also by the geometrical form and the state of the metallic surface. Thus, a procedure of evaluating the wettability has been developed, based on tests of the network material. The results of the tests constitute a criterion of rating the functional performances of packings, particularly of their efficiencies. Also, investigation techniques of the chemical composition and of the thickness of superficial layer on the packing were developed. It was found that the packing surface presents a layer of about 5-20 μm formed mainly by oxides of copper, tin, and, depending on the packing treatment, of oxides of other elements coming from the treatment agent. The paper presents characterization of phosphorous bronze treated with potassium permanganate, a specific treatment for improving the functional performances of the packings used in the heavy water concentration and re-concentration installations

  1. Blue- and red-emitting phosphor nanoparticles embedded in a porous matrix

    Energy Technology Data Exchange (ETDEWEB)

    Taghavinia, N. [Physics Department, Sharif University of Technology, Tehran P.O. Box 11365-9161, Tehran 14588 (Iran, Islamic Republic of) and Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588 (Iran, Islamic Republic of)]. E-mail: taghavinia@sharif.edu; Lerondel, G. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Univ. de Technologie de Troyes, 10010 Troyes cedex (France); Makino, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Yao, T. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2006-05-01

    Eu{sup 3+}- and Ce{sup 3+}-doped yttrium silicate, as well as Eu{sup 2+}-doped zinc silicate nanoparticles, were grown in a porous SiO{sub 2} matrix using an impregnation method. For Y{sub 2}Si{sub 2}O{sub 7}:Eu{sup 3+}, particles of about 50 nm size were obtained that exhibited several photoluminescence (PL) peaks in red. Different peaks showed slightly different decay times; however, their excitation mechanism was found the same. Increasing the Eu concentration increased the PL intensity while reducing the decay time. Y{sub 2}Si{sub 2}O{sub 7}:Ce{sup 3+} nanoparticles in the porous matrix showed bright blue emission, consisting of two peaks at 358 nm and 378 nm. Re-impregnation process was found effective in changing the relative intensity of the two peaks. Zn{sub 2}SiO{sub 4}:Eu{sup 2+} nanoparticles in porous glass consisted of amorphous particles of about 20 nm size inside the porous matrix. The luminescence was a broad peak centered at 418 nm. These phosphor systems, together with our previously reported Zn{sub 2}SiO{sub 4}:Mn{sup 2+} in porous SiO{sub 2} structure, comprise a red-green-blue system that can be used in display applications.

  2. Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats.

    Science.gov (United States)

    Kuldeep, Anjana; Nair, Neena; Bedwal, Ranveer Singh

    2017-06-01

    The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30-40 days of age, pre-pubertal period) of 40-50 g body weight were divided into the following: the ZC (zinc control) group-fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group-fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group-received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.

  3. Iron-sulfide redox flow batteries

    Science.gov (United States)

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L

    2013-12-17

    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  4. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers

    International Nuclear Information System (INIS)

    Jensen, Henriette Stokbro; Lens, Piet N.L.; Nielsen, Jeppe L.; Bester, Kai; Nielsen, Asbjorn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2011-01-01

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria, were suspended in aqueous solution at pH similar to that of corroded concrete. Hydrogen sulfide was supplied to the reactor to provide the source of reduced sulfur. The removal of hydrogen sulfide and oxygen was monitored. The utilization rates of both hydrogen sulfide and oxygen suggested exponential bacterial growth with median growth rates of 1.25 d -1 and 1.33 d -1 as determined from the utilization rates of hydrogen sulfide and oxygen, respectively. Elemental sulfur was found to be the immediate product of the hydrogen sulfide oxidation. When exponential growth had been achieved, the addition of hydrogen sulfide was terminated leading to elemental sulfur oxidation. The ratio of consumed sulfur to consumed oxygen suggested that sulfuric acid was the ultimate oxidation product. To the knowledge of the authors, this is the first study to determine the growth rate of bacteria involved in concrete corrosion with hydrogen sulfide as source of reduced sulfur.

  5. Isolation of Ochrobactrum sp.QZ2 from sulfide and nitrite treatment system

    International Nuclear Information System (INIS)

    Mahmood, Qaisar; Hu Baolan; Cai Jing; Zheng Ping; Azim, Muhammad Rashid; Jilani, Ghulam; Islam, Ejazul

    2009-01-01

    A bacterial strain QZ2 was isolated from sludge of anoxic sulfide-oxidizing (ASO) reactor. Based on 16S rDNA sequence analysis and morphology, the isolate was identified as Ochrobactrum sp. QZ2. The strain was facultative chemolithotroph, able of using sulfide to reduce nitrite anaerobically. It produced either elemental sulfur or sulfate as the product of sulfide oxidation, depending on the initial sulfide and nitrite concentrations. The optimum growth pH and temperature for Ochrobactrum sp. QZ2 were found as 6.5-7.0 and 30 deg. C, respectively. The specific growth rate (μ) was found as 0.06 h -1 with a doubling time of 19.75 h; the growth seemed more sensitive to highly alkaline pH. Ochrobactrum sp. QZ2 catalyzed sulfide oxidation to sulfate was more sensitive to sulfide compared with nitrite as indicated by IC 50 values for sulfide and nitrite utilization implying that isolate was relatively more tolerant to nitrite. The comparison of physiology of Ochrobactrum sp. QZ2 with those of other known sulfide-oxidizing bacteria suggested that the present isolate resembled to Ochrobactrum anthropi in its denitrification ability.

  6. Sulfide Oxidation in the Anoxic Black-Sea Chemocline

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; FOSSING, H.; WIRSEN, CO

    1991-01-01

    per day, occurred in anoxic water at the top of the sulfide zone concurrent with the highest rates of dark CO2 assimilation. The main soluble oxidized products of sulfide were thiosulfate (68-82%) and sulfate. Indirect evidence was presented for the formation of elemental sulfur which accumulated...... that the measured H2S oxidation rates were 4-fold higher than could be explained by the downward flux of organic carbon and too high to balance the availability of electron acceptors such as oxidized iron or manganese. A nitrate maximum at the lower boundary of the O2 zone did not extend down to the sulfide zone....

  7. Biotreatment of zinc-containing wastewater in a sulfidogenic CSTR: Performance and artificial neural network (ANN) modelling studies

    International Nuclear Information System (INIS)

    Sahinkaya, Erkan

    2009-01-01

    Sulfidogenic treatment of sulfate (2-10 g/L) and zinc (65-677 mg/L) containing simulated wastewater was studied in a mesophilic (35 deg. C) CSTR. Ethanol was supplemented (COD/sulfate = 0.67) as carbon and energy source for sulfate-reducing bacteria (SRB). The robustness of the system was studied by increasing Zn, COD and sulfate loadings. Sulfate removal efficiency, which was 70% at 2 g/L feed sulfate concentration, steadily decreased with increasing feed sulfate concentration and reached 40% at 10 g/L. Over 99% Zn removal was attained due to the formation of zinc-sulfide precipitate. COD removal efficiency at 2 g/L feed sulfate concentration was over 94%, whereas, it steadily decreased due to the accumulation of acetate at higher loadings. Alkalinity produced from acetate oxidation increased wastewater pH remarkably when feed sulfate concentration was 5 g/L or lower. Electron flow from carbon oxidation to sulfate reduction averaged 83 ± 13%. The rest of the electrons were most likely coupled with fermentative reactions as the amount of methane production was insignificant. The developed ANN model was very successful as an excellent to reasonable match was obtained between the measured and the predicted concentrations of sulfate (R = 0.998), COD (R = 0.993), acetate (R = 0.976) and zinc (R = 0.827) in the CSTR effluent

  8. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms

    Science.gov (United States)

    Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M.; Papaspyrou, Sokratis

    2016-01-01

    Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic

  9. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms.

    Directory of Open Access Journals (Sweden)

    Desirée Villahermosa

    Full Text Available Nitrate decreases sulfide release in wastewater treatment plants (WWTP, but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm showed low sulfide production (0.31 μmol cm-3 h-1 and oxygen consumption rates (0.01 μmol cm-3 h-1. The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1. Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB. This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1 an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2 a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR

  10. Nanoscale Zero-Valent Iron for Sulfide Removal from Digested Piggery Wastewater

    Directory of Open Access Journals (Sweden)

    Sheng-Hsun Chaung

    2014-01-01

    Full Text Available The removal of dissolved sulfides in water and wastewater by nanoscale zero-valent iron (nZVI was examined in the study. Both laboratory batch studies and a pilot test in a 50,000-pig farm were conducted. Laboratory studies indicated that the sulfide removal with nZVI was a function of pH where an increase in pH decreased removal rates. The pH effect on the sulfide removal with nZVI is attributed to the formation of FeS through the precipitation of Fe(II and sulfide. The saturated adsorption capacities determined by the Langmuir model were 821.2, 486.3, and 359.7 mg/g at pH values 4, 7, and 12, respectively, for nZVI, largely higher than conventional adsorbents such as activated carbon and impregnated activated carbon. The surface characterization of sulfide-laden nZVI using XPS and TGA indicated the formation of iron sulfide, disulfide, and polysulfide that may account for the high adsorption capacity of nZVI towards sulfide. The pilot study showed the effectiveness of nZVI for sulfide removal; however, the adsorption capacity is almost 50 times less than that determined in the laboratory studies during the testing period of 30 d. The complexity of digested wastewater constituents may limit the effectiveness of nZVI. Microbial analysis suggested that the impact of nZVI on the change of microbial species distribution was relatively noticeable after the addition of nZVI.

  11. Ultraviolet dosimetry using thermoluminescent phosphors - an update

    International Nuclear Information System (INIS)

    Nagpal, J.S.

