WorldWideScience

Sample records for zinc mesoporphyrin induces

  1. Unsymmetrical Mesoporphyrinic Complexes of Copper (II and Zinc (II. Microwave-Assisted Synthesis, Spectral Characterization and Cytotoxicity Evaluation

    Directory of Open Access Journals (Sweden)

    Rica Boscencu

    2011-06-01

    Full Text Available New unsymmetrical mesoporphyrinic complexes, namely 5-(4-hydroxyphenyl-10,15,20–tris-(4-carboxymethylphenyl–21,23-Zn(II-porphine and 5-(4-hydroxyphenyl-10,15,20–tris-(4-carboxymethylphenyl–21,23-Cu(II-porphine, were synthesized using a microwave irradiation method. The structures of the porphyrinic complexes were confirmed using FT-IR, UV–Vis, EPR and NMR spectral data. The spectral absorption and emission properties of the porphyrinic complexes were studied in organic solvents of different polarities and the influence of solvent polarity on the wavelengths of the absorbance and fluorescence band maxima is described. The cytotoxicity evaluation of the porphyrinic complexes was performed on human colon adenocarcinoma cell line HT29 for different doses and incubation times. The obtained result indicates a lack of or low toxicity for both compounds, thus recommending them for further testing in light activation protocols.

  2. Synthesis and Spectral Evaluation of Some Unsymmetrical Mesoporphyrinic Complexes

    Directory of Open Access Journals (Sweden)

    Rica Boscencu

    2012-06-01

    Full Text Available Synthesis and spectral evaluation of new zinc and copper unsymmetrical mesoporphyrinic complexes are reported. Zn(II-5-(4-acetoxy-3-methoxyphenyl-10,15,20-tris-(4-carboxymethylphenylporphyrin, Zn(II-5-[(3,4-methylenedioxyphenyl]-10,15,20-tris-(4-carboxymethylphenylporphyrin, Cu(II-5-(4-acetoxy-3-methoxyphenyl-10,15,20-tris-(4-carboxymethylphenylporphyrin and Cu(II-5-[(3,4-methylenedioxyphenyl]-10,15,20-tris-(4-carboxymethylphenylporphyrin were synthesized using microwave-assisted synthesis. The complexes were characterized by elemental analysis, FT-IR, UV-Vis, EPR and NMR spectroscopy, which fully confirmed their structure. The spectral absorption properties of the porphyrinic complexes were studied in solvents with different polarities. Fluorescence emission and singlet oxygen formation quantum yields were evaluated for the compounds under study, revealing high yields for the zinc derivatives. The copper complexes are not emissive and only display residual capacity for singlet oxygen formation.

  3. Synthesis of [119mSn]-mesoporphyrin IX dichloride

    International Nuclear Information System (INIS)

    Denissen, J.F.

    1990-01-01

    Tin mesoporphyrin IX dichloride (Sn-MPCl 2 ) is a heme oxygenase inhibitor of current clinical interest for the treatment of neonatal hyperbilirubinemia. The synthesis of [ 119m Sn]-MPCl 2 for drug metabolism and disposition studies is reported. [ 119m Sn]-MPCl 2 was prepared in 60% radiochemical yield by metalation of the porphyrin nucleus of mesoporphyrin IX dihydrochloride with tin(II)-119m acetate. The product had a specific activity of 43.4 mCi/mmol and a radiochemical purity of 99%, as determined by radio-HPLC analysis. (author)

  4. Cyclic AMP Pathway Activation and Extracellular Zinc Induce Rapid Intracellular Zinc Mobilization in Candida albicans

    Science.gov (United States)

    Kjellerup, Lasse; Winther, Anne-Marie L.; Wilson, Duncan; Fuglsang, Anja T.

    2018-01-01

    Zinc is an essential micronutrient, required for a range of zinc-dependent enzymes and transcription factors. In mammalian cells, zinc serves as a second messenger molecule. However, a role for zinc in signaling has not yet been established in the fungal kingdom. Here, we used the intracellular zinc reporter, zinbo-5, which allowed visualization of zinc in the endoplasmic reticulum and other components of the internal membrane system in Candida albicans. We provide evidence for a link between cyclic AMP/PKA- and zinc-signaling in this major human fungal pathogen. Glucose stimulation, which triggers a cyclic AMP spike in this fungus resulted in rapid intracellular zinc mobilization and this “zinc flux” could be stimulated with phosphodiesterase inhibitors and blocked via inhibition of adenylate cyclase or PKA. A similar mobilization of intracellular zinc was generated by stimulation of cells with extracellular zinc and this effect could be reversed with the chelator EDTA. However, zinc-induced zinc flux was found to be cyclic AMP independent. In summary, we show that activation of the cyclic AMP/PKA pathway triggers intracellular zinc mobilization in a fungus. To our knowledge, this is the first described link between cyclic AMP signaling and zinc homeostasis in a human fungal pathogen. PMID:29619016

  5. Zinc movement in the brain under kainate-induced seizures.

    Science.gov (United States)

    Takeda, Atsushi; Hirate, Maki; Tamano, Haruna; Oku, Naoto

    2003-05-01

    On the basis of the evidence that elimination of 65Zn from the brain of epilepsy (EL) mice is facilitated by induction of seizures, zinc movement in the brain was studied in mice injected with kainate (12 mg/kg x 3), which exhibited status epilepticus within 120 min after the last injection of kainate. Zinc concentrations in the brain were determined 24 h after the last injection of kainate. Zinc concentrations in the hippocampus, amygdala and cerebral cortex, in which zinc-containing glutamatergic neuron terminals exist, were significantly decreased by the treatment with kainate, while that in the cerebellum was not decreased. Timm's stain in the brain was extensively attenuated 24 h after the last injection of kainate. These results indicate that zinc homeostasis in the brain is affected by kainate-induced seizures. In the hippocampus of rats injected with kainate (10 mg/kg), furthermore, the release of zinc and glutamate into the extracellular fluid was studied using in vivo microdialysis. The levels of zinc and glutamate in the perfusate were increased along with seizure severity after injection of kainate. It is likely that zinc concentration in the synaptic vesicles is decreased by the excess excitation of glutamatergic neurons. The present study suggests that the excessive release of zinc and glutamate from the neuron terminals under kainate-induced seizures is associated with the loss of zinc from the brain.

  6. Zinc release contributes to hypoglycemia-induced neuronal death.

    Science.gov (United States)

    Suh, Sang Won; Garnier, Philippe; Aoyama, Koji; Chen, Yongmei; Swanson, Raymond A

    2004-08-01

    Neurons exposed to zinc exhibit activation of poly(ADP-ribose) polymerase-1 (PARP-1), an enzyme that normally participates in DNA repair but promotes cell death when extensively activated. Endogenous, vesicular zinc in brain is released to the extracellular space under conditions causing neuronal depolarization. Here, we used a rat model of insulin-induced hypoglycemia to assess the role of zinc release in PARP-1 activation and neuronal death after severe hypoglycemia. Zinc staining with N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) showed depletion of presynaptic vesicular zinc from hippocampal mossy fiber terminals and accumulation of weakly bound zinc in hippocampal CA1 cell bodies after severe hypoglycemia. Intracerebroventricular injection of the zinc chelator calcium ethylene-diamine tetraacetic acid (CaEDTA) blocked the zinc accumulation and significantly reduced hypoglycemia-induced neuronal death. CaEDTA also attenuated the accumulation of poly(ADP-ribose), the enzymatic product of PARP-1, in hippocampal neurons. These results suggest that zinc translocation is an intermediary step linking hypoglycemia to PARP-1 activation and neuronal death.

  7. Zinc

    Science.gov (United States)

    ... Consumer Datos en español Health Professional Other Resources Zinc Fact Sheet for Consumers Have a question? Ask ... find out more about zinc? Disclaimer What is zinc and what does it do? Zinc is a ...

  8. ZINC-INDUCED HYPERLEPTINEMIA IN RATS RELATED TO THE AMELIORATION OF SUCROSE-INDUCED OBESITY WITH ZINC REPLETION

    International Nuclear Information System (INIS)

    HEIBASHY, M.I.; EL-NAHLA, A.M.; ASHOUR, I.; SALEH, SH.Y.A.

    2008-01-01

    Thirty adult albino rats (Rattus rattus) at 6 weeks of age were divided into three groups (ten for each). The first group was fed a standard laboratory diet for 8 weeks (control). The second group was made obese by giving them 32% sucrose solution in addition to the standard laboratory diet .The third group was received zinc supplementation (50 mg zinc acetate/ litre) with their sucrose solution. Body weight of all rats was measured weekly for 8 weeks. At 14 weeks of age, rats were killed and fasting blood samples were obtained. Serum glucose, insulin, cholesterol, triglyceride, leptin, tumour necrosis factor-α and zinc were measured.Results showed remarkable changes in body weights in sucrose fed rats only when compared to control and supplemented zinc rats group. Serum glucose, insulin, cholesterol and triglycerides were significantly increased in sucrose fed rats than both control and sucrose with zinc group. Serum leptin showed significant increase in sucrose fed rats than control and also showed higher significant value in sucrose fed rats supplemented with zinc comparing with sucrose fed rats and control ones. Tumour necrosis factor-? did not show any significant difference between all groups. Serum zinc concentration was decreased significantly in sucrose fed rats as compared to control. On the other hand, it was increased significantly in sucrose fed rats supplemented with zinc than other both groups. It could be concluded that zinc supplementation induced hyperleptinemia caused ameliorating effects in obese rats

  9. Zinc-induced protection against cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Early, J.L.; Schnell, R.C.

    1978-02-01

    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  10. Zinc

    Science.gov (United States)

    ... Some early research suggests that zinc supplementation increases sperm count, testosterone levels, and pregnancy rates in infertile men with low testosterone levels. Other research suggests that taking zinc can improve sperm shape in men with moderate enlargement of a ...

  11. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    Energy Technology Data Exchange (ETDEWEB)

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak P.; Woodruff, Teresa K.; O' Halloran, Thomas V.

    2014-12-15

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes

  12. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  13. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    International Nuclear Information System (INIS)

    Sun, Xi; Zhou, Xixi; Du, Libo; Liu, Wenlan; Liu, Yang; Hudson, Laurie G.; Liu, Ke Jian

    2014-01-01

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  14. Repletion of zinc in zinc-deficient cells strongly up-regulates IL-1β-induced IL-2 production in T-cells.

    Science.gov (United States)

    Daaboul, Doha; Rosenkranz, Eva; Uciechowski, Peter; Rink, Lothar

    2012-10-01

    Mild zinc deficiency in humans negatively affects IL-2 production resulting in declined percentages of cytolytic T cells and decreased NK cell lytic activity, which enhances the susceptibility to infections and malignancies. T-cell activation is critically regulated by zinc and the normal physiological zinc level in T-cells slightly lies below the optimal concentration for T-cell functions. A further reduction in zinc level leads to T-cell dysfunction and autoreactivity, whereas high zinc concentrations (100 μM) were shown to inhibit interleukin-1 (IL-1)-induced IL-1 receptor kinase (IRAK) activation. In this study, we investigated the molecular mechanism by which zinc regulates the IL-1β-induced IL-2 expression in T-cells. Zinc supplementation to zinc-deficient T-cells increased intracellular zinc levels by altering the expression of zinc transporters, particularly Zip10 and Zip12. A zinc signal was observed in the murine T-cell line EL-4 6.1 after 1 h of stimulation with IL-1β, measured by specific zinc sensors FluoZin-3 and ZinPyr-1. This signal is required for the phosphorylation of MAPK p38 and NF-κB subunit p65, which triggers the transcription of IL-2 and strongly increases its production. These results indicate that short-term zinc supplementation to zinc-deficient T-cells leads to a fast rise in zinc levels which subsequently enhance cytokine production. In conclusion, low and excessive zinc levels might be equally problematic for zinc-deficient subjects, and stabilized zinc levels seem to be essential to avoid negative concentration-dependent zinc effects on T-cell activation.

  15. Radiation induced structural changes in alpha-copper-zinc alloys

    International Nuclear Information System (INIS)

    Schuele, W.; Gieb, M.

    1991-01-01

    During irradiation of alpha-copper-zinc alloys with high energy electrons and protons a decrease of the electrical resistivity due to an increase of the degree of short range order is observed through radiation enhanced diffusion followed by an increase of the electrical resistivity through the formation of radiation induced interstitial clusters. The initial formation rate of interstitial clusters increases about linearly with the displacement rate for electron and proton irradiation. The largest initial formation rate is found between 60 and 130 0 C becoming negligibly small above 158 0 C and decreases drastically below 60 0 C. The dynamic steady state interstitial cluster concentration increases with decreasing irradiation temperature in the investigated temperature range between 158 and 40 0 C. Above 158 0 C the formation rate of interstitial clusters is negligibly small. Thus the transition temperature for radiation induced interstitial cluster formation is 158 0 C, depending mainly on the migration activation energy of vacancies. The radiation induced interstitial clusters are precipitates in those alloys in which the diffusion rate of the undersized component atoms via an interstitialcy diffusion mechanism is larger than that of the other atoms

  16. Alterations in protein kinase C activity and processing during zinc-deficiency-induced cell death.

    Science.gov (United States)

    Chou, Susan S; Clegg, Michael S; Momma, Tony Y; Niles, Brad J; Duffy, Jodie Y; Daston, George P; Keen, Carl L

    2004-10-01

    Protein kinases C (PKCs) are a family of serine/threonine kinases that are critical for signal transduction pathways involved in growth, differentiation and cell death. All PKC isoforms have four conserved domains, C1-C4. The C1 domain contains cysteine-rich finger-like motifs, which bind two zinc atoms. The zinc-finger motifs modulate diacylglycerol binding; thus, intracellular zinc concentrations could influence the activity and localization of PKC family members. 3T3 cells were cultured in zinc-deficient or zinc-supplemented medium for up to 32 h. Cells cultured in zinc-deficient medium had decreased zinc content, lowered cytosolic classical PKC activity, increased caspase-3 processing and activity, and reduced cell number. Zinc-deficient cytosols had decreased activity and expression levels of PKC-alpha, whereas PKC-alpha phosphorylation was not altered. Inhibition of PKC-alpha with Gö6976 had no effect on cell number in the zinc-deficient group. Proteolysis of the novel PKC family member, PKC-delta, to its 40-kDa catalytic fragment occurred in cells cultured in the zinc-deficient medium. Occurrence of the PKC-delta fragment in mitochondria was co-incident with caspase-3 activation. Addition of the PKC-delta inhibitor, rottlerin, or zinc to deficient medium reduced or eliminated proteolysis of PKC-delta, activated caspase-3 and restored cell number. Inhibition of caspase-3 processing by Z-DQMD-FMK (Z-Asp-Gln-Met-Asp-fluoromethylketone) did not restore cell number in the zinc-deficient group, but resulted in processing of full-length PKC-delta to a 56-kDa fragment. These results support the concept that intracellular zinc concentrations influence PKC activity and processing, and that zinc-deficiency-induced apoptosis occurs in part through PKC-dependent pathways.

  17. Allergic contact dermatitis induced by zinc pyrithione in shampoo: a case report

    Directory of Open Access Journals (Sweden)

    Chih-Wei Hsieh

    2010-12-01

    Full Text Available Shampoo-induced allergic contact dermatitis is difficult to diagnose clinically because it can involve multiple and variable areas where the shampoo flows. Zinc pyrithione is a common active agent in medicated shampoo that is known to have good anti-dandruff and antifungal effects. Despite its low risk of sensitization, cases of allergic contact dermatitis still occur because of the popularity of such products. We report a 33-year-old man who developed pruritic rash on his scalp, face, neck, and hands after using a new shampoo containing zinc pyrithione. A patch test revealed a positive reaction to zinc pyrithione and personal shampoo containing zinc pyrithione.

  18. Colchicine induced intraneuronal free zinc accumulation and dentate granule cell degeneration.

    Science.gov (United States)

    Choi, Bo Young; Lee, Bo Eun; Kim, Jin Hee; Kim, Hyun Jung; Sohn, Min; Song, Hong Ki; Chung, Tae Nyoung; Suh, Sang Won

    2014-08-01

    Colchicine has been discovered to inhibit many inflammatory processes such as gout, familial Mediterranean fever, pericarditis and Behcet disease. Other than these beneficial anti-inflammatory effects, colchicine blocks microtubule-assisted axonal transport, which results in the selective loss of dentate granule cells of the hippocampus. The mechanism of the colchicine-induced dentate granule cell death and depletion of mossy fiber terminals still remains unclear. In the present study, we hypothesized that colchicine-induced dentate granule cell death may be caused by accumulation of labile intracellular zinc. 10 μg kg(-1) of colchicine was injected into the adult rat hippocampus and then brain sections were evaluated at 1 day or 1 week later. Neuronal cell death was evaluated by H&E staining or Fluoro-Jade B. Zinc accumulation and vesicular zinc were detected by N-(6-methoxy-8-quinolyl)-para-toluene sulfonamide (TSQ) staining. To test whether an extracellular zinc chelator can prevent this process, CaEDTA was injected into the hippocampus over a 5 min period with colchicine. To test whether other microtubule toxins also produce similar effects as colchicine, vincristine was injected into the hippocampus. The present study found that colchicine injection induced intracellular zinc accumulation in the dentate granule cells and depleted vesicular zinc from mossy fiber terminals. Injection of a zinc chelator, CaEDTA, did not block the zinc accumulation and neuronal death. Vincristine also produced intracellular zinc accumulation and neuronal death. These results suggest that colchicine-induced dentate granule cell death is caused by blocking axonal zinc flow and accumulation of intracellular labile zinc.

  19. A Singlet Oxygen Photogeneration and Luminescence Study of Unsymmetrically Substituted Mesoporphyrinic Compounds

    Directory of Open Access Journals (Sweden)

    Anabela Sousa Oliveira

    2009-01-01

    Full Text Available This paper deals with a series of new unsymmetrically substituted mesoporphyrins: 5-(2-hydroxyphenyl-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHO, 5-(3-hydroxyphenyl-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHM, 5-(4-hydroxyphenyl-10,15,20-tris-phenyl-21,23-H-porphyrin (TPPOHP, 5-(2-hydroxyphenyl-10,15,20-tris-butyl-21,23-H-porphyrin (TBPOHO, and their parent nonsubstituted compounds, respectively, 5,10,15,20-tetrakis-phenyl-21,23-H-porphyrin (TPP and 5,10,15,20-tetrakis-butyl-21,23-H-porphyrin (TBP. Several photophysical studies were carried out to access the influence of the unsymmetrical substitution at the porphyrinic macrocycle on porthyrin's photophysical properties, especially porthyrin's efficiency as singlet oxygen sensitizers. The quantum yields of singlet oxygen generation were determined in benzene (ΦΔ(TPP = 0.66 ± 0.05; ΦΔ(TPPOHO = 0.69 ± 0.04; ΦΔ(TPPOHM = 0.62 ± 0.04; ΦΔ(TPPOHP = 0.73 ± 0.03; ΦΔ(TBP = 0.76 ± 0.03; ΦΔ(TBPOHO = 0.73 ± 0.02 using the 5,10,15,20-tetraphenyl-21,23-H-porphine (ΦΔ(TPP = 0.66 and Phenazine (ΦΔ(Phz = 0.83 as reference compounds. Their fluorescence quantum yields were found to be (Φf(TPPOHO = 0.10 ± 0.04; Φf(TPPOHM = 0.09 ± 0.03; Φf(TPPOHP = 0.13 ± 0.02; Φf(TBP = 0.08 ± 0.03 and Φf(TBPOHO = 0.08 ± 0.02 using 5,10,15,20-tetraphenyl-21,23-H-porphine as reference Φf(TPP = 0.13. Singlet state lifetimes were also determined in the same solvent. All the porphyrins presented very similar fluorescence lifetimes (mean values of τS (with O2, air equilibrated = 9.6 ± 0.3 nanoseconds and (without O2, argon purged = 10.1 ± 0.6 nanoseconds, resp.. The phosphorescence emission was found to be negligible for this series of unsymmetrically substituted mesoporphyrins, but an E-type, thermally activated, delayed fluorescence process was proved to occur at room temperature.

  20. Zinc-induced Self-association of Complement C3b and Factor H

    Science.gov (United States)

    Nan, Ruodan; Tetchner, Stuart; Rodriguez, Elizabeth; Pao, Po-Jung; Gor, Jayesh; Lengyel, Imre; Perkins, Stephen J.

    2013-01-01

    The sub-retinal pigment epithelial deposits that are a hallmark of age-related macular degeneration contain both C3b and millimolar levels of zinc. C3 is the central protein of complement, whereas C3u is formed by the spontaneous hydrolysis of the thioester bridge in C3. During activation, C3 is cleaved to form active C3b, then C3b is inactivated by Factor I and Factor H to form the C3c and C3d fragments. The interaction of zinc with C3 was quantified using analytical ultracentrifugation and x-ray scattering. C3, C3u, and C3b associated strongly in >100 μm zinc, whereas C3c and C3d showed weak association. With zinc, C3 forms soluble oligomers, whereas C3u and C3b precipitate. We conclude that the C3, C3u, and C3b association with zinc depended on the relative positions of C3d and C3c in each protein. Computational predictions showed that putative weak zinc binding sites with different capacities exist in all five proteins, in agreement with experiments. Factor H forms large oligomers in >10 μm zinc. In contrast to C3b or Factor H alone, the solubility of the central C3b-Factor H complex was much reduced at 60 μm zinc and even more so at >100 μm zinc. The removal of the C3b-Factor H complex by zinc explains the reduced C3u/C3b inactivation rates by zinc. Zinc-induced precipitation may contribute to the initial development of sub-retinal pigment epithelial deposits in the retina as well as reducing the progression to advanced age-related macular degeneration in higher risk patients. PMID:23661701

  1. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  2. Curcumin Attenuates Hepatotoxicity Induced by Zinc Oxide Nanoparticles in Rats

    Directory of Open Access Journals (Sweden)

    Layasadat Khorsandi

    2016-06-01

    Full Text Available Background: Zinc oxide nanoparticles (NZnO are increasingly used in modern life. Most metal nanoparticles have adverse effects on the liver. Aims: To explore the protective action of curcumin (Cur against hepatotoxicity induced by NZnO in rats. Study Design: Animal experimentation. Methods: Control group animals received normal saline, while the Cur group animals were treated with 200 mg/kg of Cur orally for 21 days. NZnO-intoxicated rats received 50 mg/kg of NZnO for 14 days by gavage method. In the NZnO+Cur group, rats were pretreated with Cur for 7 days before NZnO administration. Plasma activities of Alanine aminotransferase (ALT, aspartate aminotransferase (AST and alkaline phosphatase (ALP were measured as biomarkers of hepatotoxicity. Hepatic levels of malondialdehyde (MDA and superoxide dismutase (SOD and glutathione peroxidase (GPx activities were measured for detection of oxidative stress in liver tissue. Histological changes and apoptosis in liver tissue were studied by using Hematoxylin-eosin staining and the transferase dUTP nick end labeling (TUNEL method. Results: NZnO induced a significant increase in plasma AST (2.8-fold, ALT (2.7-fold and ALP (1.97-fold activity in comparison to the control group (p<0.01. NZnO increased MDA content and reduced SOD and GPx activities. NZnO caused liver damage including centrilobular necrosis and microvesicular steatosis. The percentage of apoptosis in hepatocytes was increased in NZnO-treated rats (p<0.01. Pre-treatment of Cur significantly reduced lipid peroxidation (39%, increased SOD (156% and GPx (26% activities, and attenuated ALT (47%, AST (41% and ALP (30% activities. Pre-treatment with Cur also decreased the histology changes and apoptotic index of hepatocytes (p<0.05. Conclusion: These findings indicate that Cur effectively protects against NZnO-induced hepatotoxicity in rats. However, future studies are required to propose Cur as a potential protective agent against hepatotoxicity

  3. Chromium, Nickel and Zinc Induced Histopathological Alterations in ...

    African Journals Online (AJOL)

    Michael Horsfall

    fish, Labeo rohita to chlorides of chromium, nickel and zinc for 30 days. However ... toxicants such as salts of heavy metals, acids, organic matter ... nutritional supply becomes excessive. ... action), petrochemicals, and fertilizers and in steam.

  4. Radiation induced traps of zinc phosphate and phosphide

    International Nuclear Information System (INIS)

    Murali, K.R.; Rao, D.R.

    1980-01-01

    Thermoluminescence (TL) glow curve (TGC) method has been used to study the traps produced by X-irradiation in Zn 3 (PO 4 ) 2 and Zn 3 P 2 . Prominent TL glow peaks were observed at 100 0 and 360 0 C for zinc phosphate while for zinc phosphide only one glow peak at 245 0 C was observed, and in the latter case the TL output was in general quite low compared to zinc phosphate. The TL spectra for both the glow peaks of zinc phosphate indicated emission band in the region around 560 nm, while for zinc phosphide the emission occurred at 575 nm (in the temperature region 200-270 0 C). The low temperature glow peaks below 270 0 C were less stable compared to those above 300 0 C and were completely destroyed when the irradiated samples were stored in darkness for 24 hr at room temperature. Shining by 470 nm light however produced preferential bleaching of the two TL peaks at 100 and 360 0 C with no effect on the 245 0 C glow peak of zinc phosphide. It is concluded that during heat treatment large numbers of Zn-vacancies are formed due to which complexes like Zn-P are produced by irradiation and the TL traps destroyed in a radiative recombination process are related with these complexes. (author)

  5. Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats.

    Science.gov (United States)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lu, Wenping; Li, Binglong; Xu, Donghui

    2015-11-15

    The clinical efficacy of anthracycline anti-neoplastic agents is limited by cardiac and hepatic toxicities. The aim of this study was to assess the hepatoprotective and cardioprotective effects of taurine zinc solid dispersions, which is a newly-synthesized taurine zinc compound, against doxorubicin-induced toxicity in Sprague-Dawley rats intraperitoneally injected with doxorubicin hydrochloride (3mg/kg) three times a week (seven injections) over 28 days. Hemodynamic parameters, levels of liver toxicity markers and oxidative stress were assessed. Taurine zinc significantly attenuated the reductions in blood pressure, left ventricular pressure and ± dp/dtmax, increases in serum alanine aminotransferase and aspartate aminotransferase activities, and reductions in serum Zn(2+) and albumin levels (Ptaurine zinc dose-dependently increased liver superoxide dismutase activity and glutathione concentration, and decreased malondialdehyde level (PTaurine zinc dose-dependently increased liver heme oxygenase-1 and UDP-glucuronyl transferase mRNA and protein expression (Ptaurine zinc inhibited c-Jun N-terminal kinase phosphorylation by upregulating dual-specificity phosphoprotein phosphatase-1. Additionally, taurine zinc inhibited cardiomyocyte apoptosis as there was decreased TUNEL/DAPI positivity and protein expression of caspase-3. These results indicate that taurine zinc solid dispersions prevent the side-effects of anthracycline-based anticancer therapy. The mechanisms might be associated with the enhancement of antioxidant defense system partly through activating transcription to synthesize endogenous phase II medicine enzymes and anti-apoptosis through inhibiting JNK phosphorylation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats

    International Nuclear Information System (INIS)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lu, Wenping; Li, Binglong; Xu, Donghui

    2015-01-01

    The clinical efficacy of anthracycline anti-neoplastic agents is limited by cardiac and hepatic toxicities. The aim of this study was to assess the hepatoprotective and cardioprotective effects of taurine zinc solid dispersions, which is a newly-synthesized taurine zinc compound, against doxorubicin-induced toxicity in Sprague–Dawley rats intraperitoneally injected with doxorubicin hydrochloride (3 mg/kg) three times a week (seven injections) over 28 days. Hemodynamic parameters, levels of liver toxicity markers and oxidative stress were assessed. Taurine zinc significantly attenuated the reductions in blood pressure, left ventricular pressure and ± dp/dtmax, increases in serum alanine aminotransferase and aspartate aminotransferase activities, and reductions in serum Zn 2+ and albumin levels (P < 0.05 or 0.01) induced by doxorubicin. In rats treated with doxorubicin, taurine zinc dose-dependently increased liver superoxide dismutase activity and glutathione concentration, and decreased malondialdehyde level (P < 0.01). qBase + was used to evaluate the stability of eight candidate reference genes for real-time quantitative reverse-transcription PCR. Taurine zinc dose-dependently increased liver heme oxygenase-1 and UDP-glucuronyl transferase mRNA and protein expression (P < 0.01). Western blotting demonstrated that taurine zinc inhibited c-Jun N-terminal kinase phosphorylation by upregulating dual-specificity phosphoprotein phosphatase-1. Additionally, taurine zinc inhibited cardiomyocyte apoptosis as there was decreased TUNEL/DAPI positivity and protein expression of caspase-3. These results indicate that taurine zinc solid dispersions prevent the side-effects of anthracycline-based anticancer therapy. The mechanisms might be associated with the enhancement of antioxidant defense system partly through activating transcription to synthesize endogenous phase II medicine enzymes and anti-apoptosis through inhibiting JNK phosphorylation. - Highlights:

  7. Taurine zinc solid dispersions attenuate doxorubicin-induced hepatotoxicity and cardiotoxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lu, Wenping; Li, Binglong; Xu, Donghui, E-mail: Donghuixu007@163.com

    2015-11-15

    The clinical efficacy of anthracycline anti-neoplastic agents is limited by cardiac and hepatic toxicities. The aim of this study was to assess the hepatoprotective and cardioprotective effects of taurine zinc solid dispersions, which is a newly-synthesized taurine zinc compound, against doxorubicin-induced toxicity in Sprague–Dawley rats intraperitoneally injected with doxorubicin hydrochloride (3 mg/kg) three times a week (seven injections) over 28 days. Hemodynamic parameters, levels of liver toxicity markers and oxidative stress were assessed. Taurine zinc significantly attenuated the reductions in blood pressure, left ventricular pressure and ± dp/dtmax, increases in serum alanine aminotransferase and aspartate aminotransferase activities, and reductions in serum Zn{sup 2+} and albumin levels (P < 0.05 or 0.01) induced by doxorubicin. In rats treated with doxorubicin, taurine zinc dose-dependently increased liver superoxide dismutase activity and glutathione concentration, and decreased malondialdehyde level (P < 0.01). qBase{sup +} was used to evaluate the stability of eight candidate reference genes for real-time quantitative reverse-transcription PCR. Taurine zinc dose-dependently increased liver heme oxygenase-1 and UDP-glucuronyl transferase mRNA and protein expression (P < 0.01). Western blotting demonstrated that taurine zinc inhibited c-Jun N-terminal kinase phosphorylation by upregulating dual-specificity phosphoprotein phosphatase-1. Additionally, taurine zinc inhibited cardiomyocyte apoptosis as there was decreased TUNEL/DAPI positivity and protein expression of caspase-3. These results indicate that taurine zinc solid dispersions prevent the side-effects of anthracycline-based anticancer therapy. The mechanisms might be associated with the enhancement of antioxidant defense system partly through activating transcription to synthesize endogenous phase II medicine enzymes and anti-apoptosis through inhibiting JNK phosphorylation. - Highlights:

  8. Ethambutol-induced toxicity is mediated by zinc and lysosomal membrane permeabilization in cultured retinal cells

    International Nuclear Information System (INIS)

    Chung, Hyewon; Yoon, Young Hee; Hwang, Jung Jin; Cho, Kyung Sook; Koh, Jae Young; Kim, June-Gone

    2009-01-01

    Ethambutol, an efficacious antituberculosis agent, can cause irreversible visual loss in a small but significant fraction of patients. However, the mechanism of ocular toxicity remains to be established. We previously reported that ethambutol caused severe vacuole formation in cultured retinal cells, and that the addition of zinc along with ethambutol aggravated vacuole formation whereas addition of the cell-permeable zinc chelator, N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), reduced vacuole formation. To investigate the origin of vacuoles and to obtain an understanding of drug toxicity, we used cultured primary retinal cells from newborn Sprague-Dawley rats and imaged ethambutol-treated cells stained with FluoZin-3, zinc-specific fluorescent dye, under a confocal microscope. Almost all ethambutol-induced vacuoles contained high levels of labile zinc. Double staining with LysoTracker or MitoTracker revealed that almost all zinc-containing vacuoles were lysosomes and not mitochondria. Intracellular zinc chelation with TPEN markedly blocked both vacuole formation and zinc accumulation in the vacuole. Immunocytochemistry with antibodies to lysosomal-associated membrane protein-2 (LAMP-2) and cathepsin D, an acid lysosomal hydrolase, disclosed lysosomal activation after exposure to ethambutol. Immunoblotting after 12 h exposure to ethambutol showed that cathepsin D was released into the cytosol. In addition, cathepsin inhibitors attenuated retinal cell toxicity induced by ethambutol. This is consistent with characteristics of lysosomal membrane permeabilization (LMP). TPEN also inhibited both lysosomal activation and LMP. Thus, accumulation of zinc in lysosomes, and eventual LMP, may be a key mechanism of ethambutol-induced retinal cell death

  9. Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli.

    Science.gov (United States)

    Bunnell, Bryan E; Escobar, Jillian F; Bair, Kirsten L; Sutton, Mark D; Crane, John K

    2017-01-01

    Zinc inhibits the virulence of diarrheagenic E. coli by inducing the envelope stress response and inhibiting the SOS response. The SOS response is triggered by damage to bacterial DNA. In Shiga-toxigenic E. coli, the SOS response strongly induces the production of Shiga toxins (Stx) and of the bacteriophages that encode the Stx genes. In E. coli, induction of the SOS response is accompanied by a higher mutation rate, called the mutator response, caused by a shift to error-prone DNA polymerases when DNA damage is too severe to be repaired by canonical DNA polymerases. Since zinc inhibited the other aspects of the SOS response, we hypothesized that zinc would also inhibit the mutator response, also known as hypermutation. We explored various different experimental paradigms to induce hypermutation triggered by the SOS response, and found that hypermutation was induced not just by classical inducers such as mitomycin C and the quinolone antibiotics, but also by antiviral drugs such as zidovudine and anti-cancer drugs such as 5-fluorouracil, 6-mercaptopurine, and azacytidine. Zinc salts inhibited the SOS response and the hypermutator phenomenon in E. coli as well as in Klebsiella pneumoniae, and was more effective in inhibiting the SOS response than other metals. We then attempted to determine the mechanism by which zinc, applied externally in the medium, inhibits hypermutation. Our results show that zinc interferes with the actions of RecA, and protects LexA from RecA-mediated cleavage, an early step in initiation of the SOS response. The SOS response may play a role in the development of antibiotic resistance and the effect of zinc suggests ways to prevent it.

  10. Zinc blocks SOS-induced antibiotic resistance via inhibition of RecA in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Bryan E Bunnell

    Full Text Available Zinc inhibits the virulence of diarrheagenic E. coli by inducing the envelope stress response and inhibiting the SOS response. The SOS response is triggered by damage to bacterial DNA. In Shiga-toxigenic E. coli, the SOS response strongly induces the production of Shiga toxins (Stx and of the bacteriophages that encode the Stx genes. In E. coli, induction of the SOS response is accompanied by a higher mutation rate, called the mutator response, caused by a shift to error-prone DNA polymerases when DNA damage is too severe to be repaired by canonical DNA polymerases. Since zinc inhibited the other aspects of the SOS response, we hypothesized that zinc would also inhibit the mutator response, also known as hypermutation. We explored various different experimental paradigms to induce hypermutation triggered by the SOS response, and found that hypermutation was induced not just by classical inducers such as mitomycin C and the quinolone antibiotics, but also by antiviral drugs such as zidovudine and anti-cancer drugs such as 5-fluorouracil, 6-mercaptopurine, and azacytidine. Zinc salts inhibited the SOS response and the hypermutator phenomenon in E. coli as well as in Klebsiella pneumoniae, and was more effective in inhibiting the SOS response than other metals. We then attempted to determine the mechanism by which zinc, applied externally in the medium, inhibits hypermutation. Our results show that zinc interferes with the actions of RecA, and protects LexA from RecA-mediated cleavage, an early step in initiation of the SOS response. The SOS response may play a role in the development of antibiotic resistance and the effect of zinc suggests ways to prevent it.

  11. Fluorescent zinc sensor with minimized proton-induced interferences: photophysical mechanism for fluorescence turn-on response and detection of endogenous free zinc ions.

    Science.gov (United States)

    Kwon, Ji Eon; Lee, Sumin; You, Youngmin; Baek, Kyung-Hwa; Ohkubo, Kei; Cho, Jaeheung; Fukuzumi, Shunichi; Shin, Injae; Park, Soo Young; Nam, Wonwoo

    2012-08-20

    A new fluorescent zinc sensor (HNBO-DPA) consisting of 2-(2'-hydroxy-3'-naphthyl)benzoxazole (HNBO) chromophore and a di(2-picolyl)amine (DPA) metal chelator has been prepared and examined for zinc bioimaging. The probe exhibits zinc-induced fluorescence turn-on without any spectral shifts. Its crystal structure reveals that HNBO-DPA binds a zinc ion in a pentacoordinative fashion through the DPA and HNBO moieties. Steady-state photophysical studies establish zinc-induced deprotonation of the HNBO group. Nanosecond and femtosecond laser flash photolysis and electrochemical measurements provide evidence for zinc-induced modulation of photoinduced electron transfer (PeT) from DPA to HNBO. Thus, the zinc-responsive fluorescence turn-on is attributed to suppression of PeT exerted by deprotonation of HNBO and occupation of the electron pair of DPA, a conclusion that is further supported by density functional theory and time-dependent density functional theory (DFT/TD-DFT) calculations. Under physiological conditions (pH 7.0), the probe displays a 44-fold fluorescence turn-on in response to zinc ions with a K(d) value of 12 pM. The fluorescent response of the probe to zinc ions is conserved over a broad pH range with its excellent selectivity for zinc ions among biologically relevant metal ions. In particular, its sensing ability is not altered by divalent transition metal ions such as Fe(II), Cu(II), Cd(II), and Hg(II). Cell experiments using HNBO-DPA show its suitability for monitoring intracellular zinc ions. We have also demonstrated applicability of the probe to visualize intact zinc ions released from cells that undergo apoptosis. More interestingly, zinc-rich pools in zebrafish embryos are traced with HNBO-DPA during early developmental stages. The results obtained from the in vitro and in vivo imaging studies demonstrate the practical usefulness of the probe to detect zinc ions.

  12. Shock-induced fast reactions of zinc nanoparticles and RDX

    Energy Technology Data Exchange (ETDEWEB)

    Xue Mian; Wu Jinghe; Ye Song; Yang Xiangdong [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Hu Dong; Wang Yanping; Zhu Wenjun; Li Chengbing [National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, CAEP, Mianyang 621900 (China)], E-mail: mi-anxue@163.com

    2008-02-21

    Fast reactions of zinc nanoparticles and RDX were investigated in normal incident shock waves. The emergence time and emission spectra intensity of partial products such as NO{sub 2}, H, C{sub 2}, O, CO, CH{sub 2}O, CO{sub 2}, H{sub 2}O and ZnO were observed by a TDS5054 oscilloscope. The results indicate that NO{sub 2} appears first in each experiment, which is in agreement with the theoretical results. The addition of zinc nanoparticles to RDX can not only shorten the ignition delay time by 20% but also double the shockwave diffusion velocity to 2180 {+-} 50 m s{sup -1} and triple the temperature to 2020 {+-} 60 K. The emergence time of products shortens by around 10-40% and the emission spectra intensity of H{sub 2}O and CH{sub 2}O rises by about three times and one times, respectively. CO{sub 2}, H{sub 2}O and O{sub 2} in various concentrations were introduced into the zinc-RDX reaction, respectively, which indicate that O{sub 2} made the ignition delay time shorten by over 30%, the effect of H{sub 2}O was not prominent while CO{sub 2} made the ignition delay time lag by around 30%. The results indicate that the Zn-O{sub 2} reaction mainly occurs in O{sub 2}, CO{sub 2} and H{sub 2}O.

  13. Shock-induced fast reactions of zinc nanoparticles and RDX

    International Nuclear Information System (INIS)

    Xue Mian; Wu Jinghe; Ye Song; Yang Xiangdong; Hu Dong; Wang Yanping; Zhu Wenjun; Li Chengbing

    2008-01-01

    Fast reactions of zinc nanoparticles and RDX were investigated in normal incident shock waves. The emergence time and emission spectra intensity of partial products such as NO 2 , H, C 2 , O, CO, CH 2 O, CO 2 , H 2 O and ZnO were observed by a TDS5054 oscilloscope. The results indicate that NO 2 appears first in each experiment, which is in agreement with the theoretical results. The addition of zinc nanoparticles to RDX can not only shorten the ignition delay time by 20% but also double the shockwave diffusion velocity to 2180 ± 50 m s -1 and triple the temperature to 2020 ± 60 K. The emergence time of products shortens by around 10-40% and the emission spectra intensity of H 2 O and CH 2 O rises by about three times and one times, respectively. CO 2 , H 2 O and O 2 in various concentrations were introduced into the zinc-RDX reaction, respectively, which indicate that O 2 made the ignition delay time shorten by over 30%, the effect of H 2 O was not prominent while CO 2 made the ignition delay time lag by around 30%. The results indicate that the Zn-O 2 reaction mainly occurs in O 2 , CO 2 and H 2 O

  14. Zinc supplementation suppresses the progression of bile duct ligation-induced liver fibrosis in mice.

    Science.gov (United States)

    Shi, Fang; Sheng, Qin; Xu, Xinhua; Huang, Wenli; Kang, Y James

    2015-09-01

    Metallothionein (MT) gene therapy leads to resolution of liver fibrosis in mouse model, in which the activation of collagenases is involved in the regression of liver fibrosis. MT plays a critical role in zinc sequestration in the liver suggesting its therapeutic effect would be mediated by zinc. The present study was undertaken to test the hypothesis that zinc supplementation suppresses liver fibrosis. Male Kunming mice subjected to bile duct ligation (BDL) resulted in liver fibrosis as assessed by increased α-smooth muscle actin (α-SMA) and collagen I production/deposition in the liver. Zinc supplementation was introduced 4 weeks after BDL surgery via intragastric administration once daily for 2 weeks resulting in a significant reduction in the collagen deposition in the liver and an increase in the survival rate. Furthermore, zinc suppressed gene expression of α-SMA and collagen I and enhanced the capacity of collagen degradation, as determined by the increased activity of total collagenases and elevated mRNA and protein levels of MMP13. Therefore, the results demonstrate that zinc supplementation suppresses BDL-induced liver fibrosis through both inhibiting collagen production and enhancing collagen degradation. © 2014 by the Society for Experimental Biology and Medicine.

  15. Zinc Improves Cognitive and Neuronal Dysfunction During Aluminium-Induced Neurodegeneration.

    Science.gov (United States)

    Singla, Neha; Dhawan, D K

    2017-01-01

    Metals are considered as important components of a physiologically active cell, and imbalance in their levels can lead to various diseased conditions. Aluminium (Al) is an environmental neurotoxicant, which is etiologically related to several neurodegenerative disorders like Alzheimer's, whereas zinc (Zn) is an essential trace element that regulates a large number of metabolic processes in the brain. The objective of the present study was to understand whether Zn provides any physiological protection during Al-induced neurodegeneration. Male Sprague Dawley rats weighing 140-160 g received either aluminium chloride (AlCl 3 ) orally (100 mg/kg b.wt./day), zinc sulphate (ZnSO 4 ) in drinking water (227 mg/L) or combined treatment of aluminium and zinc for 8 weeks. Al treatment resulted in a significant decline in the cognitive behaviour of rats, whereas zinc supplementation caused an improvement in various neurobehavior parameters. Further, Al exposure decreased (p ≤ 0.001) the levels of neurotransmitters, acetylcholinesterase activity, but increased (p ≤ 0.001) the levels of L-citrulline as well as activities of nitric oxide and monoamine oxidase in the brain. However, zinc administration to Al-treated animals increased the levels of neurotransmitters and regulated the altered activities of brain markers. Western blot of tau, amyloid precursor protein (APP), glial fibrillary acidic protein (GFAP), ubiquitin, α-synuclein and Hsp 70 were also found to be elevated after Al exposure, which however were reversed following Zn treatment. Al treatment also revealed alterations in neurohistoarchitecture in the form of loss of pyramidal and Purkinje cells, which were improved upon zinc co-administration. Therefore, the present study demonstrates that zinc improves cognitive functions by regulating α-synuclein and APP-mediated molecular pathways during aluminium-induced neurodegeneration.

  16. Protective effect of zinc aspartate against acetaminophen induced hepato-renal toxicity in albino rats

    International Nuclear Information System (INIS)

    Mohamed, E.T.; Said, A.I.; El-Sayed, S.A.

    2011-01-01

    Zinc is an essential nutrient that is required in humans and animals for many physiological functions, including antioxidant functions. The evidence to date indicates that zinc is an important element that links antioxidant system and tissue damage. Acetaminophen (AP), a widely used analgesic and antipyretic, produces hepatocyte and renal tubular necrosis in human and animals following overdose. In human, AP is one of the most common causes of acute liver failure as a result of accidental or deliberate overdose. Moreover, the initial event in AP toxicity is a toxic metabolic injury with the release of free radicals and subsequent cellular death by necrosis and apoptosis. This study was designed to evaluate the potential protective role of zinc aspartate in case of acetaminophen induced hepato-renal toxicity in rats. A total number of 32 adult male albino rats were divided into 4 equal groups: group I (control group), group II (zinc aspartate treated group), group III (acetaminophen treated group; by a single oral dose of 750 mg/kg body weight) and group IV acetaminophen plus zinc treated group; (zinc aspartate was intraperitoneally given one hour after acetaminophen administration in a dose of 30 mg/kg body weight). Serum levels of: alanine aminotransferase, aspartate aminotransferase, direct bilirubin, blood urea nitrogen, creatinine, uric acid, xanthine oxidase (XO), glutathione (GSH), malonaldehyde (MDA) and nitric oxide (NO) were assessed in all groups. The results of this study showed that treatment with acetaminophen alone (group III) produced a significant increase in serum levels of the liver enzymes and direct bilirubin. Moreover, in the same group there was a significant increase in the blood urea nitrogen and serum creatinine compared to the control group. In addition, there was a significant increase in XO and MDA and a significant decrease in GSH and NO level. Injection of rats with zinc aspartate after acetaminophen treatment could produce a

  17. Nanosized zinc oxide particles induce neural stem cell apoptosis

    International Nuclear Information System (INIS)

    Deng Xiaoyong; Luan Qixia; Wu Minghong; Zhang Haijiao; Jiao Zheng; Chen Wenting; Wang Yanli

    2009-01-01

    Given the intensive application of nanoscale zinc oxide (ZnO) materials in our life, growing concerns have arisen about its unintentional health and environmental impacts. In this study, the neurotoxicity of different sized ZnO nanoparticles in mouse neural stem cells (NSCs) was investigated. A cell viability assay indicated that ZnO nanoparticles manifested dose-dependent, but no size-dependent toxic effects on NSCs. Apoptotic cells were observed and analyzed by confocal microscopy, transmission electron microscopy examination, and flow cytometry. All the results support the viewpoint that the ZnO nanoparticle toxicity comes from the dissolved Zn 2+ in the culture medium or inside cells. Our results highlight the need for caution during the use and disposal of ZnO manufactured nanomaterials to prevent the unintended environmental and health impacts.

  18. Selective Inducible Nitric Oxide Synthase Inhibitor Reversed Zinc Chloride-Induced Spatial Memory Impairment via Increasing Cholinergic Marker Expression.

    Science.gov (United States)

    Tabrizian, Kaveh; Azami, Kian; Belaran, Maryam; Soodi, Maliheh; Abdi, Khosrou; Fanoudi, Sahar; Sanati, Mehdi; Mottaghi Dastjerdi, Negar; Soltany Rezaee-Rad, Mohammad; Sharifzadeh, Mohammad

    2016-10-01

    Zinc, an essential micronutrient and biochemical element of the human body, plays structural, catalytic, and regulatory roles in numerous physiological functions. In the current study, the effects of a pretraining oral administration of zinc chloride (10, 25, and 50 mg/kg) for 14 consecutive days and post-training bilateral intra-hippocampal infusion of 1400W as a selective inducible nitric oxide synthase (iNOS) inhibitor (10, 50, and 100 μM/side), alone and in combination, on the spatial memory retention in Morris water maze (MWM) were investigated. Animals were trained for 4 days and tested 48 h after completion of training. Also, the molecular effects of these compounds on the expression of choline acetyltransferase (ChAT), as a cholinergic marker in the CA1 region of the hippocampus and medial septal area (MSA), were evaluated. Behavioral and molecular findings of this study showed that a 2-week oral administration of zinc chloride (50 mg/kg) impaired spatial memory retention in MWM and decreased ChAT expression. Immunohistochemical analysis of post-training bilateral intra-hippocampal infusion of 1400W revealed a significant increase in ChAT immunoreactivity. Furthermore, post-training bilateral intra-hippocampal infusion of 1400W into the CA1 region of the hippocampus reversed zinc chloride-induced spatial memory impairment in MWM and significantly increased ChAT expression in comparison with zinc chloride-treated animals. Taken together, these results emphasize the role of selective iNOS inhibitors in reversing zinc chloride-induced spatial memory deficits via modulation of cholinergic marker expression.

  19. The Protective Role of Zinc Sulphate on Ethanol -Induced Liver and Kidney Damages in Rats

    International Nuclear Information System (INIS)

    Al-Damegh, Mona Abdalla

    2007-01-01

    Around the world more and more people suffer from alcoholism. Addiction problems, alcoholism and excessive use of drugs both medical and nonmedical, are major causes of liver and kidney damage in adults. The purpose of this study was to investigate on the protective role of zinc sulphate on liver and kidney in rats with acute alcoholism. Wistar albino rats were divided into four groups. Group I; control group, group 2; given only Zinc Sulphate (100 mg/kg/day for 3days), group 3; rats given absolute ethanol (1 ml of absolute ethanol administrated by gavage technique to each rat), group 4 given Zinc sulphate prior to the administration of absolute ethanol. The results of this study revealed that acute ethanol exposure caused degenerative morphological changes in the liver and kidney. Significant difference were found in the levels of serum, liver, kidney super oxide dismutase(SOD), catalase (CAT), nitric oxide(NO), and malondialdehyde (MDA) in the ethanol group compared to the control group. Moreover ,serum urea, creatnine, uric acid, alkaline phoshpatase and transaminases activities (GOTand GPT) were increased in the ethanol group compared to the control group. On the other hand,administration of zinc sulphate in the ethanol group caused a significant decrease in the degenerative changes, lipid peroxidation, antioxidant enzymes, and nitric oxide in serum, liver, and kidney. It can be concluded that zinc Sulphate has a protective role on the ethanol induced liver and kidney injury. In addition ,nitric oxide is involved in the mechanism of acute alcohol intoxication. (author)

  20. The beneficial effects of zinc on diabetes-induced kidney damage in murine rodent model of type 1 diabetes mellitus.

    Science.gov (United States)

    Yang, Fan; Li, Bing; Dong, Xiaoming; Cui, Wenpeng; Luo, Ping

    2017-07-01

    Diabetes mellitus is a chronic multi-factorial metabolic disorder resulting from impaired glucose homeostasis. Zinc is a key co-factor for the correct functioning of anti-oxidant enzymes. Zinc deficiency therefore, impairs their synthesis, leading to increased oxidative stress within cells. Zinc deficiency occurs commonly in diabetic patients. The aim of this study is to investigate the effects of varying concentrations of zinc on diabetic nephropathy (DN) and the underlying mechanisms involved. FVB male mice aged 8 weeks were injected intraperitoneally with multiple low-dose streptozotocin at a concentration of 50mg/kg body weight daily for 5 days. Diabetic and age-matched control mice were treated with special diets supplemented with zinc at varying concentrations (0.85mg/kg, 30mg/kg, 150mg/kg) for 3 months. The mice were fed with zinc diets to mimic the process of oral administration of zinc in human. Zinc deficiency to some extent aggravated the damage of diabetic kidney. Feeding with normal (30mg/kg zinc/kg diet) and especially high (150mg/kg zinc/kg diet) concentration zinc could protect the kidney against diabetes-induced damage. The beneficial effects of zinc on DN are achieved most likely due to the upregulation of Nrf2 and its downstream factors NQO1, SOD1, SOD2. Zinc upregulated the expression of Akt phosphorylation and GSK-3β phosphorylation, resulting in a reduction in Fyn nuclear translocation and export of Nrf2 to the cytosol. Thus, regular monitoring and maintaining of adequate levels of zinc are recommended in diabetic individuals in order to delay the development of DN. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Zinc Is Indispensable in Exercise-Induced Cardioprotection against Intermittent Hypoxia-Induced Left Ventricular Function Impairment in Rats.

    Directory of Open Access Journals (Sweden)

    Tsung-I Chen

    Full Text Available In obstructive sleep apnea (OSA, recurrent obstruction of the upper airway leads to intermittent hypoxia (IH during sleep, which can result in impairment of cardiac function. Although exercise can have beneficial effects against IH-induced cardiac dysfunction, the mechanism remains unclear. This study aimed to investigate the interactions of zinc and exercise on IH-triggered left ventricular dysfunction in a rat model that mimics IH in OSA patients. Nine-week-old male Sprague-Dawley rats were randomly assigned to either a control group (CON or to a group receiving 10 weeks of exercise training (EXE. During weeks 9 and 10, half the rats in each group were subjected to IH for 8 h per day for 14 days (IHCON, IHEXE, whereas the remainder continued to breathe room air. Rats within each of the CON, IHCON, EXE, and IHEXE groups were further randomly assigned to receive intraperitoneal injections of either zinc chloride, the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl ethylenediamine (TPEN, or injection vehicle only. IH induced a lower left ventricular fractional shortening, reduced ejection fraction, higher myocardial levels of inflammatory factors, increased levels oxidative stress, and lower levels of antioxidative capacity, all of which were abolished by zinc treatment. IHEXE rats exhibited higher levels of cardiac function and antioxidant capacity and lower levels of inflammatory factors and oxidative stress than IHCON rats; however, IHEXE rats receiving TPEN did not exhibit these better outcomes. In conclusion, zinc is required for protecting against IH-induced LV functional impairment and likely plays a critical role in exercise-induced cardioprotection by exerting a dual antioxidant and anti-inflammatory effect.

  2. Zinc Is Indispensable in Exercise-Induced Cardioprotection against Intermittent Hypoxia-Induced Left Ventricular Function Impairment in Rats

    Science.gov (United States)

    Chen, Michael Yu-Chih

    2016-01-01

    In obstructive sleep apnea (OSA), recurrent obstruction of the upper airway leads to intermittent hypoxia (IH) during sleep, which can result in impairment of cardiac function. Although exercise can have beneficial effects against IH-induced cardiac dysfunction, the mechanism remains unclear. This study aimed to investigate the interactions of zinc and exercise on IH-triggered left ventricular dysfunction in a rat model that mimics IH in OSA patients. Nine-week-old male Sprague-Dawley rats were randomly assigned to either a control group (CON) or to a group receiving 10 weeks of exercise training (EXE). During weeks 9 and 10, half the rats in each group were subjected to IH for 8 h per day for 14 days (IHCON, IHEXE), whereas the remainder continued to breathe room air. Rats within each of the CON, IHCON, EXE, and IHEXE groups were further randomly assigned to receive intraperitoneal injections of either zinc chloride, the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN), or injection vehicle only. IH induced a lower left ventricular fractional shortening, reduced ejection fraction, higher myocardial levels of inflammatory factors, increased levels oxidative stress, and lower levels of antioxidative capacity, all of which were abolished by zinc treatment. IHEXE rats exhibited higher levels of cardiac function and antioxidant capacity and lower levels of inflammatory factors and oxidative stress than IHCON rats; however, IHEXE rats receiving TPEN did not exhibit these better outcomes. In conclusion, zinc is required for protecting against IH-induced LV functional impairment and likely plays a critical role in exercise-induced cardioprotection by exerting a dual antioxidant and anti-inflammatory effect. PMID:27977796

  3. Zinc or copper deficiency-induced impaired inflammatory response to brain trauma may be caused by the concomitant metallothionein changes

    DEFF Research Database (Denmark)

    Penkowa, Milena; Giralt, M.; Thomsen, Pernille Sjølin

    2001-01-01

    , and this response was significantly blunted by zinc deficiency. The MT-III isoform was moderately increased by both TBI and zinc deficiency. TBI strongly increased oxidative stress levels, as demonstrated by malondialdehyde (MDA), protein tyrosine nitration (NITT), and nuclear factor kappaB (NF-kappaB) levels irs......, all of which were potentiated by zinc deficiency. Further analysis revealed unbalanced expression of prooxidant and antioxidant proteins besides MT, since the levels of inducible nitric oxide synthase (iNOS) and Cu,Zn-SOD were increased and decreased, respectively, by zinc deficiency. All......The role of zinc- and copper-deficient diets on the inflammatory response to traumatic brain injury (TBI) has been evaluated in adult rats. As expected, zinc deficiency decreased food intake and body weight gain, and the latter effect was higher than that observed in pair-fed rats. In noninjured...

  4. Low concentrations of zinc in gastric mucosa are associated with increased severity of Helicobacter pylori-induced inflammation.

    Science.gov (United States)

    Sempértegui, Fernando; Díaz, Myriam; Mejía, Ricardo; Rodríguez-Mora, Oswaldo G; Rentería, Edgar; Guarderas, Carlos; Estrella, Bertha; Recalde, Ramiro; Hamer, Davidson H; Reeves, Philip G

    2007-02-01

    Chronic Helicobacter pylori infection is the most common cause of gastric cancer. H. pylori induces oxidative stress while zinc deficiency results in increased sensitivity to it. In Ecuador, the prevalence of gastric cancer and zinc deficiency are high. We hypothesized that zinc deficiency in Ecuadorian people would cause increased H. pylori-induced inflammation in the gastric mucosa associated with lower tissue zinc concentrations. Three hundred and fifty-two patients with dyspepsia underwent endoscopy to obtain gastric mucosa biopsies. Diagnosis of H. pylori infection and its severity, histopathology, mucosal zinc concentration, and inflammation intensity were determined. H. pylori-infected patients with non-atrophic chronic gastritis had lower concentrations of zinc in gastric mucosa than uninfected patients with the same type of gastritis (251.3 +/- 225.3 vs. 426.2 +/- 279.9 ng/mg of protein; p = .016). Considering all patients, the more severe the H. pylori infection, the higher the percentage of subjects with infiltration by polymorphonuclear (PMN) cells (p = .0001). Patients with high PMN infiltration had lower mucosal zinc concentrations than patients with low PMN infiltration (35.2 +/- 20.7 vs. 242.9 +/- 191.8 ng/mg of protein; p = .021). The degree of inflammation in H. pylori-induced gastritis appears to be modulated by gastric tissue zinc concentrations.

  5. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    International Nuclear Information System (INIS)

    Zheng, Juanjuan; Zhang, Yu; Xu, Wentao; Luo, YunBo; Hao, Junran; Shen, Xiao Li; Yang, Xuan; Li, Xiaohong; Huang, Kunlun

    2013-01-01

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ m ). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by OTA in

  6. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Juanjuan; Zhang, Yu [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Xu, Wentao, E-mail: xuwentaoboy@sina.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Luo, YunBo [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Hao, Junran [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Shen, Xiao Li [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Yang, Xuan [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); Li, Xiaohong [The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China); Huang, Kunlun, E-mail: hkl009@163.com [Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083 (China); The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083 (China)

    2013-04-15

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by

  7. Zinc supplementation during pregnancy protects against lipopolysaccharide-induced fetal growth restriction and demise through its anti-inflammatory effect.

    Science.gov (United States)

    Chen, Yuan-Hua; Zhao, Mei; Chen, Xue; Zhang, Ying; Wang, Hua; Huang, Ying-Ying; Wang, Zhen; Zhang, Zhi-Hui; Zhang, Cheng; Xu, De-Xiang

    2012-07-01

    LPS is associated with adverse developmental outcomes, including preterm delivery, fetal death, teratogenicity, and intrauterine growth restriction (IUGR). Previous reports showed that zinc protected against LPS-induced teratogenicity. In the current study, we investigated the effects of zinc supplementation during pregnancy on LPS-induced preterm delivery, fetal death and IUGR. All pregnant mice except controls were i.p. injected with LPS (75 μg/kg) daily from gestational day (GD) 15 to GD17. Some pregnant mice were administered zinc sulfate through drinking water (75 mg elemental Zn per liter) throughout the pregnancy. As expected, an i.p. injection with LPS daily from GD15 to GD17 resulted in 36.4% (4/11) of dams delivered before GD18. In dams that completed the pregnancy, 63.2% of fetuses were dead. Moreover, LPS significantly reduced fetal weight and crown-rump length. Of interest, zinc supplementation during pregnancy protected mice from LPS-induced preterm delivery and fetal death. In addition, zinc supplementation significantly alleviated LPS-induced IUGR and skeletal development retardation. Further experiments showed that zinc supplementation significantly attenuated LPS-induced expression of placental inflammatory cytokines and cyclooxygenase-2. Zinc supplementation also significantly attenuated LPS-induced activation of NF-κB and MAPK signaling in mononuclear sinusoidal trophoblast giant cells of the labyrinth zone. It inhibited LPS-induced placental AKT phosphorylation as well. In conclusion, zinc supplementation during pregnancy protects against LPS-induced fetal growth restriction and demise through its anti-inflammatory effect.

  8. Zinc promotes the death of hypoxic astrocytes by upregulating hypoxia-induced hypoxia-inducible factor-1alpha expression via poly(ADP-ribose) polymerase-1.

    Science.gov (United States)

    Pan, Rong; Chen, Chen; Liu, Wen-Lan; Liu, Ke-Jian

    2013-07-01

    Pathological release of excess zinc ions has been implicated in ischemic brain cell death. However, the underlying mechanisms remain to be elucidated. In stroke, ischemia-induced zinc release and hypoxia-inducible factor-1 (HIF-1) accumulation concurrently occur in the ischemic tissue. The present study tests the hypothesis that the presence of high intracellular zinc concentration is a major cause of modifications to PARP-1 and HIF-1α during hypoxia, which significantly contributes to cell death during ischemia. Primary cortical astrocytes and C8-D1A cells were exposed to different concentrations of zinc chloride. Cell death rate and protein expression of HIF-1 and Poly(ADP-ribose) polymerase (PARP)-1 were examined after 3-h hypoxic treatment. Although 3-h hypoxia or 100 μM of zinc alone did not induce noticeable cytotoxicity, their combination led to a dramatic increase in astrocytic cell death in a zinc-concentration-dependent manner. Exposure of astrocytes to hypoxia for 3 h remarkably increased the levels of intracellular zinc and HIF-1α protein, which was further augmented by added exogenous zinc. Notably, HIF-1α knockdown blocked zinc-induced astrocyte death. Moreover, knockdown of PARP-1, another important protein in the response of hypoxia, attenuated the overexpression of HIF-1α and reduced the cell death rate. Our studies show that zinc promotes hypoxic cell death through overexpression of the hypoxia response factor HIF-1α via the cell fate determine factor PARP-1 modification, which provides a novel mechanism for zinc-mediated ischemic brain injury. © 2013 John Wiley & Sons Ltd.

  9. A novel mechanism for the pyruvate protection against zinc-induced cytotoxicity: mediation by the chelating effect of citrate and isocitrate.

    Science.gov (United States)

    Sul, Jee-Won; Kim, Tae-Youn; Yoo, Hyun Ju; Kim, Jean; Suh, Young-Ah; Hwang, Jung Jin; Koh, Jae-Young

    2016-08-01

    Intracellular accumulation of free zinc contributes to neuronal death in brain injuries such as ischemia and epilepsy. Pyruvate, a glucose metabolite, has been shown to block zinc neurotoxicity. However, it is largely unknown how pyruvate shows such a selective and remarkable protective effect. In this study, we sought to find a plausible mechanism of pyruvate protection against zinc toxicity. Pyruvate almost completely blocked cortical neuronal death induced by zinc, yet showed no protective effects against death induced by calcium (ionomycin, NMDA) or ferrous iron. Of the TCA cycle intermediates, citrate, isocitrate, and to a lesser extent oxaloacetate, protected against zinc toxicity. We then noted with LC-MS/MS assay that exposure to pyruvate, and to a lesser degree oxaloacetate, increased levels of citrate and isocitrate, which are known zinc chelators. While pyruvate added only during zinc exposure did not reduce zinc toxicity, citrate and isocitrate added only during zinc exposure, as did extracellular zinc chelator CaEDTA, completely blocked it. Furthermore, addition of pyruvate after zinc exposure substantially reduced intracellular zinc levels. Our results suggest that the remarkable protective effect of pyruvate against zinc cytotoxicity may be mediated indirectly by the accumulation of intracellular citrate and isocitrate, which act as intracellular zinc chelators.

  10. Zinc prevents sickness behavior induced by lipopolysaccharides after a stress challenge in rats.

    Directory of Open Access Journals (Sweden)

    Thiago B Kirsten

    Full Text Available Sickness behavior is considered part of the specific beneficial adaptive behavioral and neuroimmune changes that occur in individuals in response to infectious/inflammatory processes. However, in dangerous and stressful situations, sickness behavior should be momentarily abrogated to prioritize survival behaviors, such as fight or flight. Taking this assumption into account, we experimentally induced sickness behavior in rats using lipopolysaccharides (LPS, an endotoxin that mimics infection by gram-negative bacteria, and then exposed these rats to a restraint stress challenge. Zinc has been shown to play a regulatory role in the immune and nervous systems. Therefore, the objective of this study was to examine the effects of zinc treatment on the sickness response of stress-challenged rats. We evaluated 22-kHz ultrasonic vocalizations, open-field behavior, tumor necrosis factor α (TNF-α, corticosterone, and brain-derived neurotrophic factor (BDNF plasma levels. LPS administration induced sickness behavior in rats compared to controls, i.e., decreases in the distance traveled, average velocity, rearing frequency, self-grooming, and number of vocalizations, as well as an increase in the plasma levels of TNF-α, compared with controls after a stressor challenge. LPS also decreased BDNF expression but did not influence anxiety parameters. Zinc treatment was able to prevent sickness behavior in LPS-exposed rats after the stress challenge, restoring exploratory/motor behaviors, communication, and TNF-α levels similar to those of the control group. Thus, zinc treatment appears to be beneficial for sick animals when they are facing risky/stressful situations.

