WorldWideScience

Sample records for zinc oxide nanowire

  1. Synthesis and characterization of single-crystalline zinc tin oxide nanowires

    Science.gov (United States)

    Shi, Jen-Bin; Wu, Po-Feng; Lin, Hsien-Sheng; Lin, Ya-Ting; Lee, Hsuan-Wei; Kao, Chia-Tze; Liao, Wei-Hsiang; Young, San-Lin

    2014-05-01

    Crystalline zinc tin oxide (ZTO; zinc oxide with heavy tin doping of 33 at.%) nanowires were first synthesized using the electrodeposition and heat treatment method based on an anodic aluminum oxide (AAO) membrane, which has an average diameter of about 60 nm. According to the field emission scanning electron microscopy (FE-SEM) results, the synthesized ZTO nanowires are highly ordered and have high wire packing densities. The length of ZTO nanowires is about 4 μm, and the aspect ratio is around 67. ZTO nanowires with a Zn/(Zn + Sn) atomic ratio of 0.67 (approximately 2/3) were observed from an energy dispersive spectrometer (EDS). X-ray diffraction (XRD) and corresponding selected area electron diffraction (SAED) patterns demonstrated that the ZTO nanowire is hexagonal single-crystalline. The study of ultraviolet/visible/near-infrared (UV/Vis/NIR) absorption showed that the ZTO nanowire is a wide-band semiconductor with a band gap energy of 3.7 eV.

  2. Growth and luminescence characterization of large-scale zinc oxide nanowires

    CERN Document Server

    Dai, L; Wang, W J; Zhou, T; Hu, B Q

    2003-01-01

    Large-scale zinc oxide (ZnO) nanowires were grown via a simple chemical reaction involving water vapour. Electron microscopy observations reveal that the ZnO nanowires are single crystalline and grow along the c-axis ([001]) direction. Room temperature photoluminescence measurements show a striking blue emission at 466 nm along with two other emissions in the ultraviolet and yellow regions. Annealing treatment of the as-grown ZnO nanowires results in an apparent reduction of the intensity of the blue emission, which indicates that the blue emission might be originating from the oxygen or zinc defects generated in the process of growth of the ZnO nanowires.

  3. Biofunctionalization of zinc oxide nanowires for DNA sensory applications

    Directory of Open Access Journals (Sweden)

    Rudolph Bettina

    2011-01-01

    Full Text Available Abstract We report on the biofunctionalization of zinc oxide nanowires for the attachment of DNA target molecules on the nanowire surface. With the organosilane glycidyloxypropyltrimethoxysilane acting as a bifunctional linker, amino-modified capture molecule oligonucleotides have been immobilized on the nanowire surface. The dye-marked DNA molecules were detected via fluorescence microscopy, and our results reveal a successful attachment of DNA capture molecules onto the nanowire surface. The electrical field effect induced by the negatively charged attached DNA molecules should be able to control the electrical properties of the nanowires and gives way to a ZnO nanowire-based biosensing device.

  4. A shortcut hydrothermal strategy for the synthesis of zinc nanowires

    International Nuclear Information System (INIS)

    Hu Jianqiang; Chen Zhiwu; Xie Jingsi; Yu Ying

    2008-01-01

    Synthesis of metal nanowires has opened many new possibilities for designing ideal building blocks for future nanodevices. In this work, zinc nanowires with lengths of micrometre magnitude were synthesized in high yield by a shortcut hydrothermal strategy. The synthesis involves a template-free, non-seed and catalyst-free solution-phase process to high-quality zinc nanowires, which is low-cost and proceeds at relatively short time. In this process, zinc nanowires were prepared through the reduction of zinc acetate with absolute ethanol in the presence of silver nitrate under hydrothermal atmosphere. The strategy suggests that silver ion plays a vital role in the synthesis of zinc nanowires, without which the substituted product is zinc oxide nanowires. X-ray diffraction and energy-dispersive x-ray spectroscopy measurements confirm the final formation of zinc nanowires and component transformation from zinc oxide nanowires in the introduction of silver ion. We believe that with the efficient synthesis, longer zinc nanowires can be fabricated and may find potential applications for superconductors and nanodevices. (fast track communication)

  5. Production of zinc oxide nanowires power with precisely defined morphology

    Science.gov (United States)

    Mičová, Júlia; Remeš, Zdeněk; Chan, Yu-Ying

    2017-12-01

    The interest about zinc oxide is increasing thanks to its unique chemical and physical properties. Our attention has focused on preparation powder of 1D nanostructures of ZnO nanowires with precisely defined morphology include characterization size (length and diameter) and shape controlled in the scanning electron microscopy (SEM). We have compared results of SEM with dynamic light scattering (DLS) technique. We have found out that SEM method gives more accurate results. We have proposed transformation process from ZnO nanowires on substrates to ZnO nanowires powder by ultrasound peeling to colloid followed by lyophilization. This method of the mass production of the ZnO nanowires powder has some advantages: simplicity, cost effective, large-scale and environment friendly.

  6. Pyrolytically grown indium sulfide sensitized zinc oxide nanowires for solar water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Komurcu, Pelin; Can, Emre Kaan; Aydin, Erkan; Semiz, Levent [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Gurol, Alp Eren; Alkan, Fatma Merve [Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Sankir, Mehmet; Sankir, Nurdan Demirci [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey)

    2015-11-15

    Zinc oxide (ZnO) nanowires, sensitized with spray pyrolyzed indium sulfide, were obtained by chemical bath deposition. The XRD analysis indicated dominant evolution of hexagonal ZnO phase. Significant gain in photoelectrochemical current using ZnO nanowires is largely accountable to enhancement of the visible light absorption and the formation of heterostructure. The maximum photoconversion efficiency of 2.77% was calculated for the indium sulfide sensitized ZnO nanowire photoelectrodes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Characterizing and simulation the scintillation properties of zinc oxide nanowires in AAO membrane for medical imaging applications

    International Nuclear Information System (INIS)

    Esfandi, F.; Saramad, S.; Shahmirzadi, M. Rezaei

    2017-01-01

    In this work, a new method is proposed for extracting some X-ray detection properties of ZnO nanowires electrodeposited on Anodized Aluminum Oxide (AAO) nanoporous template. The results show that the detection efficiency for 12μm thickness of zinc oxide nano scintillator at an energy of 9.8 keV, near the K-edge of ZnO (9.65 keV), is 24%. The X-rays that interact with AAO can also generate electrons that reach the nano scintillator. The scintillation events of these electrons are seen as a low energy tail in the spectrum. In addition, it is found that all the X-rays that are absorbed in 300 nm thickness of the gold layer on the top of the zinc oxide nanowires can participate in the scintillation process with an efficiency of 6%. Hence, the scintillation detection efficiency of the whole detector for 9.8 keV X-ray energy is 30%. The simulation results from Geant4 and the experimental detected photons per MeV energy deposition are also used to extract the light yield of the zinc oxide nano scintillator. The results show that the light yield of the zinc oxide nanowires deposited by the electrochemical method is approximately the same as for single crystal zinc oxide scintillator (9000). Much better spatial resolution of this nano scintillator in comparison to the bulk ones is an advantage which candidates this nano scintillator for medical imaging applications.

  8. Solution processed zinc oxide nanopyramid/silver nanowire transparent network films with highly tunable light scattering properties

    KAUST Repository

    Mehra, Saahil

    2013-01-01

    Metal nanowire transparent networks are promising replacements to indium tin oxide (ITO) transparent electrodes for optoelectronic devices. While the transparency and sheet resistance are key metrics for transparent electrode performance, independent control of the film light scattering properties is important to developing multifunctional electrodes for improved photovoltaic absorption. Here we show that controlled incorporation of ZnO nanopyramids into a metal nanowire network film affords independent, highly tunable control of the scattering properties (haze) with minimal effects on the transparency and sheet resistance. Varying the zinc oxide/silver nanostructure ratios prior to spray deposition results in sheet resistances, transmission (600 nm), and haze (600 nm) of 6-30 Ω □-1, 68-86%, and 34-66%, respectively. Incorporation of zinc oxide nanopyramid scattering agents into the conducting nanowire mesh has a negligible effect on mesh connectivity, providing a straightforward method of controlling electrode scattering properties. The decoupling of the film scattering power and electrical characteristics makes these films promising candidates for highly scattering transparent electrodes in optoelectronic devices and can be generalized to other metal nanowire films as well as carbon nanotube transparent electrodes. © 2013 The Royal Society of Chemistry.

  9. Functionalised zinc oxide nanowire gas sensors: Enhanced NO(2) gas sensor response by chemical modification of nanowire surfaces.

    Science.gov (United States)

    Waclawik, Eric R; Chang, Jin; Ponzoni, Andrea; Concina, Isabella; Zappa, Dario; Comini, Elisabetta; Motta, Nunzio; Faglia, Guido; Sberveglieri, Giorgio

    2012-01-01

    Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO(2) produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO(2) down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO(2) compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO(2) target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.

  10. Production of zinc oxide nanowires power with precisely defined morphology

    Czech Academy of Sciences Publication Activity Database

    Mičová, J.; Remeš, Zdeněk; Chang, Yu-Ying

    2017-01-01

    Roč. 68, č. 7 (2017), s. 66-69 ISSN 1335-3632 R&D Projects: GA ČR GC16-10429J Grant - others:AV ČR(CZ) KONNECT-007 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : zinc oxide nanowires * hydrothermal growth method * scanning electron microscopy (SEM) Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.483, year: 2016

  11. Byproduct-free mass production of compound semiconductor nanowires: zinc phosphide

    Science.gov (United States)

    Chen, Yixi; Polinnaya, Rakesh; Vaddiraju, Sreeram

    2018-05-01

    A method for the mass production of compound semiconductor nanowires that involves the direct reaction of component elements in a chemical vapor deposition chamber (CVD) is presented. This method results in nanowires, without the associated production of any other byproducts such as nanoparticles or three-dimensional (3D) bulk crystals. Furthermore, no unreacted reactants remain mixed with the nanowire product in this method. This byproduct-free nanowire production thus circumvents the need to tediously purify and collect nanowires from a mixture of products/reactants after their synthesis. Demonstration made using zinc phosphide (Zn3P2) material system as an example indicated that the direct reaction of zinc microparticles with phosphorus supplied via the vapor phase results in the production of gram quantities of nanowires. To enhance thermal transport and achieve the complete reaction of zinc microparticles, while simultaneously ensuring that the microparticles do not agglomerate into macroscale zinc particles and partly remain unreacted (owing to diffusion limitations), pellets composed of mixtures of zinc and a sacrificial salt, NH4Cl, were employed as the starting material. The sublimation by decomposition of NH4Cl in the early stages of the reaction leaves a highly porous pellet of zinc composed of only zinc microparticles, which allows for inward diffusion of phosphorus/outward diffusion of zinc and the complete conversion of zinc into Zn3P2 nanowires. NH4Cl also aids in removal of any native oxide layer present on the zinc microparticles that may prevent their reaction with phosphorus. This method may be used to mass produce many other nanowires in a byproduct-free manner, besides Zn3P2.

  12. Protein Biosensors Based on Polymer Nanowires, Carbon Nanotubes and Zinc Oxide Nanorods

    Directory of Open Access Journals (Sweden)

    Taeksoo Ji

    2011-05-01

    Full Text Available The development of biosensors using electrochemical methods is a promising application in the field of biotechnology. High sensitivity sensors for the bio-detection of proteins have been developed using several kinds of nanomaterials. The performance of the sensors depends on the type of nanostructures with which the biomaterials interact. One dimensional (1-D structures such as nanowires, nanotubes and nanorods are proven to have high potential for bio-applications. In this paper we review these three different kinds of nanostructures that have attracted much attention at recent times with their great performance as biosensors. Materials such as polymers, carbon and zinc oxide have been widely used for the fabrication of nanostructures because of their enhanced performance in terms of sensitivity, biocompatibility, and ease of preparation. Thus we consider polymer nanowires, carbon nanotubes and zinc oxide nanorods for discussion in this paper. We consider three stages in the development of biosensors: (a fabrication of biomaterials into nanostructures, (b alignment of the nanostructures and (c immobilization of proteins. Two different methods by which the biosensors can be developed at each stage for all the three nanostructures are examined. Finally, we conclude by mentioning some of the major challenges faced by many researchers who seek to fabricate biosensors for real time applications.

  13. Rapid Hydrothermal Synthesis of Zinc Oxide Nanowires by Annealing Methods on Seed Layers

    Directory of Open Access Journals (Sweden)

    Jang Bo Shim

    2011-01-01

    Full Text Available Well-aligned zinc oxide (ZnO nanowire arrays were successfully synthesized on a glass substrate using the rapid microwave heating process. The ZnO seed layers were produced by spinning the precursor solutions onto the substrate. Among coatings, the ZnO seed layers were annealed at 100°C for 5 minutes to ensure particle adhesion to the glass surface in air, nitrogen, and vacuum atmospheres. The annealing treatment of the ZnO seed layer was most important for achieving the high quality of ZnO nanowire arrays as ZnO seed nanoparticles of larger than 30 nm in diameter evolve into ZnO nanowire arrays. Transmission electron microscopy analysis revealed a single-crystalline lattice of the ZnO nanowires. Because of their low power (140 W, low operating temperatures (90°C, easy fabrication (variable microwave sintering system, and low cost (90% cost reduction compared with gas condensation methods, high quality ZnO nanowires created with the rapid microwave heating process show great promise for use in flexible solar cells and flexible display devices.

  14. Highly sensitive uric acid biosensor based on individual zinc oxide micro/nanowires

    International Nuclear Information System (INIS)

    Zhao, Yanguang; Yan, Xiaoqin; Kang, Zhuo; Lin, Pei; Fang, Xiaofei; Lei, Yang; Ma, Siwei; Zhang, Yue

    2013-01-01

    We describe the use of individual zinc oxide (ZnO) micro/nanowires in an electrochemical biosensor for uric acid. The wires were synthesized by chemical vapor deposition and possess uniform morphology and high crystallinity as revealed by scanning electron microscopy, X-ray diffraction, and photoluminescence studies. The enzyme uricase was then immobilized on the surface of the ZnO micro/nanowires by physical adsorption, and this was proven by Raman spectroscopy and fluorescence microscopy. The resulting uric acid biosensor undergoes fast electron transfer between the active site of the enzyme and the surface of the electrode. It displays high sensitivity (89.74 μA cm −2 mM −1 ) and a wide linear analytical range (between 0.1 mM and 0.59 mM concentrations of uric acid). This study also demonstrates the potential of the use of individual ZnO micro/nanowires for the construction of highly sensitive nano-sized biosensors. (author)

  15. Highly stable field emission from ZnO nanowire field emitters controlled by an amorphous indium–gallium–zinc-oxide thin film transistor

    Science.gov (United States)

    Li, Xiaojie; Wang, Ying; Zhang, Zhipeng; Ou, Hai; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-04-01

    Lowering the driving voltage and improving the stability of nanowire field emitters are essential for them to be applied in devices. In this study the characteristics of zinc oxide (ZnO) nanowire field emitter arrays (FEAs) controlled by an amorphous indium–gallium–zinc-oxide thin film transistor (a-IGZO TFT) were studied. A low driving voltage along with stabilization of the field emission current were achieved. Modulation of field emission currents up to three orders of magnitude was achieved at a gate voltage of 0–32 V for a constant anode voltage. Additionally, a-IGZO TFT control can dramatically reduce the emission current fluctuation (i.e., from 46.11 to 1.79% at an emission current of ∼3.7 µA). Both the a-IGZO TFT and ZnO nanowire FEAs were prepared on glass substrates in our research, demonstrating the feasibility of realizing large area a-IGZO TFT-controlled ZnO nanowire FEAs.

  16. Zinc oxide nanowire-poly(methyl methacrylate) dielectric layers for polymer capacitive pressure sensors.

    Science.gov (United States)

    Chen, Yan-Sheng; Hsieh, Gen-Wen; Chen, Shih-Ping; Tseng, Pin-Yen; Wang, Cheng-Wei

    2015-01-14

    Polymer capacitive pressure sensors based on a dielectric composite layer of zinc oxide nanowire and poly(methyl methacrylate) show pressure sensitivity in the range of 2.63 × 10(-3) to 9.95 × 10(-3) cm(2) gf(-1). This represents an increase of capacitance change by as much as a factor of 23 over pristine polymer devices. An ultralight load of only 10 mg (corresponding to an applied pressure of ∼0.01 gf cm(-2)) can be clearly recognized, demonstrating remarkable characteristics of these nanowire-polymer capacitive pressure sensors. In addition, optical transmittance of the dielectric composite layer is approximately 90% in the visible wavelength region. Their low processing temperature, transparency, and flexible dielectric film makes them a highly promising means for flexible touching and pressure-sensing applications.

  17. Growth of antimony doped P-type zinc oxide nanowires for optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong Lin; Pradel, Ken

    2016-09-27

    In a method of growing p-type nanowires, a nanowire growth solution of zinc nitrate (Zn(NO.sub.3).sub.2), hexamethylenetetramine (HMTA) and polyethylenemine (800 M.sub.w PEI) is prepared. A dopant solution to the growth solution, the dopant solution including an equal molar ration of sodium hydroxide (NaOH), glycolic acid (C.sub.2H.sub.4O.sub.3) and antimony acetate (Sb(CH.sub.3COO).sub.3) in water is prepared. The dopant solution and the growth solution combine to generate a resulting solution that includes antimony to zinc in a ratio of between 0.2% molar to 2.0% molar, the resulting solution having a top surface. An ammonia solution is added to the resulting solution. A ZnO seed layer is applied to a substrate and the substrate is placed into the top surface of the resulting solution with the ZnO seed layer facing downwardly for a predetermined time until Sb-doped ZnO nanowires having a length of at least 5 .mu.m have grown from the ZnO seed layer.

  18. ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates

    Directory of Open Access Journals (Sweden)

    Taylor Curtis

    2010-01-01

    Full Text Available Abstract Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20–80 nm in diameter, up to 6 μm in length, density <40 nm apart at substrate temperatures down to 300°C. Electron microscopy and other characterization techniques show nanowires with distinct morphologies when grown under different conditions. The effect of reaction parameters including reaction time, temperature, and carrier gas flow rate on the size, morphology, crystalline structure, and density of ZnO nanowires has been investigated. The nanowires grown by this method have a diameter, length, and density appropriate for use in fabricating hybrid polymer/metal oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells.

  19. Simulation the spatial resolution of an X-ray imager based on zinc oxide nanowires in anodic aluminium oxide membrane by using MCNP and OPTICS Codes

    Science.gov (United States)

    Samarin, S. N.; Saramad, S.

    2018-05-01

    The spatial resolution of a detector is a very important parameter for x-ray imaging. A bulk scintillation detector because of spreading of light inside the scintillator does't have a good spatial resolution. The nanowire scintillators because of their wave guiding behavior can prevent the spreading of light and can improve the spatial resolution of traditional scintillation detectors. The zinc oxide (ZnO) scintillator nanowire, with its simple construction by electrochemical deposition in regular hexagonal structure of Aluminum oxide membrane has many advantages. The three dimensional absorption of X-ray energy in ZnO scintillator is simulated by a Monte Carlo transport code (MCNP). The transport, attenuation and scattering of the generated photons are simulated by a general-purpose scintillator light response simulation code (OPTICS). The results are compared with a previous publication which used a simulation code of the passage of particles through matter (Geant4). The results verify that this scintillator nanowire structure has a spatial resolution less than one micrometer.

  20. Fabrication and characterization of well-aligned zinc oxide nanowire arrays and their realizations in Schottky-device applications

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Kin Mun; Grote, Fabian; Sun, Hui; Lei, Yong [Institute of Materials Physics, Center for Nanotechnology, University of Muenster (Germany); Wen, Liaoyong; Fang, Yaoguo [Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 201800 (China)

    2011-07-01

    Highly ordered arrays of vertical zinc oxide (ZnO) nanowires (NWs) or nanopores were fabricated in our group by first thermal evaporating a thin film of gold on the ultrathin alumina membrane (UTAM). The UTAM was then utilized as a substrate for the growth of the ordered arrays using a chemical vapour deposition (CVD) process. Alternatively, a modified CVD process was also used to fabricate ultra-long ZnO NWs with the length of the nanowire exceeding 100 micrometres. Subsequently, densely packed arrays of ZnO NWs Schottky diodes were synthesized by transferring the long NWs on a substrate using a dry contact printing method and the electrical contacts were made on the NWs with a photolithographic process. The interesting electrical properties of the ZnO NWs, diodes or other metal oxide NWs such as the field emission, electron transport and piezoelectric properties were characterized by current-voltage or by other appropriate measurements.

  1. Photocatalytic segmented nanowires and single-step iron oxide nanotube synthesis: Templated electrodeposition as all-round tool

    NARCIS (Netherlands)

    Maas, M.G.; Rodijk, E.J.B.; Maijenburg, A.W.; ten Elshof, Johan E.; Blank, David H.A.; Nielsch, K.; Fontcuberta i Morral, A.; Holt, J.K.; Thomson, C.V.

    2010-01-01

    Templated electrodeposition was used to synthesize silver-zinc oxide nanowires and iron oxide (Fe2O3) nanotubes in polycarbonate track etched (PCTE) membranes. Metal/oxide segmented nanowires were made to produce hydrogen gas from a water/methanol mixture under ultraviolet irradiation. It was

  2. Simulation, optimization and testing of a novel high spatial resolution X-ray imager based on Zinc Oxide nanowires in Anodic Aluminium Oxide membrane using Geant4

    Science.gov (United States)

    Esfandi, F.; Saramad, S.

    2015-07-01

    In this work, a new generation of scintillator based X-ray imagers based on ZnO nanowires in Anodized Aluminum Oxide (AAO) nanoporous template is characterized. The optical response of ordered ZnO nanowire arrays in porous AAO template under low energy X-ray illumination is simulated by the Geant4 Monte Carlo code and compared with experimental results. The results show that for 10 keV X-ray photons, by considering the light guiding properties of zinc oxide inside the AAO template and suitable selection of detector thickness and pore diameter, the spatial resolution less than one micrometer and the detector detection efficiency of 66% are accessible. This novel nano scintillator detector can have many advantages for medical applications in the future.

  3. Simulation, optimization and testing of a novel high spatial resolution X-ray imager based on Zinc Oxide nanowires in Anodic Aluminium Oxide membrane using Geant4

    International Nuclear Information System (INIS)

    Esfandi, F.; Saramad, S.

    2015-01-01

    In this work, a new generation of scintillator based X-ray imagers based on ZnO nanowires in Anodized Aluminum Oxide (AAO) nanoporous template is characterized. The optical response of ordered ZnO nanowire arrays in porous AAO template under low energy X-ray illumination is simulated by the Geant4 Monte Carlo code and compared with experimental results. The results show that for 10 keV X-ray photons, by considering the light guiding properties of zinc oxide inside the AAO template and suitable selection of detector thickness and pore diameter, the spatial resolution less than one micrometer and the detector detection efficiency of 66% are accessible. This novel nano scintillator detector can have many advantages for medical applications in the future

  4. Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications.

    Science.gov (United States)

    Ou, Canlin; Sanchez-Jimenez, Pedro E; Datta, Anuja; Boughey, Francesca L; Whiter, Richard A; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-06-08

    A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∼250 nm, length ∼12 μm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∼4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix.

  5. Influence of the Hydrothermal Method Growth Parameters on the Zinc Oxide Nanowires Deposited on Several Substrates

    Directory of Open Access Journals (Sweden)

    Concepción Mejía-García

    2014-01-01

    Full Text Available We report the synthesis of ZnO nanowires grown on several substrates (PET, glass, and Si using a two-step process: (a preparation of the seed layer on the substrate by spin coating, from solutions of zinc acetate dihydrate and 1-propanol, and (b growth of the ZnO nanostructures by dipping the substrate in an equimolar solution of zinc nitrate hexahydrate and hexamethylenetetramine. Subsequently, films were thermally treated with a commercial microwave oven (350 and 700 W for 5, 20, and 35 min. The ZnO nanowires obtained were characterized structurally, morphologically, and optically using XRD, SEM, and UV-VIS transmission, respectively. XRD patterns spectra revealed the presence of Zn(OH2 on the films grown on glass and Si substrates. A preferential orientation along c-axis directions for films grown on PET substrate was observed. An analysis by SEM revealed that the growth of the ZnO nanowires on PET and glass is better than the growth on Si when the same growth parameters are used. On glass substrates, ZnO nanowires less than 50 nm in diameter and between 200 nm and 1200 nm in length were obtained. The ZnO nanowires band gap energy for the films grown on PET and glass was obtained from optical transmission spectra.

  6. Young's Modulus of Wurtzite and Zinc Blende InP Nanowires.

    Science.gov (United States)

    Dunaevskiy, Mikhail; Geydt, Pavel; Lähderanta, Erkki; Alekseev, Prokhor; Haggrén, Tuomas; Kakko, Joona-Pekko; Jiang, Hua; Lipsanen, Harri

    2017-06-14

    The Young's modulus of thin conical InP nanowires with either wurtzite or mixed "zinc blende/wurtzite" structures was measured. It has been shown that the value of Young's modulus obtained for wurtzite InP nanowires (E [0001] = 130 ± 30 GPa) was similar to the theoretically predicted value for the wurtzite InP material (E [0001] = 120 ± 10 GPa). The Young's modulus of mixed "zinc blende/wurtzite" InP nanowires (E [111] = 65 ± 10 GPa) appeared to be 40% less than the theoretically predicted value for the zinc blende InP material (E [111] = 110 GPa). An advanced method for measuring the Young's modulus of thin and flexible nanostructures is proposed. It consists of measuring the flexibility (the inverse of stiffness) profiles 1/k(x) by the scanning probe microscopy with precise control of loading force in nanonewton range followed by simulations.

  7. Manufacturing process, characterization and optical investigation of amorphous 1D zinc oxide nanostructures

    Science.gov (United States)

    Matysiak, Wiktor; Tański, Tomasz; Zaborowska, Marta

    2018-06-01

    The purpose of this article was to produce amorphous ZnO nanowires via the electrospinning process from a polyvinylpyrrolidone (PVP)/zinc acetate dihydrate (Zn(COOH)2)/dimethylformamide (DMF) and ethanol (EtOH) solution. The as obtained nanofibers were calcined at temperatures ranging from 400 to 600 °C to remove the organic phase. The one-dimensional zinc oxide nanostructures were studied using a scanning electron microscope (SEM) and a transmission electron microscope (TEM) to analyse the influence of the used temperature on the morphology and structures of the obtained ceramic nanomaterials. In order to examine the chemical structure of nanowires, the energy dispersive spectrometry (EDX) was used. Besides, a thermogravimetric analysis (TGA) was performed to show the polymer concentration loss in a function of temperature in order to obtain pure zinc oxide nanowires. The optical property analysis was performed on the basis of UV-vis spectra of absorbance as a function of the wavelength. Using the modified Swanepoel method, which the authors proposed, and the recorded absorbance spectra determined the banded refractive index n, real n‧ and imaginary k part of the refractive index as a function of the wavelength, complex dielectric permeability ɛ, real and imaginary part εr and εi of the dielectric permeability as a function of the radiation energy of the produced ZnO nanowires.

  8. Methods for synthesizing metal oxide nanowires

    Science.gov (United States)

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  9. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Young Tea; Chu, Daping, E-mail: dpc31@cam.ac.uk [Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Neeves, Matthew; Placido, Frank [Thin Film Centre, University of the West of Scotland, Paisley PA1 2BE (United Kingdom); Smithwick, Quinn [Disney Research, 521 Circle Seven Drive, Glendale, Los Angeles, California 91201 (United States)

    2014-11-10

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO{sub x} thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm{sup 2}, exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively.

  10. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    International Nuclear Information System (INIS)

    Chun, Young Tea; Chu, Daping; Neeves, Matthew; Placido, Frank; Smithwick, Quinn

    2014-01-01

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO x thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2 cm 2 , exhibiting an optical contrast of 73.11% at the wavelength of 470 nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively

  11. Zinc oxide nanostructures: new properties for advances applications

    International Nuclear Information System (INIS)

    Lupan, Oleg; Chow, Lee; Pauporte, Thierry

    2011-01-01

    Zinc oxide is a material which exhibits a variety of new properties at nanometer dimensions. Various synthesis techniques have been carried out to provide growth of nanowires, nanorods, nanorings, nanosprings, and nanobelts of ZnO under various conditions. These nanostructures show that ZnO possesses probably the richest family of nanoarchitectures among all materials, including their structures and properties. Such nanoarchitectures are potential building blocks for novel applications in optoelectronics, sensors, photovoltaic and nano-biomedical sciences. This work presents a review of various nano architectures of ZnO grown by the electrochemical, hydrothermal and solid-vapor phase techniques and their properties. The possible applications of ZnO nanowires as sensors, nano-DSSC, photodetectors and nano-LEDs will be presented.

  12. SYNTHESIS AND PHOTOLUMINESCENCE STUDIES ON ZINC OXIDE NANOWIRES

    Directory of Open Access Journals (Sweden)

    Nguyen Ngoc Long

    2017-11-01

    Full Text Available Semiconductor single crystal ZnO nanowires have been successfully synthesized by a simple method based on thermal evaporation of ZnO powders mixed with graphite. Metallic catalysts, carrying gases, and vacuum conditions are not necessary. The x-ray diffraction (XRD analysis shows that the ZnO nanowires are highly crystallized and have a typical wurtzite hexagonal structure with lattice constants a = 0.3246 nm and c = 0.5203 nm. The scanning electron microscopy (SEM images of nanowires indicate that diameters of the ZnO nanowires normally range from 100 to 300 nm and their lengths are several tens of micrometers. Photoluminescence (PL and photoluminescence excitation (PLE spectra of the nanowires were measured in the range of temperature from 15 K to the room temperature. Photoluminescence spectra at low temperatures exhibit a group of ultraviolet (UV narrow peaks in the region 368 nm ~ 390 nm, and a blue-green very broad peak at 500 nm. Origin of the emission lines in PL spectra and the lines in PLE spectra is discussed.

  13. Size and temperature dependence of the tensile mechanical properties of zinc blende CdSe nanowires

    International Nuclear Information System (INIS)

    Fu, Bing; Chen, Na; Xie, Yiqun; Ye, Xiang; Gu, Xiao

    2013-01-01

    The effect of size and temperature on the tensile mechanical properties of zinc blende CdSe nanowires is investigated by all atoms molecular dynamic simulation. We found the ultimate tensile strength and Young's modulus will decrease as the temperature and size of the nanowire increase. The size and temperature dependence are mainly attributed to surface effect and thermally elongation effect. High reversibility of tensile behavior will make zinc blende CdSe nanowires suitable for building efficient nanodevices.

  14. Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rathmall, Aaron [Duke University; Nguyen, Minh [Duke University; Wiley, Benjamin J [Duke University

    2012-01-01

    Nanowires of copper can be coated from liquids to create flexible, transparent conducting films that can potentially replace the dominant transparent conductor, indium tin oxide, in displays, solar cells, organic light-emitting diodes, and electrochromic windows. One issue with these nanowire films is that copper is prone to oxidation. It was hypothesized that the resistance to oxidation could be improved by coating copper nanowires with nickel. This work demonstrates a method for synthesizing copper nanowires with nickel shells as well as the properties of cupronickel nanowires in transparent conducting films. Time- and temperature-dependent sheet resistance measurements indicate that the sheet resistance of copper and silver nanowire films will double after 3 and 36 months at room temperature, respectively. In contrast, the sheet resistance of cupronickel nanowires containing 20 mol % nickel will double in about 400 years. Coating copper nanowires to a ratio of 2:1 Cu:Ni gave them a neutral gray color, making them more suitable for use in displays and electrochromic windows. These properties, and the fact that copper and nickel are 1000 times more abundant than indium or silver, make cupronickel nanowires a promising alternative for the sustainable, efficient production of transparent conductors.

  15. Optical properties of single wurtzite/zinc-blende ZnSe nanowires grown at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zannier, V. [IOM-CNR Laboratorio TASC, S. S. 14, Km. 163.5, I-34149 Trieste (Italy); Department of Physics, University of Trieste, Via Valerio 2, I-34127 Trieste (Italy); Cremel, T.; Kheng, K. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CEA, INAC-SP2M, « Nanophysique et Semiconducteurs » Group, F-38000 Grenoble (France); Artioli, A.; Ferrand, D. [Univ. Grenoble Alpes, F-38000 Grenoble (France); CNRS, Institut Néel, « Nanophysique et Semiconducteurs » Group, F-38000 Grenoble (France); Grillo, V. [IMEM-CNR, Parco Area delle Scienze 37/A, I-43010 Parma (Italy); S3 NANO-CNR, Via Campi 213/A, I-41125 Modena (Italy); Rubini, S. [IOM-CNR Laboratorio TASC, S. S. 14, Km. 163.5, I-34149 Trieste (Italy)

    2015-09-07

    ZnSe nanowires with a dominant wurtzite structure have been grown at low temperature (300 °C) by molecular beam epitaxy assisted by solid Au nanoparticles. The nanowires emission is polarized perpendicularly to their axis in agreement with the wurtzite selection rules. Alternations of wurtzite and zinc-blende regions have been observed by transmission electron microscopy, and their impact on the nanowires optical properties has been studied by microphotoluminescence. The nanowires show a dominant intense near-band-edge emission as well as the ZnSe wurtzite free exciton line. A type II band alignment between zinc-blende and wurtzite ZnSe is evidenced by time-resolved photoluminescence. From this measurement, we deduce values for the conduction and valence band offsets of 98 and 50 meV, respectively.

  16. Insights into the Controllable Chemical Composition of Metal Oxide Nanowires and Graphene Aerogels

    Science.gov (United States)

    Goldstein, Anna Patrice

    The design and synthesis of materials that absorb visible light and create fuel to store solar energy is a pursuit that has captivated chemists for decades. In order to take part in solar water splitting, i.e. the production of hydrogen and oxygen gas from water and sunlight, electrode materials must fit specific requirements in terms of their electronic structure. Zinc oxide (ZnO) and titanium dioxide (TiO2) are both of interest for their ability to produce oxygen from photogenerated holes, but their band gaps are too large to capture a significant portion of the solar spectrum. We address this challenge by modifying the crystal structures of ZnO and TiO 2 to make lower band gap materials. Furthermore, we use nanowires as the synthetic template for these materials because they provide a large semiconductor-liquid interfacial area. ZnO nanowires can be alloyed with In3+, Fe3+ and other trivalent metal ions to form a unique structure with the formula M2O3(ZnO)n, also known as MZO. We synthesize indium zinc oxide (IZO) and indium iron zinc oxide (IFZO) nanowires and study their crystal structure using atomically-resolved transmission electron microscopy (TEM), among other methods. We elucidate a structural model for MZO that resolves inconsistencies in the existing literature, based on the identification of the zigzag layer as an inversion domain boundary. These nanowires are shown to have a lower band gap than ZnO and produce photocurrent under visible light illumination. The solid-state diffusion reaction to form ternary titanates is also studied by TEM. TiO2 nanowires are coated with metal oxides by a variety of deposition methods, and then converted to MTiO3 at high temperatures, where M is a divalent transition metal ion such as Mn 2+, CO2+, or Ni2+. When Co3O 4 particles attached to TiO2 nanowires are annealed for a short time, we observe the formation of a CoO(111)/TiO2 (010) interface. If the nanowires are instead coated with Co(NO3)2 salt and then annealed

  17. Synthesis and electrical characterization of tungsten oxide nanowires

    Institute of Scientific and Technical Information of China (English)

    Huang Rui; Zhu Jing; Yu Rong

    2009-01-01

    Tungsten oxide nanowires of diameters ranging from 7 to 200 nm are prepared on a tungsten rod substrate by using the chemical vapour deposition (CVD) method with vapour-solid (VS) mechanism. Tin powders are used to control oxygen concentration in the furnace, thereby assisting the growth of the tungsten oxide nanowires. The grown tungsten oxide nanowires are determined to be of crystalline W18O49. Ⅰ-Ⅴ curves are measured by an in situ transmission electron microscope (TEM) to investigate the electrical properties of the nanowires. All of the Ⅰ-Ⅴ curves observed are symmetric, which reveals that the tungsten oxide nanowires are semiconducting. Quantitative analyses of the experimental I V curves by using a metal-semiconductor-metal (MSM) model give some intrinsic parameters of the tungsten oxide nanowires, such as the carrier concentration, the carrier mobility and the conductivity.

  18. Ultrasound assisted synthesis of nanocrystalline zinc oxide: Experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hosni, Mongia [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Farhat, Samir, E-mail: farhat@lspm.cnrs.fr [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Schoenstein, Frederic; Karmous, Farah; Jouini, Noureddine [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Viana, Bruno [LCMCP Chimie-Paristech, UPMC, Collège de France, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Mgaidi, Arbi [Laboratoire de chimie minérale industrielle université Tunis el Manar (Tunisia)

    2014-12-05

    Highlights: • ZnO nanospheres and nanowires were grown using ultrasound and thermal activation techniques. • The growth uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). • A thermochemical model was developed based on thermodynamic equilibrium calculations. • We estimate species distribution in the bubble in temperature range from 5000 K to ambient. • We propose a new mechanism for ZnO growth assisted by ultrasound irradiation. - Abstract: A fast and green approach is proposed for the preparation of nanocrystalline zinc oxide (ZnO) via ultrasonic (US) irradiation in polyol medium. The process uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). The protocol is compared to thermal activation under the same chemical environment. The activation method is found to be playing a critical role in the selective synthesis of morphologically distinct nanostructures. As compared to thermally activated conventional polyol process, (US) permits to considerably reduce reaction time as well as size of particles. In addition, the shape of these nanoparticles was changed from long nanowires to small nanospheres, indicating different reaction mechanisms. To explain this difference, a thermochemical model was developed based on thermodynamic equilibrium calculations. The model estimate species distribution in the bubble in temperature range from 5000 K to ambient simulating quenching process during bubble formation and collapse. Our results indicate the presence of high density of zinc atoms that could be responsible of a high density of nucleation as compared to thermal activation.

  19. Ultrasound assisted synthesis of nanocrystalline zinc oxide: Experiments and modelling

    International Nuclear Information System (INIS)

    Hosni, Mongia; Farhat, Samir; Schoenstein, Frederic; Karmous, Farah; Jouini, Noureddine; Viana, Bruno; Mgaidi, Arbi

    2014-01-01

    Highlights: • ZnO nanospheres and nanowires were grown using ultrasound and thermal activation techniques. • The growth uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). • A thermochemical model was developed based on thermodynamic equilibrium calculations. • We estimate species distribution in the bubble in temperature range from 5000 K to ambient. • We propose a new mechanism for ZnO growth assisted by ultrasound irradiation. - Abstract: A fast and green approach is proposed for the preparation of nanocrystalline zinc oxide (ZnO) via ultrasonic (US) irradiation in polyol medium. The process uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). The protocol is compared to thermal activation under the same chemical environment. The activation method is found to be playing a critical role in the selective synthesis of morphologically distinct nanostructures. As compared to thermally activated conventional polyol process, (US) permits to considerably reduce reaction time as well as size of particles. In addition, the shape of these nanoparticles was changed from long nanowires to small nanospheres, indicating different reaction mechanisms. To explain this difference, a thermochemical model was developed based on thermodynamic equilibrium calculations. The model estimate species distribution in the bubble in temperature range from 5000 K to ambient simulating quenching process during bubble formation and collapse. Our results indicate the presence of high density of zinc atoms that could be responsible of a high density of nucleation as compared to thermal activation

  20. Highly flexible transparent thin film heaters based on silver nanowires and aluminum zinc oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Hahn-Gil; Kim, Jin-Hoon; Song, Jun-Hyuk; Jeong, Unyong; Park, Jin-Woo, E-mail: jwpark09@yonsei.ac.kr

    2015-08-31

    In this work, we developed highly flexible transparent film heaters (f-TFHs) composed of Ag nanowire networks (AgNWs) and aluminum zinc oxide (AZO). Uniform AgNWs were roll-to-roll coated on polyethylene terephthalate (PET) substrates using the Mayer rod method, and AZO was sputter-deposited atop the AgNWs at room temperature. The sheet resistance (R{sub s}) and transparency (T{sub opt}) of the AZO-coated AgNWs changed only slightly compared with the uncoated AgNWs. AZO is thermally less conductive than the heat pipes, but increases the thermal efficiency of the heaters blocking the heat convection through the air. Based on Joule heating, a higher average film temperature (T{sub ave}) is attained at a fixed electric potential drop between electrodes (ϕ) as the R{sub s} of the film decreases. Our experimental results revealed that T{sub ave} of the hybrid f-TFH is higher than AgNWs when the ratio of the area coverage of AgNWs to AZO is over a certain value. When a ϕ as low as 3 V/cm was applied to 5 cm × 5 cm f-TFHs, the maximum temperature of the hybrid film was over 100 °C, which is greater than that of AgNWs by more than 30 °C. Furthermore, uniform heating throughout the surfaces is achieved in the hybrid films while heating begins in small areas where densities of the nanowires (NWs) are the highest in the bare network. The non-uniform heating decreases the lifetime of f-TFHs by forming hot spots. Cyclic bending test results indicated that the hybrid films were as flexible as the AgNWs, and the R{sub s} of the hybrid films changes only slightly until 5000 cycles. Combined with the high-throughput coating technology presented here, the hybrid films will provide a robust and scalable strategy for large-area f-TFHs with highly enhanced performance. - Highlights: • We developed highly efficient flexible thin film heaters based on Ag nanowires and AZO composites. • In the composite, AZO plays an important role as an insulation blanket to block heat loss to

  1. Tungsten oxide nanowires grown on graphene oxide sheets as high-performance electrochromic material

    International Nuclear Information System (INIS)

    Chang, Xueting; Sun, Shibin; Dong, Lihua; Hu, Xiong; Yin, Yansheng

    2014-01-01

    Graphical abstract: Electrochromic mechanism of tungsten oxide nanowires-reduced graphene oxide composite. - Highlights: • A novel inorganic-nano-carbon hybrid composite was prepared. • The hybrid composite has sandwich-like structure. • The hybrid composite exhibited high-quality electrohcromic performance. - Abstract: In this work, we report the synthesis of a novel hybrid electrochromic composite through nucleation and growth of ultrathin tungsten oxide nanowires on graphene oxide sheets using a facile solvothermal route. The competition between the growth of tungsten oxide nanowires and the reduction of graphene oxide sheets leads to the formation of sandwich-structured tungsten oxide-reduced graphene oxide composite. Due to the strongly coupled effect between the ultrathin tungsten oxide nanowires and the reduced graphene oxide nanosheets, the novel electrochromic composite exhibited high-quality electrochromic performance with fast color-switching speed, good cyclic stability, and high coloration efficiency. The present tungsten oxide-reduced graphene oxide composite represents a new approach to prepare other inorganic-reduced graphene oxide hybrid materials for electrochemical applications

  2. Zinc oxide overdose

    Science.gov (United States)

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  3. Transformation of bulk alloys to oxide nanowires

    Science.gov (United States)

    Lei, Danni; Benson, Jim; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2017-01-01

    One dimensional (1D) nanostructures offer prospects for enhancing the electrical, thermal, and mechanical properties of a broad range of functional materials and composites, but their synthesis methods are typically elaborate and expensive. We demonstrate a direct transformation of bulk materials into nanowires under ambient conditions without the use of catalysts or any external stimuli. The nanowires form via minimization of strain energy at the boundary of a chemical reaction front. We show the transformation of multimicrometer-sized particles of aluminum or magnesium alloys into alkoxide nanowires of tunable dimensions, which are converted into oxide nanowires upon heating in air. Fabricated separators based on aluminum oxide nanowires enhanced the safety and rate capabilities of lithium-ion batteries. The reported approach allows ultralow-cost scalable synthesis of 1D materials and membranes.

  4. Piezoelectric properties of zinc oxide nanowires: an ab initio study.

    Science.gov (United States)

    Korir, K K; Cicero, G; Catellani, A

    2013-11-29

    Nanowires made of materials with non-centrosymmetric crystal structures are expected to be ideal building blocks for self-powered nanodevices due to their piezoelectric properties, yet a controversial explanation of the effective operational mechanisms and size effects still delays their real exploitation. To solve this controversy, we propose a methodology based on DFT calculations of the response of nanostructures to external deformations that allows us to distinguish between the different (bulk and surface) contributions: we apply this scheme to evaluate the piezoelectric properties of ZnO [0001] nanowires, with a diameter up to 2.3 nm. Our results reveal that, while surface and confinement effects are negligible, effective strain energies, and thus the nanowire mechanical response, are dependent on size. Our unified approach allows for a proper definition of piezoelectric coefficients for nanostructures, and explains in a rigorous way the reason why nanowires are found to be more sensitive to mechanical deformation than the corresponding bulk material.

  5. Piezoelectric properties of zinc oxide nanowires: an ab initio study

    International Nuclear Information System (INIS)

    Korir, K K; Cicero, G; Catellani, A

    2013-01-01

    Nanowires made of materials with non-centrosymmetric crystal structures are expected to be ideal building blocks for self-powered nanodevices due to their piezoelectric properties, yet a controversial explanation of the effective operational mechanisms and size effects still delays their real exploitation. To solve this controversy, we propose a methodology based on DFT calculations of the response of nanostructures to external deformations that allows us to distinguish between the different (bulk and surface) contributions: we apply this scheme to evaluate the piezoelectric properties of ZnO [0001] nanowires, with a diameter up to 2.3 nm. Our results reveal that, while surface and confinement effects are negligible, effective strain energies, and thus the nanowire mechanical response, are dependent on size. Our unified approach allows for a proper definition of piezoelectric coefficients for nanostructures, and explains in a rigorous way the reason why nanowires are found to be more sensitive to mechanical deformation than the corresponding bulk material. (paper)

  6. Electrical and optical behavior of ZnO nanowires irradiated by ion beam

    DEFF Research Database (Denmark)

    Lisevski, Caroline I.; Fernandes Cauduro, André Luis; Franzen, Paulo L

    2015-01-01

    Zinc oxide nanowires have been attracting much interest due to their potential use in electronics and optoelectonics devices. In this work, we report on the photoluminescence and electrical behavior of ZnO nanowires grown by vapor-liquid-solid method and irradiated with 1.2 MeV He+ ions at several...... doses. The results strongly indicates the existence of an enhanced dynamic annealing effect during the low fluence irradiations allowing it to heal low migration barrier point-defects such as oxygen interstitials (OI), zinc interstitials (ZnI), zinc antisites (ZnO) and oxygen antisites (OZn...

  7. Electrodeposited highly-ordered manganese oxide nanowire arrays for supercapacitors

    Science.gov (United States)

    Liu, Haifeng; Lu, Bingqiang; Wei, Shuiqiang; Bao, Mi; Wen, Yanxuan; Wang, Fan

    2012-07-01

    Large arrays of well-aligned Mn oxide nanowires were prepared by electrodeposition using anodic aluminum oxide templates. The sizes of nanowires were tuned by varying the electrotype solution involved and the MnO2 nanowires with 10 μm in length were obtained in a neutral KMnO4 bath for 1 h. MnO2 nanowire arrays grown on conductor substance save the tedious electrode-making process, and electrochemical characterization demonstrates that the MnO2 nanowire arrays electrode has good capacitive behavior. Due to the limited mass transportation in narrow spacing, the spacing effects between the neighbor nanowires have show great influence to the electrochemical performance.

  8. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Luchan; Zhou, Y. Norman, E-mail: liulei@tsinghua.edu.cn, E-mail: nzhou@uwaterloo.ca [Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Zou, Guisheng; Liu, Lei, E-mail: liulei@tsinghua.edu.cn, E-mail: nzhou@uwaterloo.ca [Department of Mechanical Engineering, State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Duley, Walt W. [Centre for Advanced Materials Joining, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2016-05-16

    We show that irradiation with femtosecond laser pulses can produce robust nanowire heterojunctions in coupled non-wetting metal-oxide Ag-TiO{sub 2} structures. Simulations indicate that joining arises from the effect of strong plasmonic localization in the region of the junction. Strong electric field effects occur in both Ag and TiO{sub 2} resulting in the modification of both surfaces and an increase in wettability of TiO{sub 2}, facilitating the interconnection of Ag and TiO{sub 2} nanowires. Irradiation leads to the creation of a thin layer of highly defected TiO{sub 2} in the contact region between the Ag and TiO{sub 2} nanowires. The presence of this layer allows the formation of a heterojunction and offers the possibility of engineering the electronic characteristics of interfacial structures. Rectifying junctions with single and bipolar properties have been generated in Ag-TiO{sub 2} nanowire circuits incorporating asymmetrical and symmetrical interfacial structures, respectively. This fabrication technique should be applicable for the interconnection of other heterogeneous metal-oxide nanowire components and demonstrates that femtosecond laser irradiation enables interfacial engineering for electronic applications of integrated nanowire structures.

  9. Plasmonic engineering of metal-oxide nanowire heterojunctions in integrated nanowire rectification units

    Science.gov (United States)

    Lin, Luchan; Zou, Guisheng; Liu, Lei; Duley, Walt W.; Zhou, Y. Norman

    2016-05-01

    We show that irradiation with femtosecond laser pulses can produce robust nanowire heterojunctions in coupled non-wetting metal-oxide Ag-TiO2 structures. Simulations indicate that joining arises from the effect of strong plasmonic localization in the region of the junction. Strong electric field effects occur in both Ag and TiO2 resulting in the modification of both surfaces and an increase in wettability of TiO2, facilitating the interconnection of Ag and TiO2 nanowires. Irradiation leads to the creation of a thin layer of highly defected TiO2 in the contact region between the Ag and TiO2 nanowires. The presence of this layer allows the formation of a heterojunction and offers the possibility of engineering the electronic characteristics of interfacial structures. Rectifying junctions with single and bipolar properties have been generated in Ag-TiO2 nanowire circuits incorporating asymmetrical and symmetrical interfacial structures, respectively. This fabrication technique should be applicable for the interconnection of other heterogeneous metal-oxide nanowire components and demonstrates that femtosecond laser irradiation enables interfacial engineering for electronic applications of integrated nanowire structures.

  10. Oxidation of InP nanowires: a first principles molecular dynamics study.

    Science.gov (United States)

    Berwanger, Mailing; Schoenhalz, Aline L; Dos Santos, Cláudia L; Piquini, Paulo

    2016-11-16

    InP nanowires are candidates for optoelectronic applications, and as protective capping layers of III-V core-shell nanowires. Their surfaces are oxidized under ambient conditions which affects the nanowire physical properties. The majority of theoretical studies of InP nanowires, however, do not take into account the oxide layer at their surfaces. In this work we use first principles molecular dynamics electronic structure calculations to study the first steps in the oxidation process of a non-saturated InP nanowire surface as well as the properties of an already oxidized surface of an InP nanowire. Our calculations show that the O 2 molecules dissociate through several mechanisms, resulting in incorporation of O atoms into the surface layers. The results confirm the experimental observation that the oxidized layers become amorphous but the non-oxidized core layers remain crystalline. Oxygen related bonds at the oxidized layers introduce defective levels at the band gap region, with greater contributions from defects involving In-O and P-O bonds.

  11. Preparation and electrochemical characterization of MnOOH nanowire-graphene oxide

    International Nuclear Information System (INIS)

    Wang Lin; Wang Dianlong

    2011-01-01

    Highlights: → MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C, with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. → MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. → It is found that the electrochemical resistance of MnOOH nanowire-graphene oxide composites decreases and the capacitance increases to 76 F g -1 when hydrothermal reaction is conducted in ammonia aqueous solution. → MnOOH nanowire-graphene oxide composites prepared by hydrothermal reaction in 5% ammonia aqueous solution have excellent capacitance retention ratio at scan rate from 5 mV s -1 to 40 mV s -1 . - Abstract: MnOOH nanowire-graphene oxide composites are prepared by hydrothermal reaction in distilled water or 5% ammonia aqueous solution at 130 deg. C with MnO 2 -graphene oxide composites which are synthesized by a redox reaction between KMnO 4 and graphene oxide. Powder X-ray diffraction (XRD) analyses and energy dispersive X-ray analyses (EDAX) show MnO 2 is deoxidized to MnOOH on graphene oxide through hydrothermal reaction without any extra reductants. The electrochemical capacitance of MnOOH nanowire-graphene oxide composites prepared in 5% ammonia aqueous solution is 76 F g -1 at current density of 0.1 A g -1 . Moreover, electrochemical impedance spectroscopy (EIS) suggests the electrochemical resistance of MnOOH nanowire-graphene oxide composites is reduced when hydrothermal reaction is conducted in ammonia aqueous solution. The relationship between the electrochemical capacitance and the structure of MnOOH nanowire-graphene oxide composites is characterized by cyclic voltammetry (CV) and field emission scanning electron microscopy (FESEM). The results indicate the electrochemical performance of MnOOH nanowire-graphene oxide composites strongly depends on their

  12. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    Science.gov (United States)

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  13. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    Science.gov (United States)

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-03-24

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  14. Synthesis, characterization and photoluminescence of tin oxide nanoribbons and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M.A., E-mail: duraia_physics@yahoo.co [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Mansorov, Z.A. [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Tokmolden, S. [Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan)

    2009-11-15

    In this work we report the successful formation of tin oxide nanowires and tin oxide nanoribbons with high yield and by using simple cheap method. We also report the formation of curved nanoribbon, wedge-like tin oxide nanowires and star-like nanowires. The growth mechanism of these structures has been studied. Scanning electron microscope was used in the analysis and the EDX analysis showed that our samples is purely Sn and O with ratio 1:2. X-ray analysis was also used in the characterization of the tin oxide nanowire and showed the high crystallinity of our nanowires. The mechanism of the growth of our1D nanostructures is closely related to the vapor-liquid-solid (VLS) process. The photoluminescence PL measurements for the tin oxide nanowires indicated that there are three stable emission peaks centered at wavelengths 630, 565 and 395 nm. The nature of the transition may be attributed to nanocrystals inside the nanobelts or to Sn or O vacancies occurring during the growth which can induce trapped states in the band gap.

  15. Magnetoconductance correction in zinc-blende semiconductor nanowires with spin-orbit coupling

    Science.gov (United States)

    Kammermeier, Michael; Wenk, Paul; Schliemann, John; Heedt, Sebastian; Gerster, Thomas; Schäpers, Thomas

    2017-12-01

    We study the effects of spin-orbit coupling on the magnetoconductivity in diffusive cylindrical semiconductor nanowires. Following up on our former study on tubular semiconductor nanowires, we focus in this paper on nanowire systems where no surface accumulation layer is formed but instead the electron wave function extends over the entire cross section. We take into account the Dresselhaus spin-orbit coupling resulting from a zinc-blende lattice and the Rashba spin-orbit coupling, which is controlled by a lateral gate electrode. The spin relaxation rate due to Dresselhaus spin-orbit coupling is found to depend neither on the spin density component nor on the wire growth direction and is unaffected by the radial boundary. In contrast, the Rashba spin relaxation rate is strongly reduced for a wire radius that is smaller than the spin precession length. The derived model is fitted to the data of magnetoconductance measurements of a heavily doped back-gated InAs nanowire and transport parameters are extracted. At last, we compare our results to previous theoretical and experimental studies and discuss the occurring discrepancies.

  16. Chemically synthesized metal-oxide-metal segmented nanowires with high ferroelectric response

    International Nuclear Information System (INIS)

    Herderick, Edward D; Padture, Nitin P; Polomoff, Nicholas A; Huey, Bryan D

    2010-01-01

    A chemical synthesis method is presented for the fabrication of high-definition segmented metal-oxide-metal (MOM) nanowires in two different ferroelectric oxide systems: Au-BaTiO 3 -Au and Au-PbTiO 3 -Au. This method entails electrodeposition of segmented nanowires of Au-TiO 2 -Au inside anodic aluminum oxide (AAO) templates, followed by topotactic hydrothermal conversion of the TiO 2 segments into BaTiO 3 or PbTiO 3 segments. Two-terminal devices from individual MOM nanowires are fabricated, and their ferroelectric properties are measured directly, without the aid of scanning probe microscopy (SPM) methods. The MOM nanowire architecture provides high-quality end-on electrical contacts to the oxide segments, and allows direct measurement of properties of nanoscale volume, strain-free oxide segments. Unusually high ferroelectric responses, for chemically synthesized oxides, in these MOM nanowires are reported, and are attributed to the lack of residual strain in the oxides. The ability to measure directly the active properties of nanoscale volume, strain-free oxides afforded by the MOM nanowire architecture has important implications for fundamental studies of not only ferroelectric nanostructures but also nanostructures in the emerging field of multiferroics.

  17. Efficient n-type doping of zinc-blende III-V semiconductor nanowires

    Science.gov (United States)

    Besteiro, Lucas V.; Tortajada, Luis; Souto, J.; Gallego, L. J.; Chelikowsky, James R.; Alemany, M. M. G.

    2014-03-01

    We demonstrate that it is preferable to dope III-V semiconductor nanowires by n-type anion substitution as opposed to cation substitution. Specifically, we show the dopability of zinc-blende nanowires is more efficient when the dopants are placed at the anion site as quantified by formation energies and the stabilization of DX-like defect centers. The comparison with previous work on n - type III-V semiconductor nanocrystals also allows to determine the role of dimensionality and quantum confinement on doping characteristics of materials. Our results are based on first-principles calculations of InP nanowires by using the PARSEC code. Work supported by the Spanish MICINN (FIS2012-33126) and Xunta de Galicia (GPC2013-043) in conjunction with FEDER. JRC acknowledges support from DoE (DE-FG02-06ER46286 and DESC0008877). Computational support was provided in part by CESGA.

  18. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2016-03-01

    Full Text Available In this investigation, anodic aluminum oxide (AAO with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  19. Oxidative fabrication of patterned, large, non-flaking CuO nanowire arrays

    International Nuclear Information System (INIS)

    Mumm, F; Sikorski, P

    2011-01-01

    We report a simple and fast approach to fabricate large, non-flaking arrays of CuO nanowires by oxidizing thin copper substrates in air. Oxidative CuO nanowire growth is commonly accompanied by oxide layer flaking due to stress at the copper-copper oxide interface. Using thin substrates is shown to prevent this flaking by introducing favourable material thickness ratios in the samples after oxidation. Additionally, thin foils allow larger scale topographic patterns to be transferred from an underlying mould to realize non-flat, nanowire-decorated surfaces. Further patterning is possible by electrodeposition of a nickel layer, which restricts nanowire growth to specific areas of the sample.

  20. Growth of wurtzite CdTe nanowires on fluorine-doped tin oxide glass substrates and room-temperature bandgap parameter determination

    Science.gov (United States)

    Choi, Seon Bin; Song, Man Suk; Kim, Yong

    2018-04-01

    The growth of CdTe nanowires, catalyzed by Sn, was achieved on fluorine-doped tin oxide glass by physical vapor transport. CdTe nanowires grew along the 〈0001〉 direction, with a very rare and phase-pure wurtzite structure, at 290 °C. CdTe nanowires grew under Te-limited conditions by forming SnTe nanostructures in the catalysts and the wurtzite structure was energetically favored. By polarization-dependent and power-dependent micro-photoluminescence measurements of individual nanowires, heavy and light hole-related transitions could be differentiated, and the fundamental bandgap of wurtzite CdTe at room temperature was determined to be 1.562 eV, which was 52 meV higher than that of zinc-blende CdTe. From the analysis of doublet photoluminescence spectra, the valence band splitting energy between heavy hole and light hole bands was estimated to be 43 meV.

  1. Chemically synthesized metal-oxide-metal segmented nanowires with high ferroelectric response

    Energy Technology Data Exchange (ETDEWEB)

    Herderick, Edward D; Padture, Nitin P [Department of Materials Science and Engineering, Center for Emergent Materials, Ohio State University, Columbus, OH 43210 (United States); Polomoff, Nicholas A; Huey, Bryan D, E-mail: padture.1@osu.edu [Department of Chemical, Materials, and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States)

    2010-08-20

    A chemical synthesis method is presented for the fabrication of high-definition segmented metal-oxide-metal (MOM) nanowires in two different ferroelectric oxide systems: Au-BaTiO{sub 3}-Au and Au-PbTiO{sub 3}-Au. This method entails electrodeposition of segmented nanowires of Au-TiO{sub 2}-Au inside anodic aluminum oxide (AAO) templates, followed by topotactic hydrothermal conversion of the TiO{sub 2} segments into BaTiO{sub 3} or PbTiO{sub 3} segments. Two-terminal devices from individual MOM nanowires are fabricated, and their ferroelectric properties are measured directly, without the aid of scanning probe microscopy (SPM) methods. The MOM nanowire architecture provides high-quality end-on electrical contacts to the oxide segments, and allows direct measurement of properties of nanoscale volume, strain-free oxide segments. Unusually high ferroelectric responses, for chemically synthesized oxides, in these MOM nanowires are reported, and are attributed to the lack of residual strain in the oxides. The ability to measure directly the active properties of nanoscale volume, strain-free oxides afforded by the MOM nanowire architecture has important implications for fundamental studies of not only ferroelectric nanostructures but also nanostructures in the emerging field of multiferroics.

  2. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    OpenAIRE

    Veldkamp, T.; Diepen, van, J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Livestock Research to determine the bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens. A precise estimate of the bioavailability of zinc sources is required both for fulf...

  3. A general melt-injection-decomposition route to oriented metal oxide nanowire arrays

    International Nuclear Information System (INIS)

    Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang

    2016-01-01

    Highlights: • A general melt-injection-decomposition (MID) route is proposed for the fabrication of oriented metal oxide nanowire arrays. • Four kinds of metal oxide (CuO, Mn_2O_3, Co_3O_4 and Cr_2O_3) nanowire arrays have been realized as examples through the developed MID route. • The mechanism of the developed MID route is discussed using Thermogravimetry and Differential Thermal Analysis technique. • The MID route is a versatile, simple, facile and effective way to prepare different kinds of oriented metal oxide nanowire arrays in the future. - Abstract: In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn_2O_3, Co_3O_4 and Cr_2O_3) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.

  4. RF/microwave properties of nanotubes and nanowires : LDRD Project 105876 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Scrymgeour, David; Lee, Mark; Hsu, Julia W. P.; Highstrete, Clark

    2009-09-01

    LDRD Project 105876 was a research project whose primary goal was to discover the currently unknown science underlying the basic linear and nonlinear electrodynamic response of nanotubes and nanowires in a manner that will support future efforts aimed at converting forefront nanoscience into innovative new high-frequency nanodevices. The project involved experimental and theoretical efforts to discover and understand high frequency (MHz through tens of GHz) electrodynamic response properties of nanomaterials, emphasizing nanowires of silicon, zinc oxide, and carbon nanotubes. While there is much research on DC electrical properties of nanowires, electrodynamic characteristics still represent a major new frontier in nanotechnology. We generated world-leading insight into how the low dimensionality of these nanomaterials yields sometimes desirable and sometimes problematic high-frequency properties that are outside standard model electron dynamics. In the cases of silicon nanowires and carbon nanotubes, evidence of strong disorder or glass-like charge dynamics was measured, indicating that these materials still suffer from serious inhomogeneities that limit there high frequency performance. Zinc oxide nanowires were found to obey conventional Drude dynamics. In all cases, a significant practical problem involving large impedance mismatch between the high intrinsic impedance of all nanowires and nanotubes and high-frequency test equipment had to be overcome.

  5. Long-Term Stability of Oxide Nanowire Sensors via Heavily Doped Oxide Contact.

    Science.gov (United States)

    Zeng, Hao; Takahashi, Tsunaki; Kanai, Masaki; Zhang, Guozhu; He, Yong; Nagashima, Kazuki; Yanagida, Takeshi

    2017-12-22

    Long-term stability of a chemical sensor is an essential quality for long-term collection of data related to exhaled breath, environmental air, and other sources in the Internet of things (IoT) era. Although an oxide nanowire sensor has shown great potential as a chemical sensor, the long-term stability of sensitivity has not been realized yet due to electrical degradation under harsh sensing conditions. Here, we report a rational concept to accomplish long-term electrical stability of metal oxide nanowire sensors via introduction of a heavily doped metal oxide contact layer. Antimony-doped SnO 2 (ATO) contacts on SnO 2 nanowires show much more stable and lower electrical contact resistance than conventional Ti contacts for high temperature (200 °C) conditions, which are required to operate chemical sensors. The stable and low contact resistance of ATO was confirmed for at least 1960 h under 200 °C in open air. This heavily doped oxide contact enables us to realize the long-term stability of SnO 2 nanowire sensors while maintaining the sensitivity for both NO 2 gas and light (photo) detections. The applicability of our method is confirmed for sensors on a flexible polyethylene naphthalate (PEN) substrate. Since the proposed fundamental concept can be applied to various oxide nanostructures, it will give a foundation for designing long-term stable oxide nanomaterial-based IoT sensors.

  6. Highly Durable Na2V6O16·1.63H2O Nanowire Cathode for Aqueous Zinc-Ion Battery.

    Science.gov (United States)

    Hu, Ping; Zhu, Ting; Wang, Xuanpeng; Wei, Xiujuan; Yan, Mengyu; Li, Jiantao; Luo, Wen; Yang, Wei; Zhang, Wencui; Zhou, Liang; Zhou, Zhiqiang; Mai, Liqiang

    2018-03-14

    Rechargeable aqueous zinc-ion batteries are highly desirable for grid-scale applications due to their low cost and high safety; however, the poor cycling stability hinders their widespread application. Herein, a highly durable zinc-ion battery system with a Na 2 V 6 O 16 ·1.63H 2 O nanowire cathode and an aqueous Zn(CF 3 SO 3 ) 2 electrolyte has been developed. The Na 2 V 6 O 16 ·1.63H 2 O nanowires deliver a high specific capacity of 352 mAh g -1 at 50 mA g -1 and exhibit a capacity retention of 90% over 6000 cycles at 5000 mA g -1 , which represents the best cycling performance compared with all previous reports. In contrast, the NaV 3 O 8 nanowires maintain only 17% of the initial capacity after 4000 cycles at 5000 mA g -1 . A single-nanowire-based zinc-ion battery is assembled, which reveals the intrinsic Zn 2+ storage mechanism at nanoscale. The remarkable electrochemical performance especially the long-term cycling stability makes Na 2 V 6 O 16 ·1.63H 2 O a promising cathode for a low-cost and safe aqueous zinc-ion battery.

