WorldWideScience

Sample records for zinc finger-containing glycine-rich

  1. Comparative functional analysis of wheat (Triticum aestivum) zinc finger-containing glycine-rich RNA-binding proteins in response to abiotic stresses.

    Science.gov (United States)

    Xu, Tao; Gu, Lili; Choi, Min Ji; Kim, Ryeo Jin; Suh, Mi Chung; Kang, Hunseung

    2014-01-01

    Although the functional roles of zinc finger-containing glycine-rich RNA-binding proteins (RZs) have been characterized in several plant species, including Arabidopsis thaliana and rice (Oryza sativa), the physiological functions of RZs in wheat (Triticum aestivum) remain largely unknown. Here, the functional roles of the three wheat RZ family members, named TaRZ1, TaRZ2, and TaRZ3, were investigated using transgenic Arabidopsis plants under various abiotic stress conditions. Expression of TaRZs was markedly regulated by salt, dehydration, or cold stress. The TaRZ1 and TaRZ3 proteins were localized to the nucleus, whereas the TaRZ2 protein was localized to the nucleus, endoplasmic reticulum, and cytoplasm. Germination of all three TaRZ-expressing transgenic Arabidopsis seeds was retarded compared with that of wild-type seeds under salt stress conditions, whereas germination of TaRZ2- or TaRZ3-expressing transgenic Arabidopsis seeds was retarded under dehydration stress conditions. Seedling growth of TaRZ1-expressing transgenic plants was severely inhibited under cold or salt stress conditions, and seedling growth of TaRZ2-expressing plants was inhibited under salt stress conditions. By contrast, expression of TaRZ3 did not affect seedling growth of transgenic plants under any of the stress conditions. In addition, expression of TaRZ2 conferred freeze tolerance in Arabidopsis. Taken together, these results suggest that different TaRZ family members play various roles in seed germination, seedling growth, and freeze tolerance in plants under abiotic stress.

  2. Mechanisms of inhibition of zinc-finger transcription factors by selenium compounds ebselen and selenite.

    Science.gov (United States)

    Larabee, Jason L; Hocker, James R; Hanas, Jay S

    2009-03-01

    The anti-inflammatory selenium compounds, ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one) and selenite, were found to alter the DNA binding mechanisms and structures of cysteine-rich zinc-finger transcription factors. As assayed by DNase I protection, DNA binding by TFIIIA (transcription factor IIIA, prototypical Cys(2)His(2) zinc finger protein), was inhibited by micromolar amounts of ebselen. In a gel shift assay, ebselen inhibited the Cys(2)His(2) zinc finger-containing DNA binding domain (DBD) of the NF-kappaB mediated transcription factor Sp1. Ebselen also inhibited DNA binding by the p50 subunit of the pro-inflammatory Cys-containing NF-kappaB transcription factor. Electrospray ionization mass spectrometry (ESI-MS) was utilized to elucidate mechanisms of chemical interaction between ebselen and a zinc-bound Cys(2)His(2) zinc finger polypeptide modeled after the third finger of Sp1 (Sp1-3). Exposing Sp1-3 to micromolar amounts of ebselen resulted in Zn(2+) release from this peptide and the formation of a disulfide bond by oxidation of zinc finger SH groups, the likely mechanism for DNA binding inhibition. Selenite was shown by ESI-MS to also eject zinc from Sp1-3 as well as induce disulfide bond formation through SH oxidation. The selenite-dependent inhibition/oxidation mechanism differed from that of ebselen by inducing the formation of a stable selenotrisulfide bond. Selenite-induced selenotrisulfide formation was dependent upon the structure of the Cys(2)His(2) zinc finger as alteration in the finger structure enhanced this reaction as well as selenite-dependent zinc release. Ebselen and selenite-dependent inhibition/oxidation of Cys-rich zinc finger proteins, with concomitant release of zinc and finger structural changes, points to mechanisms at the atomic and protein level for selenium-induced alterations in Cys-rich proteins, and possible amelioration of certain inflammatory, neurodegenerative, and oncogenic responses.

  3. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi

    2016-03-18

    Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remains unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.

  4. Two short basic sequences surrounding the zinc finger of nucleocapsid protein NCp10 of Moloney murine leukemia virus are critical for RNA annealing activity.

    Science.gov (United States)

    De Rocquigny, H; Ficheux, D; Gabus, C; Allain, B; Fournie-Zaluski, M C; Darlix, J L; Roques, B P

    1993-02-25

    The 56 amino acid nucleocapsid protein (NCp10) of Moloney Murine Leukemia Virus, contains a CysX2CysX4HisX4Cys zinc finger flanked by basic residues. In vitro NCp10 promotes genomic RNA dimerization, a process most probably linked to genomic RNA packaging, and replication primer tRNA(Pro) annealing to the initiation site of reverse transcription. To characterize the amino-acid sequences involved in the various functions of NCp10, we have synthesized by solid phase method the native protein and a series of derived peptides shortened at the N- or C-terminus with or without the zinc finger domain. In the latter case, the two parts of the protein were linked by a Glycine - Glycine spacer. The in vitro studies of these peptides show that nucleic acid annealing activities of NCp10 do not require a zinc finger but are critically dependent on the presence of specific sequences located on each side of the CCHC domain and containing proline and basic residues. Thus, deletion of 11R or 49PRPQT, of the fully active 29 residue peptide 11RQGGERRRSQLDRDGGKKPRGPRGPRPQT53 leads to a complete loss of NCp10 activity. Therefore it is proposed that in NCp10, the zinc finger directs the spatial recognition of the target RNAs by the basic domains surrounding the zinc finger.

  5. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains

    International Nuclear Information System (INIS)

    Vallee, B.L.; Auld, D.S.; Coleman, J.E.

    1991-01-01

    The authors recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a zinc cluster akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is ∼3.5 angstrom. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is ∼13 angstrom, and in this instance, a zinc twist is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native zinc fingers, structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent

  6. ZifBASE: a database of zinc finger proteins and associated resources

    Directory of Open Access Journals (Sweden)

    Punetha Ankita

    2009-09-01

    Full Text Available Abstract Background Information on the occurrence of zinc finger protein motifs in genomes is crucial to the developing field of molecular genome engineering. The knowledge of their target DNA-binding sequences is vital to develop chimeric proteins for targeted genome engineering and site-specific gene correction. There is a need to develop a computational resource of zinc finger proteins (ZFP to identify the potential binding sites and its location, which reduce the time of in vivo task, and overcome the difficulties in selecting the specific type of zinc finger protein and the target site in the DNA sequence. Description ZifBASE provides an extensive collection of various natural and engineered ZFP. It uses standard names and a genetic and structural classification scheme to present data retrieved from UniProtKB, GenBank, Protein Data Bank, ModBase, Protein Model Portal and the literature. It also incorporates specialized features of ZFP including finger sequences and positions, number of fingers, physiochemical properties, classes, framework, PubMed citations with links to experimental structures (PDB, if available and modeled structures of natural zinc finger proteins. ZifBASE provides information on zinc finger proteins (both natural and engineered ones, the number of finger units in each of the zinc finger proteins (with multiple fingers, the synergy between the adjacent fingers and their positions. Additionally, it gives the individual finger sequence and their target DNA site to which it binds for better and clear understanding on the interactions of adjacent fingers. The current version of ZifBASE contains 139 entries of which 89 are engineered ZFPs, containing 3-7F totaling to 296 fingers. There are 50 natural zinc finger protein entries ranging from 2-13F, totaling to 307 fingers. It has sequences and structures from literature, Protein Data Bank, ModBase and Protein Model Portal. The interface is cross linked to other public

  7. Role of zinc finger structure in nuclear localization of transcription factor Sp1

    International Nuclear Information System (INIS)

    Ito, Tatsuo; Azumano, Makiko; Uwatoko, Chisana; Itoh, Kohji; Kuwahara, Jun

    2009-01-01

    Transcription factor Sp1 is localized in the nucleus and regulates gene expression. Our previous study demonstrated that the carboxyl terminal region of Sp1 containing 3-zinc finger region as DNA binding domain can also serve as nuclear localization signal (NLS). However, the nuclear transport mechanism of Sp1 has not been well understood. In this study, we performed a gene expression study on mutant Sp1 genes causing a set of amino acid substitutions in zinc finger domains to elucidate nuclear import activity. Nuclear localization of the GFP-fused mutant Sp1 proteins bearing concomitant substitutions in the first and third zinc fingers was highly inhibited. These mutant Sp1 proteins had also lost the binding ability as to the GC box sequence. The results suggest that the overall tertiary structure formed by the three zinc fingers is essential for nuclear localization of Sp1 as well as dispersed basic amino acids within the zinc fingers region.

  8. A multiscale approach to simulating the conformational properties of unbound multi-C₂H₂ zinc finger proteins.

    Science.gov (United States)

    Liu, Lei; Wade, Rebecca C; Heermann, Dieter W

    2015-09-01

    The conformational properties of unbound multi-Cys2 His2 (mC2H2) zinc finger proteins, in which zinc finger domains are connected by flexible linkers, are studied by a multiscale approach. Three methods on different length scales are utilized. First, atomic detail molecular dynamics simulations of one zinc finger and its adjacent flexible linker confirmed that the zinc finger is more rigid than the flexible linker. Second, the end-to-end distance distributions of mC2H2 zinc finger proteins are computed using an efficient atomistic pivoting algorithm, which only takes excluded volume interactions into consideration. The end-to-end distance distribution gradually changes its profile, from left-tailed to right-tailed, as the number of zinc fingers increases. This is explained by using a worm-like chain model. For proteins of a few zinc fingers, an effective bending constraint favors an extended conformation. Only for proteins containing more than nine zinc fingers, is a somewhat compacted conformation preferred. Third, a mesoscale model is modified to study both the local and the global conformational properties of multi-C2H2 zinc finger proteins. Simulations of the CCCTC-binding factor (CTCF), an important mC2H2 zinc finger protein for genome spatial organization, are presented. © 2015 Wiley Periodicals, Inc.

  9. Solution NMR characterization of Sgf73(1-104) indicates that Zn ion is required to stabilize zinc finger motif

    International Nuclear Information System (INIS)

    Lai, Chaohua; Wu, Minhao; Li, Pan; Shi, Chaowei; Tian, Changlin; Zang, Jianye

    2010-01-01

    Zinc finger motif contains a zinc ion coordinated by several conserved amino acid residues. Yeast Sgf73 protein was identified as a component of SAGA (Spt/Ada/Gcn5 acetyltransferase) multi-subunit complex and Sgf73 protein was known to contain two zinc finger motifs. Sgf73(1-104), containing the first zinc finger motif, was necessary to modulate the deubiquitinase activity of SAGA complex. Here, Sgf73(1-104) was over-expressed using bacterial expression system and purified for solution NMR (nuclear magnetic resonance) structural studies. Secondary structure and site-specific relaxation analysis of Sgf73(1-104) were achieved after solution NMR backbone assignment. Solution NMR and circular dichroism analysis of Sgf73(1-104) after zinc ion removal using chelation reagent EDTA (ethylene-diamine-tetraacetic acid) demonstrated that zinc ion was required to maintain stable conformation of the zinc finger motif.

  10. Overexpression of a New Zinc Finger Protein Transcription Factor OsCTZFP8 Improves Cold Tolerance in Rice

    Directory of Open Access Journals (Sweden)

    Yong-Mei Jin

    2018-01-01

    Full Text Available Cold stress is one of the most important abiotic stresses in rice. C2H2 zinc finger proteins play important roles in response to abiotic stresses in plants. In the present study, we isolated and functionally characterized a new C2H2 zinc finger protein transcription factor OsCTZFP8 in rice. OsCTZFP8 encodes a C2H2 zinc finger protein, which contains a typical zinc finger motif, as well as a potential nuclear localization signal (NLS and a leucine-rich region (L-box. Expression of OsCTZFP8 was differentially induced by several abiotic stresses and was strongly induced by cold stress. Subcellular localization assay and yeast one-hybrid analysis revealed that OsCTZFP8 was a nuclear protein and has transactivation activity. To characterize the function of OsCTZFP8 in rice, the full-length cDNA of OsCTZFP8 was isolated and transgenic rice with overexpression of OsCTZFP8 driven by the maize ubiquitin promoter was generated using Agrobacterium-mediated transformation. Among 46 independent transgenic lines, 6 single-copy homozygous overexpressing lines were selected by Southern blot analysis and Basta resistance segregation assay in both T1 and T2 generations. Transgenic rice overexpressing OsCTZFP8 exhibited cold tolerant phenotypes with significantly higher pollen fertilities and seed setting rates than nontransgenic control plants. In addition, yield per plant of OsCTZFP8-expressing lines was significantly (p<0.01 higher than that of nontransgenic control plants under cold treatments. These results demonstrate that OsCTZFP8 was a C2H2 zinc finger transcription factor that plays an important role in cold tolerance in rice.

  11. Characterization of the SUMO-binding activity of the myeloproliferative and mental retardation (MYM-type zinc fingers in ZNF261 and ZNF198.

    Directory of Open Access Journals (Sweden)

    Catherine M Guzzo

    Full Text Available SUMO-binding proteins interact with SUMO modified proteins to mediate a wide range of functional consequences. Here, we report the identification of a new SUMO-binding protein, ZNF261. Four human proteins including ZNF261, ZNF198, ZNF262, and ZNF258 contain a stretch of tandem zinc fingers called myeloproliferative and mental retardation (MYM-type zinc fingers. We demonstrated that MYM-type zinc fingers from ZNF261 and ZNF198 are necessary and sufficient for SUMO-binding and that individual MYM-type zinc fingers function as SUMO-interacting motifs (SIMs. Our binding studies revealed that the MYM-type zinc fingers from ZNF261 and ZNF198 interact with the same surface on SUMO-2 recognized by the archetypal consensus SIM. We also present evidence that MYM-type zinc fingers in ZNF261 contain zinc, but that zinc is not required for SUMO-binding. Immunofluorescence microscopy studies using truncated fragments of ZNF198 revealed that MYM-type zinc fingers of ZNF198 are necessary for localization to PML-nuclear bodies (PML-NBs. In summary, our studies have identified and characterized the SUMO-binding activity of the MYM-type zinc fingers in ZNF261 and ZNF198.

  12. Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins.

    Science.gov (United States)

    Hanas, J S; Rodgers, J S; Bantle, J A; Cheng, Y G

    1999-11-01

    The association of lead with chromatin in cells suggests that deleterious metal effects may in part be mediated through alterations in gene function. To elucidate if and how lead may alter DNA binding of cysteine-rich zinc finger proteins, lead ions were analyzed for their ability to alter the DNA binding mechanism of the Cys(2)His(2) zinc finger protein transcription factor IIIA (TFIIIA). As assayed by DNase I protection, the interaction of TFIIIA with the 50-bp internal control region of the 5S ribosomal gene was partially inhibited by 5 microM lead ions and completely inhibited by 10 to 20 microM lead ions. Preincubation of free TFIIIA with lead resulted in DNA-binding inhibition, whereas preincubation of a TFIIIA/5S RNA complex with lead did not result in DNA-binding inhibition. Because 5S RNA binds TFIIIA zinc fingers, this result is consistent with an inhibition mechanism via lead binding to zinc fingers. The complete loss of DNase I protection on the 5S gene indicates the mechanism of inhibition minimally involves the N-terminal fingers of TFIIIA. Inhibition was not readily reversible and occurred in the presence of an excess of beta-mercaptoethanol. Inhibition kinetics were fast, progressing to completion in approximately 5 min. Millimolar concentrations of sulfhydryl-specific arsenic ions were not inhibitory for TFIIIA binding. Micromolar concentrations of lead inhibited DNA binding by Sp1, another Cys(2)His(2) finger protein, but not by the nonfinger protein AP2. Inhibition of Cys(2)His(2) zinc finger transcription factors by lead ions at concentrations near those known to have deleterious physiological effects points to new molecular mechanisms for lead toxicity in promoting disease.

  13. DUF581 is plant specific FCS-like zinc finger involved in protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Muhammed Jamsheer K

    Full Text Available Zinc fingers are a ubiquitous class of protein domain with considerable variation in structure and function. Zf-FCS is a highly diverged group of C2-C2 zinc finger which is present in animals, prokaryotes and viruses, but not in plants. In this study we identified that a plant specific domain of unknown function, DUF581 is a zf-FCS type zinc finger. Based on HMM-HMM comparison and signature motif similarity we named this domain as FCS-Like Zinc finger (FLZ domain. A genome wide survey identified that FLZ domain containing genes are bryophytic in origin and this gene family is expanded in spermatophytes. Expression analysis of selected FLZ gene family members of A. thaliana identified an overlapping expression pattern suggesting a possible redundancy in their function. Unlike the zf-FCS domain, the FLZ domain found to be highly conserved in sequence and structure. Using a combination of bioinformatic and protein-protein interaction tools, we identified that FLZ domain is involved in protein-protein interaction.

  14. The artificial zinc finger coding gene 'Jazz' binds the utrophin promoter and activates transcription.

    Science.gov (United States)

    Corbi, N; Libri, V; Fanciulli, M; Tinsley, J M; Davies, K E; Passananti, C

    2000-06-01

    Up-regulation of utrophin gene expression is recognized as a plausible therapeutic approach in the treatment of Duchenne muscular dystrophy (DMD). We have designed and engineered new zinc finger-based transcription factors capable of binding and activating transcription from the promoter of the dystrophin-related gene, utrophin. Using the recognition 'code' that proposes specific rules between zinc finger primary structure and potential DNA binding sites, we engineered a new gene named 'Jazz' that encodes for a three-zinc finger peptide. Jazz belongs to the Cys2-His2 zinc finger type and was engineered to target the nine base pair DNA sequence: 5'-GCT-GCT-GCG-3', present in the promoter region of both the human and mouse utrophin gene. The entire zinc finger alpha-helix region, containing the amino acid positions that are crucial for DNA binding, was specifically chosen on the basis of the contacts more frequently represented in the available list of the 'code'. Here we demonstrate that Jazz protein binds specifically to the double-stranded DNA target, with a dissociation constant of about 32 nM. Band shift and super-shift experiments confirmed the high affinity and specificity of Jazz protein for its DNA target. Moreover, we show that chimeric proteins, named Gal4-Jazz and Sp1-Jazz, are able to drive the transcription of a test gene from the human utrophin promoter.

  15. Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria.

    Science.gov (United States)

    Shi, Chu; Xu, Qing; Ge, Yue; Jiang, Ling; Huang, He

    2017-08-09

    Rapid and reliable detection of pathogenic bacteria is crucial for food safety control. Here, we present a novel luciferase-zinc finger system for the detection of pathogens that offers rapid and specific profiling. The system, which uses a zinc-finger protein domain to probe zinc finger recognition sites, was designed to bind the amplified conserved regions of 16S rDNA, and the obtained products were detected using a modified luciferase. The luciferase-zinc finger system not only maintained luciferase activity but also allowed the specific detection of different bacterial species, with a sensitivity as low as 10 copies and a linear range from 10 to 10 4 copies per microliter of the specific PCR product. Moreover, the system is robust and rapid, enabling the simultaneous detection of 6 species of bacteria in artificially contaminated samples with excellent accuracy. Thus, we envision that our luciferase-zinc finger system will have far-reaching applications.

  16. Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors

    NARCIS (Netherlands)

    Mega, Tiziana; Lupia, Michela; Amodio, Nicola; Horton, Sarah J.; Mesuraca, Maria; Pelaggi, Daniela; Agosti, Valter; Grieco, Michele; Chiarella, Emanuela; Spina, Raffaella; Moore, Malcolm A. S.; Schuringa, Jan Jacob; Bond, Heather M.; Morrone, Giovanni

    2011-01-01

    Zinc finger protein 521 (EHZF/ZNF521) is a multi-functional transcription co-factor containing 30 zinc fingers and an N-terminal motif that binds to the nucleosome remodelling and histone deacetylase (NuRD) complex. ZNF521 is believed to be a relevant player in the regulation of the homeostasis of

  17. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport

    International Nuclear Information System (INIS)

    Hempe, J.M.; Cousins, R.J.

    1991-01-01

    The mechanism of zinc absorption has not been delineated, but kinetic studies show that both passive and carrier-mediated processes are involved. The authors have identified a low molecular mass zinc-binding protein in the soluble fraction of rat intestinal mucosa that could function as an intracellular zinc carrier. The protein was not detected in liver or pancreas, suggesting a role specific to the intestine. The protein binds zinc during transmucosal zinc transport and shows signs of saturation at higher luminal zinc concentrations, characteristics consistent with a role in carrier-mediated zinc absorption. Microsequence analysis of the protein purified by gel-filtration HPCL and SDS/PAGE showed complete identity within the first 41 N-terminal amino acids with the deduced protein sequence of cysteine-rich intestinal protein. These investigators showed that the gene for this protein is developmentally regulated in neonates during the suckling period, conserved in many vertebrate species, and predominantly expressed in the small intestine. Cysteine-rich intestinal protein contains a recently identified conserved sequence of histidine and cysteine residues, the LIM motif, which our results suggest confers metal-binding properties that are important for zinc transport and/or functions of this micronutrient

  18. The creation of the artificial RING finger from the cross-brace zinc finger by α-helical region substitution

    International Nuclear Information System (INIS)

    Miyamoto, Kazuhide; Togiya, Kayo

    2010-01-01

    The creation of the artificial RING finger as ubiquitin-ligating enzyme (E3) has been demonstrated. In this study, by the α-helical region substitution between the EL5 RING finger and the Williams-Beuren syndrome transcription factor (WSTF) PHD finger, the artificial E3 (WSTF PHD R ING finger) was newly created. The experiments of the chemical modification of residues Cys and the circular dichroism spectra revealed that the WSTF PHD R ING finger binds two zinc atoms and adopts the zinc-dependent ordered-structure. In the substrate-independent ubiquitination assay, the WSTF PHD R ING finger functions as E3 and was poly- or mono-ubiquitinated. The present strategy is very simple and convenient, and consequently it might be widely applicable to the creation of various artificial E3 RING fingers with the specific ubiquitin-conjugating enzyme (E2)-binding capability.

  19. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome

    Directory of Open Access Journals (Sweden)

    Böhm Siegfried

    2004-07-01

    Full Text Available Background The classical C2H2 zinc finger domain is involved in a wide range of functions and can bind to DNA, RNA and proteins. The comparison of zinc finger proteins in several eukaryotes has shown that there is a lot of lineage specific diversification and expansion. Although the number of characterized plant proteins that carry the classical C2H2 zinc finger motifs is growing, a systematic classification and analysis of a plant genome zinc finger gene set is lacking. Results We found through in silico analysis 176 zinc finger proteins in Arabidopsis thaliana that hence constitute the most abundant family of putative transcriptional regulators in this plant. Only a minority of 33 A. thaliana zinc finger proteins are conserved in other eukaryotes. In contrast, the majority of these proteins (81% are plant specific. They are derived from extensive duplication events and form expanded families. We assigned the proteins to different subgroups and families and focused specifically on the two largest and evolutionarily youngest families (A1 and C1 that are suggested to be primarily involved in transcriptional regulation. The newly defined family A1 (24 members comprises proteins with tandemly arranged zinc finger domains. Family C1 (64 members, earlier described as the EPF-family in Petunia, comprises proteins with one isolated or two to five dispersed fingers and a mostly invariant QALGGH motif in the zinc finger helices. Based on the amino acid pattern in these helices we could describe five different signature sequences prevalent in C1 zinc finger domains. We also found a number of non-finger domains that are conserved in these families. Conclusions Our analysis of the few evolutionarily conserved zinc finger proteins of A. thaliana suggests that most of them could be involved in ancient biological processes like RNA metabolism and chromatin-remodeling. In contrast, the majority of the unique A. thaliana zinc finger proteins are known or

  20. Zinc-finger proteins in health and disease.

    Science.gov (United States)

    Cassandri, Matteo; Smirnov, Artem; Novelli, Flavia; Pitolli, Consuelo; Agostini, Massimiliano; Malewicz, Michal; Melino, Gerry; Raschellà, Giuseppe

    2017-01-01

    Zinc-finger proteins (ZNFs) are one of the most abundant groups of proteins and have a wide range of molecular functions. Given the wide variety of zinc-finger domains, ZNFs are able to interact with DNA, RNA, PAR (poly-ADP-ribose) and other proteins. Thus, ZNFs are involved in the regulation of several cellular processes. In fact, ZNFs are implicated in transcriptional regulation, ubiquitin-mediated protein degradation, signal transduction, actin targeting, DNA repair, cell migration, and numerous other processes. The aim of this review is to provide a comprehensive summary of the current state of knowledge of this class of proteins. Firstly, we describe the actual classification of ZNFs, their structure and functions. Secondly, we focus on the biological role of ZNFs in the development of organisms under normal physiological and pathological conditions.

  1. Role of protein structure and the role of individual fingers in zinc finger protein-DNA recognition: a molecular dynamics simulation study and free energy calculations

    Science.gov (United States)

    Hamed, Mazen Y.

    2018-05-01

    Molecular dynamics and MM_GBSA energy calculations on various zinc finger proteins containing three and four fingers bound to their target DNA gave insights into the role of each finger in the DNA binding process as part of the protein structure. The wild type Zif 268 (PDB code: 1AAY) gave a ΔG value of - 76.1 (14) kcal/mol. Zinc fingers ZF1, ZF2 and ZF3 were mutated in one experiment and in another experiment one finger was cut and the rest of the protein was studied for binding. The ΔΔG values for the Zinc Finger protein with both ZF1 and ZF2 mutated was + 80 kcal/mol, while mutating only ZF1 the ΔΔG value was + 52 kcal/mol (relative to the wild type). Cutting ZF3 and studying the protein consisting only of ZF1 linked to ZF2 gave a ΔΔG value of + 68 kcal/mol. Upon cutting ZF1, the resulting ZF2 linked to ZF3 protein gave a ΔΔG value of + 41 kcal/mol. The above results shed light on the importance of each finger in the binding process, especially the role of ZF1 as the anchoring finger followed in importance by ZF2 and ZF3. The energy difference between the binding of the wild type protein Zif268 (1AAY) and that for individual finger binding to DNA according to the formula: ΔΔGlinkers, otherstructuralfactors = ΔGzif268 - (ΔGF1+F2+F3) gave a value = - 44.5 kcal/mol. This stabilization can be attributed to the contribution of linkers and other structural factors in the intact protein in the DNA binding process. DNA binding energies of variant proteins of the wild type Zif268 which differ in their ZF1 amino acid sequence gave evidence of a good relationship between binding energy and recognition and specificity, this finding confirms the reported vital role of ZF1 in the ZF protein scanning and anchoring to the target DNA sequence. The role of hydrogen bonds in both specific and nonspecific amino acid-DNA contacts is discussed in relation to mutations. The binding energies of variant Zinc Finger proteins confirmed the role of ZF1 in the recognition

  2. Intracellular HIV-1 Gag localization is impaired by mutations in the nucleocapsid zinc fingers

    Directory of Open Access Journals (Sweden)

    Muriaux Delphine

    2007-08-01

    Full Text Available Abstract Background The HIV-1 nucleocapsid protein (NC is formed of two CCHC zinc fingers flanked by highly basic regions. HIV-1 NC plays key roles in virus structure and replication via its nucleic acid binding and chaperoning properties. In fact, NC controls proviral DNA synthesis by reverse transcriptase (RT, gRNA dimerization and packaging, and virion assembly. Results We previously reported a role for the first NC zinc finger in virion structure and replication 1. To investigate the role of both NC zinc fingers in intracellular Gag trafficking, and in virion assembly, we generated series of NC zinc fingers mutations. Results show that all Zinc finger mutations have a negative impact on virion biogenesis and maturation and rendered defective the mutant viruses. The NC zinc finger mutations caused an intracellular accumulation of Gag, which was found either diffuse in the cytoplasm or at the plasma membrane but not associated with endosomal membranes as for wild type Gag. Evidences are also provided showing that the intracellular interactions between NC-mutated Gag and the gRNA were impaired. Conclusion These results show that Gag oligomerization mediated by gRNA-NC interactions is required for correct Gag trafficking, and assembly in HIV-1 producing cells and the release of infectious viruses.

  3. The Zinc Finger of Prolyl Hydroxylase Domain Protein 2 Is Essential for Efficient Hydroxylation of Hypoxia-Inducible Factor α.

    Science.gov (United States)

    Arsenault, Patrick R; Song, Daisheng; Chung, Yu Jin; Khurana, Tejvir S; Lee, Frank S

    2016-09-15

    Prolyl hydroxylase domain protein 2 (PHD2) (also known as EGLN1) is a key oxygen sensor in mammals that posttranslationally modifies hypoxia-inducible factor α (HIF-α) and targets it for degradation. In addition to its catalytic domain, PHD2 contains an evolutionarily conserved zinc finger domain, which we have previously proposed recruits PHD2 to the HSP90 pathway to promote HIF-α hydroxylation. Here, we provide evidence that this recruitment is critical both in vitro and in vivo We show that in vitro, the zinc finger can function as an autonomous recruitment domain to facilitate interaction with HIF-α. In vivo, ablation of zinc finger function by a C36S/C42S Egln1 knock-in mutation results in upregulation of the erythropoietin gene, erythrocytosis, and augmented hypoxic ventilatory response, all hallmarks of Egln1 loss of function and HIF stabilization. Hence, the zinc finger ordinarily performs a critical positive regulatory function. Intriguingly, the function of this zinc finger is impaired in high-altitude-adapted Tibetans, suggesting that their adaptation to high altitude may, in part, be due to a loss-of-function EGLN1 allele. Thus, these findings have important implications for understanding both the molecular mechanism of the hypoxic response and human adaptation to high altitude. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Rmt1 catalyzes zinc-finger independent arginine methylation of ribosomal protein Rps2 in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Lipson, Rebecca S.; Webb, Kristofor J.; Clarke, Steven G.

    2010-01-01

    Rps2/rpS2 is a well conserved protein of the eukaryotic ribosomal small subunit. Rps2 has previously been shown to contain asymmetric dimethylarginine residues, the addition of which is catalyzed by zinc-finger-containing arginine methyltransferase 3 (Rmt3) in the fission yeast Schizosaccharomyces pombe and protein arginine methyltransferase 3 (PRMT3) in mammalian cells. Here, we demonstrate that despite the lack of a zinc-finger-containing homolog of Rmt3/PRMT3 in the budding yeast Saccharomyces cerevisiae, Rps2 is partially modified to generate asymmetric dimethylarginine and monomethylarginine residues. We find that this modification of Rps2 is dependent upon the major arginine methyltransferase 1 (Rmt1) in S. cerevisiae. These results are suggestive of a role for Rmt1 in modifying the function of Rps2 in a manner distinct from that occurring in S. pombe and mammalian cells.

  5. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy

    Science.gov (United States)

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere. PMID:29386985

  6. Finger millet (Eleucine coracana) flour as a vehicle for fortification with zinc.

    Science.gov (United States)

    Tripathi, Bhumika; Platel, Kalpana

    2010-01-01

    Millets, being less expensive compared to cereals and the staple for the poorer sections of population, could be the choice for fortification with micronutrients such as zinc. In view of this, finger millet, widely grown and commonly consumed in southern India, was explored as a vehicle for fortification with zinc in this investigation. Finger millet flour fortified with either zinc oxide or zinc stearate so as to provide 50mg zinc per kg flour, was specifically examined for the bioaccessibility of the fortified mineral, as measured by in vitro simulated gastrointestinal digestion procedure and storage stability. Addition of the zinc salts increased the bioaccessible zinc content by 1.5-3 times that of the unfortified flour. Inclusion of EDTA along with the fortified salt significantly enhanced the bioaccessibility of zinc from the fortified flours, the increase being three-fold. Inclusion of citric acid along with the zinc salt and EDTA during fortification did not have any additional beneficial effect on zinc bioaccessiblity. Moisture and free fatty acid contents of the stored fortified flours indicated the keeping quality of the same, up to 60 days. Both zinc oxide and zinc stearate were equally effective as fortificants, when used in combination with EDTA as a co-fortificant. The preparation of either roti or dumpling from the fortified flours stored up to 60 days did not result in any significant compromise in the bioaccessible zinc content. Thus, the present study has revealed that finger millet flour can effectively be used as a vehicle for zinc fortification to derive additional amounts of bioaccessible zinc, with reasonably good storage stability, to combat zinc deficiency. Copyright 2009 Elsevier GmbH. All rights reserved.

  7. ZNF322, a novel human C2H2 Krueppel-like zinc-finger protein, regulates transcriptional activation in MAPK signaling pathways

    International Nuclear Information System (INIS)

    Li Yongqing; Wang Yuequn; Zhang Caibo; Yuan Wuzhou; Wang Jun; Zhu Chuanbing; Chen Lei; Huang Wen; Zeng Weiqi; Wu Xiushan; Liu Mingyao

    2004-01-01

    Cardiac differentiation involves a cascade of coordinated gene expression that regulates cell proliferation and matrix protein formation in a defined temporal-spatial manner. The C 2 H 2 zinc finger-containing transcription factors have been implicated as critical regulators of multiple cardiac-expressed genes and are important for human heart development and diseases. Here we have identified and characterized a novel zinc-finger gene named ZNF322 using degenerated primers from a human embryo heart cDNA library. The gene contains four exons and spans 23.2 kb in chromosome 6p22.1 region, and transcribes a 2.7 kb mRNA that encodes a protein with 402 amino acid residues. The predicted protein contains 9 tandem C 2 H 2 -type zinc-finger motifs. Northern blot analysis shows that ZNF322 is expressed in every human tissue examined at adult stage and during embryonic developmental stages from 80 days to 24 weeks. When overexpressed in COS-7 cells, ZNF322-EGFP fusion protein is detected in the nucleus and cytoplasm. Reporter gene assays show that ZNF322 is a transcriptional activator. Furthermore, overexpression of ZNF322 in COS-7 cells activates the transcriptional activity of SRE and AP-1. Together, these results suggest that ZNF322 is a member of the zinc-finger transcription factor family and may act as a positive regulator in gene transcription mediated by the MAPK signaling pathways

  8. ZNF328, a novel human zinc-finger protein, suppresses transcriptional activities of SRE and AP-1

    International Nuclear Information System (INIS)

    Ou Ying; Wang Shenqiu; Cai Zhenyu; Wang Yuequn; Wang Canding; Li Yongqing; Li Fang; Yuan Wuzhou; Liu Bisheng; Wu Xiushan; Liu Mingyao

    2005-01-01

    The zinc finger proteins containing the Kruppel-associated box domain (KRAB-ZFPs) are the single largest class of transcription factors in human genome. Many of the KRAB-ZFPs are involved in cardiac development or cardiovascular diseases. Here, we have identified a novel human KRAB zinc finger gene, named ZNF328, from the human fetal heart cDNA library. The complete sequence of ZNF328 cDNA contains a 2376-bp open reading frame (ORF) and encodes a 792 amino acid protein with an N-terminal KRAB domain and classical zinc finger C 2 H 2 motifs in the C-terminus. Northern blot analysis indicates that the protein is expressed in most of the examined human adult and embryonic tissues. ZNF328 is a transcription suppressor when fused to Gal-4 DNA-binding domain and cotransfected with VP-16. Overexpression of ZNF328 in COS-7 cells inhibits the transcriptional activities of SRE and AP-1. Deletion analysis with a series of truncated fusion proteins indicates that the KRAB motif is a basal repression domain when cotransfected with VP-16. Similar results were obtained when the truncated fusion proteins were assayed for the transcriptional activities of SRE and AP-1. These results suggest that ZNF328 protein may act as a transcriptional repressor in mitogen-activated protein kinase (MAPK) signaling pathway to mediate cellular functions

  9. Functional analysis of a novel KRAB/C2H2 zinc finger protein Mipu1

    International Nuclear Information System (INIS)

    Jiang, Lei; Tang, Daolin; Wang, Kangkai; Zhang, Huali; Yuan, Can; Duan, Dayue; Xiao, Xianzhong

    2007-01-01

    A novel rat gene, Mipu1, encodes a 608 amino acid protein with an amino-terminal KRAB domain and 14 carboxyl-terminal C 2 H 2 zinc finger motifs. Mipu1 is localized to the nucleus through its KRAB domain or the linker adjacent to its zinc finger region. Using the GST-Mipu1 bound to glutathione-Sepharose beads, a consensus putative DNA binding site (5'-TGTCTTATCGAA-3') was extracted from a random oligonucleotide library. EMSA and target detection assay showed that the probe containing the putative site can bind to purified GST-Mipu1 fusion protein. The oligonucleotide containing the putative site was inserted into the pGL3-promotor vector to produce a reporter construct. The expression of reporter gene was repressed by overexpression of Mipu1 in a dose-dependent manner. Mutation analysis of the consensus sequence indicated that the repression mediated by Mipu1 is sequence-dependent. These results suggest that Mipu1 is a nuclear protein, which functions as a transcriptional repressor

  10. The Promyelocytic Leukemia Zinc Finger Protein: Two Decades of Molecular Oncology

    International Nuclear Information System (INIS)

    Suliman, Bandar Ali; Xu, Dakang; Williams, Bryan Raymond George

    2012-01-01

    The promyelocytic leukemia zinc finger (PLZF) protein, also known as Zbtb16 or Zfp145, was first identified in a patient with acute promyelocytic leukemia, where a reciprocal chromosomal translocation t(11;17)(q23;q21) resulted in a fusion with the RARA gene encoding retinoic acid receptor alpha. The wild-type Zbtb16 gene encodes a transcription factor that belongs to the POK (POZ and Krüppel) family of transcriptional repressors. In addition to nine Krüppel-type sequence-specific zinc fingers, which make it a member of the Krüppel-like zinc finger protein family, the PLZF protein contains an N-terminal BTB/POZ domain and RD2 domain. PLZF has been shown to be involved in major developmental and biological processes, such as spermatogenesis, hind limb formation, hematopoiesis, and immune regulation. PLZF is localized mainly in the nucleus where it exerts its transcriptional repression function, and many post-translational modifications affect this ability and also have an impact on its cytoplasmic/nuclear dissociation. PLZF achieves its transcriptional regulation by binding to many secondary molecules to form large multi-protein complexes that bind to the regulatory elements in the promoter region of the target genes. These complexes are also capable of physically interacting with its target proteins. Recently, PLZF has become implicated in carcinogenesis as a tumor suppressor gene, since it regulates the cell cycle and apoptosis in many cell types. This review will examine the major advances in our knowledge of PLZF biological activities that augment its value as a therapeutic target, particularly in cancer and immunological diseases.

  11. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Jalili, M. [Nanomaterials and Nanocoatings Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Surface Coatings and Corrosion Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Rostami, M. [Nanomaterials and Nanocoatings Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir [Surface Coatings and Corrosion Department, Institute for Color Science and Technology (ICST), PO 16765-654, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Highlights: • Aluminum nanoparticle was modified with amino trimethylene phosphonic acid. • 2 wt% of zinc dust in zinc-rich paint was substituted by aluminum nanoparticles. • Surface modified aluminum nanoparticle improved the cathodic period of protection. • Aluminum nanoparticles enhanced the corrosion protection of the zinc-rich coating. - Abstract: Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties.

  12. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    International Nuclear Information System (INIS)

    Jalili, M.; Rostami, M.; Ramezanzadeh, B.

    2015-01-01

    Highlights: • Aluminum nanoparticle was modified with amino trimethylene phosphonic acid. • 2 wt% of zinc dust in zinc-rich paint was substituted by aluminum nanoparticles. • Surface modified aluminum nanoparticle improved the cathodic period of protection. • Aluminum nanoparticles enhanced the corrosion protection of the zinc-rich coating. - Abstract: Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties

  13. Viral RNA annealing activities of human immunodeficiency virus type 1 nucleocapsid protein require only peptide domains outside the zinc fingers.

    Science.gov (United States)

    De Rocquigny, H; Gabus, C; Vincent, A; Fournié-Zaluski, M C; Roques, B; Darlix, J L

    1992-07-15

    The nucleocapsid (NC) of human immunodeficiency virus type 1 consists of a large number of NC protein molecules, probably wrapping the dimeric RNA genome within the virion inner core. NC protein is a gag-encoded product that contains two zinc fingers flanked by basic residues. In human immunodeficiency virus type 1 virions, NCp15 is ultimately processed into NCp7 and p6 proteins. During virion assembly the retroviral NC protein is necessary for core formation and genomic RNA encapsidation, which are essential for virus infectivity. In vitro NCp15 activates viral RNA dimerization, a process most probably linked in vivo to genomic RNA packaging, and replication primer tRNA(Lys,3) annealing to the initiation site of reverse transcription. To characterize the domains of human immunodeficiency virus type 1 NC protein necessary for its various functions, the 72-amino acid NCp7 and several derived peptides were synthesized in a pure form. We show here that synthetic NCp7 with or without the two zinc fingers has the RNA annealing activities of NCp15. Further deletions of the N-terminal 12 and C-terminal 8 amino acids, leading to a 27-residue peptide lacking the finger domains, have little or no effect on NC protein activity in vitro. However deletion of short sequences containing basic residues flanking the first finger leads to a complete loss of NC protein activity. It is proposed that the basic residues and the zinc fingers cooperate to select and package the genomic RNA in vivo. Inhibition of the viral RNA binding and annealing activities associated with the basic residues flanking the first zinc finger of NC protein could therefore be used as a model for the design of antiviral agents.

  14. Influence of Silane modified nano silica on the corrosion protection of zinc rich coating

    International Nuclear Information System (INIS)

    Nguyen Thuy Duong; To Thi Xuan Hang; Trinh Anh Truc; Pham Gia Vu; Bui Van Truoc; Thai Hoang

    2015-01-01

    Zinc rich coatings are the best effective primers for corrosion protection of carbon steel in aggressive conditions. For traditional zinc rich primer the zinc content is very high, more than 90 wt.%. The coating adhesion is decreased with the increase of zinc content, so that it is necessary to decrease the zinc content by using additives. In this study the nano silica modified by N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane was prepared and incorporated in zinc rich epoxy coatings containing 85 wt.% zinc powder. The corrosion protection performance of coatings was evaluated by electrochemical impedance spectroscopy. The results obtained show that the presence of nano silica improved corrosion protection of zinc rich epoxy coating and the best protection was obtained with 3 wt.% nano silica. (author)

  15. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication.

    Science.gov (United States)

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Bian, Xiao-Hua; Shen, Ming; Ma, Biao; Zhang, Wan-Ke; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Lam, Sin-Man; Shui, Guang-Hou; Chen, Shou-Yi; Zhang, Jin-Song

    2017-04-01

    Seed oil is a momentous agronomical trait of soybean ( Glycine max ) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351 , encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1 , BIOTIN CARBOXYL CARRIER PROTEIN2 , 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III , DIACYLGLYCEROL O-ACYLTRANSFERASE1 , and OLEOSIN2 in transgenic Arabidopsis ( Arabidopsis thaliana ) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean ( Glycine soja ) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. © 2017 American Society of Plant Biologists. All Rights Reserved.

  16. Solution structure of an archaeal DNA binding protein with an eukaryotic zinc finger fold.

    Directory of Open Access Journals (Sweden)

    Florence Guillière

    Full Text Available While the basal transcription machinery in archaea is eukaryal-like, transcription factors in archaea and their viruses are usually related to bacterial transcription factors. Nevertheless, some of these organisms show predicted classical zinc fingers motifs of the C2H2 type, which are almost exclusively found in proteins of eukaryotes and most often associated with transcription regulators. In this work, we focused on the protein AFV1p06 from the hyperthermophilic archaeal virus AFV1. The sequence of the protein consists of the classical eukaryotic C2H2 motif with the fourth histidine coordinating zinc missing, as well as of N- and C-terminal extensions. We showed that the protein AFV1p06 binds zinc and solved its solution structure by NMR. AFV1p06 displays a zinc finger fold with a novel structure extension and disordered N- and C-termini. Structure calculations show that a glutamic acid residue that coordinates zinc replaces the fourth histidine of the C2H2 motif. Electromobility gel shift assays indicate that the protein binds to DNA with different affinities depending on the DNA sequence. AFV1p06 is the first experimentally characterised archaeal zinc finger protein with a DNA binding activity. The AFV1p06 protein family has homologues in diverse viruses of hyperthermophilic archaea. A phylogenetic analysis points out a common origin of archaeal and eukaryotic C2H2 zinc fingers.

  17. Characterization and chondrocyte differentiation stage-specific expression of KRAB zinc-finger protein gene ZNF470

    International Nuclear Information System (INIS)

    Hering, Thomas M.; Kazmi, Najam H.; Huynh, Tru D.; Kollar, John; Xu, Laura; Hunyady, Aaron B.; Johnstone, Brian

    2004-01-01

    As part of a study to identify novel transcriptional regulators of chondrogenesis-related gene expression, we have cloned and characterized cDNA for zinc-finger protein 470 (ZNF470), the human ortholog of which encodes a 717 amino acid residue protein containing 17 Cys 2 His 2 zinc-finger domains, as well as KRAB-A and KRAB-B motifs. The cDNA library used to isolate the initial ZNF470 clone was prepared from human bone marrow-derived mesenchymal progenitor cells at an intermediate stage of chondrogenic differentiation. We have determined the intron-exon structure of the human ZNF470 gene, which has been mapped to a zinc-finger cluster in a known imprinted region of human chromosome 19q13.4. ZNF470 is expressed at high levels in human testis and is expressed at low or undetectible levels in other adult tissues. Human ZNF470 expressed in mammalian cells as an EGFP fusion protein localizes predominantly to the nucleus, consistent with a role in transcriptional regulation. ZNF470, analyzed by quantitative real time PCR, was transiently expressed before the maximal expression of COL2A1 during chondrogenic differentiation in vitro. We have also characterized the bovine ortholog of human ZNF470, which encodes a 508 amino acid residue protein having 10 zinc-finger domains. A bovine ZNF470 cDNA clone was used to examine expression of ZNF470 in bovine articular chondrocytes treated with retinoic acid to stimulate dedifferentiation. Bovine ZNF470 expression was undetectable in freshly isolated bovine articular chondrocytes, but was dramatically upregulated in dedifferentiated retinoic acid-treated chondrocytes. These results, in two model systems, suggest a possible role for ZNF470 in the regulation of chondrogenesis-specific gene expression

  18. Zinc Oxide-Containing Porous Boron-Carbon-Nitrogen Sheets from Glycine-Nitrate Combustion: Synthesis, Self-Cleaning, and Sunlight-Driven Photocatalytic Activity.

    Science.gov (United States)

    Bharathidasan, T; Mandalam, Aditya; Balasubramanian, M; Dhandapani, P; Sathiyanarayanan, S; Mayavan, Sundar

    2015-08-26

    We developed a single-step thermal method that enables successful inclusion of ZnO components in the porous boron-carbon-nitrogen (BCN) framework to form a new class of functional hybrid. ZnO-containing BCN hybrids were prepared by treating a mixture of B2O3, glycine, and zinc nitrate at 500 °C. Glycine-nitrate decomposition along with B2O3 acts as a source for ZnO-BCN formation. The incorporation of ZnO onto BCN has extended the photoresponse of ZnO in the visible region, which makes ZnO-BCN a preferable photocatalyst relative to ZnO upon sunlight exposure. It is interesting to note that as-prepared 2D ZnO-BCN sheets dispersed in PDMS form a stable coating over aluminum alloys. The surface exhibited a water contact angle (CA) of 157.6° with 66.6 wt % ZnO-BCN in polydimethylsiloxane (PDMS) and a water droplet (7 μL) roll-off angle of <6° and also demonstrates oil fouling resistant superhydrophobicity. In brief, the present study focuses on the gram scale synthesis of a new class of sunlight-driven photocatalyst and also its application toward the development of superhydrophobic and oleophobic coating.

  19. The unique N-terminal zinc finger of synaptotagmin-like protein 4 reveals FYVE structure.

    Science.gov (United States)

    Miyamoto, Kazuhide; Nakatani, Arisa; Saito, Kazuki

    2017-12-01

    Synaptotagmin-like protein 4 (Slp4), expressed in human platelets, is associated with dense granule release. Slp4 is comprised of the N-terminal zinc finger, Slp homology domain, and C2 domains. We synthesized a compact construct (the Slp4N peptide) corresponding to the Slp4 N-terminal zinc finger. Herein, we have determined the solution structure of the Slp4N peptide by nuclear magnetic resonance (NMR). Furthermore, experimental, chemical modification of Cys residues revealed that the Slp4N peptide binds two zinc atoms to mediate proper folding. NMR data showed that eight Cys residues coordinate zinc atoms in a cross-brace fashion. The Simple Modular Architecture Research Tool database predicted the structure of Slp4N as a RING finger. However, the actual structure of the Slp4N peptide adopts a unique C 4 C 4 -type FYVE fold and is distinct from a RING fold. To create an artificial RING finger (ARF) with specific ubiquitin-conjugating enzyme (E2)-binding capability, cross-brace structures with eight zinc-ligating residues are needed as the scaffold. The cross-brace structure of the Slp4N peptide could be utilized as the scaffold for the design of ARFs. © 2017 The Protein Society.

  20. Interaction of Sp1 zinc finger with transport factor in the nuclear localization of transcription factor Sp1

    International Nuclear Information System (INIS)

    Ito, Tatsuo; Kitamura, Haruka; Uwatoko, Chisana; Azumano, Makiko; Itoh, Kohji; Kuwahara, Jun

    2010-01-01

    Research highlights: → Sp1 zinc fingers themselves interact with importin α. → Sp1 zinc finger domains play an essential role as a nuclear localization signal. → Sp1 can be transported into the nucleus in an importin-dependent manner. -- Abstract: Transcription factor Sp1 is localized in the nucleus and regulates the expression of many cellular genes, but the nuclear transport mechanism of Sp1 is not well understood. In this study, we revealed that GST-fused Sp1 protein bound to endogenous importin α in HeLa cells via the Sp1 zinc finger domains, which comprise the DNA binding domain of Sp1. It was found that the Sp1 zinc finger domains directly interacted with a wide range of importin α including the armadillo (arm) repeat domain and the C-terminal acidic domain. Furthermore, it turned out that all three zinc fingers of Sp1 are essential for binding to importin α. Taken together, these results suggest that the Sp1 zinc finger domains play an essential role as a NLS and Sp1 can be transported into the nucleus in an importin-dependent manner even though it possesses no classical NLSs.

  1. Zinc finger protein 521 overexpression increased transcript levels of ...

    Indian Academy of Sciences (India)

    2016-02-12

    Feb 12, 2016 ... Zinc finger protein 521 is highly expressed in brain, neural stem cells and early progenitors of the human .... Membranes were blocked for 1 h with 10% skim milk and ..... fat-like development of white fat and thermogenesis.

  2. A novel zinc finger protein Zfp277 mediates transcriptional repression of the Ink4a/arf locus through polycomb repressive complex 1

    DEFF Research Database (Denmark)

    Negishi, Masamitsu; Saraya, Atsunori; Mochizuki, Shinobu

    2010-01-01

    . METHODOLOGY/PRINCIPAL FINDINGS: We examined the function of Zinc finger domain-containing protein 277 (Zfp277), a novel zinc finger protein that interacts with the PcG protein Bmi1. Zfp277 binds to the Ink4a/Arf locus in a Bmi1-independent manner and interacts with polycomb repressor complex (PRC) 1 through...... is essential for the recruitment of PRC1 to the Ink4a/Arf locus. Our findings also highlight dynamic regulation of both Zfp277 and PcG proteins by the oxidative stress pathways....

  3. The zinc fingers of the Small Optic Lobes (SOL) calpain bind polyubiquitin.

    Science.gov (United States)

    Hastings, Margaret H; Qiu, Alvin; Zha, Congyao; Farah, Carole A; Mahdid, Yacine; Ferguson, Larissa; Sossin, Wayne S

    2018-05-28

    The Small Optic Lobes (SOL) calpain is a highly conserved member of the calpain family expressed in the nervous system. A dominant negative form of the SOL calpain inhibited consolidation of one form of synaptic plasticity, non-associative facilitation, in sensory-motor neuronal cultures in Aplysia, presumably by inhibiting cleavage of protein kinase Cs (PKCs) into constitutively active protein kinase Ms (PKMs) (Hu et al, 2017a). SOL calpains have a conserved set of 5-6 N-terminal zinc fingers. Bioinformatic analysis suggests that these zinc fingers could bind to ubiquitin. In this study, we show that both the Aplysia and mouse SOL calpain (also known as Calpain 15) zinc fingers bind ubiquitinated proteins, and we confirm that Aplysia SOL binds poly- but not mono or di-ubiquitin. No specific zinc finger is required for polyubiquitin binding. Neither polyubiquitin nor calcium was sufficient to induce purified Aplysia SOL calpain to autolyse or to cleave the atypical PKC to PKM in vitro. In Aplysia, overexpression of the atypical PKC in sensory neurons leads to an activity-dependent cleavage event and an increase in nuclear ubiquitin staining. Activity-dependent cleavage is partially blocked by a dominant negative SOL calpain, but not by a dominant negative classical calpain. The cleaved PKM was stabilized by the dominant negative classical calpain and destabilized by a dominant negative form of the PKM stabilizing proteinKIdney/BRAin protein(KIBRA). These studies provide new insight into SOL calpain's function and regulation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. An investigation of the electrochemical action of the epoxy zinc-rich coatings containing surface modified aluminum nanoparticle

    Science.gov (United States)

    Jalili, M.; Rostami, M.; Ramezanzadeh, B.

    2015-02-01

    Aluminum nanoparticle was modified with amino trimethylene phosphonic acid (ATMP). The surface characterization of the nanoparticles was done by X-ray photo electron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis. The influence of the replacement of 2 wt% of zinc dust in the standard zinc-rich epoxy coating by nanoparticles on the electrochemical action of the coating was studied by electrochemical impedance spectroscopy (EIS) and salt spray tests. The morphology and phase composition of the zinc rich paints were evaluated by X-ray diffraction (XRD) and filed-emission scanning electron microscopy (FE-SEM). Results showed that the ATMP molecules successfully adsorbed on the surface of Al nanoparticles. Results obtained from salt spray and electrochemical measurements revealed that the addition of surface modified nanoparticles to the zinc rich coating enhanced its galvanic action and corrosion protection properties.

  5. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication1[OPEN

    Science.gov (United States)

    Li, Qing-Tian; Lu, Xiang; Song, Qing-Xin; Chen, Hao-Wei; Wei, Wei; Tao, Jian-Jun; Ma, Biao; Bi, Ying-Dong; Li, Wei; Lai, Yong-Cai; Shui, Guang-Hou; Chen, Shou-Yi

    2017-01-01

    Seed oil is a momentous agronomical trait of soybean (Glycine max) targeted by domestication in breeding. Although multiple oil-related genes have been uncovered, knowledge of the regulatory mechanism of seed oil biosynthesis is currently limited. We demonstrate that the seed-preferred gene GmZF351, encoding a tandem CCCH zinc finger protein, is selected during domestication. Further analysis shows that GmZF351 facilitates oil accumulation by directly activating WRINKLED1, BIOTIN CARBOXYL CARRIER PROTEIN2, 3-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III, DIACYLGLYCEROL O-ACYLTRANSFERASE1, and OLEOSIN2 in transgenic Arabidopsis (Arabidopsis thaliana) seeds. Overexpression of GmZF351 in transgenic soybean also activates lipid biosynthesis genes, thereby accelerating seed oil accumulation. The ZF351 haplotype from the cultivated soybean group and the wild soybean (Glycine soja) subgroup III correlates well with high gene expression level, seed oil contents and promoter activity, suggesting that selection of GmZF351 expression leads to increased seed oil content in cultivated soybean. Our study provides novel insights into the regulatory mechanism for seed oil accumulation, and the manipulation of GmZF351 may have great potential in the improvement of oil production in soybean and other related crops. PMID:28184009

  6. Characterization of two novel nuclear BTB/POZ domain zinc finger isoforms. Association with differentiation of hippocampal neurons, cerebellar granule cells, and macroglia

    DEFF Research Database (Denmark)

    Mitchelmore, Cathy; Kjaerulff, Karen M; Pedersen, Hans C

    2002-01-01

    BTB/POZ (broad complex tramtrack bric-a-brac/poxvirus and zinc finger) zinc finger factors are a class of nuclear DNA-binding proteins involved in development, chromatin remodeling, and cancer. However, BTB/POZ domain zinc finger factors linked to development of the mammalian cerebral cortex......, cerebellum, and macroglia have not been described previously. We report here the isolation and characterization of two novel nuclear BTB/POZ domain zinc finger isoforms, designated HOF(L) and HOF(S), that are specifically expressed in early hippocampal neurons, cerebellar granule cells, and gliogenic...

  7. Prediction of DNA-binding specificity in zinc finger proteins

    Indian Academy of Sciences (India)

    2012-06-25

    Jun 25, 2012 ... Support Vector Machine (SVM) is a state-of-the-art classifica- tion technique. Using canonical binding model, the C2H2 zinc finger protein–DNA interaction interface is modelled by the pairwise amino acid–base interactions. Using a classification framework, known examples of non-binding ZF–DNA pairs.

  8. Electrochemical and anticorrosion performances of zinc-rich and polyaniline powder coatings

    International Nuclear Information System (INIS)

    Meroufel, A.; Deslouis, C.; Touzain, S.

    2008-01-01

    In this work, hydrochloride polyaniline (PANI-Cl) powder was incorporated as a conductive pigment into powder zinc-rich primer (ZRP) formulations in order to enhance the electronic conduction paths between zinc particles inside the coating and the steel substrate (i.e. percolation). Coatings were applied onto steel substrates and immersed in a 3% NaCl solution at ambient temperature. The protective properties and electrochemical behaviour of coatings were investigated by monitoring the free corrosion potential versus time and by using EIS. It was found that corrosion potential remains cathodic and constant for a long time up to 100 days of immersion. From EIS results, it was shown that the coatings exhibit larger impedance values than those observed with liquid or other zinc-rich powder formulations containing carbon black. From Raman spectroscopy results, it may be proposed that zinc particles in contact with PANI-Cl pigments were passivated. Other zinc particles remain still active which ensures the cathodic protection of the substrate. Moreover, coatings exhibit good barrier properties

  9. Glycoengineering of Human Cell Lines Using Zinc Finger Nuclease Gene Targeting

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Bennett, Eric Paul; Clausen, Henrik

    2013-01-01

    Lectin affinity chromatography is a powerful technique for isolation of glycoproteins carrying a specific glycan structure of interest. However, the enormous diversity of glycans present on the cell surface, as well as on individual proteins, makes it difficult to isolate an entire glycoproteome...... with one or even a series of lectins. Here we present a technique to generate cell lines with homogenous truncated O-glycans using zinc finger nuclease gene targeting. Because of their simplified O-glycoproteome, the cells have been named SimpleCells. Glycoproteins from SimpleCells can be isolated...... in a single purification step by lectin chromatography performed on a long lectin column. This protocol describes Zinc finger nuclease gene targeting of human cells to simplify the glycoproteome, as well as lectin chromatography and isolation of glycopeptides from total cell lysates of SimpleCells....

  10. A DHHC-type zinc finger protein gene regulates shoot branching in ...

    African Journals Online (AJOL)

    hope&shola

    Arabidopsis. Key words: Arabidopsis, DHHC-type zinc finger protein, At5g04270, shoot branching. ..... and human HIP14 (Ducker et al., 2004), were isolated and identified to .... the control of branching in the rms1 mutant of pea. Plant Physiol.

  11. Zinc fingers 1, 2, 5 and 6 of transcriptional regulator, PRDM4, are required for its nuclear localisation

    Energy Technology Data Exchange (ETDEWEB)

    Tunbak, Hale, E-mail: h.tunbak@ucl.ac.uk [The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT (United Kingdom); Georgiou, Christiana, E-mail: christiana.georgiou.10@ucl.ac.uk [The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT (United Kingdom); Guan, Cui, E-mail: c.guan@qmul.ac.uk [School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Richardson, William David, E-mail: w.richardson@ucl.ac.uk [The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT (United Kingdom); Chittka, Alexandra, E-mail: a.chittka@ucl.ac.uk [The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-05-27

    PRDM4 is a member of the PRDM family of transcriptional regulators which control various aspects of cellular differentiation and proliferation. PRDM proteins exert their biological functions both in the cytosol and the nucleus of cells. All PRDM proteins are characterised by the presence of two distinct structural motifs, the PR/SET domain and the zinc finger (ZF) motifs. We previously observed that deletion of all six zinc fingers found in PRDM4 leads to its accumulation in the cytosol, whereas overexpressed full length PRDM4 is found predominantly in the nucleus. Here, we investigated the requirements for single zinc fingers in the nuclear localisation of PRDM4. We demonstrate that ZF's 1, 2, 5 and 6 contribute to the accumulation of PRDM4 in the nucleus. Their effect is additive as deleting either ZF1-2 or ZF 5–6 redistributes PRDM4 protein from being almost exclusively nuclear to cytosolic and nuclear. We investigated the potential mechanism of nuclear shuttling of PRDM4 via the importin α/β-mediated pathway and find that PRDM4 nuclear targeting is independent of α/β-mediated nuclear import. -- Highlights: •Zinc fingers 1, 2, 5, and 6 are necessary for efficient nuclear localisation of PRDM4. •Zinc fingers 3 and 4 are dispensable for nuclear localisation of PRDM4. •Zinc knuckle is dispensable for nuclear localisation of PRDM4. •PRDM4 nuclear transport is independent of importin α/β-mediated pathway of nuclear import.

  12. Nucleolin modulates the subcellular localization of GDNF-inducible zinc finger protein 1 and its roles in transcription and cell proliferation

    International Nuclear Information System (INIS)

    Dambara, Atsushi; Morinaga, Takatoshi; Fukuda, Naoyuki; Yamakawa, Yoshinori; Kato, Takuya; Enomoto, Atsushi; Asai, Naoya; Murakumo, Yoshiki; Matsuo, Seiichi; Takahashi, Masahide

    2007-01-01

    GZF1 is a zinc finger protein induced by glial cell-line-derived neurotrophic factor (GDNF). It is a sequence-specific transcriptional repressor with a BTB/POZ (Broad complex, Tramtrack, Bric a brac/Poxvirus and zinc finger) domain and ten zinc finger motifs. In the present study, we used immunoprecipitation and mass spectrometry to identify nucleolin as a GZF1-binding protein. Deletion analysis revealed that zinc finger motifs 1-4 of GZF1 mediate its association with nucleolin. When zinc fingers 1-4 were deleted from GZF1 or nucleolin expression was knocked down by short interference RNA (siRNA), nuclear localization of GZF1 was impaired. These results suggest that nucleolin is involved in the proper subcellular distribution of GZF1. In addition, overexpression of nucleolin moderately inhibited the transcriptional repressive activity of GZF1 whereas knockdown of nucleolin expression by siRNA enhanced its activity. Thus, the repressive activity of GZF1 is modulated by the level at which nucleolin is expressed. Finally, we found that knockdown of GZF1 and nucleolin expression markedly impaired cell proliferation. These findings suggest that the physiological functions of GZF1 may be regulated by the protein's association with nucleolin

  13. Localized frustration and binding-induced conformational change in recognition of 5S RNA by TFIIIA zinc finger.

    Science.gov (United States)

    Tan, Cheng; Li, Wenfei; Wang, Wei

    2013-12-19

    Protein TFIIIA is composed of nine tandemly arranged Cys2His2 zinc fingers. It can bind either to the 5S RNA gene as a transcription factor or to the 5S RNA transcript as a chaperone. Although structural and biochemical data provided valuable information on the recognition between the TFIIIIA and the 5S DNA/RNA, the involved conformational motions and energetic factors contributing to the binding affinity and specificity remain unclear. In this work, we conducted MD simulations and MM/GBSA calculations to investigate the binding-induced conformational changes in the recognition of the 5S RNA by the central three zinc fingers of TFIIIA and the energetic factors that influence the binding affinity and specificity at an atomistic level. Our results revealed drastic interdomain conformational changes between these three zinc fingers, involving the exposure/burial of several crucial DNA/RNA binding residues, which can be related to the competition between DNA and RNA for the binding of TFIIIA. We also showed that the specific recognition between finger 4/finger 6 and the 5S RNA introduces frustrations to the nonspecific interactions between finger 5 and the 5S RNA, which may be important to achieve optimal binding affinity and specificity.

  14. Krüppel-like factors: Three fingers in control

    Directory of Open Access Journals (Sweden)

    Swamynathan Shivalingappa K

    2010-04-01

    Full Text Available Abstract Krüppel-like factors (KLFs, members of the zinc-finger family of transcription factors capable of binding GC-rich sequences, have emerged as critical regulators of important functions all over the body. They are characterised by a highly conserved C-terminal DNA-binding motif containing three C2H2 zinc-finger domains, with variable N-terminal regulatory domains. Currently, there are 17 KLFs annotated in the human genome. In spite of their structural similarity to one another, the genes encoding different KLFs are scattered all over the genome. By virtue of their ability to activate and/or repress the expression of a large number of genes, KLFs regulate a diverse array of developmental events and cellular processes, such as erythropoiesis, cardiac remodelling, adipogenesis, maintenance of stem cells, epithelial barrier formation, control of cell proliferation and neoplasia, flow-mediated endothelial gene expression, skeletal and smooth muscle development, gluconeogenesis, monocyte activation, intestinal and conjunctival goblet cell development, retinal neuronal regeneration and neonatal lung development. Characteristic features, nomenclature, evolution and functional diversities of the human KLFs are reviewed here.

  15. Krüppel-like factors: three fingers in control.

    Science.gov (United States)

    Swamynathan, Shivalingappa K

    2010-04-01

    Krüppel-like factors (KLFs), members of the zinc-finger family of transcription factors capable of binding GC-rich sequences, have emerged as critical regulators of important functions all over the body. They are characterised by a highly conserved C-terminal DNA-binding motif containing three C2H2 zinc-finger domains, with variable N-terminal regulatory domains. Currently, there are 17 KLFs annotated in the human genome. In spite of their structural similarity to one another, the genes encoding different KLFs are scattered all over the genome. By virtue of their ability to activate and/or repress the expression of a large number of genes, KLFs regulate a diverse array of developmental events and cellular processes, such as erythropoiesis, cardiac remodelling, adipogenesis, maintenance of stem cells, epithelial barrier formation, control of cell proliferation and neoplasia, flow-mediated endothelial gene expression, skeletal and smooth muscle development, gluconeogenesis, monocyte activation, intestinal and conjunctival goblet cell development, retinal neuronal regeneration and neonatal lung development. Characteristic features, nomenclature, evolution and functional diversities of the human KLFs are reviewed here.

  16. Dynamics of Linker Residues Modulate the Nucleic Acid Binding Properties of the HIV-1 Nucleocapsid Protein Zinc Fingers

    Science.gov (United States)

    Zargarian, Loussiné; Tisné, Carine; Barraud, Pierre; Xu, Xiaoqian; Morellet, Nelly; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2014-01-01

    The HIV-1 nucleocapsid protein (NC) is a small basic protein containing two zinc fingers (ZF) separated by a short linker. It is involved in several steps of the replication cycle and acts as a nucleic acid chaperone protein in facilitating nucleic acid strand transfers occurring during reverse transcription. Recent analysis of three-dimensional structures of NC-nucleic acids complexes established a new property: the unpaired guanines targeted by NC are more often inserted in the C-terminal zinc finger (ZF2) than in the N-terminal zinc finger (ZF1). Although previous NMR dynamic studies were performed with NC, the dynamic behavior of the linker residues connecting the two ZF domains remains unclear. This prompted us to investigate the dynamic behavior of the linker residues. Here, we collected 15N NMR relaxation data and used for the first time data at several fields to probe the protein dynamics. The analysis at two fields allows us to detect a slow motion occurring between the two domains around a hinge located in the linker at the G35 position. However, the amplitude of motion appears limited in our conditions. In addition, we showed that the neighboring linker residues R29, A30, P31, R32, K33 displayed restricted motion and numerous contacts with residues of ZF1. Our results are fully consistent with a model in which the ZF1-linker contacts prevent the ZF1 domain to interact with unpaired guanines, whereas the ZF2 domain is more accessible and competent to interact with unpaired guanines. In contrast, ZF1 with its large hydrophobic plateau is able to destabilize the double-stranded regions adjacent to the guanines bound by ZF2. The linker residues and the internal dynamics of NC regulate therefore the different functions of the two zinc fingers that are required for an optimal chaperone activity. PMID:25029439

  17. Occupancy of a C2-C2 type 'zinc-finger' protein domain by copper. Direct observation by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Hutchens, T W; Allen, M H; Li, C M; Yip, T T

    1992-09-07

    The metal ion specificity of most 'zinc-finger' metal binding domains is unknown. The human estrogen receptor protein contains two different C2-C2 type 'zinc-finger' sequences within its DNA-binding domain (ERDBD). Copper inhibits the function of this protein by mechanisms which remain unclear. We have used electrospray ionization mass spectrometry to evaluate directly the 71-residue ERDBD (K180-M250) in the absence and presence of Cu(II) ions. The ERDBD showed a high affinity for Cu and was completely occupied with 4 Cu bound; each Cu ion was evidently bound to only two ligand residues (net loss of only 2 Da per bound Cu). The Cu binding stoichiometry was confirmed by atomic absorption. These results (i) provide the first direct physical evidence for the ability of the estrogen receptor DNA-binding domain to bind Cu and (ii) document a twofold difference in the Zn- and Cu-binding capacity. Differences in the ERDBD domain structure with bound Zn and Cu are predicted. Given the relative intracellular contents of Zn and Cu, our findings demonstrate the need to investigate further the Cu occupancy of this and other zinc-finger domains both in vitro and in vivo.