  11. Alterations in Somatostatin Cells and Biochemical Parameters Following Zinc Supplementation in Gastrointestinal Tissue of St reptozotocin-Induced Diabetic Rats

    International Nuclear Information System (INIS)

    Bolkent, Sema; Bolkent, Sehnaz; Yanardag, Refiye; Mutlu, Ozgur; Yildirim, Sukriye

    2006-01-01

    Chronic hyperglycemia in diabetes is a major causative factor of free radical generation which further leads to many secondary diabetic complications via the damage to cellular proteins, membrane lipids, and nucleic acids. Zinc is an essential trace element in all living systems and plays a structural role in many proteins and enzymes. Somatostatin is known to have inhibitory effects on various gastrointestinal functions. Therefore, we determined somatostatin protein production and secretion levels, and biochemical and light microscopical changes following zinc supplementation in the gastrointestinal tract of streptozotocin (STZ)-diabetic rats. The animals were divided into four groups: Group I: control (untreated) animals; Group II: control animals given zinc sulfate; Group III: diabetic animals; and Group IV: diabetic animals given zinc sulfate. Zinc sulfate was given to the animals by gavage at a daily dose of 100 mg/kg body weight for 60 days. Diabetes was induced by intraperitoneal (i.p.) injection of STZ in a single dose of 65 mg/kg. For histological studies, stomach and duodenum tissues were fixed in Bouin solution and sections stained with Masson’s trichrome and Periodic-Acid-Schiff. Tissue homogenates were used for protein, lipid peroxidation (LPO), glutathione (GSH), and nonenzymatic glycosylation (NEG) analyses. Zinc supplementation to the STZ-diabetic rats revealed the protective effect of zinc on these parameters. Zinc supplementation may contribute to prevent at least some complications of diabetes mellitus

  12. The protective role of Gamma-Tocopherol and zinc cysteine against oxidative stress induced by gamma irradiation in albino rats

    International Nuclear Information System (INIS)

    Anis, L.M.

    2004-01-01

    The present study aimed to evaluate the capability of α tocopherol (naturally occurring antioxidant) and zinc cysteine against radiation induced oxidative stress. α Tocopherol was dissolved in corn oil and g, to the animals for ten successive days at a dose of 20 mg/kg b weight/day. Zinc cysteine was delivered to rats via intraperitoneal inject at a concentration of 25 mg/kg body weight/day for two successive days, rats were exposed to whole body gamma irradiation at a dose level of Gy. The activities of super oxide dismutase (SOD) and catalase and also concentrations of reduced glutathione (GSH) and malonaldehyde (Mi . were determined in the blood. The levels of metallothionein, zinc and copper were estimated in the serum, liver and kidney of the tested animals. The obtained results revealed that administration of a-tocopherol and zinc cysteine before gamma radiation exposure diminish significantly the decrease in blood SOD and catalase activities as compared to untreated irradiated rats. Also, the decrease in blood GSH concentration was less manifested and the decrease in the level of MDA was significant. The pre-gamma irradiation administration of zinc cysteine induced significant changes in the levels of metallothionein compared to both a-tocopherol supplemented and gamma irradiated rat groups. The amelioration occurred in the levels of zinc and copper postulated the positive role of vitamin E and zinc cysteine in alleviating all the levels of these elements

  13. Zinc finger protein 598 inhibits cell survival by promoting UV-induced apoptosis.

    Science.gov (United States)

    Yang, Qiaohong; Gupta, Romi

    2018-01-19

    UV is one of the major causes of DNA damage induced apoptosis. However, cancer cells adopt alternative mechanisms to evade UV-induced apoptosis. To identify factors that protect cancer cells from UV-induced apoptosis, we performed a genome wide short-hairpin RNA (shRNA) screen, which identified Zinc finger protein 598 (ZNF598) as a key regulator of UV-induced apoptosis. Here, we show that UV irradiation transcriptionally upregulates ZNF598 expression. Additionally, ZNF598 knockdown in cancer cells inhibited UV-induced apoptosis. In our study, we observe that ELK1 mRNA level as well as phosphorylated ELK1 levels was up regulated upon UV irradiation, which was necessary for UV irradiation induced upregulation of ZNF598. Cells expressing ELK1 shRNA were also resistant to UV-induced apoptosis, and phenocopy ZNF598 knockdown. Upon further investigation, we found that ZNF598 knockdown inhibits UV-induced apoptotic gene expression, which matches with decrease in percentage of annexin V positive cell. Similarly, ectopic expression of ZNF598 promoted apoptotic gene expression and also increased annexin V positive cells. Collectively, these results demonstrate that ZNF598 is a UV irradiation regulated gene and its loss results in resistance to UV-induced apoptosis.

  14. Effect of red maca (Lepidium meyenii) on prostate zinc levels in rats with testosterone-induced prostatic hyperplasia.

    Science.gov (United States)

    Gonzales, C; Leiva-Revilla, J; Rubio, J; Gasco, M; Gonzales, G F

    2012-05-01

    Lepidium meyenii (maca) is a plant that grows exclusively above 4000 m in the Peruvian central Andes. Red maca (RM) extract significantly reduced prostate size in rats with benign prostatic hyperplasia (BPH) induced by testosterone enanthate (TE). Zinc is an important regulator of prostate function. This study aimed to determine the effect of RM on prostate zinc levels in rats with BPH induced by TE. Also, the study attempted to determine the best marker for the effect of RM on sex accessory glands. Rats treated with RM extract from day 1 to day 14 reversed the effect of TE administration on prostate weight and zinc levels. However, RM administered from day 7 to day 14 did not reduce the effect of TE on all studied variables. Finasteride (FN) reduced prostate, seminal vesicle and preputial gland weights in rats treated with TE. Although RM and FN reduced prostate zinc levels, the greatest effect was observed in TE-treated rats with RM from day 1 to day 14. In addition, prostate weight and zinc levels showed the higher diagnosis values than preputial and seminal vesicle weights. In conclusion, RM administered from day 1 to day 14 reduced prostate size and zinc levels in rats where prostatic hyperplasia was induced with TE. Also, this experimental model could be used as accurately assay to determine the effect of maca obtained under different conditions and/or the effect of different products based on maca. © 2011 Blackwell Verlag GmbH.

  15. Identification of autophagy genes participating in zinc-induced necrotic cell death in Saccharomyces cerevisiae.

    Science.gov (United States)

    Dziedzic, Slawomir A; Caplan, Allan B

    2011-05-01

    Eukaryotes use a common set of genes to perform two mechanistically similar autophagic processes. Bulk autophagy harvests proteins nonselectively and reuses their constitutents when nutrients are scarce. In contrast, different forms of selective autophagy target protein aggregates or damaged organelles that threaten to interfere with growth. Yeast uses one form of selective autophagy, called cytoplasm-to-vacuole targeting (Cvt), to engulf two vacuolar enzymes in Cvt vesicles ("CVT-somes") within which they are transported to vacuoles for maturation. While both are dispensable normally, bulk and selective autophagy help sustain life under stressful conditions. Consistent with this view, knocking out several genes participating in Cvt and specialized autophagic pathways heightened the sensitivity of Saccharomyces cerevisiae to inhibitory levels of Zn(2+). The loss of other autophagic genes, and genes responsible for apoptotic cell death, had no such effect. Unexpectedly, the loss of members of a third set of autophagy genes heightened cellular resistance to zinc as if they encoded proteins that actively contributed to zinc-induced cell death. Further studies showed that both sensitive and resistant strains accumulated similar amounts of H2O2 during zinc treatments, but that more sensitive strains showed signs of necrosis sooner. Although zinc lethality depended on autophagic proteins, studies with several reporter genes failed to reveal increased autophagic activity. In fact, microscopy analysis indicated that Zn(2+) partially inhibited fusion of Cvt vesicles with vacuoles. Further studies into how the loss of autophagic processes suppressed necrosis in yeast might reveal whether a similar process could occur in plants and animals.

  16. Prenatal zinc prevents communication impairments and BDNF disturbance in a rat model of autism induced by prenatal lipopolysaccharide exposure.

    Science.gov (United States)

    Kirsten, Thiago B; Queiroz-Hazarbassanov, Nicolle; Bernardi, Maria M; Felicio, Luciano F

    2015-06-01

    Aims: Previous investigations by our group have shown that prenatal exposure to lipopolysaccharide (LPS),which mimics infections by Gram-negative bacteria, induced autistic-like behavior. No effective treatment yet exists for autism. Therefore, we used our rat model to test a possible treatment for autism.We selected zinc as the prenatal treatment to prevent or ease the impairments induced by LPS because LPS induces hypozincaemia.Materials and methods:We evaluated the effects of LPS and zinc on female reproductive performance. Communication,which is impaired in autism,was tested in pups by ultrasonic vocalizations. Plasma levels of brain-derived neurotrophic factor (BDNF) were determined because it has been considered an autism important biomarker.Key findings: Prenatal LPS exposure reduced offspring number and treatment with zinc prevented this reduction.Moreover, pups that were prenatally exposed to LPS spent longer periods without calling their mothers, and posttreatment with zinc prevented this impairment induced by LPS to the same levels as controls. Prenatal LPS also increased BDNF levels in adult offspring, and posttreatment with zinc reduced the elevation of BDNF to the same levels as controls.Significance: BDNF hyperactivity was also found in several studies of autistic patients. Together with our previous studies, our model of prenatal LPS induced autistic-like behavioral, brain, and immune disturbances. This suggests that it is a valid rat model of autism. Prenatal zinc prevented reproductive, communication, and BDNF impairments.The present study revealed a potential beneficial effect of prenatal zinc administration for the prevention of autism with regard to the BDNF pathway.

  17. Zinc deficiency-induced iron accumulation, a consequence of alterations in iron regulatory protein-binding activity, iron transporters, and iron storage proteins.

    Science.gov (United States)

    Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L

    2008-02-22

    One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.

  18. Minocycline Rescues from Zinc-Induced Nigrostriatal Dopaminergic Neurodegeneration: Biochemical and Molecular Interventions.

    Science.gov (United States)

    Kumar, Vinod; Singh, Brajesh Kumar; Chauhan, Amit Kumar; Singh, Deepali; Patel, Devendra Kumar; Singh, Chetna

    2016-07-01

    Accumulation of zinc (Zn) in dopaminergic neurons is implicated in Parkinson's disease (PD), and microglial activation plays a critical role in toxin-induced Parkinsonism. Oxidative stress is accused in Zn-induced dopaminergic neurodegeneration; however, its connection with microglial activation is still not known. This study was undertaken to elucidate the role and underlying mechanism of microglial activation in Zn-induced nigrostriatal dopaminergic neurodegeneration. Male Wistar rats were treated intraperitoneally with/without zinc sulphate (20 mg/kg) in the presence/absence of minocycline (30 mg/kg), a microglial activation inhibitor, for 2-12 weeks. While neurobehavioral and biochemical indexes of PD and number of dopaminergic neurons were reduced, the number of microglial cells was increased in the substantia nigra of the Zn-exposed animals. Similarly, Zn elevated lipid peroxidation (LPO) and activities of superoxide dismutase (SOD) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; however, catalase activity was reduced. Besides, Zn increased an association of NADPH oxidase subunit p67(phox) with membrane, cytochrome c release from the mitochondria and cleavage of pro-caspase 3. Zn attenuated the expression of tyrosine hydroxylase (TH) and vesicular monoamine transporter-2 (VMAT-2) while augmented the expression of dopamine transporter (DAT) and heme oxygenase-1 (HO-1). Minocycline alleviated Zn-induced behavioural impairments, loss of TH-positive neurons, activated microglial cells and biochemical indexes and modulated the expression of studied genes/proteins towards normalcy. The results demonstrate that minocycline reduces the number of activated microglial cells and oxidative stress, which rescue from Zn-induced changes in the expression of monoamine transporter and nigrostriatal dopaminergic neurodegeneration.

  19. Zinc supplementation induces apoptosis and enhances antitumor efficacy of docetaxel in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Kocdor H

    2015-07-01

    Full Text Available Hilal Kocdor,1,2 Halil Ates,1 Suleyman Aydin,3 Ruksan Cehreli,1 Firat Soyarat,2 Pinar Kemanli,2 Duygu Harmanci,2 Hakan Cengiz,2 Mehmet Ali Kocdor4 1Institute of Oncology, Dokuz Eylul University, 2Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir Turkey; 3Department of Biochemistry, Firat University School of Medicine, Elazig, 4Department of Surgery, School of Medicine, Dokuz Eylul University, Izmir, Turkey Background: Exposure to exogenous zinc results in increased apoptosis, growth inhibition, and altered oxidative stress in cancer cells. Previous studies also suggested that zinc sensitizes some cancer cells to cytotoxic agents depending on the p53 status. Therefore, zinc supplementation may show anticancer efficacy solely and may increase docetaxel-induced cytotoxicity in non-small-cell lung cancer cells.Methods: Here, we report the effects of several concentrations of zinc combined with docetaxel on p53-wild-type (A549 and p53-null (H1299 cells. We evaluated cellular viability, apoptosis, and cell cycle progression as well as oxidative stress parameters, including superoxide dismutase, glutathione peroxidase, and malondialdehyde levels.Results: Zinc reduced the viability of A549 cells and increased the apoptotic response in both cell lines in a dose-dependent manner. Zinc also amplified the docetaxel effects and reduced its inhibitory concentration 50 (IC50 values. The superoxide dismutase levels increased in all treatment groups; however, glutathione peroxidase was slightly increased in the combination treatments. Zinc also caused malondialdehyde elevations at 50 µM and 100 µM.Conclusion: Zinc has anticancer efficacy against non-small-cell lung cancer cells in the presence of functionally active p53 and enhances docetaxel efficacy in both p53-wild-type and p53-deficient cancer cells. Keywords: lung cancer, zinc, docetaxel, A549, H1299

  20. Cytotoxicant-induced trophoblast dysfunction and abnormal pregnancy outcomes: role of zinc and metallothionein.

    Science.gov (United States)

    McAleer, Mary Frances; Tuan, Rocky S

    2004-12-01

    Normal trophoblast function, including implantation, hormone production, and formation of the selectively permeable maternofetal barrier, is essential for the establishment and maintenance of the fetoplacental unit and proper fetal development. Maternal cytotoxicant exposure causes the destruction of these cells, especially the terminally differentiated syncytiotrophoblasts, and results in a myriad of poor pregnancy outcomes. These outcomes range from intrauterine growth retardation and malformation to spontaneous abortion or stillbirth. There is recent evidence that the metal-binding protein, metallothionein, is involved in the protection of human trophoblastic cells from heavy metal-induced and severe oxidative stress-induced apoptosis. Metallothionein, with its unique biochemical structure, can both bind essential metal ions, such as the transcription modulator zinc, and yet allow their ready displacement by toxic nonessential metal ions or damaging free radicals. These properties suggest that metallothionein may be responsible not only for sequestering the cytotoxic agents, but also for altering signal transduction in the affected cells. Here, we review several identified causes of adverse pregnancy outcomes (specifically, prenatal exposure to cigarette smoke and alcohol, gestational infection, and exposure to environmental contaminants), discuss the role of zinc in modulating the cellular response to these toxic insults, and then propose how metallothionein may function to mediate this protective response. Published 2005 Wiley-Liss, Inc.

  1. Aflatoxin B1 Induced Systemic Toxicity in Poultry and Rescue Effects of Selenium and Zinc.

    Science.gov (United States)

    Mughal, Muhammad Jameel; Peng, Xi; Kamboh, Asghar Ali; Zhou, Yi; Fang, Jing

    2017-08-01

    Among many challenges, exposure to aflatoxins, particularly aflatoxin B 1 (AFB 1 ), is one of the major concerns in poultry industry. AFB 1 intoxication results in decreased meat/egg production, hepatotoxicity, nephrotoxicity, disturbance in gastrointestinal tract (GIT) and reproduction, immune suppression, and increased disease susceptibility. Selenium (Se) and zinc (Zn), in dietary supplementation, offer easy, cost-effective, and efficient ways to neutralize the toxic effect of AFB 1 . In the current review, we discussed the impact of AFB 1 on poultry industry, its biotransformation, and organ-specific noxious effects, along with the action mechanism of AFB 1 -induced toxicity. Moreover, we explained the biological and detoxifying roles of Se and Zn in avian species as well as the protection mechanism of these two trace elements. Ultimately, we discussed the use of Se and Zn supplementation against AFB 1 -induced toxicity in poultry birds.

  2. Zinc Vacancy-Induced Room-Temperature Ferromagnetism in Undoped ZnO Thin Films

    Directory of Open Access Journals (Sweden)

    Hongtao Ren

    2012-01-01

    Full Text Available Undoped ZnO thin films are prepared by polymer-assisted deposition (PAD and treated by postannealing at different temperatures in oxygen or forming gases (95%  Ar+5% H2. All the samples exhibit ferromagnetism at room temperature (RT. SQUID and positron annihilation measurements show that post-annealing treatments greatly enhance the magnetizations in undoped ZnO samples, and there is a positive correlation between the magnetization and zinc vacancies in the ZnO thin films. XPS measurements indicate that annealing also induces oxygen vacancies that have no direct relationship with ferromagnetism. Further analysis of the results suggests that the ferromagnetism in undoped ZnO is induced by Zn vacancies.

  3. Comparative Study of Antidiabetic Activity and Oxidative Stress Induced by Zinc Oxide Nanoparticles and Zinc Sulfate in Diabetic Rats.

    Science.gov (United States)

    Nazarizadeh, Ali; Asri-Rezaie, Siamak

    2016-08-01

    In the current study, antidiabetic activity and toxic effects of zinc oxide nanoparticles (ZnO) were investigated in diabetic rats compared to zinc sulfate (ZnSO4) with particular emphasis on oxidative stress parameters. One hundred and twenty male Wistar rats were divided into two healthy and diabetic groups, randomly. Each major group was further subdivided into five subgroups and then orally supplemented with various doses of ZnO (1, 3, and 10 mg/kg) and ZnSO4 (30 mg/kg) for 56 consecutive days. ZnO showed greater antidiabetic activity compared to ZnSO4 evidenced by improved glucose disposal, insulin levels, and zinc status. The altered activities of erythrocyte antioxidant enzymes as well as raised levels of lipid peroxidation and a marked reduction of total antioxidant capacity were observed in rats receiving ZnO. ZnO nanoparticles acted as a potent antidiabetic agent, however, severely elicited oxidative stress particularly at higher doses.

  4. Zinc-induced differential oxidative stress and antioxidant responses in Chlorella sorokiniana and Scenedesmus acuminatus.

    Science.gov (United States)

    Hamed, Seham M; Zinta, Gaurav; Klöck, Gerd; Asard, Han; Selim, Samy; AbdElgawad, Hamada

    2017-06-01

    Algae are frequently exposed to toxic metals, and zinc (Zn) is one of the major toxicants present. We exposed two green microalgae, Chlorella sorokiniana and Scenedesmus acuminatus, to sub-lethal concentrations (1.0 and 0.6mM) of Zn for seven days. Algal responses were analysed at the level of growth, oxidative stress, and antioxidants. Growth parameters such as cell culture yield and pigment content were less affected by Zn in C. sorokiniana, despite the fact that this alga accumulated more zinc than S. acuminatus. Also, C. sorokiniana, but not S. acuminatus, was able to acclimatize during long-term exposure to toxic concentrations of the test metals (specific growth rate (µ) was 0.041/day and total chlorophyll was 14.6mg/mL). Although, Zn induced oxidative stress in both species, C. sorokiniana experienced less stress than S. acuminatus. This could be explained by a higher accumulation of antioxidants in C. sorokiniana, where flavonoids, polyphenols, tocopherols, glutathione (GSH) and ascorbate (ASC) content increased. Moreover, antioxidant enzymes glutathione S transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX), showed increased activities in C. sorokiniana. In addition to, and probably also underlying, the higher Zn tolerance in C. sorokiniana, this alga also showed higher Zn biosorption capacity. Use of C. sorokiniana as a bio-remediator, could be considered. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Zinc Ameliorate Oxidative Stress and Hormonal Disturbance Induced by Methomyl, Abamectin, and Their Mixture in Male Rats

    Directory of Open Access Journals (Sweden)

    Sameeh A. Mansour

    2017-12-01

    Full Text Available Exposure to mixtures of toxicants (e.g., pesticides is common in real life and a subject of current concern. The present investigation was undertaken to assess some toxicological effects in male rats following exposure to methomyl (MET, abamectin (ABM, and their combination (MET+ABM, and to evaluate the ameliorative effect of zinc co-administration. Three groups of rats were designated for MET, ABM, and the mixture treatments. Three other groups were designated for zinc in conjunction with the pesticides. Additionally, one group received water only (control, and the other represented a positive zinc treatment. The obtained results revealed that MET was acutely more toxic than ABM. The tested pesticides induced significant elevation in lipid peroxidation and catalase levels, while declined the levels of the other tested parameters e.g., Superoxide dismutase (SOD, Glutathione-S-transferase (GST, Glutathione peroxidase (GPx, Glutathione reductase (GR, Cytochrome P450 (CYP450, testosterone, and thyroxine. Biochemical alterations induced by the mixture were greater than those recorded for each of the individual insecticides. The joint action analysis, based on the obtained biochemical data, revealed the dominance of antagonistic action among MET and ABM. Zinc supplementation achieved noticeable ameliorative effects. It was concluded that zinc may act as a powerful antioxidant, especially in individuals who are occupationally exposed daily to low doses of such pesticides.

  6. ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES SRC-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)

    Science.gov (United States)

    ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES Src-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)Weidong Wu1, Lee M. Graves2, Gordon N. Gill3 and James M. Samet4 1Center for Environmental Medicine and Lung Biology; 2Department of Pharmacology, University o...

  7. Thioredoxin-albumin fusion protein prevents copper enhanced zinc-induced neurotoxicity via its antioxidative activity.

    Science.gov (United States)

    Tanaka, Ken-Ichiro; Shimoda, Mikako; Chuang, Victor T G; Nishida, Kento; Kawahara, Masahiro; Ishida, Tatsuhiro; Otagiri, Masaki; Maruyama, Toru; Ishima, Yu

    2018-01-15

    Zinc (Zn) is a co-factor for a vast number of enzymes, and functions as a regulator for immune mechanism and protein synthesis. However, excessive Zn release induced in pathological situations such as stroke or transient global ischemia is toxic. Previously, we demonstrated that the interaction of Zn and copper (Cu) is involved in the pathogenesis of Alzheimer's disease and vascular dementia. Furthermore, oxidative stress has been shown to play a significant role in the pathogenesis of various metal ions induced neuronal death. Thioredoxin-Albumin fusion (HSA-Trx) is a derivative of thioredoxin (Trx), an antioxidative protein, with improved plasma retention and stability of Trx. In this study, we examined the effect of HSA-Trx on Cu 2+ /Zn 2+ -induced neurotoxicity. Firstly, HSA-Trx was found to clearly suppress Cu 2+ /Zn 2+ -induced neuronal cell death in mouse hypothalamic neuronal cells (GT1-7 cells). Moreover, HSA-Trx markedly suppressed Cu 2+ /Zn 2+ -induced ROS production and the expression of oxidative stress related genes, such as heme oxygenase-1. In contrast, HSA-Trx did not affect the intracellular levels of both Cu 2+ and Zn 2+ after Cu 2+ /Zn 2+ treatment. Finally, HSA-Trx was found to significantly suppress endoplasmic reticulum (ER) stress response induced by Cu 2+ /Zn 2+ treatment in a dose dependent manner. These results suggest that HSA-Trx counteracted Cu 2+ /Zn 2+ -induced neurotoxicity by suppressing the production of ROS via interfering the related gene expressions, in addition to the highly possible radical scavenging activity of the fusion protein. Based on these findings, HSA-Trx has great potential as a promising therapeutic agent for the treatment of refractory neurological diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Experimental study and nuclear model calculations of {sup 3}He-induced nuclear reactions on zinc

    Energy Technology Data Exchange (ETDEWEB)

    Al-Abyad, M.; Mohamed, Gehan Y. [Nuclear Research Centre, Atomic Energy Authority, Physics Department (Cyclotron Facility), Cairo (Egypt); Ditroi, F.; Takacs, S.; Tarkanyi, F. [Hungarian Academy of Sciences (ATOMKI), Institute for Nuclear Research, Debrecen (Hungary)

    2017-05-15

    Excitation functions of {sup 3}He-induced nuclear reactions on natural zinc were measured using the standard stacked-foil technique and high-resolution gamma-ray spectrometry. From their threshold energies up to 27 MeV, the cross-sections for {sup nat}Zn ({sup 3}He,xn) {sup 69}Ge, {sup nat}Zn({sup 3}He,xnp) {sup 66,67,68}Ga, and {sup nat}Zn({sup 3}He,x){sup 62,65}Zn reactions were measured. The nuclear model codes TALYS-1.6, EMPIRE-3.2 and ALICE-IPPE were used to describe the formation of these products. The present data were compared with the theoretical results and with the available experimental data. Integral yields for some important radioisotopes were determined. (orig.)

  9. Elimination of zinc-65 from the brain under kainate-induced seizures.

    Science.gov (United States)

    Takeda, Atsushi; Hirate, Maki; Oku, Naoto

    2004-04-01

    On the basis of the previous evidence that 65Zn concentrations in the brain of EL (epilepsy) mice was affected by induction of seizures, 65Zn movement in the brain was quantitatively evaluated in ddY mice treated with kainate. Six days after intravenous injection of 65ZnCl2, mice were intraperitoneally injected with kainate (10 mg/kg x 6 times in 2 weeks). Myoclonic jerks were observed during treatment with kainate. Twenty days after 65Zn injection, 65Zn distribution in the brain was compared between the kainite-treated and control mice. 65Zn distribution in the brain of the kainate-treated mice was overall lower than in the control mice. 65Zn concentration was significantly decreased in the frontal cortex, hippocampal CA1, thalamus and hypothalamus by treatment with kainate. These results demonstrate that kainate-induced seizures are linked to decreased zinc concentrations in the brain.

  10. Zinc regulates Nox1 expression through a NF-κB and mitochondrial ROS dependent mechanism to induce senescence of vascular smooth muscle cells.

    Science.gov (United States)

    Salazar, G; Huang, J; Feresin, R G; Zhao, Y; Griendling, K K

    2017-07-01

    The role of oxidative stress and inflammation in the development and progression of cardiovascular diseases (CVD) is well established. Increases in oxidative stress can further exacerbate the inflammatory response and lead to cellular senescence. We previously reported that angiotensin II (Ang II) and zinc increase reactive oxygen species (ROS) and cause senescence of vascular smooth muscle cells (VSMCs) and that senescence induced by Ang II is a zinc-dependent process. Zinc stimulated NADPH oxidase (Nox) activity; however, the role of Nox isoforms in zinc effects was not determined. Here, we show that downregulation of Nox1, but not Nox4, by siRNA prevented both Ang II- and zinc-induced senescence in VSMCs. On the other hand, overexpression of Nox1 induced senescence, which was associated with reduced proliferation, reduced expression of telomerase and increased DNA damage. Zinc increased Nox1 protein expression, which was inhibited by chelation of zinc with TPEN and by overexpression of the zinc exporters ZnT3 and ZnT10. These transporters work to reduce cytosolic zinc, suggesting that increased cytosolic zinc mediates Nox1 upregulation. Other metals including copper, iron, cobalt and manganese failed to upregulate Nox1, suggesting that this pathway is zinc specific. Nox1 upregulation was inhibited by actinomycin D (ACD), an inhibitor of transcription, by inhibition of NF-κB, a known Nox1 transcriptional regulator and by N-acetyl cysteine (NAC) and MitoTEMPO, suggesting that NF-κB and mitochondrial ROS mediate zinc effects. Supporting this idea, we found that zinc increased NF-κB activation in the cytosol, stimulated the translocation of the p65 subunit to the nucleus, and that zinc accumulated in mitochondria increasing mitochondrial ROS, measured using MitoSox. Further, zinc-induced senescence was reduced by inhibition of NF-κB or reduction of mitochondrial ROS with MitoTEMPO. NF-κB activity was also reduced by MitoTEMPO, suggesting that mitochondrial ROS

  11. Zinc-induced cardiomyocyte relaxation in a rat model of hyperglycemia is independent of myosin isoform

    Directory of Open Access Journals (Sweden)

    Yi Ting

    2012-11-01

    Full Text Available Abstract It has been reported previously that diabetic cardiomyopathy can be inhibited or reverted with chronic zinc supplementation. In the current study, we hypothesized that total cardiac calcium and zinc content is altered in early onset diabetes mellitus characterized in part as hyperglycemia (HG and that exposure of zinc ion (Zn2+ to isolated cardiomyocytes would enhance contraction-relaxation function in HG more so than in nonHG controls. To better control for differential cardiac myosin isoform expression as occurs in rodents after β-islet cell necrosis, hypothyroidism was induced in 16 rats resulting in 100% β-myosin heavy chain expression in the heart. β-Islet cell necrosis was induced in half of the rats by streptozocin administration. After 6 wks of HG, both HG and nonHG controls rats demonstrated similar myofilament performance measured as thin filament calcium sensitivity, native thin filament velocity in the myosin motility assay and contractile velocity and power. Extracellular Zn2+ reduced cardiomyocyte contractile function in both groups, but enhanced relaxation function significantly in the HG group compared to controls. Most notably, a reduction in diastolic sarcomere length with increasing pacing frequencies, i.e., incomplete relaxation, was more pronounced in the HG compared to controls, but was normalized with extracellular Zn2+ application. This is a novel finding implicating that the detrimental effect of HG on cardiomyocyte Ca2+ regulation can be amelioration by Zn2+. Among the many post-translational modifications examined, only phosphorylation of ryanodine receptor (RyR at S-2808 was significantly higher in HG compared to nonHG. We did not find in our hypothyroid rats any differentiating effects of HG on myofibrillar protein phosphorylation, lysine acetylation, O-linked N-acetylglucosamine and advanced glycated end-products, which are often implicated as complicating factors in cardiac performance due to HG. Our

  12. Disparate roles of zinc in chemical hypoxia-induced neuronal death

    Directory of Open Access Journals (Sweden)

    Sujeong eKim

    2015-01-01

    Full Text Available Accumulating evidence has provided a causative role of zinc (Zn2+ in neuronal death following ischemic brain injury. Using a hypoxia model of primary cultured cortical neurons with hypoxia-inducing chemicals, cobalt chloride (1 mM CoCl2, deferoxamine (3 mM DFX, and sodium azide (2 mM NaN3, we evaluated whether Zn2+ is involved in hypoxic neuronal death. The hypoxic chemicals rapidly elicited intracellular Zn2+ release/accumulation in viable neurons. The immediate addition of the Zn2+ chelator, CaEDTA or N,N,N’N’-tetrakis-(2-pyridylmethyl ethylenediamine (TPEN, prevented the intracellular Zn2+ load and CoCl2-induced neuronal death, but neither 3-hour-later Zn2+ chelation nor a non-Zn2+ chelator ZnEDTA (1 mM demonstrated any effects. However, neither CaEDTA nor TPEN rescued neurons from cell death following DFX- or NaN3-induced hypoxia, whereas ZnEDTA rendered them resistant to the hypoxic injury. Instead, the immediate supplementation of Zn2+ rescued DFX- and NaN3-induced neuronal death. The iron supplementation also afforded neuroprotection against DFX-induced hypoxic injury. Thus, although intracellular Zn2+ release/accumulation is common during chemical hypoxia, Zn2+ might differently influence the subsequent fate of neurons; it appears to play a neurotoxic or neuroprotective role depending on the hypoxic chemical used. These results also suggest that different hypoxic chemicals may induce neuronal death via distinct mechanisms.

  13. Disparate roles of zinc in chemical hypoxia-induced neuronal death.

    Science.gov (United States)

    Kim, Sujeong; Seo, Jung-Woo; Oh, Shin Bi; Kim, So Hee; Kim, Inki; Suh, Nayoung; Lee, Joo-Yong

    2015-01-01

    Accumulating evidence has provided a causative role of zinc (Zn(2+)) in neuronal death following ischemic brain injury. Using a hypoxia model of primary cultured cortical neurons with hypoxia-inducing chemicals, cobalt chloride (1 mM CoCl2), deferoxamine (3 mM DFX), and sodium azide (2 mM NaN3), we evaluated whether Zn(2+) is involved in hypoxic neuronal death. The hypoxic chemicals rapidly elicited intracellular Zn(2+) release/accumulation in viable neurons. The immediate addition of the Zn(2+) chelator, CaEDTA or N,N,N'N'-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN), prevented the intracellular Zn(2+) load and CoCl2-induced neuronal death, but neither 3 hour later Zn(2+) chelation nor a non-Zn(2+) chelator ZnEDTA (1 mM) demonstrated any effects. However, neither CaEDTA nor TPEN rescued neurons from cell death following DFX- or NaN3-induced hypoxia, whereas ZnEDTA rendered them resistant to the hypoxic injury. Instead, the immediate supplementation of Zn(2+) rescued DFX- and NaN3-induced neuronal death. The iron supplementation also afforded neuroprotection against DFX-induced hypoxic injury. Thus, although intracellular Zn(2+) release/accumulation is common during chemical hypoxia, Zn(2+) might differently influence the subsequent fate of neurons; it appears to play a neurotoxic or neuroprotective role depending on the hypoxic chemical used. These results also suggest that different hypoxic chemicals may induce neuronal death via distinct mechanisms.

  14. The Zinc Finger of Prolyl Hydroxylase Domain Protein 2 Is Essential for Efficient Hydroxylation of Hypoxia-Inducible Factor α.

    Science.gov (United States)

    Arsenault, Patrick R; Song, Daisheng; Chung, Yu Jin; Khurana, Tejvir S; Lee, Frank S

    2016-09-15

    Prolyl hydroxylase domain protein 2 (PHD2) (also known as EGLN1) is a key oxygen sensor in mammals that posttranslationally modifies hypoxia-inducible factor α (HIF-α) and targets it for degradation. In addition to its catalytic domain, PHD2 contains an evolutionarily conserved zinc finger domain, which we have previously proposed recruits PHD2 to the HSP90 pathway to promote HIF-α hydroxylation. Here, we provide evidence that this recruitment is critical both in vitro and in vivo We show that in vitro, the zinc finger can function as an autonomous recruitment domain to facilitate interaction with HIF-α. In vivo, ablation of zinc finger function by a C36S/C42S Egln1 knock-in mutation results in upregulation of the erythropoietin gene, erythrocytosis, and augmented hypoxic ventilatory response, all hallmarks of Egln1 loss of function and HIF stabilization. Hence, the zinc finger ordinarily performs a critical positive regulatory function. Intriguingly, the function of this zinc finger is impaired in high-altitude-adapted Tibetans, suggesting that their adaptation to high altitude may, in part, be due to a loss-of-function EGLN1 allele. Thus, these findings have important implications for understanding both the molecular mechanism of the hypoxic response and human adaptation to high altitude. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Sn-Mesoporphyrin interdiction of severe hyperbilirubinemia in Jehovah's Witness newborns as an alternative to exchange transfusion.

    Science.gov (United States)

    Kappas, A; Drummond, G S; Munson, D P; Marshall, J R

    2001-12-01

    The religious convictions of parents who are Jehovah's Witness adherents lead them to reject the use of exchange transfusions as therapy for severe hyperbilirubinemia in newborns in whom intensive phototherapy has failed to control this problem. Consequently, physicians caring for such infants may be obliged to initiate legal action to compel use of the procedure when severe hyperbilirubinemia not sufficiently responsive to phototherapy warrants an exchange transfusion. Our goal was to determine if we could use the potent inhibitor of bilirubin production, Sn-Mesoporphyrin (SnMP), to resolve the troubling medical-legal issues in such situations in 2 infants with hemolytic disease of the newborn who required exchange transfusions for severe hyperbilirubinemia but whose Jehovah's Witness parents rejected the procedure. SnMP was administered in a single dose, as in previous studies, at the time when exchange transfusion would have been initiated and plasma bilirubin levels were monitored at close intervals thereafter. SnMP is a potent inhibitor of heme oxygenase, the rate-limiting enzyme in catabolism of heme to bilirubin. We found in earlier studies that in single doses of 6 micromol/kg birth weight, SnMP is extremely effective in moderating the course of hyperbilirubinemia and in eliminating the need for supplemental phototherapy in jaundiced newborns. In the 2 cases described, a single dose of SnMP (6 micromol/kg birth weight) was administered intramuscularly to severely jaundiced infants with immune hemolysis at a time when clinical circumstances dictated the need for exchange transfusion. CASE 1: This patient was a preterm male infant (gestational age: 35 5/7 weeks; birth weight: 2790 g) whose plasma bilirubin concentration (PBC) at 1 hour after birth was 5.0 mg/dL. Despite intensive phototherapy with 3 banks of lights and 1 biliblanket, the PBC increased steadily with no diminution in the rate of increase for 75 hours. In view of the problems of immune hemolysis

  16. Nonlinear absorption dynamics using field-induced surface hopping: zinc porphyrin in water.

    Science.gov (United States)

    Röhr, Merle I S; Petersen, Jens; Wohlgemuth, Matthias; Bonačić-Koutecký, Vlasta; Mitrić, Roland

    2013-05-10

    We wish to present the application of our field-induced surface-hopping (FISH) method to simulate nonlinear absorption dynamics induced by strong nonresonant laser fields. We provide a systematic comparison of the FISH approach with exact quantum dynamics simulations on a multistate model system and demonstrate that FISH allows for accurate simulations of nonlinear excitation processes including multiphoton electronic transitions. In particular, two different approaches for simulating two-photon transitions are compared. The first approach is essentially exact and involves the solution of the time-dependent Schrödinger equation in an extended manifold of excited states, while in the second one only transiently populated nonessential states are replaced by an effective quadratic coupling term, and dynamics is performed in a considerably smaller manifold of states. We illustrate the applicability of our method to complex molecular systems by simulating the linear and nonlinear laser-driven dynamics in zinc (Zn) porphyrin in the gas phase and in water. For this purpose, the FISH approach is connected with the quantum mechanical-molecular mechanical approach (QM/MM) which is generally applicable to large classes of complex systems. Our findings that multiphoton absorption and dynamics increase the population of higher excited states of Zn porphyrin in the nonlinear regime, in particular in solution, provides a means for manipulating excited-state properties, such as transient absorption dynamics and electronic relaxation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Proton microprobe analysis of zinc in skeletal tissues. [Proton induced x-ray emission analysis

    Energy Technology Data Exchange (ETDEWEB)

    Doty, S B; Jones, K W; Kraner, H W; Shroy, R E; Hanson, A L

    1980-06-01

    A proton microprobe with windowless exit port was used to study zinc distributions in various types of skeletal tissues. The use of an external beam facilitated positioning of the targets for examination of particular points of interest. The proton microprobe is uniquely suited to this work since it combines high sensitivity for zinc determinations in thick samples with good spatial resolution. Measurements on rat and rabbit Achilles tendon showed a significant increase in zinc concentrations as the beam moved from the unmineralized collagen into the mineralized attachment site. Cartilage gave a similar result, with calcified cartilage having a greater zinc level than the articular surface on unmineralized epiphyseal cartilage.

  18. Zinc salt enhances gastroprotective activity of risperidone in indomethacin-induced gastric ulcer.

    Science.gov (United States)

    Oluwole, F S; Onwuchekwa, C

    2016-09-01

    Zinc has been reported to mediate cellular responses to injury by producing cytoprotection via the scavenging of reactive oxygen species. Anti-stress medications are generally anti-psychotic drugs and anti- depressants. Some Anti-psychotic drugs such as risperidone have been reported to possess anti-ulcer activity. Risperidone as an antipsychotic drug blocks several neurotransmitter systems including dopaminergic, adrenergic, histaminergic and serotonergic pathways. The study investigated the antiulcer activity of Zinc Chloride (ZnCl(2)) in combination with risperidone in male Wistar rats. The animals were divided into two groups of twenty animals each for ZnCl(2) and risperidone groups. Each group was further divided into four subgroups. ZnCl(2) was administered orally at 20mg/kg, 40mg/kg and 80mg/kg to a subgroup, while 80mg/kg of ZnCl(2) was administered in combination with risperidone (0.1mg/kg, 0.3mg/kg and 0.5mg/kg) orally once daily for 21 days. The controls were treated with distilled water. Ulcer was induced using indomethacin. Histology of the stomach tissues was prepared with PAS and H& E stains. Ulcer score and ulcer area were assessed using standard methods. Data were analysed using student t-test and Graphpad Prism 5. There were decreases in ulcer scores using the different doses of ZnCl, (20mg/kg, 40mg/kg and 80mg/kg). Also using the highest dose ZnCl(2) (80mg/ kg) and different doses of risperidone there were decreases in ulcer scores compared to the control. This effect of the risperidone showed a significant dose- dependent reduction. The effect ZnCl(2), and risperidone were also reflected in the ulcer area and in the histology. These findings suggest that ZnCl(2), enhances the gastroprotective activity ofrisperidone in indomethacin- induced gastric ulcer. However, more detailed studies are necessary to confirm the relevance of this finding and its implications in clinical settings.

  19. Protection against T1DM-Induced Bone Loss by Zinc Supplementation: Biomechanical, Histomorphometric, and Molecular Analyses in STZ-Induced Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Raul Hernandes Bortolin

    Full Text Available Several studies have established an association between diabetes and alterations in bone metabolism; however, the underlying mechanism is not well established. Although zinc is recognized as a potential preventive agent against diabetes-induced bone loss, there is no evidence demonstrating its effect in chronic diabetic conditions. This study evaluated the effects of zinc supplementation in a chronic (90 days type 1 diabetes-induced bone-loss model. Male Wistar rats were distributed in three groups: control, type 1 diabetes mellitus (T1DM, and T1DM plus zinc supplementation (T1DMS. Serum biochemical analysis; tibia histomorphometric, biomechanical, and collagen-content analyses; and femur mRNA expression were evaluated. Relative to T1DM, the zinc-supplemented group showed increased histomorphometric parameters such as TbWi and BAr and decreased TbSp, increased biomechanical parameters (maximum load, stiffness, ultimate strain, and Young's modulus, and increased type I collagen content. Interestingly, similar values for these parameters were observed between the T1DMS and control groups. These results demonstrate the protective effect of zinc on the maintenance of bone strength and flexibility. In addition, downregulation of OPG, COL1A, and MMP-9 genes was observed in T1DMS, and the anabolic effects of zinc were evidenced by increased OC expression and serum ALP activity, both related to osteoblastogenesis, demonstrating a positive effect on bone formation. In contrast, T1DM showed excessive bone loss, observed through reduced histomorphometric and biomechanical parameters, characterizing diabetes-associated bone loss. The bone loss was also observed through upregulation of OPG, COL1A, and MMP-9 genes. In conclusion, zinc showed a positive effect on the maintenance of bone architecture and biomechanical parameters. Indeed, OC upregulation and control of expression of OPG, COL1A, and MMP-9 mRNAs, even in chronic hyperglycemia, support an anabolic

  20. Studies on zinc-induced pancreatic exocrine insufficiency and its consequences in the chick

    International Nuclear Information System (INIS)

    Lue, J.

    1989-01-01

    Experiments were conducted to investigate the nature of zinc (Zn)-induced pancreatic exocrine damage, some of its consequences and its interaction with other nutrients, especially selenium (Se) and vitamin E (VE) in the chick. When fed excess Zn, the chick pancreas accumulated as much as an order of magnitude more Zn than the liver on a unit weight basis. The levels of activities of pancreatic secretory enzymes were significantly reduced by excess dietary Zn and distortion of the acinar pancreas structure, losses of zymogen granules and varying degree of fibrotic infiltration were observed histologically. The reduction of the level of pancreatic secretory enzyme activities was accompanied by a reduction of the quantity of enzyme proteins rather than a modification of enzyme activity. The rate of synthesis of pancreatic amylase, as assessed by the incorporation of 3 H-leucine, was significantly decreased by excess dietary Zn. As consequences of Zn-induced pancreatic damage, the digestibility of dietary starch and tissue VE status were decreased, the latter effect being caused primarily by an impaired utilization of dietary source of the vitamin as determined by the appearance of 3 H-α-tocopherol in the blood after an oral dose. Excess dietary Zn increased the Se status of the pancreas, but not those of the plasma and the liver. Supranutritional levels of Se and/or VE did not protect the pancreas against Zn-induced damage, nor did Se-deficiency exacerbate this damage. An in vitro inhibitory effect of Zn and some heavy metal ions on α-amylase activity was discovered and characterized by a non-competitive mechanism. This inhibitory effect could become an important modular of utilization of dietary starch under conditions of Zn toxicosis

  1. Calcium, zinc and vitamin E ameliorate cadmium-induced renal oxidative damage in albino Wistar rats

    Directory of Open Access Journals (Sweden)

    Pradeepkiran Jangampalli Adi

    Full Text Available This study was aimed to examine the protective effects of supplementation with calcium + zinc (Ca + Zn or vitamin E (Vit-E on Cd-induced renal oxidative damage. Young albino Wistar rats (180 ± 10 g (n = 6 control rats, Cd, Cd + Ca + Zn, and Cd + Vit-E experimental groups and the experimental period was 30 days. Rats were exposed to Cd (20 mg/kg body weight alone treated as Cd treated group and the absence or presence of Ca + Zn (2 mg/kg each or Vit-E (20 mg/kg body weight supplementation treated as two separate groups. The activities of the stress marker enzymes superoxide dismutase (SOD, catalase (CAT, glutathione reductase (GR, glutathione peroxidase (GPx, glutathione-S-transferase (GST and lipid peroxidase (LPx were determined in renal mitochondrial fractions of experimental rats. We observed quantitative changes in SOD isoenzymatic patterns by non-denaturing PAGE analysis, and quantified band densities. These results showed that Cd exposure leads to decreases in SOD, CAT, GR, and GPx activities and a concomitant increase in LPx and GST activities. Ca + Zn and Vit-E administration with Cd significantly reversed Cd-induced perturbations in oxidative stress marker enzymes. However, Vit-E showed more inhibitory activity against Cd than did Ca + Zn, and it protected against Cd-induced nephrotoxicity. Keywords: Cadmium (Cd, Oxidative stress, Lipid peroxidation, Nephrotoxicity, PAGE analysis

  2. Obtention of zinc polymethacrylate via free radicals induced by gamma radiation

    International Nuclear Information System (INIS)

    Urena N, F.; Flores E, J.

    2000-01-01

    The objective of this work was to synthesise the monomer of zinc methacrylate and subsequently to carry out the polymerization reaction with the purpose to obtain the compound desired, the zinc polymethacrylate. For this it was used a gamma radiation source, 60 Co, as initiator of the polymerization reaction. (Author)

  3. Effect of DHA and CoenzymeQ10 Against Aβ- and Zinc-Induced Mitochondrial Dysfunction in Human Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Nadia Sadli

    2013-07-01

    Full Text Available Background: Beta-amyloid (Aβ protein is a key factor in the pathogenesis of Alzheimer's disease (AD and it has been reported that mitochondria is involved in the biochemical pathway by which Aβ can lead to neuronal dysfunction. Coenzyme Q10 (CoQ10 is an essential cofactor involved in the mitochondrial electron transport chain and has been suggested as a potential therapeutic agent in AD. Zinc toxicity also affects cellular energy production by decreasing oxygen consumption rate (OCR and ATP turnover in human neuronal cells, which can be restored by the neuroprotective effect of docosahexaenoic acid (DHA. Method: In the present study, using Seahorse XF-24 Metabolic Flux Analysis we investigated the effect of DHA and CoQ10 alone and in combination against Aβ- and zinc-mediated changes in the mitochondrial function of M17 neuroblastoma cell line. Results: Here, we observed that DHA is specifically neuroprotective against zinc-triggered mitochondrial dysfunction, but does not directly affect Aβ neurotoxicity. CoQ10 has shown to be protective against both Aβ- and zinc-induced alterations in mitochondrial function. Conclusion: Our results indicate that DHA and CoQ10 may be useful for the prevention, treatment and management of neurodegenerative diseases such as AD.

  4. Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Bai D

    2017-09-01

    . Finally, the Western blot analysis revealed upregulation of Bax, caspase-9, Rad51, γ-H2AX, p53, and LC3 and downregulation of Bcl-2. Conclusion: The study findings demonstrated that the ZnO NPs are able to induce significant cytotoxicity, apoptosis, and autophagy in human ovarian cells through reactive oxygen species generation and oxidative stress. Therefore, this study suggests that ZnO NPs are suitable and inherent anticancer agents due to their several favorable characteristic features including favorable band gap, electrostatic charge, surface chemistry, and potentiation of redox cycling cascades. Keywords: zinc oxide nanoparticles, human ovarian cancer cells SKOV3, mitochondrial membrane potential, apoptosis, DNA fragmentation, autophagy

  5. Zinc supplementation alleviates the progression of diabetic nephropathy by inhibiting the overexpression of oxidative-stress-mediated molecular markers in streptozotocin-induced experimental rats.

    Science.gov (United States)

    Barman, Susmita; Pradeep, Seetur R; Srinivasan, Krishnapura

    2018-04-01

    Zinc deficiency during diabetes projects a role for zinc nutrition in the management of diabetic nephropathy. The current study explored whether zinc supplementation protects against diabetic nephropathy through modulation of kidney oxidative stress and stress-induced expression related to the inflammatory process in streptozotocin-induced diabetic rats. Groups of hyperglycemic rats were exposed to dietary interventions for 6 weeks with zinc supplementation (5 times and 10 times the normal level). Supplemental-zinc-fed diabetic groups showed a significant reversal of increased kidney weight and creatinine clearance. There was a significant reduction in hyperlipidemic condition along with improved PUFA:SFA ratio in the renal tissue. Expression of the lipid oxidative marker and expression of inflammatory markers, cytokines, fibrosis factors and apoptotic regulatory proteins observed in diabetic kidney were beneficially modulated by zinc supplementation, the ameliorative effect being concomitant with elevated antiapoptosis. There was a significant reduction in advanced glycation, expression of the receptor of the glycated products and oxidative stress markers. Zinc supplementation countered the higher activity and expression of polyol pathway enzymes in the kidney. Overexpression of the glucose transporters, as an adaptation to the increased need for glucose transport in diabetic condition, was minimized by zinc treatment. The pathological abnormalities in the renal architecture of diabetic animals were corrected by zinc intervention. Thus, dietary zinc supplementation has a significant beneficial effect in the control of diabetic nephropathy. This was exerted through a protective influence on oxidative-stress-induced cytokines, inflammatory proliferation and consequent renal injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Zinc-induced hemolytic anemia caused by ingestion of pennies by a pup

    International Nuclear Information System (INIS)

    Latimer, K.S.; Jain, A.V.; Inglesby, H.B.; Clarkson, W.D.; Johnson, G.B.

    1989-01-01

    A 4-month-old Pomeranian pup was examined because of anorexia, salivation, and persistent vomiting. Initial laboratory testing revealed marked hemolytic anemia with spherocytosis. Survey abdominal radiography revealed 4 metal objects which, when removed by gastrotomy, were identified as pennies. Of 4 pennies, 3 were minted since 1983 and were heavily pitted over the surface and rim. Partially digested pennies were composed of a copper-plated high zinc concentration alloy. Further laboratory testing indicated a marked increase in serum zinc concentration in the pup (28.8 mg/L), confirming metal toxicosis. Serum zinc concentrations decreased during recovery

  7. Zinc rescues obesity-induced cardiac hypertrophy via stimulating metallothionein to suppress oxidative stress-activated BCL10/CARD9/p38 MAPK pathway.

    Science.gov (United States)

    Wang, Shudong; Gu, Junlian; Xu, Zheng; Zhang, Zhiguo; Bai, Tao; Xu, Jianxiang; Cai, Jun; Barnes, Gregory; Liu, Qiu-Ju; Freedman, Jonathan H; Wang, Yonggang; Liu, Quan; Zheng, Yang; Cai, Lu

    2017-06-01

    Obesity often leads to obesity-related cardiac hypertrophy (ORCH), which is suppressed by zinc-induced inactivation of p38 mitogen-activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4-week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B-cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate-treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Marginal dietary zinc deprivation augments sepsis-induced alterations in skeletal muscle TNF-α but not protein synthesis.

    Science.gov (United States)

    Crowell, Kristen T; Kelleher, Shannon L; Soybel, David I; Lang, Charles H

    2016-11-01

    Severe zinc deficiency is associated with an increased systemic inflammatory response and mortality after sepsis. However, the impact of mild zinc deficiency, which is more common in populations with chronic illnesses and sepsis, is unknown. In this study, we hypothesized that marginal dietary Zn deprivation (ZM) would amplify tissue inflammation and exacerbate the sepsis-induced decrease in muscle protein synthesis. Adult male C57BL/6 mice were fed a zinc-adequate (ZA) or ZM diet (30 or 10 mg Zn/kg, respectively) over 4 weeks, peritonitis was induced by cecal ligation and puncture (CLP), and mice were examined at either 24 h (acute) or 5 days (chronic) post-CLP Acute sepsis decreased the in vivo rate of skeletal muscle protein synthesis and the phosphorylation of the mTOR substrate 4E-BP1. Acutely, sepsis increased TNF-α and IL-6 mRNA in muscle, and the increase in TNF-α was significantly greater in ZM mice. However, muscle protein synthesis and 4E-BP1 phosphorylation returned to baseline 5 days post-CLP in both ZA and ZM mice. Protein degradation via markers of the ubiquitin proteasome pathway was increased in acute sepsis, yet only MuRF1 mRNA was increased in chronic sepsis and ZM amplified this elevation. Our data suggest that mild zinc deficiency increases TNF-α in muscle acutely after sepsis but does not significantly modulate the rate of muscle protein synthesis. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  9. The lack of effects of zinc and nitric oxide in initial state of pilocarpine-induced seizures.

    Science.gov (United States)

    Noyan, Behzat; Jensen, Morten Skovgaard; Danscher, Gorm

    2007-07-01

    In this study we investigated whether intracerebroventricular (i.c.v.) injection of L-NAME (a nitric oxide synthase inhibitor) or CaEDTA (an extracellular zinc chelator) or the combination of the two could affect the initial phase of pilocarpine induced (2 h) seizures. Two groups of rats were used. Animals from both groups were given with i.c.v. injections of either saline (10 microl), L-NAME (150 microg/10 microl), CaEDTA (100 mM/10 microl) or L-NAME and CaEDTA. One group received pilocarpine HCl (380 mg/kg i.p.) the other served as control. Pilocarpine HCl was injected intraperitoneally 10 min later. The behavior of the animals was observed for 2h and the intensity of their seizures was scored. The rats were then sacrificed and their brains were removed and analyzed for zinc ions by using the immersion autometallography and the TSQ fluorescence staining. All the animals which received pilocarpine HCl developed seizures. Despite treatment with L-NAME and/or CaEDTA we found that the latency and the intensity of seizures were similar in both groups investigated. The distribution of stainable zinc ions and the intensity of staining in hippocampus were not affected by pilocarpine and found unchanged after L-NAME and/or CaEDTA injections in both the control animals and the pilocarpine treated animals. The data suggest that the nitric oxide system and zinc ions do not affect pilocarpine-induced seizures in their initial state.

  10. Protective Role of L- Carnitine and Zinc against γ-Radiation induced Cardiac and testicular Disorders in Albino Rats

    International Nuclear Information System (INIS)

    Ramadan, F. L.; Abdel-Monem, D.D.; Ismail, N.H.

    2013-01-01

    L-Carnitine is a dipeptide amino acid necessary for fat metabolism, it provides energy by transporting long-chain fatty acids to mitochondria to act as a fuel and it is considered a powerful antioxidant. In addition, zinc is an essential mineral which helps to increase the secretion of male sex hormones and raises the sperm count, so its combination with L-carnitine is useful for the fertility process. The present study aims to evaluate the potency of L-carnitine and zinc as radio- protective and curative agent pre and after exposure to γ-radiation through biochemical, histological, morphological abnormalities of sperms and DNA damage in the sperms induced by γ-irradiation by comet assay. Animals received L-carnitine (LC) and zinc (Zn) orally at the dose 9.45 mg/100 gm body wt./day for successive 20 days and then exposed to whole body gamma radiation at the dose 4 Gy (1 Gy for 4 days, day after day) on the 7th day from treatment with antioxidant. Histological examinations of heart and testis tissues showed that administration of LC and Zn have attenuated radiation induced damage and improved tissues architecture. Moreover, the observed amelioration in the tissues was accompanied by a remarkable decrease of their lipid peroxide levels (malondialdehyde (MDA)), together with an increase in glutathione peroxidase (GSHPx) and superoxide dismutase (SOD) activities. Hormonal determinations of serum testosterone (T), follicular stimulating hormone (FSH) and luteinizing hormone (LH) which carried out for fertility assessment showed that whole body γ-irradiation of rats induced significant decrease in serum testosterone while FSH and LH were significantly increased as compared with control group. On the other hand, irradiation caused significant elevation in the total number of abnormal head, and / or tail of sperms in comparison to the control rats. The comet assay showed that exposure to γ-radiation induced DNA damage of sperms (tail moment values).

  11. Implication of extracellular zinc exclusion by recombinant human calprotectin (MRP8 and MRP14 from target cells in its apoptosis-inducing activity

    Directory of Open Access Journals (Sweden)

    Satoru Yui

    2002-01-01

    Full Text Available Background: Calprotectin is a calcium-binding and zinc-binding protein complex that is abundant in the cytosol of neutrophils. This factor is composed of 8 and 14 kDa subunits, which have also been termed migration inhibitory factor-related proteins MRP8 and MRP14. We previously reported that rat calprotectin purified from inflammatory neutrophils induces apoptosis of various tumor cells or normal fibroblasts in a zinc-reversible manner.

  12. Obtention of zinc polymethacrylate via free radicals induced by gamma radiation; Obtencion del polimetacrilato de zinc via radicales libres inducidos por radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Urena N, F.; Flores E, J. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, C.P. 52045 Estado de Mexico (Mexico)

    2000-07-01

    The objective of this work was to synthesise the monomer of zinc methacrylate and subsequently to carry out the polymerization reaction with the purpose to obtain the compound desired, the zinc polymethacrylate. For this it was used a gamma radiation source, {sup 60} Co, as initiator of the polymerization reaction. (Author)

  13. Localized frustration and binding-induced conformational change in recognition of 5S RNA by TFIIIA zinc finger.

    Science.gov (United States)

    Tan, Cheng; Li, Wenfei; Wang, Wei

    2013-12-19

    Protein TFIIIA is composed of nine tandemly arranged Cys2His2 zinc fingers. It can bind either to the 5S RNA gene as a transcription factor or to the 5S RNA transcript as a chaperone. Although structural and biochemical data provided valuable information on the recognition between the TFIIIIA and the 5S DNA/RNA, the involved conformational motions and energetic factors contributing to the binding affinity and specificity remain unclear. In this work, we conducted MD simulations and MM/GBSA calculations to investigate the binding-induced conformational changes in the recognition of the 5S RNA by the central three zinc fingers of TFIIIA and the energetic factors that influence the binding affinity and specificity at an atomistic level. Our results revealed drastic interdomain conformational changes between these three zinc fingers, involving the exposure/burial of several crucial DNA/RNA binding residues, which can be related to the competition between DNA and RNA for the binding of TFIIIA. We also showed that the specific recognition between finger 4/finger 6 and the 5S RNA introduces frustrations to the nonspecific interactions between finger 5 and the 5S RNA, which may be important to achieve optimal binding affinity and specificity.

  14. Selenium-induced autometallographic demonstration of endogenous zinc in organs of the rainbow trout, Salmo gairdneri

    DEFF Research Database (Denmark)

    Baatrup, E

    1989-01-01

    , the intestine, and the gills, whereas, no such grains were found in preparations from fish having received 1 ppm Se. The use of selenium for the histochemical demonstration of endogenous zinc versus exogenous metals is discussed. Also, consideration is given to the question of which part of the total tissue......Autometallographic (AMG) silver enhancement of endogenous zinc was studied in seven organs of the rainbow trout Salmo gairdneri. Groups of trout were injected intraperitoneally with sodium selenite in doses ranging from 0.08 to 25 ppm, administered 1 h before being killed. The concentration...

  15. Experimental observation of zinc dialkyl dithiophosphate (ZDDP)-induced iron sulphide formation

    Energy Technology Data Exchange (ETDEWEB)

    Soltanahmadi, Siavash, E-mail: s.soltanahmadi@leeds.ac.uk [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom); Morina, Ardian [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom); Eijk, Marcel C.P. van; Nedelcu, Ileana [SKF Engineering and Research Centre, 3430 DT Nieuwegein (Netherlands); Neville, Anne [Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, LS2 9JT (United Kingdom)

    2017-08-31

    Graphical abstract: Chemical analysis of ZDDP-induced tribofilm under severe boundary lubricated regime in nano and micro-meter scales.▪ - Highlights: • A ZDDP-derived locally formed iron-sulphide layer is detected on the steel surface. • The iron-sulphide is a 5–10 nm thin distinct layer at steel-phosphate interface. • Near the surface-crack site the elemental distribution of the tribofilm is altered. • Sulphur concentration is enhanced in the iron-sulphide layer near the cracked-site. • ZDDP elements are detected inside the crack with a greater contribution of sulphur. - Abstract: Zinc dialkyl dithiophosphate (ZDDP) as a well-known anti-wear additive enhances the performance of the lubricant beyond its wear-protection action, through its anti-oxidant and Extreme Pressure (EP) functionality. In spite of over thirty years of research attempting to reveal the mechanism of action of ZDDP, there are still some uncertainties around the exact mechanisms of its action. This is especially the case with the role of sulphide layer formed in the tribofilm and its impact on surface fatigue. Although iron sulphide on the substrate is hypothesised in literature to form as a separate layer, there has been no concrete experimental observation on the distribution of the iron sulphide as a dispersed precipitate, distinct layer at the steel substrate or both. It remains to be clarified whether the iron sulphide layer homogeneously covers the surface or locally forms at the surface. In the current study a cross section of the specimen after experiment was prepared and has been investigated with Transmission Electron Microscopy (TEM) and Energy-Dispersive X-ray (EDX) elemental analysis. A 5–10 nm iron sulphide layer is visualised on the interface as a separate layer underneath the phosphate layer with an altered distribution of tribofilm elements near the crack site. The iron sulphide interface layer is more visible near the crack site where the concentration of the

  16. Experimental observation of zinc dialkyl dithiophosphate (ZDDP)-induced iron sulphide formation

    International Nuclear Information System (INIS)

    Soltanahmadi, Siavash; Morina, Ardian; Eijk, Marcel C.P. van; Nedelcu, Ileana; Neville, Anne

    2017-01-01

    Graphical abstract: Chemical analysis of ZDDP-induced tribofilm under severe boundary lubricated regime in nano and micro-meter scales.▪ - Highlights: • A ZDDP-derived locally formed iron-sulphide layer is detected on the steel surface. • The iron-sulphide is a 5–10 nm thin distinct layer at steel-phosphate interface. • Near the surface-crack site the elemental distribution of the tribofilm is altered. • Sulphur concentration is enhanced in the iron-sulphide layer near the cracked-site. • ZDDP elements are detected inside the crack with a greater contribution of sulphur. - Abstract: Zinc dialkyl dithiophosphate (ZDDP) as a well-known anti-wear additive enhances the performance of the lubricant beyond its wear-protection action, through its anti-oxidant and Extreme Pressure (EP) functionality. In spite of over thirty years of research attempting to reveal the mechanism of action of ZDDP, there are still some uncertainties around the exact mechanisms of its action. This is especially the case with the role of sulphide layer formed in the tribofilm and its impact on surface fatigue. Although iron sulphide on the substrate is hypothesised in literature to form as a separate layer, there has been no concrete experimental observation on the distribution of the iron sulphide as a dispersed precipitate, distinct layer at the steel substrate or both. It remains to be clarified whether the iron sulphide layer homogeneously covers the surface or locally forms at the surface. In the current study a cross section of the specimen after experiment was prepared and has been investigated with Transmission Electron Microscopy (TEM) and Energy-Dispersive X-ray (EDX) elemental analysis. A 5–10 nm iron sulphide layer is visualised on the interface as a separate layer underneath the phosphate layer with an altered distribution of tribofilm elements near the crack site. The iron sulphide interface layer is more visible near the crack site where the concentration of the

  17. Zinc-Dependent Protection of Tobacco and Rice Cells From Aluminum-Induced Superoxide-Mediated Cytotoxicity

    Science.gov (United States)

    Lin, Cun; Hara, Ayaka; Comparini, Diego; Bouteau, François; Kawano, Tomonori

    2015-01-01

    Al3+ toxicity in growing plants is considered as one of the major factors limiting the production of crops on acidic soils worldwide. In the last 15 years, it has been proposed that Al3+ toxicity are mediated with distortion of the cellular signaling mechanisms such as calcium signaling pathways, and production of cytotoxic reactive oxygen species (ROS) causing oxidative damages. On the other hand, zinc is normally present in plants at high concentrations and its deficiency is one of the most widespread micronutrient deficiencies in plants. Earlier studies suggested that lack of zinc often results in ROS-mediated oxidative damage to plant cells. Previously, inhibitory action of Zn2+ against lanthanide-induced superoxide generation in tobacco cells have been reported, suggesting that Zn2+ interferes with the cation-induced ROS production via stimulation of NADPH oxidase. In the present study, the effect of Zn2+ on Al3+-induced superoxide generation in the cell suspension cultures of tobacco (Nicotiana tabacum L., cell-line, BY-2) and rice (Oryza sativa L., cv. Nipponbare), was examined. The Zn2+-dependent inhibition of the Al3+-induced oxidative burst was observed in both model cells selected from the monocots and dicots (rice and tobacco), suggesting that this phenomenon (Al3+/Zn2+ interaction) can be preserved in higher plants. Subsequently induced cell death in tobacco cells was analyzed by lethal cell staining with Evans blue. Obtained results indicated that presence of Zn2+ at physiological concentrations can protect the cells by preventing the Al3+-induced superoxide generation and cell death. Furthermore, the regulation of the Ca2+ signaling, i.e., change in the cytosolic Ca2+ ion concentration, and the cross-talks among the elements which participate in the pathway were further explored. PMID:26648960

  18. Zinc triggers microglial activation.

    Science.gov (United States)

    Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A

    2008-05-28

    Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.

  19. Regulation of S100A8/A9 (calprotectin) binding to tumor cells by zinc ion and its implication for apoptosis-inducing activity.

    Science.gov (United States)

    Nakatani, Yuichi; Yamazaki, Masatoshi; Chazin, Walter J; Yui, Satoru

    2005-10-24

    S100A8/A9 (calprotectin), which is released by neutrophils under inflammatory conditions, has the capacity to induce apoptosis in various cells. We previously reported that S100A8/A9 induces apoptosis of EL-4 lymphoma cells via the uptake of extracellular zinc in a manner similar to DTPA, a membrane-impermeable zinc chelator. In this study, S100A8/A9-induced apoptosis was examined in several cell lines that are weakly sensitive to DTPA, suggesting S100A8/A9 is directly responsible for apoptosis in these cells. Since zinc inhibits apoptosis of MM46, one of these cells, the regulation by zinc of the capacity of S100A8/A9 to bind MM46 cells was studied. When MM46 cells were incubated with S100A8/A9 in standard or zinc-depleted medium, the amounts of S100A8/A9 bound to cells was markedly lower at 3 h than at 1 h. In contrast, when MM46 cells were incubated with S100A8/A9 in the presence of high levels of zinc, binding to cells was the same at 1 and 3 h. When the cells were permeabilized with saponin prior to analysis, a larger amount of cell-associated S100A8/A9 was detected at 3 h. The amount was further increased in cells treated with chloroquine, suggesting that S100A8/A9 was internalized and degraded in lysosomes. Although it has been reported that S100A8/A9 binds to heparan sulfate on cell membranes, the amount of S100A8/A9 bound to MM46 cells was not reduced by heparinase treatment, but was reduced by trypsin treatment. These results suggest that S100A8/A9 induces apoptosis by direct binding to MM46 cells, and that this activity is regulated by zinc.