    1998-04-01

    Intrinsic response of various thermoluminescent (TL) materials such as CaSO 4 (Dy, Eu, Mn, Sm, Tb, or Tm), LiF (Mg, Cu, P), Mg 2 SiO 4 :Tb, CaF 2 :Dy, CaF 2 :Tb, ThO 2 :Tb and Al 2 O 3 (Si, Ti); cathodoluminescent phosphors Y 3 Al 5 O 12 :Ce, Y 3 Al 5 O 12 :Tb and Y(V,P)O 4 :Eu; and fluorescent lamp phosphors calcium halophosphate (Mn,Sb) and Ce Mg aluminate (Eu, Tb) to ultraviolet (UV) radiations has been studied. Intrinsic TL response of most of the phosphors is rate (radiant flux) dependent. For the first time, UV response of the materials is reported for a fixed total radiant energy (total UV dose), at a single radiant flux (260 μW.cm -2 ), for an appropriate comparison. A wide range of UV sensitivity is observed. Studies conducted using UV radiation from two unfiltered low pressure mercury lamps show significant differences in glow curves, as compared to those obtained with nearly monochromatic UV radiations. Photons of wavelength 365 nm induce bleaching of TL induced by 254 nm photons, in most of the materials. Sequential/tandem exposures to 254 nm and 365 nm photons have yielded new but alarming results in CaF 2 :Tb. Preferential induction and bleaching of specific TL glow peaks by 365 nm and 254 nm photons are interesting characteristics discovered in CaSO 4 :Eu. Photoluminescence studies of Tb 3+ and Eu 3+ activated phosphors have augmented the inferences drawn from the bleaching effects produced by 365 nm photons. Earlier work carried out on phototransferred thermoluminescence of CaSO 4 :Dy-teflon dosimeters, TLD-100, Mg 2 SiO 4 :Tb and Al 2 O 3 (Si,Ti) has also been reviewed. (author)

  12. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Directory of Open Access Journals (Sweden)

    Christopher S. Williams

    1999-06-01

    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.

  13. Decontamination of chemical-warfare agent simulants by polymer surfaces doped with the singlet oxygen generator zinc octaphenoxyphthalocyanine.

    Science.gov (United States)

    Gephart, Raymond T; Coneski, Peter N; Wynne, James H

    2013-10-23

    Using reactive singlet oxygen (1O2), the oxidation of chemical-warfare agent (CWA) simulants has been demonstrated. The zinc octaphenoxyphthalocyanine (ZnOPPc) complex was demonstrated to be an efficient photosensitizer for converting molecular oxygen (O2) to 1O2 using broad-spectrum light (450-800 nm) from a 250 W halogen lamp. This photosensitization produces 1O2 in solution as well as within polymer matrices. The oxidation of 1-naphthol to naphthoquinone was used to monitor the rate of 1O2 generation in the commercially available polymer film Hydrothane that incorporates ZnOPPc. Using electrospinning, nanofibers of ZnOPPc in Hydrothane and polycarbonate were formed and analyzed for their ability to oxidize demeton-S, a CWA simulant, on the surface of the polymers and were found to have similar reactivity as their corresponding films. The Hydrothane films were then used to oxidize CWA simulants malathion, 2-chloroethyl phenyl sulfide (CEPS), and 2-chloroethyl ethyl sulfide (CEES). Through this oxidation process, the CWA simulants are converted into less toxic compounds, thus decontaminating the surface using only O2 from the air and light.

  14. Oxidation-extraction of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Lawes, B.C.

    1985-01-01

    The invention involves an improvement to the reductive stripping process for recovering uranium values from wet-process phosphoric acid solution, where uranium in the solution is oxidized to uranium (VI) oxidation state and then extracted from the solution by contact with a water immiscible organic solvent, by adding sufficient oxidant, hydrogen peroxide, to obtain greater than 90 percent conversion of the uranium to the uranium (VI) oxidation state to the phosphoric acid solution and simultaneously extracting the uranium (VI)

  15. PREPARATION OF ZINC ENRICHED YEAST (SACCHAROMYCES CEREVISIAE BY CULTIVATION WITH DIFFERENT ZINC SALTS

    Directory of Open Access Journals (Sweden)

    Ľuboš Harangozo

    2012-02-01

    Full Text Available The yeast Saccharomyces cerevisiae is the best known microorganism and therefore widely used in many branches of industry. This study aims to investigate the accumulation of three inorganic zinc salts. Our research presents the ability of this yeast to absorb zinc from liquid medium and such enriched biomass use as a potential source of microelements in animal and/or human nutrition. It was found that the addition of different zinc forms, i.e. zinc nitrate, zinc sulphate and zinc chloride in fixed concentrations of 0, 25, 50 and 100 mg.100 ml-1 did not affect the amount of dry yeast biomass yielded, i.e. 1.0 – 1.2 g of yeast cells from 100 ml of cultivation medium, while higher presence of zinc solutions caused significantly lower yield of yeast biomass. The highest amount of zinc in yeast cells was achieved when added in the form of zinc nitrate in concentration of 200 mg.100 ml-1 YPD medium. The increment of intracellular zinc was up to 18.5 mg.g-1 of yeast biomass.

  16. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  17. Radionuclide concentrations in raw and purified phosphoric acids from Brazil and their processing wastes: implications for radiation exposures.

    Science.gov (United States)

    da Conceição, Fabiano Tomazini; Antunes, Maria Lúcia Pereira; Durrant, Steven F

    2012-02-01

    Radionuclides from the U and Th natural series are present in alkaline rocks, which are used as feedstock in Brazil for the production of raw phosphoric acid, which can be considered as a NORM (naturally occurring radioactive material). As a result of the purification of raw phosphoric acid to food-grade phosphoric acid, two by-products are generated, i.e., solid and liquid wastes. Taking this into account, the main aim of this study was to evaluate the fluxes of natural radionuclide in the production of food-grade phosphoric acids in Brazil, to determine the radiological impact caused by ingestion of food-grade phosphoric acid, and to evaluate the solid waste environmental hazards caused by its application in crop soils. Radiological characterization of raw phosphoric acid, food-grade phosphoric acid, solid waste, and liquid waste was performed by alpha and gamma spectrometry. The (238)U, (234)U, (226)Ra, and (232)Th activity concentrations varied depending on the source of raw phosphoric acid. Decreasing radionuclides activity concentrations in raw phosphoric acids used by the producer of the purified phosphoric acid were observed as follows: Tapira (raw phosphoric acid D) > Catalão (raw phosphoric acids B and C) > Cajati (raw phosphoric acid A). The industrial purification process produces a reduction in radionuclide activity concentrations in food-grade phosphoric acid in relation to raw phosphoric acid produced in plant D and single raw phosphoric acid used in recent years. The most common use of food-grade phosphoric acid is in cola soft drinks, with an average consumption in Brazil of 72 l per person per year. Each liter of cola soft drink contains 0.5 ml of food-grade phosphoric acid, which gives an annual average intake of 36 ml of food-grade phosphoric acid per person. Under these conditions, radionuclide intake through consumption of food-grade phosphoric acid per year per person via cola soft drinks is not hazardous to human health in Brazil

  18. Electrochemical method for rapid synthesis of Zinc Pentacyanonitrosylferrate Nanotubes

    Directory of Open Access Journals (Sweden)

    Rogaieh Bargeshadi

    2014-10-01

    Full Text Available In this paper, a rapid and simple approach was developed for the preparation of zinc pentacyanonitrosylferrate nanotubes (ZnPCNF NTs within the cylindrical pores of anodic aluminum oxide (AAO template by electrochemical method. The AAO was fabricated in two steps anodizing from aluminum foil. The first anodization of aluminum foil was performed in 0.2 mol L-1 H2C2O4 followed by removal of the formed porous oxide film by a solution of 6 wt% of phosphoric acid. The second anodization step was then performed using the same conditions as the previous step. Scanning electron microscope (SEM and X-ray diffraction (XRD method were employed to characterize the resulting highly oriented uniform hollow tube array which its diameter was in the range of 25-75 nm depending on the applied voltage and the length of nanotubes was equal to the thickness of AAO which was about 2 m. The growth properties of the ZnPCNF NTs array film can be achieved by controlling the structure of the template and applied potential across the cell.

  19. The study and microstructure analysis of zinc and zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pešlová, F.; Kliber, J.

    2015-01-01

    Roč. 54, č. 1 (2015), s. 43-46 ISSN 0543-5846 Grant - others:KEGA(SK) KEGA 007 TnUAD-4/2013 Institutional support: RVO:68081723 Keywords : zinc * production of zinc oxide * microstructure * chemical composition * zinc slag Subject RIV: JG - Metal lurgy Impact factor: 0.959, year: 2014

  20. Novel Br-DPQ blue light-emitting phosphors for OLED.

    Science.gov (United States)

    Dahule, H K; Thejokalyani, N; Dhoble, S J

    2015-06-01

    A new series of blue light-emitting 2,4-diphenylquinoline (DPQ) substituted blue light-emitting organic phosphors namely, 2-(4-methoxy-phenyl)-4-phenyl-quinoline (OMe-DPQ), 2-(4-methyl-phenyl)-4-phenylquinoline (M-DPQ), and 2-(4-bromo-phenyl)-4-phenylquinoline (Br-DPQ) were synthesized by substituting methoxy, methyl and bromine at the 2-para position of DPQ, respectively by Friedländer condensation of 2-aminobenzophenone and corresponding acetophenone. The synthesized phosphors were characterized by different techniques, e.g., Fourier transform infra-red (FTIR), differential scanning calorimeter (DSC), UV-visible absorption and photoluminescence spectra. FTIR spectra confirms the presence of chemical groups such as C=O, NH, or OH in all the three synthesized chromophores. DSC studies show that these complexes have good thermal stability. Although they are low-molecular-weight organic compounds, they have the potential to improve the stability and operating lifetime of a device made out of these complexes. The synthesized polymeric compounds demonstrate a bright emission in the blue region in the wavelength range of 405-450 nm in solid state. Thus the attachment of methyl, methoxy and bromine substituents to the diphenyl quinoline ring in these phosphors results in colour tuning of the phosphorescence. An electroluminescence (EL) cell of Br-DPQ phosphor was made and its EL behaviour was studied. A brightness-voltage characteristics curve of Br-DPQ cell revealed that EL begins at 400 V and then the brightness increases exponentially with applied AC voltage, while current-voltage (I-V) characteristics revealed that the turn on voltage of the fabricated EL cell was 11 V. Hence this phosphor can be used as a promising blue light material for electroluminescent devices. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    Science.gov (United States)

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  2. [The spectrogram characteristics of organic blue-emissive light-emitting excitated YAG : Ce phosphor].