  7. Tungsten oxide nanowires grown on amorphous-like tungsten films

    International Nuclear Information System (INIS)

    Dellasega, D; Pezzoli, A; Russo, V; Passoni, M; Pietralunga, S M; Nasi, L; Conti, C; Vahid, M J; Tagliaferri, A

    2015-01-01

    Tungsten oxide nanowires have been synthesized by vacuum annealing in the range 500–710 °C from amorphous-like tungsten films, deposited on a Si(100) substrate by pulsed laser deposition (PLD) in the presence of a He background pressure. The oxygen required for the nanowires formation is already adsorbed in the W matrix before annealing, its amount depending on deposition parameters. Nanowire crystalline phase and stoichiometry depend on annealing temperature, ranging from W_1_8O_4_9-Magneli phase to monoclinic WO_3. Sufficiently long annealing induces the formation of micrometer-long nanowires, up to 3.6 μm with an aspect ratio up to 90. Oxide nanowire growth appears to be triggered by the crystallization of the underlying amorphous W film, promoting their synthesis at low temperatures. (paper)

  8. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    NARCIS (Netherlands)

    Veldkamp, T.; Diepen, van J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR

  9. A general melt-injection-decomposition route to oriented metal oxide nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang, E-mail: sgyang@nju.edu.cn

    2016-12-30

    Highlights: • A general melt-injection-decomposition (MID) route is proposed for the fabrication of oriented metal oxide nanowire arrays. • Four kinds of metal oxide (CuO, Mn{sub 2}O{sub 3}, Co{sub 3}O{sub 4} and Cr{sub 2}O{sub 3}) nanowire arrays have been realized as examples through the developed MID route. • The mechanism of the developed MID route is discussed using Thermogravimetry and Differential Thermal Analysis technique. • The MID route is a versatile, simple, facile and effective way to prepare different kinds of oriented metal oxide nanowire arrays in the future. - Abstract: In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn{sub 2}O{sub 3}, Co{sub 3}O{sub 4} and Cr{sub 2}O{sub 3}) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.

  10. A general melt-injection-decomposition route to oriented metal oxide nanowire arrays

    Science.gov (United States)

    Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang

    2016-12-01

    In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn2O3, Co3O4 and Cr2O3) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.

  11. Daya antibakteri penambahan Propolis pada zinc oxide eugenol dan zinc oxide terhadap kuman campur gigi molar sulung non vital (The antibacterial effect of propolis additional to zinc oxide eugenol and zinc oxide on polybacteria of necrotic primary molar

    Directory of Open Access Journals (Sweden)

    Yemy Ameliana

    2014-12-01

    Full Text Available Background: Materials commonly used for root canal filling of primary teeth is zinc oxide eugenol. Eugenol has some disadvantages that can irritate the periapical tissues, has the risk of disturbing the growth and development of permanent tooth buds, and has a narrow antibacterial spectrum. Studies showed that propolis at concentration of 20 % has antibacterial activity against Staphylococcus aureus. Purpose: The purpose of this study was to examine the antimicrobial activity of root canal pastes with the additional of propolis additional to zinc oxide eugenol (ZOEP and to zinc oxide (ZOP. Methods: Polybacteria cultures collected from root canals of necrotic primary molar from 5 children patients who received root canal treatment. The bacteria were grown in BHI Broth, and inoculated into Muller Hinton Agar media. The agar plates was divided into 3 areas, and one well was made at each area. The first well filled with ZOE as a control, second well filled with ZOEP and the third well filled with ZOP, then incubated for 24 hour at 370 C. Antimicrobial activity was determined by measuring the diameters of inhibition zones of polybacteria growth. The data were statistically analyzed by independent T-test. Results: The pasta mixture of zinc oxide propolis had the strongest antibacterial activity against polybacteria of necrotic primary molar, followed by zinc oxide eugenol propolis paste, and zinc oxide eugenol paste. There were significant differences of inhibition zones between ZOE, ZOEP and ZOP (p<0,05. Conclusion: The study suggested that the additional of propolis to zinc oxide paste could increase the antimicrobial effect against root canal polybacteria of necrotic primary molar.Latar belakang: Bahan yang sering digunakan untuk pengisian saluran akar gigi sulung adalah zinc oxide eugenol. Eugenol memiliki beberapa kekurangan yaitu dapat mengiritasi jaringan periapikal, beresiko mengganggu pertumbuhan dan perkembangan benih gigi permanen pengganti

  12. Ni-doped zinc oxide nanocombs and phonon spectra properties

    International Nuclear Information System (INIS)

    Zhang Bin; Zhang Xingtang; Gong Hechun; Wu Zhishen; Zhou Shaomin; Du Zuliang

    2008-01-01

    Ni-doped comb-like zinc oxide (ZnO) semiconductor nanostructures have been synthesized by a simple chemical vapor-deposition method (CVD) at relatively low temperature. The as-synthesized ZnO nanocombs consist of an array of very uniform, perfectly aligned, evenly spaced and long single-crystalline nanobelts (nanowires) with periods of about several tens of nanometers. X-ray diffraction and Raman spectra results provide the evidence that Ni is incorporated into the ZnO lattice at Zn site. Photoluminescence spectra of the as-obtained samples have been detected, in which the incorporation of donor Ni leads to the increases of the ultraviolet emission intensity and a blueshift of emission peak. This technique can be used to prepare other semiconductors and morphology-controlled doping nanocombs

  13. Activity incorporation into zinc doped PWR oxides

    International Nuclear Information System (INIS)

    Maekelae, Kari

    1998-01-01

    Activity incorporation into the oxide layers of PWR primary circuit constructional materials has been studied in Halden since 1993. The first zinc injection tests showed that zinc addition resulted in thinner oxide layers on new metal surfaces and reduced further incorporation of activity into already existing oxides. These tests were continued to find out the effects of previous zinc additions on the pickup of activity onto the surface oxides which were subsequently exposed to zinc-free coolant. The results showed that previous zinc addition will continue to reduce the rate of Co-60 build-up on out-of-core surfaces in subsequent exposure to zinc-free coolants. However, the previous Zn free test was performed for a relatively short period of time and the water chemistry programme was continued to find out the long term effects for extended periods without zinc. The activity incorporation into the stainless steel oxides started to increase as soon as zinc dosing to the coolant was stopped. The Co-60 concentration was lowest on all of the coupons which were first oxidised in Zn containing primary coolant. After the zinc injection period the thickness of the oxides increased, but activity in the oxide films did not increase at the same rate. This could indicate that zinc in the oxide blocks the adsorption sites for Co-60 incorporation. The Co-60 incorporation rate into the oxides on Inconel 600 seemed to be linear whether the oxide was pre-oxidised with or without Zn. The results indicate that zinc can either replace or prevent cobalt transport in the oxides. The results show that for zinc injection to be effective it should be carried out continuously. Furthermore the actual mechanism by which Zn inhibits the activity incorporation into the oxides is still not clear. Therefore, additional work has to follow with specified materials to verify the conclusions drawn in this work. (author)

  14. Hierarchical Mesoporous Zinc-Nickel-Cobalt Ternary Oxide Nanowire Arrays on Nickel Foam as High-Performance Electrodes for Supercapacitors.

    Science.gov (United States)

    Wu, Chun; Cai, Junjie; Zhang, Qiaobao; Zhou, Xiang; Zhu, Ying; Shen, Pei Kang; Zhang, Kaili

    2015-12-09

    Nickel foam supported hierarchical mesoporous Zn-Ni-Co ternary oxide (ZNCO) nanowire arrays are synthesized by a simple two-step approach including a hydrothermal method and subsequent calcination process and directly utilized for supercapacitive investigation for the first time. The nickel foam supported hierarchical mesoporous ZNCO nanowire arrays possess an ultrahigh specific capacitance value of 2481.8 F g(-1) at 1 A g(-1) and excellent rate capability of about 91.9% capacitance retention at 5 A g(-1). More importantly, an asymmetric supercapacitor with a high energy density (35.6 Wh kg(-1)) and remarkable cycle stability performance (94% capacitance retention over 3000 cycles) is assembled successfully by employing the ZNCO electrode as positive electrode and activated carbon as negative electrode. The remarkable electrochemical behaviors demonstrate that the nickel foam supported hierarchical mesoporous ZNCO nanowire array electrodes are highly desirable for application as advanced supercapacitor electrodes.

  15. Manganese oxide nanowires, films, and membranes and methods of making

    Science.gov (United States)

    Suib, Steven Lawrence [Storrs, CT; Yuan, Jikang [Storrs, CT

    2008-10-21

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves, and methods of making, are disclosed. A single crystal ultra-long nanowire includes an ordered porous manganese oxide-based octahedral molecular sieve, and has an average length greater than about 10 micrometers and an average diameter of about 5 nanometers to about 100 nanometers. A film comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is stacked on a surface of a substrate, wherein the nanowires of each layer are substantially axially aligned. A free standing membrane comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is aggregately stacked, and wherein the nanowires of each layer are substantially axially aligned.

  16. Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires

    International Nuclear Information System (INIS)

    Sun, Shibin; Chang, Xueting; Li, Zhenjiang

    2010-01-01

    Single-crystalline non-stoichiometric tungsten oxide nanowires were initially prepared using a simple solvothermal method. High resolution transmission electron microscopy (HRTEM) investigations indicate that the tungsten oxide nanowires exhibit various crystal defects, including stacking faults, dislocations, and vacancies. A possible defect-induced mechanism was proposed to account for the temperature-dependent morphological evolution of the tungsten oxide nanowires under thermal processing. Due to the high specific surface areas and non-stoichiometric crystal structure, the original tungsten oxide nanowires were highly sensitive to ppm level ethanol at room temperature. Thermal treatment under dry air condition was found to deteriorate the selectivity of room-temperature tungsten oxide sensors, and 400 o C may be considered as the top temperature limit in sensor applications for the solvothermally-prepared nanowires. The photoluminescence (PL) characteristics of tungsten oxide nanowires were also strongly influenced by thermal treatment.

  17. Thermal-treatment effect on the photoluminescence and gas-sensing properties of tungsten oxide nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Shibin [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong (China); Chang, Xueting [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100, Shandong (China); Li, Zhenjiang, E-mail: zjli126@126.com [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, Shandong (China)

    2010-09-15

    Single-crystalline non-stoichiometric tungsten oxide nanowires were initially prepared using a simple solvothermal method. High resolution transmission electron microscopy (HRTEM) investigations indicate that the tungsten oxide nanowires exhibit various crystal defects, including stacking faults, dislocations, and vacancies. A possible defect-induced mechanism was proposed to account for the temperature-dependent morphological evolution of the tungsten oxide nanowires under thermal processing. Due to the high specific surface areas and non-stoichiometric crystal structure, the original tungsten oxide nanowires were highly sensitive to ppm level ethanol at room temperature. Thermal treatment under dry air condition was found to deteriorate the selectivity of room-temperature tungsten oxide sensors, and 400 {sup o}C may be considered as the top temperature limit in sensor applications for the solvothermally-prepared nanowires. The photoluminescence (PL) characteristics of tungsten oxide nanowires were also strongly influenced by thermal treatment.

  18. Impact of residual elements on zinc quality in the production of zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Dymáček, Petr; Pešlová, F.; Jurkovič, Z.; Barborák, O.; Stodola, J.

    2016-01-01

    Roč. 55, č. 3 (2016), s. 407-410 ISSN 0543-5846 Institutional support: RVO:68081723 Keywords : zinc * metallography * microstructure of zinc * zinc oxide * production of zinc oxide Subject RIV: JG - Metallurgy Impact factor: 0.959, year: 2014

  19. A universal approach to electrically connecting nanowire arrays using nanoparticles—application to a novel gas sensor architecture

    Science.gov (United States)

    Parthangal, Prahalad M.; Cavicchi, Richard E.; Zachariah, Michael R.

    2006-08-01

    We report on a novel, in situ approach toward connecting and electrically contacting vertically aligned nanowire arrays using conductive nanoparticles. The utility of the approach is demonstrated by development of a gas sensing device employing this nano-architecture. Well-aligned, single-crystalline zinc oxide nanowires were grown through a direct thermal evaporation process at 550 °C on gold catalyst layers. Electrical contact to the top of the nanowire array was established by creating a contiguous nanoparticle film through electrostatic attachment of conductive gold nanoparticles exclusively onto the tips of nanowires. A gas sensing device was constructed using such an arrangement and the nanowire assembly was found to be sensitive to both reducing (methanol) and oxidizing (nitrous oxides) gases. This assembly approach is amenable to any nanowire array for which a top contact electrode is needed.

  20. A universal approach to electrically connecting nanowire arrays using nanoparticles-application to a novel gas sensor architecture

    International Nuclear Information System (INIS)

    Parthangal, Prahalad M; Cavicchi, Richard E; Zachariah, Michael R

    2006-01-01

    We report on a novel, in situ approach toward connecting and electrically contacting vertically aligned nanowire arrays using conductive nanoparticles. The utility of the approach is demonstrated by development of a gas sensing device employing this nano-architecture. Well-aligned, single-crystalline zinc oxide nanowires were grown through a direct thermal evaporation process at 550 deg. C on gold catalyst layers. Electrical contact to the top of the nanowire array was established by creating a contiguous nanoparticle film through electrostatic attachment of conductive gold nanoparticles exclusively onto the tips of nanowires. A gas sensing device was constructed using such an arrangement and the nanowire assembly was found to be sensitive to both reducing (methanol) and oxidizing (nitrous oxides) gases. This assembly approach is amenable to any nanowire array for which a top contact electrode is needed

  1. Synthesis of high aspect ratio ZnO nanowires with an inexpensive handcrafted electrochemical setup

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Ali, E-mail: at1361@aut.ac.ir, E-mail: atahery@aeoi.org.ir [Nuclear Science and Technology Institute (Iran, Islamic Republic of); Saramad, Shahyar; Setayeshi, Saeed [Amirkabir University of Technology, Faculty of Energy Engineering and Physics (Iran, Islamic Republic of)

    2016-12-15

    In this work, high aspect ratio zinc oxide nanowires are synthesized using templated one-step electrodeposition technique. Electrodeposition of the nanowires is done using a handcrafted electronic system. Nuclear track-etched polycarbonate membrane is used as a template to form the high aspect ratio nanowires. The result of X-ray diffraction and scanning electron microscopy shows that nanowires with a good crystallinity and an aspect ratio of more than 30 can be achieved in a suitable condition. The height of electrodeposited nanowires reaches to about 11 μm. Based on the obtained results, high aspect ratio ZnO nanowires can be formed using inexpensive electrodeposition setup with an acceptable quality.

  2. Photoluminescence blue shift of indium phosphide nanowire networks with aluminum oxide coating

    International Nuclear Information System (INIS)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan J.; Oye, Michael M.; Kobayashi, Nobuhiko P.; Wei, Min

    2014-01-01

    This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three-dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Photoluminescence blue shift of indium phosphide nanowire networks with aluminum oxide coating

    Energy Technology Data Exchange (ETDEWEB)

    Fryauf, David M.; Zhang, Junce; Norris, Kate J.; Diaz Leon, Juan J.; Oye, Michael M.; Kobayashi, Nobuhiko P. [Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California, Santa Cruz, CA (United States); Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); NASA Ames Research Center, Moffett Field, CA (United States); Wei, Min [Baskin School of Engineering, University of California Santa Cruz, Santa Cruz, CA (United States); School of Micro-Electronics and Solid-Electronics, University of Electronic Science and Technology of China, Chengdu (China)

    2014-07-15

    This paper describes our finding that optical properties of semiconductor nanowires were modified by depositing a thin layer of metal oxide. Indium phosphide nanowires were grown by metal organic chemical vapor deposition on silicon substrates with gold catalyst resulting in three-dimensional nanowire networks, and optical properties were obtained from the collective nanowire networks. The networks were coated with an aluminum oxide thin film deposited by plasma-enhanced atomic layer deposition. We studied the dependence of the peak wavelength of photoluminescence spectra on the thickness of the oxide coatings. A continuous blue shift in photoluminescence spectra was observed when the thickness of the oxide coating was increased. The observed blue shift is attributed to the Burstein-Moss effect due to increased carrier concentration in the nanowire cores caused by repulsion from intrinsic negative fixed charges located at the inner oxide surface. Samples were further characterized by scanning electron microscopy, Raman spectroscopy, transmission electron microscopy, and selective area diffractometry to better understand the physical mechanisms for the blue shift. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. The fabrication of ZnO nanowire field-effect transistors combining dielectrophoresis and hot-pressing

    International Nuclear Information System (INIS)

    Chang, Y-K; Chau-N H, Franklin

    2009-01-01

    Zinc oxide nanowire field-effect transistors (NW-FETs) were fabricated combining the dielectrophoresis (DEP) and the hot-pressing methods. DEP was used to position both ends of the nanowires on top of the source and the drain electrodes, respectively. Hot-pressing of nanowires on the electrodes was then employed to ensure good contacts between the nanowires and the electrodes. The good device performance achieved with our method of fabrication indicates that DEP combined with hot-pressing has the potential to be applied to the fabrication of flexible electronics on a roll-to-roll basis.

  5. Growth of high-aspect ratio horizontally-aligned ZnO nanowire arrays.

    Science.gov (United States)

    Soman, Pranav; Darnell, Max; Feldman, Marc D; Chen, Shaochen

    2011-08-01

    A method of fabricating horizontally-aligned zinc-oxide (ZnO) nanowire (NW) arrays with full control over the width and length is demonstrated. SEM images reveal the hexagonal structure typical of zinc oxide NWs. Arrays of high-aspect ratio horizontal ZnO NWs are fabricated by making use of the lateral overgrowth from dot patterns created by electron beam lithography (EBL). An array of patterned wires are lifted off and transferred to a flexible PDMS substrate with possible applications in several key nanotechnology areas.

  6. Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires

    KAUST Repository

    Deng, Rui; Zhou, Hang; Li, Yong-Feng; Wu, Tao; Yao, Bin; Qin, Jie-Ming; Wan, Yu-Chun; Jiang, Da-Yong; Liang, Qing-Cheng; Liu, Lei

    2013-01-01

    Room temperature ferromagnetism was observed in Mn-doped zinc stannate (ZTO:Mn) nanowires, which were prepared by chemical vapor transport. Structural and magnetic properties and Mn chemical states of ZTO:Mn nanowires were investigated by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometry and X-ray photoelectron spectroscopy. Manganese predominantly existed as Mn2+ and substituted for Zn (Mn Zn) in ZTO:Mn. This conclusion was supported by first-principles calculations. MnZn in ZTO:Mn had a lower formation energy than that of Mn substituted for Sn (MnSn). The nearest neighbor MnZn in ZTO stabilized ferromagnetic coupling. This observation supported the experimental results. © 2013 AIP Publishing LLC.

  7. Experimental and first-principles study of ferromagnetism in Mn-doped zinc stannate nanowires

    KAUST Repository

    Deng, Rui

    2013-07-17

    Room temperature ferromagnetism was observed in Mn-doped zinc stannate (ZTO:Mn) nanowires, which were prepared by chemical vapor transport. Structural and magnetic properties and Mn chemical states of ZTO:Mn nanowires were investigated by X-ray diffraction, superconducting quantum interference device (SQUID) magnetometry and X-ray photoelectron spectroscopy. Manganese predominantly existed as Mn2+ and substituted for Zn (Mn Zn) in ZTO:Mn. This conclusion was supported by first-principles calculations. MnZn in ZTO:Mn had a lower formation energy than that of Mn substituted for Sn (MnSn). The nearest neighbor MnZn in ZTO stabilized ferromagnetic coupling. This observation supported the experimental results. © 2013 AIP Publishing LLC.

  8. Investigation on the Tunable-Length Zinc Oxide Nanowire Arrays for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Shou-Yi Kuo

    2014-01-01

    Full Text Available We had successfully fabricated ZnO-based nanowires by vapor transport method in the furnace tube. ZnO nanowire arrays grown in 600°C for 30 minutes, 60 minutes, 90 minutes, and 120 minutes had applied to the dye-sensitized solar cells. The dye loading is proportional to the total equivalent surface area of ZnO nanowire arrays in the cells and plays an important role in improving power conversion efficiency. The highest efficiency was observed in DSSC sample with ZnO nanowires grown for 90 minutes, which had the largest equivalent surface area and also the highest dye loading. According to our experimental results, the enhancement in power conversion efficiency is attributed to the higher light harvesting and reduction of carrier recombination. In addition, ZnO nanowires also contribute to the photocurrent in the UV region.

  9. High-performance photoresponse from single-walled carbon nanotube-zinc oxide heterojunctions

    International Nuclear Information System (INIS)

    Chang, Jingbo; Najeeb, Choolakadavil Khalid; Lee, Jae-Hyeok; Lee, Minsu; Kim, Jae-Ho

    2011-01-01

    Photoactive materials consisting of single-walled carbon nanotube (SWNT)-zinc oxide (ZnO) heterojunctions targeted for optoelectronic applications are investigated in terms of photoresponse and photovoltaic effects. The devices based on SWNT-ZnO heterojunction films are fabricated by two step processes: first, a well aligned SWNT monolayer is deposited on an oxide substrate by the Langmuir-Blodgett (LB) technique; then a ZnO film prepared by filtration of ZnO nanowire solution is transferred onto the SWNT film to form SWNT-ZnO junctions. The SWNT-ZnO heterojunction demonstrates faster photoresponse time (2.75 s) up to 18 times and photovoltaic efficiency (1.33 nA) up to 4 times higher than that of only a ZnO device. Furthermore, the mechanisms of UV sensitivity enhancement and photovoltaic effects are explained according to the high electron mobility in the SWNT-ZnO heterojunctions.

  10. Template synthesis of indium nanowires using anodic aluminum oxide membranes.

    Science.gov (United States)

    Chen, Feng; Kitai, Adrian H

    2008-09-01

    Indium nanowires with diameters approximately 300 nm have been synthesized by a hydraulic pressure technique using anodic aluminum oxide (AAO) templates. The indium melt is injected into the AAO template and solidified to form nanostructures. The nanowires are dense, continuous and uniformly run through the entire approximately 60 microm thickness of the AAO template. X-ray diffraction (XRD) reveals that the nanowires are polycrystalline with a preferred orientation. SEM is performed to characterize the morphology of the nanowires.

  11. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation.

    Science.gov (United States)

    Tian, Xi-Ke; Zhao, Xiao-Yu; Zhang, Li-de; Yang, Chao; Pi, Zhen-Bang; Zhang, Su-Xin

    2008-05-28

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one.

  12. Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation

    International Nuclear Information System (INIS)

    Tian Xike; Zhao Xiaoyu; Yang Chao; Pi Zhenbang; Zhang Lide; Zhang Suxin

    2008-01-01

    To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one

  13. A sensitive DNA biosensor fabricated from gold nanoparticles, carbon nanotubes, and zinc oxide nanowires on a glassy carbon electrode

    International Nuclear Information System (INIS)

    Wang Jie; Li Shuping; Zhang Yuzhong

    2010-01-01

    We outline here the fabrication of a sensitive electrochemical DNA biosensor for the detection of sequence-specific target DNA. Zinc oxide nanowires (ZnONWs) were first immobilized on the surface of a glassy carbon electrode. Multi-walled carbon nanotubes (MWCNTs) with carboxyl groups were then dropped onto the surface of the ZnONWs. Gold nanoparticles (AuNPs) were subsequently introduced to the surface of the MWNTs/ZnONWs by electrochemical deposition. A single-stranded DNA probe with a thiol group at the end (HS-ssDNA) was covalently immobilized on the surface of the AuNPs by forming an Au-S bond. Scanning electron microscopy (SEM) and cyclic voltammetry (CV) were used to investigate the film assembly process. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of [Ru(NH 3 ) 6 ] 3+ bounding to double-stranded DNA (dsDNA). The incorporation of ZnONWs and MWCNTs in this sensor design significantly enhances the sensitivity and the selectivity. This DNA biosensor can detect the target DNA quantitatively in the range of 1.0 x 10 -13 to 1.0 x 10 -7 M, with a detection limit of 3.5 x 10 -14 M (S/N = 3). In addition, the DNA biosensor exhibits excellent selectivity, even for single-mismatched DNA detection.

  14. Zinc oxide tetrapod: a morphology with multifunctional applications

    International Nuclear Information System (INIS)

    Modi, Gaurav

    2015-01-01

    Zinc oxide has emerged as a material of great interest due to its unique optical, electrical and magnetic properties. This review comprehensively covers the various aspects of zinc oxide tetrapods. Tetrapod is a one dimensional zinc oxide nano-microstructure and has been found to have very promising applications in diverse fields. The growth model, properties, synthesis methods and variations in the tetrapod morphology by varying the synthesis conditions have been discussed. The promising applications of zinc oxide tetrapod morphology have been also discussed in detail. (review)

  15. The study and microstructure analysis of zinc and zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pešlová, F.; Kliber, J.

    2015-01-01

    Roč. 54, č. 1 (2015), s. 43-46 ISSN 0543-5846 Grant - others:KEGA(SK) KEGA 007 TnUAD-4/2013 Institutional support: RVO:68081723 Keywords : zinc * production of zinc oxide * microstructure * chemical composition * zinc slag Subject RIV: JG - Metal lurgy Impact factor: 0.959, year: 2014

  16. A supercritical carbon dioxide plasma process for preparing tungsten oxide nanowires

    International Nuclear Information System (INIS)

    Kawashima, Ayato; Nomura, Shinfuku; Toyota, Hiromichi; Takemori, Toshihiko; Mukasa, Shinobu; Maehara, Tsunehiro

    2007-01-01

    A supercritical carbon dioxide (CO 2 ) plasma process for fabricating one-dimensional tungsten oxide nanowires coated with amorphous carbon is presented. High-frequency plasma was generated in supercritical carbon dioxide at 20 MPa by using tungsten electrodes mounted in a supercritical cell, and subsequently an organic solvent was introduced with supercritical carbon dioxide into the plasma. Electron microscopy and Raman spectroscopy investigations of the deposited materials showed the production of tungsten oxide nanowires with or without an outer layer. The nanowires with an outer layer exhibited a coaxial structure with an outer concentric layer of amorphous carbon and an inner layer of tungsten oxide with a thickness and diameter of 20-30 and 10-20 nm, respectively

  17. Comparison of the Effects of Pre-training Administration of Zinc Oxide and ‎Zinc Oxide Nanoparticles on Long-term Memory of Adult Male Mice

    Directory of Open Access Journals (Sweden)

    N Issapare

    2016-01-01

    Full Text Available BACKGROUND AND OBJECTIVE: Zinc oxide nanoparticles are one of the most widely used nanoparticles in fields of industry, medicine, pharmaceutical sciences, cosmetics, and nutrition. Multiple studies have demonstrated the negative effects of zinc oxide nanoparticles on the nervous system, while others have revealed their enhancing effects on the activity of nerve cells, involved in memory processes. The aim of this study was to compare the effects of zinc oxide nanoparticles and zinc oxide on long-term memory of mice. METHODS: In this experimental study, 49 NMRI adult male mice, with the mean weight of 25±5 g, were randomly divided into seven groups, each consisting of seven mice: control group, three treatment groups receiving zinc oxide nanoparticles (1, 2.5, and 5 mg/kg of  zinc oxide nanoparticles, respectively, and three treatment groups receiving zinc oxide (1, 2.5, and 5 mg/kg of zinc oxide, respectively. Intraperitoneal injections were performed before training (electric shock. Passive avoidance memory of mice was evaluated, using the Step-Down device. The latency time to descend the platform was regarded as an indicator of memory on days 1, 3, and 7 following training. FINDINGS: Pre-training administration of zinc oxide nanoparticles and zinc oxide at a dose of 2.5 mg/kg yielded no effects on the motor activity of mice. However, a significant decline was reported in the latency time to descend the platform on days 1, 3, and 7 following training (58±17, 45±13, and 39±14 in the zinc oxide group and 93±18, 62±12, and 14±3 in the nano zinc oxide group, respectively (p<0.01 however, the dosage of 5 mg/kg had less significant short-term effects (130±38, 49±14, and 68±10 in the zinc oxide group and 132±46, 41±13, and 58±24 in the nano zinc oxide group, respectively. Also, the dosage of 1 mg/kg was almost ineffective. CONCLUSION: The results showed that weakened long-term memory, caused by zinc oxide administration, is not

  18. Heterogeneous metal-oxide nanowire micro-sensor array for gas sensing

    International Nuclear Information System (INIS)

    DeMeo, Dante; E Vandervelde, Thomas; MacNaughton, Sam; Sonkusale, Sameer; Wang, Zhilong; Zhang, Xinjie

    2014-01-01

    Vanadium oxide, manganese oxide, tungsten oxide, and nickel oxide nanowires were investigated for their applicability as chemiresistive gas sensors. Nanowires have excellent surface-to-volume ratios which yield higher sensitivities than bulk materials. Sensing elements consisting of these materials were assembled in an array to create an electronic nose platform. Dielectrophoresis was used to position the nanomaterials onto a microfabricated array of electrodes, which was subsequently mounted onto a leadless chip carrier and printed circuit board for rapid testing. Samples were tested in an enclosed chamber with vapors of acetone, isopropanol, methanol, and aqueous ammonia. The change in resistance of each assembly was measured. Responses varied between nanowire compositions, each demonstrating unique and repeatable responses to different gases; this enabled direct detection of the gases from the ensemble response. Sensitivities were calculated based on the fractional resistance change in a saturated environment and ranged from 6 × 10 −4 to 2 × 10 −5 %change ppm −1 . (papers)

  19. Low temperature synthesis of Zn nanowires by physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Philipp; Kast, Michael; Brueckl, Hubert [Austrian Research Centers GmbH ARC, Nano- Systemtechnologies, Donau-City-Strasse 1, A-1220 Wien (Austria)

    2007-07-01

    We demonstrate catalytic growth of zinc nanowires by physical vapor deposition at modest temperatures of 125-175 C on various substrates. In contrast to conventional approaches using tube furnaces our home-built growth system allows to control the vapor sources and the substrate temperature separately. The silicon substrates were sputter coated with a thin gold layer as metal catalyst. The samples were heated to the growth temperature and subsequently exposed to the zinc vapor at high vacuum conditions. The work pressure was adjusted by the partial pressure of oxygen or argon flow gas. Scanning electron microscopy and atomic force microscopy characterizations revealed that the nanowires exhibit straight, uniform morphology and have diameters in the range of 50-350 nm and lengths up to 70 {mu}m. The Zn nanowires grow independently of the substrates crystal orientation via a catalytic vapor-solid growth mechanism. Since no nanowire formation was observed without gold coating, we expect that the onedimensional growth is initiated by a surface reactive Au seed. ZnO nanowires can be produced in the same preparation chamber by oxidation at 500 C in 1atm (80% Ar, 20% O{sub 2}) for 1 hour. ZnO is highly attractive for sensor applications.

  20. Zinc oxide nanoparticles for water disinfection

    Directory of Open Access Journals (Sweden)

    Emelita Asuncion S. Dimapilis

    2018-03-01

    Full Text Available The world faces a growing challenge for adequate clean water due to threats coming from increasing demand and decreasing supply. Although there are existing technologies for water disinfection, their limitations, particularly the formation of disinfection-by-products, have led to researches on alternative methods. Zinc oxide, an essential chemical in the rubber and pharmaceutical industries, has attracted interest as antimicrobial agent. In nanoscale, zinc oxide has shown antimicrobial properties which make its potential great for various applications. This review discusses the synthesis of zinc oxide with focus on precipitation method, its antimicrobial property and the factors affecting it, disinfection mechanisms, and the potential application to water disinfection.

  1. Electrochemical fabrication of CdS/Co nanowire arrays in porous aluminum oxide templates

    CERN Document Server

    Yoon, C H

    2002-01-01

    A procedure for preparing semiconductor/metal nanowire arrays is described, based on a template method which entails electrochemical deposition into nanometer-wide parallel pores of anodic aluminum oxide films on aluminum. Aligned CdS/Co heterostructured nanowires have been prepared by ac electrodeposition in the anodic aluminum oxide templates. By varying the preparation conditions, a variety of CdS/Co nanowire arrays were fabricated, whose dimensional properties could be adjusted.

  2. Applications of zinc oxide nanowires for bio-photonics and bio-electronics

    Science.gov (United States)

    Willander, Magnus; Nur, O.; Fakhar-e-Alam, M.; Sadaf, J. R.; Israr, M. Q.; Sultana, K.; Ali, Syed M. Usman; Asif, M. H.

    2011-02-01

    Using zinc oxide (ZnO) nanostructures, nanorods (NRs) and nanoparticles (NPs) grown on different substrates (sub-micrometer glass pipettes, thin silver wire and on plastic substrate) different bio-sensors were demonstrated. The demonstrated sensors are based on potentiometric approach and are sensitive to the ionic metals and biological analyte in question. For each case a selective membrane or enzyme was used. The measurements were performed for intracellular environment as well as in some cases (cholesterol and uric acid). The selectivity in each case is tuned according to the element to be sensed. Moreover we also developed photodynamic therapy approach based on the use of ZnO NRs and NPs. Necrosis/apoptosis was possible to achieve for different types of cancerous cell. The results indicate that the ZnO with its UV and white band emissions is beneficial to photodynamic therapy technology.

  3. Electrical and optical properties of zinc oxide: thin films

    International Nuclear Information System (INIS)

    Zuhairusnizam Md Darus; Abdul Jalil Yeop Majlis; Anis Faridah Md Nor; Burhanuddin Kamaluddin

    1992-01-01

    Zinc oxide films have been prepared by high temperature oxidation of thermally evaporated zinc films on glass substrates. The resulting films are characterized using X-ray diffraction, optical absorption and electrical conductivity measurements. These zinc oxide films are very transparent and photoconductive

  4. Effect of Growth Parameters on SnO2 Nanowires Growth by Electron Beam Evaporation Method

    Science.gov (United States)

    Rakesh Kumar, R.; Manjula, Y.; Narasimha Rao, K.

    2018-02-01

    Tin oxide (SnO2) nanowires were synthesized via catalyst assisted VLS growth mechanism by the electron beam evaporation method at a growth temperature of 450 °C. The effects of growth parameters such as evaporation rate of Tin, catalyst film thickness, and different types of substrates on the growth of SnO2 nanowires were studied. Nanowires (NWs) growth was completely seized at higher tin evaporation rates due to the inability of the catalyst particle to initiate the NWs growth. Nanowires diameters were able to tune with catalyst film thickness. Nanowires growth was completely absent at higher catalyst film thickness due to agglomeration of the catalyst film. Optimum growth parameters for SnO2 NWs were presented. Nanocomposites such as Zinc oxide - SnO2, Graphene oxide sheets- SnO2 and Graphene nanosheets-SnO2 were able to synthesize at a lower substrate temperature of 450 °C. These nanocompsoites will be useful in enhancing the capacity of Li-ion batteries, the gas sensing response and also useful in increasing the photo catalytic activity.

  5. Failure mechanisms and electromechanical coupling in semiconducting nanowires

    Directory of Open Access Journals (Sweden)

    Peng B.

    2010-06-01

    Full Text Available One dimensional nanostructures, like nanowires and nanotubes, are increasingly being researched for the development of next generation devices like logic gates, transistors, and solar cells. In particular, semiconducting nanowires with a nonsymmetric wurtzitic crystal structure, such as zinc oxide (ZnO and gallium nitride (GaN, have drawn immense research interests due to their electromechanical coupling. The designing of the future nanowire-based devices requires component-level characterization of individual nanowires. In this paper, we present a unique experimental set-up to characterize the mechanical and electromechanical behaviour of individual nanowires. Using this set-up and complementary atomistic simulations, mechanical properties of ZnO nanowires and electromechanical properties of GaN nanowires were investigated. In ZnO nanowires, elastic modulus was found to depend on nanowire diameter decreasing from 190 GPa to 140 GPa as the wire diameter increased from 5 nm to 80 nm. Inconsistent failure mechanisms were observed in ZnO nanowires. Experiments revealed a brittle fracture, whereas simulations using a pairwise potential predicted a phase transformation prior to failure. This inconsistency is addressed in detail from an experimental as well as computational perspective. Lastly, in addition to mechanical properties, preliminary results on the electromechanical properties of gallium nitride nanowires are also reported. Initial investigations reveal that the piezoresistive and piezoelectric behaviour of nanowires is different from bulk gallium nitride.

  6. On-chip microplasma reactors using carbon nanofibres and tungsten oxide nanowires as electrodes

    NARCIS (Netherlands)

    Agiral, A.; Groenland, A.W.; Chinthaginjala, J.K.; Kumar Chinthaginjala, J.; Seshan, Kulathuiyer; Lefferts, Leonardus; Gardeniers, Johannes G.E.

    2008-01-01

    Carbon nanofibres (CNFs) and tungsten oxide (W18O49) nanowires have been incorporated into a continuous flow type microplasma reactor to increase the reactivity and efficiency of the barrier discharge at atmospheric pressure. CNFs and tungsten oxide nanowires were characterized by high-resolution

  7. Antibacterial activity of zinc oxide-coated nanoporous alumina

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, S.A. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Bayati, M.R. [Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States); Petrochenko, P.E. [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Division of Biology, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993 (United States); Stafslien, S.; Daniels, J.; Cilz, N. [Center for Nanoscale Science and Engineering, North Dakota State University, 1805 Research Park Drive, Fargo, ND 58102 (United States); Comstock, D.J.; Elam, J.W. [Energy Systems Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Narayan, R.J., E-mail: roger_narayan@msn.com [Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Box 7115, Raleigh, NC 27695-7115 (United States); Department of Materials Science and Engineering, North Carolina State University, Box 7907, Raleigh, NC 27695-7907 (United States)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Atomic layer deposition was used to deposit ZnO on nanoporous alumina membranes. Black-Right-Pointing-Pointer Scanning electron microscopy showed continuous coatings of zinc oxide nanocrystals. Black-Right-Pointing-Pointer Activity against B. subtilis, E. coli, S. aureus, and S. epidermidis was shown. - Abstract: Nanoporous alumina membranes, also known as anodized aluminum oxide membranes, are being investigated for use in treatment of burn injuries and other skin wounds. In this study, atomic layer deposition was used for coating the surfaces of nanoporous alumina membranes with zinc oxide. Agar diffusion assays were used to show activity of zinc oxide-coated nanoporous alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. On the other hand, zinc oxide-coated nanoporous alumina membranes did not show activity against Pseudomonas aeruginosa, Enterococcus faecalis, and Candida albicans. These results suggest that zinc oxide-coated nanoporous alumina membranes have activity against some Gram-positive and Gram-negative bacteria that are associated with skin colonization and skin infection.

  8. Photoconductivity of Germanium Nanowire Arrays Incorporated in Anodic Aluminum Oxide

    International Nuclear Information System (INIS)

    Polyakov, B; Prikulis, J; Grigorjeva, L; Millers, D; Daly, B; Holmes, J D; Erts, D

    2007-01-01

    Photoconductivity of germanium nanowire arrays of 50 and 100 nm diameter incorporated into Anodic Aluminum Oxide (AAO) membranes illuminated with visible light is investigated. Photocurrent response to excitation radiation with time constants faster than 10 -4 s were governed by absorption of incident light by nanowires, while photokinetics with time constants of the order of 10 -3 s originates from the photoluminescence of the AAO matrix. Possible applications of nanowire arrays inside AAO as photoresistors are discussed

  9. Copper and Zinc Oxide Composite Nanostructures for Solar Energy Harvesting

    Science.gov (United States)

    Wu, Fei

    Solar energy is a clean and sustainable energy source to counter global environmental issues of rising atmospheric CO2 levels and depletion of natural resources. To extract useful work from solar energy, silicon-based photovoltaic devices are extensively used. The technological maturity and the high quality of silicon (Si) make it a material of choice. However limitations in Si exist, ranging from its indirect band gap to low light absorption coefficient and energy and capital intensive crystal growth schemes. Therefore, alternate materials that are earth-abundant, benign and simpler to process are needed for developing new platforms for solar energy harvesting applications. In this study, we explore oxides of copper (CuO and Cu2O) in a nanowire morphology as alternate energy harvesting materials. CuO has a bandgap of 1.2 eV whereas Cu2O has a bandgap of 2.1 eV making them ideally suited for absorbing solar radiation. First, we develop a method to synthesize vertical, single crystalline CuO and Cu2O nanowires of ~50 microm length and aspect ratios of ~200. CuO nanowire arrays are synthesized by thermal oxidation of Cu foils. Cu2O nanowire arrays are synthesized by thermal reduction of CuO nanowires. Next, surface engineering of these nanowires is achieved using atomic layer deposition (ALD) of ZnO. By depositing 1.4 nm of ZnO, a highly defective surface is produced on the CuO nanowires. These defects are capable of trapping charge as is evident through persistent photoconductivity measurements of ZnO coated CuO nanowires. The same nanowires serve as efficient photocatalysts reducing CO2 to CO with a yield of 1.98 mmol/g-cat/hr. Finally, to develop a robust platform for flexible solar cells, a protocol to transfer vertical CuO nanowires inside flexible polydimethylsiloxane (PDMS) is demonstrated. Embedded CuO nanowires-ZnO pn junctions show a VOC of 0.4 V and a JSC of 10.4 microA/cm2 under white light illumination of 5.7 mW/cm2. Thus, this research provides broad

  10. The kinetic of photoreactions in zinc oxide microrods

    Science.gov (United States)

    Fiedot, M.; Rac, O.; Suchorska-Woźniak, P.; Nawrot, W.; Teterycz, H.

    2016-01-01

    Zinc oxide is the oldest sensing material used in the chemical resistive gas sensors which allow to detect many gases, such as carbon oxide, nitrogen oxides and other. This material is also widely used in medicine and daily life as antibacterial agent. For this reason this semiconductor is often synthesized on the polymer substrates such as foils and textiles. In presented results zinc oxide was deposited on the surface of poly(ethylene terephthalate) foil to obtain antibacterial material. As synthesis method chemical bath deposition was chosen. The growth of zinc oxide structures was carried out in water solution of zinc nitrate (V) and hexamethylenetetramine in 90°C during 9 h. Because antibacterial properties of ZnO are strongly depended on photocatalytic and electric properties of this semiconductor impedance spectroscopy measurements were carried out. During the measurements material was tested with and without UV light to determinate the kinetic of photoreactions in zinc oxide. Moreover the composite was analyzed by XRD diffraction and scanning electron microscope. The X-ray analysis indicated that obtained material has the structure of wurtzite which is typical of zinc oxide. SEM images showed that on the PET foil microrods of ZnO were formed. The impedance spectroscopy measurements of ZnO layer showed that in UV light significant changes in the conductivity of the material are observed.

  11. The kinetic of photoreactions in zinc oxide microrods

    International Nuclear Information System (INIS)

    Fiedot, M; Rac, O; Suchorska-Woźniak, P; Nawrot, W; Teterycz, H

    2016-01-01

    Zinc oxide is the oldest sensing material used in the chemical resistive gas sensors which allow to detect many gases, such as carbon oxide, nitrogen oxides and other. This material is also widely used in medicine and daily life as antibacterial agent. For this reason this semiconductor is often synthesized on the polymer substrates such as foils and textiles. In presented results zinc oxide was deposited on the surface of poly(ethylene terephthalate) foil to obtain antibacterial material. As synthesis method chemical bath deposition was chosen. The growth of zinc oxide structures was carried out in water solution of zinc nitrate (V) and hexamethylenetetramine in 90°C during 9 h. Because antibacterial properties of ZnO are strongly depended on photocatalytic and electric properties of this semiconductor impedance spectroscopy measurements were carried out. During the measurements material was tested with and without UV light to determinate the kinetic of photoreactions in zinc oxide. Moreover the composite was analyzed by XRD diffraction and scanning electron microscope. The X-ray analysis indicated that obtained material has the structure of wurtzite which is typical of zinc oxide. SEM images showed that on the PET foil microrods of ZnO were formed. The impedance spectroscopy measurements of ZnO layer showed that in UV light significant changes in the conductivity of the material are observed

  12. Atmospheric pressure plasma enhanced chemical vapor deposition of zinc oxide and aluminum zinc oxide

    International Nuclear Information System (INIS)

    Johnson, Kyle W.; Guruvenket, Srinivasan; Sailer, Robert A.; Ahrenkiel, S. Phillip; Schulz, Douglas L.

    2013-01-01

    Zinc oxide (ZnO) and aluminum-doped zinc oxide (AZO) thin films were deposited via atmospheric pressure plasma enhanced chemical vapor deposition. A second-generation precursor, bis(1,1,1,5,5,5-hexafluoro-2,4-pentanedionato)(N,N′-diethylethylenediamine) zinc, exhibited significant vapor pressure and good stability at one atmosphere where a vaporization temperature of 110 °C gave flux ∼ 7 μmol/min. Auger electron spectroscopy confirmed that addition of H 2 O to the carrier gas stream mitigated F contamination giving nearly 1:1 metal:oxide stoichiometries for both ZnO and AZO with little precursor-derived C contamination. ZnO and AZO thin film resistivities ranged from 14 to 28 Ω·cm for the former and 1.1 to 2.7 Ω·cm for the latter. - Highlights: • A second generation precursor was utilized for atmospheric pressure film growth. • Addition of water vapor to the carrier gas stream led to a marked reduction of ZnF 2 . • Carbonaceous contamination from the precursor was minimal

  13. Preparation of highly aligned silicon oxide nanowires with stable intensive photoluminescence

    International Nuclear Information System (INIS)

    Duraia, El-Shazly M.; Mansurov, Z.A.; Tokmolden, S.; Beall, Gary W.

    2010-01-01

    In this work we report the successful formation of highly aligned vertical silicon oxide nanowires. The source of silicon was from the substrate itself without any additional source of silicon. X-ray measurement demonstrated that our nanowires are amorphous. Photoluminescence measurements were conducted through 18 months and indicated that there is a very good intensive emission peaks near the violet regions. The FTIR measurements indicated the existence of peaks at 463, 604, 795 and a wide peak at 1111 cm -1 and this can be attributed to Si-O-Si and Si-O stretching vibrations. We also report the formation of the octopus-like silicon oxide nanowires and the growth mechanism of these structures was discussed.

  14. Preparation of highly aligned silicon oxide nanowires with stable intensive photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Duraia, El-Shazly M., E-mail: duraia_physics@yahoo.co [Suez Canal University, Faculty of Science, Physics Department, Ismailia (Egypt); Al-Farabi Kazakh National University, Almaty (Kazakhstan); Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Mansurov, Z.A. [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Tokmolden, S. [Institute of Physics and Technology, 11 Ibragimov Street, 050032 Almaty (Kazakhstan); Beall, Gary W. [Texas State University-San Marcos, Department of Chemistry and Biochemistry, 601 University Dr., San Marcos, TX 78666 (United States)

    2010-02-15

    In this work we report the successful formation of highly aligned vertical silicon oxide nanowires. The source of silicon was from the substrate itself without any additional source of silicon. X-ray measurement demonstrated that our nanowires are amorphous. Photoluminescence measurements were conducted through 18 months and indicated that there is a very good intensive emission peaks near the violet regions. The FTIR measurements indicated the existence of peaks at 463, 604, 795 and a wide peak at 1111 cm{sup -1} and this can be attributed to Si-O-Si and Si-O stretching vibrations. We also report the formation of the octopus-like silicon oxide nanowires and the growth mechanism of these structures was discussed.

  15. Directed spatial organization of zinc oxide nanostructures

    Science.gov (United States)

    Hsu, Julia [Albuquerque, NM; Liu, Jun [Richland, WA

    2009-02-17

    A method for controllably forming zinc oxide nanostructures on a surface via an organic template, which is formed using a stamp prepared from pre-defined relief structures, inking the stamp with a solution comprising self-assembled monolayer (SAM) molecules, contacting the stamp to the surface, such as Ag sputtered on Si, and immersing the surface with the patterned SAM molecules with a zinc-containing solution with pH control to form zinc oxide nanostructures on the bare Ag surface.

  16. Dimensional effects in semiconductor nanowires; Dimensionseffekte in Halbleiternanodraehten

    Energy Technology Data Exchange (ETDEWEB)

    Stichtenoth, Daniel

    2008-06-23

    Nanomaterials show new physical properties, which are determined by their size and morphology. These new properties can be ascribed to the higher surface to volume ratio, to quantum size effects or to a form anisotropy. They may enable new technologies. The nanowires studied in this work have a diameter of 4 to 400 nm and a length up to 100 {mu}m. The semiconductor material used is mainly zinc oxide (ZnO), zinc sulfide (ZnS) and gallium arsenide (GaAs). All nanowires were synthesized according to the vapor liquid solid mechanism, which was originally postulated for the growth of silicon whiskers. Respective modifications for the growth of compound semiconductor nanowires are discussed. Detailed luminescence studies on ZnO nanowires with different diameters show pronounced size effects which can be attributed to the origins given above. Similar to bulk material, a tuning of the material properties is often essential for a further functionalization of the nanowires. This is typical realized by doping the source material. It becomes apparent, that a controlled doping of nanowires during the growth process is not successful. Here an alternative method is chosen: the doping after the growth by ion implantation. However, the doping by ion implantation goes always along with the creation of crystal defects. The defects have to be annihilated in order to reach an activation of th introduced dopants. At high ion fluences and ion masses the sputtering of surface atoms becomes more important. This results in a characteristic change in the morphology of the nanowires. In detail, the doping of ZnO and ZnS nanowires with color centers (manganese and rare earth elements) is demonstrated. Especially, the intra 3d luminescence of manganese implanted ZnS nanostructures shows a strong dependence of the nanowire diameter and morphology. This dependence can be described by expanding Foersters model (which describes an energy transfer to the color centers) by a dimensional parameter

  17. Photocatalysis application of zinc oxide fibers obtained by electrospinning

    International Nuclear Information System (INIS)

    Gerchman, D.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2010-01-01

    Using the electrospinning technique, composite fibers of polyvinylbutyral and zinc nitrate were obtained. After a heat treatment at 600 deg C, nanostructured zinc oxide fibers were obtained. The fibers were characterized using X ray diffraction. The photocatalytic activity of the nanostructured fibers was determined using the photodegradation of a methyl orange solution. The increase in the heat treatment temperature decreases the photoactivity of the zinc oxide. The heat treatment, the phases and the surface area, affect the physical, chemical and photocatalytic activity of the zinc oxide. (author)

  18. Improved Long-Term Stability of Transparent Conducting Electrodes Based on Double-Laminated Electrosprayed Antimony Tin Oxides and Ag Nanowires

    Directory of Open Access Journals (Sweden)

    Koo B.-R.

    2017-06-01

    Full Text Available We fabricated double-laminated antimony tin oxide/Ag nanowire electrodes by spin-coating and electrospraying. Compared to pure Ag nanowire electrodes and single-laminated antimony tin oxide/Ag nanowire electrodes, the double-laminated antimony tin oxide/Ag nanowire electrodes had superior transparent conducting electrode performances with sheet resistance ~19.8 Ω/□ and optical transmittance ~81.9%; this was due to uniform distribution of the connected Ag nanowires because of double lamination of the metallic Ag nanowires without Ag aggregation despite subsequent microwave heating at 250°C. They also exhibited excellent and superior long-term chemical and thermal stabilities and adhesion to substrate because double-laminated antimony tin oxide thin films act as the protective layers between Ag nanowires, blocking Ag atoms penetration.

  19. Synthesis and characterization of fly ash-zinc oxide nanocomposite

    Directory of Open Access Journals (Sweden)

    Kunal Yeole

    2014-04-01

    Full Text Available Fly ash, generated in thermal power plants, is recognized as an environmental pollutant. Thus, measures are required to be undertaken to dispose it in an environmentally friendly method. In this paper an attempt is made to coat zinc oxide nano-particles on the surface of fly ash by a simple and environmentally friendly facile chemical method, at room temperature. Zinc oxide may serve as effective corrosion inhibitor by providing sacrificial protection. Concentration of fly ash was varied as 5, 10 and 15 (w/w % of zinc oxide. It was found that crystallinity increased, whereas particle size, specific gravity and oil absorption value decreased with increased concentration of fly ash in zinc oxide, which is attributed to the uniform distribution of zinc oxide on the surface of fly ash. These nanocomposites can potentially be used in commercial applications as additive for anticorrosion coatings.

  20. Bioavailability of Zinc in Wistar Rats Fed with Rice Fortified with Zinc Oxide

    Science.gov (United States)

    Della Lucia, Ceres Mattos; Santos, Laura Luiza Menezes; Rodrigues, Kellen Cristina da Cruz; Rodrigues, Vivian Cristina da Cruz; Martino, Hércia Stampini Duarte; Pinheiro Sant’Ana, Helena Maria

    2014-01-01

    The study of zinc bioavailability in foods is important because this mineral intake does not meet the recommended doses for some population groups. Also, the presence of dietary factors that reduce zinc absorption contributes to its deficiency. Rice fortified with micronutrients (Ultra Rice®) is a viable alternative for fortification since this cereal is already inserted into the population habit. The aim of this study was to evaluate the bioavailability of zinc (Zn) in rice fortified with zinc oxide. During 42 days, rats were divided into four groups and fed with diets containing two different sources of Zn (test diet: UR® fortified with zinc oxide, or control diet: zinc carbonate (ZnCO3)), supplying 50% or 100%, respectively, of the recommendations of this mineral for animals. Weight gain, food intake, feed efficiency ratio, weight, thickness and length of femur; retention of zinc, calcium (Ca) and magnesium (Mg) in the femur and the concentrations of Zn in femur, plasma and erythrocytes were evaluated. Control diet showed higher weight gain, feed efficiency ratio, retention of Zn and Zn concentration in the femur (p 0.05) for dietary intake, length and thickness of the femur, erythrocyte and plasmatic Zn between groups. Although rice fortified with zinc oxide showed a lower bioavailability compared to ZnCO3, this food can be a viable alternative to be used as a vehicle for fortification. PMID:24932657

  1. Electrical properties of fluorine-doped ZnO nanowires formed by biased plasma treatment

    Science.gov (United States)

    Wang, Ying; Chen, Yicong; Song, Xiaomeng; Zhang, Zhipeng; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-05-01

    Doping is an effective method for tuning electrical properties of zinc oxide nanowires, which are used in nanoelectronic devices. Here, ZnO nanowires were prepared by a thermal oxidation method. Fluorine doping was achieved by a biased plasma treatment, with bias voltages of 100, 200, and 300 V. Transmission electron microscopy indicated that the nanowires treated at bias voltages of 100 and 200 V featured low crystallinity. When the bias voltage was 300 V, the nanowires showed single crystalline structures. Photoluminescence measurements revealed that concentrations of oxygen and surface defects decreased at high bias voltage. X-ray photoelectron spectroscopy suggested that the F content increased as the bias voltage was increased. The conductivity of the as-grown nanowires was less than 103 S/m; the conductivity of the treated nanowires ranged from 1 × 104-5 × 104, 1 × 104-1 × 105, and 1 × 103-2 × 104 S/m for bias voltage treatments at 100, 200, and 300 V, respectively. The conductivity improvements of nanowires formed at bias voltages of 100 and 200 V, were attributed to F-doping, defects and surface states. The conductivity of nanowires treated at 300 V was attributed to the presence of F ions. Thus, we provide a method of improving electrical properties of ZnO nanowires without altering their crystal structure.

  2. Electrochemical synthesis and characterization of zinc carbonate and zinc oxide nanoparticles

    Science.gov (United States)

    Pourmortazavi, Seied Mahdi; Marashianpour, Zahra; Karimi, Meisam Sadeghpour; Mohammad-Zadeh, Mohammad

    2015-11-01

    Zinc oxide and its precursor i.e., zinc carbonate is widely utilized in various fields of industry, especially in solar energy conversion, optical, and inorganic pigments. In this work, a facile and clean electrodeposition method was utilized for the synthesis of zinc carbonate nanoparticles. Also, zinc oxide nanoparticles were produced by calcination of the prepared zinc carbonate powder. Zinc carbonate nanoparticles with different sizes were electrodeposited by electrolysis of a zinc plate as anode in the solution of sodium carbonate. It was found that the particle size of zinc carbonate might be tuned by process parameters, i.e., electrolysis voltage, carbonate ion concentration, solvent composition and stirring rate of the electrolyte solution. An orthogonal array design was utilized to identify the optimum experimental conditions. The experimental results showed that the minimum size of the electrodeposited ZnCO3 particles is about 24 nm whereas the maximum particle size is around 40 nm. The TG-DSC studies of the nanoparticles indicated that the main thermal degradation of ZnCO3 occurs in two steps over the temperature ranges of 150-250 and 350-400 °C. The electrosynthesized ZnCO3 nanoparticles were calcined at the temperature of 600 °C to prepare ZnO nanoparticles. The prepared ZnCO3 and ZnO nanoparticles were characterized by SEM, X-ray diffraction (XRD), and FT-IR techniques.

  3. Native oxide formation on pentagonal copper nanowires: A TEM study

    Science.gov (United States)

    Hajimammadov, Rashad; Mohl, Melinda; Kordas, Krisztian

    2018-06-01

    Hydrothermally synthesized copper nanowires were allowed to oxidize in air at room temperature and 30% constant humidity for the period of 22 days. The growth of native oxide layer was followed up by high-resolution transmission electron microscopy and diffraction to reveal and understand the kinetics of the oxidation process. Copper oxides appear in the form of differently oriented crystalline phases around the metallic core as a shell-like layer (Cu2O) and as nanoscopic islands (CuO) on the top of that. Time dependent oxide thickness data suggests that oxidation follows the field-assisted growth model at the beginning of the process, as practically immediately an oxide layer of ∼2.8 nm thickness develops on the surface. However, after this initial rapid growth, the local field attenuates and the classical parabolic diffusion limited growth plays the main role in the oxidation. Because of the single crystal facets on the side surface of penta-twinned Cu nanowires, the oxidation rate in the diffusion limited regime is lower than in polycrystalline films.

  4. Synthesis and characterization of nanohybrid of montmorillonite and zinc oxide

    International Nuclear Information System (INIS)

    Chagas, Beatriz S.; Mendes, Luis C.; Brito, Alice S.

    2009-01-01

    Zinc oxide-aluminosilicate nanohybrids through a hydrothermal reaction of a colloidal suspension of exfoliated montmorillonite nanosheets and zinc oxide in acid solution, performed in three different routes, were synthesized. The products were characterized by wide angle X-ray diffraction (WAXD). In all routes, it was found that the intercalation of zinc oxide into the host montmorillonite gallery was successfully performed so that the crystalline peaks of the montmorillonite and zinc oxide were suppressed from the X-ray patterns. The use of ultrasound decreased the reaction time.(author)

  5. Transformation of Leaf-like Zinc Dendrite in Oxidation and Reduction Cycle

    International Nuclear Information System (INIS)

    Nakata, Akiyoshi; Murayama, Haruno; Fukuda, Katsutoshi; Yamane, Tomokazu; Arai, Hajime; Hirai, Toshiro; Uchimoto, Yoshiharu; Yamaki, Jun-ichi; Ogumi, Zempachi

    2015-01-01

    Highlights: • Leaf-like zinc dendrites change to leaf-like residual oxides at high oxidation current density (10 mA cm −2 ) whereas it completely dissolves at low oxidation current density (1 mA cm −2 ). • Leaf-like residual oxide products is transformed to zinc deposits with particulate morphology, resulting in good rechargeability. • The residual zinc oxide provides sufficient zincate on its reduction, preventing the diffusion-limited condition that causes leaf-like dendrite formation. - Abstract: Zinc is a promising negative electrode material for aqueous battery systems whereas it shows insufficient rechargeability for use in secondary batteries. It has been reported that leaf-like dendrite deposits are often the origin of cell-failure, however, their nature and behavior on discharge (oxidation) - charge (reduction) cycling have been only poorly understood. Here we investigate the transformation of the leaf-like zinc dendrites using ex-situ scanning electron microscopy, X-ray computational tomography and in-situ X-ray diffraction. It is shown that the leaf-like zinc dendrites obtained under diffusion-limited conditions are nearly completely dissolved at a low oxidation current density of 1 mA cm −2 and cause re-evolution of the zinc dendrites. Oxidation at a high current density of 10 mA cm −2 leads to the formation of leaf-like zinc oxide residual products that result in particulate zinc deposits in the following reduction process, enabling good rechargeability. The reaction behavior of this oxide residue is detailed and discussed for the development of long-life zinc electrodes

  6. Zinc-oxide-based sorbents and processes for preparing and using same

    Science.gov (United States)

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasael

    2010-03-23

    Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  7. Electrostatically Gated Graphene-Zinc Oxide Nanowire Heterojunction.

    Science.gov (United States)

    You, Xueqiu; Pak, James Jungho

    2015-03-01

    This paper presents an electrostatically gated graphene-ZnO nanowire (NW) heterojunction for the purpose of device applications for the first time. A sub-nanometer-thick energy barrier width was formed between a monatomic graphene layer and electrochemically grown ZnO NWs. Because of the narrow energy barrier, electrons can tunnel through the barrier when a voltage is applied across the junction. A near-ohmic current-voltage (I-V) curve was obtained from the graphene-electrochemically grown ZnO NW heterojunction. This near-ohmic contact changed to asymmetric I-V Schottky contact when the samples were exposed to an oxygen environment. It is believed that the adsorbed oxygen atoms or molecules on the ZnO NW surface capture free electrons of the ZnO NWs, thereby creating a depletion region in the ZnO NWs. Consequentially, the electron concentration in the ZnO NWs is dramatically reduced, and the energy barrier width of the graphene-ZnO NW heterojunction increases greatly. This increased energy barrier width reduces the electron tunneling probability, resulting in a typical Schottky contact. By adjusting the back-gate voltage to control the graphene-ZnO NW Schottky energy barrier height, a large modulation on the junction current (on/off ratio of 10(3)) was achieved.

  8. Fabrication and evaluation of series-triple quantum dots by thermal oxidation of silicon nanowire

    International Nuclear Information System (INIS)

    Uchida, Takafumi; Jo, Mingyu; Tsurumaki-Fukuchi, Atsushi; Arita, Masashi; Takahashi, Yasuo; Fujiwara, Akira

    2015-01-01

    Series-connected triple quantum dots were fabricated by a simple two-step oxidation technique using the pattern-dependent oxidation of a silicon nanowire and an additional oxidation of the nanowire through the gap of the fine gates attached to the nanowire. The characteristics of multi-dot single-electron devices are obtained. The formation of each quantum dot beneath an attached gate is confirmed by analyzing the electrical characteristics and by evaluating the gate capacitances between all pairings of gates and quantum dots. Because the gate electrode is automatically attached to each dot, the device structure benefits from scalability. This technique promises integrability of multiple quantum dots with individual control gates

  9. Electric radiation mapping of silver/zinc oxide nanoantennas by using electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J. E.; Mendoza-Santoyo, F.; Cantu-Valle, J.; Velazquez-Salazar, J.; José Yacaman, M.; Ponce, A. [Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio 78249 (United States); González, F. J. [Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luís Potosí, San Luis Potosí 78210 (Mexico); Diaz de Leon, R. [Instituto Tecnológico de San Luis Potosí, San Luis Potosi 78437 (Mexico)

    2015-01-21

    In this work, we report the fabrication of self-assembled zinc oxide nanorods grown on pentagonal faces of silver nanowires by using microwaves irradiation. The nanostructures resemble a hierarchal nanoantenna and were used to study the far and near field electrical metal-semiconductor behavior from the electrical radiation pattern resulting from the phase map reconstruction obtained using off-axis electron holography. As a comparison, we use electric numerical approximations methods for a finite number of ZnO nanorods on the Ag nanowires and show that the electric radiation intensities maps match closely the experimental results obtained with electron holography. The time evolution of the radiation pattern as generated from the nanostructure was recorded under in-situ radio frequency signal stimulation, in which the generated electrical source amplitude and frequency were varied from 0 to 5 V and from 1 to 10 MHz, respectively. The phase maps obtained from electron holography show the change in the distribution of the electric radiation pattern for individual nanoantennas. The mapping of this electrical behavior is of the utmost importance to gain a complete understanding for the metal-semiconductor (Ag/ZnO) heterojunction that will help to show the mechanism through which these receiving/transmitting structures behave at nanoscale level.

  10. Selectivity in the oxidative dehydrogenation of butene on zinc-iron oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kung, H.H.; Kundalkar, B.; Kung, M.C.; Cheng, W.H.

    1980-02-21

    Adsorption, temperature-programed desorption, and pulse reaction studies of cis-2-butene and butadiene on spinel zinc ferrite by previously described methods provided evidence that the selectivity for oxidative dehydrogenation of butenes increases when zinc is added to the iron oxide catalyst because selective oxidation and complete oxidation proceed on separate sites, as they do on pure iron; because the density of sites for selective oxidation is higher and the density of sites for complete combustion is lower than on pure iron oxide; and because the activity of the combustion sites is lower.

  11. Low-temperature solution-processed zinc oxide field effect transistor by blending zinc hydroxide and zinc oxide nanoparticle in aqueous solutions

    Science.gov (United States)

    Shin, Hyeonwoo; Kang, Chan-mo; Baek, Kyu-Ha; Kim, Jun Young; Do, Lee-Mi; Lee, Changhee

    2018-05-01

    We present a novel methods of fabricating low-temperature (180 °C), solution-processed zinc oxide (ZnO) transistors using a ZnO precursor that is blended with zinc hydroxide [Zn(OH)2] and zinc oxide hydrate (ZnO • H2O) in an ammonium solution. By using the proposed method, we successfully improved the electrical performance of the transistor in terms of the mobility (μ), on/off current ratio (I on/I off), sub-threshold swing (SS), and operational stability. Our new approach to forming a ZnO film was systematically compared with previously proposed methods. An atomic forced microscopic (AFM) image and an X-ray photoelectron spectroscopy (XPS) analysis showed that our method increases the ZnO crystallite size with less OH‑ impurities. Thus, we attribute the improved electrical performance to the better ZnO film formation using the blending methods.

  12. Zinc Oxide Nanowire Interphase for Enhanced Lightweight Polymer Fiber Composites

    Science.gov (United States)

    Sodano, Henry A.; Brett, Robert

    2011-01-01

    The objective of this work was to increase the interfacial strength between aramid fiber and epoxy matrix. This was achieved by functionalizing the aramid fiber followed by growth of a layer of ZnO nanowires on the fiber surface such that when embedded into the polymer, the load transfer and bonding area could be substantially enhanced. The functionalization procedure developed here created functional carboxylic acid surface groups that chemically interact with the ZnO and thus greatly enhance the strength of the interface between the fiber and the ZnO.