  20. Candida albicans induces Metabolic Reprogramming in human NK cells and responds to Perforin with a Zinc Depletion Response

    Directory of Open Access Journals (Sweden)

    Daniela eHellwig

    2016-05-01

    Full Text Available As part of the innate immune system, natural killer (NK cells are directly involved in the response to fungal infections. Perforin has been identified as the major effector molecule acting against many fungal pathogens. While several studies have shown that perforin mediated fungicidal effects can contribute to fungal clearance, neither the activation of NK cells by fungal pathogens nor the effects of perforin on fungal cells are well understood. In a dual approach, we have studied the global gene expression pattern of primary and cytokine activated NK cells after co-incubation with C. albicans and the transcriptomic adaptation of C. albicans to perforin exposure. NK cells responded to the fungal pathogen with an up-regulation of genes involved in immune signaling and release of cytokines. Furthermore, we observed a pronounced increase of genes involved in glycolysis and glycolysis inhibitor 2-deoxy-D-glucose impaired C. albicans induced NK cell activation. This strongly indicates that metabolic adaptation is a major part of the NK cell response to C. albicans infections. In the fungal pathogen, perforin induced a strong up-regulation of several fungal genes involved in the zinc depletion response, such as PRA1 and ZRT1. These data suggest that fungal zinc homeostasis is linked to the reaction to perforin secreted by NK cells. However, deletion mutants in PRA1 and ZRT1 did not show altered susceptibility to perforin.

  1. Synthesis of ZnO nanocoatings by decomposition of zinc acetate induced by electrons emitted by indium

    Energy Technology Data Exchange (ETDEWEB)

    Svoboda, Ladislav [Department of Chemistry, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic); Institute of Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic); Dvorský, Richard [Department of Physics, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic); Regional Materials Science and Technology Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic); Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic); Praus, Petr, E-mail: petr.praus@vsb.cz [Department of Chemistry, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic); Institute of Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic); Matýsek, Dalibor [Institute of Geological Engineering, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic); Bednář, Jiří [Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 708 33 (Czech Republic)

    2016-12-01

    Graphical abstract: - Highlights: • Hexagonal ZnO was synthetized by the decomposition of zinc acetate under UV light. • Source of photogenerated electron was an indium plate. • ZnO nanocoatings were deposited on surface of silica nanoparticles. • Mean thickness of the ZnO nanocoatings was estimated by DLS at 13 nm. - Abstract: In this work, a new method for the synthesis of ZnO nanocoatings is presented. It was tested for the nanocoating of silica nanoparticles forming core/shell SiO{sub 2}/ZnO nanoparticles by the decomposition of zinc acetate in silica aqueous nanodispersions induced by electrons generated by a plate indium photocathode, which was irradiated with a UV Hg lamp with maximum intensity at the wavelength of 245 nm. The ZnO nanocoatings were examined by X-ray diffraction (XRD), UV–Vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PLS), dynamic light scattering (DLS) and transmission electron microscopy (TEM). It was found that ZnO of hexagonal structure formed nanocoatings with the mean thickness of 13 nm. The photocatalytic activity of ZnO nanocoatings was verified by the photocatalytic decomposition of methylene blue (MB). Such nanocoating procedure based on the electron-induced decomposition of suitable metal salts could be a promising method for various applications in nanotechnology.h.

  2. Modulations of anisotropic optical transmission on alumina-doped zinc oxide surface by femtosecond laser induced ripples

    Science.gov (United States)

    Lu, Yanhui; Jiang, Lan; Sun, Jingya; Cao, Qiang; Wang, Qingsong; Han, Weina; Lu, Yongfeng

    2018-04-01

    This study demonstrated that femtosecond-laser-induced ripples on an alumina-doped zinc oxide (AZO) film with space intervals of approximately 340 and 660 nm exhibit modulations of anisotropic optical transmission. At low laser fluence, ripples can not affect the original absorption peak of AZO film, but at higher laser fluence, the absorption peak of AZO film is disappeared due to the modulation by femtosecond laser induced ripples. Moreover, the relationship between the anisotropic optical transmission and the features of nanostructures is discussed. Ripples with a space interval of approximately 660 nm have a higher ability to block light than nanostructures with a space interval of approximately 340 nm. These observations indicate that anisotropic optical transmission has potential applications in the field of optoelectronics.

  3. Induced superhydrophobic and antimicrobial character of zinc metal modified ceramic wall tile surfaces

    Science.gov (United States)

    Özcan, Selçuk; Açıkbaş, Gökhan; Çalış Açıkbaş, Nurcan

    2018-04-01

    Hydrophobic surfaces are also known to have antimicrobial effect by restricting the adherence of microorganisms. However, ceramic products are produced by high temperature processes resulting in a hydrophilic surface. In this study, an industrial ceramic wall tile glaze composition was modified by the inclusion of metallic zinc powder in the glaze suspension applied on the pre-sintered wall tile bodies by spraying. The glazed tiles were gloss fired at industrially applicable peak temperatures ranging from 980 °C to 1100 °C. The fired tile surfaces were coated with a commercial fluoropolymer avoiding water absorption. The surfaces were characterized with SEM, EDS, XRD techniques, roughness, sessile water drop contact angle, surface energy measurements, and standard antimicrobial tests. The surface hydrophobicity and the antimicrobial activity results were compared with that of unmodified, uncoated gloss fired wall tiles. A superhydrophobic contact angle of 150° was achieved at 1000 °C peak temperature due to the formation of micro-structured nanocrystalline zinc oxide granules providing a specific surface topography. At higher peak temperatures the hydrophobicity was lost as the specific granular surface topography deteriorated with the conversion of zinc oxide granules to the ubiquitous willemite crystals embedded in the glassy matrix. The antimicrobial efficacy also correlated with the hydrophobic character.

  4. Surface nanostructuring by ion-induced localized plasma expansion in zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    El-Said, A. S., E-mail: elsaid@kfupm.edu.sa, E-mail: a.s.el-said@hzdr.de [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden (Germany); Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said 42521 (Egypt); Centre for Theoretical Physics, British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt); Djebli, M. [Theoretical Physics Laboratory, Faculty of Physics USTHB, B.P. 32 Bab Ezzour, 16079 Algiers (Algeria)

    2014-06-09

    Creation of hillock-like nanostructures on the surface of zinc oxide single crystals by irradiation with slow highly charged ions is reported. At constant kinetic energy, the nanostructures were only observed after irradiation with ions of potential energies above a threshold between 19.1 keV and 23.3 keV. The size of the nanostructures increases as a function of potential energy. A plasma expansion approach is used to explain the nanostructures creation. The calculations showed that the surface nanostructures became taller with the increase of ionic temperature. The influence of charged cluster formation and the relevance of their polarity are discussed.

  5. Surface nanostructuring by ion-induced localized plasma expansion in zinc oxide

    International Nuclear Information System (INIS)

    El-Said, A. S.; Moslem, W. M.; Djebli, M.

    2014-01-01

    Creation of hillock-like nanostructures on the surface of zinc oxide single crystals by irradiation with slow highly charged ions is reported. At constant kinetic energy, the nanostructures were only observed after irradiation with ions of potential energies above a threshold between 19.1 keV and 23.3 keV. The size of the nanostructures increases as a function of potential energy. A plasma expansion approach is used to explain the nanostructures creation. The calculations showed that the surface nanostructures became taller with the increase of ionic temperature. The influence of charged cluster formation and the relevance of their polarity are discussed.

  6. Selenium-induced autometallographic demonstration of endogenous zinc in organs of the rainbow trout, Salmo gairdneri

    DEFF Research Database (Denmark)

    Baatrup, E

    1989-01-01

    of selenium obtained by each organ was determined by gamma-spectrometry, and compared with the autometallographic deposition of silver grains. The relative accumulation of selenium in the organs was: liver greater than spleen greater than kidney greater than intestine greater than gills greater than brain......, the intestine, and the gills, whereas, no such grains were found in preparations from fish having received 1 ppm Se. The use of selenium for the histochemical demonstration of endogenous zinc versus exogenous metals is discussed. Also, consideration is given to the question of which part of the total tissue...

  7. Administration of Zinc plus Cyclo-(His-Pro Increases Hippocampal Neurogenesis in Rats during the Early Phase of Streptozotocin-Induced Diabetes

    Directory of Open Access Journals (Sweden)

    Bo Young Choi

    2017-01-01

    Full Text Available The effects of zinc supplementation on hippocampal neurogenesis in diabetes mellitus have not been studied. Herein, we investigated the effects of zinc plus cyclo-(His-Pro (ZC on neurogenesis occurring in the subgranular zone of dentate gyrus after streptozotocin (STZ-induced diabetes. ZC (27 mg/kg was administered by gavage once daily for one or six weeks from the third day after the STZ injection, and histological evaluation was performed at 10 (early phase or 45 (late phase days after STZ injection. We found that the proliferation of progenitor cells in STZ-induced diabetic rats showed an increase in the early phase. Additionally, ZC treatment remarkably increased the number of neural progenitor cells (NPCs and immature neurons in the early phase of STZ-induced diabetic rats. Furthermore, ZC treatment showed increased survival rate of newly generated cells but no difference in the level of neurogenesis in the late phase of STZ-induced diabetic rats. The present study demonstrates that zinc supplementation by ZC increases both NPCs proliferation and neuroblast production at the early phase of diabetes. Thus, this study suggests that zinc supplemented with a histidine/proline complex may have beneficial effects on neurogenesis in patients experiencing the early phase of Type 1 diabetes.

  8. Zinc Finger Nuclease induced DNA double stranded breaks and rearrangements in MLL

    International Nuclear Information System (INIS)

    Do, To Uyen; Ho, Bay; Shih, Shyh-Jen; Vaughan, Andrew

    2012-01-01

    Highlights: ► A Zinc Finger Nuclease (ZFN) targeting a leukemogenic hot spot for rearrangement in MLL is created. ► The novel ZFN efficiently cleaves MLL exon 13. ► Despite MLL cleavage and evidence of mis-repair, no leukemogenic translocations were produced. ► MLL cleavage alone is insufficient to generate leukemogenic translocations. - Abstract: Radiation treatment or chemotherapy has been linked with a higher risk of secondary cancers such as therapy related Acute Myeloid Leukemia (tAML). Several of these cancers have been shown to be correlated to the introduction of double stranded breaks (DSB) and rearrangements within the Mixed Lineage Leukemia (MLL) gene. We used Zinc Finger Nucleases (ZFNs) to introduce precise cuts within MLL to examine how a single DNA DSB might lead to chromosomal rearrangements. A ZFN targeting exon 13 within the Breakpoint Cluster Region of MLL was transiently expressed in a human lymphoblast cell line originating from a CML patient. Although FISH analysis showed ZFN DSB at this region increased the rate of MLL fragmentation, we were unable to detect leukemogenic rearrangements or translocations via inverse PCR. Interestingly, gene fragmentation as well as small interstitial deletions, insertions and base substitutions increased with the inhibition of DNA-PK, suggesting repair of this particular DSB is linked to non-homologous end joining (NHEJ). Although mis-repair of DSBs may be necessary for the initiation of leukemogenic translocations, a MLL targeted DNA break alone is insufficient

  9. Zinc Finger Nuclease induced DNA double stranded breaks and rearrangements in MLL

    Energy Technology Data Exchange (ETDEWEB)

    Do, To Uyen [Graduate Group in Immunology, University of California Davis, Davis, CA 95616 (United States); Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States); Ho, Bay; Shih, Shyh-Jen [Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States); Vaughan, Andrew, E-mail: Andrew.vaughan@ucdmc.ucdavis.edu [Graduate Group in Immunology, University of California Davis, Davis, CA 95616 (United States); Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States)

    2012-12-15

    Highlights: ► A Zinc Finger Nuclease (ZFN) targeting a leukemogenic hot spot for rearrangement in MLL is created. ► The novel ZFN efficiently cleaves MLL exon 13. ► Despite MLL cleavage and evidence of mis-repair, no leukemogenic translocations were produced. ► MLL cleavage alone is insufficient to generate leukemogenic translocations. - Abstract: Radiation treatment or chemotherapy has been linked with a higher risk of secondary cancers such as therapy related Acute Myeloid Leukemia (tAML). Several of these cancers have been shown to be correlated to the introduction of double stranded breaks (DSB) and rearrangements within the Mixed Lineage Leukemia (MLL) gene. We used Zinc Finger Nucleases (ZFNs) to introduce precise cuts within MLL to examine how a single DNA DSB might lead to chromosomal rearrangements. A ZFN targeting exon 13 within the Breakpoint Cluster Region of MLL was transiently expressed in a human lymphoblast cell line originating from a CML patient. Although FISH analysis showed ZFN DSB at this region increased the rate of MLL fragmentation, we were unable to detect leukemogenic rearrangements or translocations via inverse PCR. Interestingly, gene fragmentation as well as small interstitial deletions, insertions and base substitutions increased with the inhibition of DNA-PK, suggesting repair of this particular DSB is linked to non-homologous end joining (NHEJ). Although mis-repair of DSBs may be necessary for the initiation of leukemogenic translocations, a MLL targeted DNA break alone is insufficient.

  10. Cuz1/Ynl155w, a Zinc-dependent Ubiquitin-binding Protein, Protects Cells from Metalloid-induced Proteotoxicity*

    Science.gov (United States)

    Hanna, John; Waterman, David; Isasa, Marta; Elsasser, Suzanne; Shi, Yuan; Gygi, Steven; Finley, Daniel

    2014-01-01

    Protein misfolding is a universal threat to cells. The ubiquitin-proteasome system mediates a cellular stress response capable of eliminating misfolded proteins. Here we identify Cuz1/Ynl155w as a component of the ubiquitin system, capable of interacting with both the proteasome and Cdc48. Cuz1/Ynl155w is regulated by the transcription factor Rpn4, and is required for cells to survive exposure to the trivalent metalloids arsenic and antimony. A related protein, Yor052c, shows similar phenotypes, suggesting a multicomponent stress response pathway. Cuz1/Ynl155w functions as a zinc-dependent ubiquitin-binding protein. Thus, Cuz1/Ynl155w is proposed to protect cells from metalloid-induced proteotoxicity by delivering ubiquitinated substrates to Cdc48 and the proteasome for destruction. PMID:24297164

  11. Implication of extracellular zinc exclusion by recombinant human calprotectin (MRP8 and MRP14) from target cells in its apoptosis-inducing activity.

    Science.gov (United States)

    Yui, Satoru; Nakatani, Yuichi; Hunter, Michael J; Chazin, Walter J; Yamazaki, Masatoshi

    2002-06-01

    Calprotectin is a calcium-binding and zinc-binding protein complex that is abundant in the cytosol of neutrophils. This factor is composed of 8 and 14 kDa subunits, which have also been termed migration inhibitory factor-related proteins MRP8 and MRP14. We previously reported that rat calprotectin purified from inflammatory neutrophils induces apoptosis of various tumor cells or normal fibroblasts in a zinc-reversible manner. The present study was undertaken to elucidate which subunit is responsible for the apoptosis-inducing activity, and to explore the mechanism of zinc-reversible apoptosis induction. The apoptosis-inducing activity of recombinant human MRP8 (rhMRP8) and recombinant human MRP14 (rhMRP14) was examined against EL-4 lymphoma cells in vitro. To determine whether zinc deprivation by calprotectin was essential for the cytotoxicity, the activity of calprotectin was tested under conditions where physical contact between the factor and the cells was precluded by a low molecular weight cut-off dialysis membrane. The cytotoxicity of rhMRP14 against EL-4 cells was first detected at 10 microM in a standard medium, whereas rhMRP8 caused only marginal cytotoxicity at 40 microM. A mixture of both proteins showed higher specific activity (onset of cytotoxicity at 5 microM). When the cells were cultured in divalent cation-depleted medium, each dose-response curve was shifted to about a four-fold lower concentration range. Calprotectin was found to induce cell death even when the complex and the target cells were separated by dialysis membrane. A membrane-impermeable zinc chelator, diethylenetriamine pentaacetic acid (DTPA), also induced target cell apoptosis in a similar time-course as calprotectin. Moreover, the activities of calprotectin and DTPA were completely inhibited by the presence of zinc ions. These data indicate that calprotectin has higher specific activity to induce apoptosis than the Individual subunits, and that the mechanism is exclusion of zinc

  12. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants.

    Science.gov (United States)

    Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J

    2001-02-01

    Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.

  13. Nucleolin modulates the subcellular localization of GDNF-inducible zinc finger protein 1 and its roles in transcription and cell proliferation

    International Nuclear Information System (INIS)

    Dambara, Atsushi; Morinaga, Takatoshi; Fukuda, Naoyuki; Yamakawa, Yoshinori; Kato, Takuya; Enomoto, Atsushi; Asai, Naoya; Murakumo, Yoshiki; Matsuo, Seiichi; Takahashi, Masahide

    2007-01-01

    GZF1 is a zinc finger protein induced by glial cell-line-derived neurotrophic factor (GDNF). It is a sequence-specific transcriptional repressor with a BTB/POZ (Broad complex, Tramtrack, Bric a brac/Poxvirus and zinc finger) domain and ten zinc finger motifs. In the present study, we used immunoprecipitation and mass spectrometry to identify nucleolin as a GZF1-binding protein. Deletion analysis revealed that zinc finger motifs 1-4 of GZF1 mediate its association with nucleolin. When zinc fingers 1-4 were deleted from GZF1 or nucleolin expression was knocked down by short interference RNA (siRNA), nuclear localization of GZF1 was impaired. These results suggest that nucleolin is involved in the proper subcellular distribution of GZF1. In addition, overexpression of nucleolin moderately inhibited the transcriptional repressive activity of GZF1 whereas knockdown of nucleolin expression by siRNA enhanced its activity. Thus, the repressive activity of GZF1 is modulated by the level at which nucleolin is expressed. Finally, we found that knockdown of GZF1 and nucleolin expression markedly impaired cell proliferation. These findings suggest that the physiological functions of GZF1 may be regulated by the protein's association with nucleolin

  14. Investigation on the negative bias illumination stress-induced instability of amorphous indium-tin-zinc-oxide thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jaeman; Kim, Dae Geun; Kim, Dong Myong; Choi, Sung-Jin; Kim, Dae Hwan, E-mail: byungdu.ahn@samsung.com, E-mail: drlife@kookmin.ac.kr [School of Electrical Engineering, Kookmin University, Seoul 136-702 (Korea, Republic of); Lim, Jun-Hyung; Lee, Je-Hun; Ahn, Byung Du, E-mail: byungdu.ahn@samsung.com, E-mail: drlife@kookmin.ac.kr [Samsung Display Co., Ltd., Yongin, Gyeonggi-Do 446-711 (Korea, Republic of); Kim, Yong-Sung [Korea Research Institute of Standards and Science, Yuseong, Daejeon 305-340 (Korea, Republic of)

    2014-10-13

    The quantitative analysis of mechanism on negative bias illumination stress (NBIS)-induced instability of amorphous indium-tin-zinc-oxide thin-film transistor (TFT) was suggested along with the effect of equivalent oxide thickness (EOT) of gate insulator. The analysis was implemented through combining the experimentally extracted density of subgap states and the device simulation. During NBIS, it was observed that the thicker EOT causes increase in both the shift of threshold voltage and the variation of subthreshold swing as well as the hump-like feature in a transfer curve. We found that the EOT-dependence of NBIS instability can be clearly explicated with the donor creation model, in which a larger amount of valence band tail states is transformed into either the ionized oxygen vacancy V{sub O}{sup 2+} or peroxide O{sub 2}{sup 2−} with the increase of EOT. It was also found that the V{sub O}{sup 2+}-related extrinsic factor accounts for 80%–92% of the total donor creation taking place in the valence band tail states while the rest is taken by the O{sub 2}{sup 2–} related intrinsic factor. The ratio of extrinsic factor compared to the total donor creation also increased with the increase of EOT, which could be explained by more prominent oxygen deficiency. The key founding of our work certainly represents that the established model should be considered very effective for analyzing the instability of the post-indium-gallium-zinc-oxide (IGZO) ZnO-based compound semiconductor TFTs with the mobility, which is much higher than those of a-IGZO TFTs.

  15. Comparative Study of Different Methods to Determine the Role of Reactive Oxygen Species Induced by Zinc Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Nigar A. Najim

    2016-08-01

    Full Text Available Accumulation of reactive oxygen species (ROS followed by an increase in oxidative stress is associated with cellular responses to nanoparticle induced cell damages. Finding the best method for assessing intracellular ROS production is the key step in the detection of oxidative stress induced injury. This study evaluates and compares four different methods for the measurement of intracellular ROS generation using fluorogenic probe, 2´,7´-dichlorofluorescein diacetate (DCFH-DA. Hydrogen peroxide (H2O2 was utilised as a positive control to assess the reactivity of the probe. Spherically shaped zinc oxide (ZnO nanoparticles with an average particle size of 85.7 nm were used to determine the diverse roles of ROS in nanotoxicity in Hs888Lu and U937 cell lines. The results showed that different methods exhibit different patterns of ROS measurement. In conclusion this study found that the time point at which the DCFH-DA is added to the reaction, the incubation time and the oxidative species that is responsible for the oxidation of DCFH, have impact on the intracellular ROS measurement.

  16. Protective effect of quercetin and/or l-arginine against nano-zinc oxide-induced cardiotoxicity in rats

    Science.gov (United States)

    Faddah, L. M.; Baky, Nayira A. Abdel; Mohamed, Azza M.; Al-Rasheed, Nouf M.; Al-Rasheed, Nawal M.

    2013-04-01

    The aim of this study was to investigate the protective role of quercetin and/or l-arginine against the cardiotoxic potency of zinc oxide nanoparticle (ZnO-NP)-induced cardiac infarction. ZnO-NPs (50 nm) were administered orally at either 600 mg or 1 g/kg body weight for 5 consecutive days. The results revealed that co-administration of quercetin and/or l-arginine (each 200 mg/kg body weight) daily for 3 weeks to rats intoxicated by either of the two doses markedly ameliorated increases in serum markers of cardiac infarction, including troponin T, creatine kinase-MB, and myoglobin, as well as increases in proinflammatory biomarkers, including tumor necrosis factor-α, interleukin-6, and C-reactive protein, compared with intoxicated, untreated rats. Each agent alone or in combination also successfully modulated the alterations in serum vascular endothelial growth factor, cardiac calcium concentration, and oxidative DNA damage as well as the increase in the apoptosis marker caspase 3 of cardiac tissue in response to ZnO-NP toxicity. In conclusion, early treatment with quercetin and l-arginine may protect cardiac tissue from infarction induced by the toxic effects of ZnO-NPs.

  17. Protective effect of quercetin and/or l-arginine against nano-zinc oxide-induced cardiotoxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Faddah, L. M.; Baky, Nayira A. Abdel [King Saud University, Pharmacology Department, Faculty of Pharmacy (Saudi Arabia); Mohamed, Azza M., E-mail: azzamohamed99@yahoo.com [King Abdulaziz University, Biochemistry Department, Faculty of Science for Girls (Saudi Arabia); Al-Rasheed, Nouf M.; Al-Rasheed, Nawal M. [King Saud University, Pharmacology Department, Faculty of Pharmacy (Saudi Arabia)

    2013-04-15

    The aim of this study was to investigate the protective role of quercetin and/or l-arginine against the cardiotoxic potency of zinc oxide nanoparticle (ZnO-NP)-induced cardiac infarction. ZnO-NPs (50 nm) were administered orally at either 600 mg or 1 g/kg body weight for 5 consecutive days. The results revealed that co-administration of quercetin and/or l-arginine (each 200 mg/kg body weight) daily for 3 weeks to rats intoxicated by either of the two doses markedly ameliorated increases in serum markers of cardiac infarction, including troponin T, creatine kinase-MB, and myoglobin, as well as increases in proinflammatory biomarkers, including tumor necrosis factor-{alpha}, interleukin-6, and C-reactive protein, compared with intoxicated, untreated rats. Each agent alone or in combination also successfully modulated the alterations in serum vascular endothelial growth factor, cardiac calcium concentration, and oxidative DNA damage as well as the increase in the apoptosis marker caspase 3 of cardiac tissue in response to ZnO-NP toxicity. In conclusion, early treatment with quercetin and l-arginine may protect cardiac tissue from infarction induced by the toxic effects of ZnO-NPs.

  18. Nanosized zinc oxide particles do not promote DHPN-induced lung carcinogenesis but cause reversible epithelial hyperplasia of terminal bronchioles.

    Science.gov (United States)

    Xu, Jiegou; Futakuchi, Mitsuru; Alexander, David B; Fukamachi, Katsumi; Numano, Takamasa; Suzui, Masumi; Shimizu, Hideo; Omori, Toyonori; Kanno, Jun; Hirose, Akihiko; Tsuda, Hiroyuki

    2014-01-01

    Zinc oxide (ZnO) is known to induce lung toxicity, including terminal bronchiolar epithelial hyperplasia, which gives rise to concerns that nanosized ZnO (nZnO) might lead to lung carcinogenesis. We studied the tumor promoting activity of nZnO by an initiation-promotion protocol using human c-Ha-ras proto-oncogene transgenic rats (Hras128 rats). The rats were given 0.2 % N-nitrosobis(2-hydroxypropyl)amine (DHPN) in the drinking water for 2 weeks and then treated with 0.5 ml of 250 or 500 μg/ml nZnO suspension by intra-pulmonary spraying once every 2 weeks for a total of 7 times. Treatment with nZnO particles did not promote DHPN-induced lung carcinogenesis. However, nZnO dose-dependently caused epithelial hyperplasia of terminal bronchioles (EHTB) and fibrosis-associated interstitial pneumonitis (FAIP) that were independent of DHPN treatment. Tracing the fate of EHTB lesions in wild-type rats indicated that the hyperplastic lesions almost completely disappeared within 12 weeks after the last nZnO treatment. Since nZnO particles were not found in the lung and ZnCl2 solution induced similar lung lesions and gene expression profiles, the observed lesions were most likely caused by dissolved Zn(2+). In summary, nZnO did not promote carcinogenesis in the lung and induced EHTB and FAIP lesions that regressed rapidly, probably due to clearance of surplus Zn(2+) from the lung.

  19. Zinc Oxide Nanoparticle Induces Microglial Death by NADPH-Oxidase-Independent Reactive Oxygen Species as well as Energy Depletion.

    Science.gov (United States)

    Sharma, Anuj Kumar; Singh, Vikas; Gera, Ruchi; Purohit, Mahaveer Prasad; Ghosh, Debabrata

    2017-10-01

    Zinc oxide nanoparticle (ZnO-NP) is one of the most widely used engineered nanoparticles. Upon exposure, nanoparticle can eventually reach the brain through various routes, interact with different brain cells, and alter their activity. Microglia is the fastest glial cell to respond to any toxic insult. Nanoparticle exposure can activate microglia and induce neuroinflammation. Simultaneous to activation, microglial death can exacerbate the scenario. Therefore, we focused on studying the effect of ZnO-NP on microglia and finding out the pathway involved in the microglial death. The present study showed that the 24 h inhibitory concentration 50 (IC 50 ) of ZnO-NP for microglia is 6.6 μg/ml. Early events following ZnO-NP exposure involved increase in intracellular calcium level as well as reactive oxygen species (ROS). Neither of NADPH oxidase inhibitors, apocynin, (APO) and diphenyleneiodonium chloride (DPIC) were able to reduce the ROS level and rescue microglia from ZnO-NP toxicity. In contrary, N-acetyl cysteine (NAC) showed opposite effect. Exogenous supplementation of superoxide dismutase (SOD) reduced ROS significantly even beyond control level but partially rescued microglial viability. Interestingly, pyruvate supplementation rescued microglia near to control level. Following 10 h of ZnO-NP exposure, intracellular ATP level was measured to be almost 50 % to the control. ZnO-NP-induced ROS as well as ATP depletion both disturbed mitochondrial membrane potential and subsequently triggered the apoptotic pathway. The level of apoptosis-inducing proteins was measured by western blot analysis and found to be upregulated. Taken together, we have deciphered that ZnO-NP induced microglial apoptosis by NADPH oxidase-independent ROS as well as ATP depletion.

  20. γ-irradiation induced zinc ferrites and their enhanced room-temperature ammonia gas sensing properties

    Science.gov (United States)

    Raut, S. D.; Awasarmol, V. V.; Ghule, B. G.; Shaikh, S. F.; Gore, S. K.; Sharma, R. P.; Pawar, P. P.; Mane, R. S.

    2018-03-01

    Zinc ferrite (ZnFe2O4) nanoparticles (NPs), synthesized using a facile and cost-effective sol-gel auto-combustion method, were irradiated with 2 and 5 kGy γ-doses using 60Co as a radioactive source. Effect of γ-irradiation on the structure, morphology, pore-size and pore-volume and room-temperature (300 K) gas sensor performance has been measured and reported. Both as-synthesized and γ-irradiated ZnFe2O4 NPs reveal remarkable gas sensor activity to ammonia in contrast to methanol, ethanol, acetone and toluene volatile organic gases. The responses of pristine, 2 and 5 kGy γ-irradiated ZnFe2O4 NPs are respectively 55%, 66% and 81% @100 ppm concentration of ammonia, signifying an importance of γ-irradiation for enhancing the sensitivity, selectivity and stability of ZnFe2O4 NPs as ammonia gas sensors. Thereby, due to increase in surface area and crystallinity on γ-doses, the γ-irradiation improves the room-temperature ammonia gas sensing performance of ZnFe2O4.

  1. The Geometry-Induced Superhydrophobic Property of Carpet-like Zinc Films

    International Nuclear Information System (INIS)

    Liang Li-Xing; Deng Yuan; Wang Yao

    2013-01-01

    Carpet-like zinc films with unique nanowires are fabricated by using a simple physical evaporation method. The definite morphologies of the films endow the superhydrophobic material with a contact angle of about 157.9°, and by additional modification of CF 3 (CF 2 ) 7 CH 2 CH 2 Si(OCH 3 ) 3 the water adhesive force could be tuned from 58.3 μN to 14.6 μN. In order to analyze the controllable adhesion of superhydrophobic Zn films, we study the microstructure and chemical compositions of the films by x-ray diffraction SEM, TEM, HRTEM and EDAX. Furthermore, a model based on the balance of micro-surface energy is proposed to illustrate the relationship of the geometry and wettability properties of the films. The model provides new insights into how to design-oriented microchannels and micro-protuberance on material surfaces, which is of benefit for controlling their ability of caught-collection in air bubbles and water-pinning collection

  2. Laser-induced optical effects in triglycine-zinc chloride single crystals

    International Nuclear Information System (INIS)

    Wojciechowski, A.; Kityk, I.V.; Lakshminarayana, G.; Fuks-Janczarek, I.; Berdowski, J.; Berdowska, E.; Tylczynski, Z.

    2010-01-01

    The influence of irradiation by a cw 532 nm laser on the behavior of the absorption and optical second harmonic generation of triglicyne-zinc chloride crystal has been studied. Additional absorption bands correlate well with the time of the cw laser exposure. These lines occur at 260 nm, 305 nm, and, with small intensity, at 355 nm. The remaining part of the spectra shows substantially less changes. According to the performed quantum chemical simulations, one may expect that the observed dependences and the stability of the observed photoinduced changes are caused by formation of polarized electron-phonon states and the principal role should belong here to the electron-phonon anharmonicities, which cause the effects described by the non-polar third rank polar tensor like optical second harmonic generation. The increasing optical SHG signal shows a clear correlation with the behavior of the green laser-532 nm. It is important principal that for the blue laser-405 nm, the SHG effect is substantially less. This may reflect that the additional absorption maxima may be responsible for the non-linear optical effects. The effect demonstrates a slow time decay.

  3. Preventive effect of zinc on nickel-induced oxidative liver injury in rats

    African Journals Online (AJOL)

    MIDOU

    2013-12-18

    Dec 18, 2013 ... induced oxidative liver injury and lipid peroxidation probably due to its antioxidant proprieties. ... enzyme in every enzyme classification (Coyle et al.,. 2002). Others .... control group had a regular histological structure with a.

  4. Characterization and metal-induced gene transcription of two new copper zinc superoxide dismutases in the solitary ascidian Ciona intestinalis

    International Nuclear Information System (INIS)

    Ferro, Diana; Franchi, Nicola; Mangano, Valentina; Bakiu, Rigers; Cammarata, Matteo; Parrinello, Nicolò; Santovito, Gianfranco; Ballarin, Loriano

    2013-01-01

    Highlights: •Ciona intestinalis express two copper-zinc superoxide dismutases (Cu,Zn SODs), one extracellular (Ci-SODa) and one intracellular isoform (Ci-SODb). •Promoters contain consensus sequences similar to mammalian MRE. •Metal exposure results in a significant increase of gene transcription: ci-soda is induced especially by copper and zinc, the increase of ci-sodb transcription is more evident after cadmium exposure. •Genes are mostly transcribed in circulating hemocytes and in ovarian follicular cells. -- Abstract: Antioxidant enzymes are known to protect living organisms against the oxidative stress risk, also induced by metals. In the present study, we describe the purification and molecular characterization of two Cu,Zn superoxide dismutases (SODs), referred to as Ci-SODa and Ci-SODb, from Ciona intestinalis, a basal chordate widely distributed in temperate shallow seawater. The putative amino acid sequences were compared with Cu,Zn SODs from other metazoans and phylogenetic analyses indicate that the two putative Ci-SODs are more related to invertebrate SODs than vertebrate ones. Both phylogenetic and preliminary homology modeling analyses suggest that Ci-SODa and Ci-SODb are extracellular and intracellular isoform, respectively. The mRNA of the two Cu,Zn SODs was localized in hemocytes and in ovarian follicular cells, as revealed by in situ hybridization. The time course of SOD mRNA levels in the presence of three different metals showed upregulation of ci-soda and inhibition of ci-sodb. Spectrophotometric analysis confirms the presence of SOD activity in Ciona tissues. Our in silico analyses of the ci-soda promoter region revealed putative consensus sequences similar to mammalian metal-responsive elements (MRE), suggesting that the transcription of these genes directly depends on metals. These data emphasize the importance of complex metal regulation of ci-soda and ci-sodb transcription, as components of an efficient detoxification pathway

  5. Characterization and metal-induced gene transcription of two new copper zinc superoxide dismutases in the solitary ascidian Ciona intestinalis

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, Diana [Department of Biology, University of Padova, Padova (Italy); Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität, Münster (Germany); Franchi, Nicola [Department of Biology, University of Padova, Padova (Italy); Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Mangano, Valentina [Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Bakiu, Rigers [Department of Crop Production, Agricultural University of Tirana, Tirana (Albania); Cammarata, Matteo; Parrinello, Nicolò [Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Santovito, Gianfranco, E-mail: gianfranco.santovito@unipd.it [Department of Biology, University of Padova, Padova (Italy); Ballarin, Loriano [Department of Biology, University of Padova, Padova (Italy)

    2013-09-15

    Highlights: •Ciona intestinalis express two copper-zinc superoxide dismutases (Cu,Zn SODs), one extracellular (Ci-SODa) and one intracellular isoform (Ci-SODb). •Promoters contain consensus sequences similar to mammalian MRE. •Metal exposure results in a significant increase of gene transcription: ci-soda is induced especially by copper and zinc, the increase of ci-sodb transcription is more evident after cadmium exposure. •Genes are mostly transcribed in circulating hemocytes and in ovarian follicular cells. -- Abstract: Antioxidant enzymes are known to protect living organisms against the oxidative stress risk, also induced by metals. In the present study, we describe the purification and molecular characterization of two Cu,Zn superoxide dismutases (SODs), referred to as Ci-SODa and Ci-SODb, from Ciona intestinalis, a basal chordate widely distributed in temperate shallow seawater. The putative amino acid sequences were compared with Cu,Zn SODs from other metazoans and phylogenetic analyses indicate that the two putative Ci-SODs are more related to invertebrate SODs than vertebrate ones. Both phylogenetic and preliminary homology modeling analyses suggest that Ci-SODa and Ci-SODb are extracellular and intracellular isoform, respectively. The mRNA of the two Cu,Zn SODs was localized in hemocytes and in ovarian follicular cells, as revealed by in situ hybridization. The time course of SOD mRNA levels in the presence of three different metals showed upregulation of ci-soda and inhibition of ci-sodb. Spectrophotometric analysis confirms the presence of SOD activity in Ciona tissues. Our in silico analyses of the ci-soda promoter region revealed putative consensus sequences similar to mammalian metal-responsive elements (MRE), suggesting that the transcription of these genes directly depends on metals. These data emphasize the importance of complex metal regulation of ci-soda and ci-sodb transcription, as components of an efficient detoxification pathway

  6. Zinc Deficiency Induces Apoptosis via Mitochondrial p53- and Caspase-Dependent Pathways in Human Neuronal Precursor Cells

    Science.gov (United States)

    Seth, Rohit; Corniola, Rikki S.; Gower-Winter, Shannon D.; Morgan, Thomas J., Jr.; Bishop, Brian; Levenson, Cathy W.

    2015-01-01

    Previous studies have shown that zinc deficiency leads to apoptosis of neuronal precursor cells in vivo and in vitro. In addition to the role of p53 as a nuclear transcription factor in zinc deficient cultured human neuronal precursors (NT-2), we have now identified the translocation of phosphorylated p53 to the mitochondria and p53-dependent…

  7. Identification and characterization of a salt stress-inducible zinc finger protein from Festuca arundinacea

    Directory of Open Access Journals (Sweden)

    Martin Ruth C

    2012-01-01

    Full Text Available Abstract Background Increased biotic and abiotic plant stresses due to climate change together with an expected global human population of over 9 billion by 2050 intensifies the demand for agricultural production on marginal lands. Soil salinity is one of the major abiotic stresses responsible for reduced crop productivity worldwide and the salinization of arable land has dramatically increased over the last few decades. Consequently, as land becomes less amenable for conventional agriculture, plants grown on marginal soils will be exposed to higher levels of soil salinity. Forage grasses are a critical component of feed used in livestock production worldwide, with many of these same species of grasses being utilized for lawns, erosion prevention, and recreation. Consequently, it is important to develop a better understanding of salt tolerance in forage and related grass species. Findings A gene encoding a ZnF protein was identified during the analysis of a salt-stress suppression subtractive hybridization (SSH expression library from the forage grass species Festuca arundinacea. The expression pattern of FaZnF was compared to that of the well characterized gene for delta 1-pyrroline-5-carboxylate synthetase (P5CS, a key enzyme in proline biosynthesis, which was also identified in the salt-stress SSH library. The FaZnF and P5CS genes were both up-regulated in response to salt and drought stresses suggesting a role in dehydration stress. FaZnF was also up-regulated in response to heat and wounding, suggesting that it might have a more general function in multiple abiotic stress responses. Additionally, potential downstream targets of FaZnF (a MAPK [Mitogen-Activated Protein Kinase], GST [Glutathione-S-Transferase] and lipoxygenase L2 were found to be up-regulated in calli overexpressing FaZnF when compared to control cell lines. Conclusions This work provides evidence that FaZnF is an AN1/A20 zinc finger protein that is involved in the regulation

  8. Chloroquine is a zinc ionophore.

    Directory of Open Access Journals (Sweden)

    Jing Xue

    Full Text Available Chloroquine is an established antimalarial agent that has been recently tested in clinical trials for its anticancer activity. The favorable effect of chloroquine appears to be due to its ability to sensitize cancerous cells to chemotherapy, radiation therapy, and induce apoptosis. The present study investigated the interaction of zinc ions with chloroquine in a human ovarian cancer cell line (A2780. Chloroquine enhanced zinc uptake by A2780 cells in a concentration-dependent manner, as assayed using a fluorescent zinc probe. This enhancement was attenuated by TPEN, a high affinity metal-binding compound, indicating the specificity of the zinc uptake. Furthermore, addition of copper or iron ions had no effect on chloroquine-induced zinc uptake. Fluorescent microscopic examination of intracellular zinc distribution demonstrated that free zinc ions are more concentrated in the lysosomes after addition of chloroquine, which is consistent with previous reports showing that chloroquine inhibits lysosome function. The combination of chloroquine with zinc enhanced chloroquine's cytotoxicity and induced apoptosis in A2780 cells. Thus chloroquine is a zinc ionophore, a property that may contribute to chloroquine's anticancer activity.

  9. Fast light-induced reversible wettability of a zinc oxide nanorod array coated with a thin gold layer

    Science.gov (United States)

    Wei, Yuefan; Du, Hejun; Kong, Junhua; Tran, Van-Thai; Koh, Jia Kai; Zhao, Chenyang; He, Chaobin

    2017-11-01

    Zinc oxide (ZnO) has gained much attention recently due to its excellent physical and chemical properties, and has been extensively studied in energy harvesting applications such as photovoltaic and piezoelectric devices. In recent years, its reversible wettability has also attracted increasing interest. The wettability of ZnO nanostructures with various morphologies has been studied. However, to the best of our knowledge, there is still a lack of investigations on further modifications on ZnO to provide more benefits than pristine ZnO. Comprehensive studies on the reversible wettability are still needed. In this study, a ZnO nanorod array was prepared via a hydrothermal process and subsequently coated with thin gold layers with varied thickness. The morphologies and structures, optical properties and wettability were investigated. It is revealed that the ZnO-Au system possesses recoverable wettability upon switching between visible-ultraviolet light and a dark environment, which is verified by the contact angle change. The introduction of the thin gold layer to the ZnO nanorod array effectively increases the recovery rate of the wettability. The improvements are attributed to the hierarchical structures, which are formed by depositing thin gold layers onto the ZnO nanorod array, the visible light sensitivity due to the plasmonic effect of the deposited gold, as well as the fast charge-induced surface status change upon light illumination or dark storage. The improvement is beneficial to applications in environmental purification, energy harvesting, micro-lenses, and smart devices.

  10. Zinc supplementation induces CD4+CD25+Foxp3+ antigen-specific regulatory T cells and suppresses IFN-γ production by upregulation of Foxp3 and KLF-10 and downregulation of IRF-1.

    Science.gov (United States)

    Maywald, Martina; Rink, Lothar

    2017-08-01

    The essential trace element zinc plays a fundamental role in immune function and regulation since its deficiency is associated with autoimmunity, allergies, and transplant rejection. Thus, we investigated the influence of zinc supplementation on the Th1-driven alloreaction in mixed lymphocyte cultures (MLC), on generation of antigen-specific T cells, and analyzed underlying molecular mechanisms. Cell proliferation and pro-inflammatory cytokine production were monitored by [ 3 H]-thymidine proliferation assay and ELISA, respectively. Analysis of surface and intracellular T cell marker was performed by flow cytometry. Western blotting and mRNA analysis were used for Foxp3, KLF-10, and IRF-1 expression. Zinc supplementation on antigen-specific T cells in physiological doses (50 µM) provokes a significant amelioration of cell proliferation and pro-inflammatory cytokine production after reactivation compared to untreated controls. Zinc administration on MLC results in an increased induction and stabilization of CD4 + CD25 + Foxp3 + and CD4 + CD25 + CTLA-4 + T cells (p zinc-induced upregulation of Foxp3 and KLF-10 and downregulation of IRF-1. However, in resting lymphocytes zinc increases IRF-1. In summary, zinc is capable of ameliorating the allogeneic immune reaction by enhancement of antigen-specific iTreg cells due to modulation of essential molecular targets: Foxp3, KLF-10, and IRF-1. Thus, zinc can be seen as an auspicious tool for inducing tolerance in adverse immune reactions.

  11. Zinc-induced embrittlement in nickel-base superalloys by simulation and experiment

    Science.gov (United States)

    Otis, Richard; Waje, Mahesh; Lindwall, Greta; Jefferson, Tiffany; Lange, Jeremy; Liu, Zi-Kui

    2017-09-01

    The high cost of Re has driven interest in processes for recovering Re from scrap superalloy parts. In this work thermodynamic modelling is used to study Zn-induced embrittlement of a superalloy and to direct experiments. Treating superalloy powder with Zn vapour reduces the average particle size after milling from approximately ?m to 0.5-10 ?m, vs. ?m for untreated powder. Simulations predict the required treatment time to increase with temperature. Agreement between predictions and experiments suggests that an embrittling liquid forms in less than an hour of Zn vapour treatment between 950-1000 ?C and partial pressures of Zn between 14-34 kPa (2-5 psi).

  12. Zinc Supplementation against Eimeria acervulina-Induced Oxidative Damage in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Nedyalka V. Georgieva

    2011-01-01

    Full Text Available This study was undertaken to determine the dietary supplements of Zn containing diet on the antioxidant status in chickens experimentally infected with Eimeria acervulina. The antioxidant status was monitored via determination of MDA concentrations and erythrocyte SOD and CAT activities, as well as vitamin E, vitamin C, Cu, and Zn in liver, muscle, and serum. The results showed increased MDA (<.05, CAT (<.001, and decreased SOD (<.001 in the infected birds. Significant changes in Cu and Zn concentrations and dramatically reduction of vitamin C and E concentrations in the infected chickens were found. The observed deviations in the studied enzymes and nonenzymatic parameters evidence the occurrence of oxidative stress following the infection and impaired antioxidant status of chickens, infected with Eimeria acervulina. Our results proved the ameliorating role of CuZn(OH3Cl (0.170 g per kg food against Eimeria acervulina-induced oxidative damage in infected chickens.

  13. Yashada bhasma (Zinc calx) and Tankana (Borax) inhibit Propionibacterium acne and suppresses acne induced inflammation in vitro.

    Science.gov (United States)

    Sandeep Varma, R; Shamsia, S; Thiyagarajan, O S; Vidyashankar, S; Patki, P S

    2014-08-01

    Yashada bhasma (YB) and Tankana (TA) are well characterized minerals used in traditional medicine for the treatment of various skin ailments. Yashada bhasma and TA are a unique preparation of zinc and borax, respectively. The study was conducted to evaluate the in vitro inhibitory effect of YB, TA and its combination (YBTA) on Propionibacterium acne growth and P. acne-induced inflammation. The minerals were tested for anti-P. acne activity by disc diffusion and broth microdilution methods. The effect of these minerals on P. acne induced TNF-α and IL-8 production and gene expression were studied in THP-1 cells. In vitro toxicity was tested on human keratinocytes (HaCaT) and mouse embryonic fibroblasts (NIH3T3) using MTT assay. The minimum inhibitory concentrations (MIC values) for YB, TA and YBTA against P. acne were 0.1 ± 0.2, 1.9 ± 0.5 and 0.3 ± 0.5 mg mL(-1) , respectively. YB, TA and YBTA inhibited TNFα by 57.57%, 59.09% and 68.93% and IL-8 production by 48.76%, 47.92% and 51.13% in P. acne-stimulated THP-1 cells, respectively. The CTC50 values on HaCaT and NIH3T3 was 17.44 ± 0.5 and 16.37 ± 0.2 μg mL(-1) for YB, 1023.03 ± 4.0 and 1286.17 ± 4.4 μg mL(-1) for TA and 89.12 ± 2.3 and 111.58 ± 3.5 μg mL(-1) for YBTA, respectively. The present study revealed the inhibitory effect of YB, TA and YBTA on P. acne growth and inflammation. Clinical studies have suggested the anti-acne benefits of formulations containing YB and TA. The findings obtained from the present in vitro studies provide evidence to support the mechanism of anti-acne properties of YB and TA. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  14. Zinc, nitrogen and salinity interaction on agronomic traits and some ...

    African Journals Online (AJOL)

    use

    2011-11-23

    Nov 23, 2011 ... percentage decreased due to nitrogen, zinc and salinity in the first year but .... Analysis of variance on canola traits affected by nitrogen, zinc and salinity at ...... a result less of the latter are available for fat synthesis ... Na+ and Cl- in plant tissues, effects of nitrogen and zinc ... Zinc alleviates cadmium-induced.

  15. A bipyridine-ligated zinc(II) complex with bridging flavonolate ligation: synthesis, characterization, and visible-light-induced CO release reactivity.

    Science.gov (United States)

    Sorenson, Shayne; Popova, Marina; Arif, Atta M; Berreau, Lisa M

    2017-09-01

    Metal-flavonolate compounds are of significant current interest as synthetic models for quercetinase enzymes and as bioactive compounds of importance to human health. Zinc-3-hydroxyflavonolate compounds, including those of quercetin, kampferol, and morin, generally exhibit bidentate coordination to a single Zn II center. The bipyridine-ligated zinc-flavonolate compound reported herein, namely bis(μ-4-oxo-2-phenyl-4H-chromen-3-olato)-κ 3 O 3 :O 3 ,O 4 ;κ 3 O 3 ,O 4 :O 3 -bis[(2,2'-bipyridine-κ 2 N,N')zinc(II)] bis(perchlorate), {[Zn 2 (C 15 H 9 O 3 ) 2 (C 10 H 8 N 2 ) 2 ](ClO 4 ) 2 } n , (1), provides an unusual example of bridging 3-hydroxyflavonolate ligation in a dinuclear metal complex. The symmetry-related Zn II centers of (1) exhibit a distorted octahedral geometry, with weak coordination of a perchlorate anion trans to the bridging deprotonated O atom of the flavonolate ligand. Variable-concentration conductivity measurements provide evidence that, when (1) is dissolved in CH 3 CN, the complex dissociates into monomers. 1 H NMR resonances for (1) dissolved in d 6 -DMSO were assigned via HMQC to the H atoms of the flavonolate and bipyridine ligands. In CH 3 CN, (1) undergoes quantitative visible-light-induced CO release with a quantum yield [0.004 (1)] similar to that exhibited by other mononuclear zinc-3-hydroxyflavonolate complexes. Mass spectroscopic identification of the [(bpy) 2 Zn(O-benzoylsalicylate)] + ion provides evidence of CO release from the flavonol and of ligand exchange at the Zn II center.

  16. Theoretical studies of the pressure-induced zinc-blende to cinnabar phase transition in CdTe and thermodynamical properties of each phase

    International Nuclear Information System (INIS)

    Brik, M.G.; Łach, P.; Karczewski, G.; Wojtowicz, T.; Kamińska, A.; Suchocki, A.

    2013-01-01

    Luminescence of CdTe quantum dots embedded in ZnTe is quenched at pressure of about 4.5 GPa in the high-pressure experiments. This pressure-induced quenching is attributed to the “zinc-blende–cinnabar” phase transition in CdTe, which was confirmed by the first-principles calculations. Theoretical analysis of the pressure at which the phase transition occurs for CdTe was performed using the CASTEP module of Materials Studio package with both generalized gradient approximation (GGA) and local density approximation (LDA). The calculated phase transition pressures are equal to about 4.4 GPa and 2.6 GPa, according to the GGA and LDA calculations, respectively, which is in a good agreement with the experimental value. Theoretically estimated value of the pressure coefficient of the band-gap luminescence in zinc-blende structure is in very good agreement with that recently measured in the QDs structures. The calculated Debye temperature, elastic constants and specific heat capacity for the zinc-blend structure agree well with the experimental data; the data for the cinnabar phase are reported here for the first time to the best of the authors' knowledge. - Highlights: • Quenching of luminescence of CdTe quantum dots embedded in ZnTe is theoretically explained. • The theoretical calculation of elastic and thermodynamic properties of CdTe by two types of ab-initio methods. • Theoretical calculations of some optical properties of CdTe under pressure in zinc-blende and cinnabar phases

  17. Green Synthesized Zinc Oxide (ZnO Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System

    Directory of Open Access Journals (Sweden)

    Kamal K. Panda

    2017-05-01

    Full Text Available Zinc oxide nanoparticles (ZnONP-GS were synthesised from the precursor zinc acetate (Zn(CH3COO2 through the green route using the milky latex from milk weed (Calotropis gigantea L. R. Br by alkaline precipitation. Formation of the ZnONP-GS was monitored by UV-visible spectroscopy followed by characterization and confirmation by energy-dispersive X-ray spectroscopy (EDX, transmission electron microscopy (TEM, and X-ray diffraction (XRD. Both the ZnONP-GS and the commercially available ZnONP-S (Sigma-Aldrich and cationic Zn2+ from Zn(CH3COO2 were tested in a dose range of 0–100 mg·L−1 for their potency (i to induce oxidative stress as measured by the generation reactive oxygen species (ROS: O2•−, H2O2 and •OH, cell death, and lipid peroxidation; (ii to modulate the activities of antioxidant enzymes: catalase (CAT, superoxide dismutase (SOD, guaiacol peroxidase (GPX, and ascorbate peroxidase (APX; and (iii to cause DNA damage as determined by Comet assay in Lathyrus sativus L. root bioassay system. Antioxidants such as Tiron and dimethylthiourea significantly attenuated the ZnONP-induced oxidative and DNA damage, suggesting the involvement of ROS therein. Our study demonstrated that both ZnONP-GS and ZnONP-S induced oxidative stress and DNA damage to a similar extent but were significantly less potent than Zn2+ alone.

  18. Green Synthesized Zinc Oxide (ZnO) Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System.

    Science.gov (United States)

    Panda, Kamal K; Golari, Dambaru; Venugopal, A; Achary, V Mohan M; Phaomei, Ganngam; Parinandi, Narasimham L; Sahu, Hrushi K; Panda, Brahma B

    2017-05-18

    Zinc oxide nanoparticles (ZnONP-GS) were synthesised from the precursor zinc acetate (Zn(CH₃COO)₂) through the green route using the milky latex from milk weed ( Calotropis gigantea L. R. Br) by alkaline precipitation. Formation of the ZnONP-GS was monitored by UV-visible spectroscopy followed by characterization and confirmation by energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD). Both the ZnONP-GS and the commercially available ZnONP-S (Sigma-Aldrich) and cationic Zn 2+ from Zn(CH₃COO)₂ were tested in a dose range of 0-100 mg·L -1 for their potency (i) to induce oxidative stress as measured by the generation reactive oxygen species (ROS: O₂ •- , H₂O₂ and • OH), cell death, and lipid peroxidation; (ii) to modulate the activities of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX); and (iii) to cause DNA damage as determined by Comet assay in Lathyrus sativus L. root bioassay system. Antioxidants such as Tiron and dimethylthiourea significantly attenuated the ZnONP-induced oxidative and DNA damage, suggesting the involvement of ROS therein. Our study demonstrated that both ZnONP-GS and ZnONP-S induced oxidative stress and DNA damage to a similar extent but were significantly less potent than Zn 2+ alone.

  19. Defect induced modification of structural, topographical and magnetic properties of zinc ferrite thin films by swift heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Lisha [Department of Physics, Cochin University of Science and Technology, Cochin 682022 (India); Inter University Accelerator Center, New Delhi 110067 (India); Joy, P.A. [National Chemical Laboratory, Pune (India); Vijaykumar, B. Varma; Ramanujan, R.V. [School of Materials Science and Engineering, Nanyang Technological University (Singapore); Anantharaman, M.R., E-mail: mraiyer@gmail.com [Department of Physics, Cochin University of Science and Technology, Cochin 682022 (India)

    2017-04-01

    Highlights: • Zinc ferrite films exhibited room temperature ferrimagnetic property. • On ion irradiation amorphisation of films were observed. • The surface morphology undergoes changes with ion irradiation. • The saturation magnetisation decreases on ion irradiation. - Abstract: Swift heavy ion irradiation provides unique ways to modify physical and chemical properties of materials. In ferrites, the magnetic properties can change significantly as a result of swift heavy ion irradiation. Zinc ferrite is an antiferromagnet with a Neel temperature of 10 K and exhibits anomalous magnetic properties in the nano regime. Ion irradiation can cause amorphisation of zinc ferrite thin films; thus the role of crystallinity on magnetic properties can be examined. The influence of surface topography in these thin films can also be studied. Zinc ferrite thin films, of thickness 320 nm, prepared by RF sputtering were irradiated with 100 MeV Ag ions. Structural characterization showed amorphisation and subsequent reduction in particle size. The change in magnetic properties due to irradiation was correlated with structural and topographical effects of ion irradiation. A rough estimation of ion track radius is done from the magnetic studies.

  20. Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells

    DEFF Research Database (Denmark)

    Nygaard, Sanne Bjørn; Larsen, Agnete; Knuhtsen, Astrid

    2014-01-01

    BACKGROUND: Zinc is essential for the activities of pancreatic β-cells, especially insulin storage and secretion. Insulin secretion leads to co-release of zinc which contributes to the paracrine communication in the pancreatic islets. Zinc-transporting proteins (zinc-regulated transporter, iron......-regulated transporter-like proteins [ZIPs] and zinc transporters [ZnTs]) and metal-buffering proteins (metallothioneins, MTs) tightly regulate intracellular zinc homeostasis. The present study investigated how modulation of cellular zinc availability affects β-cell function using INS-1E cells. RESULTS: Using INS-1E...... cells, we found that zinc supplementation and zinc chelation had significant effects on insulin content and insulin secretion. Supplemental zinc within the physiological concentration range induced insulin secretion. Insulin content was reduced by zinc chelation with N,N,N',N-tektrakis(2-pyridylmethyl...

  1. Zinc in Infection and Inflammation

    Directory of Open Access Journals (Sweden)

    Nour Zahi Gammoh

    2017-06-01

    Full Text Available Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB, a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  2. Zinc in Infection and Inflammation.

    Science.gov (United States)

    Gammoh, Nour Zahi; Rink, Lothar

    2017-06-17

    Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

  3. Long-Term Effects of Ketogenic Diet on Subsequent Seizure-Induced Brain Injury During Early Adulthood: Relationship of Seizure Thresholds to Zinc Transporter-Related Gene Expressions.

    Science.gov (United States)

    Tian, Tian; Li, Li-Li; Zhang, Shu-Qi; Ni, Hong

    2016-12-01

    The divalent cation zinc is associated with cortical plasticity. However, the mechanism of zinc in the pathophysiology of cortical injury-associated neurobehavioral damage following neonatal seizures is uncertain. We have previously shown upregulated expression of ZnT-3; MT-3 in hippocampus of neonatal rats submitted to flurothyl-induced recurrent seizures, which was restored by pretreatment with ketogenic diet (KD). In this study, utilizing a novel "twist" seizure model by coupling early-life flurothyl-induced seizures with later exposure to penicillin, we further investigated the long-term effects of KD on cortical expression of zinc homeostasis-related genes in a systemic scale. Ten Sprague-Dawley rats were assigned each averagely into the non-seizure plus normal diet (NS + ND), non-seizure plus KD (NS + KD), recurrent seizures plus normal diet (RS + ND) and recurrent seizures plus KD (RS + KD) group. Recurrent seizures were induced by volatile flurothyl during P9-P21. During P23-P53, rats in NS + KD and RS + KD groups were dieted with KD. Neurological behavioral parameters of brain damage (plane righting reflex, cliff avoidance reflex, and open field test) were observed at P43. At P63, we examined seizure threshold using penicillin, then the cerebral cortex were evaluated for real-time RT-PCR and western blot study. The RS + ND group showed worse performances in neurological reflex tests and reduced latencies to myoclonic seizures induced by penicillin compared with the control, which was concomitant with altered expressions of ZnT-7, MT-1, MT-2, and ZIP7. Specifically, there was long-term elevated expression of ZIP7 in RS + ND group compared with that in NS + ND that was restored by chronic ketogenic diet (KD) treatment in RS + KD group, which was quite in parallel with the above neurobehavioral changes. Taken together, these findings indicate that the long-term altered expression of the metal transporter ZIP7 in adult cerebral cortex might

  4. Arsenite-induced ROS/RNS generation causes zinc loss and inhibits the activity of poly(ADP-ribose) polymerase-1.

    Science.gov (United States)

    Wang, Feng; Zhou, Xixi; Liu, Wenlan; Sun, Xi; Chen, Chen; Hudson, Laurie G; Jian Liu, Ke

    2013-08-01

    Arsenic enhances the genotoxicity of other carcinogenic agents such as ultraviolet radiation and benzo[a]pyrene. Recent reports suggest that inhibition of DNA repair is an important aspect of arsenic cocarcinogenesis, and DNA repair proteins such as poly(ADP ribose) polymerase (PARP)-1 are direct molecular targets of arsenic. Although arsenic has been shown to generate reactive oxygen/nitrogen species (ROS/RNS), little is known about the role of arsenic-induced ROS/RNS in the mechanism underlying arsenic inhibition of DNA repair. We report herein that arsenite-generated ROS/RNS inhibits PARP-1 activity in cells. Cellular exposure to arsenite, as well as hydrogen peroxide and NONOate (nitric oxide donor), decreased PARP-1 zinc content, enzymatic activity, and PARP-1 DNA binding. Furthermore, the effects of arsenite on PARP-1 activity, DNA binding, and zinc content were partially reversed by the antioxidant ascorbic acid, catalase, and the NOS inhibitor, aminoguanidine. Most importantly, arsenite incubation with purified PARP-1 protein in vitro did not alter PARP-1 activity or DNA-binding ability, whereas hydrogen peroxide or NONOate retained PARP-1 inhibitory activity. These results strongly suggest that cellular generation of ROS/RNS plays an important role in arsenite inhibition of PARP-1 activity, leading to the loss of PARP-1 DNA-binding ability and enzymatic activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction followed by atomic absorption spectrometry for trace determination of zinc in water and food samples

    International Nuclear Information System (INIS)

    Zeeb, M.; Sadeghi, M.

    2011-01-01

    We report on a new method for the microextraction and determination of zinc (II). The ion is accumulated via ionic-liquid cold-induced aggregation dispersive liquid-liquid microextraction (IL-CIA-DLLME) followed by flame atomic absorption spectrometry (FAAS). The ionic liquid (IL) 1-hexyl-3-methylimidazolium hexafluorophosphate is dispersed into a heated sample solution containing sodium hexafluorophosphate as a common ion source. The solution is then placed in an ice-water bath upon which a cloudy solution forms due to the decrease of the solubility of the IL. Zinc is complexed with 8-hydroxyquinoline and extracted into the IL. The enriched phase is dissolved in a diluting agent and introduced to the FAAS. The method is not influenced by variations in the ionic strength of the sample solution. Factors affecting the performance were evaluated and optimized. At optimum conditions, the limit of detection is 0.18 μg L -1 , and the relative standard deviation is 3.0% (at n=5). The method was validated by recovery experiments and by analyzing a certified reference material and successfully applied to the determination of Zn (II) in water and food samples. (author)

  6. Symptomatic zinc deficiency in experimental zinc deprivation.

    OpenAIRE

    Taylor, C M; Goode, H F; Aggett, P J; Bremner, I; Walker, B E; Kelleher, J

    1992-01-01

    An evaluation of indices of poor zinc status was undertaken in five male subjects in whom dietary zinc intake was reduced from 85 mumol d-1 in an initial phase of the study to 14 mumol d-1. One of the subjects developed features consistent with zinc deficiency after receiving the low zinc diet for 12 days. These features included retroauricular acneform macullo-papular lesions on the face, neck, and shoulders and reductions in plasma zinc, red blood cell zinc, neutrophil zinc and plasma alkal...

  7. Protective effect of ginger and zinc chloride mixture on the liver and kidney alterations induced by malathion toxicity.

    Science.gov (United States)

    Baiomy, Ahmed A; Attia, Hossam F; Soliman, Mohamed M; Makrum, Omar

    2015-03-01

    This study was carried out on four groups of male Wistar rats, 10 rats per group. Group I got open access to food intake and water with normal balanced diet. Group II was administered 400 mg ginger per kg body weight (BW) and zinc chloride (ZnCl2) (300 mg/L) diluted in tap water for 4 months. Group III was administered malathion at a dose of 50 mg/kg BW/day in 0.2 mL corn oil via gavages for 4 months. This dose equal to 1/50 of the LD50. Group IV was given a mixture of 400 mg ginger per kg BW and ZnCl2 (300 mg/L) diluted in tap water in addition to 100 mg malathion/kg BW for 4 months. The liver showed histopathological changes include congestion, edema, and leucocytic infiltrations which were ameliorated by the addition of ginger and ZnCl2 mixture. The kidney showed cloudy swelling and hydropic degeneration of the renal tubules. These changes were ameliorated by the addition of ginger and ZnCl2 mixture. Ki67 immunoreactivity was localized in the cytoplasm and nuclear membrane. Its expression was estimated as the percentage of cells positively stained by the antibody in the different groups. In conclusion, malathion was toxic to the liver and kidney and must be avoided and protected by the addition of ginger and zinc mixture. © The Author(s) 2015.

  8. The Protective Roles of Zinc and Magnesium in Cadmium-Induced Renal Toxicity in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Nasim Babaknejad

    2014-12-01

    Full Text Available Background: Cadmium (Cd is a heavy metal that has widespread use. It enters the food chain in different ways, including soil and water. Cadmium can cause dysfunction of different body organs. Zinc (Zn and magnesium (Mg supplementation can have protective effects against cadmium toxicity due to their antagonistic and antioxidants properties. This study examines the influence of supplemental Zn and Mg on Cd renal toxicity. Methods: Young male Wistar rats were divided into six groups of five. The Cd group received 1 mg Cd/kg and the control group received 0.5 mg/kg normal saline (i.p.. The other four groups were administered 1 mg/kg Cd+0.5 mg/kg Zn, 1 mg/kg Cd+1.5 mg/kg Zn, 1 mg/kg Cd+ 0.5 mg/kg Mg, and 1 mg/kg Cd+ 1.5 mg/kg Mg (i.p. for 21 days. Then, serum sodium, potassium, urea, creatinine, and protein levels were measured. Results: The results indicated that creatinine and protein levels decreased while urea, sodium, and potassium levels increased as a result of Cd exposure. Co-administered Cd and Zn and Mg decreased urea and increased sodium serum level in comparison to the cadmium group. Treatment by Mg, contrary to co-administered Cd and Zn, reduced serum protein level compared to the cadmium group. Compared to the cadmium treated group, Zn and Mg treatment enhanced serum creatinine level and reduced serum potassium level. Conclusion: The findings seem to suggest that zinc and magnesium compounds, due to their antagonistic and antioxidant activities, can protect Cd renal toxic effects in a dose-dependent manner.

  9. BWR fuel experience with zinc injection

    International Nuclear Information System (INIS)

    Levin, H.A.; Garcia, S.E.