    Science.gov (United States)

    Xi, Jian-Fei; Zhang, Fang-Hui; Mu, Qiang; Zhang, Mai-Li

    2011-09-01

    It is demonstrated that the panchromatic luminescence devices with organic blue-emissive light-emitting was fabricated. This technique used down conversion, which was already popular in inorganic power LEDs to obtain white light emission. A blue OLED device with a configuration of ITO/2T-NATA (30 nm)/AND : TBPe (50 Wt%, 40 nm)/Alq3 (100 nm)/LiF(1 nm)/Al(100 nm) was prepared via vacuum deposition process, and then coated with YAG : Ce phosphor layers of different thicknesses to obtain a controllable and uniform shape while the CIE coordinates were fine tuned. This development not only decreased steps of technics and degree of difficulty, but also applied the mature technology of phosphor. The results showed that steady spectrogram was obtained in the devices with phosphor, with a best performance of a maximum luminance of 13 840 cd x m(-2) which was about 2 times of that of the devices without phosphor; a maximum current efficiency of 17.3 cd x A(-1) was increased more two times more than the devices without phosphor. The emission spectrum could be adjusted by varying the concentration and thickness of the phosphor layers. Absoulte spectrogram of devices was in direct proportion with different driving current corresponding.

  3. An experimental study of the retention of zinc, zinc-cadmium mixture and zinc-65 in the presence of cadmium in Anguilla anguilla (L.)

    International Nuclear Information System (INIS)

    Pally, Monique; Foulquier, Luc

    1976-07-01

    Zinc uptake was studied in eels in fresh water, using stable zinc, a zinc-cadmium mixture, and zinc 65 in the presence of small amounts of cadmium. The zinc content in the eel began to increase after 45 days only, and reached approximately 85 ppm after 76 days in water initially containing 5ppm of zinc. At the conclusion of the experiment (76 days), the body organs could be classified in decreasing order in zinc content (in ppm): kidneys (152), skeleton (133), skin (129), muscles (89), head (80), gills (78), digestive tract (77), liver (63) spleen-heart-air bladder (32), and mucus (15). A comparison of experimental results obtained with the zinc-cadmium mixture and cadmium alone showed that zinc decreased the cadmium content of all organs except the gills. The presence of cadmium in water did not inhibit zinc uptake. As cadmium content in water increased, then zinc content in the digestive tract and the kidneys decreased and in all cases remained lower than when zinc alone was present. In the presence of cadmium the percentage of zinc in the kidneys was always lower than the value obtained for zinc alone, and that of the digestive tract did not increase. Contamination of eels treated with 18 and 50ppb of cadmium for 29 days, then contaminated by zinc-65 (5μCi/l) while maintaining the same low cadmium content, showed no significant difference in zinc 65 uptake in the two groups. The same applied to the body organs, and particularly the digestive tract and kidneys, where the highest activity levels were observed. By weight, muscles represented approximately 30% of the total contamination after 45 days [fr

  4. Acute inhalation toxicity of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Hahn, F.F.; Barr, E.B. [and others

    1995-12-01

    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  5. A sulfidation-resistant nickel-base alloy

    International Nuclear Information System (INIS)

    Lai, G.Y.

    1989-01-01

    For applications in mildly to moderately sulfidizing environments, stainless steels, Fe-Ni-Cr alloys (e.g., alloys 800 and 330), and more recently Fe-Ni-Cr-Co alloys (e.g., alloy 556) are frequently used for construction of process equipment. However, for many highly sulfidizing environments, few existing commercial alloys have adequate performance. Thus, a new nickel-based alloy containing 27 wt.% Co, 28 wt.% Cr, 4 wt.% Fe, 2.75 wt.% Si, 0.5 wt.% Mn and 0.05 wt.% C (Haynes alloy HR-160) was developed

  6. Effect of zinc sources on yield and utilization of zinc in rice-wheat sequence

    International Nuclear Information System (INIS)

    Deb, D.L.

    1990-01-01

    A field experiment was conducted on an inceptisol of Delhi to evaluate three sources of zinc, namely, zinc sulphate, zincated urea and zinc oxide on yield and utilization of zinc in rice-wheat sequence. Results indicated that, amongst the three zinc sources, zinc sulphate and zincated urea gave the best performance in increasing the grain yield of rice whereas zinc oxide depressed the grain yield of wheat significantly when compared to other treatments. The highest Zn derived from fertilizer and its utilization was obtained with zinc sulphate for both rice and wheat crops. (author). 9 refs., 4 tabs

  7. TL process in europium doped alkaline earth sulphate phosphors- a review

    International Nuclear Information System (INIS)

    Bhatt, B.C.

    2003-01-01

    CaSO 4 doped with the rare earth (RE) ion dysprosium or thulium is used routinely as a thermoluminescent dosimeter (TLD) to monitor personal exposure to x- and γ-radiation. The CaSO 4 :Eu phosphor is potentially important for radio photoluminescence (RPL) and ultraviolet (UV) dosimetry. Eu 3+ → Eu 2+ conversion is suggested to play a pivotal role in UV and γ-ray induced thermoluminescence. However, there is disagreement among different workers on the mechanism of gamma and UV induced TL in this phosphor system. This paper will review the work reported on CaSO 4 :Eu and make effects to project overall picture on this phosphor system. (author)

  8. Zinc blotting assay for detection of zinc binding prolamin in barley (Hordeum vulgare) grain

    DEFF Research Database (Denmark)

    Uddin, Mohammad Nasir; Nielsen, Ane Langkilde-Lauesen; Vincze, Eva

    2014-01-01

    In plants, zinc is commonly found bound to proteins. In barley (Hordeum vulgare), major storage proteins are alcohol-soluble prolamins known as hordeins, and some of them have the potential to bind or store zinc. 65Zn overlay and blotting techniques have been widely used for detecting zinc......-binding protein. However, to our knowledge so far this zinc blotting assay has never been applied to detect a prolamin fraction in barley grains. A radioactive zinc (65ZnCl2) blotting technique was optimized to detect zinc-binding prolamins, followed by development of an easy-to-follow nonradioactive colorimetric...... zinc blotting method with a zinc-sensing dye, dithizone. Hordeins were extracted from mature barley grain, separated by SDS-PAGE, blotted on a membrane, renatured, overlaid, and probed with zinc; subsequently, zinc-binding specificity of certain proteins was detected either by autoradiography or color...

  9. Microbial oxidation of soluble sulfide in produced water from the Bakkeen Sands

    Energy Technology Data Exchange (ETDEWEB)

    Gevertz, D.; Zimmerman, S. [Agouron Institute, La Jolla, CA (United States); Jenneman, G.E. [Phillips Petroleum Company, Bartlesville, OK (United States)] [and others

    1995-12-31

    The presence of soluble sulfide in produced water results in problems for the petroleum industry due to its toxicity, odor, corrosive nature, and potential for wellbore plugging. Sulfide oxidation by indigenous nitrate-reducing bacteria (NRB) present in brine collected from wells at the Coleville Unit (CVU) in Saskatchewan, Canada, was investigated. Sulfide oxidation took place readily when nitrate and phosphate were added to brine enrichment cultures, resulting in a decrease in sulfide levels of 99-165 ppm to nondetectable levels (< 3.3 ppm). Produced water collected from a number of producing wells was screened to determine the time required for complete sulfide oxidation, in order to select candidate wells for treatment. Three wells were chosen, based on sulfide removal in 48 hours or less. These wells were treated down the backside of the annulus with a solution containing 10 mM KNO{sub 3} and 100 {mu}M NaH{sub 2}PO{sub 4}. Following a 24- to 72-hour shut-in, reductions in pretreatment sulfide levels of greater than 90% were observed for two of the wells, as well as sustained sulfide reductions of 50% for at least two days following startup. NRB populations in the produced brine were observed to increase significantly following treatment, but no significant increases in sulfate-reducing bacteria were observed. These results demonstrate the technical feasibility of stimulating indigenous populations of NRB to remediate and control sulfide in produced brine.

  10. Surface modification of malachite with ethanediamine and its effect on sulfidization flotation

    Science.gov (United States)

    Feng, Qicheng; Zhao, Wenjuan; Wen, Shuming

    2018-04-01

    Ethanediamine was used to modify the mineral surface of malachite to improve its sulfidization and flotation behavior. The activation mechanism was investigated by adsorption experiments, X-ray photoelectron spectroscopy (XPS) analysis, and zeta potential measurements. Microflotation experiments showed that the flotation recovery of malachite was enhanced after the pretreatment of the mineral particles with ethanediamine prior to the addition of Na2S. Adsorption tests revealed that numerous sulfide ion species in the pulp solution were transferred onto the mineral surface through the formation of more copper sulfide species. This finding was confirmed by the results of the XPS measurements. Ethanediamine modification not only increased the contents of copper sulfide species on the malachite surface but also enhanced the reactivity of the sulfidization products. During sulfidization, Cu(II) species on the mineral surface were reduced into Cu(I) species, and the percentages of S22- and Sn2- relative to the total S increased after modification, resulting in increased surface hydrophobicity. The results of zeta potential measurements showed that the ethanediamine-modified mineral surface adsorbed with more sulfide ion species was advantageous to the attachment of xanthate species, thereby improving malachite floatability. The proposed ethanediamine modification followed by sulfidization xanthate flotation exhibits potential for industrial application.

  11. Determination of the activity concentration of 230Th in phosphoric acids produced in Brazil

    International Nuclear Information System (INIS)

    Taddei, M.H.T.; Ferreira, M.T.; Fukuma, H.T.; Xavier, T.T.; Sousa, F.V.T.S.

    2017-01-01

    The high uranium phosphate rock from Itataia, Brazil, was processed using the wet route in the dihydrate system to manufacture phosphoric acid. The uranium contained in phosphoric acid was recovered by the solvent extraction technique. The distribution of the long half-life radionuclides from the decay series of 238 U and 232 Th were evaluated in these processes. The 26 Ra, 228 Ra and 210 Pb radionuclides were found predominantly in phosphogypsum, while the isotopes of 228 Th, 230 Th and 232 Th predominated in phosphoric acid after extracting uranium. The main concern in the commercialization of phosphoric acid that will be produced in the Itataia plant is in relation to the content of 230 Th. This work determined the content of these radionuclides in phosphoric acid from different locations in the country in order to compare

  12. Bioavailability and stability of mercury sulfide in Armuchee (USA) soil

    International Nuclear Information System (INIS)

    Han, Fengxiang; Shiyab, Safwan; Su, Yi; Monts, David L.; Waggoner, Charles A.; Matta, Frank B.