  18. Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Vakhrushev, Sergey Y; Vester-Christensen, Malene B

    2011-01-01

    Zinc-finger nuclease (ZFN) gene targeting is emerging as a versatile tool for engineering of multiallelic gene deficiencies. A longstanding obstacle for detailed analysis of glycoproteomes has been the extensive heterogeneities in glycan structures and attachment sites. Here we applied ZFN target...

  19. Gain, loss and divergence in primate zinc-finger genes: a rich resource for evolution of gene regulatory differences between species.

    Directory of Open Access Journals (Sweden)

    Katja Nowick

    Full Text Available The molecular changes underlying major phenotypic differences between humans and other primates are not well understood, but alterations in gene regulation are likely to play a major role. Here we performed a thorough evolutionary analysis of the largest family of primate transcription factors, the Krüppel-type zinc finger (KZNF gene family. We identified and curated gene and pseudogene models for KZNFs in three primate species, chimpanzee, orangutan and rhesus macaque, to allow for a comparison with the curated set of human KZNFs. We show that the recent evolutionary history of primate KZNFs has been complex, including many lineage-specific duplications and deletions. We found 213 species-specific KZNFs, among them 7 human-specific and 23 chimpanzee-specific genes. Two human-specific genes were validated experimentally. Ten genes have been lost in humans and 13 in chimpanzees, either through deletion or pseudogenization. We also identified 30 KZNF orthologs with human-specific and 42 with chimpanzee-specific sequence changes that are predicted to affect DNA binding properties of the proteins. Eleven of these genes show signatures of accelerated evolution, suggesting positive selection between humans and chimpanzees. During primate evolution the most extensive re-shaping of the KZNF repertoire, including most gene additions, pseudogenizations, and structural changes occurred within the subfamily homininae. Using zinc finger (ZNF binding predictions, we suggest potential impact these changes have had on human gene regulatory networks. The large species differences in this family of TFs stands in stark contrast to the overall high conservation of primate genomes and potentially represents a potent driver of primate evolution.

  20. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases

    DEFF Research Database (Denmark)

    Chen, Fuqiang; Pruett-Miller, Shondra M; Huang, Yuping

    2011-01-01

    Zinc-finger nucleases (ZFNs) have enabled highly efficient gene targeting in multiple cell types and organisms. Here we describe methods for using simple ssDNA oligonucleotides in tandem with ZFNs to efficiently produce human cell lines with three distinct genetic outcomes: (i) targeted point...

  1. Targeting Ligandable Pockets on Plant Homeodomain (PHD) Zinc Finger Domains by a Fragment-Based Approach.

    Science.gov (United States)

    Amato, Anastasia; Lucas, Xavier; Bortoluzzi, Alessio; Wright, David; Ciulli, Alessio

    2018-04-20

    Plant homeodomain (PHD) zinc fingers are histone reader domains that are often associated with human diseases. Despite this, they constitute a poorly targeted class of readers, suggesting low ligandability. Here, we describe a successful fragment-based campaign targeting PHD fingers from the proteins BAZ2A and BAZ2B as model systems. We validated a pool of in silico fragments both biophysically and structurally and solved the first crystal structures of PHD zinc fingers in complex with fragments bound to an anchoring pocket at the histone binding site. The best-validated hits were found to displace a histone H3 tail peptide in competition assays. This work identifies new chemical scaffolds that provide suitable starting points for future ligand optimization using structure-guided approaches. The demonstrated ligandability of the PHD reader domains could pave the way for the development of chemical probes to drug this family of epigenetic readers.

  2. Design, construction, and analysis of specific zinc finger nucleases for microphthalmia - associate transcription factor

    Directory of Open Access Journals (Sweden)

    Wenwen Wang

    2012-08-01

    Full Text Available This work studied the design, construction, and cleavage analysis of zinc finger nucleases (ZFNs that could cut the specific sequences within microphthalmia - associate transcription factor (mitfa of zebra fish. The target site and ZFPs were selected and designed with zinc finger tools, while the ZFPs were synthesized using DNAWorks and two-step PCR. The ZFNs were constructed, expressed, purified, and analyzed in vitro. As expected, the designed ZFNs could create a double-stand break (DSB at the target site in vitro. The DNAWorks, two-step PCR, and an optimized process of protein expression were firstly induced in the construction of ZFNs successfully, which was an effective and simplified protocol. These results could be useful for further application of ZFNs - mediated gene targeting.

  3. Chemical Approach to Biological Safety: Molecular-Level Control of an Integrated Zinc Finger Nuclease

    DEFF Research Database (Denmark)

    Németh, Eszter; Asaka, Masamitsu N; Kato, Kohsuke

    2018-01-01

    circular dichroism spectroscopy, and nano-electrospray ionisation mass spectrometry. In situ intramolecular activation of the nuclease domain was observed, resulting in specific cleavage of DNA with moderate activity. This study represents a new approach to AN design through integrated nucleases consisting......Application of artificial nucleases (ANs) in genome editing is still hindered by their cytotoxicity related to off-target cleavages. This problem can be targeted by regulation of the nuclease domain. Here, we provide an experimental survey of computationally designed integrated zinc finger...... nucleases, constructed by linking the inactivated catalytic centre and the allosteric activator sequence of the colicin E7 nuclease domain to the two opposite termini of a zinc finger array. DNA specificity and metal binding were confirmed by electrophoretic mobility shift assays, synchrotron radiation...

  4. Fear-of-intimacy-mediated zinc transport controls the function of zinc-finger transcription factors involved in myogenesis.

    Science.gov (United States)

    Carrasco-Rando, Marta; Atienza-Manuel, Alexandra; Martín, Paloma; Burke, Richard; Ruiz-Gómez, Mar

    2016-06-01

    Zinc is a component of one-tenth of all human proteins. Its cellular concentration is tightly regulated because its dyshomeostasis has catastrophic health consequences. Two families of zinc transporters control zinc homeostasis in organisms, but there is little information about their specific developmental roles. We show that the ZIP transporter Fear-of-intimacy (Foi) is necessary for the formation of Drosophila muscles. In foi mutants, myoblasts segregate normally, but their specification is affected, leading to the formation of a misshapen muscle pattern and distorted midgut. The observed phenotypes could be ascribed to the inactivation of specific zinc-finger transcription factors (ZFTFs), supporting the hypothesis that they are a consequence of intracellular depletion of zinc. Accordingly, foi phenotypes can be rescued by mesodermal expression of other ZIP members with similar subcellular localization. We propose that Foi acts mostly as a transporter to regulate zinc intracellular homeostasis, thereby impacting on the activity of ZFTFs that control specific developmental processes. Our results additionally suggest a possible explanation for the presence of large numbers of zinc transporters in organisms based on differences in ion transport specificity and/or degrees of activity among transporters. © 2016. Published by The Company of Biologists Ltd.

  5. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki [System Instruments Co., Ltd., 776-2 Komiya-cho, Hachioji, Tokyo 192-0031 (Japan); Noda, Mamoru; Igimi, Shizunobu [Division of Biomedical Food Research, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Ikebukuro, Kazunori, E-mail: ikebu@cc.tuat.ac.jp [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2013-11-01

    Graphical abstract: -- Highlights: •Zif268 fused to luciferase was used for E. coli O157, Salmonella and coliform detection. •Artificial zinc finger protein fused to luciferase was constructed for Norovirus detection. •An analyzer that automatically detects PCR products by zinc finger protein fused to luciferase was developed. •Target pathogens were specifically detected by the automatic analyzer with zinc finger protein fused to luciferase. -- Abstract: An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268–luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF–luciferase fusion protein. By means of the automatic analyzer with ZF–luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0 × 10 to 1.0 × 10{sup 6} copies.

  6. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase

    International Nuclear Information System (INIS)

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi; Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki; Noda, Mamoru; Igimi, Shizunobu; Ikebukuro, Kazunori

    2013-01-01

    Graphical abstract: -- Highlights: •Zif268 fused to luciferase was used for E. coli O157, Salmonella and coliform detection. •Artificial zinc finger protein fused to luciferase was constructed for Norovirus detection. •An analyzer that automatically detects PCR products by zinc finger protein fused to luciferase was developed. •Target pathogens were specifically detected by the automatic analyzer with zinc finger protein fused to luciferase. -- Abstract: An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268–luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF–luciferase fusion protein. By means of the automatic analyzer with ZF–luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0 × 10 to 1.0 × 10 6 copies

  7. Myocardial ischemic preconditioning upregulated protein 1(Mipu1):zinc finger protein 667 - a multifunctional KRAB/C{sub 2}H{sub 2} zinc finger protein

    Energy Technology Data Exchange (ETDEWEB)

    Han, D.; Zhang, C. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); Fan, W.J. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China); The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province (China); Pan, W.J.; Feng, D.M.; Qu, S.L.; Jiang, Z.S. [Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Post-doctoral Mobile Stations for Basic Medicine, University of South China, Hengyang City, Hunan Province (China)

    2014-10-31

    Myocardial ischemic preconditioning upregulated protein 1 (Mipu1) is a newly discovered upregulated gene produced in rats during the myocardial ischemic preconditioning process. Mipu1 cDNA contains a 1824-base pair open reading frame and encodes a 608 amino acid protein with an N-terminal Krüppel-associated box (KRAB) domain and classical zinc finger C{sub 2}H{sub 2} motifs in the C-terminus. Mipu1 protein is located in the cell nucleus. Recent studies found that Mipu1 has a protective effect on the ischemia-reperfusion injury of heart, brain, and other organs. As a nuclear factor, Mipu1 may perform its protective function through directly transcribing and repressing the expression of proapoptotic genes to repress cell apoptosis. In addition, Mipu1 also plays an important role in regulating the gene expression of downstream inflammatory mediators by inhibiting the activation of activator protein-1 and serum response element.

  8. Overexpression of AtGRDP2, a novel glycine-rich domain protein, accelerates plant growth and improves stress tolerance

    Directory of Open Access Journals (Sweden)

    Maria Azucena Ortega-Amaro

    2015-01-01

    Full Text Available Proteins with glycine-rich signatures have been reported in a wide variety of organisms including plants, mammalians, fungi, and bacteria. Plant glycine-rich protein genes exhibit developmental and tissue-specific expression patterns. Herein, we present the characterization of the AtGRDP2 gene using Arabidopsis null and knockdown mutants and, Arabidopsis and lettuce over-expression lines. AtGRDP2 encodes a short glycine-rich domain protein, containing a DUF1399 domain and a putative RNA recognition motif. AtGRDP2 transcript is mainly expressed in Arabidopsis floral organs, and its deregulation in Arabidopsis Atgrdp2 mutants and 35S::AtGRDP2 over-expression lines produces alterations in development. The 35S::AtGRDP2 over-expression lines grow faster than the WT, while the Atgrdp2 mutants have a delay in growth and development. The over-expression lines accumulate higher levels of indole-3-acetic acid and, have alterations in the expression pattern of ARF6, ARF8 and miR167 regulators of floral development and auxin signaling. Under salt stress conditions, 35S::AtGRDP2 over-expression lines displayed higher tolerance and increased expression of stress marker genes. Likewise, transgenic lettuce plants over-expressing the AtGRDP2 gene manifest increased growth rate and early flowering time. Our data reveal an important role for AtGRDP2 in Arabidopsis development and stress response, and suggest a connection between AtGRDP2 and auxin signaling.

  9. ZNF383, a novel KRAB-containing zinc finger protein, suppresses MAPK signaling pathway

    International Nuclear Information System (INIS)

    Cao Lei; Wang Zhi; Zhu Chuanbing; Zhao Yulian; Yuan Wuzhou; Li Jing; Wang Yuequn; Ying Zhaochu; Li Yongqing; Yu Weishi; Wu Xiushan; Liu Mingyao

    2005-01-01

    Mitogen-activated protein kinases (MAPKs) are major components of pathways controlling embryogenesis, cell differentiation, cell proliferation, and cell death. One of the most explored functions of MAPK signaling is the regulation of gene expression by direct or indirect phosphorylation and subsequent activation of transcription factors. In this article, we isolated a novel KRAB-related zinc finger gene named ZNF383 from an early embryo heart cDNA library. The cDNA of ZNF383 is 2220 bp, encoding a protein of 475 amino acids. The protein is conserved in evolution across different species. Northern blot analysis indicates that a 2.2 kb transcript specific for ZNF383 is detected in most of the examined human adult and embryonic tissues with a higher level in skeletal muscle. In COS-7 cells, ZNF383 protein is localized to nucleus and cytoplasm. ZNF383 is a transcription repressor when fused to Gal-4 DNA-binding domain and cotransfected with VP-16. Deletion analysis indicates that the KRAB box of ZNF383 is responsible for the transcriptional repressor activity. Overexpression of ZNF383 in cells inhibits the transcriptional activities of AP-1 and SRE, suggesting that ZNF383 may act as a negative regulator in MAPK-mediated signaling pathways

  10. Zinc-fingers and homeoboxes 1 (ZHX1) binds DNA methyltransferase (DNMT) 3B to enhance DNMT3B-mediated transcriptional repression

    International Nuclear Information System (INIS)

    Kim, Sung-Hak; Park, Jinah; Choi, Moon-Chang; Kim, Hwang-Phill; Park, Jung-Hyun; Jung, Yeonjoo; Lee, Ju-Hee; Oh, Do-Youn; Im, Seock-Ah; Bang, Yung-Jue; Kim, Tae-You

    2007-01-01

    DNA methyltransferases (DNMT) 3B is a de novo DNMT that represses transcription independent of DNMT activity. In order to gain a better insight into DNMT3B-mediated transcriptional repression, we performed a yeast two-hybrid analysis using DNMT3B as a bait. Of the various binding candidates, ZHX1, a member of zinc-finger and homeobox protein, was found to interact with DNMT3B in vivo and in vitro. N-terminal PWWP domain of DNMT3B was required for its interaction with homeobox motifs of ZHX1. ZHX1 contains nuclear localization signal at C-terminal homeobox motif, and both ZHX1 and DNMT3B were co-localized in nucleus. Furthermore, we found that ZHX1 enhanced the transcriptional repression mediated by DNMT3B when DNMT3B is directly targeted to DNA. These results showed for First the direct linkage between DNMT and zinc-fingers homeoboxes protein, leading to enhanced gene silencing by DNMT3B

  11. Promiscuous and specific phospholipid binding by domains in ZAC, a membrane-associated Arabidopsis protein with an ARF GAP zinc finger and a C2 domain

    DEFF Research Database (Denmark)

    Jensen, R B; Lykke-Andersen, K; Frandsen, G I

    2000-01-01

    domain are separated by a region without homology to other known proteins. Zac promoter/beta-glucuronidase reporter assays revealed highest expression levels in flowering tissue, rosettes and roots. ZAC protein was immuno-detected mainly in association with membranes and fractionated with Golgi...... and plasma membrane marker proteins. ZAC membrane association was confirmed in assays by a fusion between ZAC and the green fluorescence protein and prompted an analysis of the in vitro phospholipid-binding ability of ZAC. Phospholipid dot-blot and liposome-binding assays indicated that fusion proteins...... zinc finger motif, but proteins containing only the zinc finger domain (residues 1-105) did not bind PI-3-P. Recombinant ZAC possessed GTPase-activating activity on Arabidopsis ARF proteins. These data identify a novel PI-3-P-binding protein region and thereby provide evidence...

  12. GhZFP1, a novel CCCH-type zinc finger protein from cotton, enhances salt stress tolerance and fungal disease resistance in transgenic tobacco by interacting with GZIRD21A and GZIPR5.

    Science.gov (United States)

    Guo, Ying-Hui; Yu, Yue-Ping; Wang, Dong; Wu, Chang-Ai; Yang, Guo-Dong; Huang, Jin-Guang; Zheng, Cheng-Chao

    2009-01-01

    * Zinc finger proteins are a superfamily involved in many aspects of plant growth and development. However, CCCH-type zinc finger proteins involved in plant stress tolerance are poorly understood. * A cDNA clone designated Gossypium hirsutum zinc finger protein 1 (GhZFP1), which encodes a novel CCCH-type zinc finger protein, was isolated from a salt-induced cotton (G. hirsutum) cDNA library using differential hybridization screening and further studied in transgenic tobacco Nicotiana tabacum cv. NC89. Using yeast two-hybrid screening (Y2H), proteins GZIRD21A (GhZFP1 interacting and responsive to dehydration protein 21A) and GZIPR5 (GhZFP1 interacting and pathogenesis-related protein 5), which interacted with GhZFP1, were isolated. * GhZFP1 contains two typical zinc finger motifs (Cx8Cx5Cx3H and Cx5Cx4Cx3H), a putative nuclear export sequence (NES) and a potential nuclear localization signal (NLS). Transient expression analysis using a GhZFP1::GFP fusion gene in onion epidermal cells indicated a nuclear localization for GhZFP1. RNA blot analysis showed that the GhZFP1 transcript was induced by salt (NaCl), drought and salicylic acid (SA). The regions in GhZFP1 that interact with GZIRD21A and GZIPR5 were identified using truncation mutations. * Overexpression of GhZFP1 in transgenic tobacco enhanced tolerance to salt stress and resistance to Rhizoctonia solani. Therefore, it appears that GhZFP1 might be involved as an important regulator in plant responses to abiotic and biotic stresses.

  13. Activation of transcriptional activities of AP-1 and SRE by a new zinc-finger protein ZNF641

    International Nuclear Information System (INIS)

    Qi Xingzhu; Li Yongqing; Xiao Jing; Yuan Wuzhou; Yan Yan; Wang Yuequn; Liang Shuyuan; Zhu Chuanbing; Chen Yingduan; Liu Mingyao; Wu Xiushan

    2006-01-01

    Mitogen-activated protein kinases (MAPKs) are evolutionarily conserved enzymes in cell signal transduction connecting cell-surface receptors to critical regulatory targets within cells and control cell survival, adaptation, and proliferation. Previous studies revealed that zinc-finger proteins are involved in the regulation of the MAPK signaling pathways. Here, we report the identification and characterization of a novel human zinc-finger protein, ZNF641. The cDNA of ZNF641 is 4.9 kb, encoding 438 amino acids in the nucleus. The protein is highly conserved in evolution across different vertebrate species from mouse to human. Northern blot analysis indicates that ZNF641 is expressed in most of the examined human tissues, with a high level in skeletal muscle. Overexpression of pCMV-Tag2B-ZNF641 in the COS-7 cells activates the transcriptional activities of AP-1 and SRE. Deletion analysis indicates that the linker between KRAB box and C 2 H 2 -type zinc-fingers represents the basal activation domain. These results suggest that ZNF641 may be a positive regulator in MAPK-mediated signaling pathways that lead to the activation of AP-1 and SRE

  14. ZFNGenome: A comprehensive resource for locating zinc finger nuclease target sites in model organisms

    Directory of Open Access Journals (Sweden)

    Voytas Daniel F

    2011-01-01

    Full Text Available Abstract Background Zinc Finger Nucleases (ZFNs have tremendous potential as tools to facilitate genomic modifications, such as precise gene knockouts or gene replacements by homologous recombination. ZFNs can be used to advance both basic research and clinical applications, including gene therapy. Recently, the ability to engineer ZFNs that target any desired genomic DNA sequence with high fidelity has improved significantly with the introduction of rapid, robust, and publicly available techniques for ZFN design such as the Oligomerized Pool ENgineering (OPEN method. The motivation for this study is to make resources for genome modifications using OPEN-generated ZFNs more accessible to researchers by creating a user-friendly interface that identifies and provides quality scores for all potential ZFN target sites in the complete genomes of several model organisms. Description ZFNGenome is a GBrowse-based tool for identifying and visualizing potential target sites for OPEN-generated ZFNs. ZFNGenome currently includes a total of more than 11.6 million potential ZFN target sites, mapped within the fully sequenced genomes of seven model organisms; S. cerevisiae, C. reinhardtii, A. thaliana, D. melanogaster, D. rerio, C. elegans, and H. sapiens and can be visualized within the flexible GBrowse environment. Additional model organisms will be included in future updates. ZFNGenome provides information about each potential ZFN target site, including its chromosomal location and position relative to transcription initiation site(s. Users can query ZFNGenome using several different criteria (e.g., gene ID, transcript ID, target site sequence. Tracks in ZFNGenome also provide "uniqueness" and ZiFOpT (Zinc Finger OPEN Targeter "confidence" scores that estimate the likelihood that a chosen ZFN target site will function in vivo. ZFNGenome is dynamically linked to ZiFDB, allowing users access to all available information about zinc finger reagents, such as the

  15. Structures of three members of Pfam PF02663 (FmdE) implicated in microbial methanogenesis reveal a conserved α+β core domain and an auxiliary C-terminal treble-clef zinc finger

    International Nuclear Information System (INIS)

    Axelrod, Herbert L.; Das, Debanu; Abdubek, Polat; Astakhova, Tamara; Bakolitsa, Constantina; Carlton, Dennis; Chen, Connie; Chiu, Hsiu-Ju; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Farr, Carol L.; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Lam, Winnie W.; Marciano, David; McMullan, Daniel; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Puckett, Christina; Reyes, Ron; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The first structures from the FmdE Pfam family (PF02663) reveal that some members of this family form tightly intertwined dimers consisting of two domains (N-terminal α+β core and C-terminal zinc-finger domains), whereas others contain only the core domain. The presence of the zinc-finger domain suggests that some members of this family may perform functions associated with transcriptional regulation, protein–protein interaction, RNA binding or metal-ion sensing. Examination of the genomic context for members of the FmdE Pfam family (PF02663), such as the protein encoded by the fmdE gene from the methanogenic archaeon Methanobacterium thermoautotrophicum, indicates that 13 of them are co-transcribed with genes encoding subunits of molybdenum formylmethanofuran dehydrogenase (EC 1.2.99.5), an enzyme that is involved in microbial methane production. Here, the first crystal structures from PF02663 are described, representing two bacterial and one archaeal species: B8FYU2-DESHY from the anaerobic dehalogenating bacterium Desulfitobacterium hafniense DCB-2, Q2LQ23-SYNAS from the syntrophic bacterium Syntrophus aciditrophicus SB and Q9HJ63-THEAC from the thermoacidophilic archaeon Thermoplasma acidophilum. Two of these proteins, Q9HJ63-THEAC and Q2LQ23-SYNAS, contain two domains: an N-terminal thioredoxin-like α+β core domain (NTD) consisting of a five-stranded, mixed β-sheet flanked by several α-helices and a C-terminal zinc-finger domain (CTD). B8FYU2-DESHY, on the other hand, is composed solely of the NTD. The CTD of Q9HJ63-THEAC and Q2LQ23-SYNAS is best characterized as a treble-clef zinc finger. Two significant structural differences between Q9HJ63-THEAC and Q2LQ23-SYNAS involve their metal binding. First, zinc is bound to the putative active site on the NTD of Q9HJ63-THEAC, but is absent from the NTD of Q2LQ23-SYNAS. Second, whereas the structure of the CTD of Q2LQ23-SYNAS shows four Cys side chains within coordination distance of the Zn atom, the structure

  16. Identification of a novel zinc finger protein gene (ZNF298) in the GAP2 of human chromosome 21q

    International Nuclear Information System (INIS)

    Shibuya, Kazunori; Kudoh, Jun; Okui, Michiyo; Shimizu, Nobuyoshi

    2005-01-01

    We have isolated a novel zinc finger protein gene, designated ZNF298, as a candidate gene for a particular phenotype of Down syndrome or bipolar affective disorder (BPAD) which maps to human chromosome 21q22.3. ZNF298 gene consists of 25 exons spanning approximately 80 kb in a direction from the telomere to centromere. There are four kinds of transcripts that harbor three types of 3' UTR. These four transcripts (ZNF298a, ZNF298b, ZNF298c, and ZNF298d) contain putative open reading frames encoding 1178, 1198, 555, and 515 amino acids, respectively. ZNF298 gene was ubiquitously expressed in various tissues at very low level. The protein motif analysis revealed that ZNF298 proteins contain a SET [Su(var)3-9, Enhancer-of-zeste, Trithorax] domain, multiple C2H2-type zinc finger (ZnF C 2H2) domains, several nuclear localization signals (NLSs), and PEST sequences. Nuclear localization of ZNF298 protein was confirmed by transfection of expression vector of GFP-tagged protein into two human cell lines. Interestingly, this gene crosses over a clone gap (GAP2) remaining in the band 21q22.3. We obtained the DNA fragments corresponding to GAP2 using ZNF298 cDNA sequence as anchor primers for PCR and determined its genomic DNA sequence

  17. C2H2 type of zinc finger transcription factors in foxtail millet define response to abiotic stresses.

    Science.gov (United States)

    Muthamilarasan, Mehanathan; Bonthala, Venkata Suresh; Mishra, Awdhesh Kumar; Khandelwal, Rohit; Khan, Yusuf; Roy, Riti; Prasad, Manoj

    2014-09-01

    C2H2 type of zinc finger transcription factors (TFs) play crucial roles in plant stress response and hormone signal transduction. Hence considering its importance, genome-wide investigation and characterization of C2H2 zinc finger proteins were performed in Arabidopsis, rice and poplar but no such study was conducted in foxtail millet which is a C4 Panicoid model crop well known for its abiotic stress tolerance. The present study identified 124 C2H2-type zinc finger TFs in foxtail millet (SiC2H2) and physically mapped them onto the genome. The gene duplication analysis revealed that SiC2H2s primarily expanded in the genome through tandem duplication. The phylogenetic tree classified these TFs into five groups (I-V). Further, miRNAs targeting SiC2H2 transcripts in foxtail millet were identified. Heat map demonstrated differential and tissue-specific expression patterns of these SiC2H2 genes. Comparative physical mapping between foxtail millet SiC2H2 genes and its orthologs of sorghum, maize and rice revealed the evolutionary relationships of C2H2 type of zinc finger TFs. The duplication and divergence data provided novel insight into the evolutionary aspects of these TFs in foxtail millet and related grass species. Expression profiling of candidate SiC2H2 genes in response to salinity, dehydration and cold stress showed differential expression pattern of these genes at different time points of stresses.

  18. Glycine-U-14C metabolism in young rats fed the 10% casein diets containing excess glycine

    International Nuclear Information System (INIS)

    Takeuchi, Hisanao; Wakatsuki, Tetsuo; Muramatsu, Keiichiro

    1975-01-01

    Nine hours after rats fed ad libitum for 14 days a 10% casein diet (10C), a 10% casein diet containing 7% glycine (10C7G) and a 10% casein diet containing 7% glycine with 1.4% L-arginine.HCl and 0.9% L-methionine (10C7GArgMet) were force-fed 10 ml of each diet suspension containing 5μCi of glycine-U- 14 C per 100 g of body weight, the radioactivity recoveries of 14 C in expired CO 2 , tissue components and urine were determined. The radioactivity recovery of 14 C in the expired CO 2 of the 10C7G group was generally higher than that of the 10C7GArgMet group. The recovery of 14 C in the trichloroacetic acid (TCA) soluble fraction of muscle of the 10C7G and the 10C7GArgMet groups were greater than that of the 10C group. The recoveries of 14 C in the TCA soluble fraction and protein of plasma and liver, and the muscle protein were negligible in all the groups. The amount of glycine- 14 C incorporated into the carcass lipids of the 10C7GArgMet group was larger than that of other groups. The recoveries of 14 C in the liver and muscle glycogen, and liver lipids were remarkably small in all the groups. From the above results, it was suggested that the degradation of glycine- 14 C to expiratory CO 2 was not accelerated, but the rate of incorporation of the isotope into carcass lipids was increased by the supplementation of L-arginine and L-methionine to the 10C7G diet as compared with that of rats fed the 10C7G diet. (JPN)

  19. Plant Glycine-Rich Proteins in Stress Response: An Emerging, Still Prospective Story

    Directory of Open Access Journals (Sweden)

    Magdalena Czolpinska

    2018-03-01

    Full Text Available Seed plants are sessile organisms that have developed a plethora of strategies for sensing, avoiding, and responding to stress. Several proteins, including the glycine-rich protein (GRP superfamily, are involved in cellular stress responses and signaling. GRPs are characterized by high glycine content and the presence of conserved segments including glycine-containing structural motifs composed of repetitive amino acid residues. The general structure of this superfamily facilitates division of GRPs into five main subclasses. Although the participation of GRPs in plant stress response has been indicated in numerous model and non-model plant species, relatively little is known about the key physiological processes and molecular mechanisms in which those proteins are engaged. Class I, II, and IV members are known to be involved in hormone signaling, stress acclimation, and floral development, and are crucial for regulation of plant cells growth. GRPs of class IV [RNA-binding proteins (RBPs] are involved in alternative splicing or regulation of transcription and stomatal movement, seed, pollen, and stamen development; their accumulation is regulated by the circadian clock. Owing to the fact that the overexpression of GRPs can confer tolerance to stress (e.g., some are involved in cold acclimation and may improve growth at low temperatures, these proteins could play a promising role in agriculture through plant genetic engineering. Consequently, isolation, cloning, characterization, and functional validation of novel GRPs expressed in response to the diverse stress conditions are expected to be growing areas of research in the coming years. According to our knowledge, this is the first comprehensive review on participation of plant GRPs in the response to diverse stress stimuli.

  20. Structural and dynamical characterization of the Miz-1 zinc fingers 5-8 by solution-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, David; Bedard, Mikaeel; Bilodeau, Josee; Lavigne, Pierre, E-mail: pierre.lavigne@usherbrooke.ca [Universite de Sherbrooke, Departement de Biochimie, Faculte de Medecine et des Sciences de la Sante, Institut de Pharmacologie de Sherbrooke (Canada)

    2013-10-15

    Myc-interacting zinc finger protein-1 (Miz-1) is a BTB/POZ transcription factor that activates the transcription of cytostatic genes, such as p15{sup INK4B} or p21{sup CIP1}. The C-terminus of Miz-1 contains 13 consensus C{sub 2}H{sub 2} zinc finger domains (ZF). ZFs 1-4 have been shown to interact with SMAD3/4, while the remaining ZFs are expected to bind the promoters of target genes. We have noted unusual features in ZF 5 and the linker between ZFs 5 and 6. Indeed, a glutamate is found instead of the conserved basic residue two positions before the second zinc-coordinating histidine on the ZF 5 helix, and the linker sequence is DTDKE in place of the classical TGEKP sequence. In a canonical {beta}{beta}{alpha} fold, such unusual primary structure elements should cause severe electrostatic repulsions. In this context, we have characterized the structure and the dynamics of a Miz-1 construct comprising ZFs 5-8 (Miz 5-8) by solution-state NMR. Whilst ZFs 5, 7 and 8 were shown to adopt the classical {beta}{beta}{alpha} fold for C{sub 2}H{sub 2} ZFs, the number of long-range NOEs was insufficient to define a classical fold for ZF 6. We show by using {sup 15}N-relaxation dispersion experiments that this lack of NOEs is due to the presence of extensive motions on the {mu}s-ms timescale. Since this negatively charged region would have to be located near the phosphodiester backbone in a DNA complex, we propose that in addition to promoting conformational searches, it could serve as a hinge region to keep ZFs 1-4 away from DNA.

  1. A plant EPF-type zinc-finger protein, CaPIF1, involved in defence against pathogens.

    Science.gov (United States)

    Oh, Sang-Keun; Park, Jeong Mee; Joung, Young Hee; Lee, Sanghyeob; Chung, Eunsook; Kim, Soo-Yong; Yu, Seung Hun; Choi, Doil

    2005-05-01

    SUMMARY To understand better the defence responses of plants to pathogen attack, we challenged hot pepper plants with bacterial pathogens and identified transcription factor-encoding genes whose expression patterns were altered during the subsequent hypersensitive response. One of these genes, CaPIF1 (Capsicum annuum Pathogen-Induced Factor 1), was characterized further. This gene encodes a plant-specific EPF-type protein that contains two Cys(2)/His(2) zinc fingers. CaPIF1 expression was rapidly and specifically induced when pepper plants were challenged with bacterial pathogens to which they are resistant. In contrast, challenge with a pathogen to which the plants are susceptible only generated weak CaPIF1 expression. CaPIF1 expression was also strongly induced in pepper leaves by the exogenous application of ethephon, an ethylene-releasing compound, and salicylic acid, whereas methyl jasmonate had only moderate effects. CaPIF1 localized to the nuclei of onion epidermis when expressed as a CaPIF1-smGFP fusion protein. Transgenic tobacco plants over-expressing CaPIF1 driven by the CaMV 35S promoter showed increased resistance to challenge with a tobacco-specific pathogen or non-host bacterial pathogens. These plants also showed constitutive up-regulation of multiple defence-related genes. Moreover, virus-induced silencing of the CaPIF1 orthologue in Nicotiana benthamiana enhanced susceptibility to the same host or non-host bacterial pathogens. These observations provide evidence that an EPF-type Cys(2)/His(2) zinc-finger protein plays a crucial role in the activation of the pathogen defence response in plants.

  2. The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.S.; Prakash, L. (Univ. of Rochester School of Medicine, NY (USA)); Weber, S. (Kodak Research Park, Rochester, NY (USA))

    1988-07-25

    The RAD18 gene of Saccharomyces cerevisiae is required for postreplication repair of UV damaged DNA. The authors have isolated the RAD18 gene, determined its nucleotide sequence and examined if deletion mutations of this gene show different or more pronounced phenotypic effects than the previously described point mutations. The RAD18 gene open reading frame encodes a protein of 487 amino acids, with a calculated molecular weight of 55,512. The RAD18 protein contains three potential zinc finger domains for nucleic acid binding, and a putative nucleotide binding sequence that is present in many proteins that bind and hydrolyze ATP. The DNA binding and nucleotide binding activities could enable the RAD18 protein to bind damaged sites in the template DNA with high affinity. Alternatively, or in addition, RAD18 protein may be a transcriptional regulator. The RAD18 deletion mutation resembles the previously described point mutations in its effects on viability, DNA repair, UV mutagenesis, and sporulation.

  3. Alterations in protein kinase C activity and processing during zinc-deficiency-induced cell death.

    Science.gov (United States)

    Chou, Susan S; Clegg, Michael S; Momma, Tony Y; Niles, Brad J; Duffy, Jodie Y; Daston, George P; Keen, Carl L

    2004-10-01

    Protein kinases C (PKCs) are a family of serine/threonine kinases that are critical for signal transduction pathways involved in growth, differentiation and cell death. All PKC isoforms have four conserved domains, C1-C4. The C1 domain contains cysteine-rich finger-like motifs, which bind two zinc atoms. The zinc-finger motifs modulate diacylglycerol binding; thus, intracellular zinc concentrations could influence the activity and localization of PKC family members. 3T3 cells were cultured in zinc-deficient or zinc-supplemented medium for up to 32 h. Cells cultured in zinc-deficient medium had decreased zinc content, lowered cytosolic classical PKC activity, increased caspase-3 processing and activity, and reduced cell number. Zinc-deficient cytosols had decreased activity and expression levels of PKC-alpha, whereas PKC-alpha phosphorylation was not altered. Inhibition of PKC-alpha with Gö6976 had no effect on cell number in the zinc-deficient group. Proteolysis of the novel PKC family member, PKC-delta, to its 40-kDa catalytic fragment occurred in cells cultured in the zinc-deficient medium. Occurrence of the PKC-delta fragment in mitochondria was co-incident with caspase-3 activation. Addition of the PKC-delta inhibitor, rottlerin, or zinc to deficient medium reduced or eliminated proteolysis of PKC-delta, activated caspase-3 and restored cell number. Inhibition of caspase-3 processing by Z-DQMD-FMK (Z-Asp-Gln-Met-Asp-fluoromethylketone) did not restore cell number in the zinc-deficient group, but resulted in processing of full-length PKC-delta to a 56-kDa fragment. These results support the concept that intracellular zinc concentrations influence PKC activity and processing, and that zinc-deficiency-induced apoptosis occurs in part through PKC-dependent pathways.

  4. Genome-wide analysis of the CCCH zinc finger family identifies tissue specific and stress responsive candidates in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Pradhan, Seema; Kant, Chandra; Verma, Subodh; Bhatia, Sabhyata

    2017-01-01

    The CCCH zinc finger is a group of proteins characterised by a typical motif consisting of three cysteine residues and one histidine residue. These proteins have been reported to play important roles in regulation of plant growth, developmental processes and environmental responses. In the present study, genome wide analysis of the CCCH zinc finger gene family was carried out in the available chickpea genome. Various bioinformatics tools were employed to predict 58 CCCH zinc finger genes in chickpea (designated CarC3H1-58), which were analysed for their physio-chemical properties. Phylogenetic analysis classified the proteins into 12 groups in which members of a particular group had similar structural organization. Further, the numbers as well as the types of CCCH motifs present in the CarC3H proteins were compared with those from Arabidopsis and Medicago truncatula. Synteny analysis revealed valuable information regarding the evolution of this gene family. Tandem and segmental duplication events were identified and their Ka/Ks values revealed that the CarC3H gene family in chickpea had undergone purifying selection. Digital, as well as real time qRT-PCR expression analysis was performed which helped in identification of several CarC3H members that expressed preferentially in specific chickpea tissues as well as during abiotic stresses (desiccation, cold, salinity). Moreover, molecular characterization of an important member CarC3H45 was carried out. This study provides comprehensive genomic information about the important CCCH zinc finger gene family in chickpea. The identified tissue specific and abiotic stress specific CCCH genes could be potential candidates for further characterization to delineate their functional roles in development and stress.

  5. Control of Hepatic Gluconeogenesis by the Promyelocytic Leukemia Zinc Finger Protein

    Science.gov (United States)

    Chen, Siyu; Qian, Jinchun; Shi, Xiaoli; Gao, Tingting; Liang, Tingming

    2014-01-01

    The promyelocytic leukemia zinc finger (PLZF) protein is involved in major biological processes including energy metabolism, although its role remains unknown. In this study, we demonstrated that hepatic PLZF expression was induced in fasted or diabetic mice. PLZF promoted gluconeogenic gene expression and hepatic glucose output, leading to hyperglycemia. In contrast, hepatic PLZF knockdown improved glucose homeostasis in db/db mice. Mechanistically, peroxisome proliferator-activated receptor γ coactivator 1α and the glucocorticoid receptor synergistically activated PLZF expression. We conclude that PLZF is a critical regulator of hepatic gluconeogenesis. PLZF manipulation may benefit the treatment of metabolic diseases associated with gluconeogenesis. PMID:25333514

  6. The Corrosion Protection of 2219-T87 Aluminum by Organic and Inorganic Zinc-Rich Primers

    Science.gov (United States)

    Danford, M. D.; Mendrek, M. J.; Walsh, D. W.

    1995-01-01

    The behavior of zinc-rich primer-coated 2219-T87 aluminum in a 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electrochemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR) were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electrochemical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 2219-T87 aluminum cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. The galvanic test results demonstrated a very high galvanic current between the aluminum cathode and both zinc-rich primer anodes (37.9 pA/CM2 and 23.7 pA/CM2 for the organic and inorganic primers, respectively). The PR results demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application in the solid rocket booster aft skirt.

  7. Investigating the DNA-binding ability of GATA-1-N-terminal zinc finger

    International Nuclear Information System (INIS)

    Wong, R.; Newton, A.; Crossley, M.; Mackay, J.

    2001-01-01

    Erythroid transcription factor GATA-1 interacts with both DNA and other proteins through its zinc finger domains (ZnFs). While it has been known for me time that the C-terminal ZnF binds DNA at GATA sites, only recently has it been observed that the N-terminal finger (NF) is capable of interacting with GATC sites. Further, a number of naturally occurring mutations in NF (V205M, G208S, R216Q, D218G) that lead to anaemia and thrombocytopenia have been identified. We are interested in characterising the NF-DNA interaction and determining the effects of mutation upon this interaction. Using nuclear magnetic resonance (NMR) spectroscopy, we have observed an interaction between recombinant NF and a 16-mer DNA duplex containing a core GATC sequence. This result forms the basis from which residues in NF involved in DNA binding can be identified, and work is being carried out to improve the quality of the NMR data with the aim of determining the solution structure of the NF-DNA complex. The DNA-binding affinity of both wild-type and mutant NFs mentioned above is also being investigated using isothermal titration calorimetry. These data suggest that the strength of the interaction between NF and the 16-mer DNA duplex is in the sub-micromolar range, and comparisons between the DNA-binding affinities of the NF mutants are being made. Together, these studies will help us to understand how GATA-1 acts as a transcriptional regulator and how mutations in NF domain of GATA-1 may lead to blood disorders

  8. The LSD1-Type Zinc Finger Motifs of Pisum sativa LSD1 Are a Novel Nuclear Localization Signal and Interact with Importin Alpha

    OpenAIRE

    He, Shanping; Huang, Kuowei; Zhang, Xu; Yu, Xiangchun; Huang, Ping; An, Chengcai

    2011-01-01

    BACKGROUND: Genetic studies of the Arabidopsis mutant lsd1 highlight the important role of LSD1 in the negative regulation of plant programmed cell death (PCD). Arabidopsis thaliana LSD1 (AtLSD1) contains three LSD1-type zinc finger motifs, which are involved in the protein-protein interaction. METHODOLOGY/PRINCIPAL FINDINGS: To further understand the function of LSD1, we have analyzed cellular localization and functional localization domains of Pisum sativa LSD1 (PsLSD1), which is a homolog ...

  9. Predicting success of oligomerized pool engineering (OPEN for zinc finger target site sequences

    Directory of Open Access Journals (Sweden)

    Goodwin Mathew J

    2010-11-01

    Full Text Available Abstract Background Precise and efficient methods for gene targeting are critical for detailed functional analysis of genomes and regulatory networks and for potentially improving the efficacy and safety of gene therapies. Oligomerized Pool ENgineering (OPEN is a recently developed method for engineering C2H2 zinc finger proteins (ZFPs designed to bind specific DNA sequences with high affinity and specificity in vivo. Because generation of ZFPs using OPEN requires considerable effort, a computational method for identifying the sites in any given gene that are most likely to be successfully targeted by this method is desirable. Results Analysis of the base composition of experimentally validated ZFP target sites identified important constraints on the DNA sequence space that can be effectively targeted using OPEN. Using alternate encodings to represent ZFP target sites, we implemented Naïve Bayes and Support Vector Machine classifiers capable of distinguishing "active" targets, i.e., ZFP binding sites that can be targeted with a high rate of success, from those that are "inactive" or poor targets for ZFPs generated using current OPEN technologies. When evaluated using leave-one-out cross-validation on a dataset of 135 experimentally validated ZFP target sites, the best Naïve Bayes classifier, designated ZiFOpT, achieved overall accuracy of 87% and specificity+ of 90%, with an ROC AUC of 0.89. When challenged with a completely independent test set of 140 newly validated ZFP target sites, ZiFOpT performance was comparable in terms of overall accuracy (88% and specificity+ (92%, but with reduced ROC AUC (0.77. Users can rank potentially active ZFP target sites using a confidence score derived from the posterior probability returned by ZiFOpT. Conclusion ZiFOpT, a machine learning classifier trained to identify DNA sequences amenable for targeting by OPEN-generated zinc finger arrays, can guide users to target sites that are most likely to function

  10. Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica

    OpenAIRE

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    2017-01-01

    ABSTRACT Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors...

  11. Zinc Finger Nuclease induced DNA double stranded breaks and rearrangements in MLL

    International Nuclear Information System (INIS)

    Do, To Uyen; Ho, Bay; Shih, Shyh-Jen; Vaughan, Andrew

    2012-01-01

    Highlights: ► A Zinc Finger Nuclease (ZFN) targeting a leukemogenic hot spot for rearrangement in MLL is created. ► The novel ZFN efficiently cleaves MLL exon 13. ► Despite MLL cleavage and evidence of mis-repair, no leukemogenic translocations were produced. ► MLL cleavage alone is insufficient to generate leukemogenic translocations. - Abstract: Radiation treatment or chemotherapy has been linked with a higher risk of secondary cancers such as therapy related Acute Myeloid Leukemia (tAML). Several of these cancers have been shown to be correlated to the introduction of double stranded breaks (DSB) and rearrangements within the Mixed Lineage Leukemia (MLL) gene. We used Zinc Finger Nucleases (ZFNs) to introduce precise cuts within MLL to examine how a single DNA DSB might lead to chromosomal rearrangements. A ZFN targeting exon 13 within the Breakpoint Cluster Region of MLL was transiently expressed in a human lymphoblast cell line originating from a CML patient. Although FISH analysis showed ZFN DSB at this region increased the rate of MLL fragmentation, we were unable to detect leukemogenic rearrangements or translocations via inverse PCR. Interestingly, gene fragmentation as well as small interstitial deletions, insertions and base substitutions increased with the inhibition of DNA-PK, suggesting repair of this particular DSB is linked to non-homologous end joining (NHEJ). Although mis-repair of DSBs may be necessary for the initiation of leukemogenic translocations, a MLL targeted DNA break alone is insufficient

  12. Zinc Finger Nuclease induced DNA double stranded breaks and rearrangements in MLL

    Energy Technology Data Exchange (ETDEWEB)

    Do, To Uyen [Graduate Group in Immunology, University of California Davis, Davis, CA 95616 (United States); Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States); Ho, Bay; Shih, Shyh-Jen [Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States); Vaughan, Andrew, E-mail: Andrew.vaughan@ucdmc.ucdavis.edu [Graduate Group in Immunology, University of California Davis, Davis, CA 95616 (United States); Department of Radiation Oncology, University of California Davis, Sacramento CA 95817 (United States)

    2012-12-15

    Highlights: ► A Zinc Finger Nuclease (ZFN) targeting a leukemogenic hot spot for rearrangement in MLL is created. ► The novel ZFN efficiently cleaves MLL exon 13. ► Despite MLL cleavage and evidence of mis-repair, no leukemogenic translocations were produced. ► MLL cleavage alone is insufficient to generate leukemogenic translocations. - Abstract: Radiation treatment or chemotherapy has been linked with a higher risk of secondary cancers such as therapy related Acute Myeloid Leukemia (tAML). Several of these cancers have been shown to be correlated to the introduction of double stranded breaks (DSB) and rearrangements within the Mixed Lineage Leukemia (MLL) gene. We used Zinc Finger Nucleases (ZFNs) to introduce precise cuts within MLL to examine how a single DNA DSB might lead to chromosomal rearrangements. A ZFN targeting exon 13 within the Breakpoint Cluster Region of MLL was transiently expressed in a human lymphoblast cell line originating from a CML patient. Although FISH analysis showed ZFN DSB at this region increased the rate of MLL fragmentation, we were unable to detect leukemogenic rearrangements or translocations via inverse PCR. Interestingly, gene fragmentation as well as small interstitial deletions, insertions and base substitutions increased with the inhibition of DNA-PK, suggesting repair of this particular DSB is linked to non-homologous end joining (NHEJ). Although mis-repair of DSBs may be necessary for the initiation of leukemogenic translocations, a MLL targeted DNA break alone is insufficient.

  13. Molecular Characterization of the Schistosoma mansoni Zinc Finger Protein SmZF1 as a Transcription Factor

    Science.gov (United States)

    D'Astolfo, Diego S.; Cardoso, Fernanda C.; Rajão, Matheus A.; Mourão, Marina M.; Gava, Elisandra; Oliveira, Sérgio C.; Macedo, Andréa M.; Machado, Carlos R.; Pena, Sérgio D. J.; Kitten, Gregory T.; Franco, Glória R.

    2009-01-01

    Background During its development, the parasite Schistosoma mansoni is exposed to different environments and undergoes many morphological and physiological transformations as a result of profound changes in gene expression. Characterization of proteins involved in the regulation of these processes is of importance for the understanding of schistosome biology. Proteins containing zinc finger motifs usually participate in regulatory processes and are considered the major class of transcription factors in eukaryotes. It has already been shown, by EMSA (Eletrophoretic Mobility Shift Assay), that SmZF1, a S. mansoni zinc finger (ZF) protein, specifically binds both DNA and RNA oligonucleotides. This suggests that this protein might act as a transcription factor in the parasite. Methodology/Principal Findings In this study we extended the characterization of SmZF1 by determining its subcellular localization and by verifying its ability to regulate gene transcription. We performed immunohistochemistry assays using adult male and female worms, cercariae and schistosomula to analyze the distribution pattern of SmZF1 and verified that the protein is mainly detected in the cells nuclei of all tested life cycle stages except for adult female worms. Also, SmZF1 was heterologously expressed in mammalian COS-7 cells to produce the recombinant protein YFP-SmZF1, which was mainly detected in the nucleus of the cells by confocal microscopy and Western blot assays. To evaluate the ability of this protein to regulate gene transcription, cells expressing YFP-SmZF1 were tested in a luciferase reporter system. In this system, the luciferase gene is downstream of a minimal promoter, upstream of which a DNA region containing four copies of the SmZF1 putative best binding site (D1-3DNA) was inserted. SmZF1 increased the reporter gene transcription by two fold (p≤0.003) only when its specific binding site was present. Conclusion Taken together, these results strongly support the hypothesis

  14. The choice of the conditions to receive the electrolytic zinc powders for metal-rich compositions

    Directory of Open Access Journals (Sweden)

    A. V. Patrushev

    2015-03-01

    Full Text Available In the work a method of obtaining highly dispersed zinc powders by electrolysis and comparison of the properties of zinc-rich compositions prepared using as a pigment zinc powders obtained by different methods is provided. Conducted measurements have shown that the electrical conductivity of zinc-rich coatings comprising electrolytic zinc powder does not inferior to the conductivity of the film with PZHD-0 powder obtained by the  evaporation-condensation method, despite the significant difference in the amount of zinc pigment. On the basis of the received data one can conclude that the use of electrolytic zinc powder as a pigment will significantly save zinc.

  15. Immunolocalization of keratin-associated beta-proteins (beta-keratins) in pad lamellae of geckos suggest that glycine-cysteine-rich proteins contribute to their flexibility and adhesiveness.

    Science.gov (United States)

    Alibardi, Lorenzo

    2013-03-01

    The epidermis of digital pads in geckos comprises superficial microornamentation from the oberhautchen layer that form long setae allowing these lizards to climb vertical surfaces. The beta-layer is reduced in pad lamellae but persists up to the apical free margin. Setae are made of different proteins including keratin-associated beta-proteins, formerly indicated as beta-keratins. In order to identify specific setal proteins the present ultrastructural study on geckos pad lamellae analyzes the immunolocalization of three beta-proteins previously found in the epidermis and adhesive setae of the green anolis. A protein rich in glycine but poor in cysteine (HgG5-like) is absent or masked in gecko pad lamellae. Another protein rich in glycine and cysteine (HgGC3-like) is weakly present in setae, oberhautchen and beta-layer. A glycine and cysteine medium rich beta-protein (HgGC10-like) is present in the lower part of the beta-layer but is absent in the oberhautchen, setae, and mesos layer. The latter two proteins may form intermolecular bonds that contribute to the flexibility of the corneous material sustaining the setae. The pliable alpha-layer present beneath the thin beta-layer and in the hinge region of the pad lamellae also contains HgGC10-like proteins. Based on the possibility that some HgGC3-like or other cys-rich beta-proteins are charged in the setae it is suggested that their charges influence the mechanism of adhesion increasing the induction of dipoles on the substrate and enhancing attractive van der Waals forces. Copyright © 2013 Wiley Periodicals, Inc.

  16. A novel zinc finger protein 219-like (ZNF219L) is involved in the regulation of collagen type 2 alpha 1a (col2a1a) gene expression in zebrafish notochord.

    Science.gov (United States)

    Lien, Huang-Wei; Yang, Chung-Hsiang; Cheng, Chia-Hsiung; Hung, Chin-Chun; Liao, Wei-Hao; Hwang, Pung-Pung; Han, Yu-San; Huang, Chang-Jen

    2013-01-01

    The notochord is required for body plan patterning in vertebrates, and defects in notochord development during embryogenesis can lead to diseases affecting the adult. It is therefore important to elucidate the gene regulatory mechanism underlying notochord formation. In this study, we cloned the zebrafish zinc finger 219-like (ZNF219L) based on mammalian ZNF219, which contains nine C2H2-type zinc finger domains. Through whole-mount in situ hybridization, we found that znf219L mRNA is mainly expressed in the zebrafish midbrain-hindbrain boundary, hindbrain, and notochord during development. The znf219L morpholino knockdown caused partial abnormal notochord phenotype and reduced expression of endogenous col2a1a in the notochord specifically. In addition, ZNF219L could recognize binding sites with GGGGG motifs and trigger augmented activity of the col2a1a promoter in a luciferase assay. Furthermore, in vitro binding experiments revealed that ZNF219L recognizes the GGGGG motifs in the promoter region of the zebrafish col2a1a gene through its sixth and ninth zinc finger domains. Taken together, our results reveal that ZNF219L is involved in regulating the expression of col2a1a in zebrafish notochord specifically.

  17. The maize INDETERMINATE1 flowering time regulator defines a highly conserved zinc finger protein family in higher plants

    Directory of Open Access Journals (Sweden)

    Colasanti Joseph

    2006-06-01

    Full Text Available Abstract Background The maize INDETERMINATE1 gene, ID1, is a key regulator of the transition to flowering and the founding member of a transcription factor gene family that encodes a protein with a distinct arrangement of zinc finger motifs. The zinc fingers and surrounding sequence make up the signature ID domain (IDD, which appears to be found in all higher plant genomes. The presence of zinc finger domains and previous biochemical studies showing that ID1 binds to DNA suggests that members of this gene family are involved in transcriptional regulation. Results Comparison of IDD genes identified in Arabidopsis and rice genomes, and all IDD genes discovered in maize EST and genomic databases, suggest that ID1 is a unique member of this gene family. High levels of sequence similarity amongst all IDD genes from maize, rice and Arabidopsis suggest that they are derived from a common ancestor. Several unique features of ID1 suggest that it is a divergent member of the maize IDD family. Although no clear ID1 ortholog was identified in the Arabidopsis genome, highly similar genes that encode proteins with identity extending beyond the ID domain were isolated from rice and sorghum. Phylogenetic comparisons show that these putative orthologs, along with maize ID1, form a group separate from other IDD genes. In contrast to ID1 mRNA, which is detected exclusively in immature leaves, several maize IDD genes showed a broad range of expression in various tissues. Further, Western analysis with an antibody that cross-reacts with ID1 protein and potential orthologs from rice and sorghum shows that all three proteins are detected in immature leaves only. Conclusion Comparative genomic analysis shows that the IDD zinc finger family is highly conserved among both monocots and dicots. The leaf-specific ID1 expression pattern distinguishes it from other maize IDD genes examined. A similar leaf-specific localization pattern was observed for the putative ID1 protein

  18. Mutation of a zinc-binding residue in the glycine receptor α1 subunit changes ethanol sensitivity in vitro and alcohol consumption in vivo.

    Science.gov (United States)

    McCracken, Lindsay M; Blednov, Yuri A; Trudell, James R; Benavidez, Jillian M; Betz, Heinrich; Harris, R Adron

    2013-02-01

    Ethanol is a widely used drug, yet an understanding of its sites and mechanisms of action remains incomplete. Among the protein targets of ethanol are glycine receptors (GlyRs), which are potentiated by millimolar concentrations of ethanol. In addition, zinc ions also modulate GlyR function, and recent evidence suggests that physiologic concentrations of zinc enhance ethanol potentiation of GlyRs. Here, we first built a homology model of a zinc-bound GlyR using the D80 position as a coordination site for a zinc ion. Next, we investigated in vitro the effects of zinc on ethanol action at recombinant wild-type (WT) and mutant α1 GlyRs containing the D80A substitution, which eliminates zinc potentiation. At D80A GlyRs, the effects of 50 and 200 mM ethanol were reduced as compared with WT receptors. Also, in contrast to what was seen with WT GlyRs, neither adding nor chelating zinc changed the magnitude of ethanol enhancement of mutant D80A receptors. Next, we evaluated the in vivo effects of the D80A substitution by using heterozygous Glra1(D80A) knock-in (KI) mice. The KI mice showed decreased ethanol consumption and preference, and they displayed increased startle responses compared with their WT littermates. Other behavioral tests, including ethanol-induced motor incoordination and strychnine-induced convulsions, revealed no differences between the KI and WT mice. Together, our findings indicate that zinc is critical in determining the effects of ethanol at GlyRs and suggest that zinc binding at the D80 position may be important for mediating some of the behavioral effects of ethanol action at GlyRs.

  19. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking.

    Science.gov (United States)

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-05-18

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes.

  20. Evaluación de la dimensión fractal reactiva de los glicinatos de magnesio, manganeso y zinc Evaluation of the reactive fractal dimension of magnesium, manganese and zinc glycinates

    Directory of Open Access Journals (Sweden)

    Julie Fernanda Benavides Arevalo

    2012-03-01

    Full Text Available Introducción: complejos de glicina con los cationes magnesio, manganeso y zinc podrían ser parte de una formulación de un suplemento nutricional que proporcione una adecuada absorción de los metales en el organismo sin generar molestias gastrointestinales. Objetivo: realizar una aproximación a la solubilidad de los complejos de glicina con los cationes magnesio, manganeso y zinc. Métodos: se efectuaron estudios de disolución y análisis de imagen. Se realizó la síntesis y la verificación de formación de los complejos por espectroscopia infrarroja, calorimetría de barrido diferencial, análisis termogravimétrico y difracción de rayos X de polvos. Resultados: se obtuvieron por análisis de imagen los descriptores: circularidad, diámetro de Feret y dimensión fractal; esta última se relacionó con el proceso de disolución en agua, para obtener dos propiedades relacionadas: la dimensión fractal superficial y la dimensión fractal reactiva. Conclusiones: los resultados muestran que el proceso de disolución de los glicinatos, se realiza a través de los poros o grietas de la superficie de las partículas de estos y que son aptos para su empleo en formulaciones nutricionales como fuentes de magnesio, manganeso y zinc.Introduction: Complexes of glycine and cations magnesium, manganese and zinc, could be included in the formulation of a nutritional supplement that provides adequate absorption of these metals into the body without gastrointestinal disturbances. Objective: to study the solubility of complexes of glycine and cations manganese, zinc and magnesium. Methods: dissolution and image analysis studies were performed. The synthesis and verification of the formation of complexes were carried out by infrared spectroscopy, differential scanning calorimetry, thermal gravimetric analysis, and X-ray diffraction of dust. Results: the image analysis showed some descriptors such as circularity, the Ferret diameter and the fractal dimension

  1. Protein, Calcium, Zinc, and Iron Contents of Finger Millet Grain Response to Varietal Differences and Phosphorus Application in Kenya

    Directory of Open Access Journals (Sweden)

    Wekha N. Wafula

    2018-02-01

    Full Text Available This study was carried out to investigate the influence of phosphorus fertilizers on the concentrations of nutrients, particularly calcium, protein, zinc, and iron in finger millet grains grown in different agro-ecologies in Kenya. The on-station experiments were carried out at Kiboko (Eastern Kenya, Kakamega, and Alupe (Western Kenya in 2015 during the short and long rainy seasons. The trials were laid out in a randomized complete block design (RCBD in a 4 × 3 factorial arrangement with three replicates. The treatments comprised of four levels of phosphorus (0, 12.5, 25.0 and 37.5 kg ha−1 P2O5 and three finger millet varieties (U-15, P-224 and a local variety. Application of phosphorus significantly (p ≤ 0.05 increased the protein content of finger millet grain in varieties in all the three sites. Variety U-15 had the highest protein content (11.0% at 25 kg ha−1 P2O5 with the control (zero P on variety P-224 eliciting the lowest (4.4% at Kiboko. At Kakamega, the 25 kg ha−1 P2O5 treatment with U-15 variety had the highest protein content (15.3% while the same variety at 12.5 kg ha−1 P2O5 rate elicited the highest protein content (15.0% at Alupe. Phosphorus application significantly enhanced the nutritional quality of finger millet grains specifically protein, calcium, iron, and zinc. Variety P-224 had the highest calcium content in all sites and highest iron content at Kakamega while the local varieties had the highest zinc content in all sites. The varieties responded differently to each quality component but generally, based on the protein content, the 25 kg ha−1 P2O5 is recommended.

  2. Revisiting and re-engineering the classical zinc finger peptide: consensus peptide-1 (CP-1).

    Science.gov (United States)

    Besold, Angelique N; Widger, Leland R; Namuswe, Frances; Michalek, Jamie L; Michel, Sarah L J; Goldberg, David P

    2016-04-01

    Zinc plays key structural and catalytic roles in biology. Structural zinc sites are often referred to as zinc finger (ZF) sites, and the classical ZF contains a Cys2His2 motif that is involved in coordinating Zn(II). An optimized Cys2His2 ZF, named consensus peptide 1 (CP-1), was identified more than 20 years ago using a limited set of sequenced proteins. We have reexamined the CP-1 sequence, using our current, much larger database of sequenced proteins that have been identified from high-throughput sequencing methods, and found the sequence to be largely unchanged. The CCHH ligand set of CP-1 was then altered to a CAHH motif to impart hydrolytic activity. This ligand set mimics the His2Cys ligand set of peptide deformylase (PDF), a hydrolytically active M(II)-centered (M = Zn or Fe) protein. The resultant peptide [CP-1(CAHH)] was evaluated for its ability to coordinate Zn(II) and Co(II) ions, adopt secondary structure, and promote hydrolysis. CP-1(CAHH) was found to coordinate Co(II) and Zn(II) and a pentacoordinate geometry for Co(II)-CP-1(CAHH) was implicated from UV-vis data. This suggests a His2Cys(H2O)2 environment at the metal center. The Zn(II)-bound CP-1(CAHH) was shown to adopt partial secondary structure by 1-D (1)H NMR spectroscopy. Both Zn(II)-CP-1(CAHH) and Co(II)-CP-1(CAHH) show good hydrolytic activity toward the test substrate 4-nitrophenyl acetate, exhibiting faster rates than most active synthetic Zn(II) complexes.

  3. Zinc finger protein 521 antagonizes early B-cell factor 1 and modulates the B-lymphoid differentiation of primary hematopoietic progenitors.

    Science.gov (United States)

    Mega, Tiziana; Lupia, Michela; Amodio, Nicola; Horton, Sarah J; Mesuraca, Maria; Pelaggi, Daniela; Agosti, Valter; Grieco, Michele; Chiarella, Emanuela; Spina, Raffaella; Moore, Malcolm A S; Schuringa, Jan Jacob; Bond, Heather M; Morrone, Giovanni

    2011-07-01

    Zinc finger protein 521 (EHZF/ZNF521) is a multi-functional transcription co-factor containing 30 zinc fingers and an amino-terminal motif that binds to the nucleosome remodelling and histone deacetylase (NuRD) complex. ZNF521 is believed to be a relevant player in the regulation of the homeostasis of the hematopoietic stem/progenitor cell compartment, however the underlying molecular mechanisms are still largely unknown. Here, we show that this protein plays an important role in the control of B-cell development by inhibiting the activity of early B-cell factor-1 (EBF1), a master factor in B-lineage specification. In particular, our data demonstrate that: (1) ZNF521 binds to EBF1 via its carboxyl-terminal portion and this interaction is required for EBF1 inhibition; (2) NuRD complex recruitment by ZNF521 is not essential for the inhibition of transactivation of EBF1-dependent promoters; (3) ZNF521 represses EBF1 target genes in a human B-lymphoid molecular context; and (4) RNAi-mediated silencing of ZNF521/Zfp521 in primary human and murine hematopoietic progenitors strongly enhances the generation of B-lymphocytes in vitro. Taken together, our data indicate that ZNF521 can antagonize B-cell development and lend support to the notion that it may contribute to conserve the multipotency of primitive lympho-myeloid progenitors by preventing or delaying their EBF1-driven commitment toward the B-cell lineage.

  4. Noise resistance applied to the study of zinc rich paints

    International Nuclear Information System (INIS)

    Espada Recarey, L.; Sanchez Bermudez, A.; Urrejola Madrinan, S.; Bouzada Alvela, F.

    2001-01-01

    Electrochemical Noise has been one of the more useful analysis methods to the study the corrosion processes due to the fact that it is simple and cheap. The objective of this work is to check the efficiency of this technique when it is applied to the study of Rich Zinc Paints and specifically the Noise Resistance parameter which is very efficiency to study metal-electrolyte systems. Then this technique was applied to Rich Zinc Paints systems of which we have already information by means of electrochemical impedance spectroscopy. The outcomes of this paper show the efficiency of applying Noise Resistance technique to explain the behavior of this kind of systems. (Author) 18 refs

  5. Intrinsic and extrinsic connections of Tet3 dioxygenase with CXXC zinc finger modules.

    Directory of Open Access Journals (Sweden)

    Nan Liu

    Full Text Available Tet proteins are emerging as major epigenetic modulators of cell fate and plasticity. However, little is known about how Tet proteins are targeted to selected genomic loci in distinct biological contexts. Previously, a CXXC-type zinc finger domain in Tet1 was shown to bind CpG-rich DNA sequences. Interestingly, in human and mouse the Tet2 and Tet3 genes are adjacent to Cxxc4 and Cxxc10-1, respectively. The CXXC domains encoded by these loci, together with those in Tet1 and Cxxc5, identify a distinct homology group within the CXXC domain family. Here we provide evidence for alternative mouse Tet3 transcripts including the Cxxc10-1 sequence (Tet3(CXXC and for an interaction between Tet3 and Cxxc4. In vitro Cxxc4 and the isolated CXXC domains of Tet1 and Tet3(CXXC bind DNA substrates with similar preference towards the modification state of cytosine at a single CpG site. In vivo Tet1 and Tet3 isoforms with and without CXXC domain hydroxylate genomic 5-methylcytosine with similar activity. Relative transcript levels suggest that distinct ratios of Tet3(CXXC isoforms and Tet3-Cxxc4 complex may be present in adult tissues. Our data suggest that variable association with CXXC modules may contribute to context specific functions of Tet proteins.

  6. Zinc(II) and the single-stranded DNA binding protein of bacteriophage T4

    International Nuclear Information System (INIS)

    Gauss, P.; Krassa, K.B.; McPheeters, D.S.; Nelson, M.A.; Gold, L.

    1987-01-01

    The DNA binding domain of the gene 32 protein of the bacteriophage T4 contains a single zinc-finger sequence. The gene 32 protein is an extensively studied member of a class of proteins that bind relatively nonspecifically to single-stranded DNA. The authors have sequenced and characterized mutations in gene 32 whose defective proteins are activated by increasing the Zn(II) concentration in the growth medium. The results identify a role for the gene 32 protein in activation of T4 late transcription. Several eukaryotic proteins with zinc fingers participate in activation of transcription, and the gene 32 protein of T4 should provide a simple, well-characterized system in which genetics can be utilized to study the role of a zinc finger in nucleic acid binding and gene expression

  7. Zinc Deficiency in Humans and its Amelioration

    OpenAIRE

    Yashbir Singh Shivay

    2015-01-01

    Zinc (Zn) deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in ...