    1995-01-01

    In 1982 a correlation between low primary recirculation system dose rates in BWR's and the presence of ionic zinc in reactor water was identified. The source of the zinc was primarily from Admiralty brass condensers. Plants with brass condensers are called ''natural zinc'' plants. Brass condensers were also a source of copper that was implicated in crude induced localized corrosion (CILC) fuel failures. In 1986 the first BWR intentionally injected zinc for the benefits of dose rate control. Although zinc alone was never implicated in fuel degradation of failures, a comprehensive fuel surveillance program was initiated to monitor fuel performance. Currently there are 14 plants that are injecting zinc. Six of these plants are also on hydrogen water chemistry. This paper describes the effect on both Zircaloy corrosion and the cruding characteristics as a result of these changes in water chemistry. Fuel rod corrosion was found to be independent of the specific water chemistry of the plants. The corrosion behavior was the same with the additions of zinc alone or zinc plus hydrogen and well within the operating experience for fuel without either of these additions. No change was observed in the amounts of crude deposited on the fuel rods, both for the adherent and loosely held deposits. One of the effects of the zinc addition was the trend to form more of the zinc rich iron spinel in the fuel deposits rather than the hematite deposits that are predominantly formed with non additive water chemistry

  10. Zinc and the modulation of redox homeostasis

    Science.gov (United States)

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  11. The cognitive impairment induced by zinc deficiency in rats aged 0∼2 months related to BDNF DNA methylation changes in the hippocampus.

    Science.gov (United States)

    Hu, Yan-Dan; Pang, Wei; He, Cong-Cong; Lu, Hao; Liu, Wei; Wang, Zi-Yu; Liu, Yan-Qiang; Huang, Cheng-Yu; Jiang, Yu-Gang

    2017-11-01

    This study was carried out to understand the effects of zinc deficiency in rats aged 0∼2 months on learning and memory, and the brain-derived neurotrophic factor (BDNF) gene methylation status in the hippocampus. The lactating mother rats were randomly divided into three groups (n = 12): zinc-adequate group (ZA: zinc 30 mg/kg diet), zinc-deprived group (ZD: zinc 1 mg/kg diet), and a pair-fed group (PF: zinc 30 mg/kg diet), in which the rats were pair-fed to those in the ZD group. After weaning (on day 23), offspring were fed the same diets as their mothers. After 37 days, the zinc concentrations in the plasma and hippocampus were measured, and the behavioral function of the offspring rats was measured using the passive avoidance performance test. We then assessed the DNA methylation patterns of the exon IX of BDNF by methylation-specific quantitative real-time PCR and the mRNA expression of BDNF in the hippocampus by RT-PCR. Compared with the ZA and PF groups, rats in the ZD group had shorter latency period, lower zinc concentrations in the plasma and hippocampus (P zinc-deficient diet during 0∼2 month period. Furthermore, this work supports the speculative notion that altered DNA methylation of BDNF in the hippocampus is one of the main causes of cognitive impairment by zinc deficiency.

  12. Effect of zinc treatment on intestinal motility in experimentally ...

    African Journals Online (AJOL)

    Effect of zinc treatment on intestinal motility in experimentally induced diarrhea in rats. ... Zinc supplementation is a critical new intervention for treating diarrheal episodes in children. Recent studies suggest that administration of zinc along with new low osmolarity oral rehydration solutions / salts (ORS) can reduce the ...

  13. Effects of metformin treatment on Iron, Zinc and Copper status concentration in the serum of female rats with induced polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Muhsin S. G. Al-Moziel

    2013-07-01

    Full Text Available This study conducted to investigate the effects of metformin drug on serum Iron, Zinc and Copper concentration in Estradiol Valerate(EV induced polycystic ovary syndrome(PCOS in virgin rats. Thirty virgin rats were randomly allotted to constitute Normal control (NC-I group and induced polycystic ovary (PCO-I and PCO-II groups having 10 rats in each group. Rats from NC-I group were administered intramuscularly with 0.2 ml of corn oil whereas polycystic ovary was induced in rats from PCO-I and PCO-II groups by administering single intra-muscular injection of estradiol Valerate 4mg/rat. The rats from PCO-I and PCO-II groups were left for 60 days for development of polycystic ovary syndrome. Animals from PCO-I group were then administered with 0.2 ml normal saline as oral gavage for 15 days, these animals were kept as PCO control group animals whereas those from PCO-II groups received metformin (50mg/kg B.wt as oral gavage for 15 days, these animals served as metformin treated PCO group animals. All the rats were thereafter sacrificed for collecting blood from inferior vena-cava. Serum samples from each rat were assessed for iron, zinc and copper status in each experimental group. The results revealed a significant (p≤0.05 increase in serum Fe and Zn and a significant (p≤0.05 decrease in serum Cu concentration in PCO group 1 compared with control non-treated group. The PCO group2 treated with metformin showed a significant (p≤0.05 decrease in serum Fe concentration as compared with those in animals from group NC-I and PCO-I. While, no significant differences were found in serum Zn concentration between all treated groups. On the other hand, a significant (p≤0.05 increase in serum Cu concentration appeared in metformin treated group compared with PCO group 1 which appears significant decrease compared with control group.

  14. Influence of soil zinc concentrations on zinc sensitivity and functional diversity of microbial communities

    International Nuclear Information System (INIS)

    Lock, K.; Janssen, C.R.

    2005-01-01

    Pollution induced community tolerance (PICT) is based on the phenomenon that toxic effects reduce survival of the most sensitive organisms, thus increasing community tolerance. Community tolerance for a contaminant is thus a strong indicator for the presence of that contaminant at the level of adverse concentrations. Here we assessed PICT in 11 soils contaminated with zinc runoff from galvanised electricity pylons and 11 reference soils sampled at 10 m distance from these pylons. Using PICT, the influence of background concentration and bioavailability of zinc on zinc sensitivity and functional diversity of microbial communities was assessed. Zinc sensitivity of microbial communities decreased significantly with increasing zinc concentrations in pore water and calcium chloride extracted fraction while no significant relationship was found with total zinc concentration in the soil. It was also found that functional diversity of microbial communities decreased with increasing zinc concentrations, indicating that increased tolerance is indeed an undesirable phenomenon when environmental quality is considered. The hypothesis that zinc sensitivity of microbial communities is related to background zinc concentration in pore water could not be confirmed. - Zinc sensitivity of microbial communities and functional diversity decrease with increasing zinc concentration in the pore water

  15. OsDOG, a gibberellin-induced A20/AN1 zinc-finger protein, negatively regulates gibberellin-mediated cell elongation in rice.

    Science.gov (United States)

    Liu, Yaju; Xu, Yunyuan; Xiao, Jun; Ma, Qibin; Li, Dan; Xue, Zhen; Chong, Kang

    2011-07-01

    The A20/AN1 zinc-finger proteins (ZFPs) play pivotal roles in animal immune responses and plant stress responses. From previous gibberellin (GA) microarray data and A20/AN1 ZFP family member association, we chose Oryza sativa dwarf rice with overexpression of gibberellin-induced gene (OsDOG) to examine its function in the GA pathway. OsDOG was induced by gibberellic acid (GA(3)) and repressed by the GA-synthesis inhibitor paclobutrazol. Different transgenic lines with constitutive expression of OsDOG showed dwarf phenotypes due to deficiency of cell elongation. Additional GA(1) and real-time PCR quantitative assay analyses confirmed that the decrease of GA(1) in the overexpression lines resulted from reduced expression of GA3ox2 and enhanced expression of GA2ox1 and GA2ox3. Adding exogenous GA rescued the constitutive expression phenotypes of the transgenic lines. OsDOG has a novel function in regulating GA homeostasis and in negative maintenance of plant cell elongation in rice. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Zinc Signals and Immunity.

    Science.gov (United States)

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  17. Zinc and Regulation of Inflammatory Cytokines: Implications for Cardiometabolic Disease

    Science.gov (United States)

    Foster, Meika; Samman, Samir

    2012-01-01

    In atherosclerosis and diabetes mellitus, the concomitant presence of low-grade systemic inflammation and mild zinc deficiency highlights a role for zinc nutrition in the management of chronic disease. This review aims to evaluate the literature that reports on the interactions of zinc and cytokines. In humans, inflammatory cytokines have been shown both to up- and down-regulate the expression of specific cellular zinc transporters in response to an increased demand for zinc in inflammatory conditions. The acute phase response includes a rapid decline in the plasma zinc concentration as a result of the redistribution of zinc into cellular compartments. Zinc deficiency influences the generation of cytokines, including IL-1β, IL-2, IL-6, and TNF-α, and in response to zinc supplementation plasma cytokines exhibit a dose-dependent response. The mechanism of action may reflect the ability of zinc to either induce or inhibit the activation of NF-κB. Confounders in understanding the zinc-cytokine relationship on the basis of in vitro experimentation include methodological issues such as the cell type and the means of activating cells in culture. Impaired zinc homeostasis and chronic inflammation feature prominently in a number of cardiometabolic diseases. Given the high prevalence of zinc deficiency and chronic disease globally, the interplay of zinc and inflammation warrants further examination. PMID:22852057

  18. Ameliorative effects of selenium and zinc

    African Journals Online (AJOL)

    Methidathion-induced hematological, biochemical and hepatohistological alterations in rat: Ameliorative effects of selenium and zinc. L Barkat, A Boumendjel, C Abdennour, MS Boulakoud, A El Feki, M Messarah ...

  19. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats

    International Nuclear Information System (INIS)

    Brzóska, Malgorzata M.; Rogalska, Joanna

    2013-01-01

    It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60 mg/l) or/and Cd (5 and 50 mg/l) for 6 months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system. - Highlights: • Cd induces oxidative stress in the bone tissue. • Cd disturbs bone metabolism via disorder of the RANK/RANKL/OPG system balance. • Zn supplementation protects from Cd-induced oxidative stress in the bone tissue. • Zn protects from the RANK/RANKL/OPG system imbalance caused by Cd in the bone tissue. • Enhanced Zn intake protects from Cd-induced

  20. Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats

    Energy Technology Data Exchange (ETDEWEB)

    Brzóska, Malgorzata M., E-mail: Malgorzata.Brzoska@umb.edu.pl; Rogalska, Joanna

    2013-10-01

    It was investigated whether protective influence of zinc (Zn) against cadmium (Cd)-induced disorders in bone metabolism may be related to its antioxidative properties and impact on the receptor activator of nuclear factor (NF)-κΒ (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system. Numerous indices of oxidative/antioxidative status, and Cd and Zn were determined in the distal femur of the rats administered Zn (30 and 60 mg/l) or/and Cd (5 and 50 mg/l) for 6 months. Soluble RANKL (sRANKL) and OPG were measured in the bone and serum. Zn supplementation importantly protected from Cd-induced oxidative stress preventing protein, DNA, and lipid oxidation in the bone. Moreover, Zn protected from the Cd-induced increase in sRANKL concentration and the sRANKL/OPG ratio, and decrease in OPG concentration in the bone and serum. Numerous correlations were noted between indices of the oxidative/antioxidative bone status, concentrations of sRANKL and OPG in the bone and serum, as well as the bone concentrations of Zn and Cd, and previously reported by us in these animals (Brzóska et al., 2007) indices of bone turnover and bone mineral density. The results allow us to conclude that the ability of Zn to prevent from oxidative stress and the RANK/RANKL/OPG system imbalance may be implicated in the mechanisms of its protective impact against Cd-induced bone damage. This paper is the first report from an in vivo study providing evidence that beneficial Zn impact on the skeleton under exposure to Cd is related to the improvement of the bone tissue oxidative/antioxidative status and mediating the RANK/RANKL/OPG system. - Highlights: • Cd induces oxidative stress in the bone tissue. • Cd disturbs bone metabolism via disorder of the RANK/RANKL/OPG system balance. • Zn supplementation protects from Cd-induced oxidative stress in the bone tissue. • Zn protects from the RANK/RANKL/OPG system imbalance caused by Cd in the bone tissue. • Enhanced Zn intake protects from Cd-induced

  1. Ketamine-induced behavioural and brain oxidative changes in mice: an assessment of possible beneficial effects of zinc as mono- or adjunct therapy.

    Science.gov (United States)

    Onaolapo, Olakunle James; Ademakinwa, Olayemi Quyyom; Olalekan, Temitayo Opeyemi; Onaolapo, Adejoke Yetunde

    2017-09-01

    We studied the influence of zinc, haloperidol or olanzapine on neurobehaviour (open-field, radial arm maze and elevated plus maze) and brain antioxidant status in vehicle- or ketamine-treated mice, with the aim of ascertaining the potentials of zinc in counteracting ketamine's effects. Experiment 1 assessed the effects of zinc in healthy animals and the relative degrees of modulation of ketamine's effects by zinc, haloperidol or olanzapine, respectively. Experiment 2 assessed the modulation of ketamine's effects following co-administration of zinc with haloperidol or olanzapine. Male mice weighing 18-20 g each were used. Animals were pretreated with ketamine (except vehicle, zinc, haloperidol and olanzapine controls) for 10 days before commencement of 14-day treatment (day 11-24) with vehicle, zinc, haloperidol or olanzapine (alone or in combination). Ketamine injection also continued alongside zinc and/or standard drugs in the ketamine-treated groups. Zinc, haloperidol and olanzapine were administered by gavage. Treatments were given daily and behaviours assessed on days 11 and 24. On day 24, animals were sacrificed and whole brain homogenates used for estimation of glutathione, nitric oxide and malondialdehyde (MDA) levels. Ketamine increased open-field behaviours, nitric oxide and MDA levels, while it decreased working memory, social interaction and glutathione. Administration of zinc alone or in combination with haloperidol or olanzapine was associated with variable degrees of reversal of these effects. Zinc may have the potential of a possible therapeutic agent and/or adjunct in the reversal of schizophrenia-like changes in behaviour and brain oxidative status.

  2. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes.

    Science.gov (United States)

    Lee, Sook-Jeong; Koh, Jae-Young

    2010-10-26

    Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress.Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity.The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the pathogenesis of various neurological

  3. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes

    Directory of Open Access Journals (Sweden)

    Lee Sook-Jeong

    2010-10-01

    Full Text Available Abstract Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress. Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity. The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the

  4. Highly toughened polypropylene/ethylene–propylene-diene monomer/zinc dimethacrylate ternary blends prepared via peroxide-induced dynamic vulcanization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yukun, E-mail: cyk@scut.edu.cn [The Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640 (China); School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Xu, Chuanhui [College of Material Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Cao, Liming [The Key Laboratory of Polymer Processing Engineering, Ministry of Education, South China University of Technology, Guangzhou 510640 (China); School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Cao, Xiaodong [College of Material Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2013-02-15

    Polypropylene (PP)/ethylene–propylene-diene monomer (EPDM)/zinc dimethacrylate (ZDMA) blends with remarkable toughness and extensibility were successfully prepared via peroxide dynamical vulcanization. A unique structure with the EPDM particles surrounded by a transition zone containing numerous polymerized ZDMA (PZDMA) nano-particles was observed for the first time by using transmission electron microscopy (TEM) examination, which contributed to the dramatically increase of Izod impact strength. Dynamic mechanical analysis (DMA) confirmed that the possible PZDMA graft products resulted from peroxide dynamical vulcanization improved the compatibility between EPDM and PP phases. The specific morphology of the PP/EPDM/ZDMA blends indicated that ZDMA can lead to size reduction and good distribution uniformity of the crosslinked rubber particles and the increase of adhesion between PP matrix and EPDM phases during deformation. The synergic effect of the increase in the effective volume of the EPDM phase, the improved compatibility and adhesion between EPDM and PP phases and the deformation of those fine rubber particles is believed to result in the remarkable high toughness and extensibility of the PP/EPDM/ZDMA blends. Particularly for the PP/EPDM ratio of 70/30, the PP/EPDM/ZDMA (70/30/9, w/w/w) ternary blends with the Izod impact strength nearly 2 times higher than PP/EPDM (70/30, w/w) binary blends and 15–20 times higher than PP are achieved; besides, the elongation at break of PP/EPDM/ZDMA ternary blends is 4–5 times higher than that of PP/EPDM binary blends. - Highlights: ► ZDMA largely toughen peroxide dynamically vulcanized PP/EPDM blend. ► PZDMA graft products improved the compatibility and adhesion between EPDM and PP. ► Size reduction and good distribution uniformity of crosslinked rubber particles.

  5. Highly toughened polypropylene/ethylene–propylene-diene monomer/zinc dimethacrylate ternary blends prepared via peroxide-induced dynamic vulcanization

    International Nuclear Information System (INIS)

    Chen, Yukun; Xu, Chuanhui; Cao, Liming; Cao, Xiaodong

    2013-01-01

    Polypropylene (PP)/ethylene–propylene-diene monomer (EPDM)/zinc dimethacrylate (ZDMA) blends with remarkable toughness and extensibility were successfully prepared via peroxide dynamical vulcanization. A unique structure with the EPDM particles surrounded by a transition zone containing numerous polymerized ZDMA (PZDMA) nano-particles was observed for the first time by using transmission electron microscopy (TEM) examination, which contributed to the dramatically increase of Izod impact strength. Dynamic mechanical analysis (DMA) confirmed that the possible PZDMA graft products resulted from peroxide dynamical vulcanization improved the compatibility between EPDM and PP phases. The specific morphology of the PP/EPDM/ZDMA blends indicated that ZDMA can lead to size reduction and good distribution uniformity of the crosslinked rubber particles and the increase of adhesion between PP matrix and EPDM phases during deformation. The synergic effect of the increase in the effective volume of the EPDM phase, the improved compatibility and adhesion between EPDM and PP phases and the deformation of those fine rubber particles is believed to result in the remarkable high toughness and extensibility of the PP/EPDM/ZDMA blends. Particularly for the PP/EPDM ratio of 70/30, the PP/EPDM/ZDMA (70/30/9, w/w/w) ternary blends with the Izod impact strength nearly 2 times higher than PP/EPDM (70/30, w/w) binary blends and 15–20 times higher than PP are achieved; besides, the elongation at break of PP/EPDM/ZDMA ternary blends is 4–5 times higher than that of PP/EPDM binary blends. - Highlights: ► ZDMA largely toughen peroxide dynamically vulcanized PP/EPDM blend. ► PZDMA graft products improved the compatibility and adhesion between EPDM and PP. ► Size reduction and good distribution uniformity of crosslinked rubber particles

  6. Production of zinc pellets

    Science.gov (United States)

    Cooper, J.F.

    1996-11-26

    Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.

  7. Microsomal Glutathione Transferase 1 Protects Against Toxicity Induced by Silica Nanoparticles but Not by Zinc Oxide Nanoparticles

    Science.gov (United States)

    2012-01-01

    Microsomal glutathione transferase 1 (MGST1) is an antioxidant enzyme located predominantly in the mitochondrial outer membrane and endoplasmic reticulum and has been shown to protect cells from lipid peroxidation induced by a variety of cytostatic drugs and pro-oxidant stimuli. We hypothesized that MGST1 may also protect against nanomaterial-induced cytotoxicity through a specific effect on lipid peroxidation. We evaluated the induction of cytotoxicity and oxidative stress by TiO2, CeO2, SiO2, and ZnO in the human MCF-7 cell line with or without overexpression of MGST1. SiO2 and ZnO nanoparticles caused dose- and time-dependent toxicity, whereas no obvious cytotoxic effects were induced by nanoparticles of TiO2 and CeO2. We also noted pronounced cytotoxicity for three out of four additional SiO2 nanoparticles tested. Overexpression of MGST1 reversed the cytotoxicity of the main SiO2 nanoparticles tested and for one of the supplementary SiO2 nanoparticles but did not protect cells against ZnO-induced cytotoxic effects. The data point toward a role of lipid peroxidation in SiO2 nanoparticle-induced cell death. For ZnO nanoparticles, rapid dissolution was observed, and the subsequent interaction of Zn2+ with cellular targets is likely to contribute to the cytotoxic effects. A direct inhibition of MGST1 by Zn2+ could provide a possible explanation for the lack of protection against ZnO nanoparticles in this model. Our data also showed that SiO2 nanoparticle-induced cytotoxicity is mitigated in the presence of serum, potentially through masking of reactive surface groups by serum proteins, whereas ZnO nanoparticles were cytotoxic both in the presence and in the absence of serum. PMID:22303956

  8. Hippocampus-like corticoneurogenesis induced by two isoforms of the BTB-zinc finger gene Zbtb20 in mice

    DEFF Research Database (Denmark)

    Nielsen, Jakob V; Nielsen, Flemming H; Ismail, Rola

    2007-01-01

    result in behavioral abnormalities suggestive of a deficient processing of visual and spatial memory cues in the cerebral cortex of adult Zbtb20 transgenic mice. Overall, our in vivo data suggest that Zbtb20 functions as a molecular switch for a pathway that induces invariant pyramidal neuron...

  9. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages.

    Science.gov (United States)

    Pati, Rashmirekha; Mehta, Ranjit Kumar; Mohanty, Soumitra; Padhi, Avinash; Sengupta, Mitali; Vaseeharan, Baskarlingam; Goswami, Chandan; Sonawane, Avinash

    2014-08-01

    Here we studied immunological and antibacterial mechanisms of zinc oxide nanoparticles (ZnO-NPs) against human pathogens. ZnO-NPs showed more activity against Staphylococcus aureus and least against Mycobacterium bovis-BCG. However, BCG killing was significantly increased in synergy with antituberculous-drug rifampicin. Antibacterial mechanistic studies showed that ZnO-NPs disrupt bacterial cell membrane integrity, reduce cell surface hydrophobicity and down-regulate the transcription of oxidative stress-resistance genes in bacteria. ZnO-NP treatment also augmented the intracellular bacterial killing by inducing reactive oxygen species production and co-localization with Mycobacterium smegmatis-GFP in macrophages. Moreover, ZnO-NPs disrupted biofilm formation and inhibited hemolysis by hemolysin toxin producing S. aureus. Intradermal administration of ZnO-NPs significantly reduced the skin infection, bacterial load and inflammation in mice, and also improved infected skin architecture. We envision that this study offers novel insights into antimicrobial actions of ZnO-NPs and also demonstrates ZnO-NPs as a novel class of topical anti-infective agent for the treatment of skin infections. This in-depth study demonstrates properties of ZnO nanoparticles in infection prevention and treatment in several skin infection models, dissecting the potential mechanisms of action of these nanoparticles and paving the way to human applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Analysis of interfacial energy states in Au/pentacene/polyimide/indium-zinc-oxide diodes by electroluminescence spectroscopy and electric-field-induced optical second-harmonic generation measurement

    Science.gov (United States)

    Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2016-03-01

    By using electroluminescence (EL) spectroscopy and electric-field-induced optical second-harmonic generation (EFISHG) measurement, we analyzed interfacial energy states in Au/pentacene/polyimide/indium-zinc-oxide (IZO) diodes, to characterize the pentacene/polyimide interface. Under positive voltage application to the Au electrode with reference to the IZO electrode, the EFISHG showed that holes are injected from Au electrode, and accumulate at the pentacene/polyimide interface with the surface charge density of Qs = 3.8 × 10-7 C/cm2. The EL spectra suggested that the accumulated holes are not merely located in the pentacene but they are transferred to the interface states of polyimide. These accumulated holes distribute with the interface state density greater than 1012 cm-2 eV-1 in the range E = 1.5-1.8 and 1.7-2.4 eV in pentacene and in polyimide, respectively, under assumption that accumulated holes govern recombination radiation. The EL-EFISHG measurement is helpful to characterize organic-organic layer interfaces in organic devices and provides a way to analyze interface energy states.

  11. Autoradiographic studies of the protein metabolism and histochemical demonstration of the zinc content of the brain in diabetic rats. 1. Streptozotocin-induced diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Gatzke, H D [Freie Univ. Berlin (Germany, F.R.); Wildmeister, W [Krankenhaus Kempen (Germany, F.R.). Innere Klinik

    1979-11-01

    Diabetes mellitus was induced in rats by application of streptozotocin: 40 mg/kg body weight streptozotocin produced a fairly serious diabetes with minimal ketosis, 125 mg/kg body weight streptozotocin caused a severe diabetic keto-acidosis. After 72 hours these animals and also a group of control animals received 308 MBq/animal /sup 3/H-leucine intraperitoneally. By means of stripping film autoradiograms the rates of uptake of /sup 3/H-leucine in different areas of the rat brain were measured. The values of the control animals were compared with those of a fairly serious diabetes and those of a severe diabetic keto-acidosis. In the regions of the neocortex parietalis and of the thalamus the /sup 3/H-leucine values of the diabetic animals were considerably lower in comparison with the controls, and that irrespective of the degree of severity of the diabetic disease. Compared with the control animals the /sup 3/H-leucine values as well as the zinc content of diabetic animals decreased according to the degree of severity of the disease within the Ammon's horn and the dentate fascia. The particular significance of the Ammon's horn and the dentate fascia concerning diabetic metabolic conditions was discussed.

  12. Analysis of current-voltage characteristics of Au/pentacene/fluorine polymer/indium zinc oxide diodes by electric-field-induced optical second-harmonic generation

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 S3-33, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2015-06-28

    By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model.

  13. Analysis of current-voltage characteristics of Au/pentacene/fluorine polymer/indium zinc oxide diodes by electric-field-induced optical second-harmonic generation

    International Nuclear Information System (INIS)

    Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2015-01-01

    By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model

  14. Synergistic effect of bolus exposure to zinc oxide nanoparticles on bleomycin-induced secretion of pro-fibrotic cytokines without lasting fibrotic changes in murine lungs.

    Science.gov (United States)

    Wu, Wenting; Ichihara, Gaku; Hashimoto, Naozumi; Hasegawa, Yoshinori; Hayashi, Yasuhiko; Tada-Oikawa, Saeko; Suzuki, Yuka; Chang, Jie; Kato, Masashi; D'Alessandro-Gabazza, Corina N; Gabazza, Esteban C; Ichihara, Sahoko

    2014-12-30

    Zinc oxide (ZnO) nanoparticles are widely used in various products, and the safety evaluation of this manufactured material is important. The present study investigated the inflammatory and fibrotic effects of pulmonary exposure to ZnO nanoparticles in a mouse model of pulmonary fibrosis. Pulmonary fibrosis was induced by constant subcutaneous infusion of bleomycin (BLM). Female C57BL/6Jcl mice were divided into BLM-treated and non-treated groups. In each treatment group, 0, 10, 20 or 30 µg of ZnO nanoparticles were delivered into the lungs through pharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) and the lungs were sampled at Day 10 or 14 after administration. Pulmonary exposure by a single bolus of ZnO nanoparticles resulted in severe, but transient inflammatory infiltration and thickening of the alveolar septa in the lungs, along with the increase of total and differential cell counts in BLAF. The BALF level of interleukin (IL)-1β and transforming growth factor (TGF)-β was increased at Day 10 and 14, respectively. At Day 10, the synergistic effect of BLM and ZnO exposure was detected on IL-1β and monocyte chemotactic protein (MCP)-1 in BALF. The present study demonstrated the synergistic effect of pulmonary exposure to ZnO nanoparticles and subcutaneous infusion of BLM on the secretion of pro-fibrotic cytokines in the lungs.

  15. Effect of zinc gluconate, sage oil on inflammatory patterns and hyperglycemia in zinc deficient diabetic rats.

    Science.gov (United States)

    Elseweidy, Mohamed M; Ali, Abdel-Moniem A; Elabidine, Nabila Zein; Mursey, Nada M

    2017-11-01

    The relationship between zinc homeostasis and pancreatic function had been established. In this study we aimed firstly to configure the inflammatory pattern and hyperglycemia in zinc deficient diabetic rats. Secondly to illustrate the effect of two selected agents namely Zinc gluconate and sage oil (Salvia Officinalis, family Lamiaceae). Rats were fed on Zinc deficient diet, deionized water for 28days along with Zinc level check up at intervals to achieve zinc deficient state then rats were rendered diabetic through receiving one dose of alloxan monohydrate (120mg/kg) body weight, classified later into 5 subgroups. Treatment with sage oil (0.042mg/kg IP) and Zinc gluconate orally (150mg/kg) body weight daily for 8 weeks significantly reduced serum glucose, C-reactive protein (CRP), Tumor necrosis factor alpha (TNF- α), interleukins-6 1 β, inflammatory8 (IFN ȣ), pancreatic 1L1-β along with an increase in serum Zinc and pancreatic Zinc transporter 8 (ZNT8). Histopathological results of pancreatic tissues showed a good correlation with the biochemical findings. Both sage oil and zinc gluconate induced an improvement in the glycemic and inflammatory states. This may be of value like the therapeutic agent for diabetes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Dietary phytate, zinc and hidden zinc deficiency.

    Science.gov (United States)

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Contribution to depth profiling by particle induced X-ray emission application to the study of zinc diffusion in AgZn alloy

    International Nuclear Information System (INIS)

    Frontier, J.P.

    1987-08-01

    A contribution of the study of the capacities of Particle Induced X-ray Emission (P.I.X.E.) for depth profiling, in the range of 1 to 10 micrometers and over, is presented here. It is shown that, in a non destructuve way, the concentration profile of a given element can be obtained, in principle, by deconvoluting the X-ray yields of this element, measured in a set of experiments in which the energy of the impinging protons, hence their range, is systematically varied. Direct deconvolution procedure, which leads to the inversion of an ill-conditionned matrix is unsuitable. So we generalized the iterative procedure previously used by Vegh to solve a similar problem. Alternatively we also used a fitting procedure of several parameters which gave us somewhat better than those of the iterative procedure. Both algorithms where applied to a set of X-ray yields induced by protons of energy between 0.45 to 2 MeV, corresponding to the first 6 micrometers of various depletion profiles of zinc in an initially homogeneous Ag-3 at % Zn annealed under vacuum. For investigation of deeper layers, a sectionning technique which consists in analysing thin film hydroxide targets by specific chemistry of tiny turning, was developped with success. Cross-reference of all the obtained profiles was made with electron microprobe determination on transverse section, and with the predictions of the theory of atomic diffusion. In addition, the possibilities of increasing the depth resolution by developping techniques either of controled sanding of the surface, or analysis of the sample is discussed [fr

  18. BWR zinc addition Sourcebook

    International Nuclear Information System (INIS)

    Garcia, Susan E.; Giannelli, Joseph F.; Jarvis, Alfred J.

    2014-01-01

    Boiling Water Reactors (BWRs) have been injecting zinc into the primary coolant via the reactor feedwater system for over 25 years for the purpose of controlling primary system radiation fields. The BWR zinc injection process has evolved since the initial application at the Hope Creek Nuclear Station in 1986. Key transitions were from the original natural zinc oxide (NZO) to depleted zinc oxide (DZO), and from active zinc injection of a powdered zinc oxide slurry (pumped systems) to passive injection systems (zinc pellet beds). Zinc addition has continued through various chemistry regimes changes, from normal water chemistry (NWC) to hydrogen water chemistry (HWC) and HWC with noble metals (NobleChem™) for mitigation of intergranular stress corrosion cracking (IGSCC) of reactor internals and primary system piping. While past reports published by the Electric Power Research Institute (EPRI) document specific industry experience related to these topics, the Zinc Sourcebook was prepared to consolidate all of the experience gained over the past 25 years. The Zinc Sourcebook will benefit experienced BWR Chemistry, Operations, Radiation Protection and Engineering personnel as well as new people entering the nuclear power industry. While all North American BWRs implement feedwater zinc injection, a number of other BWRs do not inject zinc. This Sourcebook will also be a valuable resource to plants considering the benefits of zinc addition process implementation, and to gain insights on industry experience related to zinc process control and best practices. This paper presents some of the highlights from the Sourcebook. (author)

  19. Method of capturing or trapping zinc using zinc getter materials

    Science.gov (United States)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  20. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yuka; Tada-Oikawa, Saeko [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Ichihara, Gaku [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yabata, Masayuki; Izuoka, Kiyora [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Suzuki, Masako; Sakai, Kiyoshi [Nagoya City Public Health Research Institute, Nagoya (Japan); Ichihara, Sahoko, E-mail: saho@gene.mie-u.ac.jp [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan)

    2014-07-01

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocyte chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.

  1. Chronic waterborne zinc and cadmium exposures induced different responses towards oxidative stress in the liver of zebrafish

    International Nuclear Information System (INIS)

    Zheng, Jia-Lang; Yuan, Shuang-Shuang; Wu, Chang-Wen; Li, Wei-Ye

    2016-01-01

    Highlights: • Zn and Cd induced some differences in oxidative damage in the liver of zebrafish. • Zn and Cd enhanced expression of Cu/Zn-SOD and CAT through Nrf2 pathway. • Zn and Cd did not affected protein levels of CAT. • Cd inhibited biological activities of Cu/Zn-SOD and CAT proteins. • Zn stimulated activity and protein levels of Cu/Zn-SOD. - Abstract: Based on the same toxic level of 0.6% LC_5_0 for 96-h and the severe situation of water pollution, we compared effects of chronic Zn (180 μg L"−"1) and Cd exposures (30 μg L"−"1) on growth, survival, histology, ultrastructure, and oxidative stress in the liver of zebrafish for 5 weeks. Growth performance and survival rate remained relatively constant under Zn stress, but was reduced under Cd exposure. Cd exposure also induced severe pyknotic nuclei, evident ultrastructure damage, and considerable lipid inclusions in the hepatocytes. However, these phenomena were not pronounced under Zn exposure. The negative effects caused by Cd may be explained by an increase in hepatic oxidative damage, as reflected by the enhanced levels of lipid peroxidation (LPO) and protein carbonylation (PC). The reduced activity of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) and catalase (CAT) may result in the enhanced hepatic oxidative damage, though the mRNA and protein levels of both genes increased and remained unchanged respectively. On the contrary, Zn up-regulated the levels of mRNA, protein and activity of Cu/Zn-SOD, which may contribute to the decreased LPO levels. Nonetheless, the sharply up-regulated mRNA levels of CAT did not induce an increase in the protein and activity levels of CAT under Zn stress. Furthermore, transcription factor NF-E2-related factor 2 (Nrf2) expression parelleled with its target genes, suggesting that Nrf2 is required for the protracted induction of antioxidant genes. In conclusion, our data demonstrated that essential and non-essential metals induced some differences in oxidative damage

  2. Chronic waterborne zinc and cadmium exposures induced different responses towards oxidative stress in the liver of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jia-Lang, E-mail: zhengjialang@aliyun.com [National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022 (China); Yuan, Shuang-Shuang; Wu, Chang-Wen [National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022 (China); Li, Wei-Ye [Zhoushan fisheries research institute, Zhoushan 316022 (China)

    2016-08-15

    Highlights: • Zn and Cd induced some differences in oxidative damage in the liver of zebrafish. • Zn and Cd enhanced expression of Cu/Zn-SOD and CAT through Nrf2 pathway. • Zn and Cd did not affected protein levels of CAT. • Cd inhibited biological activities of Cu/Zn-SOD and CAT proteins. • Zn stimulated activity and protein levels of Cu/Zn-SOD. - Abstract: Based on the same toxic level of 0.6% LC{sub 50} for 96-h and the severe situation of water pollution, we compared effects of chronic Zn (180 μg L{sup −1}) and Cd exposures (30 μg L{sup −1}) on growth, survival, histology, ultrastructure, and oxidative stress in the liver of zebrafish for 5 weeks. Growth performance and survival rate remained relatively constant under Zn stress, but was reduced under Cd exposure. Cd exposure also induced severe pyknotic nuclei, evident ultrastructure damage, and considerable lipid inclusions in the hepatocytes. However, these phenomena were not pronounced under Zn exposure. The negative effects caused by Cd may be explained by an increase in hepatic oxidative damage, as reflected by the enhanced levels of lipid peroxidation (LPO) and protein carbonylation (PC). The reduced activity of Cu/Zn-superoxide dismutase (Cu/Zn-SOD) and catalase (CAT) may result in the enhanced hepatic oxidative damage, though the mRNA and protein levels of both genes increased and remained unchanged respectively. On the contrary, Zn up-regulated the levels of mRNA, protein and activity of Cu/Zn-SOD, which may contribute to the decreased LPO levels. Nonetheless, the sharply up-regulated mRNA levels of CAT did not induce an increase in the protein and activity levels of CAT under Zn stress. Furthermore, transcription factor NF-E2-related factor 2 (Nrf2) expression parelleled with its target genes, suggesting that Nrf2 is required for the protracted induction of antioxidant genes. In conclusion, our data demonstrated that essential and non-essential metals induced some differences in

  3. Magnetic field-induced cluster formation and variation of magneto-optical signals in zinc-substituted ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Nair, S.S. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India)]. E-mail: swapna@cusat.ac.in; Rajesh, S. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India); Abraham, V.S. [School of Engineering and Sciences, International University of Bremen, 28759 (Germany); Anantharaman, M.R. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India)]. E-mail: mraiyer@yahoo.com; Nampoori, V.P.N. [International School of Photonics, Cochin University of Science and Technology, Cochin-22 (India)

    2006-10-15

    Fine magnetic particles (size{approx_equal}100 A) belonging to the series Zn {sub x} Fe{sub 1-} {sub x} Fe{sub 2}O{sub 4} were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically.

  4. Soft solution synthesis and intense visible photoluminescence of lamellar zinc oxide hybrids

    International Nuclear Information System (INIS)

    Sağlam, Özge

    2013-01-01

    Graphical abstract: -- In this study, we demonstrate the synthesis of layered zinc oxide films intercalated with dodecyl sulphate ions by a simple soft solution process. The presence of potassium (K + ) and lithium (Li + ) ions in the precursor solution of layered zinc hydroxide resulted in lamellar hybrid zinc oxide films instead of layered zinc hydroxides. On the other hand, the addition of nickel phthalocyanine induces zinc hydroxide host layers which exhibit an intense blue emission. This is also promoted by K + and Li + ions

  5. Zinc at glutamatergic synapses.

    Science.gov (United States)

    Paoletti, P; Vergnano, A M; Barbour, B; Casado, M

    2009-01-12

    It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.

  6. Zinc oxide overdose

    Science.gov (United States)

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  7. Over-Expression of Copper/Zinc Superoxide Dismutase in the Median Preoptic Nucleus Attenuates Chronic Angiotensin II-Induced Hypertension in the Rat

    Directory of Open Access Journals (Sweden)

    John P. Collister

    2014-12-01

    Full Text Available The brain senses circulating levels of angiotensin II (AngII via circumventricular organs, such as the subfornical organ (SFO, and is thought to adjust sympathetic nervous system output accordingly via this neuro-hormonal communication. However, the cellular signaling mechanisms involved in these communications remain to be fully understood. Previous lesion studies of either the SFO, or the downstream median preoptic nucleus (MnPO have shown a diminution of the hypertensive effects of chronic AngII, without providing a clear explanation as to the intracellular signaling pathway(s involved. Additional studies have reported that over-expressing copper/zinc superoxide dismutase (CuZnSOD, an intracellular superoxide (O2·− scavenging enzyme, in the SFO attenuates chronic AngII-induced hypertension. Herein, we tested the hypothesis that overproduction of O2·− in the MnPO is an underlying mechanism in the long-term hypertensive effects of chronic AngII. Adenoviral vectors encoding human CuZnSOD (AdCuZnSOD or control vector (AdEmpty were injected directly into the MnPO of rats implanted with aortic telemetric transmitters for recording of arterial pressure. After a 3 day control period of saline infusion, rats were intravenously infused with AngII (10 ng/kg/min for ten days. Rats over-expressing CuZnSOD (n = 7 in the MnPO had a blood pressure increase of only 6 ± 2 mmHg after ten days of AngII infusion while blood pressure increased 21 ± 4 mmHg in AdEmpty-infected rats (n = 9. These results support the hypothesis that production of O2·− in the MnPO contributes to the development of chronic AngII-dependent hypertension.

  8. Zinc and gastrointestinal disease

    Institute of Scientific and Technical Information of China (English)

    Sonja; Skrovanek; Katherine; DiGuilio; Robert; Bailey; William; Huntington; Ryan; Urbas; Barani; Mayilvaganan; Giancarlo; Mercogliano; James; M; Mullin

    2014-01-01

    This review is a current summary of the role that both zinc deficiency and zinc supplementation can play in the etiology and therapy of a wide range of gastrointestinal diseases. The recent literature describing zinc action on gastrointestinal epithelial tight junctions and epithelial barrier function is described. Zinc enhancement of gastrointestinal epithelial barrier function may figure prominently in its potential therapeutic action in several gastrointestinal diseases.

  9. Construction and application of a zinc-specific biosensor for assessing the immobilization and bioavailability of zinc in different soils

    International Nuclear Information System (INIS)

    Liu Pulin; Huang Qiaoyun; Chen Wenli

    2012-01-01

    The inducibility and specificity of different czcRS operons in Pseudomonas putida X4 were studied by lacZ gene fusions. The data of β-glycosidase activity confirmed that the czcR3 promoter responded quantitatively to zinc. A zinc-specific biosensor, P. putida X4 (pczcR3GFP), was constructed by fusing a promoterless enhanced green fluorescent protein (egfp) gene with the czcR3 promoter in the chromosome of P. putida X4. In water extracts of four different soils amended with zinc, the reporter strain detected about 90% of the zinc content of the samples. Both the bioavailability assessment and the sequential extraction analysis demonstrated that the immobilization of zinc was highly dependent on the physico-chemical properties of soils. The results also showed that the lability of zinc decreased over time. It is concluded that the biosensor constitutes an alternative system for the convenient evaluation of zinc toxicity in the environment. - Highlights: ► A zinc-specific bacterial biosensor was developed. ► Four spiked soils were used to test the application of this biosensor. ► The bioavailable zinc in soil-water extracts decreased due to aging. ► The immobilization and speciation of zinc were highly dependent on the soil type. - The immobilization and bioavailability of zinc in soil were investigated as a function of soil type and aging by a newly constructed zinc-specific biosensor coupled with chemical analysis.

  10. Vacuolar zinc transporter Zrc1 is required for detoxification of excess intracellular zinc in the human fungal pathogen Cryptococcus neoformans.

    Science.gov (United States)

    Cho, Minsu; Hu, Guanggan; Caza, Mélissa; Horianopoulos, Linda C; Kronstad, James W; Jung, Won Hee

    2018-01-01

    Zinc is an important transition metal in all living organisms and is required for numerous biological processes. However, excess zinc can also be toxic to cells and cause cellular stress. In the model fungus Saccharomyces cerevisiae, a vacuolar zinc transporter, Zrc1, plays important roles in the storage and detoxification of excess intracellular zinc to protect the cell. In this study, we identified an ortholog of the S. cerevisiae ZRC1 gene in the human fungal pathogen Cryptococcus neoformans. Zrc1 was localized in the vacuolar membrane in C. neoformans, and a mutant lacking ZRC1 showed significant growth defects under high-zinc conditions. These results suggested a role for Zrc1 in zinc detoxification. However, contrary to our expectation, the expression of Zrc1 was induced in cells grown in zinc-limited conditions and decreased upon the addition of zinc. These expression patterns were similar to those of Zip1, the high-affinity zinc transporter in the plasma membrane of C. neoformans. Furthermore, we used the zrc1 mutant in a murine model of cryptococcosis to examine whether a mammalian host could inhibit the survival of C. neoformans using zinc toxicity. We found that the mutant showed no difference in virulence compared with the wildtype strain. This result suggests that Zrc1-mediated zinc detoxification is not required for the virulence of C. neoformans, and imply that zinc toxicity may not be an important aspect of the host immune response to the fungus.

  11. A Zinc Chelator TPEN Attenuates Airway Hyperresponsiveness Airway Inflammation in Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Satoru Fukuyama

    2011-01-01

    Conclusions: In pulmonary allergic inflammation induced in mice immunized with antigen without alum, zinc chelator inhibits airway inflammation and hyperresponsiveness. These findings suggest that zinc may be a therapeutic target of allergic asthma.

  12. Zinc in human serum

    International Nuclear Information System (INIS)

    Kiilerich, S.

    1987-01-01

    The zinc ion is essential for the living organism. Many pathological conditions have been described as a consequence of zinc deficiency. As zinc constitutes less than 0.01 per cent of the body weight, it conventionally belongs to the group of trace elements. The method of atomic absorption spectrophotometry is used to measure the concentration of zinc in serum and urine from healthy persons. The assumptions of the method is discussed. The importance of proteinbinding, diet and the diurnal variation of serum zinc concentration is presented. Serum versus plasma zinc concentration is discussed. Reference serum zinc values from 104 normal subjects are given. Zinc in serum is almost entirely bound to proteins. A preliminary model for the estimation of the distribution of zinc between serum albumin and α 2 -macroglobulin is set up. This estimate has been examined by an ultracentrufugation method. The binding of zinc to a α 2 -macroglobulin in normal persons is appoximately 7 per cent, in patients with cirrhosis of the liver of alcoholic origin approximately 6 per cent, in patients with insulin dependent diabetes mellitus approximately 5 per cent, and in patients with chronic renal failure approximately 2 per cent. It is concluded, therefore, that for clinical purposes it is sufficient to use the concentration of total serum zinc corrected for the concentration of serum albumin. (author)

  13. Zinc ferrite nanoparticles activate IL-1b, NFKB1, CCL21 and NOS2 signaling to induce mitochondrial dependent intrinsic apoptotic pathway in WISH cells

    Energy Technology Data Exchange (ETDEWEB)

    Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Ahmad, Javed; Siddiqui, Maqsood A.; Dwivedi, Sourabh; Khan, Shams T. [Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Chair for DNA Research, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Chair for DNA Research, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, U.P. (India)

    2013-12-01

    The present study has demonstrated the translocation of zinc ferrite nanoparticles (ZnFe{sub 2}O{sub 4}-NPs) into the cytoplasm of human amnion epithelial (WISH) cells, and the ensuing cytotoxicity and genetic damage. The results suggested that in situ NPs induced oxidative stress, alterations in cellular membrane and DNA strand breaks. The [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) and neutral red uptake (NRU) cytotoxicity assays indicated 64.48 ± 1.6% and 50.73 ± 2.1% reduction in cell viability with 100 μg/ml of ZnFe{sub 2}O{sub 4}-NPs exposure. The treated WISH cells exhibited 1.2-fold higher ROS level with 0.9-fold decline in membrane potential (ΔΨm) and 7.4-fold higher DNA damage after 48 h of ZnFe{sub 2}O{sub 4}-NPs treatment. Real-time PCR (qPCR) analysis of p53, CASP 3 (caspase-3), and bax genes revealed 5.3, 1.6, and 14.9-fold upregulation, and 0.18-fold down regulation of bcl 2 gene vis-à-vis untreated control. RT{sup 2} Profiler™ PCR array data elucidated differential up-regulation of mRNA transcripts of IL-1b, NFKB1, NOS2 and CCL21 genes in the range of 1.5 to 3.7-folds. The flow cytometry based cell cycle analysis suggested the transfer of 15.2 ± 2.1% (p < 0.01) population of ZnFe{sub 2}O{sub 4}-NPs (100 μg/ml) treated cells into apoptotic phase through intrinsic pathway. Over all, the data revealed the potential of ZnFe{sub 2}O{sub 4}-NPs to induce cellular and genetic toxicity in cells of placental origin. Thus, the significant ROS production, reduction in ΔΨm, DNA damage, and activation of genes linked to inflammation, oxidative stress, proliferation, DNA damage and repair could serve as the predictive toxicity and stress markers for ecotoxicological assessment of ZnFe{sub 2}O{sub 4}-NPs induced cellular and genetic damage. - Highlights: • First report on the molecular toxicity of ZnFe{sub 2}O{sub 4}-NPs in cells of placental origin • WISH cells treated with ZnFe{sub 2}O{sub 4}-NPs exhibited cytoplasmic

  14. Pseudomonas aeruginosa Trent and zinc homeostasis.

    Science.gov (United States)

    Davies, Corey B; Harrison, Mark D; Huygens, Flavia

    2017-09-01

    Pseudomonas aeruginosa is a Gram-negative pathogen and the major cause of mortality in patients with cystic fibrosis. The mechanisms that P. aeruginosa strains use to regulate intracellular zinc have an effect on infection, antibiotic resistance and the propensity to form biofilms. However, zinc homeostasis in P. aeruginosa strains of variable infectivity has not been compared. In this study, zinc homeostasis in P. aeruginosa Trent, a highly infectious clinical strain, was compared to that of a laboratory P. aeruginosa strain, ATCC27853. Trent was able to tolerate higher concentrations of additional zinc in rich media than ATCC27853. Further, pre-adaptation to additional zinc enhanced the growth of Trent at non-inhibitory concentrations but the impact of pre-adaption on the growth of ATCC27853 under the same conditions was minimal. The results establish clear differences in zinc-induced responses in Trent and ATCC27853, and how zinc homeostasis can be a promising target for the development of novel antimicrobial strategies for P. aeruginosa infection in cystic fibrosis patients. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Serum zinc levels in gestational diabetes

    Directory of Open Access Journals (Sweden)

    Rahimi Sharbaf F

    2008-12-01

    Full Text Available "nBackground: Maternal zinc deficiency during pregnancy has been related to adverse pregnancy outcomes. Most studies in which pregnant women have been supplemented with zinc to examine its effects on the outcome of the pregnancy have been carried out in industrialized countries and the results have been inconclusive. It has been shown that women with gestational diabetes (GDM have lower serum zinc levels than healthy pregnant women, and higher rates of macrosomia. Zinc is required for normal glucose metabolism, and strengthens the insulin-induced transportation of glucose into cells by its effect on the insulin signaling pathway. The purpose of this study was to assess the serum zinc levels of GDM patients and evaluate the effect of zinc supplementation. "nMethods: In the first stage of this prospective controlled study, we enrolled 70 women who were 24-28 weeks pregnant at the Prenatal Care Center of Mirza Kochak Khan Hospital, Tehran, Iran. The serum zinc level of each subject was determined. In the second stage, among these 70 subjects, the diabetics receiving insulin were divided into two groups, only one of which received a zinc supplement and the other group was the control group. Birth weight of neonates and insulin dosages were recorded. "nResults: The mean serum zinc level in the GDM group was lower than that of the control group (94.83 vs. 103.49mg/dl, respectively and the mean birth weight of neonates from the GDM women who received the zinc supplement was lower than that of the control group (3849g vs. 4136g. The rate of macrosomia was lower in the zinc supplemented group (20% vs. 53%. The mean of increase of insulin after receiving the zinc supplement was lower (8.4u vs. 13.53. "nConclusion: Maternal insulin resistance is associated with the accumulation of maternal fat tissue during early stages of pregnancy and greater fetoplacental nutrient availability in later stages, when 70% of fetal growth occurs, resulting in macrosomia. In

  16. Rising Intracellular Zinc by Membrane Depolarization and Glucose in Insulin-Secreting Clonal HIT-T15 Beta Cells

    Directory of Open Access Journals (Sweden)

    Kira G. Slepchenko

    2012-01-01

    Full Text Available Zinc (Zn2+ appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30–60 mM was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.

  17. Rising intracellular zinc by membrane depolarization and glucose in insulin-secreting clonal HIT-T15 beta cells.

    Science.gov (United States)

    Slepchenko, Kira G; Li, Yang V

    2012-01-01

    Zinc (Zn(2+)) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30-60 mM) was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM) induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.

  18. The role of nitrergic system in antidepressant effects of acute administration of zinc, magnesium and thiamine on progesterone induced postpartum depression in mice

    Directory of Open Access Journals (Sweden)

    Nikseresht S

    2010-08-01

    Full Text Available "nBackground: Postpartum depression is a mood disorder that has harmful effects on mothers, infants, family and relationships. Acute decrease of progesterone after delivery has been proposed as a cause for postpartum depression. This hormone can affect neurotransmitters' function. Zinc (Zn and magnesium (Mg as trace elements exert their antidepressant effects through neurotransmitter pathways. On the other hand, thiamin (Vit B1 deficiency leads to depression in animal models. The aim of this study was to evaluate effects of combination of zinc, magnesium and thiamine on postpartum depression and role of nitrergic system. "n"nMethods: One hundred ten female mice in five groups were used. Postpartum depression was conducted using progesterone injections. Combinations of Zinc chloride, magnesium chloride and thiamine HCL were administered 30 minutes before open field and forced swimming test (FST. In order to investigate role of nitrergic system, L-arginine and LNAME were administered. "n"nResults: All treatment groups spent less immobility time than the control group (p< 0.05. Combined administration of Zn+ Mg+ Vit B1 caused the most reduction in immobility time. Administration of L-NAME in Zn+ Mg+ Vit B1 group caused reduction in immobility time while administration of L-arginine caused increase in immobility time in the same group. "nConclusion: Zinc, magnesium and thiamine can improve depressive symptoms by nitrergic pathway. These elements as supplement compounds could be alternatives for antidepressants in postpartum period.

  19. The zinc dyshomeostasis hypothesis of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Travis J A Craddock

    Full Text Available Alzheimer's disease (AD is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ, intracellular neurofibrillary tangles (NFTs composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau, and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1 used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2 performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3 used metallomic imaging mass spectrometry (MIMS to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of

  20. The zinc dyshomeostasis hypothesis of Alzheimer's disease.

    Science.gov (United States)

    Craddock, Travis J A; Tuszynski, Jack A; Chopra, Deepak; Casey, Noel; Goldstein, Lee E; Hameroff, Stuart R; Tanzi, Rudolph E

    2012-01-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized

  1. Chelators for investigating zinc metalloneurochemistry

    OpenAIRE

    Radford, Robert John; Lippard, Stephen J.

    2013-01-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals o...

  2. High-performance characteristics of the bonded magnets produced from the Sm2 Fe17 Nx powder stabilized by photo-induced zinc metal coatings

    International Nuclear Information System (INIS)

    Machida, K.; Izumi, H.; Shiomi, A.; Iguchi, M.; Adachi, G.

    1996-01-01

    Finely and uniformly ground powders of Sm 2 Fe 17 N x were stabilized by surface-coating with the zinc metal produced from Zn (C 2 H 5 ) 2 . The epoxy resin-bonded magnets produced from the Zn/Sm 2 Fe 17 N x composite powder provided high-performance permanent magnetic characteristics: (BH)max=∼ 176 kJm -3 . (author)

  3. Further studies on selective radioprotection by organic zinc salts and synergism of zinc aspartate with WR 2721

    International Nuclear Information System (INIS)

    Floersheim, G.L.; Bieri, A.

    1990-01-01

    Protection of the haematocrit and thrombocytes by small doses of the aminothiol radioprotector WR 2721 was markedly improved by the concomitant administration of small doses of zinc aspartate. Zinc aspartate was the only one of the tested zinc salts not inhibiting the regression induced by radiotherapy of human tumours grown as xenografts in immunosuppressed mice. This also applied to zinc aspartate with WR 2721. A dose of zinc aspartate which afforded synergistic haematological protection did not enhance the toxicity of WR 2721. The synergism of zinc aspartate with WR 2721 and the differential radioprotection of the combined protocol may make it possible in clinical cancer radiotherapy to obtain selective radioprotection at a lower toxicity giving an improved therapeutic ratio compared with WR 2721 alone. (author)

  4. Effect of Oral Zinc Sulphate in Preventionof Radiation Induced OropharyngealMucositis During and After Radiotherapyin Patients with Head and Neck Cancers

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadianpanah

    2010-04-01

    Full Text Available Introduction:Mucositis is a disturbing side effect of radiotherapy treatment forhead and neck cancer. To date, no effective modality for its prophylaxis and treatmenthas been found. We performed this study to evaluate the efficacy of oral zincsulphate in delaying the onset of oral and pharyngeal mucositis and decreasing theirseverity.Materials and Methods: Atotal of 58 patients who were treated for head andneck squamous cell carcinoma with radiotherapy or chemoradiotherapy wererandomly assigned to receive oral zinc sulphate (220 mg or an oral placebo 3 timesa day during their radiotherapy course. Total radiation dose was 6000 cGy to 7000cGy by conventional radiotherapy. Seventy nine percent of the patients also receivedconcurrent chemotherapy. Oral and pharyngeal mucositis were scored according toan RTOG protocol. Results:Time to onset of mucositis did not vary between the two groups.However, oral mucositis scores were less severe in the zinc group in weeks 4 to 6.The difference was statistically significant and the Pvalues for weeks 4, 5 and 6 were0.02, 0.007, and 0.012, respectively. Treatment interruptions in both groups were thesame (four cases each and all were due to dysphagia (pharyngeal mucositis.Conclusion:Our results suggest that zinc is effective in reducing the severity oforal mucositis but not pharyngeal mucositis. Treatment interruptions were morefrequently caused by pharyngeal mucositis which presented as dysphagia, rather thanoral pain that was a manifestation of oral mucositis.

  5. Immersion autometallography: histochemical in situ capturing of zinc ions in catalytic zinc-sulfur nanocrystals.

    Science.gov (United States)

    Danscher, Gorm; Stoltenberg, Meredin; Bruhn, Mikkel; Søndergaard, Chris; Jensen, Dorete

    2004-12-01

    In the mid-1980s, two versions of Timm's original immersion sulfide silver method were published. The authors used immersion of tissue in a sulfide solution as opposed to Timm, who used immersion of tissue blocks in hydrogen sulfide-bubbled alcohol. The autometallography staining resulting from the "sulfide only immersion" was not particularly impressive, but the significance of this return to an old approach became obvious when Wenzel and co-workers presented their approach in connection with introduction by the Palmiter group of zinc transporter 3 (ZnT3). The Wenzel/Palmiter pictures are the first high-resolution, high-quality pictures taken from tissues in which free and loosely bound zinc ions have been captured in zinc-sulfur nanocrystals by immersion. The trick was to place formalin-fixed blocks of mouse brains in a solution containing 3% glutaraldehyde and 0.1% sodium sulfide, ingredients used for transcardial perfusion in the zinc-specific NeoTimm method. That the NeoTimm technique results in silver enhancement of zinc-sulfur nanocrystals has been proved by proton-induced X-ray multielement analyses (PIXE) and in vivo chelation with diethyldithiocarbamate (DEDTC). The aims of the present study were (a) to make the immersion-based capturing of zinc ions in zinc-sulfur nanocrystals work directly on sections and slices of fixed brain tissue, (b) to work out protocols that ensure zinc specificity and optimal quality of the staining, (c) to apply "immersion autometallography" (iZnSAMG) to other tissues that contain zinc-enriched (ZEN) cells, and (d) to make the immersion approach work on unfixed fresh tissue.

  6. Changes in the Spectral Features of Zinc Phthalocyanine Induced by Nitrogen Dioxide Gas in Solution and in Solid Polymer Nanofiber Media.

    Science.gov (United States)

    Zugle, Ruphino; Tetteh, Samuel

    2017-03-01

    The changes in the spectral features of zinc phthalocyanine in the visible domain as a result of its interaction with nitrogen dioxide gas were assessed in this work. This was done both in solution and when the phthalocyanine was incorporated into a solid polystyrene polymer nanofiber matrix. The spectral changes were found to be spontaneous and marked in both cases suggesting a rapid response criterion for the detection of the gas. In particular, the functionalised nano-fabric material could serve as a practical fire alarm system as it rapidly detects the nitrogen dioxide gas generated during burning.

  7. Zinc phosphate conversion coatings

    Science.gov (United States)

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  8. Zinc treatment ameliorates diarrhea and intestinal inflammation in undernourished rats.

    Science.gov (United States)

    de Queiroz, Camila A A; Fonseca, Said Gonçalves C; Frota, Priscila B; Figueiredo, Italo L; Aragão, Karoline S; Magalhães, Carlos Emanuel C; de Carvalho, Cibele B M; Lima, Aldo Ângelo M; Ribeiro, Ronaldo A; Guerrant, Richard L; Moore, Sean R; Oriá, Reinaldo B

    2014-08-05

    WHO guidelines recommend zinc supplementation as a key adjunct therapy for childhood diarrhea in developing countries, however zinc's anti-diarrheal effects remain only partially understood. Recently, it has been recognized that low-grade inflammation may influence stunting. In this study, we examined whether oral zinc supplementation could improve weight, intestinal inflammation, and diarrhea in undernourished weanling rats. Rats were undernourished using a northeastern Brazil regional diet (RBD) for two weeks, followed by oral gavage with a saturated lactose solution (30 g/kg) in the last 7 days to induce osmotic diarrhea. Animals were checked for diarrhea daily after lactose intake. Blood was drawn in order to measure serum zinc levels by atomic absorption spectroscopy. Rats were euthanized to harvest jejunal tissue for histology and cytokine profiles by ELISA. In a subset of animals, spleen samples were harvested under aseptic conditions to quantify bacterial translocation. Oral zinc supplementation increased serum zinc levels following lactose-induced osmotic diarrhea. In undernourished rats, zinc improved weight gain following osmotic diarrhea and significantly reduced diarrheal scores by the third day of lactose intake (p diarrhea and undernutrition and support the use of zinc to prevent the vicious cycle of malnutrition and diarrhea.

  9. Effect of molybdenum on the severity of toxicity symptoms in flax induced by an excess of either manganese, zinc, copper, nickel or cobalt in the nutrient solution

    Energy Technology Data Exchange (ETDEWEB)

    Millikan, C R

    1947-01-01

    The addition of molybdenum to solutions containing an excess of either manganese, zinc, copper, nickel or cobalt respectively, resulted in decreases in the severity of iron deficiency symptoms which normally occurred when flax was grown in solutions containing the same concentrations of any of these elements, but without molybdenum. The efficacy of molybdenum in this regard increased with increasing concentration up to 25 parts per million. However, concentrations of 0.5 to 2 parts per million of molybdenum had little effect on the severity of iron deficiency symptoms at the concentrations of heavy metals used. Molybdenum 5, 10 or 25 parts per million also retarded the date of appearance and reduced the severity of lower leaf necrosis which is another characteristic symptom of the presence of excess manganese (25 to 100 parts per million) in the nutrient solution. It is concluded that an essential function of molybdenum is intimately associated with the regulation of the deleterious effect of manganese, zinc, copper, nickel or cobalt on the physiological availability of iron to the plant. 46 references, 3 figures.

  10. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains

    International Nuclear Information System (INIS)

    Vallee, B.L.; Auld, D.S.; Coleman, J.E.

    1991-01-01

    The authors recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a zinc cluster akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is ∼3.5 angstrom. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is ∼13 angstrom, and in this instance, a zinc twist is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native zinc fingers, structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent

  11. Zinc in diet

    Science.gov (United States)

    ... Effects Symptoms of zinc deficiency include: Frequent infections Hypogonadism in males Loss of hair Poor appetite Problems with the ... any medical emergency or for the diagnosis or treatment of any medical condition. A licensed physician should ...

  12. ttm-1 encodes CDF transporters that excrete zinc from intestinal cells of C. elegans and act in a parallel negative feedback circuit that promotes homeostasis.

    Directory of Open Access Journals (Sweden)

    Hyun Cheol Roh

    2013-05-01

    Full Text Available Zinc is an essential metal involved in a wide range of biological processes, and aberrant zinc metabolism is implicated in human diseases. The gastrointestinal tract of animals is a critical site of zinc metabolism that is responsible for dietary zinc uptake and distribution to the body. However, the role of the gastrointestinal tract in zinc excretion remains unclear. Zinc transporters are key regulators of zinc metabolism that mediate the movement of zinc ions across membranes. Here, we identified a comprehensive list of 14 predicted Cation Diffusion Facilitator (CDF family zinc transporters in Caenorhabditis elegans and demonstrated that zinc is excreted from intestinal cells by one of these CDF proteins, TTM-1B. The ttm-1 locus encodes two transcripts, ttm-1a and ttm-1b, that use different transcription start sites. ttm-1b expression was induced by high levels of zinc specifically in intestinal cells, whereas ttm-1a was not induced by zinc. TTM-1B was localized to the apical plasma membrane of intestinal cells, and analyses of loss-of-function mutant animals indicated that TTM-1B promotes zinc excretion into the intestinal lumen. Zinc excretion mediated by TTM-1B contributes to zinc detoxification. These observations indicate that ttm-1 is a component of a negative feedback circuit, since high levels of cytoplasmic zinc increase ttm-1b transcript levels and TTM-1B protein functions to reduce the level of cytoplasmic zinc. We showed that TTM-1 isoforms function in tandem with CDF-2, which is also induced by high levels of cytoplasmic zinc and reduces cytoplasmic zinc levels by sequestering zinc in lysosome-related organelles. These findings define a parallel negative feedback circuit that promotes zinc homeostasis and advance the understanding of the physiological roles of the gastrointestinal tract in zinc metabolism in animals.

  13. Zinc and glutamate dehydrogenase in putative glutamatergic brain structures.

    Science.gov (United States)

    Wolf, G; Schmidt, W

    1983-01-01

    A certain topographic parallelism between the distribution of histochemically (TIMM staining) identified zinc and putative glutamatergic structures in the rat brain was demonstrated. Glutamate dehydrogenase as a zinc containing protein is in consideration to be an enzyme synthesizing transmitter glutamate. In a low concentration range externally added zinc ions (10(-9) to 10(-7) M) induced an increase in the activity of glutamate dehydrogenase (GDH) originating from rat hippocampal formation, neocortex, and cerebellum up to 142.4%. With rising molarity of Zn(II) in the incubation medium, the enzyme of hippocampal formation and cerebellum showed a biphasic course of activation. Zinc ions of a concentration higher than 10(-6) M caused a strong inhibition of GDH. The effect of Zn(II) on GDH originating from spinal ganglia and liver led only to a decrease of enzyme activity. These results are discussed in connection with a functional correlation between zinc and putatively glutamatergic system.

  14. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt-Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy.

    Science.gov (United States)

    Flynn, Brendan T; Oleksak, Richard P; Thevuthasan, Suntharampillai; Herman, Gregory S

    2018-01-31

    A method to understand the role of interfacial chemistry on the modulation of Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. In situ X-ray photoelectron spectroscopy was used to characterize the interfacial chemistries that modulate barrier heights in this system. The primary changes were a significant chemical reduction of indium, from In 3+ to In 0 , that occurs during deposition of Pt on to the a-IGZO surface in ultrahigh vacuum. Postannealing and controlling the background ambient O 2 pressure allows further tuning of the reduction of indium and the corresponding Schottky barrier heights from 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metal-semiconductor field-effect transistors.

  15. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    OpenAIRE

    Veldkamp, T.; Diepen, van, J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Livestock Research to determine the bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens. A precise estimate of the bioavailability of zinc sources is required both for fulf...

  16. Erythrocyte metallothionein as an index of zinc status in humans

    International Nuclear Information System (INIS)

    Grider, A.; Bailey, L.B.; Cousins, R.J.