  13. A review of zinc oxide mineral beneficiation using flotation method.

    Science.gov (United States)

    Ejtemaei, Majid; Gharabaghi, Mahdi; Irannajad, Mehdi

    2014-04-01

    In recent years, extraction of zinc from low-grade mining tailings of oxidized zinc has been a matter of discussion. This is a material which can be processed by flotation and acid-leaching methods. Owing to the similarities in the physicochemical and surface chemistry of the constituent minerals, separation of zinc oxide minerals from their gangues by flotation is an extremely complex process. It appears that selective leaching is a promising method for the beneficiation of this type of ore. However, with the high consumption of leaching acid, the treatment of low-grade oxidized zinc ores by hydrometallurgical methods is expensive and complex. Hence, it is best to pre-concentrate low-grade oxidized zinc by flotation and then to employ hydrometallurgical methods. This paper presents a critical review on the zinc oxide mineral flotation technique. In this paper, the various flotation methods of zinc oxide minerals which have been proposed in the literature have been detailed with the aim of identifying the important factors involved in the flotation process. The various aspects of recovery of zinc from these minerals are also dealt with here. The literature indicates that the collector type, sulfidizing agent, pH regulator, depressants and dispersants types, temperature, solid pulp concentration, and desliming are important parameters in the process. The range and optimum values of these parameters, as also the adsorption mechanism, together with the resultant flotation of the zinc oxide minerals reported in the literature are summarized and highlighted in the paper. This review presents a comprehensive scientific guide to the effectiveness of flotation strategy. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Synthesis of vertically aligned metal oxide nanostructures

    KAUST Repository

    Roqan, Iman S.

    2016-03-03

    Metal oxide nanostructure and methods of making metal oxide nanostructures are provided. The metal oxide nanostructures can be 1 -dimensional nanostructures such as nanowires, nanofibers, or nanotubes. The metal oxide nanostructures can be doped or undoped metal oxides. The metal oxide nanostructures can be deposited onto a variety of substrates. The deposition can be performed without high pressures and without the need for seed catalysts on the substrate. The deposition can be performed by laser ablation of a target including a metal oxide and, optionally, a dopant. In some embodiments zinc oxide nanostructures are deposited onto a substrate by pulsed laser deposition of a zinc oxide target using an excimer laser emitting UV radiation. The zinc oxide nanostructure can be doped with a rare earth metal such as gadolinium. The metal oxide nanostructures can be used in many devices including light-emitting diodes and solar cells.

  15. Influence of pH-control in phosphoric acid treatment of zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Onoda, H., E-mail: onoda@kpu.ac.jp [Department of Informatics and Environmental Sciences, Kyoto Prefectural University (Japan); Chemel, M. [Ecole de Biologie Industrielle, CERGY Cedex (France)

    2017-04-15

    Zinc oxide is often used as a white pigment for cosmetics; however, it shows photocatalytic activity that causes decomposition of sebum on the skin when exposed to the ultraviolet radiation in sunlight. In this work, zinc oxide was reacted with phosphoric acid at various pH values to synthesize a novel white pigment for cosmetics. The chemical composition, powder properties, photocatalytic activities, colors, and smoothness of these pigments were studied. The obtained materials exhibited X-ray diffraction peaks relating to zinc oxide and phosphate after phosphoric acid treatment. The ratio of zinc phosphate to zinc oxide was estimated from inductively coupled plasma - atomic emission spectroscopy results. Samples treated at pH 4-7 yielded small particles with sub-micrometer sizes. The photocatalytic activity of zinc oxide became lower after phosphoric acid treatment. Samples treated at pH 4-7 showed the same reflectance as zinc oxide in both the ultraviolet and visible ranges. Adjustment of the pH was found to be important in the phosphoric acid treatment of zinc oxide. (author)

  16. Ultraviolet photosensors fabricated with Ag nanowires coated with ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guan-Hung [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Hong, Franklin Chau-Nan, E-mail: hong@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China); NCKU Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-11-03

    We have developed a simple low temperature process to coat zinc oxide (ZnO) nanoparticles (NPs) on Ag nanowires (NWs) with well-controlled morphology. Triethanolamine (TEA) was employed to react with zinc acetate (Zn(CH{sub 3}COO){sub 2}) forming ZnO NPs. TEA was also found to enhance the nucleation and binding of ZnO NPs on the Ag nanowire surfaces facilitating a complete coverage of Ag nanowire surfaces with ZnO NPs. The effects of the process parameters including reaction time and reaction temperature were studied. The surfaces of 60 nm diameter Ag NWs could be completely covered with ZnO NPs with the final diameters of Ag-NWs@ZnO (core–shell NWs) turning into the range from 100 nm to 450 nm. The Ag-NWs@ZnO was characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray mapping analysis, X-ray diffraction, and photoluminescence spectra. Finally, ultraviolet (UV) photosensors were fabricated using Ag-NWs@ZnO. They were found to improve photosensitivity with greatly enhanced fast response by reducing the recovery time by 2 orders, in comparison with the UV-sensors using single-crystalline ZnO NWs. - Highlights: • Solution process to coat ZnO nanoparticles on Ag nanowires has been developed. • Ultraviolet photosensing of ZnO nanoparticles coated on the Ag nanowires was found. • High defect concentration of ZnO nanoparticles enhanced the photosensing properties.

  17. Twins and strain relaxation in zinc-blende GaAs nanowires grown on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Piñero, J.C., E-mail: josecarlos.pinero@uca.es [Dpto. Ciencias de los Materiales, Universidad de Cádiz, 11510, Puerto Real, Cádiz (Spain); Araújo, D.; Pastore, C.E.; Gutierrez, M. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, 11510, Puerto Real, Cádiz (Spain); Frigeri, C. [Istituto CNR-IMEM Parco Area delle Scienze 37/A, Fontanini, 43010, Parma (Italy); Benali, A.; Lelièvre, J.F.; Gendry, M. [INL-Institut des Nanotechnologies de Lyon, UMR 5270 Ecole Centrale de Lyon 36, Avenue Guy de Collongue, 69134, Ecully Cedex (France)

    2017-02-15

    Highlights: • A TEM-HREM study of GaAs nanowires, growth over Si, is presented. • Misfit dislocations are detected in the Si/GaAs magma interface. • The study demonstrates strain relaxation through twin formation in some nanowires. - Abstract: To integrate materials with large lattice mismatch as GaAs on silicon (Si) substrate, one possible approach, to improve the GaAs crystalline quality, is to use nanowires (NWs) technology. In the present contribution, NWs are grown on <111> oriented Si substrates by molecular beam epitaxy (MBE) using vapor-liquid-solid (VLS) method. Transmission electron microscopy (TEM) analyses show that NWs are mainly grown alternating wurtzite and zinc blend (ZB) phases, and only few are purely ZB. On the latter, High Resolution Electron Microscopy (HREM) evidences the presence of twins near the surface of the NW showing limited concordance with the calculations of Yuan (2013) [1], where {111} twin planes in a <111>-oriented GaAs NW attain attractive interactions mediated by surface strain. In addition, such twins allow slight strain relaxation and are probably induced by the local huge elastic strain observed by HREM in the lattice between the twin and the surface. The latter is attributed to some slight bending of the NW as shown by the inversion of the strain from one side to the other side of the NW.

  18. Novel Size and Surface Oxide Effects in Silicon Nanowires as Lithium Battery Anodes

    KAUST Repository

    McDowell, Matthew T.

    2011-09-14

    With its high specific capacity, silicon is a promising anode material for high-energy lithium-ion batteries, but volume expansion and fracture during lithium reaction have prevented implementation. Si nanostructures have shown resistance to fracture during cycling, but the critical effects of nanostructure size and native surface oxide on volume expansion and cycling performance are not understood. Here, we use an ex situ transmission electron microscopy technique to observe the same Si nanowires before and after lithiation and have discovered the impacts of size and surface oxide on volume expansion. For nanowires with native SiO2, the surface oxide can suppress the volume expansion during lithiation for nanowires with diameters <∼50 nm. Finite element modeling shows that the oxide layer can induce compressive hydrostatic stress that could act to limit the extent of lithiation. The understanding developed herein of how volume expansion and extent of lithiation can depend on nanomaterial structure is important for the improvement of Si-based anodes. © 2011 American Chemical Society.

  19. Structural evolution of self-assisted GaAs nanowires grown on Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas; Davydok, Anton; Pietsch, Ullrich [University of Siegen, Solid State Physics Group, Walter-Flex-Str. 3, 57072 Siegen (Germany); Breuer, Steffen; Geelhaar, Lutz [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2011-04-15

    GaAs nanowires are grown on Si(111) by self-assisted molecular beam epitaxy, and the ratio between wurtzite and zinc-blende phases is determined as function of nanowire length using asymmetric X-ray diffraction. We show that under the applied growth conditions, nanowires grow in both phases during the initial stage of growth, whereas the zinc-blende content increases with growth time and dominates in long nanowires. Compared to the zinc-blende units, the vertical lattice parameter of the wurtzite segments is 0.7% larger, as measured by the positions of respective diffraction peaks. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Monodispersed Zinc Oxide Nanoparticle-Dye Dyads and Triads

    Energy Technology Data Exchange (ETDEWEB)

    Gladfelter, Wayne L. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Blank, David A. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry; Mann, Kent R. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemistry

    2017-06-22

    The overall energy conversion efficiency of photovoltaic cells depends on the combined efficiencies of light absorption, charge separation and charge transport. Dye-sensitized solar cells are photovoltaic devices in which a molecular dye absorbs light and uses this energy to initiate charge separation. The most efficient dye-sensitized solar cells (DSSCs) use nanocrystal titanium dioxide films to which are attached ruthenium complexes. Numerous studies have provided valuable insight into the dynamics of these and analogous photosystems, but the lack of site homogeneity in binding dye molecules to metal oxide films and nanocrystals (NCs) is a significant impediment to extracting fundamental details about the electron transfer across the interface. Although zinc oxide is emerging as a potential semiconducting component in DSSCs, there is less known about the factors controlling charge separation across the dye/ZnO interface. Zinc oxide crystallizes in the wurtzite lattice and has a band gap of 3.37 eV. One of the features that makes ZnO especially attractive is the remarkable ability to control the morphology of the films. Using solution deposition processes, one can prepare NCs, nanorods and nanowires having a variety of shapes and dimensions. This project solved problems associated with film heterogeneity through the use of dispersible sensitizer/ZnO NC ensembles. The overarching goal of this research was to study the relationship between structure, energetics and dynamics in a set of synthetically controlled donor-acceptor dyads and triads. These studies provided access to unprecedented understanding of the light absorption and charge transfer steps that lie at the heart of DSSCs, thus enabling significant future advances in cell efficiencies. The approach began with the construction of well-defined dye-NC dyads that were sufficiently dispersible to allow the use of state of the art pulsed laser spectroscopic and kinetic methods to understand the charge transfer

  1. Zinc in the prevention of Fe2initiated lipid and protein oxidation

    Directory of Open Access Journals (Sweden)

    M. PAOLA ZAGO

    2000-01-01

    Full Text Available In the present study we characterized the capacity of zinc to protect lipids and proteins from Fe2+-initiated oxidative damage. The effects of zinc on lipid oxidation were investigated in liposomes composed of brain phosphatidylcholine (PC and phosphatidylserine (PS at a molar relationship of 60:40 (PC:PS, 60:40. Lipid oxidation was evaluated as the oxidation of cis-parinaric acid or as the formation of 2-thiobarbituric acid-reactive substances (TBARS. Zinc protected liposomes from Fe2+ (2.5-50 muM-supported lipid oxidation. However, zinc (50 muM did not prevent the oxidative inactivation of glutamine synthelase and glucose 6-phosphate dehydrogenase when rat brain superntants were oxidized in the presence of 5 muM Fe2+ and 0.5 mM H2O2 .We also studied the interactions of zinc with epicatechin in the prevention of liid oxidation in liposomes. The simulaneous addition of 0.5 muM epicatechin (EC and 50 muM zinc or EC separately. Zinc (50 muM also protecte liposomes from the stimulatory effect of aluminum on Fe2+-initiated lipid oxidation. Zinc could play an important role as an antioxidant in biological systems, replacing iron and other metals with pro-oxidant activity from binding sites and interacting with other components of the oxidant defense system.

  2. Influence of Camellia sinensis extract on Zinc Oxide nanoparticle green synthesis

    Science.gov (United States)

    Nava, O. J.; Luque, P. A.; Gómez-Gutiérrez, C. M.; Vilchis-Nestor, A. R.; Castro-Beltrán, A.; Mota-González, M. L.; Olivas, A.

    2017-04-01

    This work addresses low cost, non-toxic green synthesis of Zinc Oxide nanoparticles prepared using different amounts of Camellia sinensis extract. The Synthesized material was studied and characterized through Fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), transmission electron microscopy (TEM). The Zinc Oxide nanoparticles presented the desired Znsbnd O bond at 618 cm-1, demonstrated growth in a purely hexagonal Wurtzite crystal structure, and, depending on the amount of extract used, they presented different size and shape homogeneity. The photocatalytic activity of the obtained Zinc Oxide nanoparticles was studied. The photocatalytic degradation studies were done at a 1:1 M ratio of methylene blue to Zinc Oxide nanoparticles under UV light. The obtained results presented a better degradation rate than commercially available Zinc Oxide nanoparticles.

  3. Switching behavior of resistive change memory using oxide nanowires

    Science.gov (United States)

    Aono, Takashige; Sugawa, Kosuke; Shimizu, Tomohiro; Shingubara, Shoso; Takase, Kouichi

    2018-06-01

    Resistive change random access memory (ReRAM), which is expected to be the next-generation nonvolatile memory, often has wide switching voltage distributions due to many kinds of conductive filaments. In this study, we have tried to suppress the distribution through the structural restriction of the filament-forming area using NiO nanowires. The capacitor with Ni metal nanowires whose surface is oxidized showed good switching behaviors with narrow distributions. The knowledge gained from our study will be very helpful in producing practical ReRAM devices.

  4. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    Science.gov (United States)

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  5. Zinc oxide's hierarchical nanostructure and its photocatalytic properties

    DEFF Research Database (Denmark)

    Kanjwal, Muzafar Ahmed; Sheikh, Faheem A.; Barakat, Nasser A. M.

    2012-01-01

    In this study, a new hierarchical nanostructure that consists of zinc oxide (ZnO) was produced by the electrospinning process followed by a hydrothermal technique. First, electrospinning of a colloidal solution that consisted of zinc nanoparticles, zinc acetate dihydrate and poly(vinyl alcohol...

  6. Observation of intact desorption ionization of peptide molecules from arrays of tungsten oxide nanowires by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang Yun [Dept. of Nanochemistry, Gachon University, Seongnam (Korea, Republic of)

    2015-08-15

    Length-controlled WO{sub 3} surface nanowires with a 50 nm diameter were prepared by utilizing anodic Al{sub 2}O{sub 3} templates. Careful control of the fabrication process yielded a set of length-controlled nanowire arrays (Figure 1). The lengths of the nanowires covered a range of 60–250 nm. Typically, a 0.5-μL drop of a sample solution in 10% MeOH that contained 2 pmol of sample was pipetted directly onto the nanowire chips, which were dried under ambient conditions. We report the observation of intact LDI of thermally labile peptides from WO{sub 3} nanowire arrays, which have never been reported for any other metal oxide nanowire arrays. As metal oxides are thermally stable and useful in many applications, and fabrication of various nanostructures are well established, we suggest that the nanostructured surfaces of metal oxides are promising for LDI and thus worthy of further investigations.

  7. In Situ Study of Thermal Stability of Copper Oxide Nanowires at Anaerobic Environment

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2014-01-01

    Full Text Available Many metal oxides with promising electrochemical properties were developed recently. Before those metal oxides realize the use as an anode in lithium ion batteries, their thermal stability at anaerobic environment inside batteries should be clearly understood for safety. In this study, copper oxide nanowires were investigated as an example. Several kinds of in situ experiment methods including in situ optical microscopy, in situ Raman spectrum, and in situ transmission electron microscopy were adopted to fully investigate their thermal stability at anaerobic environment. Copper oxide nanowires begin to transform as copper(I oxide at about 250°C and finish at about 400°C. The phase transformation proceeds with a homogeneous nucleation.

  8. Formation of tungsten oxide nanowires by ion irradiation and vacuum annealing

    Science.gov (United States)

    Zheng, Xu-Dong; Ren, Feng; Wu, Heng-Yi; Qin, Wen-Jing; Jiang, Chang-Zhong

    2018-04-01

    Here we reported the fabrication of tungsten oxide (WO3-x ) nanowires by Ar+ ion irradiation of WO3 thin films followed by annealing in vacuum. The nanowire length increases with increasing irradiation fluence and with decreasing ion energy. We propose that the stress-driven diffusion of the irradiation-induced W interstitial atoms is responsible for the formation of the nanowires. Comparing to the pristine film, the fabricated nanowire film shows a 106-fold enhancement in electrical conductivity, resulting from the high-density irradiation-induced vacancies on the oxygen sublattice. The nanostructure exhibits largely enhanced surface-enhanced Raman scattering effect due to the oxygen vacancy. Thus, ion irradiation provides a powerful approach for fabricating and tailoring the surface nanostructures of semiconductors.

  9. A simple photolytic reactor employing Ag-doped ZnO nanowires for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Udom, Innocent; Zhang, Yangyang [Clean Energy Research Center, College of Engineering, University of South Florida, Tampa, FL 33620 (United States); Ram, Manoj K., E-mail: mkram@usf.edu [Clean Energy Research Center, College of Engineering, University of South Florida, Tampa, FL 33620 (United States); Stefanakos, Elias K. [Clean Energy Research Center, College of Engineering, University of South Florida, Tampa, FL 33620 (United States); Hepp, Aloysius F. [Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Fl 33620 (United States); Elzein, Radwan; Schlaf, Rudy [Department of Electrical Engineering, University of South Florida, Tampa, Fl 33620 (United States); Goswami, D. Yogi [NASA Glenn Research Center, Research and Technology Directorate, MS 302-1, 21000 Brookpark Road, Cleveland, OH 44135 (United States)

    2014-08-01

    Well-aligned native zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) films were deposited on borosilicate glass via a simple, low-cost, low-temperature, scalable hydrothermal process. The as-synthesized ZnO and Ag-ZnO films were characterized by X-ray diffraction; scanning electron microscopy, UV–visible spectroscopy, and Fourier transform infrared spectroscopy. A simple photolytic reactor was fabricated and later used to find the optimum experimental conditions for photocatalytic performance. The photodegradation of methyl orange in water was investigated using as-prepared ZnO and Ag-ZnO nanowires, and was compared to P25 (a commercial photocatalyst) in both visible and UV radiations. The P25 and Ag-ZnO showed a similar photodegradation performance under UV light, but Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. The optimized doping of Ag in Ag-ZnO enhanced photocatalytic activity in a simple reactor design and indicated potential applicability of Ag-ZnO for large-scale purification of water under solar irradiation. - Highlights: • Well-aligned zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) nanowires were developed. • Simple and effective photolytic reactor was fabricated for water purification. • Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. • Amount of Ag atoms in Ag-ZnO nanowires is a key to increase photocatalytic activity.

  10. A simple photolytic reactor employing Ag-doped ZnO nanowires for water purification

    International Nuclear Information System (INIS)

    Udom, Innocent; Zhang, Yangyang; Ram, Manoj K.; Stefanakos, Elias K.; Hepp, Aloysius F.; Elzein, Radwan; Schlaf, Rudy; Goswami, D. Yogi

    2014-01-01

    Well-aligned native zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) films were deposited on borosilicate glass via a simple, low-cost, low-temperature, scalable hydrothermal process. The as-synthesized ZnO and Ag-ZnO films were characterized by X-ray diffraction; scanning electron microscopy, UV–visible spectroscopy, and Fourier transform infrared spectroscopy. A simple photolytic reactor was fabricated and later used to find the optimum experimental conditions for photocatalytic performance. The photodegradation of methyl orange in water was investigated using as-prepared ZnO and Ag-ZnO nanowires, and was compared to P25 (a commercial photocatalyst) in both visible and UV radiations. The P25 and Ag-ZnO showed a similar photodegradation performance under UV light, but Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. The optimized doping of Ag in Ag-ZnO enhanced photocatalytic activity in a simple reactor design and indicated potential applicability of Ag-ZnO for large-scale purification of water under solar irradiation. - Highlights: • Well-aligned zinc oxide (ZnO) and silver-doped ZnO (Ag-ZnO) nanowires were developed. • Simple and effective photolytic reactor was fabricated for water purification. • Ag-ZnO demonstrated superior photocatalytic activity under visible irradiation. • Amount of Ag atoms in Ag-ZnO nanowires is a key to increase photocatalytic activity

  11. Antimicrobial effects of zinc oxide nanoparticles modified with silver

    International Nuclear Information System (INIS)

    Lopes, Rayssa Souza; Arantes, Tatiane Moraes

    2016-01-01

    Full text: With the emergence of resistant microbial organisms to multiple antibiotics, different shapes of silver nanoparticles are among the most promising antimicrobial agents that have been developed from nanotechnology. Besides the silver nanoparticles oxide nanoparticles such as zinc oxide (ZnO) is gaining prominence due to its bactericidal properties. [1-3]. Thus, this study aims to develop biomaterials from zinc oxide nanoparticles modified with silver with antimicrobial properties. The ZnO nanoparticles were synthesized by hydrothermal processing by alkaline hydrolysis zinc acetate. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C in the presence of zinc oxide nanoparticles. Both nanoparticles were characterized by X-ray diffraction (XRD), FTIR and Raman spectroscopy and scanning electron microscopy (SEM). The XRD and Raman spectra showed crystalline ZnO colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed cubic silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated zinc oxide nanoparticles. SEM images showed ZnO nanoparticles presented a nanorod shapes with length around 80 nm decorated with spherical silver nanoparticles about 20 nm in diameter The results showed that crystalline zinc oxide colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. Results of antibacterial tests indicate that the ZnO/Ag nanoparticles have antibacterial properties against both Staphylococcus aureus and Escherichia coli. The results demonstrated that the ZnO/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  12. Antimicrobial effects of zinc oxide nanoparticles modified with silver

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Rayssa Souza; Arantes, Tatiane Moraes, E-mail: rayssasouza.net@gmail.com [Universidade Federal de Goias (UFG), Goiania (Brazil)

    2016-07-01

    Full text: With the emergence of resistant microbial organisms to multiple antibiotics, different shapes of silver nanoparticles are among the most promising antimicrobial agents that have been developed from nanotechnology. Besides the silver nanoparticles oxide nanoparticles such as zinc oxide (ZnO) is gaining prominence due to its bactericidal properties. [1-3]. Thus, this study aims to develop biomaterials from zinc oxide nanoparticles modified with silver with antimicrobial properties. The ZnO nanoparticles were synthesized by hydrothermal processing by alkaline hydrolysis zinc acetate. Colloidal dispersions of silver nanoparticles were synthesized by the Turkevich method using sodium citrate to reduce silver nitrate at high pH and at 90 °C in the presence of zinc oxide nanoparticles. Both nanoparticles were characterized by X-ray diffraction (XRD), FTIR and Raman spectroscopy and scanning electron microscopy (SEM). The XRD and Raman spectra showed crystalline ZnO colloidal nanoparticles were obtained in the hexagonal phase. XRD measure showed cubic silver diffraction peaks cubic phase confirmed the presence of the silver nanoparticles decorated zinc oxide nanoparticles. SEM images showed ZnO nanoparticles presented a nanorod shapes with length around 80 nm decorated with spherical silver nanoparticles about 20 nm in diameter The results showed that crystalline zinc oxide colloidal nanoparticles with rod-like morphology and uniform decorated with silver spherical nanoparticles size were obtained by hydrothermal synthesis. Results of antibacterial tests indicate that the ZnO/Ag nanoparticles have antibacterial properties against both Staphylococcus aureus and Escherichia coli. The results demonstrated that the ZnO/Ag nanoparticles have potential use as biomaterials in medical/odontological applications. (author)

  13. In situ measurement of the kinetic friction of ZnO nanowires inside a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Boris, E-mail: boriss.polakovs@ut.ee [Institute of Physics, University of Tartu, Riia st. 142, Tartu (Estonia); Institute of Solid State Physics, University of Latvia, Kengaraga st. 8, Riga (Latvia); Dorogin, Leonid M; Lohmus, Ants [Institute of Physics, University of Tartu, Riia st. 142, Tartu (Estonia); Romanov, Alexey E [Institute of Physics, University of Tartu, Riia st. 142, Tartu (Estonia); Ioffe Physical Technical Institute, RAS, Politehnicheskaja st. 26, St. Petersburg (Russian Federation); Lohmus, Rynno [Institute of Physics, University of Tartu, Riia st. 142, Tartu (Estonia)

    2012-01-15

    A novel method for measuring the kinetic friction force in situ was developed for zinc oxide nanowires on highly oriented pyrolytic graphite and oxidised silicon wafers. The experiments were performed inside a scanning electron microscope and used a nanomanipulation device as an actuator, which also had an atomic force microscope tip attached to it as a probe. A simple model based on the Timoshenko elastic beam theory was applied to interpret the elastic deformation of a sliding nanowire (NW) and to determine the distributed kinetic friction force.

  14. After oxidation, zinc nanoparticles lose their ability to enhance responses to odorants.

    Science.gov (United States)

    Hagerty, Samantha; Daniels, Yasmine; Singletary, Melissa; Pustovyy, Oleg; Globa, Ludmila; MacCrehan, William A; Muramoto, Shin; Stan, Gheorghe; Lau, June W; Morrison, Edward E; Sorokulova, Iryna; Vodyanoy, Vitaly

    2016-12-01

    Electrical responses of olfactory sensory neurons to odorants were examined in the presence of zinc nanoparticles of various sizes and degrees of oxidation. The zinc nanoparticles were prepared by the underwater electrical discharge method and analyzed by atomic force microscopy and X-ray photoelectron spectroscopy. Small (1.2 ± 0.3 nm) zinc nanoparticles significantly enhanced electrical responses of olfactory neurons to odorants. After oxidation, however, these small zinc nanoparticles were no longer capable of enhancing olfactory responses. Larger zinc oxide nanoparticles (15 nm and 70 nm) also did not modulate responses to odorants. Neither zinc nor zinc oxide nanoparticles produced olfactory responses when added without odorants. The enhancement of odorant responses by small zinc nanoparticles was explained by the creation of olfactory receptor dimers initiated by small zinc nanoparticles. The results of this work will clarify the mechanisms for the initial events in olfaction, as well as to provide new ways to alleviate anosmia related to the loss of olfactory receptors.

  15. Influence of synthesis procedure on the formation and properties of zinc oxide

    International Nuclear Information System (INIS)

    Music, S.; Popovic, S.; Maljkovic, M.; Dragcevic, D.

    2002-01-01

    Formation and properties of zinc oxide were investigated in dependence on the synthesis procedure. Zinc oxide did not crystallize upon hydrothermal treatment of Zn(NO 3 ) 2 aqueous solutions containing urea, up to 160 deg. C. Hydrozincite was formed instead. Changes in the X-ray diffraction patterns and Fourier transform infrared (FT-IR) spectra were interpreted in terms of stacking disorder in hydrozincite crystals. Zinc oxide powder was obtained by thermal treatment in air of precipitated hydrozincite. The conditions for instantaneous synthesis of very fine zinc oxide particles were found. This procedure is based on addition of TMAH (tetramethylammonium hydroxide) solution to an ethanolic solution of zinc acetate dihydrate, up to pH∼14. On the other hand, addition of an equivalent volume of water to the ethanolic solution of zinc acetate dihydrate, prior to the addition of TMAH solution up to pH∼14, yielded ZnO flakes without any specific shape. All zinc oxide particles produced upon heating at 600 deg. C in air showed similar morphology and tendency to aggregation due to the sintering effect. The features of the FT-IR spectra of zinc oxide particles were related to their shapes

  16. Various ways to reduce zinc oxide levels in S-SBR rubber compounds

    NARCIS (Netherlands)

    Heideman, G.; Noordermeer, Jacobus W.M.; Datta, Rabin; van Baarle, Ben

    2007-01-01

    Because of environmental concerns, the zinc content in rubber compounds has come under scrutiny. The research described in this article encompasses zinc-oxide, various zinc-complexes and alternative metal oxides as activators for sulphur vulcanisation. Regarding zinc complexes, it can be concluded

  17. Controlled Synthesis of Pt Nanowires with Ordered Large Mesopores for Methanol Oxidation Reaction

    Science.gov (United States)

    Zhang, Chengwei; Xu, Lianbin; Yan, Yushan; Chen, Jianfeng

    2016-08-01

    Catalysts for methanol oxidation reaction (MOR) are at the heart of key green-energy fuel cell technology. Nanostructured Pt materials are the most popular and effective catalysts for MOR. Controlling the morphology and structure of Pt nanomaterials can provide opportunities to greatly increase their activity and stability. Ordered nanoporous Pt nanowires with controlled large mesopores (15, 30 and 45 nm) are facilely fabricated by chemical reduction deposition from dual templates using porous anodic aluminum oxide (AAO) membranes with silica nanospheres self-assembled in the channels. The prepared mesoporous Pt nanowires are highly active and stable electrocatalysts for MOR. The mesoporous Pt nanowires with 15 nm mesopores exhibit a large electrochemically active surface area (ECSA, 40.5 m2 g-1), a high mass activity (398 mA mg-1) and specific activity (0.98 mA cm-2), and a good If/Ib ratio (1.15), better than the other mesoporous Pt nanowires and the commercial Pt black catalyst.

  18. Adsorption of poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) polymers on zinc, zinc oxide, iron, and iron oxide surfaces.

    Science.gov (United States)

    Seifert, Susan; Simon, Frank; Baumann, Giesela; Hietschold, Michael; Seifert, Andreas; Spange, Stefan

    2011-12-06

    The adsorption of poly(vinyl formamide) (PVFA) and the statistic copolymers poly(vinyl formamide-co-vinyl amine) (PVFA-co-PVAm) onto zinc and iron metal particles as well as their oxides was investigated. The adsorbates were characterized by means of XPS, DRIFT spectroscopy, wet chemical analysis, and solvatochromic probes. Dicyano-bis-(1,10-phenanthroline)-iron(II) (1), 3-(4-amino-3-methylphenyl)-7-phenyl-benzo-[1,2-b:4,5-b']difuran-2,6-dione (2), and 4-tert-butyl-2-(dicyano-methylene)-5-[4-(diethylamino)-benzylidene]-Δ(3)-thiazoline (3) as solvatochromic probes were coadsorbed onto zinc oxide to measure various effects of surface polarity. The experimental findings showed that the adsorption mechanism of PVFA and PVFA-co-PVAm strongly depends on the degree of hydrolysis of PVFA and pH values and also on the kind of metal or metal oxide surfaces that were employed as adsorbents. The adsorption mechanism of PVFA/PVFA-co-PVAm onto zinc oxide and iron oxide surfaces is mainly affected by electrostatic interactions. Particularly in the region of pH 5, the adsorption of PVFA/PVFA-co-PVAm onto zinc and iron metal particles is additionally influenced by redox processes, dissolution, and complexation reactions. © 2011 American Chemical Society

  19. Conductivity study of nitrogen-doped calcium zinc oxide prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Hsu, Yu-Ting; Lan, Wen-How; Huang, Kai-Feng; Lin, Jia-Ching; Chang, Kuo-Jen

    2016-01-01

    In this study, the spray pyrolysis method was used to prepare unintentionally doped and nitrogen-doped calcium zinc oxide films by using zinc acetate, calcium nitrate precursor, and ammonium acetate precursor. Morphological and structural analyses were conducted using scanning electron microscopy and X-ray diffraction. The results indicated that film grain size decreased as the nitrogen doping was increased. Both calcium oxide and zinc oxide structures were identified in the unintentionally doped calcium zinc oxide. When nitrogen doping was introduced, the film mainly exhibited a zinc oxide structure with preferred (002) and (101) orientations. The concentration and mobility were investigated using a Hall measurement system. P-type films with a mobility and concentration of 10.6 cm"2 V"−"1 s"−"1 and 2.8×10"1"7 cm"−"3, respectively, were obtained. Moreover, according to a temperature-dependent conductivity analysis, an acceptor state with activation energy 0.266 eV dominated the p-type conduction for the unintentionally doped calcium zinc oxide. By contrast, a grain boundary with a barrier height of 0.274–0.292 eV dominated the hole conduction for the nitrogen-doped calcium zinc oxide films.

  20. Fabrication of a P3HT-ZnO Nanowires Gas Sensor Detecting Ammonia Gas

    Directory of Open Access Journals (Sweden)

    Chin-Guo Kuo

    2017-12-01

    Full Text Available In this study, an organic-inorganic semiconductor gas sensor was fabricated to detect ammonia gas. An inorganic semiconductor was a zinc oxide (ZnO nanowire array produced by atomic layer deposition (ALD while an organic material was a p-type semiconductor, poly(3-hexylthiophene (P3HT. P3HT was suitable for the gas sensing application due to its high hole mobility, good stability, and good electrical conductivity. In this work, P3HT was coated on the zinc oxide nanowires by the spin coating to form an organic-inorganic heterogeneous interface of the gas sensor for detecting ammonia gas. The thicknesses of the P3HT were around 462 nm, 397 nm, and 277 nm when the speeds of the spin coating were 4000 rpm, 5000 rpm, and 6000 rpm, respectively. The electrical properties and sensing characteristics of the gas sensing device at room temperature were evaluated by Hall effect measurement and the sensitivity of detecting ammonia gas. The results of Hall effect measurement for the P3HT-ZnO nanowires semiconductor with 462 nm P3HT film showed that the carrier concentration and the mobility were 2.7 × 1019 cm−3 and 24.7 cm2∙V−1∙s−1 respectively. The gas sensing device prepared by the P3HT-ZnO nanowires semiconductor had better sensitivity than the device composed of the ZnO film and P3HT film. Additionally, this gas sensing device could reach a maximum sensitivity around 11.58 per ppm.

  1. The influence of thermal annealing on structure and oxidation of iron nanowires

    Directory of Open Access Journals (Sweden)

    Krajewski Marcin

    2015-03-01

    Full Text Available Raman spectroscopy as well as Mössbauer spectroscopy were applied in order to study the phase composition of iron nanowires and its changes, caused by annealing in a neutral atmosphere at several temperatures ranging from 200°C to 800°C. As-prepared nanowires were manufactured via a simple chemical reduction in an external magnetic field. Both experimental techniques proved formation of the surface layer covered by crystalline iron oxides, with phase composition dependent on the annealing temperature (Ta. At higher Ta, hematite was the dominant phase in the nanowires.

  2. Enhanced photoluminescence in transparent thin films of polyaniline–zinc oxide nanocomposite prepared from oleic acid modified zinc oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sajimol Augustine, M., E-mail: sajimollazar@gmail.com [Department of Physics, St. Teresa' s College, Kochi-11, Kerala (India); Jeeju, P.P.; Varma, S.J.; Francis Xavier, P.A. [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India); Jayalekshmi, S., E-mail: lakshminathcusat@gmail.com [Division for Research in Advanced Materials, Department of Physics, Cochin University of Science and Technology, Kochi-22, Kerala (India)

    2014-07-01

    Oleic acid capped zinc oxide (ZnO) nanoparticles have been synthesized by a wet chemical route. The chemical oxidative method is employed to synthesize polyaniline (PANI) and PANI/ZnO nanocomposites doped with four different dopants such as orthophosphoric acid (H{sub 3}PO{sub 4}), hydrochloric acid (HCl), naphthalene-2-sulphonic acid and camphor sulphonic acid (CSA). The samples have been structurally characterized by X-ray diffraction (XRD), field emission scanning electron microscopy and Fourier transform infrared (FT-IR) spectroscopic techniques. A comparison of the photoluminescence (PL) emission intensity of PANI and PANI/ZnO nanocomposites is attempted. The enhanced PL intensity in PANI/ZnO nanocomposites is caused by the presence of nanostructured and highly fluorescent ZnO in the composites. It has been observed that, among the composites, the H{sub 3}PO{sub 4} doped PANI/ZnO nanocomposite is found to exhibit the highest PL intensity because of the higher extent of (pi) conjugation and the more orderly arrangement of the benzenoid and quinonoid units. In the present work, transparent thin films of PANI and PANI/ZnO nanocomposite for which PL intensity is found to be maximum, have been prepared after re-doping with CSA by the spin-coating technique. The XRD pattern of the PANI/ZnO film shows exceptionally good crystallanity compared to that of pure PANI, which suggests that the addition of ZnO nanocrystals helps in enhancing the crystallanity of the PANI/ZnO nanocomposite. There is a significant increase in the PL emission intensity of the PANI/ZnO nanocomposite film making it suitable for the fabrication of optoelectronic devices. - Highlights: • Oleic acid capped zinc oxide nanoparticles are synthesized by wet chemical method. • Polyaniline/zinc oxide nanocomposites are prepared by in-situ polymerization. • Polyaniline and polyaniline/zinc oxide thin films are deposited using spin-coating. • Enhanced photoluminescence is observed in polyaniline/zinc

  3. Antibacterial effects of zinc oxide nanoparticles on Escherichia coli ...

    African Journals Online (AJOL)

    To study the antibacterial mechanisms, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to observe morphological changes of E. coli K88 treated with 0.8 μg/ml zinc oxide nanoparticles. The results reveal that zinc oxide nanoparticles could damage cell membranes, lead to leakage of ...

  4. Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: Nanowires versus nanoparticles

    International Nuclear Information System (INIS)

    Zhou Weiping; Li Meng; Koenigsmann, Christopher; Ma Chao; Wong, Stanislaus S.; Adzic, Radoslav R.

    2011-01-01

    Highlights: → We demonstrate the morphology effect of Pt catalysts in electrooxidation of ethanol and CO in an acidic solution. → Pt nanowires and nanoparticles were used as catalysts. → Pt nanowires display a higher catalytic activity by a factor of at least two relative to those nanoparticles for ethanol oxidation. → The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. - Abstract: The morphology of nanostructured Pt catalysts is known to affect significantly the kinetics of various reactions. Herein, we report on a pronounced morphology effect in the electrooxidation of ethanol and carbon monoxide (CO) on Pt nanowires and nanoparticles in an acidic solution. The high resolution transmission electron microscopy analysis showed the inherent morphology difference between these two nanostructured catalysts. Voltammetric and chronoamperometric studies of the ethanol electrooxidation revealed that these nanowires had a higher catalytic activity by a factor of two relative to these nanoparticles. The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. In situ infrared reflection-absorption spectroscopy measurements revealed a different trend for chemisorbed CO formation and CO 2 -to-acetic acid reaction product ratios on these two nanostructures. The morphology-induced change in catalytic activity and selectivity in ethanol electrocatalysis is discussed in detail.

  5. Morphology-dependent activity of Pt nanocatalysts for ethanol oxidation in acidic media: Nanowires versus nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Weiping, E-mail: wpzhou@bnl.gov [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Li Meng [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Koenigsmann, Christopher [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794 (United States); Ma Chao [Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory, Building 480, Upton, NY 11973 (United States); Wong, Stanislaus S. [Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794 (United States); Condensed Matter Physics and Materials Sciences Department, Brookhaven National Laboratory, Building 480, Upton, NY 11973 (United States); Adzic, Radoslav R. [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-11-30

    Highlights: > We demonstrate the morphology effect of Pt catalysts in electrooxidation of ethanol and CO in an acidic solution. > Pt nanowires and nanoparticles were used as catalysts. > Pt nanowires display a higher catalytic activity by a factor of at least two relative to those nanoparticles for ethanol oxidation. > The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. - Abstract: The morphology of nanostructured Pt catalysts is known to affect significantly the kinetics of various reactions. Herein, we report on a pronounced morphology effect in the electrooxidation of ethanol and carbon monoxide (CO) on Pt nanowires and nanoparticles in an acidic solution. The high resolution transmission electron microscopy analysis showed the inherent morphology difference between these two nanostructured catalysts. Voltammetric and chronoamperometric studies of the ethanol electrooxidation revealed that these nanowires had a higher catalytic activity by a factor of two relative to these nanoparticles. The rate for CO monolayer oxidation exhibits similar morphology-dependent behavior with a markedly enhanced rate on the Pt nanowires. In situ infrared reflection-absorption spectroscopy measurements revealed a different trend for chemisorbed CO formation and CO{sub 2}-to-acetic acid reaction product ratios on these two nanostructures. The morphology-induced change in catalytic activity and selectivity in ethanol electrocatalysis is discussed in detail.

  6. Comparative Study of Antidiabetic Activity and Oxidative Stress Induced by Zinc Oxide Nanoparticles and Zinc Sulfate in Diabetic Rats.

    Science.gov (United States)

    Nazarizadeh, Ali; Asri-Rezaie, Siamak

    2016-08-01

    In the current study, antidiabetic activity and toxic effects of zinc oxide nanoparticles (ZnO) were investigated in diabetic rats compared to zinc sulfate (ZnSO4) with particular emphasis on oxidative stress parameters. One hundred and twenty male Wistar rats were divided into two healthy and diabetic groups, randomly. Each major group was further subdivided into five subgroups and then orally supplemented with various doses of ZnO (1, 3, and 10 mg/kg) and ZnSO4 (30 mg/kg) for 56 consecutive days. ZnO showed greater antidiabetic activity compared to ZnSO4 evidenced by improved glucose disposal, insulin levels, and zinc status. The altered activities of erythrocyte antioxidant enzymes as well as raised levels of lipid peroxidation and a marked reduction of total antioxidant capacity were observed in rats receiving ZnO. ZnO nanoparticles acted as a potent antidiabetic agent, however, severely elicited oxidative stress particularly at higher doses.

  7. Transparent p-type SnO nanowires with unprecedented hole mobility among oxide semiconductors

    KAUST Repository

    Caraveo-Frescas, J. A.

    2013-11-25

    p-type tin monoxide (SnO) nanowire field-effect transistors with stable enhancement mode behavior and record performance are demonstrated at 160 °C. The nanowire transistors exhibit the highest field-effect hole mobility (10.83 cm2 V−1 s−1) of any p-type oxide semiconductor processed at similar temperature. Compared to thin film transistors, the SnO nanowire transistors exhibit five times higher mobility and one order of magnitude lower subthreshold swing. The SnO nanowire transistors show three times lower threshold voltages (−1 V) than the best reported SnO thin film transistors and fifteen times smaller than p-type Cu 2O nanowire transistors. Gate dielectric and process temperature are critical to achieving such performance.

  8. Hydrothermal synthesis of zinc oxide nanoparticles using rice as soft biotemplate.

    Science.gov (United States)

    Ramimoghadam, Donya; Bin Hussein, Mohd Zobir; Taufiq-Yap, Yun Hin

    2013-01-01

    Rice as a renewable, abundant bio-resource with unique characteristics can be used as a bio-template to synthesize various functional nanomaterials. Therefore, the effect of uncooked rice flour as bio-template on physico-chemical properties, especially the morphology of zinc oxide nanostructures was investigated in this study. The ZnO particles were synthesized through hydrothermal-biotemplate method using zinc acetate-sodium hydroxide and uncooked rice flour at various ratios as precursors at 120°C for 18 hours. The results indicate that rice as a bio-template can be used to modify the shape and size of zinc oxide particles. Different morphologies, namely flake-, flower-, rose-, star- and rod-like structures were obtained with particle size at micro- and nanometer range. Pore size and texture of the resulting zinc oxide particles were found to be template-dependent and the resulting specific surface area enhanced compared to the zinc oxide synthesized without rice under the same conditions. However, optical property particularly the band gap energy is generally quite similar. Pure zinc oxide crystals were successfully synthesized using rice flour as biotemplate at various ratios of zinc salt to rice. The size- and shape-controlled capability of rice to assemble the ZnO particles can be employed for further useful practical applications.

  9. Copper Doping of Zinc Oxide by Nuclear Transmutation

    Science.gov (United States)

    2014-03-27

    Copper Doping of Zinc Oxide by Nuclear Transmutation THESIS Matthew C. Recker, Captain, USAF AFIT-ENP-14-M-30 DEPARTMENT OF THE AIR FORCE AIR...NUCLEAR TRANSMUTATION THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force...COPPER DOPING OF ZINC OXIDE BY NUCLEAR TRANSMUTATION Matthew C. Recker, BS Captain, USAF Approved: //signed// 27 February 2014 John W. McClory, PhD

  10. Direct-write fabrication of a nanoscale digital logic element on a single nanowire

    International Nuclear Information System (INIS)

    Roy, Somenath; Gao Zhiqiang

    2010-01-01

    In this paper we report on the 'direct-write' fabrication and electrical characteristics of a nanoscale logic inverter, integrating enhancement-mode (E-mode) and depletion-mode (D-mode) field-effect transistors (FETs) on a single zinc oxide (ZnO) nanowire. 'Direct-writing' of platinum metal electrodes and a dielectric layer is executed on individual single-crystalline ZnO nanowires using either a focused electron beam (FEB) or a focused ion beam (FIB). We fabricate a top-gate FET structure, in which the gate electrode wraps around the ZnO nanowire, resulting in a more efficient gate response than the conventional back-gate nanowire transistors. For E-mode device operation, the gate electrode (platinum) is deposited directly onto the ZnO nanowire by a FEB, which creates a Schottky barrier and in turn a fully depleted channel. Conversely, sandwiching an insulating layer between the FIB-deposited gate electrode and the nanowire channel makes D-mode operation possible. Integrated E- and D-mode FETs on a single nanowire exhibit the characteristics of a direct-coupled FET logic (DCFL) inverter with a high gain and noise margin.

  11. Fabrication of visible light-triggered photocatalytic materials from the coupling of n-type zinc oxide and p-type copper oxide

    Science.gov (United States)

    Gorospe, A. B.; Herrera, M. U.

    2017-04-01

    Coupling of copper oxide (CuO) and zinc oxide (ZnO) was done by chemical precipitation method. In this method, copper sulfate pentahydrate and zinc sulfate heptahydrate salt precursors were separately dissolved in distilled water; then were mixed together. The copper sulfate-zinc sulfate solution was then combined with a sodium hydroxide solution. The precipitates were collected and washed in distilled water and ethanol several times, then filtered and dried. The dried sample was grounded, and then undergone heat treatment. After heating, the sample was grounded again. Zinc oxide powder and copper oxide powder were also fabricated using chemical precipitation method. X-Ray Diffraction measurements of the coupled CuO/ZnO powder showed the presence of CuO and ZnO in the fabricated sample. Furthermore, other peaks shown by XRD were also identified corresponding to copper, copper (II) oxide, copper sulfate and zinc sulfate. Results of the photocatalytic activity investigation show that the sample exhibited superior photocatalytic degradation of methyl orange under visible light illumination compared to copper oxide powder and zinc oxide powder. This may be attributed to the lower energy gap at the copper oxide-zinc oxide interface, compared to zinc oxide, allowing visible light to trigger its photocatalytic activity.

  12. Supported versus colloidal zinc oxide for advanced oxidation processes

    Science.gov (United States)

    Laxman, Karthik; Al Rashdi, Manal; Al Sabahi, Jamal; Al Abri, Mohammed; Dutta, Joydeep

    2017-07-01

    Photocatalysis is a green technology which typically utilizes either supported or colloidal catalysts for the mineralization of aqueous organic contaminants. Catalyst surface area and surface energy are the primary factors determining its efficiency, but correlation between the two is still unclear. This work explores their relation and hierarchy in a photocatalytic process involving both supported and colloidal catalysts. In order to do this the active surface areas of supported zinc oxide nanorods (ZnO NR's) and colloidal zinc oxide nanoparticles (having different surface energies) were equalized and their phenol oxidation mechanism and capacity was analyzed. It was observed that while surface energy had subtle effects on the oxidation rate of the catalysts, the degradation efficiency was primarily a function of the surface area; which makes it a better parameter for comparison when studying different catalyst forms of the same material. Thus we build a case for the use of supported catalysts, wherein their catalytic efficiency was tested to be unaltered over several days under both natural and artificial light, suggesting their viability for practical applications.

  13. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications.

    Science.gov (United States)

    Dong, Wenjun; Huang, Huandi; Zhu, Yanjun; Li, Xiaoyun; Wang, Xuebin; Li, Chaorong; Chen, Benyong; Wang, Ge; Shi, Zhan

    2012-10-26

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide-amine intermediate and Ag(+) at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO(3) nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag-MoO(3) nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature.

  14. Highly effective field-effect mobility amorphous InGaZnO TFT mediated by directional silver nanowire arrays.

    Science.gov (United States)

    Liu, Hung-Chuan; Lai, Yi-Chun; Lai, Chih-Chung; Wu, Bing-Shu; Zan, Hsiao-Wen; Yu, Peichen; Chueh, Yu-Lun; Tsai, Chuang-Chuang

    2015-01-14

    In this work, we demonstrate sputtered amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) with a record high effective field-effect mobility of 174 cm(2)/V s by incorporating silver nanowire (AgNW) arrays to channel electron transport. Compared to the reference counterpart without nanowires, the over 5-fold enhancement in the effective field-effect mobility exhibits clear dependence on the orientation as well as the surface coverage ratio of silver nanowires. Detailed material and device analyses reveal that during the room-temperature IGZO sputtering indium and oxygen diffuse into the nanowire matrix while the nanowire morphology and good contact between IGZO and nanowires are maintained. The unchanged morphology and good interfacial contact lead to high mobility and air-ambient-stable characteristics up to 3 months. Neither hysteresis nor degraded bias stress reliability is observed. The proposed AgNW-mediated a-IGZO TFTs are promising for development of large-scale, flexible, transparent electronics.

  15. VLS-grown diffusion doped ZnO nanowires and their luminescence properties

    International Nuclear Information System (INIS)

    Roy, Pushan Guha; Dutta, Amartya; Das, Arpita; Bhattacharyya, Anirban; Sen, Sayantani; Pramanik, Pallabi

    2015-01-01

    Zinc Oxide (ZnO) nanowires were deposited by vapor–liquid–solid (VLS) method on to aluminum doped ZnO (AZO) thin films grown by sol-gel technique. For various device applications, current injection into such nanowires is critical. This is expected to be more efficient for ZnO nanowires deposited on to AZO compared to those deposited on to a foreign substrate such as silicon. In this work we compare the morphological and optical properties of nanowires grown on AZO with those grown under similar conditions on silicon (Si) wafers. For nanowires grown on silicon, diameters around 44 nm with heights around 2.2 μm were obtained. For the growth on to AZO, the diameters were around 90 nm while the heights were around 520 nm. Room temperature photoluminescence (RT-PL) measurements show improved near band-edge emission for nanowires grown on to AZO, indicating higher material quality. This is further established by low temperature photoluminescence (LT-PL) measurements where excitonic transitions with width as small as 14 meV have been obtained at 4 K for such structures. Electron energy loss spectroscopy (EELS) studies indicate the presence of Al in the nanowires, indicating a new technique for introduction of dopants into these structures. These results indicate that ZnO nanowires on sol-gel grown AZO thin films show promise in the development of various optoelectronic devices. (paper)

  16. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes

    Science.gov (United States)

    Siddiqi, Khwaja Salahuddin; ur Rahman, Aziz; Tajuddin; Husen, Azamal

    2018-05-01

    Zinc oxide is an essential ingredient of many enzymes, sun screens, and ointments for pain and itch relief. Its microcrystals are very efficient light absorbers in the UVA and UVB region of spectra due to wide bandgap. Impact of zinc oxide on biological functions depends on its morphology, particle size, exposure time, concentration, pH, and biocompatibility. They are more effective against microorganisms such as Bacillus subtilis, Bacillus megaterium, Staphylococcus aureus, Sarcina lutea, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Pseudomonas vulgaris, Candida albicans, and Aspergillus niger. Mechanism of action has been ascribed to the activation of zinc oxide nanoparticles by light, which penetrate the bacterial cell wall via diffusion. It has been confirmed from SEM and TEM images of the bacterial cells that zinc oxide nanoparticles disintegrate the cell membrane and accumulate in the cytoplasm where they interact with biomolecules causing cell apoptosis leading to cell death.

  17. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations

    KAUST Repository

    Shen, Youde; Turner, Stuart G.; Yang, Ping; Van Tendeloo, Gustaaf; Lebedev, Oleg I.; Wu, Tao

    2014-01-01

    challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia

  18. 21 CFR 73.1991 - Zinc oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR... oxide is a white or yellow-white amorphous powder manufactured by the French process (described as the...

  19. The development of latent fingerprints by zinc oxide and tin oxide nanoparticles prepared by precipitation technique

    Science.gov (United States)

    Luthra, Deepali; Kumar, Sacheen

    2018-05-01

    Fingerprints are the very important evidence at the crime scene which must be developed clearly with shortest duration of time to solve the case. Metal oxide nanoparticles could be the mean to develop the latent fingerprints. Zinc oxide and Tin Oxide Nanoparticles were prepared by using chemical precipitation technique which were dried and characterized by X-ray diffraction, UV-Visible spectroscopy and FTIR. The size of zinc oxide crystallite was found to be 14.75 nm with minimum reflectance at 360 nm whereas tin oxide have the size of 90 nm and reflectance at minimum level 321 nm. By using these powdered samples on glass, plastic and glossy cardboard, latent fingerprints were developed. Zinc oxide was found to be better candidate than tin oxide for the fingerprint development on all the three types of substrates.

  20. Electrocontact material based on silver dispersion-strengthened by nickel, titanium, and zinc oxides

    Science.gov (United States)

    Zeer, G. M.; Zelenkova, E. G.; Belousov, O. V.; Beletskii, V. V.; Nikolaev, S. V.; Ledyaeva, O. N.

    2017-09-01

    Samples of a composite electrocontact material based on silver strengthened by the dispersed phases of zinc and titanium oxides have been investigated by the electron microscopy and energy dispersive X-ray spectroscopy. A uniform distribution of the oxide phases containing 2 wt % zinc oxide in the initial charge has been revealed. The increase in the amount of zinc oxide leads to an increase of the size of the oxide phases. It has been shown that at the zinc oxide content of 2 wt %, the minimum wear is observed in the process of electroerosion tests; at 3 wt %, an overheating and welding of the contacts are observed.

  1. Electrochemical Synthesis of Mesoporous CoPt Nanowires for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Albert Serrà

    2014-03-01

    Full Text Available A new electrochemical method to synthesize mesoporous nanowires of alloys has been developed. Electrochemical deposition in ionic liquid-in-water (IL/W microemulsion has been successful to grow mesoporous CoPt nanowires in the interior of polycarbonate membranes. The viscosity of the medium was high, but it did not avoid the entrance of the microemulsion in the interior of the membrane’s channels. The structure of the IL/W microemulsions, with droplets of ionic liquid (4 nm average diameter dispersed in CoPt aqueous solution, defined the structure of the nanowires, with pores of a few nanometers, because CoPt alloy deposited only from the aqueous component of the microemulsion. The electrodeposition in IL/W microemulsion allows obtaining mesoporous structures in which the small pores must correspond to the size of the droplets of the electrolytic aqueous component of the microemulsion. The IL main phase is like a template for the confined electrodeposition. The comparison of the electrocatalytic behaviours towards methanol oxidation of mesoporous and compact CoPt nanowires of the same composition, demonstrated the porosity of the material. For the same material mass, the CoPt mesoporous nanowires present a surface area 16 times greater than compact ones, and comparable to that observed for commercial carbon-supported platinum nanoparticles.

  2. Zinc oxide nanorod clusters deposited seaweed cellulose sheet for antimicrobial activity.

    Science.gov (United States)

    Bhutiya, Priyank L; Mahajan, Mayur S; Abdul Rasheed, M; Pandey, Manoj; Zaheer Hasan, S; Misra, Nirendra

    2018-06-01

    Seaweed cellulose was isolated from green seaweed Ulva fasciata using a common bleaching agent. Sheet containing porous mesh was prepared from the extracted seaweed crystalline cellulose along with zinc oxide (ZnO) nanorod clusters grown over the sheet by single step hydrothermal method. Seaweed cellulose and zinc oxide nanorod clusters deposited seaweed cellulose sheet was characterized by FT-IR, XRD, TGA, and SEM-EDX. Morphology showed that the diameter of zinc oxide nanorods were around 70nm. Zinc oxide nanorod clusters deposited on seaweed cellulose sheet gave remarkable antibacterial activity towards gram-positive (Staphylococcus aureus, Bacillus ceresus, Streptococcus thermophilis) and gram-negative (Escherichia coli, Pseudomonas aeruginous) microbes. Such deposited sheet has potential applications in pharmaceutical, biomedical, food packaging, water treatment and biotechnological industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Transfer printed silver nanowire transparent conductors for PbS-ZnO heterojunction quantum dot solar cells.

    Science.gov (United States)

    Hjerrild, Natasha E; Neo, Darren C J; Kasdi, Assia; Assender, Hazel E; Warner, Jamie H; Watt, Andrew A R

    2015-04-01

    Transfer-printed silver nanowire transparent conducting electrodes are demonstrated in lead sulfide-zinc oxide quantum dot solar cells. Advantages of using this transparent conductor technology are increased junction surface energy, solution processing, and the potential cost reduction of low temperature processing. Joule heating, device aging, and film thickness effects are investigated to understand shunt pathways created by nanowires protruding perpendicular to the film. A V(oc) of 0.39 ± 0.07 V, J(sc) of 16.2 ± 0.2 mA/cm(2), and power conversion efficiencies of 2.8 ± 0.4% are presented.

  4. Templated growth of cadmium zinc telluride (CZT) nanowires using pulsed-potentials in hot non-aqueous solution

    International Nuclear Information System (INIS)

    Gandhi, T.; Raja, K.S.; Misra, M.

    2006-01-01

    A single step non-aqueous electrodeposition of cadmium zinc telluride (CZT) nanowires on nanoporous TiO 2 substrate was investigated under pulsed-potential conditions. Propylene carbonate was used as the non-aqueous medium. Cyclic voltammogram studies were carried out to understand the growth mechanism of CZT. EDAX and XRD measurements indicated formation of a compound semiconductor with a stoichiometry of Cd 1-x Zn x Te, where x varied between 0.04 and 0.2. Variation of the pulsed-cathodic potentials could modulate the composition of the CZT. More negative cathodic potentials resulted in increased Zn content. The nanowires showed an electronic band gap of about 1.6 eV. Mott-Schottky analyses indicated p-type semiconductor properties of both as-deposited and annealed CZT materials. Increase in Zn content increased the charge carrier density. Annealing of the deposits resulted in lower charge carrier densities, in the order of 10 15 cm -3

  5. Synthesis of ZnO Nanowires via Hotwire Thermal Evaporation of Brass (CuZn) Assisted by Vapor Phase Transport of Methanol

    OpenAIRE

    Tamil Many K. Thandavan; Siti Meriam Abdul Gani; Chiow San Wong; Roslan Md Nor

    2014-01-01

    Zinc oxide (ZnO) nanowires (NWs) were synthesized using vapor phase transport (VPT) and thermal evaporation of Zn from CuZn. Time dependence of ZnO NWs growth was investigated for 5, 10, 15, 20, 25, and 30 minutes. Significant changes were observed from the field electron scanning electron microscopy (FESEM) images as well as from the X-ray diffraction (XRD) profile. The photoluminescence (PL) profile was attributed to the contribution of oxygen vacancy, zinc interstitials, and hydrogen defec...

  6. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, M.K. [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India); Haripadmam, P.C.; Gopinath, Pramod; Krishnan, Bindu [Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India); John, Honey, E-mail: honey@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695547, Kerala (India)

    2013-05-15

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novel precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.

  7. Effect of surface oxide on the melting behavior of lead-free solder nanowires and nanorods

    International Nuclear Information System (INIS)

    Gao Fan; Rajathurai, Karunaharan; Cui, Qingzhou; Zhou, Guangwen; NkengforAcha, Irene; Gu Zhiyong

    2012-01-01

    Lead-free nanosolders have shown promise in nanowire and nanoelectronics assembly. Among various important parameters, melting is the most fundamental property affecting the assembly process. Here we report that the melting behavior of tin and tin/silver nanowires and nanorods can be significantly affected by the surface oxide of nanosolders. By controlling the nanosolder reflow atmosphere using a flux, the surface oxide of the nanowires/nanorods can be effectively removed and complete nanosolder melting can be achieved. The complete melting of the nanosolders leads to the formation of nanoscale to microscale spherical solder balls, followed by Ostwald ripening phenomenon. The contact angle of the microscale solder balls formed on Si substrate was measured by direct electron microscopic imaging. These results provide new insights into micro- and nanoscale phase transition and liquid droplet coalescence from nanowires/nanorods to spheroids, and are relevant to nanoscale assembly and smaller ball grid array formation.

  8. In Situ Study of Noncatalytic Metal Oxide Nanowire Growth

    DEFF Research Database (Denmark)

    Rackauskas, Simas; Jiang, Hua; Wagner, Jakob Birkedal

    2014-01-01

    a catalyst is still widely disputed and unclear. Here, we show that the nanowire growth during metal oxidation is limited by a nucleation of a new layer. On the basis of in situ transmission electron microscope investigations we found that the growth occurs layer by layer at the lowest specific surface...

  9. Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate.

    Science.gov (United States)

    Hong, Sukjoon; Yeo, Junyeob; Manorotkul, Wanit; Kang, Hyun Wook; Lee, Jinhwan; Han, Seungyong; Rho, Yoonsoo; Suh, Young Duk; Sung, Hyung Jin; Ko, Seung Hwan

    2013-05-07

    We develop a digital direct writing method for ZnO NW micro-patterned growth on a large scale by selective laser decomposition of zinc acetate. For ZnO NW growth, by replacing the bulk heating with the scanning focused laser as a fully digital local heat source, zinc acetate crystallites can be selectively activated as a ZnO seed pattern to grow ZnO nanowires locally on a larger area. Together with the selective laser sintering process of metal nanoparticles, more than 10,000 UV sensors have been demonstrated on a 4 cm × 4 cm glass substrate to develop all-solution processible, all-laser mask-less digital fabrication of electronic devices including active layer and metal electrodes without any conventional vacuum deposition, photolithographic process, premade mask, high temperature and vacuum environment.

  10. Soft solution synthesis and intense visible photoluminescence of lamellar zinc oxide hybrids

    International Nuclear Information System (INIS)

    Sağlam, Özge

    2013-01-01

    Graphical abstract: -- In this study, we demonstrate the synthesis of layered zinc oxide films intercalated with dodecyl sulphate ions by a simple soft solution process. The presence of potassium (K + ) and lithium (Li + ) ions in the precursor solution of layered zinc hydroxide resulted in lamellar hybrid zinc oxide films instead of layered zinc hydroxides. On the other hand, the addition of nickel phthalocyanine induces zinc hydroxide host layers which exhibit an intense blue emission. This is also promoted by K + and Li + ions

  11. Nanocrystalline zinc oxide for the decontamination of sarin

    Energy Technology Data Exchange (ETDEWEB)

    Mahato, T.H. [Defense R and D Establishment, Jhansi Road, 474002, Gwalior, MP (India); Prasad, G.K., E-mail: gkprasad@lycos.com [Defense R and D Establishment, Jhansi Road, 474002, Gwalior, MP (India); Singh, Beer; Acharya, J.; Srivastava, A.R.; Vijayaraghavan, R. [Defense R and D Establishment, Jhansi Road, 474002, Gwalior, MP (India)

    2009-06-15

    Nanocrystalline zinc oxide materials were prepared by sol-gel method and were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetry, nitrogen adsorption and infrared spectroscopy techniques. The data confirmed the formation of zinc oxide materials of zincite phase with an average crystallite size of {approx}55 nm. Obtained material was tested as destructive adsorbent for the decontamination of sarin and the reaction was followed by GC-NPD and GC-MS techniques. The reaction products were characterized by GC-MS and the data explored the role of hydrolysis reaction in the detoxification of sarin. Sarin was hydrolyzed to form surface bound non-toxic phosphonate on the surface of nano-zinc oxide. The data also revealed the values of rate constant and half-life to be 4.12 h{sup -1} and 0.16 h in the initial stages of the reaction and 0.361 h{sup -1} and 1.9 h at the final stages of the reaction for the decontamination reaction on nanocrystalline ZnO.

  12. Nanocrystalline zinc oxide for the decontamination of sarin

    International Nuclear Information System (INIS)

    Mahato, T.H.; Prasad, G.K.; Singh, Beer; Acharya, J.; Srivastava, A.R.; Vijayaraghavan, R.

    2009-01-01

    Nanocrystalline zinc oxide materials were prepared by sol-gel method and were characterized by X-ray diffraction, scanning electron microscopy, thermogravimetry, nitrogen adsorption and infrared spectroscopy techniques. The data confirmed the formation of zinc oxide materials of zincite phase with an average crystallite size of ∼55 nm. Obtained material was tested as destructive adsorbent for the decontamination of sarin and the reaction was followed by GC-NPD and GC-MS techniques. The reaction products were characterized by GC-MS and the data explored the role of hydrolysis reaction in the detoxification of sarin. Sarin was hydrolyzed to form surface bound non-toxic phosphonate on the surface of nano-zinc oxide. The data also revealed the values of rate constant and half-life to be 4.12 h -1 and 0.16 h in the initial stages of the reaction and 0.361 h -1 and 1.9 h at the final stages of the reaction for the decontamination reaction on nanocrystalline ZnO.

  13. Dimensional optimization of nanowire--complementary metal oxide--semiconductor inverter.

    Science.gov (United States)

    Hashim, Yasir; Sidek, Othman

    2013-01-01

    This study is the first to demonstrate dimensional optimization of nanowire-complementary metal-oxide-semiconductor inverter. Noise margins and inflection voltage of transfer characteristics are used as limiting factors in this optimization. Results indicate that optimization depends on both dimensions ratio and digital voltage level (Vdd). Diameter optimization reveals that when Vdd increases, the optimized value of (Dp/Dn) decreases. Channel length optimization results show that when Vdd increases, the optimized value of Ln decreases and that of (Lp/Ln) increases. Dimension ratio optimization reveals that when Vdd increases, the optimized value of Kp/Kn decreases, and silicon nanowire transistor with suitable dimensions (higher Dp and Ln with lower Lp and Dn) can be fabricated.

  14. Effect of aluminum oxide doping on the structural, electrical, and optical properties of zinc oxide (AOZO) nanofibers synthesized by electrospinning

    International Nuclear Information System (INIS)

    Lotus, A.F.; Kang, Y.C.; Walker, J.I.; Ramsier, R.D.; Chase, G.G.

    2010-01-01

    Zinc oxide nanofibers doped with aluminum oxide were prepared by sol-gel processing and electrospinning techniques using polyvinylpyrrolidone (PVP), zinc acetate and aluminum acetate as precursors. The resulting nanofibers were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy, and current-voltage (I-V) properties. The nanofibers had diameters in the range of 60-150 nm. The incorporation of aluminum oxide resulted in a decrease in the crystallite sizes of the zinc oxide nanofibers. Aluminum oxide doped zinc oxide (AOZO) nanofibers exhibited lower bandgap energies compared to undoped zinc oxide nanofibers. However, as the aluminum content (Al/(Al + Zn) x 100%) was increased from 1.70 at.% to 3.20 at.% in the electrospinning solution, the bandgap energy increased resulting in lower conductivity. The electrical conductivity of the AOZO samples was found to depend on the amount of aluminum dopant in the matrix as reflected in the changes in oxidation state elucidated from XPS data. Electrospinning was found to be a productive, simple, and easy method for tuning the bandgap energy and conductivity of zinc oxide semiconducting nanofibers.