    2007-01-01

    Because of the adverse effects of elemental mercury and mercury compounds upon human health, the U.S. Department of Energy (DOE) is engaged in an on-going effort to monitor and remediate mercury-contaminated DOE sites. In order to more cost effectively implement those extensive remediation efforts, it is necessary to obtain an improved understanding of the role that mercury and mercury compounds play in the ecosystem. We have conducted pilot scale experiments to study the bioavailability of mercury sulfide in an Armuchee (eastern US ) soil. The effects of plants and incubation time on chemical stability and bioavailability of HgS under simulated conditions of the ecosystem have been examined, as has the dynamics of the dissolution of mercury sulfide by various extractants. The results show that mercury sulfide in contaminated Armuchee soil was still to some extent bioavailable to plants. After planting, soil mercury sulfide is more easily dissolved by both 4 M and 12 M nitric acid than pure mercury sulfide reagent. Dissolution kinetics of soil mercury sulfide and pure chemical reagent by nitric acid are different. Mercury release by EDTA from HgS-contaminated soil increased with time of reaction and soil mercury level. Chelating chemicals increase the solubility and bioavailability of mercury in HgS-contaminated soil. (authors)

  13. Effect of Sulfide Concentration on Copper Corrosion in Anoxic Chloride-Containing Solutions

    Science.gov (United States)

    Kong, Decheng; Dong, Chaofang; Xu, Aoni; Man, Cheng; He, Chang; Li, Xiaogang

    2017-04-01

    The structure and property of passive film on copper are strongly dependent on the sulfide concentration; based on this, a series of electrochemical methods were applied to investigate the effect of sulfide concentration on copper corrosion in anaerobic chloride-containing solutions. The cyclic voltammetry and x-ray photoelectron spectroscopy analysis demonstrated that the corrosion products formed on copper in anaerobic sulfide solutions comprise Cu2S and CuS. And the corrosion resistance of copper decreased with increasing sulfide concentration and faster sulfide addition, owing to the various structures of the passive films observed by the atomic force microscope and scanning electron microscope. A p-type semiconductor character was obtained under all experimental conditions, and the defect concentration, which had a magnitude of 1022-1023 cm-3, increased with increasing sulfide concentration, resulting in a higher rate of both film growth and dissolution.

  14. Boron-Containing Red Light-Emitting Phosphors And Light Sources Incorporating The Same

    Science.gov (United States)

    Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-03-28

    A boron-containing phosphor comprises a material having a formula of AD1-xEuxB9O16, wherein A is an element selected from the group consisting of Ba, Sr, Ca, Mg, and combinations thereof; D is at least an element selected from the group consisting of rare-earth metals other than europium; and x is in the range from about 0.005 to about 0.5. The phosphor is used in a blend with other phosphors in a light source for generating visible light with a high color rendering index.

  15. Investigation of the diffusion {proportional_to} brasses using methods depending on the evaporation or condensation of zinc; Etude de la diffusion dans les laitons {proportional_to} au moyen des methodes d'evaporation ou de condensation du zinc

    Energy Technology Data Exchange (ETDEWEB)

    Accary, A [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires; Centre d' Etudes de Chimie Metallurgique du CNRS (France)

    1959-07-01

    Diffusion in {alpha} brasses has been investigated using methods involving the evaporation and the condensation of zinc. Having shown that at sufficiently high temperatures intergranular diffusion has no effect, it was then proved that the rate of evaporation or of condensation can only be defined if the mechanical treatment of the test piece before diffusion, the direction of the diffusion and the nature of the impurities present are also defined. The coefficient of diffusion D is then given by the equation D ({pi}/4t){rho}{sup 2}{sub 0} where t is the duration of the diffusion; {rho}{sub 0} is the extrapolated value of {rho} = ({delta}m)/({delta}C) for a zero value of the variation of concentration ({delta}m in is the change in weight of the test piece per unit surface; {delta}C is the difference between the concentration at the surface and the initial concentration of the test piece). This method has been used to study the effect of the direction of the diffusion on the coefficient of diffusion. The coefficient for diffusion which decreases the concentration of zinc is 5 times greater than that for diffusion which increases the quantity of zinc in the metal; an interpretation of this phenomena based on the mechanism of diffusion vacancies in the structure has been proposed. By means of micrographic investigation and by weighing it has been shown that the presence of certain impurities, such as phosphorous, arsenic, antimony, silicon, and aluminium can result in a marked increase of the rate of diffusion: the effect of these impurities on the coefficient of diffusion has been related to their valency and atomic weight. (author) [French] La diffusion dans les laitons {alpha} a ete etudiee au moyen des methodes d'evaporation et de condensafion du zinc. Apres avoir montre qu'aux temperatures suffisamment elevees, la diffusion intergranulaire ne jouait aucun role, l'auteur a prouve que la vitesse d'evaporation ou de condensation n'est definie que dans la mesure ou

  16. Eu/Tb ions co-doped white light luminescence Y2O3 phosphors

    International Nuclear Information System (INIS)

    Tu Dong; Liang Yujun; Liu Rong; Li Daoyi

    2011-01-01

    Y 2 O 3 :Eu 3+ , Tb 3+ phosphors with white emission are prepared with different doping concentration of Eu 3+ and Tb 3+ ions and synthesizing temperatures from 750 to 950 deg. C by the co-precipitation method. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the crystallinity of the synthesized samples increases with enhancing the firing temperature. The photoluminescence spectra indicate the Eu 3+ and Tb 3+ co-doped Y 2 O 3 phosphors show five main emission peaks: three at 590, 611 and 629 nm originate from Eu 3+ and two at 481 and 541 nm originate from Tb 3+ , under excitation of 250-320 nm irradition. The white light luminescence color could be changed by varying the excitation wavelength. Different concentrations of Eu 3+ and Tb 3+ ions were induced into the Y 2 O 3 lattice and the energy transfer from Tb 3+ →Eu 3+ ions in these phosphors was found. The Commission International de l'Eclairage (CIE) chromaticity shows that the Y 2 O 3 :Eu 3+ , Tb 3+ phosphors can obtain an intense white emission. - Highlights: → Novel phosphors Y 2 O 3 :Eu 3+ , Tb 3+ have been synthesized by co-precipitation method. → Samples emit white light with excellent color coordinates under UV excitation. → Luminescence color could be changed by varying the excitation wavelength. → Energy transfer from Tb 3+ →Eu 3+ ions in these phosphors was found.

  17. Neodymium conversion layers formed on zinc powder for improving electrochemical properties of zinc electrodes

    International Nuclear Information System (INIS)

    Zhu Liqun; Zhang Hui; Li Weiping; Liu Huicong

    2008-01-01

    Zinc powder, as active material of secondary alkaline zinc electrode, can greatly limit the performance of zinc electrode due to corrosion and dendritic growth of zinc resulting in great capacity-loss and short cycle life of the electrode. This work is devoted to modification study of zinc powder with neodymium conversion films coated directly onto it using ultrasonic immersion method for properties improvement of zinc electrodes. Scanning electron microscopy and other characterization techniques are applied to prove that neodymium conversion layers are distributing on the surface of modified zinc powder. The electrochemical performance of zinc electrodes made of such modified zinc powder is investigated through potentiodynamic polarization, potentiostatic polarization and cyclic voltammetry. The neodymium conversion films are found to have a significant effect on inhibition corrosion capability of zinc electrode in a beneficial way. It is also confirmed that the neodymium conversion coatings can obviously suppress dendritic growth of zinc electrode, which is attributed to the amelioration of deposition state of zinc. Moreover, the results of cyclic voltammetry reveal that surface modification of zinc powder enhances the cycle performance of the electrode mainly because the neodymium conversion films decrease the amounts of ZnO or Zn(OH) 2 dissolved in the electrolyte

  18. Phosphors containing boron and metals of Group IIIA and IIIB

    Science.gov (United States)

    Setlur, Anant Achyut; Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-10-31

    A phosphor comprises: (a) at least a first metal selected from the group consisting of yttrium and elements of lanthanide series other than europium; (b) at least a second metal selected from the group consisting of aluminum, gallium, indium, and scandium; (c) boron; and (d) europium. The phosphor is used in light source that comprises a UV radiation source to convert UV radiation to visible light.

  19. Zinc in human serum

    International Nuclear Information System (INIS)

    Kiilerich, S.

    1987-01-01

    The zinc ion is essential for the living organism. Many pathological conditions have been described as a consequence of zinc deficiency. As zinc constitutes less than 0.01 per cent of the body weight, it conventionally belongs to the group of trace elements. The method of atomic absorption spectrophotometry is used to measure the concentration of zinc in serum and urine from healthy persons. The assumptions of the method is discussed. The importance of proteinbinding, diet and the diurnal variation of serum zinc concentration is presented. Serum versus plasma zinc concentration is discussed. Reference serum zinc values from 104 normal subjects are given. Zinc in serum is almost entirely bound to proteins. A preliminary model for the estimation of the distribution of zinc between serum albumin and α 2 -macroglobulin is set up. This estimate has been examined by an ultracentrufugation method. The binding of zinc to a α 2 -macroglobulin in normal persons is appoximately 7 per cent, in patients with cirrhosis of the liver of alcoholic origin approximately 6 per cent, in patients with insulin dependent diabetes mellitus approximately 5 per cent, and in patients with chronic renal failure approximately 2 per cent. It is concluded, therefore, that for clinical purposes it is sufficient to use the concentration of total serum zinc corrected for the concentration of serum albumin. (author)

  20. Transport of phosphoric acid through supported liquid membrane

    International Nuclear Information System (INIS)

    Zayzafoon, G.; Yassine, T.; Baidoun, R.

    2003-01-01

    The transport of phosphhoric acid through liquid membranes of amylalkohol, 1-octanol and 2-octanol was studied. It was found that phosphoric acid is transfered from feed side to strip side and the transport increased with the concentration of phosphoric acid up to 5M. The permeability in each membrane was determined for 5M phosphoic acid. It was found that the permeability values are 1.45 x 10 1 0 m 2 s 1 for amylakohol and ∼ 1x10 1 0 m 2 s 1 for each of 1-octanol and 2-octanol

  1. Photoluminescence in Sm3+ doped Ba2P2O7 phosphor prepared by solution combustion method

    Science.gov (United States)

    Ghawade, Sonal P.; Deshmukh, Kavita A.; Dhoble, S. J.; Deshmukh, Abhay D.