    1990-01-01

    Metallothionein concentrations in erythrocyte lysates derived from human subjects were measured by an ELISA procedure. IgG obtained from serum of sheep injected with human metallothionein 1 was used in this competitive assay. Subjects were fed a semipurified zinc-deficient diet for an 8-day depletion period after 3 days of acclimation. Fasting plasma zinc concentrations were reduced ∼7%. Metallothionein in the erythrocyte lysates was significantly decreased to 59% of the initial level by the end of the depletion period. Supplementation of these depleted subjects with zinc did not increase erythrocyte metallothionein levels within 24 hr. Daily supplementation of control subjects with zinc increased erythrocyte metallothionein to a 7-fold maximum within 7 days. These levels were reduced by 61% within 14 days after zinc supplementation was terminated. Incubation of rat [ 35 S]metallothionein with human erythrocyte lysate showed a time-dependent increase in 35 S soluble in 20% trichloroacetic acid, indicating degradation of the labeled protein, presumably via protease activity in the lysate. It is proposed that zinc supplementation induces erythrocyte metallothionein during erythropoiesis and that low zinc intake decreases synthesis and/or accelerates degradation of the protein in reticulocytes/erythrocytes. Metallothionein levels in erythrocytes may provide a useful index upon which to assess zinc status in humans

  17. Zinc-induced modification of the dynamical magnetic susceptibility in the superconducting state of YBa{sub 2}Cu{sub 3}O{sub 6+}{sub {ital x}} as revealed by inelastic neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sidis, Y.; Bourges, P.; Hennion, B. [Laboratoire Leon Brillouin, CEA-CNRS, Centre dEtudes de Saclay, 91191 Gif-sur-Yvette (France); Regnault, L.P. [Centre dEtudes Nucleaires de Grenoble, Departement de Recherche Fondamentale sur la Matiere Condensee, Service de Physique Statistique, Magnetisme et Supraconductivite, Groupe Magnetisme et Diffraction Neutronique, 85 X, 38041 Grenoble cedex (France); Villeneuve, R.; Collin, G. [Laboratoire Leon Brillouin, CEA-CNRS, Centre dEtudes de Saclay, 91191 Gif-sur-Yvette (France); Marucco, J.F. [Laboratoire des Composes Non-Stoechiometriques, CNRS URA 446, Batiment 415, Universite Paris Sud centre dOrsay, Orsay (France)

    1996-03-01

    Inelastic-neutron-scattering measurements have been performed to determine the imaginary part of the dynamical susceptibility, {chi}{double_prime}({ital Q},{omega}), of a YBa{sub 2}(Cu{sub 1{minus}{ital y}}Zn{sub {ital y}}){sub 3}O{sub 6.97} sample exhibiting a superconducting transition at {ital T}{sub {ital c}}=69 K. Zinc substitution induces striking modifications of the energy dependence of {chi}{double_prime}({ital Q},{omega}) but magnetic fluctuations remain peaked at the antiferromagnetic wave vector, {ital Q}{sub AF}, at all investigated energies. In the superconducting state of the zinc-free compound, {chi}{double_prime}({ital Q},{omega}) is restricted to a narrow energy range, {h_bar}{omega}=33{endash}47 meV, displaying a {ital spin} {ital gap} at {ital E}{sub {ital G}}=33 meV and a resonant enhancement at {ital E}{sub {tau}}=39 meV, both features vanishing upon heating up above {ital T}{sub {ital c}}. In the {ital y}=0.02 substituted sample in the superconducting state, there is still an energy band in the range 32{endash}47 meV but no clear resonance, and a signal is now observed in the low energy range, though the line shape of {chi}{double_prime}({ital Q},{omega}) indicates some reminiscence of the spin gap of the pure compound. {copyright} {ital 1996 The American Physical Society.}

  18. Influence of extracellular zinc on M1 microglial activation.

    Science.gov (United States)

    Higashi, Youichirou; Aratake, Takaaki; Shimizu, Shogo; Shimizu, Takahiro; Nakamura, Kumiko; Tsuda, Masayuki; Yawata, Toshio; Ueba, Tetuya; Saito, Motoaki

    2017-02-27

    Extracellular zinc, which is released from hippocampal neurons in response to brain ischaemia, triggers morphological changes in microglia. Under ischaemic conditions, microglia exhibit two opposite activation states (M1 and M2 activation), which may be further regulated by the microenvironment. We examined the role of extracellular zinc on M1 activation of microglia. Pre-treatment of microglia with 30-60 μM ZnCl 2 resulted in dose-dependent increases in interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNFα) secretion when M1 activation was induced by lipopolysaccharide administration. In contrast, the cell-permeable zinc chelator TPEN, the radical scavenger Trolox, and the P2X7 receptor antagonist A438079 suppressed the effects of zinc pre-treatment on microglia. Furthermore, endogenous zinc release was induced by cerebral ischaemia-reperfusion, resulting in increased expression of IL-1β, IL-6, TNFα, and the microglial M1 surface marker CD16/32, without hippocampal neuronal cell loss, in addition to impairments in object recognition memory. However, these effects were suppressed by the zinc chelator CaEDTA. These findings suggest that extracellular zinc may prime microglia to enhance production of pro-inflammatory cytokines via P2X7 receptor activation followed by reactive oxygen species generation in response to stimuli that trigger M1 activation, and that these inflammatory processes may result in deficits in object recognition memory.

  19. Protective effects of zinc acetate toward the toxicity of nickelous acetate in rats

    International Nuclear Information System (INIS)

    Waalkes, M.P.; Kasprzak, K.S.; Ohshima, M.; Poirier, L.A.

    1985-01-01

    This study was designed to determine the effects of zinc pretreatment on the acute toxicity of nickel. Male Fischer rats received either nickel alone (i.p.), zinc alone (s.c.), zinc plus nickel, or saline (i.p. and s.c.; controls). Zinc pretreatment significantly increased the 14-day survival of nickel-related rats. Zinc did not, however, prevent the reduction in weight gain over 2 weeks seen with nickel treatment. Histopathologically, at 120 h following nickel exposure, kidneys in the group receiving nickel alone generally showed moderate nephropathy (multifocal proximal tubule degeneration with necrosis) while in the zinc plus nickel group the nephropathy was generally mild. Zinc pretreatment had no apparent effect on the pharmacokinetics of nickel over 24 h as assessed by urinary excretion, blood levels or organ distribution. Zinc pretreatment also did not alter the subcellular distribution of renal nickel 6 h after nickel exposure. Enhanced synthesis of metallothionein did not appear to play a critical role in the reduction of nickel toxicity, since renal concentrations of this metalbuilding protein, although elevated compared to control, were not different in rats receiving zinc and nickel or zinc alone. Zinc pretreatment did, however, have marked effect on nickel-induced hyperglycemia, reducing both the duration and severity of elevated blood glucose levels. Results of the study show that zinc can prevent some of the toxic effects of nickel and that the mechanism of this action does not appear to involve either metalothionein or alterations in the pharmacokinetics of nickel. (author)

  20. Relationship between maternal serum zinc, cord blood zinc and ...

    African Journals Online (AJOL)

    Background: Adequate in utero supply of zinc is essential for optimal fetal growth because of the role of zinc in cellular division, growth and differentiation. Low maternal serum zinc has been reported to be associated with low birth weight and the later is associated with increased morbidity and mortality in newborns.

  1. The study and microstructure analysis of zinc and zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pešlová, F.; Kliber, J.

    2015-01-01

    Roč. 54, č. 1 (2015), s. 43-46 ISSN 0543-5846 Grant - others:KEGA(SK) KEGA 007 TnUAD-4/2013 Institutional support: RVO:68081723 Keywords : zinc * production of zinc oxide * microstructure * chemical composition * zinc slag Subject RIV: JG - Metal lurgy Impact factor: 0.959, year: 2014

  2. Zinc biofortification of cereals

    DEFF Research Database (Denmark)

    Palmgren, Michael; Clemens, Stephan; Williams, Lorraine E.

    2008-01-01

    The goal of biofortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. Cereals serve as the main staple food for a large proportion of the world population but have the shortcoming, from a nutrition perspective, of being low in zinc...... and other essential nutrients. Major bottlenecks in plant biofortification appear to be the root-shoot barrier and - in cereals - the process of grain filling. New findings demonstrate that the root-shoot distribution of zinc is controlled mainly by heavy metal transporting P1B-ATPases and the metal...... tolerance protein (MTP) family. A greater understanding of zinc transport is important to improve crop quality and also to help alleviate accumulation of any toxic metals....

  3. Cationic polyelectrolyte induced separation of some inorganic contaminants and their mixture (zirconium silicate, kaolin, K-feldspar, zinc oxide) as well as of the paraffin oil from water.

    Science.gov (United States)

    Ghimici, Luminita

    2016-03-15

    The flocculation efficiency of a cationic polyelectrolyte with quaternary ammonium salt groups in the backbone, namely PCA5 was evaluated on zirconium silicate (kreutzonit), kaolin, K- feldspar and zinc oxide (ZnO) suspensions prepared either with each pollutant or with their mixture. The effect of several parameters such as settling time, polymer dose and the pollutant type on the separation efficacy was evaluated and followed by optical density and zeta potential measurements. Except for ZnO, the interactions between PCA5 and suspended particles led to low residual turbidity values (around 4% for kreutzonit, 5% for kaolin and 8% for K-feldspar) as well as to the reduction of flocs settling time (from 1200 min to 30 min and 120 min in case of kaolinit and K-feldspar, respectively), that meant a high efficiency in their separation. The negative value of the zeta potential and flocs size measurements, at the optimum polymer dose, point to contribution from charge patch mechanism for the particles flocculation. A good efficiency of PCA5 in separation of paraffin oil (a minimum residual turbidity of 9.8%) has been also found. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Sprayed zinc oxide films: Ultra-violet light-induced reversible surface wettability and platinum-sensitization-assisted improved liquefied petroleum gas response.

    Science.gov (United States)

    Nakate, Umesh T; Patil, Pramila; Bulakhe, R N; Lokhande, C D; Kale, Sangeeta N; Naushad, Mu; Mane, Rajaram S

    2016-10-15

    We report the rapid (superhydrophobic to superhydrophilic) transition property and improvement in the liquefied petroleum gas (LPG) sensing response of zinc oxide (ZnO) nanorods (NRs) on UV-irradiation and platinum (Pt) surface sensitization, respectively. The morphological evolution of ZnO NRs is evidenced from the field emission scanning electron microscope and atomic force microscope digital images and for the structural elucidation X-ray diffraction pattern is used. Elemental survey mapping is obtained from energy dispersive X-ray analysis spectrum. The optical properties have been studied by UV-Visible and photoluminescence spectroscopy measurements. The rapid (120sec) conversion of superhydrophobic (154°) ZnO NRs film to superhydrophilic (7°) is obtained under UV light illumination and the superhydrophobicity is regained by storing sample in dark. The mechanism for switching wettability behavior of ZnO NRs has thoroughly been discussed. In second phase, Pt-sensitized ZnO NRs film has demonstrated considerable gas sensitivity at 260ppm concentration of LPG. At 623K operating temperature, the maximum LPG response of 58% and the response time of 49sec for 1040ppm LPG concentration of Pt- sensitized ZnO NRs film are obtained. This higher LPG response of Pt-sensitized ZnO NRs film over pristine is primarily due to electronic effect and catalytic effect (spill-over effect) caused by an additional of Pt on ZnO NRs film surface. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Identification of ‘safe harbor’ loci in indica rice genome by harnessing the property of zinc-finger nucleases to induce DNA damage and repair.

    Directory of Open Access Journals (Sweden)

    Christian eCantos

    2014-06-01

    Full Text Available Zinc-finger nucleases (ZFNs have proved to be successful tools for targeted genome manipulation in several organisms. Their main property is the induction of double-strand breaks (DSBs at specific sites, which are further repaired through homologous recombination (HR or non-homologous end joining (NHEJ. However, for the appropriate integration of genes at specific chromosomal locations, proper sites for gene integration need to be identified. These regions, hereby named safe harbor loci, must be localized in non-coding regions and possess high gene expression. In the present study, three different ZFN constructs (pZFN1, pZFN2, pZFN3, harboring β-glucuronidase (GUS as a reporter gene, were used to identify safe harbor loci regions on rice chromosomes. The constructs were delivered into IR64 rice by using an improved Agrobacterium-mediated transformation protocol, based on the use of immature embryos. Gene expression was measured by histochemical GUS activity and the flanking regions were determined through thermal-asymmetric interlaced polymerase chain reaction (TAIL PCR. Following sequencing, 28 regions were identified as putative sites for safe integration, but only one was localized in a non-coding region and it also possessed high GUS expression. These findings have significant applicability to create crops with new and valuable traits, since the site can be subsequently used to stably introduce one or more genes in a targeted manner.

  6. Method development for the determination of calcium, copper, magnesium, manganese, iron, potassium, phosphorus and zinc in different types of breads by microwave induced plasma-atomic emission spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-06-01

    A novel method was developed for the determination of calcium, magnesium, potassium, iron, copper, zinc, and manganese and phosphorous in various kinds of breads samples sold in Turkey by microwave plasma-atomic emission spectrometry (MIP-AES). Breads were dried at 100 °C for one day, ground thoroughly and then digested using nitric acid/hydrogen per oxide (3:1). The analytes in certified reference wheat flour and maize flour samples were determined in the uncertainty limits of the certified values as well as the analytes added to the mixture of ground bread and acid mixture prior to digestion were recovered quantitatively (>90%). Therefore, all determinations were made by linear calibration technique using aqueous standards. The LOD values for Ca, Cu, Fe, K, Mg, Mn, P and Zn were 13.1, 0.28, 4.47, 118, 1.10, 0.41, 7550 and 3.00 ng mL(-1), respectively. No spectral interference was detected at the working wavelengths of the analytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Photovoltaic cells employing zinc phosphide

    Science.gov (United States)

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  8. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs

  9. Environmental risk limits for zinc

    NARCIS (Netherlands)

    Bodar CWM; SEC

    2007-01-01

    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs refer

  10. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    NARCIS (Netherlands)

    Veldkamp, T.; Diepen, van J.T.M.; Bikker, P.

    2014-01-01

    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR

  11. Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells

    International Nuclear Information System (INIS)

    Bostanci, Zeynep; Alam, Samina; Soybel, David I.; Kelleher, Shannon L.

    2014-01-01

    Prolactin receptor (PRL-R) activation regulates cell differentiation, proliferation, cell survival and motility of breast cells. Prolactin (PRL) and PRL-R over-expression are strongly implicated in breast cancer, particularly contributing to tumor growth and invasion in the more aggressive estrogen-receptor negative (ER−) disease. PRL-R antagonists have been suggested as potential therapeutic agents; however, mechanisms through which PRL-R antagonists exert their actions are not well-understood. Zinc (Zn) is a regulatory factor for over 10% of the proteome, regulating critical cell processes such as proliferation, cell signaling, transcription, apoptosis and autophagy. PRL-R signaling regulates Zn metabolism in breast cells. Herein we determined effects of PRL-R attenuation on cellular Zn metabolism and cell function in a model of ER-, PRL-R over-expressing breast cancer cells (MDA-MB-453). PRL-R attenuation post-transcriptionally increased ZnT2 abundance and redistributed intracellular Zn pools into lysosomes and mitochondria. ZnT2-mediated lysosomal Zn sequestration was associated with reduced matrix metalloproteinase 2 (MMP-2) activity and decreased invasion. ZnT2-mediated Zn accumulation in mitochondria was associated with increased mitochondrial oxidation. Our results suggest that PRL-R antagonism in PRL-R over-expressing breast cancer cells may reduce invasion through the redistribution of intracellular Zn pools critical for cellular function. - Highlights: • PRL-R attenuation increased ZnT2 expression. • PRL-R attenuation increased lysosomal and mitochondrial Zn accumulation. • PRL-R attenuation decreased MMP-2 and invasion. • PRL-R antagonists may modulate lysosomal and mitochondrial Zn pools

  12. Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Bostanci, Zeynep, E-mail: zbostanci@hmc.psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); Alam, Samina, E-mail: sra116@psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); Soybel, David I., E-mail: dsoybel@hmc.psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); The Pennsylvania State University College of Medicine, Department of Cell and Molecular Physiology, 500 University Dr., Hershey, PA 17033 (United States); Kelleher, Shannon L., E-mail: slk39@psu.edu [The Pennsylvania State University, Department of Nutritional Sciences, 209 Chandlee Lab, University Park, PA 16802 (United States); The Pennsylvania State University Milton S. Hershey Medical Center, Department of Surgery, 500 University Dr., Hershey, PA 17033 (United States); The Pennsylvania State University College of Medicine, Department of Cell and Molecular Physiology, 500 University Dr., Hershey, PA 17033 (United States)

    2014-02-15

    Prolactin receptor (PRL-R) activation regulates cell differentiation, proliferation, cell survival and motility of breast cells. Prolactin (PRL) and PRL-R over-expression are strongly implicated in breast cancer, particularly contributing to tumor growth and invasion in the more aggressive estrogen-receptor negative (ER−) disease. PRL-R antagonists have been suggested as potential therapeutic agents; however, mechanisms through which PRL-R antagonists exert their actions are not well-understood. Zinc (Zn) is a regulatory factor for over 10% of the proteome, regulating critical cell processes such as proliferation, cell signaling, transcription, apoptosis and autophagy. PRL-R signaling regulates Zn metabolism in breast cells. Herein we determined effects of PRL-R attenuation on cellular Zn metabolism and cell function in a model of ER-, PRL-R over-expressing breast cancer cells (MDA-MB-453). PRL-R attenuation post-transcriptionally increased ZnT2 abundance and redistributed intracellular Zn pools into lysosomes and mitochondria. ZnT2-mediated lysosomal Zn sequestration was associated with reduced matrix metalloproteinase 2 (MMP-2) activity and decreased invasion. ZnT2-mediated Zn accumulation in mitochondria was associated with increased mitochondrial oxidation. Our results suggest that PRL-R antagonism in PRL-R over-expressing breast cancer cells may reduce invasion through the redistribution of intracellular Zn pools critical for cellular function. - Highlights: • PRL-R attenuation increased ZnT2 expression. • PRL-R attenuation increased lysosomal and mitochondrial Zn accumulation. • PRL-R attenuation decreased MMP-2 and invasion. • PRL-R antagonists may modulate lysosomal and mitochondrial Zn pools.

  13. Changes in lead and zinc lability during weathering-induced acidification of desert mine tailings: Coupling chemical and micro-scale analyses

    International Nuclear Information System (INIS)

    Hayes, Sarah M.; White, Scott A.; Thompson, Thomas L.; Maier, Raina M.; Chorover, Jon

    2009-01-01

    Desert mine tailings may accumulate toxic metals in the near surface centimeters because of low water through-flux rates. Along with other constraints, metal toxicity precludes natural plant colonization even over decadal time scales. Since unconsolidated particles can be subjected to transport by wind and water erosion, potentially resulting in direct human and ecosystem exposure, there is a need to know how the lability and form of metals change in the tailings weathering environment. A combination of chemical extractions, X-ray diffraction, micro-X-ray fluorescence spectroscopy, and micro-Raman spectroscopy were employed to study Pb and Zn contamination in surficial arid mine tailings from the Arizona Klondyke State Superfund Site. Initial site characterization indicated a wide range in pH (2.5-8.0) in the surficial tailings pile. Ligand-promoted (DTPA) extractions, used to assess plant-available metal pools, showed decreasing available Zn and Mn with progressive tailings acidification. Aluminum shows the inverse trend, and Pb and Fe show more complex pH dependence. Since the tailings derive from a common source and parent mineralogy, it is presumed that variations in pH and 'bio-available' metal concentrations result from associated variation in particle-scale geochemistry. Four sub-samples, ranging in pH from 2.6 to 5.4, were subjected to further characterization to elucidate micro-scale controls on metal mobility. With acidification, total Pb (ranging from 5 to 13 g kg -1 ) was increasingly associated with Fe and S in plumbojarosite aggregates. For Zn, both total (0.4-6 g kg -1 ) and labile fractions decreased with decreasing pH. Zinc was found to be primarily associated with the secondary Mn phases manjiroite and chalcophanite. The results suggest that progressive tailings acidification diminishes the overall lability of the total Pb and Zn pools.

  14. Zinc in multiple sclerosis

    DEFF Research Database (Denmark)

    Bredholt, Mikkel; Fredriksen, Jette Lautrup

    2016-01-01

    In the last 35 years, zinc (Zn) has been examined for its potential role in the disease multiple sclerosis (MS). This review gives an overview of the possible role of Zn in the pathogenesis of MS as well as a meta-analysis of studies having measured Zn in serum or plasma in patients with MS...

  15. Protective effect of zinc against ischemic neuronal injury in a middle cerebral artery occlusion model.

    Science.gov (United States)

    Kitamura, Youji; Iida, Yasuhiko; Abe, Jun; Ueda, Masashi; Mifune, Masaki; Kasuya, Fumiyo; Ohta, Masayuki; Igarashi, Kazuo; Saito, Yutaka; Saji, Hideo

    2006-02-01

    In this study, we investigated the effect of vesicular zinc on ischemic neuronal injury. In cultured neurons, addition of a low concentration (under 100 microM) of zinc inhibited both glutamate-induced calcium influx and neuronal death. In contrast, a higher concentration (over 150 microM) of zinc decreased neuronal viability, although calcium influx was inhibited. These results indicate that zinc exhibits biphasic effects depending on its concentration. Furthermore, in cultured neurons, co-addition of glutamate and CaEDTA, which binds extra-cellular zinc, increased glutamate-induced calcium influx and aggravated the neurotoxicity of glutamate. In a rat transient middle cerebral artery occlusion (MCAO) model, the infarction volume, which is related to the neurotoxicity of glutamate, increased rapidly on the intracerebral ventricular injection of CaEDTA 30 min prior to occlusion. These results suggest that zinc released from synaptic vesicles may provide a protective effect against ischemic neuronal injury.

  16. Zinc bioavailability in the chick

    International Nuclear Information System (INIS)

    Hempe, J.M.

    1987-01-01

    Methods for assessing zinc bioavailability were evaluated in the chick. A low-zinc chick diet was developed using rehydrated, spray-dried egg white autoclaved at 121 C for 30 min as the primary protein source. The relative bioavailability of zinc from soy flour and beef was determined by whole-body retention of extrinsic 65 Zn, and in slope ratio assays for growth rate and tissue zinc. Compared to zinc carbonate added to an egg white-based diet, all methods gave similar estimates of approximately 100% zinc bioavailability for beef but estimates for soy flour varied widely. The slope ratio assay for growth rate gave the best estimate of zinc bioavailability for soy flour. True absorption, as measured by percent isotope retention from extrinsically labeled soy flour, was 47%

  17. Prevention of upper aerodigestive tract cancer in zinc-deficient rodents: Inefficacy of genetic or pharmacological disruption of COX-2

    Science.gov (United States)

    Fong, Louise Y.Y.; Jiang, Yubao; Riley, Maurisa; Liu, Xianglan; Smalley, Karl J.; Guttridge, Denis C.; Farber, John L.

    2009-01-01

    Zinc deficiency in humans is associated with an increased risk of upper aerodigestive tract (UADT) cancer. In rodents, zinc deficiency predisposes to carcinogenesis by causing proliferation and alterations in gene expression. We examined whether in zinc-deficient rodents, targeted disruption of the cyclooxygenase (COX)-2 pathway by the COX-2 selective inhibitor celecoxib or by genetic deletion prevent UADT carcinogenesis. Tongue cancer prevention studies were conducted in zinc-deficient rats previously exposed to a tongue carcinogen by celecoxib treatment with or without zinc replenishment, or by zinc replenishment alone. The ability of genetic COX-2 deletion to protect against chemically-induced for-estomach tumorigenesis was examined in mice on zinc-deficient versus zinc-sufficient diet. The expression of 3 predictive bio-markers COX-2, nuclear factor (NF)-κ B p65 and leukotriene A4 hydrolase (LTA4H) was examined by immunohistochemistry. In zinc-deficient rats, celecoxib without zinc replenishment reduced lingual tumor multiplicity but not progression to malignancy. Celecoxib with zinc replenishment or zinc replenishment alone significantly lowered lingual squamous cell carcinoma incidence, as well as tumor multiplicity. Celecoxib alone reduced overexpression of the 3 biomarkers in tumors slightly, compared with intervention with zinc replenishment. Instead of being protected, zinc-deficient COX-2 null mice developed significantly greater tumor multiplicity and forestomach carcinoma incidence than wild-type controls. Additionally, zinc-deficient COX-2−/− forestomachs displayed strong LTA4H immunostaining, indicating activation of an alter-native pathway under zinc deficiency when the COX-2 pathway is blocked. Thus, targeting only the COX-2 pathway in zinc-deficient animals did not prevent UADT carcinogenesis. Our data suggest zinc supplementation should be more thoroughly explored in human prevention clinical trials for UADT cancer. PMID:17985342

  18. Hair Zinc Level Analysis and Correlative Micronutrients in Children Presenting with Malnutrition and Poor Growth

    OpenAIRE

    Han, Tae Hwan; Lee, Jin; Kim, Yong Joo

    2016-01-01

    Purpose Zinc deficiency can induce serious clinical problems in the gastrointestinal (GI) system and immune system and can affect growth and development. It is more severe in younger patients. Chronic zinc deficiency is reflected more precisely in hair than in serum. We studied hair zinc levels and other hair and serum micronutrients in chronic malnourished children to identify which micronutrients are affected or correlated with the other ones. Methods Hair mineral analyses were performed in...

  19. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  20. A moonlighting function of Mycobacterium smegmatis Ku in zinc homeostasis?

    Science.gov (United States)

    Kushwaha, Ambuj K; Deochand, Dinesh K; Grove, Anne

    2015-02-01

    Ku protein participates in DNA double-strand break repair via the nonhomologous end-joining pathway. The three-dimensional structure of eukaryotic Ku reveals a central core consisting of a β-barrel domain and pillar and bridge regions that combine to form a ring-like structure that encircles DNA. Homologs of Ku are encoded by a subset of bacterial species, and they are predicted to conserve this core domain. In addition, the bridge region of Ku from some bacteria is predicted from homology modeling and sequence analyses to contain a conventional HxxC and CxxC (where x is any residue) zinc-binding motif. These potential zinc-binding sites have either deteriorated or been entirely lost in Ku from other organisms. Using an in vitro metal binding assay, we show that Mycobacterium smegmatis Ku binds two zinc ions. Zinc binding modestly stabilizes the Ku protein (by ∼3°C) and prevents cysteine oxidation, but it has little effect on DNA binding. In vivo, zinc induces significant upregulation of the gene encoding Ku (∼sixfold) as well as a divergently oriented gene encoding a predicted zinc-dependent MarR family transcription factor. Notably, overexpression of Ku confers zinc tolerance on Escherichia coli. We speculate that zinc-binding sites in Ku proteins from M. smegmatis and other mycobacterial species have been evolutionarily retained to provide protection against zinc toxicity without compromising the function of Ku in DNA double-strand break repair. © 2014 The Protein Society.

  1. Autoregulatory Feedback Mechanism of P38MAPK/Caspase-8 in Photodynamic Therapy-Hydrophilic/Lipophilic Tetra-α-(4-carboxyphenoxy Phthalocyanine Zinc-Induced Apoptosis of Human Hepatocellular Carcinoma Bel-7402 Cells

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-01-01

    Full Text Available Photodynamic therapy (PDT is a novel and promising antitumor treatment. Our previous study showed that hydrophilic/lipophilic tetra-α-(4-carboxyphenoxy phthalocyanine zinc- (TαPcZn- mediated PDT (TαPcZn-PDT inhibits the proliferation of human hepatocellular carcinoma Bel-7402 cells by triggering apoptosis and arresting cell cycle. However, mechanisms of TαPcZn-PDT-induced apoptosis of Bel-7402 cells have not been fully clarified. In the present study, therefore, effect of TαPcZn-PDT on apoptosis, P38MAPK, p-P38MAPK, Caspase-8, Caspase-3, Bcl-2, Bid, Cytochrome c, and mitochondria membrane potential in Bel-7402 cells without or with P38MAPK inhibitor SB203580 or Caspase-8 inhibitor Ac-IEFD-CHO was investigated by haematoxylin and eosin (HE staining assay, flow cytometry analysis of annexin V-FITC/propidium iodide (PI double staining cells and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1, and immunoblot assay. We found that TαPcZn-PDT resulted in apoptosis induction, activation of P38MAPK, Caspase-8, Caspase-3, and Bid, downregulation of Bcl-2, release of Cytochrome c from mitochondria, and disruption of mitochondrial membrane potential in TαPcZn-PDT-treated Bel-7402 cells. In contrast, SB203580 or Ac-IEFD-CHO attenuated induction of apoptosis, activation of P38MAPK, Caspase-8, Caspase-3, and Bid, downregulation of Bcl-2, release of Cytochrome c from mitochondria, and disruption of mitochondrial membrane potential in TαPcZn-PDT-treated Bel-7402 cells. Taken together, we conclude that Caspase-3, Bcl-2, Bid, and mitochondria are involved in autoregulatory feedback of P38MAPK/Caspase-8 during TαPcZn-PDT-induced apoptosis of Bel-7402 cells.

  2. Arsenite-induced ROS/RNS generation causes zinc loss and inhibits the activity of poly (ADP-ribose) polymerase-1

    OpenAIRE

    Wang, Feng; Zhou, Xixi; Liu, Wenlan; Sun, Xi; Chen, Chen; Hudson, Laurie G.; Liu, Ke Jian

    2013-01-01

    Arsenic enhances genotoxicity of other carcinogenic agents such as ultraviolet radiation and benzo[a]pyrene. Recent reports suggest that inhibition of DNA repair is an important aspect of arsenic co-carcinogenesis, and DNA repair proteins such as poly (ADP ribose) polymerase (PARP)-1 are direct molecular targets of arsenic. Although arsenic has been shown to generate reactive oxygen/nitrogen species (ROS/RNS), little is known about the role of arsenic-induced ROS/RNS in the mechanism underlyi...

  3. Does the oral zinc tolerance test measure zinc absorption

    Energy Technology Data Exchange (ETDEWEB)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi /sup 65/ZnCl/sub 2/ and a non-absorbed marker, /sup 51/CrCl/sub 3/, dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with /sup 65/Zn and /sup 51/Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and /sup 65/Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and /sup 65/Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption.

  4. Does the oral zinc tolerance test measure zinc absorption

    International Nuclear Information System (INIS)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi 65 ZnCl 2 and a non-absorbed marker, 51 CrCl 3 , dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with 65 Zn and 51 Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and 65 Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and 65 Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption

  5. Inducing indel mutation in the SOX6 gene by zinc finger nuclease for gamma reactivation: An approach towards gene therapy of beta thalassemia.

    Science.gov (United States)

    Modares Sadeghi, Mehran; Shariati, Laleh; Hejazi, Zahra; Shahbazi, Mansoureh; Tabatabaiefar, Mohammad Amin; Khanahmad, Hossein

    2018-03-01

    β-thalassemia is a common autosomal recessive disorder characterized by a deficiency in the synthesis of β-chains. Evidences show that increased HbF levels improve the symptoms in patients with β-thalassemia or sickle cell anemia. In this study, ZFN technology was applied to induce a mutation in the binding domain region of SOX6 to reactivate γ-globin expression. The sequences coding for ZFP arrays were designed and sub cloned in TDH plus as a transfer vector. The ZFN expression was confirmed using Western blot analysis. In the next step, using the site-directed mutagenesis strategy through the overlap PCR, a missense mutation (D64V) was induced in the catalytic domain of the integrase gene in the packaging plasmid and verified using DNA sequencing. Then, the integrase minus lentivirus containing ZFN cassette was packaged. Transduction of K562 cells with this virus was performed. Mutation detection assay was performed. The indel percentage of the cells transducted with lenti virus containing ZFN was 31%. After 5 days of erythroid differentiation with 15 μg/mL cisplatin, the levels of γ-globin mRNA were sixfold in the cells treated with ZFN compared to untreated cells. In the meantime, the measurement of HbF expression levels was carried out using hemoglobin electrophoresis and showed the same results. Integrase minus lentivirus can provide a useful tool for efficient transient gene expression and helps avoid disadvantages of gene targeting using the native virus. The ZFN strategy applied here to induce indel on SOX6 gene in adult erythroid progenitors may provide a method to activate fetal hemoglobin expression in individuals with β-thalassemia. © 2017 Wiley Periodicals, Inc.

  6. Photoluminescence light-up detection of zinc ion and imaging in living cells based on the aggregation induced emission enhancement of glutathione-capped copper nanoclusters.

    Science.gov (United States)

    Lin, Liyun; Hu, Yuefang; Zhang, Liangliang; Huang, Yong; Zhao, Shulin

    2017-08-15

    In this work, we prepared glutathione (GSH)-capped copper nanoclusters (Cu NCs) with red emission by simply adjusting the pH of GSH/Cu 2+ mixture at room temperature. A photoluminescence light-up method for detecting Zn 2+ was then developed based on the aggregation induced emission enhancement of GSH-capped Cu NCs. Zn 2+ could trigger the aggregation of Cu NCs, inducing the enhancement of luminescence and the increase of absolute quantum yield from 1.3% to 6.2%. GSH-capped Cu NCs and the formed aggregates were characterized, and the possible mechanism was also discussed. The prepared GSH-capped Cu NCs exhibited a fast response towards Zn 2+ and a wider detection range from 4.68 to 2240μM. The detection limit (1.17μM) is much lower than that of the World Health Organization permitted in drinking water. Furthermore, taking advantages of the low cytotoxicity, large Stokes shift, red emission and light-up detection mode, we explored the use of the prepared GSH-capped Cu NCs in the imaging of Zn 2+ in living cells. The developed luminescence light-up nanoprobe may hold the potentials for Zn 2+ -related drinking water safety and biological applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Acclimation-induced changes in toxicity and induction of metallothionein-like proteins in the fathead minnow following sublethal exposure to cobalt, silver, and zinc

    International Nuclear Information System (INIS)

    Hobson, J.F.

    1986-01-01

    Increases in tolerance and resistance to metal toxicity by aquatic organisms have been linked to elevated levels of low-molecular-weight metal-binding proteins (e.g., metallothioneins). Acclimation-induced changes in toxic response and the concentration of metallothionein-like proteins (MTP) were studied in laboratory populations of the fathead minnow, Pimephales promelas, following sublethal exposure to Co, Ag, and Zn. Following 7 and 14 days of sublethal exposure, tolerance and resistance, as measured by acute toxicity values, were altered in a dose dependent fashion. Acute toxicity values returned to control levels after 21 days of continuous exposure. Tolerance and resistance of Co- and Zn-acclimated animals were depressed after a 7-day post-acclimation period in control water. Tolerance and resistance of Ag-acclimated animals were temporarily enhanced after 7 days post-acclimation and returned to control levels after 14 days. Accumulation of Co, Ag, and Zn measured as wholebody residues appeared to be regulated in 4 of 6 exposure regimes with residues reaching stable levels after 7 to 14 days of exposure. MTP was induced by exposure to 1.8 mg Zn/L and 0.01 mg Ag/L, however, no sustained (i.e., post 21 days) tolerance or resistance were observed at these dose levels indicating that these two biological responses may not be directly related

  8. Innovative uses for zinc in dermatology.

    Science.gov (United States)

    Bae, Yoon Soo; Hill, Nikki D; Bibi, Yuval; Dreiher, Jacob; Cohen, Arnon D

    2010-07-01

    Severe zinc deficiency states, such as acrodermatitis enteropathica, are associated with a variety of skin manifestations, such as perioral, acral, and perineal dermatitis. These syndromes can be reversed with systemic zinc repletion. In addition to skin pathologies that are clearly zinc-dependent, many dermatologic conditions (eg, dandruff, acne, and diaper rash) have been associated and treated with zinc. Success rates for treatment with zinc vary greatly depending on the disease, mode of administration, and precise zinc preparation used. With the exception of systemic zinc deficiency states, there is little evidence that convincingly demonstrates the efficacy of zinc as a reliable first-line treatment for most dermatologic conditions. However, zinc may be considered as an adjunctive treatment modality. Further research is needed to establish the indications for zinc treatment in dermatology, optimal mode of zinc delivery, and best type of zinc compound to be used. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Zinc absorption in experimental osmotic diarrhea: effect of long-chain fatty acids.

    Science.gov (United States)

    Lee, S Y; Wapnir, R A

    1993-03-01

    The effect of free fatty acids on zinc absorption was studied in a rat model of chronic osmotic diarrhea induced with magnesium citrate and phenolphthalein. In vivo rates of zinc removal from the lumen and analysis of tissue for zinc uptake and metallothionein alterations were monitored. One mmol/L stearate enhanced zinc absorption in rats with or without diarrhea, from 207 +/- 22 and 353 +/- 13 pmol/min x cm to 676 +/- 34 and 610 +/- 26 pmol/min x cm, respectively. Palmitate was only effective in normal rats. Zinc absorption inversely correlated with mucosal zinc content in the perfused intestinal segments, in both type of rats. Hepatic metallothionein was enhanced by zinc and even more by oleate plus zinc in both groups; kidney metallothionein in animals with diarrhea was normalized by either oleate or zinc. The data support previous reports on the effect of long-chain fatty acids on the enhancement of zinc absorption: saturation and a longer chain appear to be positive factors. A membrane modification role of long-chain fatty acids could have nutritional implications in the formulation of special diets.

  10. Inhibition of presynaptic activity by zinc released from mossy fiber terminals during tetanic stimulation.

    Science.gov (United States)

    Minami, Akira; Sakurada, Naomi; Fuke, Sayuri; Kikuchi, Kazuya; Nagano, Tetsuo; Oku, Naoto; Takeda, Atsushi

    2006-01-01

    Zinc exists in high densities in the giant boutons of hippocampal mossy fibers. On the basis of the evidence that zinc decreases extracellular glutamate concentration in the hippocampus, the presynaptic action of zinc released from mossy fibers during high-frequency (tetanic) stimulation was examined using hippocampal slices. The increase in zinc-specific fluorescent signals was observed in both extracellular and intracellular compartments in the mossy fiber terminals during the delivery of tetanic stimuli (100 Hz, 1 sec) to the dentate granule cell layer, suggesting that zinc released from mossy fibers is immediately retaken up by mossy fibers. When mossy fiber terminals were preferentially double-stained with zinc and calcium indicators and tetanic stimuli (100 Hz, 1 sec) were delivered to the dentate granule cell layer, the increase in calcium orange signal during the stimulation was enhanced in mossy fiber terminals by addition of CaEDTA, a membrane-impermeable zinc chelator, and was suppressed by addition of zinc. The decrease in FM4-64 signal (vesicular exocytosis) during tetanic stimulation (10 Hz, 180 sec), which induced mossy fiber long-term potentiation, was also enhanced in mossy fiber terminals by addition of CaEDTA and was suppressed by addition of zinc. The present study demonstrates that zinc released from mossy fibers may be a negative-feedback factor against presynaptic activity during tetanic stimulation.

  11. Evidence for a zinc/proton antiporter in rat brain.

    Science.gov (United States)

    Colvin, R A; Davis, N; Nipper, R W; Carter, P A

    2000-05-01

    The data presented in this paper are consistent with the existence of a plasma membrane zinc/proton antiport activity in rat brain. Experiments were performed using purified plasma membrane vesicles isolated from whole rat brain. Incubating vesicles in the presence of various concentrations of 65Zn2+ resulted in a rapid accumulation of 65Zn2+. Hill plot analysis demonstrated a lack of cooperativity in zinc activation of 65Zn2+ uptake. Zinc uptake was inhibited in the presence of 1 mM Ni2+, Cd2+, or CO2+. Calcium (1 mM) was less effective at inhibiting 65Zn2+ uptake and Mg2+ and Mn2+ had no effect. The initial rate of vesicular 65Zn2+ uptake was inhibited by increasing extravesicular H+ concentration. Vesicles preloaded with 65Zn2+ could be induced to release 65Zn2+ by increasing extravesicular H+ or addition of 1 mM nonradioactive Zn2+. Hill plot analysis showed a lack of cooperativity in H+ activation of 65Zn2+ release. Based on the Hill analyses, the stoichiometry of transport may include Zn2+/Zn2+ exchange and Zn2+/H+ antiport, the latter being potentially electrogenic. Zinc/proton antiport may be an important mode of zinc uptake into neurons and contribute to the reuptake of zinc to replenish presynaptic vesicle stores after stimulation.

  12. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    Science.gov (United States)

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  13. Uptake and partitioning of zinc in Lemnaceae.

    Science.gov (United States)

    Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John

    2011-11-01

    Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility.

  14. Detection of zinc translocation into apical dendrite of CA1 pyramidal neuron after electrical stimulation.

    Science.gov (United States)

    Suh, Sang Won

    2009-02-15

    Translocation of the endogenous cation zinc from presynaptic terminals to postsynaptic neurons after brain insult has been implicated as a potential neurotoxic event. Several studies have previously demonstrated that a brief electrical stimulation is sufficient to induce the translocation of zinc from presynaptic vesicles into the cytoplasm (soma) of postsynaptic neurons. In the present work I have extended those findings in three ways: (i) providing evidence that zinc translocation occurs into apical dendrites, (ii) presenting data that there is an apparent translocation into apical dendrites when only a zinc-containing synaptic input is stimulated, and (iii) presenting data that there is no zinc translocation into apical dendrite of ZnT3 KO mice following electrical stimulation. Hippocampal slices were preloaded with the "trappable" zinc fluorescent probe, Newport Green. After washout, a single apical dendrite in the stratum radiatum of hippocampal CA1 area was selected and focused on. Burst stimulation (100Hz, 500microA, 0.2ms, monopolar) was delivered to either the adjacent Schaffer-collateral inputs (zinc-containing) or to the adjacent temporo-ammonic inputs (zinc-free) to the CA1 dendrites. Stimulation of the Schaffer collaterals increased the dendritic fluorescence, which was blocked by TTX, low-Ca medium, or the extracellular zinc chelator, CaEDTA. Stimulation of the temporo-ammonic pathway caused no significant rise in the fluorescence. Genetic depletion of vesicular zinc by ZnT3 KO showed no stimulation-induced apical dendrite zinc rise. The present study provides evidence that synaptically released zinc translocates into postsynaptic neurons through the apical dendrites of CA1 pyramidal neurons during physiological synaptic activity.

  15. Inhibitory zinc-enriched terminals in mouse spinal cord

    DEFF Research Database (Denmark)

    Danscher, G; Jo, S M; Varea, E

    2001-01-01

    The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution...

  16. Multi-element analysis of the rat hippocampus by proton induced x-ray emission spectroscopy (phosphorus, sulfur, chlorine, potassium, calcium, iron, zinc, copper, lead, bromine, and rubidium)

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, K.; Danscher, G.

    1979-01-22

    A technique for multi-element analysis of brain tissue by proton induced x-ray emission spectroscopy (PIXE) is described and data from analysis of fixed and unfixed samples from rat hippocampus, neocortex, amygdala, and spinal cord are presented and commented on. The atoms present in the tissue are bombarded with protons which cause the ejection of electrons from the inner shells. When the holes are refilled with electrons from outer shells, x-ray quanta characteristic for each element are emitted. Using a high resolution energy dispersive detector, a complete x-ray spectrum of the specimen can be recorded in a single measurement. Detection limits less than or approximately 5 ppM of dry matter are obtained for most elements with atomic number greater than 14 (silicon). Around 13 elements were found in concentrations above the detection limits. The grand means for non-fixed hippocampi were e.g., for Zn-120 ppM; Rb-20 ppM; Fe-150 ppM; Pb-3 ppM; Ni-5 ppM.

  17. Ab initio study of lattice instabilities of zinc chalcogenides ZnX (X=O, S, Se, Te induced by ultrafast intense laser irradiation

    Directory of Open Access Journals (Sweden)

    Dahua Ren

    2017-09-01

    Full Text Available Ab initio calculations of lattice constants, lattice stabilities of ZnX (X=O, S, Se, Te at different electronic temperatures (Te have been performed using generalized gradient approximation (GGA pseudopotential method within the density functional theory (DFT. The calculated phonon frequencies of ZnX at Te = 0 eV accord well with the experimental and other theoretical values. Firstly, it is indicated that the lattice constants of ZnX increase and all the phonon frequencies reduce as Te increases. Additionally, the transverse-acoustic phonon frequencies of ZnX are imaginary with the elevation of Te, namely the lattices of ZnX become unstable under ultrafast intense laser irradiation. Moreover, the transverse optical mode-longitudinal optical mode (LO-TO splitting degree of ZnX (X=S, Se, Te gradually decreases as the electronic temperature increases, mainly due to the reason that the electronic excitation weakens the strength ionicity of ionic crystal ZnX under intense laser irradiation. However, the LO-TO splitting degree of ZnO firstly increases and then decreases with the increase of electronic temperature. After that, it can be helpful for understanding the mechanism of ultrafast intense laser induced semiconductors damage.

  18. Zinc: an essential oligoelement

    OpenAIRE

    Rubio, C.; González Weller, D.; Martín-Izquierdo, R. E.; Revert, C.; Rodríguez, I.; Hardisson, A.

    2007-01-01

    En este artículo se hace una revisión exhaustiva del zinc, elemento metálico esencial para el funcionamiento del organismo. Repasamos y reflejamos aspectos relacionados con la farmacocinética, con las fuentes dietéticas más importantes, así como las IDR (Ingestas Dietéticas Recomendadas) del mismo. También se hace mención a los signos y síntomas relacionados tanto con una ingesta deficiente, como con posibles efectos tóxicos, derivados de ingestas excesivas.This article comprehensively review...

  19. Cadmium and zinc

    International Nuclear Information System (INIS)

    Safaya, N.M.; McLean, J.E.; Halverson, G.A.

    1987-01-01

    Cadmium and zinc are naturally occurring trace metals that are often considered together because of their close geochemical association and similarities in chemical reactivity. The loss of two electrons from an atom of Cd or Zn imparts to each an electron configuration with completely filled d orbitals; this results in a highly stable 2/sup +/ oxidation state. But Cd and Zn differ greatly in their significance to biological systems. Whereas Zn is an essential nutrient for plants, animals, and humans, Cd is best known for its toxicity to plants and as a causative agent of several disease syndromes in animals and humans

  20. Effects of Nano-zinc on Biochemical Parameters in Cadmium-Exposed Rats.

    Science.gov (United States)

    Hejazy, Marzie; Koohi, Mohammad Kazem

    2017-12-01

    Cadmium (Cd) is a toxic environmental and occupational pollutant with reported toxic effects on the kidneys, liver, lungs, bones, and the immunity system. Based on its physicochemical similarity to cadmium, zinc (Zn) shows protective effects against cadmium toxicity and cadmium accumulation in the body. Nano-zinc and nano-zinc oxide (ZnO), recently used in foods and pharmaceutical products, can release a great amount of Zn 2+ in their environment. This research was carried out to investigate the more potent properties of the metal zinc among sub-acute cadmium intoxicated rats. Seventy-five male Wistar rats were caged in 15 groups. Cadmium chloride (CdCl 2 ) was used in drinking water to induce cadmium toxicity. Different sizes (15, 20, and 30 nm) and doses of nano-zinc particles (3, 10, 100 mg/kg body weight [bw]) were administered solely and simultaneously with CdCl 2 (2-5 mg/kg bw) for 28 days. The experimental animals were decapitated, and the biochemical biomarkers (enzymatic and non-enzymatic) were determined in their serum after oral exposure to nano-zinc and cadmium. Statistical analysis was carried out with a one-way ANOVA and t test. P zinc-treated rats. AST, ALT, triglyceride, total cholesterol, LDL, and free fatty acids increased significantly in the cadmium- and nano-zinc-treated rats compared with the controls. However, albumin, total protein, and HDLc significantly decreased in the cadmium- and nano-zinc-treated rats compared with the controls (P zinc, the smaller sizes with low doses and the larger sizes with high doses are more toxic than metallic zinc. In a few cases, an inverse dose-dependent relationship was seen as well. This research showed that in spite of larger sizes of zinc, smaller sizes of nano-zinc particles are not suitable for protection against cadmium intoxication.

  1. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi

    2016-03-18

    Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remains unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.

  2. Zinc as a Gatekeeper of Immune Function

    Directory of Open Access Journals (Sweden)

    Inga Wessels

    2017-11-01

    Full Text Available After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14, zinc “exporters” (ZnT 1–10, and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.

  3. Nutrition intervention strategies to combat zinc deficiency in developing countries.

    Science.gov (United States)

    Gibson, R S; Ferguson, E L

    1998-06-01

    Widespread zinc deficiency is likely to exist in developing countries where staple diets are predominantly plant based and intakes of animal tissues are low. The severe negative consequences of zinc deficiency on human health in developing countries, however, have only recently been recognized. An integrated approach employing targeted supplementation, fortification and dietary strategies must be used to maximize the likelihood of eliminating zinc deficiency at a national level in developing countries. Supplementation is appropriate only for populations whose zinc status must be improved over a relatively short time period, and when requirements cannot be met from habitual dietary sources. As well, the health system must be capable of providing consistent supply, distribution, delivery and consumption of the zinc supplement to the targeted groups. Uncertainties still exist about the type, frequency, and level of supplemental zinc required for prevention and treatment of zinc deficiency. Salts that are readily absorbed and at levels that will not induce antagonistic nutrient interactions must be used. At a national level, fortification with multiple micronutrients could be a cost effective method for improving micronutrient status, including zinc, provided that a suitable food vehicle which is centrally processed is available. Alternatively, fortification could be targeted for certain high risk groups (e.g. complementary foods for infants). Efforts should be made to develop protected fortificants for zinc, so that potent inhibitors of zinc absorption (e.g. phytate) present either in the food vehicle and/or indigenous meals do not compromise zinc absorption. Fortification does not require any changes in the existing food beliefs and practices for the consumer and, unlike supplementation, does not impose a burden on the health sector. A quality assurance programme is required, however, to ensure the quality of the fortified food product from production to consumption

  4. Interfacial electron transfer dynamics of photosensitized zinc oxide nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Murakoshi, Kei; Yanagida, Shozo [Osaka Univ. (Japan). Graduate School of Engineering; Capel, M. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1997-06-01

    The authors have prepared and characterized photosensitized zinc oxide (ZnO) nanoclusters, dispersed in methanol, using carboxylated coumarin dyes for surface adsorption. Femtosecond time-resolved emission spectroscopy allows the authors to measure the photo-induced charge carrier injection rate constant from the adsorbed photosensitizer to the n-type semiconductor nanocluster. These results are compared with other photosensitized semiconductors.

  5. Femtosecond laser writing of waveguides in zinc phosphate glasses [Invited

    NARCIS (Netherlands)

    Fletcher, L.B.; Witcher, J.J.; Troy, N.; Reis, S.T.; Brow, R.K.; Martinez Vazquez, R.; Osellame, R.; Krol, D.M.

    2011-01-01

    We have studied the relationship between the initial glass composition and the structural changes associated with laser-induced refractive index modification in a series of Er-Yb doped and undoped zinc phosphate glasses. White light microscopy and waveguide experiments are used together with Raman

  6. Zinc ions bind to and inhibit activated protein C

    DEFF Research Database (Denmark)

    Zhu, Tianqing; Ubhayasekera, Wimal; Nickolaus, Noëlle

    2010-01-01

    fold enhanced, presumably due to the Ca2+-induced conformational change affecting the conformation of the Zn2+-binding site. The inhibition mechanism was non-competitive both in the absence and presence of Ca2+. Comparisons of sequences and structures suggested several possible sites for zinc binding...

  7. Microcirculatory effects of zinc on fructose-fed hamsters.

    Science.gov (United States)

    Castiglione, R C; Barros, C M M R; Boa, B C S; Bouskela, E

    2016-04-01

    Fructose is a major dietary component directly related to vascular dysfunction and diseases such as obesity, diabetes, and hypertension. Zinc is considered a non-pharmacological alternative for treating diabetes due to its antioxidant and hyperglycemia-lowering effects in diabetic animals. Therefore, the aim of this study was to evaluate the effects of dietary zinc supplementation on the microcirculatory parameters of fructose-fed hamsters. Male hamsters (Mesocricetus auratus) were fed drinking water substituted by 10% fructose solution for 60 days, whereas control animals were fed drinking water alone. Their microcirculatory function was evaluated using cheek pouch preparation, as well as their blood glucose and serum insulin levels. Their microcirculatory responses to acetylcholine (ACh, an endothelium-dependent vasodilator) and to sodium nitroprusside (SNP, an endothelium-independent vasodilator) as well as the increase in macromolecular permeability induced by 30 min of ischemia/reperfusion (I/R) were noted. Endothelium-dependent vasodilation was significantly increased in control animals with high zinc supplementation compared to the groups without zinc supplementation. Zinc was able to protect against plasma leakage induced by I/R in all control and fructose-fed groups, although the microvascular permeability was higher in animals fed drinking water substituted by 10% fructose solution compared to those fed filtered drinking water alone. Our results indicate that dietary zinc supplementation can improve microvascular dysfunction by increasing endothelial-dependent dilatation and reducing the increase in macromolecular permeability induced by I/R in fructose-fed animals. Copyright © 2015 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  8. Cathodic hydrogen charging of zinc

    International Nuclear Information System (INIS)

    Panagopoulos, C.N.; Georgiou, E.P.; Chaliampalias, D.

    2014-01-01

    Highlights: •Incorporation of hydrogen into zinc and formation of zinc hydrides. •Investigation of surface residual stresses due to hydrogen diffusion. •Effect of hydrogen diffusion and hydride formation on mechanical properties of Zn. •Hydrogen embrittlement phenomena in zinc. -- Abstract: The effect of cathodic hydrogen charging on the structural and mechanical characteristics of zinc was investigated. Hardening of the surface layers of zinc, due to hydrogen incorporation and possible formation of ZnH 2 , was observed. In addition, the residual stresses brought about by the incorporation of hydrogen atoms into the metallic matrix, were calculated by analyzing the obtained X-ray diffraction patterns. Tensile testing of the as-received and hydrogen charged specimens revealed that the ductility of zinc decreased significantly with increasing hydrogen charging time, for a constant value of charging current density, and with increasing charging current density, for a constant value of charging time. However, the ultimate tensile strength of this material was slightly affected by the hydrogen charging procedure. The cathodically charged zinc exhibited brittle transgranular fracture at the surface layers and ductile intergranular fracture at the deeper layers of the material

  9. Effects of dissolved metals and other hydrominerals on in vivo intestinal zinc uptake in freshwater rainbow trout

    International Nuclear Information System (INIS)

    Glover, Chris N.; Hogstrand, Christer

    2003-01-01

    For aquatic organisms, zinc is both an essential nutrient and an environmental contaminant. The intestine is potentially the most important route of zinc absorption, yet little is known regarding this uptake pathway for zinc in fish. A recently developed in vivo perfusion system was used to investigate the effect of luminal composition upon intestinal zinc uptake in freshwater rainbow trout (Oncorhynchus mykiss). Perfusate cadmium and copper had specific, yet distinct, antagonistic effects upon lumen to tissue zinc movement. Copper significantly reduced the proportion of zinc taken up from the perfusate, and concomitantly limited the passage of zinc into the circulation and beyond. Conversely, cadmium decreased subepithelial zinc accumulation, with rates falling to 29 nmol g -1 h -1 from the control (zinc alone) values of 53 nmol g -1 h -1 . Calcium had a similar action to copper, also reducing post-intestinal zinc accumulation from 0.06 to 0.02 nmol g -1 h -1 , an effect attributed to interactions between calcium and the zinc uptake pathway. In addition to these effects, luminal composition also had a marked influence upon epithelial response to zinc. Calcium, copper and magnesium all greatly reduced zinc-induced mucus secretion. Cadmium, a toxic metal, significantly increased mucus secretion. It is proposed that these modifications were related to the essentiality of each element, and their potential mechanisms of uptake. Despite changes at the epithelium, the post-epithelial accumulation of zinc was dependent mainly upon the nature of the competing cation. Intestinal saline ion substitution experiments suggested a potential link of potassium ion efflux to zinc uptake. The effect of pH buffering of luminal solutions was also investigated

  10. Does Zinc Sulfate Prevent Therapy-Induced Taste Alterations in Head and Neck Cancer Patients? Results of Phase III Double-Blind, Placebo-Controlled Trial from the North Central Cancer Treatment Group (N01C4)

    International Nuclear Information System (INIS)

    Halyard, Michele Y.; Jatoi, Aminah; Sloan, Jeff A.; Bearden, James D.; Vora, Sujay A.; Atherton, Pamela J.; Perez, Edith A.; Soori, Gammi; Zalduendo, Anthony C.; Zhu, Angela; Stella, Philip J.; Loprinzi, Charles L.

    2007-01-01

    Purpose: Taste alterations (dysgeusia) are well described in head and neck cancer patients who undergo radiotherapy (RT). Anecdotal observations and pilot studies have suggested zinc may mitigate these symptoms. This multi-institutional, double-blind, placebo-controlled trial was conducted to provide definitive evidence of this mineral's palliative efficacy. Methods and Materials: A total of 169 evaluable patients were randomly assigned to zinc sulfate 45 mg orally three times daily vs. placebo. Treatment was to be given throughout RT and for 1 month after. All patients were scheduled to receive ≥2,000 cGy of external beam RT to ≥30% of the oral cavity, were able to take oral medication, and had no oral thrush at study entry. Changes in taste were assessed using the previously validated Wickham questionnaire. Results: At baseline, the groups were comparable in age, gender, and planned radiation dose (<6,000 vs. ≥6,000 cGy). Overall, 61 zinc-treated (73%) and 71 placebo-exposed (84%) patients described taste alterations during the first 2 months (p = 0.16). The median interval to taste alterations was 2.3 vs. 1.6 weeks in the zinc-treated and placebo-exposed patients, respectively (p = 0.09). The reported taste alterations included the absence of any taste (16%), bitter taste (8%), salty taste (5%), sour taste (4%), sweet taste (5%), and the presence of a metallic taste (10%), as well as other descriptions provided by a write in response (81%). Zinc sulfate did not favorably affect the interval to taste recovery. Conclusion: Zinc sulfate, as prescribed in this trial, did not prevent taste alterations in cancer patients who were undergoing RT to the oral pharynx

  11. Electrodeposition of zinc--nickel alloys coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dini, J W; Johnson, H R

    1977-10-01

    One possible substitute for cadmium in some applications is a zinc--nickel alloy deposit. Previous work by others showed that electrodeposited zinc--nickel coatings containing about 85 percent zinc and 15 percent nickel provided noticeably better corrosion resistance than pure zinc. Present work which supports this finding also shows that the corrosion resistance of the alloy deposit compares favorably with cadmium.

  12. Differential sensitivities of cellular XPA and PARP-1 to arsenite inhibition and zinc rescue.

    Science.gov (United States)

    Ding, Xiaofeng; Zhou, Xixi; Cooper, Karen L; Huestis, Juliana; Hudson, Laurie G; Liu, Ke Jian

    2017-09-15

    Arsenite directly binds to the zinc finger domains of the DNA repair protein poly (ADP ribose) polymerase (PARP)-1, and inhibits PARP-1 activity in the base excision repair (BER) pathway. PARP inhibition by arsenite enhances ultraviolet radiation (UVR)-induced DNA damage in keratinocytes, and the increase in DNA damage is reduced by zinc supplementation. However, little is known about the effects of arsenite and zinc on the zinc finger nucleotide excision repair (NER) protein xeroderma pigmentosum group A (XPA). In this study, we investigated the difference in response to arsenite exposure between XPA and PARP-1, and the differential effectiveness of zinc supplementation in restoring protein DNA binding and DNA damage repair. Arsenite targeted both XPA and PARP-1 in human keratinocytes, resulting in zinc loss from each protein and a pronounced decrease in XPA and PARP-1 binding to chromatin as demonstrated by Chip-on-Western assays. Zinc effectively restored DNA binding of PARP-1 and XPA to chromatin when zinc concentrations were equal to those of arsenite. In contrast, zinc was more effective in rescuing arsenite-augmented direct UVR-induced DNA damage than oxidative DNA damage. Taken together, our findings indicate that arsenite interferes with PARP-1 and XPA binding to chromatin, and that zinc supplementation fully restores DNA binding activity to both proteins in the cellular context. Interestingly, rescue of arsenite-inhibited DNA damage repair by supplemental zinc was more sensitive for DNA damage repaired by the XPA-associated NER pathway than for the PARP-1-dependent BER pathway. This study expands our understanding of arsenite's role in DNA repair inhibition and co-carcinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Zinc and cadmium monosalicylates

    International Nuclear Information System (INIS)

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K.

    1984-01-01

    Zinc and cadmium monosalicylates of the composition MSal, where M-Zn or Cd, Sal - twice deprotonated residue of salicylic acid O-HOC 6 H 4 COOH (H 2 Sal), are singled out and characterized. When studying thermograms, thermogravigrams, IR absorption spectra, roentgenograms of cadmium salicylate compounds (Cd(OC 6 H 4 COO) and products of their thepmal transformations, the processes of thermal decomposition of the compounds have been characterized. The process of cadmium monosalicylate decomposition takes place in one stage. Complete loss of salicylate acido group occurs in the range of 320-460 deg. At this decomposition stage cadmium oxide is formed. A supposition is made that cadmium complex has tetrahedral configuration, at that, each salicylate group plays the role of tetradentate-bridge ligand. The compound evidently has a polymer structure

  14. Symptomatic acquired zinc deficiency in at-risk premature infants: high dose preventive supplementation is necessary.

    Science.gov (United States)

    Barbarot, Sébastien; Chantier, Emilie; Kuster, Alice; Hello, Muriel; Roze, Jean-Christophe; Blouin, Eric; Stalder, Jean-François

    2010-01-01

    Zinc is a cofactor for several enzymes involved in many metabolisms. Zinc deficiency induces various disorders such as acrodermatitis enteropathica, either inherited or acquired. We report three cases of premature infants (24-31 wks gestational age) with low birthweight (650 to 940 g) and enteropathy, two of whom presented with necrotizing enterocolitis. All infants were fed by total parenteral nutrition. At a chronological age ranging from 73 to 80 days, all infants developed a periorificial dermatitis. Before the onset of the first signs, they had received zinc supplementation ranging from 146% to 195% of the recommended dose (400 microg/kg/day). Increased zinc supplementation over a course of 6-18 days induced a complete resolution of symptoms in all cases. No abnormality in the neurologic examination and no recurrence were observed at the end of the zinc treatment. Low birthweight premature infants with enteropathy on total parenteral nutrition are at risk of developing zinc deficiency. The usual recommended zinc supplementation is probably insufficient for those infants. A delay in the diagnosis of zinc deficiency may lead to severe complications.

  15. Cytosolic labile zinc: a marker for apoptosis in the developing rat brain.

    Science.gov (United States)

    Lee, Joo-Yong; Hwang, Jung Jin; Park, Mi-Ha; Koh, Jae-Young

    2006-01-01

    Cytosolic zinc accumulation was thought to occur specifically in neuronal death (necrosis) following acute injury. However, a recent study demonstrated that zinc accumulation also occurs in adult rat neurons undergoing apoptosis following target ablation, and in vitro experiments have shown that zinc accumulation may play a causal role in various forms of apoptosis. Here, we examined whether intraneuronal zinc accumulation occurs in central neurons undergoing apoptosis during development. Embryonic and newborn Sprague-Dawley rat brains were double-stained for terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL) detection of apoptosis and immunohistochemical detection of stage-specific neuronal markers, such as nestin, proliferating cell nuclear antigen (PCNA), TuJ1 and neuronal nuclear specific protein (NeuN). The results revealed that apoptotic cell death occurred in neurons of diverse stages (neural stem cells, and dividing, young and adult neurons) throughout the brain during the embryonic and early postnatal periods. Further staining of brain sections with acid fuchsin or zinc-specific fluorescent dyes showed that all of the apoptotic neurons were acidophilic and contained labile zinc in their cell bodies. Cytosolic zinc accumulation was also observed in cultured cortical neurons undergoing staurosporine- or sodium nitroprusside (SNP)-induced apoptosis. In contrast, zinc chelation with CaEDTA or N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) reduced SNP-induced apoptosis but not staurosporine-induced apoptosis, indicating that cytosolic zinc accumulation does not play a causal role in all forms of apoptosis. Finally, the specific cytosolic zinc accumulation may have a practical application as a relatively simple marker for neurons undergoing developmental apoptosis.

  16. Zinc deprivation of methanol fed anaerobic granular sludge bioreactors

    Science.gov (United States)

    Fermoso, Fernando G.; Collins, Gavin; Bartacek, Jan

    2008-01-01

    The effect of omitting zinc from the influent of mesophilic (30 °C) methanol fed upflow anaerobic sludge bed (UASB) reactors, and latter zinc supplementation to the influent to counteract the deprivation, was investigated by coupling the UASB reactor performance to the microbial ecology of the bioreactor sludge. Limitation of the specific methanogenic activity (SMA) on methanol due to the absence of zinc from the influent developed after 137 days of operation. At that day, the SMA in medium with a complete trace metal solution except Zn was 3.4 g CH4-COD g VSS−1 day−1, compared to 4.2 g CH4-COD g VSS−1 day−1 in a medium with a complete (including zinc) trace metal solution. The methanol removal capacity during these 137 days was 99% and no volatile fatty acids accumulated. Two UASB reactors, inoculated with the zinc-deprived sludge, were operated to study restoration of the zinc limitation by zinc supplementation to the bioreactor influent. In a first reactor, no changes to the operational conditions were made. This resulted in methanol accumulation in the reactor effluent after 12 days of operation, which subsequently induced acetogenic activity 5 days after the methanol accumulation started. Methanogenesis could not be recovered by the continuous addition of 0.5 μM ZnCl2 to the reactor for 13 days. In the second reactor, 0.5 μM ZnCl2 was added from its start-up. Although the reactor stayed 10 days longer methanogenically than the reactor operated without zinc, methanol accumulation was observed in this reactor (up to 1.1 g COD-MeOH L−1) as well. This study shows that zinc limitation can induce failure of methanol fed UASB reactors due to acidification, which cannot be restored by resuming the continuous supply of the deprived metal. PMID:18283507

  17. Maternal Zinc Intakes and Homeostatic Adjustments during Pregnancy and Lactation

    OpenAIRE

    Donangelo, Carmen Marino; King, Janet C.

    2012-01-01

    Zinc plays critical roles during embryogenesis, fetal growth, and milk secretion, which increase the zinc need for pregnancy and lactation. Increased needs can be met by increasing the dietary zinc intake, along with making homeostatic adjustments in zinc utilization. Potential homeostatic adjustments include changes in circulating zinc, increased zinc absorption, decreased zinc losses, and changes in whole body zinc kinetics. Although severe zinc deficiency during pregnancy has devastating e...

  18. Investigation on life cycle assessment of lead and zinc production

    Directory of Open Access Journals (Sweden)

    Sabere Nazari

    2015-12-01

    Full Text Available Lead and zinc production is one of the main predisposing factors of excessive greenhouse gases emissions, air pollution and water consumption. In this paper, the environmental problems of lead and zinc production in Calcimin plant are expressed and life cycle assessment of this plant is assessed. The data regarding the amount of induced global warming and pollution, acidification, and depletion of water resources were collected and discussed. It was concluded that depletion of water resources affected the environment and this was the main issue of the lead and zinc production of this plant. According to the results, in the global warming’s impact category, the proportion of carbon dioxide is more than that of methane. The results also showed that in the acidification’s impact category, the nitrogen oxide proportion is greater compared to that of the sulfur dioxide.

  19. Zinc induces DNA damage in tobacco roots

    Czech Academy of Sciences Publication Activity Database

    Procházková, Dagmar; Wilhelmová, Naděžda; Pavlíková, D.; Száková, J.; Gichner, Tomáš

    2013-01-01

    Roč. 57, č. 4 (2013), s. 783-787 ISSN 0006-3134 R&D Projects: GA ČR(CZ) GAP501/11/1239 Institutional research plan: CEZ:AV0Z50380511 Keywords : comet assay * ethyl methanesulphonate * Nicotiana tabacum Subject RIV: EF - Botanics Impact factor: 1.740, year: 2013

  20. Effect of zinc from zinc sulfate on trace mineral concentrations of milk ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... It suggests that supplementation of ewes diet with zinc sulfate could be an effective way to increase zinc ... alkaline phosphates activity. Zinc supplements were .... Similar results have been reported previously when dairy cows.