  15. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: Importance of zinc ions

    NARCIS (Netherlands)

    Brun, N.R.; Lenz, M.; Wehrli, B.; Fent, K.

    2014-01-01

    The increasing use of zinc oxide nanoparticles (nZnO) and their associated environmental occurrence make it necessary to assess their potential effects on aquatic organisms. Upon water contact, nZnO dissolve partially to zinc (Zn(II)). To date it is not yet completely understood, whether effects of

  16. Zinc-oxide-based nanostructured materials for heterostructure solar cells

    International Nuclear Information System (INIS)

    Bobkov, A. A.; Maximov, A. I.; Moshnikov, V. A.; Somov, P. A.; Terukov, E. I.

    2015-01-01

    Results obtained in the deposition of nanostructured zinc-oxide layers by hydrothermal synthesis as the basic method are presented. The possibility of controlling the structure and morphology of the layers is demonstrated. The important role of the procedure employed to form the nucleating layer is noted. The faceted hexagonal nanoprisms obtained are promising for the fabrication of solar cells based on oxide heterostructures, and aluminum-doped zinc-oxide layers with petal morphology, for the deposition of an antireflection layer. The results are compatible and promising for application in flexible electronics

  17. Microwave Synthesis of Zinc Hydroxy Sulfate Nanoplates and Zinc Oxide Nanorods in the Classroom

    Science.gov (United States)

    Dziedzic, Rafal M.; Gillian-Daniel, Anne Lynn; Peterson, Greta M.; Martínez-Herna´ndez, Kermin J.

    2014-01-01

    In this hands-on, inquiry-based lab, high school and undergraduate students learn about nanotechnology by synthesizing their own nanoparticles in a single class period. This simple synthesis of zinc oxide nanorods and zinc hydroxy sulfate nanoplates can be done in 15 min using a household microwave oven. Reagent concentration, reaction…

  18. Direct observation of short-circuit diffusion during the formation of a single cupric oxide nanowire

    International Nuclear Information System (INIS)

    Cheng, C-L; Ma, Y-R; Chou, M H; Huang, C Y; Yeh, V; Wu, S Y

    2007-01-01

    Short-circuit diffusion was observed in a single CuO nanowire synthesized using a thermal oxidation method. The confocal Raman spectra of a single CuO nanowire permit direct observation of the nature of an individual CuO nanowire. The parameter order obtained from the inverse Raman B g 2 peak linewidth results in the length dependence of the linewidth and a short-circuit diffusion length of 3.3 μm. The observed structural information is also consistent with the energy dispersive x-ray spectroscopic mapping. The results confirm that the growth of CuO nanowires occurs through the short-circuit diffusion mechanism

  19. Zinc Oxide Nano crystals Synthesized by Quenching Technique

    International Nuclear Information System (INIS)

    Norhayati Abu Bakar; Akrajas Ali Umar; Muhamad Mat Salleh; Muhammad Yahya

    2011-01-01

    This paper reports an attempt to synthesize non toxic zinc oxide (ZnO) nano crystals using a simple quenching technique. The hot zinc oxide powder was quenched in hexane solution to obtain ZnO nano crystals. As the result, diameter size of the synthesized ZnO is 200 nm. It was also exhibited a good crystalline with wurtzite phase. The nano crystals properties of ZnO were revealed from good absorbance and green luminescence under UV exposure. This may be related with oxygen vacancy ionization during the annealing process. (author)

  20. Mechanical properties of bioplastics cassava starch film with Zinc Oxide nanofiller as reinforcement

    Science.gov (United States)

    Harunsyah; Yunus, M.; Fauzan, Reza

    2017-06-01

    This study focuses on investigating the influence of zinc oxide nanofiller on the mechanical properties of bioplastic cassava starch films. Bioplastic cassava starch film-based zinc oxide reinforced composite biopolymeric films were prepared by casting technique. The content of zinc oxide in the bioplastic films was varied from 0.2%, 0.4%, 0.6%, 0.8% and 1.0% (w/w) by weight of starch. Surface morphologies of the composites bioplastic films were examined by scanning electron microscope (SEM).The result showed that the Tensile strength (TS) was improved significantly with the additional of zinc oxide but the elongation at break (EB %) of the composites was decreased. The maximum tensile strength obtained was 22.30 kgf / mm on the additional of zinc oxide by 0.6% and plastilizer by 25%. Based on data of FTIR, the produced film plastic did not change the group function and it can be concluded that theinteraction in film plastic produced was only a physical interaction. Biodegradable plastic film based on cassava starch-zinc oxide and plasticizer glycerol showed that interesting mechanical properties being transparent, clear, homogeneous, flexible, and easily handled.

  1. Polarized and resonant Raman spectroscopy on single InAs nanowires

    Science.gov (United States)

    Möller, M.; de Lima, M. M., Jr.; Cantarero, A.; Dacal, L. C. O.; Madureira, J. R.; Iikawa, F.; Chiaramonte, T.; Cotta, M. A.

    2011-08-01

    We report polarized Raman scattering and resonant Raman scattering studies on single InAs nanowires. Polarized Raman experiments show that the highest scattering intensity is obtained when both the incident and analyzed light polarizations are perpendicular to the nanowire axis. InAs wurtzite optical modes are observed. The obtained wurtzite modes are consistent with the selection rules and also with the results of calculations using an extended rigid-ion model. Additional resonant Raman scattering experiments reveal a redshifted E1 transition for InAs nanowires compared to the bulk zinc-blende InAs transition due to the dominance of the wurtzite phase in the nanowires. Ab initio calculations of the electronic band structure for wurtzite and zinc-blende InAs phases corroborate the observed values for the E1 transitions.

  2. Temperature dependent current transport of Pd/ZnO nanowire Schottky diodes

    Science.gov (United States)

    Gayen, R. N.; Bhattacharyya, S. R.; Jana, P.

    2014-09-01

    Zinc oxide (ZnO) nanowire based Schottky barrier diodes are fabricated by depositing Pd metal contact on top of vertically well-aligned ZnO nanowire arrays. A vertical array of ZnO nanowires on indium tin oxide (ITO) coated glass substrates is synthesized by hybrid wet chemical route. Scanning electron microscopy (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) measurement confirm the formation of stoichiometric well-aligned hexagonal (h-ZnO) nanowire arrays with wurtzite structure. Temperature dependent current-voltage (I-V) measurements on palladium-ZnO (Pd/ZnO) nanowire Schottky junctions in the temperature range 303-383 K exhibit excellent rectifying character. From these nonlinear I-V plots, different electrical parameters of diode-like reverse saturation current, barrier height and ideality factor are determined as a function of temperature assuming pure thermionic emission model. The ideality factor is found to decrease while the barrier height increases with the increase in temperature. The series resistance values calculated from Cheung’s functions also show temperature dependency. Such behavior can be attributed to the presence of defects that traps carriers, and barrier height inhomogeneity at the interface of the barrier junction. After barrier height inhomogeneity correction, considering a Gaussian distributed barrier height fluctuation across the Pd/ZnO interface, the estimated values of mean barrier height and modified Richardson constant are more closely matched to the theoretically predicted value for Pd/ZnO Schottky barrier diodes. The variation of density of interface states as a function of interface state energy is also calculated.

  3. Serum calcium response following oral zinc oxide administrations in dairy cows

    DEFF Research Database (Denmark)

    Thilsing-Hansen, T; Jørgensen, R J; Thilsing, Trine

    2001-01-01

    Six non-pregnant cows were allocated into 3 groups. Group 1 comprised a pair of lactating cows, whereas groups 2 and 3 each comprised a pair of non-lactating cows. The cows in groups 1 and 2 were dosed intraruminally by stomach tube with zinc oxide at 120 mg Zn per kg of bodyweight at weekly...... intervals for a period of 33 days. Each cow received a total of 4 doses of zinc oxide. Group 3 served as non-treated control group. Blood samples were collected from all 6 cows daily. Serum was analysed for concentration of calcium. Within 12-24 h of each zinc oxide administration the serum calcium...... of the hypocalcaemic response decreased with the number of zinc oxide dosings. This effect was explained as a response from the stimulation of the calcium homeostatic mechanisms. In the Zn dosed non-lactating cows responses were similar but less clear. The perspective of these findings is discussed in relation...

  4. Computational predictions of zinc oxide hollow structures

    Science.gov (United States)

    Tuoc, Vu Ngoc; Huan, Tran Doan; Thao, Nguyen Thi

    2018-03-01

    Nanoporous materials are emerging as potential candidates for a wide range of technological applications in environment, electronic, and optoelectronics, to name just a few. Within this active research area, experimental works are predominant while theoretical/computational prediction and study of these materials face some intrinsic challenges, one of them is how to predict porous structures. We propose a computationally and technically feasible approach for predicting zinc oxide structures with hollows at the nano scale. The designed zinc oxide hollow structures are studied with computations using the density functional tight binding and conventional density functional theory methods, revealing a variety of promising mechanical and electronic properties, which can potentially find future realistic applications.

  5. TRANSPARENT CONDUCTING OXIDE SYNTHESIS OF ALUMINIUM DOPED ZINC OXIDES BY CHEMICAL COPRECIPITATION

    Directory of Open Access Journals (Sweden)

    Silvia Maioco

    2013-03-01

    Full Text Available Aluminium doped zinc oxides (AZO are promising replacements for tin doped indium oxides (ITO but thin films show a wide range of physical properties strongly dependent on deposition process conditions. Submicrometric 1% aluminum doped zinc oxide ceramics (AZO are examined, prepared by coprecipitation, from Zn(NO32 and Al(NO33 aqueous solutions, sintered at 1200°C and subsequently annealed in 10-16 atm controlled oxygen fugacity atmospheres, at 1000°C. Electrical resistivity diminishes by two orders of magnitude after two hours of annealing and the Seebeck coefficient gradually changes from -140 to -50 µV/K within 8 h. It is concluded that increased mobility is dominant over the increased carrier density, induced by changes in metal-oxygen stoichiometry

  6. Fabrication of silver nanowires and metal oxide composite transparent electrodes and their application in UV light-emitting diodes

    Science.gov (United States)

    Yan, Xingzhen; Ma, Jiangang; Xu, Haiyang; Wang, Chunliang; Liu, Yichun

    2016-08-01

    In this paper, we prepared the silver nanowires (AgNWs)/aluminum-doped zinc oxide (AZO) composite transparent conducting electrodes for n-ZnO/p-GaN heterojunction light emitting-diodes (LEDs) by drop casting AgNW networks and subsequent atomic layer deposition (ALD) of AZO at 150 °C. The contact resistances between AgNWs were dramatically reduced by pre-annealing in the vacuum chamber before the ALD of AZO. In this case, AZO works not only as the conformal passivation layer that protects AgNWs from oxidation, but also as the binding material that improves AgNWs adhesion to substrates. Due to the localized surface plasmons (LSPs) of the AgNWs resonant coupling with the ultraviolet (UV) light emission from the LEDs, a higher UV light extracting efficiency is achieved from LEDs with the AgNWs/AZO composite electrodes in comparison with the conventional AZO electrodes. Additionally, the antireflective nature of random AgNW networks in the composite electrodes caused a broad output light angular distribution, which could be of benefit to certain optoelectronic devices like LEDs and solar cells.

  7. The Development of High-Density Vertical Silicon Nanowires and Their Application in a Heterojunction Diode

    Directory of Open Access Journals (Sweden)

    Wen-Chung Chang

    2016-06-01

    Full Text Available Vertically aligned p-type silicon nanowire (SiNW arrays were fabricated through metal-assisted chemical etching (MACE of Si wafers. An indium tin oxide/indium zinc oxide/silicon nanowire (ITO/IZO/SiNW heterojunction diode was formed by depositing ITO and IZO thin films on the vertically aligned SiNW arrays. The structural and electrical properties of the resulting ITO/IZO/SiNW heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM, X-ray diffraction (XRD, and current−voltage (I−V measurements. Nonlinear and rectifying I−V properties confirmed that a heterojunction diode was successfully formed in the ITO/IZO/SiNW structure. The diode had a well-defined rectifying behavior, with a rectification ratio of 550.7 at 3 V and a turn-on voltage of 2.53 V under dark conditions.

  8. Fruit peel extract mediated green synthesis of zinc oxide nanoparticles

    Science.gov (United States)

    Nava, O. J.; Soto-Robles, C. A.; Gómez-Gutiérrez, C. M.; Vilchis-Nestor, A. R.; Castro-Beltrán, A.; Olivas, A.; Luque, P. A.

    2017-11-01

    This work presents a study of the effects on the photocatalytic capabilities of zinc oxide nanoparticles when prepared via green synthesis using different fruit peel extracts as reducing agents. Zinc nitrate was used as a source of the zinc ions, while Lycopersicon esculentum (tomato), Citrus sinensis (orange), Citrus paradisi (grapefruit) and Citrus aurantifolia (lemon) contributed their peels for extracts. The Synthesized Samples were studied and characterized through Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), and High Resolution Transmission Electron Microscopy (HRTEM). All samples presented a band at 618 cm-1, indicating the presence of the Znsbnd O bond. The different samples all presented the same hexagonal crystal growth in their structure, the Wurtzite phase. The surface morphology of the nanoparticles showed that, depending on the extract used, the samples vary in size and shape distribution due to the chemical composition of the extracts. The photocatalytic properties of the zinc oxide samples were tested through UV light aided degradation of methylene blue. Most samples exhibited degradation rates at 180 min of around 97%, a major improvement when compared to chemically synthesized commercially available zinc oxide nanoparticles.

  9. The degradation of lining of rotary furnaces in the production of zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pešlová, F.; Anisimov, E.

    2014-01-01

    Roč. 21, č. 3 (2014), s. 116-121 ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : zinc oxide * the production of zinc oxide * zinc slag * refractories * the degradation of rotary furnace linings Subject RIV: JG - Metallurgy http://ojs.mateng.sk/index.php/Mateng/article/view/133/194

  10. Zinc oxide based dye sensitized solar cell using eosin – Y as ...

    African Journals Online (AJOL)

    A zinc oxide based Dye sensitized Solar Cell (DSSC) has been fabricated, using Eosin-Y as the dye adsorbed on a nanocrystalline zinc oxide - fluorine doped tin oxide electrode, for the sensitization of the large band gap semiconductor. The absorption spectrum of Eosin-Y showed high absorption of visible light between ...

  11. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing

    Science.gov (United States)

    Chang, Yi-Kuei; Hong, Franklin Chau-Nan

    2009-05-01

    A method with the potential to fabricate large-area nanowire field-effect transistors (NW-FETs) was demonstrated in this study. Using a high-speed roller (20-80 cm min-1), transfer printing was successfully employed to transfer vertically aligned zinc oxide (ZnO) nanowires grown on a donor substrate to a polydimethylsiloxane (PDMS) stamp and then print the ordered ZnO nanowire arrays on the received substrate for the fabrication of NW-FETs. ZnO NW-FETs fabricated by this method exhibit high performances with a threshold voltage of around 0.25 V, a current on/off ratio as high as 105, a subthreshold slope of 360 mV/dec, and a field-effect mobility of around 90 cm2 V-1 s-1. The excellent device characteristics suggest that the roll-transfer printing technique, which is compatible with the roll-to-roll (R2R) process and operated in atmosphere, has a good potential for the high-speed fabrication of large-area nanowire transistors for flexible devices and flat panel displays.

  12. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing

    International Nuclear Information System (INIS)

    Chang, Y-K; Hong, Franklin Chau-Nan

    2009-01-01

    A method with the potential to fabricate large-area nanowire field-effect transistors (NW-FETs) was demonstrated in this study. Using a high-speed roller (20-80 cm min -1 ), transfer printing was successfully employed to transfer vertically aligned zinc oxide (ZnO) nanowires grown on a donor substrate to a polydimethylsiloxane (PDMS) stamp and then print the ordered ZnO nanowire arrays on the received substrate for the fabrication of NW-FETs. ZnO NW-FETs fabricated by this method exhibit high performances with a threshold voltage of around 0.25 V, a current on/off ratio as high as 10 5 , a subthreshold slope of 360 mV/dec, and a field-effect mobility of around 90 cm 2 V -1 s -1 . The excellent device characteristics suggest that the roll-transfer printing technique, which is compatible with the roll-to-roll (R2R) process and operated in atmosphere, has a good potential for the high-speed fabrication of large-area nanowire transistors for flexible devices and flat panel displays.

  13. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y-K; Hong, Franklin Chau-Nan [Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)], E-mail: hong@mail.ncku.edu.tw

    2009-05-13

    A method with the potential to fabricate large-area nanowire field-effect transistors (NW-FETs) was demonstrated in this study. Using a high-speed roller (20-80 cm min{sup -1}), transfer printing was successfully employed to transfer vertically aligned zinc oxide (ZnO) nanowires grown on a donor substrate to a polydimethylsiloxane (PDMS) stamp and then print the ordered ZnO nanowire arrays on the received substrate for the fabrication of NW-FETs. ZnO NW-FETs fabricated by this method exhibit high performances with a threshold voltage of around 0.25 V, a current on/off ratio as high as 10{sup 5}, a subthreshold slope of 360 mV/dec, and a field-effect mobility of around 90 cm{sup 2} V{sup -1} s{sup -1}. The excellent device characteristics suggest that the roll-transfer printing technique, which is compatible with the roll-to-roll (R2R) process and operated in atmosphere, has a good potential for the high-speed fabrication of large-area nanowire transistors for flexible devices and flat panel displays.

  14. Evaluation of the suspening property of Grewia gum in zinc oxide ...

    African Journals Online (AJOL)

    The suspending property of grewia gum in zinc oxide suspension was evaluated. The gum was extracted by maceration, filtration, precipitation and drying techniques. It was used at 0.3 to 1% w/v as a suspending agent for zinc oxide. Sodiumcarboxymethylcellulose (SCMC) and tragacanth were used as basis for ...

  15. Influence of boron oxide on protective properties of zinc coating on steel

    International Nuclear Information System (INIS)

    Alimov, V.I.; Berezin, A.V.

    1986-01-01

    The authors study the properties of zinc coating when boron oxide is added to the melt for galvanization. The authors found that a rise in the degree of initial deformation of the steel leads to the production of varying thickness of the zinc coating. The results show the favorable influence of small amounts of added boron oxide on the corrosion resistance of a zinc coating on cold-deformed high-carbon steel; this influence is also manifested in the case of deformation of the zinc coating itself

  16. Growth and properties of low-dimensional III-V semiconductor nanowire heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Heiss, Martin

    2010-08-25

    symmetry from cubic zinc-blende to hexagonal wurtzite structure, while the chemical composition of the material remains constant. The GaAs nanowires synthesized with the Au-free technique can be grown under conditions where a statistical wurtzite/zinc-blende polytypism occurs. A novel method for the direct correlation at the nanoscale of structural and optical properties of single GaAs nanowires is developed in order to characterize the resulting statistically distributed quantum heterostructures. Nanowires consisting of {approx}100% wurtzite and nanowires presenting zinc-blende/wurtzite polytypism are studied by photoluminescence spectroscopy and Transmission Electron Microscopy. The photoluminescence of wurtzite GaAs is found to be consistent with a bulk wurtzite band gap of 1.50 eV, slightly smaller compared to the zinc-blende GaAs band gap. In the polytypic nanowires, it is shown that the regions that are predominantly composed of either zinc-blende or wurtzite phase show photoluminescence emission close to the according bulk band gaps, while regions composed of a non periodic superlattice of wurtzite and zinc-blende phases exhibit a redshift of the photoluminescence spectra as low as 1.455 eV. The dimensions of the quantum heterostructures are correlated with the light emission, allowing us to estimate the band offsets of {delta}E{sub CB}=53{+-}20 meV and {delta}E{sub VB}=76{+-}12 meV between the two crystalline phases. These results are in excellent agreement with recent theoretical band structure calculations. (orig.)

  17. Magnetic Iron Oxide Nanowires Formed by Reactive Dewetting.

    Science.gov (United States)

    Bennett, Roger A; Etman, Haitham A; Hicks, Hannah; Richards, Leah; Wu, Chen; Castell, Martin R; Dhesi, Sarnjeet S; Maccherozzi, Francesco

    2018-04-11

    The growth and reactive dewetting of ultrathin films of iron oxides supported on Re(0001) surfaces have been imaged in situ in real time. Initial growth forms a nonmagnetic stable FeO (wüstite like) layer in a commensurate network upon which high aspect ratio nanowires of several microns in length but less than 40 nm in width can be fabricated. The nanowires are closely aligned with the substrate crystallography and imaging by X-ray magnetic circular dichroism shows that each contain a single magnetic domain. The driving force for dewetting appears to be the minimization of strain energy of the Fe 3 O 4 crystallites and follows the Tersoff and Tromp model in which strain is minimized at constant height by extending in one epitaxially matched direction. Such wires are promising in spintronic applications and we predict that the growth will also occur on other hexagonal substrates.

  18. Synthesis of the cactus-like silicon nanowires/tungsten oxide nanowires composite for room-temperature NO{sub 2} gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiyi, E-mail: zhangweiyi@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Hu, Ming [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Key Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Xing; Wei, Yulong; Li, Na [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Qin, Yuxiang, E-mail: qinyuxiang@tju.edu.cn [School of Electronic Information Engineering, Tianjin University, Tianjin, 300072 (China); Key Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-09-15

    In the present work, the tungsten oxide (WO{sub 3}) nanowires functionalized silicon nanowires (SiNWs) with cactus-like structure has been successfully synthesized for room-temperature NO{sub 2} detection. The novel nanocomposite was fabricated by metal-assisted chemical etching (MACE) and thermal annealing of tungsten film. The WO{sub 3} nanowires were evenly distributed from the upper to the lower part of the SiNWs, indicating excellent uniformity which is conducive to adsorption and desorption of gas molecules. The gas-sensing properties have been examined by measuring the resistance change towards 0.25–5 ppm NO{sub 2} gas. At room temperature, which is the optimum working temperature, the SiNWs/WO{sub 3} nanowires composite showed two-times higher NO{sub 2} response than that of the bare SiNWs at 2 ppm NO{sub 2}. On the contrary, the responses of composite sensors to high concentrations of other reducing gases were very low, indicating excellent selectivity. Simultaneously, the composite sensors exhibited good sensing repeatability and stability. The enhancement in gas sensing properties may be attributed to the change in width of the space charge region, which is similar to the behavior of p-n junctions under forward bias, in the high-density p-n heterojunction structure formed between SiNWs and WO{sub 3} nanowires. - Highlights: • SiNWs/WO{sub 3} nanowires composite with cactus-like structure is synthesized. • The morphology of WO{sub 3} nanowires depends on the thermal annealing temperature. • The nanocomposite sensor exhibit better gas response than that of bare SiNWs. • The gas sensing mechanism is discussed using p-n heterojunction theory.

  19. Improving technology and setting-up a production line for high quality zinc oxide (99.5%) with a capacity of 150 ton/year by evaporation-oxidation process

    International Nuclear Information System (INIS)

    Phan Dinh Thinh; Pham Minh Tuan; Luong Manh Hung; Tran Ngoc Vuong

    2015-01-01

    This report presents the technology improvement and a production line to produce high quality zinc oxide of purity upper than 99.5% ZnO by evaporation-oxidation method. Secondary zinc metal recovered from galvanizing industrial will undergo a pre-treatment to meet all requirements of standardized feed material for evaporation-oxidation process. Zinc metal is melted at a temperature of about 650"oC, some impurities and metallic oxides are separated preliminary, then zinc metal is converted into liquid in evaporation pot. Here the temperature is maintained around 1050"oC, zinc liquid is evaporated, zinc vapor is oxidized by air in the oxidation chamber naturally by oxygen in the air and then zinc vapor is converted to zinc oxide. Zinc oxide is passed through a product classification systems and then go to a product collection of filtering bag design. The whole process of melting, evaporation, oxidation, particles classification and product collection is a continuous process. The efficiency of the transformation of zinc metal into zinc oxide can reach the value of 1.1 to 1.2. ZnO product quality is higher than 99.5%. (author)

  20. Towards large-scale plasma-assisted synthesis of nanowires

    Science.gov (United States)

    Cvelbar, U.

    2011-05-01

    Large quantities of nanomaterials, e.g. nanowires (NWs), are needed to overcome the high market price of nanomaterials and make nanotechnology widely available for general public use and applications to numerous devices. Therefore, there is an enormous need for new methods or routes for synthesis of those nanostructures. Here plasma technologies for synthesis of NWs, nanotubes, nanoparticles or other nanostructures might play a key role in the near future. This paper presents a three-dimensional problem of large-scale synthesis connected with the time, quantity and quality of nanostructures. Herein, four different plasma methods for NW synthesis are presented in contrast to other methods, e.g. thermal processes, chemical vapour deposition or wet chemical processes. The pros and cons are discussed in detail for the case of two metal oxides: iron oxide and zinc oxide NWs, which are important for many applications.

  1. Comparison of Endoflas and Zinc oxide Eugenol as root canal filling materials in primary dentition

    Directory of Open Access Journals (Sweden)

    Nivedita Rewal

    2014-01-01

    Full Text Available Background: Zinc oxide eugenol has long been the material of choice of pediatric dentists worldwide, although it fails to meet the ideal requirements of root canal filling material for primary teeth. Endoflas, a mixture of zinc oxide eugenol, calcium hydroxide, and iodoform, can be considered to be an effective root canal filling material in primary teeth as compared with zinc oxide eugenol. This study was carried out to compare zinc oxide eugenol with endoflas for pulpectomy in primary dentition. Aim: The objective of the study was to compare clinically and radiographically success rates of zinc oxide eugenol with endoflas for the root canal filling of primary teeth at 3, 6, and 9 months. Design: Fifty primary molars were included in the study with 26 teeth in Group I (Endoflas and 24 in Group II (zinc oxide eugenol. A single visit pulpectomy was carried out. Results: The overall success rate of zinc oxide eugenol was 83% whereas 100% success was found in the case of endoflas. The obtained results were compiled and subjected to statistical analysis using the chi-square test. The difference in the success rate between the two was statistically significant (P < 0.05. Conclusion: Endoflas has shown to have better results than zinc oxide eugenol. It should therefore be the material of choice for root canal treatment in deciduous dentition.

  2. Zinc oxide hollow micro spheres and nano rods: Synthesis and applications in gas sensor

    International Nuclear Information System (INIS)

    Jamil, Saba; Janjua, Muhammad Ramzan Saeed Ashraf; Ahmad, Tauqeer; Mehmood, Tahir; Li, Songnan; Jing, Xiaoyan

    2014-01-01

    Zinc oxide nano rods and micro hollow spheres are successfully fabricated by adopting a simple solvo-thermal approach without employing any surfactant/template by keeping heating time as variable. The prepared products are characterized by using different instruments such as X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). In order to investigate the morphological dependence on the reaction time, analogous experiments with various reaction times are carried out. Depending upon heating time, different morphological forms have been identified such as hollow microsphere (4 μm to 5 μm) and nano rods with an average diameter of approximately 100 nm. The fabricated materials are also tested for ethanol gas sensor applications and zinc oxide hollow microsphere proven to be an efficient gas sensing materials. Nitrogen adsorption–desorption measurement was performed to understand better performance of zinc oxide micro hollow spheres as effective ethanol gas sensing material. - Graphical abstract: Graphical abstract is represented by zinc oxide sphere (prepared by simple solvothermal approach), its XRD pattern(characterization) and finally its application in gas sensing. - Highlights: • Zinc oxide spheres were prepared by using solvothermal method. • Detailed description of the morphology of microspheres assembled by nano rods. • Formation mechanism of zinc oxide spheres assembled by nano rods. • Zinc oxide spheres and nano rods displayed very good gas sensing ability

  3. Control of the ZnO nanowires nucleation site using microfluidic channels.

    Science.gov (United States)

    Lee, Sang Hyun; Lee, Hyun Jung; Oh, Dongcheol; Lee, Seog Woo; Goto, Hiroki; Buckmaster, Ryan; Yasukawa, Tomoyuki; Matsue, Tomokazu; Hong, Soon-Ku; Ko, HyunChul; Cho, Meoung-Whan; Yao, Takafumi

    2006-03-09

    We report on the growth of uniquely shaped ZnO nanowires with high surface area and patterned over large areas by using a poly(dimethylsiloxane) (PDMS) microfluidic channel technique. The synthesis uses first a patterned seed template fabricated by zinc acetate solution flowing though a microfluidic channel and then growth of ZnO nanowire at the seed using thermal chemical vapor deposition on a silicon substrate. Variations the ZnO nanowire by seed pattern formed within the microfluidic channel were also observed for different substrates and concentrations of the zinc acetate solution. The photocurrent properties of the patterned ZnO nanowires with high surface area, due to their unique shape, were also investigated. These specialized shapes and patterning technique increase the possibility of realizing one-dimensional nanostructure devices such as sensors and optoelectric devices.

  4. Zinc oxide microcapsules obtained via a bio-inspired approach

    International Nuclear Information System (INIS)

    Lipowsky, Peter; Hirscher, Michael; Hoffmann, Rudolf C; Bill, Joachim; Aldinger, Fritz

    2007-01-01

    Hollow zinc oxide microcapsules have been synthesized by a sacrificial template route involving the chemical bath deposition of nanostructured zinc oxide thin films on sulfonate-modified polystyrene microspheres and subsequent removal of the polymer core by dissolution in a solvent or by thermolysis. Scanning electron micrographs show that uniform coating of the templates is achieved when ZnO is deposited from a solution containing zinc acetate, the polymer polyvinylpyrrolidone, and a base in methanol, and that the ZnO shells remain intact after removal of the cores. A focused ion beam is used to cut slices from the spheres and demonstrate their inner morphology and hollowness. X-ray diffraction yields evidence that the shells consist of nanocrystalline ZnO with the zincite structure

  5. Structural and electrical characterization of zinc oxide doped with antimony

    Directory of Open Access Journals (Sweden)

    G. Juárez Díaz

    2014-08-01

    Full Text Available In this work we report the results of structural and electrical characterization realized on zinc oxide single crystal samples with (001 orientation, which were doped with antimony. Doping was carried out by antimony thermal diffusion at 1000 °C for periods of 1 and 2 hours under nitrogen environment from a solid source formed by antimony oxide. Electrical characterization by I-V curves and Hall effect shown an increase in acceptor concentration which demonstrates that doping is effective and create holes in zinc oxide samples.

  6. Molybdenum oxide nanowires based supercapacitors with enhanced capacitance and energy density in ethylammonium nitrate electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Sarfraz, Mansoor; Aboud, Mohamed F.A.; Shakir, Imran, E-mail: shakir@skku.edu

    2015-11-25

    Orthorhombic molybdenum trioxide (α-MoO{sub 3}) nanowires as an electrode for electrochemical supercapacitors in ethylammonium nitrate (EAN) electrolyte exhibits a high specific capacitance of 288 Fg{sup −1}, which is 8 times higher than the specific capacitance obtained from MoO{sub 3} nanowires in water based electrolyte. MoO{sub 3} nanowires in EAN electrolyte exhibit energy density of 46.32 Wh kg{sup −1} at a power density of 20.3 kW kg{sup −1} with outstanding cycling stability with specific capacitance retention of 96% over 3000 cycles. We believe that the superior performance of the MoO{sub 3} nanowires in EAN based electrolyte is primarily due to its relatively low viscosity (0.28 P at 25 °C), high electrical conductivity (20 mS cm{sup −1} at 25 °C) and large working voltage window. The results clearly demonstrate that EAN as electrolyte is one of the most promising electrolyte for high performance large scale energy storage devices. - Highlights: • Synthesis of single crystalline molybdenum oxide nanowires. • Ethylammonium Nitrate as an electrolyte for high performance large scale psuedocapacitor based energy storage devices. • Molybdenum oxide nanowires based electrodes shows 8 fold enhancement in Ethylammonium Nitrate electrolyte as compared to water based electrolytes. • The devices in Ethylammonium Nitrate exhibit excellent stability, retaining 96% of its initial capacity after 3000 cycles.

  7. Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultraviolet

    DEFF Research Database (Denmark)

    Pauly, N; Yubero, F; Espinós, J P

    2017-01-01

    Optical properties and electronic transitions of four oxides, namely zinc oxide, ferric oxide, cerium oxide, and samarium oxide, are determined in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy using primary electron energies in the range 0.3-2.0 ke...

  8. Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates

    Energy Technology Data Exchange (ETDEWEB)

    Sulka, Grzegorz D., E-mail: Sulka@chemia.uj.edu.pl [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Department of Physical Chemistry and Electrochemistry, Jagiellonian University, Ingardena 3, 30060 Krakow (Poland); Brzozka, Agnieszka [AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, Krakow 30-059 (Poland); Liu, Lifeng [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany)

    2011-05-30

    Graphical abstract: Display Omitted Highlights: > AAO templates with modulated pore diameter were fabricated by pulse anodization. > HA pulse duration tunes the shape of pores and the structure of AAO channels. > Au, Ag, Ni and Ag-Au diameter-modulated nanowires were synthetized. > Porous ultrathin Au nanowires were obtained by dealloying Ag-Au nanowires. - Abstract: Anodic aluminum oxide (AAO) membranes with modulated pore diameter were synthesized by pulse anodization in 0.3 M sulfuric acid at 1 deg. C. For AAO growth, a typical combination of alternating mild anodizing (MA) and hard anodizing (HA) pulses with applied potential pulses of 25 V and 35 V was applied. The control of the duration of HA pulses will provide an interesting way to tune the shape of pores and the structure of AAO channels. It was found that a non-uniform length of HA segments in cross section of AAO is usually observed when the HA pulse duration is shorter than 1.2 s. The pulse anodization performed with longer HA pulses leads to the formation of AAO templates with periodically modulated pore diameter and nearly uniform length of segments. Various diameter-modulated metallic nanowires (Au, Ag, Ni and Ag-Au) were fabricated by electrodeposition in the pores of anodic alumina membranes. A typical average nanowire diameter was about 30 nm and 48 nm for MA and HA nanowire segments, respectively. After a successful dealloying silver from Ag-Au nanowires, porous ultrathin Au nanowires were obtained.

  9. Fabrication of diameter-modulated and ultrathin porous nanowires in anodic aluminum oxide templates

    International Nuclear Information System (INIS)

    Sulka, Grzegorz D.; Brzozka, Agnieszka; Liu, Lifeng

    2011-01-01

    Graphical abstract: Display Omitted Highlights: → AAO templates with modulated pore diameter were fabricated by pulse anodization. → HA pulse duration tunes the shape of pores and the structure of AAO channels. → Au, Ag, Ni and Ag-Au diameter-modulated nanowires were synthetized. → Porous ultrathin Au nanowires were obtained by dealloying Ag-Au nanowires. - Abstract: Anodic aluminum oxide (AAO) membranes with modulated pore diameter were synthesized by pulse anodization in 0.3 M sulfuric acid at 1 deg. C. For AAO growth, a typical combination of alternating mild anodizing (MA) and hard anodizing (HA) pulses with applied potential pulses of 25 V and 35 V was applied. The control of the duration of HA pulses will provide an interesting way to tune the shape of pores and the structure of AAO channels. It was found that a non-uniform length of HA segments in cross section of AAO is usually observed when the HA pulse duration is shorter than 1.2 s. The pulse anodization performed with longer HA pulses leads to the formation of AAO templates with periodically modulated pore diameter and nearly uniform length of segments. Various diameter-modulated metallic nanowires (Au, Ag, Ni and Ag-Au) were fabricated by electrodeposition in the pores of anodic alumina membranes. A typical average nanowire diameter was about 30 nm and 48 nm for MA and HA nanowire segments, respectively. After a successful dealloying silver from Ag-Au nanowires, porous ultrathin Au nanowires were obtained.

  10. X-ray diffraction from single GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas

    2012-11-12

    In recent years, developments in X-ray focussing optics have allowed to produce highly intense, coherent X-ray beams with spot sizes in the range of 100 nm and below. Together with the development of new experimental stations, X-ray diffraction techniques can now be applied to study single nanometer-sized objects. In the present work, X-ray diffraction is applied to study different aspects of the epitaxial growth of GaAs nanowires. Besides conventional diffraction methods, which employ X-ray beams with dimensions of several tens of {mu}m, special emphasis lies on the use of nanodiffraction methods which allow to study single nanowires in their as-grown state without further preparation. In particular, coherent X-ray diffraction is applied to measure simultaneously the 3-dimensional shape and lattice parameters of GaAs nanowires grown by metal-organic vapor phase epitaxy. It is observed that due to a high density of zinc-blende rotational twins within the nanowires, their lattice parameter deviates systematically from the bulk zinc-blende phase. In a second step, the initial stage in the growth of GaAs nanowires on Si (1 1 1) surfaces is studied. This nanowires, obtained by Ga-assisted growth in molecular beam epitaxy, grow predominantly in the cubic zinc-blende structure, but contain inclusions of the hexagonal wurtzite phase close to their bottom interface. Using nanodiffraction methods, the position of the different structural units along the growth axis is determined. Because the GaAs lattice is 4% larger than silicon, these nanowires release their lattice mismatch by the inclusion of dislocations at the interface. Whereas NWs with diameters below 50 nm are free of strain, a rough interface structure in nanowires with diameters above 100 nm prevents a complete plastic relaxation, leading to a residual strain at the interface that decays elastically along the growth direction. Finally, measurements on GaAs-core/InAs-shell nanowire heterostructures are presented

  11. Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations

    KAUST Repository

    Shen, Youde

    2014-08-13

    Controlling the morphology of nanowires in bottom-up synthesis and assembling them on planar substrates is of tremendous importance for device applications in electronics, photonics, sensing and energy conversion. To date, however, there remain challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia (YSZ) substrates via the epitaxy-assisted vapor-liquid-solid (VLS) mechanism, by simply regulating the growth conditions, in particular the growth temperature. This robust control on nanowire orientation is facilitated by the small lattice mismatch of 1.6% between ITO and YSZ. Further control of the orientation, symmetry and shape of the nanowires can be achieved by using YSZ substrates with (110) and (111), in addition to (100) surfaces. Based on these insights, we succeed in growing regular arrays of planar ITO nanowires from patterned catalyst nanoparticles. Overall, our discovery of unprecedented orientation control in ITO nanowires advances the general VLS synthesis, providing a robust epitaxy-based approach toward rational synthesis of nanowires. © 2014 American Chemical Society.

  12. Synthesis and characterization of zinc oxide nanoparticles by laser ablation of zinc in liquid

    International Nuclear Information System (INIS)

    Thareja, R.K.; Shukla, Shobha

    2007-01-01

    We report formation of colloidal suspension of zinc oxide nanoparticles by pulsed laser ablation of a zinc metal target at room temperature in different liquid environment. We have used photoluminescence, atomic force microscopy and X-ray diffraction to characterize the nanoparticles. The sample ablated in deionized water showed the photoluminescence peak at 384 nm (3.23 eV), whereas peaks at 370 nm (3.35 eV) were observed for sample prepared in isopropanol. The use of water and isopropanol as a solvent yielded spherical nanoparticles of 14-20 nm while in acetone we found two types of particles, one spherical nanoparticles with sizes around 100 nm and another platelet-like structure of 1 μm in diameter and 40 nm in width. The absorption peak of samples prepared in deionized water and isopropanol are seen to be substantially blue shifted relative to that of the bulk zinc oxide due to the strong confinement effect. The technique offers an alternative for preparing the nanoparticles of active metal

  13. Preparation and characterization of CuO nanowire arrays

    International Nuclear Information System (INIS)

    Yu Dongliang; Ge Chuannan; Du Youwei

    2009-01-01

    CuO nanowire arrays were prepared by oxidation of copper nanowires embedded in anodic aluminum oxide (AAO) membranes. The AAO was fabricated in an oxalic acid at a constant voltage. Copper nanowires were formed in the nanopores of the AAO membranes in an electrochemical deposition process. The oxidized copper nanowires at different temperatures were studied. X-ray diffraction patterns confirmed the formation of a CuO phase after calcining at 500 0 C in air for 30 h. A transmission electron microscopy was used to characterize the nanowire morphologies. Raman spectra were performed to study the CuO nanowire arrays. After measuring, we found that the current-voltage curve of the CuO nanowires is nonlinear.

  14. Constructing Ultrahigh-Capacity Zinc-Nickel-Cobalt Oxide@Ni(OH)2 Core-Shell Nanowire Arrays for High-Performance Coaxial Fiber-Shaped Asymmetric Supercapacitors.

    Science.gov (United States)

    Zhang, Qichong; Xu, Weiwei; Sun, Juan; Pan, Zhenghui; Zhao, Jingxin; Wang, Xiaona; Zhang, Jun; Man, Ping; Guo, Jiabin; Zhou, Zhenyu; He, Bing; Zhang, Zengxing; Li, Qingwen; Zhang, Yuegang; Xu, Lai; Yao, Yagang

    2017-12-13

    Increased efforts have recently been devoted to developing high-energy-density flexible supercapacitors for their practical applications in portable and wearable electronics. Although high operating voltages have been achieved in fiber-shaped asymmetric supercapacitors (FASCs), low specific capacitance still restricts the further enhancement of their energy density. This article specifies a facile and cost-effective method to directly grow three-dimensionally well-aligned zinc-nickel-cobalt oxide (ZNCO)@Ni(OH) 2 nanowire arrays (NWAs) on a carbon nanotube fiber (CNTF) with an ultrahigh specific capacitance of 2847.5 F/cm 3 (10.678 F/cm 2 ) at a current density of 1 mA/cm 2 , These levels are approximately five times higher than those of ZNCO NWAs/CNTF electrodes (2.10 F/cm 2 ) and four times higher than Ni(OH) 2 /CNTF electrodes (2.55 F/cm 2 ). Benefiting from their unique features, we successfully fabricated a prototype coaxial FASC (CFASC) with a maximum operating voltage of 1.6 V, which was assembled by adopting ZNCO@Ni(OH) 2 NWAs/CNTF as the core electrode and a thin layer of carbon coated vanadium nitride (VN@C) NWAs on a carbon nanotube strip (CNTS) as the outer electrode with KOH poly(vinyl alcohol) (PVA) as the gel electrolyte. A high specific capacitance of 94.67 F/cm 3 (573.75 mF/cm 2 ) and an exceptional energy density of 33.66 mWh/cm 3 (204.02 μWh/cm 2 ) were achieved for our CFASC device, which represent the highest levels of fiber-shaped supercapacitors to date. More importantly, the fiber-shaped ZnO-based photodetector is powered by the integrated CFASC, and it demonstrates excellent sensitivity in detecting UV light. Thus, this work paves the way to the construction of ultrahigh-capacity electrode materials for next-generation wearable energy-storage devices.

  15. Zinc oxide crystal whiskers as a novel sorbent for solid-phase extraction of flavonoids.

    Science.gov (United States)

    Wang, Licheng; Shangguan, Yangnan; Hou, Xiudan; Jia, Yong; Liu, Shujuan; Sun, Yingxin; Guo, Yong

    2017-08-15

    As a novel solid-phase extraction material, zinc oxide crystal whiskers were used to extract flavonoid compounds and showed good extraction abilities. X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy and surface area/pore volume characterized the sorbent. The zinc oxide was packed into a solid-phase extraction micro-column and its extraction ability was evaluated by four model flavonoid compounds. The sample loading and elution parameters were optimized and the zinc oxide based analytical method for flavonoids was established. It showed that the method has wide linearities from 1 to 150μg/L and low limits of detection at 0.25μg/L. The relative standard deviations of a single column repeatability and column to column reproducibility were less than 6.8% and 10.6%. Several real samples were analyzed by the established method and satisfactory results were obtained. The interactions between flavonoids and zinc oxide were calculated and proved to be from the Van der Waals' forces between the 4p and 5d orbitals from zinc atom and the neighboring π orbitals from flavonoid phenyl groups. Moreover, the zinc oxide crystal whiskers showed good stability and could be reused more than 50 times under the operation conditions. This work proves that the zinc oxide crystal whiskers are a good candidate for flavonoids enrichment. Copyright © 2017. Published by Elsevier B.V.

  16. Effects of ZnO nanowire synthesis parameters on the photovoltaic performance of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juneui; Myoung, Jihyun; Lim, Sangwoo, E-mail: swlim@yonsei.ac.kr

    2012-06-30

    Determination of the effects of ZnO nanowires on the efficiency of ZnO nanowire-based dye-sensitized solar cells (DSSCs) is important. In this study, we determined the effects of different OH{sup -} precursors, concentrations, the ratio of zinc nitrate to hexamethylene tetramine (HMT), and the hydrothermal synthesis temperature on the physical, crystal, and optical properties of ZnO nanowires and investigated the performance of the resulting DSSCs. We observed that ZnO nanowires synthesized using an equimolar ratio of HMT to zinc nitrate yielded a DSSC with high incident photon-to-current efficiency (IPCE), cell efficiency, short circuit current density (J{sub sc}), and fill factor (FF), and low ZnO-dye-electrolyte interface resistance due to an increased amount of dye and a decreased density of defects. Furthermore, ZnO nanowires made using optimal concentrations and ratios of zinc nitrate to HMT had a high surface area and low defect density. All the photovoltaic performance parameters of DSSCs assessed such as IPCE, cell efficiency, J{sub sc}, open circuit potential (V{sub oc}), and FF increased with synthesis temperature, which was related to a decrease in the resistance at the ZnO-dye-electrolyte interface. We attributed these results to an increased amount of dye facilitated by a large nanowire surface area and fast electron transfer because of the improved crystalline structure of the ZnO nanowires and their low defect density. By optimizing the ZnO nanowires, we increased DSSC efficiency to 0.26% using ZnO nanowires synthesized with 25 mM of both zinc nitrate and HMT at 90 Degree-Sign C, while only a 0.02% increase in efficiency was obtained when NH{sub 4}OH was used as OH{sup -} precursor. - Highlights: Black-Right-Pointing-Pointer Fabrication of ZnO nanowire-based dye-sensitized solar cells (DSSCs) Black-Right-Pointing-Pointer Correlation of synthesis parameters with ZnO nanowires' properties and DSSC performance Black

  17. Precipitation of Zinc Oxide Nanoparticles in Bicontinuous Microemulsions

    Directory of Open Access Journals (Sweden)

    Liliana E. Romo

    2011-01-01

    Full Text Available Zinc oxide nanoparticles were obtained directly, avoiding the calcination step, by precipitation at 70°C in bicontinuous microemulsions stabilized with a mixture of surfactants sodium bis (2-ethylhexyl sulfosuccinate/sodium dodecyl sulfate (2/1, wt./wt. containing 0.7 M zinc nitrate aqueous solution. Two concentrations of aqueous solution of precipitating agent sodium hydroxide were used under different dosing times on microemulsion. Characterization by X-ray diffraction and electron microscopy allowed us to identify particles with an acicular rod-like morphology and a hexagonal wurtzite crystal structure as small as 8.5 and 30 nm in average diameter and length, respectively. Productivities much higher than those typical in the preparation of zinc oxide nanoparticles via reverse microemulsions were obtained. Particle size was the same at the two studied sodium hydroxide concentrations, while it increases as dosing time of the precipitant agent increases. It is believed that the surfactant film on the microemulsion channels restricts the particle diameter growth.

  18. Fe2 PO5 -Encapsulated Reverse Energetic ZnO/Fe2 O3 Heterojunction Nanowire for Enhanced Photoelectrochemical Oxidation of Water.

    Science.gov (United States)

    Qin, Dong-Dong; He, Cai-Hua; Li, Yang; Trammel, Antonio C; Gu, Jing; Chen, Jing; Yan, Yong; Shan, Duo-Liang; Wang, Qiu-Hong; Quan, Jing-Jing; Tao, Chun-Lan; Lu, Xiao-Quan

    2017-07-10

    Zinc oxide is regarded as a promising candidate for application in photoelectrochemical water oxidation due to its higher electron mobility. However, its instability under alkaline conditions limits its application in a practical setting. Herein, we demonstrate an easily achieved wet-chemical route to chemically stabilize ZnO nanowires (NWs) by protecting them with a thin layer Fe 2 O 3 shell. This shell, in which the thickness can be tuned by varying reaction times, forms an intact interface with ZnO NWs, thus protecting ZnO from corrosion in a basic solution. The reverse energetic heterojunction nanowires are subsequently activated by introducing an amorphous iron phosphate, which substantially suppressed surface recombination as a passivation layer and improved photoelectrochemical performance as a potential catalyst. Compared with pure ZnO NWs (0.4 mA cm -2 ), a maximal photocurrent of 1.0 mA cm -2 is achieved with ZnO/Fe 2 O 3 core-shell NWs and 2.3 mA cm -2 was achieved for the PH 3 -treated NWs at 1.23 V versus RHE. The PH 3 low-temperature treatment creates a dual function, passivation and catalyst layer (Fe 2 PO 5 ), examined by X-ray photoelectron spectroscopy, TEM, photoelectrochemical characterization, and impedance measurements. Such a nano-composition design offers great promise to improve the overall performance of the photoanode material. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nickel cobalt oxide nanowire-reduced graphite oxide composite material and its application for high performance supercapacitor electrode material.

    Science.gov (United States)

    Wang, Xu; Yan, Chaoyi; Sumboja, Afriyanti; Lee, Pooi See

    2014-09-01

    In this paper, we report a facile synthesis method of mesoporous nickel cobalt oxide (NiCo2O4) nanowire-reduced graphite oxide (rGO) composite material by urea induced hydrolysis reaction, followed by sintering at 300 degrees C. P123 was used to stabilize the GO during synthesis, which resulted in a uniform coating of NiCo2O4 nanowire on rGO sheet. The growth mechanism of the composite material is discussed in detail. The NiCo2O4-rGO composite material showed an outstanding electrochemical performance of 873 F g(-1) at 0.5 A g(-1) and 512 F g(-1) at 40 A g(-1). This method provides a promising approach towards low cost and large scale production of supercapacitor electrode material.

  20. High Density Silver Nanowire Arrays using Self-ordered Anodic Aluminum Oxide (AAO) Membrane

    OpenAIRE

    Han, Young-Hwan

    2008-01-01

    High density silver nanowire arrays were synthesized through the self-ordered Anodic Aluminum Oxide (AAO) template. The pore size in the AAO membrane was confirmed by processing the widening porosity with a honeycomb structure with cross sections of 20nm, 50nm, and 100nm, by SEM. Pore numbers by unit area were consistent; only pore size changed. The synthesized silver nanowire, which was crystallized, was dense in the cross sections of the amorphous AAO membrane. The synthesized silver nanowi...

  1. Thermoelectric material comprising scandium doped zinc cadmium oxide

    DEFF Research Database (Denmark)

    2016-01-01

    There is presented a composition of scandium doped Zinc Cadmium Oxide with the general formula ZnzCdxScyO which the inventors have prepared, and for which material the inventors have made the insight that it is particularly advantageous as an n-type oxide material, such as particularly advantageous...

  2. First-principles study of size-, surface- and mechanical strain-dependent electronic properties of wurtzite and zinc-blende InSb nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong [School of Mathematics, Physics and Energy Engineering, Hunan Institute of Technology, Hengyang 421002 (China); Xie, Zhong-Xiang, E-mail: xiezxhu@163.com [School of Mathematics, Physics and Energy Engineering, Hunan Institute of Technology, Hengyang 421002 (China); Yu, Xia; Wang, Hai-Bin; Deng, Yuan-Xiang [School of Mathematics, Physics and Energy Engineering, Hunan Institute of Technology, Hengyang 421002 (China); Ning, Feng, E-mail: fning@gxtc.edu.cn [College of Physics and Electronic Engineering, Guangxi Teachers Education University, Nanning 530001 (China)

    2016-08-06

    Using first-principle calculations with density functional theory, we investigated the modification of electronic properties in zinc-blende (ZB) and wurtzite (WZ) InSb nanowires (NWs) grown along the [111] and [0001] directions for different size, different surface coverage and different mechanical strain. The results show that before the surface passivation, ZBNWs and WZNWs exhibit the metallic character and the semiconductor character, respectively. WZNWs show a crossover from a direct to an indirect as diameter decreases. After the surface passivation, both ZBNWs and WZNWs are found to be direct-gap character. The electronic band structure shows a significant response to changes in surface passivation with pseudo hydrogen and halogen. The band structure with mechanical strain is strongly dependent on the crystal orientation and the NW diameter. In ZBNWs, compressive strain induces the indirect band gap character, whereas tensile strain can not form it. WZNWs have various strain dependence in that both compressive and tensile strain make InSb show a direct band gap character. A brief analysis of these results is given. - Highlights: • InSb nanowires with different surfaces can show the different band structures. • Band gap magnitude of InSb nanowires depends on the suppression of surface states. • Different types of mechanical strains show the different effect on the band structure of the InSb nanowires.

  3. The degradation of lining of rotary furnaces in the production of zinc oxide

    OpenAIRE

    Natália Luptáková; Evgeniy Anisimov; Františka Pešlová

    2014-01-01

    This paper is closely connected with the complex problem of degradation relating to the refractories of rotary furnace linings in the production of zinc oxide. Zinc oxide can be produced by variety of ways, but the most common method of production which is used in Europe is indirect, i.e. pyrolytic combustion of zinc. This method is also called "French process" of manufacturing ZnO. But this mentioned method of preparation leads to the creation of the enormous amount of zinc slag including ch...

  4. Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance

    KAUST Repository

    Baby, Rakhi Raghavan

    2012-05-09

    A scheme of current collector dependent self-organization of mesoporous cobalt oxide nanowires has been used to create unique supercapacitor electrodes, with each nanowire making direct contact with the current collector. The fabricated electrodes offer the desired properties of macroporosity to allow facile electrolyte flow, thereby reducing device resistance and nanoporosity with large surface area to allow faster reaction kinetics. Co 3O 4 nanowires grown on carbon fiber paper collectors self-organize into a brush-like morphology with the nanowires completely surrounding the carbon microfiber cores. In comparison, Co 3O 4 nanowires grown on planar graphitized carbon paper collectors self-organize into a flower-like morphology. In three electrode configuration, brush-like and flower-like morphologies exhibited specific capacitance values of 1525 and 1199 F/g, respectively, at a constant current density of 1 A/g. In two electrode configuration, the brush-like nanowire morphology resulted in a superior supercapacitor performance with high specific capacitances of 911 F/g at 0.25 A/g and 784 F/g at 40 A/g. In comparison, the flower-like morphology exhibited lower specific capacitance values of 620 F/g at 0.25 A/g and 423 F/g at 40 A/g. The Co 3O 4 nanowires with brush-like morphology exhibited high values of specific power (71 kW/kg) and specific energy (81 Wh/kg). Maximum energy and power densities calculated for Co 3O 4 nanowires with flower-like morphology were 55 Wh/kg and 37 kW/kg respectively. Both electrode designs exhibited excellent cycling stability by retaining ∼91-94% of their maximum capacitance after 5000 cycles of continuous charge-discharge. © 2012 American Chemical Society.

  5. The effects of cetyltrimethylammonium bromide surfactant on alumina modified zinc oxides

    Energy Technology Data Exchange (ETDEWEB)

    Gac, Wojciech, E-mail: wojciech.gac@umcs.lublin.pl [Department of Chemical Technology, Faculty of Chemistry, Maria Curie-Sklodowska University, 3 M. Curie-Sklodowska Sq., 20-031 Lublin (Poland); Zawadzki, Witold; Słowik, Grzegorz; Pawlonka, Justyna; Machocki, Andrzej [Department of Chemical Technology, Faculty of Chemistry, Maria Curie-Sklodowska University, 3 M. Curie-Sklodowska Sq., 20-031 Lublin (Poland); Lipke, Agnieszka; Majdan, Marek [Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University, 2 M. Curie-Sklodowska Sq., 20-031 Lublin (Poland)

    2016-06-15

    Highlights: • Synthesis of novel ZnO−Al{sub 2}O{sub 3} oxides in the presence of CTAB surfactant. • Determination of the structural, surface and optical properties. • Nanocrystalline, high-surface area ZnO−Al{sub 2}O{sub 3} oxides. • ZnO-Al{sub 2}O{sub 3} materials of different gap energy. - Abstract: Novel alumina modified zinc oxide materials were prepared by co-precipitation method in the presence of different amounts of cetyltrimethylammonium bromide (CTAB) surfactant. X-ray diffraction, {sup 27}Al magic-angle spinning Nuclear Magnetic Resonance Spectroscopy, and transmission electron microscopy studies evidenced formation of 10–15 nm zinc oxide nanoparticles in the presence of the small amounts of surfactant. Amorphous alumina and zinc aluminate phases of different coordination environment of Al sites were identified. An increase of surfactant concentration led to the elongation of nanoparticles and changes of the nature of hydroxyl groups. Precipitation in the high CTAB concentration conditions facilitated formation of mesoporous materials of high specific surface area. The materials were composed of very small (2–3 nm) zinc aluminate spinel nanoparticles. High concentration of CTAB induced widening of band gap energy.

  6. Optical Properties of Rotationally Twinned Nanowire Superlattices

    DEFF Research Database (Denmark)

    Bao, Jiming; Bell, David C.; Capasso, Federico

    2008-01-01

    We have developed a technique so that both transmission electron microscopy and microphotoluminescence can be performed on the same semiconductor nanowire over a large range of optical power, thus allowing us to directly correlate structural and optical properties of rotationally twinned zinc...... a heterostructure in a chemically homogeneous nanowire material and alter in a major way its optical properties opens new possibilities for band-structure engineering....

  7. Interfacial engineering of CuO nanorod/ZnO nanowire hybrid nanostructure photoanode in dye-sensitized solar cell

    Science.gov (United States)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Baran, Sümeyra Seniha; Asgin, Mansur; Gur, Emre; Kocak, Yusuf

    2018-01-01

    Developing efficient and cost-effective photoanode plays a vital role determining the photocurrent and photovoltage in dye-sensitized solar cells (DSSCs). Here, we demonstrate DSSCs that achieve relatively high power conversion efficiencies (PCEs) by using one-dimensional (1D) zinc oxide (ZnO) nanowires and copper (II) oxide (CuO) nanorods hybrid nanostructures. CuO nanorod-based thin films were prepared by hydrothermal method and used as a blocking layer on top of the ZnO nanowires' layer. The use of 1D ZnO nanowire/CuO nanorod hybrid nanostructures led to an exceptionally high photovoltaic performance of DSSCs with a remarkably high open-circuit voltage (0.764 V), short current density (14.76 mA/cm2 under AM1.5G conditions), and relatively high solar to power conversion efficiency (6.18%) . The enhancement of the solar to power conversion efficiency can be explained in terms of the lag effect of the interfacial recombination dynamics of CuO nanorod-blocking layer on ZnO nanowires. This work shows more economically feasible method to bring down the cost of the nano-hybrid cells and promises for the growth of other important materials to further enhance the solar to power conversion efficiency.

  8. Narrow titanium oxide nanowires induced by femtosecond laser pulses on a titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui; Li, Xian-Feng [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China); Zhang, Cheng-Yun [School of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Tie, Shao-Long [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Lan, Sheng, E-mail: slan@scnu.edu.cn [Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006 (China)

    2017-02-28

    Highlights: • Titanium oxide nanowires with a feature width as narrow as ∼20 nm were induced on a titanium surface by using femtosecond laser pulses at 400 nm. • An evolution of the surface structure from a high spatial frequency laser-induced periodic structure parallel to the laser polarization to a low spatial frequency one perpendicular to the laser polarization was observed with increasing irradiation pulse number. • The formation of the titanium oxide nanowires was confirmed by the energy dispersive spectroscopy measurements and the evolution of the surface structure was successfully interpreted by using the efficacy factor theory. - Abstract: The evolution of the nanostructure induced on a titanium (Ti) surface with increasing irradiation pulse number by using a 400-nm femtosecond laser was examined by using scanning electron microscopy. High spatial frequency periodic structures of TiO{sub 2} parallel to the laser polarization were initially observed because of the laser-induced oxidation of the Ti surface and the larger efficacy factor of TiO{sub 2} in this direction. Periodically aligned TiO{sub 2} nanowires with featured width as small as 20 nm were obtained. With increasing pulse number, however, low spatial frequency periodic structures of Ti perpendicular to the laser polarization became dominant because Ti possesses a larger efficacy factor in this direction. The competition between the high- and low-spatial frequency periodic structures is in good agreement with the prediction of the efficacy factor theory and it should also be observed in the femtosecond laser ablation of other metals which are easily oxidized in air.

  9. X-ray diffraction analysis of InAs nanowires

    International Nuclear Information System (INIS)

    Davydok, Anton

    2013-01-01

    Si substrate. MBE provides the opportunity to combine a group III-V material with nearly any semiconductor substrate independent from lattice mismatch. Vertically aligned nanowire ensembles were studied performing X-ray diffraction experiments in different scattering geometries. Considering the nanowires are composed by structural units of zinc-blende and wurtzite the latter one was found to be affected by a high density of stacking faults already at nanowires with short growth time. The stacking faults density was estimated by Monte-Carlo simulations based on model of ensemble average. A strong signal of unique zinc-blende reflection was observed as well. Coherent X-ray diffraction experiments with the use of a nano-focus setup have shown 'bar-code' patterning due to stacking fault arrangement within the nanowire. The found highly defective structure cannot be attributed to wurtzite or zinc-blende phases alone. Also parasitic islands were found on the samples surfaces and characterized as pure zinc-blende objects.

  10. On-chip microplasma reactors using carbon nanofibres and tungsten oxide nanowires as electrodes

    International Nuclear Information System (INIS)

    Agiral, Anil; Groenland, Alfons W; Han Gardeniers, J G E; Chinthaginjala, J Kumar; Seshan, K; Lefferts, Leon

    2008-01-01

    Carbon nanofibres (CNFs) and tungsten oxide (W 18 O 49 ) nanowires have been incorporated into a continuous flow type microplasma reactor to increase the reactivity and efficiency of the barrier discharge at atmospheric pressure. CNFs and tungsten oxide nanowires were characterized by high-resolution scanning electron microscopy, transmission electron microscopy and nanodiffraction methods. Field emission of electrons from those nanostructures supplies free electrons and ions during microplasma production. Reduction in breakdown voltage, higher number of microdischarges and higher energy deposition were observed at the same applied voltage when compared with plane electrodes at atmospheric pressure in air. Rate coefficients of electron impact reaction channels to decompose CO 2 were calculated and it was shown that CO 2 consumption increased using CNFs compared with plane electrode in the microplasma reactor.

  11. Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications

    Science.gov (United States)

    Yuvakkumar, R.; Suresh, J.; Saravanakumar, B.; Joseph Nathanael, A.; Hong, Sun Ig; Rajendran, V.

    2015-02-01

    A naturally occurring rambutan peel waste was employed to synthesis bioinspired zinc oxide nanochains. Rambutan peels has the ability of ligating zinc ions as a natural ligation agent resulting in zinc oxide nanochains formation due to its extended polyphenolic system over incubation period. Successful formation of zinc oxide nanochains was confirmed employing transmission electron microscopy studies. About 60% and ∼40% cell viability was lost and 50% and 10% morphological change was observed in 7 and 4 days incubated ZnO treated cells compared with control. Moreover, 50% and 55% of cell death was observed at 24 and 48 h incubation with 7 days treated ZnO cells and hence alters and disturbs the growth of cancer cells and could be used for liver cancer cell treatment.

  12. Room temperature NO2 gas sensing of Au-loaded tungsten oxide nanowires/porous silicon hybrid structure

    International Nuclear Information System (INIS)

    Wang Deng-Feng; Liang Ji-Ran; Li Chang-Qing; Yan Wen-Jun; Hu Ming

    2016-01-01

    In this work, we report an enhanced nitrogen dioxide (NO 2 ) gas sensor based on tungsten oxide (WO 3 ) nanowires/porous silicon (PS) decorated with gold (Au) nanoparticles. Au-loaded WO 3 nanowires with diameters of 10 nm–25 nm and lengths of 300 nm–500 nm are fabricated by the sputtering method on a porous silicon substrate. The high-resolution transmission electron microscopy (HRTEM) micrographs show that Au nanoparticles are uniformly distributed on the surfaces of WO 3 nanowires. The effect of the Au nanoparticles on the NO 2 -sensing performance of WO 3 nanowires/porous silicon is investigated over a low concentration range of 0.2 ppm–5 ppm of NO 2 at room temperature (25 °C). It is found that the 10-Å Au-loaded WO 3 nanowires/porous silicon-based sensor possesses the highest gas response characteristic. The underlying mechanism of the enhanced sensing properties of the Au-loaded WO 3 nanowires/porous silicon is also discussed. (paper)

  13. A novel method to synthesize cobalt oxide (Co3O4) nanowires from cobalt (Co) nanobowls

    DEFF Research Database (Denmark)

    Srivastava, Akhilesh Kumar; Madhavi, S.; Ramanujan, R.V.

    2010-01-01

    A novel method suitable for the synthesis of the cobalt oxide (Co3O4) nanowires at targeted regions is presented in this report. Cobalt (Co) nanobowls synthesized by colloidal crystal directed assembly were transformed into Co3O4 nanowires by a simple heat treatment process. Co nanobowls exhibited...... a two phase (h.c.p. + f.c.c.) microstructure while single phase microstructure was observed for Co3O4 nanowires. Ferromagnetic Co nanobowls showed a dependence of coercivity on bowl size while Co3O4 exhibited weak ferromagnetic behavior....

  14. Impact of residual elements on zinc quality in the production of zinc oxide

    Directory of Open Access Journals (Sweden)

    N. Luptáková

    2016-07-01

    Full Text Available The paper is focused on zinc oxide manufacturing process. The present work deals with the character and morphology of the input material for the production of ZnO by the indirect pyrometallurgical process. Undesirable phases in the feedstock can be identified through profound recognition of the source material and the nature of its microstructure. If these compounds diffuse into the lining during thermal processes, they become the cause of stress in metallurgical ceramics. The emergence of these chemical reactions may subsequently affect the entire metallurgical zinc smelting process. The results obtained by analysis are used to minimize waste - zinc slag and to eliminate the conditions which enable the formation of the undesired product, thereby increasing the productivity of the ZnO production.