  8. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking

    Science.gov (United States)

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-01-01

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes. DOI: http://dx.doi.org/10.7554/eLife.06041.001 PMID:25985087

  9. Zinc finger protein rotund deficiency affects development of the thoracic leg in Bombyx mori.

    Science.gov (United States)

    Zhou, Chun-Yan; Zha, Xing-Fu; Liu, Hua-Wei; Xia, Qing-You

    2017-06-01

    The insect limb develops from the imaginal disc or larval leg during metamorphosis. The molecular mechanisms involved in the development from the larval to the adult leg are poorly understood. Herein, we cloned the full length of a zinc finger gene rotund from Bombyx mori (Bmrn), which contained a 1419 bp open reading frame, and encoded a 473 amino acid protein. Reverse transcription polymerase chain reaction and Western blot analyses demonstrated that Bmrn was expressed at higher levels in the epidermis than in other tissues tested, and it showed a very high expression level during metamorphosis. Knock-down of Bmrn produced defects in the tarsus and pretarsus, including the fusion and reduction of tarsomeres, and the developmental arrest of pretarsus. Our data showed that Bmrn is involved in the formation of the tarsus and pretarsus, whereas its homologous gene in Drosophila has been shown to affect three tarsal segments (t2-t4), suggesting that the remodeling of the leg has involved changes in the patterning of gene regulation during evolution. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  10. FYVE zinc-finger proteins in the plant model Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, R B; La Cour, T; Albrethsen, J

    2001-01-01

    Classic FYVE zinc-finger domains recognize the phosphoinositide signal PtdIns3P and share the basic (R/K)(1)(R/K)HHCR(6) (single-letter amino acid codes) consensus sequence. This domain is present in predicted PtdIns3P 5-kinases and lipases from Arabidopsis thaliana. Other Arabidopsis proteins......) of the basic motif. Dot-blot and liposome-binding assays were used in vitro to examine the phospholipid-binding ability of isolated PRAF domains. Whereas the PH domain preferentially bound PtdIns(4,5)P(2), the variant FYVE domain showed a weaker charge-dependent binding of phosphoinositides. In contrast....... A biochemical function for PRAF was indicated by its ability to catalyse guanine nucleotide exchange on some of the small GTPases of the Rab family, permitting a discussion of the biological roles of plant FYVE proteins and their regulation by phosphoinositides....

  11. The PR/SET Domain Zinc Finger Protein Prdm4 Regulates Gene Expression in Embryonic Stem Cells but Plays a Nonessential Role in the Developing Mouse Embryo

    Science.gov (United States)

    Bogani, Debora; Morgan, Marc A. J.; Nelson, Andrew C.; Costello, Ita; McGouran, Joanna F.; Kessler, Benedikt M.

    2013-01-01

    Prdm4 is a highly conserved member of the Prdm family of PR/SET domain zinc finger proteins. Many well-studied Prdm family members play critical roles in development and display striking loss-of-function phenotypes. Prdm4 functional contributions have yet to be characterized. Here, we describe its widespread expression in the early embryo and adult tissues. We demonstrate that DNA binding is exclusively mediated by the Prdm4 zinc finger domain, and we characterize its tripartite consensus sequence via SELEX (systematic evolution of ligands by exponential enrichment) and ChIP-seq (chromatin immunoprecipitation-sequencing) experiments. In embryonic stem cells (ESCs), Prdm4 regulates key pluripotency and differentiation pathways. Two independent strategies, namely, targeted deletion of the zinc finger domain and generation of a EUCOMM LacZ reporter allele, resulted in functional null alleles. However, homozygous mutant embryos develop normally and adults are healthy and fertile. Collectively, these results strongly suggest that Prdm4 functions redundantly with other transcriptional partners to cooperatively regulate gene expression in the embryo and adult animal. PMID:23918801

  12. Fabrication of an Organic Light-Emitting Diode from New Host π Electron Rich Zinc Complex

    Science.gov (United States)

    Jafari, Mohammad Reza; Janghouri, Mohammad; Shahedi, Zahra

    2017-01-01

    A new π electron rich zinc complex was used as a fluorescent material in organic light-emitting diodes (OLEDs). Devices with a structure of indium tin oxide/poly (3,4-ethylenedi-oxythiophene):poly(styrenesulfonate) (PEDOT: PSS) (50 nm)/polyvinylcarbazole (60 nm)/Zn: %2 porphyrin derivatives (45 nm)/Al (150 nm) were fabricated. Porphyrin derivatives accounting for 2 wt.% in the π electron rich zinc complex were used as a host. The electroluminescence (EL) spectra of porphyrin derivatives indicated a red shift, as π electron rich zinc complex EL spectra. The device (4) has also a luminance of 3420 cd/m2 and maximum efficiency of 1.58 cd/A at 15 V, which are the highest values among four devices. The result of Commission International del'Eclairage (CIE) (X, Y) coordinate and EL spectrum of device (3) indicated that it is more red shifted compared to other devices. Results of this work indicate that π electron rich zinc complex is a promising host material for high efficiency red OLEDs and has a simple structure compared to Alq3-based devices.

  13. Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research.

    Science.gov (United States)

    Kim, Moon-Soo; Kini, Anu Ganesh

    2017-08-01

    Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.

  14. Human ribosomal protein L37 has motifs predicting serine/threonine phosphorylation and a zinc-finger domain.

    Science.gov (United States)

    Barnard, G F; Staniunas, R J; Puder, M; Steele, G D; Chen, L B

    1994-08-02

    Ribosomal protein L37 mRNA is overexpressed in colon cancer. The nucleotide sequences of human L37 from several tumor and normal, colon and liver cDNA sources were determined to be identical. L37 mRNA was approximately 375 nucleotides long encoding 97 amino acids with M(r) = 11,070, pI = 12.6, multiple potential serine/threonine phosphorylation sites and a zinc-finger domain. The human sequence is compared to other species.

  15. Design of a colicin E7 based chimeric zinc-finger nuclease

    Science.gov (United States)

    Németh, Eszter; Schilli, Gabriella K.; Nagy, Gábor; Hasenhindl, Christoph; Gyurcsik, Béla; Oostenbrink, Chris

    2014-08-01

    Colicin E7 is a natural bacterial toxin. Its nuclease domain (NColE7) enters the target cell and kills it by digesting the nucleic acids. The HNH-motif as the catalytic centre of NColE7 at the C-terminus requires the positively charged N-terminal loop for the nuclease activity—offering opportunities for allosteric control in a NColE7-based artificial nuclease. Accordingly, four novel zinc finger nucleases were designed by computational methods exploiting the special structural features of NColE7. The constructed models were subjected to MD simulations. The comparison of structural stability and functional aspects showed that these models may function as safely controlled artificial nucleases. This study was complemented by random mutagenesis experiments identifying potentially important residues for NColE7 function outside the catalytic region.

  16. Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase

    Science.gov (United States)

    Morellet, Nelly; Li, Xianghong; Wieninger, Silke A; Taylor, Jennifer L; Bischerour, Julien; Moriau, Séverine; Lescop, Ewen; Bardiaux, Benjamin; Mathy, Nathalie; Assrir, Nadine; Bétermier, Mireille; Nilges, Michael; Hickman, Alison B; Dyda, Fred; Craig, Nancy L; Guittet, Eric

    2018-01-01

    Abstract The piggyBac transposase (PB) is distinguished by its activity and utility in genome engineering, especially in humans where it has highly promising therapeutic potential. Little is known, however, about the structure–function relationships of the different domains of PB. Here, we demonstrate in vitro and in vivo that its C-terminal Cysteine-Rich Domain (CRD) is essential for DNA breakage, joining and transposition and that it binds to specific DNA sequences in the left and right transposon ends, and to an additional unexpectedly internal site at the left end. Using NMR, we show that the CRD adopts the specific fold of the cross-brace zinc finger protein family. We determine the interaction interfaces between the CRD and its target, the 5′-TGCGT-3′/3′-ACGCA-5′ motifs found in the left, left internal and right transposon ends, and use NMR results to propose docking models for the complex, which are consistent with our site-directed mutagenesis data. Our results provide support for a model of the PB/DNA interactions in the context of the transpososome, which will be useful for the rational design of PB mutants with increased activity. PMID:29385532

  17. Properties of tire rubber with zinc-containing technological additives

    Directory of Open Access Journals (Sweden)

    S. N. Kayushnikov

    2017-01-01

    Full Text Available In this paper, we studied the influence of zinc-containing technological additives on partial replacement of zinc oxide and stearic acid on deformation-strength and performance properties of tire elastomeric compositions based on polyisoprene rubber and combination of oil-filled butadiene-styrene and polybutadiene rubbers. It was revealed that partial replacement of zinc oxide and stearic acid with zinc-containing technological additives does not significantly affect the basic physico-mechanical properties of rubbers based on synthetic rubbers of general use. It was determined that the introduction of zinc-containing technological additives SCC2 in combination with zinc oxide in all the studied ratios and SCC3 in combination with zinc oxide in 4: 1 and 3: 1 ratios leads to increase (up to 10.4% of the resistance of these rubbers under the action of temperature-force fields, which is probably due to a more even distribution of polar components of curing system in non-polar elastomeric matrix, as well as the type of cross-links formed during vulcanization under the action of surface-active additives. It has been found that the introduction of zinc-containing additives into the elastomeric compositions based on SRMS-30 ARKM-15 + SRD in combination with zinc oxide leads to increase to 6.3% of wear resistance of rubbers, which may be due to a lower defectiveness of vulcanization structure of these rubbers, concentration of stress centers in the material. For rubbers based on SRI-3, preservation of bond strength of rubber with a textile cord at a sufficiently high level is shown.

  18. Effects of β-sheet crystals and a glycine-rich matrix on the thermal conductivity of spider dragline silk.

    Science.gov (United States)

    Park, Jinju; Kim, Duckjong; Lee, Seung-Mo; Choi, Ji-Ung; You, Myungil; So, Hye-Mi; Han, Junkyu; Nah, Junghyo; Seol, Jae Hun

    2017-03-01

    We measured the thermal conductivity of Araneus ventricosus' spider dragline silk using a suspended microdevice. The thermal conductivity of the silk fiber was approximately 0.4Wm -1 K -1 at room temperature and gradually increased with an increasing temperature in a manner similar to that of other disordered crystals or proteins. In order to elucidate the effect of β-sheet crystals in the silk, thermal denaturation was used to reduce the quantity of the β-sheet crystals. A calculation with an effective medium approximation supported this measurement result showing that the thermal conductivity of β-sheet crystals had an insignificant effect on the thermal conductivity of SDS. Additionally, the enhancement of bonding strength in a glycine-rich matrix by atomic layer deposition did not increase the thermal conductivity. Thus, this study suggests that the disordered part of the glycine-rich matrix prevented the peptide chains from being coaxially extended via the cross-linking covalent bonds. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Promyelocytic leukaemia zinc finger maintains self-renewal of male germline stem cells (mGSCs) and its expression pattern in dairy goat testis.

    Science.gov (United States)

    Song, W; Zhu, H; Li, M; Li, N; Wu, J; Mu, H; Yao, X; Han, W; Liu, W; Hua, J

    2013-08-01

    Previous studies have shown that promyelocytic leukaemia zinc finger (PLZF) is a spermatogonia-specific transcription factor in the testis, required to regulate self-renewal and maintenance of the spermatogonia stem cell. Up to now, expression and function of PLZF in the goat testis has not been known. The objectives of this study were to investigate PLZF expression pattern in the dairy goat and its effect on male goat germline stem cell (mGSC) self-renewal and differentiation. Testis development and expression patterns of PLZF in the dairy goat were analysed by haematoxylin and eosin staining, immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, effects of PLZF overexpression on mGSC self-renewal and differentiation were evaluated by quantitative RT-PCR (QRT-PCR), immunofluorescence and BrdU incorporation assay. Promyelocytic leukaemia zinc finger was essential for dairy goat testis development and expression of several proliferation and pluripotency-associated proteins including OCT4, C-MYC were upregulated by PLZF overexpression. The study demonstrated that PLZF played a key role in maintaining self-renewal of mGSCs and its overexpression enhanced expression of proliferation-associated genes. Promyelocytic leukaemia zinc finger could function in the dairy goat as well as in other species in maintaining self-renewal of germline stem cells and this study provides a model to study the mechanism on self-renewal and differentiation of mGSCs in livestock. © 2013 John Wiley & Sons Ltd.

  20. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Craig B Wilen

    2011-04-01

    Full Text Available HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5 virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4 in place of or in addition to CCR5 (R5X4 remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals.

  1. The zinc finger transcription factor 191 is required for early embryonic development and cell proliferation

    International Nuclear Information System (INIS)

    Li Jianzhong; Chen Xia; Yang Hua; Wang Shuiliang; Guo Baoyu; Yu Long; Wang Zhugang; Fu Jiliang

    2006-01-01

    Human zinc finger protein 191 (ZNF191/ZNF24) was cloned and characterized as a SCAN family member, which shows 94% identity to its mouse homologue zinc finger protein 191 (Zfp191). ZNF191 can specifically interact with an intronic polymorphic TCAT repeat (HUMTH01) in the tyrosine hydroxylase (TH) gene. Allelic variations of HUMTH01 have been stated to have a quantitative silencing effect on TH gene expression and to correlate with quantitative and qualitative changes in the binding by ZNF191. Zfp191 is widely expressed during embryonic development and in multiple tissues and organs in adult. To investigate the functions of Zfp191 in vivo, we have used homologous recombination to generate mice that are deficient in Zfp191. Heterozygous Zfp191 +/- mice are normal and fertile. Homozygous Zfp191 -/- embryos are severely retarded in development and die at approximately 7.5 days post-fertilization. Unexpectedly, in Zfp191 -/- and Zfp191 +/- embryos, TH gene expression is not affected. Blastocyst outgrowth experiments and the RNA interference-mediated knockdown of ZNF191 in cultured cells revealed an essential role for Zfp191 in cell proliferation. In further agreement with this function, no viable Zfp191 -/- cell lines were obtained by derivation of embryonic stem (ES) cells from blastocysts of Zfp191 +/- intercrosses or by forced homogenotization of heterozygous ES cells at high concentrations of G418. These data show that Zfp191 is indispensable for early embryonic development and cell proliferation

  2. Zinc finger AN1-type containing 4 is a novel marker for predicting metastasis and poor prognosis in oral squamous cell carcinoma.

    Science.gov (United States)

    Kurihara-Shimomura, Miyako; Sasahira, Tomonori; Nakamura, Hiroshi; Nakashima, Chie; Kuniyasu, Hiroki; Kirita, Tadaaki

    2018-05-01

    Head and neck cancer, including oral squamous cell carcinoma (OSCC), is the sixth most common cancer worldwide and has a high potential for locoregional invasion and nodal metastasis. Therefore, discovery of a useful molecular biomarker capable of predicting tumour progression and metastasis of OSCC is crucial. We have previously reported zinc finger AN1-type containing 4 (ZFAND4) as one of the most upregulated genes in recurrent OSCC using a cDNA microarray analysis. Although ZFAND4 has been shown to promote cell proliferation of gastric cancer, its expression and clinicopathological roles in OSCC remain unclear. In this study, we examined ZFAND4 expression by immunohistochemistry in 214 cases of OSCC. High cytoplasmic expression of ZFAND4 was observed in 45 out of 214 (21%) patients with OSCC. Expression levels of ZFAND4 were strongly associated with metastasis to the lymph nodes (p=0.0429) and distant organs (p=0.0068). Cases with high expression of ZFAND4 had a significantly unfavourable prognosis compared with patients with low expression of ZFAND4 (p<0.0001). Furthermore, ZFAND4 overexpression was an independent poor prognostic factor for OSCC as determined by multivariate analysis using the Cox proportional hazards model (p<0.0001). These results suggest that ZFAND4 is a useful marker for predicting metastasis and poor prognosis in patients with OSCC. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Expression of Arabidopsis FCS-Like Zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress

    Directory of Open Access Journals (Sweden)

    Muhammed eJamsheer K

    2015-09-01

    Full Text Available Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1 signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response towards energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response.

  4. Study of Doppler broadened annihilation spectra in zinc and zinc-containing 0.05 at. % iron

    International Nuclear Information System (INIS)

    Troev, T.; Zolov, R.; Dimova, V.; Levay, B.

    1979-01-01

    The Doppler broadening of annihilation gamma spectra obtained from positron-electron annihilation in pure polycrystalline zinc and zinc-containing 0.05 at. % iron have been investigated. The line shapes were measured by a Ge(Li) detector in coincidence with a NaI(Tl) scintillation detector. The results are quite consistent with those expected from the trapping model. The positrons are trapped by impurity atoms and vacancy-impurity pairs in zinc containing 0.05 at. % iron. (author)

  5. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  6. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    International Nuclear Information System (INIS)

    Sun, Xi; Zhou, Xixi; Du, Libo; Liu, Wenlan; Liu, Yang; Hudson, Laurie G.; Liu, Ke Jian

    2014-01-01

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  7. Zinc ion coordination as a modulating factor of the ZnuA histidine-rich loop flexibility: A molecular modeling and fluorescence spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Castelli, Silvia [Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Stella, Lorenzo [Department of Chemical Sciences and Technologies, University of Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Neuromed, IRCCS, Pozzilli 86077 (Italy); Petrarca, Patrizia [Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Battistoni, Andrea [Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome (Italy); Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), Viale delle Medaglie D' Oro 305, 00136 Rome (Italy); Desideri, Alessandro [Department of Biology, University of Rome Tor Vergata and CIBB, Center of Biostatistics and Bioinformatics, Via della Ricerca Scientifica, 00133 Rome (Italy); Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), Viale delle Medaglie D' Oro 305, 00136 Rome (Italy); Falconi, Mattia, E-mail: falconi@uniroma2.it [Department of Biology, University of Rome Tor Vergata and CIBB, Center of Biostatistics and Bioinformatics, Via della Ricerca Scientifica, 00133 Rome (Italy); Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), Viale delle Medaglie D' Oro 305, 00136 Rome (Italy)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Fluorescence data indicate that the His-loop of ZnuA interacts with Zn{sup +2} ions. Black-Right-Pointing-Pointer The ZnuA structural model proposed validates these spectroscopic findings. Black-Right-Pointing-Pointer It is proposed that a zinc loaded His-loop may facilitate the ZnuA-ZnuB recognition. -- Abstract: ZnuA is the soluble component of the high-affinity ZnuABC zinc transporter belonging to the ATP-binding cassette-type periplasmic Zn-binding proteins. The zinc transporter ZnuABC is composed by three proteins: ZnuB, the membrane permease, ZnuC, the ATPase component and ZnuA, the soluble periplasmic metal-binding protein which captures Zn and delivers it to ZnuB. The ZnuA protein contains a charged flexible loop, rich in histidines and acidic residues, showing significant species-specific differences. Various studies have established that this loop contributes to the formation of a secondary zinc binding site, which has been proposed to be important in the acquisition of periplasmic Zn for its delivery to ZnuB or for regulation of zinc uptake. Due to its high mobility the structure of the histidine-rich loop has never been solved by X-ray diffraction studies. In this paper, through a combined use of molecular modeling, mutagenesis and fluorescence spectroscopy, we confirm the presence of two zinc binding sites characterized by different affinities for the metal ion and show that the flexibility of the loop is modulated by the binding of the zinc ions to the protein. The data obtained by fluorescence spectroscopy have then be used to validate a 3D model including the unsolved histidine-rich loop.

  8. Glycine-containing selective medium for isolation of Legionellaceae from environmental specimens.

    Science.gov (United States)

    Wadowsky, R M; Yee, R B

    1981-11-01

    Glycine, at a final concentration of 0.3%, has been shown to be an excellent selective agent for the isolation of Legionellaceae. Stock cultures of Legionella pneumophila were not inhibited on buffered charcoal-yeast extract agar containing the amino acid. Among the other Legionellaceae tested, only one of two strains of L. dumoffii and two of six strains of L. micdadei were appreciably inhibited. This medium permitted the isolation of L. pneumophila from environmental specimens with marked inhibition of many non-Legionellaceae bacteria. The selectivity of the medium was subsequently improved by the incorporation of vancomycin (5 microgram/ml) and polymyxin B (100 U/ml). This selective medium, glycine-vancomycin-polymyxin B agar, should facilitate the recovery of Legionellaceae from environmental sources.

  9. Structural and functional organization of the HF.10 human zinc finger gene (ZNF35) located on chromosome 3p21-p22

    DEFF Research Database (Denmark)

    Lanfrancone, L; Pengue, G; Pandolfi, P P

    1992-01-01

    We report the structural and functional characterization of the HF.10 zinc finger gene (ZNF35) in normal human cells, as well as a processed pseudogene. The HF.10 gene spans about 13 kb and it is interrupted by three introns. All 11 zinc finger DNA-binding domains are contiguously encoded within...... and partial nucleotide sequencing of the HF.10 pseudogene indicated that it has arisen by retroposition of spliced HF.10 mRNA. In situ hybridization experiments revealed that both the functional locus and the pseudogene map to chromosome 3p21p22, a region that is frequently deleted in small cell lung...... and renal carcinomas. Hybridization of the HF.10 gene and the HF.10 pseudogene DNA probes to metaphases from a small cell lung carcinoma cell line with the 3p deletion revealed that both loci are part of the deleted chromosome region....

  10. In Vivo Zinc Finger Nuclease-mediated Targeted Integration of a Glucose-6-phosphatase Transgene Promotes Survival in Mice With Glycogen Storage Disease Type IA

    Science.gov (United States)

    Landau, Dustin J; Brooks, Elizabeth Drake; Perez-Pinera, Pablo; Amarasekara, Hiruni; Mefferd, Adam; Li, Songtao; Bird, Andrew; Gersbach, Charles A; Koeberl, Dwight D

    2016-01-01

    Glycogen storage disease type Ia (GSD Ia) is caused by glucose-6-phosphatase (G6Pase) deficiency in association with severe, life-threatening hypoglycemia that necessitates lifelong dietary therapy. Here we show that use of a zinc-finger nuclease (ZFN) targeted to the ROSA26 safe harbor locus and a ROSA26-targeting vector containing a G6PC donor transgene, both delivered with adeno-associated virus (AAV) vectors, markedly improved survival of G6Pase knockout (G6Pase-KO) mice compared with mice receiving the donor vector alone (P Ia, as compared with normal littermates, at 8 months following vector administration (P Ia. PMID:26865405

  11. Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs

    Science.gov (United States)

    Schnall-Levin, Michael; Rissland, Olivia S.; Johnston, Wendy K.; Perrimon, Norbert; Bartel, David P.; Berger, Bonnie

    2011-01-01

    MicroRNAs (miRNAs) regulate numerous biological processes by base-pairing with target messenger RNAs (mRNAs), primarily through sites in 3′ untranslated regions (UTRs), to direct the repression of these targets. Although miRNAs have sometimes been observed to target genes through sites in open reading frames (ORFs), large-scale studies have shown such targeting to be generally less effective than 3′ UTR targeting. Here, we show that several miRNAs each target significant groups of genes through multiple sites within their coding regions. This ORF targeting, which mediates both predictable and effective repression, arises from highly repeated sequences containing miRNA target sites. We show that such sequence repeats largely arise through evolutionary duplications and occur particularly frequently within families of paralogous C2H2 zinc-finger genes, suggesting the potential for their coordinated regulation. Examples of ORFs targeted by miR-181 include both the well-known tumor suppressor RB1 and RBAK, encoding a C2H2 zinc-finger protein and transcriptional binding partner of RB1. Our results indicate a function for repeat-rich coding sequences in mediating post-transcriptional regulation and reveal circumstances in which miRNA-mediated repression through ORF sites can be reliably predicted. PMID:21685129

  12. Knockout of Myostatin by Zinc-finger Nuclease in Sheep Fibroblasts and Embryos

    Directory of Open Access Journals (Sweden)

    Xuemei Zhang

    2016-10-01

    Full Text Available Myostatin (MSTN can negatively regulate the growth and development of skeletal muscle, and natural mutations can cause “double-muscling” trait in animals. In order to block the inhibiting effect of MSTN on muscle growth, we transferred zinc-finger nucleases (ZFN which targeted sheep MSTN gene into cultured fibroblasts. Gene targeted colonies were isolated from transfected fibroblasts by serial dilution culture and screened by sequencing. Two colonies were identified with mono-allele mutation and one colony with bi-allelic deletion. Further, we introduced the MSTN-ZFN mRNA into sheep embryos by microinjection. Thirteen of thirty-seven parthenogenetic embryos were targeted by ZFN, with the efficiency of 35%. Our work established the technical foundation for generation of MSTN gene editing sheep by somatic cloning and microinjection ZFN into embryos.

  13. A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses

    OpenAIRE

    Kanno, Shin-ichiro; Kuzuoka, Hiroyuki; Sasao, Shigeru; Hong, Zehui; Lan, Li; Nakajima, Satoshi; Yasui, Akira

    2007-01-01

    DNA damage causes genome instability and cell death, but many of the cellular responses to DNA damage still remain elusive. We here report a human protein, PALF (PNK and APTX-like FHA protein), with an FHA (forkhead-associated) domain and novel zinc-finger-like CYR (cysteine–tyrosine–arginine) motifs that are involved in responses to DNA damage. We found that the CYR motif is widely distributed among DNA repair proteins of higher eukaryotes, and that PALF, as well as a Drosophila protein with...

  14. Influence of different aggressive media on the protective behaviour of zinc rich paints

    International Nuclear Information System (INIS)

    Abreu, C. M.; Perez, C.; Sanchez, A.; Izquierdo, M.; Novoa, X. R.

    1999-01-01

    The aim of the present work is to determine the influence that different atmospheric agents have in steel protection by zinc rich paints based on inorganic silicate binder. The presence of pollutants in the atmosphere has been simulated by periodical deposition of sulphate and/or chloride solutions on the surface of the samples. With the aim of determining the validity of immersion tests, usually used in these types studies, the samples were kept in a controlled atmosphere at 20 degree centigrade and 60% RH. These exposition conditions could represent a relative dry atmosphere allowing the zinc corrosion. Electrochemical impedance spectroscopy was employed to follow the time evolution of the studied paints. The corresponding impedance spectra were modelled using an electrical equivalent circuit approach. This methodology allows establishing that pollutants as well as weathering conditions define the protecting mechanism of these zinc rich paints. The results show a fast evolution towards a barrier-type protecting mechanism

  15. Analysis of gene expression in gecko digital adhesive pads indicates significant production of cysteine- and glycine-rich beta-keratins.

    Science.gov (United States)

    Hallahan, David L; Keiper-Hrynko, Natalie M; Shang, Tanya Q; Ganzke, Thaya S; Toni, Mattia; Dalla Valle, Luisa; Alibardi, Lorenzo

    2009-01-15

    Microscopic bristles (setae) present on digital pads permit the adhesion and climbing of geckos. Keratins of setae of the lizard Gekko gecko (Tokay gecko) were analyzed by the isolation of expressed mRNAs and by the generation of an EST library. Of the 510 sequences determined, 268 (52.9%) were unique. Of these, 14 appeared to encode alpha- and 111 beta-keratins. Within the beta-keratins, we identified five groups based on nucleotide sequence comparisons. Of these, one contained the bulk of beta-keratins, with 103 EST members. The mRNAs within this major group, together with two singlets, encoded cysteine-proline-serine-rich proteins of 10-14 kDa (Ge-cprp). One of the smaller groups of transcripts encoded slightly larger glycine-proline-serine-rich proteins, of 14-19 kDa (Ge-gprp). The remaining group consisted of smaller (9 kDa) serine-tyrosine-rich beta-keratins (Ge-strp). Thus three classes could be distinguished by amino acid sequence alignment. Exact matches for some of the peptide sequences obtained from setal proteins by ms/ms sequencing occur within several of these clones. Most of the beta-keratins were basic and contained a core-box region of two beta-strand sequences, with high homology to core-boxes present in avian scale and feather beta-keratins. Core-boxes are beta-folded regions that are likely responsible for polymerization into the beta-keratin filaments. The two deduced alpha-keratins of 52.7 kDa are both acidic, and contain the typical central rod region with some homology to mammalian and avian alpha-keratins, with variable N- and C-terminal regions. Basic beta-keratins and acidic alpha-keratins may interact electrostatically to form the resistant corneous material of setae. (c) 2008 Wiley-Liss, Inc.

  16. Arabidopsis KHZ1 and KHZ2, two novel non-tandem CCCH zinc-finger and K-homolog domain proteins, have redundant roles in the regulation of flowering and senescence.

    Science.gov (United States)

    Yan, Zongyun; Jia, Jianheng; Yan, Xiaoyuan; Shi, Huiying; Han, Yuzhen

    2017-12-01

    The two novel CCCH zinc-finger and K-homolog (KH) proteins, KHZ1 and KHZ2, play important roles in regulating flowering and senescence redundantly in Arabidopsis. The CCCH zinc-finger proteins and K-homolog (KH) proteins play important roles in plant development and stress responses. However, the biological functions of many CCCH zinc-finger proteins and KH proteins remain uncharacterized. In Arabidopsis, KHZ1 and KHZ2 are characterized as two novel CCCH zinc-finger and KH domain proteins which belong to subfamily VII in CCCH family. We obtained khz1, khz2 mutants and khz1 khz2 double mutants, as well as overexpression (OE) lines of KHZ1 and KHZ2. Compared with the wild type (WT), the khz2 mutants displayed no defects in growth and development, and the khz1 mutants were slightly late flowering, whereas the khz1 khz2 double mutants showed a pronounced late flowering phenotype. In contrast, artificially overexpressing KHZ1 and KHZ2 led to the early flowering. Consistent with the late flowering phenotype, the expression of flowering repressor gene FLC was up-regulated, while the expression of flowering integrator and floral meristem identity (FMI) genes were down-regulated significantly in khz1 khz2. In addition, we also observed that the OE plants of KHZ1 and KHZ2 showed early leaf senescence significantly, whereas the khz1 khz2 double mutants showed delayed senescence of leaf and the whole plant. Both KHZ1 and KHZ2 were ubiquitously expressed throughout the tissues of Arabidopsis. KHZ1 and KHZ2 were localized to the nucleus, and possessed both transactivation activities and RNA-binding abilities. Taken together, we conclude that KHZ1 and KHZ2 have redundant roles in the regulation of flowering and senescence in Arabidopsis.

  17. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    CERN Document Server

    Van de Walle, J; Behrens, T; Bildstein, V; Blazhev, A; Cederkäll, J; Clément, E; Cocolios, T E; Davinson, T; Delahaye, P; Eberth, J; Ekström, A; Fedorov, D V; Fedosseev, V; Fraile, L M; Franchoo, S; Gernhäuser, R; Georgiev, G; Habs, D; Heyde, K; Huber, G; Huyse, M; Ibrahim, F; Ivanov, O; Iwanicki, J; Jolie, J; Kester, O; Köster, U; Kröll, T; Krücken, R; Lauer, M; Lisetskiy, A F; Lutter, R; Marsh, B A; Mayet, P; Niedermaier, O; Pantea, M; Raabe, R; Reiter, P; Sawicka, M; Scheit, H; Schrieder, G; Schwalm, D; Seliverstov, M D; Sieber, T; Sletten, G; Smirnova, N; Stanoiu, M; Stefanescu, I; Thomas, J C; Valiente-Dobón, J J; Van Duppen, P; Verney, D; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Wolf, B H; Zielinska, M

    2009-01-01

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,20) values in 74-80Zn, B(E2,42) values in 74,76Zn and the determination of the energy of the first excited 2 states in 78,80Zn. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of 238U, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, i...

  18. Differentiated human midbrain-derived neural progenitor cells express excitatory strychnine-sensitive glycine receptors containing α2β subunits.

    Directory of Open Access Journals (Sweden)

    Florian Wegner

    Full Text Available BACKGROUND: Human fetal midbrain-derived neural progenitor cells (NPCs may deliver a tissue source for drug screening and regenerative cell therapy to treat Parkinson's disease. While glutamate and GABA(A receptors play an important role in neurogenesis, the involvement of glycine receptors during human neurogenesis and dopaminergic differentiation as well as their molecular and functional characteristics in NPCs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated NPCs in respect to their glycine receptor function and subunit expression using electrophysiology, calcium imaging, immunocytochemistry, and quantitative real-time PCR. Whole-cell recordings demonstrate the ability of NPCs to express functional strychnine-sensitive glycine receptors after differentiation for 3 weeks in vitro. Pharmacological and molecular analyses indicate a predominance of glycine receptor heteromers containing α2β subunits. Intracellular calcium measurements of differentiated NPCs suggest that glycine evokes depolarisations mediated by strychnine-sensitive glycine receptors and not by D-serine-sensitive excitatory glycine receptors. Culturing NPCs with additional glycine, the glycine-receptor antagonist strychnine, or the Na(+-K(+-Cl(- co-transporter 1 (NKCC1-inhibitor bumetanide did not significantly influence cell proliferation and differentiation in vitro. CONCLUSIONS/SIGNIFICANCE: These data indicate that NPCs derived from human fetal midbrain tissue acquire essential glycine receptor properties during neuronal maturation. However, glycine receptors seem to have a limited functional impact on neurogenesis and dopaminergic differentiation of NPCs in vitro.

  19. TIF1alpha: a possible link between KRAB zinc finger proteins and nuclear receptors

    DEFF Research Database (Denmark)

    Le Douarin, B; You, J; Nielsen, Anders Lade

    1998-01-01

    Ligand-induced gene activation by nuclear receptors (NRs) is thought to be mediated by transcriptional intermediary factors (TIFs), that interact with their ligand-dependent AF-2 activating domain. Included in the group of the putative AF-2 TIFs identified so far is TIF1alpha, a member of a new...... family of proteins which contains an N-terminal RBCC (RING finger-B boxes-coiled coil) motif and a C-terminal bromodomain preceded by a PHD finger. In addition to these conserved domains present in a number of transcriptional regulatory proteins, TIF1alpha was found to contain several protein......-protein interaction sites. Of these, one specifically interacts with NRs bound to their agonistic ligand and not with NR mutants that are defective in the AF-2 activity. Immediately adjacent to this 'NR box', TIF1alpha contains an interaction site for members of the chromatin organization modifier (chromo) family, HP...

  20. Zinc Finger Nuclease: A New Approach to Overcome Beta-Lactam Antibiotic Resistance

    Science.gov (United States)

    Shahbazi Dastjerdeh, Mansoureh; Kouhpayeh, Shirin; Sabzehei, Faezeh; Khanahmad, Hossein; Salehi, Mansour; Mohammadi, Zahra; Shariati, Laleh; Hejazi, Zahra; Rabiei, Parisa; Manian, Mostafa

    2016-01-01

    Background: The evolution of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) has been accelerated recently by the indiscriminate application of antibiotics. Antibiotic resistance has challenged the success of medical interventions and therefore is considered a hazardous threat to human health. Objectives: The present study aimed to describe the use of zinc finger nuclease (ZFN) technology to target and disrupt a plasmid-encoded β-lactamase, which prevents horizontal gene transfer-mediated evolution of ARBs. Materials and Methods: An engineered ZFN was designed to target a specific sequence in the ampicillin resistance gene (ampR) of the pTZ57R plasmid. The Escherichia coli bacteria already contained the pZFN kanamycin-resistant (kanaR) plasmid as the case or the pP15A, kanaR empty vector as the control, were transformed with the pTZ57R; the ability of the designed ZFN to disrupt the β-lactamase gene was evaluated with the subsequent disturbed ability of the bacteria to grow on ampicillin (amp) and ampicillin-kanamycin (amp-kana)-containing media. The effect of mild hypothermia on the ZFN gene targeting efficiency was also evaluated. Results: The growth of bacteria in the case group on the amp and amp-kana-containing media was significantly lower compared with the control group at 37°C (P < 0.001). Despite being more efficient in hypothermic conditions at 30°C (P < 0.001), there were no significant associations between the incubation temperature and the ZFN gene targeting efficiency. Conclusions: Our findings revealed that the ZFN technology could be employed to overcome ampicillin resistance by the targeted disruption of the ampicillin resistance gene, which leads to inactivation of β-lactam synthesis. Therefore, ZFN technology could be engaged to decrease the antibiotic resistance issue with the construction of a ZFN archive against different ARGs. To tackle the resistance issue at the environmental level, recombinant phages

  1. Different Binding Properties and Function of CXXC Zinc Finger Domains in Dnmt1 and Tet1

    Science.gov (United States)

    Meilinger, Daniela; Bultmann, Sebastian; Fellinger, Karin; Hasenöder, Stefan; Wang, Mengxi; Qin, Weihua; Söding, Johannes; Spada, Fabio; Leonhardt, Heinrich

    2011-01-01

    Several mammalian proteins involved in chromatin and DNA modification contain CXXC zinc finger domains. We compared the structure and function of the CXXC domains in the DNA methyltransferase Dnmt1 and the methylcytosine dioxygenase Tet1. Sequence alignment showed that both CXXC domains have a very similar framework but differ in the central tip region. Based on the known structure of a similar MLL1 domain we developed homology models and designed expression constructs for the isolated CXXC domains of Dnmt1 and Tet1 accordingly. We show that the CXXC domain of Tet1 has no DNA binding activity and is dispensable for catalytic activity in vivo. In contrast, the CXXC domain of Dnmt1 selectively binds DNA substrates containing unmethylated CpG sites. Surprisingly, a Dnmt1 mutant construct lacking the CXXC domain formed covalent complexes with cytosine bases both in vitro and in vivo and rescued DNA methylation patterns in dnmt1−/− embryonic stem cells (ESCs) just as efficiently as wild type Dnmt1. Interestingly, neither wild type nor ΔCXXC Dnmt1 re-methylated imprinted CpG sites of the H19a promoter in dnmt1−/− ESCs, arguing against a role of the CXXC domain in restraining Dnmt1 methyltransferase activity on unmethylated CpG sites. PMID:21311766

  2. Different binding properties and function of CXXC zinc finger domains in Dnmt1 and Tet1.

    Directory of Open Access Journals (Sweden)

    Carina Frauer

    2011-02-01

    Full Text Available Several mammalian proteins involved in chromatin and DNA modification contain CXXC zinc finger domains. We compared the structure and function of the CXXC domains in the DNA methyltransferase Dnmt1 and the methylcytosine dioxygenase Tet1. Sequence alignment showed that both CXXC domains have a very similar framework but differ in the central tip region. Based on the known structure of a similar MLL1 domain we developed homology models and designed expression constructs for the isolated CXXC domains of Dnmt1 and Tet1 accordingly. We show that the CXXC domain of Tet1 has no DNA binding activity and is dispensable for catalytic activity in vivo. In contrast, the CXXC domain of Dnmt1 selectively binds DNA substrates containing unmethylated CpG sites. Surprisingly, a Dnmt1 mutant construct lacking the CXXC domain formed covalent complexes with cytosine bases both in vitro and in vivo and rescued DNA methylation patterns in dnmt1⁻/⁻ embryonic stem cells (ESCs just as efficiently as wild type Dnmt1. Interestingly, neither wild type nor ΔCXXC Dnmt1 re-methylated imprinted CpG sites of the H19a promoter in dnmt1⁻/⁻ ESCs, arguing against a role of the CXXC domain in restraining Dnmt1 methyltransferase activity on unmethylated CpG sites.

  3. Specific Labeling of Zinc Finger Proteins using Non-canonical Amino Acids and Copper-free Click Chemistry

    Science.gov (United States)

    Kim, Younghoon; Kim, Sung Hoon; Ferracane, Dean; Katzenellenbogen, John A.

    2012-01-01

    Zinc finger proteins (ZFPs) play a key role in transcriptional regulation and serve as invaluable tools for gene modification and genetic engineering. Development of efficient strategies for labeling metalloproteins such as ZFPs is essential for understanding and controlling biological processes. In this work, we engineered ZFPs containing cysteine-histidine (Cys2-His2) motifs by metabolic incorporation of the unnatural amino acid azidohomoalanine (AHA), followed by specific protein labeling via click chemistry. We show that cyclooctyne promoted [3 + 2] dipolar cycloaddition with azides, known as copper-free click chemistry, provides rapid and specific labeling of ZFPs at high yields as determined by mass spectrometry analysis. We observe that the DNA-binding activity of ZFPs labeled by conventional copper-mediated click chemistry was completely abolished, whereas ZFPs labeled by copper-free click chemistry retain their sequence-specific DNA-binding activity under native conditions, as determined by electrophoretic mobility shift assays, protein microarrays and kinetic binding assays based on Förster resonance energy transfer (FRET). Our work provides a general framework to label metalloproteins such as ZFPs by metabolic incorporation of unnatural amino acids followed by copper-free click chemistry. PMID:22871171

  4. Zinc Bioavailability from Phytate-Rich Foods and Zinc Supplements. Modeling the Effects of Food Components with Oxygen, Nitrogen, and Sulfur Donor Ligands.

    Science.gov (United States)

    Tang, Ning; Skibsted, Leif H

    2017-10-04

    Aqueous solubility of zinc phytate (K sp = (2.6 ± 0.2) × 10 -47 mol 7 /L 7 ), essential for zinc bioavailability from plant foods, was found to decrease with increasing temperature corresponding to ΔH dis of -301 ± 22 kJ/mol and ΔS dis of -1901 ± 72 J/(mol K). Binding of zinc to phytate was found to be exothermic for the stronger binding site and endothermic for the weaker binding site. The solubility of the slightly soluble zinc citrate and insoluble zinc phytate was found to be considerably enhanced by the food components with oxygen donor, nitrogen donor, and sulfur donor ligands. The driving force for the enhanced solubility is mainly due to the complex formation between zinc and the investigated food components rather than ligand exchange and ternary complex formation as revealed by quantum mechanical calculations and isothermal titration calorimetry. Histidine and citrate are promising ligands for improving zinc absorption from phytate-rich foods.

  5. X-ray Absorption Spectroscopy Combined with Time-Dependent Density Functional Theory Elucidates Differential Substitution Pathways of Au(I) and Au(III) with Zinc Fingers.

    Science.gov (United States)

    Abbehausen, Camilla; de Paiva, Raphael Enoque Ferraz; Bjornsson, Ragnar; Gomes, Saulo Quintana; Du, Zhifeng; Corbi, Pedro Paulo; Lima, Frederico Alves; Farrell, Nicholas

    2018-01-02

    A combination of two elements' (Au, Zn) X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TD-DFT) allowed the elucidation of differential substitution pathways of Au(I) and Au(III) compounds reacting with biologically relevant zinc fingers (ZnFs). Gold L 3 -edge XAS probed the interaction of gold and the C-terminal Cys 2 HisCys finger of the HIV-1 nucleocapsid protein NCp7, and the Cys 2 His 2 human transcription factor Sp1. The use of model compounds helped assign oxidation states and the identity of the gold-bound ligands. The computational studies accurately reproduced the experimental XAS spectra and allowed the proposition of structural models for the interaction products at early time points. The direct electrophilic attack on the ZnF by the highly thiophilic Au(I) resulted in a linear P-Au-Cys coordination sphere after zinc ejection whereas for the Sp1, loss of PEt 3 results in linear Cys-Au-Cys or Cys-Au-His arrangements. Reactions with Au(III) compounds, on the other hand, showed multiple binding modes. Prompt reaction between [AuCl(dien)] 2+ and [Au(dien)(DMAP)] 3+ with Sp1 showed a partially reduced Au center and a final linear His-Au-His coordination. Differently, in the presence of NCp7, [AuCl(dien)] 2+ readily reduces to Au(I) and changes from square-planar to linear geometry with Cys-Au-His coordination, while [Au(dien)(DMAP)] 3+ initially maintains its Au(III) oxidation state and square-planar geometry and the same first coordination sphere. The latter is the first observation of a "noncovalent" interaction of a Au(III) complex with a zinc finger and confirms early hypotheses that stabilization of Au(III) occurs with N-donor ligands. Modification of the zinc coordination sphere, suggesting full or partial zinc ejection, is observed in all cases, and for [Au(dien)(DMAP)] 3+ this represents a novel mechanism for nucleocapsid inactivation. The combination of XAS and TD-DFT presents the first direct experimental

  6. The pro1(+) gene from Sordaria macrospora encodes a C6 zinc finger transcription factor required for fruiting body development.

    Science.gov (United States)

    Masloff, S; Pöggeler, S; Kück, U

    1999-05-01

    During sexual morphogenesis, the filamentous ascomycete Sordaria macrospora differentiates into multicellular fruiting bodies called perithecia. Previously it has been shown that this developmental process is under polygenic control. To further understand the molecular mechanisms involved in fruiting body formation, we generated the protoperithecia forming mutant pro1, in which the normal development of protoperithecia into perithecia has been disrupted. We succeeded in isolating a cosmid clone from an indexed cosmid library, which was able to complement the pro1(-) mutation. Deletion analysis, followed by DNA sequencing, subsequently demonstrated that fertility was restored to the pro1 mutant by an open reading frame encoding a 689-amino-acid polypeptide, which we named PRO1. A region from this polypeptide shares significant homology with the DNA-binding domains found in fungal C6 zinc finger transcription factors, such as the GAL4 protein from yeast. However, other typical regions of C6 zinc finger proteins, such as dimerization elements, are absent in PRO1. The involvement of the pro1(+) gene in fruiting body development was further confirmed by trying to complement the mutant phenotype with in vitro mutagenized and truncated versions of the pro1 open reading frame. Southern hybridization experiments also indicated that pro1(+) homologues are present in other sexually propagating filamentous ascomycetes.

  7. Functional promoter variant in zinc finger protein 202 predicts severe atherosclerosis and ischemic heart disease

    DEFF Research Database (Denmark)

    Frikke-Schmidt, R.; Nordestgaard, Børge; Grande, Peer

    2008-01-01

    Objectives This study was designed to test the hypotheses that single nucleotide polymorphisms ( SNPs), in zinc finger protein 202 ( ZNF202), predict severe atherosclerosis and ischemic heart disease ( IHD). Background ZNF202 is a transcriptional repressor controlling promoter elements in genes...... involved in vascular maintenance and lipid metabolism. Methods We first determined genotype association for 9 ZNF202 SNPs with severe atherosclerosis ( ankle brachial index >0.7 vs. ...,998 controls. Finally, we determined whether g. -660A>G altered transcriptional activity of the ZNF202 promoter in vitro. Results Cross-sectionally, ZNF202 g. -660 GG versus AA homozygosity predicted an odds ratio for severe atherosclerosis of 2.01 ( 95% confidence interval [CI]: 1.34 to 3.01). Prospectively...

  8. Activation of Fetal γ-globin Gene Expression via Direct Protein Delivery of Synthetic Zinc-finger DNA-Binding Domains

    Directory of Open Access Journals (Sweden)

    Mir A Hossain

    2016-01-01

    Full Text Available Reactivation of γ-globin expression has been shown to ameliorate disease phenotypes associated with mutations in the adult β-globin gene, including sickle cell disease. Specific mutations in the promoter of the γ-globin genes are known to prevent repression of the genes in the adult and thus lead to hereditary persistence of fetal hemoglobin. One such hereditary persistence of fetal hemoglobin is associated with a sequence located 567 bp upstream of the Gγ-globin gene which assembles a GATA-containing repressor complex. We generated two synthetic zinc-finger DNA-binding domains (ZF-DBDs targeting this sequence. The -567Gγ ZF-DBDs associated with high affinity and specificity with the target site in the γ-globin gene promoter. We delivered the -567Gγ ZF-DBDs directly to primary erythroid cells. Exposure of these cells to the recombinant -567Gγ ZF-DBDs led to increased expression of the γ-globin gene. Direct protein delivery of ZF-DBDs that compete with transcription regulatory proteins will have broad implications for modulating gene expression in analytical or therapeutic settings.

  9. Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression.

    Science.gov (United States)

    Lomniczi, Alejandro; Wright, Hollis; Castellano, Juan Manuel; Matagne, Valerie; Toro, Carlos A; Ramaswamy, Suresh; Plant, Tony M; Ojeda, Sergio R

    2015-12-16

    In primates, puberty is unleashed by increased GnRH release from the hypothalamus following an interval of juvenile quiescence. GWAS implicates Zinc finger (ZNF) genes in timing human puberty. Here we show that hypothalamic expression of several ZNFs decreased in agonadal male monkeys in association with the pubertal reactivation of gonadotropin secretion. Expression of two of these ZNFs, GATAD1 and ZNF573, also decreases in peripubertal female monkeys. However, only GATAD1 abundance increases when gonadotropin secretion is suppressed during late infancy. Targeted delivery of GATAD1 or ZNF573 to the rat hypothalamus delays puberty by impairing the transition of a transcriptional network from an immature repressive epigenetic configuration to one of activation. GATAD1 represses transcription of two key puberty-related genes, KISS1 and TAC3, directly, and reduces the activating histone mark H3K4me2 at each promoter via recruitment of histone demethylase KDM1A. We conclude that GATAD1 epitomizes a subset of ZNFs involved in epigenetic repression of primate puberty.

  10. The DnaJ-like zinc finger domain protein PSA2 affects light acclimation and chloroplast development in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yan-Wen eWang

    2016-03-01

    Full Text Available The biosynthesis of chlorophylls and carotenoids and the assembly of thylakoid membranes are critical for the photoautotrophic growth of plants. Different factors are involved in these two processes. In recent years, members of the DnaJ-like zinc finger domain proteins have been found to take part in the biogenesis and/or the maintenance of plastids. One member of this family of proteins, PSA2, was recently found to localize to the thylakoid lumen and regulate the accumulation of photosystem I. In this study, we report that the silencing of PSA2 in Arabidopsis thaliana resulted in variegated leaves and retarded growth. Although both chlorophylls and total carotenoids decreased in the psa2 mutant, violaxanthin and zeaxanthin accumulated in the mutant seedlings grown under growth condition. Lower levels of non-photochemical quenching and electron transport rate were also found in the psa2 mutant seedlings under growth condition compared with those of the wild-type plants, indicating an impaired capability to acclimate to normal light irradiance when PSA2 was silenced. Moreover, we also observed an abnormal assembly of grana thylakoids and poorly developed stroma thylakoids in psa2 chloroplasts. Taken together, our results demonstrate that PSA2 is a member of the DnaJ-like zinc finger domain protein family that affects light acclimation and chloroplast development.

  11. Zinc finger arrays binding human papillomavirus types 16 and 18 genomic DNA: precursors of gene-therapeutics for in-situ reversal of associated cervical neoplasia

    Directory of Open Access Journals (Sweden)

    Wayengera Misaki

    2012-07-01

    Full Text Available Abstract Background Human papillomavirus (HPV types 16 and 18 are the high-risk, sexually transmitted infectious causes of most cervical intraepithelial neoplasias (CIN or cancers. While efficacious vaccines to reduce the sexual acquisition of these high-risk HPVs have recently been introduced, no virus-targeted therapies exist for those already exposed and infected. Considering the oncogenic role of the transforming (E6 and E7 genes of high-risk HPVs in the slow pathogenesis of cervical cancer, we hypothesize that timely disruption or abolition of HPV genome expression within pre-cancerous lesions identified at screening may reverse neoplasia. We aimed to derive model zinc finger nucleases (ZFNs for mutagenesis of the genomes of two high-risk HPV (types 16 & 18. Methods and results Using ZiFiT software and the complete genomes of HPV types16 and 18, we computationally generated the consensus amino acid sequences of the DNA-binding domains (F1, F2, & F3 of (i 296 & 327 contextually unpaired (or single three zinc-finger arrays (sZFAs and (ii 9 & 13 contextually paired (left and right three- zinc-finger arrays (pZFAs that bind genomic DNA of HPV-types 16 and 18 respectively, inclusive of the E7 gene (s/pZFAHpV/E7. In the absence of contextually paired three-zinc-finger arrays (pZFAs that bind DNA corresponding to the genomic context of the E6 gene of either HPV type, we derived the DNA binding domains of another set of 9 & 14 contextually unpaired E6 gene-binding ZFAs (sZFAE6 to aid the future quest for paired ZFAs to target E6 gene sequences in both HPV types studied (pZFAE6. This paper presents models for (i synthesis of hybrid ZFNs that cleave within the genomic DNA of either HPV type, by linking the gene sequences of the DNA-cleavage domain of the FokI endonuclease FN to the gene sequences of a member of the paired-HPV-binding ZFAs (pZFAHpV/E7 + FN, and (ii delivery of the same into precancerous lesions using HPV-derived viral plasmids or

  12. Zinc Finger Takes on a Whole New Meaning: Reducing and Monitoring Zinc Blanks in the Isotope Lab

    Science.gov (United States)

    Wilkes, E. B.; Wasylenki, L. E.; Anbar, A. D.

    2010-12-01

    In terms of avoiding contamination, zinc is one of the most difficult elements to study isotopically. The reason for this is that zinc stearate is a very common mold release agent in the production of plastics, including those most often used in isotope geochemistry clean labs. While polyethylene bottles, polypropylene centrifuge tubes, pipette tips, and Kimwipes are all potential sources of contaminant zinc, by far the largest amount of zinc is introduced to the laboratory by gloves. Most items can be effectively rid of zinc by soaking in dilute hydrochloric acid, but gloves cannot be cleaned easily, and use of gloves can quickly lead to contamination on many surfaces throughout the lab. We recently conducted several experiments in which dissolved zinc was partly adsorbed onto synthetic Mn oxyhydroxide particles. The dissolved and adsorbed pools were separated by filtration, purified with ion exchange chemistry, and analyzed for isotope composition by MC-ICP-MS. We used a commercially purchased ICP standard solution both as our standard (delta66/64Zn = 0) and as the source of the zinc in the experiments. Whenever gloves were worn during purification, process blanks contained as much as 150 ng Zn, and both the dissolved and adsorbed pools of zinc came out enriched in heavy isotopes relative to the starting pool, contrary to our expectation of mass balance. When gloves were not worn, blanks were brands of vinyl gloves, including one brand recommended to us for being “low” in zinc, measured +10‰ relative to our standard. We therefore concluded that glove zinc contaminated most of our experimental samples. We were only able to see such clear evidence of contamination because (1) we were doing an experiment in which we expected one light and one heavy pool of zinc compared to our standard, and (2) we happened to use an ICP standard solution for delta = 0 that is strongly enriched in light isotopes relative to both brands of gloves. We caution others who measure

  13. Glycine-containing selective medium for isolation of Legionellaceae from environmental specimens.

    OpenAIRE

    Wadowsky, R M; Yee, R B

    1981-01-01

    Glycine, at a final concentration of 0.3%, has been shown to be an excellent selective agent for the isolation of Legionellaceae. Stock cultures of Legionella pneumophila were not inhibited on buffered charcoal-yeast extract agar containing the amino acid. Among the other Legionellaceae tested, only one of two strains of L. dumoffii and two of six strains of L. micdadei were appreciably inhibited. This medium permitted the isolation of L. pneumophila from environmental specimens with marked i...

  14. Proviral HIV-genome-wide and pol-gene specific Zinc Finger Nucleases: Usability for targeted HIV gene therapy

    Directory of Open Access Journals (Sweden)

    Wayengera Misaki

    2011-07-01

    Full Text Available Abstract Background Infection with HIV, which culminates in the establishment of a latent proviral reservoir, presents formidable challenges for ultimate cure. Building on the hypothesis that ex-vivo or even in-vivo abolition or disruption of HIV-gene/genome-action by target mutagenesis or excision can irreversibly abrogate HIV's innate fitness to replicate and survive, we previously identified the isoschizomeric bacteria restriction enzymes (REases AcsI and ApoI as potent cleavers of the HIV-pol gene (11 and 9 times in HIV-1 and 2, respectively. However, both enzymes, along with others found to cleave across the entire HIV-1 genome, slice (SX at palindromic sequences that are prevalent within the human genome and thereby pose the risk of host genome toxicity. A long-term goal in the field of R-M enzymatic therapeutics has thus been to generate synthetic restriction endonucleases with longer recognition sites limited in specificity to HIV. We aimed (i to assemble and construct zinc finger arrays and nucleases (ZFN with either proviral-HIV-pol gene or proviral-HIV-1 whole-genome specificity respectively, and (ii to advance a model for pre-clinically testing lentiviral vectors (LV that deliver and transduce either ZFN genotype. Methods and Results First, we computationally generated the consensus sequences of (a 114 dsDNA-binding zinc finger (Zif arrays (ZFAs or ZifHIV-pol and (b two zinc-finger nucleases (ZFNs which, unlike the AcsI and ApoI homeodomains, possess specificity to >18 base-pair sequences uniquely present within the HIV-pol gene (ZifHIV-polFN. Another 15 ZFNs targeting >18 bp sequences within the complete HIV-1 proviral genome were constructed (ZifHIV-1FN. Second, a model for constructing lentiviral vectors (LVs that deliver and transduce a diploid copy of either ZifHIV-polFN or ZifHIV-1FN chimeric genes (termed LV- 2xZifHIV-polFN and LV- 2xZifHIV-1FN, respectively is proposed. Third, two preclinical models for controlled testing of

  15. Proviral HIV-genome-wide and pol-gene specific zinc finger nucleases: usability for targeted HIV gene therapy.

    Science.gov (United States)

    Wayengera, Misaki

    2011-07-22

    Infection with HIV, which culminates in the establishment of a latent proviral reservoir, presents formidable challenges for ultimate cure. Building on the hypothesis that ex-vivo or even in-vivo abolition or disruption of HIV-gene/genome-action by target mutagenesis or excision can irreversibly abrogate HIV's innate fitness to replicate and survive, we previously identified the isoschizomeric bacteria restriction enzymes (REases) AcsI and ApoI as potent cleavers of the HIV-pol gene (11 and 9 times in HIV-1 and 2, respectively). However, both enzymes, along with others found to cleave across the entire HIV-1 genome, slice (SX) at palindromic sequences that are prevalent within the human genome and thereby pose the risk of host genome toxicity. A long-term goal in the field of R-M enzymatic therapeutics has thus been to generate synthetic restriction endonucleases with longer recognition sites limited in specificity to HIV. We aimed (i) to assemble and construct zinc finger arrays and nucleases (ZFN) with either proviral-HIV-pol gene or proviral-HIV-1 whole-genome specificity respectively, and (ii) to advance a model for pre-clinically testing lentiviral vectors (LV) that deliver and transduce either ZFN genotype. First, we computationally generated the consensus sequences of (a) 114 dsDNA-binding zinc finger (Zif) arrays (ZFAs or ZifHIV-pol) and (b) two zinc-finger nucleases (ZFNs) which, unlike the AcsI and ApoI homeodomains, possess specificity to >18 base-pair sequences uniquely present within the HIV-pol gene (ZifHIV-polFN). Another 15 ZFNs targeting >18 bp sequences within the complete HIV-1 proviral genome were constructed (ZifHIV-1FN). Second, a model for constructing lentiviral vectors (LVs) that deliver and transduce a diploid copy of either ZifHIV-polFN or ZifHIV-1FN chimeric genes (termed LV- 2xZifHIV-polFN and LV- 2xZifHIV-1FN, respectively) is proposed. Third, two preclinical models for controlled testing of the safety and efficacy of either of these

  16. An engineered split M.HhaI-zinc finger fusion lacks the intended methyltransferase specificity

    International Nuclear Information System (INIS)

    Meister, Glenna E.; Chandrasegaran, Srinivasan; Ostermeier, Marc

    2008-01-01

    The ability to site-specifically methylate DNA in vivo would have wide applicability to the study of basic biomedical problems as well as enable studies on the potential of site-specific DNA methylation as a therapeutic strategy for the treatment of diseases. Natural DNA methyltransferases lack the specificity required for these applications. Nomura and Barbas [W. Nomura, C.F. Barbas 3rd, In vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase, J. Am. Chem. Soc. 129 (2007) 8676-8677] have reported that an engineered DNA methyltransferase comprised of fragments of M.HhaI methyltransferase and zinc finger proteins has very high specificity for the chosen target site. Our analysis of this engineered enzyme shows that the fusion protein methylates target and non-target sites with similar efficiency

  17. ZNF307, a novel zinc finger gene suppresses p53 and p21 pathway

    International Nuclear Information System (INIS)

    Li Jing; Wang Yuequn; Fan Xiongwei; Mo Xiaoyang; Wang Zequn; Li Yongqing; Yin Zhaochu; Deng Yun; Luo Na; Zhu Chuanbing; Liu Mingyao; Ma Qian; Ocorr, Karen; Yuan Wuzhou; Wu Xiushan

    2007-01-01

    We have cloned a novel KRAB-related zinc finger gene, ZNF307, encoding a protein of 545 aa. ZNF307 is conserved across species in evolution and is differentially expressed in human adult and fetal tissues. The fusion protein of EGFP-ZNF307 localizes in the nucleus. Transcriptional activity assays show ZNF307 suppresses transcriptional activity of L8G5-luciferase. Overexpressing ZNF307 in different cell lines also inhibits the transcriptional activities of p53 and p21. Moreover, ZNF307 works by reducing the p53 protein level and p53 protein reduction is achieved by increasing transcription of MDM2 and EP300. ZNF307 might suppress p53-p21 pathway through activating MDM2 and EP300 expression and inducing p53 degradation

  18. Noise resistance applied to the study of zinc rich paints; Aplicacion de la resistencia de ruido al estudio de pinturas ricas en zinc

    Energy Technology Data Exchange (ETDEWEB)

    Espada Recarey, L.; Sanchez Bermudez, A.; Urrejola Madrinan, S.; Bouzada Alvela, F. [Universidad de Vigo (Spain)

    2001-07-01

    Electrochemical Noise has been one of the more useful analysis methods to the study the corrosion processes due to the fact that it is simple and cheap. The objective of this work is to check the efficiency of this technique when it is applied to the study of Rich Zinc Paints and specifically the Noise Resistance parameter which is very efficiency to study metal-electrolyte systems. Then this technique was applied to Rich Zinc Paints systems of which we have already information by means of electrochemical impedance spectroscopy. The outcomes of this paper show the efficiency of applying Noise Resistance technique to explain the behavior of this kind of systems. (Author) 18 refs.

  19. A Novel Prokaryotic Green Fluorescent Protein Expression System for Testing Gene Editing Tools Activity Like Zinc Finger Nuclease.

    Science.gov (United States)

    Sabzehei, Faezeh; Kouhpayeh, Shirin; Dastjerdeh, Mansoureh Shahbazi; Khanahmad, Hossein; Salehi, Rasoul; Naderi, Shamsi; Taghizadeh, Razieh; Rabiei, Parisa; Hejazi, Zahra; Shariati, Laleh

    2017-01-01

    Gene editing technology has created a revolution in the field of genome editing. The three of the most famous tools in gene editing technology are zinc finger nucleases (ZFNs), transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated systems. As their predictable nature, it is necessary to assess their efficiency. There are some methods for this purpose, but most of them are time labor and complicated. Here, we introduce a new prokaryotic reporter system, which makes it possible to evaluate the efficiency of gene editing tools faster, cheaper, and simpler than previous methods. At first, the target sites of a custom ZFN, which is designed against a segment of ampicillin resistance gene, were cloned on both sides of green fluorescent protein (GFP) gene to construct pPRO-GFP. Then pPRO-GFP was transformed into Escherichia coli TOP10F' that contains pZFN (contains expression cassette of a ZFN against ampicillin resistant gene), or p15A-KanaR as a negative control. The transformed bacteria were cultured on three separate media that contained ampicillin, kanamycin, and ampicillin + kanamycin; then the resulted colonies were assessed by flow cytometry. The results of flow cytometry showed a significant difference between the case (bacteria contain pZFN) and control (bacteria contain p15A, KanaR) in MFI (Mean Fluorescence Intensity) ( P < 0.0001). According to ZFN efficiency, it can bind and cut the target sites, the bilateral cutting can affect the intensity of GFP fluorescence. Our flow cytometry results showed that this ZFN could reduce the intensity of GFP color and colony count of bacteria in media containing amp + kana versus control sample.

  20. Bioaccessible mineral content of malted finger millet (Eleusine coracana), wheat (Triticum aestivum), and barley (Hordeum vulgare).

    Science.gov (United States)

    Platel, Kalpana; Eipeson, Sushma W; Srinivasan, Krishnapura

    2010-07-14

    Malted grains are extensively used in weaning and geriatric foods. Malting generally improves the nutrient content and digestibility of foods. The present investigation examined the influence of malting of finger millet, wheat, and barley on the bioaccessibility of iron, zinc, calcium, copper, and manganese. Malting increased the bioaccessibility of iron by >3-fold from the two varieties of finger millet and by >2-fold from wheat, whereas such a beneficial influence was not seen in barley. The bioaccessibility of zinc from wheat and barley increased to an extent of 234 and 100%, respectively, as a result of malting. However, malting reduced the bioaccessibility of zinc from finger millet. Malting marginally increased the bioaccessibility of calcium from white finger millet and wheat. Whereas malting did not exert any influence on bioaccessibility of copper from finger millet and wheat, it significantly decreased (75%) the same from barley. Malting did increase the bioaccessibility of manganese from brown finger millet (17%) and wheat (42%). Thus, malting could be an appropriate food-based strategy to derive iron and other minerals maximally from food grains.

  1. DPL-1 DP, LIN-35 Rb and EFL-1 E2F act with the MCD-1 zinc-finger protein to promote programmed cell death in Caenorhabditis elegans.

    Science.gov (United States)

    Reddien, Peter W; Andersen, Erik C; Huang, Michael C; Horvitz, H Robert

    2007-04-01

    The genes egl-1, ced-9, ced-4, and ced-3 play major roles in programmed cell death in Caenorhabditis elegans. To identify genes that have more subtle activities, we sought mutations that confer strong cell-death defects in a genetically sensitized mutant background. Specifically, we screened for mutations that enhance the cell-death defects caused by a partial loss-of-function allele of the ced-3 caspase gene. We identified mutations in two genes not previously known to affect cell death, dpl-1 and mcd-1 (modifier of cell death). dpl-1 encodes the C. elegans homolog of DP, the human E2F-heterodimerization partner. By testing genes known to interact with dpl-1, we identified roles in cell death for four additional genes: efl-1 E2F, lin-35 Rb, lin-37 Mip40, and lin-52 dLin52. mcd-1 encodes a novel protein that contains one zinc finger and that is synthetically required with lin-35 Rb for animal viability. dpl-1 and mcd-1 act with efl-1 E2F and lin-35 Rb to promote programmed cell death and do so by regulating the killing process rather than by affecting the decision between survival and death. We propose that the DPL-1 DP, MCD-1 zinc finger, EFL-1 E2F, LIN-35 Rb, LIN-37 Mip40, and LIN-52 dLin52 proteins act together in transcriptional regulation to promote programmed cell death.

  2. Expression of zinc finger E-box-binding homeobox factor 1 in epithelial ovarian cancer: A clinicopathological analysis of 238 patients

    OpenAIRE

    LI, XIUFANG; HUANG, RUIXIA; LI, RUTH HOLM; TROPE, CLAES G.; NESLAND, JAHN M.; SUO, ZHENHE

    2015-01-01

    A growing body of evidence indicates that aberrant activation of epithelial-to-mesenchymal transition (EMT) plays a key role in tumor cell invasion and metastasis. Zinc finger E-box-binding homeobox factor 1 (ZEB1), as a crucial mediator of EMT, contributes to the malignant progression of various epithelial tumors. To determine whether ZEB1 is involved in the progression of ovarian cancer, we immunohistochemically evaluated the expression of ZEB1 in 238 cases of epithelial ovarian cancer (EOC...

  3. 76 FR 55109 - Glycine From China

    Science.gov (United States)

    2011-09-06

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-718 (Third Review)] Glycine From China... U.S.C. 1675(c)), that revocation of the antidumping duty order on glycine from China would be likely... contained in USITC Publication 4255 (August 2011), entitled Glycine from China: Investigation No. 731-TA-718...

  4. Proliferation and osteo/odontogenic differentiation of stem cells from apical papilla regulated by Zinc fingers and homeoboxes 2: An in vitro study

    International Nuclear Information System (INIS)

    Wan, Fang; Gao, Lifen; Lu, Yating; Ma, Hongxin; Wang, Hongxing; Liang, Xiaohong; Wang, Yan; Ma, Chunhong

    2016-01-01

    In the process of tooth root development, stem cells from the apical papilla (SCAPs) can differentiate into odontoblasts and form root dentin, however, molecules regulating SCAPs differentiation have not been elucidated. Zinc fingers and homeoboxes 2 (ZHX2) is a novel transcriptional inhibitor. It is reported to modulate the development of nerve cells, liver cells, B cells, red blood cells, and so on. However, the role of ZHX2 in tooth root development remains unclear. In this study, we explored the potential role of ZHX2 in the process of SCAPs differentiation. The results showed that overexpression of ZHX2 upregulated the expression of osteo/odontogenic related genes and ALP activity, inhibited the proliferation of SCAPs. Consistently, ZHX2 knockdown reduced SCAPs mineralization and promoted SCAPs proliferation. These results indicated that ZHX2 plays a critical role in the proliferation and osteo/odontogenic differentiation of SCAPs. - Highlights: • Zinc fingers and homeoboxes 2 (ZHX2) is a novel transcriptional inhibitor. • we found another new biological function of ZHX2 for the first time. • ZHX2 inhibit SCAPs proliferation. • ZHX2 promote the osteo/odontogenic differentiation of SCAPs.