  1. Studies on nanocrystalline zinc coating

    Indian Academy of Sciences (India)

    Wintec

    The particles size was also characterized by TEM analysis. Keywords. Electrochemical ... netic materials for magnetic recording, and electrocatalyst for hydrogen .... polarization behaviour was studied in the test electrolyte for zinc deposit of ...

  2. Hydrothermal synthesis of zinc(II)-phosphonate coordination polymers with different dimensionality (0D, 2D, 3D) and dimensionality change in the solid phase (0D→3D) induced by temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso; García, José R., E-mail: jrgm@uniovi.es; García-Granda, Santiago

    2015-05-15

    Three new zinc(II) coordination polymers, [Zn(HO{sub 3}PCH{sub 2}CH{sub 2}COO)(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)] (1), [Zn{sub 3}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2})](H{sub 2}O){sub 3.40} (2) and [Zn{sub 5}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 4}](H{sub 2}O){sub 0.32} (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P2{sub 1}/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P−1) and the monoclinic (C2/c) systems, respectively. Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds. - Graphical abstract: Three new coordination compounds of zinc with 2-carboxyethylphosphonic acid (H{sub 2}PPA) and phenanthroline have been obtained by hydrothermal synthesis. The crystalline structure depends on the different coordination environments of the zinc atoms (see two comparative Zn{sub 6}-moieties). The influence of the different coordination modes of H{sub 2}PPA with the central atom in all structures have been studied, being found new coordination modes for this ligand. Several compounds show a significant increase in relative fluorescence with respect to the free phenanthroline. - Highlights: • Compounds have been obtained modifying the reaction time and the rate of

  3. The role of zinc deficiency-induced changes in the phospholipid-protein balance of blood serum in animal depression model by Raman, FTIR and UV-vis spectroscopy.

    Science.gov (United States)

    Depciuch, J; Sowa-Kućma, M; Nowak, G; Szewczyk, B; Doboszewska, U; Parlinska-Wojtan, M

    2017-05-01

    Depression is a serious mental illness. To study the mechanisms of diseases and search for new, more effective therapies, animal models are used. Unfortunately, none of the available models does reflect all symptoms of depression. Zinc deficiency is proposed as a new animal model of depression. However, it has not been yet validated in a detailed manner. Recently, spectroscopic techniques are increasingly being used both in clinical and preclinical studies. Here we examined the effect of zinc deficiency and amitryptyline treatment on the phospholipid - protein balance in the blood serum of rats using Raman, Fourier Transform Infra Red (FTIR) and UV-vis technique. Male Sprague Dawley rats were fed with a zinc ample diet (ZnA, 50mg Zn/kg) or a zinc deficient diet (ZnD, 3mg Zn/kg) for 4 weeks. Then amitriptyline administration (AMI, 10mg/kg, i.p.) was started. After injecting the drug for 2-weeks, blood samples were collected and analyzed. It was found that zinc deficiency decreases both the level of phospholipids and proteins and also causes structural changes in their structures. In the ZnD group amitriptyline treatment influenced the protein level and structure. UV-vis spectroscopy combined with the second derivative calculated from the FTIR spectra provided information that the proteins in blood serum of rat fed with a low Zn diet regain their intact structure after amitriptyline medication. Simultaneously, the antidepressant therapy did not have any effect on the level of phospholipids in this group of rats. Additionally, our results show, that amitriptyline administration can change the structure of phospholipids in rats subjected to zinc ample diet. This altered structure of phospholipids was identified as shortening of carbon chains. Our findings indicate that the decreased level of zinc may be the cause of depressive disorders, as it leads to changes in the phospholipid-protein balance necessary for the proper functioning of the body. This study also shows

  4. Organically pillared layered zinc hydroxides

    International Nuclear Information System (INIS)

    Kongshaug, K.O.; Fjellvaag, Helmer

    2004-01-01

    The two organically pillared layered zinc hydroxides [Zn 2 (OH) 2 (ndc)], CPO-6, and [Zn 3 (OH) 4 (bpdc)], CPO-7, were obtained in hydrothermal reactions between 2,6-naphthalenedicarboxylic acid (ndc) and zinc nitrate (CPO-6) and 4,4'biphenyldicarboxylate (bpdc) and zinc nitrate (CPO-7), respectively. In CPO-6, the tetrahedral zinc atoms are connected by two μ 2 -OH groups and two carboxylate oxygen atoms, forming infinite layers extending parallel to the bc-plane. These layers are pillared by ndc to form a three-dimensional structure. In CPO-7, the zinc hydroxide layers are containing four-, five- and six coordinated zinc atoms, and the layers are built like stairways running along the [001] direction. Each step is composed of three infinite chains running in the [010] direction. Both crystal structures were solved from conventional single crystal data. Crystal data for CPO-6: Monoclinic space group P2 1 /c (No. 14), a=11.9703(7), b=7.8154(5), c=6.2428(4) A, β=90.816(2) deg., V=583.97(6) A 3 and Z=4. Crystal data for CPO-7: Monoclinic space group C2/c (No. 15), a=35.220(4), b=6.2658(8), c=14.8888(17) A, β=112.580(4) deg., V=3033.8(6) A 3 and Z=8. The compounds were further characterized by thermogravimetric- and chemical analysis

  5. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kazuya, E-mail: asuno10k@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Wada, Eiji, E-mail: gacchu1@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Zammit, Peter S., E-mail: peter.zammit@kcl.ac.uk [Randall Division of Cell and Molecular Biophysics, King' s College London, London SE1 1UL (United Kingdom); Shiozuka, Masataka, E-mail: cmuscle@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Matsuda, Ryoichi, E-mail: cmatsuda@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan)

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  6. Effect of zinc sources on yield and utilization of zinc in rice-wheat sequence

    International Nuclear Information System (INIS)

    Deb, D.L.

    1990-01-01

    A field experiment was conducted on an inceptisol of Delhi to evaluate three sources of zinc, namely, zinc sulphate, zincated urea and zinc oxide on yield and utilization of zinc in rice-wheat sequence. Results indicated that, amongst the three zinc sources, zinc sulphate and zincated urea gave the best performance in increasing the grain yield of rice whereas zinc oxide depressed the grain yield of wheat significantly when compared to other treatments. The highest Zn derived from fertilizer and its utilization was obtained with zinc sulphate for both rice and wheat crops. (author). 9 refs., 4 tabs

  7. Attenuation of hippocampal mossy fiber long-term potentiation by low micromolar concentrations of zinc.

    Science.gov (United States)

    Takeda, Atsushi; Kanno, Shingo; Sakurada, Naomi; Ando, Masaki; Oku, Naoto

    2008-10-01

    The role of zinc in long-term potentiation (LTP) at hippocampal mossy fiber synapses is controversial because of the contrary results obtained when using zinc chelators. On the basis of the postulation that exogenous zinc enhances the action of zinc released from mossy fibers, mossy fiber LTP after tetanic stimulation (100 Hz, 1 sec) was checked in the presence of exogenous zinc at low micromolar concentrations. Mossy fiber LTP was significantly attenuated in the presence of 5-30 microM ZnCl(2), and the amplitude of field excitatory postsynaptic potentials 60 min after tetanic stimulation was decreased to almost the basal level. Mossy fiber LTP was also attenuated in the presence of 5 microM ZnCl(2) 5 min after tetanic stimulation. The present study is the first to demonstrate that low micromolar concentrations of zinc attenuate mossy fiber LTP. When mossy fiber LTP was induced in the presence of CaEDTA and ZnAF-2 DA, a membrane-impermeable and a membrane-permeable zinc chelator, respectively, extracellular and intracellular chelation of zinc enhanced a transient posttetanic potentiation (PTP) without altering LTP. It is likely that zinc released by tetanic stimulation is immediately taken up into the mossy fibers and attenuates mossy fiber PTP. These results suggest that attenuation of PTP rather than LTP at mossy fiber synapses is a more physiological role for endogenous zinc. Targeting molecules of zinc in mossy fiber LTP seem to be different between during and after LTP induction because of the differential synaptic activity between them. (c) 2008 Wiley-Liss, Inc.

  8. Zinc content of selected tissues and taste perception in rats fed zinc deficient and zinc adequate rations

    International Nuclear Information System (INIS)

    Boeckner, L.S.; Kies, C.

    1986-01-01

    The objective of the study was to determine the effects of feeding zinc sufficient and zinc deficient rations on taste sensitivity and zinc contents of selected organs in rats. The 36 Sprague-Dawley male weanling rats were divided into 2 groups and fed zinc deficient or zinc adequate rations. The animals were subjected to 4 trial periods in which a choice of deionized distilled water or a solution of quinine sulfate at 1.28 x 10 -6 was given. A randomized schedule for rat sacrifice was used. No differences were found between zinc deficient and zinc adequate rats in taste preference aversion scores for quinine sulfate in the first three trial periods; however, in the last trial period rats in the zinc sufficient group drank somewhat less water containing quinine sulfate as a percentage of total water consumption than did rats fed the zinc deficient ration. Significantly higher zinc contents of kidney, brain and parotid salivary glands were seen in zinc adequate rats compared to zinc deficient rats at the end of the study. However, liver and tongue zinc levels were lower for both groups at the close of the study than were those of rats sacrificed at the beginning of the study

  9. The study and microstructure analysis of zinc and zinc oxide

    Directory of Open Access Journals (Sweden)

    N. Luptáková

    2015-01-01

    Full Text Available The given paper is closely connected with the process of the manufacturing of ZnO. The purity of the metal zinc has crucial influence on the quality of ZnO. ZnO can be produced by pyrometallurgical combustion of zinc and hard zinc. But this mentioned method of preparation leads to the creation of the enormous amount of waste including chemical complexes. On the basis of the occurrence of the residual content of other elements, it is possible to make prediction about the material behavior in the metallographic process. The input and finally materials were investigated and this investigation was done from the aspect of structural and chemical composition of the materials.

  10. Effects of Chronic and Acute Zinc Supplementation on Myocardial Ischemia-Reperfusion Injury in Rats.

    Science.gov (United States)

    Ozyıldırım, Serhan; Baltaci, Abdulkerim Kasim; Sahna, Engin; Mogulkoc, Rasim

    2017-07-01

    The present study aims to explore the effects of chronic and acute zinc sulfate supplementation on myocardial ischemia-reperfusion injury in rats. The study registered 50 adult male rats which were divided into five groups in equal numbers as follows: group 1, normal control; group 2, sham; group 3, myocardial ischemia reperfusion (My/IR): the group which was fed on a normal diet and in which myocardial I/R was induced; group 4, myocardial ischemia reperfusion + chronic zinc: (5 mg/kg i.p. zinc sulfate for 15 days); and group 5, myocardial ischemia reperfusion + acute zinc: the group which was administered 15 mg/kg i.p. zinc sulfate an hour before the operation and in which myocardial I/R was induced. The collected blood and cardiac tissue samples were analyzed using spectrophotometric method to determine levels of MDA, as an indicator of tissue injury, and GSH, as an indicator of antioxidant activity. The highest plasma and heart tissue MDA levels were measured in group 3 (p zinc administration and markedly by chronic zinc supplementation.

  11. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    Science.gov (United States)

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Impact of residual elements on zinc quality in the production of zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Dymáček, Petr; Pešlová, F.; Jurkovič, Z.; Barborák, O.; Stodola, J.

    2016-01-01

    Roč. 55, č. 3 (2016), s. 407-410 ISSN 0543-5846 Institutional support: RVO:68081723 Keywords : zinc * metallography * microstructure of zinc * zinc oxide * production of zinc oxide Subject RIV: JG - Metallurgy Impact factor: 0.959, year: 2014

  13. Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12

    Science.gov (United States)

    Maret, Wolfgang

    2013-01-01

    The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127

  14. Zinc: a multipurpose trace element

    Energy Technology Data Exchange (ETDEWEB)

    Stefanidou, M.; Maravelias, C.; Dona, A.; Spiliopoulou, C. [University of Athens, Department of Forensic Medicine and Toxicology, Athens (Greece)

    2006-01-01

    Zinc (Zn) is one of the most important trace elements in the body and it is essential as a catalytic, structural and regulatory ion. It is involved in homeostasis, in immune responses, in oxidative stress, in apoptosis and in ageing. Zinc-binding proteins (metallothioneins, MTs), are protective in situations of stress and in situations of exposure to toxic metals, infections and low Zn nutrition. Metallothioneins play a key role in Zn-related cell homeostasis due to their high affinity for Zn, which is in turn relevant against oxidative stress and immune responses, including natural killer (NK) cell activity and ageing, since NK activity and Zn ion bioavailability decrease in ageing. Physiological supplementation of Zn in ageing and in age-related degenerative diseases corrects immune defects, reduces infection relapse and prevents ageing. Zinc is not stored in the body and excess intakes result in reduced absorption and increased excretion. Nevertheless, there are cases of acute and chronic Zn poisoning. (orig.)

  15. Hepatic ZIP14-mediated zinc transport is required for adaptation to endoplasmic reticulum stress.

    Science.gov (United States)

    Kim, Min-Hyun; Aydemir, Tolunay B; Kim, Jinhee; Cousins, Robert J

    2017-07-18

    Extensive endoplasmic reticulum (ER) stress damages the liver, causing apoptosis and steatosis despite the activation of the unfolded protein response (UPR). Restriction of zinc from cells can induce ER stress, indicating that zinc is essential to maintain normal ER function. However, a role for zinc during hepatic ER stress is largely unknown despite important roles in metabolic disorders, including obesity and nonalcoholic liver disease. We have explored a role for the metal transporter ZIP14 during pharmacologically and high-fat diet-induced ER stress using Zip14 -/- (KO) mice, which exhibit impaired hepatic zinc uptake. Here, we report that ZIP14-mediated hepatic zinc uptake is critical for adaptation to ER stress, preventing sustained apoptosis and steatosis. Impaired hepatic zinc uptake in Zip14 KO mice during ER stress coincides with greater expression of proapoptotic proteins. ER stress-induced Zip14 KO mice show greater levels of hepatic steatosis due to higher expression of genes involved in de novo fatty acid synthesis, which are suppressed in ER stress-induced WT mice. During ER stress, the UPR-activated transcription factors ATF4 and ATF6α transcriptionally up-regulate Zip14 expression. We propose ZIP14 mediates zinc transport into hepatocytes to inhibit protein-tyrosine phosphatase 1B (PTP1B) activity, which acts to suppress apoptosis and steatosis associated with hepatic ER stress. Zip14 KO mice showed greater hepatic PTP1B activity during ER stress. These results show the importance of zinc trafficking and functional ZIP14 transporter activity for adaptation to ER stress associated with chronic metabolic disorders.

  16. [Improvement in zinc nutrition due to zinc transporter-targeting strategy].

    Science.gov (United States)

    Kambe, Taiho

    2016-07-01

    Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.

  17. Zinc blotting assay for detection of zinc binding prolamin in barley (Hordeum vulgare) grain

    DEFF Research Database (Denmark)

    Uddin, Mohammad Nasir; Nielsen, Ane Langkilde-Lauesen; Vincze, Eva

    2014-01-01

    In plants, zinc is commonly found bound to proteins. In barley (Hordeum vulgare), major storage proteins are alcohol-soluble prolamins known as hordeins, and some of them have the potential to bind or store zinc. 65Zn overlay and blotting techniques have been widely used for detecting zinc......-binding protein. However, to our knowledge so far this zinc blotting assay has never been applied to detect a prolamin fraction in barley grains. A radioactive zinc (65ZnCl2) blotting technique was optimized to detect zinc-binding prolamins, followed by development of an easy-to-follow nonradioactive colorimetric...... zinc blotting method with a zinc-sensing dye, dithizone. Hordeins were extracted from mature barley grain, separated by SDS-PAGE, blotted on a membrane, renatured, overlaid, and probed with zinc; subsequently, zinc-binding specificity of certain proteins was detected either by autoradiography or color...

  18. 21 CFR 582.5985 - Zinc chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc chloride. 582.5985 Section 582.5985 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is...

  19. 21 CFR 182.8985 - Zinc chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc chloride. 182.8985 Section 182.8985 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8985 Zinc chloride. (a) Product. Zinc chloride. (b) Conditions of use. This substance is generally recognized as safe when used in...

  20. 21 CFR 558.78 - Bacitracin zinc.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Bacitracin zinc. 558.78 Section 558.78 Food and... in Animal Feeds § 558.78 Bacitracin zinc. (a) Specifications. Type A medicated articles containing bacitracin zinc equivalent to 10, 25, 40, or 50 grams per pound bacitracin. (b) Approvals. See No. 046573 in...

  1. Anti-inflammatory, antinociceptive and ulcerogenic activity of a zinc-diclofenac complex in rats

    Directory of Open Access Journals (Sweden)

    L.H. Santos

    2004-08-01

    Full Text Available We investigated the anti-inflammatory, antinociceptive and ulcerogenic activity of a zinc-diclofenac complex (5.5 or 11 mg/kg in male Wistar rats (180-300 g, N = 6 and compared it to free diclofenac (5 or 10 mg/kg and to the combination of diclofenac (5 or 10 mg/kg and zinc acetate (1.68 or 3.5 mg/kg. The carrageenin-induced paw edema and the cotton pellet-induced granulomatous tissue formation models were used to assess the anti-inflammatory activity, and the Hargreaves model of thermal hyperalgesia was used to assess the antinociceptive activity. To investigate the effect of orally or intraperitoneally (ip administered drugs on cold-induced gastric lesions, single doses were administered before exposing the animals to a freezer (-18ºC for 45 min in individual cages. We also evaluated the gastric lesions induced by multiple doses of the drugs. Diclofenac plus zinc complex had the same anti-inflammatory and antinociceptive effects as diclofenac alone. Gastric lesions induced by a single dose administered per os and ip were reduced in the group treated with zinc-diclofenac when compared to the groups treated with free diclofenac or diclofenac plus zinc acetate. In the multiple dose treatment, the complex induced a lower number of the most severe lesions when compared to free diclofenac and diclofenac plus zinc acetate. In conclusion, the present study demonstrates that the zinc-diclofenac complex may represent an important therapeutic alternative for the treatment of rheumatic and inflammatory conditions, as its use may be associated with a reduced incidence of gastric lesions.

  2. relationship between maternal serum zinc, cord blood zinc and birth

    African Journals Online (AJOL)

    FOBUR

    those obtained by Okonofua et al in Ile-Ife and. 17. Iqbal et al in Bangladesh but lower than the values. 18. 11 reported in studies in India and the United States. The similarity in the mean maternal serum zinc obtained in this study with the studies in Ife and. Bangladesh could be a reflection of the similarity among the study ...

  3. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    Science.gov (United States)

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  4. Comparison of Proteome Response to Saline and Zinc Stress in Lettuce

    Directory of Open Access Journals (Sweden)

    Luigi eLucini

    2015-04-01

    Full Text Available Zinc salts occurring in soils can exert an osmotic stress toward plants. However, being zinc a heavy metal, some more specific effects on plant metabolisms can be forecast. In this work, lettuce has been used as a model to investigate salt and zinc stresses at proteome level through a shotgun tandem MS proteomic approach. The effect of zinc stress in lettuce, in comparison with NaCl stress, was evaluated to dissect between osmotic/oxidative stress-related effects, from those changes specifically related to zinc.The analysis of proteins exhibiting a fold change of 3 as minimum (on log 2 normalized abundances, revealed the involvement of photosynthesis (via stimulation of chlorophyll synthesis and enhanced role of photosystem I as well as stimulation of photophosphorylation. Increased glycolytic supply of energy substrates and ammonium assimilation (through formation of glutamine synthetase were also induced by zinc in soil. Similarly, protein metabolism (at both transcriptional and ribosomal level, heat shock proteins and proteolysis were affected. According to their biosynthetic enzymes, hormones appear to be altered by both the treatment and the time point considered: ethylene biosynthesis was enhanced, while production of abscisic acid was up-regulated at the earlier time point to decrease markedly and gibberellins were decreased at the later one.Besides aquaporin PIP2 synthesis, other osmotic/oxidative stress related compounds were enhanced under zinc stress, i.e. proline, hydroxycinnamic acids, ascorbate, sesquiterpene lactones and terpenoids biosynthesis.Although the proteins involved in the response to zinc stress and to salinity were substantially the same, their abundance changed between the two treatments. Lettuce response to zinc was more prominent at the first sampling point, yet showing a faster adaptation than under NaCl stress. Indeed, lettuce plants showed an adaptation after 30 days of stress, in a more pronounced way in the case

  5. Silicon-zinc-glycerol hydrogel, a potential immunotropic agent for topical application.

    Science.gov (United States)

    Khonina, Tat'yana G; Ivanenko, Maria V; Chupakhin, Oleg N; Safronov, Alexander P; Bogdanova, Ekaterina A; Karabanalov, Maxim S; Permikin, Vasily V; Larionov, Leonid P; Drozdova, Lyudmila I

    2017-09-30

    Nanoparticles synthesized using sol-gel method are promising agents for biomedical applications, in particular for the therapy and diagnosis of various diseases. Using silicon and zinc glycerolates as biocompatible precursors we synthesized by the sol-gel method a new bioactive silicon-zinc-containing glycerohydrogel combining the positive pharmacological properties of the precursors. In the present work the structural features of silicon-zinc-containing glycerohydrogel and its immunotropic properties were studied. The advanced physical methods, including XRD, TEM, dynamic and electrophoretic light scattering, were used for studying the structural features of the gel. Hydrolysis of zinc monoglycerolate was investigated under gelation conditions. Evaluation of the efficiency of silicon-zinc-containing glycerohydrogel in providing immune functions was carried out using a model of the complicated wound process behind immunosuppression induced by hydrocortisone administration in the Wistar rats. It has been shown that zinc monoglycerolate exists in the state of amorphous nanoparticles in the cells of 3D-network formed due to incomplete hydrolysis of silicon glycerolates and subsequent silanol condensation. Zinc monoglycerolate is not hydrolyzed and does not enter 3D-network of the gel with the formation of Zn-O-Si groups, but it forms a separate phase. Immunotropic action of silicon-zinc-containing glycerohydrogel was revealed by the histology and immunohistochemistry methods. Amorphous nanoparticles of zinc monoglycerolate, water-soluble silicon glycerolates, and products of their hydrolytic transformations, which are present in a aqueous-glycerol medium, are in the first place responsible for the pharmacological activity of hydrogel. The results obtained allow us to consider silicon-zinc-containing glycerohydrogel as a promising immunotropic agent for topical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Affinin (Spilanthol, Isolated from Heliopsis longipes, Induces Vasodilation via Activation of Gasotransmitters and Prostacyclin Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Jesús Eduardo Castro-Ruiz

    2017-01-01

    Full Text Available Heliopsis longipes roots have been widely used in Mexican traditional medicine to relieve pain, mainly, toothaches. Previous studies have shown that affinin, the major alkamide of these roots, induces potent antinociceptive and anti-inflammatory activities. However, the effect of H. longipes root extracts and affinin on the cardiovascular system have not been investigated so far. In the present study, we demonstrated that the dichloromethane and ethanolic extracts of H. longipes roots, and affinin, isolated from these roots, produce a concentration-dependent vasodilation of rat aorta. Affinin-induced vasorelaxation was partly dependent on the presence of endothelium and was significantly blocked in the presence of inhibitors of NO, H2S, and CO synthesis (NG-nitro-l-arginine methyl ester (l-NAME, dl-propargylglycine (PAG, and chromium mesoporphyrin (CrMP, respectively; K+ channel blockers (glibenclamide (Gli and tetraethyl ammonium (TEA, and guanylate cyclase and cyclooxygenase inhibitors (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ and indomethacin (INDO, respectively. Our results demonstrate, for the first time, that affinin induces vasodilation by mechanisms that involve gasotransmitters, and prostacyclin signaling pathways. These findings indicate that this natural alkamide has therapeutic potential in the treatment of cardiovascular diseases.

  7. The Emerging Role of Zinc in the Pathogenesis of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Bo Young Choi

    2017-09-01

    Full Text Available Our lab has previously demonstrated that multiple sclerosis-induced spinal cord white matter damage and motor deficits are mediated by the pathological disruption of zinc homeostasis. Abnormal vesicular zinc release and intracellular zinc accumulation may mediate several steps in the pathophysiological processes of multiple sclerosis (MS, such as matrix metallopeptidase 9 (MMP-9 activation, blood-brain barrier (BBB disruption, and subsequent immune cell infiltration from peripheral systems. Oral administration of a zinc chelator decreased BBB disruption, immune cell infiltration, and spinal white matter myelin destruction. Therefore, we hypothesized that zinc released into the extracellular space during MS progression is involved in destruction of the myelin sheath in spinal cord white mater and in generation of motor deficits. To confirm our previous study, we employed zinc transporter 3 (ZnT3 knockout mice to test whether vesicular zinc depletion shows protective effects on multiple sclerosis-induced white matter damage and motor deficits. ZnT3 gene deletion profoundly reduced the daily clinical score of experimental autoimmune encephalomyelitis (EAE by suppression of inflammation and demyelination in the spinal cord. ZnT3 gene deletion also remarkably inhibited formation of multiple sclerosis-associated aberrant synaptic zinc patches, MMP-9 activation, and BBB disruption. These two studies strongly support our hypothesis that zinc release from presynaptic terminals may be involved in multiple sclerosis pathogenesis. Further studies will no doubt continue to add mechanistic detail to this process and with luck, clarify how these observations may lead to development of novel therapeutic approaches for the treatment of multiple sclerosis.

  8. The Emerging Role of Zinc in the Pathogenesis of Multiple Sclerosis.

    Science.gov (United States)

    Choi, Bo Young; Jung, Jong Won; Suh, Sang Won

    2017-09-28

    Our lab has previously demonstrated that multiple sclerosis-induced spinal cord white matter damage and motor deficits are mediated by the pathological disruption of zinc homeostasis. Abnormal vesicular zinc release and intracellular zinc accumulation may mediate several steps in the pathophysiological processes of multiple sclerosis (MS), such as matrix metallopeptidase 9 (MMP-9) activation, blood-brain barrier (BBB) disruption, and subsequent immune cell infiltration from peripheral systems. Oral administration of a zinc chelator decreased BBB disruption, immune cell infiltration, and spinal white matter myelin destruction. Therefore, we hypothesized that zinc released into the extracellular space during MS progression is involved in destruction of the myelin sheath in spinal cord white mater and in generation of motor deficits. To confirm our previous study, we employed zinc transporter 3 ( ZnT3 ) knockout mice to test whether vesicular zinc depletion shows protective effects on multiple sclerosis-induced white matter damage and motor deficits. ZnT3 gene deletion profoundly reduced the daily clinical score of experimental autoimmune encephalomyelitis (EAE) by suppression of inflammation and demyelination in the spinal cord. ZnT3 gene deletion also remarkably inhibited formation of multiple sclerosis-associated aberrant synaptic zinc patches, MMP-9 activation, and BBB disruption. These two studies strongly support our hypothesis that zinc release from presynaptic terminals may be involved in multiple sclerosis pathogenesis. Further studies will no doubt continue to add mechanistic detail to this process and with luck, clarify how these observations may lead to development of novel therapeutic approaches for the treatment of multiple sclerosis.

  9. Impact of soft annealing on the performance of solution-processed amorphous zinc tin oxide thin-film transistors

    KAUST Repository

    Nayak, Pradipta K.; Hedhili, Mohamed N.; Cha, Dong Kyu; Alshareef, Husam N.

    2013-01-01

    It is demonstrated that soft annealing duration strongly affects the performance of solution-processed amorphous zinc tin oxide thin-film transistors. Prolonged soft annealing times are found to induce two important changes in the device: (i) a

  10. Metallothionein provides zinc-mediated protective effects against methamphetamine toxicity in SK-N-SH cells.

    Science.gov (United States)

    Ajjimaporn, Amornpan; Swinscoe, John; Shavali, Shaik; Govitrapong, Piyarat; Ebadi, Manuchair

    2005-11-30

    Methamphetamine (METH) is a drug of abuse and neurotoxin that induces Parkinson's-like pathology after chronic usage by targeting dopaminergic neurons. Elucidation of the intracellular mechanisms that underlie METH-induced dopaminergic neuron toxicity may help in understanding the mechanism by which neurons die in Parkinson's disease. In the present study, we examined the role of reactive oxygen species (ROS) in the METH-induced death of human dopaminergic SK-N-SH cells and further assessed the neuroprotective effects of zinc and metallothionein (MT) against METH-induced toxicity in culture. METH significantly increased the production of reactive oxygen species, decreased intracellular ATP levels and reduced the cell viability. Pre-treatment with zinc markedly prevented the loss of cell viability caused by METH treatment. Zinc pre-treatment mainly increased the expression of metallothionein and prevented the generation of reactive oxygen species and ATP depletion caused by METH. Chelation of zinc by CaEDTA caused a significant decrease in MT expression and loss of protective effects of MT against METH toxicity. These results suggest that zinc-induced MT expression protects dopaminergic neurons via preventing the accumulation of toxic reactive oxygen species and halting the decrease in ATP levels. Furthermore, MT may prevent the loss of mitochondrial functions caused by neurotoxins. In conclusion, our study suggests that MT, a potent scavenger of free radicals is neuroprotective against dopaminergic toxicity in conditions such as drug of abuse and in Parkinson's disease.

  11. Copper, lead and zinc production

    International Nuclear Information System (INIS)

    Ayers, J.; Ternan, S.

    2001-01-01

    This chapter provides information on the by-products and residues generated during the production of copper, lead and zinc. The purpose of this chapter is to describe by-products and residues which are generated, how these may be avoided or minimised, and available options for the utilization and management of residues. (author)

  12. Serum zinc level in thalassemia

    International Nuclear Information System (INIS)

    Keikhaei, B.; Badavi, M.; Pedram, M.; Zandian, K.

    2010-01-01

    To compare serum zinc level between Thalassemia Major (TM) patients and normal population at Shafa Hospital in South West of Iran. A total of 25 male and 36 female of TM patients were enrolled in this study. Out of 61 patients thirty were treated by deferroxamine (DFO) and 31 were on the combination of DFO and deferiprone (DEF) protocol therapy. Sixty normal subjects of the matching age and gender were recruited as controls. From each patient and control group 2 ml of blood was taken in fasting condition. Cell blood count and serum zinc were carried out for both thalassemia patients and normal subjects. The mean age of patients and control group was 15+- 5 years. Mean serum zinc level was 68.97+- 21.12 mu g/dl, 78.10-28.50 mu g/dl, and 80.16+- 26.54 mu g/dl in the TM with DFO, TM with DFO + DEF combination protocol and control group respectively. There was no significant correlation between patients and control group. However 50 percent of TM with DFO, 38.7 percent of TM with DFO + DEF and 32.8 percent of control group had hypozincemia. Nearly 40 to 50 percent of TM patients and one third of normal subjects are suffering from hypozincemia. This study shows that low level of serum zinc is a health problem in both thalassemia patients and normal population in South West of Iran. (author)

  13. Molybdate based passivation of zinc

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Bech-Nielsen, Gregers; Møller, Per

    1997-01-01

    In order to reduce corrosion rates, zinc plated parts are usually chromated. Recently chromates have caused increasingly environmental concern, for both allergic effects among workers touching chro-mated parts and toxic effects on fish, plants and bacteria. A molybdate based alternative has been...

  14. Taurine zinc solid dispersions enhance bile-incubated L02 cell viability and improve liver function by inhibiting ERK2 and JNK phosphorylation during cholestasis

    International Nuclear Information System (INIS)

    Wang, Yu; Mei, Xueting; Yuan, Jingquan; Lai, Xiaofang; Xu, Donghui

    2016-01-01

    Highlights: • Taurine zinc SDs could prevent the bile-induced reduction in L02 cell viability. • Taurine zinc SDs can prevent cholestatic liver injury. • Taurine zinc SDs can inhibit BDL-induced hepatocyte apoptosis. • Taurine zinc SDs shows the cholesterol-lowering effects on cholestasis. • Taurine zinc SDs may suppress inflammation via dampening JNK phosphorylation. - Abstract: Dietary intakes of taurine and zinc are associated with decreased risk of liver disease. In this study, solid dispersions (SDs) of a taurine zinc complex on hepatic injury were examined in vitro using the immortalized human hepatocyte cell line L02 and in a rat model of bile duct ligation. Sham-operated and bile duct ligated Sprague-Dawley rats were treated with the vehicle alone or taurine zinc (40, 80, 160 mg/kg) for 17 days. Bile duct ligation significantly increased blood lipid levels, and promoted hepatocyte apoptosis, inflammation and compensatory biliary proliferation. In vitro, incubation with bile significantly reduced L02 cell viability; this effect was significantly attenuated by pretreatment with SP600125 (a JNK inhibitor) and enhanced when co-incubated with taurine zinc SDs. In vivo, administration of taurine zinc SDs decreased serum alanine aminotransferase and aspartate aminotransferase activities in a dose-dependent manner and attenuated the increases in serum total bilirubin, total cholesterol and low density lipoprotein cholesterol levels after bile duct ligation. Additionally, taurine zinc SDs downregulated the expression of interleukin-1β and inhibited the phosphorylation of Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase2 (ERK2) in the liver after bile duct ligation. Moreover, taurine zinc SDs had more potent blood lipid regulatory and anti-apoptotic effects than the physical mixture of taurine and zinc acetate. Therefore, we speculate that taurine zinc SDs protect liver function at least in part via a mechanism linked to reduce

  15. Improved colorimetric determination of serum zinc.

    Science.gov (United States)

    Johnson, D J; Djuh, Y Y; Bruton, J; Williams, H L

    1977-07-01

    We show how zinc may easily be quantified in serum by first using an optimum concentration of guanidine hydrochloride to cause release of zinc from proteins, followed by complexation of released metals with cyanide. The cyanide complex of zinc is preferentially demasked with chloral hydrate, followed by a colorimetric reaction between zinc and 4-(2-pyridylazo)resorcinol. This is a sensitive water-soluble ligand; its complex with zinc has an absorption maximum at 497 nm. Values found by this technique compare favorably with those obtained by atomic absorption spectroscopy.

  16. Mechanisms of inhibition of zinc-finger transcription factors by selenium compounds ebselen and selenite.

    Science.gov (United States)

    Larabee, Jason L; Hocker, James R; Hanas, Jay S

    2009-03-01

    The anti-inflammatory selenium compounds, ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one) and selenite, were found to alter the DNA binding mechanisms and structures of cysteine-rich zinc-finger transcription factors. As assayed by DNase I protection, DNA binding by TFIIIA (transcription factor IIIA, prototypical Cys(2)His(2) zinc finger protein), was inhibited by micromolar amounts of ebselen. In a gel shift assay, ebselen inhibited the Cys(2)His(2) zinc finger-containing DNA binding domain (DBD) of the NF-kappaB mediated transcription factor Sp1. Ebselen also inhibited DNA binding by the p50 subunit of the pro-inflammatory Cys-containing NF-kappaB transcription factor. Electrospray ionization mass spectrometry (ESI-MS) was utilized to elucidate mechanisms of chemical interaction between ebselen and a zinc-bound Cys(2)His(2) zinc finger polypeptide modeled after the third finger of Sp1 (Sp1-3). Exposing Sp1-3 to micromolar amounts of ebselen resulted in Zn(2+) release from this peptide and the formation of a disulfide bond by oxidation of zinc finger SH groups, the likely mechanism for DNA binding inhibition. Selenite was shown by ESI-MS to also eject zinc from Sp1-3 as well as induce disulfide bond formation through SH oxidation. The selenite-dependent inhibition/oxidation mechanism differed from that of ebselen by inducing the formation of a stable selenotrisulfide bond. Selenite-induced selenotrisulfide formation was dependent upon the structure of the Cys(2)His(2) zinc finger as alteration in the finger structure enhanced this reaction as well as selenite-dependent zinc release. Ebselen and selenite-dependent inhibition/oxidation of Cys-rich zinc finger proteins, with concomitant release of zinc and finger structural changes, points to mechanisms at the atomic and protein level for selenium-induced alterations in Cys-rich proteins, and possible amelioration of certain inflammatory, neurodegenerative, and oncogenic responses.

  17. Zinc-The key to preventing corrosion

    Science.gov (United States)

    Kropschot, S.J.; Doebrich, Jeff L.

    2011-01-01

    Centuries before it was identified as an element, zinc was used to make brass (an alloy of zinc and copper) and for medicinal purposes. Metallic zinc and zinc oxide were produced in India sometime between the 11th and 14th centuries and in China in the 17th century, although the discovery of pure metallic zinc is credited to the German chemist Andreas Marggraf, who isolated the element in 1746. Refined zinc metal is bluish-white when freshly cast; it is hard and brittle at most temperatures and has relatively low melting and boiling points. Zinc alloys readily with other metals and is chemically active. On exposure to air, it develops a thin gray oxide film (patina), which inhibits deeper oxidation (corrosion) of the metal. The metal's resistance to corrosion is an important characteristic in its use.

  18. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    Directory of Open Access Journals (Sweden)

    Miriam M. Cortese-Krott

    2014-01-01

    Full Text Available Aberrant production of nitric oxide (NO by inducible NO synthase (iNOS has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation.

  19. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells

    Science.gov (United States)

    Cortese-Krott, Miriam M.; Kulakov, Larissa; Opländer, Christian; Kolb-Bachofen, Victoria; Kröncke, Klaus-D.; Suschek, Christoph V.

    2014-01-01

    Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation. PMID:25180171

  20. Effects of serum zinc level on tinnitus.

    Science.gov (United States)

    Berkiten, Güler; Kumral, Tolgar Lütfi; Yıldırım, Güven; Salturk, Ziya; Uyar, Yavuz; Atar, Yavuz

    2015-01-01

    The aim of this study was to assess zinc levels in tinnitus patients, and to evaluate the effects of zinc deficiency on tinnitus and hearing loss. One-hundred patients, who presented to an outpatient clinic with tinnitus between June 2009 and 2014, were included in the study. Patients were divided into three groups according to age: Group I (patients between 18 and 30years of age); Group II (patients between 31 and 60years of age); and Group III (patients between 61 and 78years of age). Following a complete ear, nose and throat examination, serum zinc levels were measured and the severity of tinnitus was quantified using the Tinnitus Severity Index Questionnaire (TSIQ). Patients were subsequently asked to provide a subjective judgment regarding the loudness of their tinnitus. The hearing status of patients was evaluated by audiometry and high-frequency audiometry. An average hearing sensitivity was calculated as the mean value of hearing thresholds between 250 and 20,000Hz. Serum zinc levels between 70 and 120μg/dl were considered normal. The severity and loudness of tinnitus, and the hearing thresholds of the normal zinc level and zinc-deficient groups, were compared. Twelve of 100 (12%) patients exhibited low zinc levels. The mean age of the zinc-deficient group was 65.41±12.77years. Serum zinc levels were significantly lower in group III (p<0.01). The severity and loudness of tinnitus were greater in zinc-deficient patients (p=0.011 and p=0.015, respectively). Moreover, the mean thresholds of air conduction were significantly higher in zinc-deficient patients (p=0.000). We observed that zinc levels decrease as age increases. In addition, there was a significant correlation between zinc level and the severity and loudness of tinnitus. Zinc deficiency was also associated with impairments in hearing thresholds. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells.

    Science.gov (United States)

    Guo, Dadong; Bi, Hongsheng; Wang, Daoguang; Wu, Qiuxin

    2013-08-01

    Zinc oxide nanoparticle is one of the most important materials with diverse applications. However, it has been reported that zinc oxide nanoparticles are toxic to organisms, and that oxidative stress is often hypothesized to be an important factor in cytotoxicity mediated by zinc oxide nanoparticles. Nevertheless, the mechanism of toxicity of zinc oxide nanoparticles has not been completely understood. In this study, we investigated the cytotoxic effect of zinc oxide nanoparticles and the possible molecular mechanism involved in calcium homeostasis mediated by plasma membrane calcium ATPase in rat retinal ganglion cells. Real-time cell electronic sensing assay showed that zinc oxide nanoparticles could exert cytotoxic effect on rat retinal ganglion cells in a concentration-dependent manner; flow cytometric analysis indicated that zinc oxide nanoparticles could lead to cell damage by inducing the overproduction of reactive oxygen species. Furthermore, zinc oxide nanoparticles could also apparently decrease the expression level and their activity of plasma membrane calcium ATPase, which finally disrupt the intracellular calcium homeostasis and result in cell death. Taken together, zinc oxide nanoparticles could apparently decrease the plasma membrane calcium ATPase expression, inhibit their activity, cause the elevated intracellular calcium ion level and disrupt the intracellular calcium homeostasis. Further, the disrupted calcium homeostasis will trigger mitochondrial dysfunction, generate excessive reactive oxygen species, and finally initiate cell death. Thus, the disrupted calcium homeostasis is involved in the zinc oxide nanoparticle-induced rat retinal ganglion cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Reactivation in vitro of zinc-requiring apo-enzymes by rat liver zinc-thionein

    OpenAIRE

    Udom, Albert O.; Brady, Frank O.

    1980-01-01

    The ability of rat liver zinc-thionein to donate its metal to the apo-enzymes of the zinc enzymes horse liver alcohol dehydrogenase, yeast aldolase, thermolysin, Escherichia coli alkaline phosphatase and bovine erythrocyte carbonic anhydrase was investigated. Zinc-thionein was as good as, or better than, ZnSO4, Zn(CH3CO2)2 or Zn(NO3)2 in donating its zinc to these apo-enzymes. Apo-(alcohol dehydrogenase) could not be reactivated by zinc salts or by zinc-thionein. Incubation of the other apo-e...

  3. Interleukin 6 regulates metallothionein gene expression and zinc metabolism in hepatocyte monolayer cultures

    International Nuclear Information System (INIS)

    Schroeder, J.J.; Cousins, R.J.

    1990-01-01

    Attention has focused on the cytokine interleukin 6 (IL-6) as a major mediator of acute-phase protein synthesis in hepatocytes in response to infection and tissue injury. The authors have evaluated the effects of IL-6 and IL-1α as well as extracellular zinc and glucocorticoid hormone on metal-lothionein gene expression and cellular zinc accumulation in rat hepatocyte monolayer cultures. Further, they have evaluated the teleological basis for cytokine mediation by examining cyto-protection from CCl 4 -induced damage. Incubation of hepatocytes with IL-6 led to concentration-dependent and time-dependent increases in metallothionein-1 and -2 mRNA and metallothionein protein. The level of each was increased within 3 hr after the addition of IL-6 at 10 ng/ml. Maximal increases the metallothionein mRNA and metallothionein protein were achieved after 12 hr and 36 hr, respectively. Concomitant with the up-regulation of metallothionein gene expression, IL-6 also increased cellular zinc. Responses to IL-6 required the synthetic glucocorticoid hormone dexamethasone and were optimized by increased extracellular zinc. Thus, IL-6 is a major cytokine mediator of metallothionein gene expression and zinc metabolism in hepatocytes and provides cytoprotection from CCl 4 -induced hepatotoxicity via a mode consistent with dependence upon increased cellular metallothionein synthesis and zinc accumulation

  4. Fluoxetine coupled with zinc in a chronic mild stress model of depression: Providing a reservoir for optimum zinc signaling and neuronal remodeling.

    Science.gov (United States)

    Omar, Nesreen Nabil; Tash, Reham Fathy

    2017-09-01

    Recently, depression has been envisioned as more than an alteration in neurotransmitters centered around receptor signaling pathways. Consequently, the precise mechanisms of selective serotonin reuptake inhibitor (SSRI) antidepressant drugs such as fluoxetine are being revisited. Zinc is a trace element that has been long implicated in the psychopathology and therapy of depression. Zinc has been found to be sequestered and dispensed during stress and inflammation through a family of proteins called metallothioneins (MTs). In addition, MTs are well known for their antioxidant and therefore cytoprotective action. Changes in MTs, their upstream regulators and downstream effectors in response to fluoxetine have not been yet studied. The aim of the present study is to examine whether depression-induced changes in protein levels and mRNA levels of nuclear factor-erythroid 2-related factor 2 (Nrf2), MTs, antioxidant defensive enzyme heme oxygenase (HO-1), zinc-specific receptor GPR39 and brain derived neurotrophic factor (BDNF) in the hippocampus can be reversed by fluoxetine treatment, zinc supplementation or a combination of the two. The present study investigated the effect of chronic (4weeks) combined treatment with zinc hydroaspartate (15mg/kg) and fluoxetine (10mg/kg) on a chronic mild stress model (CMS) in male Sprague-Dawley rats. Hippocampal mRNA and protein levels of Nrf2, HO-1, MTs, GPR39 (protein level only) and BDNF were significantly higher in response to a combined therapy of fluoxetine and zinc than to either monotherapy. Additionally, HO-1 and MTs gene expression was correlated with that of Nrf2 in the FLX-only group. Fluoxetine therapy activated the expression of MTs and HO-1 through an Nrf2-dependent pathway. When FLX was escorted by zinc, activated MTs had a positive impact on BDNF through the zinc signaling receptor GPR39, resulting in general improvement in neuronal plasticity as well as reduction of neuronal atrophy and neuronal cell loss. Copyright

  5. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.

    Directory of Open Access Journals (Sweden)

    Rafael Simó

    Full Text Available Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes and in vivo (C57BL6/mice experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not

  6. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.

    Science.gov (United States)

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M

    2014-01-01

    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight

  7. Developmental programming of vascular dysfunction by prenatal and postnatal zinc deficiency in male and female rats.

    Science.gov (United States)

    Mendes Garrido Abregú, Facundo; Gobetto, María Natalia; Juriol, Lorena Vanesa; Caniffi, Carolina; Elesgaray, Rosana; Tomat, Analía Lorena; Arranz, Cristina

    2018-06-01

    Micronutrient malnutrition during intrauterine and postnatal growth may program cardiovascular diseases in adulthood. We examined whether moderate zinc restriction in male and female rats throughout fetal life, lactation and/or postweaning growth induces alterations that can predispose to the onset of vascular dysfunction in adulthood. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. After weaning, offspring were fed either a low- or a control zinc diet until 81 days. We evaluated systolic blood pressure (SBP), thoracic aorta morphology, nitric oxide (NO) system and vascular reactivity in 6- and/or 81-day-old offspring. At day 6, zinc-deficient male and female offspring showed a decrease in aortic NO synthase (NOS) activity accompanied by an increase in oxidative stress. Zinc-deficient 81-day-old male rats exhibited an increase in collagen deposition in tunica media, as well as lower activity of endothelial NOS (eNOS) that could not be reversed with an adequate zinc diet during postweaning life. Zinc deficiency programmed a reduction in eNOS protein expression and higher SBP only in males. Adult zinc-deficient rats of both sexes showed reduced vasodilator response dependent on eNOS activity and impaired aortic vasoconstrictor response to angiotensin-II associated with alterations in intracellular calcium mobilization. Female rats were less sensitive to the effects of zinc deficiency and exhibited higher eNOS activity and/or expression than males, without alterations in SBP or aortic histology. This work strengthens the importance of a balanced intake of micronutrients during perinatal growth to ensure adequate vascular function in adult life. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. 65Zinc and endogenous zinc content and distribution in islets in relationship to insulin content

    International Nuclear Information System (INIS)

    Figlewicz, D.P.; Forhan, S.E.; Hodgson, A.T.; Grodsky, G.M.

    1984-01-01

    Uptake of 65 Zn and distribution of 65 Zn, total zinc, and insulin were measured in rat islets and islet granules under different conditions of islet culture. Specific activity of islet zinc ( 65 Zn/zinc) was less than 15% that of extracellular zinc even after 48 h. In contrast, once in the islet, 65 Zn approached 70% of equilibrium with granular zinc in 24 h and apparent equilibrium by 48 h. During a 24-h culture, at either high or low glucose, reduction of both islet zinc and insulin occurred. However, zinc depletion was greater than that predicted if zinc loss was proportional to insulin depletion and occurred only from the granular compartment, which represents only one third of the total islet zinc. Extension of culture to 48 h caused additional insulin depletion, but islet zinc was unchanged. Omission of calcium during the 48-h culture caused a predicted increase in insulin retention, presumably by inhibiting secretion; however, zinc retention was not increased proportionately. Pretreatment of rats with tolbutamide caused a massive depletion of insulin stored in isolated islets, with little change in total islet zinc; subsequent culture of these islets resulted in a greater loss of granular zinc than predicted from the small loss of granular insulin. None of the conditions tested affected the percentage of either 65 Zn or total zinc that was distributed in the islet granules. Results show that zinc exists in a metabolically labile islet compartment(s) as well as in secretory granules; and extra-granular zinc, although not directly associated with insulin storage, may act as a reservoir for granular zinc and may regulate insulin synthesis, storage, and secretion in ways as yet unknown

  9. Neodymium conversion layers formed on zinc powder for improving electrochemical properties of zinc electrodes

    International Nuclear Information System (INIS)

    Zhu Liqun; Zhang Hui; Li Weiping; Liu Huicong

    2008-01-01

    Zinc powder, as active material of secondary alkaline zinc electrode, can greatly limit the performance of zinc electrode due to corrosion and dendritic growth of zinc resulting in great capacity-loss and short cycle life of the electrode. This work is devoted to modification study of zinc powder with neodymium conversion films coated directly onto it using ultrasonic immersion method for properties improvement of zinc electrodes. Scanning electron microscopy and other characterization techniques are applied to prove that neodymium conversion layers are distributing on the surface of modified zinc powder. The electrochemical performance of zinc electrodes made of such modified zinc powder is investigated through potentiodynamic polarization, potentiostatic polarization and cyclic voltammetry. The neodymium conversion films are found to have a significant effect on inhibition corrosion capability of zinc electrode in a beneficial way. It is also confirmed that the neodymium conversion coatings can obviously suppress dendritic growth of zinc electrode, which is attributed to the amelioration of deposition state of zinc. Moreover, the results of cyclic voltammetry reveal that surface modification of zinc powder enhances the cycle performance of the electrode mainly because the neodymium conversion films decrease the amounts of ZnO or Zn(OH) 2 dissolved in the electrolyte

  10. Quadrupole interaction in zinc metal

    International Nuclear Information System (INIS)

    Vetterling, W.T.; Pound, R.V.

    1977-01-01

    To allow measurement of the quadrupole interaction in zinc metal, the enriched ZnO was reduced to zinc metal powder and compressed into a pill of thickness 1.4 gm/cm 2 . Sources were made by diffusing 20 mCi of 67 Ga into sintered copper pills. The transducer was based on a cylinder of PZT-4 with 1 / 2 -inch length and could cover linearly a velocity range of +-100 μ/s at 200 Hz. The multiscalar was a modified Northern model NS600, with a minimum dwell time of 20 μs, and with a 10-count buffer at the input to eliminate deadtime from memory cycling

  11. Zinc stannate nanostructures: hydrothermal synthesis

    International Nuclear Information System (INIS)

    Baruah, Sunandan; Dutta, Joydeep

    2011-01-01

    Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO) is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature. (topical review)

  12. Electroplated zinc-cobalt alloy

    International Nuclear Information System (INIS)

    Carpenter, D.E.O.S.; Farr, J.P.G.

    2005-01-01

    Recent work on the deposition and use of ectrodeposited zinc-cobalt alloys is surveyed. Alloys containing lower of Nuclear quantities of cobalt are potentially more useful. The structures of the deposits is related to their chemical and mechanical properties. The inclusion of oxide and its role in the deposition mechanism may be significant. Chemical and engineering properties relate to the metallurgical structure of the alloys, which derives from the mechanism of deposition. The inclusion of oxides and hydroxides in the electroplate may provide evidence for this mechanism. Electrochemical impedance measurements have been made at significant deposition potentials, in alkaline electrolytes. These reveal a complex electrode behaviour which depends not only on the electrode potential but on the Co content of the electrolyte. For the relevant range of cathodic potential zinc-cobalt alloy electrodeposition occurs through a stratified interface. The formation of an absorbed layer ZnOH/sup +/ is the initial step, this inhibits the deposition of cobalt at low cathodic potentials, so explaining its 'anomalous deposition'. A porous layer of zinc forms on the adsorbed ZnOH/sup +/ at underpotential. As the potential becomes more cathodic, cobalt co- deposits from its electrolytic complex forming a metallic solid solution of Co in Zn. In electrolytes containing a high concentration of cobalt a mixed entity (ZnCo)/sub +/ is assumed to adsorb at the cathode from which a CoZn intermetallic deposits. (author)

  13. Effects of dietary zinc status on seizure susceptibility and hippocampal zinc content in the El (epilepsy) mouse.

    Science.gov (United States)

    Fukahori, M; Itoh, M

    1990-10-08

    The effects of dietary zinc status on the development of convulsive seizures, and zinc concentrations in discrete hippocampal areas and other parts of the limbic system were studied in the El mouse model receiving zinc-adequate, zinc-deficient or zinc-loaded diets. Seizure susceptibility of the El mouse was increased by zinc deficiency, and decreased by zinc loading, while an adequate diet had no effect. Zinc loading was accompanied by a marked increase in hippocampal zinc content in the El mouse. Conversely, hippocampal zinc content declined in the El mouse fed a zinc-deficient diet. These results suggest that zinc may have a preventive effect on the development of seizures in the El mouse, and hippocampal zinc may play an important role in the pathophysiology of convulsive seizures of epilepsy.

  14. Zinc in Cellular Regulation: The Nature and Significance of "Zinc Signals".

    Science.gov (United States)

    Maret, Wolfgang

    2017-10-31

    In the last decade, we witnessed discoveries that established Zn 2+ as a second major signalling metal ion in the transmission of information within cells and in communication between cells. Together with Ca 2+ and Mg 2+ , Zn 2+ covers biological regulation with redox-inert metal ions over many orders of magnitude in concentrations. The regulatory functions of zinc ions, together with their functions as a cofactor in about three thousand zinc metalloproteins, impact virtually all aspects of cell biology. This article attempts to define the regulatory functions of zinc ions, and focuses on the nature of zinc signals and zinc signalling in pathways where zinc ions are either extracellular stimuli or intracellular messengers. These pathways interact with Ca 2+ , redox, and phosphorylation signalling. The regulatory functions of zinc require a complex system of precise homeostatic control for transients, subcellular distribution and traffic, organellar homeostasis, and vesicular storage and exocytosis of zinc ions.

  15. Zinc and immunity: An essential interrelation.

    Science.gov (United States)

    Maares, Maria; Haase, Hajo

    2016-12-01

    The significance of the essential trace element zinc for immune function has been known for several decades. Zinc deficiency affects immune cells, resulting in altered host defense, increased risk of inflammation, and even death. The micronutrient zinc is important for maintenance and development of immune cells of both the innate and adaptive immune system. A disrupted zinc homeostasis affects these cells, leading to impaired formation, activation, and maturation of lymphocytes, disturbed intercellular communication via cytokines, and weakened innate host defense via phagocytosis and oxidative burst. This review outlines the connection between zinc and immunity by giving a survey on the major roles of zinc in immune cell function, and their potential consequences in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. BWR radiation buildup control with ionic zinc

    International Nuclear Information System (INIS)

    Marble, W.J.; Wood, C.J.; Leighty, C.E.; Green, T.A.

    1986-01-01

    In 1983 a hypothesis was disclosed which suggested that the presence of ionic zinc in the reactor water of the BWR could reduce radiation buildup. This hypothesis was developed from correlations of plant data, and subsequently, from laboratory experiments which demonstrated clearly that ionic zinc inhibits the corrosion of stainless steel. The benefits of zinc addition have been measured at the Vallecitos Nuclear Center under and EPRI/GE project. Experimentation and analyses have been performed to evaluate the impact of intentional zinc addition on the IGSCC characteristics of primary system materials and on the performance of the nuclear fuel. It has been concluded that no negative effects are expected. The author conclude that the intentional addition of ionic zinc to the BWR reactor water at a concentration of approximately 10 ppb will provide major benefits in controlling the Co-60 buildup on primary system stainless steel surfaces. The intentional addition of zinc is now a qualified technique for use in BWRs

  17. Curcumin Pretreatment Induces Nrf2 and an Antioxidant Response and Prevents Hemin-Induced Toxicity in Primary Cultures of Cerebellar Granule Neurons of Rats

    Directory of Open Access Journals (Sweden)

    Susana González-Reyes

    2013-01-01

    Full Text Available Curcumin is a bifunctional antioxidant derived from Curcuma longa. This study identifies curcumin as a neuroprotectant against hemin-induced damage in primary cultures of cerebellar granule neurons (CGNs of rats. Hemin, the oxidized form of heme, is a highly reactive compound that induces cellular injury. Pretreatment of CGNs with 5–30 μM curcumin effectively increased by 2.3–4.9 fold heme oxygenase-1 (HO-1 expression and by 5.6–14.3-fold glutathione (GSH levels. Moreover, 15 μM curcumin attenuated by 55% the increase in reactive oxygen species (ROS production, by 94% the reduction of GSH/glutathione disulfide (GSSG ratio, and by 49% the cell death induced by hemin. The inhibition of heme oxygenase system or GSH synthesis with tin mesoporphyrin and buthionine sulfoximine, respectively, suppressed the protective effect of curcumin against hemin-induced toxicity. These data strongly suggest that HO-1 and GSH play a major role in the protective effect of curcumin. Furthermore, it was found that 24 h of incubation with curcumin increases by 1.4-, 2.3-, and 5.2-fold the activity of glutathione reductase, glutathione S-transferase and superoxide dismutase, respectively. Additionally, it was found that curcumin was capable of inducing nuclear factor (erythroid-derived 2-like 2 (Nrf2 translocation into the nucleus. These data suggest that the pretreatment with curcumin induces Nrf2 and an antioxidant response that may play an important role in the protective effect of this antioxidant against hemin-induced neuronal death.

  18. Curcumin Pretreatment Induces Nrf2 and an Antioxidant Response and Prevents Hemin-Induced Toxicity in Primary Cultures of Cerebellar Granule Neurons of Rats

    Science.gov (United States)

    González-Reyes, Susana; Guzmán-Beltrán, Silvia; Medina-Campos, Omar Noel; Pedraza-Chaverri, José

    2013-01-01

    Curcumin is a bifunctional antioxidant derived from Curcuma longa. This study identifies curcumin as a neuroprotectant against hemin-induced damage in primary cultures of cerebellar granule neurons (CGNs) of rats. Hemin, the oxidized form of heme, is a highly reactive compound that induces cellular injury. Pretreatment of CGNs with 5–30 μM curcumin effectively increased by 2.3–4.9 fold heme oxygenase-1 (HO-1) expression and by 5.6–14.3-fold glutathione (GSH) levels. Moreover, 15 μM curcumin attenuated by 55% the increase in reactive oxygen species (ROS) production, by 94% the reduction of GSH/glutathione disulfide (GSSG) ratio, and by 49% the cell death induced by hemin. The inhibition of heme oxygenase system or GSH synthesis with tin mesoporphyrin and buthionine sulfoximine, respectively, suppressed the protective effect of curcumin against hemin-induced toxicity. These data strongly suggest that HO-1 and GSH play a major role in the protective effect of curcumin. Furthermore, it was found that 24 h of incubation with curcumin increases by 1.4-, 2.3-, and 5.2-fold the activity of glutathione reductase, glutathione S-transferase and superoxide dismutase, respectively. Additionally, it was found that curcumin was capable of inducing nuclear factor (erythroid-derived 2)-like 2 (Nrf2) translocation into the nucleus. These data suggest that the pretreatment with curcumin induces Nrf2 and an antioxidant response that may play an important role in the protective effect of this antioxidant against hemin-induced neuronal death. PMID:24454990

  19. Directed spatial organization of zinc oxide nanostructures

    Science.gov (United States)

    Hsu, Julia [Albuquerque, NM; Liu, Jun [Richland, WA

    2009-02-17

    A method for controllably forming zinc oxide nanostructures on a surface via an organic template, which is formed using a stamp prepared from pre-defined relief structures, inking the stamp with a solution comprising self-assembled monolayer (SAM) molecules, contacting the stamp to the surface, such as Ag sputtered on Si, and immersing the surface with the patterned SAM molecules with a zinc-containing solution with pH control to form zinc oxide nanostructures on the bare Ag surface.

  20. Activity incorporation into zinc doped PWR oxides

    International Nuclear Information System (INIS)

    Maekelae, Kari

    1998-01-01

    Activity incorporation into the oxide layers of PWR primary circuit constructional materials has been studied in Halden since 1993. The first zinc injection tests showed that zinc addition resulted in thinner oxide layers on new metal surfaces and reduced further incorporation of activity into already existing oxides. These tests were continued to find out the effects of previous zinc additions on the pickup of activity onto the surface oxides which were subsequently exposed to zinc-free coolant. The results showed that previous zinc addition will continue to reduce the rate of Co-60 build-up on out-of-core surfaces in subsequent exposure to zinc-free coolants. However, the previous Zn free test was performed for a relatively short period of time and the water chemistry programme was continued to find out the long term effects for extended periods without zinc. The activity incorporation into the stainless steel oxides started to increase as soon as zinc dosing to the coolant was stopped. The Co-60 concentration was lowest on all of the coupons which were first oxidised in Zn containing primary coolant. After the zinc injection period the thickness of the oxides increased, but activity in the oxide films did not increase at the same rate. This could indicate that zinc in the oxide blocks the adsorption sites for Co-60 incorporation. The Co-60 incorporation rate into the oxides on Inconel 600 seemed to be linear whether the oxide was pre-oxidised with or without Zn. The results indicate that zinc can either replace or prevent cobalt transport in the oxides. The results show that for zinc injection to be effective it should be carried out continuously. Furthermore the actual mechanism by which Zn inhibits the activity incorporation into the oxides is still not clear. Therefore, additional work has to follow with specified materials to verify the conclusions drawn in this work. (author)

  1. Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia.

    Directory of Open Access Journals (Sweden)

    Tolunay Beker Aydemir

    Full Text Available ZIP14 (slc39A14 is a zinc transporter induced in response to pro-inflammatory stimuli. ZIP14 induction accompanies the reduction in serum zinc (hypozincemia of acute inflammation. ZIP14 can transport Zn(2+ and non-transferrin-bound Fe(2+ in vitro. Using a Zip14(-/- mouse model we demonstrated that ZIP14 was essential for control of phosphatase PTP1B activity and phosphorylation of c-Met during liver regeneration. In the current studies, a global screening of ZIP transporter gene expression in response to LPS-induced endotoxemia was conducted. Following LPS, Zip14 was the most highly up-regulated Zip transcript in liver, but also in white adipose tissue and muscle. Using ZIP14(-/- mice we show that ZIP14 contributes to zinc absorption from the gastrointestinal tract directly or indirectly as zinc absorption was decreased in the KOs. In contrast, Zip14(-/- mice absorbed more iron. The Zip14 KO mice did not exhibit hypozincemia following LPS, but do have hypoferremia. Livers of Zip14-/- mice had increased transcript abundance for hepcidin, divalent metal transporter-1, ferritin and transferrin receptor-1 and greater accumulation of iron. The Zip14(-/- phenotype included greater body fat, hypoglycemia and higher insulin levels, as well as increased liver glucose and greater phosphorylation of the insulin receptor and increased GLUT2, SREBP-1c and FASN expression. The Zip14 KO mice exhibited decreased circulating IL-6 with increased hepatic SOCS-3 following LPS, suggesting SOCS-3 inhibited insulin signaling which produced the hypoglycemia in this genotype. The results are consistent with ZIP14 ablation yielding abnormal labile zinc pools which lead to increased SOCS-3 production through G-coupled receptor activation and increased cAMP production as well as signaled by increased pSTAT3 via the IL-6 receptor, which inhibits IRS 1/2 phosphorylation. Our data show the role of ZIP14 in the hepatocyte is multi-functional since zinc and iron trafficking are

  2. Non-Chromate Passivation of Zinc

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Bech-Nielsen, G.

    1993-01-01

    Phos). The treatments are within the same concentration region, and they have a mutual pat-ent pending. Although some tests still need to be conducted, the following aspects are clear at the present time: The general appearance of the passivated zinc surface is very similar to a standard yellow chromate treatment...... successfully. The corrosion resistance against white rust on zinc and zinc alloys is just as good as that of yellow chromate, although the result de-pends on the corrosion test method as well as on the nature of the zinc substrate pas-sivated. The passivation procedure is simply a dip for approxi-mately 2...

  3. Status of zinc injection in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, C.A. [Westinghouse Electric Co., Pittsburgh, PA (United States)

    1995-03-01

    Based on laboratory and other studies, it was concluded that zinc addition in a PWR primary coolant should result in reduced Alloy 600 PWSCC and general corrosion rates of the materials of construction. Because of these positive results, a Westinghouse Owner`s Subgroup, EPRI, and Westinghouse provided funds to continue the development and application of zinc in an operating plant. As part of the program, Southern Operating Nuclear Company agreed to operate the Farley 2 plant with zinc addition as a demonstration test of the effectiveness of zinc. Since zinc is incorporated in the corrosion oxide film on the primary system surfaces and Farley 2 is a mature plant, it was estimated that about 10 kgs of zinc would be needed to condition the plant before an equilibrium value in the coolant would be reached. The engineered aspects of a Zinc Addition and Monitoring System (ZAMS) considered such items as the constitutents, location, sizing and water supply of the ZAMS. Baseline data such as the PWSCC history of the Alloy 600 steam generator tubing, fuel oxide thickness, fuel crud deposits, radiation levels, and RCP seal leak-off rates were obtained before zinc addition is initiated. This presentation summarizes some of the work performed under the program, and the status of zinc injection in the Farley 2 plant.

  4. Zinc absorption in inflammatory bowel disease

    International Nuclear Information System (INIS)

    Valberg, L.S.; Flanagan, P.R.; Kertesz, A.; Bondy, D.C.

    1986-01-01

    Zinc absorption was measured in 29 patients with inflammatory bowel disease and a wide spectrum of disease activity to determine its relationship to disease activity, general nutritional state, and zinc status. Patients with severe disease requiring either supplementary oral or parenteral nutrition were excluded. The mean 65ZnCl2 absorption, in the patients, determined using a 65Zn and 51Cr stool-counting test, 45 +/- 17% (SD), was significantly lower than the values, 54 +/- 16%, in 30 healthy controls, P less than 0.05. Low 65ZnCl2 absorption was related to undernutrition, but not to disease activity in the absence of undernutrition or to zinc status estimated by leukocyte zinc measurements. Mean plasma zinc or leukocyte zinc concentrations in patients did not differ significantly from controls, and only two patients with moderate disease had leukocyte zinc values below the 5th percentile of normal. In another group of nine patients with inflammatory bowel disease of mild-to-moderate severity and minimal nutritional impairment, 65Zn absorption from an extrinsically labeled turkey test meal was 31 +/- 10% compared to 33 +/- 7% in 17 healthy controls, P greater than 0.1. Thus, impairment in 65ZnCl2 absorption in the patients selected for this study was only evident in undernourished persons with moderate or severe disease activity, but biochemical evidence of zinc deficiency was uncommon, and clinical features of zinc depletion were not encountered

  5. Maternal Zinc Intakes and Homeostatic Adjustments during Pregnancy and Lactation

    Science.gov (United States)

    Donangelo, Carmen Marino; King, Janet C.