  15. A soft chemical route to multicomponent lithium transition metal oxide nanowires as promising cathode materials for lithium secondary batteries

    International Nuclear Information System (INIS)

    Park, Dae-Hoon; Lim, Seung-Tae; Hwang, Seong-Ju

    2006-01-01

    We have synthesized 1D nanowires of lithium nickel manganese oxides with two different crystal structures through the chemical oxidation reaction of solid-state precursor LiMn 0.5 Ni 0.5 O 2 under hydrothermal condition. According to X-ray diffraction and elemental analyses, the nanowires obtained by persulfate treatments at 65 and 120 deg. C crystallize with a hexagonal layered and an α-MnO 2 -type structure, respectively, in which nickel and manganese ions exist in octahedral sites. Electron microscopic analyses reveal that the platelike crystallites of the precursor are changed into nanowires with the diameter of ∼20 nm after the persulfate treatment. Thermal and infrared spectroscopic analyses clearly demonstrate that, in comparison with α-MnO 2 -structured nanowires, the hexagonal layered nanowires contain less water molecules in the lattice, which makes them suitable for the application as electrode materials for lithium secondary batteries. According to electrochemical measurements, the hexagonal layered nanowires show a larger discharge capacity and an excellent cyclability with respect to repeated Li intercalation-disintercalation process. X-ray diffraction and electron microscopic analyses on the samples subjected to electrochemical analysis reveal that the layered structure and 1D morphology of the nanowires are still maintained after the electrochemical cyclings, which is responsible for their excellent electrochemical performances

  16. Reactions of organic zinc- and cadmium elementoxides with ethylene oxide

    International Nuclear Information System (INIS)

    Dodonov, V.A.; Krasnov, Yu.N.

    1980-01-01

    Studied are reactions of triphenylmethoxy, -triphenylsiloxyethylzinc and -cadmium with ethylene oxide in ratio of 1:1. Reactions have been carried out in tolyene solutions in ampules sealed in argon atmosphere. It is found that interaction of triphenylsiloxy-, triphenylmethoxyethylcadmium and triphenylsiloxyethylzinc with ethylene oxide occurs at the metal-carbon bond with formation of implantation products. Triphenylmethoxyethylzinc reacts with ethylene oxide both at the metal-carbon and metal-oxygen bonds. Alkoxytriphenylsiloxyderivatives of zinc and cadmium are thermally instable and decompose under the conditions of reaction (130 deg C) with migration of phenyl group from silicon to zinc or cadmium, giving alkoxyphenylderivative and with bensene splitting out

  17. investigation of the effect of zinc oxide-modified gum arabic on polar ...

    African Journals Online (AJOL)

    BARTH EKWUEME

    Gum Arabic solution, a water-based adhesive, was modified with zinc oxide filler and the formulation was applied on wood, ceramic, glass and textile substrates. A strip of paper was used as a common adherent to all the substrates. Zinc oxide increased the viscosity of 30wt% gum Arabic solution and increased bond ...

  18. Investigation of the effect of zinc oxide-modified gum Arabic on polar ...

    African Journals Online (AJOL)

    Gum Arabic solution, a water-based adhesive, was modified with zinc oxide filler and the formulation was applied on wood, ceramic, glass and textile substrates. A strip of paper was used as a common adherent to all the substrates. Zinc oxide increased the viscosity of 30wt% gum Arabic solution and increased bond ...

  19. The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires

    International Nuclear Information System (INIS)

    Prades, J D; Hernandez-Ramirez, F; Jimenez-Diaz, R; Manzanares, M; Andreu, T; Cirera, A; Romano-Rodriguez, A; Morante, J R

    2008-01-01

    The responses of individual ZnO nanowires to UV light demonstrate that the persistent photoconductivity (PPC) state is directly related to the electron-hole separation near the surface. Our results demonstrate that the electrical transport in these nanomaterials is influenced by the surface in two different ways. On the one hand, the effective mobility and the density of free carriers are determined by recombination mechanisms assisted by the oxidizing molecules in air. This phenomenon can also be blocked by surface passivation. On the other hand, the surface built-in potential separates the photogenerated electron-hole pairs and accumulates holes at the surface. After illumination, the charge separation makes the electron-hole recombination difficult and originates PPC. This effect is quickly reverted after increasing either the probing current (self-heating by Joule dissipation) or the oxygen content in air (favouring the surface recombination mechanisms). The model for PPC in individual nanowires presented here illustrates the intrinsic potential of metal oxide nanowires to develop optoelectronic devices or optochemical sensors with better and new performances.

  20. Microstructure development in zinc oxide nanowires and iron oxohydroxide nanotubes by cathodic electrodeposition in nanopores

    NARCIS (Netherlands)

    Maas, M.G.; Rodijk, E.J.B.; Maijenburg, A.W.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    The cathodic electrodeposition of crystalline ZnO nanowires and amorphous FeO(OH) nanotubes in polycarbonate track-etched membranes with pore diameters of 50–200 nm is reported. Nitrate was used as a sacrificial precursor for the electrochemical generation of hydroxyl ions that raised the pH of the

  1. Zinc (hydr)oxide/graphite oxide/AuNPs composites: role of surface features in H₂S reactive adsorption.

    Science.gov (United States)

    Giannakoudakis, Dimitrios A; Bandosz, Teresa J

    2014-12-15

    Zinc hydroxide/graphite oxide/AuNPs composites with various levels of complexity were synthesized using an in situ precipitation method. Then they were used as H2S adsorbents in visible light. The materials' surfaces were characterized before and after H2S adsorption by various physical and chemical methods (XRD, FTIR, thermal analysis, potentiometric titration, adsorption of nitrogen and SEM/EDX). Significant differences in surface features and synergistic effects were found depending on the materials' composition. Addition of graphite oxide and the deposition of gold nanoparticles resulted in a marked increase in the adsorption capacity in comparison with that on the zinc hydroxide and zinc hydroxide/AuNP. Addition of AuNPs to zinc hydroxide led to a crystalline ZnO/AuNP composite while the zinc hydroxide/graphite oxide/AuNP composite was amorphous. The ZnOH/GO/AuNPs composite exhibited the greatest H2S adsorption capacity due to the increased number of OH terminal groups and the conductive properties of GO that facilitated the electron transfer and consequently the formation of superoxide ions promoting oxidation of hydrogen sulfide. AuNPs present in the composite increased the conductivity, helped with electron transfer to oxygen, and prevented the fast recombination of the electrons and holes. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Rechargeable Aqueous Zinc-Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode

    KAUST Repository

    Xia, Chuan; Guo, Jing; Lei, Yongjiu; Liang, Hanfeng; Zhao, Chao; Alshareef, Husam N.

    2017-01-01

    metal pyrovanadate compounds. The zinc pyrovanadate nanowires show significantly improved electrochemical performance when used as intercalation cathode for aqueous zinc–ion battery. Specifically, the ZVO cathode delivers high capacities of 213 and 76 m

  3. Dye-Sensitized Solar Cells Based on High Surface Area Nanocrystalline Zinc Oxide Spheres

    Directory of Open Access Journals (Sweden)

    Pavuluri Srinivasu

    2011-01-01

    Full Text Available High surface area nanocrystalline zinc oxide material is fabricated using mesoporous nanostructured carbon as a sacrificial template through combustion process. The resulting material is characterized by XRD, N2 adsorption, HR-SEM, and HR-TEM. The nitrogen adsorption measurement indicates that the materials possess BET specific surface area ca. 30 m2/g. Electron microscopy images prove that the zinc oxide spheres possess particle size in the range of 0.12 μm–0.17 μm. The nanocrystalline zinc oxide spheres show 1.0% of energy conversion efficiency for dye-sensitized solar cells.

  4. Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: a universal set of parameters for bridging prepatterned microelectrodes.

    Science.gov (United States)

    Maijenburg, A W; Maas, M G; Rodijk, E J B; Ahmed, W; Kooij, E S; Carlen, E T; Blank, D H A; ten Elshof, J E

    2011-03-15

    Nanowires and nanotubes were synthesized from metals and metal oxides using templated cathodic electrodeposition. With templated electrodeposition, small structures are electrodeposited using a template that is the inverse of the final desired shape. Dielectrophoresis was used for the alignment of the as-formed nanowires and nanotubes between prepatterned electrodes. For reproducible nanowire alignment, a universal set of dielectrophoresis parameters to align any arbitrary nanowire material was determined. The parameters include peak-to-peak potential and frequency, thickness of the silicon oxide layer, grounding of the silicon substrate, and nature of the solvent medium used. It involves applying a field with a frequency >10(5) Hz, an insulating silicon oxide layer with a thickness of 2.5 μm or more, grounding of the underlying silicon substrate, and the use of a solvent medium with a low dielectric constant. In our experiments, we obtained good results by using a peak-to-peak potential of 2.1 V at a frequency of 1.2 × 10(5) Hz. Furthermore, an indirect alignment technique is proposed that prevents short circuiting of nanowires after contacting both electrodes. After alignment, a considerably lower resistivity was found for ZnO nanowires made by templated electrodeposition (2.2-3.4 × 10(-3) Ωm) compared to ZnO nanorods synthesized by electrodeposition (10 Ωm) or molecular beam epitaxy (MBE) (500 Ωm). Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Plasma diagnostics during magnetron sputtering of aluminum doped zinc oxide

    DEFF Research Database (Denmark)

    Stamate, Eugen; Crovetto, Andrea; Sanna, Simone

    2016-01-01

    Plasma parameters during magnetron sputtering of aluminum-doped zinc oxide are investigated with optical emission spectroscopy, electrostatic probes and mass spectrometry with the aim of understanding the role of negative ions of oxygen during the film growth and improving the uniformity of the f......Plasma parameters during magnetron sputtering of aluminum-doped zinc oxide are investigated with optical emission spectroscopy, electrostatic probes and mass spectrometry with the aim of understanding the role of negative ions of oxygen during the film growth and improving the uniformity...

  6. Optical Properties of Electrophoretically Manipulated ZnO Nanowire Suspensions and Their High Application Potential in Smart Window Devices

    OpenAIRE

    Šutka, A; Timusk, M; Saal, K; Kisand, V

    2015-01-01

    Optical properties of zinc oxide nanowire (NW) dilute suspensions in polydimethylsiloxane (PDMS) were investigated. Optical transmittance was found to decrease at the transition from chaotically oriented state to electrophoretically ordered state with the alignment of the NW along the direction of incident light. Previously reported observations of the behavior of dispersions containing oblong particles indicate that the transition of the orientation of particles from chaotic to ordered state...

  7. Growth and Raman spectroscopy studies of gold-free catalyzed semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zardo, Ilaria

    2010-12-15

    , enabled us to address the variation of the intensity of the scattered radiation along the nanowire length to the variation of the crystalline fraction. As well, the shift in frequency of the mode related to the crystalline Ge was attributed to phonon confinement effects. Spatially resolved Raman spectroscopy experiments were realized on single GaAs nanowires. Polarization dependent Raman scattering experiments enabled us to determine the Raman selection rules for zinc-blende GaAs nanowires. They were found to be modified with respect to the bulk. A component of the scattered light with respect to bulk GaAs is suppressed, due to the dielectric mismatch of a cylinder of nanoscale dimensions. Spatially resolved Raman spectroscopy experiments were realized on single zinc- blende/wurtzite GaAs nanowires, with different wurtzite content. The Raman spectrum of wurtzite GaAs was measured for the first time and the symmetry of the corresponding modes was determined by polarization dependent scattering experiments. The E{sub 1} - A{sub 1} splitting due to anisotropy of the crystal in wurtzite GaAs nanowires was found. The presence of strain along the zinc-blende/wurtzite nanowires was studied. Light scattering experiments on zinc-blende GaAs nanowires under hydrostatic pressure up to 20 GPa were realized with the use of a diamond anvil cell. The resonance profile of the 2LO mode suggests a stronger Froehlich coupling. The Grueneisen parameters were also found to be different from those obtained from bulk GaAs. Finally, there is evidence for a structural transition for P>16 GPa. (orig.)

  8. Band alignment and defects of the diamond zinc oxide heterojunction; Bandstruktur und Defekte der Diamant-Zinkoxid-Heterostruktur

    Energy Technology Data Exchange (ETDEWEB)

    Geithner, Peter

    2008-09-12

    Zinc oxide films were grown on diamond single crystals by rf sputtering of zinc oxide. The valence and conduction band offset was determined by photoelectron spectroscopy. A deep defect occurring in the zinc oxide films on diamond was characterized by cathodoluminescence spectroscopy. (orig.)

  9. Charging effects and surface potential variations of Cu-based nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.gomes@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Calmeiro, T.R.; Nandy, S.; Pinto, J.V.; Pimentel, A.; Barquinha, P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Carvalho, P.A. [SINTEF Materials and Chemistry, PB 124 Blindern, NO-0314, Oslo (Norway); CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa (Portugal); Walmsley, J.C. [SINTEF Materials and Chemistry, Materials and Nanotechnology, Høgskoleringen 5, 7034 Trondheim (Norway); Fortunato, E., E-mail: emf@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Martins, R., E-mail: rm@uninova.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-02-29

    The present work reports charging effects and surface potential variations in pure copper, cuprous oxide and cupric oxide nanowires observed by electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). The copper nanowires were produced by wet synthesis, oxidation into cuprous oxide nanowires was achieved through microwave irradiation and cupric oxide nanowires were obtained via furnace annealing in atmospheric conditions. Structural characterization of the nanowires was carried out by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. During the EFM experiments the electrostatic field of the positive probe charged negatively the Cu-based nanowires, which in turn polarized the SiO{sub 2} dielectric substrate. Both the probe/nanowire capacitance as well as the substrate polarization increased with the applied bias. Cu{sub 2}O and CuO nanowires behaved distinctively during the EFM measurements in accordance with their band gap energies. The work functions (WF) of the Cu-based nanowires, obtained by KPFM measurements, yielded WF{sub CuO} > WF{sub Cu} > WF{sub Cu{sub 2O}}. - Highlights: • Charge distribution study in Cu, Cu{sub 2}O and CuO nanowires through electrostatic force microscopy • Structural/surface defect role on the charge distribution along the Cu nanowires • Determination of the nanowire work functions by Kelvin probe force microscopy • Three types of nanowires give a broad idea of charge behavior on Cu based-nanowires.

  10. Ordered ZnO/AZO/PAM nanowire arrays prepared by seed-layer-assisted electrochemical deposition

    International Nuclear Information System (INIS)

    Shen, Yu-Min; Pan, Chih-Huang; Wang, Sheng-Chang; Huang, Jow-Lay

    2011-01-01

    An Al-doped ZnO (AZO) seed layer is prepared on the back side of a porous alumina membrane (PAM) substrate by spin coating followed by annealing in a vacuum at 400 °C. Zinc oxide in ordered arrays mediated by a high aspect ratio and an ordered pore array of AZO/PAM is synthesized. The ZnO nanowire array is prepared via a 3-electrode electrochemical deposition process using ZnSO 4 and H 2 O 2 solutions at a potential of − 1 V (versus saturated calomel electrode) and temperatures of 65 and 80 °C. The microstructure and chemical composition of the AZO seed layer and ZnO/AZO/PAM nanowire arrays are characterized by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), and energy-dispersive X-ray spectroscopy (EDS). Results indicate that the ZnO/AZO/PAM nanowire arrays were assembled in the nanochannel of the porous alumina template with diameters of 110–140 nm. The crystallinity of the ZnO nanowires depends on the AZO seed layer during the annealing process. The nucleation and growth process of ZnO/AZO/PAM nanowires are interpreted by the seed-layer-assisted growth mechanism.

  11. Additional compound semiconductor nanowires for photonics

    Science.gov (United States)

    Ishikawa, F.

    2016-02-01

    GaAs related compound semiconductor heterostructures are one of the most developed materials for photonics. Those have realized various photonic devices with high efficiency, e. g., lasers, electro-optical modulators, and solar cells. To extend the functions of the materials system, diluted nitride and bismide has been paid attention over the past decade. They can largely decrease the band gap of the alloys, providing the greater tunability of band gap and strain status, eventually suppressing the non-radiative Auger recombinations. On the other hand, selective oxidation for AlGaAs is a vital technique for vertical surface emitting lasers. That enables precisely controlled oxides in the system, enabling the optical and electrical confinement, heat transfer, and mechanical robustness. We introduce the above functions into GaAs nanowires. GaAs/GaAsN core-shell nanowires showed clear redshift of the emitting wavelength toward infrared regime. Further, the introduction of N elongated the carrier lifetime at room temperature indicating the passivation of non-radiative surface recombinations. GaAs/GaAsBi nanowire shows the redshift with metamorphic surface morphology. Selective and whole oxidations of GaAs/AlGaAs core-shell nanowires produce semiconductor/oxide composite GaAs/AlGaOx and oxide GaOx/AlGaOx core-shell nanowires, respectively. Possibly sourced from nano-particle species, the oxide shell shows white luminescence. Those property should extend the functions of the nanowires for their application to photonics.

  12. Electrodeposition of Cu-doped ZnO nanowire arrays and heterojunction formation with p-GaN for color tunable light emitting diode applications

    International Nuclear Information System (INIS)

    Lupan, O.; Pauporté, T.; Viana, B.; Aschehoug, P.

    2011-01-01

    Highlights: ► High quality copper-doped zinc oxide nanowires were electrochemically grown at low temperature. ► ZnO:Cu nanowires have been epitaxially grown on Mg-doped p-GaN single-crystalline layers. ► The (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction was used to fabricate a light-emitting diode structure. ► The photo- and electroluminescence emission was red-shifted to the violet spectral region compared to pure ZnO. ► The results are of importance for band-gap engineering of ZnO and for color-tunable LED. - Abstract: Copper-doped zinc oxide (ZnO:Cu) nanowires (NWs) were electrochemically deposited at low temperature on fluor-doped tin oxide (FTO) substrates. The electrochemical behavior of the Cu–Zn system for Cu-doped ZnO electrodeposition was studied and the electrochemical reaction mechanism is discussed. The synthesized ZnO arrayed layers were investigated by using SEM, XRD, EDX, photoluminescence and Raman techniques. X-ray diffraction analysis demonstrates a decrease in the lattice parameters of Cu-doped ZnO NWs. Structural analyses show that the nanomaterial is of hexagonal structure with the Cu incorporated in ZnO NWs probably by substituting zinc in the host lattice. Photoluminescence studies on pure and Cu-doped ZnO NWs shows that the near band edge emission is red-shifted by about 5 or 12 nm depending on Cu(II) concentration in the electrolytic bath solution (3 or 6 μmol l −1 ). Cu-doped ZnO NWs have been also epitaxially grown on Mg doped p-GaN single-crystalline layers and the (ZnO:Cu NWs)/(p-GaN:Mg) heterojunction has been used to fabricate a light-emitting diode (LED) structure. The emission was red-shifted to the visible violet spectral region compared to pure ZnO. The present work demonstrates the ability of electrodeposition to produce high quality ZnO nanowires with tailored optical properties by doping. The obtained results are of great importance for further studies on bandgap engineering of ZnO, for color-tunable LED applications

  13. Quantum Dot Sensitized Solar Cells Based on Ternary Metal Oxide Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenyong [Univ. of Wyoming, Laramie, WY (United States); Tang, Jinke [Univ. of Wyoming, Laramie, WY (United States); Dahnovsky, Yuri [Univ. of Wyoming, Laramie, WY (United States); Pikal, Jon M [Univ. of Wyoming, Laramie, WY (United States); Chien, TeYu [Univ. of Wyoming, Laramie, WY (United States)

    2017-11-03

    In Phase I of this project we investigate quantum dot sensitized solar cells (QDSSCs) based on ternary metal oxide nanowires and study the physical and chemical mechanisms that govern device operation. Our research has the following five objectives: (1) synthesis of ternary metal oxide nanowires, (2) synthesis of QDs and exploration of non-solution based QD deposition methods, (3) physical and electro-optical characterizations of fabricated solar devices, (4) device modeling and first-principle theoretical study of transport physics, and (5) investigation of long-term stability issues of QD sensitized solar cells. In Phase II of this project our first major research goal is to investigate magnetically doped quantum dots and related spin polarization effect, which could improve light absorption and suppress electron relaxation in the QDs. We will utilize both physical and chemical methods to synthesize these doped QDs. We will also study magnetically modified nanowires and introduce spin-polarized transport into QDSSCs, and inspect its impact on forward electron injection and back electron transfer processes. Our second goal is to study novel solid-state electrolytes for QDSSCs. Specifically, we will inspect a new type of polymer electrolytes based on a modified polysulfide redox couple, and examine the effect of their electrical properties on QDSSC performance. These solid-state electrolytes could also be used as filler materials for in situ sample fracturing in STM and enable cross-sectional interface examination of QD/nanowire structures. Our third research goal is to examine the interfacial properties such as energy level alignment at QD/nanowire interfaces using the newly developed Cross-sectional Scanning Tunneling Microscopy and Spectroscopy technique for non-cleavable materials. This technique allows a direct probing of band structures and alignment at device interfaces, which could generate important insight into the mechanisms that govern QDSSC operation

  14. Room-temperature solution synthesis of Ag nanoparticle functionalized molybdenum oxide nanowires and their catalytic applications

    International Nuclear Information System (INIS)

    Dong Wenjun; Huang Huandi; Zhu Yanjun; Li Xiaoyun; Wang Xuebin; Li Chaorong; Chen Benyong; Wang Ge; Shi Zhan

    2012-01-01

    A simple chemical solution route for the synthesis of large-scale high-quality Ag nanoparticle functionalized molybdenum oxide nanowire at room temperature has been developed. In the synthesis, the protonated amine was intercalated into the molybdenum bronze layers to reduce the electrostatic force of the lamellar structures, and then the Ag nanoparticle functionalized long nanowires could be easily induced by a redox reaction between a molybdenum oxide–amine intermediate and Ag + at room temperature. The intercalation lamellar structures improved the nucleation and growth of the Ag nanoparticles, with the result that uniform Ag nanoparticles occurred on the surface of the MoO 3 nanowire. In this way Ag nanoparticles with average sizes of around 6 nm, and high-purity nanowires with mean diameter of around 50 nm and with typical lengths of several tens to hundreds of micrometers were produced. The heteronanostructured nanowires were intricately and inseparably connected to each other with hydrogen bonds and/or bridge oxygen atoms and packed together, forming a paper-like porous network film. The Ag–MoO 3 nanowire film performs a promoted catalytic property for the epoxidation of cis-cyclooctene, and the heteronanostructured nanowire film sensor shows excellent sensing performance to hydrogen and oxygen at room temperature. (paper)

  15. Self-catalytic growth of tin oxide nanowires by chemical vapor deposition process

    CSIR Research Space (South Africa)

    Thabethe, BS

    2013-01-01

    Full Text Available The authors report on the synthesis of tin oxide (SnO(sub2)) nanowires by a chemical vapor deposition (CVD) process. Commercially bought SnO nanopowders were vaporized at 1050°C for 30 minutes with argon gas continuously passing through the system...

  16. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition

    International Nuclear Information System (INIS)

    Wang, H-W; Ting, C-F; Hung, M-K; Chiou, C-H; Liu, Y-L; Liu Zongwen; Ratinac, Kyle R; Ringer, Simon P

    2009-01-01

    Dye-sensitized solar cells (DSSCs) show promise as a cheaper alternative to silicon-based photovoltaics for specialized applications, provided conversion efficiency can be maximized and production costs minimized. This study demonstrates that arrays of nanowires can be formed by wet-chemical methods for use as three-dimensional (3D) electrodes in DSSCs, thereby improving photoelectric conversion efficiency. Two approaches were employed to create the arrays of ITO (indium-tin-oxide) nanowires or arrays of ITO/TiO 2 core-shell nanowires; both methods were based on electrophoretic deposition (EPD) within a polycarbonate template. The 3D electrodes for solar cells were constructed by using a doctor-blade for coating TiO 2 layers onto the ITO or ITO/TiO 2 nanowire arrays. A photoelectric conversion efficiency as high as 4.3% was achieved in the DSSCs made from ITO nanowires; this performance was better than that of ITO/TiO 2 core-shell nanowires or pristine TiO 2 films. Cyclic voltammetry confirmed that the reaction current was significantly enhanced when a 3D ITO-nanowire electrode was used. Better separation of charge carriers and improved charge transport, due to the enlarged interfacial area, are thought to be the major advantages of using 3D nanowire electrodes for the optimization of DSSCs.

  17. Pd nanowire arrays as electrocatalysts for ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong; Cheng, Faliang [Dongguan University of Technology, Dongguan 523106 (China); Xu, Changwei; Jiang, Sanping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2007-05-15

    Highly ordered Pd nanowire arrays were prepared by template-electrodeposition method using anodic aluminum oxide template. The Pd nanowire arrays, in this paper, have high electrochemical active surface and show excellent catalytic properties for ethanol electrooxidation in alkaline media. The activity of Pd nanowire arrays for ethanol oxidation is not only higher that of Pd film, but also higher than that of commercial E-TEK PtRu(2:1 by weight)/C. The micrometer sized pores and channels in nanowire arrays act as structure units. They make liquid fuel diffuse into and products diffuse out of the catalysts layer much easier, therefore, the utilization efficiency of catalysts gets higher. Pd nanowire arrays are stable catalysts for ethanol oxidation. The nanowire arrays may be a great potential in direct ethanol fuel cells and ethanol sensors. (author)

  18. Preparation of ciprofloxacin-coated zinc oxide nanoparticles and their antibacterial effects against clinical isolates of Staphylococcus aureus and Escherichia coli

    DEFF Research Database (Denmark)

    Seif, Sepideh; Kazempour, Zarah Bahri; Pourmand, Mohammad Reza

    2011-01-01

    In the present research study, ciprofloxacincoated zinc oxide nanoparticles were prepared using a precipitation method. The nature of interactions between zinc oxide nanoparticles and ciprofloxacin (CAS 85721-33-1) was studied by Fourier transform infrared spectroscopy. The results show...... that the carbonyl group in ciprofloxacin is actively involved in forming chemical - rather than physical - bonds with zinc oxide nanoparticles. Also the antibacterial activity of free zinc oxide nanoparticles and ciprofloxacin-coated zinc oxide nanoparticles have been evaluated against different clinical isolates...... of Staphylococcus aureus and Escherichia coli. The free zinc oxide nanoparticles did not show potent antibacterial activity against all test strains. In contrast, only the low concentrations of ciprofloxacincoated zinc oxide nanoparticles (equivalent to the sub-minimum inhibitory concentrations of pure...

  19. Novel Flame-Based Synthesis of Nanowires for Multifunctional Application

    Science.gov (United States)

    2015-05-13

    pattern (SAED) of SnO2/WO2.9 heterojunction for case 7. TEM (Fig. 14(a)) reveals that the coating on the tungsten- oxide nanowires is actually a...tungsten oxide nanowire,s resulting in radial growth of Zn2SnO4 nanocube/WO2.9 nanowire heterojunction . Furthermore, the combined flame and solution...SECURITY CLASSIFICATION OF: Progress for the project has been made in various areas. Specifically, we report on: (i) flame synthesis of metal- oxide

  20. Coaxial silver nanowire network core molybdenum oxide shell supercapacitor electrodes

    International Nuclear Information System (INIS)

    Yuksel, Recep; Coskun, Sahin; Unalan, Husnu Emrah

    2016-01-01

    We present a new hybrid material composed of molybdenum (IV) oxide (MoO 2 ) shell on highly conducting silver nanowire (Ag NW) core in the network form for the realization of coaxial Ag NW/MoO 2 nanocomposite supercapacitor electrodes. Ag NWs were simply spray coated onto glass substrates to form conductive networks and conformal MoO 2 layer was electrodeposited onto the Ag NW network to create binder-free coaxial supercapacitor electrodes. Combination of Ag NWs and pseudocapacitive MoO 2 generated an enhanced electrochemical energy storage capacity and a specific capacitance of 500.7 F/g was obtained at a current density of 0.25 A/g. Fabricated supercapacitor electrodes showed excellent capacity retention after 5000 cycles. The methods and the design investigated herein open a wide range of opportunities for nanowire based coaxial supercapacitors.

  1. Solution-processed copper-nickel nanowire anodes for organic solar cells

    Science.gov (United States)

    Stewart, Ian E.; Rathmell, Aaron R.; Yan, Liang; Ye, Shengrong; Flowers, Patrick F.; You, Wei; Wiley, Benjamin J.

    2014-05-01

    This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%.This work describes a process to make anodes for organic solar cells from copper-nickel nanowires with solution-phase processing. Copper nanowire films were coated from solution onto glass and made conductive by dipping them in acetic acid. Acetic acid removes the passivating oxide from the surface of copper nanowires, thereby reducing the contact resistance between nanowires to nearly the same extent as hydrogen annealing. Films of copper nanowires were made as oxidation resistant as silver nanowires under dry and humid conditions by dipping them in an electroless nickel plating solution. Organic solar cells utilizing these completely solution-processed copper-nickel nanowire films exhibited efficiencies of 4.9%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01024h

  2. Application of zinc oxide fiber in the photocatalytic degradation of methyl orange

    International Nuclear Information System (INIS)

    Gerchman, D.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2011-01-01

    In this work, zinc oxide fibers were obtained by electrospinning using polyvinylbutyral and zinc nitrate as precursors. After the synthesis, the material was heat treated at different temperatures to evaluate the effect of microstructure on its photocatalytic activity. The fibers obtained after heat treatment were characterized for morphology, phases, crystallinity and photocatalytic activity. The photocatalysis reaction was accompanied by the degradation of methyl orange in the presence of zinc oxide under UV illumination. It was observed that the crystallinity of zincite is a fundamental factor for the control of the photocatalytic activity of this material. (author)

  3. Fluorinated alkyne-derived monolayers on oxide-free silicon nanowires via one-step hydrosilylation

    International Nuclear Information System (INIS)

    Nguyen Minh, Quyen; Pujari, Sidharam P.; Wang, Bin; Wang, Zhanhua; Haick, Hossam; Zuilhof, Han; Rijn, Cees J.M. van

    2016-01-01

    Highlights: • Oxide-free H-terminated silicon nanowires undergo efficient surface modification by reaction with fluorinated 1-alkynes (HC≡C−(CH 2 ) 6 C 8 H 17−x F x ; x = 0–17). • These surface-modified Si NWs are chemically stable under range of conditions (including acid, base). • The surface coating yields efficient electrical passivation as demonstrated by a near-zero electrochemical activity of the surface. - Abstract: Passivation of oxide-free silicon nanowires (Si NWs) by the formation of high-quality fluorinated 1-hexadecyne-derived monolayers with varying fluorine content has been investigated. Alkyl chain monolayers (C 16 H 30−x F x ) with a varying number of fluorine substituents (x = 0, 1, 3, 9, 17) were attached onto hydrogen-terminated silicon (Si−H) surfaces with an effective one-step hydrosilylation. This surface chemistry gives well-defined monolayers on nanowires that have a cylindrical core–shell structure, as characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and static contact angle (SCA) analysis. The monolayers were stable under acidic and basic conditions, as well as under extreme conditions (such as UV exposure), and provide excellent surface passivation, which opens up applications in the fields of field effect transistors, optoelectronics and especially for disease diagnosis.

  4. Dissolution-Induced Nanowire Synthesis on Hot-Dip Galvanized Surface in Supercritical Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Aaretti Kaleva

    2017-07-01

    Full Text Available In this study, we demonstrate a rapid treatment method for producing a needle-like nanowire structure on a hot-dip galvanized sheet at a temperature of 50 °C. The processing method involved only supercritical carbon dioxide and water to induce a reaction on the zinc surface, which resulted in growth of zinc hydroxycarbonate nanowires into flower-like shapes. This artificial patina nanostructure predicts high surface area and offers interesting opportunities for its use in industrial high-end applications. The nanowires can significantly improve paint adhesion and promote electrochemical stability for organic coatings, or be converted to ZnO nanostructures by calcining to be used in various semiconductor applications.

  5. Silver nanowires-templated metal oxide for broadband Schottky photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Malkeshkumar; Kim, Hong-Sik; Kim, Joondong, E-mail: joonkim@inu.ac.kr [Photoelectric and Energy Device Application Lab (PEDAL) and Department of Electrical Engineering, Incheon National University, 119 Academy Rd. Yeonsu, Incheon 406772 (Korea, Republic of); Park, Hyeong-Ho [Applied Device and Material Lab., Device Technology Division, Korea Advanced Nano Fab Center (KANC), Suwon 443270 (Korea, Republic of)

    2016-04-04

    Silver nanowires (AgNWs)-templated transparent metal oxide layer was applied for Si Schottky junction device, which remarked the record fastest photoresponse of 3.4 μs. Self-operating AgNWs-templated Schottky photodetector showed broad wavelength photodetection with high responsivity (42.4 A W{sup −1}) and detectivity (2.75 × 10{sup 15} Jones). AgNWs-templated indium-tin-oxide (ITO) showed band-to-band excitation due to the internal photoemission, resulting in significant carrier collection performances. Functional metal oxide layer was formed by AgNWs-templated from ITO structure. The grown ITO above AgNWs has a cylindrical shape and acts as a thermal protector of AgNWs for high temperature environment without any deformation. We developed thermal stable AgNWs-templated transparent oxide devices and demonstrated the working mechanism of AgNWs-templated Schottky devices. We may propose the high potential of hybrid transparent layer design for various photoelectric applications, including solar cells.

  6. Preparation and Characterization of Tin Oxide Nanowires

    Directory of Open Access Journals (Sweden)

    A. Kabiri

    2013-12-01

    Full Text Available The aim of this research is preparation of SnO2 nanowires by means of Thermal chemical reaction vapor transport deposition (TCRVTD method from SnO powders. The morphology, chemical composition and microstructure properties of the nanowires are characterized using field emission scanning electron microscope (FE-SEM, EDS, and XRD. The XRD diffraction patterns reveal that the SnO2 nanowires have been grown in the form of tetragonal crystal structures with the lattice parameter of a=b=0.440 nm, and c=0.370 nm. The SEM images reveal that SnO2 nanowires have successfully been grown on the Si substrate. The EDS patterns show that only elements of Sn, O and Au are detected. Prior to the VLS process the substrate is coated by a thin layer of Au. The diameter of nanowires is measured to be something between 20-100 nm.

  7. The phonon-assisted tunneling mechanism of conduction in ZnO nanowires and films

    International Nuclear Information System (INIS)

    Pipinys, Povilas; Ohlckers, Per

    2010-01-01

    The phonon-assisted tunneling (PhAT) model is applied for an explanation of the conductivity dependence on temperature and temperature-dependent I-V characteristics measured by other investigators for zinc oxide (ZnO) nanowires and films. Our proposed model describes well not only conductivity dependence on temperature measured in a wide temperature range, but also temperature-dependent I-V data using the same set of parameters characterizing the material under investigation. The values of active phonons energy are estimated from a fit of the conductivity dependence to temperature data with the PhAT theory.

  8. Analysis of nanowire transistor based nitrogen dioxide gas sensor – A simulation study

    Directory of Open Access Journals (Sweden)

    Gaurav Saxena

    2015-06-01

    Full Text Available Sensors sensitivity, selectivity and stability has always been a prime design concern for gas sensors designers. Modeling and simulation of gas sensors aids the designers in improving their performance. In this paper, different routes for the modeling and simulation of a semiconducting gas sensor is presented. Subsequently, by employing one of the route, the response of Zinc Oxide nanowire transistor towards nitrogen dioxide ambient is simulated. In addition to the sensing mechanism, simulation study of gas species desorption by applying a recovery voltage is also presented.

  9. Effects of Zinc Injection on the Cladding Oxide Thickness in the Domestic Nuclear Power Plant

    International Nuclear Information System (INIS)

    Yoon, Hak Kyu; Kim, Hong Jin; Shin, Jung Cheol

    2013-01-01

    The first commercial plant for zinc injection demonstration was Farley-2 in 1994, and the effect of zinc injection was successfully demonstrated. Since then the PWR with zinc injection has been increased, there are about 80 PWR with zinc injection in the world in 2012. Zinc injection at the high duty plant has potential risk of increasing the cladding oxide thickness. Zinc injection doesn't affect the cladding corrosion directly but it may negatively affect crud deposit in the subcooled boiling region of the fuel. So the effect of zinc injection on fuel integrity has been evaluated. For low duty plant it is confirmed that zinc injection doesn't affect the fuel integrity. For high duty plant Callaway in U. S. and Vandellos II in Spain were successfully demonstrated but the experience with zinc injection of high duty plant was still lacking. Thus EPRI recommend the fuel surveillance programs for the high duty plant to apply zinc. The High Duty Core Index (HDCI) of most domestic nuclear power plant is above 150 Btu/ft 2 -gal- .deg. F. Those plants with a HDCI of 150 Btu/ft 2 -gal- .deg. F or greater may be considered as 'high duty'. As aforementioned, the experience with zinc injection of high duty plant was lacking. Thus to apply zinc injection in domestic plant with high duty, prudent approach is needed. In this study the effect of zinc injection in Hanul unit 1 with a HDCI of around 150 Btu/ft 2 -gal- .deg. F was evaluated. And in the next study the effect of zinc injection in the plant of HDCI of around 200 Btu/ft 2 -gal- .deg. F will be evaluated. Zinc injection had not caused any increase in oxide thickness in Hanul unit 1. Most of the oxide thickness measurement data with zinc injection are well within the non-zinc injection database. And the computer code which was developed based on non-zinc injection database well predicts oxide thickness for fuel rod with zinc injection. Thus, it can be concluded that zinc injection doesn't accelerate clad corrosion. Based

  10. Limonia acidissima L. leaf mediated synthesis of zinc oxide nanoparticles: A potent tool against Mycobacterium tuberculosis.

    Science.gov (United States)

    Taranath, Tarikere C; Patil, Bheemanagouda N

    2016-06-01

    The present investigation was undertaken to synthesize zinc oxide nanoparticles using Limonia acidissima L. and to test their efficacy against the growth of Mycobacterium tuberculosis. The formation of zinc oxide nanoparticles was confirmed with UV-visible spectrophotometry. Fourier transform infrared spectroscopy shows the presence of bio-molecules involved in the stabilization of zinc oxide nanoparticles. The shape and size was confirmed with atomic force microscope, X-ray diffraction, and high resolution transmission electron microscope. These nanoparticles were tested for their effect on the growth of M. tuberculosis through the microplate alamar blue assay technique. The UV-visible data reveal that an absorbance peak at 374nm confirms formation of zinc oxide nanoparticles and they are spherical in shape with sizes between 12nm and 53nm. These nanoparticles control the growth of M. tuberculosis at 12.5μg/mL. Phytosynthesis of zinc oxide nanoparticles is a green, eco-friendly technology because it is inexpensive and pollution free. In the present investigation, based on our results we conclude that the aqueous extract of leaves of L. acidissima can be used for the synthesis of zinc oxide nanoparticles. These nanoparticles control the growth of M. tuberculosis and this was confirmed with the microplate alamar blue method. The potential of biogenic zinc oxide nanoparticles may be harnessed as a novel medicine ingredient to combat tuberculosis disease. Copyright © 2016 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  11. X-ray characterization of Au-free grown GaAs nanowires on Si

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas; Davydok, Anton; Pietsch, Ullrich [Universitaet Siegen, Festkoerperphysik (Germany); Breuer, Steffen; Geelhaar, Lutz [Paul-Drude-Institut fuer Festkoerperelektronik, Berlin (Germany)

    2011-07-01

    Semiconductor nanowires (NW) are of particular interest due to the ability to synthesize single-crystalline 1D epitaxial structures and heterostructures in the nanometer range. However, many details of the growth mechanism are not well understood. In this contribution we present a x-ray diffraction study of the early stage of Au-free GaAs nanowire growth on Si(111)-substrates with native oxide using the nano-focus setup available at the ID1 beamline of ESRF. The GaAs NWs were grown by molecular beam epitaxy (MBE), and their formation was induced by Ga droplets. Using a nanometer-sized x-ray beam, size and lattice parameters of individual wires were measured separately. Using asymmetric x-ray diffraction on particular zinc-blende (ZB) and wurtzite (W) sensitive reflections, we show that under the used conditions the NW growth starts with predominantly WZ phases and continues mainly in ZB phase. In addition we can show that the WZ segments of the NWs exhibit a different vertical lattice parameter compared to the zinc-blende segments. A combination of x-ray diffraction from single wires and grazing incidence diffraction shows that the base of the NW is compressively strained along the inplane direction. This strain is released within 20 nm from the substrate-interface.

  12. A randomized, double-blind, placebo-controlled multicenter trial evaluating topical zinc oxide for acute open wounds following pilonidal disease excision

    DEFF Research Database (Denmark)

    Agren, Magnus S; Ostenfeld, Ulla; Kallehave, Finn

    2006-01-01

    The purpose of this randomized, double-blind, placebo-controlled multicenter trial was to compare topical zinc oxide with placebo mesh on secondary healing pilonidal wounds. Sixty-four (53 men) consecutive patients, aged 17-60 years, were centrally randomized to either treatment with 3% zinc oxide...... range 42-71 days) for the zinc and 62 days (55-82 days) for the placebo group (p = 0.32). Topical zinc oxide increased (p zinc levels to 1,540 (1,035-2,265) microM and decreased (p zinc oxide (n = 3) than placebo......-treated patients (n = 12) were prescribed postoperative antibiotics (p = 0.005). Serum-zinc levels increased (p Zinc oxide was not associated with increased pain by the visual analog scale, cellular...

  13. Properties of zinc oxide at low and moderate temperatures

    International Nuclear Information System (INIS)

    Lashkarev, G.V.; Karpina, V.A.; Lazorenko, V.I.; Evtushenko, A.I.; Shteplyuk, I.I.; Khranovskij, V.D.

    2011-01-01

    The properties of zinc oxide as an analogue of gallium nitride are considered in a wide temperature range and the field of its potential applications. The economic and ecologic benefits as well as radiation resistivity of ZnO in comparison with Group III nitrides are indicated. Methods of growth of films and nanostructures of high crystal perfection are proposed. In particular, a magnetron method for layer growth of films is implemented which permits to realize their high structural perfection and considerable thickness inappropriate to some other methods. It is shown that monochromatic UV light may be obtained on excitation of films by short-wave radiation and electrons. This makes it possible to use them in the sources of short-wave radiation. The effectiveness of field emission for ZnO nanostructures and films is demonstrated which opens the prospect for their use in vacuum microelectronics devices. In particular, a phototransistor based on ZnO films doped with nitrogen was fabricated the photosensitivity of which was two orders of magnitude higher than that of conventional detectors. The physical basis of creating blue, green LEDs based on zinc oxide film and its solid solutions with CdO are outlined. The importance of active research in physics, and production procedures of zinc oxide-based devices is underlined.

  14. Enhancement of Si solar cell efficiency using ZnO nanowires with various diameters

    Science.gov (United States)

    Gholizadeh, A.; Reyhani, A.; Parvin, P.; Mortazavi, S. Z.; Mehrabi, M.

    2018-01-01

    Here, Zinc Oxide nanowires are synthesized using thermal chemical vapor deposition of a Zn granulate source and used to enhance a significant Si-solar cell efficiency with simple and low cost method. The nanowires are grown in various O2 flow rates. Those affect the shape, yield, structure and the quality of ZnO nanowires according to scanning electron microscopy and x-ray diffraction analyses. This delineates that the ZnO nanostructure is dependent on the synthesis conditions. The photoluminescence spectroscopy of ZnO indicates optical emission at the Ultra-Violet and blue-green regions whose intensity varies as a function of diameter of ZnO nano-wires. The optical property of ZnO layer is measured by UV-visible and diffuse reflection spectroscopy that demonstrate high absorbance at 280-550 nm. Furthermore, the photovoltaic characterization of ZnO nanowires is investigated based on the drop casting on Si-solar cell. The ZnO nanowires with various diameters demonstrate different effects on the efficiency of Si-solar cells. We have shown that the reduction of the spectral reflectance and down-shifting process as well as the reduction of photon trapping are essential parameters on the efficiency of Si-solar cells. However, the latter is dominated here. In fact, the trapped photons during the electron-hole generation are dominant due to lessening the absorption rate in ZnO nano-wires. The results indicate that the mean diameters reduction of ZnO nanowires is also essential to improve the fill factor. The external and internal quantum efficiency analyses attest the efficiency improvement over the blue region which is related to the key parameters above.

  15. A comparative evaluation of compressive strength of Portland cement with zinc oxide eugenol and Polymer-reinforced cement: an in vitro analysis.

    Science.gov (United States)

    Prakasam, S; Bharadwaj, Prakasam; Loganathan, S C; Prasanth, B Krishna

    2014-01-01

    The purpose of this study is to evaluate the ultimate compressive strength of 50% and 25% Portland cement mixed with Polymer-reinforced zinc oxide eugenol and zinc oxide eugenol cement after 1 hour, 24 hours, and 7 days. One hundred and eighty samples were selected. The samples were made cylindrical of size 6 × 8 mm and were divided into six groups as follows with each group consisting of 10 samples. Group 1: Polymer-reinforced zinc oxide eugenol with 50% Portland cement (PMZNPC 50%) Group 2: Polymer-reinforced zinc oxide eugenol with 25% Portland cement (PMZNPC 25%) Group 3: Polymer-reinforced zinc oxide eugenol with 0% Portland cement (PMZNPC 0%) Group 4: Zinc oxide eugenol with 50% Portland cement (ZNPC 50%) Group 5: Zinc oxide eugenol with 25% Portland cement (ZNPC 25%) Group 6: Zinc oxide eugenol with 0% Portland cement (ZNPC 0%) These samples were further subdivided based on time interval and were tested at 1 hour, 24 hours and at 7 th day. After each period of time all the specimens were tested by vertical CVR loaded frame with capacity of 5 tones/0473-10kan National Physical laboratory, New Delhi and the results were statistically analyzed using ANOVA and Scheffe test. Polymer-reinforced cement with 50% Portland cement, Zinc oxide with 50% Portland cement, Polymer-reinforced cement with 25% Portland cement and Zinc oxide with 25% Portland cement exhibited higher compressive strength when compared to Zinc oxide with 0% Portland cement and Polymer-reinforced cement with 0% Portland cement, at different periods of time. The difference between these two groups were statistically significant (P Portland cement in Zinc oxide eugenol and Polymer-modified zinc oxide cement can be used as core build up material and permanent filling material. It is concluded that 50% and 25% Portland cement in zinc oxide eugenol and polymer-modified zinc oxide eugenol results in higher compressive strength and hence can be used as permanent filling material and core built

  16. Zinc oxide: Connecting theory and experiment

    Directory of Open Access Journals (Sweden)

    Dejan Zagorac

    2013-09-01

    Full Text Available Zinc oxide (ZnO is a material with a great variety of industrial applications including high heat capacity, thermal conductivity and temperature stability. Clearly, it would be of great importance to find new stable and/or metastable modifications of zinc oxide, and investigate the influence of pressure and/or temperature on these structures, and try to connect theoretical results to experimental observations. In order to reach this goal, we performed several research studies, using modern theoretical methods. We have predicted possible crystal structures for ZnO using simulated annealing (SA, followed by investigations of the barrier structure using the threshold algorithm (TA. Finally, we have performed calculations using the prescribed path algorithm (PP, where connections between experimental structures on the energy landscape, and in particular transition states, were investigated in detail. The results were in good agreement with previous theoretical and experimental observations, where available, and we have found several additional (metastable modifications at standard, elevated and negative pressures. Furthermore, we were able to gain new insight into synthesis conditions for the various ZnO modifications and to connect our results to the actual synthesis and transformation routes.

  17. Weatherability and Leach Resistance of Wood Impregnated with Nano-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Nami Kartal S

    2010-01-01

    Full Text Available Abstract Southern pine specimens vacuum-treated with nano-zinc oxide (nano-ZnO dispersions were evaluated for leach resistance and UV protection. Virtually, no leaching occurred in any of the nano-ZnO–treated specimens in a laboratory leach test, even at the highest retention of 13 kg/m3. However, specimens treated with high concentrations of nano-ZnO showed 58–65% chemical depletion after 12 months of outdoor exposure. Protection from UV damage after 12 months exposure is visibly obvious on both exposed and unexposed surfaces compared to untreated controls. Graying was markedly diminished, although checking occurred in all specimens. Nano-zinc oxide treatment at a concentration of 2.5% or greater provided substantial resistance to water absorption following 12 months of outdoor exposure compared to untreated and unweathered southern pine. We conclude that nano-zinc oxide can be utilized in new wood preservative formulations to impart resistance to leaching, water absorption and UV damage of wood.

  18. Sequestration of zinc oxide by fimbrial designer chelators

    DEFF Research Database (Denmark)

    Kjærgaard, Kristian; Sørensen, Jack K; Schembri, Mark

    2000-01-01

    O. Sequences responsible for ZnO adherence were identified, and distinct binding motifs were characterized. The sequences selected exhibited various degrees of affinity and specificity towards ZnO. Competitive binding experiments revealed that the sequences recognized only the oxide form of Zn. Interestingly......, one of the inserts exhibited significant homology to a specific sequence in a putative zinc-containing helicase, which suggests that searches such as this one may aid in identifying binding motifs in nature. The zinc-binding bacteria might have a use in detoxification of metal-polluted water...

  19. Study on the pre-treatment of oxidized zinc ore prior to flotation

    Science.gov (United States)

    He, Dong-sheng; Chen, Yun; Xiang, Ping; Yu, Zheng-jun; Potgieter, J. H.

    2018-02-01

    The pre-treatment of zinc oxide bearing ores with high slime content is important to ensure that resources are utilized optimally. This paper reports an improved process using hydrocyclone de-sliming, dispersion reagents, and magnetic removal of iron minerals for the pre-treatment of zinc oxide ore with a high slime and iron content, and the benefits compared to traditional technologies are shown. In addition, this paper investigates the damage related to fine slime and iron during zinc oxide flotation, the necessity of using hydrocyclone de-sliming together with dispersion reagents to alleviate the influence of slime, and interactions among hydrocyclone de-sliming, reagent dispersion, and magnetic iron removal. Results show that under optimized operating conditions the entire beneficiation technology results in a flotation concentrate with a Zn grade of 34.66% and a recovery of 73.41%.

  20. Formulation of Synthesized Zinc Oxide Nanopowder into Hybrid Beads for Dye Separation

    Directory of Open Access Journals (Sweden)

    H. Shokry Hassan

    2014-01-01

    Full Text Available The sol-gel prepared zinc oxide nanopowder was immobilized onto alginate-polyvinyl alcohol polymer blend to fabricate novel biocomposite beads. Various physicochemical characterization techniques have been utilized to identify the crystalline, morphological, and chemical structures of both the fabricated zinc oxide hybrid beads and their corresponding zinc oxide nanopowder. The thermal stability investigations demonstrate that ZnO nanopowder stability dramatically decreased with its immobilization into the polymeric alginate and PVA matrix. The formulated beads had very strong mechanical strength and they are difficult to be broken up to 1500 rpm. Moreover, these hybrid beads are chemically stable at the acidic media (pH < 7 especially within the pH range of 2–7. Finally, the applicability of the formulated ZnO hybrid beads for C.I. basic blue 41 (BB41 decolorization from aqueous solution was examined.

  1. Effect of Different Post Deposition Annealing Treatments on Properties of Zinc Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Arti Arora

    2010-06-01

    Full Text Available Two different post deposition annealing atmospheres of oxygen and forming gas have been investigated for the improvement of rf sputtered zinc oxide thin films. The results show that type of atmosphere (oxidant o reduction plays an important role in the changes observed in structural, electrical and optical properties. It has been found that the structural properties of rf sputtered zinc oxide films improve in all the annealing environments. The intensity and grain size increases as the annealing temperature increases. It has been found that films become stress free at lowest temperature in oxygen as compare to forming gas annealing. The zinc oxide films annealed in oxygen shows sufficient resistivity associated to high transmittance (83 % characteristics required for MEMS based acoustic devices.

  2. Tunable magnetic nanowires for biomedical and harsh environment applications

    KAUST Repository

    Ivanov, Yurii P.; Alfadhel, Ahmed; Al-Nassar, Mohammed Y.; Perez, Jose E.; Vazquez, Manuel; Chuvilin, Andrey; Kosel, Jü rgen

    2016-01-01

    We have synthesized nanowires with an iron core and an iron oxide (magnetite) shell by a facile low-cost fabrication process. The magnetic properties of the nanowires can be tuned by changing shell thicknesses to yield remarkable new properties and multi-functionality. A multi-domain state at remanence can be obtained, which is an attractive feature for biomedical applications, where a low remanence is desirable. The nanowires can also be encoded with different remanence values. Notably, the oxidation process of single-crystal iron nanowires halts at a shell thickness of 10 nm. The oxide shell of these nanowires acts as a passivation layer, retaining the magnetic properties of the iron core even during high-temperature operations. This property renders these core-shell nanowires attractive materials for application to harsh environments. A cell viability study reveals a high degree of biocompatibility of the core-shell nanowires.

  3. Tunable magnetic nanowires for biomedical and harsh environment applications

    KAUST Repository

    Ivanov, Yurii P.

    2016-04-13

    We have synthesized nanowires with an iron core and an iron oxide (magnetite) shell by a facile low-cost fabrication process. The magnetic properties of the nanowires can be tuned by changing shell thicknesses to yield remarkable new properties and multi-functionality. A multi-domain state at remanence can be obtained, which is an attractive feature for biomedical applications, where a low remanence is desirable. The nanowires can also be encoded with different remanence values. Notably, the oxidation process of single-crystal iron nanowires halts at a shell thickness of 10 nm. The oxide shell of these nanowires acts as a passivation layer, retaining the magnetic properties of the iron core even during high-temperature operations. This property renders these core-shell nanowires attractive materials for application to harsh environments. A cell viability study reveals a high degree of biocompatibility of the core-shell nanowires.

  4. Optical and electro-catalytic properties of bundled ZnO nanowires grown on a ITO substrate

    International Nuclear Information System (INIS)

    Xia Cao; Wang Ning; Wang Long

    2010-01-01

    Bundled wurtzite zinc oxide (ZnO) nanowires were fabricated in a facile manner on an ITO-conducting substrate via a microemulsion route without using any hard template or external electric/magnetic field. Structure and properties of the as-prepared ZnO electrode were investigated using scanning electron microscopy, X-ray diffraction, photoluminescence, Raman spectroscopy, as well as electrochemical tests. The ZnO electrode shows excellent optical and electrocatalytic ability, which may find further applications such as optoelectronics or as sensors as well as other modern industrial areas.

  5. Ciprofloxacin conjugated zinc oxide nanoparticle: A camouflage ...

    Indian Academy of Sciences (India)

    ZNP were small in size with particle size distribution 18–20 nm as obtained ... of zinc oxide and ciprofloxacin is effective against bacterial system. However, no reports are still available on antibacte- ... 20% aqueous TRIS solution was added drop wise to 25 ml .... Phillips CM 200 (Netherlands) at an operational voltage of.

  6. Preparation of Tradescantia pallida-mediated zinc oxide ...

    African Journals Online (AJOL)

    (Commelinaceae) and determine their fluorescent and cytotoxic properties. Methods: ZnO ... Results: The agglomerated ZnO NPs were rod-shaped and had a mean particle size of 25 ± 2 nm. Further ... the leaf material was ground to a powder. Then, .... Figure 1: Zinc oxide nanoparticles (ZnO NPs) X-ray diffraction spectrum.

  7. Nanowire structures and electrical devices

    Science.gov (United States)

    Bezryadin, Alexey; Remeika, Mikas

    2010-07-06

    The present invention provides structures and devices comprising conductive segments and conductance constricting segments of a nanowire, such as metallic, superconducting or semiconducting nanowire. The present invention provides structures and devices comprising conductive nanowire segments and conductance constricting nanowire segments having accurately selected phases including crystalline and amorphous states, compositions, morphologies and physical dimensions, including selected cross sectional dimensions, shapes and lengths along the length of a nanowire. Further, the present invention provides methods of processing nanowires capable of patterning a nanowire to form a plurality of conductance constricting segments having selected positions along the length of a nanowire, including conductance constricting segments having reduced cross sectional dimensions and conductance constricting segments comprising one or more insulating materials such as metal oxides.

  8. Rod-like zinc oxide constructed by nanoparticles: synthesis, characterization and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Jia Zhigang [Chemisty Department, Zhejiang University, Hangzhou 310027 (China); Yue Linhai [Chemisty Department, Zhejiang University, Hangzhou 310027 (China)], E-mail: zjchem_yue@126.com; Zheng Yifan [College of Chemical Engineering and Materials, Zhejiang University of Technology, Hangzhou 310014 (China); Xu Zhude [Chemisty Department, Zhejiang University, Hangzhou 310027 (China)

    2008-01-15

    One-dimensional (1D) rod-like structure of znic oxide constructed by nanoparticles was synthesized by the thermal treatment of zinc oxalate sub-micron rods, which were obtained via alcohol thermal process. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and photoluminescence (PL) spectrum. SEM and TEM show that the morphology of zinc oxalate dihydrate precursor is rod-like, about 400 nm in average diameter and 3 {mu}m in average length. The zinc oxide obtained by annealing zinc oxalate exhibits 1D rod-like structure constructed by ZnO nanoparticles in original direction of the precursor. The room-temperature photoluminescence spectrum of as-prepared ZnO shows UV emission around 398 nm and a diverse visible emission peaks indicating that there are deep level defects in ZnO nanoparticles.

  9. Rod-like zinc oxide constructed by nanoparticles: synthesis, characterization and optical properties

    International Nuclear Information System (INIS)

    Jia Zhigang; Yue Linhai; Zheng Yifan; Xu Zhude

    2008-01-01

    One-dimensional (1D) rod-like structure of znic oxide constructed by nanoparticles was synthesized by the thermal treatment of zinc oxalate sub-micron rods, which were obtained via alcohol thermal process. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and photoluminescence (PL) spectrum. SEM and TEM show that the morphology of zinc oxalate dihydrate precursor is rod-like, about 400 nm in average diameter and 3 μm in average length. The zinc oxide obtained by annealing zinc oxalate exhibits 1D rod-like structure constructed by ZnO nanoparticles in original direction of the precursor. The room-temperature photoluminescence spectrum of as-prepared ZnO shows UV emission around 398 nm and a diverse visible emission peaks indicating that there are deep level defects in ZnO nanoparticles

  10. UV-Assisted Photochemical Synthesis of Reduced Graphene Oxide/ZnO Nanowires Composite for Photoresponse Enhancement in UV Photodetectors

    Directory of Open Access Journals (Sweden)

    Changsong Chen

    2018-01-01

    Full Text Available The weak photon absorption and high recombination rate of electron-hole pairs in disordered zinc oxide nanowires (ZNWs limit its application in UV photodetection. This limitation can be overcome by introducing graphene sheets to the ZNWs. Herein we report a high-performance photodetector based on one-dimensional (1D wide band-gap semiconductor disordered ZNWs composited with reduced graphene oxide (RGO for ultraviolet (UV photoresponse enhancement. The RGO/ZNWs composites have been successfully synthetized through UV-assisted photochemical reduction of GO in ZNWs suspension. The material characterizations in morphology, Raman scattering, and Ultraviolet-visible light absorption verified the formation of graphene sheets attached in ZNWs network and the enhancement of UV absorption due to the introduction of graphene. In comparison with photodetectors based on pure ZNWs, the photodetectors based on RGO/ZNWs composite exhibit enhanced photoresponse with photocurrent density of 5.87 mA·cm−2, on/off current ratio of 3.01 × 104, and responsivity of 1.83 A·W−1 when a UV irradiation of 3.26 mW·cm−2 and 1.0 V bias were used. Theory analysis is also presented to get insight into the inherent mechanisms of separation and transportation of photo-excited carriers in RGO/ZNWs composite.

  11. UV-Assisted Photochemical Synthesis of Reduced Graphene Oxide/ZnO Nanowires Composite for Photoresponse Enhancement in UV Photodetectors.

    Science.gov (United States)

    Chen, Changsong; Zhou, Peng; Wang, Na; Ma, Yang; San, Haisheng

    2018-01-05

    The weak photon absorption and high recombination rate of electron-hole pairs in disordered zinc oxide nanowires (ZNWs) limit its application in UV photodetection. This limitation can be overcome by introducing graphene sheets to the ZNWs. Herein we report a high-performance photodetector based on one-dimensional (1D) wide band-gap semiconductor disordered ZNWs composited with reduced graphene oxide (RGO) for ultraviolet (UV) photoresponse enhancement. The RGO/ZNWs composites have been successfully synthetized through UV-assisted photochemical reduction of GO in ZNWs suspension. The material characterizations in morphology, Raman scattering, and Ultraviolet-visible light absorption verified the formation of graphene sheets attached in ZNWs network and the enhancement of UV absorption due to the introduction of graphene. In comparison with photodetectors based on pure ZNWs, the photodetectors based on RGO/ZNWs composite exhibit enhanced photoresponse with photocurrent density of 5.87 mA·cm -2 , on/off current ratio of 3.01 × 10⁴, and responsivity of 1.83 A·W -1 when a UV irradiation of 3.26 mW·cm -2 and 1.0 V bias were used. Theory analysis is also presented to get insight into the inherent mechanisms of separation and transportation of photo-excited carriers in RGO/ZNWs composite.

  12. Effects of Zinc Injection on the Cladding Oxide Thickness in the Domestic Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hak Kyu; Kim, Hong Jin; Shin, Jung Cheol [KEPCO Nuclear Fuel Co. Ltd., Daejeon (Korea, Republic of)

    2013-10-15

    The first commercial plant for zinc injection demonstration was Farley-2 in 1994, and the effect of zinc injection was successfully demonstrated. Since then the PWR with zinc injection has been increased, there are about 80 PWR with zinc injection in the world in 2012. Zinc injection at the high duty plant has potential risk of increasing the cladding oxide thickness. Zinc injection doesn't affect the cladding corrosion directly but it may negatively affect crud deposit in the subcooled boiling region of the fuel. So the effect of zinc injection on fuel integrity has been evaluated. For low duty plant it is confirmed that zinc injection doesn't affect the fuel integrity. For high duty plant Callaway in U. S. and Vandellos II in Spain were successfully demonstrated but the experience with zinc injection of high duty plant was still lacking. Thus EPRI recommend the fuel surveillance programs for the high duty plant to apply zinc. The High Duty Core Index (HDCI) of most domestic nuclear power plant is above 150 Btu/ft{sup 2}-gal- .deg. F. Those plants with a HDCI of 150 Btu/ft{sup 2}-gal- .deg. F or greater may be considered as 'high duty'. As aforementioned, the experience with zinc injection of high duty plant was lacking. Thus to apply zinc injection in domestic plant with high duty, prudent approach is needed. In this study the effect of zinc injection in Hanul unit 1 with a HDCI of around 150 Btu/ft{sup 2}-gal- .deg. F was evaluated. And in the next study the effect of zinc injection in the plant of HDCI of around 200 Btu/ft{sup 2}-gal- .deg. F will be evaluated. Zinc injection had not caused any increase in oxide thickness in Hanul unit 1. Most of the oxide thickness measurement data with zinc injection are well within the non-zinc injection database. And the computer code which was developed based on non-zinc injection database well predicts oxide thickness for fuel rod with zinc injection. Thus, it can be concluded that zinc injection doesn

  13. Fluorinated alkyne-derived monolayers on oxide-free silicon nanowires via one-step hydrosilylation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh, Quyen [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands); Nanosens, IJsselkade 7, 7201 HB Zutphen (Netherlands); Pujari, Sidharam P. [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands); Wang, Bin [The Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 3200003 (Israel); Wang, Zhanhua [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands); Haick, Hossam [The Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion – Israel Institute of Technology, Haifa 3200003 (Israel); Zuilhof, Han [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands); Rijn, Cees J.M. van, E-mail: cees.vanrijn@wur.nl [Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen (Netherlands)

    2016-11-30

    Highlights: • Oxide-free H-terminated silicon nanowires undergo efficient surface modification by reaction with fluorinated 1-alkynes (HC≡C−(CH{sub 2}){sub 6}C{sub 8}H{sub 17−x}F{sub x}; x = 0–17). • These surface-modified Si NWs are chemically stable under range of conditions (including acid, base). • The surface coating yields efficient electrical passivation as demonstrated by a near-zero electrochemical activity of the surface. - Abstract: Passivation of oxide-free silicon nanowires (Si NWs) by the formation of high-quality fluorinated 1-hexadecyne-derived monolayers with varying fluorine content has been investigated. Alkyl chain monolayers (C{sub 16}H{sub 30−x}F{sub x}) with a varying number of fluorine substituents (x = 0, 1, 3, 9, 17) were attached onto hydrogen-terminated silicon (Si−H) surfaces with an effective one-step hydrosilylation. This surface chemistry gives well-defined monolayers on nanowires that have a cylindrical core–shell structure, as characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and static contact angle (SCA) analysis. The monolayers were stable under acidic and basic conditions, as well as under extreme conditions (such as UV exposure), and provide excellent surface passivation, which opens up applications in the fields of field effect transistors, optoelectronics and especially for disease diagnosis.

  14. Single ZnO nanowire-PZT optothermal field effect transistors.

    Science.gov (United States)

    Hsieh, Chun-Yi; Lu, Meng-Lin; Chen, Ju-Ying; Chen, Yung-Ting; Chen, Yang-Fang; Shih, Wan Y; Shih, Wei-Heng

    2012-09-07

    A new type of pyroelectric field effect transistor based on a composite consisting of single zinc oxide nanowire and lead zirconate titanate (ZnO NW-PZT) has been developed. Under infrared (IR) laser illumination, the transconductance of the ZnO NW can be modulated by optothermal gating. The drain current can be increased or decreased by IR illumination depending on the polarization orientation of the Pb(Zr(0.3)Ti(0.7))O(3) (PZT) substrate. Furthermore, by combining the photocurrent behavior in the UV range and the optothermal gating effect in the IR range, the wide spectrum of response of current by light offers a variety of opportunities for nanoscale optoelectronic devices.

  15. Preparation and characterization of a zinc oxide nanopowder supported onto inorganic clay

    International Nuclear Information System (INIS)

    Hassan, Mohamed; Afify, Ahmed Sabry; Tulliani, Jean-Marc; Ataalla, Mohamed; Staneva, Anna; Dimitriev, Yanko; Mohammed, Amr

    2016-01-01

    Zinc oxide nanoparticles are obtained by a wet chemical method using zinc sulphate as a raw material. Doping sepiolite, micro-fibrous inorganic clay, with ZnO after precipitation under basic conditions and subsequent thermal treatment is investigated as both materials are abundant. They are used for the development of humidity and gas sensors of great environmental importance. The particle size distribution, the morphology and the composition of the powder samples are characterized by X-Ray diffraction accompanied by Field Emission Scanning Electron Microscopy and High Resolution-Transmission Electron Microscopy techniques. The data obtained confirm the formation of zinc oxide nanoparticles of a size of 10 nm on the modified sepiolite grains. Keywords: ZnO, sepiolite, nanoparticles, doping.