    2018-05-01

    In this paper, Sm3+ doped Ba2P2O7 phosphors were synthesized via a Solution combustion method. The crystal structure of the phosphor was characterized by XRD. Orange-red emission was observed from these phosphors under near-ultraviolet (UV) excitation at 404 nm. The luminescence properties of the obtained phosphors were characterized by different techniques. The Ba2P2O7:Sm3+ phosphor can be efficiently excited by near-UV and blue light, and their emission spectrum consists of three emission peaks, at 564, 602, and 646 nm, respectively. Based on the results, the as prepared Ba2P2O7:Sm3+ phosphors are promising orange-red-emitting phosphors exhibit great potential may be applicable as a spectral convertor in c-Si solar cell to enhance the efficiency of solar cell in future.

  2. Impact of residual elements on zinc quality in the production of zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Dymáček, Petr; Pešlová, F.; Jurkovič, Z.; Barborák, O.; Stodola, J.

    2016-01-01

    Roč. 55, č. 3 (2016), s. 407-410 ISSN 0543-5846 Institutional support: RVO:68081723 Keywords : zinc * metallography * microstructure of zinc * zinc oxide * production of zinc oxide Subject RIV: JG - Metallurgy Impact factor: 0.959, year: 2014

  3. Activated phosphors having matrices of yttrium-transition metal compound

    International Nuclear Information System (INIS)

    De Kalb, E.L.; Fassel, V.A.

    1975-01-01

    A method is described for preparing a phosphor composition containing a lanthanide activator element with a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO 4 with a portion of the rare earth replaced with one or more of the transition elements. On x-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence

  4. Quantitative prediction process and evaluation method for seafloor polymetallic sulfide resources

    Directory of Open Access Journals (Sweden)

    Mengyi Ren

    2016-03-01

    Full Text Available Seafloor polymetallic sulfide resources exhibit significant development potential. In 2011, China received the exploration rights for 10,000 km2 of a polymetallic sulfides area in the Southwest Indian Ocean; China will be permitted to retain only 25% of the area in 2021. However, an exploration of seafloor hydrothermal sulfide deposits in China remains in the initial stage. According to the quantitative prediction theory and the exploration status of seafloor sulfides, this paper systematically proposes a quantitative prediction evaluation process of oceanic polymetallic sulfide resources and divides it into three stages: prediction in a large area, prediction in the prospecting region, and the verification and evaluation of targets. The first two stages of the prediction process have been employed in seafloor sulfides prospecting of the Chinese contract area. The results of stage one suggest that the Chinese contract area is located in the high posterior probability area, which indicates good prospecting potential area in the Indian Ocean. In stage two, the Chinese contract area of 48°–52°E has the highest posterior probability value, which can be selected as the reserved region for additional exploration. In stage three, the method of numerical simulation is employed to reproduce the ore-forming process of sulfides to verify the accuracy of the reserved targets obtained from the three-stage prediction. By narrowing the exploration area and gradually improving the exploration accuracy, the prediction will provide a basis for the exploration and exploitation of seafloor polymetallic sulfide resources.

  5. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite.

    Science.gov (United States)

    Chandra, A P; Gerson, A R

    2009-01-30

    A review of the considerable, but often contradictory, literature examining the specific surface reactions associated with copper adsorption onto the common metal sulfide minerals sphalerite, (Zn,Fe)S, and pyrite (FeS(2)), and the effect of the co-location of the two minerals is presented. Copper "activation", involving the surface adsorption of copper species from solution onto mineral surfaces to activate the surface for hydrophobic collector attachment, is an important step in the flotation and separation of minerals in an ore. Due to the complexity of metal sulfide mineral containing systems this activation process and the emergence of activation products on the mineral surfaces are not fully understood for most sulfide minerals even after decades of research. Factors such as copper concentration, activation time, pH, surface charge, extent of pre-oxidation, water and surface contaminants, pulp potential and galvanic interactions are important factors affecting copper activation of sphalerite and pyrite. A high pH, the correct reagent concentration and activation time and a short time delay between reagent additions is favourable for separation of sphalerite from pyrite. Sufficient oxidation potential is also needed (through O(2) conditioning) to maintain effective galvanic interactions between sphalerite and pyrite. This ensures pyrite is sufficiently depressed while sphalerite floats. Good water quality with low concentrations of contaminant ions, such as Pb(2+)and Fe(2+), is also needed to limit inadvertent activation and flotation of pyrite into zinc concentrates. Selectivity can further be increased and reagent use minimised by opting for inert grinding and by carefully choosing selective pyrite depressants such as sulfoxy or cyanide reagents. Studies that approximate plant conditions are essential for the development of better separation techniques and methodologies. Improved experimental approaches and surface sensitive techniques with high spatial

  6. New cyclic sulfides, garlicnins I2, M, N, and O, from Allium sativum.

    Science.gov (United States)

    Nohara, Toshihiro; Ono, Masateru; Nishioka, Naho; Masuda, Fuka; Fujiwara, Yukio; Ikeda, Tsuyoshi; Nakano, Daisuke; Kinjo, Junei

    2018-01-01

    One atypical thiolane-type sulfide, garlicnin I 2 (1), two 3,4-dimethylthiolane-type sulfides, garlicnins M (2) and N (3), and one thiabicyclic-type sulfide, garlicnin O (4), were isolated from the acetone extracts of Chinese garlic bulbs, Allium sativum and their structures were characterized. Hypothetical pathways for the production of the respective sulfides were discussed.

  7. Luminescence properties of CdSiO3:Mn2+ phosphor

    International Nuclear Information System (INIS)

    Lei Bingfu; Liu Yingliang; Ye Zeren; Shi Chunshan

    2004-01-01

    A novel long-lasting phosphor CdSiO 3 :Mn 2+ is reported in this paper. The Mn 2+ -doped CdSiO 3 phosphor emits orange light with CIE chromaticity coordinates x=0.5814 and y=0.4139 under 254 nm UV light excitation. In the emission spectrum of 1% Mn 2+ -doped CdSiO 3 phosphor, there is a broad emission band centered at 575 nm which can be attributed to the spin-forbidden transition of the d-orbital electron associated with the Mn 2+ ion. The phosphorescence can be seen by the naked eyes in the dark clearly even after the 254 nm UV irradiation have been removed for about 1 h. The mechanism of the origin of the long-lasting phosphorescence was discussed using the thermoluminescence curves

  8. Cyclic AMP Pathway Activation and Extracellular Zinc Induce Rapid Intracellular Zinc Mobilization in Candida albicans

    Science.gov (United States)

    Kjellerup, Lasse; Winther, Anne-Marie L.; Wilson, Duncan; Fuglsang, Anja T.

    2018-01-01

    Zinc is an essential micronutrient, required for a range of zinc-dependent enzymes and transcription factors. In mammalian cells, zinc serves as a second messenger molecule. However, a role for zinc in signaling has not yet been established in the fungal kingdom. Here, we used the intracellular zinc reporter, zinbo-5, which allowed visualization of zinc in the endoplasmic reticulum and other components of the internal membrane system in Candida albicans. We provide evidence for a link between cyclic AMP/PKA- and zinc-signaling in this major human fungal pathogen. Glucose stimulation, which triggers a cyclic AMP spike in this fungus resulted in rapid intracellular zinc mobilization and this “zinc flux” could be stimulated with phosphodiesterase inhibitors and blocked via inhibition of adenylate cyclase or PKA. A similar mobilization of intracellular zinc was generated by stimulation of cells with extracellular zinc and this effect could be reversed with the chelator EDTA. However, zinc-induced zinc flux was found to be cyclic AMP independent. In summary, we show that activation of the cyclic AMP/PKA pathway triggers intracellular zinc mobilization in a fungus. To our knowledge, this is the first described link between cyclic AMP signaling and zinc homeostasis in a human fungal pathogen. PMID:29619016

  9. Reactivation in vitro of zinc-requiring apo-enzymes by rat liver zinc-thionein

    OpenAIRE

    Udom, Albert O.; Brady, Frank O.

    1980-01-01

    The ability of rat liver zinc-thionein to donate its metal to the apo-enzymes of the zinc enzymes horse liver alcohol dehydrogenase, yeast aldolase, thermolysin, Escherichia coli alkaline phosphatase and bovine erythrocyte carbonic anhydrase was investigated. Zinc-thionein was as good as, or better than, ZnSO4, Zn(CH3CO2)2 or Zn(NO3)2 in donating its zinc to these apo-enzymes. Apo-(alcohol dehydrogenase) could not be reactivated by zinc salts or by zinc-thionein. Incubation of the other apo-e...

  10. Photoluminescence properties of Eu(3+)/ Sm(3+) activated CaZr4(PO4)6 phosphors.

    Science.gov (United States)

    Nair, Govind B; Dhoble, S J

    2016-09-01

    Solid state reaction method was employed for the synthesis of a series of CaZr4(PO4)6: Eu(3+)/Sm(3+) phosphors. The red-emitting CaZr4(PO4)6:Eu(3+) phosphors can be efficiently excited at 396 nm and thereby, exhibit a strong red luminescence predominantly corresponding to the electric dipole transition at 615 nm. Under 405 nm excitation, CaZr4(PO4)6:Sm(3+) phosphors display orange emission with color temperatures approximately around 2200 K. The acquired results reveal that CaZr4(PO4)6: RE(3+) (RE = Eu, Sm) phosphors could be potential candidates for red and orange emitting phosphor, respectively, for UV/blue-pump LEDs.

  11. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition

    International Nuclear Information System (INIS)

    Chen Chuan; Ren Nanqi; Wang Aijie; Liu Lihong; Lee, Duu-Jong

    2010-01-01

    The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed.

  12. I-III-VI.sub.2 based solar cell utilizing the structure CuInGaSe.sub.2 CdZnS/ZnO

    Science.gov (United States)

    Chen, Wen S.; Stewart, John M.

    1992-01-07

    A thin film I-III-VI.sub.2 based solar cell having a first layer of copper indium gallium selenide, a second layer of cadmium zinc sulfide, a double layer of zinc oxide, and a metallization structure comprised of a layer of nickel covered by a layer of aluminum. An optional antireflective coating may be placed on said metallization structure. The cadmium zinc sulfide layer is deposited by means of an aqueous solution growth deposition process and may actually consist of two layers: a low zinc content layer and a high zinc content layer. Photovoltaic efficiencies of 12.5% at Air Mass 1.5 illumination conditions and 10.4% under AMO illumination can be achieved.