    2012-01-01

    Zinc plays critical roles during embryogenesis, fetal growth, and milk secretion, which increase the zinc need for pregnancy and lactation. Increased needs can be met by increasing the dietary zinc intake, along with making homeostatic adjustments in zinc utilization. Potential homeostatic adjustments include changes in circulating zinc, increased zinc absorption, decreased zinc losses, and changes in whole body zinc kinetics. Although severe zinc deficiency during pregnancy has devastating effects, systematic reviews and meta-analysis of the effect of maternal zinc supplementation on pregnancy outcomes have consistently shown a limited benefit. We hypothesize, therefore, that zinc homeostatic adjustments during pregnancy and lactation improve zinc utilization sufficiently to provide the increased zinc needs in these stages and, therefore, mitigate immediate detrimental effects due to a low zinc intake. The specific questions addressed are the following: How is zinc utilization altered during pregnancy and lactation? Are those homeostatic adjustments influenced by maternal zinc status, dietary zinc, or zinc supplementation? These questions are addressed by critically reviewing results from published human studies on zinc homeostasis during pregnancy and lactation carried out in different populations worldwide. PMID:22852063

  6. Effect of cholecalciferol and 1,25-dihydroxycholecalciferol on the intestinal absorption of zinc in the chick

    International Nuclear Information System (INIS)

    Koo, S.I.; Fullmer, C.S.; Wasserman, R.H.

    1980-01-01

    The effect of cholecalciferol on the intestinal absorption of 65 Zn was assessed in zinc-deficient and zinc-replete rachitic chicks, using the in situ ligated loop techniques. Cholecalciferol did not significantly affect 65 Zn absorption in either group, although the synthesis of the intestinal calcium-binding protein (CaBP) in both groups was similar. In an analogous study, 1,25-dihydroxycholecalciferol increased 47 Ca absorption and induced the synthesis of CaBP but exerted no effect on 65 Zn absorption in zinc-deficient rachitic chicks. When fed a diet adequate in cholecalciferol, more CaBP was present in the intestine of the zinc-adequate group than in the zinc-deficient group, possibly due to the greater rate of growth and therefore the greater need for calcium by the former group. These results suggest that cholecalciferol and its most active metabolite do not directly affect zinc absorption and, by inference, that the vitamin D-dependent transport mechanism is not involved in zinc homeostasis, or in the interaction between calcium and zinc

  7. Improving Effect Of Vitamin E Supplementation In Rats Suffering From Zinc Deficiency

    International Nuclear Information System (INIS)

    Matta, T.F.

    2009-01-01

    Vitamin E is a membrane-bound soluble lipid and naturally occurring antioxidant which protects animal tissues against oxidative damage. Several studies have suggested a possible interaction between zinc status and vitamin E in animals. The current investigation was conduced to elucidate the improving effect of vitamin E supplementation on some selected biochemical variables in the blood and tissues of albino rats suffering from zinc deficiency.Zinc deficiency was induced in rats by feeding male rats a low zinc diet for 6 weeks. Dietary vitamin E and zinc, separated or combined, were used to ameliorate the impacts of zinc deficiency in the last two weeks of the experiment. Fifty male albino rats weighing 70-80g in 5 equal groups were given for 6 weeks five semi purified diets different in their contents of vitamin E and zinc / kg diet as follows: Zn adequate diet (Zn =35 ppm) for group (I) served as control, Zn deficient diet (Zn = 3 ppm) for group (II), Zn deficient diet plus supplemental zinc (Zn = 84 ppm) for group (III), Zn deficient diet plus supplemental vitamin E (50 IU) for group (IV) and Zn deficient diet plus supplemental zinc and vitamin E (Zn = 84 ppm + i.p. 50 IU vitamin E) for group (V). Supplemental zinc and vitamin E were only given on the last two weeks of the experiment.The obtained results revealed that Zn deficiency led to a significant (P 4 , T 3 and testosterone levels were declined significantly in Zn deficient rats as well as a significant (P < 0.05) rise in TSH level as compared with their levels in the Zn deficient rats supplemented with Zn and vitamin E.In contrast, the concentration of serum total cholesterol (T.Chol) and triglycerides (TG) in Zn deficient rats were significantly increased than those recorded in control group. On the other hand, the activities of cytochrome P450 reductase and microsomal NADPH reductase were significantly decreased (P<0.05) in liver homogenates while significant increase was recorded in their corresponding

  8. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: Importance of zinc ions

    NARCIS (Netherlands)

    Brun, N.R.; Lenz, M.; Wehrli, B.; Fent, K.

    2014-01-01

    The increasing use of zinc oxide nanoparticles (nZnO) and their associated environmental occurrence make it necessary to assess their potential effects on aquatic organisms. Upon water contact, nZnO dissolve partially to zinc (Zn(II)). To date it is not yet completely understood, whether effects of

  9. Effect of Consuming Zinc-fortified Bread on Serum Zinc and Iron Status of Zinc-deficient Women: A Double Blind, Randomized Clinical Trial.

    Science.gov (United States)

    Badii, Akbar; Nekouei, Niloufar; Fazilati, Mohammad; Shahedi, Mohammad; Badiei, Sajad

    2012-03-01

    After iron deficiency, zinc deficiency is the major micronutrient deficiency in developing countries, and staple food fortification is an effective strategy to prevent and improve it among at-risk-populations. No action has been taken to reduce zinc deficiency via flour fortification so far in Iran, and little is known about the influence of zinc fortification of flour on serum zinc and the iron status, and also about the optimum and effective amount of zinc compound that is used in food fortification. The objective of this study is to evaluate the influence of consuming zinc-fortified breads on the zinc and iron status in the blood serum. In this study, three types of bread were prepared from non-fortified and fortified flours, with 50 and 100 ppm elemental zinc in the form of sulfate. Eighty zinc-deficient women aged 19 to 49 years were randomly assigned to three groups; The volunteers received, daily, (1) a non-fortified bread, (2) a high-zinc bread, and (3) a low-zinc bread for one month. Serum zinc and iron were measured by Atomic Absorption before and after the study. Results showed a significant increase in serum zinc and iron levels in all groups (p 0.05). Absorption of zinc and iron in the group that consumed high-zinc bread was significantly greater than that in the group that received low-zinc bread (p bread improved iron absorption.

  10. Biomarkers of metabolic syndrome and its relationship with the zinc nutritional status in obese women.

    Science.gov (United States)

    Ennes Dourado Ferro, F; de Sousa Lima, V B; Mello Soares, N R; Franciscato Cozzolino, S Ma; do Nascimento Marreiro, D

    2011-01-01

    Obesity is a chronic disease that induces risk factors for metabolic syndrome and, is associated with disturbances in the metabolism of the zinc. Therefore, the aim of this study was to investigate the existence of relationship between the biomarkers of metabolic syndrome and the zinc nutricional status in obese women. Seventy-three premenopausal women, aged between 20 and 50 years, were divided into two groups: case group, composed of obese (n = 37) and control group, composed of no obese (n = 36). The assessment of the body mass index and waist circumference were carried out using anthropometric measurements. The plasmatic and erythrocytary zinc were analyzed by method atomic absorption spectrophotometry (λ = 213.9 nm). In the study, body mass index and waist circumference were higher in obese women than control group (p 0.05). The mean erythrocytary zinc was 36.4 ± 15.0 μg/gHb and 45.4 ± 14.3 μg/gHb in the obese and controls, respectively (p < 0.05). Regression analysis showed that the body mass index (t =-2.85) and waist circumference (t = -2.37) have a negative relationship only with the erythrocytary zinc (R² = 0.32, p < 0.05). The study shows that there are alterations in biochemical parameters of zinc in obese women, with low zinc concentrations in erythrocytes. Regression analysis demonstrates that the erythrocytary zinc is influenced by biomarkers of the metabolic syndrome, presenting an inverse relationship with the waist circumference and body mass index.

  11. Herpes simplex virus induces the marked up-regulation of the zinc finger transcriptional factor INSM1, which modulates the expression and localization of the immediate early protein ICP0

    Directory of Open Access Journals (Sweden)

    Kimura Hiroshi

    2011-05-01

    Full Text Available Abstract Background Herpes simplex viruses (HSVs rapidly shut off macromolecular synthesis in host cells. In contrast, global microarray analyses have shown that HSV infection markedly up-regulates a number of host cell genes that may play important roles in HSV-host cell interactions. To understand the regulatory mechanisms involved, we initiated studies focusing on the zinc finger transcription factor insulinoma-associated 1 (INSM1, a host cell protein markedly up-regulated by HSV infection. Results INSM1 gene expression in HSV-1-infected normal human epidermal keratinocytes increased at least 400-fold 9 h after infection; INSM1 promoter activity was also markedly stimulated. Expression and subcellular localization of the immediate early HSV protein ICP0 was affected by INSM1 expression, and chromatin immunoprecipitation (ChIP assays revealed binding of INSM1 to the ICP0 promoter. Moreover, the role of INSM1 in HSV-1 infection was further clarified by inhibition of HSV-1 replication by INSM1-specific siRNA. Conclusions The results suggest that INSM1 up-regulation plays a positive role in HSV-1 replication, probably by binding to the ICP0 promoter.

  12. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    Directory of Open Access Journals (Sweden)

    Cuong D. Tran

    2015-05-01

    Full Text Available It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease.

  13. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    Science.gov (United States)

    Tran, Cuong D.; Gopalsamy, Geetha L.; Mortimer, Elissa K.; Young, Graeme P.

    2015-01-01

    It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease. PMID:26035248

  14. Impact of anode substrates on electrodeposited zinc over cycling in zinc-anode rechargeable alkaline batteries

    International Nuclear Information System (INIS)

    Wei, Xia; Desai, Divyaraj; Yadav, Gautam G.; Turney, Damon E.; Couzis, Alexander; Banerjee, Sanjoy

    2016-01-01

    Electrochemical behavior of Ag, Bi, Cu, Fe, Ni and Sn substrates on zinc deposition was evaluated over battery cycling by cyclic voltammetry and electrochemical impedance spectroscopy. The effect of Bi, Cu, Ni, and Sn substrates on zinc electrodeposition during battery cycling was investigated using scanning electron microscopy and X-ray diffraction. The corrosion behavior of each metal in 9 M KOH and the corrosion rates of zinc plated on each substrate were analyzed by Tafel extrapolation method from the potentiodynamic polarization curves and electrochemical impedance spectroscopy. Although the charge-transfer resistance (R_c_t) of zinc electrodeposition is lowest on Sn, Sn eventually corrodes on cycling in alkaline media. Use of Ni as a substrate causes zinc to deteriorate on account of rapid hydrogen evolution. Bi and Cu substrates are more suitable for use as current collectors in zinc-anode alkaline rechargeable batteries because of their low corrosion rate and compact zinc deposition over battery cycling.

  15. Serum zinc status of neonates with seizure

    Directory of Open Access Journals (Sweden)

    Olia Sharmeen

    2016-08-01

    Full Text Available Background: Seizure is a common neurological disorder in neonatal age group!. Primary metabolic derangement is one of the important reason behind this convulsion during this period. Among primary metabolic derangement hypoglycemia, is most common followed by bypocalcaemia, hypomagnesaemia, low zinc status etc. As causes of many cases of convul­sion remain unknown in neonate. Objectives: To see the zinc status in the sera of neonate with convulsion. So that if needed early intervention can be taken up and thereby prevent complications. Method: A total of 50 neonates (1-28 days who had convulsion with no apparent reasons of convulsion were enrolled as cases and 50 healthy age and sex matched neonates were enrolled as controls. After a quick clinical evaluation serum zinc status was estimated from venous blood by atomic absorption method in Chemistry Division, Atomic Energy Centre. Low zinc was considered if serum value was <0.7mg/L. Results: Among a total of 50 cases 6% had low zinc value & 2% of controls also had low zinc level. The mean serwu zinc level of cases and controls were 1.57±0.95 and 2.37±1.06 mmol/1 respectively (p<0.01. Conclusion: From the study it is seen that low zinc value is an important cause of neonatal seizure due to primary metabolic abnormalities. So early recognition and treatment could save these babies from long term neurological sequelies.

  16. Bioavailability of zinc to aerobic rice

    NARCIS (Netherlands)

    Gao, X.

    2007-01-01

    Keywords:Arbuscular mycorrhiza, Exudation, Oryza sativa , Rhizosphere, Rice, Soil, ZincZinc deficiency is a wide-spread constraint for crop production and human health. This thesis should contribute to alleviation of Zn deficiency problems and aimed at identifying soil

  17. 21 CFR 582.5994 - Zinc stearate.

    Science.gov (United States)

    2010-04-01

    ..., FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5994 Zinc stearate. (a) Product. Zinc stearate prepared from stearic acid free from chick-edema factor. (b) Conditions of use. This substance is generally recognized as safe when used in...

  18. Zinc dosing and glucose tolerance in humans

    International Nuclear Information System (INIS)

    Greenley, S.; Taylor, M.

    1986-01-01

    Animal data suggest the existence of a physiologic relationship between glucoregulatory hormones and zinc metabolism. In order to investigate this proposed relationship in humans, they examined the effect of moderately elevated plasma zinc levels on blood glucose clearance. Eight women (24-37 yrs) served as subjects for the study. Fasted volunteers were tested under two experimental conditions (a) ingestion of 50 g D-glucose (b) ingestion of 25 mg zinc followed 60 min later by ingestion of 50 g D-glucose. Five ml venous blood was drawn into trace-metal-free, fluoride-containing vacutainer tubes prior to and 15, 30, 45, 60, 90, and 120 min after glucose ingestion. Plasma was analyzed for glucose and zinc; glycemic responses were quantified by computing areas under the curves and times to peak concentration. Their human data indicate varied glycemic responses to the acute elevation of plasma zinc: 4 subjects showed little apparent effect; 3 subjects marginally increased either the area under the curve or time to peak and 1 subject (classified as suspect diabetic in the non-zinc condition) showed marked improvement in glycemic response following zinc ingestion. Their preliminary results suggest that blood glucose clearance may be affected in some individuals by the acute elevation of plasma zinc

  19. Structural and Biological Assessment of Zinc Doped Hydroxyapatite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Cristina Liana Popa

    2016-01-01

    Full Text Available The aim of the current research work was to study the physicochemical and biological properties of synthesized zinc doped hydroxyapatite (ZnHAp nanoparticles with Zn concentrations xZn=0 (HAp, xZn=0.07 (7ZnHAp, and xZn=0.1 (10ZnHAp for potential use in biological applications. The morphology, size, compositions, and incorporation of zinc into hydroxyapatite were characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, Fourier Transform Infrared Spectroscopy (FTIR, Raman scattering, and X-Ray Photoelectron Spectroscopy (XPS. In addition, the cytotoxicity of ZnHAp nanoparticles was tested on both E. coli bacteria and human hepatocarcinoma cell line HepG2. The results showed that ZnHAp nanoparticles (HAp, 7ZnHAp, and 10ZnHAp have slightly elongated morphologies with average diameters between 25 nm and 18 nm. On the other hand, a uniform and homogeneous distribution of the constituent elements (calcium, phosphorus, zinc, and oxygen in the ZnHAp powder was noticed. Besides, FTIR and Raman analyses confirmed the proper hydroxyapatite structure of the synthesized ZnHAp nanoparticles with the signature of phosphate, carbonate, and hydroxyl groups. Moreover, it can be concluded that Zn doping at the tested concentrations is not inducing a specific prokaryote or eukaryote toxicity in HAp compounds.

  20. Effect of consuming zinc-fortified bread on serum zinc and iron status of zinc-deficient women: A double blind, randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Akbar Badii

    2012-01-01

    Full Text Available After iron deficiency, zinc deficiency is the major micronutrient deficiency in developing countries, and staple food fortification is an effective strategy to prevent and improve it among at-risk-populations. No action has been taken to reduce zinc deficiency via flour fortification so far in Iran, and little is known about the influence of zinc fortification of flour on serum zinc and the iron status, and also about the optimum and effective amount of zinc compound that is used in food fortification. The objective of this study is to evaluate the influence of consuming zinc-fortified breads on the zinc and iron status in the blood serum. In this study, three types of bread were prepared from non-fortified and fortified flours, with 50 and 100 ppm elemental zinc in the form of sulfate. Eighty zinc-deficient women aged 19 to 49 years were randomly assigned to three groups; The volunteers received, daily, (1 a non-fortified bread, (2 a high-zinc bread, and (3 a low-zinc bread for one month. Serum zinc and iron were measured by Atomic Absorption before and after the study. Results showed a significant increase in serum zinc and iron levels in all groups (p 0.05. Absorption of zinc and iron in the group that consumed high-zinc bread was significantly greater than that in the group that received low-zinc bread (p < 0.01. It was concluded that fortification of flour with 50-100 ppm zinc was an effective way to achieve adequate zinc intake and absorption in zinc-deficient people. It also appeared that consuming zinc-fortified bread improved iron absorption.

  1. Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats.

    Science.gov (United States)

    Kuldeep, Anjana; Nair, Neena; Bedwal, Ranveer Singh

    2017-06-01

    The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30-40 days of age, pre-pubertal period) of 40-50 g body weight were divided into the following: the ZC (zinc control) group-fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group-fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group-received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.

  2. Iron and zinc concentrations and 59Fe retention in developing fetuses of zinc-deficient rats

    International Nuclear Information System (INIS)

    Rogers, J.M.; Loennerdal, B.H.; Hurley, L.S.; Keen, C.L.

    1987-01-01

    Because disturbances in iron metabolism might contribute to the teratogenicity of zinc deficiency, we examined the effect of zinc deficiency on fetal iron accumulation and maternal and fetal retention of 59 Fe. Pregnant rats were fed from mating a purified diet containing 0.5, 4.5 or 100 micrograms Zn/g. Laparotomies were performed on d 12, 16, 19 and 21 of gestation. Maternal blood and concepti were analyzed for zinc and iron. Additional groups of dams fed 0.5 or 100 micrograms Zn/g diet were gavaged on d 19 with a diet containing 59 Fe. Six hours later maternal blood and tissues, fetuses and placentas were counted for 59 Fe. Maternal plasma zinc, but not iron, concentration was affected by zinc deficiency on d 12. Embryo zinc concentration on d 12 increased with increasing maternal dietary zinc, whereas iron concentration was not different among groups. On d 16-21 plasma iron was higher in dams fed 0.5 micrograms Zn/g diet than in those fed 4.5 or 100 micrograms/g, whereas plasma zinc was lower in dams fed 0.5 or 4.5 micrograms Zn/g than in those fed 100 micrograms Zn/g diet. On d 19 zinc concentration in fetuses from dams fed 0.5 micrograms/g zinc was not different from that of those fed 4.5 micrograms/g zinc, and iron concentration was higher in the 0.5 microgram Zn/g diet group. The increase in iron concentration in zinc-deficient fetuses thus occurs too late to be involved in major structural teratogenesis. Although whole blood concentration of 59 Fe was not different in zinc-deficient and control dams, zinc-deficient dams had more 59 Fe in the plasma fraction

  3. Electrochemical Reduction of Zinc Phosphate

    International Nuclear Information System (INIS)

    Kim, Chang Hwan; Lee, Jung Hyun; Shin, Woon Sup

    2010-01-01

    We demonstrated first that the electrochemical reduction of zinc phosphate in neutral phosphate buffer is possible and potentially applicable to bio-compatible rechargeable battery. The actual redox component is Zn(s)/Zn phosphate(s) and the future research about the control of crystal formation for the better cyclability is required. In lead-acid battery, the electrochemical redox reaction of Pb (s) /PbSO 4(s) is used by reducing Pb(II) and oxidizing Pb(0) in sulfate rich solution. Since both reduced form and oxidized form are insoluble, they cannot diffuse to the opposite electrodes and react. It is a very common strategy to make a stable battery electrode that a metal element is reduced and oxidized in solution containing an abundance of anion readily precipitating with the metal ion. For the application of this strategy to construction of rechargeable battery using bio-compatible electrode materials and electrolytes, the use of phosphate ion can be considered as anion readily precipitating with metal ions. If phosphate buffer with neutral pH is used as electrolyte, the better bio-compatibility will be achieved than most of rechargeable battery using strong acid, strong base or organic solvent as electrolyte solution. There are many metal ions readily precipitating with phos-phate ion, and zinc is one of them

  4. Effects of combined treatment of α-tocopherol, L-ascorbic acid, selenium and zinc on bleomycin, etoposide and cisplatin-induced alterations in testosterone synthesis pathway in rats.

    Science.gov (United States)

    Kilarkaje, Narayana

    2014-12-01

    To investigate the effects of therapeutically relevant dose levels of bleomycin, etoposide and cisplatin (BEP) on testicular steroidogenic enzymes, and possible protective effects of an antioxidant cocktail (AC). Adult Sprague-Dawley rats received BEP with or without the AC (α-tocopherol, L-ascorbic acid, selenium and zinc) for either (a) 4 days (short term; 1.5, 15 and 3 mg/kg), or (b) three cycles of 21 days each (0.75, 7.5 and 1.5 mg/kg), or (c) the three cycles with a 63-day recovery period. The expression of steroidogenic enzymes were measured in the testes by Western blotting and immunofluorescent labeling. The short-term BEP exposure resulted in a decrease in scavenger receptor class-B1 and an increase in luteinizing hormone receptor (LHR). The AC with or without BEP has increased the levels of LHR, 3β-hydroxysteroid dehydrogenase (3β-HSD) and 17β-HSD, but without significant changes in testosterone levels. The three cycles of BEP up-regulated the expression of steroidogenic acute regulatory protein (StAR) and down-regulated that of cholesterol side chain cleavage enzyme (P450scc), cytochrome p450 17A1 (Cyp17A1, recovered by the AC) and 17β-HSD, associated with significant reduction in testosterone levels. The three cycles with the recovery time led to decreases in LHR, StAR, P450scc and Cyp17A1 and increases in 3β-HSD and 17β-HSD. The AC did not enhance the recovery of the enzyme levels. The three cycles of BEP treatment inhibit the testosterone synthesis pathway even after the recovery time. The AC recovers the effects of BEP chemotherapy on a few steroidogenic enzymes.

  5. Ligand binding and thermostability of different allosteric states of the insulin zinc-hexamer

    DEFF Research Database (Denmark)

    Huus, Kasper; Havelund, Svend; Olsen, Helle B

    2006-01-01

    The influence of ligand binding and conformation state on the thermostability of hexameric zinc-insulin was studied by differential scanning calorimetry (DSC). The insulin hexamer exists in equilibrium between the forms T6, T3R3, and R6. Phenolic ligands induce and stabilize the T3R3- and R6-stat...

  6. Biofunctionalization of zinc oxide nanowires for DNA sensory applications

    Directory of Open Access Journals (Sweden)

    Rudolph Bettina

    2011-01-01

    Full Text Available Abstract We report on the biofunctionalization of zinc oxide nanowires for the attachment of DNA target molecules on the nanowire surface. With the organosilane glycidyloxypropyltrimethoxysilane acting as a bifunctional linker, amino-modified capture molecule oligonucleotides have been immobilized on the nanowire surface. The dye-marked DNA molecules were detected via fluorescence microscopy, and our results reveal a successful attachment of DNA capture molecules onto the nanowire surface. The electrical field effect induced by the negatively charged attached DNA molecules should be able to control the electrical properties of the nanowires and gives way to a ZnO nanowire-based biosensing device.

  7. PREPARATION OF ZINC ENRICHED YEAST (SACCHAROMYCES CEREVISIAE BY CULTIVATION WITH DIFFERENT ZINC SALTS

    Directory of Open Access Journals (Sweden)

    Ľuboš Harangozo

    2012-02-01

    Full Text Available The yeast Saccharomyces cerevisiae is the best known microorganism and therefore widely used in many branches of industry. This study aims to investigate the accumulation of three inorganic zinc salts. Our research presents the ability of this yeast to absorb zinc from liquid medium and such enriched biomass use as a potential source of microelements in animal and/or human nutrition. It was found that the addition of different zinc forms, i.e. zinc nitrate, zinc sulphate and zinc chloride in fixed concentrations of 0, 25, 50 and 100 mg.100 ml-1 did not affect the amount of dry yeast biomass yielded, i.e. 1.0 – 1.2 g of yeast cells from 100 ml of cultivation medium, while higher presence of zinc solutions caused significantly lower yield of yeast biomass. The highest amount of zinc in yeast cells was achieved when added in the form of zinc nitrate in concentration of 200 mg.100 ml-1 YPD medium. The increment of intracellular zinc was up to 18.5 mg.g-1 of yeast biomass.

  8. [Advances in the research of zinc deficiency and zinc supplementation treatment in patients with severe burns].

    Science.gov (United States)

    Wang, X X; Zhang, M J; Li, X B

    2018-01-20

    Zinc is one of the essential trace elements in human body, which plays an important role in regulating acute inflammatory response, glucose metabolism, anti-oxidation, immune and gastrointestinal function of patients with severe burns. Patients with severe burns may suffer from zinc deficiency because of insufficient amount of zinc intake from the diet and a large amount of zinc lose through wounds and urine. Zinc deficiency may affect their wound healing process and prognosis. This article reviews the characteristics of zinc metabolism in patients with severe burns through dynamic monitoring the plasma and urinary concentration of zinc. An adequate dosage of zinc supplemented to patients with severe burns by an appropriate method can increase the level of zinc in plasma and skin tissue and improve wound healing, as well as reduce the infection rates and mortality. At the same time, it is important to observe the symptoms and signs of nausea, dizziness, leukopenia and arrhythmia in patients with severe burns after supplementing excessive zinc.

  9. Zinc-Laccase Biofuel Cell

    Directory of Open Access Journals (Sweden)

    Abdul Aziz Ahmad

    2011-12-01

    Full Text Available A zinc-laccase biofuel cell adapting the zinc-air cell design features is investigated. A simple cell design configuration is employed: a membraneless single chamber and a freely suspended laccase in a quasi-neutral buffer electrolyte. The cell is characterised according to its open-circuit voltage, polarization profile, power density plot and discharge capacity at constant current. The biocatalytic role of laccase is evident from the polarization profile and power output plot. Performance comparison between a single chamber and dual chamber cell design is also presented. The biofuel cell possessed an open-circuit voltage of 1.2 V and delivered a maximum power density of 0.9 mW/cm2 at current density of 2.5 mA/cm2. These characteristics are comparable to biofuel cell utilising a much more complex system design.KEY WORDS (keyword:  Biofuel cell, Bioelectrochemical cell, Zinc anode, Laccase and Oxidoreductase.ABSTRAK: Sel bio-bahan api zink-laccase dengan adaptasi daripada ciri-ciri rekabentuk sel zink-udara telah dikaji. Sel dengan konfigurasi rekabentuk yang mudah digunapakai: ruangan tunggal tanpa membran dan laccase diampaikan secara bebas di dalam elektrolit pemampan quasi-neutral. Sel dicirikan berdasarkan voltan litar terbuka, profil polarisasi, plot ketumpatan kuasa dan kapasiti discas pada arus malar. Peranan laccase sebagai bio-pemangkin adalah amat ketara daripada profil polarisasi dan plot ketumpatan kuasa. Perbandingan prestasi di antara sel dengan rekabentuk ruangan tunggal and dwi-ruangan turut diketengahkan. Seperti dijangkakan, sel dengan rekabentuk ruangan tunggal menunjukkan kuasa keluaran yang lebih rendah jika dibandingkan dengan rekabentuk dwi-ruangan kemungkinan disebabkan fenomena cas bocor. Sel bio-bahan api ini mempunyai voltan litar terbuka 1.2 V dan memberikan ketumpatan kuasa maksima 0.9 mW/cm2 pada ketumpatan arus 2.5 mA/cm2. Ciri-ciri ini adalah sebanding dengan sel bio-bahan api yang menggunapakai rekabentuk sel

  10. ZINC MITIGATION INTERIM REPORT - THERMODYNAMIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.

    2010-12-17

    An experimental program was initiated in order to develop and validate conditions that will effectively trap Zn vapors that are released during extraction. The proposed work is broken down into three tasks. The first task is to determine the effectiveness of various pore sizes of filter elements. The second task is to determine the effect of filter temperature on zinc vapor deposition. The final task is to determine whether the zinc vapors can be chemically bound. The approach for chemically binding the zinc vapors has two subtasks, the first is a review of literature and thermodynamic calculations and the second is an experimental approach using the best candidates. This report details the results of the thermodynamic calculations to determine feasibility of chemically binding the zinc vapors within the furnace module, specifically the lithium trap (1). A review of phase diagrams, literature, and thermodynamic calculations was conducted to determine if there are suitable materials to capture zinc vapor within the lithium trap of the extraction basket. While numerous elements exist that form compounds with zinc, many of these also form compounds with hydrogen or the water that is present in the TPBARs. This relatively comprehensive review of available data indicates that elemental cobalt and copper and molybdenum trioxide (MoO3) may have the requisite properties to capture zinc and yet not be adversely affected by the extraction gases and should be considered for testing.

  11. Zinc Binding by Lactic Acid Bacteria

    Directory of Open Access Journals (Sweden)

    Jasna Mrvčić

    2009-01-01

    Full Text Available Zinc is an essential trace element in all organisms. A common method for the prevention of zinc deficiency is pharmacological supplementation, especially in a highly available form of a metalloprotein complex. The potential of different microbes to bind essential and toxic heavy metals has recently been recognized. In this work, biosorption of zinc by lactic acid bacteria (LAB has been investigated. Specific LAB were assessed for their ability to bind zinc from a water solution. Significant amount of zinc ions was bound, and this binding was found to be LAB species-specific. Differences among the species in binding performance at a concentration range between 10–90 mg/L were evaluated with Langmuir model for biosorption. Binding of zinc was a fast process, strongly influenced by ionic strength, pH, biomass concentration, and temperature. The most effective metal-binding LAB species was Leuconostoc mesenteroides (27.10 mg of Zn2+ per gram of dry mass bound at pH=5 and 32 °C, during 24 h. FT-IR spectroscopy analysis and electron microscopy demonstrated that passive adsorption and active uptake of the zinc ions were involved.

  12. Effect of long-term intraperitoneal zinc administration on liver glycogen levels in diabetic rats subjected to acute forced swimming.

    Science.gov (United States)

    Bicer, Mursel; Gunay, Mehmet; Akil, Mustafa; Avunduk, Mustafa Cihat; Mogulkoc, Rasim; Baltaci, Abdulkerim Kasim

    2011-03-01

    This study aims to examine the effect of zinc administration on liver glycogen levels of rats in which diabetes was induced with streptozotocin and which were subjected to acute swimming exercise. The study was conducted on 80 adult Sprague-Dawley male rats, which were equally allocated to eight groups: group 1, general control; group 2, zinc-administrated control; group 3, zinc-administrated diabetic control; group 4, swimming control; group 5, zinc-administrated swimming; group 6, zinc-administrated diabetic swimming; group 7, diabetic swimming; group 8, diabetic control group. In order to induce diabetes, animals were injected with 40 mg/kg intraperitoneal (ip) streptozotocin. The injections were repeated in the same dose after 24 h. Animals which had blood glucose at or above 300 mg/dl 6 days after the last injections were accepted as diabetic. Zinc was administrated ip for 4 weeks as 6 mg/kg/day per rat. Hepatic tissue samples taken from the animals at the end of the study were fixed in 95% ethyl alcohol. Cross sections of 5 µm thickness, taken by the help of a microtome from the tissue samples buried in paraffin, were placed on a microscope slide and stained with periodic acid-Schiff and evaluated by light microscope. All microscopic images were transferred to a PC and assessed with the help of Clemex PE3.5 image analysis software. The lowest liver glycogen levels in the study were obtained in groups 3, 4, 6, 7, and 8. Liver glycogen levels in group 5 were higher than groups 3, 4, 6, 7, and 8, but lower than groups 1 and 2 (p swimming exercise were restored by zinc administration and that diabetes induced in rats prevented the protective effect of zinc.

  13. Early-in-life dietary zinc deficiency and supplementation and mammary tumor development in adulthood female rats.

    Science.gov (United States)

    da Silva, Flávia R M; Grassi, Tony F; Zapaterini, Joyce R; Bidinotto, Lucas T; Barbisan, Luis F

    2017-06-01

    Zinc deficiency during pregnancy and postnatal life can adversely increase risk of developing human diseases at adulthood. The present study was designed to evaluate whether dietary zinc deficiency or supplementation during the pregnancy, lactation and juvenile stages interferes in the development of mammary tumors induced by 7,12-dimethylbenzanthracene (DMBA) in female Sprague-Dawley (SD) rats. Pregnant female SD rats were allocated into three groups: zinc-adequate diet (ZnA - 35-mg/kg chow), zinc-deficient diet (ZnD - 3-mg/kg chow) or zinc-supplemented diet (ZnS - 180-mg/kg chow) during gestational day 10 (GD 10) until the litters' weaning. Female offspring received the same diets as their dams until postnatal day (PND) 51. At PND 51, the animals received a single dose of DMBA (50 mg/kg, ig) and zinc-adequate diets. At PND 180, female were euthanized, and tumor samples were processed for histological evaluation and gene expression microarray analysis. The ZnD induced a significant reduction in female offspring body weight evolution and in mammary gland development. At late in life, the ZnD or ZnS did not alter the latency, incidence, multiplicity, volume or histological types of mammary tumors in relation to the ZnA group. However, the total tumor number in ZnS group was higher than in ZnA group, accompanied by distinct expression of 4 genes up- and 15 genes down-regulated. The present findings indicate that early-in-life dietary zinc supplementation, differently to zinc deficiency, has a potential to modify the susceptibility to the development of mammary tumors induced by DMBA. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Zinc-enriched boutons in rat spinal cord

    DEFF Research Database (Denmark)

    Schrøder, H D; Danscher, G; Jo, S M

    2000-01-01

    The rat spinal cord reveals a complex pattern of zinc-enriched (ZEN) boutons. As a result of in vivo exposure to selenide ions, nanosized clusters of zinc selenide are created in places where zinc ions are present, including the zinc-containing synaptic vesicles of ZEN boutons. The clusters can...

  15. Zinc electrode shape change II. Process and mechanism

    NARCIS (Netherlands)

    Einerhand, R.E.F.; Visscher, W.; de Goeij, J.J.M.; Barendrecht, E.

    1991-01-01

    The process and mechanism of zinc electrode shape change is investigated with the radiotracer technique. It is shownthat during repeated cycling of the nickel oxide/zinc battery zinc material is transported over the zinc electrode via the battery electrolyte. During charge as well as during

  16. Implication of zinc excess on soil health.

    Science.gov (United States)

    Wyszkowska, Jadwiga; Boros-Lajszner, Edyta; Borowik, Agata; Baćmaga, Małgorzata; Kucharski, Jan; Tomkiel, Monika

    2016-01-01

    This study was undertaken to evaluate zinc's influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl - 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn(2+) kg(-1) in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn(2+) kg(-1).

  17. Study of iron-zinc catalysts by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Arriola, S.H.

    1990-01-01

    The Moessbauer parameters were determined on a series of catalyst mixtures of iron and zinc oxides with variable quantities of zinc. A change in the crystal structure of the iron oxide when introducing zinc into the samples was observed. The corundum structure of the α-Fe 2 O 3 phase was transformed into the spinel type of zinc ferrite when zinc oxide was present in any quantity. A strong electronic interaction between the zinc ferrite and the zinc oxide present in excess was evident. The catalysts were analyzed using x-ray fluorescence and x-ray diffraction methods. (author) 10 refs.; 4 figs.; 2 tabs

  18. Suplementos nutricionales orales a base de nuevos complejos de cobre, magnesio, manganeso y zinc

    OpenAIRE

    Benavides Arévalo, Julie Fernanda; Tobón Zapata, Gloria Elena

    2011-01-01

    Suplementos nutricionales orales a base de nuevos complejos de cobre, magnesio, manganeso y zinc Los oligoelementos cobre, magnesio, manganeso y zinc intervienen en numerosos procesos metabólicos, enzimáticos, inmunológicos y tisulares, forman parte estructural de proteínas y pueden participar en la regulación de la expresión genética. La deficiencia de estos elementos esenciales dificulta el apropiado funcionamiento del organismo e induce el desarrollo de diversas enfermedades. Se debe garan...

  19. Influence of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) on zinc electrodeposition

    International Nuclear Information System (INIS)

    Lehr, I.L.; Saidman, S.B.

    2012-01-01

    This work is a study of the electrodeposition of zinc onto SAE 4140 steel electrodes using solutions containing zinc sulfate and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). The influence of different parameters such as electrolyte concentration, electrodeposition time and temperature on the morphology of the electrodeposits was analyzed. The deposits were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction. The variation of open circuit potential over time in chloride solutions was also evaluated. The nucleation-growth process and consequently the morphology of the electrodeposits are modified in the presence of AOT. The surfactant induces the formation of a porous deposit.

  20. Influence of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) on zinc electrodeposition

    Science.gov (United States)

    Lehr, I. L.; Saidman, S. B.

    2012-03-01

    This work is a study of the electrodeposition of zinc onto SAE 4140 steel electrodes using solutions containing zinc sulfate and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). The influence of different parameters such as electrolyte concentration, electrodeposition time and temperature on the morphology of the electrodeposits was analyzed. The deposits were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction. The variation of open circuit potential over time in chloride solutions was also evaluated. The nucleation-growth process and consequently the morphology of the electrodeposits are modified in the presence of AOT. The surfactant induces the formation of a porous deposit.

  1. Sensores de zinc para aplicaciones en neurociencias

    OpenAIRE

    Estela Falla, Aldo David; Estela Falla, Aldo David; Estela Falla, Aldo David

    2011-01-01

    En los últimos años, los estudios realizados con respecto a la química involucrada en los procesos neurológicos han logrado dar una idea de la importancia del zinc en las funciones nerviosas, así como también en el estudio de enfermedades neurodegenerativas tales como la Enfermedad de Alzheimer. A nivel biológico, el zinc tiene representantes en los seis grupos de enzimas que existen, lo cual demuestra su gran importancia en los sistemas biológicos. En estas enzimas, el zinc como ion metál...

  2. Zinc Deficiency in Humans and its Amelioration

    OpenAIRE

    Yashbir Singh Shivay

    2015-01-01

    Zinc (Zn) deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in ...

  3. Spectrophotometric determination of zinc in impure solutions

    International Nuclear Information System (INIS)

    Rodriguez Hernandez, B.; Reyes Tamaral, A.

    1972-01-01

    A dithizone colorimetric method is described for determining zinc concentrations of 0.001 to 5 g/l in aqueous solutions from Rio Tinto Mines, containing copper, iron and other impurities. Citrate, cyanide and bis-2hydroxyethyl)-dithiocarbamate are added to the aqueous sample of masking several metals, and zinc is extracted at pH 5 with a solution of dithizone in carbon tetrachloride. Excess of dithizone is removed with sodium sulphide, and optical density of zinc dithionate in organic solution is measured at 5.35 nm. Calibration curves obey Beer's law up to 0.5 micro Zn/ml. (Author) 5 refs

  4. Zinc oxide nanoparticles for water disinfection

    Directory of Open Access Journals (Sweden)

    Emelita Asuncion S. Dimapilis

    2018-03-01

    Full Text Available The world faces a growing challenge for adequate clean water due to threats coming from increasing demand and decreasing supply. Although there are existing technologies for water disinfection, their limitations, particularly the formation of disinfection-by-products, have led to researches on alternative methods. Zinc oxide, an essential chemical in the rubber and pharmaceutical industries, has attracted interest as antimicrobial agent. In nanoscale, zinc oxide has shown antimicrobial properties which make its potential great for various applications. This review discusses the synthesis of zinc oxide with focus on precipitation method, its antimicrobial property and the factors affecting it, disinfection mechanisms, and the potential application to water disinfection.

  5. Effects of intratesticular injection of zinc-based solution in rats in combination with anti-inflammatory and analgesic drugs during chemical sterilization

    Directory of Open Access Journals (Sweden)

    Simone Regina Barros de Macedo

    2018-05-01

    Full Text Available Aim: Chemical sterilization is a non-surgical method of contraception based on compounds injected into the testis to induce infertility. However, these injections can cause discomfort and pain able to impair the recovery of animals after this treatment. The objective of this study was to investigate if anti-inflammatories or pain relievers inhibited the sterilizing effect of zinc gluconate-based solution on the testis. Materials and Methods: Adult rats were treated in groups: G1 (control, G2 (dimethyl sulfoxide + dipyrone; G3 (dipyrone/ zinc; G4 (dipyrone + celecoxib/zinc; G5 (dipyrone + meloxicam/zinc, and G6 (dipyrone + dexamethasone/zinc in a single dose per day during 7 days. Animals were analyzed at 7, 15, and 30 days after treatments. Results: The zinc-induced a widespread testicular degeneration and decreased testosterone levels even in combination with anti-inflammatories or pain relievers. Testis, epididymis, prostate, and seminal vesicle had a weight reduction. The anti-inflammatory effect of dexamethasone interfered in the desired action of zinc gluconate in the 1st 15 days and celecoxib up to 7 days. Conclusion: Meloxicam plus dipyrone did not impair the chemical sterilization based on zinc gluconate, and it can be used to reduce nociceptive effects in animals after chemical sterilization.

  6. Clinical Aspects of Trace Elements: Zinc in Human Nutrition – Zinc Deficiency and Toxicity

    Directory of Open Access Journals (Sweden)

    Michelle M Pluhator

    1996-01-01

    Full Text Available Available evidence suggests that trace elements, such as zinc, once thought to have no nutritional relevance, are possibly deficient in large sections of the human population. Conditioned deficiencies have been reported to result from malabsorption syndromes, acrodermatitis enteropathica, alcoholism, gastrointestinal disease, thermal injury, chronic diseases (eg, diabetes, sickle cell anemia, and in total parenteral nutrition therapy. Awareness that patients with these problems are at risk has led health professionals to focus increasingly on the importance of zinc therapy in the prevention and treatment of deficiency. More recently zinc toxicity and its role in human nutrition and well-being have come under investigation. Reports have focused on the role of zinc toxicity in causes of copper deficiency, changes in the immune system and alterations in blood lipids. As the numerous challenges presented by the study of zinc in human nutrition are met, more appropriate recommendations for dietary and therapeutic zinc intake are being made.

  7. Intestinal absorption and excretion of zinc in streptozotocin-diabetic rats as affected by dietary zinc and protein

    International Nuclear Information System (INIS)

    Johnson, W.T.; Canfield, W.K.

    1985-01-01

    65 Zn was used to examine the effects of dietary zinc and protein on true zinc absorption and intestinal excretion of endogenous zinc by an isotope dilution technique in streptozotocin-diabetic and control rats. Four groups each of diabetic and control rats were fed diets containing 20 ppm Zn, 20% egg white protein (HMHP); 20 ppm Zn, 10% egg white protein (HMLP); 10 ppm Zn, 20% egg white protein (LMHP); and 10 ppm Zn, 10% egg white protein (LMLP). Measurement of zinc balance was begun 9 d after an i.m. injection of 65 Zn. True zinc absorption and the contribution of endogenous zinc to fecal zinc excretion were calculated from the isotopically labeled and unlabeled zinc in the feces, duodenum and kidney. Results from the isotope dilution study indicated that diabetic rats, but not control rats, absorbed more zinc from 20 ppm zinc diets than from 10ppm zinc diets and that all rats absorbed more zinc from 20% protein diets than from 10% protein diets. Furthermore, all rats excreted more endogenous zinc from their intestines when dietary zinc and protein levels resulted in greater zinc absorption. In diabetic and control rats, consuming equivalent amounts of zinc, the amount of zinc absorbed was not significantly different, but the amount of zinc excreted by the intestine was less in the diabetic rats. Decreased intestinal excretion of endogenous zinc may be a homeostatic response to the increased urinary excretion of endogenous zinc in the diabetic rats and may also lead to the elevated zinc concentrations observed in some organs of the diabetic rats

  8. Co-induction of p75NTR and p75NTR-associated death executor in neurons after zinc exposure in cortical culture or transient ischemia in the rat.

    Science.gov (United States)

    Park, J A; Lee, J Y; Sato, T A; Koh, J Y

    2000-12-15

    Recently, a 22 kDa protein termed p75(NTR)-associated death executor (NADE) was discovered to be a necessary factor for p75(NTR)-mediated apoptosis in certain cells. However, the possible role for p75(NTR)/NADE in pathological neuronal death has yet been undetermined. In the present study, we have examined this possibility in vivo and in vitro. Exposure of cortical cultures to zinc induced both p75(NTR) and NADE in neurons, whereas exposure to NMDA, ionomycin, iron, or H(2)O(2) induced neither. In addition, zinc exposure increased neuronal NGF expression and its release into the medium. A function-blocking antibody of p75(NTR) (REX) inhibited association between p75(NTR) and NADE as well as neuronal death induced by zinc. Conversely, NGF augmented zinc-induced neuronal death. Caspase inhibitors reduced zinc-induced neuronal death, indicating that caspases were involved. Because reduction of NADE expression with cycloheximide or NADE antisense oligonucleotides attenuated zinc-induced neuronal death, NADE appears to contribute to p75(NTR)-induced cortical neuronal death as shown in other cells. Because zinc neurotoxicity may be a key mechanism of neuronal death after transient forebrain ischemia, we next examined this model. After ischemia, p75(NTR) and NADE were induced in degenerating rat hippocampal CA1 neurons. There was a close correlation between zinc accumulation and p75(NTR)/NADE induction. Suggesting the role of zinc here, injection of a metal chelator, CaEDTA, into the lateral ventricle completely blocked the induction of p75(NTR) and NADE. Our results suggest that co-induction of p75(NTR) and NADE plays a role in zinc-triggered neuronal death in vitro and in vivo.

  9. Prevalence of zinc deficiency among primary school children in a ...

    African Journals Online (AJOL)

    Few zinc-rich sources appeared in the diet that was predominantly plant-based. Mean dietary zinc intake was 4.6±2.2 mg/day. The mean value of serum zinc was 66.4±21.5 μg/dL, with 46% of the children having values less than the 70 μg/dL cutoff. The findings indicate a high risk of zinc deficiency and suboptimal zinc ...

  10. Potential ecological risk assessment and predicting zinc accumulation in soils

    OpenAIRE

    Baran, Agnieszka; Wieczorek, Jerzy; Mazurek, Ryszard; Urbański, Krzysztof; Klimkowicz-Pawlas, Agnieszka

    2017-01-01

    The aims of this study were to investigate zinc content in the studied soils; evaluate the efficiency of geostatistics in presenting spatial variability of zinc in the soils; assess bioavailable forms of zinc in the soils and to assess soil–zinc binding ability; and to estimate the potential ecological risk of zinc in soils. The study was conducted in southern Poland, in the Malopolska Province. This area is characterized by a great diversity of geological structures and types of land use and...

  11. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc.

    Science.gov (United States)

    Anderson, Charles T; Radford, Robert J; Zastrow, Melissa L; Zhang, Daniel Y; Apfel, Ulf-Peter; Lippard, Stephen J; Tzounopoulos, Thanos

    2015-05-19

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling.

  12. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc

    Science.gov (United States)

    Anderson, Charles T.; Radford, Robert J.; Zastrow, Melissa L.; Zhang, Daniel Y.; Apfel, Ulf-Peter; Lippard, Stephen J.; Tzounopoulos, Thanos

    2015-01-01

    Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling. PMID:25947151

  13. Potential interaction between zinc ions and a cyclodextrin-based diclofenac formulation.

    Science.gov (United States)

    Hamdan, Imad I; El-Sabawi, Dina; Abdel Jalil, Mariam

    2016-03-01

    Complexes of diclofenac sodium (DF-Na) with hydroxypropyl betacyclodextrin (HPβCD) were prepared by co-evaporation in a 1:1 ratio and characterized in light of previously reported data. Phase solubility diagrams were obtained for DF-Na with HPβCD in the presence and absence of zinc ions. Dissolution profiles were obtained for DF-Na and its HPβCD complex at acidic (pH 1.2) as well as in phosphate buffer (pH 6.8), in the presence and absence of zinc. HPβCD, as expected, was shown to improve the dissolution of DF-Na in acidic medium but not in phosphate buffer (pH 6.8). The presence of zinc ions decreased the in vitro dissolution of DF-HPβCD complex in acidic medium (pH 1.2) but not in phosphate buffer (pH 6.8). It was confirmed that the precipitate that was formed by zinc ions in the presence of HPβCD and DF-Na contained no cyclodextrin and most likely it was a mixture of the complexes: DF 2 -Zn and DF-Zn with some molecules of water. In vivo experiments on rats have shown that HPβCD has no statistically significant effect on absorption or bioavailability of DF-Na in spite of the observed improvement of its in vitro dissolution by HPβCD. Moreover, zinc ions were shown to decrease the absorption rate of DF-Na in rats model but did neither significantly alter the absorption nor bioavailability of DF-HPβCD complex. The zinc induced precipitates of DF were shown to have significantly different crystalline properties when HPβCD was present. Therefore, the pharmaceutical details of a DF-Na preparation should be considered when designing the formulation and predicting possible interaction between DF-Na (or other potential NSAIDs) and zinc metal.

  14. The zinc transporter ZIPT-7.1 regulates sperm activation in nematodes.

    Directory of Open Access Journals (Sweden)

    Yanmei Zhao

    2018-06-01

    Full Text Available Sperm activation is a fascinating example of cell differentiation, in which immotile spermatids undergo a rapid and dramatic transition to become mature, motile sperm. Because the sperm nucleus is transcriptionally silent, this transition does not involve transcriptional changes. Although Caenorhabditis elegans is a leading model for studies of sperm activation, the mechanisms by which signaling pathways induce this transformation remain poorly characterized. Here we show that a conserved transmembrane zinc transporter, ZIPT-7.1, regulates the induction of sperm activation in Caenorhabditis nematodes. The zipt-7.1 mutant hermaphrodites cannot self-fertilize, and males reproduce poorly, because mutant spermatids are defective in responding to activating signals. The zipt-7.1 gene is expressed in the germ line and functions in germ cells to promote sperm activation. When expressed in mammalian cells, ZIPT-7.1 mediates zinc transport with high specificity and is predominantly located on internal membranes. Finally, genetic epistasis places zipt-7.1 at the end of the spe-8 sperm activation pathway, and ZIPT-7.1 binds SPE-4, a presenilin that regulates sperm activation. Based on these results, we propose a new model for sperm activation. In spermatids, inactive ZIPT-7.1 is localized to the membranous organelles, which contain higher levels of zinc than the cytoplasm. When sperm activation is triggered, ZIPT-7.1 activity increases, releasing zinc from internal stores. The resulting increase in cytoplasmic zinc promotes the phenotypic changes characteristic of activation. Thus, zinc signaling is a key step in the signal transduction process that mediates sperm activation, and we have identified a zinc transporter that is central to this activation process.

  15. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities

    Science.gov (United States)

    Richter, Patricia; Faroon, Obaid; Pappas, R. Steven

    2017-01-01

    Metals are one of five major categories of carcinogenic or toxic constituents in tobacco and tobacco smoke. Cadmium is highly volatile and a higher percentage of the total tobacco cadmium content is efficiently transferred to mainstream tobacco smoke than many other toxic metals in tobacco. Inhaled cadmium bioaccumulates in the lungs and is distributed beyond the lungs to other tissues, with a total body biological half-life of one to two decades. Chronic cadmium exposure through tobacco use elevates blood and urine cadmium concentrations. Cadmium is a carcinogen, and an inducer of proinflammatory immune responses. Elevated exposure to cadmium is associated with reduced pulmonary function, obstructive lung disease, bronchogenic carcinoma, cardiovascular diseases including myocardial infarction, peripheral arterial disease, prostate cancer, cervical cancer, pancreatic cancer, and various oral pathologies. Cadmium and zinc have a toxicologically inverse relationship. Zinc is an essential element and is reportedly antagonistic to some manifestations of cadmium toxicity. This review summarizes associations between blood, urine, and tissue cadmium concentrations with emphasis on cadmium exposure due to tobacco use and several disease states. Available data about zinc and cadmium/zinc ratios and tobacco-related diseases is summarized from studies reporting smoking status. Collectively, data suggest that blood, urine, and tissue cadmium and cadmium/zinc ratios are often significantly different between smokers and nonsmokers and they are also different in smokers for several diseases and cancers. Additional biomonitoring data such as blood or serum and urine zinc and cadmium levels and cadmium/zinc ratios in smokers may provide further insight into the development and progression of diseases of the lung, cardiovascular system, and possibly other organs. PMID:28961214

  16. Cadmium and Cadmium/Zinc Ratios and Tobacco-Related Morbidities.

    Science.gov (United States)

    Richter, Patricia; Faroon, Obaid; Pappas, R Steven

    2017-09-29

    Metals are one of five major categories of carcinogenic or toxic constituents in tobacco and tobacco smoke. Cadmium is highly volatile and a higher percentage of the total tobacco cadmium content is efficiently transferred to mainstream tobacco smoke than many other toxic metals in tobacco. Inhaled cadmium bioaccumulates in the lungs and is distributed beyond the lungs to other tissues, with a total body biological half-life of one to two decades. Chronic cadmium exposure through tobacco use elevates blood and urine cadmium concentrations. Cadmium is a carcinogen, and an inducer of proinflammatory immune responses. Elevated exposure to cadmium is associated with reduced pulmonary function, obstructive lung disease, bronchogenic carcinoma, cardiovascular diseases including myocardial infarction, peripheral arterial disease, prostate cancer, cervical cancer, pancreatic cancer, and various oral pathologies. Cadmium and zinc have a toxicologically inverse relationship. Zinc is an essential element and is reportedly antagonistic to some manifestations of cadmium toxicity. This review summarizes associations between blood, urine, and tissue cadmium concentrations with emphasis on cadmium exposure due to tobacco use and several disease states. Available data about zinc and cadmium/zinc ratios and tobacco-related diseases is summarized from studies reporting smoking status. Collectively, data suggest that blood, urine, and tissue cadmium and cadmium/zinc ratios are often significantly different between smokers and nonsmokers and they are also different in smokers for several diseases and cancers. Additional biomonitoring data such as blood or serum and urine zinc and cadmium levels and cadmium/zinc ratios in smokers may provide further insight into the development and progression of diseases of the lung, cardiovascular system, and possibly other organs.

  17. Dietary Zinc Intake and Plasma Zinc Concentrations in Children with Short Stature and Failure to Thrive.

    Science.gov (United States)

    Yazbeck, Nadine; Hanna-Wakim, Rima; El Rafei, Rym; Barhoumi, Abir; Farra, Chantal; Daher, Rose T; Majdalani, Marianne

    2016-01-01

    The burden of zinc deficiency on children includes an increased incidence of diarrhea, failure to thrive (FTT) and short stature. The aim of this study was to assess whether children with FTT and/or short stature have lower dietary zinc intake and plasma zinc concentrations compared to controls. A case-control study conducted at the American University of Beirut Medical Center included 161 subjects from 1 to 10 years of age. Cases had a statistically significant lower energy intake (960.9 vs. 1,135.2 kcal for controls, p = 0.010), lower level of fat (30.3 vs. 36.5 g/day, p = 0.0043) and iron intake (7.4 vs. 9.1 mg/day, p = 0.034). There was no difference in zinc, copper, carbohydrate and protein intake between the 2 groups. The plasma zinc concentration did not differ between the cases and controls (97.4 vs. 98.2 μg/dl, p = 0.882). More cases had mild-to-moderate zinc deficiency when compared to controls with 10.3 vs. 3.6%, p = 0.095. Our study did not show statistically significant difference in dietary zinc intake and plasma zinc concentrations between children with FTT and/or short stature compared to healthy controls. A prospective study is planned to assess the effect of zinc supplementation on growth parameters in FTT children. © 2016 S. Karger AG, Basel.

  18. Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women

    Directory of Open Access Journals (Sweden)

    Karen Lim

    2015-04-01

    Full Text Available Iron and zinc are found in similar foods and absorption of both may be affected by food compounds, thus biochemical iron and zinc status may be related. This cross-sectional study aimed to: (1 describe dietary intakes and biochemical status of iron and zinc; (2 investigate associations between dietary iron and zinc intakes; and (3 investigate associations between biochemical iron and zinc status in a sample of premenopausal women aged 18–50 years who were recruited in Melbourne and Sydney, Australia. Usual dietary intakes were assessed using a 154-item food frequency questionnaire (n = 379. Iron status was assessed using serum ferritin and hemoglobin, zinc status using serum zinc (standardized to 08:00 collection, and presence of infection/inflammation using C-reactive protein (n = 326. Associations were explored using multiple regression and logistic regression. Mean (SD iron and zinc intakes were 10.5 (3.5 mg/day and 9.3 (3.8 mg/day, respectively. Median (interquartile range serum ferritin was 22 (12–38 μg/L and mean serum zinc concentrations (SD were 12.6 (1.7 μmol/L in fasting samples and 11.8 (2.0 μmol/L in nonfasting samples. For each 1 mg/day increase in dietary iron intake, zinc intake increased by 0.4 mg/day. Each 1 μmol/L increase in serum zinc corresponded to a 6% increase in serum ferritin, however women with low serum zinc concentration (AM fasting < 10.7 μmol/L; AM nonfasting < 10.1 μmol/L were not at increased risk of depleted iron stores (serum ferritin <15 μg/L; p = 0.340. Positive associations were observed between dietary iron and zinc intakes, and between iron and zinc status, however interpreting serum ferritin concentrations was not a useful proxy for estimating the likelihood of low serum zinc concentrations and women with depleted iron stores were not at increased risk of impaired zinc status in this cohort.

  19. Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and Hyperthyroidism: The Relation to Zinc.

    Science.gov (United States)

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2017-06-01

    Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT 3 , FT 4 , TT 3 , and TT 4 ) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.

  20. Availability of native and fertilizer zinc in some Indian soils: studies with 65Zinc

    International Nuclear Information System (INIS)

    Chaudhury, J.; Deb, D.L.

    1979-01-01

    Isotopically exchangeable zinc (Et values) was determined by different methods in some soils having pH(H 2 O) varying from 3.05 to 8.40 using 65 Zn. The Et values obtained using different extractants showed significant correlation with available zinc, organic carbon and soil pH. The recovery of applied zinc in the aqueous phase was less than one percent in most of the soils having pH higher than 7.0. Application of zinc with complexing agents like DTPA and EDTA increased the recovery of applied zinc in the solution to about 95 percent. Soil pH, organic C and DTPA extractable zinc showed significant relationship with the recovery of applied zinc under different treatments. Use of EDTA and DTPA extractants reduced the zinc buffering capacity of soil to a value less than one, irrespective of the initial pH of the soil, whereas the values were comparatively higher in presence of different levels of zinc carrier. (auth.)

  1. Genotoxic effects of zinc oxide nanoparticles

    Science.gov (United States)

    Heim, Julia; Felder, Eva; Tahir, Muhammad Nawaz; Kaltbeitzel, Anke; Heinrich, Ulf Ruediger; Brochhausen, Christoph; Mailänder, Volker; Tremel, Wolfgang; Brieger, Juergen

    2015-05-01

    The potential toxicity of nanoparticles has currently provoked public and scientific discussions, and attempts to develop generally accepted handling procedures for nanoparticles are under way. The investigation of the impact of nanoparticles on human health is overdue and reliable test systems accounting for the special properties of nanomaterials must be developed. Nanoparticular zinc oxide (ZnO) may be internalised through ambient air or the topical application of cosmetics, only to name a few, with unpredictable health effects. Therefore, we analysed the determinants of ZnO nanoparticle (NP) genotoxicity. ZnO NPs (15-18 nm in diameter) were investigated at concentrations of 0.1, 10 and 100 μg mL-1 using the cell line A549. Internalised NPs were only infrequently detectable by TEM, but strongly increased Zn2+ levels in the cytoplasm and even more in the nuclear fraction, as measured by atom absorption spectroscopy, indicative of an internalised zinc and nuclear accumulation. We observed a time and dosage dependent reduction of cellular viability after ZnO NP exposure. ZnCl2 exposure to cells induced similar impairments of cellular viability. Complexation of Zn2+ with diethylene triamine pentaacetic acid (DTPA) resulted in the loss of toxicity of NPs, indicating the relevant role of Zn2+ for ZnO NP toxicity. Foci analyses showed the induction of DNA double strand breaks (DSBs) by ZnO NPs and increased intracellular reactive oxygen species (ROS) levels. Treatment of the cells with the ROS scavenger N-acetyl-l-cysteine (NAC) resulted in strongly decreased intracellular ROS levels and reduced DNA damage. However, a slow increase of ROS after ZnO NP exposure and reduced but not quashed DSBs after NAC-treatment suggest that Zn2+ may exert genotoxic activities without the necessity of preceding ROS-induction. Our data indicate that ZnO NP toxicity is a result of cellular Zn2+ intake. Subsequently increased ROS-levels cause DNA damage. However, we found evidence for

  2. Thin-Sheet zinc-coated and carbon steels laser welding

    International Nuclear Information System (INIS)

    Pecas, P.; Gouveia, H.; Quintino, L.

    1998-01-01

    This paper describes the results of a research on CO 2 laser welding of thin-sheet carbon steels (Zinc-coated and uncoated), at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignment, and zinc-coated laser welding defects like porous and zinc ventilation. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion test. (Author) 8 refs

  3. The protective nature of passivation films on zinc: surface charge

    International Nuclear Information System (INIS)

    Muster, Tim H.; Cole, Ivan S.

    2004-01-01

    The influence of oxide surface charge on the corrosion performance of zinc metals was investigated. Oxidised zinc species (zinc oxide, zinc hydroxychloride, zinc hydroxysulfate and zinc hydroxycarbonate) with chemical compositions similar to those produced on zinc during atmospheric corrosion were formed as particles from aqueous solution, and as passive films deposited onto zinc powder, and rolled zinc, surfaces. Synthesized oxides were characterised by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and electron probe X-ray microanalysis. The zeta potentials of various oxide particles, as determined by microelectrophoresis, are reported as a function of pH. Particulates containing a majority of zinc hydroxycarbonate and zinc hydroxysulfate crystallites were found to possess a negative surface charge below pH 6, whilst zinc oxide-hydroxide and zinc hydroxychloride crystallites possessed isoelectric points (IEP's) higher than pH 8. The ability of chloride species to pass through a bed of 3 μm diameter zinc powder was found to increase for surfaces possessing carboxy and sulfate surface species, suggesting that negatively charged surfaces can aid in the repulsion of chloride ions. Electrochemical analysis of the open-circuit potential as a function of time at a fixed pH of 6.5 showed that the chemical composition of passive films on zinc plates influenced the ability of chloride ions to access anodic sites for periods of approximately 1 h

  4. Radio -Protective Role of Zinc Administration Pre-Exposure to Gamma-Irradiation in Male Albino Mice

    International Nuclear Information System (INIS)

    El-Dawy, H.A.; Aly El-Sayed, S.M.

    2004-01-01

    This study was performed to evaluate the potency of zinc chloride injected subcutaneously (30 mg/kg b.w.) in male albino mice as a radio-protective agent pre exposure to gamma-irradiation. The investigation of the radio-protective role of zinc chloride was accomplished through measuring the levels of sex hormones, and observation of the chromosomal aberrations and sperm-head abnormalities after exposure to gamma-irradiation. The average of abnormal cells with chromosomal aberration and abnormal sperm % on the 7 th and 21 th days were 32% and 40%, and 14% and 22% respectively in mice exposed to radiation alone compared to 12% and 16%, and 5% and 12% respectively in mice treated with zinc chloride pre-irradiation. Treatment of mice with zinc chloride pre-irradiation induced significant amelioration in FSH and LH hormone levels on the 7 th day only of experimentation period, and showed non-significant amelioration in testosterone level

  5. Anaerobic Digestion Alters Copper and Zinc Speciation.

    Science.gov (United States)

    Legros, Samuel; Levard, Clément; Marcato-Romain, Claire-Emmanuelle; Guiresse, Maritxu; Doelsch, Emmanuel

    2017-09-19

    Anaerobic digestion is a widely used organic waste treatment process. However, little is known on how it could alter the speciation of contaminants in organic waste. This study was focused on determining the influence of anaerobic digestion on the speciation of copper and zinc, two metals that generally occur at high concentration in organic waste. Copper and zinc speciation was investigated by X-ray absorption spectroscopy in four different raw organic wastes (predigestion) and their digested counterparts (postdigestion, i.e., digestates). The results highlighted an increase in the digestates of the proportion of amorphous or nanostructured copper sulfides as well as amorphous or nanostructured zinc sulfides and zinc phosphate as compared to raw waste. We therefore suggest that the environmental fate of these elements would be different when spreading either digestates or raw waste on cropland.

  6. Sorption of zinc on human teeth

    International Nuclear Information System (INIS)

    Helal, A.; Amin, H.; Alian, G.

    1997-01-01

    Zinc containing dental amalgams are sometimes used as fillings by dentists. The freshly mixed mass of the amalgam alloy and liquid mercury packed or condensed into a prepared tooth cavity. Zinc has been included in amalgams alloys up to 2% as an aid in manufacturing by helping to produce clean sound castings of the ingots. Although such restorations have a relatively long service life, they are subject to corrosion and galvanic action, thus releasing metallic products into the oral environment. The aim of this paper is to investigate the uptake (sorption) of Zinc ionic species on human teeth using the radioactive tracer technique. For this purpose the isotope Zn-65 produced from pile-irradiation of zinc metal was used. The various liquids studied were drinking water (tap water), tea, coffee, red tea and chicken soup. Sorption was studied through immersion of a single human tooth (extracted) in each of these liquids

  7. A regenerative zinc-air fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Smedley, Stuart I. [Electrochemical Technology Development Ltd., Lower Hutt (New Zealand); Zhang, X. Gregory [Teck Cominco Metals Ltd., 2380 Speakman Drive, Mississauga, Ontario (Canada)

    2007-03-20

    The zinc regenerative fuel cell (ZRFC) developed by the former Metallic Power Inc. over the period from 1998 to 2004 is described. The component technologies and engineering solutions for various technical issues are discussed in relation to their functionality in the system. The system was designed to serve as a source of backup emergency power for remote or difficult to access cell phone towers during periods when the main power was interrupted. It contained a 12 cell stack providing 1.8 kW, a separate fuel tank containing zinc pellet fuel and electrolyte, and a zinc electrolyzer to regenerate the zinc pellets during standby periods. Offsite commissioning and testing of the system was successfully performed. The intellectual property of the ZRFC technology is now owned by Teck Cominco Metals Ltd. (author)

  8. Relationship between Zinc Levels and Anthropometric Indices ...

    African Journals Online (AJOL)

    2018-01-24

    Jan 24, 2018 ... Keywords: Anthropometric indices, female children, serum zinc, sickle cell anemia. Relationship ... with SCA have reduced weight, height, and BMI when compared with their .... to low self‑esteem and depression. There is ...