  16. Extracellular synthesis of zinc oxide nanoparticle using seaweeds of gulf of Mannar, India

    Science.gov (United States)

    2013-01-01

    Background The biosynthesis of metal nanoparticles by marine resources is thought to be clean, nontoxic, and environmentally acceptable “green procedures”. Marine ecosystems are very important for the overall health of both marine and terrestrial environments. The use of natural sources like Marine biological resources essential for nanotechnology. Seaweeds constitute one of the commercially important marine living renewable resources. Seaweeds such as green Caulerpa peltata, red Hypnea Valencia and brown Sargassum myriocystum were used for synthesis of Zinc oxide nanoparticles. Result The preliminary screening of physico-chemical parameters such as concentration of metals, concentration of seaweed extract, temperature, pH and reaction time revealed that one seaweed S. myriocystum were able to synthesize zinc oxide nanoparticles. It was confirmed through the, initial colour change of the reaction mixture and UV visible spectrophotometer. The extracellular biosynthesized clear zinc oxide nanoparticles size 36 nm through characterization technique such as DLS, AFM, SEM –EDX, TEM, XRD and FTIR. The biosynthesized ZnO nanoparticles are effective antibacterial agents against Gram-positive than the Gram-negative bacteria. Conclusion Based on the FTIR results, fucoidan water soluble pigments present in S. myriocystum leaf extract is responsible for reduction and stabilization of zinc oxide nanoparticles. by this approach are quite stable and no visible changes were observed even after 6 months. These soluble elements could have acted as both reduction and stabilizing agents preventing the aggregation of nanoparticles in solution, extracellular biological synthesis of zinc oxide nanoparticles of size 36 nm. PMID:24298944

  17. Efficiency calculations and optimization analysis of a solar reactor for the high temperature step of the zinc/zinc-oxide thermochemical redox cycle

    Energy Technology Data Exchange (ETDEWEB)

    Haussener, S.

    2007-03-15

    A solar reactor for the first step of the zinc/zinc-oxide thermochemical redox cycle is analysed and dimensioned in terms of maximization of efficiency and reaction conversion. Zinc-oxide particles carried in an inert carrier gas, in our case argon, enter the reactor in absorber tubes and are heated by concentrated solar radiation mainly due to radiative heat transfer. The particles dissociate and, in case of complete conversion, a gas mixture of argon, zinc and oxygen leaves the reactor. The aim of this study is to find an optimal design of the reactor regarding efficiency, materials and economics. The number of absorber tubes and their dimensions, the cavity dimension and its material as well as the operating conditions should be determined. Therefore 2D and 3D simulations of an 8 kW reactor are implemented. The gases are modeled as ideal gases with temperature-dependent properties. Absorption and scattering of the particle gas mixture are calculated by Mie-theory. Radiative heat transfer is included in the simulation and implemented with the aid of the discrete ordinates (DO) method. The mixture is modeled as ideal mixture and the reaction with an Arrhenius-type ansatz. Temperature distribution, reaction efficiency (heat used for zinc-oxide reaction divided by input) and tube efficiency (heat going into absorber tubes divided by input) as well as reaction conversion are analyzed to find the most promising reactor design. The results show that the most significant factors for efficiencies, conversion and absorber fluid temperature are concentration of the solar incoming radiation, zinc-oxide mass flow, the number of tubes and their dimension. Higher concentration leads to solely positive effects. Zinc-oxide mass flow variations indicate the existence of an optimal flow rate for each reactor design which maximizes efficiencies and conversion. Higher zinc-oxide mass flow leads, on one hand, to higher tube efficiency but on the other hand to lower temperatures in

  18. Mesoporous nickel oxide nanowires: hydrothermal synthesis, characterisation and applications for lithium-ion batteries and supercapacitors with superior performance.

    Science.gov (United States)

    Su, Dawei; Kim, Hyun-Soo; Kim, Woo-Seong; Wang, Guoxiu

    2012-06-25

    Mesoporous nickel oxide nanowires were synthesized by a hydrothermal reaction and subsequent annealing at 400 °C. The porous one-dimensional nanostructures were analysed by field-emission SEM, high-resolution TEM and N(2) adsorption/desorption isotherm measurements. When applied as the anode material in lithium-ion batteries, the as-prepared mesoporous nickel oxide nanowires demonstrated outstanding electrochemical performance with high lithium storage capacity, satisfactory cyclability and an excellent rate capacity. They also exhibited a high specific capacitance of 348 F g(-1) as electrodes in supercapacitors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens.

    Science.gov (United States)

    Shaalan, Mohamed Ibrahim; El-Mahdy, Magdy Mohamed; Theiner, Sarah; El-Matbouli, Mansour; Saleh, Mona

    2017-07-21

    Antibiotic resistance is a global issue that threatens public health. The excessive use of antibiotics contributes to this problem as the genes of antibiotic resistance can be transferred between the bacteria in humans, animals and aquatic organisms. Metallic nanoparticles could serve as future substitutes for some conventional antibiotics because of their antimicrobial activity. The aim of this study was to evaluate the antimicrobial effects of silver and zinc oxide nanoparticles against major fish pathogens and assess their safety in vitro. Silver nanoparticles were synthesized by chemical reduction and characterized with UV-Vis spectroscopy, transmission electron microscopy and zeta sizer. The concentrations of silver and zinc oxide nanoparticles were measured using inductively coupled plasma-mass spectrometry. Subsequently, silver and zinc oxide nanoparticles were tested for their antimicrobial activity against Aeromonas hydrophila, Aeromonas salmonicida subsp. salmonicida, Edwardsiella ictaluri, Edwardsiella tarda, Francisella noatunensis subsp. orientalis, Yersinia ruckeri and Aphanomyces invadans and the minimum inhibitory concentrations were determined. MTT assay was performed on eel kidney cell line (EK-1) to determine the cell viability after incubation with nanoparticles. The interaction between silver nanoparticles and A. salmonicida was investigated by transmission electron microscopy. The tested nanoparticles exhibited marked antimicrobial activity. Silver nanoparticles inhibited the growth of both A. salmonicida and A. invadans at a concentration of 17 µg/mL. Zinc oxide nanoparticles inhibited the growth of A. salmonicida, Y. ruckeri and A. invadans at concentrations of 15.75, 31.5 and 3.15 µg/mL respectively. Silver nanoparticles showed higher cell viability when compared to zinc oxide nanoparticles in the MTT assay. Transmission electron microscopy showed the attachment of silver nanoparticles to the bacterial membrane and disruption of its

  20. pH-Dependent Toxicity of High Aspect Ratio ZnO Nanowires in Macrophages Due to Intracellular Dissolution

    KAUST Repository

    H. Müller, Karin

    2010-11-23

    High-aspect ratio ZnO nanowires have become one of the most promising products in the nanosciences within the past few years with a multitude of applications at the interface of optics and electronics. The interaction of zinc with cells and organisms is complex, with both deficiency and excess causing severe effects. The emerging significance of zinc for many cellular processes makes it imperative to investigate the biological safety of ZnO nanowires in order to guarantee their safe economic exploitation. In this study, ZnO nanowires were found to be toxic to human monocyte macrophages (HMMs) at similar concentrations as ZnCl2. Confocal microscopy on live cells confirmed a rise in intracellular Zn2+ concentrations prior to cell death. In vitro, ZnO nanowires dissolved very rapidly in a simulated body fluid of lysosomal pH, whereas they were comparatively stable at extracellular pH. Bright-field transmission electron microscopy (TEM) showed a rapid macrophage uptake of ZnO nanowire aggregates by phagocytosis. Nanowire dissolution occurred within membrane-bound compartments, triggered by the acidic pH of the lysosomes. ZnO nanowire dissolution was confirmed by scanning electron microscopy/energy-dispersive X-ray spectrometry. Deposition of electron-dense material throughout the ZnO nanowire structures observed by TEM could indicate adsorption of cellular components onto the wires or localized zinc-induced protein precipitation. Our study demonstrates that ZnO nanowire toxicity in HMMs is due to pH-triggered, intracellular release of ionic Zn2+ rather than the high-aspect nature of the wires. Cell death had features of necrosis as well as apoptosis, with mitochondria displaying severe structural changes. The implications of these findings for the application of ZnO nanowires are discussed. © 2010 American Chemical Society.

  1. Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires

    Directory of Open Access Journals (Sweden)

    Minggang Xia

    2014-05-01

    Full Text Available The electrical and thermal conductivities are measured for individual zinc oxide (ZnO nanowires with and without gallium ion (Ga+ implantation at room temperature. Our results show that Ga+ implantation enhances electrical conductivity by one order of magnitude from 1.01 × 103 Ω−1m−1 to 1.46 × 104 Ω−1m−1 and reduces its thermal conductivity by one order of magnitude from 12.7 Wm−1K−1 to 1.22 Wm−1K−1 for ZnO nanowires of 100 nm in diameter. The measured thermal conductivities are in good agreement with those in theoretical simulation. The increase of electrical conductivity origins in electron donor doping by Ga+ implantation and the decrease of thermal conductivity is due to the longitudinal and transverse acoustic phonons scattering by Ga+ point scattering. For pristine ZnO nanowires, the thermal conductivity decreases only two times when its diameter reduces from 100 nm to 46 nm. Therefore, Ga+-implantation may be a more effective method than diameter reduction in improving thermoelectric performance.

  2. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus

    Directory of Open Access Journals (Sweden)

    Shahin Kasraei

    2014-05-01

    Full Text Available Objectives Recurrent caries was partly ascribed to lack of antibacterial properties in composite resin. Silver and zinc nanoparticles are considered to be broad-spectrum antibacterial agents. The aim of the present study was to evaluate the antibacterial properties of composite resins containing 1% silver and zinc-oxide nanoparticles on Streptococcus mutans and Lactobacillus. Materials and Methods Ninety discoid tablets containing 0%, 1% nano-silver and 1% nano zinc-oxide particles were prepared from flowable composite resin (n = 30. The antibacterial properties of composite resin discs were evaluated by direct contact test. Diluted solutions of Streptococcus mutans (PTCC 1683 and Lactobacillus (PTCC 1643 were prepared. 0.01 mL of each bacterial species was separately placed on the discs. The discs were transferred to liquid culture media and were incubated at 37℃ for 8 hr. 0.01 mL of each solution was cultured on blood agar and the colonies were counted. Data was analyzed with Kruskall-Wallis and Mann-Whitney U tests. Results Composites containing nano zinc-oxide particles or silver nanoparticles exhibited higher antibacterial activity against Streptococcus mutans and Lactobacillus compared to the control group (p < 0.05. The effect of zinc-oxide on Streptococcus mutans was significantly higher than that of silver (p < 0.05. There were no significant differences in the antibacterial activity against Lactobacillus between composites containing silver nanoparticles and those containing zinc-oxide nanoparticles. Conclusions Composite resins containing silver or zinc-oxide nanoparticles exhibited antibacterial activity against Streptococcus mutans and Lactobacillus.

  3. Assessing the antimicrobial activity of zinc oxide thin films using disk diffusion and biofilm reactor

    International Nuclear Information System (INIS)

    Gittard, Shaun D.; Perfect, John R.; Monteiro-Riviere, Nancy A.; Wei Wei; Jin Chunming; Narayan, Roger J.

    2009-01-01

    The electronic and chemical properties of semiconductor materials may be useful in preventing growth of microorganisms. In this article, in vitro methods for assessing microbial growth on semiconductor materials will be presented. The structural and biological properties of silicon wafers coated with zinc oxide thin films were evaluated using atomic force microscopy, X-ray photoelectron spectroscopy, and MTT viability assay. The antimicrobial properties of zinc oxide thin films were established using disk diffusion and CDC Biofilm Reactor studies. Our results suggest that zinc oxide and other semiconductor materials may play a leading role in providing antimicrobial functionality to the next-generation medical devices

  4. Oxygen deficiency in MoO{sub 3} polycrystalline nanowires and nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Varlec, Ana, E-mail: ana.varlec@ijs.si [Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Arčon, Denis [Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana, Jadranska cesta 19, SI-1000 Ljubljana (Slovenia); Škapin, Srečo D. [Advanced Materials Department, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Remškar, Maja [Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2016-02-15

    We report on the synthesis of polycrystalline molybdenum oxide (MoO{sub 3}) nanowires via oxidation of molybdenum-sulfur-iodine (Mo{sub 6}S{sub 2}I{sub 8}) nanowires. This unique synthesis route results in an interesting morphology comprising porous nanowires and nanotubes. We found the nanowires to have the orthorhombic MoO{sub 3} structure. The structure is slightly oxygen deficient which results in the appearance of a new resonant Raman band (1004 cm{sup −1}) and paramagnetic defects (Mo{sup 5+}) of both the point and crystallographic shear plane nature. - Highlights: • Polycrystalline MoO{sub 3} nanowires were obtained via oxidation of Mo{sub 6}S{sub 2}I{sub 8} nanowires. • Nanowires are porous and tubular with either filled or empty interior. • Nanowires are slightly oxygen deficient which leads to a new Raman band.

  5. Improving Technology And Setting-Up A Production Line For High Quality Zinc Oxide (99.5%) With A Capacity Of 150 Ton/Year By Reduction-Oxidation Process

    International Nuclear Information System (INIS)

    Pham Minh Tuan; Tran The Dinh; Tran Ngoc Vuong; Tuong Duy Nhan; Tran Trung Son; Le Huu Thiep; Nguyen Trung Dung; Le Thi Hong; Luong Manh Hung; Bui Huy Cuong

    2014-01-01

    Zinc oxide is used not only for the rubber industry, but also in many other industries such as pigments, ceramics, cosmetics etc. On the basis of references on international scientific researches and practical activities for the production of zinc oxide in our country, we have carried out additional research and testing to establish a zinc oxide production line for preparation of high quality (99.5%) product by treating the industrial zinc containing waste to obtain required composition materials [Zn] >50%; [Pb] < 0.3%; [Cl]/[PbO] < 0.2 for reduction-oxidation processes using reverberatory furnace. (author)

  6. Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor

    Science.gov (United States)

    Kumar, Rajeev; Kushwaha, Angad S.; Srivastava, Monika; Mishra, H.; Srivastava, S. K.

    2018-03-01

    In the present communication, a highly sensitive surface plasmon resonance (SPR) biosensor with Kretschmann configuration having alternate layers, prism/zinc oxide/silver/gold/graphene/biomolecules (ss-DNA) is presented. The optimization of the proposed configuration has been accomplished by keeping the constant thickness of zinc oxide (32 nm), silver (32 nm), graphene (0.34 nm) layer and biomolecules (100 nm) for different values of gold layer thickness (1, 3 and 5 nm). The sensitivity of the proposed SPR biosensor has been demonstrated for a number of design parameters such as gold layer thickness, number of graphene layer, refractive index of biomolecules and the thickness of biomolecules layer. SPR biosensor with optimized geometry has greater sensitivity (66 deg/RIU) than the conventional (52 deg/RIU) as well as other graphene-based (53.2 deg/RIU) SPR biosensor. The effect of zinc oxide layer thickness on the sensitivity of SPR biosensor has also been analysed. From the analysis, it is found that the sensitivity increases significantly by increasing the thickness of zinc oxide layer. It means zinc oxide intermediate layer plays an important role to improve the sensitivity of the biosensor. The sensitivity of SPR biosensor also increases by increasing the number of graphene layer (upto nine layer).

  7. Effect of gamma radiation and nano-zinc oxide content on the properties of recycled polycarbonate

    International Nuclear Information System (INIS)

    Carvalho, Ana Luiza F.; Mendes, Luis C.; Cestari, Sibele P.

    2015-01-01

    In order to promote the barrier action to the ultraviolet radiation and increase of mechanical characteristics, nanocomposites of recycled polycarbonate (rPC) and nano-zinc oxide (nZnO) containing 1, 2 and 3 % (wt/wt) of nano oxide were prepared. Since for obtaining nanocomposites and irradiating polymers are promising tools and attractive for improving the material performance, the effects of nano-zinc oxide and gamma radiation, at doses ranged from 10 to 50 kGy, were evaluated in terms of thermal characteristics of the rPC. The rPC/nZnO nanocomposites were characterized by thermogravimetric analysis (TGA), differential exploratory calorimetry (DSC), infrared spectrometry (FT-IR) and wide angle X-ray diffraction (WAXD). There was a progressive decrease of the T_g as function of gamma dosage and nano-zinc oxide content. Initially, the T_o_n_s_e_t and T_m_a_x decayed as function of gamma dosage but a recovery was observed. The amount of nano-zinc oxide induced a decreasing of T_o_n_s_e_t and T_m_a_x. (author)

  8. Porous Silicon Nanowires

    Science.gov (United States)

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-01-01

    In this minreview, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures — single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion battery, gas sensor and drug delivery. PMID:21869999

  9. Charge transport in dye-sensibilized porous zinc oxide films; Ladungstransport in farbstoffsensibilisierten poroesen Zinkoxidfilmen

    Energy Technology Data Exchange (ETDEWEB)

    Reemts, J.

    2006-05-18

    During the last decades, zinc oxide has attracted a lot of attention as an important material in various electrical, chemical, and optical applications. In the present work results are discussed gained from investigations of highly porous electrochemically deposited zinc oxide, which is a promising electrode material both in the area of solar energy conversion and sensor technology. The films were prepared by adding detergents during the electrodeposition process. The detergents have a structure-directing influence during the film deposition and, therefore, on the morphology of the films. The obtained electrodes can easily be sensitized for light or different chemicals by a simple adsorption of different molecules. In the present work I discuss the fundamental charge transport properties of electrochemically deposited zinc oxide films. Temperature-dependent measurements of the current-voltage characteristics are carried out and the spectral response of the photoconductivity is investigated. In order to understand the charge transport properties of this highly porous material, it is necessary to get a deeper insight in the electrode morphology. Therefore, different optical and scanning probe microscopy methods are used to characterize the inner structure of the electrodes. The electrical conductivity of the zinc oxide films can be seen as a thermally activated process, which can be explained by electronic transitions from the valence band of the zinc oxide to two shallow impurity levels. The current-voltage characteristic unveils a nonlinear behavior which can be explained by a space-charge-limited current model with traps distributed in energy. Upon excitation with different wavelengths, the conductivity of the zinc oxide increases already under sub-band gap illumination due to widely distributed trap states within the band gap. The transients of the photoconductivity follow a stretched exponential law with time scales in the range of several hours, either if the

  10. Synthesis and characterization of zinc oxide thin films prepared by ...

    African Journals Online (AJOL)

    Zinc oxide thin films were prepared with ammonia/ammonium chloride buffer as the reaction moderating agent in the chemical bath deposition technique. An observable color change during the reaction due to variations in the reactants concentration indicated the existence of the cupric (CuO) and cuprous (Cu2O) oxides ...

  11. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings.

    Science.gov (United States)

    Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun

    2015-11-01

    We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.

  12. Transparent conductive zinc oxide basics and applications in thin film solar cells

    CERN Document Server

    Klein, Andreas; Rech, Bernd

    2008-01-01

    Zinc oxide (ZnO) belongs to the class of transparent conducting oxides which can be used as transparent electrodes in electronic devices or heated windows. In this book the material properties of, the deposition technologies for, and applications of zinc oxide in thin film solar cells are described in a comprehensive manner. Structural, morphological, optical and electronic properties of ZnO are treated in this review. The editors and authors of this book are specialists in deposition, analysis and fabrication of thin-film solar cells and especially of ZnO. This book is intended as an overview and a data collection for students, engineers and scientist.

  13. Nickel-cobalt layered double hydroxide anchored zinc oxide nanowires grown on carbon fiber cloth for high-performance flexible pseudocapacitive energy storage devices

    KAUST Repository

    Shakir, Imran; Shahid, Muhammad; Rana, Usman Ali; Nashef, Inas M Al; Hussain, Rafaqat

    2014-01-01

    Nickel-cobalt layered double hydroxide (Ni-Co LDH) nanoflakes-ZnO nanowires hybrid array has been directly synthesized on a carbon cloth substrate by a facile cost-effective two-step hydrothermal route. As electrode materials for flexible pseudocapacitors, Ni-Co LDH nanoflakes-ZnO nanowires hybrid array exhibits a significantly enhanced specific capacitance of 1927 Fg-1, which is a ∼1.8 time greater than pristine Ni-Co LDH nanoflakes. The synthesized Ni-Co LDH nanoflakes-ZnO nanowires hybrid array shows a maximum energy density of 45.55 Whkg-1 at a power density of 46.15 kWkg -1, which is 35% higher than the pristine Ni-Co LDH nanoflakes electrode. Moreover, Ni-Co LDH nanoflakes-ZnO nanowires hybrid array exhibit excellent excellent rate capability (80.3% capacity retention at 30 Ag -1) and cycling stability (only 3.98% loss after 3000 cycles), due to the significantly improved faradaic redox reaction. © 2014 Elsevier Ltd.

  14. Nickel-cobalt layered double hydroxide anchored zinc oxide nanowires grown on carbon fiber cloth for high-performance flexible pseudocapacitive energy storage devices

    KAUST Repository

    Shakir, Imran

    2014-05-01

    Nickel-cobalt layered double hydroxide (Ni-Co LDH) nanoflakes-ZnO nanowires hybrid array has been directly synthesized on a carbon cloth substrate by a facile cost-effective two-step hydrothermal route. As electrode materials for flexible pseudocapacitors, Ni-Co LDH nanoflakes-ZnO nanowires hybrid array exhibits a significantly enhanced specific capacitance of 1927 Fg-1, which is a ∼1.8 time greater than pristine Ni-Co LDH nanoflakes. The synthesized Ni-Co LDH nanoflakes-ZnO nanowires hybrid array shows a maximum energy density of 45.55 Whkg-1 at a power density of 46.15 kWkg -1, which is 35% higher than the pristine Ni-Co LDH nanoflakes electrode. Moreover, Ni-Co LDH nanoflakes-ZnO nanowires hybrid array exhibit excellent excellent rate capability (80.3% capacity retention at 30 Ag -1) and cycling stability (only 3.98% loss after 3000 cycles), due to the significantly improved faradaic redox reaction. © 2014 Elsevier Ltd.

  15. Heterojunction metal-oxide-metal Au-Fe{sub 3}O{sub 4}-Au single nanowire device for spintronics

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, K. M., E-mail: mrkongara@boisestate.edu; Punnoose, Alex; Hanna, Charles [Department of Physics, Boise State University, Boise, Idaho 83725 (United States); Padture, Nitin P. [School of Engineering, Brown University, Providence, Rhode Island 02912 (United States)

    2015-05-07

    In this report, we present the synthesis of heterojunction magnetite nanowires in alumina template and describe magnetic and electrical properties from a single nanowire device for spintronics applications. Heterojunction Au-Fe-Au nanowire arrays were electrodeposited in porous aluminum oxide templates, and an extensive and controlled heat treatment process converted Fe segment to nanocrystalline cubic magnetite phase with well-defined Au-Fe{sub 3}O{sub 4} interfaces as confirmed by the transmission electron microscopy. Magnetic measurements revealed Verwey transition shoulder around 120 K and a room temperature coercive field of 90 Oe. Current–voltage (I-V) characteristics of a single Au-Fe{sub 3}O{sub 4}-Au nanowire have exhibited Ohmic behavior. Anomalous positive magnetoresistance of about 0.5% is observed on a single nanowire, which is attributed to the high spin polarization in nanowire device with pure Fe{sub 3}O{sub 4} phase and nanocontact barrier. This work demonstrates the ability to preserve the pristine Fe{sub 3}O{sub 4} and well defined electrode contact metal (Au)–magnetite interface, which helps in attaining high spin polarized current.

  16. Determining adaptive and adverse oxidative stress responses in human bronical epithelial cells exposed to zinc

    Science.gov (United States)

    Determining adaptive and adverse oxidative stress responses in human bronchial epithelial cells exposed to zincJenna M. Currier1,2, Wan-Yun Cheng1, Rory Conolly1, Brian N. Chorley1Zinc is a ubiquitous contaminant of ambient air that presents an oxidant challenge to the human lung...

  17. Synthesis and Fluorescence Property of Mn-Doped ZnSe Nanowires

    Directory of Open Access Journals (Sweden)

    Dongmei Han

    2010-01-01

    Full Text Available Water-soluble Mn-doped ZnSe luminescent nanowires were successfully prepared by hydrothermal method without any heavy metal ions and toxic reagents. The morphology, composition, and property of the products were investigated. The experimental results showed that the Mn-doped ZnSe nanowires were single well crystallized and had a zinc blende structure. The average length of the nanowires was about 2-3 μm, and the diameter was 80 nm. With the increase of Mn2+-doped concentration, the absorbance peak showed large difference. The UV-vis absorbance spectrum showed that the Mn-doped ZnSe nanowires had a sharp absorption band appearing at 360 nm. The PL spectrum revealed that the nanowires had two distinct emission bands centered at 432 and 580 nm.

  18. Surfactant controlled low-temperature thermal decomposition route to zinc oxide nanorods from zinc(II) acetylacetonate monohydrate

    Energy Technology Data Exchange (ETDEWEB)

    Purkayastha, Debraj Dhar; Sarma, Bedabrat; Bhattacharjee, Chira R., E-mail: crbhattacharjee@rediffmail.com

    2014-10-15

    Zinc oxide (ZnO) nanorods were synthesized via a low-temperature thermal decomposition of zinc(II) acetylacetonate monohydrate, [Zn(C{sub 5}H{sub 7}O{sub 2}){sub 2}].H{sub 2}O. A relatively inexpensive surfactant, octadecylamine (C{sub 18}H{sub 37}NH{sub 2}) served both as a reaction solvent and a capping agent during the synthesis of ZnO nanorods. The synthesized nanorods were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR, UV–visible, and photoluminescence (PL) studies. The XRD spectrum furnished evidence for the hexagonal wurtzite structure of ZnO. TEM images revealed the material to be rod shaped having diameter 30 nm and length 200 nm. The HRTEM image showed that the lattice fringes between the two adjacent planes are 0.244 nm apart, which corresponds to the interplanar separation of the (1 0 1) plane of hexagonal ZnO. The electron diffraction (ED) pattern confirmed the single crystalline nature of the nanorods. The PL spectrum showed two UV emissions at 356 nm (∼3.48 eV) and 382 nm (∼3.25 eV). ZnO nanorods also showed very weak blue bands at 445, 453 and 470 nm. - Highlights: Low temperature thermal decomposition of zinc(II) acetylacetonate monohydrate gave zinc oxide nanorods. Powder XRD showed hexagonal wurtzite structure of ZnO having average diameter about 24 nm. TEM images revealed the material to be of rod shape having diameter 30 nm and length 200 nm. ZnO showed band gap luminescence at 356 nm, excitonic emission at 382 nm and defect related blue bands. The synthesis is simple and can act as a paradigm for obtaining various metal oxide nanomaterials.

  19. Photoelectrochemical Water Oxidation by GaAs Nanowire Arrays Protected with Atomic Layer Deposited NiO x Electrocatalysts

    Science.gov (United States)

    Zeng, Joy; Xu, Xiaoqing; Parameshwaran, Vijay; Baker, Jon; Bent, Stacey; Wong, H.-S. Philip; Clemens, Bruce

    2018-02-01

    Photoelectrochemical (PEC) hydrogen production makes possible the direct conversion of solar energy into chemical fuel. In this work, PEC photoanodes consisting of GaAs nanowire (NW) arrays were fabricated, characterized, and then demonstrated for the oxygen evolution reaction (OER). Uniform and periodic GaAs nanowire arrays were grown on a heavily n-doped GaAs substrates by metal-organic chemical vapor deposition selective area growth. The nanowire arrays were characterized using cyclic voltammetry and impedance spectroscopy in a non-aqueous electrochemical system using ferrocene/ferrocenium (Fc/Fc+) as a redox couple, and a maximum oxidation photocurrent of 11.1 mA/cm2 was measured. GaAs NW arrays with a 36 nm layer of nickel oxide (NiO x ) synthesized by atomic layer deposition were then used as photoanodes to drive the OER. In addition to acting as an electrocatalyst, the NiO x layer served to protect the GaAs NWs from oxidative corrosion. Using this strategy, GaAs NW photoanodes were successfully used for the oxygen evolution reaction. This is the first demonstration of GaAs NW arrays for effective OER, and the fabrication and protection strategy developed in this work can be extended to study any other nanostructured semiconductor materials systems for electrochemical solar energy conversion.

  20. Superconductive silicon nanowires using gallium beam lithography.

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Michael David; Jarecki, Robert Leo,

    2014-01-01

    This work was an early career LDRD investigating the idea of using a focused ion beam (FIB) to implant Ga into silicon to create embedded nanowires and/or fully suspended nanowires. The embedded Ga nanowires demonstrated electrical resistivity of 5 m-cm, conductivity down to 4 K, and acts as an Ohmic silicon contact. The suspended nanowires achieved dimensions down to 20 nm x 30 nm x 10 m with large sensitivity to pressure. These structures then performed well as Pirani gauges. Sputtered niobium was also developed in this research for use as a superconductive coating on the nanowire. Oxidation characteristics of Nb were detailed and a technique to place the Nb under tensile stress resulted in the Nb resisting bulk atmospheric oxidation for up to years.

  1. Mechanical transfer of ZnO nanowires for a flexible and conformal piezotronic strain sensor

    Science.gov (United States)

    Jenkins, Kory; Yang, Rusen

    2017-07-01

    We demonstrate a truly conformal and flexible piezotronic strain sensor using zinc oxide (ZnO) nanowires. Well-aligned, vertical ZnO nanowires are grown by chemical vapor deposition on a silicon wafer with a hydrothermally grown ZnO seed layer. The nanowires are infiltrated with polydimethylsiloxane and mechanically transferred from the silicon substrate. Plasma etching exposes the top surface of the nanowires before deposition of a gold (Au) top electrode. The bottom electrode is formed by silver paint which also adheres the sensor to the measured structure. To demonstrate the sensor’s ability to conform to complex surfaces, a stepped shaft with a shoulder fillet is used. The sensor is attached to the shoulder fillet of the stepped shaft, conforming to both the circumference of the shaft, and the radius of the fillet. A periodic bending displacement is applied to the end of the shaft. The strain induces a piezoelectric potential in the ZnO nanowires which controls the barrier height and conductivity at the gold/ZnO interface, by what is known as the piezotronic effect. The conductivity change is measured for periodically applied strains. The nonlinear current-voltage (I-V) response of the device is due to the Schottky contact between the ZnO nanowires and gold electrode. The geometry of the stepped shaft corresponds to a known stress concentration factor, and the strain experienced by the shaft is estimated with a COMSOL FEA study. The conformal nature of the strain sensor makes it suitable for structural monitoring applications involving complex geometries and stress concentrators.

  2. Long Silver Nanowires Synthesis by Pulsed Electrodeposition

    Directory of Open Access Journals (Sweden)

    M.R. Batevandi

    2015-09-01

    Full Text Available Silver nanowires were pulse electrodeposited into nanopore anodic alumina oxide templates. The effects of continuous and pulse electrodeposition waveform on the microstructure properties of the nanowire arrays were studied. It is seen that the microstructure of nanowire is depend to pulse condition. The off time duration of pulse waveform enables to control the growth direction of Ag nanowires.

  3. Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric.

    Science.gov (United States)

    Ghayempour, Soraya; Montazer, Majid

    2017-01-01

    Application of natural biopolymers for green and safe synthesis of zinc oxide nanoparticles on the textiles is a novel and interesting approach. The present study offers the use of natural biopolymer, Tragacanth gum, as the reducing, stabilizing and binding agent for in-situ synthesis of zinc oxide nanoparticles on the cotton fabric. Ultrasonic irradiation leads to clean and easy synthesis of zinc oxide nanoparticles in short-time at low-temperature. FESEM/EDX, XRD, FT-IR spectroscopy, DSC, photocatalytic activities and antimicrobial assay are used to characterize Tragacanth gum/zinc oxide nanoparticles coated cotton fabric. The analysis confirmed synthesis of star-like zinc oxide nanoparticles with hexagonal wurtzite structure on the cotton fabric with the average particle size of 62nm. The finished cotton fabric showed a good photocatalytic activity on degradation of methylene blue and 100% antimicrobial properties with inhibition zone of 3.3±0.1, 3.1±0.1 and 3.0±0.1mm against Staphylococcus aureus, Escherichia coli and Candida albicans. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Towards quantum dots on GaAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Moesl, Johannes; Ludwig, Stefan [Fakultaet fuer Physik, Center for NanoScience, LMU Munich, Geschwister-Scholl- Platz 1, D-80539 Muenchen (Germany); Fontcuberta i Morral, Anna [TU Munich, Walter Schottky Institut, Am Coulombwall 3, 85748 Garching (Germany); EPF, Lausanne (Switzerland)

    2009-07-01

    Semiconductor nanowires is an emergent research topic in the field of nanoelectronics, as they form an excellent building block for 0D and 1D applications and allow novel architectures and material combinations. We study electronic transport properties of catalyst-free MBE grown GaAs nanowires, p-doped at a number of different doping levels. Detailed characterization of the wires including electronic contacts fabricated by e-beam lithography and based on palladium or annealed zinc-silver alloys are discussed. Contact properties and a pronounced hysteresis of the current through the nanowires, as a backgate-voltage is swept, are explained within tentative models. In addition we present first transport measurements on quantum dots, which are defined electrostatically as well as by etched constrictions.

  5. Combinatorial study of zinc tin oxide thin-film transistors

    Science.gov (United States)

    McDowell, M. G.; Sanderson, R. J.; Hill, I. G.

    2008-01-01

    Groups of thin-film transistors using a zinc tin oxide semiconductor layer have been fabricated via a combinatorial rf sputtering technique. The ZnO :SnO2 ratio of the film varies as a function of position on the sample, from pure ZnO to SnO2, allowing for a study of zinc tin oxide transistor performance as a function of channel stoichiometry. The devices were found to have mobilities ranging from 2to12cm2/Vs, with two peaks in mobility in devices at ZnO fractions of 0.80±0.03 and 0.25±0.05, and on/off ratios as high as 107. Transistors composed predominantly of SnO2 were found to exhibit light sensitivity which affected both the on/off ratios and threshold voltages of these devices.

  6. Examination of Zinc Oxide Nanoparticles as a Fluorescent Fingerprint Detection Powder

    International Nuclear Information System (INIS)

    Tun Tun Lin

    2010-12-01

    Detection of latent fingerprint was performed using zinc oxide nanoparticles which were produced by simple and efficient method in aqueous media from zinc nitrate. Synthesized ZnO nanoparticles were characterized by XRD, SEM and AFM for ZnO purification and particle size examination. In this paper an effort has been made to compare the results of using ZnO nanoparticles and conventional fingerprint powders such as ZnO bulk powder, CaO, TiO2, printer toner powder and graphite. Fingerprints on different materials were also examined by the use of ZnO and Graphite powder, which is currently used in the Central Intelligence Department of Myanmar Police Force.From this research, it was observed that zinc oxide nanoparticles powder produced a much clearer picture of the fingerprints, compared to conventional powders and it has very good quality at sticking to the fingerprint residue but not to the background surface.

  7. In situ synthesis and catalytic application of reduced graphene oxide supported cobalt nanowires

    Science.gov (United States)

    Xu, Zhiqiang; Long, Qin; Deng, Yi; Liao, Li

    2018-05-01

    Controlled synthesis of magnetic nanocomposite with outstanding catalytic performances is a promising strategy in catalyst industry. We proposed a novel concept for fabrication of reduced graphene oxide-supported cobalt nanowires (RGO/Co-NWs) nanocomposite as high-efficient magnetic catalyst. Unlike the majority of experiments necessitating harsh synthesis conditions such as high-pressure, high-temperature and expensive template, here the RGO/Co-NWs were successfully prepared in aqueous solution under mild conditions with the assistance of external magnetic field. The synthetic process was facile and external magnetic force was adopted to induce the unidirectional self-assembly of cobalt crystals on graphene oxide to form RGO/Co-NWs. The possible formation mechanism laid on the fact that the dipole magnetic moments of the nanoparticles were aligned along the magnetic induction lines with the external magnetic field direction resulting in the formation of nanowires elongating in the direction of the magnetization axis. Simultaneously, a series of controlled reactions were conducted to illuminate the effect of graphene oxide, external magnetic field and PVP on the morphology and size of RGO/Co-NWs in the present approach. More importantly, the nanocomposite exhibited a high catalytic performance towards ammonia borane. Hence the novel nanocomposite holds a great potential for technological applications such as catalyst industry.

  8. Formation of ZnO at zinc oxidation by near- and supercritical water under the constant electric field

    Science.gov (United States)

    Shishkin, A. V.; Sokol, M. Ya.; Shatrova, A. V.; Fedyaeva, O. N.; Vostrikov, A. A.

    2014-12-01

    The work has detected an influence of a constant electric field (up to E = 300 kV/m) on the structure of a nanocrystalline layer of zinc oxide, formed on the surface of a planar zinc anode in water under supercritical (673 K and 23 MPa) and near-critical (673 K and 17. 5 MPa) conditions. The effect of an increase of zinc oxidation rate with an increase in E is observed under supercritical conditions and is absent at near-critical ones. Increase in the field strength leads to the formation of a looser structure in the inner part of the zinc oxide layer.

  9. Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection

    International Nuclear Information System (INIS)

    Tam, Phuong Dinh; Thang, Cao Xuan

    2016-01-01

    This paper developed a label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application. The CeO 2 nanowires were synthesized by hydrothermal reaction. The immobilization of Anti-V. cholerae O1 onto CeO 2 nanowire-deposited sensor was performed via an amino ester, which was created by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and sulfo-N-hydroxysuccinimide. The electrochemical responses of the immunosensor were studied by electrochemical impedance spectroscopy with [Fe (CN) 6 ] 3−/4− as redox probe. A linear response in electron transfer resistance for cell of V. cholerae O1 concentration was found in the range of 1.0 × 10 2 CFU/mL to 1.0 × 10 4 CFU/mL. The detection limit of the immunosensor was 1.0 × 10 2 CFU/mL. The immunosensor sensitivity was 56.82 Ω/CFU·mL −1 . Furthermore, the parameters affecting immunosensor response were also investigated, as follows: pH value, immunoreaction time, incubation temperature, and anti-V. cholerae O1 concentration. - Highlights: • A label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application was developed. • A linear response was found in the range of 1.0 × 10 2 CFU/mL to 1.0 × 10 4 CFU/mL. • The detection limit of the immunosensor was 1.0 × 10 2 CFU/mL. • The immunosensor sensitivity was 56.82 Ω/CFU.mL −1 .

  10. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Juanjuan; Zhang, Yu [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Xu, Wentao, E-mail: xuwentaoboy@sina.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Luo, YunBo [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Hao, Junran [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Shen, Xiao Li [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Yang, Xuan [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Li, Xiaohong [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Huang, Kunlun, E-mail: hkl009@163.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China)

    2013-04-15

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by

  11. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    International Nuclear Information System (INIS)

    Zheng, Juanjuan; Zhang, Yu; Xu, Wentao; Luo, YunBo; Hao, Junran; Shen, Xiao Li; Yang, Xuan; Li, Xiaohong; Huang, Kunlun

    2013-01-01

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ m ). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by OTA in

  12. Improved zinc oxide film for gas sensor applications

    Indian Academy of Sciences (India)

    Zinc oxide (ZnO) is a versatile material for different commercial applications such as transparent electrodes, piezoelectric devices, varistors, SAW devices etc because of its high piezoelectric coupling, greater stability of its hexagonal phase and its pyroelectric property. In fact, ZnO is a potential material for gas sensor ...

  13. In vivo target bio-imaging of Alzheimer's disease by fluorescent zinc oxide nanoclusters.

    Science.gov (United States)

    Lai, Lanmei; Zhao, Chunqiu; Su, Meina; Li, Xiaoqi; Liu, Xiaoli; Jiang, Hui; Amatore, Christian; Wang, Xuemei

    2016-07-21

    Alzheimer's disease (AD) is an irreversible neurodegenerative disease which is difficult to cure. When Alzheimer's disease occurs, the level of zinc ions in the brain changes, and the relevant amount of zinc ions continue decreasing in the cerebrospinal fluid and plasma of Alzheimer's patients with disease exacerbation. In view of these considerations, we have explored a new strategy for the in vivo rapid fluorescence imaging of Alzheimer's disease through target bio-labeling of zinc oxide nanoclusters which were biosynthesized in vivo in the Alzheimer's brain via intravenous injection of zinc gluconate solution. By using three-month-old and six-month-old Alzheimer's model mice as models, our observations demonstrate that biocompatible zinc ions could pass through the blood-brain barrier of the Alzheimer's disease mice and generate fluorescent zinc oxide nanoclusters (ZnO NCs) through biosynthesis, and then the bio-synthesized ZnO NCs could readily accumulate in situ on the hippocampus specific region for the in vivo fluorescent labeling of the affected sites. This study provides a new way for the rapid diagnosis of Alzheimer's disease and may have promising prospects in the effective diagnosis of Alzheimer's disease.

  14. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.

    2010-06-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  15. Silicon nanowire hybrid photovoltaics

    KAUST Repository

    Garnett, Erik C.; Peters, Craig; Brongersma, Mark; Cui, Yi; McGehee, Mike

    2010-01-01

    Silicon nanowire Schottky junction solar cells have been fabricated using n-type silicon nanowire arrays and a spin-coated conductive polymer (PEDOT). The polymer Schottky junction cells show superior surface passivation and open-circuit voltages compared to standard diffused junction cells with native oxide surfaces. External quantum efficiencies up to 88% were measured for these silicon nanowire/PEDOT solar cells further demonstrating excellent surface passivation. This process avoids high temperature processes which allows for low-cost substrates to be used. © 2010 IEEE.

  16. Dye-sensitized solar cell architecture based on indium-tin oxide nanowires coated with titanium dioxide

    International Nuclear Information System (INIS)

    Joanni, Ednan; Savu, Raluca; Sousa Goes, Marcio de; Bueno, Paulo Roberto; Nei de Freitas, Jilian; Nogueira, Ana Flavia; Longo, Elson; Varela, Jose Arana

    2007-01-01

    A new architecture for dye-sensitized solar cells is employed, based on a nanostructured transparent conducting oxide protruding from the substrate, covered with a separate active oxide layer. The objective is to decrease electron-hole recombination. The concept was tested by growing branched indium-tin oxide nanowires on glass using pulsed laser deposition followed by deposition of a sputtered titanium dioxide layer covering the wires. The separation of charge generation and charge transport functions opens many possibilities for dye-sensitized solar cell optimization

  17. Green Synthesis of Formulated Zinc Oxide Nanoparticles for Chemical Protection of Skin Care and Related Applications

    Science.gov (United States)

    Koppolu, Ramya

    Nanomaterials have diversified applications based on the unique properties. These nanoparticles and functionalized nanocomposites have been studied in the health care filed. Nanoparticles are mostly used in sunscreens which are a part of human life. These sunscreens consist of titanium dioxide and zinc oxide nanoparticles. Due to the higher band crevices, they help the skin to protect from ultraviolet rays, for instance, ultraviolet B and ultraviolet A. A series of nanostructured zinc oxide nanoparticles were prepared by cost-effective chemical and bioinspired methods and variables were optimized. Highly stable and spherical zinc oxide nanoparticles were formulated by aloe vera ( Aloe barbadensis) plant extract and avocado (Persea americana Mill) fruit extract. The state-of-the-art instrumentation was used to characterize the morphology, elemental composition, and particle size distribution. X-ray diffraction data indicated highly crystalline and ultrafine nanoparticles were obtained from the colloidal methods. The X-ray photoelectron spectroscopy results showed the chemical state of zinc, carbon, and oxygen atoms were well-indexed and are used as fingerprint identification of the elements. Transmission electron microscopy images show the shape of particles were cubic and fiber shape contingent upon the protecting operators and heat treatment conditions. The toxicity studies of zinc oxide nanoparticles were found to cause an increase in nitric oxide, which is protecting against further oxidative stress and appears to be nontoxic.

  18. Study of quantum confinement effects in ZnO nanostructures

    Science.gov (United States)

    Movlarooy, Tayebeh

    2018-03-01

    Motivation to fact that zinc oxide nanowires and nanotubes with successful synthesis and the mechanism of formation, stability and electronic properties have been investigated; in this study the structural, electronic properties and quantum confinement effects of zinc oxide nanotubes and nanowires with different diameters are discussed. The calculations within density functional theory and the pseudo potential approximation are done. The electronic structure and energy gap for Armchair and zigzag ZnO nanotubes with a diameter of about 4 to 55 Angstrom and ZnO nanowires with a diameter range of 4 to 23 Å is calculated. The results revealed that due to the quantum confinement effects, by reducing the diameter of nanowires and nanotubes, the energy gap increases. Zinc oxide semiconductor nanostructures since having direct band gap with size-dependent and quantum confinement effect are recommended as an appropriate candidate for making nanoscale optoelectronic devices.

  19. EXAMINATION OF THE OXIDATION PROTECTION OF ZINC COATINGS FORMED ON COPPER ALLOYS AND STEEL SUBSTRATES

    International Nuclear Information System (INIS)

    Papazoglou, M.; Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.

    2010-01-01

    The exposure of metallic components at aggressive high temperature environments, usually limit their usage at similar application because they suffer from severe oxidation attack. Copper alloys are used in a wide range of high-quality indoor and outdoor applications, statue parts, art hardware, high strength and high thermal conductivity applications. On the other hand, steel is commonly used as mechanical part of industrial set outs or in the construction sector due to its high mechanical properties. The aim of the present work is the examination of the oxidation resistance of pack cementation zinc coatings deposited on copper, leaded brass and steel substrates at elevated temperature conditions. Furthermore, an effort made to make a long-term evaluation of the coated samples durability. The oxidation results showed that bare substrates appear to have undergone severe damage comparing with the coated ones. Furthermore, the mass gain of the uncoated samples was higher than this of the zinc covered ones. Particularly zinc coated brass was found to be more resistant to oxidation conditions in which it was exposed as it has the lower mass gain as compared to the bare substrates and zinc coated copper. Zinc coated steel was also proved to be more resistive than the uncoated steel.

  20. Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents by X-ray photoelectron spectroscopy and scanning electron microscopy

    Science.gov (United States)

    Siriwardane, Ranjani V.; Poston, James A.

    1993-05-01

    Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.

  1. The degradation of lining of rotary furnaces in the production of zinc oxide

    Directory of Open Access Journals (Sweden)

    Natália Luptáková

    2014-06-01

    Full Text Available This paper is closely connected with the complex problem of degradation relating to the refractories of rotary furnace linings in the production of zinc oxide. Zinc oxide can be produced by variety of ways, but the most common method of production which is used in Europe is indirect, i.e. pyrolytic combustion of zinc. This method is also called "French process" of manufacturing ZnO. But this mentioned method of preparation leads to the creation of the enormous amount of zinc slag including chemical complexes of elements Fe, Zn and Al. The mechanism of degradation of the lining leads to slag rests and it is closely connected with the mutual interaction of the aggressive agents with the components of the lining. This process creates a new undesired surface layer which increased the overall thickness of zinc slag. Stuck slag has the influence on rapid degradation of the linings and moreover it also decreases the production quality of ZnO. Analysis results introduced in this paper are significant information for minimizing of degradation of rotary furnaces.  

  2. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction

    KAUST Repository

    Zhang, Zhonghai

    2013-02-26

    In this work, we propose a solution-based carbon precursor coating and subsequent carbonization strategy to form a thin protective carbon layer on unstable semiconductor nanostructures as a solution to the commonly occurring photocorrosion problem of many semiconductors. A proof-of-concept is provided by using glucose as the carbon precursor to form a protective carbon coating onto cuprous oxide (Cu2O) nanowire arrays which were synthesized from copper mesh. The carbon-layer-protected Cu2O nanowire arrays exhibited remarkably improved photostability as well as considerably enhanced photocurrent density. The Cu2O nanowire arrays coated with a carbon layer of 20 nm thickness were found to give an optimal water splitting performance, producing a photocurrent density of -3.95 mA cm-2 and an optimal photocathode efficiency of 0.56% under illumination of AM 1.5G (100 mW cm-2). This is the highest value ever reported for a Cu 2O-based electrode coated with a metal/co-catalyst-free protective layer. The photostability, measured as the percentage of the photocurrent density at the end of 20 min measurement period relative to that at the beginning of the measurement, improved from 12.6% on the bare, nonprotected Cu2O nanowire arrays to 80.7% on the continuous carbon coating protected ones, more than a 6-fold increase. We believe that the facile strategy presented in this work is a general approach that can address the stability issue of many nonstable photoelectrodes and thus has the potential to make a meaningful contribution in the general field of energy conversion. © 2013 American Chemical Society.

  3. Aerosol - assisted Chemical Vapor Deposition of Metal Oxide Structures: Zinc Oxide Rods

    Czech Academy of Sciences Publication Activity Database

    Vallejos, S.; Pizúrová, Naděžda; Čechal, J.; Grácia, I.; Cané, C.

    2017-01-01

    Roč. 2017, Č. 127 (2017), č. článku e56127. ISSN 1940-087X Institutional support: RVO:68081723 Keywords : Zinc oxide * columnar structures * rods * AACVD * non-catalyzed growth * vapor-solid mechanism Subject RIV: CA - Inorganic Chemistry OBOR OECD: Polymer science Impact factor: 1.232, year: 2016 https://www.jove.com/video/56127

  4. Efficient indium-tin-oxide free inverted organic solar cells based on aluminum-doped zinc oxide cathode and low-temperature aqueous solution processed zinc oxide electron extraction layer

    International Nuclear Information System (INIS)

    Chen, Dazheng; Zhang, Chunfu; Wang, Zhizhe; Zhang, Jincheng; Tang, Shi; Wei, Wei; Sun, Li; Hao, Yue

    2014-01-01

    Indium-tin-oxide (ITO) free inverted organic solar cells (IOSCs) based on aluminum-doped zinc oxide (AZO) cathode, low-temperature aqueous solution processed zinc oxide (ZnO) electron extraction layer, and poly(3-hexylthiophene-2, 5-diyl):[6, 6]-phenyl C 61 butyric acid methyl ester blend were realized in this work. The resulted IOSC with ZnO annealed at 150 °C shows the superior power conversion efficiency (PCE) of 3.01%, if decreasing the ZnO annealing temperature to 100 °C, the obtained IOSC also shows a PCE of 2.76%, and no light soaking issue is observed. It is found that this ZnO film not only acts as an effective buffer layer but also slightly improves the optical transmittance of AZO substrates. Further, despite the relatively inferior air-stability, these un-encapsulated AZO/ZnO IOSCs show comparable PCEs to the referenced ITO/ZnO IOSCs, which demonstrates that the AZO cathode is a potential alternative to ITO in IOSCs. Meanwhile, this simple ZnO process is compatible with large area deposition and plastic substrates, and is promising to be widely used in IOSCs and other relative fields.

  5. The Effect of Zinc Oxide Nanoparticles on Safflower Plant Growth and Physiology

    Directory of Open Access Journals (Sweden)

    Z. Hafizi

    2018-02-01

    Full Text Available In this paper, a study of the effect of ZnO nanoparticles on safflower growth and physiology was performed. Each of these elements plays a particular role in the plant life, the presence of these elements is necessary for plant’s life cycle and growth. Zinc deficiency causes the biggest problems in safflower’s production. Considering the importance of nanoparticles in today's world, this research investigated the effect of Zinc oxide nanoparticles on the concentration of guaiacol peroxidase, polypeptide oxidase, dehydrogenase and malondialdehyde in four plant sample groups in greenhouse and laboratory conditions. Results of showed that malondialdehyde enzyme increased with different treatments of various concentrations of Zinc oxide. The enzyme guaiacol oxidase increased at concentrations of 100 mg/L and polyphenol oxide at concentrations of 10 and 500 mg/L and dehydrogenase in 1000 mg/L and decreased in other treatments. In addition to showing the effect of nanoparticles in plants, these findings determine the beneficial concentrations of nanoparticles that have a positive effect on the level of enzymes in plants.

  6. Fabrication of CoPd alloy nanowire arrays on an anodic aluminum oxide/Ti/Si substrate and their enhanced magnetic properties

    International Nuclear Information System (INIS)

    Xu Cailing; Li Hua; Xue Tong; Li Hulin

    2006-01-01

    An anodic aluminum oxide/Ti/Si substrate was successfully synthesized by the anodization of an aluminum film on a Ti/Si substrate and then used as a template to grow 10 nm diameter CoPd alloy nanowires. X-ray diffraction and energy-dispersed X-ray patterns indicated that Co 0.97 Pd 0.03 nanowire arrays with a preferential orientation of (0 0 2) were formed during electrodeposition. High coercivity (about 1700 Oe) and squareness (about 0.85) were obtained in the samples when the magnetic field was applied parallel to the axis of the nanowires; these values are much larger than those of pure Co nanowire arrays with the same diameters

  7. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes.

    Science.gov (United States)

    Chen, Po-Chiang; Shen, Guozhen; Shi, Yi; Chen, Haitian; Zhou, Chongwu

    2010-08-24

    In the work described in this paper, we have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on transition-metal-oxide nanowire/single-walled carbon nanotube (SWNT) hybrid thin-film electrodes. These hybrid nanostructured films, with advantages of mechanical flexibility, uniform layered structures, and mesoporous surface morphology, were produced by using a filtration method. Here, manganese dioxide nanowire/SWNT hybrid films worked as the positive electrode, and indium oxide nanowire/SWNT hybrid films served as the negative electrode in a designed ASC. In our design, charges can be stored not only via electrochemical double-layer capacitance from SWNT films but also through a reversible faradic process from transition-metal-oxide nanowires. In addition, to obtain stable electrochemical behavior during charging/discharging cycles in a 2 V potential window, the mass balance between two electrodes has been optimized. Our optimized hybrid nanostructured ASCs exhibited a superior device performance with specific capacitance of 184 F/g, energy density of 25.5 Wh/kg, and columbic efficiency of approximately 90%. In addition, our ASCs exhibited a power density of 50.3 kW/kg, which is 10-fold higher than obtained in early reported ASC work. The high-performance hybrid nanostructured ASCs can find applications in conformal electrics, portable electronics, and electrical vehicles.

  8. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells.

    Science.gov (United States)

    Guo, Dadong; Bi, Hongsheng; Wang, Daoguang; Wu, Qiuxin

    2013-08-01

    Zinc oxide nanoparticle is one of the most important materials with diverse applications. However, it has been reported that zinc oxide nanoparticles are toxic to organisms, and that oxidative stress is often hypothesized to be an important factor in cytotoxicity mediated by zinc oxide nanoparticles. Nevertheless, the mechanism of toxicity of zinc oxide nanoparticles has not been completely understood. In this study, we investigated the cytotoxic effect of zinc oxide nanoparticles and the possible molecular mechanism involved in calcium homeostasis mediated by plasma membrane calcium ATPase in rat retinal ganglion cells. Real-time cell electronic sensing assay showed that zinc oxide nanoparticles could exert cytotoxic effect on rat retinal ganglion cells in a concentration-dependent manner; flow cytometric analysis indicated that zinc oxide nanoparticles could lead to cell damage by inducing the overproduction of reactive oxygen species. Furthermore, zinc oxide nanoparticles could also apparently decrease the expression level and their activity of plasma membrane calcium ATPase, which finally disrupt the intracellular calcium homeostasis and result in cell death. Taken together, zinc oxide nanoparticles could apparently decrease the plasma membrane calcium ATPase expression, inhibit their activity, cause the elevated intracellular calcium ion level and disrupt the intracellular calcium homeostasis. Further, the disrupted calcium homeostasis will trigger mitochondrial dysfunction, generate excessive reactive oxygen species, and finally initiate cell death. Thus, the disrupted calcium homeostasis is involved in the zinc oxide nanoparticle-induced rat retinal ganglion cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Plasma processes and film growth of expanding thermal plasma deposited textured zinc oxide

    NARCIS (Netherlands)

    Groenen, R.; Linden, J.L.; Sanden, van de M.C.M.

    2005-01-01

    Plasma processes and film growth of textured zinc oxide deposited from oxygen and diethyl zinc utilizing expanding thermal argon plasma created by a cascaded arc is discussed. In all conditions explored, an excess of argon ions and low temperature electrons is available, which represent the

  10. Long term stability of nanowire nanoelectronics in physiological environments.

    Science.gov (United States)

    Zhou, Wei; Dai, Xiaochuan; Fu, Tian-Ming; Xie, Chong; Liu, Jia; Lieber, Charles M

    2014-03-12

    Nanowire nanoelectronic devices have been exploited as highly sensitive subcellular resolution detectors for recording extracellular and intracellular signals from cells, as well as from natural and engineered/cyborg tissues, and in this capacity open many opportunities for fundamental biological research and biomedical applications. Here we demonstrate the capability to take full advantage of the attractive capabilities of nanowire nanoelectronic devices for long term physiological studies by passivating the nanowire elements with ultrathin metal oxide shells. Studies of Si and Si/aluminum oxide (Al2O3) core/shell nanowires in physiological solutions at 37 °C demonstrate long-term stability extending for at least 100 days in samples coated with 10 nm thick Al2O3 shells. In addition, investigations of nanowires configured as field-effect transistors (FETs) demonstrate that the Si/Al2O3 core/shell nanowire FETs exhibit good device performance for at least 4 months in physiological model solutions at 37 °C. The generality of this approach was also tested with in studies of Ge/Si and InAs nanowires, where Ge/Si/Al2O3 and InAs/Al2O3 core/shell materials exhibited stability for at least 100 days in physiological model solutions at 37 °C. In addition, investigations of hafnium oxide-Al2O3 nanolaminated shells indicate the potential to extend nanowire stability well beyond 1 year time scale in vivo. These studies demonstrate that straightforward core/shell nanowire nanoelectronic devices can exhibit the long term stability needed for a range of chronic in vivo studies in animals as well as powerful biomedical implants that could improve monitoring and treatment of disease.

  11. High mobility ZnO nanowires for terahertz detection applications

    International Nuclear Information System (INIS)

    Liu, Huiqiang; Peng, Rufang; Chu, Shijin; Chu, Sheng

    2014-01-01

    An oxide nanowire material was utilized for terahertz detection purpose. High quality ZnO nanowires were synthesized and field-effect transistors were fabricated. Electrical transport measurements demonstrated the nanowire with good transfer characteristics and fairly high electron mobility. It is shown that ZnO nanowires can be used as building blocks for the realization of terahertz detectors based on a one-dimensional plasmon detection configuration. Clear terahertz wave (∼0.3 THz) induced photovoltages were obtained at room temperature with varying incidence intensities. Further analysis showed that the terahertz photoresponse is closely related to the high electron mobility of the ZnO nanowire sample, which suggests that oxide nanoelectronics may find useful terahertz applications.

  12. Synthesis, Characterization and Catalytic Performance in the Selective Oxidation of Alcohols by Metallophthalocyanines Supported on Zinc Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Amin Ebadi

    2017-01-01

    Full Text Available Unsubstituted phthalocyanines of Co, Fe and Mn supported on zinc oxide nanoparticles were prepared and were well characterized with X-ray diffraction and scanning electron microscopy. The oxidation of alcohols with tert-butylhydroperoxide, in the presence of metallophthalocyanines supported on zinc oxide nanoparticles was investigated. These MPc/ZnO nanocomposites were effective catalysts for the oxidation of alcohols such as cyclohexanol (83.4% conversion; 100% selectivity, benzyl alcohol (70.5% conversion; 100% selectivity and hexanol (62.3% conversion; 100% selectivity. The influences of reaction time, various metals and type of substrates and oxidants on the oxidation of alcohols were also studied, and optimized conditions were investigated. Under these reaction conditions, the activity of the catalysts decreases in the following order:  CoPc/nano-ZnO > FePc/nano-ZnO > MnPc/nano-ZnO. It shows that TBHP is more efficient oxidant due to weaker O-O bond with respect to H2O2 and the following order has been observed for the percentage of conversions of alcohols: 2º > benzylic > 1º.

  13. Synthesis of hexagonal ultrathin tungsten oxide nanowires with diameters below 5 nm for enhanced photocatalytic performance

    Science.gov (United States)

    Lu, Huidan; Zhu, Qin; Zhang, Mengying; Yan, Yi; Liu, Yongping; Li, Ming; Yang, Zhishu; Geng, Peng

    2018-04-01

    Semiconductor with one dimension (1D) ultrathin nanostructure has been proved to be a promising nanomaterial in photocatalytic field. Great efforts were made on preparation of monoclinic ultrathin tungsten oxide nanowires. However, non-monoclinic phase tungsten oxides with 1D ultrathin structure, especially less than 5 nm width, have not been reported. Herein, we report the synthesis of hexagonal ultrathin tungsten oxide nanowires (U-WOx NW) by modified hydrothermal method. Microstructure characterization showed that U-WOx NW have the diameters of 1-3 nm below 5 nm and are hexagonal phase sub-stoichiometric WOx. U-WOx NW show absorption tail in the visible and near infrared region due to oxygen vacancies. For improving further photocatalytic performance, Ag co-catalyst was grown directly onto U-WOx NW surface by in situ redox reaction. Photocatalytic measurements revealed hexagonal U-WOx NW have better photodegradation activity, compared with commercial WO3(C-WO3) and oxidized U-WOx NW, ascribe to larger surface area, short diffusion length of photo-generated charge carriers and visible absorption of oxygen-vacancy-rich hexagonal ultrathin nanostructures. Moreover, the photocatalytic activity and stability of U-WOx NW using Ag co-catalyst were further improved.

  14. Nanocomposites of recycled polycarbonate and nano-zinc oxide (rPC/nZnO): effect of gamma radiation and nano oxide content on the thermal properties

    International Nuclear Information System (INIS)

    Carvalho, A.L.F.; Mendes, L.C.; Cestari, S.P.

    2014-01-01

    In order to promote the barrier action to the ultraviolet radiation and increase of mechanical characteristics, nanocomposites of recycled polycarbonate (rPC) and nano-zinc oxide (nZnO) containing 1, 2 and 3 % (wt/wt) of nano oxide were prepared. Since for obtaining nanocomposites and irradiating polymers are promising tools and attractive for improving the material performance, the effects of nano-zinc oxide and gamma radiation, at doses ranged from 10 to 50 kGy, were evaluated in terms of thermal characteristics of the rPC. The rPC/nZnO nanocomposites were characterized by thermogravimetric analysis (TGA) and differential explanatory calorimetry (DSC). There was a progressive decrease of the T_g as function of gamma dosage and nano-zinc oxide content. Initially, the Tonset and Tmax decayed as function of gamma dosage but a recovery was observed. The amount of nano-zinc oxide induced a decreasing of T_o_n_s_e_t and T_m_a_x. (author)

  15. Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Phuong Dinh, E-mail: phuongdinhtam@gmail.com; Thang, Cao Xuan, E-mail: thang.caoxuan@hust.edu.vn

    2016-01-01

    This paper developed a label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application. The CeO{sub 2} nanowires were synthesized by hydrothermal reaction. The immobilization of Anti-V. cholerae O1 onto CeO{sub 2} nanowire-deposited sensor was performed via an amino ester, which was created by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and sulfo-N-hydroxysuccinimide. The electrochemical responses of the immunosensor were studied by electrochemical impedance spectroscopy with [Fe (CN) {sub 6}] {sup 3−/4−} as redox probe. A linear response in electron transfer resistance for cell of V. cholerae O1 concentration was found in the range of 1.0 × 10{sup 2} CFU/mL to 1.0 × 10{sup 4} CFU/mL. The detection limit of the immunosensor was 1.0 × 10{sup 2} CFU/mL. The immunosensor sensitivity was 56.82 Ω/CFU·mL{sup −1}. Furthermore, the parameters affecting immunosensor response were also investigated, as follows: pH value, immunoreaction time, incubation temperature, and anti-V. cholerae O1 concentration. - Highlights: • A label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application was developed. • A linear response was found in the range of 1.0 × 10{sup 2} CFU/mL to 1.0 × 10{sup 4} CFU/mL. • The detection limit of the immunosensor was 1.0 × 10{sup 2} CFU/mL. • The immunosensor sensitivity was 56.82 Ω/CFU.mL{sup −1}.

  16. Water resistant surfaces using zinc oxide structured nanorod arrays with switchable wetting property

    OpenAIRE

    Ennaceri, H.; Wang, L.; Erfurt, D.; Riedel, W.; Mangalgiri, G.; Khaldoun, A.; El Kenz, A.; Benyoussef, A.; Ennaoui, A

    2016-01-01

    This study presents an experimental approach for fabricating super hydrophobic coatings based on a dual roughness structure composed of zinc oxide nanorod arrays coated with a sputtered zinc oxide nano layer. The ZnO nanorod arrays were grown by means of a low temperature electrochemical deposition technique 75 C on FTO substrates. The ZnO nanorods show a 002 orientation along the c axis, and have a hexagonal structure, with an average length of 710 nm, and average width of 156 nm. On th...

  17. Rechargeable Aqueous Zinc-Ion Battery Based on Porous Framework Zinc Pyrovanadate Intercalation Cathode

    KAUST Repository

    Xia, Chuan

    2017-12-11

    In this work, a microwave approach is developed to rapidly synthesize ultralong zinc pyrovanadate (Zn3V2O7(OH)2·2H2O, ZVO) nanowires with a porous crystal framework. It is shown that our synthesis strategy can easily be extended to fabricate other metal pyrovanadate compounds. The zinc pyrovanadate nanowires show significantly improved electrochemical performance when used as intercalation cathode for aqueous zinc–ion battery. Specifically, the ZVO cathode delivers high capacities of 213 and 76 mA h g−1 at current densities of 50 and 3000 mA g−1, respectively. Furthermore, the Zn//ZVO cells show good cycling stability up to 300 cycles. The estimated energy density of this Zn cell is ≈214Wh kg−1, which is much higher than commercial lead–acid batteries. Significant insight into the Zn-storage mechanism in the pyrovanadate cathodes is presented using multiple analytical methods. In addition, it is shown that our prototype device can power a 1.5 V temperature sensor for at least 24 h.

  18. Polarized recombination of acoustically transported carriers in GaAs nanowires

    Science.gov (United States)

    Möller, Michael; Hernández-Mínguez, Alberto; Breuer, Steffen; Pfüller, Carsten; Brandt, Oliver; de Lima, Mauricio M.; Cantarero, Andrés; Geelhaar, Lutz; Riechert, Henning; Santos, Paulo V.

    2012-05-01

    The oscillating piezoelectric field of a surface acoustic wave (SAW) is employed to transport photoexcited electrons and holes in GaAs nanowires deposited on a SAW delay line on a LiNbO3 crystal. The carriers generated in the nanowire by a focused light spot are acoustically transferred to a second location where they recombine. We show that the recombination of the transported carriers occurs in a zinc blende section on top of the predominant wurtzite nanowire. This allows contactless control of the linear polarized emission by SAWs which is governed by the crystal structure. Additional polarization-resolved photoluminescence measurements were performed to investigate spin conservation during transport.