  13. Adaptation of cyanobacteria to the sulfide-rich microenvironment of black band disease of coral.

    Science.gov (United States)

    Myers, Jamie L; Richardson, Laurie L

    2009-02-01

    Black band disease (BBD) is a cyanobacteria-dominated microbial mat that migrates across living coral colonies lysing coral tissue and leaving behind exposed coral skeleton. The mat is sulfide-rich due to the presence of sulfate-reducing bacteria, integral members of the BBD microbial community, and the sulfide they produce is lethal to corals. The effect of sulfide, normally toxic to cyanobacteria, on the photosynthetic capabilities of five BBD cyanobacterial isolates of the genera Geitlerinema (3), Leptolyngbya (1), and Oscillatoria (1) and six non-BBD cyanobacteria of the genera Leptolyngbya (3), Pseudanabaena (2), and Phormidium (1) was examined. Photosynthetic experiments were performed by measuring the photoincorporation of [(14)C] NaHCO(3) under the following conditions: (1) aerobic (no sulfide), (2) anaerobic with 0.5 mM sulfide, and (3) anaerobic with 0.5 mM sulfide and 10 microM 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU). All five BBD cyanobacterial isolates tolerated sulfide by conducting sulfide-resistant oxygenic photosynthesis. Five of the non-BBD cyanobacterial isolates did not tolerate sulfide, although one Pseudanabaena isolate continued to photosynthesize in the presence of sulfide at a considerably reduced rate. None of the isolates conducted anoxygenic photosynthesis with sulfide as an electron donor. This is the first report on the physiology of a culture of Oscillatoria sp. found globally in BBD.

  14. Technology of uranium recovery from wet-process phosphoric acid

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Katsutoshi [Saga Univ. (Japan). Faculty of Science and Engineering; Nakashio, Fumiyuki

    1982-12-01

    Rock phosphate contains from 0.005 to 0.02 wt.% of uranium. Though the content is a mere 5 to 10 % of that in uranium ore, the total recovery of uranium is significant since it is used for fertilizer manufacture in a large quantity. Wet-process phosphoric acid is produced by the reaction of rock phosphate with sulfuric acid. The recovery of uranium from this phosphoric acid is mostly by solvent extraction at present. According to U/sup 4 +/ or UO/sub 2//sup 2 +/ as the form of its existence, the technique of solvent extraction differs. The following matters are described: processing of rock phosphate; recovery techniques including the extraction by OPPA-octyl pyrophosphoric acid for U/sup 4 +/, and by mixed DEHPA-Di-(2)-ethylhexyl phosphoric acid and TOPO-tryoctyl phosphine oxide for UO/sub 2//sup 2 +/, and by OPAP-octylphenyl acid phosphate for U/sup 4 +/; the recent progress of the technology as seen in patents.

  15. Instense red phosphors for UV light emitting diode devices.

    Science.gov (United States)

    Cao, Fa-Bin; Tian, Yan-Wen; Chen, Yong-Jie; Xiao, Lin-Jiu; Liu, Yun-Yi

    2010-03-01

    Ca(x)Sr1-x-1.5y-0.5zMoO4:yEu3+ zNa+ red phosphors were prepared by solid-state reaction using Na+ as charge supply for LEDs (light emitting diodes). The content of charge compensator, Ca2+ concentration, synthesis temperature, reaction time, and Eu3+ concentration were the keys to improving the properties of luminescence and crystal structure of red phosphors. The photoluminescence spectra shows the red phosphors are effectively excited at 616 nm by 311 nm, 395 nm, and 465 nm light. The wavelengths of 395 and 465 nm nicely match the widely applied emission wavelengths of ultraviolet or blue LED chips. Its chromaticity coordinates (CIE) are calculated to be x = 0.65, y = 0.32. Bright red light can be observed by the naked eye from the LED-based Ca0.60Sr0.25MoO4:0.08Eu3+ 0.06Na+.

  16. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Xin-juan Li

    2015-01-01

    Full Text Available The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X 7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X 7 receptors.

  17. Near-infrared dyes and upconverting phosphors as biomolecule labels and probes

    Science.gov (United States)

    Patonay, Gabor; Strekowski, Lucjan; Nguyen, Diem-Ngoc; Seok, Kim Jun

    2007-02-01

    Near-Infrared (NIR) absorbing chromophores have been used in analytical and bioanalytical chemistry extensively, including for determination of properties of biomolecules, DNA sequencing, immunoassays, capillary electrophoresis (CE) separations, etc. The major analytical advantages of these dyes are low background interference and high molar absorptivities. NIR dyes have additional advantages due to their sensitivity to microenvironmental changes. Spectral changes induced by the microenvironment are not desirable if the labels are used as a simple reporting group, e.g., during a biorecognition reaction. For these applications upconverting phosphors seem to be a better choice. There are several difficulties in utilizing upconverting phosphors as reporting labels. These are: large physical size, no reactive groups and insolubility in aqueous systems. This presentation will discuss how these difficulties can be overcome for bioanalytical and forensic applications. During these studies we also have investigated how to reduce physical size of the phosphor by simple grinding without losing activity and how to attach reactive moiety to the phosphor to covalently bind to the biomolecule of interest. It has to be emphasized that the described approach is not suitable for medical applications and the results of this research are not applicable in medical applications. For bioanalytical and forensic applications upconverting phosphors used as reporting labels have several advantages. They are excited with lasers that are red shifted respective to phosphorescence, resulting in no light scatter issues during detection. Also some phosphors are excited using eye safe lasers. In addition energy transfer to NIR dyes is possible, allowing detection schemes using donor-acceptor pairs. Data is presented to illustrate the feasibility of this phenomenon. If microenvironmental sensitivity is required, then specially designed NIR dyes can be used as acceptor labels. Several novel dyes

  18. Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?

    Science.gov (United States)

    Melchior, Jan-Patrick; Majer, Günter; Kreuer, Klaus-Dieter

    2016-12-21

    Transport properties and hydration behavior of phosphoric acid/(benz)imidazole mixtures are investigated by diverse NMR techniques, thermogravimetric analysis (TGA) and conductivity measurements. The monomeric systems can serve as models for phosphoric acid/poly-benzimidazole membranes which are known for their exceptional performance in high temperature PEM fuel cells. 1 H- and 31 P-NMR data show benzimidazole acting as a strong Brønsted base with respect to neat phosphoric acid. Since benzimidazole's nitrogens are fully protonated with a low rate for proton exchange with phosphate species, proton diffusion and conduction processes must take place within the hydrogen bond network of phosphoric acid only. The proton exchange dynamics between phosphate and benzimidazole species pass through the intermediate exchange regime (with respect to NMR line separations) with exchange times being close to typical diffusion times chosen in PFG-NMR diffusion measurements (ms regime). The resulting effects, as described by the Kärger equation, are included into the evaluation of PFG-NMR data for obtaining precise proton diffusion coefficients. The highly reduced proton diffusion coefficient within the phosphoric acid part of the model systems compared to neat phosphoric acid is suggested to be the immediate consequence of proton subtraction from phosphoric acid. This reduces hydrogen bond network frustration (imbalance of the number of proton donors and acceptors) and therefore also the rate of structural proton diffusion, phosphoric acid's acidity and hygroscopicity. Reduced water uptake, shown by TGA, goes along with reduced electroosmotic water drag which is suggested to be the reason for PBI-phosphoric acid membranes performing better in fuel cells than other phosphoric-acid-containing electrolytes with higher protonic conductivity.

  19. Enhanced red emission of LaVO4:Eu3+ phosphors by Li-doping

    International Nuclear Information System (INIS)

    Park, Sung Wook; Yang, Hyun Kyoung; Chung, Jong Won; Moon, Byung Kee; Choi, Byung Chun; Jeong, Jung Hyun; Jang, Ki Wan; Lee, Ho Sueb; Yi, Soung Soo

    2010-01-01

    LaVO 4 phosphors were synthesized by using a solid state reaction, and were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL). The XRD patterns of the Li-doped LaVO 4 :Eu 3+ powder phosphors revealed a mixture of tetragonal and monoclinic phases. The tetragonal phase of the LaVO 4 :Eu 3+ phosphor showed a higher PL intensity than the monoclinic one, despite the presence of both monoclinic and tetragonal structures. The Li-doped LaVO 4 :Eu 3+ powder phosphors absorbed strongly at 396 nm and exhibited strong red emission at approximately 619.5 nm due to the 5 D 0 → 7 F 2 transition. The incorporation of Li + ions into the LaVO 4 :Eu 3+ powder can lead to a remarkable increase in photoluminescence. The enhanced luminescence is attributed to the incorporation of Li + ions that may act as a sensitizers for effective energy transfer. This phosphor has promising applications in near-UV light-emitting diodes(LEDs).

  20. UV excited downconversion luminescence properties of Eu3+: NaZnPO4 phosphors

    Science.gov (United States)

    Mukhopadhyay, Lakshmi; Rai, Vineet Kumar

    2018-05-01

    The structural and optical properties of Eu3+: NaZnPO4 phosphors prepared by chemical coprecipitation method have been studied. The phase formation and morphology of the phosphors have been confirmed by the X-ray diffraction (XRD) and Field emission scanning electron microscopy (FESEM) analysis. The downconversion emission spectra upon 392 nm excitation exhibit five emission bands centred at ˜ 575 nm, ˜ 590 nm, ˜ 612 nm, ˜ 660 nm and ˜ 702 nm corresponding to the 5D0→7F0, 5D0→7F1, 5D0→7F2, 5D0→7F3 and 5D0→7F4 transitions of Eu3+ ions respectively. The observed downconversion emission peaks can be explained with the help of suitable energy level diagram. The CIE chromaticity diagram shows the purity of the emitted colour from the prepared phosphors. The present phosphors emit in intense red region which shows the applicability of the phosphors in red light emitting display devices.

  1. Structural optimization for remote white light-emitting diodes with quantum dots and phosphor: packaging sequence matters.