  9. Corrosion inhibition by lithium zinc phosphate pigment

    International Nuclear Information System (INIS)

    Alibakhshi, E.; Ghasemi, E.; Mahdavian, M.

    2013-01-01

    Highlights: •Synthesis of lithium zinc phosphate (LZP) by chemical co-precipitation method. •Corrosion inhibition activity of pigments compare with zinc phosphate (ZP). •LZP showed superior corrosion inhibition effect in EIS measurements. •Evaluation of adhesion strength and dispersion stability. -- Abstract: Lithium zinc phosphate (LZP) has been synthesized through a co-precipitation process and characterized by XRD and IR spectroscopy. The inhibitive performances of this pigment for corrosion of mild steel have been discussed in comparison with the zinc phosphate (ZP) in the pigment extract solution by means of EIS and in the epoxy coating by means of salt spray. The EIS and salt spray results revealed the superior corrosion inhibitive effect of LZP compared to ZP. Moreover, adhesion strength and dispersion stability of the pigmented epoxy coating showed the advantage of LZP compared to ZP

  10. Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes

    International Nuclear Information System (INIS)

    Csermely, P.; Szamel, M.; Resch, K.; Somogyi, J.

    1988-01-01

    In the primary structure of protein kinase C, the presence of a putative metal-binding site has been suggested. In the present report, the authors demonstrate that the most abundant intracellular heavy metal, zinc, can increase the activity of cytosolic protein kinase C. Zinc reversibly binds the enzyme to plasma membranes,and it may contribute to the calcium-induced binding as well. The intracellular heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine prevents the phorbol ester- and antigen-induced translocation of protein kinase C. This effect can be totally reversed by the concomitant addition of Zn 2+ , while Fe 2+ and Mn 2+ are only partially counteractive. The results suggest that zinc can activate protein kinase C and contributes to its binding to plasma membranes in T lymphocytes induced by Ca 2+ , phorbol ester, or antigen

  11. Zinc can increase the activity of protein kinase C and contributes to its binding to plasma membranes in T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Csermely, P.; Szamel, M.; Resch, K.; Somogyi, J.

    1988-05-15

    In the primary structure of protein kinase C, the presence of a putative metal-binding site has been suggested. In the present report, the authors demonstrate that the most abundant intracellular heavy metal, zinc, can increase the activity of cytosolic protein kinase C. Zinc reversibly binds the enzyme to plasma membranes,and it may contribute to the calcium-induced binding as well. The intracellular heavy metal chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine prevents the phorbol ester- and antigen-induced translocation of protein kinase C. This effect can be totally reversed by the concomitant addition of Zn/sup 2 +/, while Fe/sup 2 +/ and Mn/sup 2 +/ are only partially counteractive. The results suggest that zinc can activate protein kinase C and contributes to its binding to plasma membranes in T lymphocytes induced by Ca/sup 2 +/, phorbol ester, or antigen.

  12. Zinc is released by cultured astrocytes as a gliotransmitter under hypoosmotic stress-loaded conditions and regulates microglial activity.

    Science.gov (United States)

    Segawa, Shohei; Nishiura, Takeshi; Furuta, Takahiro; Ohsato, Yuki; Tani, Misaki; Nishida, Kentaro; Nagasawa, Kazuki

    2014-01-17

    Astrocytes contribute to the maintenance of brain homeostasis via the release of gliotransmitters such as ATP and glutamate. Here we examined whether zinc was released from astrocytes under stress-loaded conditions, and was involved in the regulation of microglial activity as a gliotransmitter. Hypoosmotic stress was loaded to astrocytes using balanced salt solution prepared to 214-314 mOsmol/L, and then intra- and extra-cellular zinc levels were assessed using Newport Green DCF diacetate (NG) and ICP-MS, respectively. Microglial activation by the astrocytic supernatant was assessed by their morphological changes and poly(ADP-ribose) (PAR) polymer accumulation. Exposure of astrocytes to hypoosmotic buffer, increased the extracellular ATP level in osmolarity-dependent manners, indicating a load of hypoosmotic stress. In hypoosmotic stress-loaded astrocytes, there were apparent increases in the intra- and extra-cellular zinc levels. Incubation of microglia in the astrocytic conditioned medium transformed them into the activated "amoeboid" form and induced PAR formation. Administration of an extracellular zinc chelator, CaEDTA, to the astrocytic conditioned medium almost completely prevented the microglial activation. Treatment of astrocytes with an intracellular zinc chelator, TPEN, suppressed the hypoosmotic stress-increased intracellular, but not the extracellular, zinc level, and the increase in the intracellular zinc level was blocked partially by a nitric oxide synthase inhibitor, but not by CaEDTA, indicating that the mechanisms underlying the increases in the intra- and extra-cellular zinc levels might be different. These findings suggest that under hypoosmotic stress-loaded conditions, zinc is released from astrocytes and then plays a primary role in microglial activation as a gliotransmitter. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Oral zinc for treating diarrhoea in children

    Science.gov (United States)

    Lazzerini, Marzia; Wanzira, Humphrey

    2016-01-01

    Background In developing countries, diarrhoea causes around 500,000 child deaths annually. Zinc supplementation during acute diarrhoea is currently recommended by the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF). Objectives To evaluate oral zinc supplementation for treating children with acute or persistent diarrhoea. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (the Cochrane Library 2016, Issue 5), MEDLINE, Embase, LILACS, CINAHL, mRCT, and reference lists up to 30 September 2016. We also contacted researchers. Selection criteria Randomized controlled trials (RCTs) that compared oral zinc supplementation with placebo in children aged one month to five years with acute or persistent diarrhoea, including dysentery. Data collection and analysis Both review authors assessed trial eligibility and risk of bias, extracted and analysed data, and drafted the review. The primary outcomes were diarrhoea duration and severity. We summarized dichotomous outcomes using risk ratios (RR) and continuous outcomes using mean differences (MD) with 95% confidence intervals (CI). Where appropriate, we combined data in meta-analyses (using either a fixed-effect or random-effects model) and assessed heterogeneity. We assessed the certainty of the evidence using the GRADE approach. Main results Thirty-three trials that included 10,841 children met our inclusion criteria. Most included trials were conducted in Asian countries that were at high risk of zinc deficiency. Acute diarrhoea There is currently not enough evidence from well-conducted RCTs to be able to say whether zinc supplementation during acute diarrhoea reduces death or number of children hospitalized (very low certainty evidence). In children older than six months of age, zinc supplementation may shorten the average duration of diarrhoea by around half a day (MD −11.46 hours, 95% CI −19.72 to −3.19; 2581 children, 9 trials, low

  14. Mechanism and efficiency of cell death of type II photosensitizers: effect of zinc chelation.

    Science.gov (United States)

    Pavani, Christiane; Iamamoto, Yassuko; Baptista, Maurício S

    2012-01-01

    A series of meso-substituted tetra-cationic porphyrins, which have methyl and octyl substituents, was studied in order to understand the effect of zinc chelation and photosensitizer subcellular localization in the mechanism of cell death. Zinc chelation does not change the photophysical properties of the photosensitizers (all molecules studied are type II photosensitizers) but affects considerably the interaction of the porphyrins with membranes, reducing mitochondrial accumulation. The total amount of intracellular reactive species induced by treating cells with photosensitizer and light is similar for zinc-chelated and free-base porphyrins that have the same alkyl substituent. Zinc-chelated porphyrins, which are poorly accumulated in mitochondria, show higher efficiency of cell death with features of apoptosis (higher MTT response compared with trypan blue staining, specific acridine orange/ethidium bromide staining, loss of mitochondrial transmembrane potential, stronger cytochrome c release and larger sub-G1 cell population), whereas nonchelated porphyrins, which are considerably more concentrated in mitochondria, triggered mainly necrotic cell death. We hypothesized that zinc-chelation protects the photoinduced properties of the porphyrins in the mitochondrial environment. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  15. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Wallenhorst, L.M.; Loewenthal, L.; Avramidis, G.; Gerhard, C.; Militz, H.; Ohms, G.; Viöl, W.

    2017-01-01

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  16. Feed supplementation with arginine and zinc on antioxidant status and inflammatory response in challenged weanling piglets

    Directory of Open Access Journals (Sweden)

    Nadia Bergeron

    2017-09-01

    Full Text Available Although supplementing the diet with zinc oxide and arginine is known to improve growth in weanling piglets, the mechanism of action is not well understood. We measured the antioxidant status and inflammatory response in 48 weanling castrated male piglets fed diets supplemented with or without zinc oxide (2,500 mg Zn oxide per kg and arginine (1% starting at the age of 20 days. The animals were injected with lipopolysaccharide (100 μg/kg on day 5. Half of them received another injection on day 12. Blood samples were taken just before and 6, 24 and 48 h after injection and the mucosa lining the ileum was recovered following euthanizing on days 7 and 14. Zinc supplementation increased reduced and total glutathione (GSH (reduced and total during days 5 to 7 and arginine decreased oxidized GSH measured on days 5 and 12 and the ratio of total antioxidant capacity to total oxidative status during days 12 to 14. Zinc decreased plasma malondialdehyde measured on days 5 and 12 and serum haptoglobin measured on day 12 and increased both metallothionein-1 expression and total antioxidant capacity measured in the ileal mucosa on day 14. Tumour necrosis factor α concentration decreased from days 5 to 12 (all effects were significant at P < 0.05. This study shows that the zinc supplement reduced lipid oxidation and lipopolysaccharide-induced inflammation during the post-weaning period, while the arginine supplementation had only a limited effect.

  17. Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Wallenhorst, L.M., E-mail: lena.wallenhorst@hawk-hhg.de [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Loewenthal, L.; Avramidis, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Gerhard, C. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany); Militz, H. [Wood Biology and Wood Products, Burckhardt Institute, Georg-August-University Göttingen, Büsgenweg 4, 37077 Göttingen (Germany); Ohms, G. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Viöl, W. [University of Applied Sciences and Arts, Laboratory of Laser and Plasma Technologies, Von-Ossietzky-Str. 99, 37085 Göttingen (Germany); Fraunhofer Institute for Surface Engineering and Thin Films, Application Center for Plasma and Photonics, Von-Ossietzky-Str. 100, 37085 Göttingen (Germany)

    2017-07-15

    Highlights: • Zn/ZnO mixed systems were deposited from elemental zinc by a cold plasma-spray process. • Oxidation was confirmed by XPS. • The coatings exhibited a strong absorption in the UV spectral range, thus being suitable as protective layers, e.g. on thermosensitive materials. - Abstract: In this research, topographic, optical and chemical properties of zinc oxide layers deposited by a cold plasma-spray process were measured. Here, zinc micro particles were fed to the afterglow of a plasma spark discharge whereas the substrates were placed in a quite cold zone of the effluent plasma jet. In this vein, almost closed layers were realised on different samples. As ascertained by laser scanning and atomic force microscopic measurements the particle size of the basic layer is in the nanometre scale. Additionally, larger particles and agglomerates were found on its top. The results indicate a partial plasma-induced diminishment of the initial particles, most probably due to melting or vaporisation. It is further shown that the plasma gives rise to an increased oxidation of such particles as confirmed by X-ray photoelectron spectroscopy. Quantitative analysis of the resulting mixed layer was performed. It is shown that the deposited layers consist of zinc oxide and elemental zinc in approximately equal shares. In addition, the layer's band gap energy was determined by spectroscopic analysis. Here, considerable UV blocking properties of the deposited layers were observed. Possible underlying effects as well as potential applications are presented.

  18. Trichomes of tobacco excrete zinc as zinc-substituted calcium carbonate and other zinc-containing compounds

    International Nuclear Information System (INIS)

    Sarret, G.; Harada, E.; Choi, Y-E.; Isaure, M.-P.; Geoffroy, N.; Fakra, S.; Marcus, M.A.; Birschwilks, M.; Clemens, S.; Manceau, A.

    2006-01-01

    Tobacco (Nicotiana tabacum L. cv Xanthi) plants were exposed to toxic levels of zinc (Zn). Zn exposure resulted in toxicity signs in plants, and these damages were partly reduced by a calcium (Ca) supplement. Confocal imaging of intracellular Zn using Zinquin showed that Zn was preferentially accumulated in trichomes. Exposure to Zn and Zn + Ca increased the trichome density and induced the production of Ca/Zn mineral grains on the head cells of trichomes. These grains were aggregates of submicrometer-sized crystals and poorly crystalline material and contained Ca as major element, along with subordinate amounts of Zn, manganese, potassium, chlorine, phosphorus, silicon, and magnesium. Micro x-ray diffraction revealed that the large majority of the grains were composed essentially of metal-substituted calcite (CaCO3). CaCO3 polymorphs (aragonite and vaterite) and CaC2O4 (Ca oxalate) mono- and dihydrate also were identified, either as an admixture to calcite or in separate grains. Some grains did not diffract, although they contained Ca, suggesting the presence of amorphous form of Ca. The presence of Zn-substituted calcite was confirmed by Zn K-edge micro-extended x-ray absorption fine structure spectroscopy. Zn bound to organic compounds and Zn-containing silica and phosphate were also identified by this technique. The proportion of Zn-substituted calcite relative to the other species increased with Ca exposure. The production of Zn-containing biogenic calcite and other Zn compounds through the trichomes is a novel mechanism involved in Zn detoxification. This study illustrates the potential of laterally resolved x-ray synchrotron radiation techniques to study biomineralization and metal homeostasis processes in plants

  19. A biokinetic model for zinc for use in radiation protection

    International Nuclear Information System (INIS)

    Leggett, R.W.

    2012-01-01

    The physiology of the essential trace element zinc has been studied extensively in human subjects using kinetic analysis of time-dependent measurements of administered zinc tracers. A number of biokinetic models describing zinc exchange between plasma and tissues and endogenous excretion of zinc have been derived as fits to data for specific study groups. More rudimentary biokinetic models for zinc have been developed to estimate radiation doses from internally deposited radioisotopes of zinc. The latter models are designed to provide broadly accurate estimates of cumulative decays of zinc radioisotopes in tissues and are not intended as realistic descriptions of the directions of movement of zinc in the body. This paper reviews biokinetic data for zinc and proposes a physiologically meaningful biokinetic model for systemic zinc for use in radiation protection. The proposed model bears some resemblance to zinc models developed in physiological studies but depicts a finer division of systemic zinc and is based on a broader spectrum of data than previous models. The proposed model and the model for zinc currently recommended by the International Commission on Radiological Protection yield reasonably similar estimates of total-body retention and effective dose for internally deposited radioisotopes of zinc but much different systemic distributions of activity and much different dose estimates for some individual tissues, particularly the liver. - Highlights: ► Zinc is an essential trace element with numerous functions in the human body. ► Several biokinetic models for zinc have been developed from tracer studies on humans. ► More rudimentary biokinetic models for zinc have been developed in radiation protection. ► Biokinetic data for zinc are reviewed and a new biokinetic model is proposed for radiation protection. ► The proposed model may also be useful for investigation of zinc physiology and homeostasis.

  20. Coating compositions comprising bismuth-alloyed zinc

    DEFF Research Database (Denmark)

    2008-01-01

    The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 µm; (ii) a coated structure comprising a metal structure...... having a first coating of the zinc-containing coating composition applied onto at least a part of the metal structure in a dry film thickness of 5-100 µm; and an outer coating applied onto said zinc-containing coating in a dry film thickness of 30-200 µm; (iii) a particulate zinc-based alloyed material......, wherein the material comprises 0.05-0.7%(w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.5-30 µm; (iv) a composite powder consisting of at least 25%(w/w) of the particulate zinc-based alloyed material, the rest being a particulate material consisting of zinc...

  1. Serum zinc level in children with malnutrition

    International Nuclear Information System (INIS)

    Ahmad, T.M.; Mahmood, M.T.; Baluch, G.R.; Bhatti, M.T.

    2000-01-01

    Serum zinc level amongst children with protein energy malnutrition (PEM) was evaluated in a control study conducted in the Department of Paediatrics, Allama Iqbal Medical College and Jinnah Hospital, Lahore. Twenty-five children with PEM and 25 healthy children as control from the community were screened. Mean serum zinc level was found to be 54.48 -+ 18.91 mg/dl in children with PEM while it was 72.72 -+ 8.21 mg/dl in control group (P < 0.001). No significant difference in zinc level was noted between both sexes in each group. Marasmic 16 children revealed mean serum zinc level of 57.55 -+ 18.16 mg/dl while in Kwashiorkor it was 44.57 -+ 13.66 mg/dl. Serum zinc was significantly low in Kwashiorkor than in marasmus (P < 0.001). It was also significantly low in children with acute or chronic diarrhea associated with malnutrition (44.66 -+ 16.0 mg/dl). Acute respiratory infections in these children were not associated with low serum zinc level (71.66 -+ 16.51 mg/dl). (author)

  2. Zinc and zinc transporters in macrophages and their roles in efferocytosis in COPD.

    Directory of Open Access Journals (Sweden)

    Rhys Hamon

    Full Text Available Our previous studies have shown that nutritional zinc restriction exacerbates airway inflammation accompanied by an increase in caspase-3 activation and an accumulation of apoptotic epithelial cells in the bronchioles of the mice. Normally, apoptotic cells are rapidly cleared by macrophage efferocytosis, limiting any secondary necrosis and inflammation. We therefore hypothesized that zinc deficiency is not only pro-apoptotic but also impairs macrophage efferocytosis. Impaired efferocytic clearance of apoptotic epithelial cells by alveolar macrophages occurs in chronic obstructive pulmonary disease (COPD, cigarette-smoking and other lung inflammatory diseases. We now show that zinc is a factor in impaired macrophage efferocytosis in COPD. Concentrations of zinc were significantly reduced in the supernatant of bronchoalveolar lavage fluid of patients with COPD who were current smokers, compared to healthy controls, smokers or COPD patients not actively smoking. Lavage zinc was positively correlated with AM efferocytosis and there was decreased efferocytosis in macrophages depleted of Zn in vitro by treatment with the membrane-permeable zinc chelator TPEN. Organ and cell Zn homeostasis are mediated by two families of membrane ZIP and ZnT proteins. Macrophages of mice null for ZIP1 had significantly lower intracellular zinc and efferocytosis capability, suggesting ZIP1 may play an important role. We investigated further using the human THP-1 derived macrophage cell line, with and without zinc chelation by TPEN to mimic zinc deficiency. There was no change in ZIP1 mRNA levels by TPEN but a significant 3-fold increase in expression of another influx transporter ZIP2, consistent with a role for ZIP2 in maintaining macrophage Zn levels. Both ZIP1 and ZIP2 proteins were localized to the plasma membrane and cytoplasm in normal human lung alveolar macrophages. We propose that zinc homeostasis in macrophages involves the coordinated action of ZIP1 and ZIP2

  3. Zinc-chelation contributes to the anti-angiogenic effect of ellagic acid on inhibiting MMP-2 activity, cell migration and tube formation.

    Directory of Open Access Journals (Sweden)

    Sheng-Teng Huang

    Full Text Available BACKGROUND: Ellagic acid (EA, a dietary polyphenolic compound, has been demonstrated to exert anti-angiogenic effect but the detailed mechanism is not yet fully understood. The aim of this study was to investigate whether the zinc chelating activity of EA contributed to its anti-angiogenic effect. METHODS AND PRINCIPAL FINDINGS: The matrix metalloproteinases-2 (MMP-2 activity, a zinc-required reaction, was directly inhibited by EA as examined by gelatin zymography, which was reversed dose-dependently by adding zinc chloride. In addition, EA was demonstrated to inhibit the secretion of MMP-2 from human umbilical vein endothelial cells (HUVECs as analyzed by Western blot method, which was also reversed by the addition of zinc chloride. Reversion-inducing cysteine-rich protein with Kazal motifs (RECK, known to down-regulate the MMP-2 activity, was induced by EA at both the mRNA and protein levels which was correlated well with the inhibition of MMP-2 activity. Interestingly, zinc chloride could also abolish the increase of EA-induced RECK expression. The anti-angiogenic effect of EA was further confirmed to inhibit matrix-induced tube formation of endothelial cells. The migration of endothelial cells as analyzed by transwell filter assay was suppressed markedly by EA dose-dependently as well. Zinc chloride could reverse these two effects of EA also in a dose-dependent manner. Since magnesium chloride or calcium chloride could not reverse the inhibitory effect of EA, zinc was found to be involved in tube formation and migration of vascular endothelial cells. CONCLUSIONS/SIGNIFICANCE: Together these results demonstrated that the zinc chelation of EA is involved in its anti-angiogenic effects by inhibiting MMP-2 activity, tube formation and cell migration of vascular endothelial cells. The role of zinc was confirmed to be important in the process of angiogenesis.

  4. An experimental study of the retention of zinc, zinc-cadmium mixture and zinc-65 in the presence of cadmium in Anguilla anguilla (L.)

    International Nuclear Information System (INIS)

    Pally, Monique; Foulquier, Luc

    1976-07-01

    Zinc uptake was studied in eels in fresh water, using stable zinc, a zinc-cadmium mixture, and zinc 65 in the presence of small amounts of cadmium. The zinc content in the eel began to increase after 45 days only, and reached approximately 85 ppm after 76 days in water initially containing 5ppm of zinc. At the conclusion of the experiment (76 days), the body organs could be classified in decreasing order in zinc content (in ppm): kidneys (152), skeleton (133), skin (129), muscles (89), head (80), gills (78), digestive tract (77), liver (63) spleen-heart-air bladder (32), and mucus (15). A comparison of experimental results obtained with the zinc-cadmium mixture and cadmium alone showed that zinc decreased the cadmium content of all organs except the gills. The presence of cadmium in water did not inhibit zinc uptake. As cadmium content in water increased, then zinc content in the digestive tract and the kidneys decreased and in all cases remained lower than when zinc alone was present. In the presence of cadmium the percentage of zinc in the kidneys was always lower than the value obtained for zinc alone, and that of the digestive tract did not increase. Contamination of eels treated with 18 and 50ppb of cadmium for 29 days, then contaminated by zinc-65 (5μCi/l) while maintaining the same low cadmium content, showed no significant difference in zinc 65 uptake in the two groups. The same applied to the body organs, and particularly the digestive tract and kidneys, where the highest activity levels were observed. By weight, muscles represented approximately 30% of the total contamination after 45 days [fr

  5. Factors influencing zinc status of apparently healthy indians.

    Science.gov (United States)

    Agte, Vaishali V; Chiplonkar, Shashi A; Tarwadi, Kirtan V

    2005-10-01

    To identify dietary, environmental and socio-economic factors associated with mild zinc deficiency, three zinc status indices; erythrocyte membrane zinc (RBCMZn), plasma zinc and super oxide dismutase (SOD) were assessed in free living and apparently healthy Indian population. Dietary patterns of 232 men and 223 women (20-65 yr) from rural, industrial and urban regions of Western India were evaluated by food frequency questionnaire. RBCMZn was estimated using atomic absorption spectrometry, hemoglobin and serum ceruloplasmin by spectrophotometer. On a sub sample (48 men and 51 women) plasma zinc and SOD were also assessed. Mean RBCMZn was 0.5 +/- 0.1 micromols/g protein with 46% individuals showing zinc deficiency. Mean plasma zinc was 0.98 +/- 0.12 microg/mL with 25% men and 2.5% women having values below normal range. Mean SOD was 0.97 +/- 0.1 (u/mL cells). A significant positive correlation was observed between intakes of green leafy vegetables, other vegetables and milk products with RBCMZn status (p plasma zinc (p > 0.2). Cereal and legume intakes were negatively correlated with RBCMZn (p plasma zinc (p 0.2). Fruit and other vegetable intake were positively correlated with SOD (p Plasma zinc indicated positive association with zinc, thiamin and riboflavin intakes (p plasma zinc and SOD. Prominent determinants of zinc status were intakes of beta-carotene and zinc along with environmental conditions and family size.

  6. Zinc Deficiency in Latin America and the Caribbean.

    Science.gov (United States)

    Cediel, Gustavo; Olivares, Manuel; Brito, Alex; Cori, Héctor; López de Romaña, Daniel

    2015-06-01

    Zinc deficiency affects multiple vital functions in the life cycle, especially growth. Limited information is available on the magnitude of zinc deficiency in Latin America and the Caribbean. To examine the latest available information on both the prevalence of zinc deficiency and the risk of zinc deficiency in Latin America and the Caribbean. The prevalence of zinc deficiency was identified through a systematic review looking for the latest available data on serum zinc concentrations from surveys or studies with national representativeness conducted in Latin America and the Caribbean. The risk of zinc deficiency in Latin America and the Caribbean was estimated based on dietary zinc inadequacy (according to the 2011 National Food Balance Sheets) and stunting in children under 5 years of age. Only four countries had available national biochemical data. Mexican, Colombian, Ecuadorian, and Guatemalan children under 6 years of age and women 12 to 49 years of age had a high prevalence of zinc deficiency (19.1% to 56.3%). The countries with the highest risk of zinc deficiency (estimated prevalence of inadequate zinc intake > 25% plus prevalence of stunting > 20%) were Belize, Bolivia, El Salvador, Guatemala, Haiti, Honduras, Nicaragua, and Saint Vincent and the Grenadines. Zinc dietary inadequacy was directly correlated with stunting (r = 0.64, p zinc deficiency in children under 6 years of age and women 12 to 49 years of age. High rates of both estimated zinc dietary inadequacy and stunting were also reported in most Latin America and Caribbean countries.

  7. Zinc deficiency among a healthy population in Baghdad, Iraq

    International Nuclear Information System (INIS)

    Al-Timimi, D.; Al-Najjar, F.; Al-Sharbatti, Shatha S.

    2005-01-01

    To determine the prevalence of zinc deficiency and the current zinc status among a sample selected from the healthy population in Baghdad, Iraq. We carried out a community-based study in Baghdad City, Iraq from November through June 2002. We selected a sample of 2090 healthy subjects (aged 1 month to 85 years). We used a pre-tested questionnaire, designed to obtain information on gender, birth dates, height, weight, residence, habitual food consumption patterns, and social status. We performed laboratory assessment of serum zinc level, dietary assessment of food frequency and usual zinc intake. We considered subjects with serum zinc concentration of /-7.7 to 12.3 umol/l mild to moderately zinc deficient. The prevalence of zinc deficiency among the studied sample was 2.7%. We found mild to moderate zinc deficiency among 55.7% of the study sample. Dietary zinc intake assessment showed that 74.8% of the studied sample consumed less than the recommended intake, and in 62.3%, the intakes were deficient and grossly deficient. Mean daily zinc ranged from 5.2 mg in children to 8.5 mg in adults. We observed a high prevalence of mild to moderate zinc deficiency, with inadequate dietary zinc intake among a considerable proportion of the studied sample. Zinc supplementation may be an effective public health intervention means to improve the zinc status of the population. (author)

  8. Zinc fertilization in cowpea cultivars

    Directory of Open Access Journals (Sweden)

    Francisco de Brito Melo

    Full Text Available ABSTRACT Zinc (Zn is an essential micronutrient for plants, due to its role as a functional, structural, or regulatory cofactor in a large number of enzymes. The element is necessary for the synthesis of tryptophan, which is a precursor of indoleacetic acid. The aim of this study was to evaluate the behavior of two cowpea cultivars fertilized with four doses of Zn (0.0, 2.0, 4.0, and 6.0 kg of Zn ha-1 regarding dry grain yield (PGS, in addition to quantifying leaf and grain Zn content and grain crude protein. The experiment was conducted in the town of Brejo, in the state of Maranhão, Brazil. A 4 x 2 factorial scheme was used with four replications. Response functions were adjusted by calculating the Zn doses which provided a maximum technical efficiency for each genotype. The tested cultivars of cowpea showed no great difference regarding Zn demand applied to the soil, ranging from 3.2 to 3.4 kg of Zn ha-1 for BRS Tumucumaque and BRS Guariba, respectively. Concerning Zn use efficiency, BRS Guariba was more responsive than was BRS Tumucumaque, i.e. the same dose of Zn produced 70 kg grain and 2.1 kg crude protein per hectare.

  9. Bioavailability of Zinc in Wistar Rats Fed with Rice Fortified with Zinc Oxide

    Science.gov (United States)

    Della Lucia, Ceres Mattos; Santos, Laura Luiza Menezes; Rodrigues, Kellen Cristina da Cruz; Rodrigues, Vivian Cristina da Cruz; Martino, Hércia Stampini Duarte; Pinheiro Sant’Ana, Helena Maria

    2014-01-01

    The study of zinc bioavailability in foods is important because this mineral intake does not meet the recommended doses for some population groups. Also, the presence of dietary factors that reduce zinc absorption contributes to its deficiency. Rice fortified with micronutrients (Ultra Rice®) is a viable alternative for fortification since this cereal is already inserted into the population habit. The aim of this study was to evaluate the bioavailability of zinc (Zn) in rice fortified with zinc oxide. During 42 days, rats were divided into four groups and fed with diets containing two different sources of Zn (test diet: UR® fortified with zinc oxide, or control diet: zinc carbonate (ZnCO3)), supplying 50% or 100%, respectively, of the recommendations of this mineral for animals. Weight gain, food intake, feed efficiency ratio, weight, thickness and length of femur; retention of zinc, calcium (Ca) and magnesium (Mg) in the femur and the concentrations of Zn in femur, plasma and erythrocytes were evaluated. Control diet showed higher weight gain, feed efficiency ratio, retention of Zn and Zn concentration in the femur (p 0.05) for dietary intake, length and thickness of the femur, erythrocyte and plasmatic Zn between groups. Although rice fortified with zinc oxide showed a lower bioavailability compared to ZnCO3, this food can be a viable alternative to be used as a vehicle for fortification. PMID:24932657

  10. The effects of Zinc supplementation on serum zinc, alkaline phosphatase activity and fracture healing of bones

    International Nuclear Information System (INIS)

    Sadighi, A.; Moradi, A.; Roshan, Marjan M.; Ostadrahimi, A.

    2009-01-01

    Objective was to determine the effect of zinc supplementation on callus information, serum zinc and alkaline phosphatase activity in humans. This randomized, double-blind, placebo controlled clinical trial was conducted on 60 patients with traumatic bone fracture referred to Shohada Hospital of Tabriz, Iran from August to December 2007. Subjects were randomly divided into 2 groups: cases (n=30), receiving one capsule of zinc sulfate consists of 50 mg zinc each day and the controls (n=30), receiving placebo for 60 days. Individual and clinical information was determined by a questionnaire: nutritional intake by 3 days food records at the beginning and the end of trial. Serum zinc and alkaline phosphatase was measured by atomic absorption spectroscopy and by enzymatic method. Callus information during fracture healing was evaluated by radiography of the bone. There was no significant difference in physical activity, gender, age, type of fractures and nutrient intake, between the 2 groups. The administration of zinc caused a significant elevation of serum zinc and alkaline phosphatase activity. Assessment of bone x-rays showed a significant progress in callus formation in cases compared to the controls. This study shows that zinc supplementation can stimulate fracture healing, however, it needs further study. (author)

  11. Zinc electrode - its behaviour in the nickel oxide-zinc accumulator

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Certain aspects of zinc electrode reaction and behavior are investigated in view of their application to batteries. The properties of the zinc electrode in a battery system are discussed, emphasizing porous structure. Shape change is emphasized as the most important factor leading to limited battery cycle life. It is shown that two existing models of shape change based on electroosmosis and current distribution are unable to consistently describe observed phenomena. The first stages of electrocrystallization are studied and the surface reactions between the silver substrate and the deposited zinc layer are investigated. The reaction mechanism of zinc and amalgamated zinc in an alkaline electrolyte is addressed, and the batter system is studied to obtain information on cycling behavior and on the shape change phenomenon. The effect on cycle behavior of diferent amalgamation techniques of the zinc electrode and several additives is addressed. Impedance measurements on zinc electrodes are considered, and battery behavior is correlated with changes in the zinc electrode during cycling. 193 references.

  12. Microwave Synthesis of Zinc Hydroxy Sulfate Nanoplates and Zinc Oxide Nanorods in the Classroom

    Science.gov (United States)

    Dziedzic, Rafal M.; Gillian-Daniel, Anne Lynn; Peterson, Greta M.; Martínez-Herna´ndez, Kermin J.

    2014-01-01

    In this hands-on, inquiry-based lab, high school and undergraduate students learn about nanotechnology by synthesizing their own nanoparticles in a single class period. This simple synthesis of zinc oxide nanorods and zinc hydroxy sulfate nanoplates can be done in 15 min using a household microwave oven. Reagent concentration, reaction…

  13. Effect of zinc from zinc sulfate on trace mineral concentrations of milk in Varamini ewes

    NARCIS (Netherlands)

    Zali, A.; Ganjkhanlou, M.

    2009-01-01

    This study was conducted to evaluate the effect of feeding supplemental zinc (zinc sulfate) in different levels (15, 30, or 45 mg/kg) on trace mineral concentrations in milk of ewes. Thirty lactating Varaminni ewes were assigned to three experimental groups according to their live body weights, milk

  14. Electrochemical synthesis and characterization of zinc carbonate and zinc oxide nanoparticles

    Science.gov (United States)

    Pourmortazavi, Seied Mahdi; Marashianpour, Zahra; Karimi, Meisam Sadeghpour; Mohammad-Zadeh, Mohammad

    2015-11-01

    Zinc oxide and its precursor i.e., zinc carbonate is widely utilized in various fields of industry, especially in solar energy conversion, optical, and inorganic pigments. In this work, a facile and clean electrodeposition method was utilized for the synthesis of zinc carbonate nanoparticles. Also, zinc oxide nanoparticles were produced by calcination of the prepared zinc carbonate powder. Zinc carbonate nanoparticles with different sizes were electrodeposited by electrolysis of a zinc plate as anode in the solution of sodium carbonate. It was found that the particle size of zinc carbonate might be tuned by process parameters, i.e., electrolysis voltage, carbonate ion concentration, solvent composition and stirring rate of the electrolyte solution. An orthogonal array design was utilized to identify the optimum experimental conditions. The experimental results showed that the minimum size of the electrodeposited ZnCO3 particles is about 24 nm whereas the maximum particle size is around 40 nm. The TG-DSC studies of the nanoparticles indicated that the main thermal degradation of ZnCO3 occurs in two steps over the temperature ranges of 150-250 and 350-400 °C. The electrosynthesized ZnCO3 nanoparticles were calcined at the temperature of 600 °C to prepare ZnO nanoparticles. The prepared ZnCO3 and ZnO nanoparticles were characterized by SEM, X-ray diffraction (XRD), and FT-IR techniques.

  15. The relative efficiency of zinc carriers on growth and zinc nutrition of corn

    International Nuclear Information System (INIS)

    Prasad, B.; Sinha, K.

    1981-01-01

    A comparison of different zinc carriers showed that application of Zn-DTPA, Zn-EDTA, Zn-fulvate and ZnSO 4 significantly increased the dry matter yield and zinc uptake by corn over the control treatment where no zinc was applied. The chelates in particular enhanced to a greater extent the uptake of both native and applied sources than that observed with ZnSO 4 as the zinc carrier. Both the dry matter yield and zinc uptake by corn showed a positive and significant relationship with self-diffusion coefficient of zinc showing thereby that diffusion contributed mainly the supply of Zn from the ambient soil matrix to plant roots. The effectiveness of the chelates varied depending on their capacity to retain Zn in a soluble form in the soil solution. It is evident that zinc nutrition of plants in alkaline and calcareous soils can be more effectively regulated by both synthetic and natural chelates or organic manures which contain substantial amount of complexed zinc. (orig.)

  16. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport

    International Nuclear Information System (INIS)

    Hempe, J.M.; Cousins, R.J.

    1991-01-01

    The mechanism of zinc absorption has not been delineated, but kinetic studies show that both passive and carrier-mediated processes are involved. The authors have identified a low molecular mass zinc-binding protein in the soluble fraction of rat intestinal mucosa that could function as an intracellular zinc carrier. The protein was not detected in liver or pancreas, suggesting a role specific to the intestine. The protein binds zinc during transmucosal zinc transport and shows signs of saturation at higher luminal zinc concentrations, characteristics consistent with a role in carrier-mediated zinc absorption. Microsequence analysis of the protein purified by gel-filtration HPCL and SDS/PAGE showed complete identity within the first 41 N-terminal amino acids with the deduced protein sequence of cysteine-rich intestinal protein. These investigators showed that the gene for this protein is developmentally regulated in neonates during the suckling period, conserved in many vertebrate species, and predominantly expressed in the small intestine. Cysteine-rich intestinal protein contains a recently identified conserved sequence of histidine and cysteine residues, the LIM motif, which our results suggest confers metal-binding properties that are important for zinc transport and/or functions of this micronutrient

  17. A concentrated electrolyte for zinc hexacyanoferrate electrodes in aqueous rechargeable zinc-ion batteries

    Science.gov (United States)

    Kim, D.; Lee, C.; Jeong, S.

    2018-01-01

    In this study, a concentrated electrolyte was applied in an aqueous rechargeable zinc-ion battery system with a zinc hexacyanoferrate (ZnHCF) electrode to improve the electrochemical performance by changing the hydration number of the zinc ions. To optimize the active material, ZnHCF was synthesized using aqueous solutions of zinc nitrate with three different concentrations. The synthesized materials exhibited some differences in structure, crystallinity, and particle size, as observed by X-ray diffraction and scanning electron microscopy. Subsequently, these well-structured materials were applied in electrochemical tests. A more than two-fold improvement in the charge/discharge capacities was observed when the concentrated electrolyte was used instead of the dilute electrolyte. Additionally, the cycling performance observed in the concentrated electrolyte was superior to that in the dilute electrolyte. This improvement in the electrochemical performance may result from a decrease in the hydration number of the zinc ions in the concentrated electrolyte.

  18. Zinc species distribution in EDTA-extract residues of zinc-contaminated soil

    International Nuclear Information System (INIS)

    Chang, S.-H.; Wei, Y.-L.; Wang, H. Paul

    2007-01-01

    Soil sample from a site heavily contaminated with >10 wt.% zinc is sampled and extracted with aqueous solutions of ethylene diamine tetra-acetic acid (EDTA) that is a reagent frequently used to extract heavy metals in soil remediation. Three liquid/soil ratios (5/1, 20/1, and 100/1) were used in the extracting experiment. The molecular environment of the residual Zn in the EDTA-extract residues of zinc-contaminated soil is investigated with XANES technique. The results indicate that EDTA does not show considerable preference of chelating for any particular Zn species during the extraction. Zn species distribution in the sampled soil is found to resemble that in all EDTA-extract residues; Zn(OH) 2 is determined as the major zinc species (60-70%), seconded by organic zinc (21-26%) and zinc oxide (9-14%)

  19. The zinc-myoglobin relationships in porcine muscles

    International Nuclear Information System (INIS)

    Fogd Joergensen, P.; Wegger, I.

    1976-01-01

    Zinc and myoglobin content in muscles from pigs were studied under various conditions. Zinc concentration was considerably higher in red than in white muscles. In muscles, where the metabolic pattern changes from glycolytic to oxidative during the period from birth to weaning, a simultaneous increase in zinc content was seen. A significant positive correlation exists between myoglobin and zinc content under normal conditions. However, while myoglobin concentration decreases due to iron deficiency anaemia no changes occur in zinc content. It is concluded that no functional link seems to exist between zinc metabolism and myoglobin synthesis in porcine muscles. (author)

  20. Influence of usual zinc intake and zinc in a meal on 65Zn retention and turnover in the rat

    International Nuclear Information System (INIS)

    Hunt, J.R.; Johnson, P.E.; Swan, P.B.

    1987-01-01

    The influences of zinc in a meal and usual zinc intake on zinc retention and turnover were investigated in 7-wk-old male rats fed diets containing 12-151 mg Zn/kg for 3 wk before and after consuming a 65 Zn-labeled meal containing ZnCl 2 . Retention corrected to zero time and turnover rate were determined by whole-body counting. Percent zinc retention was inversely proportional to the natural logarithm of the meal zinc, between 0.09 and 26 mumol. In comparison to lower doses, higher doses resulted in lower percent retention but greater amounts of zinc retained. Although the latter relationship was slightly curvilinear, there was no indication of a limited capacity for zinc retention with high doses. However, doses above 4 mumol resulted in higher turnover rates in rats accustomed to lower zinc intakes. Percent retention and the reciprocal of the turnover rate were proportional to the reciprocal of the dietary zinc concentration. The greatest differences in retention and turnover occurred between 12 and 26 mg Zn/kg diet. The zinc dose in a meal and the usual dietary zinc separately influenced percent zinc retention. These factors also interacted, such that greater dose effects were observed at lower zinc intakes and greater dietary zinc effects were observed at lower doses

  1. Failure of zinc to prevent dysmorphogenesis of cultured rat conceptuses by anti-yolk sac antiserum

    International Nuclear Information System (INIS)

    Marlow, R.; Freeman, S.J.

    1989-01-01

    Day 10 rat conceptuses were cultured for 48h in the presence of either cadmium or anti-vesceral yolk sac antiserum (AVYS). Cadmium was embryotoxic at concentrations exceeding 0.25 ug/ml while AVYS caused embryonic dysmorphogenesis, particularly affecting the optic vesicles, at concentrations of 2 ul/ml and above. The effect of pretreatment with zinc on embryotoxicity caused by cadmium or AVYS was studied. Zinc ameliorated the effects of cadmium but had no effect on AVYS-induced embryonic abnormalities. In a second set of experiments inhibition of 125 I-labelled PVP uptake by the yolk sac of cultured whole conceptuses was studied. Cadmium and AVYS both inhibited uptake compared to control cultures. Zinc again ameliorated the effect of cadmium but had no action against AVYS-induced inhibition. These results are in contrast to their previous findings using isolated cultured yolk sacs in which zinc ameliorated the inhibitory effects on 125 I-labelled PVP uptake of both cadmium and AVYS. These data show that in experiments using the isolated cultured yolk sac and the intact cultured conceptus, a qualitatively different response in yolk sac behavior is observed under similar experimental conditions

  2. Sulfidation of zinc plating sludge with Na2S for zinc resource recovery

    International Nuclear Information System (INIS)

    Kuchar, D.; Fukuta, T.; Onyango, M.S.; Matsuda, H.

    2006-01-01

    A high amount of zinc disposed in the landfill sites as a mixed-metal plating sludge represents a valuable zinc source. To recover zinc from the plating sludge, a sulfidation treatment is proposed in this study, while it is assumed that ZnS formed could be separated by flotation. The sulfidation treatment was conducted by contacting simulated zinc plating sludge with Na 2 S solution at S 2- to Zn 2+ molar ratio of 1.5 for a period of 1-48 h, while changing the solid to liquid (S:L) ratio from 0.25:50 to 1.00:50. The conversion of zinc compounds to ZnS was determined based on the consumption of sulfide ions. The reaction products formed by the sulfidation of zinc were identified by X-ray diffraction (XRD). As a result, it was found that the conversion of zinc compounds to ZnS increased with an increase in S:L ratio. A maximum conversion of 0.809 was obtained at an S:L ratio of 1.00:50 after 48 h. However, when the zinc sludge treated at S:L ratio of 1.00:50 for 48 h was subjected to XRD analyses, only ZnS was identified in the treated zinc sludge. The result suggested that the rest of zinc sludge remained unreacted inside the agglomerates of ZnS. The formation behavior of ZnS was predicted by Elovich equation, which was found to describe the system satisfactorily indicating the heterogeneous nature of the sludge

  3. Prenatal zinc reduces stress response in adult rat offspring exposed to lipopolysaccharide during gestation.

    Science.gov (United States)

    Galvão, Marcella C; Chaves-Kirsten, Gabriela P; Queiroz-Hazarbassanov, Nicolle; Carvalho, Virgínia M; Bernardi, Maria M; Kirsten, Thiago B

    2015-01-01

    Previous investigations by our group have shown that prenatal treatment with lipopolysaccharide (LPS; 100 μg/kg, intraperitoneally) on gestation day (GD) 9.5 in rats, which mimics infections by Gram-negative bacteria, induces short- and long-term behavioral and neuroimmune changes in the offspring. Because LPS induces hypozincemia, dams were treated with zinc after LPS in an attempt to prevent or ameliorate the impairments induced by prenatal LPS exposure. LPS can also interfere with hypothalamic-pituitary-adrenal (HPA) axis development; thus, behavioral and neuroendocrine parameters linked to HPA axis were evaluated in adult offspring after a restraint stress session. We prenatally exposed Wistar rats to LPS (100 μg/kg, intraperitoneally, on GD 9.5). One hour later they received zinc (ZnSO4, 2 mg/kg, subcutaneously). Adult female offspring that were in metestrus/diestrus were submitted to a 2 h restraint stress session. Immediately after the stressor, 22 kHz ultrasonic vocalizations, open field behavior, serum corticosterone and brain-derived neurotrophic factor (BDNF) levels, and striatal and hypothalamic neurotransmitter and metabolite levels were assessed. Offspring that received prenatal zinc after LPS presented longer periods in silence, increased locomotion, and reduced serum corticosterone and striatal norepinephrine turnover compared with rats treated with LPS and saline. Prenatal zinc reduced acute restraint stress response in adult rats prenatally exposed to LPS. Our findings suggest a potential beneficial effect of prenatal zinc, in which the stress response was reduced in offspring that were stricken with infectious/inflammatory processes during gestation. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Zinc deficiency promotes cystitis-related bladder pain by enhancing function and expression of Cav3.2 in mice.

    Science.gov (United States)

    Ozaki, Tomoka; Matsuoka, Junki; Tsubota, Maho; Tomita, Shiori; Sekiguchi, Fumiko; Minami, Takeshi; Kawabata, Atsufumi

    2018-01-15

    Ca v 3.2 T-type Ca 2+ channel activity is suppressed by zinc that binds to the extracellular histidine-191 of Ca v 3.2, and enhanced by H 2 S that interacts with zinc. Ca v 3.2 in nociceptors is upregulated in an activity-dependent manner. The enhanced Ca v 3.2 activity by H 2 S formed by the upregulated cystathionine-γ-lyase (CSE) is involved in the cyclophosphamide (CPA)-induced cystitis-related bladder pain in mice. We thus asked if zinc deficiency affects the cystitis-related bladder pain in mice by altering Ca v 3.2 function and/or expression. Dietary zinc deficiency for 2 weeks greatly decreased zinc concentrations in the plasma but not bladder tissue, and enhanced the bladder pain/referred hyperalgesia (BP/RH) following CPA at 200mg/kg, a subeffective dose, but not 400mg/kg, a maximal dose, an effect abolished by pharmacological blockade or gene silencing of Ca v 3.2. Acute zinc deficiency caused by systemic N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylendiamine (TPEN), a zinc chelator, mimicked the dietary zinc deficiency-induced Ca v 3.2-dependent promotion of BP/RH following CPA at 200mg/kg. CPA at 400mg/kg alone or TPEN plus CPA at 200mg/kg caused Ca v 3.2 overexpression accompanied by upregulation of Egr-1 and USP5, known to promote transcriptional expression and reduce proteasomal degradation of Ca v 3.2, respectively, in the dorsal root ganglia (DRG). The CSE inhibitor, β-cyano-l-alanine, prevented the BP/RH and upregulation of Ca v 3.2, Egr-1 and USP5 in DRG following TPEN plus CPA at 200mg/kg. Together, zinc deficiency promotes bladder pain accompanying CPA-induced cystitis by enhancing function and expression of Ca v 3.2 in nociceptors, suggesting a novel therapeutic avenue for treatment of bladder pain, such as zinc supplementation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Zinc supplements for preventing otitis media.

    Science.gov (United States)

    Gulani, Anjana; Sachdev, Harshpal S

    2014-06-29

    Otitis media is inflammation of the middle ear and is usually caused by infection. It affects people of all ages but is particularly common in young children. Around 164 million people worldwide have long-term hearing loss caused by this condition, 90% of them in low-income countries. As zinc supplements prevent pneumonia in disadvantaged children, we wanted to investigate whether zinc supplements could also prevent otitis media. To evaluate whether zinc supplements prevent otitis media in adults and children of different ages. We searched CENTRAL (2014, Issue 1), MEDLINE (1950 to February week 4, 2014) and EMBASE (1974 to March 2014). Randomised, placebo-controlled trials of zinc supplements given at least once a week for at least a month for preventing otitis media. Two review authors independently assessed the eligibility and methodological quality of the included trials and extracted and analysed data. We summarised results using risk ratios (RRs) or rate ratios for dichotomous data and mean differences (MDs) for continuous data. We combined trial results where appropriate. No new trials were identified for inclusion in this update. We identified 12 trials for inclusion, 10 of which contributed outcomes data. There were a total of 6820 participants. In trials of healthy children living in low-income communities, two trials did not demonstrate a significant difference between the zinc-supplemented and placebo groups in the numbers of participants experiencing an episode of definite otitis media during follow-up (3191 participants); another trial showed a significantly lower incidence rate of otitis media in the zinc group (rate ratio 0.69, 95% confidence interval (CI) 0.61 to 0.79, n = 1621). A small trial of 39 infants undergoing treatment for severe malnutrition suggested a benefit of zinc for the mean number of episodes of otitis media (mean difference (MD) -1.12 episodes, 95% CI -2.21 to -0.03). Zinc supplements did not seem to cause any serious adverse

  6. Zinc-mediated Allosteric Inhibition of Caspase-6*

    Science.gov (United States)

    Velázquez-Delgado, Elih M.; Hardy, Jeanne A.

    2012-01-01

    Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation. PMID:22891250

  7. Adhesion of Zinc Hot-dip Coatings

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2014-01-01

    Full Text Available The work is focused on verification of quality adhesion of zinc coating. It describes elements which affect quality and adhesive solidity within the coating. For assessment itself it will be neccessary to get know the basic elements which can affect adhesion of hot-dip coating which will be essential for choosing suitable samples for verification itself. These elements characterise acoustic responses during delamination coating. They affect elements influencing progress of signal. In research there is also a summary of existing methods for testing adhesion of coatings. As a result a new proposal of a new method comes out for purpose of quality testing of adhesion zinc hot-dip coating. The results of verification of this method are put to scientific analysis and findings lead to assessment of proposed method and its application in technical practise.The goal of this contribution is also include to proposed methodology testing adhesion zinc coating by nondestructive diagnostic method of acoustic emission (AE, which would monitor characterise progress of coating delamination of hot-dip zinc from basic material in way to adhesion tests would be practicable in situ. It can be enabled by analysis and assessment of results acquired by method AE and its application within verification of new method of adhesion anti-corrosive zinc coating.

  8. Effects of dietary supplementation with tribasic zinc sulfate or zinc sulfate on growth performance, zinc content and expression of zinc transporters in young pigs.

    Science.gov (United States)

    Deng, Bo; Zhou, Xihong; Wu, Jie; Long, Ciming; Yao, Yajun; Peng, Hongxing; Wan, Dan; Wu, Xin

    2017-10-01

    An experiment was conducted to compare the effects of zinc sulfate (ZS) and tribasic zinc sulfate (TBZ) as sources of supplemental zinc on growth performance, serum zinc (Zn) content and messenger RNA (mRNA) expression of Zn transporters (ZnT1/ZnT2/ZnT5/ZIP4/DMT1) of young growing pigs. A total of 96 Duroc × Landrace × Yorkshire pigs were randomly allotted to two treatments and were fed a basal diet supplemented with 100 mg/kg Zn from either ZS or TBZ for 28 days. Feed : gain ratio in pigs fed TBZ were lower (P zinc transporter in either duodenum or jejunum of pigs fed TBZ were higher (P < 0.05) than pigs fed ZS. These results indicate that TBZ is more effective in serum Zn accumulation and intestinal Zn absorption, and might be a potential substitute for ZS in young growing pigs. © 2017 Japanese Society of Animal Science.

  9. Zinc Leaching from Tire Crumb Rubber

    Science.gov (United States)

    Rhodes, E. P.; Ren, J.; Mays, D. C.

    2010-12-01

    Recent estimates indicate that more than 2 billion scrap tires are currently stockpiled in the United States and approximately 280 million more tires are added annually. Various engineering applications utilize recycled tires in the form of shredded tire crumb rubber. However, the use of tire crumb rubber may have negative environmental impacts, especially when the rubber comes into contact with water. A review of the literature indicates that leaching of zinc from tire crumb rubber is the most significant water quality concern associated with using this material. Zinc is generally used in tire manufacturing, representing approximately 1.3% of the final product by mass. This study will report results from the U.S. Environmental Protection Agency’s (EPA’s) Synthetic Precipitation Leaching Procedure, batch leaching tests, and column leaching tests performed to quantify the process by which zinc leaches from tire crumb rubber into water. Results are interpreted with a first-order kinetic attachment/detachment model, implemented with the U.S. Agricultural Research Service software HYDRUS-1D, in order to determine the circumstances when zinc leaching from tire crumb rubber would be expected to comply with the applicable discharge limits. One potential application for recycled tires is replacing sand with tire crumb rubber in granular media filters used for stormwater pollution control. For this to be a viable application, the total zinc in the stormwater discharge must be below the EPA’s benchmark value of 0.117 mg/L.

  10. Zinc and Copper Effects on Stability of Tubulin and Actin Networks in Dendrites and Spines of Hippocampal Neurons.

    Science.gov (United States)

    Perrin, Laura; Roudeau, Stéphane; Carmona, Asuncion; Domart, Florelle; Petersen, Jennifer D; Bohic, Sylvain; Yang, Yang; Cloetens, Peter; Ortega, Richard

    2017-07-19

    Zinc and copper ions can modulate the activity of glutamate receptors. However, labile zinc and copper ions likely represent only the tip of the iceberg and other neuronal functions are suspected for these metals in their bound state. We performed synchrotron X-ray fluorescence imaging with 30 nm resolution to image total biometals in dendrites and spines from hippocampal neurons. We found that zinc is distributed all along the dendrites while copper is mainly pinpointed within the spines. In spines, zinc content is higher within the spine head while copper is higher within the spine neck. Such specific distributions suggested metal interactions with cytoskeleton proteins. Zinc supplementation induced the increase of β-tubulin content in dendrites. Copper supplementation impaired the β-tubulin and F-actin networks. Copper chelation resulted in the decrease of F-actin content in dendrites, drastically reducing the number of F-actin protrusions. These results indicate that zinc is involved in microtubule stability whereas copper is essential for actin-dependent stability of dendritic spines, although copper excess can impair the dendritic cytoskeleton.

  11. Trace elements cadmium and zinc in the pathogenesis of experimental hypertension

    International Nuclear Information System (INIS)

    Lockett, C.J.R.

    1980-01-01

    In human kidneys cadmium is bound by a protein, metallothionein, which also contains zinc, and because cadmium apparently competes with zinc on the same binding sites, the cadmium-zinc ratio is particularly important. An increase in this ratio would mean a relative deficiency in zinc which might result in some forms of hypertension in man and animals. Studies were conducted to determine the effect of small amounts of supplementary dietary cadmium on weanling and adult albino rats. Two colonies of rats were examined. The object of this study was to determine if hypertension could be induced and to investigate its effects on renal function and renin levels in these animals. Sodium and potassium levels and balances, renin, angiotensin II, and urea output were therefore estimated in these animals. In order to assess the effect of length of exposure to cadmium in relation to growth and maturation upon blood pressure, experiments were done on a second colony of male weanling rats. Tissue levels of cadmium and zinc, and serum levels of sodium, potassium, chloride, carbon dioxide, urea and urate were measured. All supplemented diets caused hypertension and a significant drop in urinary urea excretion levels. Plasma angiotensin in males, and renal cadmium-zinc ratios were higher than in controls. The results of the studies in adult rats showed slight sodium and water retention. Weanlings showed a more rapid uptake of cadmium and reached higher blood pressure levels. In conclusion, cadmium does seem to be a factor in selected animal hypertension. A possible mechanism is via interference with renal function, and our data regarding urea output support the idea of renal function impairment. The initiation of a renin-angiotensin hypertension is suggested by the raised angiotensin levels which were detected

  12. Electro-chemical deposition of nano hydroxyapatite-zinc coating on titanium metal substrate.

    Science.gov (United States)

    El-Wassefy, N A; Reicha, F M; Aref, N S

    2017-08-13

    Titanium is an inert metal that does not induce osteogenesis and has no antibacterial properties; it is proposed that hydroxyapatite coating can enhance its bioactivity, while zinc can contribute to antibacterial properties and improve osseointegration. A nano-sized hydroxyapatite-zinc coating was deposited on commercially pure titanium using an electro-chemical process, in order to increase its surface roughness and enhance adhesion properties. The hydroxyapatite-zinc coating was attained using an electro-chemical deposition in a solution composed of a naturally derived calcium carbonate, di-ammonium hydrogen phosphate, with a pure zinc metal as the anode and titanium as the cathode. The applied voltage was -2.5 for 2 h at a temperature of 85 °C. The resultant coating was characterized for its surface morphology and chemical composition using a scanning electron microscope (SEM), energy dispersive x-ray spectroscope (EDS), and Fourier transform infrared (FT-IR) spectrometer. The coated specimens were also evaluated for their surface roughness and adhesion quality. Hydroxyapatite-zinc coating had shown rosette-shaped, homogenous structure with nano-size distribution, as confirmed by SEM analysis. FT-IR and EDS proved that coatings are composed of hydroxyapatite (HA) and zinc. The surface roughness assessment revealed that the coating procedure had significantly increased average roughness (Ra) than the control, while the adhesive tape test demonstrated a high-quality adhesive coat with no laceration on tape removal. The developed in vitro electro-chemical method can be employed for the deposition of an even thickness of nano HA-Zn adhered coatings on titanium substrate and increases its surface roughness significantly.

  13. Effect of manganese and zinc on the growth of Anacystis nidulans

    Energy Technology Data Exchange (ETDEWEB)

    Lee, L.H.; Lustigman, B.; Dandorf, D. (Montclair State College, Upper Montclair, NJ (United States))

    1994-07-01

    Anacystis nidulans is a unicellular member of the cyanobacteria, one of the largest groups of the Kingdom Monera. It is similar to other bacteria in the structure and chemistry of the cell wall, and its cell division and genetic recombination. Photoautotrophy is the main mode of nutrition and the photosynthetic apparatus is similar to that of other cyanobacteria. Cyanobacteria are excellent organisms to serve as environmental pollution indicators for the investigation of a wide variety of biological problems. There have been several studies on the effects of heavy metals on A. nidulans. Some of these elements, such as manganese, are known to be essential nutrients for cyanobacteria. Others, such as cadmium, are not known to be necessary for normal growth and metabolism. Large amounts of either essential or non-essential elements can be toxic. Manganese and zinc are essential elements for all living organisms. Manganese is a cofactor for a number of different enzymatic reactions particularly those involved in phosphorylation. Iron deficiency induced by a number of metals, cobalt and manganese in particular, inhibit chlorophyll biosynthesis. Zinc deficiency affects early mitotic events and the cells are large and aberrant in appearance. Light is essential for cells to take in zinc. As an industrial contaminant, zinc has been found to block photosynthesis by causing structural damage to the photosynthetic apparatus. In the presence of various pH ranges, high zinc concentrations can be associated with low pH. It has been indicated that pH value and EDTA (Ethylene Diamine Tetraacetic Acid) have an influence on the effect of some metals. The purpose of this study was to determine the effect of manganese and zinc on the growth of Anacystis nidulans, with and without EDTA.

  14. The effectiveness of zinc supplementation in men with isolated hypogonadotropic hypogonadism

    Directory of Open Access Journals (Sweden)

    Yan-Ling Liu

    2017-01-01

    Full Text Available A multicenter, open-label, randomized, controlled superiority trial with 18 months of follow-up was conducted to investigate whether oral zinc supplementation could further promote spermatogenesis in males with isolated hypogonadotropic hypogonadism (IHH receiving sequential purified urinary follicular-stimulating hormone/human chorionic gonadotropin (uFSH/hCG replacement. Sixty-seven Chinese male IHH patients were recruited from the Departments of Endocrinology in eight tertiary hospitals and randomly allocated into the sequential uFSH/hCG group (Group A, n = 34 or the sequential uFSH plus zinc supplementation group (Group B, n = 33. In Group A, patients received sequential uFSH (75 U, three times a week every other 3 months and hCG (2000 U, twice a week treatments. In Group B, patients received oral zinc supplementation (40 mg day−1 in addition to the sequential uFSH/hCG treatment given to patients in Group A. The primary outcome was the proportion of patients with a sperm concentration ≥1.0 × 106 ml−1 during the 18 months. The comparison of efficacy between Groups A and B was analyzed. Nineteen of 34 (55.9% patients receiving sequential uFSH/hCG and 20 of 33 (60.6% patients receiving sequential uFSH/hCG plus zinc supplementation achieved sperm concentrations ≥1.0 × 106 ml−1 by intention to treat analyses. No differences between Group A and Group B were observed as far as the efficacy of inducing spermatogenesis (P = 0.69. We concluded that the sequential uFSH/hCG plus zinc supplementation regimen had a similar efficacy to the sequential uFSH/hCG treatment alone. The additional improvement of 40 mg day−1 oral zinc supplementation on spermatogenesis and masculinization in male IHH patients is very subtle.

  15. Intracellular zinc flux causes reactive oxygen species mediated mitochondrial dysfunction leading to cell death in Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Anjali Kumari

    Full Text Available Leishmaniasis caused by Leishmania parasite is a global threat to public health and one of the most neglected tropical diseases. Therefore, the discovery of novel drug targets and effective drug is a major challenge and an important goal. Leishmania is an obligate intracellular parasite that alternates between sand fly and human host. To survive and establish infections, Leishmania parasites scavenge and internalize nutrients from the host. Nevertheless, host cells presents mechanism like nutrient restriction to inhibit microbial growth and control infection. Zinc is crucial for cellular growth and disruption in its homeostasis hinders growth and survival in many cells. However, little is known about the role of zinc in Leishmania growth and survival. In this study, the effect of zinc on the growth and survival of L.donovani was analyzed by both Zinc-depletion and Zinc-supplementation using Zinc-specific chelator N, N, N', N'-tetrakis (2-pyridylmethyl ethylenediamine (TPEN and Zinc Sulfate (ZnSO4. Treatment of parasites with TPEN rather than ZnSO4 had significantly affected the growth in a dose- and time-dependent manner. The pre-treatment of promastigotes with TPEN resulted into reduced host-parasite interaction as indicated by decreased association index. Zn depletion resulted into flux in intracellular labile Zn pool and increased in ROS generation correlated with decreased intracellular total thiol and retention of plasma membrane integrity without phosphatidylserine exposure in TPEN treated promastigotes. We also observed that TPEN-induced Zn depletion resulted into collapse of mitochondrial membrane potential which is associated with increase in cytosolic calcium and cytochrome-c. DNA fragmentation analysis showed increased DNA fragments in Zn-depleted cells. In summary, intracellular Zn depletion in the L. donovani promastigotes led to ROS-mediated caspase-independent mitochondrial dysfunction resulting into apoptosis-like cell death

  16. Nutritional assessment methods for zinc supplementation in prepubertal non-zinc-deficient children

    Directory of Open Access Journals (Sweden)

    Márcia Marília Gomes Dantas Lopes

    2015-10-01

    Full Text Available Background: Zinc is an essential nutrient that is required for numerous metabolic functions, and zinc deficiency results in growth retardation, cell-mediated immune dysfunction, and cognitive impairment. Objective: This study evaluated nutritional assessment methods for zinc supplementation in prepubertal non-zinc-deficient children. Design: We performed a randomised, controlled, triple-blind study. The children were divided into a control group (10% sorbitol, n=31 and an experimental group (10 mg Zn/day, n=31 for 3 months. Anthropometric and dietary assessments as well as bioelectrical measurements were performed in all children. Results: Our study showed (1 an increased body mass index for age and an increased phase angle in the experimental group; (2 a positive correlation between nutritional assessment parameters in both groups; (3 increased soft tissue, and mainly fat-free mass, in the body composition of the experimental group, as determined using bioelectrical impedance vector analysis; (4 increased consumption of all nutrients, including zinc, in the experimental group; and (5 an increased serum zinc concentration in both groups (p<0.0001. Conclusions: Given that a reference for body composition analysis does not exist for intervention studies, longitudinal studies are needed to investigate vector migration during zinc supplementation. These results reinforce the importance of employing multiple techniques to assess the nutritional status of populations.

  17. Evolution of the zinc compound nanostructures in zinc acetate single-source solution

    International Nuclear Information System (INIS)

    Wang Ying; Li Yinhua; Zhou Zhengzhi; Zu Xihong; Deng Yulin

    2011-01-01

    A series of nanostructured zinc compounds with different nanostructures such as nanobelts, flake-like, flower-like, and twinning crystals was synthesized using zinc acetate (Zn(Ac) 2 ) as a single-source. The evolution of the zinc compounds from layered basic zinc acetate (LBZA) to bilayered basic zinc acetate (BLBZA) and twinned ZnO nano/microcrystal was studied. The low-angle X-ray diffraction spectra indicate the layered spacing is 1.34 and 2.1 nm for LBZA and BLBZA, respectively. The Fourier transform infrared (FTIR) spectra results confirmed that the bonding force of acetate anion with zinc cations decreases with the phase transformation from Zn(Ac) 2 to BLBZA, and finally to LBZA. The OH − groups gradually replaced the acetate groups coordinated to the matrix zinc cation, and the acetate groups were released completely. Finally, the Zn(OH) 2 and ZnO were formed at high temperature. The conversion process from Zn(Ac) 2 to ZnO with release of acetate anions can be described as Zn(Ac) 2 → BLBZA → LBZA → Zn(OH) 2 → ZnO.

  18. The effect of oral zinc loading on the absorption of 65Zinc in the rat

    International Nuclear Information System (INIS)

    Hoyer, H.; Weismann, K.

    1979-01-01

    Seven groups of 8 rats each were orally loaded with zinc, the daily dose varying from 1.8 to 58 mg, corresponding to about 3 to 100 times of their estimated daily intake of zinc. To record the absorption of zinc, the rats were given a single dose of 65 Zn. The rentention of the isotope was measured in a whole animal counter at regular intervals. The dose of 58mg was obviously toxis, since half of the animals died within 5 days. The net absorption of zinc in the remaining experimental groups was found to vary from about 7% in the group receiving the smallest loading dose to 1.8% in the group receiving the highest dose. From the absorption values, as determined by extrapolation of semilog retention curves, the total amount of absorbed zinc was estimated. It was found to differ from about 170μg to about 530μg zinc daily, increasing three times as the loading dose was increased 16 times. This discrepancy suggests the existence of regulatory mechanisms of the absorption of zinc from the intestine. (orig.) [de

  19. The immune system and the impact of zinc during aging

    Directory of Open Access Journals (Sweden)

    Haase Hajo

    2009-06-01

    Full Text Available Abstract The trace element zinc is essential for the immune system, and zinc deficiency affects