  5. Proliferation and osteo/odontogenic differentiation of stem cells from apical papilla regulated by Zinc fingers and homeoboxes 2: An in vitro study

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Fang [Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China); VIP Center, Shandong Provincial Key Laboratory of Oral Biomedicine, School and Hospital of Stomatology, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China); Gao, Lifen [Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China); Lu, Yating [VIP Center, Shandong Provincial Key Laboratory of Oral Biomedicine, School and Hospital of Stomatology, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China); Ma, Hongxin; Wang, Hongxing; Liang, Xiaohong [Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China); Wang, Yan, E-mail: wangyan1965@sdu.edu.cn [VIP Center, Shandong Provincial Key Laboratory of Oral Biomedicine, School and Hospital of Stomatology, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China); Ma, Chunhong, E-mail: machunhong@sdu.edu.cn [Department of Immunology, Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection & Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, Shandong 250012 (China)

    2016-01-15

    In the process of tooth root development, stem cells from the apical papilla (SCAPs) can differentiate into odontoblasts and form root dentin, however, molecules regulating SCAPs differentiation have not been elucidated. Zinc fingers and homeoboxes 2 (ZHX2) is a novel transcriptional inhibitor. It is reported to modulate the development of nerve cells, liver cells, B cells, red blood cells, and so on. However, the role of ZHX2 in tooth root development remains unclear. In this study, we explored the potential role of ZHX2 in the process of SCAPs differentiation. The results showed that overexpression of ZHX2 upregulated the expression of osteo/odontogenic related genes and ALP activity, inhibited the proliferation of SCAPs. Consistently, ZHX2 knockdown reduced SCAPs mineralization and promoted SCAPs proliferation. These results indicated that ZHX2 plays a critical role in the proliferation and osteo/odontogenic differentiation of SCAPs. - Highlights: • Zinc fingers and homeoboxes 2 (ZHX2) is a novel transcriptional inhibitor. • we found another new biological function of ZHX2 for the first time. • ZHX2 inhibit SCAPs proliferation. • ZHX2 promote the osteo/odontogenic differentiation of SCAPs.

  6. Antioxidant properties of digestive enzyme-treated fibre-rich fractions from wheat, finger millet, pearl millet and sorghum: A comparative evaluation

    Directory of Open Access Journals (Sweden)

    Aisha Siddiq A.

    2015-12-01

    Full Text Available Whole grains are rich in antioxidant components (AC, most of which are bound to fibre fraction and released during digestion. The study investigated the effect of digestive enzymes on the antioxidant properties of fibre-rich fractions from wheat (Triticum aestivum, finger millet (Eleusine coracana, pearl millet (Pennisetum typhoides and sorghum (Sorghum bicolor. Coarse (CF and fine fractions (FF of milled flour were separated using a standard sieve and analysed for nutritional composition, AC extractable in different solvents and antioxidant activity (AA in untreated and enzyme-treated fractions. The CF had a higher range of insoluble dietary fibre (17.26–20.93% than FF (10.65–17.29%. The highest amount of polyphenols and flavonoids was extractable in different solvents from finger millet and pearl millet, respectively. FF of pearl millet showed higher total AA in all solvents. Enzyme-treated samples had a much higher content of AC as well as higher total AA. Free radical scavenging assay revealed that enzyme-treated millet flours had higher activity in comparison to wheat. Between fractions, wheat exhibited variable results. Among millets, CF of finger millet and FF of pearl millet and sorghum had higher AA. In conclusion, digestive enzyme treatment released more AC from grains, and exhibited a higher AA.

  7. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation

    Science.gov (United States)

    Tokunaga, Fuminori; Nishimasu, Hiroshi; Ishitani, Ryuichiro; Goto, Eiji; Noguchi, Takuya; Mio, Kazuhiro; Kamei, Kiyoko; Ma, Averil; Iwai, Kazuhiro; Nureki, Osamu

    2012-01-01

    LUBAC (linear ubiquitin chain assembly complex) activates the canonical NF-κB pathway through linear polyubiquitination of NEMO (NF-κB essential modulator, also known as IKKγ) and RIP1. However, the regulatory mechanism of LUBAC-mediated NF-κB activation remains elusive. Here, we show that A20 suppresses LUBAC-mediated NF-κB activation by binding linear polyubiquitin via the C-terminal seventh zinc finger (ZF7), whereas CYLD suppresses it through deubiquitinase (DUB) activity. We determined the crystal structures of A20 ZF7 in complex with linear diubiquitin at 1.70–1.98 Å resolutions. The crystal structures revealed that A20 ZF7 simultaneously recognizes the Met1-linked proximal and distal ubiquitins, and that genetic mutations associated with B cell lymphomas map to the ubiquitin-binding sites. Our functional analysis indicated that the binding of A20 ZF7 to linear polyubiquitin contributes to the recruitment of A20 into a TNF receptor (TNFR) signalling complex containing LUBAC and IκB kinase (IKK), which results in NF-κB suppression. These findings provide new insight into the regulation of immune and inflammatory responses. PMID:23032187

  8. C3HC4-type RING finger protein NbZFP1 is involved in growth and fruit development in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Wenxian Wu

    Full Text Available C3HC4-type RING finger proteins constitute a large family in the plant kingdom and play important roles in various physiological processes of plant life. In this study, a C3HC4-type zinc finger gene was isolated from Nicotiana benthamiana. Sequence analysis indicated that the gene encodes a 24-kDa protein with 191 amino acids containing one typical C3HC4-type zinc finger domain; this gene was named NbZFP1. Transient expression of pGDG-NbZFP1 demonstrated that NbZFP1 was localized to the chloroplast, especially in the chloroplasts of cells surrounding leaf stomata. Virus-induced gene silencing (VIGS analysis indicated that silencing of NbZFP1 hampered fruit development, although the height of the plants was normal. An overexpression construct was then designed and transferred into Nicotiana benthamiana, and PCR and Southern blot showed that the NbZFP1 gene was successfully integrated into the Nicotiana benthamiana genome. The transgenic lines showed typical compactness, with a short internode length and sturdy stems. This is the first report describing the function of a C3HC4-type RING finger protein in tobacco.

  9. GLYCINE-RICH RNA-BINDING PROTEIN1 interacts with RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 and suppresses cell death and defense responses in pepper (Capsicum annuum).

    Science.gov (United States)

    Kim, Dae Sung; Kim, Nak Hyun; Hwang, Byung Kook

    2015-01-01

    Plants use a variety of innate immune regulators to trigger cell death and defense responses against pathogen attack. We identified pepper (Capsicum annuum) GLYCINE-RICH RNA-BINDING PROTEIN1 (CaGRP1) as a RECEPTOR-LIKE CYTOPLASMIC PROTEIN KINASE1 (CaPIK1)-interacting partner, based on bimolecular fluorescence complementation and coimmunoprecipitation analyses as well as gene silencing and transient expression analysis. CaGRP1 contains an N-terminal RNA recognition motif and a glycine-rich region at the C-terminus. The CaGRP1 protein had DNA- and RNA-binding activity in vitro. CaGRP1 interacted with CaPIK1 in planta. CaGRP1 and CaGRP1-CaPIK1 complexes were localized to the nucleus in plant cells. CaPIK1 phosphorylated CaGRP1 in vitro and in planta. Transient coexpression of CaGRP1 with CaPIK1 suppressed the CaPIK1-triggered cell death response, accompanied by a reduced CaPIK1-triggered reactive oxygen species (ROS) burst. The RNA recognition motif region of CaGRP1 was responsible for the nuclear localization of CaGRP1 as well as the suppression of the CaPIK1-triggered cell death response. CaGRP1 silencing in pepper conferred enhanced resistance to Xanthomonas campestris pv vesicatoria (Xcv) infection; however, CaPIK1-silenced plants were more susceptible to Xcv. CaGRP1 interacts with CaPIK1 and negatively regulates CaPIK1-triggered cell death and defense responses by suppressing ROS accumulation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  10. A novel zinc-finger-like gene from Tamarix hispida is involved in salt and osmotic tolerance.

    Science.gov (United States)

    An, Yan; Wang, Yucheng; Lou, Lingling; Zheng, Tangchun; Qu, Guan-Zheng

    2011-11-01

    In the present study, a zinc-finger-like cDNA (ThZFL) was cloned from the Tamarix hispida. Northern blot analysis showed that the expression of ThZFL can be induced by salt, osmotic stress and ABA treatment. Overexpression of the ThZFL confers salt and osmotic stress tolerance in both yeast Saccharomyces cerevisiae and tobacco. Furthermore, MDA levels in ThZFL transformed tobacco were significantly decreased compared with control plants under salt and osmotic stress, suggesting ThZFL may confer stress tolerance by decreasing membrane lipid peroxidation. Subcellular localization analysis showed the ThZFL protein is localized in the cell wall. Our results indicated the ThZFL gene is an excellent candidate for genetic engineering to improve salt and osmotic tolerance in agricultural plants.

  11. Zinc-finger antiviral protein inhibits XMRV infection.

    Directory of Open Access Journals (Sweden)

    Xinlu Wang

    Full Text Available BACKGROUND: The zinc-finger antiviral protein (ZAP is a host factor that specifically inhibits the replication of certain viruses, including Moloney murine leukemia virus (MoMLV, HIV-1, and certain alphaviruses and filoviruses. ZAP binds to specific viral mRNAs and recruits cellular mRNA degradation machinery to degrade the target RNA. The common features of ZAP-responsive RNA sequences remain elusive and thus whether a virus is susceptible to ZAP can only be determined experimentally. Xenotropic murine leukemia virus-related virus (XMRV is a recently identified γ-retrovirus that was originally thought to be involved in prostate cancer and chronic fatigue syndrome but recently proved to be a laboratory artefact. Nonetheless, XMRV as a new retrovirus has been extensively studied. Since XMRV and MoMLV share only 67.9% sequence identity in the 3'UTRs, which is the target sequence of ZAP in MoMLV, whether XMRV is susceptible to ZAP remains to be determined. FINDINGS: We constructed an XMRV-luc vector, in which the coding sequences of Gag-Pol and part of Env were replaced with luciferase-coding sequence. Overexpression of ZAP potently inhibited the expression of XMRV-luc in a ZAP expression-level-dependent manner, while downregulation of endogenous ZAP rendered cells more sensitive to infection. Furthermore, ZAP inhibited the spreading of replication-competent XMRV. Consistent with the previously reported mechanisms by which ZAP inhibits viral infection, ZAP significantly inhibited the accumulation of XMRV-luc mRNA in the cytoplasm. The ZAP-responsive element in XMRV mRNA was mapped to the 3'UTR. CONCLUSIONS: ZAP inhibits XMRV replication by preventing the accumulation of viral mRNA in the cytoplasm. Documentation of ZAP inhibiting XMRV helps to broaden the spectrum of ZAP's antiviral activity. Comparison of the target sequences of ZAP in XMRV and MoMLV helps to better understand the features of ZAP-responsive elements.

  12. Regulation of trichome development in tobacco by JcZFP8, a C2H2 zinc finger protein gene from Jatropha curcas L.

    Science.gov (United States)

    Shi, Xiaodong; Gu, Yuxi; Dai, Tingwei; Wu, Yang; Wu, Peng; Xu, Ying; Chen, Fang

    2018-06-05

    Trichomes are epidermal outgrowths of plant tissues that can secrete or store large quantities of secondary metabolites, which contribute to plant defense responses against stress. The use of bioengineering methods for regulating the development of trichomes and metabolism is a widely researched topic. In the present study, we demonstrate that JcZFP8, a C2H2 zinc finger protein gene from Jatropha curcas L., can regulate trichome development in transgenic tobacco. To understand the underlying mechanisms, we performed transcriptome profiling of overexpression JcZFP8 transgenic plants and wild-type tobacco. Based on the analysis of differentially expressed genes, we determined that genes of the plant hormone signal transduction pathway was significantly enriched, suggesting that these pathways were modulated in the transgenic plants. In addition, the transcript levels of the known trichome-related genes in Arabidopsis were not significantly changed, whereas CycB2 and MYB genes were differentially expressed in the transgenic plants. Despite tobacco and Arabidopsis have different types of trichomes, all the pathways were associated with C2H2 zinc finger protein genes. Our findings help us to understand the regulation of multicellular trichome formation and suggest a new metabolic engineering method for the improvement of plants. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. SUMOylation of the KRAB zinc-finger transcription factor PARIS/ZNF746 regulates its transcriptional activity

    International Nuclear Information System (INIS)

    Nishida, Tamotsu; Yamada, Yoshiji

    2016-01-01

    Parkin-interacting substrate (PARIS), a member of the family of Krüppel-associated box (KRAB)-containing zinc-finger transcription factors, is a substrate of the ubiquitin E3 ligase parkin. PARIS represses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), although the underlying mechanisms remain largely unknown. In the present study, we demonstrate that PARIS can be SUMOylated, and its SUMOylation plays a role in the repression of PGC-1a promoter activity. Protein inhibitor of activated STAT y (PIASy) was identified as an interacting protein of PARIS and shown to enhance its SUMOylation. PIASy repressed PGC-1a promoter activity, and this effect was attenuated by PARIS in a manner dependent on its SUMOylation status. Co-expression of SUMO-1 with PIASy completely repressed PGC-1a promoter activity independently of PARIS expression. PARIS-mediated PGC-1a promoter repression depended on the activity of histone deacetylases (HDAC), whereas PIASy repressed the PGC-1a promoter in an HDAC-independent manner. Taken together, these results suggest that PARIS and PIASy modulate PGC-1a gene transcription through distinct molecular mechanisms. -- Highlights: •PARIS can be SUMOylated in vivo and in vitro. •SUMOylation of PARIS functions in the repression of PGC-1a promoter activity. •PIASy interacts with PARIS and enhances its SUMOylation. •PIASy influences PARIS-mediated repression of PGC-1a promoter activity.

  14. SUMOylation of the KRAB zinc-finger transcription factor PARIS/ZNF746 regulates its transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Tamotsu, E-mail: nishida@gene.mie-u.ac.jp; Yamada, Yoshiji

    2016-05-13

    Parkin-interacting substrate (PARIS), a member of the family of Krüppel-associated box (KRAB)-containing zinc-finger transcription factors, is a substrate of the ubiquitin E3 ligase parkin. PARIS represses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), although the underlying mechanisms remain largely unknown. In the present study, we demonstrate that PARIS can be SUMOylated, and its SUMOylation plays a role in the repression of PGC-1a promoter activity. Protein inhibitor of activated STAT y (PIASy) was identified as an interacting protein of PARIS and shown to enhance its SUMOylation. PIASy repressed PGC-1a promoter activity, and this effect was attenuated by PARIS in a manner dependent on its SUMOylation status. Co-expression of SUMO-1 with PIASy completely repressed PGC-1a promoter activity independently of PARIS expression. PARIS-mediated PGC-1a promoter repression depended on the activity of histone deacetylases (HDAC), whereas PIASy repressed the PGC-1a promoter in an HDAC-independent manner. Taken together, these results suggest that PARIS and PIASy modulate PGC-1a gene transcription through distinct molecular mechanisms. -- Highlights: •PARIS can be SUMOylated in vivo and in vitro. •SUMOylation of PARIS functions in the repression of PGC-1a promoter activity. •PIASy interacts with PARIS and enhances its SUMOylation. •PIASy influences PARIS-mediated repression of PGC-1a promoter activity.

  15. RETRACTED ARTICLE: Nutritional, technological, and medical approach of finger millet (Eleusine coracana

    Directory of Open Access Journals (Sweden)

    Amir Gull

    2015-12-01

    Full Text Available Finger millet (Eleusine coracana L. is also known as African millet and is commonly called “ragi” in India. It has excellent nutritional value and is even superior to other common cereals. It is a richest source of calcium (344 mg and magnesium (408 mg than other millets. Predominant fatty acids of this millet are oleic (49%, linoleic (25%, and palmitic acids (25%. Finger millet contains both water-soluble and lipo-soluble vitamins. Emerging bakery products prepared from this millet are pasta, noodles, vermicelli, and bread. Being gluten free, it is suitable for individuals suffering from celiac disease. Finger millet grain is a rich source of several phytochemicals. Finger millet possesses blood glucose lowering, cholesterol lowering, and antiulcerative, wound healing properties as indicated by in vitro and in vivo studies. Commonly used processing techniques for this millet are milling, malting, popping, and decortications.

  16. Thermoluminescence of novel zinc oxide nano phosphors obtained by glycine-based solution combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C. [Universidad de Sonora, Departamento de Investigacion en Polimeros y Materiales, Apdo. Postal 130, 83000 Hermosillo, Sonora (Mexico); Bernal, R., E-mail: victor.orante@polimeros.uson.mx [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico)

    2015-10-15

    Full text: High-dose thermoluminescence dosimetry properties of novel zinc oxide nano phosphors synthesized by a solution combustion method in a glycine-nitrate process are presented for the very first time in this work. Sintered particles with sizes ranging between ∼500 nm and ∼2 μm were obtained by annealing the synthesized Zn O at 900 degrees C during 2 h in air. X-ray diffraction patterns indicate the presence of the Zn O hexagonal phase, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima: one located at ∼ 149 degrees C and another at ∼ 308 degrees C, the latter being the dosimetric component of the curve. The integrated Tl fading displays an asymptotic behaviour for times longer than 16 h between irradiation and the corresponding Tl readout, as well as a linear behaviour of the dose response without saturation in the studied dose interval (from 12.5 up to 400 Gy). Such features place synthesized Zn O as a promising material for high-dose radiation dosimetry applications. (Author)

  17. Thermoluminescence of novel zinc oxide nano phosphors obtained by glycine-based solution combustion synthesis

    International Nuclear Information System (INIS)

    Orante B, V. R.; Escobar O, F. M.; Cruz V, C.; Bernal, R.

    2015-10-01

    Full text: High-dose thermoluminescence dosimetry properties of novel zinc oxide nano phosphors synthesized by a solution combustion method in a glycine-nitrate process are presented for the very first time in this work. Sintered particles with sizes ranging between ∼500 nm and ∼2 μm were obtained by annealing the synthesized Zn O at 900 degrees C during 2 h in air. X-ray diffraction patterns indicate the presence of the Zn O hexagonal phase, without any remaining nitrate peaks observed. Thermoluminescence glow curves of Zn O obtained after being exposed to beta radiation consists of two maxima: one located at ∼ 149 degrees C and another at ∼ 308 degrees C, the latter being the dosimetric component of the curve. The integrated Tl fading displays an asymptotic behaviour for times longer than 16 h between irradiation and the corresponding Tl readout, as well as a linear behaviour of the dose response without saturation in the studied dose interval (from 12.5 up to 400 Gy). Such features place synthesized Zn O as a promising material for high-dose radiation dosimetry applications. (Author)

  18. Gold finger formation studied by high-resolution mass spectrometry and in silico methods

    NARCIS (Netherlands)

    Laskay, Ü.A.; Garino, C.; Tsybin, Y.O.; Salassa, L.; Casini, A.

    2015-01-01

    High-resolution mass spectrometry and quantum mechanics/molecular mechanics studies were employed for characterizing the formation of two gold finger (GF) domains from the reaction of zinc fingers (ZF) with gold complexes. The influence of both the gold oxidation state and the ZF coordination sphere

  19. The Effect of Salts in Promoting Specific and Competitive Interactions between Zinc Finger Proteins and Metals

    Science.gov (United States)

    Li, Gongyu; Yuan, Siming; Zheng, Shihui; Chen, Yuting; Zheng, Zhen; Liu, Yangzhong; Huang, Guangming

    2017-12-01

    Specific protein-metal interactions (PMIs) fulfill essential functions in cells and organic bodies, and activation of these functions in vivo are mostly modulated by the complex environmental factors, including pH value, small biomolecules, and salts. Specifically, the role of salts in promoting specific PMIs and their competition among various metals has remained untapped mainly due to the difficulty to distinguish nonspecific PMIs from specific PMIs by classic spectroscopic techniques. Herein, we report Hofmeister salts differentially promote the specific PMIs by combining nanoelectrospray ionization mass spectrometry and spectroscopic techniques (fluorescence measurement and circular dichroism). Furthermore, to explore the influence of salts in competitive binding between metalloproteins and various metals, we designed a series of competitive experiments and applied to a well-defined model system, the competitive binding of zinc (II) and arsenic (III) to holo-promyelocytic leukemia protein (PML). These experiments not only provided new insights at the molecular scale as complementary to previous NMR and spectroscopic results, but also deduced the relative binding ability between zinc finger proteins and metals at the molecular scale, which avoids the mass spectrometric titration-based determination of binding constants that is frequently affected and often degraded by variable solution conditions including salt contents. [Figure not available: see fulltext.

  20. Soyasaponin Bh, a Triterpene Saponin Containing a Unique Hemiacetal-Functional Five-Membered Ring from Glycine max (Soybeans)

    Science.gov (United States)

    Soybeans (Glycine max L. Merill) and soy-based food products are major dietary sources of saponins. An oleanane triterpenoid saponin, soyasaponin Bh (1) containing a unique five-membered ring with a hemiacetal functionality together with seven known saponins were isolated from soybeans. Their struct...

  1. The influence of pathological mutations and proline substitutions in TDP-43 glycine-rich peptides on its amyloid properties and cellular toxicity.

    Directory of Open Access Journals (Sweden)

    Chia-Sui Sun

    Full Text Available TAR DNA-binding protein (TDP-43 was identified as the major ubiquitinated component deposited in the inclusion bodies in amyotrophic lateral sclerosis (ALS and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U in 2006. Later on, numerous ALS-related mutations were found in either the glycine or glutamine/asparagine-rich region on the TDP-43 C-terminus, which hinted on the importance of mutations on the disease pathogenesis. However, how the structural conversion was influenced by the mutations and the biological significance of these peptides remains unclear. In this work, various peptides bearing pathogenic or de novo designed mutations were synthesized and displayed their ability to form twisted amyloid fibers, cause liposome leakage, and mediate cellular toxicity as confirmed by transmission electron microscopy (TEM, circular dichroism (CD, Thioflavin T (ThT assay, Raman spectroscopy, calcein leakage assay, and cell viability assay. We have also shown that replacing glycines with prolines, known to obstruct β-sheet formation, at the different positions in these peptides may influence the amyloidogenesis process and neurotoxicity. In these cases, GGG308PPP mutant was not able to form beta-amyloid, cause liposome leakage, nor jeopardized cell survival, which hinted on the importance of the glycines (308-310 during amyloidogenesis.

  2. The solution structure of the N-terminal zinc finger of GATA-1 reveals a specific binding face for the transcriptional co-factor FOG

    International Nuclear Information System (INIS)

    Kowalski, K.; Czolij, R.; King, G.F.; Crossley, M.; Mackay, J.P.

    1999-01-01

    Zinc fingers (ZnFs) are generally regarded as DNA-binding motifs. However, a number of recent reports have implicated particular ZnFs in the mediation of protein-protein interactions. The N-terminal ZnF of GATA-1 (NF) is one such finger, having been shown to interact with a number of other proteins, including the recently discovered transcriptional co-factor FOG. Here we solve the three-dimensional structure of the NF in solution using multidimensional 1H/15N NMR spectroscopy, and we use 1H/15N spin relaxation measurements to investigate its backbone dynamics. The structure consists of two distorted β-hairpins and a single α-helix, and is similar to that of the C-terminal ZnF of chicken GATA-1. Comparisons of the NF structure with those of other C4-type zinc binding motifs, including hormone receptor and LIM domains, also reveal substantial structural homology. Finally, we use the structure to map the spatial locations of NF residues shown by mutagenesis to be essential for FOG binding, and demonstrate that these residues all lie on a single face of the NF. Notably, this face is well removed from the putative DNA- binding face of the NF, an observation which is suggestive of simultaneous roles for the NF; that is, stabilisation of GATA-1 DNA complexes and recruitment of FOG to GATA-1-controlled promoter regions

  3. Selection-independent generation of gene knockout mouse embryonic stem cells using zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Anna Osiak

    Full Text Available Gene knockout in murine embryonic stem cells (ESCs has been an invaluable tool to study gene function in vitro or to generate animal models with altered phenotypes. Gene targeting using standard techniques, however, is rather inefficient and typically does not exceed frequencies of 10(-6. In consequence, the usage of complex positive/negative selection strategies to isolate targeted clones has been necessary. Here, we present a rapid single-step approach to generate a gene knockout in mouse ESCs using engineered zinc-finger nucleases (ZFNs. Upon transient expression of ZFNs, the target gene is cleaved by the designer nucleases and then repaired by non-homologous end-joining, an error-prone DNA repair process that introduces insertions/deletions at the break site and therefore leads to functional null mutations. To explore and quantify the potential of ZFNs to generate a gene knockout in pluripotent stem cells, we generated a mouse ESC line containing an X-chromosomally integrated EGFP marker gene. Applying optimized conditions, the EGFP locus was disrupted in up to 8% of ESCs after transfection of the ZFN expression vectors, thus obviating the need of selection markers to identify targeted cells, which may impede or complicate downstream applications. Both activity and ZFN-associated cytotoxicity was dependent on vector dose and the architecture of the nuclease domain. Importantly, teratoma formation assays of selected ESC clones confirmed that ZFN-treated ESCs maintained pluripotency. In conclusion, the described ZFN-based approach represents a fast strategy for generating gene knockouts in ESCs in a selection-independent fashion that should be easily transferrable to other pluripotent stem cells.

  4. Utilization of [1-14C]carbon of glycine of high glycine diet fed young and old rats

    International Nuclear Information System (INIS)

    Petzke, K.J.; Albrecht, V.; Medovar, B.Ya.; Pisarczuk, K.L.; Grigorov, Yu.G.

    1987-01-01

    The incorporation of radioactivity from [1- 14 C]glycine was studied in various organ (serum, liver, muscle) fractions (acid soluble, proteins, lipids, liver glycogen) and carbon dioxide in rats fed with isonitrogenous isocaloric purfied diets. The diets contained 30% casein (control), gelatin (exchange of half of the 30% casein) or glycine (corresponding level of glycine in relation to the gelatin diet). The incorporation of radioactivity into proteins was reduced by feeding high glycine diets in young (20-weeks-old) and old (18-month-old) rats in relation to the control diet. The modifications of the results for old animals may be partially explained on the base of a reduced protein turnover rate and adaptation to a high gelatin (glycine) diet. (author)

  5. Dietary phytate, zinc and hidden zinc deficiency.

    Science.gov (United States)

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Zinc finger protein 598 inhibits cell survival by promoting UV-induced apoptosis.

    Science.gov (United States)

    Yang, Qiaohong; Gupta, Romi

    2018-01-19

    UV is one of the major causes of DNA damage induced apoptosis. However, cancer cells adopt alternative mechanisms to evade UV-induced apoptosis. To identify factors that protect cancer cells from UV-induced apoptosis, we performed a genome wide short-hairpin RNA (shRNA) screen, which identified Zinc finger protein 598 (ZNF598) as a key regulator of UV-induced apoptosis. Here, we show that UV irradiation transcriptionally upregulates ZNF598 expression. Additionally, ZNF598 knockdown in cancer cells inhibited UV-induced apoptosis. In our study, we observe that ELK1 mRNA level as well as phosphorylated ELK1 levels was up regulated upon UV irradiation, which was necessary for UV irradiation induced upregulation of ZNF598. Cells expressing ELK1 shRNA were also resistant to UV-induced apoptosis, and phenocopy ZNF598 knockdown. Upon further investigation, we found that ZNF598 knockdown inhibits UV-induced apoptotic gene expression, which matches with decrease in percentage of annexin V positive cell. Similarly, ectopic expression of ZNF598 promoted apoptotic gene expression and also increased annexin V positive cells. Collectively, these results demonstrate that ZNF598 is a UV irradiation regulated gene and its loss results in resistance to UV-induced apoptosis.

  7. Global and stage specific patterns of Krüppel-associated-box zinc finger protein gene expression in murine early embryonic cells.

    Directory of Open Access Journals (Sweden)

    Andrea Corsinotti

    Full Text Available Highly coordinated transcription networks orchestrate the self-renewal of pluripotent stem cell and the earliest steps of mammalian development. KRAB-containing zinc finger proteins represent the largest group of transcription factors encoded by the genomes of higher vertebrates including mice and humans. Together with their putatively universal cofactor KAP1, they have been implicated in events as diverse as the silencing of endogenous retroelements, the maintenance of imprinting and the pluripotent self-renewal of embryonic stem cells, although the genomic targets and specific functions of individual members of this gene family remain largely undefined. Here, we first generated a list of Ensembl-annotated KRAB-containing genes encoding the mouse and human genomes. We then defined the transcription levels of these genes in murine early embryonic cells. We found that the majority of KRAB-ZFP genes are expressed in mouse pluripotent stem cells and other early progenitors. However, we also identified distinctively cell- or stage-specific patterns of expression, some of which are pluripotency-restricted. Finally, we determined that individual KRAB-ZFP genes exhibit highly distinctive modes of expression, even when grouped in genomic clusters, and that these cannot be correlated with the presence of prototypic repressive or activating chromatin marks. These results pave the way to delineating the role of specific KRAB-ZFPs in early embryogenesis.

  8. Synthesis and characterization of zinc chloride containing poly(acrylic acid) hydrogel by gamma irradiation

    International Nuclear Information System (INIS)

    Park, Jong-Seok; Kuang, Jia; Gwon, Hui-Jeong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Seob Khil, Myung; Nho, Young-Chang

    2013-01-01

    In this study, the characterization of zinc chloride incorporated into a poly(acrylic acid) (PAAc) hydrogel prepared by gamma-ray irradiation was investigated. Zinc chloride powder with different concentrations was dissolved in the PAAc solution, and it was crosslinked with gamma-ray irradiation. The effects of various parameters such as zinc ion concentration and irradiation doses on characteristics of the hydrogel formed were investigated in detail for obtaining an antibacterial wound dressing. In addition, the gel content, pH-sensitive (pH 4 or 7) swelling ratio, and UV–vis absorption spectra of the zinc particles in the hydrogels were characterized. Moreover, antibacterial properties of these new materials against Staphylococcus aureus and Escherichia coli strains were observed on solid growth media. The antibacterial tests indicated that the zinc chloride containing PAAc hydrogels have good antibacterial activity. - Highlights: • The characterization of zinc chloride containing PAA hydrogel was investigated. • The gel content increased with an increase in absorbed dose up to 75 kGy. • Finally, the zinc chloride based hydrogels have an antibacterial activity

  9. Short-term in vivo evaluation of zinc-containing calcium phosphate using a normalized procedure

    Energy Technology Data Exchange (ETDEWEB)

    Calasans-Maia, Monica, E-mail: monicacalasansmaia@gmail.com [Dental Clinical Research Center, Dentistry School, Fluminense Federal University, Niteroi, Rio de Janeiro (Brazil); Calasans-Maia, José, E-mail: josecalasans@gmail.com [Dental Clinical Research Center, Dentistry School, Fluminense Federal University, Niteroi, Rio de Janeiro (Brazil); Santos, Silvia, E-mail: silviaquimica@gmail.com [LABIOMAT, Brazilian Center for Physics Research, CBPF, Rio de Janeiro (Brazil); Mavropoulos, Elena, E-mail: elena@cbpf.br [LABIOMAT, Brazilian Center for Physics Research, CBPF, Rio de Janeiro (Brazil); Farina, Marcos, E-mail: mfarina@anato.ufrj.br [Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Lima, Inayá, E-mail: inayacorrea@gmail.com [Nuclear Instrumentation Laboratory, Nuclear Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Lopes, Ricardo Tadeu [Nuclear Instrumentation Laboratory, Nuclear Engineering Program, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Rossi, Alexandre, E-mail: rossi@cbpf.br [LABIOMAT, Brazilian Center for Physics Research, CBPF, Rio de Janeiro (Brazil); Granjeiro, José Mauro, E-mail: jmgranjeiro@gmail.com [Dental Clinical Research Center, Dentistry School, Fluminense Federal University, Niteroi, Rio de Janeiro (Brazil); Bioengineering Division, National Institute of Metrology, Quality and Technology, Duque de Caxias, Rio de Janeiro (Brazil)

    2014-08-01

    The effect of zinc-substituted calcium phosphate (CaP) on bone osteogenesis was evaluated using an in vivo normalized ISO 10993-6 protocol. Zinc-containing hydroxyapatite (ZnHA) powder with 0.3% by wt zinc (experimental group) and stoichiometric hydroxyapatite (control group) were shaped into cylindrical implants (2 × 6 mm) and were sintered at 1000 °C. Thermal treatment transformed the ZnHA cylinder into a biphasic implant that was composed of Zn-substituted HA and Zn-substituted β-tricalcium phosphate (ZnHA/βZnTCP); the hydroxyapatite cylinder was a highly crystalline and poorly soluble HA implant. In vivo tests were performed in New Zealand White rabbits by implanting two cylinders of ZnHA/βZnTCP in the left tibia and two cylinders of HA in the right tibia for 7, 14 and 28 days. Incorporation of 0.3% by wt zinc into CaP increased the rate of Zn release to the biological medium. Microfluorescence analyses (μXRF-SR) using synchrotron radiation suggested that some of the Zn released from the biomaterial was incorporated into new bone near the implanted region. In contrast with previous studies, histomorphometric analysis did not show significant differences between the newly formed bone around ZnHA/βZnTCP and HA due to the dissolution profile of Zn-doped CaP. Despite the great potential of Zn-containing CaP matrices for future use in bone regeneration, additional in vivo studies must be conducted to explain the mobility of zinc at the CaP surface and its interactions with a biological medium. - Highlights: • We produced a hydroxyapatite containing a low concentration (0.3 wt.%) of zinc. • The biomaterial underwent characterization before and after in vivo implant. • In vivo tests were performed according to ISO 10993-6. • Zinc-containing calcium phosphate promotes osteoconduction and bone regeneration. • Zinc-containing calcium phosphate may be useful for clinical applications.

  10. Short-term in vivo evaluation of zinc-containing calcium phosphate using a normalized procedure

    International Nuclear Information System (INIS)

    Calasans-Maia, Monica; Calasans-Maia, José; Santos, Silvia; Mavropoulos, Elena; Farina, Marcos; Lima, Inayá; Lopes, Ricardo Tadeu; Rossi, Alexandre; Granjeiro, José Mauro

    2014-01-01

    The effect of zinc-substituted calcium phosphate (CaP) on bone osteogenesis was evaluated using an in vivo normalized ISO 10993-6 protocol. Zinc-containing hydroxyapatite (ZnHA) powder with 0.3% by wt zinc (experimental group) and stoichiometric hydroxyapatite (control group) were shaped into cylindrical implants (2 × 6 mm) and were sintered at 1000 °C. Thermal treatment transformed the ZnHA cylinder into a biphasic implant that was composed of Zn-substituted HA and Zn-substituted β-tricalcium phosphate (ZnHA/βZnTCP); the hydroxyapatite cylinder was a highly crystalline and poorly soluble HA implant. In vivo tests were performed in New Zealand White rabbits by implanting two cylinders of ZnHA/βZnTCP in the left tibia and two cylinders of HA in the right tibia for 7, 14 and 28 days. Incorporation of 0.3% by wt zinc into CaP increased the rate of Zn release to the biological medium. Microfluorescence analyses (μXRF-SR) using synchrotron radiation suggested that some of the Zn released from the biomaterial was incorporated into new bone near the implanted region. In contrast with previous studies, histomorphometric analysis did not show significant differences between the newly formed bone around ZnHA/βZnTCP and HA due to the dissolution profile of Zn-doped CaP. Despite the great potential of Zn-containing CaP matrices for future use in bone regeneration, additional in vivo studies must be conducted to explain the mobility of zinc at the CaP surface and its interactions with a biological medium. - Highlights: • We produced a hydroxyapatite containing a low concentration (0.3 wt.%) of zinc. • The biomaterial underwent characterization before and after in vivo implant. • In vivo tests were performed according to ISO 10993-6. • Zinc-containing calcium phosphate promotes osteoconduction and bone regeneration. • Zinc-containing calcium phosphate may be useful for clinical applications

  11. Regulation of hedgehog signaling by Myc-interacting zinc finger protein 1, Miz1.

    Directory of Open Access Journals (Sweden)

    Jiuyi Lu

    Full Text Available Smoothened (Smo mediated Hedgehog (Hh signaling plays an essential role in regulating embryonic development and postnatal tissue homeostasis. Aberrant activation of the Hh pathway contributes to the formation and progression of various cancers. In vertebrates, however, key regulatory mechanisms responsible for transducing signals from Smo to the nucleus remain to be delineated. Here, we report the identification of Myc-interacting Zinc finger protein 1 (Miz1 as a Smo and Gli2 binding protein that positively regulates Hh signaling. Overexpression of Miz1 increases Gli luciferase reporter activity, whereas knockdown of endogenous Miz1 has the opposite effect. Activation of Smo induces translocation of Miz1 to the primary cilia together with Smo and Gli2. Furthermore, Miz1 is localized to the nucleus upon Hh activation in a Smo-dependent manner, and loss of Miz1 prevents the nuclear translocation of Gli2. More importantly, silencing Miz1 expression inhibits cell proliferation in vitro and the growth of Hh-driven medulloblastoma tumors allografted in SCID mice. Taken together, these results identify Miz1 as a novel regulator in the Hh pathway that plays an important role in mediating Smo-dependent oncogenic signaling.

  12. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases.

    Science.gov (United States)

    Cai, Yujia; Bak, Rasmus O; Mikkelsen, Jacob Giehm

    2014-04-24

    Future therapeutic use of engineered site-directed nucleases, like zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), relies on safe and effective means of delivering nucleases to cells. In this study, we adapt lentiviral vectors as carriers of designer nuclease proteins, providing efficient targeted gene disruption in vector-treated cell lines and primary cells. By co-packaging pairs of ZFN proteins with donor RNA in 'all-in-one' lentiviral particles, we co-deliver ZFN proteins and the donor template for homology-directed repair leading to targeted DNA insertion and gene correction. Comparative studies of ZFN activity in a predetermined target locus and a known nearby off-target locus demonstrate reduced off-target activity after ZFN protein transduction relative to conventional delivery approaches. Additionally, TALEN proteins are added to the repertoire of custom-designed nucleases that can be delivered by protein transduction. Altogether, our findings generate a new platform for genome engineering based on efficient and potentially safer delivery of programmable nucleases.DOI: http://dx.doi.org/10.7554/eLife.01911.001. Copyright © 2014, Cai et al.

  13. Gibberellic acid, amino acids (glycine and L-leucine), vitamin B 2 ...

    African Journals Online (AJOL)

    The combined effects of zinc, gibberellic acid, vitamin B2, amino acids (glycine and L-leucine) on pigment production were evaluated in a liquid culture of Monascus purpureus. In this study, response surface design was used to optimize each parameter. The data were analyzed using Minitab 14 software. Five parameters ...

  14. The primary structure of L37--a rat ribosomal protein with a zinc finger-like motif.

    Science.gov (United States)

    Chan, Y L; Paz, V; Olvera, J; Wool, I G

    1993-04-30

    The amino acid sequence of the rat 60S ribosomal subunit protein L37 was deduced from the sequence of nucleotides in a recombinant cDNA. Ribosomal protein L37 has 96 amino acids, the NH2-terminal methionine is removed after translation of the mRNA, and has a molecular weight of 10,939. Ribosomal protein L37 has a single zinc finger-like motif of the C2-C2 type. Hybridization of the cDNA to digests of nuclear DNA suggests that there are 13 or 14 copies of the L37 gene. The mRNA for the protein is about 500 nucleotides in length. Rat L37 is related to Saccharomyces cerevisiae ribosomal protein YL35 and to Caenorhabditis elegans L37. We have identified in the data base a DNA sequence that encodes the chicken homolog of rat L37.

  15. Evaluation of the nutritional characteristics of a finger millet based complementary food.

    Science.gov (United States)

    Mbithi-Mwikya, Stephen; Van Camp, John; Mamiro, Peter R S; Ooghe, Wilfried; Kolsteren, Patrick; Huyghebaert, Andre

    2002-05-08

    Finger millet (Eleusine coracana), kidney beans (Phaseolus vulgaris), peanuts (Arachis hypogoea), and mango (Mangifera indica) were processed separately and then combined, on the basis of their amino acid scores and energy content, into a complementary food for children of weaning age. The finger millet and kidney beans were processed by germination, autoclaving, and lactic acid fermentation. A mixture containing, on a dry matter basis, 65.2, 19.1, 8.0, and 7.7% of the processed finger millet, kidney beans, peanuts, and mango, respectively, gave a composite protein with an in vitro protein digestibility of 90.2% and an amino acid chemical score of 0.84. This mixture had an energy density of 16.3 kJ.g(-1) of dry matter and a decreased antinutrient content and showed a measurable improvement in the in vitro extractability for calcium, iron, and zinc. A 33% (w/v) pap made from a mix of the processed ingredients had an energy density of 5.4 kJ.g(-1) of pap, which is sufficient to meet the energy requirements of well-nourished children of 6-24 months of age at three servings a day and at the FAO average breast-feeding frequency.

  16. A bio-inspired zinc finger analogue anchored in 2D hexagonal meso-porous silica for room temperature CO_2 activation via a hydrogeno-carbonate route

    International Nuclear Information System (INIS)

    Doghri, Hanene; Baranova, Elena A.; Albela, Belen; Bonneviot, Laurent; Mongia Said-Zina

    2017-01-01

    Bio-inspired diethylenetriamine-zinc(II) complexes were anchored into the nano-pores of hexagonal meso-porous MCM41-like silicas targeting a carbamate free and low temperature CO_2 recycling process. A step-by-step approach was adopted to perform an in situ synthesis in order to mimic the zinc finger of carbonic anhydrases, the fastest family of enzymes. In the presence of a surface-masking pattern of TMA"+ ions, some silanol groups were capped using grafted trimethylsilyl functions, TMSgr, (gr for grafted). After removing the masking ions, a tridentate diethylenetriamine ligand was anchored using diethylenetriamine propyl-trimethoxysilane. The so-called DETA_a_n ligands (an for anchored) were partially mono-protonated using either cyclohexane or isopropanol as a solvent. Nonetheless, up to two thirds of them were metallated by Zn(II) ions, leading to the targeted anchored zinc finger mimic [Zn(DETAan)L]+(L = Cl or OH). CO_2 is then adsorbed at room temperature and in humid ambient air by the formation of an intermediate hydrogeno-carbonate-zinc complex. Specific IR signatures at 1330 and 1400 cm"-"1 together with characteristic C 1s and Zn 2p3/2 XPS binding energies at 286.4 and 1024.6 eV advocate for a rather symmetrical bidentate [η"2-CO_3] structural unit in the anchored complex [Zn(DETA_a_n)(η"2-HCO_3"*)]"+, where the Zn(II) ion is most likely penta-coordinated. The internal pH value varied by less than 0.5 depending on the metal reacting with the DETA_a_n ligand and its ability to generate HCO_3"-, due to the buffering effect of surface silanol and amino groups according to the level of protonation of the DETA moieties measured from the N 1s XPS spectra. In contrast to nitrate ions, chloride ions were found to inhibit the formation of hydrogeno-carbonate. (authors)

  17. Armadillidin H, a glycine-rich peptide from the terrestrial crustacean Armadillidium vulgare, displays an unexpected wide antimicrobial spectrum with membranolytic activity.

    Directory of Open Access Journals (Sweden)

    Julien Verdon

    2016-09-01

    Full Text Available Antimicrobial peptides (AMPs are key components of innate immunity and are widespread in nature, from bacteria to vertebrate animals. In crustaceans, there are currently 15 distinct AMP families published so far in the literature, mainly isolated from members of the Decapoda order. Up to now, armadillidin is the sole non-decapod AMP isolated from the haemocytes of Armadillidium vulgare, a crustacean isopod. Its first description demonstrated that armadillidin is a linear glycine-rich (47% cationic peptide with an antimicrobial activity directed towards Bacillus megaterium. In the present work, we report identification of armadillidin Q, a variant of armadillidin H (earlier known as armadillidin, from crude haemocyte extracts of A. vulgare using LC-MS approach. We demonstrated that both armadillidins displayed broad spectrum antimicrobial activity against several Gram-positive and Gram negative bacteria, fungi, but were totally inactive against yeasts. Membrane permeabilization assays, only performed with armadillidin H, showed that the peptide is membrane active against bacterial and fungal strains leading to deep changes in cell morphology. This damaging activity visualized by electronic microscopy correlates with a rapid decrease of cell viability leading to highly blebbed cells. In contrast, armadillidin H does not reveal cytotoxicity towards human erythrocytes. Furthermore, no secondary structure could be defined in this study (by CD and NMR even in a membrane mimicking environment. Therefore, armadillidins represent interesting candidates to gain insight into the biology of glycine-rich AMPs.

  18. Contamination by human fingers. The Midas touch

    International Nuclear Information System (INIS)

    Gwozdz, R.; Grass, F.

    2004-01-01

    Anthropogenic activity is one of the causes of contamination in the human environment: contamination of air, water, top soils, plants and food products has complex effects on human health problems. Wear and abrasion of various surfaces are constant processes in daily life, and commonly include interaction between human fingers and surfaces of every conceivable material. New methods for investigation of trace transfer processes by human fingers are described. Results of transfer for commonly used metals such as gold, silver, zinc, cadmium, tin, cobalt, nickel, chromium and iron are presented. Relationship between transfer of metals by touch and the general problem of purity in analytical activities is briefly discussed. (author)

  19. Glycine serine interconversion in the rooster

    International Nuclear Information System (INIS)

    Sugahara, Michihiro; Kandatsu, Makoto

    1976-01-01

    Serine was isolated by the column chromatography from the hydrolyzates of proteins of the serum, the liver and the pectoral muscle which were obtained from the roosters fed a diet containing 2- 14 C glycine for 16 - 17 days. The carbon chain of serine was cut off by treating with sodium periodate. The specific activity of each carbon (as barium carbonate) was estimated. Carboxyl carbon had little radioactivity. The specific activity of hydroxymethyl carbon was 10 - 19% of that of methylene carbon. Glycine isolated from the same hydrolyzates was degraded by ninhydrin oxidation. Formaldehyde produced from 2-C was oxidized to carbon dioxide by treating with mercuric chloride. Carboxyl carbon had little radioactivity. The specific activities of 2-C of glycine and 2-C of serine in the same tissue protein were compared. The ratio of serine 2-C/glycine 2-C was between 0.7 - 1.5. These results seem to indicate that glycine directly converts to serine in the rooster. The quantitative significance of the pathways of glycine (serine) biosynthesis is discussed. (auth.)

  20. Targeted mutagenesis using zinc-finger nucleases in perennial fruit trees.

    Science.gov (United States)

    Peer, Reut; Rivlin, Gil; Golobovitch, Sara; Lapidot, Moshe; Gal-On, Amit; Vainstein, Alexander; Tzfira, Tzvi; Flaishman, Moshe A

    2015-04-01

    Targeting a gene in apple or fig with ZFN, introduced by transient or stable transformation, should allow genome editing with high precision to advance basic science and breeding programs. Genome editing is a powerful tool for precise gene manipulation in any organism; it has recently been shown to be of great value for annual plants. Classical breeding strategies using conventional cross-breeding and induced mutations have played an important role in the development of new cultivars in fruit trees. However, fruit-tree breeding is a lengthy process with many limitations. Efficient and widely applied methods for targeted modification of fruit-tree genomes are not yet available. In this study, transgenic apple and fig lines carrying a zinc-finger nuclease (ZFNs) under the control of a heat-shock promoter were developed. Editing of a mutated uidA gene, following expression of the ZFN genes by heat shock, was confirmed by GUS staining and PCR product sequencing. Finally, whole plants with a repaired uidA gene due to deletion of a stop codon were regenerated. The ZFN-mediated gene modifications were stable and passed onto regenerants from ZFN-treated tissue cultures. This is the first demonstration of efficient and precise genome editing, using ZFN at a specific genomic locus, in two different perennial fruit trees-apple and fig. We conclude that targeting a gene in apple or fig with a ZFN introduced by transient or stable transformation should allow knockout of a gene of interest. Using this technology for genome editing allows for marker gene-independent and antibiotic selection-free genome engineering with high precision in fruit trees to advance basic science as well as nontransgenic breeding programs.

  1. An A20/AN1-type zinc finger protein modulates gibberellins and abscisic acid contents and increases sensitivity to abiotic stress in rice (Oryza sativa).

    Science.gov (United States)

    Zhang, Ye; Lan, Hongxia; Shao, Qiaolin; Wang, Ruqin; Chen, Hui; Tang, Haijuan; Zhang, Hongsheng; Huang, Ji

    2016-01-01

    The plant hormones gibberellins (GA) and abscisic acid (ABA) play important roles in plant development and stress responses. Here we report a novel A20/AN1-type zinc finger protein ZFP185 involved in GA and ABA signaling in the regulation of growth and stress response. ZFP185 was constitutively expressed in various rice tissues. Overexpression of ZFP185 in rice results in a semi-dwarfism phenotype, reduced cell size, and the decrease of endogenous GA3 content. By contrast, higher GA3 content was observed in RNAi plants. The application of exogenous GA3 can fully rescue the semi-dwarfism phenotype of ZFP185 overexpressing plants, suggesting the negative role of ZFP185 in GA biosynthesis. Besides GA, overexpression of ZFP185 decreased ABA content and expression of several ABA biosynthesis-related genes. Moreover, it was found that ZFP185, unlike previously known A20/AN1-type zinc finger genes, increases sensitivity to drought, cold, and salt stresses, implying the negative role of ZFP185 in stress tolerance. ZFP185 was localized in the cytoplasm and lacked transcriptional activation potential. Our study suggests that ZFP185 regulates plant growth and stress responses by affecting GA and ABA biosynthesis in rice. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. The Zinc-Finger Thylakoid-Membrane Protein FIP Is Involved With Abiotic Stress Response in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Karina L. Lopes

    2018-04-01

    Full Text Available Many plant genes have their expression modulated by stress conditions. Here, we used Arabidopsis FtsH5 protease, which expression is regulated by light stress, as bait in a yeast two-hybrid screen to search for new proteins involved in the stress response. As a result, we found FIP (FtsH5 Interacting Protein, which possesses an amino proximal cleavable transit peptide, a hydrophobic membrane-anchoring region, and a carboxyl proximal C4-type zinc-finger domain. In vivo experiments using FIP fused to green fluorescent protein (GFP showed a plastid localization. This finding was corroborated by chloroplast import assays that showed FIP inserted in the thylakoid membrane. FIP expression was down-regulated in plants exposed to high light intensity, oxidative, salt, and osmotic stresses, whereas mutant plants expressing low levels of FIP were more tolerant to these abiotic stresses. Our data shows a new thylakoid-membrane protein involved with abiotic stress response in Arabidopsis thaliana.

  3. First large scale chemical synthesis of the 72 amino acid HIV-1 nucleocapsid protein NCp7 in an active form.

    Science.gov (United States)

    de Rocquigny, H; Ficheux, D; Gabus, C; Fournié-Zaluski, M C; Darlix, J L; Roques, B P

    1991-10-31

    The nucleocapsid protein (NC) of the human immunodeficiency virus type 1 plays a crucial role in the formation of infectious viral particles and therefore should be a major target for the development of antiviral agents. This requires an investigation of NC protein structure and of its interactions with both primer tRNA(Lys,3) and genomic RNA. Nucleocapsid protein NCp7, which results from the maturation of NCp15, contains two zinc fingers flanked by sequences rich in basic and proline residues. Here we report the first synthesis of large quantities of NCp7 able to activate HIV-1 RNA dimerization and replication primer tRNA(Lys,3) annealing to the initiation site of reverse transcription. In addition UV spectroscopic analyses performed to characterize the Co2+ binding properties of each zinc finger suggest that the two fingers probably interact in NCp7.

  4. The novel BTB/POZ and zinc finger factor Zbtb45 is essential for proper glial differentiation of neural and oligodendrocyte progenitor cells

    DEFF Research Database (Denmark)

    Södersten, Erik; Lilja, Tobias; Hermanson, Ola

    2010-01-01

    Understanding the regulatory mechanisms controlling the fate decisions of neural stem cells (NSCs) is a crucial issue to shed new light on mammalian central nervous system (CNS) development in health and disease. We have investigated a possible role for the previously uncharacterized BTB/POZ-doma......Understanding the regulatory mechanisms controlling the fate decisions of neural stem cells (NSCs) is a crucial issue to shed new light on mammalian central nervous system (CNS) development in health and disease. We have investigated a possible role for the previously uncharacterized BTB....../POZ-domain containing zinc finger factor Zbtb45 in the differentiation of NSCs and postnatal oligodendrocyte precursors. In situ hybridization histochemistry and RT-qPCR analysis revealed that Zbtb45 mRNA was ubiquitously expressed in the developing CNS in mouse embryos at embryonic day (E) 12.5 and 14.5. Zbtb45 m......RNA knockdown in embryonic forebrain NSCs by siRNA resulted in a rapid decrease in the expression of oligodendrocyte-characteristic genes after mitogen (FGF2) withdrawal, whereas the expression of astrocyte-associated genes such as CD44 and GFAP increased compared to control. Accordingly, the number...

  5. Molecular cloning and expression analysis of a zebrafish novel zinc finger protein gene rnf141

    Directory of Open Access Journals (Sweden)

    Wenqian Deng

    2009-01-01

    Full Text Available ZNF230 is a novel zinc finger gene cloned by our laboratory. In order to understand the potential functions of this gene in vertebrate development, we cloned the zebrafish orthologue of human ZNF230, named rnf141. The cDNA fragment of rnf141 was obtained by rapid amplification of cDNA ends (RACE. The open reading frame (ORF encodes a polypeptide of 222 amino acids which shares 75.65% identity with the human ZNF230. RT-PCR analysis in zebrafish embryo and adult tissues revealed that rnf141 transcripts are maternally derived and that rnf141 mRNA has a broad distribution. Zygotic rnf141 message is strongly localized in the central nervous system, as shown by whole-mount in situ hybridization. Knockdown and over expression of rnf141 can induce abnormal phenotypes, including abnormal development of brain, as well as yolk sac and axis extendsion. Marker gene analysis showed that rnf141 may play a role in normal dorsoventral patterning of zebrafish embryos, suggesting that rnf141 may have a broad function during early development of vertebrates.

  6. ZNF649, a novel Kruppel type zinc-finger protein, functions as a transcriptional suppressor

    International Nuclear Information System (INIS)

    Yang Hong; Yuan Wuzhou; Wang Ying; Zhu Chuanbing; Liu Bisheng; Wang Yuequn; Yang, Dan; Li Yongqing; Wang Canding; Wu Xiushan; Liu Mingyao

    2005-01-01

    Cardiac differentiation involves a cascade of coordinated gene expression that regulates cell proliferation and matrix protein formation in a defined temporo-spatial manner. Many of the KRAB-ZFPs are involved in cardiac development or cardiovascular diseases. Here we report the identification and characterization of a novel human zinc-finger gene named ZNF649. The cDNA of ZNF649 is 3176 bp, encoding a protein of 505 amino acids in the nuclei. Northern blot analysis indicates that ZNF649 is expressed in most of the examined human adult and embryonic tissues. ZNF649 is a transcription suppressor when fused to GAL-4 DNA-binding domain and cotransfected with VP-16. Overexpression of ZNF649 in COS-7 cells inhibits the transcriptional activities of SRE and AP-1. Deletion analysis with a series of truncated fusion proteins indicates that the KRAB motif is a basal repression domain when the truncated fusion proteins were assayed for the transcriptional activities of SRE and AP-1. These results suggest that ZNF649 protein may act as a transcriptional repressor in mitogen-activated protein kinase signaling pathway to mediate cellular functions

  7. Isolation of three B-box zinc finger proteins that interact with STF1 and COP1 defines a HY5/COP1 interaction network involved in light control of development in soybean

    International Nuclear Information System (INIS)

    Shin, Su Young; Kim, Seong Hee; Kim, Hye Jin; Jeon, Su Jeong; Sim, Soon Ae; Ryu, Gyeong Ryul; Yoo, Cheol Min; Cheong, Yong Hwa; Hong, Jong Chan

    2016-01-01

    LONG HYPOCOTYL5 (HY5) and STF1 (Soybean TGACG-motif binding Factor 1) are two related bZIP transcription factors that play a positive role in photomorphogenesis and hormonal signaling. In this study, we compared full length STF1 and truncated STF1 overexpression lines and found that the C-terminal 133 amino acids (194–306) possess all the HY5-like function in Arabidopsis. The STF1-DC1 mutant (1–306), with a 20 amino acid deletion at the carboxy terminus, failed to complement the hy5 mutant phenotype, which suggests an intact C-terminus is required for STF1 function. To understand the role of the C-terminal domain in photomorphogenesis we used a yeast two-hybrid screen to isolate proteins that bind to the STF1 C-terminus. We isolated three soybean cDNAs encoding the zinc-finger proteins GmSTO, GmSTH, and GmSTH2, which interact with STF1. These proteins belong to a family of B-box zinc finger proteins that include Arabidopsis SALT TOLERANCE (STO) and STO HOMOLOG (STH) and STH2, which play a role in light-dependent development and gene expression. The C-terminal 63 amino acids of STF1, containing a leucine zipper and the two N-terminal B-boxes, contains the domain involved in interactions between STF1 and GmSTO. In addition, we identified an interaction between soybean COP1 (GmCOP1) and GmSTO and GmSTH, as well as STF1, which strongly suggests the presence of a similar regulatory circuit for light signaling in soybean as in Arabidopsis. This study shows that photomorphogenic control requires complex molecular interactions among several different classes of transcription factors such as bZIP, B-box factors, and COP1, a ubiquitin ligase. - Highlights: • STF1 interact with GmSTO, GmSTH and GmSTH2. • The bZIP transcription factor STF1 requires an intact C-terminal domain for STF1 function. • STF1 and GmSTO are nuclear proteins.

  8. TaCHP: a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance.

    Science.gov (United States)

    Li, Cuiling; Lv, Jian; Zhao, Xin; Ai, Xinghui; Zhu, Xinlei; Wang, Mengcheng; Zhao, Shuangyi; Xia, Guangmin

    2010-09-01

    The plant response to abiotic stresses involves both abscisic acid (ABA)-dependent and ABA-independent signaling pathways. Here we describe TaCHP, a CHP-rich (for cysteine, histidine, and proline rich) zinc finger protein family gene extracted from bread wheat (Triticum aestivum), is differentially expressed during abiotic stress between the salinity-sensitive cultivar Jinan 177 and its tolerant somatic hybrid introgression cultivar Shanrong No.3. TaCHP expressed in the roots of seedlings at the three-leaf stage, and the transcript localized within the cells of the root tip cortex and meristem. TaCHP transcript abundance was higher in Shanrong No.3 than in Jinan 177, but was reduced by the imposition of salinity or drought stress, as well as by the exogenous supply of ABA. When JN17, a salinity hypersensitive wheat cultivar, was engineered to overexpress TaCHP, its performance in the face of salinity stress was improved, and the ectopic expression of TaCHP in Arabidopsis (Arabidopsis thaliana) also improved the ability of salt tolerance. The expression level of a number of stress reporter genes (AtCBF3, AtDREB2A, AtABI2, and AtABI1) was raised in the transgenic lines in the presence of salinity stress, while that of AtMYB15, AtABA2, and AtAAO3 was reduced in its absence. The presence in the upstream region of the TaCHP open reading frame of the cis-elements ABRE, MYBRS, and MYCRS suggests that it is a component of the ABA-dependent and -independent signaling pathways involved in the plant response to abiotic stress. We suggest that TaCHP enhances stress tolerance via the promotion of CBF3 and DREB2A expression.

  9. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system.

    Directory of Open Access Journals (Sweden)

    Zuzana Zubáčová

    Full Text Available All eukaryotic organisms contain mitochondria or organelles that evolved from the same endosymbiotic event like classical mitochondria. Organisms inhabiting low oxygen environments often contain mitochondrial derivates known as hydrogenosomes, mitosomes or neutrally as mitochondrion-like organelles. The detailed investigation has shown unexpected evolutionary plasticity in the biochemistry and protein composition of these organelles in various protists. We investigated the mitochondrion-like organelle in Trimastix pyriformis, a free-living member of one of the three lineages of anaerobic group Metamonada. Using 454 sequencing we have obtained 7 037 contigs from its transcriptome and on the basis of sequence homology and presence of N-terminal extensions we have selected contigs coding for proteins that putatively function in the organelle. Together with the results of a previous transcriptome survey, the list now consists of 23 proteins - mostly enzymes involved in amino acid metabolism, transporters and maturases of proteins and transporters of metabolites. We have no evidence of the production of ATP in the mitochondrion-like organelle of Trimastix but we have obtained experimental evidence for the presence of enzymes of the glycine cleavage system (GCS, which is part of amino acid metabolism. Using homologous antibody we have shown that H-protein of GCS localizes into vesicles in the cell of Trimastix. When overexpressed in yeast, H- and P-protein of GCS and cpn60 were transported into mitochondrion. In case of H-protein we have demonstrated that the first 16 amino acids are necessary for this transport. Glycine cleavage system is at the moment the only experimentally localized pathway in the mitochondrial derivate of Trimastix pyriformis.

  10. Cloning and characterization of a novel human zinc finger gene, hKid3, from a C2H2-ZNF enriched human embryonic cDNA library

    International Nuclear Information System (INIS)

    Gao Li; Sun Chong; Qiu Hongling; Liu Hui; Shao Huanjie; Wang Jun; Li Wenxin

    2004-01-01

    To investigate the zinc finger genes involved in human embryonic development, we constructed a C 2 H 2 -ZNF enriched human embryonic cDNA library, from which a novel human gene named hKid3 was identified. The hKid3 cDNA encodes a 554 amino acid protein with an amino-terminal KRAB domain and 11 carboxyl-terminal C 2 H 2 zinc finger motifs. Northern blot analysis indicates that two hKid3 transcripts of 6 and 8.5 kb express in human fetal brain and kidney. The 6 kb transcript can also be detected in human adult brain, heart, and skeletal muscle while the 8.5 kb transcript appears to be embryo-specific. GFP-fused hKid3 protein is localized to nuclei and the ZF domain is necessary and sufficient for nuclear localization. To explore the DNA-binding specificity of hKid3, an oligonucleotide library was selected by GST fusion protein of hKid3 ZF domain, and the consensus core sequence 5'-CCAC-3' was evaluated by competitive electrophoretic mobility shift assay. Moreover, The KRAB domain of hKid3 exhibits transcription repressor activity when tested in GAL4 fusion protein assay. These results indicate that hKid3 may function as a transcription repressor with regulated expression pattern during human development of brain and kidney

  11. Novel functions of prototype foamy virus Gag glycine- arginine-rich boxes in reverse transcription and particle morphogenesis.

    Science.gov (United States)

    Müllers, Erik; Uhlig, Tobias; Stirnnagel, Kristin; Fiebig, Uwe; Zentgraf, Hanswalter; Lindemann, Dirk

    2011-02-01

    Prototype foamy virus (PFV) Gag lacks the characteristic orthoretroviral Cys-His motifs that are essential for various steps of the orthoretroviral replication cycle, such as RNA packaging, reverse transcription, infectivity, integration, and viral assembly. Instead, it contains three glycine-arginine-rich boxes (GR boxes) in its C terminus that putatively represent a functional equivalent. We used a four-plasmid replication-deficient PFV vector system, with uncoupled RNA genome packaging and structural protein translation, to analyze the effects of deletion and various substitution mutations within each GR box on particle release, particle-associated protein composition, RNA packaging, DNA content, infectivity, particle morphology, and intracellular localization. The degree of viral particle release by all mutants was similar to that of the wild type. Only minimal effects on Pol encapsidation, exogenous reverse transcriptase (RT) activity, and genomic viral RNA packaging were observed. In contrast, particle-associated DNA content and infectivity were drastically reduced for all deletion mutants and were undetectable for all alanine substitution mutants. Furthermore, GR box I mutants had significant changes in particle morphology, and GR box II mutants lacked the typical nuclear localization pattern of PFV Gag. Finally, it could be shown that GR boxes I and III, but not GR box II, can functionally complement each other. It therefore appears that, similar to the orthoretroviral Cys-His motifs, the PFV Gag GR boxes are important for RNA encapsidation, genome reverse transcription, and virion infectivity as well as for particle morphogenesis.

  12. Mutations in the putative zinc-binding motif of UL52 demonstrate a complex interdependence between the UL5 and UL52 subunits of the human herpes simplex virus type 1 helicase/primase complex.

    Science.gov (United States)

    Chen, Yan; Carrington-Lawrence, Stacy D; Bai, Ping; Weller, Sandra K

    2005-07-01

    Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase-primase (UL5/8/52) complex. UL5 contains seven motifs found in helicase superfamily 1, and UL52 contains conserved motifs found in primases. The contributions of each subunit to the biochemical activities of the complex, however, remain unclear. We have previously demonstrated that a mutation in the putative zinc finger at UL52 C terminus abrogates not only primase but also ATPase, helicase, and DNA-binding activities of a UL5/UL52 subcomplex, indicating a complex interdependence between the two subunits. To test this hypothesis and to further investigate the role of the zinc finger in the enzymatic activities of the helicase-primase, a series of mutations were constructed in this motif. They differed in their ability to complement a UL52 null virus: totally defective, partial complementation, and potentiating. In this study, four of these mutants were studied biochemically after expression and purification from insect cells infected with recombinant baculoviruses. All mutants show greatly reduced primase activity. Complementation-defective mutants exhibited severe defects in ATPase, helicase, and DNA-binding activities. Partially complementing mutants displayed intermediate levels of these activities, except that one showed a wild-type level of helicase activity. These data suggest that the UL52 zinc finger motif plays an important role in the activities of the helicase-primase complex. The observation that mutations in UL52 affected helicase, ATPase, and DNA-binding activities indicates that UL52 binding to DNA via the zinc finger may be necessary for loading UL5. Alternatively, UL5 and UL52 may share a DNA-binding interface.

  13. Zinc finger transcription factors displaced SREBP proteins as the major Sterol regulators during Saccharomycotina evolution.

    Directory of Open Access Journals (Sweden)

    Sarah L Maguire

    2014-01-01

    Full Text Available In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs, which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1 and C. albicans (Cph2 have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1 and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina.

  14. Zinc Finger Transcription Factors Displaced SREBP Proteins as the Major Sterol Regulators during Saccharomycotina Evolution

    Science.gov (United States)

    Maguire, Sarah L.; Wang, Can; Holland, Linda M.; Brunel, François; Neuvéglise, Cécile; Nicaud, Jean-Marc; Zavrel, Martin; White, Theodore C.; Wolfe, Kenneth H.; Butler, Geraldine

    2014-01-01

    In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs), which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1) and C. albicans (Cph2) have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1) and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina. PMID:24453983

  15. Nitrogen functionality of glucose-glycine condensate; Glucose to glycine tono shukugo hanno (shukugobutsuchu no chisso kagobutsu no keitai bunseki)

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, C.; Yoshioka, T.; Komano, T.; Mashimo, K.; Wainai, T. [Nihon University, Tokyo (Japan). College of Science and Technology; Sugimoto, Y.; : Miki, Y. [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1996-10-28

    In order to clarify a humification process in the early stage of coalification, the nitrogen functionality of prepared glucose-glycine condensate was studied experimentally. In experiment, the condensate was prepared by heating the mixture of glucose, glycine and water in a autoclave at 130{degree}C for 50 hours, and furthermore heating the produced solid material in water at 300{degree}C. After the condensate was hydrocracked, the fraction, condensate and hydrocracking residue were analyzed by elementary analyzer, {sup 13}C-NMR, XPS, FT-IR, capillary GC-FID/NPD and GC-MS. As a result, the glucose-glycine condensate could be arranged on the basis of three types of nitrogen such as pyridine, pyrrole and quaternary amine type. Pyridine type nitrogen increased, while quaternary amine type one decreased with an increase in heating treatment temperature. Rich pyrrole type nitrogen and poor pyridine type one were found in light nitrogen compounds in hydrocracked products. 2 refs., 4 figs., 2 tabs.

  16. Durable zinc oxide-containing sorbents for coal gas desulfurization

    Science.gov (United States)

    Siriwardane, Ranjani V.

    1996-01-01

    Durable zinc-oxide containing sorbent pellets for removing hydrogen sulfide from a gas stream at an elevated temperature are made up to contain titania as a diluent, high-surface-area silica gel, and a binder. These materials are mixed, moistened, and formed into pellets, which are then dried and calcined. The resulting pellets undergo repeated cycles of sulfidation and regeneration without loss of reactivity and without mechanical degradation. Regeneration of the pellets is carried out by contacting the bed with an oxidizing gas mixture.