    Science.gov (United States)

    Xie, Bin; Chen, Wei; Hao, Junjie; Wu, Dan; Yu, Xingjian; Chen, Yanhua; Hu, Run; Wang, Kai; Luo, Xiaobing

    2016-12-26

    White light-emitting diodes (WLEDs) with quantum dots (QDs) and phosphor have attracted tremendous attentions due to their excellent color rendering ability. In the packaging process, QDs layer and phosphor-silicone layer tend to be separated to reduce the reabsorption losses, and to maintain the stability of QDs surface ligands. This study investigated the packaging sequence between QDs and phosphor on the optical and thermal performances of WLEDs. The output optical power and PL spectra were measured and analyzed, and the temperature fields were simulated and validated experimentally by infrared thermal imager. It was found that when driven by 60 mA, the QDs-on-phosphor type WLEDs achieved luminous efficiency (LE) of 110 lm/W, with color rendering index (CRI) of Ra = 92 and R9 = 80, while the phosphor-on-QDs type WLEDs demonstrated lower LE of 68 lm/W, with Ra = 57 and R9 = 24. Moreover, the QDs-on-phosphor type WLEDs generated less heat than that of another, consequently the highest temperature in the QDs-on-phosphor type was lower than another, and the temperature difference can reach 12.3°C. Therefore, in terms of packaging sequence, the QDs-on-phosphor type is an optimal packaging architecture for higher optical efficiency, better color rendering ability and lower device temperature.

  2. Investigation of the effect of engine lubricant oil on remote temperature sensing using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Abou Nada, Fahed, E-mail: Fahed.Abou_Nada@forbrf.lth.se; Aldén, Marcus; Richter, Mattias

    2016-11-15

    Phosphor thermometry, a remote temperature sensing technique, is widely implemented to measure the temperature of different combustion engines components. The presence of engine lubricant can influence the behavior of the applied sensor materials, known as thermographic phosphors, and thus leading to erroneous temperature measurements. The effect of two engine lubricants on decay times originating from six different thermographic phosphors was investigated. The decay time of each thermographic phosphor was investigated as a function of lubricant/phosphor mass ratio. Tests were conducted at temperatures around 293 K and 376 K for both lubricants. The investigations revealed that ZnO:Zn and ZnS:Ag are the only ones that exhibit a change of the decay time as function of the lubricant/phosphor mass ratio. While the remaining thermographic phosphors, namely BaMg{sub 2}Al{sub 16}O{sub 27}:Eu (BAM), Al{sub 2}O{sub 3}-coated BaMg{sub 2}Al{sub 16}O{sub 27}:Eu, La{sub 2}O{sub 2}S:Eu, Mg{sub 3}F{sub 2}GeO{sub 4}:Mn, displayed no sensitivity of their characteristic decay time on to the presence of lubricant on the porous coating. Biases in the calculated temperature are to be expected if the utilized thermographic phosphor displays decay time sensitivity to the existence of the engine lubricant within the sensor. Such distortions are concealed and can occur undetected leading to false temperature readings for the probed engine component.

  3. Rare Earth Free Zn3V2O8 Phosphor with Controlled Microstructure and Its Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Hom Nath Luitel

    2013-01-01

    Full Text Available Microsphere of rare earth free phosphor, Zn3V2O8, with broadband yellowish white emission was synthesized by combustion route and compared with the hydrothermal, sol-gel, and solid state reaction methods. The phosphor samples were characterized by X-ray diffraction and scanning electron microscopy. UV-visible absorption and photoluminescence (PL emission and excitation spectra were investigated for these phosphors. Zn3V2O8 phosphor containing 10 mol% of H3BO3 flux exhibited enhanced PL emission showing broadband from 450 nm to 750 nm. Effect of stoichiometry of Zn and V on the host lattice and its effect on the PL emission spectra were studied. Series of Mg3V2O8, Ca3V2O8, and Sr3V2O8 phosphors were also synthesized and compared to the Zn3V2O8 phosphor in terms of PL emission and internal quantum yield, and it was found that Zn3V2O8 is the most efficient phosphor among the other phosphors studied with quantum yield of 60%. The visible light irradiated photocatalytic activity of these phosphors was investigated and it was found that the hydrothermal Zn3V2O8 exhibited enhanced activity.

  4. Nanostructured silver sulfide: synthesis of various forms and their application

    Science.gov (United States)

    Sadovnikov, S. I.; Rempel, A. A.; Gusev, A. I.

    2018-04-01

    The results of experimental studies on nanostructured silver sulfide are analyzed and generalized. The influence of small particle size on nonstoichiometry of silver sulfide is discussed. Methods for the synthesis of various forms of nanostructured Ag2S including nanopowders, stable colloidal solutions, quantum dots, core–shell nanoparticles and heteronanostructures are described. The advantages and drawbacks of different synthetic procedures are analyzed. Main fields of application of nanostructured silver sulfide are considered. The bibliography includes 184 references.

  5. Production and Preservation of Sulfide Layering in Mercury's Magma Ocean

    Science.gov (United States)

    Boukare, C.-E.; Parman, S. W.; Parmentier, E. M.; Anzures, B. A.

    2018-05-01

    Mercury's magma ocean (MMO) would have been sulfur-rich. At some point during MMO solidification, it likely became sulfide saturated. Here we present physiochemical models exploring sulfide layer formation and stability.

  6. Preparation and Characterization of UV Emitting Fluoride Phosphors for Phototherapy Lamps

    Science.gov (United States)

    Belsare, P. D.; Moharil, S. V.; Joshi, C. P.; Omanwar, S. K.

    2011-10-01

    The use of ultraviolet radiation for the treatment of various skin diseases is well known for long time. Phototherapy employs ultraviolet-blue radiation to cure skin diseases. The basis of phototherapy is believed to be the direct interaction of light of certain frequencies with tissue to cause a change in immune response. Currently dermatologists use UV lamps having specific emissions in UV region for treating various skin diseases. The treatment of skin diseases using artificial sources of UV radiation is now well established and more than 50 types of skin diseases are treated by phototherapy. This is an effective treatment for many skin disorders, such as psoriasis, vitiligo, ofujis disease, morphea , scleroderma, cutaneous T-cell lymphoma, lupus erythematosus, hyperbilirubinemia commonly known as infant jaundice, acne vulgaris, This paper reports photoluminescence properties of UV emitting fluoride phosphors prepared by wet chemical method. Emission characteristics of these phosphors are found similar to those of commercial UV lamp phosphors with comparable intensities. The usefulness of UV emitting fluoride phosphor is discussed in the paper.

  7. Effects of Wood Pollution on Pore-Water Sulfide Levels and Eelgrass Germination

    Science.gov (United States)

    Ekelem, C.

    2016-02-01

    Historically, sawmills released wood waste onto coastal shorelines throughout the Pacific Northwest of the USA, enriching marine sediments with organic material. The increase in organic carbon boosts the bacterial reduction of sulfate and results in the production of a toxic metabolite, hydrogen sulfide. Hydrogen sulfide is a phytotoxin and can decrease the growth and survival of eelgrass. This is a critical issue since eelgrass, Zostera marina, forms habitat for many species, stabilizes sediment, and plays a role in nutrient cycling and sediment chemistry. The objective of our study was to determine the effects of wood debris on sediment pore-water hydrogen sulfide concentrations and eelgrass germination. To test the impact of wood inputs on sulfide production and seed germination, we conducted a laboratory mesocosm experiment, adding sawdust to marine sediments and measuring the sulfide levels weekly. We subsequently planted seeds in the mesocosms and measured germination rates. Higher concentrations of sawdust led to higher levels of pore-water hydrogen sulfide and drastically slower eelgrass germination rates. Treatments with greater than 10% wood enrichment developed free sulfide concentrations of 0.815 (± 0.427) mM after 118 days, suggesting sediments with greater than 10% wood pollution may have threateningly high pore-water hydrogen sulfide levels. These results can be used to set thresholds for remediation efforts and guide seed distribution in wood polluted areas.

  8. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution

    International Nuclear Information System (INIS)

    Liu, Hu; Zhang, Shengen; Pan, Dean; Tian, Jianjun; Yang, Min; Wu, Maolin; Volinsky, Alex A.

    2014-01-01

    Highlights: • The article provides a new method for recycling rare earth (RE) from waste phosphor. • When compared with the traditional methods, leach rate was much higher. • Y–Eu concentrate and Tb–Ce concentrate were obtained successively. • It would reduce the burden of later extraction, separation and purification. - Abstract: This paper is a comparative study of recycling rare earth elements from waste phosphor, which focuses on the leaching rate and the technical principle. The traditional and dual dissolution by hydrochloric acid (DHA) methods were compared. The method of dual dissolution by hydrochloric acid has been developed. The Red rare earth phosphor (Y 0.95 Eu 0.05 ) 2 O 3 in waste phosphor is dissolved during the first step of acid leaching, while the Green phosphor (Ce 0.67 Tb 0.33 MgAl 11 O 19 ) and the Blue phosphor (Ba 0.9 Eu 0.1 MgAl 10 O 17 ) mixed with caustic soda are obtained by alkali sintering. The excess caustic soda and NaAlO 2 are removed by washing. The insoluble matter is leached by the hydrochloric acid, followed by solvent extraction and precipitation (the DHA method). In comparison, the total leaching rate of the rare earth elements was 94.6% by DHA, which is much higher than 42.08% achieved by the traditional method. The leaching rate of Y, Eu, Ce and Tb reached 94.6%, 99.05%, 71.45%, and 76.22%, respectively. DHA can decrease the consumption of chemicals and energy. The suggested DHA method is feasible for industrial applications

  9. Process engineering challenges of uranium extraction from phosphoric acid on industrial scale

    International Nuclear Information System (INIS)

    Mouriya, Govind; Singh, Dhirendra; Nath, A.K.; Majumdar, D.

    2014-01-01

    Heavy Water Board (HWB) is a constituent unit of the Department of Atomic Energy. One of the diversified activities undertaken by HWB is pursuing exploitation of non-conventional resources for recovery of uranium from wet phosphoric acid being the most prominent one. Amongst the feasible processes for recovery of uranium from phosphoric acid is solvent extraction. Use of in-house solvent produced by HWB, is another key driver. To garner necessary information for developing the industrial scale facilities, the process has been studied in the laboratory scale, mini scale, bench scale at Heavy Water Plant, Talcher. The process was subsequently scaled up to an industrial prototype scale unit and was set up as a Technology Demonstration Plant coupled with a commercial phosphoric acid plant. The plant has successfully processed more than 2 lakh m 3 of wet phosphoric acid and all the parameters including the product, Yellow Cake have been qualified. No adverse effect has been observed in the fertilizer produced. The main characteristics of the process and subsequent process innovations are discussed in this paper. These innovations have been carried out to overcome hurdles faced during commissioning and subsequent operations of the Plant. The innovations include improved pretreatment of the wet phosphoric acid for feeding to the extraction cycle, improved control of the first cycle chemical environment, reducing the strength of the phosphoric acid used for stripping, reducing the number of equipment and machineries, alteration in solvent composition used in the first and second cycle in the solvent extraction units of the plant. (author)

  10. Study of phase transformation processes in steel after phosphor ion implantation and following thermal treatment

    International Nuclear Information System (INIS)

    Zhetbaev, A.K.; Vereshchak, N.F.; Satpaev, K.K.; Dosmagambetov, T.D.; Serikbaeva, Z.T.