  19. Zn-dopant dependent defect evolution in GaN nanowires

    Science.gov (United States)

    Yang, Bing; Liu, Baodan; Wang, Yujia; Zhuang, Hao; Liu, Qingyun; Yuan, Fang; Jiang, Xin

    2015-10-01

    Zn doped GaN nanowires with different doping levels (0, doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a hexagonal wurtzite (WZ) structure with good crystallinity. Several kinds of twin boundaries, including (101&cmb.macr;3), (101&cmb.macr;1) and (202&cmb.macr;1), as well as Type I stacking faults (...ABABC&cmb.b.line;BCB...), are observed in the nanowires. The increasing Zn doping level (GaN nanowires. At high Zn doping level (3-5 at%), meta-stable cubic zinc blende (ZB) domains are generated in the WZ GaN nanowires. The WZ/ZB phase boundary (...ABABAC&cmb.b.line;BA...) can be identified as Type II stacking faults. The density of stacking faults (both Type I and Type II) increases with increasing the Zn doping levels, which in turn leads to a rough-surface morphology in the GaN nanowires. First-principles calculations reveal that Zn doping will reduce the formation energy of both Type I and Type II stacking faults, favoring their nucleation in GaN nanowires. An understanding of the effect of Zn doping on the defect evolution provides an important method to control the microstructure and the electrical properties of p-type GaN nanowires.Zn doped GaN nanowires with different doping levels (0, doping on the defect evolution, including stacking fault, dislocation, twin boundary and phase boundary, has been systematically investigated by transmission electron microscopy and first-principles calculations. Undoped GaN nanowires show a hexagonal wurtzite (WZ) structure with good crystallinity. Several kinds of twin boundaries, including (101&cmb.macr;3), (101&cmb.macr;1) and (202&cmb.macr;1), as well as Type I stacking faults (...ABABC&cmb.b.line;BCB...), are observed in the nanowires. The increasing Zn doping level (GaN nanowires. At high Zn doping level (3-5 at%), meta

  20. Nanowire-decorated microscale metallic electrodes

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfi-Tempfli, M.; Antohe, V.A.

    2008-01-01

    The fabrication of metallic nanowire patterns within anodic alumina oxide (AAO) membranes on top of continuous conducting substrates are discussed. The fabrication protocol is based on the realization of nanowire patterns using supported nanoporous alumina templates (SNAT) prepared on top...... of lithographically defined metallic microelectrodes. The anodization of the aluminum permits electroplating only on top of the metallic electrodes, leading to the nanowire patterns having the same shape as the underlying metallic tracks. The variation in the fabricated structures between the patterned and non......-patterned substrates can be interpreted in terms of different behavior during anodization. The improved quality of fabricated nanowire patterns is clearly demonstrated by the SEM imaging and the uniform growth of nanowires inside the alumina template is observed without any significant height variation....

  1. Oxide p-n Heterojunction of Cu2O/ZnO Nanowires and Their Photovoltaic Performance

    Directory of Open Access Journals (Sweden)

    Seung Ki Baek

    2013-01-01

    Full Text Available Oxide p-n heterojunction devices consisting of p-Cu2O/n-ZnO nanowires were fabricated on ITO/glass substrates and their photovoltaic performances were investigated. The vertically arrayed ZnO nanowires were grown by metal organic chemical vapor deposition, which was followed by the electrodeposition of the p-type Cu2O layer. Prior to the fabrication of solar cells, the effect of bath pH on properties of the absorber layers was studied to determine the optimal condition of the Cu2O electrodeposition process. With the constant pH 11 solution, the Cu2O layer preferred the (111 orientation, which gave low electrical resistivity and high optical absorption. The Cu2O (pH 11/ZnO nanowire-based solar cell exhibited a higher conversion efficiency of 0.27% than the planar structure solar cell (0.13%, because of the effective charge collection in the long wavelength region and because of the enhanced junction area.

  2. Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors.

    Science.gov (United States)

    Wang, Fengmei; Zhan, Xueying; Cheng, Zhongzhou; Wang, Zhenxing; Wang, Qisheng; Xu, Kai; Safdar, Muhammad; He, Jun

    2015-02-11

    Among active pseudocapacitive materials, polypyrrole (PPy) is a promising electrode material in electrochemical capacitors. PPy-based materials research has thus far focused on its electrochemical performance as a positive electrode rather than as a negative electrode for asymmetric supercapacitors (ASCs). Here high-performance electrochemical supercapacitors are designed with tungsten oxide@PPy (WO3 @PPy) core-shell nanowire arrays and Co(OH)2 nanowires grown on carbon fibers. The WO3 @PPy core-shell nanowire electrode exhibits a high capacitance (253 mF/cm2) in negative potentials (-1.0-0.0 V). The ASCs packaged with CF-Co(OH)2 as a positive electrode and CF-WO3 @PPy as a negative electrode display a high volumetric capacitance up to 2.865 F/cm3 based on volume of the device, an energy density of 1.02 mWh/cm3 , and very good stability performance. These findings promote the application of PPy-based nanostructures as advanced negative electrodes for ASCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Photocatalysis application of zinc oxide fibers obtained by electrospinning; Fribras de oxido de zinco obtidas por electrospinning aplicadas a fotocatalise

    Energy Technology Data Exchange (ETDEWEB)

    Gerchman, D.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul (DEM/UFRGS), Porto Alegre, RS (Brazil). Dept. de Materiais

    2010-07-01

    Using the electrospinning technique, composite fibers of polyvinylbutyral and zinc nitrate were obtained. After a heat treatment at 600 deg C, nanostructured zinc oxide fibers were obtained. The fibers were characterized using X ray diffraction. The photocatalytic activity of the nanostructured fibers was determined using the photodegradation of a methyl orange solution. The increase in the heat treatment temperature decreases the photoactivity of the zinc oxide. The heat treatment, the phases and the surface area, affect the physical, chemical and photocatalytic activity of the zinc oxide. (author)

  4. Photoluminescence Polarization Anisotropy in a Single Heterostructured III-V Nanowire with Mixed Crystal Phases

    International Nuclear Information System (INIS)

    Moses, A. F.; Hoang, T. B.; Ahtapodov, L.; Dheeraj, D. L.; Fimland, B. O.; Weman, H.; Helvoort, A. T. J. van

    2011-01-01

    Low temperature (10 K) micro-photoluminescence (μ-PL) of single GaAs/AlGaAs core-shell nanowires with single GaAsSb inserts were measured. The PL emission from the zinc blende GaAsSb insert is strongly polarized along the nanowire axis while the PL emission from the wurtzite GaAs nanowire is perpendiculary polarized to the nanowire axis. The result indicates that the crystal phase, through the optical selection rules, has significant effect on the polarization of the PL from NWs besides the dielectric mismatch. The analysis of the PL results based on the electronic structure of these nanowires supports the correlation between the crystal phase and the PL emission.

  5. Monolithic integration of a silicon nanowire field-effect transistors array on a complementary metal-oxide semiconductor chip for biochemical sensor applications.

    Science.gov (United States)

    Livi, Paolo; Kwiat, Moria; Shadmani, Amir; Pevzner, Alexander; Navarra, Giulio; Rothe, Jörg; Stettler, Alexander; Chen, Yihui; Patolsky, Fernando; Hierlemann, Andreas

    2015-10-06

    We present a monolithic complementary metal-oxide semiconductor (CMOS)-based sensor system comprising an array of silicon nanowire field-effect transistors (FETs) and the signal-conditioning circuitry on the same chip. The silicon nanowires were fabricated by chemical vapor deposition methods and then transferred to the CMOS chip, where Ti/Pd/Ti contacts had been patterned via e-beam lithography. The on-chip circuitry measures the current flowing through each nanowire FET upon applying a constant source-drain voltage. The analog signal is digitized on chip and then transmitted to a receiving unit. The system has been successfully fabricated and tested by acquiring I-V curves of the bare nanowire-based FETs. Furthermore, the sensing capabilities of the complete system have been demonstrated by recording current changes upon nanowire exposure to solutions of different pHs, as well as by detecting different concentrations of Troponin T biomarkers (cTnT) through antibody-functionalized nanowire FETs.

  6. Active Bilayer PE/PCL Films for Food Packaging Modified with Zinc Oxide and Casein

    OpenAIRE

    Rešček, Ana; Kratofil Krehula, Ljerka; Katančić, Zvonimir; Hrnjak-Murgić, Zlata

    2015-01-01

    This paper studies the properties of active polymer food packaging bilayer polyethylene/polycaprolactone (PE/PCL) films. Such packaging material consists of primary PE layer coated with thin film of PCL coating modified with active component (zinc oxide or zinc oxide/casein complex) with intention to extend the shelf life of food and to maintain the quality and health safety. The influence of additives as active components on barrier, mechanical, thermal and antimicrobial properties of such m...

  7. Surface compounds and the routes of formation of the reaction products in the interaction of propylene with zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, A.A.; Yefremov, A.A.; Mikhalchenko, V.G.; Sokolovskii, V.D.

    1979-06-15

    Temperature programed desorption of propylene and allyl bromide from zinc oxide in the absence and presence of oxygen and an IR spectroscopic study of the adsorbed allyl bromide showed that propylene chemisorbed reversibly as a m-allyl species which may undergo dimerization at higher pressures or temperatures but does not form acrolein because the necessary electron transfer does not proceed on the n-type zinc oxide; that propylene also forms carbon dioxide and water via carbonate/carboxylate intermediates; and that the allyl bromide, which forms cations on the zinc oxide surface, is oxidized to acrolein.

  8. CdS nanowires formed by chemical synthesis using conjugated single-stranded DNA molecules

    Science.gov (United States)

    Sarangi, S. N.; Sahu, S. N.; Nozaki, S.

    2018-03-01

    CdS nanowires were successfully grown by chemical synthesis using two conjugated single-stranded (ss) DNA molecules, poly G (30) and poly C (30), as templates. During the early stage of the synthesis with the DNA molecules, the Cd 2+ interacts with Poly G and Poly C and produces the (Cd 2+)-Poly GC complex. As the growth proceeds, it results in nanowires. The structural analysis by grazing angle x-ray diffraction and transmission electron microscopy confirmed the zinc-blende CdS nanowires with the growth direction of . Although the nanowires are well surface-passivated with the DNA molecules, the photoluminescence quenching was caused by the electron transfer from the nanowires to the DNA molecules. The quenching can be used to detect and label the DNAs.

  9. Topological insulator nanowires and nanowire hetero-junctions

    Science.gov (United States)

    Deng, Haiming; Zhao, Lukas; Wade, Travis; Konczykowski, Marcin; Krusin-Elbaum, Lia

    2014-03-01

    The existing topological insulator materials (TIs) continue to present a number of challenges to complete understanding of the physics of topological spin-helical Dirac surface conduction channels, owing to a relatively large charge conduction in the bulk. One way to reduce the bulk contribution and to increase surface-to-volume ratio is by nanostructuring. Here we report on the synthesis and characterization of Sb2Te3, Bi2Te3 nanowires and nanotubes and Sb2Te3/Bi2Te3 heterojunctions electrochemically grown in porous anodic aluminum oxide (AAO) membranes with varied (from 50 to 150 nm) pore diameters. Stoichiometric rigid polycrystalline nanowires with controllable cross-sections were obtained using cell voltages in the 30 - 150 mV range. Transport measurements in up to 14 T magnetic fields applied along the nanowires show Aharonov-Bohm (A-B) quantum oscillations with periods corresponding to the nanowire diameters. All nanowires were found to exhibit sharp weak anti-localization (WAL) cusps, a characteristic signature of TIs. In addition to A-B oscillations, new quantization plateaus in magnetoresistance (MR) at low fields (< 0 . 7T) were observed. The analysis of MR as well as I - V characteristics of heterojunctions will be presented. Supported in part by NSF-DMR-1122594, NSF-DMR-1312483-MWN, and DOD-W911NF-13-1-0159.

  10. Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds.

    Science.gov (United States)

    Ullah, Saleem; Zainol, Ismail; Idrus, Ruszymah Hj

    2017-11-01

    The zinc oxide nanoparticles (particles size chitosan-collagen 3D porous scaffolds and investigated the effect of zinc oxide nanoparticles incorporation on microstructure, mechanical properties, biodegradation and cytocompatibility of 3D porous scaffolds. The 0.5%, 1.0%, 2.0% and 4.0% zinc oxide nanoparticles chitosan-collagen 3D porous scaffolds were fabricated via freeze-drying technique. The zinc oxide nanoparticles incorporation effects consisting in chitosan-collagen 3D porous scaffolds were investigated by mechanical and swelling tests, and effect on the morphology of scaffolds examined microscopically. The biodegradation and cytocompatibility tests were used to investigate the effects of zinc oxide nanoparticles incorporation on the ability of scaffolds to use for tissue engineering application. The mean pore size and swelling ratio of scaffolds were decreased upon incorporation of zinc oxide nanoparticles however, the porosity, tensile modulus and biodegradation rate were increased upon incorporation of zinc oxide nanoparticles. In vitro culture of human fibroblasts and keratinocytes showed that the zinc oxide nanoparticles facilitated cell adhesion, proliferation and infiltration of chitosan-collagen 3D porous scaffolds. It was found that the zinc oxide nanoparticles incorporation enhanced porosity, tensile modulus and cytocompatibility of chitosan-collagen 3D porous scaffolds. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Zamiri, Reza; Zakaria, Azmi [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Ahangar, Hossein Abbastabar [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Darroudi, Majid [Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor (Malaysia); Zak, Ali Khorsand [Low Dimensional Material Research Center, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); Drummen, Gregor P.C., E-mail: gpcdrummen@bionano-solutions.de [Bionanoscience and Bio-Imaging Program, Cellular Stress and Ageing Program, Bio and Nano-Solutions, D-40472 Duesseldorf (Germany)

    2012-03-05

    Highlights: Black-Right-Pointing-Pointer Zinc oxide nanoparticles were synthesized via LASiS in aqueous starch solution. Black-Right-Pointing-Pointer Nanoparticles of {+-}15 nm are produced with a narrow size distribution. Black-Right-Pointing-Pointer Starch can be used as a template to control nanoparticle size. Black-Right-Pointing-Pointer Starch stabilizes zinc oxide nanoparticles in solution through steric hindrance. - Abstract: Zinc oxide is a semiconductor with exceptional thermal, luminescent and electrical properties, even compared with other semiconducting nanoparticles. Its potential for advanced applications in lasers and light emitting diodes, as bio-imaging agent, in biosensors and as drug delivery vehicles, in ointments, coatings and pigments has pulled zinc oxide into the focus of various scientific and engineering research fields. Recently we started investigating if nanoparticle synthesis via laser ablation in the presence of natural stabilizers allows control over size and shape and constitutes a useful, uncomplicated alternative over conventional synthesis methods. In the current paper, we determined the ability of natural starch to act as a size controller and stabilizer in the preparation of zinc oxide nanoparticles via ablation of a ZnO plate in a starch solution with a nanosecond Q-Switched Nd:YAG pulsed laser at its original wavelength ({lambda} = 1064 nm). Our results show that the particle diameter decreases with increasing laser irradiation time to a mean nanoparticle size of approximately 15 nm with a narrow size distribution. Furthermore, the obtained particle size in starch solution is considerably smaller compared with analogous ZnO nanoparticle synthesis in distilled water. The synthesized and capped nanoparticles retained their photoluminescent properties, but showed blue emission rather than the often reported green luminescence. Evaluation of old preparations compared with freshly made samples showed no agglomeration or

  12. Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation

    International Nuclear Information System (INIS)

    Zamiri, Reza; Zakaria, Azmi; Ahangar, Hossein Abbastabar; Darroudi, Majid; Zak, Ali Khorsand; Drummen, Gregor P.C.

    2012-01-01

    Highlights: ► Zinc oxide nanoparticles were synthesized via LASiS in aqueous starch solution. ► Nanoparticles of ±15 nm are produced with a narrow size distribution. ► Starch can be used as a template to control nanoparticle size. ► Starch stabilizes zinc oxide nanoparticles in solution through steric hindrance. - Abstract: Zinc oxide is a semiconductor with exceptional thermal, luminescent and electrical properties, even compared with other semiconducting nanoparticles. Its potential for advanced applications in lasers and light emitting diodes, as bio-imaging agent, in biosensors and as drug delivery vehicles, in ointments, coatings and pigments has pulled zinc oxide into the focus of various scientific and engineering research fields. Recently we started investigating if nanoparticle synthesis via laser ablation in the presence of natural stabilizers allows control over size and shape and constitutes a useful, uncomplicated alternative over conventional synthesis methods. In the current paper, we determined the ability of natural starch to act as a size controller and stabilizer in the preparation of zinc oxide nanoparticles via ablation of a ZnO plate in a starch solution with a nanosecond Q-Switched Nd:YAG pulsed laser at its original wavelength (λ = 1064 nm). Our results show that the particle diameter decreases with increasing laser irradiation time to a mean nanoparticle size of approximately 15 nm with a narrow size distribution. Furthermore, the obtained particle size in starch solution is considerably smaller compared with analogous ZnO nanoparticle synthesis in distilled water. The synthesized and capped nanoparticles retained their photoluminescent properties, but showed blue emission rather than the often reported green luminescence. Evaluation of old preparations compared with freshly made samples showed no agglomeration or flocculation, which was reflected in no significant change in the ZnO nanoparticle size and size distribution. Overall

  13. Degradation Studies of Polyolefins Incorporating Transparent Nanoparticulate Zinc Oxide UV Stabilizers

    International Nuclear Information System (INIS)

    Ammala, A.; Hill, A.J.; Meakin, P.; Pas, S.J.; Turney, T.W.

    2002-01-01

    Coated and dispersed nanoparticulate zinc oxide is shown to improve ultra violet (UV) stability of polypropylene and high-density polyethylene without changing its characteristic absorption spectrum in the visible region (400-800-nm). The performance of these nanoparticulate UV stabilizers is compared to conventional hindered amine light stabilizers (HALS). QUV accelerated weathering is used to simulate long-term exposure. Positron annihilation lifetime spectroscopy (PALS) is used to provide an indication of physical and chemical changes due to accelerated weathering and is shown to have potential for detecting changes well before other techniques. Visual observation, optical microscopy, carbonyl index, yellowness index and PALS indicate that nanoparticulate zinc oxide gives superior resistance to UV degradation compared to organic HALS at appropriate loading levels

  14. Ultrathin Tungsten Oxide Nanowires/Reduced Graphene Oxide Composites for Toluene Sensing

    Directory of Open Access Journals (Sweden)

    Muhammad Hassan

    2017-09-01

    Full Text Available Graphene-based composites have gained great attention in the field of gas sensor fabrication due to their higher surface area with additional functional groups. Decorating one-dimensional (1D semiconductor nanomaterials on graphene also show potential benefits in gas sensing applications. Here we demonstrate the one-pot and low cost synthesis of W18O49 NWs/rGO composites with different amount of reduced graphene oxide (rGO which show excellent gas-sensing properties towards toluene and strong dependence on their chemical composition. As compared to pure W18O49 NWs, an improved gas sensing response (2.8 times higher was achieved in case of W18O49 NWs composite with 0.5 wt. % rGO. Promisingly, this strategy can be extended to prepare other nanowire based composites with excellent gas-sensing performance.

  15. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests

    Directory of Open Access Journals (Sweden)

    Hyun Chan Kim

    2016-09-01

    Full Text Available This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO nanowire (NW grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices.

  16. Tunable absorption resonances in the ultraviolet for InP nanowire arrays.

    Science.gov (United States)

    Aghaeipour, Mahtab; Anttu, Nicklas; Nylund, Gustav; Samuelson, Lars; Lehmann, Sebastian; Pistol, Mats-Erik

    2014-11-17

    The ability to tune the photon absorptance spectrum is an attracting way of tailoring the response of devices like photodetectors and solar cells. Here, we measure the reflectance spectra of InP substrates patterned with arrays of vertically standing InP nanowires. Using the reflectance spectra, we calculate and analyze the corresponding absorptance spectra of the nanowires. We show that we can tune absorption resonances for the nanowire arrays into the ultraviolet by decreasing the diameter of the nanowires. When we compare our measurements with electromagnetic modeling, we generally find good agreement. Interestingly, the remaining differences between modeled and measured spectra are attributed to a crystal-phase dependence in the refractive index of InP. Specifically, we find indication of significant differences in the refractive index between the modeled zinc-blende InP nanowires and the measured wurtzite InP nanowires in the ultraviolet. We believe that such crystal-phase dependent differences in the refractive index affect the possibility to excite optical resonances in the large wavelength range of 345 InP nanowire-based solar cells and photodetectors.

  17. Effects of Dietary Zinc Oxide and a Blend of Organic Acids on Broiler Live Performance, Carcass Traits, and Serum Parameters

    Directory of Open Access Journals (Sweden)

    BG Sarvari

    2015-12-01

    Full Text Available ABSTRACT This experiment was carried out to evaluate the effect of different dietary supplementation levels of zinc oxide and of an organic acid blend on broiler performance, carcass traits, and serum parameters. A total of 2400 one-day-old male Ross 308 broiler chicks, with average initial body weight 44.21±0.19g, was distributed according to a completely randomized design in a 2 x 3 factorial arrangement. Six treatments, consisting of diets containing two zinc oxide levels (0 and 0.01% of the diet and three organic acid blend levels (0, 0.15, and 0.30% were applied, with eight replicates of 50 birds each. The experimental diets were supplied ad libitum for 42 days. There were significant performance differences among birds fed the different zinc oxide and organic acid blend levels until 42 d of age (p<0.01. The result of this experiment showed that the organic acid blend did not affect feed intake, but zinc oxide increased feed intake. Carcass traits were not influenced by the experimental supplements. Zinc oxide supplementation increased serum alkaline phosphatase level (p<0.01. The organic acid blend reduced serum cholesterol and triglyceride levels (p<0.05. No interactions were found between zinc oxide and the organic acid blend for none of the evaluated parameters. We concluded that zinc oxide and the evaluated organic acid blend improve broiler performance.

  18. Application of zinc oxide quantum dots in food safety

    Science.gov (United States)

    Zinc oxide quantum dots (ZnO QDs) are nanoparticles of purified powdered ZnO. The ZnO QDs were directly added into liquid foods or coated on the surface of glass jars using polylactic acid (PLA) as a carrier. The antimicrobial activities of ZnO QDs against Listeria monocytogenes, Salmonella Enteriti...

  19. Preparation and characterization of zinc and cobalt (II, III) oxides ...

    Indian Academy of Sciences (India)

    1Laboratório de Processos de Oxidação Avançados, Departamento de Química, Caixa Postal 10011, ... gated through the heterogeneous photocatalysis mediated by zinc oxide, n-type semiconductor .... 3.2 Band gap energy determination.

  20. Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material

    DEFF Research Database (Denmark)

    Han, Li; Christensen, Dennis Valbjørn; Bhowmik, Arghya

    2016-01-01

    Scandium-doped zinc cadmium oxide (Sc-doped ZnCdO) is proposed as a new n-type oxide thermoelectric material. The material is sintered in air to maintain the oxygen stoichiometry and avoid instability issues. The successful alloying of CdO with ZnO at a molar ratio of 1 : 9 significantly reduced...... is a good candidate for improving the overall conversion efficiencies in oxide thermoelectric modules. Meanwhile, Sc-doped ZnCdO is robust in air at high temperatures, whereas other n-type materials, such as Al-doped ZnO, will experience rapid degradation of their electrical conductivity and ZT....

  1. Magnetron sputtered transparent conductive zinc-oxide stabilized amorphous indium oxide thin films on polyethylene terephthalate substrates at ambient temperature

    International Nuclear Information System (INIS)

    Yan, Y.; Zhang, X.-F.; Ding, Y.-T.

    2013-01-01

    Amorphous transparent conducting zinc-oxide stabilized indium oxide thin films, named amorphous indium zinc oxide (a-IZO), were deposited by direct current magnetron sputtering at ambient temperature on flexible polyethylene terephthalate substrates. It has been demonstrated that the electrical resistivity could attain as low as ∼ 5 × 10 −4 Ω cm, which was noticeably lower than amorphous indium tin oxide films prepared at the same condition, while the visible transmittance exceeded 84% with the refractive index of 1.85–2.00. In our experiments, introduction of oxygen gas appeared to be beneficial to the improvement of the transparency and electrical conductivity. Both free carrier absorption and indirect transition were observed and Burstein–Moss effect proved a-IZO to be a degenerated amorphous semiconductor. However, the linear relation between the optical band gap and the band tail width which usually observed in covalent amorphous semiconductor such as a-Si:H was not conserved. Besides, porosity could greatly determine the resistivity and optical constants for the thickness variation at this deposition condition. Furthermore, a broad photoluminescence peak around 510 nm was identified when more than 1.5 sccm oxygen was introduced. - Highlights: ► Highly conducting amorphous zinc-oxide stabilized indium oxide thin films were prepared. ► The films were fabricated on polyethylene terephthalate at ambient temperature. ► Introduction of oxygen can improve the transparency and electrical conductivity. ► The linear relation between optical band gap and band tail width was not conserved

  2. Rapid Fabrication of Silver Nanowires through Photoreduction of Silver Nitrate from an Anodic-Aluminum-Oxide Template

    Science.gov (United States)

    Lin, Yu-Hsuan; Chen, Kun-Tso; Ho, Jeng-Rong

    2011-06-01

    A method for rapidly fabricating dense and high-aspect-ratio silver nanowires, with wire diameter of 200 nm and wire length more than 30 µm, is reported. The fabrication process simply involves filling the silver nitrate solution into the pores of an anodic-aluminum-oxide (AAO) membrane through capillary attraction and irradiating the dried template AAO membrane using a pulsed ArF excimer laser. Through varying the thickness and pore diameter of the employed AAO membrane, the primary dimensions of the targeted silver nanowires can be plainly specified; and, by amending the initial concentration of the silver nitrate solution and adjusting the laser operation parameters, laser fluence and number of laser pulses, the surface morphology and size of the resulting nanowires can be finely regulated. The wire formation mechanism is considered through two stages: the period of precipitation of silver particles from the dried silver nitrate film through the laser-induced photoreduction; and, the phase of clustering, merging and fusing of the reduced particles to form nanowires in the template pores by the thermal energy owing to photothermal effect. This approach is straightforward and takes the advantage that all the fabrication processes can be executed in an ambient environment and at room temperature. In addition, by the excellence in local processing that the laser possesses, this method is suitable for precisely growing nanowires.

  3. Zinc oxide nanocolloids prepared by picosecond pulsed laser ablation in water at different temperatures

    Science.gov (United States)

    D'Urso, Luisa; Spadaro, Salvatore; Bonsignore, Martina; Santangelo, Saveria; Compagnini, Giuseppe; Neri, Fortunato; Fazio, Enza

    2018-01-01

    Zinc oxide with wide direct band gap and high exciton binding energy is one of the most promising materials for ultraviolet (UV) light-emitting devices. It further exhibits good performance in the degradation of non-biodegradable pollutants under UV irradiation. In this work, zinc oxide (ZnO) and zinc oxide/gold (ZnO/Au) nanocolloids are prepared by picosecond pulsed laser ablation (ps-PLA), using a Zn and Au metallic targets in water media at room temperature (RT) and 80°C. ZnO and Au nanoparticles (NPs) with size in the 10-50 nm range are obtained at RT, while ZnO nanorods (NRs) are formed when water is maintained at 80°C during the ps-PLA process. Au NPs, added to ZnO colloids after the ablation process, decorate ZnO NRs. The crystalline phase of all ZnO nanocolloids is wurtzite. Methylene blue dye is used to investigate the photo-catalytic activity of all the synthesised nanocolloids, under UV light irradiation.

  4. Durable zinc oxide-containing sorbents for coal gas desulfurization

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1996-01-01

    Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

  5. Templated Control of Au nanospheres in Silica Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Tringe, J W; Vanamu, G; Zaidi, S H

    2007-03-15

    The formation of regularly-spaced metal nanostructures in selectively-placed insulating nanowires is an important step toward realization of a wide range of nano-scale electronic and opto-electronic devices. Here we report templated synthesis of Au nanospheres embedded in silica nanowires, with nanospheres consistently spaced with a period equal to three times their diameter. Under appropriate conditions, nanowires form exclusively on Si nanostructures because of enhanced local oxidation and reduced melting temperatures relative to templates with larger dimensions. We explain the spacing of the nanospheres with a general model based on a vapor-liquid-solid mechanism, in which an Au/Si alloy dendrite remains liquid in the nanotube until a critical Si concentration is achieved locally by silicon oxide-generated nanowire growth. Additional Si oxidation then locally reduces the surface energy of the Au-rich alloy by creating a new surface with minimum area inside of the nanotube. The isolated liquid domain subsequently evolves to become an Au nanosphere, and the process is repeated.

  6. PdM (M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules.

    Science.gov (United States)

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2012-05-02

    A facile and general method has been developed to synthesize well-defined PdPt and PdAu alloy nanowires, which exhibit significantly enhanced activity towards small molecules, such as ethanol, methanol, and glucose electro-oxidation in an alkaline medium. Considering the important role of one-dimensional alloy nanowires in electrocatalytic systems, the present Pd-based alloy nanostructures could offer a promising new class of advanced electrocatalysts for direct alcohol fuel cells and electrochemical sensors. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    Science.gov (United States)

    Cortese-Krott, Miriam M.; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D.; Suschek, Christoph V.

    2014-01-01

    Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation. PMID:25180171

  8. Templated electrodeposition of Ag7NO11 nanowires with very high oxidation states of silver

    NARCIS (Netherlands)

    Rodijk, E.J.B.; Maijenburg, A.W.; Maas, M.G.; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    The templated electrodeposition of 200 nm diameter nanowires of the argentic oxynitrate Ag(Ag3O4)2NO3 phase is reported. Their high surface-to-volume ratio and the high average oxidation state of Ag make these wires promising candidates for nanoscale redox processes in which both a high volumetric

  9. Multilayered films of cobalt oxyhydroxide nanowires/manganese oxide nanosheets for electrochemical capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Huajun [State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014 (China); ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering and AIBN, The University of Queensland, St Lucia, Brisbane, QLD 4072 (Australia); Tang, Fengqiu; Mukherji, Aniruddh; Yan, Xiaoxia; Wang, Lianzhou (Max) Lu, Gao Qing [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Engineering and AIBN, The University of Queensland, St Lucia, Brisbane, QLD 4072 (Australia); Lim, Melvin [Division of Environmental and Water Resources Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore)

    2010-01-15

    Multilayered films of cobalt oxyhydroxide nanowires (CoOOHNW) and exfoliated manganese oxide nanosheet (MONS) are fabricated by potentiostatic deposition and electrostatic self-assembly on indium-tin oxide coated glass substrates. The morphology and chemical composition of these films are characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectra (XPS) and the potential application as electrochemical supercapacitors are investigated using cyclic voltammetry and charge-discharge measurements. These ITO/CoOOHNW/MONS multilayered film electrodes exhibit excellent electrochemical capacitance properties, including high specific capacitance (507 F g{sup -1}) and long cycling durability (less 2% capacity loss after 5000 charge/discharge cycles). These characteristics indicate that these newly developed films may find important application for electrochemical capacitors. (author)

  10. Self-powered heat-resistant polymeric 1D nanowires and 3D micro/nanowire assemblies in a pressure-crystallized size-distributed graphene oxide/poly (vinylidene fluoride) composite

    Science.gov (United States)

    Tian, Pengfei; Lyu, Jun; Huang, Rui; Zhang, Chaoliang

    2017-12-01

    Piezoelectric one- (1D) and three-dimensional (3D) hybrid micro/nanostructured materials have received intense research interest because of their ability in capturing trace amounts of energy and transforming it into electrical energy. In this work, a size-distributed graphene oxide (GO) was utilized for the concurrent growth of both the 1D nanowires and 3D micro/nanowire architectures of poly (vinylidene fluoride) (PVDF) with piezoelectricity. The in situ formation of the polymeric micro/nanostructures, with crystalline beta phase, was achieved by the high-pressure crystallization of a well dispersed GO/PVDF composite, fabricated by an environmentally friendly physical approach. Particularly, by controlling the crystallization conditions of the binary composite at high pressure, the melting point of the polymeric micro/nanowires, which further constructed the 3D micro/nanoarchitectures, was nearly 30°C higher than that of the original PVDF. The large scale simultaneous formation of the 1D and 3D micro/nanostructures was attributed to a size-dependent catalysis of the GOs in the pressure-treated composite system. The as-fabricated heat-resistant hybrid micro/nanoarchitectures, consisting of GOs and piezoelectric PVDF micro/nanowires, may permit niche applications in self-powered micro/nanodevices for energy scavenging from their working environments.

  11. Amorphous Zinc Oxide Integrated Wavy Channel Thin Film Transistor Based High Performance Digital Circuits

    KAUST Repository

    Hanna, Amir; Hussain, Aftab M.; Omran, Hesham; Alshareef, Sarah; Salama, Khaled N.; Hussain, Muhammad Mustafa

    2015-01-01

    High performance thin film transistor (TFT) can be a great driving force for display, sensor/actuator, integrated electronics, and distributed computation for Internet of Everything applications. While semiconducting oxides like zinc oxide (Zn

  12. Zinc electrode - its behaviour in the nickel oxide-zinc accumulator

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Certain aspects of zinc electrode reaction and behavior are investigated in view of their application to batteries. The properties of the zinc electrode in a battery system are discussed, emphasizing porous structure. Shape change is emphasized as the most important factor leading to limited battery cycle life. It is shown that two existing models of shape change based on electroosmosis and current distribution are unable to consistently describe observed phenomena. The first stages of electrocrystallization are studied and the surface reactions between the silver substrate and the deposited zinc layer are investigated. The reaction mechanism of zinc and amalgamated zinc in an alkaline electrolyte is addressed, and the batter system is studied to obtain information on cycling behavior and on the shape change phenomenon. The effect on cycle behavior of diferent amalgamation techniques of the zinc electrode and several additives is addressed. Impedance measurements on zinc electrodes are considered, and battery behavior is correlated with changes in the zinc electrode during cycling. 193 references.

  13. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hainey, Mel F.; Redwing, Joan M. [Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-12-15

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  14. Impact of soft annealing on the performance of solution-processed amorphous zinc tin oxide thin-film transistors

    KAUST Repository

    Nayak, Pradipta K.

    2013-05-08

    It is demonstrated that soft annealing duration strongly affects the performance of solution-processed amorphous zinc tin oxide thin-film transistors. Prolonged soft annealing times are found to induce two important changes in the device: (i) a decrease in zinc tin oxide film thickness, and (ii) an increase in oxygen vacancy concentration. The devices prepared without soft annealing exhibited inferior transistor performances, in comparison to devices in which the active channel layer (zinc tin oxide) was subjected to soft annealing. The highest saturation field-effect mobility - 5.6 cm2 V-1 s-1 with a drain-to-source on-off current ratio (Ion/Ioff) of 2 × 108 - was achieved in the case of devices with 10-min soft-annealed zinc tin oxide thin films as the channel layer. The findings of this work identify soft annealing as a critical parameter for the processing of chemically derived thin-film transistors, and it correlates device performance to the changes in material structure induced by soft annealing. © 2013 American Chemical Society.

  15. Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress

    International Nuclear Information System (INIS)

    Trevisan, Rafael; Delapedra, Gabriel; Mello, Danielle F.; Arl, Miriam; Schmidt, Éder C.; Meder, Fabian; Monopoli, Marco; Cargnin-Ferreira, Eduardo; Bouzon, Zenilda L.; Fisher, Andrew S.; Sheehan, David; Dafre, Alcir L.

    2014-01-01

    Graphical abstract: - Highlights: • ZnONP exposure causes an initial accumulation of zinc in gills and later in digestive gland. • Zinc burden occurs by ZnONP endocytosis or uptake of ionic zinc after dissociation. • ZnONP exposure disrupts mitochondrial ultrastructure in both tissues. • Mitochondrial damage and oxidative stress are major features of ZnONP acute toxicity. - Abstract: The increasing industrial use of nanomaterials during the last decades poses a potential threat to the environment and in particular to organisms living in the aquatic environment. In the present study, the toxicity of zinc oxide nanoparticles (ZnONP) was investigated in Pacific oysters Crassostrea gigas. The nanoscale of ZnONP, in vehicle or ultrapure water, was confirmed, presenting an average size ranging from 28 to 88 nm. In seawater, aggregation was detected by TEM and DLS analysis, with an increased average size ranging from 1 to 2 μm. Soluble or nanoparticulated zinc presented similar toxicity, displaying a LC 50 (96 h) around 30 mg/L. High zinc dissociation from ZnONP, releasing ionic zinc in seawater, is a potential route for zinc assimilation and ZnONP toxicity. To investigate mechanisms of toxicity, oysters were treated with 4 mg/L ZnONP for 6, 24 or 48 h. ZnONP accumulated in gills (24 and 48 h) and digestive glands (48 h). Ultrastructural analysis of gills revealed electron-dense vesicles near the cell membrane and loss of mitochondrial cristae (6 h). Swollen mitochondria and a more conspicuous loss of mitochondrial cristae were observed after 24 h. Mitochondria with disrupted membranes and an increased number of cytosolic vesicles displaying electron-dense material were observed 48 h post exposure. Digestive gland showed similar changes, but these were delayed relative to gills. ZnONP exposure did not greatly affect thiol homeostasis (reduced and oxidized glutathione) or immunological parameters (phagocytosis, hemocyte viability and activation and total hemocyte

  16. Gills are an initial target of zinc oxide nanoparticles in oysters Crassostrea gigas, leading to mitochondrial disruption and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, Rafael; Delapedra, Gabriel; Mello, Danielle F.; Arl, Miriam [Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Schmidt, Éder C. [Department of Cell Biology, Embryology and Genetic, Federal University of Santa Catarina, 88049-900 Florianópolis, SC (Brazil); Meder, Fabian; Monopoli, Marco [Centre for Bionano Interactions, University College Dublin, Dublin (Ireland); Cargnin-Ferreira, Eduardo [Federal Institute of Santa Catarina, Campus Garopaba, Laboratory of Histological Markers, 88495-000 Garopaba, SC (Brazil); Bouzon, Zenilda L. [Department of Cell Biology, Embryology and Genetic, Federal University of Santa Catarina, 88049-900 Florianópolis, SC (Brazil); Fisher, Andrew S. [School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA Plymouth (United Kingdom); Sheehan, David [Department of Biochemistry, University College Cork, Cork (Ireland); Dafre, Alcir L., E-mail: alcir.dafre@ufsc.br [Department of Biochemistry, Federal University of Santa Catarina, 88040-900 Florianópolis, SC (Brazil)

    2014-08-15

    Graphical abstract: - Highlights: • ZnONP exposure causes an initial accumulation of zinc in gills and later in digestive gland. • Zinc burden occurs by ZnONP endocytosis or uptake of ionic zinc after dissociation. • ZnONP exposure disrupts mitochondrial ultrastructure in both tissues. • Mitochondrial damage and oxidative stress are major features of ZnONP acute toxicity. - Abstract: The increasing industrial use of nanomaterials during the last decades poses a potential threat to the environment and in particular to organisms living in the aquatic environment. In the present study, the toxicity of zinc oxide nanoparticles (ZnONP) was investigated in Pacific oysters Crassostrea gigas. The nanoscale of ZnONP, in vehicle or ultrapure water, was confirmed, presenting an average size ranging from 28 to 88 nm. In seawater, aggregation was detected by TEM and DLS analysis, with an increased average size ranging from 1 to 2 μm. Soluble or nanoparticulated zinc presented similar toxicity, displaying a LC{sub 50} (96 h) around 30 mg/L. High zinc dissociation from ZnONP, releasing ionic zinc in seawater, is a potential route for zinc assimilation and ZnONP toxicity. To investigate mechanisms of toxicity, oysters were treated with 4 mg/L ZnONP for 6, 24 or 48 h. ZnONP accumulated in gills (24 and 48 h) and digestive glands (48 h). Ultrastructural analysis of gills revealed electron-dense vesicles near the cell membrane and loss of mitochondrial cristae (6 h). Swollen mitochondria and a more conspicuous loss of mitochondrial cristae were observed after 24 h. Mitochondria with disrupted membranes and an increased number of cytosolic vesicles displaying electron-dense material were observed 48 h post exposure. Digestive gland showed similar changes, but these were delayed relative to gills. ZnONP exposure did not greatly affect thiol homeostasis (reduced and oxidized glutathione) or immunological parameters (phagocytosis, hemocyte viability and activation and total

  17. Core-shell magnetic nanowires fabrication and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kalska-Szostko, B., E-mail: kalska@uwb.edu.pl [Institute of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok (Poland); Faculty of Physics, University of Bialystok, Ciolkowskiego 1L, 15-245 Bialystok, Poland (Poland); Klekotka, U.; Satuła, D. [Institute of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245 Bialystok (Poland); Faculty of Physics, University of Bialystok, Ciolkowskiego 1L, 15-245 Bialystok, Poland (Poland)

    2017-02-28

    Highlights: • New approach for nanowires modification are presented. • Physical and chemical characterization of the nanowires are shown. • Properties modulations as an effect of the surface layer composition are discussed. - Abstract: In this paper, a new way of the preparation of core-shell magnetic nanowires has been proposed. For the modification Fe nanowires were prepared by electrodeposition in anodic aluminium oxide matrixes, in first step. In second, by wetting chemical deposition, shell layers of Ag, Au or Cu were obtained. Resultant core-shell nanowires structure was characterized by X-ray diffraction, infrared spectroscopy, transmission electron microscopy, and energy dispersive x-ray. Whereas magnetic properties by Mössbauer spectroscopy.

  18. Template-based fabrication of nanowire-nanotube hybrid arrays

    International Nuclear Information System (INIS)

    Ye Zuxin; Liu Haidong; Schultz, Isabel; Wu Wenhao; Naugle, D G; Lyuksyutov, I

    2008-01-01

    The fabrication and structure characterization of ordered nanowire-nanotube hybrid arrays embedded in porous anodic aluminum oxide (AAO) membranes are reported. Arrays of TiO 2 nanotubes were first deposited into the pores of AAO membranes by a sol-gel technique. Co nanowires were then electrochemically deposited into the TiO 2 nanotubes to form the nanowire-nanotube hybrid arrays. Scanning electron microscopy and transmission electron microscopy measurements showed a high nanowire filling factor and a clean interface between the Co nanowire and the TiO 2 nanotube. Application of these hybrids to the fabrication of ordered nanowire arrays with highly controllable geometric parameters is discussed

  19. Growth of ZnO nanowires on polypropylene membrane surface—Characterization and reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Bojarska, Marta, E-mail: m.bojarska@ichip.pw.edu.pl [Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw (Poland); Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117 (Germany); Nowak, Bartosz, E-mail: novakbartosz@gmail.com [Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw (Poland); Skowroński, Jarosław, E-mail: jaroslaw.skowronski@itee.radom.pl [Institute for Sustainable Technologies—National Research Institute, Pułaskiego 6/10, 26-600 Radom (Poland); Piątkiewicz, Wojciech, E-mail: w.piatkiewicz@polymemtech.com [Institute for Sustainable Technologies—National Research Institute, Pułaskiego 6/10, 26-600 Radom (Poland); PolymemTech Sp. z o.o., al. Niepodległości 118/90, 02-577 Warsaw (Poland); Gradoń, Leon, E-mail: l.gradon@ichip.pw.edu.pl [Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw (Poland)

    2017-01-01

    Highlights: • ZnO nanowires were grown on a polypropylene microfiltration capillary membrane. • Plasma treatment was used for membrane activation and hydrophilization. • The photocatalytic/antibacterial properties were studied upon light irradiation. • PP/ZnO nanowires membrane show good photocatalytic and antibacterial activity. • We report a new method for obtaining reactive membranes with ZnO nanowires. - Abstract: Need for a new membrane is clearly visible in recent studies, mostly due to the fouling phenomenon. Authors, focused on problem of biofouling caused by microorganisms that are present in water environment. An attempt to form a new membrane with zinc oxide (ZnO) nanowires was made; where plasma treatment was used as a first step of modification followed by chemical bath deposition. Such membrane will exhibit additional reactive properties. ZnO, because of its antibacterial and photocatalytic properties, is more and more often used in commercial applications. The authors used SEM imaging, measurement of the contact angle, XRD and the FT–IR analysis for membrane characterization. Amount of ZnO deposited on membrane surface was also investigated by dithizone method. Photocatalytic properties of such membranes were examined through methylene blue and humic acid degradation in laboratory scale modules with LEDs as either: wide range white or UV light source. Antibacterial and antifouling properties of polypropylene membranes modified with ZnO nanowires were examined through a series of tests involving microorganisms: model gram-positive and −negative bacteria. The obtained results showed that it is possible to modify the membrane surface in such a way, that additional reactive properties will be given. Thus, not only did the membrane become a physical barrier, but also turned out to be a reactive one.

  20. Interfacial electron transfer dynamics of photosensitized zinc oxide nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Murakoshi, Kei; Yanagida, Shozo [Osaka Univ. (Japan). Graduate School of Engineering; Capel, M. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1997-06-01

    The authors have prepared and characterized photosensitized zinc oxide (ZnO) nanoclusters, dispersed in methanol, using carboxylated coumarin dyes for surface adsorption. Femtosecond time-resolved emission spectroscopy allows the authors to measure the photo-induced charge carrier injection rate constant from the adsorbed photosensitizer to the n-type semiconductor nanocluster. These results are compared with other photosensitized semiconductors.

  1. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices

    International Nuclear Information System (INIS)

    Jiang, X.; Wong, F.L.; Fung, M.K.; Lee, S.T.

    2003-01-01

    Highly transparent conductive, aluminum-doped zinc oxide (ZnO:Al) films were deposited on glass substrates by midfrequency magnetron sputtering of metallic aluminum-doped zinc target. ZnO:Al films with surface work functions between 3.7 and 4.4 eV were obtained by varying the sputtering conditions. Organic light-emitting diodes (OLEDs) were fabricated on these ZnO:Al films. A current efficiency of higher than 3.7 cd/A, was achieved. For comparison, 3.9 cd/A was achieved by the reference OLEDs fabricated on commercial indium-tin-oxide substrates

  2. The Silver Oxide-Zinc Alkaline Primary Cell. Part 2. Effects of Various Types of Negative Electrodes on Cell Characteristics

    National Research Council Canada - National Science Library

    Shepherd, C. M

    1951-01-01

    ... (generally a potassium hydroxide solution). During discharge, the silver peroxide in the positive electrode is reduced to metallic silver and the metallic zinc in the negative electrode is oxidized either to zinc oxide or to a complex zincate ion...

  3. Oxidation and Condensation of Zinc Fume From Zn-CO2-CO-H2O Streams Relevant to Steelmaking Off-Gas Systems

    International Nuclear Information System (INIS)

    Bronson, Tyler Mark; Ma, Naiyang; Zhu, Liang Zhu; Sohn, Hong Yong

    2017-01-01

    Here the objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO 2 -CO-H 2 O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H 2 O or CO 2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO 2 /CO = 40/7). Rate expressions that correlate CO 2 and H 2 O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Rate ((mol)/(m 2 s)) = 406 exp ((−50.2kJ/mol)/(RT)) (pZnpCO 2 − PCO/K eq CO 2 ) ((mol)/(m 2 xs)) Rate (((mol)/(m 2 s))) = 32.9 exp (((−13.7kJ/mol)/(RT))) (pZnPH 2 O − PH 2 /K eq H 2 O) ((mol)/(m 2 xs)). It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO 2 and H 2 O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the measured data. For the conditions used in this study, the rate equations for the oxidation of zinc by

  4. Pressure tuning of the optical properties of GaAs nanowires

    NARCIS (Netherlands)

    Zardo, I.; Yazji, S.; Marini, C.; Uccelli, E.; Morral, A.F.I.; Abstreiter, G.; Postorino, P.

    2012-01-01

    The tuning of the optical and electronic properties of semiconductor nanowires can be achieved by crystal phase engineering. Zinc-blende and diamond semiconductors exhibit pressure-induced structural transitions as well as a strong pressure dependence of the band gaps. When reduced to nanoscale

  5. Development of zinc oxide nanoparticle by sonochemical method and study of their physical and optical properties

    International Nuclear Information System (INIS)

    Khan, Samreen Heena; Suriyaprabha, R.; Pathak, Bhawana; Fulekar, M. H.

    2016-01-01

    With the miniaturization of crystal size, the fraction of under-coordinated surface atoms becomes dominant, and hence, materials in the nano-regime behave very differently from the similar material in a bulk. Zinc oxide (ZnO), particularly, exhibits extraordinary properties such as a wide direct band gap (3.37 eV), large excitation binding energy (60 meV), low refractive index (1.9), stability to intense ultraviolet (UV) illumination, resistance to high-energy irradiation, and lower toxicity as compared to other semiconductors. This very property makes Zinc Oxide a potential candidate in many application fields, particularly as a prominent semiconductor. Zinc Oxide plays a significant role in many technological advances with its application in semiconductor mediated photocatalytic processes and sensor, solar cells and others. In present study, Zinc Oxide (ZnO) has been synthesized using three different precursors by sonochemical method. Zinc Acetate Dihydrate, Zinc Nitrate Hexahydrate and Zinc Sulphate Heptahydrate used as a precursor for the synthesis process. The synthesized ZnO nanoparticle has been found under the range of ∼50 nm. Zinc oxide nanoparticles were characterized using different characterizing tools. The as-synthesized ZnO was characterized by Fourier Transform-Infrared Spectroscopy (FT-IR) for the determination of functional group; Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS) for Morphology and elemental detection respectively, Transmission Electron Microscopy for Particle size distribution and morphology and X-Ray Diffraction (XRD) for the confirmation of crystal structure of the nanomaterial. The optical properties of the ZnO were examined by UV-VIS spectroscopy equipped with Diffuse Reflectance spectroscopy (DRS) confirmed the optical band gap of ZnO-3 around 3.23 eV resembles with the band gap of bulk ZnO (3.37eV). The TEM micrograph of the as-synthesized material showed perfectly spherical shaped

  6. Development of zinc oxide nanoparticle by sonochemical method and study of their physical and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Samreen Heena, E-mail: samreen.heena.khan@gmail.com; Suriyaprabha, R. [Centre for Nanosciences, Central University of Gujarat, Gandhinagar, India- 382030 (India); Pathak, Bhawana, E-mail: bhawana.pathak@cug.ac.in; Fulekar, M. H., E-mail: mhfulekar@yahoo.com [School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, India- 382030 (India)

    2016-04-13

    With the miniaturization of crystal size, the fraction of under-coordinated surface atoms becomes dominant, and hence, materials in the nano-regime behave very differently from the similar material in a bulk. Zinc oxide (ZnO), particularly, exhibits extraordinary properties such as a wide direct band gap (3.37 eV), large excitation binding energy (60 meV), low refractive index (1.9), stability to intense ultraviolet (UV) illumination, resistance to high-energy irradiation, and lower toxicity as compared to other semiconductors. This very property makes Zinc Oxide a potential candidate in many application fields, particularly as a prominent semiconductor. Zinc Oxide plays a significant role in many technological advances with its application in semiconductor mediated photocatalytic processes and sensor, solar cells and others. In present study, Zinc Oxide (ZnO) has been synthesized using three different precursors by sonochemical method. Zinc Acetate Dihydrate, Zinc Nitrate Hexahydrate and Zinc Sulphate Heptahydrate used as a precursor for the synthesis process. The synthesized ZnO nanoparticle has been found under the range of ∼50 nm. Zinc oxide nanoparticles were characterized using different characterizing tools. The as-synthesized ZnO was characterized by Fourier Transform-Infrared Spectroscopy (FT-IR) for the determination of functional group; Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS) for Morphology and elemental detection respectively, Transmission Electron Microscopy for Particle size distribution and morphology and X-Ray Diffraction (XRD) for the confirmation of crystal structure of the nanomaterial. The optical properties of the ZnO were examined by UV-VIS spectroscopy equipped with Diffuse Reflectance spectroscopy (DRS) confirmed the optical band gap of ZnO-3 around 3.23 eV resembles with the band gap of bulk ZnO (3.37eV). The TEM micrograph of the as-synthesized material showed perfectly spherical shaped

  7. ZnO nanowire-based nano-floating gate memory with Pt nanocrystals embedded in Al2O3 gate oxides

    International Nuclear Information System (INIS)

    Yeom, Donghyuk; Kang, Jeongmin; Lee, Myoungwon; Jang, Jaewon; Yun, Junggwon; Jeong, Dong-Young; Yoon, Changjoon; Koo, Jamin; Kim, Sangsig

    2008-01-01

    The memory characteristics of ZnO nanowire-based nano-floating gate memory (NFGM) with Pt nanocrystals acting as the floating gate nodes were investigated in this work. Pt nanocrystals were embedded between Al 2 O 3 tunneling and control oxide layers deposited on ZnO nanowire channels. For a representative ZnO nanowire-based NFGM with embedded Pt nanocrystals, a threshold voltage shift of 3.8 V was observed in its drain current versus gate voltage (I DS -V GS ) measurements for a double sweep of the gate voltage, revealing that the deep effective potential wells built into the nanocrystals provide our NFGM with a large charge storage capacity. Details of the charge storage effect observed in this memory device are discussed in this paper

  8. Broad compositional tunability of indium tin oxide nanowires grown by the vapor-liquid-solid mechanism

    Directory of Open Access Journals (Sweden)

    M. Zervos

    2014-05-01

    Full Text Available Indium tin oxide nanowires were grown by the reaction of In and Sn with O2 at 800 °C via the vapor-liquid-solid mechanism on 1 nm Au/Si(001. We obtain Sn doped In2O3 nanowires having a cubic bixbyite crystal structure by using In:Sn source weight ratios > 1:9 while below this we observe the emergence of tetragonal rutile SnO2 and suppression of In2O3 permitting compositional and structural tuning from SnO2 to In2O3 which is accompanied by a blue shift of the photoluminescence spectrum and increase in carrier lifetime attributed to a higher crystal quality and Fermi level position.

  9. In situ hydrogenation of molybdenum oxide nanowires for enhanced supercapacitors

    KAUST Repository

    Shakir, Imran

    2014-01-01

    In situ hydrogenation of orthorhombic molybdenum trioxide (α-MoO 3) nanowires has been achieved on a large scale by introducing alcohol during the hydrothermal synthesis for electrochemical energy storage supercapacitor devices. The hydrogenated molybdenum trioxide (H xMoO3) nanowires yield a specific capacitance of 168 F g-1 at 0.5 A g-1 and maintain 108 F g-1 at 10 A g-1, which is 36-fold higher than the capacitance obtained from pristine MoO3 nanowires at the same conditions. The electrochemical devices made with HxMoO3 nanowires exhibit excellent cycling stability by retaining 97% of their capacitance after 3000 cycles due to an enhanced electronic conductivity and increased density of hydroxyl groups on the surface of the MoO3 nanowires. This journal is © The Royal Society of Chemistry.

  10. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    Directory of Open Access Journals (Sweden)

    Miriam M. Cortese-Krott

    2014-01-01

    Full Text Available Aberrant production of nitric oxide (NO by inducible NO synthase (iNOS has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation.

  11. Comparison of the effects and distribution of zinc oxide nanoparticles and zinc ions in activated sludge reactors.

    Science.gov (United States)

    Zhang, Dongqing; Trzcinski, Antoine P; Oh, Hyun-Suk; Chew, Evelyn; Liu, Yu; Tan, Soon Keat; Ng, Wun Jern

    2017-09-19

    Zinc Oxide nanoparticles (ZnO NPs) are being increasingly applied in the industry, which results inevitably in the release of these materials into the hydrosphere. In this study, simulated waste-activated sludge experiments were conducted to investigate the effects of Zinc Oxide NPs and to compare it with its ionic counterpart (as ZnSO 4 ). It was found that even 1 mg/L of ZnO NPs could have a small impact on COD and ammonia removal. Under 1, 10 and 50 mg/L of ZnO NP exposure, the Chemical Oxygen Demand (COD) removal efficiencies decreased from 79.8% to 78.9%, 72.7% and 65.7%, respectively. The corresponding ammonium (NH 4 + N) concentration in the effluent significantly (P zinc ions were more toxic towards microorganisms compared to ZnO NPs. Under 50 mg/L exposure, the effluent Zn level was 5.69 mg/L, implying that ZnO NPs have a strong affinity for activated sludge. The capacity for adsorption of ZnO NPs onto activated sludge was found to be 2.3, 6.3, and 13.9 mg/g MLSS at influent ZnO NP concentrations of 1.0, 10 and 50 mg/L respectively, which were 1.74-, 2.13- and 2.05-fold more than under Zn ion exposure.

  12. Preliminary study on zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction

    Science.gov (United States)

    Wen, Yue-Hua; Cheng, Jie; Ning, Shang-Qi; Yang, Yu-Sheng

    A zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction is reported in this paper. It possesses functions of both zincate reduction and electrochemical preparation, showing the potential for increasing the electronic energy utilization. Charge/discharge tests and scanning electron microscopy (SEM) micrographs reveal that when a nickel sheet plated with the high-H 2-overpotential metal, cadmium, was used as the negative substrate electrode, the dendritic formation and hydrogen evolution are suppressed effectively, and granular zinc deposits become larger but relatively dense with the increase of charge time. The performance of batteries is favorable even if the charge time is as long as 5 h at the current density of 20 mA cm -2. Better discharge performance is achieved using a 'cavity-opening' configuration for the discharge cell rather than a 'gas-introducing' configuration. The highest energy efficiency is up to 59.2%. That is, the energy consumed by organic electro-synthesis can be recovered by 59.2%. Cyclic voltammograms show that the sintered nickel electrode exhibits a good electro-catalysis activity for the propanol oxidation. The increase of propanol concentration conduces to an enhancement in the organic electro-synthesis efficiency. The organic electro-synthesis current efficiency of 82% can be obtained.

  13. Sonochemically synthesized iron-doped zinc oxide nanoparticles: Influence of precursor composition on characteristics

    International Nuclear Information System (INIS)

    Roy, Anirban; Maitra, Saikat; Ghosh, Sobhan; Chakrabarti, Sampa

    2016-01-01

    Highlights: • Sonochemical synthesis of iron-doped zinc oxide nanoparticles. • Green synthesis without alkali at room temperature. • Characterization by UV–vis spectroscopy, FESEM, XRD and EDX. • Influence of precursor composition on characteristics. • Composition and characteristics are correlated. - Abstract: Iron-doped zinc oxide nanoparticles have been synthesized sonochemically from aqueous acetyl acetonate precursors of different proportions. Synthesized nanoparticles were characterized with UV–vis spectroscopy, X-ray diffraction and microscopy. Influences of precursor mixture on the characteristics have been examined and modeled. Linear correlations have been proposed between dopant dosing, extent of doping and band gap energy. Experimental data corroborated with the proposed models.

  14. The role of pH variation on the growth of zinc oxide nanostructures

    International Nuclear Information System (INIS)

    Wahab, Rizwan; Ansari, S.G.; Kim, Young Soon; Song, Minwu; Shin, Hyung-Shik

    2009-01-01

    In this paper we present a systematic study on the morphological variation of ZnO nanostructure by varying the pH of precursor solution via solution method. Zinc acetate dihydrate and sodium hydroxide were used as a precursor, which was refluxed at 90 deg. C for an hour. The pH of the precursor solution (zinc acetate di hydrate) was increased from 6 to 12 by the controlled addition of sodium hydroxide (NaOH). Morphology of ZnO nanorods markedly varies from sheet-like (at pH 6) to rod-like structure of zinc oxide (pH 10-12). Diffraction patterns match well with standard ZnO at all pH values. Crystallinity and nanostructures were confirmed by high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) pattern, which indicates structure grew along [0 0 0 1] direction with an ideal lattice fringes distance 0.52 nm. FTIR spectroscopic measurement showed a standard peak of zinc oxide at 464 cm -1 . Amount of H + and OH - ions are found key to the structure control of studied material, as discussed in the growth mechanism.

  15. Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope.

    Science.gov (United States)

    Polyakov, Boris; Dorogin, Leonid M; Vlassov, Sergei; Kink, Ilmar; Romanov, Alexey E; Lohmus, Rynno

    2012-11-01

    A novel method for in situ measurement of the static and kinetic friction is developed and demonstrated for zinc oxide nanowires (NWs) on oxidised silicon wafers. The experiments are performed inside a scanning electron microscope (SEM) equipped with a nanomanipulator with an atomic force microscope tip as a probe. NWs are pushed by the tip from one end until complete displacement is achieved, while NW bending is monitored by the SEM. The elastic bending profile of a NW during the manipulation process is used to calculate the static and kinetic friction forces. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Size-controlled synthesis and formation mechanism of manganese oxide OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids

    Science.gov (United States)

    Zhang, Qin; Cheng, Xiaodi; Qiu, Guohong; Liu, Fan; Feng, Xionghan

    2016-05-01

    This study presents a simplified approach for size-controlled synthesis of manganese oxide octahedral molecular sieve (OMS-2) nanowires using potassium permanganate (KMnO4) and different inorganic acids (HCl, HNO3, and H2SO4) under reflux conditions. The morphology and nanostructure of the synthesized products are characterized by X-ray diffraction, Ar adsorption, and electron microscopy analysis, in order to elucidate the controlling effects of acid concentration and type as well as the formation mechanism of OMS-2 nanowires. The concentration of inorganic acid is a crucial factor controlling the phase of the synthesized products. OMS-2 nanowires are obtained with HCl at the concentration ≥0.96 mol/L or with HNO3 and H2SO4 at the concentrations ≥0.72 mol/L. Differently, the type of inorganic acid effectively determines the particle size of OMS-2 nanowires. When the acid is changed from HCl to HNO3 and H2SO4 in the reflux system, the average length of OMS-2 declines significantly by 60-70% (1104-442 and 339 nm), with minor decreased in the average width (43-39 and 34 nm). The formation of OMS-2 nanowires under reflux conditions with KMnO4 and inorganic acids involves a two-step process, i.e., the initial formation of layered manganese oxides, and subsequent transformation to OMS-2 via a dissolution-recrystallization process under acidic conditions. The proposed reflux route provides an alternative approach for synthesizing OMS-2 nanowires as well as other porous nano-crystalline OMS materials.

  17. The effect of zinc injection into PWR primary coolant on the reduction of radiation buildup and corrosion control. The solubilities of zinc, nickel and cobalt spinel oxides

    International Nuclear Information System (INIS)

    Miyajima, Kaori; Hirano, Hideo

    1999-01-01

    The use of zinc injection into PWR primary coolant to reduce radiation buildup has been widely studied, and te reduction effect has been experimentally confirmed. However, some items, such as the optimal concentration of zinc required to reduce radiation buildup, the corrosion control effect of zinc injection, and the influence of zinc injection on the integrity of fuel cladding, have not been clarified yet. In particular, the corrosion suppression effect of zinc remains unconfirmed. Therefore, it is necessary to measure and calculate the solubilities of zinc and nickel spinel oxides, which are formed on the surface of Ni-based alloys in PWR primary systems. In this study, in order to assess the effectiveness of zinc injection in the reduction of radiation buildup and the corrosion control of Ni-based alloy, the potential-pH diagrams for Zn-Cr-H 2 O, Ni-Cr-H 2 O, and Co-Cr-H 2 O systems at 300degC were constructed and the solubilities of Zn-Cr, Ni-Cr, and Co-Cr spinel oxides were calculated. It is concluded that under pH conditions for which NiCr 2 O 4 is stable, zinc injection is effective in corrosion control as well as in reducing radiation buildup. (author)

  18. A p-silicon nanowire/n-ZnO thin film heterojunction diode prepared by thermal evaporation

    International Nuclear Information System (INIS)

    Hazra, Purnima; Jit, S.

    2014-01-01

    This paper represents the electrical and optical characteristics of a SiNW/ZnO heterojunction diode and subsequent studies on the photodetection properties of the diode in the ultraviolet (UV) wavelength region. In this work, silicon nanowire arrays were prepared on p-type (100)-oriented Si substrate by an electroless metal deposition and etching method with the help of ultrasonication. After that, catalyst-free deposition of zinc oxide (ZnO) nanowires on a silicon nanowire (SiNW) array substrate was done by utilizing a simple and cost-effective thermal evaporation technique without using a buffer layer. The SEM and XRD techniques are used to show the quality of the as-grown ZnO nanowire film. The junction properties of the diode are evaluated by measuring current—voltage and capacitance—voltage characteristics. The diode has a well-defined rectifying behavior with a rectification ratio of 190 at ±2 V, turn-on voltage of 0.5 V, and barrier height is 0.727 eV at room temperature under dark conditions. The photodetection parameters of the diode are investigated in the bias voltage range of ±2 V. The diode shows responsivity of 0.8 A/W at a bias voltage of 2 V under UV illumination (wavelength = 365 nm). The characteristics of the device indicate that it can be used for UV detection applications in nano-optoelectronic and photonic devices. (semiconductor devices)

  19. Preparation of Diatomite Supported Nano Zinc Oxide Composite Photocatalytic Material and Study on its Formaldehyde Degradation

    Science.gov (United States)

    Xiao, Liguang; Pang, Bo

    2017-09-01

    This experiment used zinc nitrate as precursor, ethanol as solvent and polyethylene glycol as dispersant, diatomite as carrier, diatomite loaded nano Zinc Oxide was prepared by sol-gel method, in addition, the formaldehyde degradation was studied by two kinds of experimental methods: preparation and loading, preparation and post loading, The samples were characterized by SEM, XRD, BET and IR. Experimental results showed that: Diatomite based nano Zinc Oxide had a continuous adsorption and degradation of formaldehyde, formaldehyde gas with initial concentration was 0.7mg/m3, after 36h degradation, the concentration reached 0.238mg/m3, the degradation rate reached to 66%.

  20. Preparation, characterization and electrocatalytic behavior of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate hybrid film-modified electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chu, H.-W.; Thangamuthu, R. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China); Chen, S.-M. [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan (China)], E-mail: smchen78@ms15.hinet.net

    2008-02-15

    Polynuclear mixed-valent hybrid films of zinc oxide/zinchexacyanoferrate and ruthenium oxide hexacyanoferrate (ZnO/ZnHCF-RuOHCF) have been deposited on electrode surfaces from H{sub 2}SO{sub 4} solution containing Zn(NO{sub 3}){sub 2}, RuCl{sub 3} and K{sub 3}[Fe(CN){sub 6}] by potentiodynamic cycling method. Simultaneous cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM) measurements demonstrate the steady growth of hybrid film. Surface morphology of hybrid film was investigated using scanning electron microscopy (SEM). Energy dispersive spectrometer (EDS) data confirm existence of zinc oxide and ruthenium oxide hexacyanoferrate (RuOHCF) in the hybrid film. The effect of type of monovalent cations on the redox behavior of hybrid film was investigated. In pure supporting electrolyte, electrochemical responses of Ru{sup II/III} redox transition occurring at negative potential region resemble with that of a surface immobilized redox couple. The electrocatalytic activity of ZnO/ZnHCF-RuOHCF hybrid film was investigated towards oxidation of epinephrine, dopamine and L-cysteine, and reduction of S{sub 2}O{sub 8}{sup 2-} and SO{sub 5}{sup 2-} as well as IO{sub 3}{sup -} using cyclic voltammetry and rotating ring disc electrode (RRDE) techniques.