  17. Finger millet (Ragi, Eleusine coracana L.): a review of its nutritional properties, processing, and plausible health benefits.

    Science.gov (United States)

    Shobana, S; Krishnaswamy, K; Sudha, V; Malleshi, N G; Anjana, R M; Palaniappan, L; Mohan, V

    2013-01-01

    Finger millet or ragi is one of the ancient millets in India (2300 BC), and this review focuses on its antiquity, consumption, nutrient composition, processing, and health benefits. Of all the cereals and millets, finger millet has the highest amount of calcium (344mg%) and potassium (408mg%). It has higher dietary fiber, minerals, and sulfur containing amino acids compared to white rice, the current major staple in India. Despite finger millet's rich nutrient profile, recent studies indicate lower consumption of millets in general by urban Indians. Finger millet is processed by milling, malting, fermentation, popping, and decortication. Noodles, vermicilli, pasta, Indian sweet (halwa) mixes, papads, soups, and bakery products from finger millet are also emerging. In vitro and in vivo (animal) studies indicated the blood glucose lowering, cholesterol lowering, antiulcerative, wound healing properties, etc., of finger millet. However, appropriate intervention or randomized clinical trials are lacking on these health effects. Glycemic index (GI) studies on finger millet preparations indicate low to high values, but most of the studies were conducted with outdated methodology. Hence, appropriate GI testing of finger millet preparations and short- and long-term human intervention trials may be helpful to establish evidence-based health benefits. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. The effect of Cu-rich sub-layer on the increased corrosion resistance of Cu-xZn alloys in chloride containing borate buffer

    International Nuclear Information System (INIS)

    Milosev, Ingrid; Mikic, Tadeja Kosec; Gaberscek, Miran

    2006-01-01

    The electrochemical behaviour of Cu-xZn alloys, as well as their constituent metals, in a borate buffer containing chloride ions in the molar range from 0.01 to 1 M are studied. Characteristics of these materials under anodic polarization are compared and the composition and morphology of the corrosion products formed in the course of polarization experiment are analysed by SEM and EDS. X-ray photoelectron spectroscopy and electrochemical impedance measurements are used for characterization of the surface layers formed on Cu, Zn and Cu-40Zn alloy during 2-h immersion at E oc in a borate buffer containing two different concentrations of chloride ions. New aspects of the behaviour of brass under E oc condition are revealed. The improved corrosion resistance of brass in chloride media, if compared to zinc metal, is attributed to a Cu-rich layer formed by the selective dissolution of zinc. Based on the results, a structural model describing the improved corrosion resistance of Cu-40Zn alloy with respect to Zn metal is proposed

  19. Influence of high glycine diets on the activity of glycine-catabolizing enzymes and on glycine catabolism in rats

    International Nuclear Information System (INIS)

    Petzke, K.J.; Albrecht, V.; Przybilski, H.

    1986-01-01

    Male albino rats were adapted to isocaloric purified diets that differed mainly in their glycine and casein contents. Controls received a 30% casein diet. In experimental diets gelatin or gelatin hydrolysate was substituted for half of the 30% casein. An additional group was fed a glycine-supplemented diet, which corresponded in glycine level to the gelatin diet but in which the protein level was nearly the same as that of the casein control diet. Another group received a 15% casein diet. Rat liver glycine cleavage system, serine hydroxymethyltransferase and serine dehydratase activities were measured. 14 CO 2 production from the catabolism of 14 C-labeled glycine was measured in vivo and in vitro (from isolated hepatocytes). Serine dehydratase and glycine cleavage system activities were higher in animals fed 30% casein diets than in those fed 15% casein diets. Serine hydroxymethyltransferase activity of the cytosolic and mitochondrial fractions was highest when a high glycine diet (glycine administered as pure, protein bound in gelatin or peptide bound in gelatin hydrolysate) was fed. 14 CO 2 formation from [1- 14 C]- and [2- 14 C]glycine both in vivo and in isolated hepatocytes was higher when a high glycine diet was fed than when a casein diet was fed. These results suggest that glycine catabolism is dependent on and adaptable to the glycine content of the diet. Serine hydroxymethyltransferase appears to play a major role in the regulation of glycine degradation via serine and pyruvate

  20. A Family of Zinc Finger Proteins Is Required forChromosome-specific Pairing and Synapsis during Meiosis in C.elegans

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Carolyn M.; Dernburg, Abby F.

    2006-06-07

    Homologous chromosome pairing and synapsis are prerequisitefor accurate chromosome segregation during meiosis. Here, we show that afamily of four related C2H2 zinc-finger proteins plays a central role inthese events in C. elegans. These proteins are encoded within a tandemgene cluster. In addition to the X-specific HIM-8 protein, threeadditional paralogs collectively mediate the behavior of the fiveautosomes. Each chromosome relies on a specific member of the family topair and synapse with its homolog. These "ZIM" proteins concentrate atspecial regions called meiotic pairing centers on the correspondingchromosomes. These sites are dispersed along the nuclear envelope duringearly meiotic prophase, suggesting a role analogous to thetelomere-mediated meiotic bouquet in other organisms. To gain insightinto the evolution of these components, wecharacterized homologs in C.briggsae and C. remanei, which revealed changes in copy number of thisgene family within the nematode lineage.

  1. Engineered zinc-finger transcription factors inhibit the replication and transcription of HBV in vitro and in vivo.

    Science.gov (United States)

    Luo, Wei; Wang, Junxia; Xu, Dengfeng; Bai, Huili; Zhang, Yangli; Zhang, Yuhong; Li, Xiaosong

    2018-04-01

    In the present study, an artificial zinc-finger transcription factor eukaryotic expression vector specifically recognizing and binding to the hepatitis B virus (HBV) enhancer (Enh) was constructed, which inhibited the replication and expression of HBV DNA. The HBV EnhI‑specific pcDNA3.1‑artificial transcription factor (ATF) vector was successfully constructed, and then transformed or injected into HepG2.2.15 cells and HBV transgenic mice, respectively. The results demonstrated that the HBV EnhI (1,070‑1,234 bp)‑specific ATF significantly inhibited the replication and transcription of HBV DNA in vivo and in vitro. The HBV EnhI‑specific ATF may be a meritorious component of progressive combination therapies for eliminating HBV DNA in infected patients. A radical cure for chronic HBV infection may become feasible by using this bioengineering technology.

  2. Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C₂H₂ zinc finger transcription factor.

    Science.gov (United States)

    Rai, Avinash Chandra; Singh, Major; Shah, Kavita

    2013-01-01

    Efficient genetic transformation of cotyledonary explants of tomato (Solanum lycopersicum, cv. H-86, Kashi vishesh) was obtained. Disarmed Agrobacterium tumifaciens strain GV 3101 was used in conjugation with binary vector pBinAR containing a construct consisting of the coding sequence of the BcZAT12 gene under the regulatory control of the stress inducible Bclea1a promoter. ZAT12 encodes a C₂H₂ zinc finger protein which confers multiple abiotic stress tolerance to plants. Integration of ZAT12 gene into nuclear genome of individual kanamycin resistant transformed T₀ tomato lines was confirmed by Southern blot hybridization with segregation analysis of T(1) plants showing Mendelian inheritance of the transgene. Expression of ZAT12 in drought-stressed transformed tomato lines was verified in T₂ generation plants using RT-PCR. Of the six transformed tomato lines (ZT1-ZT6) the transformants ZT1 and ZT5 showed maximum expression of BcZAT12 gene transcripts when exposed to 7 days drought stress. Analysis of relative water content (RWC), electrolyte leakage (EL), chlorophyll colour index (CCI), H₂O₂ level and catalase activity suggested that tomato BcZAT12 transformants ZT1 and ZT5 have significantly increased levels of drought tolerance. These results suggest that BcZAT12 transformed tomato cv. H-86 has real potential for molecular breeding programs aimed at augmenting yield of tomato in regions affected with drought stress. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Activating human genes with zinc finger proteins, transcription activator-like effectors and CRISPR/Cas9 for gene therapy and regenerative medicine.

    Science.gov (United States)

    Gersbach, Charles A; Perez-Pinera, Pablo

    2014-08-01

    New technologies have recently been developed to control the expression of human genes in their native genomic context by engineering synthetic transcription factors that can be targeted to any DNA sequence. The ability to precisely regulate any gene as it occurs naturally in the genome provides a means to address a variety of diseases and disorders. This approach also circumvents some of the traditional challenges of gene therapy. In this editorial, we review the technologies that have enabled targeted human gene activation, including the engineering of transcription factors based on zinc finger proteins, transcription activator-like effectors and the CRISPR/Cas9 system. Additionally, we highlight examples in which these methods have been developed for therapeutic applications and discuss challenges and opportunities.

  4. Genetic analysis of Kruppel-like zinc finger 11 variants in 5864 Danish individuals: potential effect on insulin resistance and modified signal transducer and activator of transcription-3 binding by promoter variant -1659G>C

    DEFF Research Database (Denmark)

    Gutiérrez-Aguilar, Ruth; Froguel, Philippe; Hamid, Yasmin H

    2008-01-01

    CONTEXT: The transcription factor Krüppel-like zinc finger 11 (KLF11) has been suggested to contribute to genetic risk of type 2 diabetes (T2D). Our previous results showed that four KLF11 variants, in strong linkage disequilibrium (LD block including +185 A>G/Gln62Arg and -1659 G>C) were...

  5. Systemic serum amyloid A as a biomarker for exposure to zinc and/or copper-containing metal fumes.

    Science.gov (United States)

    Baumann, R; Gube, M; Markert, A; Davatgarbenam, S; Kossack, V; Gerhards, B; Kraus, T; Brand, P

    2018-01-01

    Zinc- and copper-containing welding fumes increase systemic C-reactive protein (CRP). The aim of this study was to investigate the performance of the biomarkers serum amyloid A (SAA) and soluble vascular cell adhesion molecule-1 (VCAM-1) in this regard. Fifteen male subjects were exposed under controlled conditions to welding fumes containing either zinc, or copper, or copper and zinc for 6 h. Plasma samples were collected before, 6 and 24 h after start of exposure and biomarkers therein were measured by electrochemiluminescent assay. For each exposure, systemic concentrations of systemic SAA, but not VCAM-1, increased significantly at 24 h after exposure start compared with baseline ("copper only": P=0.0005, "zinc only": P=0.027, "copper and zinc": P=0.001). SAA showed a wider range of concentrations than did CRP and its levels increased up to 19-fold after welding fume exposure. The recognition of copper as a potential harmful component in welding fumes, also independent from zinc, deserves further consideration. SAA might represent a new sensitive biomarker for potential subclinical sterile inflammation after inhalation of copper- and/or zinc-containing welding fumes. As elevations of CRP and SAA protein have both been linked to a higher risk for cardiovascular disease, these findings might particularly be important for long-term welders.

  6. Functional reconstitution of the glycine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Calvo, M.; Ruiz-Gomez, A.; Vazquez, J.; Morato, E.; Valdivieso, F.; Mayor, F. Jr. (Universidad Autonoma de Madrid (Spain))

    1989-07-25

    The functional reconstitution of the chloride channel coupled glycine receptor is described. Glycine receptors were purified from the cholate extract of rat spinal cord membranes by affinity chromatography and incorporated into phospholipid vesicles by the addition of phosphatidylcholine and removal of detergent by gel filtration. The reconstituted vesicles showed the same polypeptide composition as the purified receptor. The pharmacological characteristics of the glycine receptor were also preserved in the proteoliposomes, as demonstrated by the displacement of ({sup 3}H)strychnine binding by several glycinergic ligands and by photoaffinity labeling experiments. In order to observe functional responses (i.e., specific agonist-induced anion translocation), the authors have developed an assay based on the fluorescence quenching of an anion-sensitive entrapped probe, SPQ (6-methoxy-N-(3-sulfopropyl)quinolinium). Reconstituted vesicles were loaded with the fluorescent probe during a freeze-thaw-sonication cycle in the presence of added liposomes containing cholesterol. In such a reconstituted system, glycine receptor agonists are able to increase the rate of anion influx into the vesicles. The action of agonists is blocked by the simultaneous presence of strychnine or other glycine antagonists. The results show that the purified 48,000- and 58,000-dalton polypeptides reconstituted into phospholipid vesicles can bind ligands and promote specific ion translocation in a way similar to the glycine receptor in its native environment.

  7. Conversion of Human Fibroblasts to Stably Self-Renewing Neural Stem Cells with a Single Zinc-Finger Transcription Factor

    Directory of Open Access Journals (Sweden)

    Ebrahim Shahbazi

    2016-04-01

    Full Text Available Direct conversion of somatic cells into neural stem cells (NSCs by defined factors holds great promise for mechanistic studies, drug screening, and potential cell therapies for different neurodegenerative diseases. Here, we report that a single zinc-finger transcription factor, Zfp521, is sufficient for direct conversion of human fibroblasts into long-term self-renewable and multipotent NSCs. In vitro, Zfp521-induced NSCs maintained their characteristics in the absence of exogenous factor expression and exhibited morphological, molecular, developmental, and functional properties that were similar to control NSCs. In addition, the single-seeded induced NSCs were able to form NSC colonies with efficiency comparable with control NSCs and expressed NSC markers. The converted cells were capable of surviving, migrating, and attaining neural phenotypes after transplantation into neonatal mouse and adult rat brains, without forming tumors. Moreover, the Zfp521-induced NSCs predominantly expressed rostral genes. Our results suggest a facilitated approach for establishing human NSCs through Zfp521-driven conversion of fibroblasts.

  8. Cytochrome c catalyzes the in vitro synthesis of arachidonoyl glycine

    International Nuclear Information System (INIS)

    McCue, Jeffrey M.; Driscoll, William J.; Mueller, Gregory P.

    2008-01-01

    Long chain fatty acyl glycines are an emerging class of biologically active molecules that occur naturally and produce a wide array of physiological effects. Their biosynthetic pathway, however, remains unknown. Here we report that cytochrome c catalyzes the synthesis of N-arachidonoyl glycine (NAGly) from arachidonoyl coenzyme A and glycine in the presence of hydrogen peroxide. The identity of the NAGly product was verified by isotope labeling and mass analysis. Other heme-containing proteins, hemoglobin and myoglobin, were considerably less effective in generating arachidonoyl glycine as compared to cytochrome c. The reaction catalyzed by cytochrome c in vitro points to its potential role in the formation of NAGly and other long chain fatty acyl glycines in vivo

  9. Highly transparent front electrodes with metal fingers for p-i-n thin-film silicon solar cells

    Directory of Open Access Journals (Sweden)

    Moulin Etienne

    2015-01-01

    Full Text Available The optical and electrical properties of transparent conductive oxides (TCOs, traditionally used in thin-film silicon (TF-Si solar cells as front-electrode materials, are interlinked, such that an increase in TCO transparency is generally achieved at the cost of reduced lateral conductance. Combining a highly transparent TCO front electrode of moderate conductance with metal fingers to support charge collection is a well-established technique in wafer-based technologies or for TF-Si solar cells in the substrate (n-i-p configuration. Here, we extend this concept to TF-Si solar cells in the superstrate (p-i-n configuration. The metal fingers are used in conjunction with a millimeter-scale textured foil, attached to the glass superstrate, which provides an antireflective and retroreflective effect; the latter effect mitigates the shadowing losses induced by the metal fingers. As a result, a substantial increase in power conversion efficiency, from 8.7% to 9.1%, is achieved for 1-μm-thick microcrystalline silicon solar cells deposited on a highly transparent thermally treated aluminum-doped zinc oxide layer combined with silver fingers, compared to cells deposited on a state-of-the-art zinc oxide layer.

  10. Zinc-finger protein 418 overexpression protects against cardiac hypertrophy and fibrosis.

    Directory of Open Access Journals (Sweden)

    Liming Pan

    Full Text Available This study aimed to investigated the effect and mechanism of zinc-finger protein 418 (ZNF418 on cardiac hypertrophy caused by aortic banding (AB, phenylephrine (PE or angiotensin II (Ang II in vivo and in vitro.The expression of ZNF418 in hearts of patients with dilated cardiomyopathy (DCM or hypertrophic cardiomyopathy (HCM and AB-induced cardiac hypertrophy mice, as well as in Ang II- or PE-induced hypertrophic primary cardiomyocytes was detected by western blotting. Then, the expression of ZNF418 was up-regulated or down-regulated in AB-induced cardiac hypertrophy mice and Ang II -induced hypertrophic primary cardiomyocytes. The hypertrophic responses and fibrosis were evaluated by echocardiography and histological analysis. The mRNA levels of hypertrophy markers and fibrotic markers were detected by RT-qPCR. Furthermore, the phosphorylation and total levels of c-Jun were measured by western blotting.ZNF418 was markedly down-regulated in hearts of cardiac hypertrophy and hypertrophic primary cardiomyocytes. Down-regulated ZNF418 exacerbated the myocyte size and fibrosis, moreover increased the mRNA levels of ANP, BNP, β-MHC, MCIP1.4, collagen 1a, collagen III, MMP-2 and fibronection in hearts of AB-treated ZNF418 knockout mice or Ang II-treated cardiomyocytes with AdshZNF418. Conversely, these hypertrophic responses were reduced in the ZNF418 transgenic (TG mice treated by AB and the AdZNF418-transfected primary cardiomyocytes treated by Ang II. Additionally, the deficiency of ZNF418 enhanced the phosphorylation level of c-jun, and overexpression of ZNF418 suppressed the phosphorylation level of c-jun in vivo and in vitro.ZNF418 maybe attenuate hypertrophic responses by inhibiting the activity of c-jun/AP-1.

  11. Improved ethanol production at high temperature by consolidated bioprocessing using Saccharomyces cerevisiae strain engineered with artificial zinc finger protein.

    Science.gov (United States)

    Khatun, M Mahfuza; Yu, Xinshui; Kondo, Akihiko; Bai, Fengwu; Zhao, Xinqing

    2017-12-01

    In this work, the consolidated bioprocessing (CBP) yeast Saccharomyces cerevisiae MNII/cocδBEC3 was transformed by an artificial zinc finger protein (AZFP) library to improve its thermal tolerance, and the strain MNII-AZFP with superior growth at 42°C was selected. Improved degradation of acid swollen cellulose by 45.9% led to an increase in ethanol production, when compared to the control strain. Moreover, the fermentation of Jerusalem artichoke stalk (JAS) by MNII-AZFP was shortened by 12h at 42°C with a concomitant improvement in ethanol production. Comparative transcriptomics analysis suggested that the AZFP in the mutant exerted beneficial effect by modulating the expression of multiple functional genes. These results provide a feasible strategy for efficient ethanol production from JAS and other cellulosic biomass through CBP based-fermentation at elevated temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Regulation of hippocampus-dependent memory by the zinc finger protein Zbtb20 in mature CA1 neurons.

    Science.gov (United States)

    Ren, Anjing; Zhang, Huan; Xie, Zhifang; Ma, Xianhua; Ji, Wenli; He, David Z Z; Yuan, Wenjun; Ding, Yu-Qiang; Zhang, Xiao-Hui; Zhang, Weiping J

    2012-10-01

    The mammalian hippocampus harbours neural circuitry that is crucial for associative learning and memory. The mechanisms that underlie the development and regulation of this complex circuitry are not fully understood. Our previous study established an essential role for the zinc finger protein Zbtb20 in the specification of CA1 field identity in the developing hippocampus. Here, we show that conditionally deleting Zbtb20 specifically in mature CA1 pyramidal neurons impaired hippocampus-dependent memory formation, without affecting hippocampal architecture or the survival, identity and basal excitatory synaptic activity of CA1 pyramidal neurons. We demonstrate that mature CA1-specific Zbtb20 knockout mice exhibited reductions in long-term potentiation (LTP) and NMDA receptor (NMDAR)-mediated excitatory post-synaptic currents. Furthermore, we show that activity-induced phosphorylation of ERK and CREB is impaired in the hippocampal CA1 of Zbtb20 mutant mice. Collectively, these results indicate that Zbtb20 in mature CA1 plays an important role in LTP and memory by regulating NMDAR activity, and activation of ERK and CREB.

  13. Impact of Finger Type in Fingerprint Authentication

    Science.gov (United States)

    Gafurov, Davrondzhon; Bours, Patrick; Yang, Bian; Busch, Christoph

    Nowadays fingerprint verification system is the most widespread and accepted biometric technology that explores various features of the human fingers for this purpose. In general, every normal person has 10 fingers with different size. Although it is claimed that recognition performance with little fingers can be less accurate compared to other finger types, to our best knowledge, this has not been investigated yet. This paper presents our study on the topic of influence of the finger type into fingerprint recognition performance. For analysis we employ two fingerprint verification software packages (one public and one commercial). We conduct test on GUC100 multi sensor fingerprint database which contains fingerprint images of all 10 fingers from 100 subjects. Our analysis indeed confirms that performance with small fingers is less accurate than performance with the others fingers of the hand. It also appears that best performance is being obtained with thumb or index fingers. For example, performance deterioration from the best finger (i.e. index or thumb) to the worst fingers (i.e. small ones) can be in the range of 184%-1352%.

  14. Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters.

    Science.gov (United States)

    Harsing, Laszlo G; Matyus, Peter

    2013-04-01

    Glycine is an amino acid neurotransmitter that is involved in both inhibitory and excitatory neurochemical transmission in the central nervous system. The role of glycine in excitatory neurotransmission is related to its coagonist action at glutamatergic N-methyl-D-aspartate receptors. The glycine levels in the synaptic cleft rise many times higher during synaptic activation assuring that glycine spills over into the extrasynaptic space. Another possible origin of extrasynaptic glycine is the efflux of glycine occurring from astrocytes associated with glutamatergic synapses. The release of glycine from neuronal or glial origins exhibits several differences compared to that of biogenic amines or other amino acid neurotransmitters. These differences appear in an external Ca(2+)- and temperature-dependent manner, conferring unique characteristics on glycine as a neurotransmitter. Glycine transporter type-1 at synapses may exhibit neural and glial forms and plays a role in controlling synaptic glycine levels and the spill over rate of glycine from the synaptic cleft into the extrasynaptic biophase. Non-synaptic glycine transporter type-1 regulates extrasynaptic glycine concentrations, either increasing or decreasing them depending on the reverse or normal mode operation of the carrier molecule. While we can, at best, only estimate synaptic glycine levels at rest and during synaptic activation, glycine concentrations are readily measurable via brain microdialysis technique applied in the extrasynaptic space. The non-synaptic N-methyl-D-aspartate receptor may obtain glycine for activation following its spill over from highly active synapses or from its release mediated by the reverse operation of non-synaptic glycine transporter-1. The sensitivity of non-synaptic N-methyl-D-aspartate receptors to glutamate and glycine is many times higher than that of synaptic N-methyl-D-aspartate receptors making the former type of receptor the primary target for drug action. Synaptic

  15. Glycine-rich analogues of Cucurbita maxima trypsin inhibitor (CMTI-III) substituted by valine in position 27 display relatively low antitrypsin activity.

    Science.gov (United States)

    Rózycki, J; Kupryszewski, G; Rolka, K; Ragnarsson, U; Zbytryt, T; Krokoszyńska, I; Otlewski, J

    1993-09-01

    Five new analogues of the trypsin inhibitor CMTI-III were synthesized by the solid-phase method. All analogues containing a valine residue in position 27 and glycine residues in some or all of the positions 9, 11, 14, 17, 19, 29 as well as in two cases a norleucine residue in position 8 displayed association equilibrium constants by 6-7 orders of magnitude lower than the native CMTI-III inhibitor.

  16. Influence of heat processing on the bioaccessibility of zinc and iron from cereals and pulses consumed in India.

    Science.gov (United States)

    Hemalatha, Sreeramaiah; Platel, Kalpana; Srinivasan, Krishnapura

    2007-01-01

    Influence of heat processing on the bioaccessibility of zinc and iron from food grains consumed in India was evaluated. Cereals - rice (Oryza sativa), finger millet (Eleusine coracana), sorghum (Sorghum vulgare), wheat (Triticum aestivum), and maize (Zea mays), and pulses - chickpea (Cicer arietinum) - whole and decorticated, green gram (Phaseolus aureus) - whole and decorticated, decorticated black gram (Phaseolus mungo), decorticated red gram (Cajanus cajan), cowpea (Vigna catjang), and French bean (Phaseolus vulgaris) were examined for zinc and iron bioaccessibility by employing an in vitro dialysability procedure. Both pressure-cooking and microwave heating were tested for their influence on mineral bioaccessibility. Zinc bioaccessibility from food grains was considerably reduced upon pressure-cooking, especially in pulses. Among cereals, pressure-cooking decreased zinc bioaccessibility by 63% and 57% in finger millet and rice, respectively. All the pressure-cooked cereals showed similar percent zinc bioaccessibility with the exception of finger millet. Bioaccessibility of zinc from pulses was generally lower as a result of pressure-cooking or microwave heating. The decrease in bioaccessibility of zinc caused by microwave heating ranged from 11.4% in chickpea (whole) to 63% in cowpea. Decrease in zinc bioaccessibility was 48% in pressure-cooked whole chickpea, 45% and 55% in pressure-cooked or microwave-heated whole green gram, 32% and 22% in pressure-cooked or microwave-heated decorticated green gram, and 45% in microwave-heated black gram. Iron bioaccessibility, on the other hand, was significantly enhanced generally from all the food grains studied upon heat treatment. Thus, heat treatment of grains produced contrasting effect on zinc and iron bioaccessibility.

  17. Monte Carlo assessment of the finger shallow dose from direct contact with a microcentrifuge tube containing common biotechnology isotopes in solution.

    Science.gov (United States)

    Cutright, Dan; Medich, David; Ring, Joseph

    2012-04-01

    Eppendorf tubes often are used in biomedical research labs and contain radioactive tracers. Although the associated direct contact finger doses are typically small, it is suggested (and in line with the principle of ALARA) to handle these tubes from the cap of the tube. When containing radioactive material, handling a tube near the bottom conical section would unnecessarily increase the skin dose to the fingers. This investigation modeled a 2.0-mL Eppendorf tube containing various individual beta emitting isotopes commonly used in a biomedical research environment (i.e., (14)C, (3)H, (131)I, (32)P, and (35)S) to determine the skin dose when directly handling the tube at the cap end and when handling it at the bottom conical section. The primary goal of this paper is to assess how significantly this dose is altered by handling geometry. The skin dose to a single finger was calculated with Monte Carlo simulations using MCNP5 and determined at a depth of 0.007 cm(2) in water averaged over 10 cm as described in 10CFR20. Results show that the dose rate may vary by as much as a factor of 700 depending on handling geometry.

  18. Magnetic properties of bioactive glass-ceramics containing nanocrystalline zinc ferrite

    International Nuclear Information System (INIS)

    Singh, Rajendra Kumar; Srinivasan, A.

    2011-01-01

    Glass-ceramics with finely dispersed zinc ferrite (ZnFe 2 O 4 ) nanocrystallites were obtained by heat treatment of x(ZnO,Fe 2 O 3 )(65-x)SiO 2 20(CaO,P 2 O 5 )15Na 2 O (6≤x≤21 mole%) glasses. X-ray diffraction patterns of the glass-ceramic samples revealed the presence of calcium sodium phosphate [NaCaPO 4 ] and zinc ferrite [ZnFe 2 O 4 ] as major crystalline phases. Zinc ferrite present in nanocrystalline form contributes to the magnetic properties of the glass-ceramic samples. Magnetic hysteresis cycles of the glass-ceramic samples were obtained with applied magnetic field sweeps of ±20 kOe and ±500 Oe, in order to evaluate the potential of these glass-ceramics for hyperthermia treatment of cancer. The evolution of magnetic properties in these samples, viz., from a partially paramagnetic to fully ferrimagnetic nature has been explored using magnetometry and X-ray diffraction studies. - Research highlights: → The glass-ceramics contain bone mineral and magnetic phases. → Calcium sodium phosphate and zinc ferrite nanocrystallites have been identified in all the sample. → With an increase in ZnO and Fe2O3 content, magnetic property of samples evolved from partially paramagnetic to fully ferrimagnetic nature. → Large magnetic hysteresis loops have been obtained for samples with high ZnO+Fe2O3 content.

  19. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability

    Directory of Open Access Journals (Sweden)

    Teresa L.F. Ho

    2016-04-01

    Full Text Available Regulation of DNA replication and cell division is essential for tissue growth and maintenance of genomic integrity and is particularly important in tissues that undergo continuous regeneration such as mammary glands. We have previously shown that disruption of the KRAB-domain zinc finger protein Roma/Zfp157 results in hyperproliferation of mammary epithelial cells (MECs during pregnancy. Here, we delineate the mechanism by which Roma engenders this phenotype. Ablation of Roma in MECs leads to unscheduled proliferation, replication stress, DNA damage, and genomic instability. Furthermore, mouse embryonic fibroblasts (MEFs depleted for Roma exhibit downregulation of p21Cip1 and geminin and have accelerated replication fork velocities, which is accompanied by a high rate of mitotic errors and polyploidy. In contrast, overexpression of Roma in MECs halts cell-cycle progression, whereas siRNA-mediated p21Cip1 knockdown ameliorates, in part, this phenotype. Thus, Roma is an essential regulator of the cell cycle and is required to maintain genomic stability.

  20. Finger Vein Recognition Based on Local Directional Code

    Science.gov (United States)

    Meng, Xianjing; Yang, Gongping; Yin, Yilong; Xiao, Rongyang

    2012-01-01

    Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP), Local Derivative Pattern (LDP) and Local Line Binary Pattern (LLBP). However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD), this paper represents a new direction based local descriptor called Local Directional Code (LDC) and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP. PMID:23202194

  1. Finger Vein Recognition Based on Local Directional Code

    Directory of Open Access Journals (Sweden)

    Rongyang Xiao

    2012-11-01

    Full Text Available Finger vein patterns are considered as one of the most promising biometric authentication methods for its security and convenience. Most of the current available finger vein recognition methods utilize features from a segmented blood vessel network. As an improperly segmented network may degrade the recognition accuracy, binary pattern based methods are proposed, such as Local Binary Pattern (LBP, Local Derivative Pattern (LDP and Local Line Binary Pattern (LLBP. However, the rich directional information hidden in the finger vein pattern has not been fully exploited by the existing local patterns. Inspired by the Webber Local Descriptor (WLD, this paper represents a new direction based local descriptor called Local Directional Code (LDC and applies it to finger vein recognition. In LDC, the local gradient orientation information is coded as an octonary decimal number. Experimental results show that the proposed method using LDC achieves better performance than methods using LLBP.

  2. Molecular Imaging of Human Embryonic Stem Cells Stably Expressing Human PET Reporter Genes After Zinc Finger Nuclease-Mediated Genome Editing.

    Science.gov (United States)

    Wolfs, Esther; Holvoet, Bryan; Ordovas, Laura; Breuls, Natacha; Helsen, Nicky; Schönberger, Matthias; Raitano, Susanna; Struys, Tom; Vanbilloen, Bert; Casteels, Cindy; Sampaolesi, Maurilio; Van Laere, Koen; Lambrichts, Ivo; Verfaillie, Catherine M; Deroose, Christophe M

    2017-10-01

    Molecular imaging is indispensable for determining the fate and persistence of engrafted stem cells. Standard strategies for transgene induction involve the use of viral vectors prone to silencing and insertional mutagenesis or the use of nonhuman genes. Methods: We used zinc finger nucleases to induce stable expression of human imaging reporter genes into the safe-harbor locus adeno-associated virus integration site 1 in human embryonic stem cells. Plasmids were generated carrying reporter genes for fluorescence, bioluminescence imaging, and human PET reporter genes. Results: In vitro assays confirmed their functionality, and embryonic stem cells retained differentiation capacity. Teratoma formation assays were performed, and tumors were imaged over time with PET and bioluminescence imaging. Conclusion: This study demonstrates the application of genome editing for targeted integration of human imaging reporter genes in human embryonic stem cells for long-term molecular imaging. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  3. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    International Nuclear Information System (INIS)

    Watanabe, Masahito; Umeyama, Kazuhiro; Matsunari, Hitomi; Takayanagi, Shuko; Haruyama, Erika; Nakano, Kazuaki; Fujiwara, Tsukasa; Ikezawa, Yuka; Nakauchi, Hiromitsu

    2010-01-01

    Research highlights: → EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. → ZFNs induced targeted mutations in porcine primary cultured cells. → Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  4. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases.

    Directory of Open Access Journals (Sweden)

    Tatiana Flisikowska

    Full Text Available Rabbits are widely used in biomedical research, yet techniques for their precise genetic modification are lacking. We demonstrate that zinc finger nucleases (ZFNs introduced into fertilized oocytes can inactivate a chosen gene by mutagenesis and also mediate precise homologous recombination with a DNA gene-targeting vector to achieve the first gene knockout and targeted sequence replacement in rabbits. Two ZFN pairs were designed that target the rabbit immunoglobulin M (IgM locus within exons 1 and 2. ZFN mRNAs were microinjected into pronuclear stage fertilized oocytes. Founder animals carrying distinct mutated IgM alleles were identified and bred to produce offspring. Functional knockout of the immunoglobulin heavy chain locus was confirmed by serum IgM and IgG deficiency and lack of IgM(+ and IgG(+ B lymphocytes. We then tested whether ZFN expression would enable efficient targeted sequence replacement in rabbit oocytes. ZFN mRNA was co-injected with a linear DNA vector designed to replace exon 1 of the IgM locus with ∼1.9 kb of novel sequence. Double strand break induced targeted replacement occurred in up to 17% of embryos and in 18% of fetuses analyzed. Two major goals have been achieved. First, inactivation of the endogenous IgM locus, which is an essential step for the production of therapeutic human polyclonal antibodies in the rabbit. Second, establishing efficient targeted gene manipulation and homologous recombination in a refractory animal species. ZFN mediated genetic engineering in the rabbit and other mammals opens new avenues of experimentation in immunology and many other research fields.

  5. High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs

    DEFF Research Database (Denmark)

    Duda, Katarzyna; Lonowski, Lindsey A; Kofoed-Nielsen, Michael

    2014-01-01

    Targeted endonucleases including zinc finger nucleases (ZFNs) and clustered regularly interspaced short palindromic repeats (CRISPRs)/Cas9 are increasingly being used for genome editing in higher species. We therefore devised a broadly applicable and versatile method for increasing editing...... higher genome editing rates. For ZFNs, this approach, combined with delivery of donors as single-stranded oligodeoxynucleotides and nucleases as messenger ribonucleic acid, enabled high knockin efficiencies in demanding applications, including biallelic codon conversion frequencies reaching 30......-70% at high transfection efficiencies and ∼2% at low transfection efficiencies, simultaneous homozygous knockin mutation of two genes with ∼1.5% efficiency as well as generation of cell pools with almost complete codon conversion via three consecutive targeting and FACS events. Observed off-target effects...

  6. The conserved basic residues and the charged amino acid residues at the α-helix of the zinc finger motif regulate the nuclear transport activity of triple C2H2 zinc finger proteins

    Science.gov (United States)

    Lin, Chih-Ying

    2018-01-01

    Zinc finger (ZF) motifs on proteins are frequently recognized as a structure for DNA binding. Accumulated reports indicate that ZF motifs contain nuclear localization signal (NLS) to facilitate the transport of ZF proteins into nucleus. We investigated the critical factors that facilitate the nuclear transport of triple C2H2 ZF proteins. Three conserved basic residues (hot spots) were identified among the ZF sequences of triple C2H2 ZF proteins that reportedly have NLS function. Additional basic residues can be found on the α-helix of the ZFs. Using the ZF domain (ZFD) of Egr-1 as a template, various mutants were constructed and expressed in cells. The nuclear transport activity of various mutants was estimated by analyzing the proportion of protein localized in the nucleus. Mutation at any hot spot of the Egr-1 ZFs reduced the nuclear transport activity. Changes of the basic residues at the α-helical region of the second ZF (ZF2) of the Egr-1 ZFD abolished the NLS activity. However, this activity can be restored by substituting the acidic residues at the homologous positions of ZF1 or ZF3 with basic residues. The restored activity dropped again when the hot spots at ZF1 or the basic residues in the α-helix of ZF3 were mutated. The variations in nuclear transport activity are linked directly to the binding activity of the ZF proteins with importins. This study was extended to other triple C2H2 ZF proteins. SP1 and KLF families, similar to Egr-1, have charged amino acid residues at the second (α2) and the third (α3) positions of the α-helix. Replacing the amino acids at α2 and α3 with acidic residues reduced the NLS activity of the SP1 and KLF6 ZFD. The reduced activity can be restored by substituting the α3 with histidine at any SP1 and KLF6 ZFD. The results show again the interchangeable role of ZFs and charge residues in the α-helix in regulating the NLS activity of triple C2H2 ZF proteins. PMID:29381770

  7. Genome-Wide Identification, Evolution and Expression Analysis of the Grape (Vitis vinifera L. Zinc Finger-Homeodomain Gene Family

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2014-04-01

    Full Text Available Plant zinc finger-homeodomain (ZHD genes encode a family of transcription factors that have been demonstrated to play an important role in the regulation of plant growth and development. In this study, we identified a total of 13 ZHD genes (VvZHD in the grape genome that were further classified into at least seven groups. Genome synteny analysis revealed that a number of VvZHD genes were present in the corresponding syntenic blocks of Arabidopsis, indicating that they arose before the divergence of these two species. Gene expression analysis showed that the identified VvZHD genes displayed distinct spatiotemporal expression patterns, and were differentially regulated under various stress conditions and hormone treatments, suggesting that the grape VvZHDs might be also involved in plant response to a variety of biotic and abiotic insults. Our work provides insightful information and knowledge about the ZHD genes in grape, which provides a framework for further characterization of their roles in regulation of stress tolerance as well as other aspects of grape productivity.

  8. Zinc-Containing Hydroxyapatite Enhances Cold-Light-Activated Tooth Bleaching Treatment In Vitro

    Science.gov (United States)

    Shi, Xinchang

    2017-01-01

    Cold-light bleaching treatment has grown to be a popular tooth whitening procedure in recent years, but its side effect of dental enamel demineralization is a widespread problem. The aim of this study was to synthesize zinc-substituted hydroxyapatite as an effective biomaterial to inhibit demineralization or increase remineralization. We synthesized zinc-substituted hydroxyapatite containing different zinc concentrations and analysed the product using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and energy dispersive spectrometer (EDS). The biological assessment of Zn-HA was conducted by CCK-8 assay and bacterial inhibition tests. pH cycling was performed to estimate the effect of Zn-HA on the enamel surface after cold-light bleaching treatment. The XRD, FTIR, and EDS results illustrated that zinc ions and hydroxyapatite combined in two forms: (1) Zn2+ absorbed on the surface of HA crystal and (2) Zn2+ incorporated into the lattice of HA. The results indicated that 2% Zn-HA, 4% Zn-HA, and 8% Zn-HA effectively inhibited the growth of bacteria yet showed poor biocompatibility, whereas 1% Zn-HA positively affected osteoblast proliferation. The XRD and scanning electron microscopy (SEM) results showed that the use of Zn-HA in pH cycling is obviously beneficial for enamel remineralization. Zinc-substituted hydroxyapatite could be a promising biomaterial for use in cold-light bleaching to prevent enamel demineralization. PMID:29159178

  9. Zinc-Containing Hydroxyapatite Enhances Cold-Light-Activated Tooth Bleaching Treatment In Vitro

    Directory of Open Access Journals (Sweden)

    Yi Li

    2017-01-01

    Full Text Available Cold-light bleaching treatment has grown to be a popular tooth whitening procedure in recent years, but its side effect of dental enamel demineralization is a widespread problem. The aim of this study was to synthesize zinc-substituted hydroxyapatite as an effective biomaterial to inhibit demineralization or increase remineralization. We synthesized zinc-substituted hydroxyapatite containing different zinc concentrations and analysed the product using X-ray diffraction (XRD, Fourier transform infrared (FTIR spectroscopy, and energy dispersive spectrometer (EDS. The biological assessment of Zn-HA was conducted by CCK-8 assay and bacterial inhibition tests. pH cycling was performed to estimate the effect of Zn-HA on the enamel surface after cold-light bleaching treatment. The XRD, FTIR, and EDS results illustrated that zinc ions and hydroxyapatite combined in two forms: (1 Zn2+ absorbed on the surface of HA crystal and (2 Zn2+ incorporated into the lattice of HA. The results indicated that 2% Zn-HA, 4% Zn-HA, and 8% Zn-HA effectively inhibited the growth of bacteria yet showed poor biocompatibility, whereas 1% Zn-HA positively affected osteoblast proliferation. The XRD and scanning electron microscopy (SEM results showed that the use of Zn-HA in pH cycling is obviously beneficial for enamel remineralization. Zinc-substituted hydroxyapatite could be a promising biomaterial for use in cold-light bleaching to prevent enamel demineralization.

  10. The effect of feed supplementation with zinc chelate and zinc sulphate on selected humoral and cell-mediated immune parameters and cytokine concentration in broiler chickens.

    Science.gov (United States)

    Jarosz, Łukasz; Marek, Agnieszka; Grądzki, Zbigniew; Kwiecień, Małgorzata; Kalinowski, Marcin

    2017-06-01

    The ability of poultry to withstand infectious disease caused by bacteria, viruses or protozoa depends upon the integrity of the immune system. Zinc is important for proper functioning of heterophils, mononuclear phagocytes and T lymphocytes. Numerous data indicate that the demand for zinc in poultry is not met in Poland due to its low content in feeds of vegetable origin. The aim of the study was to determine the effect of supplementation of inorganic (ZnSO 4 and ZnSO 4 + phytase enzyme), and organic forms of zinc (Zn with glycine and Zn with glycine and phytase enzyme) on selected parameters of the cellular and humoral immune response in broiler chickens by evaluating the percentage of CD3 + CD4 + , CD3 + CD8 + , CD25 + , MHC Class II, and BU-1 + lymphocytes, the phagocytic activity of monocytes and heterophils, and the concentration of IL-2, IL-10 and TNF-α in the peripheral blood. Flow cytometry was used to determine selected cell-mediated immune response parameters. Phagocytic activity in whole blood was performed using the commercial Phagotest kit (ORPEGEN-Pharma, Immuniq, Poland). The results showed that supplementation with zinc chelates causes activation of the cellular and humoral immune response in poultry, helping to maintain the balance between the Th1 and Th2 response and enhancing resistance to infections. In contrast with chelates, the use of zinc in the form of sulphates has no immunomodulatory effect and may contribute to the development of local inflammatory processes in the digestive tract, increasing susceptibility to infection. Copyright © 2016. Published by Elsevier Ltd.

  11. Expression and function of the zinc finger transcription factor Sp6-9 in the spider Parasteatoda tepidariorum.

    Science.gov (United States)

    Königsmann, Tatiana; Turetzek, Natascha; Pechmann, Matthias; Prpic, Nikola-Michael

    2017-11-01

    Zinc finger transcription factors of the Sp6-9 group are evolutionarily conserved in all metazoans and have important functions in, e.g., limb formation and heart development. The function of Sp6-9-related genes has been studied in a number of vertebrates and invertebrates, but data from chelicerates (spiders and allies) was lacking so far. We have isolated the ortholog of Sp6-9 from the common house spider Parasteatoda tepidariorum and the cellar spider Pholcus phalangioides. We show that the Sp6-9 gene in these spider species is expressed in the developing appendages thus suggesting a conserved role in limb formation. Indeed, RNAi with Sp6-9 in P. tepidariorum leads not only to strong limb defects, but also to the loss of body segments and head defects in more strongly affected animals. Together with a new expression domain in the early embryo, these data suggest that Sp6-9 has a dual role P. tepidariorum. The early role in head and body segment formation is not known from other arthropods, but the role in limb formation is evolutionarily highly conserved.

  12. Zinc finger protein 139 expression in gastric cancer and its clinical significance.

    Science.gov (United States)

    Li, Yong; Zhao, Qun; Fan, Li-Qiao; Wang, Li-Li; Tan, Bi-Bo; Leng, Yan-Li; Liu, Yu; Wang, Dong

    2014-12-28

    To investigate the expression of zinc finger protein 139 (ZNF139) in gastric cancer (GC), and to analyze its clinical significance. A total of 108 patients who were diagnosed with GC and underwent surgery between January 2005 and March 2007 were enrolled in this study. Gastric tumor specimens and paired tumor-adjacent tissues were collected and paraffin-embedded, and the clinicopathologic characteristics and prognosis were recorded. The expression of ZNF139, Bcl-2, Bax, and caspase-3 were determined by immunohistochemistry, and apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling. SPSS 13.0 software was used for data processing and analyses, and significance was determined at P stage, lymphatic metastasis, and blood vessel invasion (all Ps < 0.05). Patients with overexpression of ZNF139 had a poorer prognosis (P < 0.01), and overexpression of ZNF139 was an independent factor for the prognosis of GC patients by a Cox survival analysis (P = 0.02). A negative relationship between ZNF139 and the apoptosis index was observed (r = -0.686; P < 0.01). The expression of Bcl-2 in GC was stronger than in tumor-adjacent tissues (66.67% vs 41.67%), whereas the expression levels of Bax and caspase-3 were lower in primary tumors (54.63% and 47.22%, respectively) than in tumor-adjacent tissues (73.15% and 73.15%, respectively) (all Ps < 0.05). The expression of ZNF139 negatively correlated with caspase-3 (r = -0.370; P < 0.01). The expressions of Bcl-2 and Bax were also negatively correlated (r = -0.231; P = 0.02). The expressions of caspase-3 and Bax protein were positively correlated (r = 0.217; P = 0.024). ZNF139 is related to clinicopathologic characteristics and prognosis of GC. Furthermore, it is overexpressed and involved in apoptosis in GC tissues by regulating caspase-3.

  13. Reactive radio frequency sputtering deposition and characterization of zinc nitride and oxynitride thin films

    International Nuclear Information System (INIS)

    Jiang, Nanke; Georgiev, Daniel G.; Wen, Ting; Jayatissa, Ahalapitiya H.

    2012-01-01

    Zinc nitride films were deposited on glass or silicon substrates by reactive magnetron radio frequency sputtering of zinc in either N 2 –Ar or N 2 –Ar–O 2 ambient. The effects of varying the nitrogen contents and the substrate temperature were investigated. X-ray diffraction data showed that the as-deposited films contain the zinc nitride cubic crystalline phase with a preferred orientation, and Raman scattering measurements revealed Zn-N related modes. According to energy-dispersive X-ray spectroscopy analysis, the as-deposited films were nitrogen-rich and contained only a small fraction of oxygen. Hall-effect measurements showed that p-type zinc nitride with carrier concentration of ∼ 10 19 cm −3 , mobility of ∼ 10 1 cm 2 /Vs, resistivity of ∼ 10 −2 Ω ∗ cm, was obtained. The photon energy dependence of optical transmittance suggested that the material has an indirect bandgap.

  14. Aboveground feeding by soybean aphid, Aphis glycines, affects soybean cyst nematode, Heterodera glycines, reproduction belowground.

    Directory of Open Access Journals (Sweden)

    Michael T McCarville

    Full Text Available Heterodera glycines is a cyst nematode that causes significant lost soybean yield in the U.S. Recent studies observed the aphid Aphis glycines and H. glycines interacting via their shared host, soybean, Glycine max. A greenhouse experiment was conducted to discern the effect of A. glycines feeding on H. glycines reproduction. An H. glycines-susceptible cultivar, Kenwood 94, and a resistant cultivar, Dekalb 27-52, were grown in H. glycines-infested soil for 30 and 60 d. Ten days after planting, plants were infested with either zero, five, or ten aphids. At 30 and 60 d, the number of H. glycines females and cysts (dead females and the number of eggs within were counted. In general, H. glycines were less abundant on the resistant than the susceptible cultivar, and H. glycines abundance increased from 30 to 60 d. At 30 d, 33% more H. glycines females and eggs were produced on the resistant cultivar in the ten-aphid treatment compared to the zero-aphid treatment. However, at 30 d the susceptible cultivar had 50% fewer H. glycines females and eggs when infested with ten aphids. At 60 d, numbers of H. glycines females and cysts and numbers of eggs on the resistant cultivar were unaffected by A. glycines feeding, while numbers of both were decreased by A. glycines on the susceptible cultivar. These results indicate that A. glycines feeding improves the quality of soybean as a host for H. glycines, but at higher herbivore population densities, this effect is offset by a decrease in resource quantity.

  15. Evaluation of nutraceutical and antinutritional properties in barnyard and finger millet varieties grown in Himalayan region.

    Science.gov (United States)

    Panwar, Priyankar; Dubey, Ashutosh; Verma, A K

    2016-06-01

    Five elite varieties of barnyard (Echinochloa frumentacea) and finger (Eleusine coracana) growing at northwestern Himalaya were investigated for nutraceutical and antinutritional properties. Barnyard millet contained higher amount of crude fiber, total dietary fiber, tryptophan content, total carotenoids, α-tocopherol compared to the finger millet whereas the finger millet contains higher amount of methionine and ascorbic acid as compared to the barnyard millet. The secondary metabolites of biological functions were analyzed and found that barnyard millet contained the higher amount of polyphenols, tannins and ortho-dihydroxy phenol content compared to finger millet. Among antinutitional compounds barnyard millet contained lower phytic acid content compare to finger millet whereas no significant difference in trypsin inhibition activity of barnyard millet and finger millet varieties were found. Barnyard millet contained higher acid phosphatase, α-galactosidase and α-amylase inhibitor activity compared to finger millet. Finger millet seeds contained about 10-13 folds higher calcium content and double amount of manganese content in comparison to barnyard millet seeds. Present study suggests that barnyard millet varieties studied under present investigation were found nutritionally superior compared to finger millet varieties.

  16. The therapeutic effect on bone mineral formation from biomimetic zinc containing tricalcium phosphate (ZnTCP in zinc-deficient osteoporotic mice.

    Directory of Open Access Journals (Sweden)

    Joshua Chou

    Full Text Available The aim of this study was to evaluate the therapeutic efficacy of biomimetic zinc-containing tricalcium phosphate (ZnTCP produced by hydrothermally converting calcium carbonate exoskeletons from foraminifera, in the treatment of osteoporotic mice. X-Ray powder diffraction showed crystallographic structures matching JCPDS profile for tricalcium phosphate. Mass spectroscopy used to calculate total composition amount showed similar amount of calcium (5×10(4 µg/g and phosphate (4×10(4 ppm after conversion and the presence of zinc (5.18×10(3 µg/g. In vitro zinc release showed no release in PBS buffer and <1% zinc release in 7 days. In vivo evaluation was done in ovariectomized mice by implanting the ZnTCP samples in the soft tissues near the right femur bone for four weeks. Thirty ddY mice (5 weeks old, average weight of 21 g were divided into six experimental groups (normal, sham, OVX, β-TCP, ZnTCP and direct injection of zinc. CT images were taken every two weeks where the bone mineral density (BMD and bone mineral content (BMC were calculated by software based on CT images. The ZnTCP group exhibits cortical and cancellous bone growth of 45% and 20% respectively. While sham, OVX and β-TCP suffered from bone loss. A correlation was made between the significant body weight increase in ZnTCP with the significant increase in plasma zinc level compared with OVX. The presented results indicate that biomimetic ZnTCP were effective in preventing and treating bone loss in osteoporotic mice model.

  17. Metabolism of L-leucine-U-14C in young rats fed excess glycine diets

    International Nuclear Information System (INIS)

    Takeuchi, Hisanao; Tadauchi, Nobuo; Muramatsu, Keiichiro

    1975-01-01

    As reported previously, while the growth-depressing effect of excess glycine was prevented by supplementing L-arginine and L-methionine, the degradation of glycine-U-(SUP 14)C into expired carbon dioxide was not accelerated by the supplement of both amino acids. However, it was found that the incorporation of the isotope into the lipids of livers and carcasses increased in the rats fed the excess glycine diet containing both amino acids. The lipid synthesis utilizing excess glycine may be accelerated by adding both amino acids to the 10% casein diet containing excess glycine. In the present experiment, the metabolic fate of L-leucine-U-(SUP 14)C was studied with the rats fed the excess glycine diet with or without L-arginine and L-methionine. 10% casein (10C), 10% casein diet containing 7% glycine (10C7G), or 10C7G Supplemented with 1.4% L-arginine-HCL and 0.9% L-methionine (10C7GArgMet) was fed to each rat, and the diet suspension containing 4 sup(μ)Ci of L-leucine-U-(SUP 14)C per 100 g of body weight was fed forcibly after 12 hr fast. The radioactivity in expired carbon dioxide, TCA soluble fraction, protein, glycogen, lipids and urine, and the concentration of free amino acids in blood plasma, livers and urine were measured. The body weight gain and food intake of the 10C7G group were much smaller than those of the other groups. The recovery of (SUP 14)C-radioactivity in expired carbon dioxide was much lower in the 10C7GArgMet group than that of the other groups. (Kako, I.)

  18. New Insight into Polydopamine@ZIF-8 Nanohybrids: A Zinc-Releasing Container for Potential Anticancer Activity

    Directory of Open Access Journals (Sweden)

    Jingyu Ran

    2018-04-01

    Full Text Available Despite the initial evidence on the role of zinc and zinc transporters in cancer prevention, little attention has been paid to the zinc-derived compounds. In the present work, we reported a strategy to prepare a kind of zinc-releasing container with enhanced biocompatibility and release dynamics using ZIF-8 nanocrystals as the sacrificial templates. Transmission electron microscopy (TEM analysis demonstrated that the ZIF-8 nanocrystals were gradually etched out in the aqueous media within 48 h, resulting in hollow nanocapsules. Notably, we found the self-polymerization of dopamine can form nanoshells around the ZIF-8 nanocrystals, which served as a type of functional membranes during the release of zinc. More interestingly, PDA@ZIF-8–based nanohybrids expressed stronger inhibition to the cancer cell growth, which implied that the nanohybrids could be a drug carrier for chemotherapy. This study broadens the biomedical application of ZIF-8 and also provides a versatile strategy toward the development of multifunctional delivery system.

  19. Zinc at glutamatergic synapses.

    Science.gov (United States)

    Paoletti, P; Vergnano, A M; Barbour, B; Casado, M

    2009-01-12

    It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.

  20. Measurement and modelling of mean activity coefficients of aqueous mixed electrolyte solution containing glycine

    Energy Technology Data Exchange (ETDEWEB)

    Dehghani, M.R. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of) ; Modarress, H. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of) ]. E-mail: hmodares@aut.ac.ir; Monirfar, M. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2006-08-15

    Electrochemical measurements were made on (H{sub 2}O + NaBr + K{sub 3}PO{sub 4} + glycine) mixtures at T = 298.15 K by using ion selective electrodes. The mean ionic activity coefficients of NaBr at molality 0.1 were determined at five K{sub 3}PO{sub 4} molalities (0.01, 0.03, 0.05, 0.07, and 0.1) mol . kg{sup -1}. The activity coefficients of glycine were evaluated from mean ionic activity coefficients of NaBr. The modified Pitzer equation was used to model the experimental data.

  1. Comparative mapping of the wild perennial Glycine latifolia and soybean (G. max reveals extensive chromosome rearrangements in the genus Glycine.

    Directory of Open Access Journals (Sweden)

    Sungyul Chang

    Full Text Available Soybean (Glycine max L. Mer., like many cultivated crops, has a relatively narrow genetic base and lacks diversity for some economically important traits. Glycine latifolia (Benth. Newell & Hymowitz, one of the 26 perennial wild Glycine species related to soybean in the subgenus Glycine Willd., shows high levels of resistance to multiple soybean pathogens and pests including Alfalfa mosaic virus, Heterodera glycines Ichinohe and Sclerotinia sclerotiorum (Lib. de Bary. However, limited information is available on the genomes of these perennial Glycine species. To generate molecular resources for gene mapping and identification, high-density linkage maps were constructed for G. latifolia using single nucleotide polymorphism (SNP markers generated by genotyping by sequencing and evaluated in an F2 population and confirmed in an F5 population. In each population, greater than 2,300 SNP markers were selected for analysis and segregated to form 20 large linkage groups. Marker orders were similar in the F2 and F5 populations. The relationships between G. latifolia linkage groups and G. max and common bean (Phaseolus vulgaris L. chromosomes were examined by aligning SNP-containing sequences from G. latifolia to the genome sequences of G. max and P. vulgaris. Twelve of the 20 G. latifolia linkage groups were nearly collinear with G. max chromosomes. The remaining eight G. latifolia linkage groups appeared to be products of multiple interchromosomal translocations relative to G. max. Large syntenic blocks also were observed between G. latifolia and P. vulgaris. These experiments are the first to compare genome organizations among annual and perennial Glycine species and common bean. The development of molecular resources for species closely related to G. max provides information into the evolution of genomes within the genus Glycine and tools to identify genes within perennial wild relatives of cultivated soybean that could be beneficial to soybean

  2. The effect of substrate temperature on atomic layer deposited zinc tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, Johan, E-mail: johan.lindahl@angstrom.uu.se; Hägglund, Carl, E-mail: carl.hagglund@angstrom.uu.se; Wätjen, J. Timo, E-mail: timo.watjen@angstrom.uu.se; Edoff, Marika, E-mail: marika.edoff@angstrom.uu.se; Törndahl, Tobias, E-mail: tobias.torndahl@angstrom.uu.se

    2015-07-01

    Zinc tin oxide (ZTO) thin films were deposited on glass substrates by atomic layer deposition (ALD), and the film properties were investigated for varying deposition temperatures in the range of 90 to 180 °C. It was found that the [Sn]/([Sn] + [Zn]) composition is only slightly temperature dependent, while properties such as growth rate, film density, material structure and band gap are more strongly affected. The growth rate dependence on deposition temperature varies with the relative number of zinc or tin containing precursor pulses and it correlates with the growth rate behavior of pure ZnO and SnO{sub x} ALD. In contrast to the pure ZnO phase, the density of the mixed ZTO films is found to depend on the deposition temperature and it increases linearly with about 1 g/cm{sup 3} in total over the investigated range. Characterization by transmission electron microscopy suggests that zinc rich ZTO films contain small (~ 10 nm) ZnO or ZnO(Sn) crystallites embedded in an amorphous matrix, and that these crystallites increase in size with increasing zinc content and deposition temperature. These crystallites are small enough for quantum confinement effects to reduce the optical band gap of the ZTO films as they grow in size with increasing deposition temperature. - Highlights: • Zinc tin oxide thin films were deposited by atomic layer deposition. • The structure and optical properties were studied at different growth temperatures. • The growth temperature had only a small effect on the composition of the films. • Small ZnO or ZnO(Sn) crystallites were observed by TEM in zinc rich ZTO films. • The growth temperature affects the crystallite size, which influences the band gap.

  3. The effect of substrate temperature on atomic layer deposited zinc tin oxide

    International Nuclear Information System (INIS)

    Lindahl, Johan; Hägglund, Carl; Wätjen, J. Timo; Edoff, Marika; Törndahl, Tobias

    2015-01-01

    Zinc tin oxide (ZTO) thin films were deposited on glass substrates by atomic layer deposition (ALD), and the film properties were investigated for varying deposition temperatures in the range of 90 to 180 °C. It was found that the [Sn]/([Sn] + [Zn]) composition is only slightly temperature dependent, while properties such as growth rate, film density, material structure and band gap are more strongly affected. The growth rate dependence on deposition temperature varies with the relative number of zinc or tin containing precursor pulses and it correlates with the growth rate behavior of pure ZnO and SnO x ALD. In contrast to the pure ZnO phase, the density of the mixed ZTO films is found to depend on the deposition temperature and it increases linearly with about 1 g/cm 3 in total over the investigated range. Characterization by transmission electron microscopy suggests that zinc rich ZTO films contain small (~ 10 nm) ZnO or ZnO(Sn) crystallites embedded in an amorphous matrix, and that these crystallites increase in size with increasing zinc content and deposition temperature. These crystallites are small enough for quantum confinement effects to reduce the optical band gap of the ZTO films as they grow in size with increasing deposition temperature. - Highlights: • Zinc tin oxide thin films were deposited by atomic layer deposition. • The structure and optical properties were studied at different growth temperatures. • The growth temperature had only a small effect on the composition of the films. • Small ZnO or ZnO(Sn) crystallites were observed by TEM in zinc rich ZTO films. • The growth temperature affects the crystallite size, which influences the band gap

  4. Structural basis for ubiquitin recognition by ubiquitin-binding zinc finger of FAAP20.

    Directory of Open Access Journals (Sweden)

    Aya Toma

    Full Text Available Several ubiquitin-binding zinc fingers (UBZs have been reported to preferentially bind K63-linked ubiquitin chains. In particular, the UBZ domain of FAAP20 (FAAP20-UBZ, a member of the Fanconi anemia core complex, seems to recognize K63-linked ubiquitin chains, in order to recruit the complex to DNA interstrand crosslinks and mediate DNA repair. By contrast, it is reported that the attachment of a single ubiquitin to Rev1, a translesion DNA polymerase, increases binding of Rev1 to FAAP20. To clarify the specificity of FAAP20-UBZ, we determined the crystal structure of FAAP20-UBZ in complex with K63-linked diubiquitin at 1.9 Å resolution. In this structure, FAAP20-UBZ interacts only with one of the two ubiquitin moieties. Consistently, binding assays using surface plasmon resonance spectrometry showed that FAAP20-UBZ binds ubiquitin and M1-, K48- and K63-linked diubiquitin chains with similar affinities. Residues in the vicinity of Ala168 within the α-helix and the C-terminal Trp180 interact with the canonical Ile44-centered hydrophobic patch of ubiquitin. Asp164 within the α-helix and the C-terminal loop mediate a hydrogen bond network, which reinforces ubiquitin-binding of FAAP20-UBZ. Mutations of the ubiquitin-interacting residues disrupted binding to ubiquitin in vitro and abolished the accumulation of FAAP20 to DNA damage sites in vivo. Finally, structural comparison among FAAP20-UBZ, WRNIP1-UBZ and RAD18-UBZ revealed distinct modes of ubiquitin binding. UBZ family proteins could be divided into at least three classes, according to their ubiquitin-binding modes.

  5. The effect of Al and Cr additions on pack cementation zinc coatings

    International Nuclear Information System (INIS)

    Chaliampalias, D.; Papazoglou, M.; Tsipas, S.; Pavlidou, E.; Skolianos, S.; Stergioudis, G.; Vourlias, G.

    2010-01-01

    Zinc is widely used as a protective coating material due to its corrosion resistant properties. The structure and oxidation resistance of Al and Cr mixed zinc coatings, deposited by pack cementation process, is thoroughly examined in this work. The morphology and chemical composition of the as-deposited and oxidized samples was accomplished by electron microscopy while the phase identification was performed by XRD diffraction analysis. The experimental results showed that the addition of aluminum or chromium in the pack mixture forms only Al and Cr rich phases on the surface of the specimens without affecting significantly the phase composition of the rest zinc coatings. In the case of Zn-Al coatings, the overlying layer contains high concentrations of Al together with lower amounts of zinc and iron and in Zn-Cr coatings this layer contains Cr, Fe and Zn atoms and has much smaller thickness. The presence of these additional layers promotes significantly the oxidation resistance of the zinc pack coatings and they preserve most of their initial thickness and chemical content when exposed to an aggressive environment while their oxidation mass gain was measured at low levels during the oxidation tests.

  6. Promoting Barrier Performance and Cathodic Protection of Zinc-Rich Epoxy Primer via Single-Layer Graphene

    Directory of Open Access Journals (Sweden)

    Jingrong Liu

    2018-05-01

    Full Text Available The effect of single-layer graphene sheets (Gr on the corrosion protection of zinc-rich epoxy primers (ZRPs was investigated. Scanning electron microscopy (SEM with an energy dispersive spectrometer (EDS were used to characterize morphology and composition of the coatings after immersion for 25 days. The cross-sectional SEM images and X-ray photoelectron spectroscopy (XPS confirmed that the addition of single-layer graphene facilitated assembling of zinc oxides on the interface between the coating and the steel. The open circuit potential (OCP, electrochemical impedance spectroscopy (EIS measurements revealed that both the cathodic protection and barrier performance of the ZRP were enhanced after addition of 0.6 wt. % Gr (Gr0.6-ZRP. In addition, the cathodic protection property of the Gr0.6-ZRP was characterized quantitatively by localized electrochemical impedance spectroscopy (LEIS in the presence of an artificial scratch on the coating. The results demonstrate that moderate amounts of single-layer graphene can significantly improve corrosion resistance of ZRP, due to the barrier protection and cathodic protection effects.

  7. Characterization and localization of metal-responsive-element-binding transcription factors from tilapia

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Andrew Pok-Lap; Au, Candy Yee-Man; Chan, William Wai-Lun [Department of Biochemistry, Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong (Hong Kong); Chan, King Ming, E-mail: kingchan@cuhk.edu.hk [Department of Biochemistry, Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong (Hong Kong)

    2010-08-01

    Two isoforms of MTF-1, MTF-1L (long form) and MTF-1S (short form), were cloned in tilapia (Ti) and characterized in a tilapia liver cell line, Hepa-T1. The cloned tiMTF-1L has the characteristics of all of the tiMTF-1S identified so far with the zinc finger domain having six fingers, the acidic-rich, proline-rich, and serine/threonine-rich domains; however, the short form encodes for the zinc finger domain with five zinc fingers only and no other domains. The transient transfection of tiMTF-1L into human HepG2 cells showed both constitutive and zinc-induced metal-responsive-element (MRE)-driven reporter gene expression. However, the transfection of tiMTF-1S (which lacks all three transactivation domains) into a human cell line showed reduced transcriptional activities compared with an endogenous control in both basal- and Zn{sup 2+}-induced conditions. The tiMTF-1 isoforms were tagged with GFP and transfected into Hepa-T1 cells (tilapia hepatocytes). The nuclear translocation of tiMTF-1L was observed when the cells were exposed to a sufficient concentration of metals for 6 h. However, tiMTF-1S, was localized in the nucleus with or without metal treatment. Electrophoretic mobility shift assay (EMSA) confirmed that both of the isoforms were able to bind to the MRE specifically in vitro. Tissue distribution studies showed that tiMTF-1L was more abundant than tiMTF-1S in all of the tissues tested.

  8. Characterization and localization of metal-responsive-element-binding transcription factors from tilapia

    International Nuclear Information System (INIS)

    Cheung, Andrew Pok-Lap; Au, Candy Yee-Man; Chan, William Wai-Lun; Chan, King Ming

    2010-01-01

    Two isoforms of MTF-1, MTF-1L (long form) and MTF-1S (short form), were cloned in tilapia (Ti) and characterized in a tilapia liver cell line, Hepa-T1. The cloned tiMTF-1L has the characteristics of all of the tiMTF-1S identified so far with the zinc finger domain having six fingers, the acidic-rich, proline-rich, and serine/threonine-rich domains; however, the short form encodes for the zinc finger domain with five zinc fingers only and no other domains. The transient transfection of tiMTF-1L into human HepG2 cells showed both constitutive and zinc-induced metal-responsive-element (MRE)-driven reporter gene expression. However, the transfection of tiMTF-1S (which lacks all three transactivation domains) into a human cell line showed reduced transcriptional activities compared with an endogenous control in both basal- and Zn 2+ -induced conditions. The tiMTF-1 isoforms were tagged with GFP and transfected into Hepa-T1 cells (tilapia hepatocytes). The nuclear translocation of tiMTF-1L was observed when the cells were exposed to a sufficient concentration of metals for 6 h. However, tiMTF-1S, was localized in the nucleus with or without metal treatment. Electrophoretic mobility shift assay (EMSA) confirmed that both of the isoforms were able to bind to the MRE specifically in vitro. Tissue distribution studies showed that tiMTF-1L was more abundant than tiMTF-1S in all of the tissues tested.

  9. Trichomes of tobacco excrete zinc as zinc-substituted calcium carbonate and other zinc-containing compounds

    International Nuclear Information System (INIS)

    Sarret, G.; Harada, E.; Choi, Y-E.; Isaure, M.-P.; Geoffroy, N.; Fakra, S.; Marcus, M.A.; Birschwilks, M.; Clemens, S.; Manceau, A.