    1999-01-01

    In the paper process of phase transformation after phosphor ion implantation in steel-45 and annealing in vacuum at 1000 deg C and irradiation by various doses of phosphor ions with energy 100 keV an accelerator are researched by conversion electron method. The phosphor overall solubility in iron is equal 4.53 %. Implantation dose below 6·10 17 ions/cm 2 allows increase phosphor ions content in implantation region to 35 %. Therefore, iron phosphides (Fe 3 P, Fe 2 P and Fe P) forming are possible. (author)

  11. Synthesis and complex forming property of phosphor acid derivatives

    International Nuclear Information System (INIS)

    Babaev, B.N.

    2004-01-01

    Full text:With the aim to get new effective and selective extra gents of noble and non-ferrous metals from acid solution and industrial sewage, research of the dependence of 'structure effectiveness' the various phosphor acid derivatives with logical changeable structure (thio phosphor acids, derivatives of dialkoxythiophosphor, O-alkyl-methylphosphon, alkylphenylphosphon, diphenylphosphine acids also 4 methyl-1,3,2 dioxaphosphorinane) which contain different functional groups, the remains of heterocyclic amines and alkaloids, new derivatives of some analytical reagents were synthesized. The structure of synthesized compounds is approved by the results of IR-, PMR-, mass-spectrum analyze. Researching mass-spectrum decay of synthesized phosphor acid derivatives we defined that differing from O-dihexyl-S-propargyl-benzylthio phosphat, mass spectrum decay of O-dialkyl-S-(piperdynobutin-2-il)thio phosphat is characterized by the appearing [M-H] + ions and during the decay ions with high intensiveness are formed. Fragmentation of M + O-alkyl-O-(aminoalkyl)phenylphosphonate proceeds in various directions and characterized with the great number of phosphor containing ions, the possession of the second phenyl radical in the molecule of diphenylphosphon acid derivatives changes the fragmentation of molecular ion of diphenylphosphon acid derivatives. The process of extraction of noble (Au, Ag, Pt, Pd, Os) metals from hydrochloric-sulphur-nitrogen acid medium was analyzed by radioactive indicator's method. It was noticed that structure, strength, conformation of compounds, the temperature, of acid medium (0,1-10 M) and the nature of acids (HCL, H 2 SO 4 , HNO 3 ) could have strong influence to the effectiveness of metal extraction. During the research of metals extraction from pure solutions we can see the followings: 1) There are such substances, which can be used as effective group reagent towards the Au, Ag and Pd. 2) Derivatives with acetylene extract ions of gold from

  12. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    Science.gov (United States)

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  13. Functional consortium for denitrifying sulfide removal process.

    Science.gov (United States)

    Chen, Chuan; Ren, Nanqi; Wang, Aijie; Liu, Lihong; Lee, Duu-Jong

    2010-03-01

    Denitrifying sulfide removal (DSR) process simultaneously converts sulfide, nitrate, and chemical oxygen demand from industrial wastewaters to elemental sulfur, nitrogen gas, and carbon dioxide, respectively. This investigation utilizes a dilution-to-extinction approach at 10(-2) to 10(-6) dilutions to elucidate the correlation between the composition of the microbial community and the DSR performance. In the original suspension and in 10(-2) dilution, the strains Stenotrophomonas sp., Thauera sp., and Azoarcus sp. are the heterotrophic denitrifiers and the strains Paracoccus sp. and Pseudomonas sp. are the sulfide-oxidizing denitrifers. The 10(-4) dilution is identified as the functional consortium for the present DSR system, which comprises two functional strains, Stenotrophomonas sp. strain Paracoccus sp. At 10(-6) dilution, all DSR performance was lost. The functions of the constituent cells in the DSR granules were discussed based on data obtained using the dilution-to-extinction approach.

  14. Influence of soil zinc concentrations on zinc sensitivity and functional diversity of microbial communities

    International Nuclear Information System (INIS)

    Lock, K.; Janssen, C.R.

    2005-01-01

    Pollution induced community tolerance (PICT) is based on the phenomenon that toxic effects reduce survival of the most sensitive organisms, thus increasing community tolerance. Community tolerance for a contaminant is thus a strong indicator for the presence of that contaminant at the level of adverse concentrations. Here we assessed PICT in 11 soils contaminated with zinc runoff from galvanised electricity pylons and 11 reference soils sampled at 10 m distance from these pylons. Using PICT, the influence of background concentration and bioavailability of zinc on zinc sensitivity and functional diversity of microbial communities was assessed. Zinc sensitivity of microbial communities decreased significantly with increasing zinc concentrations in pore water and calcium chloride extracted fraction while no significant relationship was found with total zinc concentration in the soil. It was also found that functional diversity of microbial communities decreased with increasing zinc concentrations, indicating that increased tolerance is indeed an undesirable phenomenon when environmental quality is considered. The hypothesis that zinc sensitivity of microbial communities is related to background zinc concentration in pore water could not be confirmed. - Zinc sensitivity of microbial communities and functional diversity decrease with increasing zinc concentration in the pore water

  15. Activation mechanism of ammonium ions on sulfidation of malachite (-201) surface by DFT study

    Science.gov (United States)

    Wu, Dandan; Mao, Yingbo; Deng, Jiushuai; Wen, Shuming

    2017-07-01

    The activation mechanism of ammonium ions on the sulfidation of malachite (-201) was determined by density functional theory (DFT) calculations. Results of DFT calculations indicated that interlayer sulfidation occurs during the sulfidation process of malachite (-201). The absorption of both the ammonium ion and sulfide ion on the malachite (-201) surface is stronger than that of sulfur ion. After sulfidation was activated with ammonium ion, the Cu 3d orbital peak is closer to the Fermi level and characterized by a stronger peak value. Therefore, the addition of ammonium ions activated the sulfidation of malachite (-201), thereby improving the flotation performance.

  16. Hydrogen sulfide generation in shipboard oily-water waste. Part 3. Ship factors

    Energy Technology Data Exchange (ETDEWEB)

    Hodgeman, D.K.; Fletcher, L.E.; Upsher, F.J.

    1995-04-01

    The chemical and microbiological composition of bilge-water in ships of the Royal Australian Navy has been investigated in relation to the formation of hydrogen sulfide by sulfate-reducing bacteria. Sulfate-reducing bacteria were found in most ships in populations up to 800,000 per mL. Sulfate in the wastes is provided by sea-water. Sea-water constitutes up to 60% (median 20%) of the wastes analysed. Evidence for generation of hydrogen sulfide in the ships was found directly as sulfide or indirectly as depressed sulfate concentrations. The low levels of sulfide found in bilge-water from machinery spaces suggested the ventilation systems were effectively removing the gas from the working area. The effect of storage of the wastes under conditions which simulated the oily- water holding tanks of ships were also investigated. Some wastes were found to produce large quantities of hydrogen sulfide on storage. The wastes that failed to produce hydrogen sulfide were investigated to identify any specific nutritional deficiencies. Some organic substances present in bilge-water, such as lactate or biodegradable cleaning agents, and phosphate strongly influenced the generation of hydrogen sulfide in stored oily-water wastes.

  17. Electrochemical synthesis and characterization of zinc carbonate and zinc oxide nanoparticles

    Science.gov (United States)

    Pourmortazavi, Seied Mahdi; Marashianpour, Zahra; Karimi, Meisam Sadeghpour; Mohammad-Zadeh, Mohammad

    2015-11-01

    Zinc oxide and its precursor i.e., zinc carbonate is widely utilized in various fields of industry, especially in solar energy conversion, optical, and inorganic pigments. In this work, a facile and clean electrodeposition method was utilized for the synthesis of zinc carbonate nanoparticles. Also, zinc oxide nanoparticles were produced by calcination of the prepared zinc carbonate powder. Zinc carbonate nanoparticles with different sizes were electrodeposited by electrolysis of a zinc plate as anode in the solution of sodium carbonate. It was found that the particle size of zinc carbonate might be tuned by process parameters, i.e., electrolysis voltage, carbonate ion concentration, solvent composition and stirring rate of the electrolyte solution. An orthogonal array design was utilized to identify the optimum experimental conditions. The experimental results showed that the minimum size of the electrodeposited ZnCO3 particles is about 24 nm whereas the maximum particle size is around 40 nm. The TG-DSC studies of the nanoparticles indicated that the main thermal degradation of ZnCO3 occurs in two steps over the temperature ranges of 150-250 and 350-400 °C. The electrosynthesized ZnCO3 nanoparticles were calcined at the temperature of 600 °C to prepare ZnO nanoparticles. The prepared ZnCO3 and ZnO nanoparticles were characterized by SEM, X-ray diffraction (XRD), and FT-IR techniques.

  18. Influence of dome phosphor particle concentration on mid-power LED thermal resistance

    NARCIS (Netherlands)

    Alexeev, A.; Martin, G.; Hildenbrand, V.D.; Bosschaart, K.J.

    2016-01-01

    The modern white mid-power LEDs usually contain phosphor particles encapsulated in silicone dome material. The particles convert the blue light emitted from the epitaxial layer and play significant role in thermal processes of LED packages. In this paper the influence of the phosphor particles

  19. Alternative magnesium source for phosphorous recovery – a feasibility and economic analysis

    DEFF Research Database (Denmark)

    Quist-Jensen, Cejna Anna; Jørgensen, Mads Koustrup; Christensen, Morten Lykkegaard

    Conventional reservoirs of phosphorous are in high risk of depletion in near future, thus nontraditional and sustainable recovery-practices are essential to ensure its adequate supply in future. Today phosphorous is being recovered from wastewater at industrial scale by addition of MgCl2. However...

  20. doped LiMgPO4 phosphor

    Indian Academy of Sciences (India)

    attention because of their remarkable luminescence proper- ties and .... Figure 1. (a) X-ray diffraction patterns of LiMgPO4:Tb3+ phosphor and (b) standard data. ICDD file. .... ground signal which affects the signal to noise ratio [17]. MDD was ...