  1. Synthesis and magnetic properties of cobalt-iron/cobalt-ferrite soft/hard magnetic core/shell nanowires

    Science.gov (United States)

    Leandro Londoño-Calderón, César; Moscoso-Londoño, Oscar; Muraca, Diego; Arzuza, Luis; Carvalho, Peterson; Pirota, Kleber Roberto; Knobel, Marcelo; Pampillo, Laura Gabriela; Martínez-García, Ricardo

    2017-06-01

    A straightforward method for the synthesis of CoFe2.7/CoFe2O4 core/shell nanowires is described. The proposed method starts with a conventional pulsed electrodeposition procedure on alumina nanoporous template. The obtained CoFe2.7 nanowires are released from the template and allowed to oxidize at room conditions over several weeks. The effects of partial oxidation on the structural and magnetic properties were studied by x-ray spectrometry, magnetometry, and scanning and transmission electron microscopy. The results indicate that the final nanowires are composed of 5 nm iron-cobalt alloy nanoparticles. Releasing the nanowires at room conditions promoted surface oxidation of the nanoparticles and created a CoFe2O4 shell spinel-like structure. The shell avoids internal oxidation and promotes the formation of bi-magnetic soft/hard magnetic core/shell nanowires. The magnetic properties of both the initial single-phase CoFe2.7 nanowires and the final core/shell nanowires, reveal that the changes in the properties from the array are due to the oxidation more than effects associated with released processes (disorder and agglomeration).

  2. Photoexcited emission efficiencies of zinc oxide

    Science.gov (United States)

    Foreman, John Vincent

    Optoelectronic properties of the II-VI semiconductor zinc oxide (ZnO) have been studied scientifically for almost 60 years; however, many fundamental questions remain unanswered about its two primary emission bands--the exciton-related luminescence in the ultraviolet and the defect-related emission band centered in the green portion of the visible spectrum. The work in this dissertation was motivated by the surprising optical properties of a ZnO nanowire sample grown by the group of Prof. Jie Liu, Department of Chemistry, Duke University. We found that this nanowire sample exhibited defect-related green/white emission of unprecedented intensity relative to near-band-edge luminescence. The experimental work comprising this dissertation was designed to explain the optical properties of this ZnO nanowire sample. Understanding the physics underlying such exceptional intensity of green emission addresses many of the open questions of ZnO research and assesses the possibility of using ZnO nanostructures as an ultraviolet-excited, broadband visible phosphor. The goal of this dissertation is to provide insight into what factors influence the radiative and nonradiative recombination efficiencies of ZnO by characterizing simultaneously the optical properties of the near-band-edge ultraviolet and the defect-related green emission bands. Specifically, we seek to understand the mechanisms of ultraviolet and green emission, the mechanism of energy transfer between them, and the evolution of their emission efficiencies with parameters such as excitation density and sample temperature. These fundamental but unanswered questions of ZnO emission are addressed here by using a novel combination of ultrafast spectroscopic techniques in conjunction with a systematic set of ZnO samples. Through this systematic investigation, ZnO may be realistically assessed as a potential green/white light phosphor. Photoluminescence techniques are used to characterize the thermal quenching behavior of

  3. Piezoelectric Zinc Oxide Based MEMS Acoustic Sensor

    Directory of Open Access Journals (Sweden)

    Aarti Arora

    2008-04-01

    Full Text Available An acoustic sensors exhibiting good sensitivity was fabricated using MEMS technology having piezoelectric zinc oxide as a dielectric between two plates of capacitor. Thin film zinc oxide has structural, piezoelectric and optical properties for surface acoustic wave (SAW and bulk acoustic wave (BAW devices. Oxygen effficient films are transparent and insulating having wide applications for sensors and transducers. A rf sputtered piezoelectric ZnO layer transforms the mechanical deflection of a thin etched silicon diaphragm into a piezoelectric charge. For 25-micron thin diaphragm Si was etched in tetramethylammonium hydroxide solution using bulk micromachining. This was followed by deposition of sandwiched structure composed of bottom aluminum electrode, sputtered 3 micron ZnO film and top aluminum electrode. A glass having 1 mm diameter hole was bonded on backside of device to compensate sound pressure in side the cavity. The measured value of central capacitance and dissipation factor of the fabricated MEMS acoustic sensor was found to be 82.4pF and 0.115 respectively, where as the value of ~176 pF was obtained for the rim capacitance with a dissipation factor of 0.138. The response of the acoustic sensors was reproducible for the devices prepared under similar processing conditions under different batches. The acoustic sensor was found to be working from 30Hz to 8KHz with a sensitivity of 139µV/Pa under varying acoustic pressure.

  4. Alcohol vapor sensing by cadmium-doped zinc oxide thick films based chemical sensor

    Science.gov (United States)

    Zargar, R. A.; Arora, M.; Chackrabarti, S.; Ahmad, S.; Kumar, J.; Hafiz, A. K.

    2016-04-01

    Cadmium-doped zinc oxide nanoparticles were derived by simple chemical co-precipitation route using zinc acetate dihydrate and cadmium acetate dihydrate as precursor materials. The thick films were casted from chemical co-precipitation route prepared nanoparticles by economic facile screen printing method. The structural, morphological, optical and electrical properties of the film were characterized relevant to alcohol vapor sensing application by powder XRD, SEM, UV-VIS and DC conductivity techniques. The response and sensitivity of alcohol (ethanol) vapor sensor are obtained from the recovery curves at optimum working temperature range from 20∘C to 50∘C. The result shows that maximum sensitivity of the sensor is observed at 25∘C operating temperature. On varying alcohol vapor concentration, minor variation in resistance has been observed. The sensing mechanism of sensor has been described in terms of physical adsorption and chemical absorption of alcohol vapors on cadmium-doped zinc oxide film surface and inside film lattice network through weak hydrogen bonding, respectively.

  5. Anodic Aluminum Oxide Membrane-Assisted Fabrication of ?-In2S3Nanowires

    OpenAIRE

    Shi, Jen-Bin; Chen, Chih-Jung; Lin, Ya-Ting; Hsu, Wen-Chia; Chen, Yu-Cheng; Wu, Po-Feng

    2009-01-01

    Abstract In this study, β-In2S3nanowires were first synthesized by sulfurizing the pure Indium (In) nanowires in an AAO membrane. As FE-SEM results, β-In2S3nanowires are highly ordered, arranged tightly corresponding to the high porosity of the AAO membrane used. The diameter of the β-In2S3nanowires is about 60 nm with the length of about 6–8 μm. Moreover, the aspect ratio of β-In2S3nanowires is up to 117. An EDS analysis revealed the β-In2S3nanowires with ...

  6. Enhanced performance of thermal-assisted electron field emission based on barium oxide nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yunkang [Department of Mathematics and Physics, Nanjing Institute of technology, Nanjing, 211167 (China); Chen, Jing, E-mail: chenjingmoon@gmail.com [School of Electronic Science & Engineering, Southeast University, Nanjing, 210096 (China); Zhang, Yuning; Zhang, Xiaobing; Lei, Wei; Di, Yunsong [School of Electronic Science & Engineering, Southeast University, Nanjing, 210096 (China); Zhang, Zichen, E-mail: zz241@ime.ac.cn [Integrated system for Laser applications Group, Institute of Microelectronics of Chinese Academy of Sciences, 100029, Beijing (China)

    2017-02-28

    Highlights: • A possible mechanism for thermal-assisted electric field was demonstrated. • A new path for the architecture of the novel nanomaterial and methodology for its potential application in the field emission device area was provided. • The turn-on field, the threshold field and the field emission current density were largely related to the temperature of the cathode. • The relationship between the work function of emitter material and the temperature of emitter was found. - Abstract: In this paper, thermal-assisted field emission properties of barium oxide (BaO) nanowire synthesized by a chemical bath deposition method were investigated. The morphology and composition of BaO nanowire were characterized by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SED), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX) respectively. The turn-on field, threshold field and the emission current density could be affected relatively due to the thermal-assisted effect when the electric field was applied, in the meanwhile, the turn-on field for BaO nanowire was measured to be decreased from 1.12 V/μm to 0.66 V/μm when the temperature was raised from 293 K to 593 K, whereas for the threshold field was found to decrease from 3.64 V/μm to 2.12 V/μm. The improved performance was demonstrated due to the reduced work function of the BaO nanowire as the agitation temperature increasing, leading to the higher probability of electrons tunneling through the energy barrier and enhancement of the field emission properties of BaO emitters.

  7. Enhanced performance of thermal-assisted electron field emission based on barium oxide nanowire

    International Nuclear Information System (INIS)

    Cui, Yunkang; Chen, Jing; Zhang, Yuning; Zhang, Xiaobing; Lei, Wei; Di, Yunsong; Zhang, Zichen

    2017-01-01

    Highlights: • A possible mechanism for thermal-assisted electric field was demonstrated. • A new path for the architecture of the novel nanomaterial and methodology for its potential application in the field emission device area was provided. • The turn-on field, the threshold field and the field emission current density were largely related to the temperature of the cathode. • The relationship between the work function of emitter material and the temperature of emitter was found. - Abstract: In this paper, thermal-assisted field emission properties of barium oxide (BaO) nanowire synthesized by a chemical bath deposition method were investigated. The morphology and composition of BaO nanowire were characterized by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SED), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX) respectively. The turn-on field, threshold field and the emission current density could be affected relatively due to the thermal-assisted effect when the electric field was applied, in the meanwhile, the turn-on field for BaO nanowire was measured to be decreased from 1.12 V/μm to 0.66 V/μm when the temperature was raised from 293 K to 593 K, whereas for the threshold field was found to decrease from 3.64 V/μm to 2.12 V/μm. The improved performance was demonstrated due to the reduced work function of the BaO nanowire as the agitation temperature increasing, leading to the higher probability of electrons tunneling through the energy barrier and enhancement of the field emission properties of BaO emitters.

  8. Influence Of pH On The Transport Of Nanoscale Zinc Oxide In Saturated Porous Media

    Science.gov (United States)

    Widespread use of nanoscale zinc oxide (nZnO) in various fields causes subsurface environment contamination. Even though the transport of dissolved zinc ions in subsurface environments such as soils and sediments has been widely studied, the transport mechanism of nZnO in such e...

  9. The effect of substrate temperature on atomic layer deposited zinc tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, Johan, E-mail: johan.lindahl@angstrom.uu.se; Hägglund, Carl, E-mail: carl.hagglund@angstrom.uu.se; Wätjen, J. Timo, E-mail: timo.watjen@angstrom.uu.se; Edoff, Marika, E-mail: marika.edoff@angstrom.uu.se; Törndahl, Tobias, E-mail: tobias.torndahl@angstrom.uu.se

    2015-07-01

    Zinc tin oxide (ZTO) thin films were deposited on glass substrates by atomic layer deposition (ALD), and the film properties were investigated for varying deposition temperatures in the range of 90 to 180 °C. It was found that the [Sn]/([Sn] + [Zn]) composition is only slightly temperature dependent, while properties such as growth rate, film density, material structure and band gap are more strongly affected. The growth rate dependence on deposition temperature varies with the relative number of zinc or tin containing precursor pulses and it correlates with the growth rate behavior of pure ZnO and SnO{sub x} ALD. In contrast to the pure ZnO phase, the density of the mixed ZTO films is found to depend on the deposition temperature and it increases linearly with about 1 g/cm{sup 3} in total over the investigated range. Characterization by transmission electron microscopy suggests that zinc rich ZTO films contain small (~ 10 nm) ZnO or ZnO(Sn) crystallites embedded in an amorphous matrix, and that these crystallites increase in size with increasing zinc content and deposition temperature. These crystallites are small enough for quantum confinement effects to reduce the optical band gap of the ZTO films as they grow in size with increasing deposition temperature. - Highlights: • Zinc tin oxide thin films were deposited by atomic layer deposition. • The structure and optical properties were studied at different growth temperatures. • The growth temperature had only a small effect on the composition of the films. • Small ZnO or ZnO(Sn) crystallites were observed by TEM in zinc rich ZTO films. • The growth temperature affects the crystallite size, which influences the band gap.

  10. The effect of substrate temperature on atomic layer deposited zinc tin oxide

    International Nuclear Information System (INIS)

    Lindahl, Johan; Hägglund, Carl; Wätjen, J. Timo; Edoff, Marika; Törndahl, Tobias

    2015-01-01

    Zinc tin oxide (ZTO) thin films were deposited on glass substrates by atomic layer deposition (ALD), and the film properties were investigated for varying deposition temperatures in the range of 90 to 180 °C. It was found that the [Sn]/([Sn] + [Zn]) composition is only slightly temperature dependent, while properties such as growth rate, film density, material structure and band gap are more strongly affected. The growth rate dependence on deposition temperature varies with the relative number of zinc or tin containing precursor pulses and it correlates with the growth rate behavior of pure ZnO and SnO x ALD. In contrast to the pure ZnO phase, the density of the mixed ZTO films is found to depend on the deposition temperature and it increases linearly with about 1 g/cm 3 in total over the investigated range. Characterization by transmission electron microscopy suggests that zinc rich ZTO films contain small (~ 10 nm) ZnO or ZnO(Sn) crystallites embedded in an amorphous matrix, and that these crystallites increase in size with increasing zinc content and deposition temperature. These crystallites are small enough for quantum confinement effects to reduce the optical band gap of the ZTO films as they grow in size with increasing deposition temperature. - Highlights: • Zinc tin oxide thin films were deposited by atomic layer deposition. • The structure and optical properties were studied at different growth temperatures. • The growth temperature had only a small effect on the composition of the films. • Small ZnO or ZnO(Sn) crystallites were observed by TEM in zinc rich ZTO films. • The growth temperature affects the crystallite size, which influences the band gap

  11. A randomized, double-blind, placebo-controlled multicenter trial evaluating topical zinc oxide for acute open wounds following pilonidal disease excision

    DEFF Research Database (Denmark)

    Ågren, Magnus S.; Ostenfeld, Ulla; Kallehave, Finn Lasse

    2006-01-01

    The purpose of this randomized, double-blind, placebo-controlled multicenter trial was to compare topical zinc oxide with placebo mesh on secondary healing pilonidal wounds. Sixty-four (53 men) consecutive patients, aged 17-60 years, were centrally randomized to either treatment with 3% zinc oxide...... (n = 33) or placebo (n = 31) by concealed allocation. Patients were followed with strict recording of beneficial and harmful effects including masked assessment of time to complete wound closure. Analysis was carried out on an intention-to-treat basis. Median healing times were 54 days (interquartile...... range 42-71 days) for the zinc and 62 days (55-82 days) for the placebo group (p = 0.32). Topical zinc oxide increased (p placebo...

  12. Effect of zinc sources on yield and utilization of zinc in rice-wheat sequence

    International Nuclear Information System (INIS)

    Deb, D.L.

    1990-01-01

    A field experiment was conducted on an inceptisol of Delhi to evaluate three sources of zinc, namely, zinc sulphate, zincated urea and zinc oxide on yield and utilization of zinc in rice-wheat sequence. Results indicated that, amongst the three zinc sources, zinc sulphate and zincated urea gave the best performance in increasing the grain yield of rice whereas zinc oxide depressed the grain yield of wheat significantly when compared to other treatments. The highest Zn derived from fertilizer and its utilization was obtained with zinc sulphate for both rice and wheat crops. (author). 9 refs., 4 tabs

  13. Preparation of Zinc Oxide (ZnO) Thin Film as Transparent Conductive Oxide (TCO) from Zinc Complex Compound on Thin Film Solar Cells: A Study of O2 Effect on Annealing Process

    Science.gov (United States)

    Muslih, E. Y.; Kim, K. H.

    2017-07-01

    Zinc oxide (ZnO) thin film as a transparent conductive oxide (TCO) for thin film solar cell application was successfully prepared through two step preparations which consisted of deposition by spin coating at 2000 rpm for 10 second and followed by annealing at 500 °C for 2 hours under O2 and ambient atmosphere. Zinc acetate dehydrate was used as a precursor which dissolved in ethanol and acetone (1:1 mol) mixture in order to make a zinc complex compound. In this work, we reported the O2 effect, reaction mechanism, structure, morphology, optical and electrical properties. ZnO thin film in this work shows a single phase of wurtzite, with n-type semiconductor and has band gap, carrier concentration, mobility, and resistivity as 3.18 eV, 1.21 × 10-19cm3, 11 cm2/Vs, 2.35 × 10-3 Ωcm respectively which is suitable for TCO at thin film solar cell.

  14. Eco-friendly approach towards green synthesis of zinc oxide nanocrystals and its potential applications.

    Science.gov (United States)

    Velmurugan, Palanivel; Park, Jung-Hee; Lee, Sang-Myeong; Yi, Young-Joo; Cho, Min; Jang, Jum-Suk; Myung, Hyun; Bang, Keuk-Soo; Oh, Byung-Taek

    2016-09-01

    In the present study, we investigated a novel green route for synthesis of zinc oxide (ZnO) nanocrystals using Prunus × yedoensis Matsumura leaf extract as a reducing agent without using any surfactant or external energy. Standard characterization studies were carried out to confirm the obtained product using UV-Vis spectra, SEM-EDS, FTIR, TEM, and XRD. In addition, the synthesized ZnO nanocrystals were coated onto fabric and leather samples to study their bacteriostatic effect against odor-causing bacteria Brevibacterium linens and Staphylococcus epidermidis. Zinc oxide nanocrystal-coated fabric and leather showed good activity against both bacteria.

  15. Ab initio study of the stability and electronic properties of wurtzite and zinc-blende BeS nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Faraji, Somayeh [Simulation Laboratory, Department of Physics, Faculty of Science, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Mokhtari, Ali, E-mail: mokhtari@sci.sku.ac.i [Simulation Laboratory, Department of Physics, Faculty of Science, Shahrekord University, Shahrekord (Iran, Islamic Republic of); Nanotechnology Research Center, Shahrekord University, Shahrekord (Iran, Islamic Republic of)

    2010-07-19

    In this work we study the structural stability and electronic properties of the Beryllium sulfide nanowires (NWs) in zinc-blende (ZB) and wurtzite (WZ) phases (with triangle and hexagonal cross sections), using first principle calculations within the plane-wave pseudopotential method. A phenomenological model is used to explain the role of dangling bonds in the stability of the NWs. In contrast to the bulk phase, the ZB-NWs with diameters less than 133.3 A are found to be less favorable over the WZ-NWs, in which the surface dangling bonds (DBs) on the NW facets play an important role to stabilize the NWs. Furthermore, both ZB- and WZ-NWs are predicted to be semiconductor and the values of the band gaps are dependent on the surface DBs as well as the size and shape of the NWs. Finally, we obtain atom projected density of states (PDOSs) by calculating the localized density of states on the surface atoms, as well as on the core and edge atoms.

  16. Ab initio study of the stability and electronic properties of wurtzite and zinc-blende BeS nanowires

    International Nuclear Information System (INIS)

    Faraji, Somayeh; Mokhtari, Ali

    2010-01-01

    In this work we study the structural stability and electronic properties of the Beryllium sulfide nanowires (NWs) in zinc-blende (ZB) and wurtzite (WZ) phases (with triangle and hexagonal cross sections), using first principle calculations within the plane-wave pseudopotential method. A phenomenological model is used to explain the role of dangling bonds in the stability of the NWs. In contrast to the bulk phase, the ZB-NWs with diameters less than 133.3 A are found to be less favorable over the WZ-NWs, in which the surface dangling bonds (DBs) on the NW facets play an important role to stabilize the NWs. Furthermore, both ZB- and WZ-NWs are predicted to be semiconductor and the values of the band gaps are dependent on the surface DBs as well as the size and shape of the NWs. Finally, we obtain atom projected density of states (PDOSs) by calculating the localized density of states on the surface atoms, as well as on the core and edge atoms.

  17. Atomic layer deposition of high-mobility hydrogen-doped zinc oxide

    NARCIS (Netherlands)

    Macco, B.; Knoops, H.C.M.; Verheijen, M.A.; Beyer, W.; Creatore, M.; Kessels, W.M.M.

    2017-01-01

    In this work, atomic layer deposition (ALD) has been employed to prepare high-mobility H-doped zinc oxide (ZnO:H) films. Hydrogen doping was achieved by interleaving the ZnO ALD cycles with H2 plasma treatments. It has been shown that doping with H2 plasma offers key advantages over traditional

  18. Emergent ferromagnetism in ZnO/Al2O3 core-shell nanowires: Towards oxide spinterfaces

    KAUST Repository

    Xing, G. Z.; Wang, D. D.; Cheng, C.-J.; He, M.; Li, S.; Wu, Tao

    2013-01-01

    We report that room-temperature ferromagnetism emerges at the interface formed between ZnO nanowire core and Al2O3 shell although both constituents show mainly diamagnetism. The interface-based ferromagnetism can be further enhanced by annealing the ZnO/Al2O3 core-shell nanowires and activating the formation of ZnAl2O4 phase as a result of interfacial solid-state reaction. High-temperature measurements indicate that the magnetic order is thermally stable up to 750 K. Transmission electron microscopy studies reveal the annealing-induced jagged interfaces, and the extensive structural defects appear to be relevant to the emergent magnetism. Our study suggests that tailoring the spinterfaces in nanostructure-harnessed wide-band-gap oxides is an effective route towards engineered nanoscale architecture with enhanced magnetic properties.

  19. Emergent ferromagnetism in ZnO/Al2O3 core-shell nanowires: Towards oxide spinterfaces

    KAUST Repository

    Xing, G. Z.

    2013-07-08

    We report that room-temperature ferromagnetism emerges at the interface formed between ZnO nanowire core and Al2O3 shell although both constituents show mainly diamagnetism. The interface-based ferromagnetism can be further enhanced by annealing the ZnO/Al2O3 core-shell nanowires and activating the formation of ZnAl2O4 phase as a result of interfacial solid-state reaction. High-temperature measurements indicate that the magnetic order is thermally stable up to 750 K. Transmission electron microscopy studies reveal the annealing-induced jagged interfaces, and the extensive structural defects appear to be relevant to the emergent magnetism. Our study suggests that tailoring the spinterfaces in nanostructure-harnessed wide-band-gap oxides is an effective route towards engineered nanoscale architecture with enhanced magnetic properties.

  20. Compositional influence on the electrical performance of zinc indium tin oxide transparent thin-film transistors

    International Nuclear Information System (INIS)

    Marsal, A.; Carreras, P.; Puigdollers, J.; Voz, C.; Galindo, S.; Alcubilla, R.; Bertomeu, J.; Antony, A.

    2014-01-01

    In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies, which results in a higher free carrier density. In thin-film transistors this effect leads to a higher off current and threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the field-effect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies. - Highlights: • Zinc promotes the creation of oxygen vacancies in zinc indium tin oxide transistors. • Post deposition annealing in air reduces the density of oxygen. • Density of states reveals a clear peak located at 0.3 eV from the conduction band

  1. Highly Conductive One-Dimensional Manganese Oxide Wires by Coating with Graphene Oxides

    Science.gov (United States)

    Tojo, Tomohiro; Shinohara, Masaki; Fujisawa, Kazunori; Muramatsu, Hiroyuki; Hayashi, Takuya; Ahm Kim, Yoong; Endo, Morinobu

    2012-10-01

    Through coating with graphene oxides, we have developed a chemical route to the bulk production of long, thin manganese oxide (MnO2) nanowires that have high electrical conductivity. The average diameter of these hybrid nanowires is about 25 nm, and their average length is about 800 nm. The high electrical conductivity of these nanowires (ca. 189.51+/-4.51 µS) is ascribed to the homogeneous coating with conductive graphene oxides as well as the presence of non-bonding manganese atoms. The growth mechanism of the nanowires is theoretically supported by the initiation of morphological conversion from graphene oxide to wrapped structures through the formation of covalent bonds between manganese and oxygen atoms at the graphene oxide edge.

  2. The electronic structure of co-sputtered zinc indium tin oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Carreras, Paz; Antony, Aldrin; Bertomeu, Joan [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, 08028 Barcelona (Spain); Gutmann, Sebastian [Department of Chemistry, University of South Florida, Tampa, Florida 33620 (United States); Schlaf, Rudy [Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States)

    2011-10-01

    Zinc indium tin oxide (ZITO) transparent conductive oxide layers were deposited via radio frequency (RF) magnetron co-sputtering at room temperature. A series of samples with gradually varying zinc content was investigated. The samples were characterized with x-ray and ultraviolet photoemission spectroscopy (XPS, UPS) to determine the electronic structure of the surface. Valence and conduction bands maxima (VBM, CBM), and work function were determined. The experiments indicate that increasing Zn content results in films with a higher defect rate at the surface leading to the formation of a degenerately doped surface layer if the Zn content surpasses {approx}50%. Furthermore, the experiments demonstrate that ZITO is susceptible to ultraviolet light induced work function reduction, similar to what was earlier observed on ITO and TiO{sub 2} films.

  3. Alloy formation during InAs nanowire growth on GaAs(111)

    Energy Technology Data Exchange (ETDEWEB)

    Davydok, Anton; Saqib, Muhammad; Biermanns, Andreas; Pietsch, Ullrich [Festkoerperphysik, Universitaet Siegen (Germany); Rieger, Torsten; Grap, Thomas; Lepsa, Mihail [Peter Gruenberg Institut 9, Forschungszentrum Juelich (Germany); JARA - Fundamentals of Future Information Technology (Germany)

    2012-07-01

    The growth of semiconductor nanowires has attracted significant interest in recent years due to the possible fabrication of novel semiconductor devices for future electronic and opto-electronic applications. A possible way to obtain nanowires is the growth in molecular beam epitaxy on the (111)B oriented surface of the desired substrate, covered by a thin oxide layer. A crucial parameter in this method is the initial thickness of the oxide layer, often determined by an etching procedure. In this contribution, we report on the structural investigation of InAs nanowires grown on GaAs substrates covered by different oxide-layers using X-ray diffraction. In this contribution, we report on the structural investigation of InAs nanowires grown via an In droplet on GaAs substrates covered by different oxide layers using X-ray diffraction. Using a combination of symmetric and asymmetric X-ray diffraction, we observe that for growth on a defective oxide layer, alloy formation takes place and a large amount of InGaAs is formed, whereas for growth on an initially smooth oxide layer, only pure InAs is formed.

  4. A comparative evaluation of compressive strength of Portland cement with zinc oxide eugenol and Polymer-reinforced cement: An in vitro analysis

    OpenAIRE

    S Prakasam; Prakasam Bharadwaj; S C Loganathan; B Krishna Prasanth

    2014-01-01

    Objective: The purpose of this study is to evaluate the ultimate compressive strength of 50% and 25% Portland cement mixed with Polymer-reinforced zinc oxide eugenol and zinc oxide eugenol cement after 1 hour, 24 hours, and 7 days. Materials and Methods: One hundred and eighty samples were selected. The samples were made cylindrical of size 6 × 8 mm and were divided into six groups as follows with each group consisting of 10 samples. Group 1: Polymer-reinforced zinc oxide eugenol with...

  5. Wire-in-tube structure fabricated by single capillary electrospinning via nanoscale Kirkendall effect: the case of nickel-zinc ferrite.

    Science.gov (United States)

    Fu, Jiecai; Zhang, Junli; Peng, Yong; Zhao, Changhui; He, Yongmin; Zhang, Zhenxing; Pan, Xiaojun; Mellors, Nigel J; Xie, Erqing

    2013-12-21

    Wire-in-tube structures have previously been prepared using an electrospinning method by means of tuning hydrolysis/alcoholysis of a precursor solution. Nickel-zinc ferrite (Ni0.5Zn0.5Fe2O4) nanowire-in-nanotubes have been prepared as a demonstration. The detailed nanoscale characterization, formation process and magnetic properties of Ni0.5Zn0.5Fe2O4 nanowire-in-nanotubes has been studied comprehensively. The average diameters of the outer tubes and inner wires of Ni0.5Zn0.5Fe2O4 nanowire-in-nanotubes are around 120 nm and 42 nm, respectively. Each fully calcined individual nanowire-in-nanotube, either the outer-tube or the inner-wire, is composed of Ni0.5Zn0.5Fe2O4 monocrystallites stacked along the longitudinal direction with random orientation. The process of calcining electrospun polymer composite nanofibres can be viewed as a morphologically template nucleation and precursor diffusion process. This allows the nitrates precursor to diffuse toward the surface of the nanofibres while the oxides (decomposed from hydroxides and nitrates) products diffuse to the core region of the nanofibres; the amorphous nanofibres transforming thereby into crystalline nanowire-in-nanotubes. In addition, the magnetic properties of the Ni0.5Zn0.5Fe2O4 nanowire-in-nanotubes were also examined. It is believed that this nanowire-in-nanotube (sometimes called core-shell) structure, with its uniform size and well-controlled orientation of the long nanowire-in-nanotubes, is particularly attractive for use in the field of nano-fluidic devices and nano-energy harvesting devices.

  6. Investigations into Recycling Zinc from Used Metal Oxide Varistors via pH Selective Leaching: Characterization, Leaching, and Residue Analysis

    Science.gov (United States)

    Gutknecht, Toni; Gustafsson, Anna; Forsgren, Christer; Steenari, Britt-Marie

    2015-01-01

    Metal oxide varistors (MOVs) are a type of resistor with significantly nonlinear current-voltage characteristics commonly used in power lines to protect against overvoltages. If a proper recycling plan is developed MOVs can be an excellent source of secondary zinc because they contain over 90 weight percent zinc oxide. The oxides of antimony, bismuth, and to a lesser degree cobalt, manganese, and nickel are also present in varistors. Characterization of the MOV showed that cobalt, nickel, and manganese were not present in the varistor material at concentrations greater than one weight percent. This investigation determined whether a pH selective dissolution (leaching) process can be utilized as a starting point for hydrometallurgical recycling of the zinc in MOVs. This investigation showed it was possible to selectively leach zinc from the MOV without coleaching of bismuth and antimony by selecting a suitable pH, mainly higher than 3 for acids investigated. It was not possible to leach zinc without coleaching of manganese, cobalt, and nickel. It can be concluded from results obtained with the acids used, acetic, hydrochloric, nitric, and sulfuric, that sulfate leaching produced the most desirable results with respect to zinc leaching and it is also used extensively in industrial zinc production. PMID:26421313

  7. Investigations into Recycling Zinc from Used Metal Oxide Varistors via pH Selective Leaching: Characterization, Leaching, and Residue Analysis

    Directory of Open Access Journals (Sweden)

    Toni Gutknecht

    2015-01-01

    Full Text Available Metal oxide varistors (MOVs are a type of resistor with significantly nonlinear current-voltage characteristics commonly used in power lines to protect against overvoltages. If a proper recycling plan is developed MOVs can be an excellent source of secondary zinc because they contain over 90 weight percent zinc oxide. The oxides of antimony, bismuth, and to a lesser degree cobalt, manganese, and nickel are also present in varistors. Characterization of the MOV showed that cobalt, nickel, and manganese were not present in the varistor material at concentrations greater than one weight percent. This investigation determined whether a pH selective dissolution (leaching process can be utilized as a starting point for hydrometallurgical recycling of the zinc in MOVs. This investigation showed it was possible to selectively leach zinc from the MOV without coleaching of bismuth and antimony by selecting a suitable pH, mainly higher than 3 for acids investigated. It was not possible to leach zinc without coleaching of manganese, cobalt, and nickel. It can be concluded from results obtained with the acids used, acetic, hydrochloric, nitric, and sulfuric, that sulfate leaching produced the most desirable results with respect to zinc leaching and it is also used extensively in industrial zinc production.

  8. An Aqueous Metal-Ion Capacitor with Oxidized Carbon Nanotubes and Metallic Zinc Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yuheng; Amal, Rose; Wang, Da-Wei, E-mail: da-wei.wang@unsw.edu.au [School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW (Australia)

    2016-10-03

    An aqueous metal ion capacitor comprising of a zinc anode, oxidized carbon nanotubes (oCNTs) cathode, and a zinc sulfate electrolyte is reported. Since the shuttling cation is Zn{sup 2+}, this typical metal ion capacitor is named as zinc-ion capacitor (ZIC). The ZIC integrates the divalent zinc stripping/plating chemistry with the surface-enabled pseudocapacitive cation adsorption/desorption on oCNTs. The surface chemistry and crystallographic structure of oCNTs were extensively characterized by combining X-ray photoelectron spectroscopy, Fourier-transformed infrared spectroscopy, Raman spectroscopy, and X-ray powder diffraction. The function of the surface oxygen groups in surface cation storage was elucidated by a series of electrochemical measurement and the surface-enabled ZIC showed better performance than the ZIC with an un-oxidized CNT cathode. The reaction mechanism at the oCNT cathode involves the additional reversible Faradaic process, while the CNTs merely show electric double layer capacitive behavior involving a non-Faradaic process. The aqueous hybrid ZIC comprising the oCNT cathode exhibited a specific capacitance of 20 mF cm{sup −2} (corresponding to 53 F g{sup −1}) in the range of 0–1.8 V at 10 mV s{sup −1} and a stable cycling performance up to 5000 cycles.

  9. Zinc and the modulation of redox homeostasis

    Science.gov (United States)

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  10. Self-assisted GaAs nanowires with selectable number density on Silicon without oxide layer

    International Nuclear Information System (INIS)

    Bietti, S; Somaschini, C; Esposito, L; Sanguinetti, S; Frigeri, C; Fedorov, A; Geelhaar, L

    2014-01-01

    We present the growth of self-assisted GaAs nanowires (NWs) with selectable number density on bare Si(1 1 1), not covered by the silicon oxide. We determine the number density of the NWs by initially self-assembling GaAs islands on whose top a single NW is nucleated. The number density of the initial GaAs base islands can be tuned by droplet epitaxy and the same degree of control is then transferred to the NWs. This procedure is completely performed during a single growth in an ultra-high vacuum environment and requires neither an oxide layer covering the substrate, nor any pre-patterning technique. (paper)

  11. Synthesis of ZnO Nanowires via Hotwire Thermal Evaporation of Brass (CuZn Assisted by Vapor Phase Transport of Methanol

    Directory of Open Access Journals (Sweden)

    Tamil Many K. Thandavan

    2014-01-01

    Full Text Available Zinc oxide (ZnO nanowires (NWs were synthesized using vapor phase transport (VPT and thermal evaporation of Zn from CuZn. Time dependence of ZnO NWs growth was investigated for 5, 10, 15, 20, 25, and 30 minutes. Significant changes were observed from the field electron scanning electron microscopy (FESEM images as well as from the X-ray diffraction (XRD profile. The photoluminescence (PL profile was attributed to the contribution of oxygen vacancy, zinc interstitials, and hydrogen defects in the ZnO NWs. Raman scattering results show a significant peak at 143 cm−1 and possible functionalization on the wall of ZnO NWs. Growth of ZnO NWs in (0002 with an estimated distance between adjacent lattice planes 0.26 nm was determined from transmission electron microscopy (TEM analysis.

  12. Transparent indium zinc oxide thin films used in photovoltaic cells based on polymer blends

    International Nuclear Information System (INIS)

    Besleaga, Cristina; Ion, L.; Ghenescu, Veta; Socol, G.; Radu, A.; Arghir, Iulia; Florica, Camelia; Antohe, S.

    2012-01-01

    Indium zinc oxide (IZO) thin films were obtained using pulsed laser deposition. The samples were prepared by ablation of targets with In concentrations, In/(In + Zn), of 80 at.%, at low substrate temperatures under reactive atmosphere. IZO films were used as transparent electrodes in polymer-based – poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 1:1 blend – photovoltaic cells. The action spectra measurements revealed that IZO-based photovoltaic structures have performances comparable with those using indium–tin–oxide as transparent electrode. - Highlights: ► Indium zinc oxide films were grown by pulsed laser deposition at room temperature. ► The films had large free carrier density and reasonably high mobility. ► These films fit for transparent electrodes in polymer-based photovoltaic cells.

  13. A Zinc Oxide Nanorod Ammonia Microsensor Integrated with a Readout Circuit on-a-Chip

    Directory of Open Access Journals (Sweden)

    Chyan-Chyi Wu

    2011-11-01

    Full Text Available A zinc oxide nanorod ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.35 mm complementary metal oxide semiconductor (CMOS process was investigated. The structure of the ammonia sensor is composed of a sensitive film and polysilicon electrodes. The ammonia sensor requires a post-process to etch the sacrificial layer, and to coat the sensitive film on the polysilicon electrodes. The sensitive film that is prepared by a hydrothermal method is made of zinc oxide. The sensor resistance changes when the sensitive film adsorbs or desorbs ammonia gas. The readout circuit is used to convert the sensor resistance into the voltage output. Experiments show that the ammonia sensor has a sensitivity of about 1.5 mV/ppm at room temperature.

  14. Zinc oxide nanoparticles as novel alpha-amylase inhibitors

    Science.gov (United States)

    Dhobale, Sandip; Thite, Trupti; Laware, S. L.; Rode, C. V.; Koppikar, Soumya J.; Ghanekar, Ruchika-Kaul; Kale, S. N.

    2008-11-01

    Amylase inhibitors, also known as starch blockers, contain substances that prevent dietary starches from being absorbed by the body via inhibiting breakdown of complex sugars to simpler ones. In this sense, these materials are projected as having potential applications in diabetes control. In this context, we report on zinc oxide nanoparticles as possible alpha-amylase inhibitors. Zinc oxide nanoparticles have been synthesized using soft-chemistry approach and 1-thioglycerol was used as a surfactant to yield polycrystalline nanoparticles of size ˜18 nm, stabilized in wurtzite structure. Conjugation study and structural characterization have been done using x-ray diffraction technique, Fourier transform infrared spectroscopy, UV-visible spectroscopy, and transmission electron microscopy. Cytotoxicity studies on human fibrosarcoma (HT-1080) and skin carcinoma (A-431) cell lines as well as mouse primary fibroblast cells demonstrate that up to a dose of 20 μg/ml, ZnO nanoparticles are nontoxic to the cells. We report for the first time the alpha-amylase inhibitory activity of ZnO nanoparticles wherein an optimum dose of 20 μg/ml was sufficient to exhibit 49% glucose inhibition at neutral pH and 35 °C temperature. This inhibitory activity was similar to that obtained with acarbose (a standard alpha-amylase inhibitor), thereby projecting ZnO nanoparticles as novel alpha-amylase inhibitors.

  15. Synthesis of carbon quantum dots and zinc oxide nanosheets by pyrolysis of novel metal–organic framework compounds

    International Nuclear Information System (INIS)

    Ma, Qiliang; Zhang, Zhaochun; Yu, Zhenwei

    2015-01-01

    Highlights: • Thermodynamic and kinetic analysis of porous MOFs. • One step synthesis of CQDs and ZnO nanosheets. • The coexistence of CQDs and ZnO nanosheets show strong ultraviolet emission. - Abstract: Here, the carbon quantum dots and zinc oxide nanosheets with novel superstructures are successfully synthesized simultaneously from a hydrothermal preparation and thermal decomposition of a porous precursor of metal–organic frameworks. Porous metal–organic frameworks are prepared by the hydrothermal process by using zinc nitrate hexahydrate, 4,4′-oxybisbenzoic acid and 4,4′-bipyridine as the starting materials. Fluorescence spectrophotometer, X-ray powder diffraction, transmission electron microscopy and high-resolution transmission electron microscopy were used to characterize the structure and property. The results show the coexistence of carbon quantum dots and zinc oxide nanosheets. The carbon quantum dots size is about 4 nm. Particularly, zinc oxide nanosheets show a new triangular sheet structure that has almost the same size. Strong ultraviolet emission of this coexistence system should be useful in developing visible light-emitting and nanophotonic devices

  16. Synthesis of carbon quantum dots and zinc oxide nanosheets by pyrolysis of novel metal–organic framework compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qiliang; Zhang, Zhaochun, E-mail: zhangzhaochun@shu.edu.cn; Yu, Zhenwei

    2015-09-05

    Highlights: • Thermodynamic and kinetic analysis of porous MOFs. • One step synthesis of CQDs and ZnO nanosheets. • The coexistence of CQDs and ZnO nanosheets show strong ultraviolet emission. - Abstract: Here, the carbon quantum dots and zinc oxide nanosheets with novel superstructures are successfully synthesized simultaneously from a hydrothermal preparation and thermal decomposition of a porous precursor of metal–organic frameworks. Porous metal–organic frameworks are prepared by the hydrothermal process by using zinc nitrate hexahydrate, 4,4′-oxybisbenzoic acid and 4,4′-bipyridine as the starting materials. Fluorescence spectrophotometer, X-ray powder diffraction, transmission electron microscopy and high-resolution transmission electron microscopy were used to characterize the structure and property. The results show the coexistence of carbon quantum dots and zinc oxide nanosheets. The carbon quantum dots size is about 4 nm. Particularly, zinc oxide nanosheets show a new triangular sheet structure that has almost the same size. Strong ultraviolet emission of this coexistence system should be useful in developing visible light-emitting and nanophotonic devices.

  17. Photoluminescence study of as-grown vertically standing wurtzite InP nanowire ensembles.

    Science.gov (United States)

    Iqbal, Azhar; Beech, Jason P; Anttu, Nicklas; Pistol, Mats-Erik; Samuelson, Lars; Borgström, Magnus T; Yartsev, Arkady

    2013-03-22

    We demonstrate a method that enables the study of photoluminescence of as-grown nanowires on a native substrate by non-destructively suppressing the contribution of substrate photoluminescence. This is achieved by using polarized photo-excitation and photoluminescence and by making an appropriate choice of incident angle of both excitation beam and photoluminescence collection direction. Using TE-polarized excitation at a wavelength of 488 nm at an incident angle of ∼70° we suppress the InP substrate photoluminescence relative to that of the InP nanowires by about 80 times. Consequently, the photoluminescence originating from the nanowires becomes comparable to and easily distinguishable from the substrate photoluminescence. The measured photoluminescence, which peaks at photon energies of ∼1.35 eV and ∼1.49 eV, corresponds to the InP substrate with zinc-blende crystal structure and to the InP nanowires with wurtzite crystal structure, respectively. The photoluminescence quantum yield of the nanowires was found to be ∼20 times lower than that of the InP substrate. The nanowires, grown vertically in a random ensemble, neither exhibit substantial emission polarization selectivity to the axis of the nanowires nor follow excitation polarization preferences observed previously for a single nanowire.

  18. Flexible substrate compatible solution processed P-N heterojunction diodes with indium-gallium-zinc oxide and copper oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Ishan; Deepak, E-mail: saboo@iitk.ac.in

    2017-04-15

    Highlights: • Both n and p-type semiconductors are solution processed. • Temperature compatibility with flexible substrates such as polyimide. • Compatibility of p-type film (CuO) on n-type film (IZO). • Diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. • Construction of band alignment using XPS. - Abstract: Printed electronics on flexible substrates requires low temperature and solution processed active inks. With n-type indium-gallium-zinc oxide (IGZO) based electronics maturing for thin film transistor (TFT), we here demonstrate its heterojunction diode with p-copper oxide, prepared by sol-gel method and processed at temperatures compatible with polyimide substrates. The phase obtained for copper oxide is CuO. When coated on n-type oxide, it is prone to develop morphological features, which are minimized by annealing treatment. Diodes of p-CuO films with IGZO are of poor quality due to its high resistivity while, conducting indium-zinc oxide (IZO) films yielded good diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. A detailed measurement at the interface by X-ray photoelectron spectroscopy and optical absorption ascertained the band alignment to be of staggered type. Consistently, the current in the diode is established to be due to electrons tunnelling from n-IZO to p-CuO.

  19. Enhancement of exciton radiative recombination for In-doped ZnO nanowires with aluminum cylindrical micropillars

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jen-Cheng; Liang, Yu-Ting; Cheng, Fang-Ching; Fang, Chia-Hui; Chen, Hung-Ing; Tsai, Chung-Yuan [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC (China); Jiang, Joe-Air [Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei 106, Taiwan, ROC (China); Nee, Tzer-En, E-mail: neete@mail.cgu.edu.tw [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan, ROC (China)

    2013-04-15

    Zinc oxide (ZnO) has attracted intensive research effort in recent years, due to its unique properties and versatile applications. Recent work on the conservation of surface plasmon (SP) and light through period metal arrays has elucidated the propagation of SP resonance behavior. In this paper, we discuss the enhancement of exciton radiative recombination of the ZnO nanowires with Al cylindrical micropillars. Optical characterization of exciton interacted with SP resonance for indium-doped ZnO nanowires with Al cylindrical micropillars has been also investigated. From photoluminescence spectra of In-doped ZnO nanowires, it is found that the In-doped ZnO nanowires have a blue emission at 425 nm, which resulted from the ZnO band-to-band transition. Prior to the arrays of samples were annealed, a broad green emission centered at 500 nm was observed, which is attributed to ZnO native point defects. The relatively strong green band emission results from the radiative recombination that arises from the ionized oxygen vacancy and surface-defect related luminescence. Compare the In-doped ZnO on Si substrate, the enhancement of PL intensity for In-doped ZnO with deposited Al pattern film can be attributed to strong interaction with SP resonance and exciton over a broad temperature range. These experimental results indicate that Al cylindrical micropillars can significantly enhance carrier confinement and increase the quantum efficiency of In-doped ZnO/Al heterostructures due to the interaction of SP resonance between the In-doped ZnO nanowires and Al cylindrical micropillar structures, the surface-defect related luminescence, and the auxiliary test structures with variable micropillar parameters. -- Highlights: ► We examine the exciton radiative recombination of the ZnO nanowires. ► Al cylindrical micropillars affect the carrier recombination of ZnO/Al structures. ► The interaction of SP resonance between In-doped ZnO nanowire and Al pattern film. ► The carrier

  20. Combined in situ zymography, immunofluorescence, and staining of iron oxide particles in paraffin-embedded, zinc-fixed tissue sections.

    Science.gov (United States)

    Haeckel, Akvile; Schoenzart, Lena; Appler, Franziska; Schnorr, Joerg; Taupitz, Matthias; Hamm, Bernd; Schellenberger, Eyk

    2012-01-01

    Superparamagnetic iron oxide particles are used as potent contrast agents in magnetic resonance imaging. In histology, these particles are frequently visualized by Prussian blue iron staining of aldehyde-fixed, paraffin-embedded tissues. Recently, zinc salt-based fixative was shown to preserve enzyme activity in paraffin-embedded tissues. In this study, we demonstrate that zinc fixation allows combining in situ zymography with fluorescence immunohistochemistry (IHC) and iron staining for advanced biologic investigation of iron oxide particle accumulation. Very small iron oxide particles, developed for magnetic resonance angiography, were applied intravenously to BALB/c nude mice. After 3 hours, spleens were explanted and subjected to zinc fixation and paraffin embedding. Cut tissue sections were further processed to in situ zymography, IHC, and Prussian blue staining procedures. The combination of in situ zymography as well as IHC with subsequent Prussian blue iron staining on zinc-fixed paraffin-embedded tissues resulted in excellent histologic images of enzyme activity, protease distribution, and iron oxide particle accumulation. The combination of all three stains on a single section allowed direct comparison with only moderate degradation of fluorescein isothiocyanate-labeled substrate. This protocol is useful for investigating the biologic environment of accumulating iron oxide particles, with excellent preservation of morphology.

  1. Synthesis and characterization of (zinc-layered hydroxide-hippurate) nano hybrid by direct reaction of zinc oxide under aqueous environment

    International Nuclear Information System (INIS)

    Mohd Zobir Hussein; Samer Hasan Al Ali; Zulkarnain Zainal

    2011-01-01

    A new method for synthesis of hippurate nano hybrid has been developed. In this method, zinc oxide was added directly into aqueous solution of hippurate anions (A - ). The resulting hippurate nano hybrid (HAN) is composed of the organic moieties sandwiched between zinc layered hydroxide (ZLH) inorganic interlayers. HAN synthesized using 0.2 M hippuric acid showed the best crystallinity compared to other samples synthesized in this work. X-ray powder diffraction shows the basal spacing of the HAN was 21.3 Angstrom indicating that the monolayer of A - was arranged vertically to the ZLH interlayers. (author)

  2. BWR zinc addition Sourcebook

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Alfred J.

    2014-01-01

    Boiling Water Reactors (BWRs) have been injecting zinc into the primary coolant via the reactor feedwater system for over 25 years for the purpose of controlling primary system radiation fields. The BWR zinc injection process has evolved since the initial application at the Hope Creek Nuclear Station in 1986. Key transitions were from the original natural zinc oxide (NZO) to depleted zinc oxide (DZO), and from active zinc injection of a powdered zinc oxide slurry (pumped systems) to passive injection systems (zinc pellet beds). Zinc addition has continued through various chemistry regimes changes, from normal water chemistry (NWC) to hydrogen water chemistry (HWC) and HWC with noble metals (NobleChem™) for mitigation of intergranular stress corrosion cracking (IGSCC) of reactor internals and primary system piping. While past reports published by the Electric Power Research Institute (EPRI) document specific industry experience related to these topics, the Zinc Sourcebook was prepared to consolidate all of the experience gained over the past 25 years. The Zinc Sourcebook will benefit experienced BWR Chemistry, Operations, Radiation Protection and Engineering personnel as well as new people entering the nuclear power industry. While all North American BWRs implement feedwater zinc injection, a number of other BWRs do not inject zinc. This Sourcebook will also be a valuable resource to plants considering the benefits of zinc addition process implementation, and to gain insights on industry experience related to zinc process control and best practices. This paper presents some of the highlights from the Sourcebook. (author)

  3. Group one impurities in single crystalline Zinc Oxide

    OpenAIRE

    Johansen, Klaus Magnus Håland

    2011-01-01

    Zinc Oxide (ZnO) has been used as a material in many different technologies from pharmaceuticals to electronics. This exciting material can also be utilized as a wide band gap semiconductor for application in optoelectronic devices. The availability of Zn, the possibility to grow single crystal bulk material and the exitonic binding energy of 60 meV makes this material especially interesting. Even though the material has been studied already since the late 1920s there are still some fundament...

  4. Effect of barium doping on the physical properties of zinc oxide ...

    Indian Academy of Sciences (India)

    2015-11-27

    Home; Journals; Pramana – Journal of Physics; Volume 87; Issue 1. Effect of barium doping on the physical properties of zinc oxide ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: ...

  5. Flame synthesis of zinc oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Merchan-Merchan, Wilson, E-mail: wmerchan-merchan@ou.edu [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States); Farahani, Moien Farmahini [School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019 (United States)

    2013-02-01

    Highlights: Black-Right-Pointing-Pointer We report a single-step flame method for the synthesis of Zn oxide nanocrystals. Black-Right-Pointing-Pointer Diverse flame positions lead to a variation of Zn oxide nanocrystal growth. Black-Right-Pointing-Pointer The synthesized crystals have polyhedral, pipet- and needle-like shape. Black-Right-Pointing-Pointer High length-to-diameter aspect-ratio crystals appear in a higher temperature flame. Black-Right-Pointing-Pointer The crystal growth mechanism corresponds to vapor-to-solid conversion. - Abstract: Distinctive zinc oxide (ZnO) nanocrystals were synthesized on the surface of Zn probes using a counter-flow flame medium formed by methane/acetylene and oxygen-enriched air streams. The source material, a zinc wire with a purity of {approx}99.99% and diameter of 1 mm, was introduced through a sleeve into the oxygen rich region of the flame. The position of the probe/sleeve was varied within the flame medium resulting in growth variation of ZnO nanocrystals on the surface of the probe. The shape and structural parameters of the grown crystals strongly depend on the flame position. Structural variations of the synthesized crystals include single-crystalline ZnO nanorods and microprisms (ZMPs) (the ZMPs have less than a few micrometers in length and several hundred nanometers in cross section) with a large number of facets and complex axial symmetry with a nanorod protruding from their tips. The protruding rods are less than 100 nm in diameter and lengths are less than 1 {mu}m. The protruding nanorods can be elongated several times by increasing the residence time of the probe/sleeve inside the oxygen-rich flame or by varying the flame position. At different flame heights, nanorods having higher length-to-diameter aspect-ratio can be synthesized. A lattice spacing of {approx}0.26 nm was measured for the synthesized nanorods, which can be closely correlated with the (0 0 2) interplanar spacing of hexagonal ZnO (Wurtzite) cells

  6. Visible-light-enhanced interactions of hydrogen sulfide with composites of zinc (oxy)hydroxide with graphite oxide and graphene.

    Science.gov (United States)

    Seredych, Mykola; Mabayoje, Oluwaniyi; Bandosz, Teresa J

    2012-01-17

    Composites of zinc(oxy)hydroxide-graphite oxide and of zinc(oxy)hydroxide-graphene were used as adsorbents of hydrogen sulfide under ambient conditions. The initial and exhausted samples were characterized by XRD, FTIR, potentiometric titration, EDX, thermal analysis, and nitrogen adsorption. An increase in the amount of H(2)S adsorbed/oxidized on their surfaces in comparison with that of pure Zn(OH)(2) is linked to the structure of the composite, the relative number of terminal hydroxyls, and the kind of graphene-based phase used. Although terminal groups are activated by a photochemical process, the graphite oxide component owing to the chemical bonds with the zinc(oxy)hydroxide phase and conductive properties helps in electron transfer, leading to more efficient oxygen activation via the formation of superoxide ions. Elemental sulfur, zinc sulfide, sulfite, and sulfate are formed on the surface. The formation of sulfur compounds on the surface of zinc(oxy)hydroxide during the course of the breakthrough experiments and thus Zn(OH)(2)-ZnS heterojunctions can also contribute to the increased surface activity of our materials. The results show the superiority of graphite oxide in the formation of composites owing to its active surface chemistry and the possibility of interface bond formation, leading to an increase in the number of electron-transfer reactions. © 2011 American Chemical Society

  7. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    International Nuclear Information System (INIS)

    Lee, Ching-Ting; Lin, Yung-Hao; Lin, Jhong-Ham

    2015-01-01

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance g m change, threshold voltage V T change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature

  8. High stability mechanisms of quinary indium gallium zinc aluminum oxide multicomponent oxide films and thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ching-Ting, E-mail: ctlee@ee.ncku.edu.tw; Lin, Yung-Hao; Lin, Jhong-Ham [Institute of Microelectronics, Department of Electrical Engineering, Research Center for Energy Technology and Strategy (RCETS), National Cheng Kung University, Tainan, Taiwan (China)

    2015-01-28

    Quinary indium gallium zinc aluminum oxide (IGZAO) multicomponent oxide films were deposited using indium gallium zinc oxide (IGZO) target and Al target by radio frequency magnetron cosputtering system. An extra carrier transport pathway could be provided by the 3 s orbitals of Al cations to improve the electrical properties of the IGZO films, and the oxygen instability could be stabilized by the strong Al-O bonds in the IGZAO films. The electron concentration change and the electron mobility change of the IGZAO films for aging time of 10 days under an air environment at 40 °C and 75% humidity were 20.1% and 2.4%, respectively. The experimental results verified the performance stability of the IGZAO films. Compared with the thin film transistors (TFTs) using conventional IGZO channel layer, in conducting the stability of TFTs with IGZAO channel layer, the transconductance g{sub m} change, threshold voltage V{sub T} change, and the subthreshold swing S value change under the same aging condition were improved to 7.9%, 10.5%, and 14.8%, respectively. Furthermore, the stable performances of the IGZAO TFTs were also verified by the positive gate bias stress. In this research, the quinary IGZAO multicomponent oxide films and that applied in TFTs were the first studied in the literature.

  9. Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: A universal set of parameters for bridging prepatterned microelectrodes

    NARCIS (Netherlands)

    Maijenburg, A.W.; Maas, M.G.; Rodijk, E.J.B.; Ahmed, W.; Kooij, Ernst S.; Carlen, Edwin; Blank, David H.A.; ten Elshof, Johan E.

    2011-01-01

    Nanowires and nanotubes were synthesized from metals and metal oxides using templated cathodic electrodeposition. With templated electrodeposition, small structures are electrodeposited using a template that is the inverse of the final desired shape. Dielectrophoresis was used for the alignment of

  10. Study of removal of Direct Yellow 12 by cadmium oxide nanowires loaded on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Sadeghian, Batuol [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Kokhdan, Syamak Nasiri, E-mail: syamak.nasiri@yahoo.com [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Pebdani, Arezou Amiri [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Sahraei, Reza; Daneshfar, Ali; Mihandoost, Asma [Department of Chemistry, University of Ilam, P.O. Box: 65315-516, Ilam (Iran, Islamic Republic of)

    2013-05-01

    In this research, cadmium oxide nanowires loaded on activated carbon (CdO-NW-AC) has been synthesized by a simple procedure and characterized by different techniques such as XRD, SEM and UV–vis spectrometry. This new adsorbent has been efficiently utilized for the removal of the Direct Yellow 12 (DY-12) from wastewater. To obtain maximum DY-12 removal efficiency, the influences of variables such as pH, DY-12 concentration, amount of CdO-NW-AC, contact time, and temperature have been examined and optimized in a batch method. Following the variable optimization, the experimental equilibrium data (at different concentration of DY-12) was fitted to conventional isotherm models such as Langmuir, Freundlich and Tempkin. The applicability of each method is based on the R{sup 2} and error analysis for each model. It was found that the experimental equilibrium data well fitted to the Langmuir isotherm model. The dependency of removal process to time and the experimental data follow second order kinetic model with involvement of intraparticle diffusion model. The negative value of Gibbs's free energy and positive value of adsorption enthalpy show the spontaneous and endothermic nature of adsorption process. - Graphical abstract: Typical FE-SEM image of the CdO nanowires. Highlights: ► Cadmium oxide nanowires loaded on activated carbon was utilized as an adsorbent. ► It was used for the removal of Direct Yellow 12 from aqueous solutions. ► The adsorption of Direct Yellow 12 on this adsorbent is endothermic in nature. ► The adsorption equilibrium data was well described by the Langmuir isotherm model.

  11. Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposites

    Directory of Open Access Journals (Sweden)

    Namvar F

    2016-07-01

    Full Text Available Farideh Namvar,1,2 Susan Azizi,3 Heshu Sulaiman Rahman,4–6 Rosfarizan Mohamad,1,3 Abdullah Rasedee,4 Mozhgan Soltani,2 Raha Abdul Rahim71Institute of Tropical Forestry and Forest Products (INTROP, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 2Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran; 3Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, 4Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 5Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani, 6Department of Laboratory Medical Sciences, Komar University of Science and Technology, Sulaimani City, Kurdistan Region, Northern Iraq; 7Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia Abstract: The study describes an in situ green biosynthesis of zinc oxide nanocomposite using the seaweed Sargassum muticum water extract and hyaluronan biopolymer. The morphology and optical properties of the hyaluronan/zinc oxide (HA/ZnO nanocomposite were determined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and ultraviolet–vis analysis. Electron microscopy and X-ray diffraction analysis showed that the zinc oxide nanoparticles were polydispersed with a mean size of 10.2±1.5 nm. The nanoparticles were mostly hexagonal in crystalline form. The HA/ZnO nanocomposite showed the absorption properties in the ultraviolet zone that is ascribed to the band gap of zinc oxide nanocomposite. In the cytotoxicity study, cancer cells, pancreatic adenocarcinoma (PANC-1, ovarian adenocarcinoma (CaOV-3, colonic adenocarcinoma (COLO205, and acute promyelocytic leukemia (HL-60 cells

  12. High Mobility Thin Film Transistors Based on Amorphous Indium Zinc Tin Oxide

    Directory of Open Access Journals (Sweden)

    Imas Noviyana

    2017-06-01

    Full Text Available Top-contact bottom-gate thin film transistors (TFTs with zinc-rich indium zinc tin oxide (IZTO active layer were prepared at room temperature by radio frequency magnetron sputtering. Sintered ceramic target was prepared and used for deposition from oxide powder mixture having the molar ratio of In2O3:ZnO:SnO2 = 2:5:1. Annealing treatment was carried out for as-deposited films at various temperatures to investigate its effect on TFT performances. It was found that annealing treatment at 350 °C for 30 min in air atmosphere yielded the best result, with the high field effect mobility value of 34 cm2/Vs and the minimum subthreshold swing value of 0.12 V/dec. All IZTO thin films were amorphous, even after annealing treatment of up to 350 °C.

  13. Microwave exfoliated graphene oxide/TiO{sub 2} nanowire hybrid for high performance lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Karim, Hasanul; Lin, Yirong [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States); Islam, Md Tariqul; Noveron, Juan C. [Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968 (United States); Ramabadran, Navaneet [Department of Chemical Engineering, University of California at Santa Barbara, California 93106 (United States)

    2015-09-28

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO{sub 2} nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode–electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge–discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.

  14. Optical and electrical properties of zinc oxide thin films with low resistivity via Li-N dual-acceptor doping

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Daoli, E-mail: zhang_daoli@mail.hust.edu.cn [Department of Electronic Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Zhang Jianbing [Department of Electronic Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Guo Zhe [Department of Electronic Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Miao Xiangshui [Department of Electronic Science and Technology, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China); Wuhan National Laboratory for Optoelectronics, 1037 Luoyu Road, Hongshan District, Wuhan City, Hubei Province 430074 (China)

    2011-05-19

    Highlights: > Zinc oxide films have been deposited on glass substrates by Li-N dual-acceptor doping method via a modified SILAR method. > The resistivity of ZnO film was found to be 1.04 {Omega} cm with a Hall mobility of 0.749 cm{sup 2} V{sup -1} s{sup -1}, carrier concentration of 8.02 x 1018 cm{sup -3}, and transmittance of about 80% in visible range showing good crystallinity with prior c-axis orientation. > A shallow acceptor level of 91 meV is identified from free-to-neutral-acceptor transitions. > Another deep level of 255 meV was ascribed to Li{sub Zn}-Li{sub i} complex. - Abstract: Zinc oxide thin films with low resistivity have been deposited on glass substrates by Li-N dual-acceptor doping method via a modified successive ionic layer adsorption and reaction process. The thin films were systematically characterized via scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, ultraviolet-visible spectrophotometry and fluorescence spectrophotometry. The resistivity of zinc oxide film was found to be 1.04 {Omega} cm with a Hall mobility of 0.749 cm{sup 2} V{sup -1} s{sup -1} and carrier concentration of 8.02 x 10{sup 18} cm{sup -3}. The Li-N dual-acceptor doped zinc oxide films showed good crystallinity with prior c-axis orientation, and high transmittance of about 80% in visible range. Moreover, the effects of Li doping level and other parameters on crystallinity, electrical and ultraviolet emission of zinc oxide films were investigated.

  15. Specific synthesis of Pt nanowires for catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, Daniela; Kehres, Jan; Al-Shamery, Katharina [IRAC, University Oldenburg (Germany); Center of Interface Science, CIS (Germany); Borchert, Holger; Kolny-Olesiak, Joanna [EHF, University Oldenburg (Germany); Center of Interface Science, CIS (Germany); Baeumer, Marcus [IAPC, University Bremen (Germany); Center of Interface Science, CIS (Germany)

    2008-07-01

    Metallic nanomaterials are of great interest in the last years due to their interesting properties as new materials for optical, electronic, magnetic or catalytic applications. Particularly size and morphology of such nanoparticulate systems offer also high potential for material improvement. A promising issue is the preparation of platinum nanowires by means of colloidal chemistry which allows obtaining particles with well-defined size and shape by use of stabilizing ligands. Recent efforts have been focused on the development of synthesis to obtain these nanowires. Therefore we were able to prepare dodecylamine-capped Pt nanowires with 2 nm in diameter and several multiple in length in varying the synthesis conditions. The influence of temperature, stabilisers and reducing agents on the morphology has been investigated. The catalytic activity of such nanowires immobilized at different oxidic supports could also be demonstrated on the example of CO oxidation and are compared to spherical Pt and bimetallic colloidal nanoparticles.

  16. Electrical effect of titanium diffusion on amorphous indium gallium zinc oxide

    International Nuclear Information System (INIS)

    Choi, Seung-Ha; Jung, Woo-Shik; Park, Jin-Hong

    2012-01-01

    In this work, thermal diffusion phenomenon of Ti into amorphous indium gallium zinc oxide (α-IGZO) was carefully investigated with secondary ion mass spectroscopy, I-V, and R s measurement systems and HSC chemistry simulation tool. According to the experimental and simulated results, the diffused Ti atoms were easily oxidized due to its lowest oxidation free energy. Since oxygen atoms were decomposed from the α-IGZO during the oxidation of Ti, the number of oxygen vacancies working as electron-donating sites in α-IGZO was dramatically increased, contributing to the decrease of resistivity (ρ) from 1.96 Ω cm (as-deposited α-IGZO) to 1.33 × 10 −3 Ω cm (350 °C annealed α-IGZO).

  17. ZnO nanowires: Synthesis and charge transfer mechanism in the detection of ammonia vapour

    Science.gov (United States)

    Nancy Anna Anasthasiya, A.; Ramya, S.; Rai, P. K.; Jeyaprakash, B. G.

    2018-01-01

    ZnO nanowires with hexagonal wurtzite structure were grown on the glass substrate using Successive Ionic Layer Adsorption and Reaction (SILAR) method. Both experimental and theoretical studies demonstrated that NH3 chemisorbed and transferred the charge to the surface of the nanowire via its nitrogen site to the zinc site of ZnO nanowires, leading to the detection of NH3 vapour. The adsorbed ammonia dissociated into NH2 and H due to steric repulsion, and then into N2 and H2 gas. The formation of the N2 gas during the desorption process confirmed by observing peak at 14 and 28 m/z in the GC-MS spectrum.

  18. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes.

    Science.gov (United States)

    Lee, Sook-Jeong; Koh, Jae-Young

    2010-10-26

    Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress.Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity.The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the pathogenesis of various neurological

  19. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes

    Directory of Open Access Journals (Sweden)

    Lee Sook-Jeong

    2010-10-01

    Full Text Available Abstract Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress. Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity. The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the

  20. Nanoporous zinc oxide films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Ghimpu, L.; Lupan, O.; Popescu, L.; Tiginyanu, I.M.

    2011-01-01

    In this paper we demonstrate an inexpensive approach for the fabrication of nanoporous zinc oxide films by using magnetron sputtering. Study of the structural properties proves the crystallographic perfection of porous nanostructures and the possibility of its controlling by adjusting the technological parameters in the growth process. The XRD pattern of nanoporous ZnO films exhibits high intensity of the peaks relative to the background signal which is indicative of the ZnO hexagonal phase and a good crystallinity of the samples grown by magnetron sputtering.