    2006-01-01

    Tobacco (Nicotiana tabacum L. cv Xanthi) plants were exposed to toxic levels of zinc (Zn). Zn exposure resulted in toxicity signs in plants, and these damages were partly reduced by a calcium (Ca) supplement. Confocal imaging of intracellular Zn using Zinquin showed that Zn was preferentially accumulated in trichomes. Exposure to Zn and Zn + Ca increased the trichome density and induced the production of Ca/Zn mineral grains on the head cells of trichomes. These grains were aggregates of submicrometer-sized crystals and poorly crystalline material and contained Ca as major element, along with subordinate amounts of Zn, manganese, potassium, chlorine, phosphorus, silicon, and magnesium. Micro x-ray diffraction revealed that the large majority of the grains were composed essentially of metal-substituted calcite (CaCO3). CaCO3 polymorphs (aragonite and vaterite) and CaC2O4 (Ca oxalate) mono- and dihydrate also were identified, either as an admixture to calcite or in separate grains. Some grains did not diffract, although they contained Ca, suggesting the presence of amorphous form of Ca. The presence of Zn-substituted calcite was confirmed by Zn K-edge micro-extended x-ray absorption fine structure spectroscopy. Zn bound to organic compounds and Zn-containing silica and phosphate were also identified by this technique. The proportion of Zn-substituted calcite relative to the other species increased with Ca exposure. The production of Zn-containing biogenic calcite and other Zn compounds through the trichomes is a novel mechanism involved in Zn detoxification. This study illustrates the potential of laterally resolved x-ray synchrotron radiation techniques to study biomineralization and metal homeostasis processes in plants

  10. Conformational Structure of Tyrosine, Tyrosyl-Glycine, and Tyrosyl-Glycyl-Glycine by Double Resonance Spectroscopy

    Science.gov (United States)

    Abo-Riziq, Ali; Grace, Louis; Crews, Bridgit; Callahan, Michael P,; van Mourik, Tanja; de Vries, Mattanjah S,

    2011-01-01

    We investigated the variation in conformation for the amino acid tyrosine (Y), alone and in the small peptides tyrosine-glycine (YC) and tyrosine-glycine-glycine (YGG), in the gas phase by using UV-UV and IR-UV double resonance spectroscopy and density functional theory calculations. For tyrosine we found seven different conformations, for YG we found four different conformations, and for YGG we found three different conformations. As the peptides get larger, we observe fewer stable conformers, despite the increasing complexity and number of degrees of freedom. We find structural trends similar to those in phenylalanine-glycine glycine (FGG) and tryptophan-glycine-glycine (WGG)j however) the effect of dispersive forces in FGG for stabilizing a folded structure is replaced by that of hydrogen bonding in YGG.

  11. Differential sensitivities of cellular XPA and PARP-1 to arsenite inhibition and zinc rescue.

    Science.gov (United States)

    Ding, Xiaofeng; Zhou, Xixi; Cooper, Karen L; Huestis, Juliana; Hudson, Laurie G; Liu, Ke Jian

    2017-09-15

    Arsenite directly binds to the zinc finger domains of the DNA repair protein poly (ADP ribose) polymerase (PARP)-1, and inhibits PARP-1 activity in the base excision repair (BER) pathway. PARP inhibition by arsenite enhances ultraviolet radiation (UVR)-induced DNA damage in keratinocytes, and the increase in DNA damage is reduced by zinc supplementation. However, little is known about the effects of arsenite and zinc on the zinc finger nucleotide excision repair (NER) protein xeroderma pigmentosum group A (XPA). In this study, we investigated the difference in response to arsenite exposure between XPA and PARP-1, and the differential effectiveness of zinc supplementation in restoring protein DNA binding and DNA damage repair. Arsenite targeted both XPA and PARP-1 in human keratinocytes, resulting in zinc loss from each protein and a pronounced decrease in XPA and PARP-1 binding to chromatin as demonstrated by Chip-on-Western assays. Zinc effectively restored DNA binding of PARP-1 and XPA to chromatin when zinc concentrations were equal to those of arsenite. In contrast, zinc was more effective in rescuing arsenite-augmented direct UVR-induced DNA damage than oxidative DNA damage. Taken together, our findings indicate that arsenite interferes with PARP-1 and XPA binding to chromatin, and that zinc supplementation fully restores DNA binding activity to both proteins in the cellular context. Interestingly, rescue of arsenite-inhibited DNA damage repair by supplemental zinc was more sensitive for DNA damage repaired by the XPA-associated NER pathway than for the PARP-1-dependent BER pathway. This study expands our understanding of arsenite's role in DNA repair inhibition and co-carcinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Sodium Silicate Gel Effect on Cemented Tailing Backfill That Contains Lead-Zinc Smelting Slag at Early Ages

    OpenAIRE

    Guo, Lijie; Li, Wenchen; Yang, Xiaocong; Xu, Wenyuan

    2018-01-01

    This paper presents the results of an experimental study on the priming effect of sodium silicate gel (SS) on cemented tailing backfill (CTB) that contains lead-zinc smelting slag. CTB and cemented paste (CP) containing lead-zinc smelting slag samples with SS of 0 and 0.4% of the mass of the slag were prepared and cured at 20°C for 1, 3, 7, and 28 days. Mechanical test and pore structure analyses were performed on the studied CTB samples, microstructural analyses (X-ray diffraction analysis a...

  13. AtTZF gene family localizes to cytoplasmic foci

    OpenAIRE

    Pomeranz, Marcelo; Lin, Pei-Chi; Finer, John; Jang, Jyan-Chyun

    2010-01-01

    In eukaryotes, mRNA turnover and translational repression represent important regulatory steps in gene expression. Curiously, when under cellular stresses, factors involved in these processes aggregate into cytoplasmic foci known as Processing bodies (P-bodies) and Stress Granules (SGs). In animals, CCCH Tandem Zinc Finger (TZF) proteins play important roles in mRNA decay within P-bodies. TTP, a P-body localized mammalian TZF, can bind to the 3'UTRs of mRNAs containing AU-rich elements (AREs)...

  14. A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses

    Science.gov (United States)

    Kanno, Shin-ichiro; Kuzuoka, Hiroyuki; Sasao, Shigeru; Hong, Zehui; Lan, Li; Nakajima, Satoshi; Yasui, Akira

    2007-01-01

    DNA damage causes genome instability and cell death, but many of the cellular responses to DNA damage still remain elusive. We here report a human protein, PALF (PNK and APTX-like FHA protein), with an FHA (forkhead-associated) domain and novel zinc-finger-like CYR (cysteine–tyrosine–arginine) motifs that are involved in responses to DNA damage. We found that the CYR motif is widely distributed among DNA repair proteins of higher eukaryotes, and that PALF, as well as a Drosophila protein with tandem CYR motifs, has endo- and exonuclease activities against abasic site and other types of base damage. PALF accumulates rapidly at single-strand breaks in a poly(ADP-ribose) polymerase 1 (PARP1)-dependent manner in human cells. Indeed, PALF interacts directly with PARP1 and is required for its activation and for cellular resistance to methyl-methane sulfonate. PALF also interacts directly with KU86, LIGASEIV and phosphorylated XRCC4 proteins and possesses endo/exonuclease activity at protruding DNA ends. Various treatments that produce double-strand breaks induce formation of PALF foci, which fully coincide with γH2AX foci. Thus, PALF and the CYR motif may play important roles in DNA repair of higher eukaryotes. PMID:17396150

  15. Zinc finger nuclease: a new approach for excising HIV-1 proviral DNA from infected human T cells.

    Science.gov (United States)

    Qu, Xiying; Wang, Pengfei; Ding, Donglin; Wang, Xiaohui; Zhang, Gongmin; Zhou, Xin; Liu, Lin; Zhu, Xiaoli; Zeng, Hanxian; Zhu, Huanzhang

    2014-09-01

    A major reason that Acquired Immune Deficiency Syndrome (AIDS) cannot be completely cured is the human immunodeficiency virus 1 (HIV-1) provirus integrated into the human genome. Though existing therapies can inhibit replication of HIV-1, they cannot eradicate it. A molecular therapy gains popularity due to its specifically targeting to HIV-1 infected cells and effectively removing the HIV-1, regardless of viral genes being active or dormant. Now, we propose a new method which can excellently delete the HIV provirus from the infected human T cell genome. First, we designed zinc-finger nucleases (ZFNs) that target a sequence within the long terminal repeat (LTR) U3 region that is highly conserved in whole clade. Then, we screened out one pair of ZFN and named it as ZFN-U3. We discovered that ZFN-U3 can exactly target and eliminate the full-length HIV-1 proviral DNA after the infected human cell lines treated with it, and the frequency of its excision was about 30 % without cytotoxicity. These results prove that ZFN-U3 can efficiently excise integrated HIV-1 from the human genome in infected cells. This method to delete full length HIV-1 in human genome can therefore provide a novel approach to cure HIV-infected individuals in the future.

  16. A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants.

    Science.gov (United States)

    Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J

    2001-02-01

    Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.

  17. Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID using zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Tomoji Mashimo

    Full Text Available BACKGROUND: Although the rat is extensively used as a laboratory model, the inability to utilize germ line-competent rat embryonic stem (ES cells has been a major drawback for studies that aim to elucidate gene functions. Recently, zinc-finger nucleases (ZFNs were successfully used to create genome-specific double-stranded breaks and thereby induce targeted gene mutations in a wide variety of organisms including plants, drosophila, zebrafish, etc. METHODOLOGY/PRINCIPAL FINDINGS: We report here on ZFN-induced gene targeting of the rat interleukin 2 receptor gamma (Il2rg locus, where orthologous human and mouse mutations cause X-linked severe combined immune deficiency (X-SCID. Co-injection of mRNAs encoding custom-designed ZFNs into the pronucleus of fertilized oocytes yielded genetically modified offspring at rates greater than 20%, which possessed a wide variety of deletion/insertion mutations. ZFN-modified founders faithfully transmitted their genetic changes to the next generation along with the severe combined immune deficiency phenotype. CONCLUSIONS AND SIGNIFICANCE: The efficient and rapid generation of gene knockout rats shows that using ZFN technology is a new strategy for creating gene-targeted rat models of human diseases. In addition, the X-SCID rats that were established in this study will be valuable in vivo tools for evaluating drug treatment or gene therapy as well as model systems for examining the treatment of xenotransplanted malignancies.

  18. The biometric recognition on contactless multi-spectrum finger images

    Science.gov (United States)

    Kang, Wenxiong; Chen, Xiaopeng; Wu, Qiuxia

    2015-01-01

    This paper presents a novel multimodal biometric system based on contactless multi-spectrum finger images, which aims to deal with the limitations of unimodal biometrics. The chief merits of the system are the richness of the permissible texture and the ease of data access. We constructed a multi-spectrum instrument to simultaneously acquire three different types of biometrics from a finger: contactless fingerprint, finger vein, and knuckleprint. On the basis of the samples with these characteristics, a moderate database was built for the evaluation of our system. Considering the real-time requirements and the respective characteristics of the three biometrics, the block local binary patterns algorithm was used to extract features and match for the fingerprints and finger veins, while the Oriented FAST and Rotated BRIEF algorithm was applied for knuckleprints. Finally, score-level fusion was performed on the matching results from the aforementioned three types of biometrics. The experiments showed that our proposed multimodal biometric recognition system achieves an equal error rate of 0.109%, which is 88.9%, 94.6%, and 89.7% lower than the individual fingerprint, knuckleprint, and finger vein recognitions, respectively. Nevertheless, our proposed system also satisfies the real-time requirements of the applications.

  19. A Finger Exoskeleton Robot for Finger Movement Rehabilitation

    Directory of Open Access Journals (Sweden)

    Tzu-Heng Hsu

    2017-07-01

    Full Text Available In this study, a finger exoskeleton robot has been designed and presented. The prototype device was designed to be worn on the dorsal side of the hand to assist in the movement and rehabilitation of the fingers. The finger exoskeleton is 3D-printed to be low-cost and has a transmission mechanism consisting of rigid serial links which is actuated by a stepper motor. The actuation of the robotic finger is by a sliding motion and mimics the movement of the human finger. To make it possible for the patient to use the rehabilitation device anywhere and anytime, an Arduino™ control board and a speech recognition board were used to allow voice control. As the robotic finger follows the patients voice commands the actual motion is analyzed by Tracker image analysis software. The finger exoskeleton is designed to flex and extend the fingers, and has a rotation range of motion (ROM of 44.2°.

  20. Bacteria associated with cysts of the soybean cyst nematode (Heterodera glycines).

    Science.gov (United States)

    Nour, Sarah M; Lawrence, John R; Zhu, Hong; Swerhone, George D W; Welsh, Martha; Welacky, Tom W; Topp, Edward

    2003-01-01

    The soybean cyst nematode (SCN), Heterodera glycines, causes economically significant damage to soybeans (Glycine max) in many parts of the world. The cysts of this nematode can remain quiescent in soils for many years as a reservoir of infection for future crops. To investigate bacterial communities associated with SCN cysts, cysts were obtained from eight SCN-infested farms in southern Ontario, Canada, and analyzed by culture-dependent and -independent means. Confocal laser scanning microscopy observations of cyst contents revealed a microbial flora located on the cyst exterior, within a polymer plug region and within the cyst. Microscopic counts using 5-(4,6-dichlorotriazine-2-yl)aminofluorescein staining and in situ hybridization (EUB 338) indicated that the cysts contained (2.6 +/- 0.5) x 10(5) bacteria (mean +/- standard deviation) with various cellular morphologies. Filamentous fungi were also observed. Live-dead staining indicated that the majority of cyst bacteria were viable. The probe Nile red also bound to the interior polymer, indicating that it is lipid rich in nature. Bacterial community profiles determined by denaturing gradient gel electrophoresis analysis were simple in composition. Bands shared by all eight samples included the actinobacterium genera Actinomadura and STREPTOMYCES: A collection of 290 bacteria were obtained by plating macerated surface-sterilized cysts onto nutrient broth yeast extract agar or on actinomycete medium. These were clustered into groups of siblings by repetitive extragenic palindromic PCR fingerprinting, and representative isolates were tentatively identified on the basis of 16S rRNA gene sequence. Thirty phylotypes were detected, with the collection dominated by Lysobacter and Variovorax spp. This study has revealed the cysts of this important plant pathogen to be rich in a variety of bacteria, some of which could presumably play a role in the ecology of SCN or have potential as biocontrol agents.

  1. Synthesis and distribution of N-benzyloxycarbonyl-[14C]-glycine, a lipophilic derivative of glycine

    International Nuclear Information System (INIS)

    Lambert, D.M.; Gallez, Bernard; Poupaert, J.H.

    1995-01-01

    N-benzyloxycarbonyl[ 14 C]-glycine, a lipophilic derivative of glycine exhibiting anticonvulsant properties, was prepared in one step from [U- 14 C] glycine and benzyl chloroformate in alkali medium. a comparative study of biodistribution was carried on mice between this compound and the parent amino-acid after intravenous administration. Dimethylsulfoxide was used as injection vehicle for N-benzyloxycarbonylglycine. The influence of this injection vehicle was studied comparing glycine injected in a saline solution and glycine co-administered with dimethylsulfoxide. No significant difference was found between these two treatments. Compared to glycine, N-benzyloxycarbonylglycine reached quickly the central nervous system and exhibited an enhanced brain penetration index, 13-fold superior to the parent aminoacid value. (Author)

  2. Interdependence of free zinc changes and protein complex assembly - insights into zinc signal regulation.

    Science.gov (United States)

    Kocyła, Anna; Adamczyk, Justyna; Krężel, Artur

    2018-01-24

    Cellular zinc (Zn(ii)) is bound with proteins that are part of the proteomes of all domains of life. It is mostly utilized as a catalytic or structural protein cofactor, which results in a vast number of binding architectures. The Zn(ii) ion is also important for the formation of transient protein complexes with a Zn(ii)-dependent quaternary structure that is formed upon cellular zinc signals. The mechanisms by which proteins associate with and dissociate from Zn(ii) and the connection with cellular Zn(ii) changes remain incompletely understood. In this study, we aimed to examine how zinc protein domains with various Zn(ii)-binding architectures are formed under free Zn(ii) concentration changes and how formation of the Zn(ii)-dependent assemblies is related to the protein concentration and reactivity. To accomplish these goals we chose four zinc domains with different Zn(ii)-to-protein binding stoichiometries: classical zinc finger (ZnP), LIM domain (Zn 2 P), zinc hook (ZnP 2 ) and zinc clasp (ZnP 1 P 2 ) folds. Our research demonstrated a lack of changes in the saturation level of intraprotein zinc binding sites, despite various peptide concentrations, while homo- and heterodimers indicated a concentration-dependent tendency. In other words, at a certain free Zn(ii) concentration, the fraction of a formed dimeric complex increases or decreases with subunit concentration changes. Secondly, even small or local changes in free Zn(ii) may significantly affect protein saturation depending on its architecture, function and subcellular concentration. In our paper, we indicate the importance of interdependence of free Zn(ii) availability and protein subunit concentrations for cellular zinc signal regulation.

  3. ENVIRONMENTAL IMPACT OF THE STORED DUST-LIKE ZINC AND IRON CONTAINING WASTES

    Directory of Open Access Journals (Sweden)

    Tatyana A. Lytaeva

    2017-05-01

    On the basis of laboratory research and field observations of the environmental components in the impact area of the storage of dust-like zinc and iron containing wastes, the article describes regularities of formation of hydrogeochemical halos of contamination by heavy metals and iron. Results include also the description of changes in physico-chemical groundwater composition under the storage area.

  4. OsDOG, a gibberellin-induced A20/AN1 zinc-finger protein, negatively regulates gibberellin-mediated cell elongation in rice.

    Science.gov (United States)

    Liu, Yaju; Xu, Yunyuan; Xiao, Jun; Ma, Qibin; Li, Dan; Xue, Zhen; Chong, Kang

    2011-07-01

    The A20/AN1 zinc-finger proteins (ZFPs) play pivotal roles in animal immune responses and plant stress responses. From previous gibberellin (GA) microarray data and A20/AN1 ZFP family member association, we chose Oryza sativa dwarf rice with overexpression of gibberellin-induced gene (OsDOG) to examine its function in the GA pathway. OsDOG was induced by gibberellic acid (GA(3)) and repressed by the GA-synthesis inhibitor paclobutrazol. Different transgenic lines with constitutive expression of OsDOG showed dwarf phenotypes due to deficiency of cell elongation. Additional GA(1) and real-time PCR quantitative assay analyses confirmed that the decrease of GA(1) in the overexpression lines resulted from reduced expression of GA3ox2 and enhanced expression of GA2ox1 and GA2ox3. Adding exogenous GA rescued the constitutive expression phenotypes of the transgenic lines. OsDOG has a novel function in regulating GA homeostasis and in negative maintenance of plant cell elongation in rice. Copyright © 2011 Elsevier GmbH. All rights reserved.

  5. Proton-conducting beta"-alumina via microwave-assisted synthesis and mechanism of enhanced corrosion prevention of a zinc rich coating with electronic control

    Science.gov (United States)

    Kirby, Brent William

    Proton Conducting beta-alumina via Microwave Assisted Synthesis. The microwave assisted synthesis of proton conducting Mg- and Li-stabilized NH4+/H3O+ beta-alumina from a solution based gel precursor is reported. beta-alumina is a ceramic fast ion conductor containing two-dimensional sheets of mobile cations. Na +-beta-alumina is the most stable at the sintering temperatures (1740°C) reached in a modified microwave oven, and can be ion exchanged to the K+ form and then to the NH4+/H 3O+ form. beta-phase impurity is found to be 20% for Mg-stabilized material and 30-40% for Li-stabilized material. The composition of the proton conducting form produced here is deficient in NH4 + as compared to the target composition (NH4)1.00 (H3O)0.67Mg0.67Al10.33O 17. Average grain conductivity for Li-stabilized material at 150°C is 6.6x10-3 +/- 1.6x10-3 S/cm with 0.29 +/- 0.05 eV activation energy, in agreement with single crystal studies in the literature. Grain boundary conductivity is found to be higher in the Li-stabilized material. A hydrogen bond energy hypothesis is presented to explain these differences. Li-stabilized NH4+/H3O + beta-alumina is demonstrated as a fuel cell electrolyte, producing 28 muA/cm2 of electrical current at 0.5 V. Mechanism of Enhanced Corrosion Prevention of a Zinc Rich Coating with Electronic Control. A corrosion inhibition system consisting of high weight-loading zinc rich coating applied to steel panels is examined. An electronic control unit (ECU) consisting of a battery and a large capacitor in series with the panel is shown to improve corrosion protection upon immersion in 3% NaCl solution. Weekly solution changes to avoid zinc saturation in solution system were necessary to see well differentiated results. The corrosion product, hydrozincite [Zn5(CO3) 2(OH)6] is observed to deposit within the pores of the coating and on the surface as a barrier layer. Simonkolleite [Zn5(OH) 8Cl2·H2O] is found to form in place of the original zinc particles

  6. Lead-zinc interactions in the production of osteocalcin by ROS 17/2.8 osteoblastic bone cells

    International Nuclear Information System (INIS)

    Pounds, J.G.

    1991-01-01

    The serum level of osteocalcin, a bone specific protein produced by osteoblasts and used clinically as a marker of osteoblast acceptive, is decreased in lead intoxicated children. Previous studies suggest that the reduced osteocalcin production appears to be the result of impaired transcriptional regulation of this 1,25-dihydroxyvitamin D 3 gene product, and not translation. As part of a study to investigate the potential interaction of Pb 2+ with Zn 2+ , and with the zinc fingers of the vitamin D receptor, ROS cells were treated with 0, 5, 10, or 25 μM lead acetate for 24 hr, in the presence of 10, 30, or 50 μM Zn followed by an additional 24 hr treatment with lead with 1,25-dihydroxyvitamin D 3 (100 pg/ml media). At the end of this period a radioimmunoassay was conducted to determine the amount of osteocalcin in the cells and secreted in the media. 1,25-dihydroxyvitamin D 3 caused an increase in osteocalcin secreted into the media in cultures containing 0 μM lead, but this increase was inhibited by lead in a concentration dependent manner, so that osteocalcin secretion in 10 or 25 μM lead treated groups was less than cultures without 1,25-dihydroxyvitamin D 3 treatment. This inhibitory effect of lead was blocked by increasing the medium zinc concentration of 50 μM. Increasing medium Pb 2+ concentrations decreased the amount of 65 Zn taken up by cells by ∼30%, which was nullified by increasing medium Zn. These results suggest that lead produces a localized and specific Zn deficiency in the vitamin D receptor zinc finger, and perhaps other zinc metalloproteins, and that these effects of lead are not mediated through general effects on RNA or protein synthesis

  7. Affinity of hydroxyapatite for furfural and a brown pigment formed by furfural and glycine.

    Science.gov (United States)

    Nordbö, H; Eriksen, H M; Rölla, G

    1979-10-01

    The affinity of hydroxyapatite for furfural and a brown pigment formed by furfural and glycine was studied. A series of mixtures containing 1 M furfural and 0.25-2.0 M glycine were incubated at 37 degrees C and aliquots of hydroxyapatite added. The apatite showed a strong affinity for the brown pigment formed, and an excess of glycine in the mixtures appeared to enhance the binding. The adsorption of furfural to hydroxyapatite was estimated by a spectrophotometric method. The data revealed that pretreatment with CaCl2 and glycine significantly increased the adsorption of furfural.

  8. Effect of zinc-containing β-tricalcium phosphate nano particles injection on jawbone mineral density and mechanical strength of osteoporosis model rats

    International Nuclear Information System (INIS)

    Tokudome, Yoshihiro; Otsuka, Makoto; Ito, Atsuo

    2011-01-01

    Zinc-containing β-tricalcium phosphate (ZnTCP) nano particles were injected into zinc-deficient rats to promote osteogenesis. Sprague-Dawley (SD) rats (4 weeks old, average weight of 70 g) were divided into four groups: Normal rats (not ovariectomized (OVX)), Control rats (OVX), and OVX rats injected with a suspension of ZnTCP nano particles or ZnSO 4 . The ZnTCP contained 6.17% zinc. The suspensions (0.6 mg as a zinc volume/0.2 ml) were injected around the jaw bone once a week for 12 weeks. Local effects on the bone mineral content (BMC) of jawbone, and systemic effects on body weight, the BMC of both femurs determined by X-ray computed tomography, and bone mechanical strength (BMS) measured by the three-point bending method, were examined. The BMC of jaw bone was significantly higher in the ZnTCP-treated group than un-treated or ZnSO 4 -treated group. Body weight, the BMC of femurs, and BMS were also significantly higher in the ZnTCP treated-group. The zinc-containing β-tricalcium phosphate nano particles were effective at preventing bone loss induced by ovariectomy in rats and have potential uses for treating periodontitis. (author)

  9. Synthesis and distribution of N-benzyloxycarbonyl-[{sup 14}C]-glycine, a lipophilic derivative of glycine

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, D.M.; Gallez, Bernard; Poupaert, J.H. [Universite Catholique de Louvain, Brussels (Belgium). Dept. des Sciences Pharmaceutiques

    1995-12-31

    N-benzyloxycarbonyl[{sup 14}C]-glycine, a lipophilic derivative of glycine exhibiting anticonvulsant properties, was prepared in one step from [U-{sup 14}C] glycine and benzyl chloroformate in alkali medium. a comparative study of biodistribution was carried on mice between this compound and the parent amino-acid after intravenous administration. Dimethylsulfoxide was used as injection vehicle for N-benzyloxycarbonylglycine. The influence of this injection vehicle was studied comparing glycine injected in a saline solution and glycine co-administered with dimethylsulfoxide. No significant difference was found between these two treatments. Compared to glycine, N-benzyloxycarbonylglycine reached quickly the central nervous system and exhibited an enhanced brain penetration index, 13-fold superior to the parent aminoacid value. (Author).

  10. Reactive Oxygen Species Regulate the Inflammatory Function of NKT Cells through Promyelocytic Leukemia Zinc Finger.

    Science.gov (United States)

    Kim, Yeung-Hyen; Kumar, Ajay; Chang, Cheong-Hee; Pyaram, Kalyani

    2017-11-15

    Reactive oxygen species (ROS) are byproducts of aerobic metabolism and contribute to both physiological and pathological conditions as second messengers. ROS are essential for activation of T cells, but how ROS influence NKT cells is unknown. In the present study, we investigated the role of ROS in NKT cell function. We found that NKT cells, but not CD4 or CD8 T cells, have dramatically high ROS in the spleen and liver of mice but not in the thymus or adipose tissues. Accordingly, ROS-high NKT cells exhibited increased susceptibility and apoptotic cell death with oxidative stress. High ROS in the peripheral NKT cells were primarily produced by NADPH oxidases and not mitochondria. We observed that sorted ROS-high NKT cells were enriched in NKT1 and NKT17 cells, whereas NKT2 cells were dominant in ROS-low cells. Furthermore, treatment of NKT cells with antioxidants led to reduced frequencies of IFN-γ- and IL-17-expressing cells, indicating that ROS play a role in regulating the inflammatory function of NKT cells. The transcription factor promyelocytic leukemia zinc finger (PLZF) seemed to control the ROS levels. NKT cells from adipose tissues that do not express PLZF and those from PLZF haplodeficient mice have low ROS. Conversely, ROS were highly elevated in CD4 T cells from mice ectopically expressing PLZF. Thus, our findings demonstrate that PLZF controls ROS levels, which in turn governs the inflammatory function of NKT cells. Copyright © 2017 by The American Association of Immunologists, Inc.

  11. Gene repair of an Usher syndrome causing mutation by zinc-finger nuclease mediated homologous recombination.

    Science.gov (United States)

    Overlack, Nora; Goldmann, Tobias; Wolfrum, Uwe; Nagel-Wolfrum, Kerstin

    2012-06-26

    Human Usher syndrome (USH) is the most frequent cause of inherited deaf-blindness. It is clinically and genetically heterogeneous, assigned to three clinical types of which the most severe type is USH1. No effective treatment for the ophthalmic component of USH exists. Gene augmentation is an attractive strategy for hereditary retinal diseases. However, several USH genes, like USH1C, are expressed in various isoforms, hampering gene augmentation. As an alternative treatment strategy, we applied the zinc-finger nuclease (ZFN) technology for targeted gene repair of an USH1C, causing mutation by homologous recombination. We designed ZFNs customized for the p.R31X nonsense mutation in Ush1c. We evaluated ZFNs for DNA cleavage capability and analyzed ZFNs biocompatibilities by XTT assays. We demonstrated ZFNs mediated gene repair on genomic level by digestion assays and DNA sequencing, and on protein level by indirect immunofluorescence and Western blot analyses. The specifically designed ZFNs did not show cytotoxic effects in a p.R31X cell line. We demonstrated that ZFN induced cleavage of their target sequence. We showed that simultaneous application of ZFN and rescue DNA induced gene repair of the disease-causing mutation on the genomic level, resulting in recovery of protein expression. In our present study, we analyzed for the first time ZFN-activated gene repair of an USH gene. The data highlight the ability of ZFNs to induce targeted homologous recombination and mediate gene repair in USH. We provide further evidence that the ZFN technology holds great potential to recover disease-causing mutations in inherited retinal disorders.

  12. Speckle-type POZ (pox virus and zinc finger protein) protein gene deletion in ovarian cancer: Fluorescence in situ hybridization analysis of a tissue microarray.

    Science.gov (United States)

    Hu, Xiaoyu; Yang, Zhu; Zeng, Manman; Liu, Y I; Yang, Xiaotao; Li, Yanan; Li, X U; Yu, Qiubo

    2016-07-01

    The aim of the present study was to investigate the status of speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) gene located on chromosome 17q21 in ovarian cancer (OC). The present study evaluated a tissue microarray, which contained 90 samples of ovarian cancer and 10 samples of normal ovarian tissue, using fluorescence in situ hybridization (FISH). FISH is a method where a SPOP-specific DNA red fluorescence probe was used for the experimental group and a centromere-specific DNA green fluorescence probe for chromosome 17 was used for the control group. The present study demonstrated that a deletion of the SPOP gene was observed in 52.27% (46/88) of the ovarian cancer tissues, but was not identified in normal ovarian tissues. Simultaneously, monosomy 17 was frequently identified in the ovarian cancer tissues, but not in the normal ovarian tissues. Furthermore, the present data revealed that the ovarian cancer histological subtype and grade were significantly associated with a deletion of the SPOP gene, which was assessed by the appearance of monosomy 17 in the ovarian cancer samples; the deletion of the SPOP gene was observed in a large proportion of serous epithelial ovarian cancer (41/61; 67.21%), particularly in grade 3 (31/37; 83.78%). In conclusion, deletion of the SPOP gene on chromosome 17 in ovarian cancer samples, which results from monosomy 17, indicates that the SPOP gene may serve as a tumor suppressor gene in ovarian cancer.

  13. Direct Effect of Remifentanil and Glycine Contained in Ultiva® on Nociceptive Transmission in the Spinal Cord: In Vivo and Slice Patch Clamp Analyses.

    Directory of Open Access Journals (Sweden)

    Makoto Sumie

    Full Text Available Ultiva® is commonly administered intravenously for analgesia during general anaesthesia and its main constituent remifentanil is an ultra-short-acting μ-opioid receptor agonist. Ultiva® is not approved for epidural or intrathecal use in clinical practice. Previous studies have reported that Ultiva® provokes opioid-induced hyperalgesia by interacting with spinal dorsal horn neurons. Ultiva® contains glycine, an inhibitory neurotransmitter but also an N-methyl-D-aspartate receptor co-activator. The presence of glycine in the formulation of Ultiva® potentially complicates its effects. We examined how Ultiva® directly affects nociceptive transmission in the spinal cord.We made patch-clamp recordings from substantia gelatinosa (SG neurons in the adult rat spinal dorsal horn in vivo and in spinal cord slices. We perfused Ultiva® onto the SG neurons and analysed its effects on the membrane potentials and synaptic responses activated by noxious mechanical stimuli.Bath application of Ultiva® hyperpolarized membrane potentials under current-clamp conditions and produced an outward current under voltage-clamp conditions. A barrage of excitatory postsynaptic currents (EPSCs evoked by the stimuli was suppressed by Ultiva®. Miniature EPSCs (mEPSCs were depressed in frequency but not amplitude. Ultiva®-induced outward currents and suppression of mEPSCs were not inhibited by the μ-opioid receptor antagonist naloxone, but were inhibited by the glycine receptor antagonist strychnine. The Ultiva®-induced currents demonstrated a specific equilibrium potential similar to glycine.We found that intrathecal administration of Ultiva® to SG neurons hyperpolarized membrane potentials and depressed presynaptic glutamate release predominantly through the activation of glycine receptors. No Ultiva®-induced excitatory effects were observed in SG neurons. Our results suggest different analgesic mechanisms of Ultiva® between intrathecal and intravenous

  14. Localization of high affinity [3H]glycine transport sites in the cerebellar cortex

    International Nuclear Information System (INIS)

    Wilkin, G.P.; Csillag, A.; Balazs, R.; Kingsbury, A.E.; Wilson, J.E.; Johnson, A.L.

    1981-01-01

    A study was made of [ 3 H ]glycine uptake sites in a preparation greatly enriched in large pieces of the cerebellar glomeruli (glomerulus particles) and in morphologically well preserved slices of rat cerebellum. Electron microscopic autoradiography revealed that of the neurones in the cerebellar cortex only Golgi cells transported [ 3 H]glycine at the low concentration used. Glial cells also took up [ 3 H]glycine but to a lesser extent than the Golgi neurons. It was also confirmed that under comparable conditions Golgi cells transport [ 3 H]GABA. Kinetic studies utilizing the Golgi axon terminal-containing glomerulus particles showed that glycine is a weak non-competitive inhibitor of [ 3 H]GABA uptake (Ksub(i) over 600 μM vs the Ksub(t) of about 20 μM) and that GABA is an even weaker inhibitor of [ 3 H]glycine uptake. (Auth.)

  15. Finger millet [Eleusine coracana (L.) Gaertn].

    Science.gov (United States)

    Ceasar, Stanislaus Antony; Ignacimuthu, Savarimuthu

    2015-01-01

    Millets are the primary food source for millions of people in tropical regions of the world supplying mineral nutrition and protein. In this chapter, we describe an optimized protocol for the Agrobacterium-mediated transformation of finger millet variety GPU 45. Agrobacterium strain LBA4404 harboring plasmid pCAMBIA1301 which contains hygromycin phosphotransferase (hph) as selectable marker gene and β-glucuronidase (GUS) as reporter gene has been used. This protocol utilizes the shoot apex explants for the somatic embryogenesis and regeneration of finger millet after the transformation by Agrobacterium. Desiccation of explants during cocultivation helps for the better recovery of transgenic plants. This protocol is very useful for the efficient production of transgenic plants in finger millet through Agrobacterium-mediated transformation.

  16. The light activated alkylation of glycine

    International Nuclear Information System (INIS)

    Knowles, H.S.

    2001-04-01

    The work contained in this thesis focuses on the light-initiated alkylation of the α-centre of glycine compounds. The elaboration of the glycines in this manner represents a versatile, clean and cost effective alternative to ionic routes to higher α-amino acids. Preliminary investigations demonstrated that a range of nitrogen protecting groups were compatible with the radical alkylation. A variety of solvents could also be used although solvents with easily removable hydrogen atoms were found to interfere with the alkylation. Furthermore, a number of photo-initiators were investigated and the use of di-tert-butyl peroxide was found to afford the desired phenylalanine products in up to 27% yield (54% based on recovered starting material) when toluene was used as the alkylating agent. A range of different precursor concentrations was investigated and it was found that the optimum concentration of the glycine precursor was 0.13 mol dm -3 ; the phenylalanine yields were reduced when the concentration was less than this value. Owing to the poor UV absorption by di-tert-butyl peroxide, benzophenone (an effective photosensitiser) was added to the reaction mixture and this was shown to increase the alkylation yields. The ratio of reagents which produced the highest yield of phenylalanine products was found to be 1 : 5 : 5 : 10 for glycine : di-tert-butyl peroxide : benzophenone : toluene. This produced the phenylalanine product in up to 37% yield (57% based on recovered starting material). A number of substituents. (e.g. F, Cl etc.) could be attached to the aromatic ring of the toluene alkylating agent, affording substituted phenylalanines in 5 - 36% under these conditions. The formation of chiral phenylalanine products was probed by reacting glycine precursors bearing chiral auxiliaries. However, low diastereoselectivities were observed; the d.r. ranged from 1 : 1.1 to 1 : 1.5 only when chiral ester and amide protecting groups were used. In the final chapter, the

  17. The effect of a toothpaste containing 2% zinc citrate and 0.3% Triclosan on bacterial viability and plaque growth in vivo compared to a toothpaste containing 0.3% Triclosan and 2% copolymer.

    Science.gov (United States)

    Adams, S E; Theobald, A J; Jones, N M; Brading, M G; Cox, T F; Mendez, A; Chesters, D M; Gillam, D G; Hall, C; Holt, J

    2003-12-01

    To compare the antimicrobial efficacy and effect on plaque growth of a new silica-based fluoride toothpaste containing 2% zinc citrate/ 0.3% Triclosan with a silica-based fluoride toothpaste containing 0.3% Triclosan/2% copolymer. In Study 1, plaque was collected after one week's use of each toothpaste and assessed for bacterial viability, live/ dead ratio and microbial membrane integrity. In study 2, plaque was measured immediately and 18 hours after a single brushing with the specified toothpastes. The 2% zinc citrate/0.3% Triclosan formulation significantly reduced the total number of viable aerobic and anaerobic bacteria (p = 0.0223 and p = 0.0443 respectively) compared to the 0.3% Triclosan/2% copolymer formulation. Both toothpastes increased the bacterial membrane permeability significantly. However, the proportion of live bacteria for the 2% zinc citrate/0.3% Triclosan product was significantly reduced (p plaque growth 18 hours after using the 2% zinc citrate/0.3% Triclosan toothpaste compared to the 0.3% Triclosan/2% copolymer toothpaste (p fluoride toothpaste containing 2% zinc citrate and 0.3% Triclosan, significantly reduced the viability of plaque bacteria compared to a fluoride toothpaste containing 0.3% Triclosan/ 2% copolymer 12 hours after brushing. In addition, a clinical plaque growth study confirmed that this anti-microbial efficacy leads to a significant reduction in plaque growth.

  18. Evaluation of glutamic acid and glycine as sources of nonessential amino acids for lake trout (Salvelinus namaycush) and rainbow trout (Salmo gairdnerii)

    Science.gov (United States)

    Hughes, S.G.

    1985-01-01

    1. A semi-purified test diet which contained either glutamic acid or glycine as the major source of nonessential amino acids (NEAA) was fed to lake and rainbow trout.2. Trout fed the diet containing glutamic acid consistently showed better growth and feed conversion efficiencies than those fed the diets containing glycine.3. The data indicate that these trout utilize glutamic acid more efficiently than glycine when no other major sources of NEAA are present.

  19. AAV-mediated delivery of zinc finger nucleases targeting hepatitis B virus inhibits active replication.

    Directory of Open Access Journals (Sweden)

    Nicholas D Weber

    Full Text Available Despite an existing effective vaccine, hepatitis B virus (HBV remains a major public health concern. There are effective suppressive therapies for HBV, but they remain expensive and inaccessible to many, and not all patients respond well. Furthermore, HBV can persist as genomic covalently closed circular DNA (cccDNA that remains in hepatocytes even during otherwise effective therapy and facilitates rebound in patients after treatment has stopped. Therefore, the need for an effective treatment that targets active and persistent HBV infections remains. As a novel approach to treat HBV, we have targeted the HBV genome for disruption to prevent viral reactivation and replication. We generated 3 zinc finger nucleases (ZFNs that target sequences within the HBV polymerase, core and X genes. Upon the formation of ZFN-induced DNA double strand breaks (DSB, imprecise repair by non-homologous end joining leads to mutations that inactivate HBV genes. We delivered HBV-specific ZFNs using self-complementary adeno-associated virus (scAAV vectors and tested their anti-HBV activity in HepAD38 cells. HBV-ZFNs efficiently disrupted HBV target sites by inducing site-specific mutations. Cytotoxicity was seen with one of the ZFNs. scAAV-mediated delivery of a ZFN targeting HBV polymerase resulted in complete inhibition of HBV DNA replication and production of infectious HBV virions in HepAD38 cells. This effect was sustained for at least 2 weeks following only a single treatment. Furthermore, high specificity was observed for all ZFNs, as negligible off-target cleavage was seen via high-throughput sequencing of 7 closely matched potential off-target sites. These results show that HBV-targeted ZFNs can efficiently inhibit active HBV replication and suppress the cellular template for HBV persistence, making them promising candidates for eradication therapy.

  20. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system

    Czech Academy of Sciences Publication Activity Database

    Zubáčová, Z.; Novák, L.; Bublíková, J.; Vacek, V.; Fousek, Jan; Rídl, Jakub; Tachezy, J.; Doležal, P.; Vlček, Čestmír; Hampl, V.

    2013-01-01

    Roč. 8, č. 3 (2013), e55417 E-ISSN 1932-6203 R&D Projects: GA ČR GAP506/12/1010 Institutional support: RVO:68378050 Keywords : transcriptome sequencing * Trimastix * mitochondrion -like organelle * glycine cleavage complex Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013

  1. Crystal structure of the UBR-box from UBR6/FBXO11 reveals domain swapping mediated by zinc binding.

    Science.gov (United States)

    Muñoz-Escobar, Juliana; Kozlov, Guennadi; Gehring, Kalle

    2017-10-01

    The UBR-box is a 70-residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N-terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR-box containing E3 ubiquitin ligase that does not bind N-terminal signals. Here, we present the crystal structure of the UBR-box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR-box fold. Analysis of the structure suggests that the absence of N-terminal residue binding arises from the lack of an amino acid binding pocket. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  2. Evaluation of finger millet incorporated noodles for nutritive value and glycemic index.

    Science.gov (United States)

    Shukla, Kamini; Srivastava, Sarita

    2014-03-01

    The present study was undertaken to develop finger millet incorporated noodles for diabetic patients. Finger millet variety VL-149 was taken. The finger millet flour and refined wheat flour (RWF) were evaluated for nutrient composition. The finger millet flour (FMF) was blended in various proportions (30 to 50%) in refined wheat flour and used for the preparation of noodles. Control consisted of RWF noodles. Sensory quality and nutrient composition of finger millet noodles was evaluated. The 30% finger millet incorporated noodles were selected best on the basis of sensory evaluation. Noodles in that proportion along with control were evaluated for glycemic response. Nutrient composition of noodles showed that 50% finger millet incorporated noodles contained highest amount of crude fat (1.15%), total ash (1.40%), crude fiber (1.28%), carbohydrate (78.54%), physiological energy (351.36 kcal), insoluble dietary fiber (5.45%), soluble dietary fiber (3.71%), iron (5.58%) and calcium (88.39%), respectively. However, control RWF noodles contained highest amount of starch (63.02%), amylose (8.72%) and amylopectin (54.29%). The glycemic index (GI) of 30% finger millet incorporated noodles (best selected by sensory evaluation) was observed significantly lower (45.13) than control noodles (62.59). It was found that finger millet flour incorporated noodles were found nutritious and showed hypoglycemic effect.

  3. Review of Finger millet (Eleusine coracana (L. Gaertn: A power house of health benefiting nutrients

    Directory of Open Access Journals (Sweden)

    Dinesh Chandra

    2016-09-01

    Full Text Available The bulk of the world's millet crop is produced by India, Nigeria, Niger, Mali, Burkina Faso, Chad, and China. Finger millet (Eleusine coracana (L. Gaertn, little millet (Panicum sumatrense Roth ex Roem. & Schult., foxtail millet (Setaria italica (L. P. Beauvois and proso millet (Panicum miliaceum L. are most commonly found species among various millet varieties. In India, finger millet occupy the largest area under cultivation among the small millets. Finger millet stands unique among the cereals such as barley, rye and oats with higher nutritional contents and has outstanding properties as a subsistence food crop. It is rich in calcium (0.34%, dietary fiber (18%, phytates (0.48%, protein (6%–13% minerals (2.5%–3.5%, and phenolics (0.3%–3%. Moreover, it is also a rich source of thiamine, riboflavin, iron, methionine, isoleucine, leucine, phenylalanine and other essential amino acids. The abundance of these phytochemicals enhances the nutraceutical potential of finger millet, making it a powerhouse of health benefiting nutrients. It has distinguished health beneficial properties, such as anti-diabetic (type 2 diabetes mellitus, anti-diarrheal, antiulcer, anti-inflammatory, antitumerogenic (K562 chronic myeloid leukemia, atherosclerogenic effects, antimicrobial and antioxidant properties.

  4. Proliferation and osteo/odontogenic differentiation of stem cells from apical papilla regulated by Zinc fingers and homeoboxes 2: An in vitro study.

    Science.gov (United States)

    Wan, Fang; Gao, Lifen; Lu, Yating; Ma, Hongxin; Wang, Hongxing; Liang, Xiaohong; Wang, Yan; Ma, Chunhong

    2016-01-15

    In the process of tooth root development, stem cells from the apical papilla (SCAPs) can differentiate into odontoblasts and form root dentin, however, molecules regulating SCAPs differentiation have not been elucidated. Zinc fingers and homeoboxes 2 (ZHX2) is a novel transcriptional inhibitor. It is reported to modulate the development of nerve cells, liver cells, B cells, red blood cells, and so on. However, the role of ZHX2 in tooth root development remains unclear. In this study, we explored the potential role of ZHX2 in the process of SCAPs differentiation. The results showed that overexpression of ZHX2 upregulated the expression of osteo/odontogenic related genes and ALP activity, inhibited the proliferation of SCAPs. Consistently, ZHX2 knockdown reduced SCAPs mineralization and promoted SCAPs proliferation. These results indicated that ZHX2 plays a critical role in the proliferation and osteo/odontogenic differentiation of SCAPs. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Trigger finger

    Science.gov (United States)

    ... digit; Trigger finger release; Locked finger; Digital flexor tenosynovitis ... cut or hand Yellow or green drainage from the cut Hand pain or discomfort Fever If your trigger finger returns, call your surgeon. You may need another surgery.

  6. Zinc finger protein 219-like (ZNF219L) and Sox9a regulate synuclein-γ2 (sncgb) expression in the developing notochord of zebrafish.

    Science.gov (United States)

    Lien, Huang-Wei; Yang, Chung-Hsiang; Cheng, Chia-Hsiung; Liao, Yung-Feng; Han, Yu-San; Huang, Chang-Jen

    2013-12-13

    Zebrafish synuclein-γ2 (sncgb) has been reported to be expressed specifically in the notochord. However, the mechanism by which the sncgb gene promoter is regulated has not been described. In this paper, we demonstrate that Zinc finger protein 219-like (ZNF219L) and sox9a are involved in the regulation of sncgb gene expression. Furthermore, we observed that over-expression of both ZNF219L and Sox9a resulted in increased sncgb expression. In addition, ZNF219L is physically associated with Sox9a, and simultaneous morpholino knockdown of znf219L and sox9a caused a synergistic decrease of sncgb expression in the notochord. Taken together, our results reveal that coordination of ZNF219L with Sox9a is involved in the regulation of notochord-specific expression of sncgb. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Adsorption of Zinc Contained in the Poultry Feedstuff onto Clinoptilolite

    Directory of Open Access Journals (Sweden)

    E. Šucman

    2007-01-01

    Full Text Available The aim of this work was to find whether an adsorbent used as an additive in the feed mixtures could influence the concentration of free available zinc. The feed supplement ZeoFeed, which often constitutes a part of animal feed mixtures, mainly for poultry, was used as adsorbent in the amount of 10 g kg-1 of the feed mixture. A substantial part of ZeoFeed is clinoptilolite, a natural form of zeolite. Two sample preparation methods were used for the determination of zinc. The microwave-assisted wet digestion method was used to achieve a complete decomposition of the feed mixture in order to determine the total zinc concentration. The extraction method represented a simplified model of the processes in the digestive fluid tract. The extraction was done under laboratory temperature for 30, 60 and 120 min. Concentrations of zinc both in digests and extracts were determined by the method of the differential pulse anodic stripping voltammetry. The total zinc concentration (mean ± 95% confidence interval in the feed mixture without addition of clinoptilolite was found to be 145 ± 32.0 mg kg-1 and in the feed mixture with added clinoptilolite 146 ± 11.5 mg kg-1. The concentrations of free available zinc were approximately ten times lesser than the total amount. The analysis of extracts showed that no statistically significant differences between concentrations of zinc in extracts without clinoptilolite and with clinoptilolite addition have been found. The extraction time did not affect the extracted amount of zinc significantly. In addition to zinc, also other three trace elements, namely the essential trace element copper and the toxic trace elements cadmium and lead, were measured. However, these data have only preliminary value and need further verification.

  8. PML-associated repressor of transcription (PAROT), a novel KRAB-zinc finger repressor, is regulated through association with PML nuclear bodies

    International Nuclear Information System (INIS)

    Fleischer, Sandra; Wiemann, Stefan; Will, Hans; Hofmann, Thomas G.

    2006-01-01

    Promyelocytic leukemia nuclear bodies (PML-NBs) are implicated in transcriptional regulation. Here we identify a novel transcriptional repressor, PML-associated repressor of transcription (PAROT), which is regulated in its repressor activity through recruitment to PML-NBs. PAROT is a Krueppel-associated box ( KRAB) zinc-finger (ZNF) protein, which comprises an amino terminal KRAB-A and KRAB-B box, a linker domain and 8 tandemly repeated C 2 H 2 -ZNF motifs at its carboxy terminus. Consistent with its domain structure, when tethered to DNA, PAROT represses transcription, and this is partially released by the HDAC inhibitor trichostatin A. PAROT colocalizes with members of the heterochromatin protein 1 (HP1) family and with transcriptional intermediary factor-1β/KRAB-associated protein 1 (TIF-1β/KAP1), a transcriptional corepressor for the KRAB-ZNF family. Interestingly, PML isoform IV, in contrast to PML-III, efficiently recruits PAROT and TIF-1β from heterochromatin to PML-NBs. PML-NB recruitment of PAROT partially releases its transcriptional repressor activity, indicating that PAROT can be regulated through subnuclear compartmentalization. Taken together, our data identify a novel transcriptional repressor and provide evidence for its regulation through association with PML-NBs

  9. Integration of tactile input across fingers in a patient with finger agnosia.

    Science.gov (United States)

    Anema, Helen A; Overvliet, Krista E; Smeets, Jeroen B J; Brenner, Eli; Dijkerman, H Chris

    2011-01-01

    Finger agnosia has been described as an inability to explicitly individuate between the fingers, which is possibly due to fused neural representations of these fingers. Hence, are patients with finger agnosia unable to keep tactile information perceived over several fingers separate? Here, we tested a finger agnosic patient (GO) on two tasks that measured the ability to keep tactile information simultaneously perceived by individual fingers separate. In experiment 1 GO performed a haptic search task, in which a target (the absence of a protruded line) needed to be identified among distracters (protruded lines). The lines were presented simultaneously to the fingertips of both hands. Similarly to the controls, her reaction time decreased when her fingers were aligned as compared to when her fingers were stretched and in an unaligned position. This suggests that she can keep tactile input from different fingers separate. In experiment two, GO was required to judge the position of a target tactile stimulus to the index finger, relatively to a reference tactile stimulus to the middle finger, both in fingers uncrossed and crossed position. GO was able to indicate the relative position of the target stimulus as well as healthy controls, which indicates that she was able to keep tactile information perceived by two neighbouring fingers separate. Interestingly, GO performed better as compared to the healthy controls in the finger crossed condition. Together, these results suggest the GO is able to implicitly distinguish between tactile information perceived by multiple fingers. We therefore conclude that finger agnosia is not caused by minor disruptions of low-level somatosensory processing. These findings further underpin the idea of a selective impaired higher order body representation restricted to the fingers as underlying cause of finger agnosia. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Sodium Silicate Gel Effect on Cemented Tailing Backfill That Contains Lead-Zinc Smelting Slag at Early Ages

    Directory of Open Access Journals (Sweden)

    Lijie Guo

    2018-01-01

    Full Text Available This paper presents the results of an experimental study on the priming effect of sodium silicate gel (SS on cemented tailing backfill (CTB that contains lead-zinc smelting slag. CTB and cemented paste (CP containing lead-zinc smelting slag samples with SS of 0 and 0.4% of the mass of the slag were prepared and cured at 20°C for 1, 3, 7, and 28 days. Mechanical test and pore structure analyses were performed on the studied CTB samples, microstructural analyses (X-ray diffraction analysis and thermal gravity analysis were performed on the studied CP samples, whereas the electrical conductivity of CTB was monitored. The results reveal that SS has a significant positive effect on cementitious activity of binder mixed by cement and lead-zinc smelting slag. This activation leads to the acceleration of binder hydration process, the formation of more cement hydration products in the CTBs, and the refinement of their pore structure, which is favorable for the strength development of CTB.

  11. Improvement of Protective Properties of Top Coatings Applied on Zinc-Rich Primer by 3-Aminopropyl-Triethoxysilan and 2-(Benzothialylthio) Succinic acid

    International Nuclear Information System (INIS)

    Truc, Trinh Anh; Hang, Thi Xuan; Oanh, Vu Ke; Dung, Nguyen Tuan

    2004-01-01

    Corrosion resistance of coating system consisting of zinc-rich primer (ZRP) and topcoat based on polyurethane resin with the presence of 3-aminopropyl-triethoxysilan (APS) and 2-(benzothialylthio) succinic acid (BSA) was studied by electrochemical impedance and wet adhesion. The interface metal/primer/topcoat was analyzed by scanning electronic microscopy. It was found that the presence of APS and BSA improved adhesion and barrier property of the topcoats

  12. Viscous Fingering in Deformable Systems

    Science.gov (United States)

    Guan, Jian Hui; MacMinn, Chris

    2017-11-01

    Viscous fingering is a classical hydrodynamic instability that occurs when an invading fluid is injected into a porous medium or a Hele-Shaw cell that contains a more viscous defending fluid. Recent work has shown that viscous fingering in a Hele-Shaw cell is supressed when the flow cell is deformable. However, the mechanism of suppression relies on a net volumetric expansion of the flow area. Here, we study flow in a novel Hele-Shaw cell consisting of a rigid bottom plate and a flexible top plate that deforms in a way that is volume-conserving. In other words, fluid injection into the flow cell leads to a local expansion of the flow area (outward displacement of the flexible surface) that must be coupled to non-local contraction (inward displacement of the flexible surface). We explore the impact of this volumetric confinement on steady viscous flow and on viscous fingering. We would like to thank EPSRC for the funding for this work.

  13. Investigation of the Degradation Mechanisms of Particulate Reinforced Epoxy Coatings and Zinc-Rich Coatings Under an Erosion and Corrosion Environment for Oil and Gas Industry Applications

    Science.gov (United States)

    Wang, Dailin

    During oil and gas production and transportation, the presence of an oil-sand slurry, together with the presence of CO2, H2S, oxygen, and seawater, create an erosive/abrasive and corrosive environment for the interior surfaces of undersea pipelines transporting oil and gas from offshore platforms. Erosion/wear and corrosion are often synergic processes leading to a much greater material loss of pipeline cross-section than that caused by each individual process alone. Both organic coatings and metallic sacrificial coatings have been widely employed to provide protection to the pipeline steels against corrosion through barrier protection and cathodic protection, and these protection mechanisms have been well studied. However, coating performance under the synergic processes of erosion/wear and corrosion have been much less researched and coating degradation mechanisms when erosion/wear and corrosion are both going on has not been well elucidated. In the work presented in this dissertation, steel panels coated with filler reinforced epoxy coatings and carbon nanotubes (CNTs) reinforced zinc-rich coatings have been evaluated under erosion/wear followed by an exposure to a corrosive environment. Electrochemical tests and material characterization methods have been applied to study the degradation mechanisms of the coatings during the tests and coating degradation mechanisms have been proposed. While organic coatings with a lower amount of filler particles provided better protection in a corrosive environment alone and in solid particle impingement erosion testing alone, organic coatings with a higher amount of filler particles showed better performance during wear testing alone. A higher amount of filler particles was also beneficial in providing protection against wear and corrosion environment, and erosion and corrosion environment. Coating thickness played a significant role in the barrier properties of the coatings under both erosion and corrosion tests. When the

  14. Prevalence of zinc deficiency among primary school children in a ...

    African Journals Online (AJOL)

    Few zinc-rich sources appeared in the diet that was predominantly plant-based. Mean dietary zinc intake was 4.6±2.2 mg/day. The mean value of serum zinc was 66.4±21.5 μg/dL, with 46% of the children having values less than the 70 μg/dL cutoff. The findings indicate a high risk of zinc deficiency and suboptimal zinc ...

  15. Localization of glycine-containing neurons in the Macaca monkey retina

    International Nuclear Information System (INIS)

    Hendrickson, A.E.; Koontz, M.A.; Pourcho, R.G.; Sarthy, P.V.; Goebel, D.J.

    1988-01-01

    Autoradiography following 3H-glycine (Gly) uptake and immunocytochemistry with a Gly-specific antiserum were used to identify neurons in Macaca monkey retina that contain a high level of this neurotransmitter. High-affinity uptake of Gly was shown to be sodium dependent whereas release of both endogenous and accumulated Gly was calcium dependent. Neurons labeling for Gly included 40-46% of the amacrine cells and nearly 40% of the bipolars. Synaptic labeling was seen throughout the inner plexiform layer (IPL) but with a preferential distribution in the inner half. Bands of labeled puncta occurred in S2, S4, and S5. Both light and postembedding electron microscopic (EM) immunocytochemistry identified different types of amacrine and bipolar cell bodies and their synaptic terminals. The most heavily labeled Gly+ cell bodies typically were amacrine cells having a single, thick, basal dendrite extending deep into the IPL and, at the EM level, electron-dense cytoplasm and prominent nuclear infoldings. This cell type may be homologous with the Gly2 cell in human retina and the AII/Gly2 of cat retina. Gly+ amacrines synapse most frequently onto Gly- amacrines and both Gly- and Gly+ bipolars. Gly+ bipolar cells appeared to be cone bipolars because their labeled dendrites could be traced only to cone pedicles. The pattern of these labeled dendritic trees indicated that both diffuse and midget types of biopolars were Gly+. The EM distribution of labeled synapses showed Gly+ amacrine synapses throughout the IPL, but these composed only 11-23% of the amacrine population. Most of the Gly+ bipolar terminals were in the inner IPL, where 70% of all bipolar terminals were labeled

  16. Enhanced cellulase production from Trichoderma reesei Rut-C30 by engineering with an artificial zinc finger protein library.

    Science.gov (United States)

    Zhang, Fei; Bai, Fengwu; Zhao, Xinqing

    2016-10-01

    Trichoderma reesei Rut-C30 is a well-known cellulase producer, and improvement of its cellulase production is of great interest. An artificial zinc finger protein (AZFP) library is constructed for expression in T. reesei Rut-C30, and a mutant strain T. reesei U3 is selected based on its enhanced cellulase production. The U3 mutant shows a 55% rise in filter paper activity and 8.1-fold increased β-glucosidase activity, when compared to the native strain T. reesei Rut-C30. It is demonstrated that enhanced β-glucosidase activity was due to elevated transcription level of β-glucosidase gene in the U3 mutant. Moreover, significant elevation in transcription levels of several putative Azfp-U3 target genes is detected in the U3 mutant, including genes encoding hypothetical transcription factors and a putative glycoside hydrolase. Furthermore, U3 cellulase shows 115% higher glucose yield from pretreated corn stover, when compared to the cellulase of T. reesei Rut-C30. These results demonstrate that AZFP can be used to improve cellulase production in T. reesei Rut-C30. Our current work offers the establishment of an alternative strategy to develop fungal cell factories for improved production of high value industrial products. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A conserved function of the zinc finger transcription factor Sp8/9 in allometric appendage growth in the milkweed bug Oncopeltus fasciatus.

    Science.gov (United States)

    Schaeper, Nina D; Prpic, Nikola-Michael; Wimmer, Ernst A

    2009-08-01

    The genes encoding the closely related zinc finger transcription factors Buttonhead (Btd) and D-Sp1 are expressed in the developing limb primordia of Drosophila melanogaster and are required for normal growth of the legs. The D-Sp1 homolog of the red flour beetle Tribolium castaneum, Sp8 (appropriately termed Sp8/9), is also required for the proper growth of the leg segments. Here we report on the isolation and functional study of the Sp8/9 gene from the milkweed bug Oncopeltus fasciatus. We show that Sp8/9 is expressed in the developing appendages throughout development and that the downregulation of Sp8/9 via RNAi leads to antennae, rostrum, and legs with shortened and fused segments. This supports a conserved role of Sp8/9 in allometric leg segment growth. However, all leg segments including the claws are present and the expression of the leg genes Distal-less, dachshund, and homothorax are proportionally normal, thus providing no evidence for a role of Sp8/9 in appendage specification.

  18. The discovery of glycine and related amino acid-based factor Xa inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Kohrt, Jeffrey T.; Filipski, Kevin J.; Cody, Wayne L.; Bigge, Christopher F.; La, Frances; Welch, Kathleen; Dahring, Tawny; Bryant, John W.; Leonard, Daniele; Bolton, Gary; Narasimhan, Lakshmi; Zhang, Erli; Peterson, J. Thomas; Haarer, Staci; Sahasrabudhe, Vaishali; Janiczek, Nancy; Desiraju, Shrilakshmi; Hena, Mostofa; Fiakpui, Charles; Saraswat, Neerja; Sharma, Raman; Sun, Shaoyi; Maiti, Samarendra N.; Leadley, Robert; Edmunds, Jeremy J. (Naeja); (Pfizer)

    2010-12-03

    Herein, we report on the identification of three potent glycine and related amino acid-based series of FXa inhibitors containing a neutral P1 chlorophenyl pharmacophore. A X-ray crystal structure has shown that constrained glycine derivatives with optimized N-substitution can greatly increase hydrophobic interactions in the FXa active site. Also, the substitution of a pyridone ring for a phenylsulfone ring in the P4 sidechain resulted in an inhibitor with enhanced oral bioavailability.

  19. Integration of tactile input across fingers in a patient with finger agnosia.

    NARCIS (Netherlands)

    Anema, H.A.; Overvliet, K.E.; Smeets, J.B.J.; Brenner, E.; Dijkerman, H.C.

    2011-01-01

    Finger agnosia has been described as an inability to explicitly individuate between the fingers, which is possibly due to fused neural representations of these fingers. Hence, are patients with finger agnosia unable to keep tactile information perceived over several fingers separate? Here, we tested

  20. Classification, expression pattern and comparative analysis of sugarcane expressed sequences tags (ESTs encoding glycine-rich proteins (GRPs

    Directory of Open Access Journals (Sweden)

    Fusaro Adriana

    2001-01-01

    Full Text Available Since the isolation of the first glycine-rich proteins (GRPs in plants a wealth of new GRPs have been identified. The highly specific but diverse expression pattern of grp genes, taken together with the distinct sub-cellular localization of some GRP groups, clearly indicate that these proteins are involved in several independent physiological processes. Notwithstanding the absence of a clear definition of the role of GRPs in plant cells, studies conducted with these proteins have provided new and interesting insights into the molecular biology and cell biology of plants. Complexly regulated promoters and distinct mechanisms for the regulation of gene expression have been demonstrated and new protein targeting pathways, as well as the exportation of GRPs from different cell types have been discovered. These data show that GRPs can be useful as markers and/or models to understand distinct aspects of plant biology. In this paper, the structural and functional features of these proteins in sugarcane (Saccharum officinarum L. are summarized. Since this is the first description of GRPs in sugarcane, special emphasis has been given to the expression pattern of these GRP genes by studying their abundance and prevalence in the different cDNA-libraries of the Sugarcane Expressed Sequence Tag (SUCEST project . The comparison of sugarcane GRPs with GRPs from other species is also discussed.

  1. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    Science.gov (United States)

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-01-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively.

  2. Determination of the characteristics of a Schottky barrier formed by latent finger mark corrosion of brass

    International Nuclear Information System (INIS)

    Bond, J W

    2009-01-01

    The ideality factor (η) and barrier height (φ B ) for a metal-copper(I) oxide rectifying contact formed by the latent finger mark corrosion of α phase brass have been determined from forward bias I/V characteristics in the range 0.4 V ≤ V ≤ 0.55 V. Rectifying contacts formed from the finger mark deposits of different people gave η = 1.5-1.6 ± 0.1 and φ B = 0.49-0.52 ± 0.04 V. A Mott-Schottky plot of capacitance-voltage measurements in reverse bias gave the built in potential ψ bi = 0.4 ± 0.1 V, the gradient of the plot confirming the conductivity of the finger mark corrosion as p type. X-ray photoelectron spectroscopy spectra of the corrosion showed that Cu(I), Cu(II) and Zn(II) can co-exist on the surface, the Cu(I) : Cu(II) and Zn : Cu ratios determining whether a rectifying contact is formed. Initial findings suggest that when the concentration of Cu(I) dominates the Cu(I) : Cu(II) ratio (approximately 6 : 1), or when Cu(II) is absent, a rectifying contact can be formed subject to the Zn : Cu ratio being approximately 1 : 3. As the surface concentration of zinc increases, the rectifying contact is degraded until the concentration of zinc approaches that of copper when no evidence of a Schottky barrier is observed and the contact appears ohmic.

  3. Evaluation of nutraceutical and antinutritional properties in barnyard and finger millet varieties grown in Himalayan region

    OpenAIRE

    Panwar, Priyankar; Dubey, Ashutosh; Verma, A. K.

    2016-01-01

    Five elite varieties of barnyard (Echinochloafrumentacea) and finger (Eleusine coracana) growing at northwestern Himalaya were investigated for nutraceutical and antinutritional properties. Barnyard millet contained higher amount of crude fiber, total dietary fiber, tryptophan content, total carotenoids, ��-tocopherol compared to the finger millet whereas the finger millet contains higher amount of methionine and ascorbic acid as compared to the barnyard millet. The secondary metabolites of b...

  4. Formation of intercalation compound of kaolinite-glycine via displacing guest water by glycine.

    Science.gov (United States)

    Zheng, Wan; Zhou, Jing; Zhang, Zhenqian; Chen, Likun; Zhang, Zhongfei; Li, Yong; Ma, Ning; Du, Piyi

    2014-10-15

    The kaolinite-glycine intercalation compound was successfully formed by displacing intercalated guest water molecules in kaolinite hydrate as a precursor. The microstructure of the compound was characterized by X-ray diffraction, Fourier Transform Infrared Spectroscopy and Scanning Electron Microscope. Results show that glycine can only be intercalated into hydrated kaolinite to form glycine-kaolinite by utilizing water molecules as a transition phase. The intercalated glycine molecules were squeezed partially into the ditrigonal holes in the silicate layer, resulting in the interlayer distance of kaolinite reaching 1.03nm. The proper intercalation temperature range was between 20°C and 80°C. An intercalation time of 24h or above was necessary to ensure the complete formation of kaolinite-glycine. The highest intercalation degree of about 84% appeared when the system was reacted at the temperature of 80°C for 48h. There were two activation energies for the intercalation of glycine into kaolinite, one being 21kJ/mol within the temperature range of 20-65°C and the other 5.8kJ/mol between 65°C and 80°C. The intercalation degree (N) and intercalation velocity (v) of as a function of intercalation time (t) can be empirically expressed as N=-79.35e(-)(t)(/14.8)+80.1 and v=5.37e(-)(t)(/14.8), respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Finger-vein and fingerprint recognition based on a feature-level fusion method

    Science.gov (United States)

    Yang, Jinfeng; Hong, Bofeng

    2013-07-01

    Multimodal biometrics based on the finger identification is a hot topic in recent years. In this paper, a novel fingerprint-vein based biometric method is proposed to improve the reliability and accuracy of the finger recognition system. First, the second order steerable filters are used here to enhance and extract the minutiae features of the fingerprint (FP) and finger-vein (FV). Second, the texture features of fingerprint and finger-vein are extracted by a bank of Gabor filter. Third, a new triangle-region fusion method is proposed to integrate all the fingerprint and finger-vein features in feature-level. Thus, the fusion features contain both the finger texture-information and the minutiae triangular geometry structure. Finally, experimental results performed on the self-constructed finger-vein and fingerprint databases are shown that the proposed method is reliable and precise in personal identification.

  6. 113Cd-NMR investigation of a cadmium-substituted copper, zinc-containing superoxide dismutase from yeast

    DEFF Research Database (Denmark)

    Kofod, Pauli; Bauer, Rogert; Danielsen, Eva

    1991-01-01

    113Cd nuclear magnetic resonance spectroscopy has been used to investigate the metal binding sites of cadmium-substituted copper,zinc-containing superoxide dismutase from baker's yeast. NMR signals were obtained for 113Cd(II) at the Cu site as well as for 113Cd(II) at the Zn site. The two subunits...

  7. XPS and Raman study of zinc containing silica microparticles loaded with insulin

    Energy Technology Data Exchange (ETDEWEB)

    Vanea, E.; Simon, V., E-mail: viorica.simon@phys.ubbcluj.ro

    2013-09-01

    Zinc–silica microparticles obtained by sol–gel method solely or by combining sol–gel chemistry with freeze-drying and spray-drying procedures were explored as potential insulin drug delivery carriers for their improved loading efficiency. Zinc containing silica hosts of different specific surface area and mean pore volume loaded with insulin under similar conditions were investigated by X-ray photoelectron spectroscopy (XPS) and confocal micro-Raman spectroscopy in order to assess the insulin adherence to these matrices and the biologically active state of the insulin after embedding.

  8. Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis

    International Nuclear Information System (INIS)

    Castric, P.A.

    1977-01-01

    Hydrogen cyanide (HCN) production by Pseudomonas aeruginosa in a synthetic medium is stimulated by the presence of glycine. Methionine enhances this stimulation but will not substitute for glycine as a stimulator of cyanogenesis. Threonine and phenylalanine are effective substitutes for glycine in the stimulation of HCN production. Glycine, threonine, and serine are good radioisotope precursors of HCN, but methionine and phenylalanine are not. Cell extracts of P. aeruginosa convert [ 14 C]threonine to [ 14 C]glycine. H14CN is produced with low dilution of label from either [1- 14 C]glycine or [2- 14 C]glycine, indicating a randomization of label either in the primary or secondary metabolism of glycine. When whole cells were fed [1,2- 14 C]glycine, cyanide and bicarbonate were the only radioactive extracellular products observed

  9. A new liquid-phase-separation glaze containing neodymium oxide

    International Nuclear Information System (INIS)

    Jing, S.; Xianque, C.; Luxing, K.; Pentecost, J.L.

    1986-01-01

    A color-changeable opaque glaze containing neodymium oxide was investigated. Results show that the glaze is a new example of the liquid-phase-separation type. The discrete phase droplets are from 50 to 500 nm in size. They are rich in Nd, Zn, Ca, and Mg and the continuous phase is rich in Si, Al, and K. The concentration of the discrete phase is approx. =45%. The large number of discrete droplets and the zinc oxide in the glaze increase its opacity to cover the selective light absorption and scattering of the neodymium ion and reduce the opalescence effect

  10. Zinc content of selected tissues and taste perception in rats fed zinc deficient and zinc adequate rations

    International Nuclear Information System (INIS)

    Boeckner, L.S.; Kies, C.

    1986-01-01

    The objective of the study was to determine the effects of feeding zinc sufficient and zinc deficient rations on taste sensitivity and zinc contents of selected organs in rats. The 36 Sprague-Dawley male weanling rats were divided into 2 groups and fed zinc deficient or zinc adequate rations. The animals were subjected to 4 trial periods in which a choice of deionized distilled water or a solution of quinine sulfate at 1.28 x 10 -6 was given. A randomized schedule for rat sacrifice was used. No differences were found between zinc deficient and zinc adequate rats in taste preference aversion scores for quinine sulfate in the first three trial periods; however, in the last trial period rats in the zinc sufficient group drank somewhat less water containing quinine sulfate as a percentage of total water consumption than did rats fed the zinc deficient ration. Significantly higher zinc contents of kidney, brain and parotid salivary glands were seen in zinc adequate rats compared to zinc deficient rats at the end of the study. However, liver and tongue zinc levels were lower for both groups at the close of the study than were those of rats sacrificed at the beginning of the study

  11. The use of geotextile tube containers for dewatering the Restigouche open pit zinc mine and settling pond basin in New Brunswick, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Douheret [Terratube, Saint-Romuald, PQ (Canada)

    2010-07-01

    This PowerPoint presentation discussed the use of geotextile tube containers for the dewatering of an open pit zinc mine and settling pond in New Brunswick (NB). The zinc and lead mine closed in 1996 and will be re-opened in 2007. Remediation of the site has been challenged by severe discharge criteria for treated water, as well as by the different types of wastewater produced at the site, which is located in a mountainous area with no impermeable soil. The remediation projects include an open pit cleaning procedure where water is removed and the mine is then desludged. A wastewater treatment plant will then be installed. More than 32,000 m{sup 3} of sludge has accumulated at the bottom of the pit. The zinc content of the sludge was estimated at 2.5 ppm. The water management phase of the project will include batch treatments and the addition of 140 metric tonnes of lime to raise the pH and to precipitate metal ions. The sludge management program included the use of mechanical dewatering, the construction of a storage area, and the use of geocontainers for dewatering and temporary containment. Seventeen geotextile containers were used to reduce the zinc content of the water to less than the 250 ppb authorized by environmental agencies. The containers were changed once every 2 months. tabs., figs.

  12. Clinically distinct presentations of copper deficiency myeloneuropathy and cytopenias in a patient using excessive zinc-containing denture adhesive.

    Science.gov (United States)

    Cathcart, Sahara J; Sofronescu, Alina G

    2017-08-01

    While copper deficiency has long been known to cause cytopenias, copper deficiency myeloneuropathy is a more recently described entity. Here, we present the case of two clinically distinct presentations of acquired copper deficiency syndromes secondary to excessive use of zinc-containing denture adhesive over five years: myeloneuropathy and severe macrocytic anemia and neutropenia. Extensive laboratory testing and histologic evaluation of the liver and bone marrow, were necessary to rule out other disease processes and establish the diagnosis of copper deficiency. The initial presentation consisted of a myelopathy involving the posterior columns. Serum and urine copper were significantly decreased, and serum zinc was elevated. On second presentation (five years later), multiple hematological abnormalities were detected. Serum copper was again decreased, while serum zinc was elevated. Zinc overload is a preventable cause of copper deficiency syndromes. This rare entity presented herein highlights the importance of patient, as well as provider, education. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. Identity of zinc finger nucleases with specificity to herpes simplex virus type II genomic DNA: novel HSV-2 vaccine/therapy precursors

    Directory of Open Access Journals (Sweden)

    Wayengera Misaki

    2011-06-01

    Full Text Available Abstract Background Herpes simplex type II (HSV-2 is a member of the family herpesviridae. Human infection with this double stranded linear DNA virus causes genital ulcerative disease and existing treatment options only serve to resolve the symptomatology (ulcers associated with active HSV-2 infection but do not eliminate latent virus. As a result, infection with HSV-2 follows a life-long relapsing (active versus latent course. On the basis of a primitive bacterium anti-phage DNA defense, the restriction modification (R-M system, we previously identified the Escherichia coli restriction enzyme (REase EcoRII as a novel peptide to excise or irreversibly disrupt latent HSV-2 DNA from infected cells. However, sequences of the site specificity palindrome of EcoRII 5'-CCWGG-3' (W = A or T are equally present within the human genome and are a potential source of host-genome toxicity. This feature has limited previous HSV-2 EcoRII based therapeutic models to microbicides only, and highlights the need to engineer artificial REases (zinc finger nucleases-ZFNs with specificity to HSV-2 genomic-DNA only. Herein, the therapeutic-potential of zinc finger arrays (ZFAs and ZFNs is identified and modeled, with unique specificity to the HSV-2 genome. Methods and results Using the whole genome of HSV-2 strain HG52 (Dolan A et al.,, and with the ZFN-consortium's CoDA-ZiFiT software pre-set at default, more than 28,000 ZFAs with specificity to HSV-2 DNA were identified. Using computational assembly (through in-silico linkage to the Flavobacterium okeanokoites endonuclease Fok I of the type IIS class, 684 ZFNs with specificity to the HSV-2 genome, were constructed. Graphic-analysis of the HSV-2 genome-cleavage pattern using the afore-identified ZFNs revealed that the highest cleavage-incidence occurred within the 30,950 base-pairs (~between the genomic context coordinates 0.80 and 1.00 at the 3' end of the HSV-2 genome. At approximately 3,095 bp before and after the

  14. Admittance Control of a Multi-Finger Arm Based on Manipulability of Fingers

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2011-09-01

    Full Text Available In the previous studies, admittance control and impedance control for a finger-arm robot using the manipulability of the finger were studied and methods of realizing the controls have been proposed. In this study, two 3-DOF fingers are attached to the end-effector of a 6-DOF arm to configure a multi-finger arm robot. Based on the previous methods, the authors have proposed an admittance control for a multi-finger arm robot using the manipulability of the fingers in this study. Algorithms of the averaging method and the mini-max method were introduced to establish a manipulability criterion of the two fingers in order to generate a cooperative movement of the arm. Comparison of the admittance controls combined with the top search method and local optimization method for the multi-finger arm robot was made and features of the control methods were also discussed. The stiffness control and damping control were experimentally evaluated to demonstrate the effectiveness of the proposed methods.

  15. 76 FR 8771 - Glycine From China

    Science.gov (United States)

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-718 (Third Review)] Glycine From China... order on glycine from China. SUMMARY: The Commission hereby gives notice that it will proceed with a... determine whether revocation of the antidumping duty order on glycine from China would be likely to lead to...

  16. Hair Zinc: an Index for Zinc Status in Under-Five Children from Low-Income Communities in Kanam Area of North-Central Nigeria.

    Science.gov (United States)

    Jaryum, Kiri H; Okoye, Zebulon Sunday C; Stoecker, Barbara

    2018-06-01

    Nutritional deficiencies of trace elements are among the top ten causes of death in Sub Saharan Africa. In Kanam Local Government Area of Nigeria, the problem is compounded by high levels of poverty and illiteracy. Abnormally low hair zinc levels are important, sensitive diagnostic biochemical indices of Zinc deficiency. The purpose of this study is to assess the zinc status of children less than 5 years in Kanam local government area, north-central Nigeria, by measuring the zinc level in hair samples collected from 44 under-5 children across the area. A household survey was made to assess the pattern and frequency of consumption of zinc-rich foods which was done by means of questionnaire. Hair samples were analysed for zinc content by the inductively coupled plasma-mass spectrophotometry (ICP-MS). The data were analysed statistically using the Student's t test, z test, and Pearson correlation, while questionnaire-captured data were analysed by simple arithmetic. The results of the analyses showed that the average hair zinc level was 74.35 ± 48.05 μg/g. This was below the normal range of 130-140 μg/g, for children less than 5 years. Based on the results, 86.36% have hair zinc level below the lower limit of the normal range of 130 μg/g. Between the gender, boys have higher hair zinc content than girls. Data from the questionnaire showed that 53.45% of the population studied have poor/inadequate intake of zinc-rich foods of animal origin, a dietary behaviour reported to predispose to micronutrient deficiency, including zinc.

  17. Multimodal biometric method that combines veins, prints, and shape of a finger

    Science.gov (United States)

    Kang, Byung Jun; Park, Kang Ryoung; Yoo, Jang-Hee; Kim, Jeong Nyeo

    2011-01-01

    Multimodal biometrics provides high recognition accuracy and population coverage by using various biometric features. A single finger contains finger veins, fingerprints, and finger geometry features; by using multimodal biometrics, information on these multiple features can be simultaneously obtained in a short time and their fusion can outperform the use of a single feature. This paper proposes a new finger recognition method based on the score-level fusion of finger veins, fingerprints, and finger geometry features. This research is novel in the following four ways. First, the performances of the finger-vein and fingerprint recognition are improved by using a method based on a local derivative pattern. Second, the accuracy of the finger geometry recognition is greatly increased by combining a Fourier descriptor with principal component analysis. Third, a fuzzy score normalization method is introduced; its performance is better than the conventional Z-score normalization method. Fourth, finger-vein, fingerprint, and finger geometry recognitions are combined by using three support vector machines and a weighted SUM rule. Experimental results showed that the equal error rate of the proposed method was 0.254%, which was lower than those of the other methods.

  18. Electrochemical impedance spectroscopy and zero resistance ammeters (ZRA) as tools for studying the behaviour of zinc-rich inorganic coatings

    International Nuclear Information System (INIS)

    Novoa, X.R.; Izquierdo, M.; Merino, P.; Espada, L.

    1989-01-01

    Impedance spectra obtained from zinc-rich inorganic coatings after one year of atmospheric exposure, have been interpreted on the basis of the study of the galvanic couple Zn/Fe, using a potentiostat combined with two ZRA. The area ratio of Zn/Fe is one of the factors conditioning the cathodic protection of iron. When this ratio is locally 1:1 or lower, corrosion spots are detected on iron and the overall impedance spectra shows a 'flattened' shape at low frequencies. The type of atmosphere determines the durability and evolution of the coating's protection mechanism. (author) 9 refs., 13 figs

  19. Glycine Receptor α2 Subunit Activation Promotes Cortical Interneuron Migration

    Directory of Open Access Journals (Sweden)

    Ariel Avila

    2013-08-01

    Full Text Available Glycine receptors (GlyRs are detected in the developing CNS before synaptogenesis, but their function remains elusive. This study demonstrates that functional GlyRs are expressed by embryonic cortical interneurons in vivo. Furthermore, genetic disruption of these receptors leads to interneuron migration defects. We discovered that extrasynaptic activation of GlyRs containing the α2 subunit in cortical interneurons by endogenous glycine activates voltage-gated calcium channels and promotes calcium influx, which further modulates actomyosin contractility to fine-tune nuclear translocation during migration. Taken together, our data highlight the molecular events triggered by GlyR α2 activation that control cortical tangential migration during embryogenesis.

  20. Robotic finger perturbation training improves finger postural steadiness and hand dexterity.

    Science.gov (United States)

    Yoshitake, Yasuhide; Ikeda, Atsutoshi; Shinohara, Minoru

    2018-02-01

    The purpose of the study was to understand the effect of robotic finger perturbation training on steadiness in finger posture and hand dexterity in healthy young adults. A mobile robotic finger training system was designed to have the functions of high-speed mechanical response, two degrees of freedom, and adjustable loading amplitude and direction. Healthy young adults were assigned to one of the three groups: random perturbation training (RPT), constant force training (CFT), and control. Subjects in RPT and CFT performed steady posture training with their index finger using the robot in different modes: random force in RPT and constant force in CFT. After the 2-week intervention period, fluctuations of the index finger posture decreased only in RPT during steady position-matching tasks with an inertial load. Purdue pegboard test score improved also in RPT only. The relative change in finger postural fluctuations was negatively correlated with the relative change in the number of completed pegs in the pegboard test in RPT. The results indicate that finger posture training with random mechanical perturbations of varying amplitudes and directions of force is effective in improving finger postural steadiness and hand dexterity in healthy young adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Robotic hand and fingers

    Science.gov (United States)

    Salisbury, Curt Michael; Dullea, Kevin J.

    2017-06-06

    Technologies pertaining to a robotic hand are described herein. The robotic hand includes one or more fingers releasably attached to a robotic hand frame. The fingers can abduct and adduct as well as flex and tense. The fingers are releasably attached to the frame by magnets that allow for the fingers to detach from the frame when excess force is applied to the fingers.

  2. Drosophila morgue associates with SkpA and polyubiquitin in vivo.

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    Full Text Available Morgue is a unique ubiquitination protein that influences programmed cell death and circadian rhythms in Drosophila. We have found that over-expression of wild-type Morgue results in organismal lethality. This over-expression phenotype was used as the basis for an in vivo functional assay to investigate the importance of the Morgue zinc finger, F box, Ubiquitin E2 Conjugase Variant (UEV domain, and active site Glycine residue. Removal of the zinc finger or UEV domain reduced Morgue's ability to induce lethality and enhance cell death. In contrast, lack of the F box as well as several different substitutions of the active site Glycine did not alter Morgue-induced lethality or cell death enhancement. To further characterize Morgue functions, a Flag:Morgue protein was used to isolate Morgue-associated proteins from whole adult Drosophila. Mass spectrometry analysis of the Morgue-associated proteins identified SkpA as well as a ubiquitin multimer. The identification of SkpA is consistent with previous in vitro studies and further suggests Morgue acts in an SCF-type ubiquitin E3 ligase complex. The identification of poly-ubiquitin was unexpected and this interaction had not been previously identified. The associated poly-ubiquitin was found to exhibit a Lys-48 topology, consistent with distinct functions of Morgue in proteasome-mediated protein turnover. Multiple regions of Morgue were subsequently shown to be required for poly-ubiquitin binding. Overall, Morgue is a novel multi-functional ubiquitin-binding protein.

  3. Zinc status and its association with the health of adolescents: a review of studies in India

    Directory of Open Access Journals (Sweden)

    Rama Kawade

    2012-04-01

    Full Text Available Background: Zinc is important in adolescence because of its role in growth and sexual maturation. Adolescents from developing countries such as India may be at high risk of zinc deficiency because of unwholesome food habits and poor bioavailability of zinc from plant-based diets. Objectives: (1 to study zinc status and its association with profile of other micronutrients, (2 to construct a simple tool in the form of Adolescent Micronutrient Quality Index (AMQI to assess quality of diets of the girls and (3 to examine the effect of zinc supplement on health of adolescent girls. Methods: Girls (10–16 years from two secondary schools of Pune, Maharashtra state, in Western India were enrolled in a cross-sectional study (n = 630. Data were collected on dietary intake, cognitive performance, taste acuity, haemoglobin, erythrocyte zinc and plasma levels of zinc, vitamin C, β-carotene and retinol. AMQI was developed using age–sex-specific Indian dietary guidelines and healthy foods and habits described in the recent US dietary guidelines. Zinc-rich recipes were developed considering habitual diets of the girls and vegetarian sources of zinc. An intervention trial (n = 180 was conducted to assess the effect of zinc-rich dietary supplements and ayurvedic zinc (Jasad supplementation. Results: Prevalence of micronutrient deficiencies was high in these girls. Poor cognitive performance was seen in half of the girls, and salt taste perception was affected in 45%. AMQI was correlated with nutrient intakes and blood micronutrient levels (p < 0.01, indicating the potential of AMQI to measure micronutrient quality of diets of adolescent girls. Results of the intervention trial indicated that supplementation of zinc-rich recipes vis-a-vis ayurvedic Jasad zinc has the potential to improve plasma zinc status, cognitive performance and taste acuity in adolescent girls. Conclusion: Review of the studies on Indian adolescent girls demonstrates the necessity of

  4. Systematic analysis and comparison of the PHD-Finger gene family in Chinese pear (Pyrus bretschneideri) and its role in fruit development.

    Science.gov (United States)

    Cao, Yunpeng; Han, Yahui; Meng, Dandan; Abdullah, Muhammad; Li, Dahui; Jin, Qing; Lin, Yi; Cai, Yongping

    2018-04-20

    PHD-finger proteins, which belongs to the type of zinc finger family, and that play an important role in the regulation of both transcription and the chromatin state in eukaryotes. Currently, PHD-finger proteins have been well studied in animals, while few studies have been carried out on their function in plants. In the present study, 129 non-redundant PHD-finger genes were identified from 5 Rosaceae species (pear, apple, strawberry, mei, and peach); among them, 31 genes were identified in pear. Subsequently, we carried out a bioinformatics analysis of the PHD-finger genes. Thirty-one PbPHD genes were divided into 7 subfamilies based on the phylogenetic analysis, which are consistent with the intron-exon and conserved motif analyses. In addition, we identified five segmental duplication events, implying that the segmental duplications might be a crucial role in the expansion of the PHD-finger gene family in pear. The microsynteny analysis of five Rosaceae species showed that there were independent duplication events in addition to the genome-wide duplication of the pear genome. Subsequently, ten expressed PHD-finger genes of pear fruit were identified using qRT-PCR, and one of these genes, PbPHD10, was identified as an important candidate gene for the regulation of lignin synthesis. Our research provides useful information for the further analysis of the function of PHD-finger gene family in pear.

  5. Differing Dynamics of Intrapersonal and Interpersonal Coordination: Two-finger and Four-Finger Tapping Experiments.

    Directory of Open Access Journals (Sweden)

    Kentaro Kodama

    Full Text Available Finger-tapping experiments were conducted to examine whether the dynamics of intrapersonal and interpersonal coordination systems can be described equally by the Haken-Kelso-Bunz model, which describes inter-limb coordination dynamics. This article reports the results of finger-tapping experiments conducted in both systems. Two within-subject factors were investigated: the phase mode and the number of fingers. In the intrapersonal experiment (Experiment 1, the participants were asked to tap, paced by a gradually hastening auditory metronome, looking at their fingers moving, using the index finger in the two finger condition, or the index and middle finger in the four-finger condition. In the interpersonal experiment (Experiment 2, pairs of participants performed the task while each participant used the outside hand, tapping with the index finger in the two finger condition, or the index and middle finger in the four-finger condition. Some results did not agree with the HKB model predictions. First, from Experiment 1, no significant difference was observed in the movement stability between the in-phase and anti-phase modes in the two finger condition. Second, from Experiment 2, no significant difference was found in the movement stability between the in-phase and anti-phase mode in the four-finger condition. From these findings, different coordination dynamics were inferred between intrapersonal and interpersonal coordination systems against prediction from the previous studies. Results were discussed according to differences between intrapersonal and interpersonal coordination systems in the availability of perceptual information and the complexity in the interaction between limbs derived from a nested structure.

  6. The radiation stability of glycine in solid CO2 - In situ laboratory measurements with applications to Mars

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.

    2015-05-01

    The detection of biologically important, organic molecules on Mars is an important goal that may soon be reached. However, the current small number of organic detections at the martian surface may be due to the harsh UV and radiation conditions there. It seems likely that a successful search will require probing the subsurface of Mars, where penetrating cosmic rays and solar energetic particles dominate the radiation environment, with an influence that weakens with depth. Toward the goal of understanding the survival of organic molecules in cold radiation-rich environments on Mars, we present new kinetics data on the radiolytic destruction of glycine diluted in frozen carbon dioxide. Rate constants were measured in situ with infrared spectroscopy, without additional sample manipulation, for irradiations at 25, 50, and 75 K with 0.8-MeV protons. The resulting half-lives for glycine in CO2-ice are compared to previous results for glycine in H2O-ice and show that glycine in CO2-ice is much less stable in a radiation environment, with destruction rate constants ∼20-40 times higher than glycine in H2O-ice. Extrapolation of these results to conditions in the martian subsurface results in half-lives estimated to be less than 100-200 Myr even at depths of a few meters.

  7. Leader protein of encephalomyocarditis virus binds zinc, is phosphorylated during viral infection, and affects the efficiency of genome translation.

    Science.gov (United States)

    Dvorak, C M; Hall, D J; Hill, M; Riddle, M; Pranter, A; Dillman, J; Deibel, M; Palmenberg, A C

    2001-11-25

    Encephalomyocarditis virus (EMCV) is the prototype member of the cardiovirus genus of picornaviruses. For cardioviruses and the related aphthoviruses, the first protein segment translated from the plus-strand RNA genome is the Leader protein. The aphthovirus Leader (173-201 amino acids) is an autocatalytic papain-like protease that cleaves translation factor eIF-4G to shut off cap-dependent host protein synthesis during infection. The less characterized cardioviral Leader is a shorter protein (67-76 amino acids) and does not contain recognizable proteolytic motifs. Instead, these Leaders have sequences consistent with N-terminal zinc-binding motifs, centrally located tyrosine kinase phosphorylation sites, and C-terminal, acid-rich domains. Deletion mutations, removing the zinc motif, the acid domain, or both domains, were engineered into EMCV cDNAs. In all cases, the mutations gave rise to viable viruses, but the plaque phenotypes in HeLa cells were significantly smaller than for wild-type virus. RNA transcripts containing the Leader deletions had reduced capacity to direct protein synthesis in cell-free extracts and the products with deletions in the acid-rich domains were less effective substrates at the L/P1 site, for viral proteinase 3Cpro. Recombinant EMCV Leader (rL) was expressed in bacteria and purified to homogeneity. This protein bound zinc stoichiometrically, whereas protein with a deletion in the zinc motif was inactive. Polyclonal mouse sera, raised against rL, immunoprecipitated Leader-containing precursors from infected HeLa cell extracts, but did not detect significant pools of the mature Leader. However, additional reactions with antiphosphotyrosine antibodies show that the mature Leader, but not its precursors, is phosphorylated during viral infection. The data suggest the natural Leader may play a role in regulation of viral genome translation, perhaps through a triggering phosphorylation event.

  8. Multi-fingered robotic hand

    Science.gov (United States)

    Ruoff, Carl F. (Inventor); Salisbury, Kenneth, Jr. (Inventor)

    1990-01-01

    A robotic hand is presented having a plurality of fingers, each having a plurality of joints pivotally connected one to the other. Actuators are connected at one end to an actuating and control mechanism mounted remotely from the hand and at the other end to the joints of the fingers for manipulating the fingers and passing externally of the robot manipulating arm in between the hand and the actuating and control mechanism. The fingers include pulleys to route the actuators within the fingers. Cable tension sensing structure mounted on a portion of the hand are disclosed, as is covering of the tip of each finger with a resilient and pliable friction enhancing surface.

  9. Cloning and analysis of the mouse Fanconi anemia group A cDNA and an overlapping penta zinc finger cDNA.

    Science.gov (United States)

    Wong, J C; Alon, N; Norga, K; Kruyt, F A; Youssoufian, H; Buchwald, M

    2000-08-01

    Despite the cloning of four disease-associated genes for Fanconi anemia (FA), the molecular pathogenesis of FA remains largely unknown. To study FA complementation group A using the mouse as a model system, we cloned and characterized the mouse homolog of the human FANCA cDNA. The mouse cDNA (Fanca) encodes a 161-kDa protein that shares 65% amino acid sequence identity with human FANCA. Fanca is located at the distal region of mouse chromosome 8 and has a ubiquitous pattern of expression in embryonic and adult tissues. Expression of the mouse cDNA in human FA-A cells restores the cellular drug sensitivity to normal levels. Thus, the expression pattern, protein structure, chromosomal location, and function of FANCA are conserved in the mouse. We also isolated a novel zinc finger protein, Zfp276, which has five C(2)H(2) domains. Interestingly, Zfp276 is situated in the Fanca locus, and the 3'UTR of its cDNA overlaps with the last four exons of Fanca in a tail-to-tail manner. Zfp276 is expressed in the same tissues as Fanca, but does not complement the mitomycin C (MMC)-sensitive phenotype of FA-A cells. The overlapping genomic organization between Zfp276 and Fanca may have relevance to the disease phenotype of FA. Copyright 2000 Academic Press.

  10. Review of Specifications for Zinc-Rich Paints,

    Science.gov (United States)

    1979-09-01

    inspected in 1976, the repair inorganic zinc was in very poor condition due to extensive " chicken pox " rusting. The original red lead alkyd and basic...Nebraska H-186 New Hampshire H-188 New Jersey H-189 /y’/9 7’ 𔃼 New Mexico H(-216.0 North Carolina H-217 North Dakota l1- 246 Ohio H-247 Oklahoma H-254...8217l.% 2. Olharfing I r A1 1 1e a £I )II d To be separately packaged in multiples of 0 54 pound of pox der per M . Cnpost vehicle. One 2.70 pound

  11. Differences in finger localisation performance of patients with finger agnosia.

    Science.gov (United States)

    Anema, Helen A; Kessels, Roy P C; de Haan, Edward H F; Kappelle, L Jaap; Leijten, Frans S; van Zandvoort, Martine J E; Dijkerman, H Chris

    2008-09-17

    Several neuropsychological studies have suggested parallel processing of somatosensory input when localising a tactile stimulus on one's own by pointing towards it (body schema) and when localising this touched location by pointing to it on a map of a hand (body image). Usually these reports describe patients with impaired detection, but intact sensorimotor localisation. This study examined three patients with a lesion of the angular gyrus with intact somatosensory processing, but with selectively disturbed finger identification (finger agnosia). These patients performed normally when pointing towards the touched finger on their own hand but failed to indicate this finger on a drawing of a hand or to name it. Similar defects in the perception of other body parts were not observed. The findings provide converging evidence for the dissociation between body image and body schema and, more importantly, reveal for the first time that this distinction is also present in higher-order cognitive processes selectively for the fingers.

  12. Synthesis and Characterization of Chromium (III) Complexes with L-Glutamic Acid, Glycine and LCysteine

    OpenAIRE

    Kun Sri Budiasih; Chairil Anwar; Sri Juari Santosa; Hilda Ismail

    2013-01-01

    Some Chromium (III) complexes were synthesized with three amino acids: L Glutamic Acid, Glycine, and L-cysteine as the ligands, in order to provide a new supplement containing Cr(III) for patients with type 2 diabetes mellitus. The complexes have been prepared by refluxing a mixture of Chromium(III) chloride in aqueous solution with L-glutamic acid, Glycine, and L-cysteine after pH adjustment by sodium hydroxide. These complexes were characterized by Infrared and Uv-Vis s...

  13. Can Co(II) or Cd(II) substitute for Zn(II) in zinc fingers?

    Indian Academy of Sciences (India)

    Unknown

    Cysme) and histidine methylester (Hisme) has been studied as a model for the zinc core. ... obtained from the Sigma Chemical Company (USA). ..... entropy loss from the metal-binding site organization is expected to surpass the entropy.

  14. Admittance Control of a Multi-Finger Arm Based on Manipulability of Fingers

    Directory of Open Access Journals (Sweden)

    Takayuki Hori

    2011-09-01

    Full Text Available In the previous studies, admittance control and impedance control for a finger‐arm robot using the manipulability of the finger were studied and methods of realizing the controls have been proposed. In this study, two 3‐DOF fingers are attached to the end‐effector of a 6‐DOF arm to configure a multi‐finger arm robot. Based on the previous methods, the authors have proposed an admittance control for a multi‐finger arm robot using the manipulability of the fingers in this study. Algorithms of the averaging method and the mini‐max method were introduced to establish a manipulability criterion of the two fingers in order to generate a cooperative movement of the arm. Comparison of the admittance controls combined with the top search method and local optimization method for the multi‐finger arm robot was made and features of the control methods were also discussed. The stiffness control and damping control were experimentally evaluated to demonstrate the effectiveness of the proposed methods.

  15. Convergent solid-phase and solution approaches in the synthesis of the cysteine-rich Mdm2 RING finger domain.

    Science.gov (United States)

    Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios

    2009-12-01

    The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis. (c) 2009 European Peptide Society and John Wiley & Sons, Ltd.

  16. The Transcriptional Repressive Activity of KRAB Zinc Finger Proteins Does Not Correlate with Their Ability to Recruit TRIM28.

    Directory of Open Access Journals (Sweden)

    Kristin E Murphy

    Full Text Available KRAB domain Zinc finger proteins are one of the most abundant families of transcriptional regulators in higher vertebrates. The prevailing view is that KRAB domain proteins function as potent transcriptional repressors by recruiting TRIM28 and promoting heterochromatin spreading. However, the extent to which all KRAB domain proteins are TRIM28-dependent transcriptional repressors is currently unclear. Our studies on mouse ZFP568 revealed that TRIM28 recruitment by KRAB domain proteins is not sufficient to warrant transcriptional repressive activity. By using luciferase reporter assays and yeast two-hybrid experiments, we tested the ability of ZFP568 and other mouse KRAB domain proteins to repress transcription and bind TRIM28. We found that some mouse KRAB domain proteins are poor transcriptional repressors despite their ability to recruit TRIM28, while others showed strong KRAB-dependent transcriptional repression, but no TRIM28 binding. Together, our results show that the transcriptional repressive activity of KRAB-ZNF proteins does not correlate with their ability to recruit TRIM28, and provide evidence that KRAB domains can regulate transcription in a TRIM28-independent fashion. Our findings challenge the current understanding of the molecular mechanisms used by KRAB domain proteins to control gene expression and highlight that a high percentage of KRAB domain proteins in the mouse genome differ from the consensus KRAB sequence at amino acid residues that are critical for TRIM28 binding and/or repressive activity.

  17. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    Science.gov (United States)

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  18. Separation of cadmium from solutions containing high concentration of zinc ions

    International Nuclear Information System (INIS)

    Sharma, K.D.; Bhutani, A.K.; Parvathisem, P.

    1984-01-01

    In hydrometallurgical process of extracting cadmium as a byproduct, zinc dust is added for separation of cadmium as cadimum sponge. High amounts of zinc are quite often noticed in the cadmium electrolyte subjected for electrowinning of the metal. This leads to poor quality of cadmium deposit and lower current efficiencies. Study of cadmium sponge cementation process revealed that zinc dust may be added to an acidic cadmium solution for precipitation of cadmium sponge without neutralization of the free acidity present in the system. This fact is utilized for obtaining a high cadmium sponge with 75-80 per cent cadmium and 5-10 per cent zinc with 98 per cent recovery of cadmium from the solution as sponge. The suggested process is confirmed in a cadmium production plant producing 11.0 MT of cadmium per month. (author)

  19. Do glycine-extended hormone precursors have clinical significance?

    DEFF Research Database (Denmark)

    Rehfeld, Jens Frederik

    2014-01-01

    Half of the known peptide hormones are C-terminally amidated. Subsequent biogenesis studies have shown that the immediate precursor is a glycine-extended peptide. The clinical interest in glycine-extended hormones began in 1994, when it was suggested that glycine-extended gastrin stimulated cancer...... and clinical effects of glycine-extended precursors for most other amidated hormones than gastrin and cholecystokinin (CCK). The idea of glycine-extended peptides as independent messengers was interesting. But clinical science has to move ahead from ideas that cannot be supported at key points after decades...

  20. Influence of usual zinc intake and zinc in a meal on 65Zn retention and turnover in the rat

    International Nuclear Information System (INIS)

    Hunt, J.R.; Johnson, P.E.; Swan, P.B.

    1987-01-01

    The influences of zinc in a meal and usual zinc intake on zinc retention and turnover were investigated in 7-wk-old male rats fed diets containing 12-151 mg Zn/kg for 3 wk before and after consuming a 65 Zn-labeled meal containing ZnCl 2 . Retention corrected to zero time and turnover rate were determined by whole-body counting. Percent zinc retention was inversely proportional to the natural logarithm of the meal zinc, between 0.09 and 26 mumol. In comparison to lower doses, higher doses resulted in lower percent retention but greater amounts of zinc retained. Although the latter relationship was slightly curvilinear, there was no indication of a limited capacity for zinc retention with high doses. However, doses above 4 mumol resulted in higher turnover rates in rats accustomed to lower zinc intakes. Percent retention and the reciprocal of the turnover rate were proportional to the reciprocal of the dietary zinc concentration. The greatest differences in retention and turnover occurred between 12 and 26 mg Zn/kg diet. The zinc dose in a meal and the usual dietary zinc separately influenced percent zinc retention. These factors also interacted, such that greater dose effects were observed at lower zinc intakes and greater dietary zinc effects were observed at lower doses

  1. Does the oral zinc tolerance test measure zinc absorption

    Energy Technology Data Exchange (ETDEWEB)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi /sup 65/ZnCl/sub 2/ and a non-absorbed marker, /sup 51/CrCl/sub 3/, dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with /sup 65/Zn and /sup 51/Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and /sup 65/Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and /sup 65/Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption.

  2. Does the oral zinc tolerance test measure zinc absorption

    International Nuclear Information System (INIS)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi 65 ZnCl 2 and a non-absorbed marker, 51 CrCl 3 , dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with 65 Zn and 51 Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and 65 Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and 65 Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption

  3. Identification and characterization of a salt stress-inducible zinc finger protein from Festuca arundinacea

    Directory of Open Access Journals (Sweden)

    Martin Ruth C

    2012-01-01

    Full Text Available Abstract Background Increased biotic and abiotic plant stresses due to climate change together with an expected global human population of over 9 billion by 2050 intensifies the demand for agricultural production on marginal lands. Soil salinity is one of the major abiotic stresses responsible for reduced crop productivity worldwide and the salinization of arable land has dramatically increased over the last few decades. Consequently, as land becomes less amenable for conventional agriculture, plants grown on marginal soils will be exposed to higher levels of soil salinity. Forage grasses are a critical component of feed used in livestock production worldwide, with many of these same species of grasses being utilized for lawns, erosion prevention, and recreation. Consequently, it is important to develop a better understanding of salt tolerance in forage and related grass species. Findings A gene encoding a ZnF protein was identified during the analysis of a salt-stress suppression subtractive hybridization (SSH expression library from the forage grass species Festuca arundinacea. The expression pattern of FaZnF was compared to that of the well characterized gene for delta 1-pyrroline-5-carboxylate synthetase (P5CS, a key enzyme in proline biosynthesis, which was also identified in the salt-stress SSH library. The FaZnF and P5CS genes were both up-regulated in response to salt and drought stresses suggesting a role in dehydration stress. FaZnF was also up-regulated in response to heat and wounding, suggesting that it might have a more general function in multiple abiotic stress responses. Additionally, potential downstream targets of FaZnF (a MAPK [Mitogen-Activated Protein Kinase], GST [Glutathione-S-Transferase] and lipoxygenase L2 were found to be up-regulated in calli overexpressing FaZnF when compared to control cell lines. Conclusions This work provides evidence that FaZnF is an AN1/A20 zinc finger protein that is involved in the regulation

  4. Pseudomonas aeruginosa Trent and zinc homeostasis.

    Science.gov (United States)

    Davies, Corey B; Harrison, Mark D; Huygens, Flavia

    2017-09-01

    Pseudomonas aeruginosa is a Gram-negative pathogen and the major cause of mortality in patients with cystic fibrosis. The mechanisms that P. aeruginosa strains use to regulate intracellular zinc have an effect on infection, antibiotic resistance and the propensity to form biofilms. However, zinc homeostasis in P. aeruginosa strains of variable infectivity has not been compared. In this study, zinc homeostasis in P. aeruginosa Trent, a highly infectious clinical strain, was compared to that of a laboratory P. aeruginosa strain, ATCC27853. Trent was able to tolerate higher concentrations of additional zinc in rich media than ATCC27853. Further, pre-adaptation to additional zinc enhanced the growth of Trent at non-inhibitory concentrations but the impact of pre-adaption on the growth of ATCC27853 under the same conditions was minimal. The results establish clear differences in zinc-induced responses in Trent and ATCC27853, and how zinc homeostasis can be a promising target for the development of novel antimicrobial strategies for P. aeruginosa infection in cystic fibrosis patients. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.

    Directory of Open Access Journals (Sweden)

    Xiao Yang

    2017-12-01

    Full Text Available Glycine, the simplest amino acid in nature and one of the most abundant free amino acids in soil, is regarded as a model nutrient in organic nitrogen studies. To date, many studies have focused on the uptake, metabolism and distribution of organic nitrogen in plants, but few have investigated the nutritional performance of plants supplied with organic nitrogen. Lettuce (Lactuca sativa L., one of the most widely consumed leafy vegetables worldwide, is a significant source of antioxidants and bioactive compounds such as polyphenols, ascorbic acid and tocopherols. In this study, two lettuce cultivars, Shenxuan 1 and Lollo Rossa, were hydroponically cultured in media containing 4.5, 9, or 18 mM glycine or 9 mM nitrate (control for 4 weeks, and the levels of health-promoting compounds and antioxidant activity of the lettuce leaf extracts were evaluated. Glycine significantly reduced fresh weight compared to control lettuce, while 9 mM glycine significantly increased fresh weight compared to 4.5 or 18 mM glycine. Compared to controls, glycine (18 mM for Shenxuan 1; 9 mM for Lollo Rossa significantly increased the levels of most antioxidants (including total polyphenols, α-tocopherol and antioxidant activity, suggesting appropriate glycine supply promotes antioxidant accumulation and activity. Glycine induced most glycosylated quercetin derivatives and luteolin derivatives detected and decreased some phenolic acids compared to nitrate treatment. This study indicates exogenous glycine supplementation could be used strategically to promote the accumulation of health-promoting compounds and antioxidant activity of hydroponically grown lettuce, which could potentially improve human nutrition.

  6. Exogenous Glycine Nitrogen Enhances Accumulation of Glycosylated Flavonoids and Antioxidant Activity in Lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Yang, Xiao; Cui, Xiaoxian; Zhao, Li; Guo, Doudou; Feng, Lei; Wei, Shiwei; Zhao, Chao; Huang, Danfeng

    2017-01-01

    Glycine, the simplest amino acid in nature and one of the most abundant free amino acids in soil, is regarded as a model nutrient in organic nitrogen studies. To date, many studies have focused on the uptake, metabolism and distribution of organic nitrogen in plants, but few have investigated the nutritional performance of plants supplied with organic nitrogen. Lettuce ( Lactuca sativa L.), one of the most widely consumed leafy vegetables worldwide, is a significant source of antioxidants and bioactive compounds such as polyphenols, ascorbic acid and tocopherols. In this study, two lettuce cultivars, Shenxuan 1 and Lollo Rossa, were hydroponically cultured in media containing 4.5, 9, or 18 mM glycine or 9 mM nitrate (control) for 4 weeks, and the levels of health-promoting compounds and antioxidant activity of the lettuce leaf extracts were evaluated. Glycine significantly reduced fresh weight compared to control lettuce, while 9 mM glycine significantly increased fresh weight compared to 4.5 or 18 mM glycine. Compared to controls, glycine (18 mM for Shenxuan 1; 9 mM for Lollo Rossa) significantly increased the levels of most antioxidants (including total polyphenols, α-tocopherol) and antioxidant activity, suggesting appropriate glycine supply promotes antioxidant accumulation and activity. Glycine induced most glycosylated quercetin derivatives and luteolin derivatives detected and decreased some phenolic acids compared to nitrate treatment. This study indicates exogenous glycine supplementation could be used strategically to promote the accumulation of health-promoting compounds and antioxidant activity of hydroponically grown lettuce, which could potentially improve human nutrition.

  7. GABA and glycine as neurotransmitters: a brief history.

    Science.gov (United States)

    Bowery, N G; Smart, T G

    2006-01-01

    gamma-Aminobutyric acid (GABA) emerged as a potentially important brain chemical just over 50 years ago, but its significance as a neurotransmitter was not fully realized until over 16 years later. We now know that at least 40% of inhibitory synaptic processing in the mammalian brain uses GABA. Establishing its role as a transmitter was a lengthy process and it seems hard to believe with our current knowledge that there was ever any dispute about its role in the mammalian brain. The detailed information that we now have about the receptors for GABA together with the wealth of agents which facilitate or reduce GABA receptor mechanisms make the prospects for further research very exciting. The emergence of glycine as a transmitter seems relatively painless by comparison to GABA. Perhaps this is appropriate for the simplest of transmitter structures! Its discovery within the spinal cord and brainstem approximately 40 years ago was followed only 2 years later by the proposal that it be conferred with 'neurotransmitter' status. It was another 16 years before the receptor was biochemically isolated. Now it is readily accepted as a vital spinal and supraspinal inhibitory transmitter and we know many details regarding its molecular structure and trafficking around neurones. The pharmacology of these receptors has lagged behind that of GABA. There is not the rich variety of allosteric modulators that we have come to readily associate with GABA receptors and which has provided us with a virtual treasure trove of important drugs used in anxiety, insomnia, epilepsy, anaesthesia, and spasticity, all stemming from the actions of the simple neutral amino acid GABA. Nevertheless, the realization that glycine receptors are involved in motor reflexes and nociceptive pathways together with the more recent advent of drugs that exhibit some subtype selectivity make the goal of designing selective therapeutic ligands for the glycine receptor that much closer.

  8. Design and synthesis of novel HDAC8 inhibitory 2,5-disubstituted-1,3,4-oxadiazoles containing glycine and alanine hybrids with anti cancer activity.

    Science.gov (United States)

    Pidugu, Vijaya Rao; Yarla, Nagendra Sastry; Pedada, Srinivasa Rao; Kalle, Arunasree M; Satya, A Krishna

    2016-11-01

    Oxadiazole is a heterocyclic compound containing an oxygen atom and two nitrogen atoms in a five-membered ring. Of the four oxadiazoles known, 1,3,4-oxadiazole has become an important structural motif for the development of new drugs and the compounds containing 1,3,4-oxadiazole cores have a broad spectrum of biological activity. Herein, we describe the design, synthesis and biological evaluation of a series of novel 2,5-disubstituted 1,3,4-oxadiazoles (10a-10j) as class I histone deacetylase (HDAC) inhibitors. The compounds were designed and evaluated for HDAC8 selectivity using in silico docking software (Glide) and the top 10 compounds with high dock score and obeying Lipinski's rule were synthesized organically. Further the biological HDAC inhibitory and selectivity assays and anti-proliferative assays were carried out. In in silico and in vitro studies, all compounds (10a-10j) showed significant HDAC inhibition and exhibited HDAC8 selectivity. Among all tested compounds, 10b showed substantial HDAC8 inhibitory activity and better anticancer activity which is comparable to the positive control, a FDA approved drug, vorinostat (SAHA). Structural activity relation is discussed with various substitutions in the benzene ring connected on 1,3,4-oxadizole and glycine/alanine. The study warranted further investigations to develop HDAC8-selective inhibitory molecule as a drug for neoplastic diseases. Novel 1,3,4-oxadizole substituted with glycine/alanine showed HDAC8 inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Iron and zinc concentrations and 59Fe retention in developing fetuses of zinc-deficient rats

    International Nuclear Information System (INIS)

    Rogers, J.M.; Loennerdal, B.H.; Hurley, L.S.; Keen, C.L.

    1987-01-01

    Because disturbances in iron metabolism might contribute to the teratogenicity of zinc deficiency, we examined the effect of zinc deficiency on fetal iron accumulation and maternal and fetal retention of 59 Fe. Pregnant rats were fed from mating a purified diet containing 0.5, 4.5 or 100 micrograms Zn/g. Laparotomies were performed on d 12, 16, 19 and 21 of gestation. Maternal blood and concepti were analyzed for zinc and iron. Additional groups of dams fed 0.5 or 100 micrograms Zn/g diet were gavaged on d 19 with a diet containing 59 Fe. Six hours later maternal blood and tissues, fetuses and placentas were counted for 59 Fe. Maternal plasma zinc, but not iron, concentration was affected by zinc deficiency on d 12. Embryo zinc concentration on d 12 increased with increasing maternal dietary zinc, whereas iron concentration was not different among groups. On d 16-21 plasma iron was higher in dams fed 0.5 micrograms Zn/g diet than in those fed 4.5 or 100 micrograms/g, whereas plasma zinc was lower in dams fed 0.5 or 4.5 micrograms Zn/g than in those fed 100 micrograms Zn/g diet. On d 19 zinc concentration in fetuses from dams fed 0.5 micrograms/g zinc was not different from that of those fed 4.5 micrograms/g zinc, and iron concentration was higher in the 0.5 microgram Zn/g diet group. The increase in iron concentration in zinc-deficient fetuses thus occurs too late to be involved in major structural teratogenesis. Although whole blood concentration of 59 Fe was not different in zinc-deficient and control dams, zinc-deficient dams had more 59 Fe in the plasma fraction

  10. Electrodeposition of zinc--nickel alloys coatings

    Energy Technology Data Exchange (ETDEWEB)

    Dini, J W; Johnson, H R

    1977-10-01

    One possible substitute for cadmium in some applications is a zinc--nickel alloy deposit. Previous work by others showed that electrodeposited zinc--nickel coatings containing about 85 percent zinc and 15 percent nickel provided noticeably better corrosion resistance than pure zinc. Present work which supports this finding also shows that the corrosion resistance of the alloy deposit compares favorably with cadmium.

  11. Reaction of some selected soybean varieties ( Glycine max (L) Merril)

    African Journals Online (AJOL)

    In nematode endemic ecological zones, TGX-1985 – 8F is therefore recommended as it proved to contain some specialized genes that conferred a higher level of tolerance against root- knot nematode, Meloidogyne incognita. Key Words: Glycine max, root – knot nematode, Dominant loci, Mi – 1.2, leucine zipper and R ...

  12. 21 CFR 520.550 - Dextrose/glycine/electrolyte.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dextrose/glycine/electrolyte. 520.550 Section 520...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.550 Dextrose/glycine..., potassium citrate 0.12 gram, aminoacetic acid (glycine) 6.36 grams, and dextrose 44.0 grams. (b) Sponsor...

  13. Electrochemical Reduction of Zinc Phosphate

    International Nuclear Information System (INIS)

    Kim, Chang Hwan; Lee, Jung Hyun; Shin, Woon Sup

    2010-01-01

    We demonstrated first that the electrochemical reduction of zinc phosphate in neutral phosphate buffer is possible and potentially applicable to bio-compatible rechargeable battery. The actual redox component is Zn(s)/Zn phosphate(s) and the future research about the control of crystal formation for the better cyclability is required. In lead-acid battery, the electrochemical redox reaction of Pb (s) /PbSO 4(s) is used by reducing Pb(II) and oxidizing Pb(0) in sulfate rich solution. Since both reduced form and oxidized form are insoluble, they cannot diffuse to the opposite electrodes and react. It is a very common strategy to make a stable battery electrode that a metal element is reduced and oxidized in solution containing an abundance of anion readily precipitating with the metal ion. For the application of this strategy to construction of rechargeable battery using bio-compatible electrode materials and electrolytes, the use of phosphate ion can be considered as anion readily precipitating with metal ions. If phosphate buffer with neutral pH is used as electrolyte, the better bio-compatibility will be achieved than most of rechargeable battery using strong acid, strong base or organic solvent as electrolyte solution. There are many metal ions readily precipitating with phos-phate ion, and zinc is one of them

  14. Zinc-enriched boutons in rat spinal cord

    DEFF Research Database (Denmark)

    Schrøder, H D; Danscher, G; Jo, S M

    2000-01-01

    The rat spinal cord reveals a complex pattern of zinc-enriched (ZEN) boutons. As a result of in vivo exposure to selenide ions, nanosized clusters of zinc selenide are created in places where zinc ions are present, including the zinc-containing synaptic vesicles of ZEN boutons. The clusters can...

  15. Benefits and drawbacks of zinc in glass ionomer bone cements

    Energy Technology Data Exchange (ETDEWEB)

    Brauer, Delia S; Hill, Robert G [Unit of Dental Physical Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Gentleman, Eileen; Stevens, Molly M [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Farrar, David F, E-mail: d.brauer@qmul.ac.uk [Smith and Nephew Research Centre, York Science Park, Heslington YO10 5DF (United Kingdom)

    2011-08-15

    Glass polyalkenoate (ionomer) cements (GPCs) based on poly(acrylic acid) and fluoro-alumino-silicate glasses are successfully used in a variety of orthopaedic and dental applications; however, they release small amounts of aluminium, which is a neurotoxin and inhibits bone mineralization in vivo. Therefore there has been significant interest in developing aluminium-free glasses containing zinc for forming GPCs because zinc can play a similar structural role in the glass, allowing for glass degradation and subsequent cement setting, and is reported to have beneficial effects on bone formation. We created zinc-containing GPCs and characterized their mechanical properties and biocompatibility. Zinc-containing cements showed adhesion to bone close to 1 MPa, which was significantly greater than that of zinc-free cements (<0.05 MPa) and other currently approved biological adhesives. However, zinc-containing cements produced significantly lower metabolic activity in mouse osteoblasts exposed to cell culture medium conditioned with the cements than controls. Results show that although low levels of zinc may be beneficial to cells, zinc concentrations of 400 {mu}M Zn{sup 2+} or more resulted in cell death. In summary, we demonstrate that while zinc-containing GPCs possess excellent mechanical properties, they fail basic biocompatibility tests, produce an acute cytotoxic response in vitro, which may preclude their use in vivo.

  16. Iron and zinc bioaccessibility of fermented maize, sorghum and millets from five locations in Zimbabwe.

    Science.gov (United States)

    Gabaza, Molly; Shumoy, Habtu; Muchuweti, Maud; Vandamme, Peter; Raes, Katleen

    2018-01-01

    The present study is an evaluation of iron and zinc bioaccessibility of fermented maize, sorghum, pearl millet and finger millet from five different locations in Zimbabwe. Iron and zinc contents ranged between 3.22 and 49.7 and 1.25-4.39mg/100gdm, respectively. Fermentation caused a reduction of between 20 and 88% of phytic acid (PA) while a general increase in soluble phenolic compounds (PC) and a decrease of the bound (PC) was observed. Bioaccessibility of iron and zinc ranged between 2.77 and 26.1% and 0.45-12.8%, respectively. The contribution of the fermented cereals towards iron and zinc absolute requirements ranged between 25 and 411% and 0.5-23% with higher contribution of iron coming from cereals that were contaminated with extrinsic iron. Populations subsisting on cereals could be more at risk of zinc rather than iron deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Targeted disruption of the mouse Csrp2 gene encoding the cysteine- and glycine-rich LIM domain protein CRP2 result in subtle alteration of cardiac ultrastructure

    Directory of Open Access Journals (Sweden)

    Stoll Doris

    2008-08-01

    Full Text Available Abstract Background The cysteine and glycine rich protein 2 (CRP2 encoded by the Csrp2 gene is a LIM domain protein expressed in the vascular system, particularly in smooth muscle cells. It exhibits a bimodal subcellular distribution, accumulating at actin-based filaments in the cytosol and in the nucleus. In order to analyze the function of CRP2 in vivo, we disrupted the Csrp2 gene in mice and analysed the resulting phenotype. Results A ~17.3 kbp fragment of the murine Csrp2 gene containing exon 3 through 6 was isolated. Using this construct we confirmed the recently determined chromosomal localization (Chromosome 10, best fit location between markers D10Mit203 proximal and D10Mit150 central. A gene disruption cassette was cloned into exon 4 and a mouse strain lacking functional Csrp2 was generated. Mice lacking CRP2 are viable and fertile and have no obvious deficits in reproduction and survival. However, detailed histological and electron microscopic studies reveal that CRP2-deficient mice have subtle alterations in their cardiac ultrastructure. In these mice, the cardiomyocytes display a slight increase in their thickness, indicating moderate hypertrophy at the cellular level. Although the expression of several intercalated disc-associated proteins such as β-catenin, N-RAP and connexin-43 were not affected in these mice, the distribution of respective proteins was changed within heart tissue. Conclusion We conclude that the lack of CRP2 is associated with alterations in cardiomyocyte thickness and hypertrophy.

  18. The Radiolytic Destruction of Glycine Diluted in H2O and CO2 Ice: Implications for Mars and Other Planetary Environments

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, R. L.

    2013-10-01

    Future missions to Mars and other planetary surfaces will probe under the surfaces of these worlds for signs of organic chemistry. In previous studies we have shown that glycine and other amino acids have radiolytic destruction rates that depend on temperature and on dilution within an H2O ice matrix (Gerakines et al., 2012; Gerakines and Hudson 2013). In the new work presented here, we have examined the destruction of glycine diluted in CO2 ice at various concentrations and irradiated with protons at 0.8 MeV, typical of cosmic rays and solar energetic particles. Destruction rates for glycine were measured by infrared spectroscopy in situ, without removing or warming the ice samples. New results on the half life of glycine in solid CO2 will be compared to those found in H2O ice matrices. The survivability of glycine in icy planetary surfaces rich in H2O and CO2 ice will be discussed, and the implications for planetary science missions will be considered. References: Gerakines, P. A., Hudson, R. L., Moore, M. H., and Bell, J-L. (2012). In-situ Measurements of the Radiation Stability of Amino Acids at 15 - 140 K. Icarus, 220, 647-659. Gerakines, P. A. and Hudson, R. L. (2013). Glycine's Radiolytic Destruction in Ices: First in situ Laboratory Measurements for Mars. Astrobiology, 13, 647-655.

  19. Quantifying Parkinson's disease finger-tapping severity by extracting and synthesizing finger motion properties.

    Science.gov (United States)

    Sano, Yuko; Kandori, Akihiko; Shima, Keisuke; Yamaguchi, Yuki; Tsuji, Toshio; Noda, Masafumi; Higashikawa, Fumiko; Yokoe, Masaru; Sakoda, Saburo

    2016-06-01

    We propose a novel index of Parkinson's disease (PD) finger-tapping severity, called "PDFTsi," for quantifying the severity of symptoms related to the finger tapping of PD patients with high accuracy. To validate the efficacy of PDFTsi, the finger-tapping movements of normal controls and PD patients were measured by using magnetic sensors, and 21 characteristics were extracted from the finger-tapping waveforms. To distinguish motor deterioration due to PD from that due to aging, the aging effect on finger tapping was removed from these characteristics. Principal component analysis (PCA) was applied to the age-normalized characteristics, and principal components that represented the motion properties of finger tapping were calculated. Multiple linear regression (MLR) with stepwise variable selection was applied to the principal components, and PDFTsi was calculated. The calculated PDFTsi indicates that PDFTsi has a high estimation ability, namely a mean square error of 0.45. The estimation ability of PDFTsi is higher than that of the alternative method, MLR with stepwise regression selection without PCA, namely a mean square error of 1.30. This result suggests that PDFTsi can quantify PD finger-tapping severity accurately. Furthermore, the result of interpreting a model for calculating PDFTsi indicated that motion wideness and rhythm disorder are important for estimating PD finger-tapping severity.

  20. Glycine

    DEFF Research Database (Denmark)

    Sabin, John R.; Oddershede, Jens; Sauer, Stephan P. A.

    2013-01-01

    With the advent of the use of precise ion accelerators for medical purposes, it becomes ever more important to understand the interaction of biomolecules with fast ions.  Glycine is both a protein component and a model biomolecule, and is thus an important test system.    In this report, we discu...

  1. Coating compositions comprising bismuth-alloyed zinc

    DEFF Research Database (Denmark)

    2008-01-01

    The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 µm; (ii) a coated structure comprising a metal structure...... having a first coating of the zinc-containing coating composition applied onto at least a part of the metal structure in a dry film thickness of 5-100 µm; and an outer coating applied onto said zinc-containing coating in a dry film thickness of 30-200 µm; (iii) a particulate zinc-based alloyed material......, wherein the material comprises 0.05-0.7%(w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.5-30 µm; (iv) a composite powder consisting of at least 25%(w/w) of the particulate zinc-based alloyed material, the rest being a particulate material consisting of zinc...

  2. The relative efficiency of zinc carriers on growth and zinc nutrition of corn

    International Nuclear Information System (INIS)

    Prasad, B.; Sinha, K.

    1981-01-01

    A comparison of different zinc carriers showed that application of Zn-DTPA, Zn-EDTA, Zn-fulvate and ZnSO 4 significantly increased the dry matter yield and zinc uptake by corn over the control treatment where no zinc was applied. The chelates in particular enhanced to a greater extent the uptake of both native and applied sources than that observed with ZnSO 4 as the zinc carrier. Both the dry matter yield and zinc uptake by corn showed a positive and significant relationship with self-diffusion coefficient of zinc showing thereby that diffusion contributed mainly the supply of Zn from the ambient soil matrix to plant roots. The effectiveness of the chelates varied depending on their capacity to retain Zn in a soluble form in the soil solution. It is evident that zinc nutrition of plants in alkaline and calcareous soils can be more effectively regulated by both synthetic and natural chelates or organic manures which contain substantial amount of complexed zinc. (orig.)

  3. MicroRNA-141 inhibits migration of gastric cancer by targeting zinc finger E-box-binding homeobox 2.

    Science.gov (United States)

    Du, Ying; Wang, Lingfei; Wu, Honghai; Zhang, Yiyin; Wang, Kan; Wu, Dingting

    2015-09-01

    Human microRNA (miR)-141 is a member of the miR‑200 family, which has been reported to be downregulated in gastric cancer, and involved in the proliferation of gastric cancer cells. However, little is currently known regarding its role in the migration of gastric cancer. The present study investigated the function of miR‑141 in gastric cancer cell migration, and evaluated the contribution of zinc finger E‑box‑binding homeobox 1 and 2 (ZEB1/2) in miR‑141 mediated migration of gastric cancer cells. The expression levels of miR‑141 and its potential ZEB1/2 targets were examined by quantitative polymerase chain reaction (qPCR) and western blotting, respectively. The migration of SGC‑7901 and HGC‑27 gastric cancer cells, which had been transfected with an miRNA precursor, was examined by cell migration and wound healing assays. A luciferase activity assay was used to validate whether ZEB1/2 was a direct target of miR‑141. The results demonstrated that overexpression of miR‑141 markedly inhibited the migration of gastric cancer cells in vitro. Forced overexpression of miR‑141 significantly reduced the luciferase activity of the 3'‑untranslated region of ZEB2 in gastric cancer cells. Furthermore, the mRNA and protein expression levels of ZEB2 were reduced in cells overexpressing miR‑141, whereas the protein expression levels of E‑cadherin were increased. In gastric tumor samples the expression levels of ZEB2 were inversely correlated with the expression of miR‑141. These results suggest that miR‑141 may be involved in the inhibition of gastric cancer cell migration, and that ZEB2 is a target gene of miR-141.

  4. Left hand finger force in violin playing: tempo, loudness, and finger differences.

    Science.gov (United States)

    Kinoshita, Hiroshi; Obata, Satoshi

    2009-07-01

    A three-dimensional force transducer was installed in the neck of a violin under the A string at the D5 position in order to study the force with which the violinist clamps the string against the fingerboard under normal playing conditions. Violinists performed repetitive sequences of open A- and fingered D-tones using the ring finger at tempi of 1, 2, 4, 8, and 16 notes/s at mezzo-forte. At selected tempi, the effects of dynamic level and the use of different fingers were investigated as well. The force profiles were clearly dependent on tempo and dynamic level. At slow tempi, the force profiles were characterized by an initial pulse followed by a level force to the end of the finger contact period. At tempi higher than 2 Hz, only pulsed profiles were observed. The peak force exceeded 4.5 N at 1 and 2 Hz and decreased to 1.7 N at 16 Hz. All force and impulse values were lower at softer dynamic levels, and when using the ring or little finger compared to the index finger.

  5. BWR fuel experience with zinc injection

    International Nuclear Information System (INIS)

    Levin, H.A.; Garcia, S.E.

    1995-01-01

    In 1982 a correlation between low primary recirculation system dose rates in BWR's and the presence of ionic zinc in reactor water was identified. The source of the zinc was primarily from Admiralty brass condensers. Plants with brass condensers are called ''natural zinc'' plants. Brass condensers were also a source of copper that was implicated in crude induced localized corrosion (CILC) fuel failures. In 1986 the first BWR intentionally injected zinc for the benefits of dose rate control. Although zinc alone was never implicated in fuel degradation of failures, a comprehensive fuel surveillance program was initiated to monitor fuel performance. Currently there are 14 plants that are injecting zinc. Six of these plants are also on hydrogen water chemistry. This paper describes the effect on both Zircaloy corrosion and the cruding characteristics as a result of these changes in water chemistry. Fuel rod corrosion was found to be independent of the specific water chemistry of the plants. The corrosion behavior was the same with the additions of zinc alone or zinc plus hydrogen and well within the operating experience for fuel without either of these additions. No change was observed in the amounts of crude deposited on the fuel rods, both for the adherent and loosely held deposits. One of the effects of the zinc addition was the trend to form more of the zinc rich iron spinel in the fuel deposits rather than the hematite deposits that are predominantly formed with non additive water chemistry

  6. A Mini Zinc-Finger Protein (MIF from Gerbera hybrida Activates the GASA Protein Family Gene, GEG, to Inhibit Ray Petal Elongation

    Directory of Open Access Journals (Sweden)

    Meixiang Han

    2017-09-01

    Full Text Available Petal appearance is an important horticultural trail that is generally used to evaluate the ornamental value of plants. However, knowledge of the molecular regulation of petal growth is mostly derived from analyses of Arabidopsis thaliana, and relatively little is known about this process in ornamental plants. Previously, GEG (Gerbera hybrida homolog of the gibberellin [GA]–stimulated transcript 1 [GAST1] from tomato, a gene from the GA stimulated Arabidopsis (GASA family, was reported to be an inhibitor of ray petal growth in the ornamental species, G. hybrida. To explore the molecular regulatory mechanism of GEG in petal growth inhibition, a mini zinc-finger protein (MIF was identified using yeast one-hybrid (Y1H screen. The direct binding of GhMIF to the GEG promoter was verified by using an electrophoretic mobility shift assay and a dual-luciferase assay. A yeast two-hybrid (Y2H revealed that GhMIF acts as a transcriptional activator. Transient transformation assay indicated that GhMIF is involved in inhibiting ray petal elongation by activating the expression of GEG. Spatiotemporal expression analyses and hormone treatment assay showed that the expression of GhMIF and GEG is coordinated during petal development. Taken together, these results suggest that GhMIF acts as a direct transcriptional activator of GEG, a gene from the GASA protein family to regulate the petal elongation.

  7. Cloning and comparative analysis of zinc-finger protein gene on Y-chromosome (ZFY between Thai Bangkaew dog and other Thai canids

    Directory of Open Access Journals (Sweden)

    Ukadej Boonyaprakob

    2017-06-01

    Full Text Available The Thai Bangkaew dog is a Spitz-type dog that originated in Thailand. Legend has it that the dog is descended from hybrids between a native female dog and a male wild canid. To examine the mysterious story about the ancestry of the Thai Bangkaew dog's paternal lineage, sequence variation was examined for the last intron of the Y-chromosome-specific zinc-finger gene, ZFY, and its X homolog for male Thai Bangkaew dogs and other male Thai canids, including the Thai ridgeback and mixed breed dogs, Asiatic jackals (Canis aureus and a dhole (Cuon alpinus. A 1075-bp ZFY segment from DNA samples of Thai Bangkaew dogs was found to be 100% identical to the domestic dog ZFY and (if gaps are allowed showed 81% and 92% identity to jackal ZFY and dhole ZFY, respectively. However, if gaps were treated as missing data, the 1045-bp ZFY sequence for the Thai Bangkaew dogs was 100% identical to domestic dog ZFY and 99.5% to jackal ZFY and dhole ZFY, respectively. In addition, the 959-bp Thai Bangkaew ZFX fragments were identical and showed 100% identity to domestic dog ZFX. These genetic data suggest that the Thai Bangkaew dogs still present today share a common male ancestor with modern dogs, rather than being the descendants of dhole or jackal/dog hybrids.

  8. Immersion autometallography: histochemical in situ capturing of zinc ions in catalytic zinc-sulfur nanocrystals.

    Science.gov (United States)

    Danscher, Gorm; Stoltenberg, Meredin; Bruhn, Mikkel; Søndergaard, Chris; Jensen, Dorete

    2004-12-01

    In the mid-1980s, two versions of Timm's original immersion sulfide silver method were published. The authors used immersion of tissue in a sulfide solution as opposed to Timm, who used immersion of tissue blocks in hydrogen sulfide-bubbled alcohol. The autometallography staining resulting from the "sulfide only immersion" was not particularly impressive, but the significance of this return to an old approach became obvious when Wenzel and co-workers presented their approach in connection with introduction by the Palmiter group of zinc transporter 3 (ZnT3). The Wenzel/Palmiter pictures are the first high-resolution, high-quality pictures taken from tissues in which free and loosely bound zinc ions have been captured in zinc-sulfur nanocrystals by immersion. The trick was to place formalin-fixed blocks of mouse brains in a solution containing 3% glutaraldehyde and 0.1% sodium sulfide, ingredients used for transcardial perfusion in the zinc-specific NeoTimm method. That the NeoTimm technique results in silver enhancement of zinc-sulfur nanocrystals has been proved by proton-induced X-ray multielement analyses (PIXE) and in vivo chelation with diethyldithiocarbamate (DEDTC). The aims of the present study were (a) to make the immersion-based capturing of zinc ions in zinc-sulfur nanocrystals work directly on sections and slices of fixed brain tissue, (b) to work out protocols that ensure zinc specificity and optimal quality of the staining, (c) to apply "immersion autometallography" (iZnSAMG) to other tissues that contain zinc-enriched (ZEN) cells, and (d) to make the immersion approach work on unfixed fresh tissue.

  9. Survivability and reactivity of glycine and alanine in early oceans: effects of meteorite impacts.

    Science.gov (United States)

    Umeda, Yuhei; Fukunaga, Nao; Sekine, Toshimori; Furukawa, Yoshihiro; Kakegawa, Takeshi; Kobayashi, Takamichi; Nakazawa, Hiromoto

    2016-01-01

    Prebiotic oceans might have contained abundant amino acids, and were subjected to meteorite impacts, especially during the late heavy bombardment. It is so far unknown how meteorite impacts affected amino acids in the early oceans. Impact experiments were performed under the conditions where glycine was synthesized from carbon, ammonia, and water, using aqueous solutions containing (13)C-labeled glycine and alanine. Selected amino acids and amines in samples were analyzed with liquid chromatography-mass spectrometry (LC/MS). In particular, the (13)C-labeled reaction products were analyzed to distinguish between run products and contaminants. The results revealed that both amino acids survived partially in the early ocean through meteorite impacts, that part of glycine changed into alanine, and that large amounts of methylamine and ethylamine were formed. Fast decarboxylation was confirmed to occur during such impact processes. Furthermore, the formation of n-butylamine, detected only in the samples recovered from the solutions with additional nitrogen and carbon sources of ammonia and benzene, suggests that chemical reactions to form new biomolecules can proceed through marine impacts. Methylamine and ethylamine from glycine and alanine increased considerably in the presence of hematite rather than olivine under similar impact conditions. These results also suggest that amino acids present in early oceans can contribute further to impact-induced reactions, implying that impact energy plays a potential role in the prebiotic formation of various biomolecules, although the reactions are complicated and depend upon the chemical environments as well.

  10. Electrodeposition of CoNiMo thin films using glycine as additive: anomalous and induced codeposition

    International Nuclear Information System (INIS)

    Esteves, Marcos C.; Sumodjo, Paulo T.A.; Podlaha, Elizabeth J.

    2011-01-01

    Highlights: → Mixed/induced codeposition of CoNiMo from a glycine containing bath. → Deposition in a rotating cylinder Hull cell. → The mechanism is explained in term of the complex species that can be formed. - Abstract: The present study focuses on the behavior of the CoNiMo mixed anomalous/induced codeposition process, using glycine as a probe to influence the coverage of adsorbed intermediates. In order to facilitate the investigation of a wide variation of parameters the electrodeposition of the alloy films was performed using a rotating cylinder Hull cell. Alloy composition, current efficiency and partial currents of each metal were analyzed. The partial current densities and hence alloy composition was affected by the amount of glycine in the electrolyte: increasing glycine enhanced both cobalt and molybdenum deposition rates and hindered nickel deposition. It is suggested that the glycine facilitates the adsorption of M(I) adsorbed intermediates that control the anomalous and induced codeposition behavior. The current efficiency ranged from 30 up to 75% and was only slightly affected by glycine at high applied current densities. Films with a tridimensional porous structure were obtained applying current densities higher than 200 mA cm -2 , formed as a consequence of the large hydrogen evolution side reaction, presenting conditions for a novel Mo-alloy electrode structure.

  11. Computer simulation and experimental self-assembly of irradiated glycine amino acid under magnetic fields: Its possible significance in prebiotic chemistry.

    Science.gov (United States)

    Heredia, Alejandro; Colín-García, María; Puig, Teresa Pi I; Alba-Aldave, Leticia; Meléndez, Adriana; Cruz-Castañeda, Jorge A; Basiuk, Vladimir A; Ramos-Bernal, Sergio; Mendoza, Alicia Negrón

    2017-12-01

    Ionizing radiation may have played a relevant role in chemical reactions for prebiotic biomolecule formation on ancient Earth. Environmental conditions such as the presence of water and magnetic fields were possibly relevant in the formation of organic compounds such as amino acids. ATR-FTIR, Raman, EPR and X-ray spectroscopies provide valuable information about molecular organization of different glycine polymorphs under static magnetic fields. γ-glycine polymorph formation increases in irradiated samples interacting with static magnetic fields. The increase in γ-glycine polymorph agrees with the computer simulations. The AM1 semi-empirical simulations show a change in the catalyst behavior and dipole moment values in α and γ-glycine interaction with the static magnetic field. The simulated crystal lattice energy in α-glycine is also affected by the free radicals under the magnetic field, which decreases its stability. Therefore, solid α and γ-glycine containing free radicals under static magnetic fields might have affected the prebiotic scenario on ancient Earth by causing the oligomerization of glycine in prebiotic reactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Glycine phases formed from frozen aqueous solutions: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Surovtsev, N. V. [Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Adichtchev, S. V.; Malinovsky, V. K. [Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Ogienko, A. G.; Manakov, A. Yu. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Drebushchak, V. A. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Ancharov, A. I.; Boldyreva, E. V. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Institute of Solid Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Yunoshev, A. S. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Lavrentiev Institute of Hydrodynamics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation)

    2012-08-14

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice I{sub h} was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into {beta}-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice I{sub h} and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine 'X-phase') at 209-216 K, which at 218-226 K transformed into {beta}-polymorph of glycine. The 'X-phase' was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a= 6.648 A, b= 25.867 A, c= 5.610 A, {beta}= 113.12 Masculine-Ordinal-Indicator ); the formation of 'X-phase' from the glycine glassy phase and its transformation into {beta}-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  13. Glycine phases formed from frozen aqueous solutions: Revisited

    Science.gov (United States)

    Surovtsev, N. V.; Adichtchev, S. V.; Malinovsky, V. K.; Ogienko, A. G.; Drebushchak, V. A.; Manakov, A. Yu.; Ancharov, A. I.; Yunoshev, A. S.; Boldyreva, E. V.

    2012-08-01

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice Ih was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into β-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice Ih and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine "X-phase") at 209-216 K, which at 218-226 K transformed into β-polymorph of glycine. The "X-phase" was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a = 6.648 Å, b = 25.867 Å, c = 5.610 Å, β = 113.12°); the formation of "X-phase" from the glycine glassy phase and its transformation into β-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  14. Specificity protein 1-zinc finger protein 179 pathway is involved in the attenuation of oxidative stress following brain injury

    Directory of Open Access Journals (Sweden)

    Jian-Ying Chuang

    2017-04-01

    Full Text Available After sudden traumatic brain injuries, secondary injuries may occur during the following days or weeks, which leads to the accumulation of reactive oxygen species (ROS. Since ROS exacerbate brain damage, it is important to protect neurons against their activity. Zinc finger protein 179 (Znf179 was shown to act as a neuroprotective factor, but the regulation of gene expression under oxidative stress remains unknown. In this study, we demonstrated an increase in Znf179 protein levels in both in vitro model of hydrogen peroxide (H2O2-induced ROS accumulation and animal models of traumatic brain injury. Additionally, we examined the sub-cellular localization of Znf179, and demonstrated that oxidative stress increases Znf179 nuclear shuttling and its interaction with specificity protein 1 (Sp1. Subsequently, the positive autoregulation of Znf179 expression, which is Sp1-dependent, was further demonstrated using luciferase reporter assay and green fluorescent protein (GFP-Znf179-expressing cells and transgenic mice. The upregulation of Sp1 transcriptional activity induced by the treatment with nerve growth factor (NGF led to an increase in Znf179 levels, which further protected cells against H2O2-induced damage. However, Sp1 inhibitor, mithramycin A, was shown to inhibit NGF effects, leading to a decrease in Znf179 expression and lower cellular protection. In conclusion, the results obtained in this study show that Znf179 autoregulation through Sp1-dependent mechanism plays an important role in neuroprotection, and NGF-induced Sp1 signaling may help attenuate more extensive (ROS-induced damage following brain injury.

  15. The zinc finger E-box-binding homeobox 1 (Zeb1) promotes the conversion of mouse fibroblasts into functional neurons.

    Science.gov (United States)

    Yan, Long; Li, Yue; Shi, Zixiao; Lu, Xiaoyin; Ma, Jiao; Hu, Baoyang; Jiao, Jianwei; Wang, Hongmei

    2017-08-04

    The zinc finger E-box-binding transcription factor Zeb1 plays a pivotal role in the epithelial-mesenchymal transition. Numerous studies have focused on the molecular mechanisms by which Zeb1 contributes to this process. However, the functions of Zeb1 beyond the epithelial-mesenchymal transition remain largely elusive. Using a transdifferentiation system to convert mouse embryonic fibroblasts (MEFs) into functional neurons via the neuronal transcription factors achaete-scute family bHLH (basic helix-loop-helix) transcription factor1 ( Ascl1 ), POU class 3 homeobox 2 (POU3F2/ Brn2 ), and neurogenin 2 (Neurog2, Ngn2 ) (ABN), we found that Zeb1 was up-regulated during the early stages of transdifferentiation. Knocking down Zeb1 dramatically attenuated the transdifferentiation efficiency, whereas Zeb1 overexpression obviously increased the efficiency of transdifferentiation from MEFs to neurons. Interestingly, Zeb1 improved the transdifferentiation efficiency induced by even a single transcription factor ( e.g. Asc1 or Ngn2 ). Zeb1 also rapidly promoted the maturation of induced neuron cells to functional neurons and improved the formation of neuronal patterns and electrophysiological characteristics. Induced neuron cells could form functional synapse in vivo after transplantation. Genome-wide RNA arrays showed that Zeb1 overexpression up-regulated the expression of neuron-specific genes and down-regulated the expression of epithelial-specific genes during conversion. Taken together, our results reveal a new role for Zeb1 in the transdifferentiation of MEFs into neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. A high quality finger vascular pattern dataset collected using a custom designed capturing device

    NARCIS (Netherlands)

    Ton, B.T.; Veldhuis, Raymond N.J.

    2013-01-01

    The number of finger vascular pattern datasets available for the research community is scarce, therefore a new finger vascular pattern dataset containing 1440 images is prsented. This dataset is unique in its kind as the images are of high resolution and have a known pixel density. Furthermore this

  17. Movement Kinematics of the Braille-Reading Finger

    Science.gov (United States)

    Hughes, Barry

    2011-01-01

    A new means of measuring the movement properties of the braille-reading finger is described and exemplified in an experiment in which experienced readers of braille encountered sentences comprised of keywords in which word and orthographic frequencies were manipulated. These new data are considered in theoretical and practical terms. (Contains 2…

  18. Alumina/silica aerogel with zinc chloride as an alkylation catalyst

    Directory of Open Access Journals (Sweden)

    DEJAN U. SKALA

    2001-10-01

    Full Text Available The alumina/silica with zinc chloride aerogel alkylation catalyst was obtained using a one step sol-gel synthesis, and subsequent drying with supercritical carbon dioxide. The aerogel catalyst activity was found to be higher compared to the corresponding xerogel catalyst, as a result of the higher aerogel surface area, total pore volume and favourable pore size distribution. Mixed Al–O–Si bonds were present in both gel catalyst types. Activation by thermal treatment in air was needed prior to catalytic alkylation, due to the presence of residual organic groups on the aerogel surface. The optimal activation temperature was found to be in the range 185–225°C, while higher temperatures resulted in the removal of zinc chloride from the surface of the aerogel catalyst with a consequential decrease in the catalytic activity. On varying the zinc chloride content, the catalytic activity of the aerogel catalyst exhibited a maximum. High zinc chloride contents decreased the catalytic activity of the aerogel catalyst as the result of the pores of the catalyst being plugged with this compound, and the separation of the alumina/silica support into Al-rich and Si-rich phases. The surface area, total pore volume, pore size distribution and zinc chloride content had a similar influence on the activity of the aerogel catalyst as was the case of xerogel catalyst and supported zinc chloride catalysts.

  19. Multiple Fingers - One Gestalt.

    Science.gov (United States)

    Lezkan, Alexandra; Manuel, Steven G; Colgate, J Edward; Klatzky, Roberta L; Peshkin, Michael A; Drewing, Knut

    2016-01-01

    The Gestalt theory of perception offered principles by which distributed visual sensations are combined into a structured experience ("Gestalt"). We demonstrate conditions whereby haptic sensations at two fingertips are integrated in the perception of a single object. When virtual bumps were presented simultaneously to the right hand's thumb and index finger during lateral arm movements, participants reported perceiving a single bump. A discrimination task measured the bump's perceived location and perceptual reliability (assessed by differential thresholds) for four finger configurations, which varied in their adherence to the Gestalt principles of proximity (small versus large finger separation) and synchrony (virtual spring to link movements of the two fingers versus no spring). According to models of integration, reliability should increase with the degree to which multi-finger cues integrate into a unified percept. Differential thresholds were smaller in the virtual-spring condition (synchrony) than when fingers were unlinked. Additionally, in the condition with reduced synchrony, greater proximity led to lower differential thresholds. Thus, with greater adherence to Gestalt principles, thresholds approached values predicted for optimal integration. We conclude that the Gestalt principles of synchrony and proximity apply to haptic perception of surface properties and that these principles can interact to promote multi-finger integration.

  20. Preferential Pathway for Glycine Formation in Star-Forming Regions

    Science.gov (United States)

    Pilling, S.; Boechat-Roberty, H. M.; Baptista, L.; Santos A. C., F.

    Interstellar clouds, similar to that from which the solar system was formed, contain many organic molecules including aldehydes, acids, ketones, and sugars Ehrenfreund & Charnley (2000). Those organic compounds have important functions in terrestrial biochemistry and could also have been important in prebiotic synthesis. The simplest amino acid, glycine (NH2CH2COOH), was recently detected in the hot molecular cores Sgr B2(N-LMH), Orion KL, and W51 e1/e2 Kuan et al. (2003). The formic acid (HCOOH) and acetic acid(CH3COOH) have also been detected in those regions Liu et al. (2002), Remijan et al. (2004). The goal of this work is to study experimentally photoionization and photodissociation processes of glycine precursor molecules, acetic acid and formic acid to elucidate a possible preferentially in the glycine synthesis between ice and gas phase. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), employing soft X-ray photons from a toroidal grating monochromator TGM) beamline (100 - 310 eV). The experimental set up consists of a high vacuum chamber with a Time-Of-Flight Mass Spectrometer (TOF-MS). Mass spectra were obtained using PhotoElectron PhotoIon Coincidence (PEPICO) technique. Kinetic energy distributions and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Dissociative and non-dissociative photoionization cross sections for both molecules were also determined Boechat-Roberty, Pilling & Santos (2005). Due to the high photodissociation cross section of formic acid it is possible that in PDRs regions, just after molecules evaporation from the grains surface, it is almost destructed by soft X-rays, justifying the observed low abundance of HCOOH in gaseous phase Ehrenfreund et al. (2001). Acetic acid have shown to be more stable to the ionizing field, and its main outcomes from dissociation process were the reactive ionic fragments COOH+ and CH3CO+. To

  1. Zinc finger proteins and other transcription regulators as response proteins in benzo[a]pyrene exposed cells

    International Nuclear Information System (INIS)

    Gao Zhihua; Jin Jinghua; Yang Jun; Yu Yingnian

    2004-01-01

    Proteomic analysis, which combines two-dimensional electrophoresis (2-DE) and mass spectrometry (MS), is an important approach to screen proteins responsive to specific stimuli. Benzo[a]pyrene (B[a]P), a prototype of polycyclic hydrocarbons (PAHs), is a potent procarcinogen generated from the combustion of fossil fuel and cigarette smoke. To further probe the molecular mechanism of mutagenesis and carcinogenesis, and to find potential molecular markers involved in cellular responses to B[a]P exposure, we performed proteomic analysis of whole cellular proteins in human amnion epithelial cells after B[a]P-treatment. Image visualization and statistical analysis indicated that more than 40 proteins showed significant changes following B[a]P-treatment (P<0.05). Among them, 20 proteins existed only in the control groups, while six were only present in B[a]P-treated cells. In addition, the expression of 10 proteins increased whereas 11 decreased after B[a]P-treatment. These proteins were subjected to in-gel tryptic digestion followed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) analysis. Using peptide mass fingerprinting (PMF) to search the nrNCBI database, we identified 22 proteins. Most of these proteins have unknown functions and have not been previously connected to a response to B[a]P exposure. To further annotate the characteristics of these proteins, GOblet analysis was carried out and results indicated that they were involved in multiple biological processes including regulation of transcription, cell proliferation, cell aging and other processes. However, expression changes were noted in a number of transcription regulators, including eight zinc finger proteins as well as SNF2L1 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, member 1), which is closely linked to the chromatin remodeling process. These data may provide new clues to further understand the implication of

  2. Leaching assessment of road materials containing primary lead and zinc slags.

    Science.gov (United States)

    Barna, R; Moszkowicz, P; Gervais, C

    2004-01-01

    Characterisation of the leaching behaviour of waste-containing materials is a crucial step in the environmental assessment for reuse scenarios. In our research we applied the multi-step European methodology ENV 12-920 to the leaching assessment of road materials containing metallurgical slag. A Zn slag from an imperial smelting furnace (ISF) and a Pb slag from a lead blast furnace (LBF) are investigated. The two slags contain up to 11.2 wt% of lead and 3.5 wt% of zinc and were introduced as a partial substitute for sand in two road materials, namely sand-cement and sand-bitumen. At the laboratory scale, a leaching assessment was performed first through batch equilibrium leaching tests. Second, the release rate of the contaminants was evaluated using saturated leaching tests on monolithic material. Third, laboratory tests were conducted on monolithic samples under intermittent wetting conditions. Pilot-scale tests were conducted for field testing of intermittent wetting conditions. The results show that the release of Pb and Zn from the materials in a saturated scenario was controlled by the pH of the leachates. For the intermittent wetting conditions, an additional factor, blocking of the pores by precipitation during the drying phase is proposed. Pilot-scale leaching behaviour only partially matched with the laboratory-scale test results: new mass transfer mechanisms and adapted laboratory leaching tests are discussed.

  3. Comparative studies on acid leaching of zinc waste materials

    Science.gov (United States)

    Rudnik, Ewa; Włoch, Grzegorz; Szatan, Leszek

    2017-11-01

    Three industrial waste materials were characterized in terms of their elemental and phase compositions, leaching behaviour in 10% sulfuric acid solution as well as leaching thermal effects. Slag from melting of mixed metallic scrap contained about 50% Zn and 10% Pb. It consisted mainly of various oxides and oxy-chlorides of metals. Zinc spray metallizing dust contained about 77% Zn in form of zinc and/or zinc-iron oxides, zinc metal and Zn-Fe intermetallic. Zinc ash from hot dip galvanizing was a mixture of zinc oxide, metallic zinc and zinc hydroxide chloride and contained about 80% Zn. Dissolution efficiency of zinc from the first material was 80% (independently on the solid to liquid ratio, 50-150 kg/m3), while decrease of the efficacy from 80% to 60% with increased solid to liquid ratio for the two remaining materials was observed. Both increase in the temperature (20 °C to 35 °C) and agitation rate (300 rpm to 900 rpm) did not improve seriously the leaching results. In all cases, transfer of zinc ions to the leachate was accompanied by different levels of solution contamination, depending on the type of the waste. Leaching of the materials was exothermic with the similar reaction heats for two high oxide-type products (slag, zinc ash) and higher values for the spray metallizing dust.

  4. 21 CFR 558.78 - Bacitracin zinc.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Bacitracin zinc. 558.78 Section 558.78 Food and... in Animal Feeds § 558.78 Bacitracin zinc. (a) Specifications. Type A medicated articles containing bacitracin zinc equivalent to 10, 25, 40, or 50 grams per pound bacitracin. (b) Approvals. See No. 046573 in...

  5. Granular fingering as a mechanism for ridge formation in debris avalanche deposits: Laboratory experiments and implications for Tutupaca volcano, Peru

    Science.gov (United States)

    Valderrama, P.; Roche, O.; Samaniego, P.; van Wyk des Vries, B.; Araujo, G.

    2018-01-01

    The origin of subparallel, regularly-spaced longitudinal ridges often observed at the surface of volcanic and other rock avalanche deposits remains unclear. We addressed this issue through analogue laboratory experiments on flows of bi-disperse granular mixtures, because this type of flow is known to exhibit granular fingering that causes elongated structures resembling the ridges observed in nature. We considered four different mixtures of fine (300-400 μm) glass beads and coarse (600-710 μm to 900-1000 μm) angular crushed fruit stones, with particle size ratios of 1.9-2.7 and mass fractions of the coarse component of 5-50 wt%. The coarse particles segregated at the flow surface and accumulated at the front where flow instabilities with a well-defined wavelength grew. These formed granular fingers made of coarse-rich static margins delimiting fines-rich central channels. Coalescence of adjacent finger margins created regular spaced longitudinal ridges, which became topographic highs as finger channels drained at final emplacement stages. Three distinct deposit morphologies were observed: 1) Joined fingers with ridges were formed at low (≤ 1.9) size ratio and moderate (10-20 wt%) coarse fraction whereas 2) separate fingers or 3) poorly developed fingers, forming series of frontal lobes, were created at larger size ratios and/or higher coarse contents. Similar ridges and lobes are observed at the debris avalanche deposits of Tutupaca volcano, Peru, suggesting that the processes operating in the experiments can also occur in nature. This implies that volcanic (and non-volcanic) debris avalanches can behave as granular flows, which has important implications for interpretation of deposits and for modeling. Such behaviour may be acquired as the collapsing material disaggregates and forms a granular mixture composed by a right grain size distribution in which particle segregation can occur. Limited fragmentation and block sliding, or grain size distributions

  6. Multifarious Beneficial Effect of Nonessential Amino Acid, Glycine: A Review

    Directory of Open Access Journals (Sweden)

    Meerza Abdul Razak

    2017-01-01

    Full Text Available Glycine is most important and simple, nonessential amino acid in humans, animals, and many mammals. Generally, glycine is synthesized from choline, serine, hydroxyproline, and threonine through interorgan metabolism in which kidneys and liver are the primarily involved. Generally in common feeding conditions, glycine is not sufficiently synthesized in humans, animals, and birds. Glycine acts as precursor for several key metabolites of low molecular weight such as creatine, glutathione, haem, purines, and porphyrins. Glycine is very effective in improving the health and supports the growth and well-being of humans and animals. There are overwhelming reports supporting the role of supplementary glycine in prevention of many diseases and disorders including cancer. Dietary supplementation of proper dose of glycine is effectual in treating metabolic disorders in patients with cardiovascular diseases, several inflammatory diseases, obesity, cancers, and diabetes. Glycine also has the property to enhance the quality of sleep and neurological functions. In this review we will focus on the metabolism of glycine in humans and animals and the recent findings and advances about the beneficial effects and protection of glycine in different disease states.

  7. Finger-like voids induced by viscous fingering during phase inversion of alumina/PES/NMP suspensions

    KAUST Repository

    Wang, Bo

    2012-07-01

    The formation mechanism of phase-inversion ceramic hollow fibre membranes has not been well understood. In this paper, we report on the formation of finger-like macrovoids during non-solvent-induced phase inversion of alumina/PES/NMP suspensions. A membrane structure without such finger-like macrovoids was observed when the suspension was slowly immersed into pure ethanol or a mixture of 70. wt% NMP and 30. wt% water, whereas finger-like macrovoids occurred when the suspension was slid into the non-solvents at higher speeds. We found that the formation process of finger-like macrovoids could be fully or partially reversed when nascent membranes were taken out from water shortly after immersion, depending on the duration of the immersion. Splitting of the fingers during the formation of the macrovoids was also observed during the phase inversion of two alumina/PES/NMP suspensions. These experimental observations were not predicted by current theories of finger-like macrovoid formation in polymer membranes, but appear to mimic the well-known viscous fingering phenomenon. We therefore propose that in the phase inversion of ceramic suspensions, the viscous fingering phenomenon is an important mechanism in the formation of finger-like voids. © 2012 Elsevier B.V.

  8. Benefits and drawbacks of zinc in glass ionomer bone cements

    International Nuclear Information System (INIS)

    Brauer, Delia S; Hill, Robert G; Gentleman, Eileen; Stevens, Molly M; Farrar, David F

    2011-01-01

    Glass polyalkenoate (ionomer) cements (GPCs) based on poly(acrylic acid) and fluoro-alumino-silicate glasses are successfully used in a variety of orthopaedic and dental applications; however, they release small amounts of aluminium, which is a neurotoxin and inhibits bone mineralization in vivo. Therefore there has been significant interest in developing aluminium-free glasses containing zinc for forming GPCs because zinc can play a similar structural role in the glass, allowing for glass degradation and subsequent cement setting, and is reported to have beneficial effects on bone formation. We created zinc-containing GPCs and characterized their mechanical properties and biocompatibility. Zinc-containing cements showed adhesion to bone close to 1 MPa, which was significantly greater than that of zinc-free cements ( 2+ or more resulted in cell death. In summary, we demonstrate that while zinc-containing GPCs possess excellent mechanical properties, they fail basic biocompatibility tests, produce an acute cytotoxic response in vitro, which may preclude their use in vivo.

  9. Novel zinc(II)phthalocyanines bearing azo-containing schiff base: Determination of pKa values, absorption, emission, enzyme inhibition and photochemical properties

    Science.gov (United States)

    Kantar, Cihan; Mavi, Vildan; Baltaş, Nimet; İslamoğlu, Fatih; Şaşmaz, Selami

    2016-10-01

    Azo-containing schiff bases are well known and there are many studies about their various properties in literature. However, phthalocyanines bearing azo-containing schiff bases, their spectral, analytical and biological properties are unknown. Therefore, new zinc (II) phthalocyanines bearing azo-containing schiff base were synthesized and investigated to determine pKa values, absorption, emission, enzyme inhibition and photochemical properties. Emission spectra were reported and large Stokes shift values were determined for all compounds, indicating that all molecules exhibit excited state intramolecular proton transfer. These phthalocyanines were the first examples of phthalocyanine showing excited state intramolecular proton transfer. Singlet oxygen quantum yields of zinc (II) phthalocyanines were determined. pKa values and indicator properties of all compounds were investigated by potentiometry. All compounds were assayed for inhibitory activity against bovine milk xanthine oxidase and acetylcholinesterase enzyme in vitro. Compound 2 showed the high inhibitory effect against xanthine oxidase (IC50 = 0.24 ± 0.01 μM). However, phthalocyanine compounds did not show enzyme inhibitor behavior.

  10. Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica

    Energy Technology Data Exchange (ETDEWEB)

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    2017-02-15

    ABSTRACT

    Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeastYarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism inY. lipolytica. Deletion of the GATA transcription factor genesgzf3andgzf2resulted in nitrogen source-specific growth defects and greater accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion ofgzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion ofgzf3results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, whilegzf2is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressormig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.

    IMPORTANCENitrogen source is

  11. Covering the Dorsal Finger Defect with Reverse Cross Finger Flap

    Directory of Open Access Journals (Sweden)

    Kaan Gurbuz

    2014-12-01

    Full Text Available Reconstruction of finger extensor zone defects with or without tendon gaps still remains a challenge for surgeons. Although surgical treatments may differ, and range from the use of local, regional, to free flaps, the outcomes for all cases are not satisfactory. In this case report, we present a case of a 3rd finger extensor side crush injury including a defect of Dd (Digit Dorsal 1, Dd2 and Dd3 defects of extensor zones with tendon gap. Tendon gap was reconstructed using m. palmaris longus tendon graft and the defect was covered with reversed cross-finger flap (random pattern with good cosmetic and excellent functional results.

  12. Finger Forces in Clarinet Playing

    Directory of Open Access Journals (Sweden)

    Alex Hofmann

    2016-08-01

    Full Text Available Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17 and professional clarinettists (N = 6 were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excerpts were chosen to fit in a 2 x 2 x 2 design (register: low--high; tempo: slow--fast, dynamics: soft--loud. There was an additional condition controlled by the experimenter, which determined the expression levels (low--high of the performers. Second, a technical-exercise task, an isochronous 23-tone melody was designed that required different effectors to produce the sequence (finger-only, tongue-only, combined tongue-finger actions. The melody was performed in three tempo conditions (slow, medium, fast in a synchronization-continuation paradigm. Participants played on a sensor-equipped Viennese clarinet, which tracked finger forces and reed oscillations simultaneously. From the data, average finger force (Fmean and peak force (Fmax were calculated. The overall finger forces were low (Fmean = 1.17 N, Fmax = 3.05 N compared to those on other musical instruments (e.g. guitar. Participants applied the largest finger forces during the high expression level performance conditions (Fmean = 1.21 N.For the technical exercise task, timing and articulation information were extracted from the reed signal. Here, the timing precision of the fingers deteriorated the timing precision of the tongue for combined tongue-finger actions, especially for faster tempi. Although individual finger force profiles were overlapping, the group of professional players applied less finger force overall (Fmean = 0.54 N. Such sensor instruments provide useful insights into player

  13. Zinc Deficiency in Humans and its Amelioration

    Directory of Open Access Journals (Sweden)

    Yashbir Singh Shivay

    2015-01-01

    Full Text Available Zinc (Zn deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in blood does not decrease in proportion of the Zn deficiency. Adverse effects of Zn deficiency vary with age: low weight gain, diarrhoea, aneroxia and neurobehavioral disturbances are observed in infants, while skin changes and dwarfism are frequent in toddlers and adolescents. Common manifestations of Zn deficiency among elderly include hypogeusia, chronic non-healing ulcers and recurrent infections.Ameliorative measures of Zn deficiency in humans can be classified in two groups, namely, nutraceutical and biofortification of food grains. Nutraceutical interventions include pharmaceutical supplements, dietary supplements and dietary diversification, while biofortification of food grains can be achieved by genetic modification (GM of crops or by agronomic techniques that include soil or/and foliar fertilization of crops.The major disadvantage of nutraceutical approaches is that the major beneficiaries are urban people and the poor rural masses that need adequate Zn nutrition most are left out. Genetic biofortification of food grains requires large amounts of funds and a fairly long-period of time. Further, a large number of countries have not yet accepted genetically modified (GM foods. On the other hand agronomic biofortification of food grains yields immediate effects and rural and urban people are equally benefitted. Our studies have shown that Zn concentration in cereals (rice, wheat etc and pulses can be considerably increased by soil or/and foliar

  14. Zinc Deficiency in Humans and its Amelioration

    Directory of Open Access Journals (Sweden)

    Yashbir Singh Shivay

    2015-12-01

    Full Text Available Zinc (Zn deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in blood does not decrease in proportion of the Zn deficiency. Adverse effects of Zn deficiency vary with age: low weight gain, diarrhoea, aneroxia and neurobehavioral disturbances are observed in infants, while skin changes and dwarfism are frequent in toddlers and adolescents. Common manifestations of Zn deficiency among elderly include hypogeusia, chronic non-healing ulcers and recurrent infections. Ameliorative measures of Zn deficiency in humans can be classified in two groups, namely, nutraceutical and biofortification of food grains. Nutraceutical interventions include pharmaceutical supplements, dietary supplements and dietary diversification, while biofortification of food grains can be achieved by genetic modification (GM of crops or by agronomic techniques that include soil or/and foliar fertilization of crops. The major disadvantage of nutraceutical approaches is that the major beneficiaries are urban people and the poor rural masses that need adequate Zn nutrition most are left out. Genetic biofortification of food grains requires large amounts of funds and a fairly long-period of time. Further, a large number of countries have not yet accepted genetically modified (GM foods. On the other hand agronomic biofortification of food grains yields immediate effects and rural and urban people are equally benefitted. Our studies have shown that Zn concentration in cereals (rice, wheat etc and pulses can be considerably increased by soil or/and foliar

  15. Daya antibakteri obat kumur chlorhexidine, povidone iodine, fluoride suplementasi zinc terhadap, Streptococcus mutans dan Porphyromonas gingivalis (Antibacterial effect of mouth washes containing chlorhexidine, povidone iodine, fluoride plus zinc on Strep

    Directory of Open Access Journals (Sweden)

    Betadion Rizki Sinaredi

    2014-12-01

    Full Text Available Background: Dental Caries and periodontal disease prevalence in Indonesian children are still high. Some efforts can be done to overcome the problem; one of them is the use of mouthwash to decrease pathogen microorganisms. The mouthwashes that commercially available in market are chlorhexidine, povidone Iodine and Fluoride with Zinc supplementation. Purpose: The purpose of this study was to examine the anti bacterial effect of the mouthwashes chlorhexidine, povidone iodine and fluoride with zinc supplementation against mix bacteria that found in the plaque, Streptococcus mutans and Porphyromonas gingivalis. Methods: The antibacterial effect was measured using disk diffusion test. The bacteria samples (plaque polybacteria, S.mutans and P. gingivalis were inoculated and spread in the petridish containing MHA. Paper discs containing the mouthwashes were placed in the petridish and incubated for 24 hours at 37oC (anaerobe for P. gingivalis, aerobe for S. mutans and polybacteria. The diameter of inhibition zone surrounding the paper discs were measured and compared between each active ingredient contained in mouthwash. Results: Chlorhexidine had the strongest antibacterial effect than povidone iodine and fluoride. Chlorhexidine was more effective to inhibited the growth of S. mutans than to polybacteria or P.Gingivalis, while Povidone iodine and fluoride were more effective to inhibited the growth of polybacteria. Conclusion: The mouthwash chlorhexidine was more effective to inhibit the growth of plaque polybacteria, Streptoccous mutans and Porphyromonas gingivalis compared with povidone iodine and fluoride with zinc supplementation.Latar belakang: Prevalensi karies gigi dan penyakit periodontal masih tinggi pada anak Indonesia. Usaha mengatasi hal tersebut antara lain melalui melalui penggunaan obat kumur untuk mengurangi jumlah kuman pathogen. Kandungan obat kumur yang beredar di pasar diantaranya adalah chlorhexidine, povidone iodine dan fluoride

  16. PML-RARα stabilized by zinc in human acute promyelocytic leukemia NB4 cells.

    Science.gov (United States)

    Zhu, Bo; Wang, Jia-Yu; Zhou, Jun-Jie; Zhou, Feng; Cheng, Wei; Liu, Ying-Ting; Wang, Jie; Chen, Xiao; Chen, Dian-Hua; Luo, Lan; Hua, Zi-Chun

    2017-10-01

    Acute promyelocytic leukemia (APL) is characterized and driven by the promyelocytic leukemia protein-retinoic acid receptor alpha (PML-RARα) fusion gene. Previous studies have highlighted the importance of PML-RARα degradation in the treatment against APL. Considering the presence of two zinc fingers in the PML-RARα fusion protein, we explored the function of zinc homeostasis in maintaining PML-RARα stability. We demonstrated for the first time that zinc depletion by its chelator N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) triggered PML-RARα degradation in NB4 APL cells via the proteasome pathway rather than the autophagy-lysosomal pathway. In contrast, autophagy protected TPEN-mediated PML-RARα degradation in NB4 APL cells. We further demonstrated that crosstalk between zinc homeostasis and nitric oxide pathway played a key role in maintaining PML-RARα stability in NB4 APL cells. These results demonstrate that zinc homeostasis is vital for maintaining PML-RARα stability, and zinc depletion by TPEN may be useful as a potential strategy to trigger PML-RARα degradation in APL cells. We also found that TPEN triggered apoptosis of NB4 APL cells in a time-dependent manner. The relationship between PML-RARα degradation and apoptosis triggered by TPEN deserves further study. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop.

    Science.gov (United States)

    Hatakeyama, Masaomi; Aluri, Sirisha; Balachadran, Mathi Thumilan; Sivarajan, Sajeevan Radha; Patrignani, Andrea; Grüter, Simon; Poveda, Lucy; Shimizu-Inatsugi, Rie; Baeten, John; Francoijs, Kees-Jan; Nataraja, Karaba N; Reddy, Yellodu A Nanja; Phadnis, Shamprasad; Ravikumar, Ramapura L; Schlapbach, Ralph; Sreeman, Sheshshayee M; Shimizu, Kentaro K

    2017-09-05

    Finger millet (Eleusine coracana (L.) Gaertn) is an important crop for food security because of its tolerance to drought, which is expected to be exacerbated by global climate changes. Nevertheless, it is often classified as an orphan/underutilized crop because of the paucity of scientific attention. Among several small millets, finger millet is considered as an excellent source of essential nutrient elements, such as iron and zinc; hence, it has potential as an alternate coarse cereal. However, high-quality genome sequence data of finger millet are currently not available. One of the major problems encountered in the genome assembly of this species was its polyploidy, which hampers genome assembly compared with a diploid genome. To overcome this problem, we sequenced its genome using diverse technologies with sufficient coverage and assembled it via a novel multiple hybrid assembly workflow that combines next-generation with single-molecule sequencing, followed by whole-genome optical mapping using the Bionano Irys® system. The total number of scaffolds was 1,897 with an N50 length >2.6 Mb and detection of 96% of the universal single-copy orthologs. The majority of the homeologs were assembled separately. This indicates that the proposed workflow is applicable to the assembly of other allotetraploid genomes. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  18. A regenerative zinc-air fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Smedley, Stuart I. [Electrochemical Technology Development Ltd., Lower Hutt (New Zealand); Zhang, X. Gregory [Teck Cominco Metals Ltd., 2380 Speakman Drive, Mississauga, Ontario (Canada)

    2007-03-20

    The zinc regenerative fuel cell (ZRFC) developed by the former Metallic Power Inc. over the period from 1998 to 2004 is described. The component technologies and engineering solutions for various technical issues are discussed in relation to their functionality in the system. The system was designed to serve as a source of backup emergency power for remote or difficult to access cell phone towers during periods when the main power was interrupted. It contained a 12 cell stack providing 1.8 kW, a separate fuel tank containing zinc pellet fuel and electrolyte, and a zinc electrolyzer to regenerate the zinc pellets during standby periods. Offsite commissioning and testing of the system was successfully performed. The intellectual property of the ZRFC technology is now owned by Teck Cominco Metals Ltd. (author)

  19. Zinc-air cell with KOH-treated agar layer between electrode and electrolyte containing hydroponics gel

    Energy Technology Data Exchange (ETDEWEB)

    Otham, R. [International Islamic University, Kuala Lumpur (Malaysia); Yahaya, A. H. [University of Malaya, Dept. of Chemistry, Kuala Lumpur (Malaysia); Arof, A. K. [University of Malaya, Dept. of Physics, Kuala Lumpur (Malaysia)

    2002-07-01

    Zinc-air electrochemical power sources possess the highest density compared to other zinc anode batteries, due their free and unlimited supply from the ambient air. In this experiment zinc-air cells have been fabricated employing hydroponics gel as an alternative alkaline electrolyte gelling agent. Thin KOH-treated agar layer was applied between the electrode-electrolyte interfaces which produced significant enhancement of the cells' capacities, indicating that the application of thin agar layer will improve the electrode-gelled electrolyte interfaces. Promising results have been achieved with porous zinc anode prepared from dried zinc-graphite-gelatinized agar paste; e g. a zinc-air cell employing a porous zinc anode has demonstrated a capacity of 1470 mAh rated at 0.1 A continuous discharge. 32 refs., 9 figs.

  20. Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution

    Directory of Open Access Journals (Sweden)

    Zhao Youcai

    2013-12-01

    Full Text Available Production of ultrafine zinc powder from industrial wastes by electrowinning in alkaline solution was studied. Stainless steel and magnesium electrodes were used as anode and cathode, respectively. Morphology, size distribution and composition of the Zn particles were characterized by Scanning Electron Microscopy, Laser Particle Size Analyzer, and Inductive Coupled Plasma Emission Spectrometer. The required composition of the electrolyte for ultrafine particles was found to be 25-35 g/L Zn, 200-220 g/L NaOH and 20-40 mg/L Pb. The optimal conditions were a current density of 1000-1200 A/m² and an electrolyte temperature of 30-40 °C. The results indicated that the lead additive exerted a beneficial effect on the refining of the particles, by increasing the cathodic polarization. Through this study, ultrafine zinc powder with a size distribution of around 10 μm could be produced, and considerably high current efficiencies (97-99 % were obtained.

  1. Modulation of ruminal and intestinal fermentation by medicinal plants and zinc from different sources.

    Science.gov (United States)

    Váradyová, Zora; Mravčáková, Dominika; Holodová, Monika; Grešáková, Ľubomira; Pisarčíková, Jana; Barszcz, Marcin; Taciak, Marcin; Tuśnio, Anna; Kišidayová, Svetlana; Čobanová, Klaudia

    2018-06-14

    Two experiments were conducted on sheep to determine the effect of dietary supplementation with zinc and a medicinal plant mixture on haematological parameters and microbial activity in the rumen and large intestine. In Experiment 1, 24 male lambs were randomly divided into four groups: One group was fed an unsupplemented basal diet (control), and three groups were fed a diet supplemented with 70 mg Zn/kg diet in the form of Zn sulphate (ZnSO 4 ), a Zn-chelate of glycine hydrate (Zn-Gly) or a Zn-proteinate (Zn-Pro), for five months. The ruminal content was collected separately from each lamb, and batch cultures of ruminal fluid were incubated in vitro with mixture of medicinal plants (Mix) with different roughage:concentrate ratios (800:200 and 400:600, w/w). Bioactive compounds in Mix were quantified by UPLC/MS/MS. In Experiment 2, four sheep were fed a diet consisting of meadow hay and barley grain (400:600, w/w), with Zn-Gly (70 mg Zn/kg diet), Mix (10% replacement of meadow hay) or Zn-Gly and Mix (Zn-Gly-Mix) as supplements in a Latin square design. Mix decreased total gas (p  0.05). The diets containing medicinal plants and organic zinc thus helped to modulate the characteristics of fermentation in ruminants. © 2018 Blackwell Verlag GmbH.

  2. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications

    Energy Technology Data Exchange (ETDEWEB)

    Hilty, F M; Hurrell, R F; Zimmermann, M B [Human Nutrition Laboratory, Institute of Food Science and Nutrition, ETH Zurich (Switzerland); Teleki, A; Buechel, R; Pratsinis, S E [Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich (Switzerland); Krumeich, F, E-mail: michael.zimmermann@ilw.agrl.ethz.c [Electron Microscopy Center (EMEZ), ETH Zurich (Switzerland)

    2009-11-25

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe{sub 2}O{sub 4}) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  3. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications

    International Nuclear Information System (INIS)

    Hilty, F M; Hurrell, R F; Zimmermann, M B; Teleki, A; Buechel, R; Pratsinis, S E; Krumeich, F

    2009-01-01

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe 2 O 4 ) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  4. Development and optimization of iron- and zinc-containing nanostructured powders for nutritional applications.

    Science.gov (United States)

    Hilty, F M; Teleki, A; Krumeich, F; Büchel, R; Hurrell, R F; Pratsinis, S E; Zimmermann, M B

    2009-11-25

    Reducing the size of low-solubility iron (Fe)-containing compounds to nanoscale has the potential to improve their bioavailability. Because Fe and zinc (Zn) deficiencies often coexist in populations, combined Fe/Zn-containing nanostructured compounds may be useful for nutritional applications. Such compounds are developed here and their solubility in dilute acid, a reliable indicator of iron bioavailability in humans, and sensory qualities in sensitive food matrices are investigated. Phosphates and oxides of Fe and atomically mixed Fe/Zn-containing (primarily ZnFe2O4) nanostructured powders were produced by flame spray pyrolysis (FSP). Chemical composition and surface area were systematically controlled by varying precursor concentration and feed rate during powder synthesis to increase solubility to the level of ferrous sulfate at maximum Fe and Zn content. Solubility of the nanostructured compounds was dependent on their particle size and crystallinity. The new nanostructured powders produced minimal color changes when added to dairy products containing chocolate or fruit compared to the changes produced when ferrous sulfate or ferrous fumarate were added to these foods. Flame-made Fe- and Fe/Zn-containing nanostructured powders have solubilities comparable to ferrous and Zn sulfate but may produce fewer color changes when added to difficult-to-fortify foods. Thus, these powders are promising for food fortification and other nutritional applications.

  5. Sensitization of glycine (spectrophotometric read-out) dosimetric system using sorbitol

    International Nuclear Information System (INIS)

    Shinde, S.H.; Mukherjee, T.

    2009-01-01

    Glycine spectrophotometric read-out systems have a useful dose range of 15-4000 Gy. An attempt was made to sensitize it using sorbitol as a sensitizer. Optimum compositions of aqueous acidic solutions of ferrous ammonium sulphate-xylenol orange (XO), i.e. FX and sorbitol-ferrous ammonium sulphate-xylenol orange, i.e. SFX, for 400 mg of glycine, which gives maximum dosimetric response for any given dose, were established. Molar absorption coefficient values of ferric-XO-glycine complex, i.e. ε-values, were determined for glycine system in FX and SFX. These values were found to be 8410 and 15,000 m 2 mol -1 respectively, indicating that an enhancement or sensitivity factor of about 1.78 can be achieved by sorbitol for glycine in SFX. This factor was further confirmed by measuring the gamma dose response of glycine in FX and in SFX for four different doses, viz. 37.8, 75.5, 151 and 302 Gy. It was observed that dose response of glycine in SFX is about 77% more than that of glycine in FX. The maximum variation observed in response of glycine in FX or SFX was found to be within ±1.5%.

  6. Ultrahigh and High Resolution Structures and Mutational Analysis of Monomeric Streptococcus pyogenes SpeB Reveal a Functional Role for the Glycine-rich C-terminal Loop

    Energy Technology Data Exchange (ETDEWEB)

    González-Páez, Gonzalo E.; Wolan, Dennis W. (Scripps)

    2012-09-05

    Cysteine protease SpeB is secreted from Streptococcus pyogenes and has been studied as a potential virulence factor since its identification almost 70 years ago. Here, we report the crystal structures of apo mature SpeB to 1.06 {angstrom} resolution as well as complexes with the general cysteine protease inhibitor trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and a novel substrate mimetic peptide inhibitor. These structures uncover conformational changes associated with maturation of SpeB from the inactive zymogen to its active form and identify the residues required for substrate binding. With the use of a newly developed fluorogenic tripeptide substrate to measure SpeB activity, we determined IC{sub 50} values for trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and our new peptide inhibitor and the effects of mutations within the C-terminal active site loop. The structures and mutational analysis suggest that the conformational movements of the glycine-rich C-terminal loop are important for the recognition and recruitment of biological substrates and release of hydrolyzed products.

  7. Evaluation of EEG Features in Decoding Individual Finger Movements from One Hand

    Directory of Open Access Journals (Sweden)

    Ran Xiao

    2013-01-01

    Full Text Available With the advancements in modern signal processing techniques, the field of brain-computer interface (BCI is progressing fast towards noninvasiveness. One challenge still impeding these developments is the limited number of features, especially movement-related features, available to generate control signals for noninvasive BCIs. A few recent studies investigated several movement-related features, such as spectral features in electrocorticography (ECoG data obtained through a spectral principal component analysis (PCA and direct use of EEG temporal data, and demonstrated the decoding of individual fingers. The present paper evaluated multiple movement-related features under the same task, that is, discriminating individual fingers from one hand using noninvasive EEG. The present results demonstrate the existence of a broadband feature in EEG to discriminate individual fingers, which has only been identified previously in ECoG. It further shows that multiple spectral features obtained from the spectral PCA yield an average decoding accuracy of 45.2%, which is significantly higher than the guess level (P<0.05 and other features investigated (P<0.05, including EEG spectral power changes in alpha and beta bands and EEG temporal data. The decoding of individual fingers using noninvasive EEG is promising to improve number of features for control, which can facilitate the development of noninvasive BCI applications with rich complexity.

  8. Ret Finger Protein: An E3 Ubiquitin Ligase Juxtaposed to the XY Body in Meiosis

    Directory of Open Access Journals (Sweden)

    Isabelle Gillot

    2009-01-01

    Full Text Available During prophase I of male meiosis, the sex chromosomes form a compact structure called XY body that associates with the nuclear membrane of pachytene spermatocytes. Ret Finger Protein is a transcriptional repressor, able to interact with both nuclear matrix-associated proteins and double-stranded DNA. We report the precise and unique localization of Ret Finger Protein in pachytene spermatocytes, in which Ret Finger Protein takes place of lamin B1, between the XY body and the inner nuclear membrane. This localization of Ret Finger Protein does not seem to be associated with O-glycosylation or sumoylation. In addition, we demonstrate that Ret Finger Protein contains an E3 ubiquitin ligase activity. These observations lead to an attractive hypothesis in which Ret Finger Protein would be involved in the positioning and the attachment of XY body to the nuclear lamina of pachytene spermatocytes.

  9. Multi-finger prehension: control of a redundant mechanical system.

    Science.gov (United States)

    Latash, Mark L; Zatsiorsky, Vladimir M

    2009-01-01

    The human hand has been a fascinating object of study for researchers in both biomechanics and motor control. Studies of human prehension have contributed significantly to the progress in addressing the famous problem of motor redundancy. After a brief review of the hand mechanics, we present results of recent studies that support a general view that the apparently redundant design of the hand is not a source of computational problems but a rich apparatus that allows performing a variety of tasks in a reliable and flexible way (the principle of abundance). Multi-digit synergies have been analyzed at two levels of a hypothetical hierarchy involved in the control of prehensile actions. At the upper level, forces and moments produced by the thumb and virtual finger (an imagined finger with a mechanical action equal to the combined mechanical action of all four fingers of the hand) co-vary to stabilize the gripping action and the orientation of the hand-held object. These results support the principle of superposition suggested earlier in robotics with respect to the control of artificial grippers. At the lower level of the hierarchy, forces and moments produced by individual fingers co-vary to stabilize the magnitude and direction of the force vector and the moment of force produced by the virtual finger. Adjustments to changes in task constraints (such as, for example, friction under individual digits) may be local and synergic. The latter reflect multi-digit prehension synergies and may be analyzed with the so-called chain effects: Sequences of relatively straightforward cause-effect links directly related to mechanical constraints leading to non-trivial strong co-variation between pairs of elemental variables. Analysis of grip force adjustments during motion of hand-held objects suggests that the central nervous system adjusts to gravitational and inertial loads differently. The human hand is a gold mine for researchers interested in the control of natural human

  10. Interaction of NANOS2 and NANOS3 with different components of the CNOT complex may contribute to the functional differences in mouse male germ cells

    OpenAIRE

    Atsushi Suzuki; Yuki Niimi; Yumiko Saga

    2014-01-01

    ABSTRACT NANOS2 and NANOS3 belong to the Nanos family of proteins that contain a conserved zinc finger domain, which consists of two consecutive CCHC-type zinc finger motifs, and contribute to germ cell development in mice. Previous studies indicate that there are redundant and distinct functions of these two proteins. NANOS2 rescues NANOS3 functions in the maintenance of primordial germ cells, whereas NANOS3 fails to replace NANOS2 functions in the male germ cell pathway. However, the lack o...

  11. Perceiving fingers in single-digit arithmetic problems.

    Science.gov (United States)

    Berteletti, Ilaria; Booth, James R

    2015-01-01

    In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense.

  12. Transcriptome wide identification and characterization of starch branching enzyme in finger millet.

    Science.gov (United States)

    Tyagi, Rajhans; Tiwari, Apoorv; Garg, Vijay Kumar; Gupta, Sanjay

    2017-01-01

    Starch-branching enzymes (SBEs) are one of the four major enzyme classes involved in starch biosynthesis in plants and play an important role in determining the structure and physical properties of starch granules. Multiple SBEs are involved in starch biosynthesis in plants. Finger millet is calcium rich important serial crop belongs to grass family and the transcriptome data of developing spikes is available on NCBI. In this study it was try to find out the gene sequence of starch branching enzyme and annotate the sequence and submit the sequence for further use. Rice SBE sequence was taken as reference and for characterization of the sequence different in silico tools were used. Four domains were found in the finger millet Starch branching enzyme like alpha amylase catalytic domain from 925 to2172 with E value 0, N-terminal Early set domain from 634 to 915 with E value 1.62 e-42, Alpha amylase, C-terminal all-beta domain from 2224 to 2511 with E value 5.80e-24 and 1,4-alpha-glucan-branching enzyme from 421 to 2517 with E value 0. Major binding interactions with the GLC (alpha-d-glucose), CA (calcium ion), GOL (glycerol), TRS (2-amino-2-hydroxymethylpropane- 1, 3-diol), MG (magnesium ion) and FLC (citrate anion) are fond with different residues. It was found in the phylogenetic study of the finger millet SBE with the 6 species of grass family that two clusters were form A and B. In cluster A, finger millet showed closeness with Oryzasativa and Setariaitalica, Sorghum bicolour and Zea mays while cluster B was formed with Triticumaestivum and Brachypodium distachyon. The nucleotide sequence of Finger millet SBE was submitted to NCBI with the accession no KY648913 and protein structure of SBE of finger millet was also submitted in PMDB with the PMDB id - PM0080938. This research presents a comparative overview of Finger millet SBE and includes their properties, structural and functional characteristics, and recent developments on their post-translational regulation.

  13. The ZNF75 zinc finger gene subfamily: Isolation and mapping of the four members in humans and great apes

    Energy Technology Data Exchange (ETDEWEB)

    Villa, A.; Strina, D.; Frattini, A. [Consiglio Nazionale delle Ricerche, Milan (Italy)] [and others

    1996-07-15

    We have previously reported the characterization of the human ZNF75 gene located on Xq26, which has only limited homology (less than 65%) to other ZF genes in the databases. Here, we describe three human zinc finger genes with 86 to 95% homology to ZNF75 at the nucleotide level, which represent all the members of the human ZNF75 subfamily. One of these, ZNF75B, is a pseudogene mapped to chromosome 12q13. The other two, ZNF75A and ZNF75C, maintain on ORF in the sequenced region, and at least the latter is expressed in the U937 cell line. They were mapped to chromosomes 16 and 11, respectively. All these genes are conserved in chimpanzees, gorillas, and orangutans. The ZNF75B homologue is a pseudogene in all three great apes, and in chimpanzee it is located on chromosome 10 (phylogenetic XII), at p13 (corresponding to the human 12q13). The chimpanzee homologue of ZNF75 is also located on the Xq26 chromosome, in the same region, as detected by in situ hybridization. As expected, nucleotide changes were clearly more abundant between human and organutan than between human and chimpanzee or gorilla homologues. Members of the same class were more similar to each other than to the other homologues within the same species. This suggests that the duplication and/or retrotranscription events occurred in a common ancestor long before great ape speciation. This, together with the existance of at least two genes in cows and horses, suggests a relatively high conservation of this gene family. 20 refs., 5 figs., 1 tab.

  14. Mesofluidic controlled robotic or prosthetic finger

    Science.gov (United States)

    Lind, Randall F; Jansen, John F; Love, Lonnie J

    2013-11-19

    A mesofluidic powered robotic and/or prosthetic finger joint includes a first finger section having at least one mesofluidic actuator in fluid communication with a first actuator, a second mesofluidic actuator in fluid communication with a second actuator and a second prosthetic finger section pivotally connected to the first finger section by a joint pivot, wherein the first actuator pivotally cooperates with the second finger to provide a first mechanical advantage relative to the joint point and wherein the second actuator pivotally cooperates with the second finger section to provide a second mechanical advantage relative to the joint point.

  15. Pharmacological characterisation of strychnine and brucine analogues at glycine and alpha7 nicotinic acetylcholine receptors

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Gharagozloo, Parviz; Birdsall, Nigel J M

    2006-01-01

    of tertiary and quaternary analogues as well as bisquaternary dimers of strychnine and brucine at human alpha1 and alpha1beta glycine receptors and at a chimera consisting of the amino-terminal domain of the alpha7 nicotinic receptor (containing the orthosteric ligand binding site) and the ion channel domain...... of strychnine and brucine, none of the analogues displayed significant selectivity between the alpha1 and alpha1beta subtypes. The structure-activity relationships for the compounds at the alpha7/5-HT3 chimera were significantly different from those at the glycine receptors. Most strikingly, quaternization...... of strychnine and brucine with substituents possessing different steric and electronic properties completely eliminated the activity at the glycine receptors, whereas binding affinity to the alpha7/5-HT3 chimera was retained for the majority of the quaternary analogues. This study provides an insight...

  16. Zinc-based electrolyte compositions, and related electrochemical processes and articles

    Science.gov (United States)

    Kniajanski, Sergei; Soloveichik, Grigorii Lev

    2018-02-20

    An aqueous electrolyte composition is described, including a zinc salt based on zinc acetate or zinc glocolate. The saturation concentration of zinc in the electrolyte composition is in the range of about 2.5M to about 3.5M. The composition also contains at least one salt of a monovalent cation. The molar ratio of zinc to the monovalent cation is about 1:2. An aqueous zinc electroplating bath, containing the aqueous electrolyte composition, is also disclosed, along with a method for the electrochemical deposition of zinc onto a substrate surface, using the electroplating bath. Related flow batteries are also described, including a catholyte, as well as an anolyte based on the aqueous electrolyte composition, with a membrane between the catholyte and the anolyte.

  17. Perceiving fingers in single-digit arithmetic problems

    Directory of Open Access Journals (Sweden)

    Ilaria eBerteletti

    2015-03-01

    Full Text Available In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense.

  18. Electrochemical assessing corrosion inhibiting effects of zinc aluminum polyphosphate (ZAPP) as a modified zinc phosphate pigment

    International Nuclear Information System (INIS)

    Naderi, R.; Attar, M.M.

    2008-01-01

    Undesirable anti-corrosion performance of zinc phosphate pigment, the classical chromate replacement, has led researchers to take modification into account. Polyphosphate-based anti-corrosion pigments as a result of modification of zinc orthophosphate have been found to function much more efficiently. This study aimed to evaluate performance of steel samples immersed in 3.5% NaCl aqueous solution-containing zinc aluminum polyphosphate (ZAPP) pigment extract compared to those involving conventional zinc phosphate (ZP) pigment extract and also no pigment (blank) using electrochemical tests such as electrochemical impedance spectroscopy (EIS) and linear polarization (LP) as well as surface analysis. Impedance spectra and polarization curves revealed two different trends, showing the superiority of ZAPP pigment. Based on the results of scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), presence of a precipitated layer on the surface was confirmed when steel sample was immersed into the solution-containing ZAPP

  19. Sda1, a Cys2-His2 zinc finger transcription factor, is involved in polyol metabolism and fumonisin B1 production in Fusarium verticillioides.

    Directory of Open Access Journals (Sweden)

    Martha Malapi-Wight

    Full Text Available The ubiquitous ascomycete Fusarium verticillioides causes ear rot and stalk rot of maize, both of which reduce grain quality and yield. Additionally, F. verticillioides produces the mycotoxin fumonisin B1 (FB1 during infection of maize kernels, and thus potentially compromises human and animal health. The current knowledge is fragmentary regarding the regulation of FB1 biosynthesis, particularly when considering interplay with environmental factors such as nutrient availability. In this study, SDA1 of F. verticillioides, predicted to encode a Cys-2 His-2 zinc finger transcription factor, was shown to play a key role in catabolizing select carbon sources. Growth of the SDA1 knock-out mutant (Δsda1 was completely inhibited when sorbitol was the sole carbon source and was severely impaired when exclusively provided mannitol or glycerol. Deletion of SDA1 unexpectedly increased FB1 biosynthesis, but reduced arabitol and mannitol biosynthesis, as compared to the wild-type progenitor. Trichoderma reesei ACE1, a regulator of cellulase and xylanase expression, complemented the F. verticillioides Δsda1 mutant, which indicates that Ace1 and Sda1 are functional orthologs. Taken together, the data indicate that Sda1 is a transcriptional regulator of carbon metabolism and toxin production in F. verticillioides.

  20. A Zinc-Finger-Family Transcription Factor, AbVf19, Is Required for the Induction of a Gene Subset Important for Virulence in Alternaria brassicicola

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Akhil [Univ. of Hawaii, Manoa, HI (United States); Ohm, Robin A. [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Oxiles, Lindsay [Univ. of Hawaii, Manoa, HI (United States); Brooks, Fred [Univ. of Hawaii, Manoa, HI (United States); Lawrence, Christopher B. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Grigoriev, Igor V. [USDOE Joint Genome Inst., Walnut Creek, CA (United States); Cho, Yangrae [Univ. of Hawaii, Manoa, HI (United States)

    2011-10-26

    Alternaria brassicicola is a successful saprophyte and necrotrophic plant pathogen with a broad host range within the family Brassicaceae. It produces secondary metabolites that marginally affect virulence. Cell wall degrading enzymes (CDWE) have been considered important for pathogenesis but none of them individually have been identified as significant virulence factors in A. brassicicola. In this study, knockout mutants of a gene, AbVf19, were created and produced considerably smaller lesions than the wild type on inoculated host plants. The presence of tandem zinc-finger domains in the predicted amino acid sequence and nuclear localization of AbVf19- reporter protein suggested that it was a transcription factor. Gene expression comparisons using RNA-seq identified 74 genes being downregulated in the mutant during a late stage of infection. Among the 74 downregulated genes, 28 were putative CWDE genes. These were hydrolytic enzyme genes that composed a small fraction of genes within each family of cellulases, pectinases, cutinases, and proteinases. The mutants grew slower than the wild type on an axenic medium with pectin as a major carbon source. This study demonstrated the existence and the importance of a transcription factor that regulates a suite of genes that are important for decomposing and utilizing plant material during the late stage of plant infection.

  1. Radioactive waste sealing container

    International Nuclear Information System (INIS)

    Tozawa, S.; Kitamura, T.; Sugimoto, S.

    1984-01-01

    A low- to medium-level radioactive waste sealing container is constructed by depositing a foundation coating consisting essentially of zinc, cadmium or a zinc-aluminum alloy over a steel base, then coating an organic synthetic resin paint containing a metal phosphate over the foundation coating, and thereafter coating an acryl resin, epoxy resin, and/or polyurethane paint. The sealing container can consist of a main container body, a lid placed over the main body, and fixing members for clamping and fixing the lid to the main body. Each fixing member may consist of a material obtained by depositing a coating consisting essentially of cadmium or a zinc-aluminum alloy over a steel base

  2. [Effect of cultivation in zinc media on the growth of and the degree of zinc in organic form in transgenic metallothionein mushroom].

    Science.gov (United States)

    Sheng, Ji-Ping; Shen, Lin; Ru, Bing-Gen

    2009-03-01

    Metallothioneins (MTs) are a family of low molecular weight, cysteine-rich and metal-binding functional proteins. Transgenic MT mushroom can be used as functional food additives, but its zinc-enriching ability has not been studied systemically until now. The zinc contents in mycelia of transgenic MT mushroom (Pleurotus ostreatus) and wild type mushroom mycelia cultivated in different zinc concentration media were analyzed by ICP-OES. The growth status, zinc-enriching ability and degree of zinc in organic form (DZOF) were also analyzed. Results showed that MT mushroom mycelia grew rapidly, but the growth was inhibited when the zinc content in solid media was higher than 1.6 mmol x L(-1). MT mushroom mycelia could enrich more zinc than that of wild type, and the zinc content in MT mushroom mycelia could be 2.56-27.49 mg x kg(-1) when it was cultivated in a liquid media with 0.6-1.2 mmol x L(-1) zinc. DZOF of MT mushroom mycelia in a liquid media with 0.6 mmol x L(-1) zinc at 7 d was significantly higher (88.7%) than that in the wild type (82.1%, alpha = 0.05), but there was no significant difference in DZOF when the MT mushroom mycelia was cultivated in a liquid media with different zinc content at 7 d.

  3. An experimental study of the retention of zinc, zinc-cadmium mixture and zinc-65 in the presence of cadmium in Anguilla anguilla (L.)

    International Nuclear Information System (INIS)

    Pally, Monique; Foulquier, Luc

    1976-07-01

    Zinc uptake was studied in eels in fresh water, using stable zinc, a zinc-cadmium mixture, and zinc 65 in the presence of small amounts of cadmium. The zinc content in the eel began to increase after 45 days only, and reached approximately 85 ppm after 76 days in water initially containing 5ppm of zinc. At the conclusion of the experiment (76 days), the body organs could be classified in decreasing order in zinc content (in ppm): kidneys (152), skeleton (133), skin (129), muscles (89), head (80), gills (78), digestive tract (77), liver (63) spleen-heart-air bladder (32), and mucus (15). A comparison of experimental results obtained with the zinc-cadmium mixture and cadmium alone showed that zinc decreased the cadmium content of all organs except the gills. The presence of cadmium in water did not inhibit zinc uptake. As cadmium content in water increased, then zinc content in the digestive tract and the kidneys decreased and in all cases remained lower than when zinc alone was present. In the presence of cadmium the percentage of zinc in the kidneys was always lower than the value obtained for zinc alone, and that of the digestive tract did not increase. Contamination of eels treated with 18 and 50ppb of cadmium for 29 days, then contaminated by zinc-65 (5μCi/l) while maintaining the same low cadmium content, showed no significant difference in zinc 65 uptake in the two groups. The same applied to the body organs, and particularly the digestive tract and kidneys, where the highest activity levels were observed. By weight, muscles represented approximately 30% of the total contamination after 45 days [fr

  4. Anti-corrosive Effects of Multi-Walled Carbon Nano Tube and Zinc Particle Shapes on Zinc Ethyl Silicate Coated Carbon Steel

    Energy Technology Data Exchange (ETDEWEB)

    Jang, JiMan; Shon, MinYoung; Kwak, SamTak [Pukyong National University, Busan (Korea, Republic of)

    2016-01-15

    Zinc ethyl silicate coatings containing multi walled carbon nanotubes (MWCNTs) were prepared, to which we added spherical and flake shaped zinc particles. The anti-corrosive effects of MWCNTs and zinc shapes on the zinc ethyl silicate coated carbon steel was examined, using electrochemical impedance spectroscopy and corrosion potential measurement. The results of EIS and corrosion potential measurement showed that the zinc ethyl silicate coated with flake shaped zinc particles and MWCNT showed lesser protection to corrosion. These outcomes were in agreement with previous results of corrosion potential and corrosion occurrence.

  5. Design and preliminary evaluation of the FINGER rehabilitation robot: controlling challenge and quantifying finger individuation during musical computer game play.

    Science.gov (United States)

    Taheri, Hossein; Rowe, Justin B; Gardner, David; Chan, Vicki; Gray, Kyle; Bower, Curtis; Reinkensmeyer, David J; Wolbrecht, Eric T

    2014-02-04

    This paper describes the design and preliminary testing of FINGER (Finger Individuating Grasp Exercise Robot), a device for assisting in finger rehabilitation after neurologic injury. We developed FINGER to assist stroke patients in moving their fingers individually in a naturalistic curling motion while playing a game similar to Guitar Hero. The goal was to make FINGER capable of assisting with motions where precise timing is important. FINGER consists of a pair of stacked single degree-of-freedom 8-bar mechanisms, one for the index and one for the middle finger. Each 8-bar mechanism was designed to control the angle and position of the proximal phalanx and the position of the middle phalanx. Target positions for the mechanism optimization were determined from trajectory data collected from 7 healthy subjects using color-based motion capture. The resulting robotic device was built to accommodate multiple finger sizes and finger-to-finger widths. For initial evaluation, we asked individuals with a stroke (n = 16) and without impairment (n = 4) to play a game similar to Guitar Hero while connected to FINGER. Precision design, low friction bearings, and separate high speed linear actuators allowed FINGER to individually actuate the fingers with a high bandwidth of control (-3 dB at approximately 8 Hz). During the tests, we were able to modulate the subject's success rate at the game by automatically adjusting the controller gains of FINGER. We also used FINGER to measure subjects' effort and finger individuation while playing the game. Test results demonstrate the ability of FINGER to motivate subjects with an engaging game environment that challenges individuated control of the fingers, automatically control assistance levels, and quantify finger individuation after stroke.

  6. A role for accumbal glycine receptors in modulation of dopamine release by the glycine transporter-1 inhibitor Org25935

    Directory of Open Access Journals (Sweden)

    Helga eHöifödt Lidö

    2011-03-01

    Full Text Available AbstractAccumbal glycine modulates basal and ethanol-induced dopamine levels in the nucleus accumbens (nAc as well as voluntary ethanol consumption. Also, systemic administration of the glycine transporter-1 inhibitor Org25935 elevates dopamine levels in nAc, prevents a further ethanol-induced dopamine elevation and robustly and dose-dependently decreases ethanol consumption in rats. Here we investigated whether Org25935 applied locally in nAc modulates dopamine release, and whether accumbal glycine receptors or NMDA receptors are involved in this tentative effect. We also addressed whether Org25935 and ethanol applied locally in nAc interact with dopamine levels, as seen after systemic administration. We used in vivo microdialysis coupled to HPLC-ED in freely moving male Wistar rats to monitor dopamine output in nAc after local perfusion of Org25935 alone, with ethanol, or Org25935-perfusion after pre-treatment with the glycine receptor antagonist strychnine or the NMDA receptor glycine site antagonist L-701.324. Local Org25935 increased extracellular dopamine levels in a subpopulation of rats. Local strychnine, but not systemic L-701.324, antagonized the dopamine-activating effect of Org25935. Ethanol failed to induce a dopamine overflow in the subpopulation responding to Org25935 with a dopamine elevation. The study supports a role for accumbal glycine receptors rather than NMDA receptor signaling in the dopamine-activating effect of Org25935. The results further indicate that the previously reported systemic Org25935-ethanol interaction with regard to accumbal dopamine is localized to the nAc. This adds to the growing evidence for the glycine receptor as an important player in the dopamine reward circuitry and in ethanol’s effects within this system.

  7. Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: pharmacometabolomics-informed pharmacogenomics.

    Science.gov (United States)

    Ji, Y; Hebbring, S; Zhu, H; Jenkins, G D; Biernacka, J; Snyder, K; Drews, M; Fiehn, O; Zeng, Z; Schaid, D; Mrazek, D A; Kaddurah-Daouk, R; Weinshilboum, R M

    2011-01-01

    Major depressive disorder (MDD) is a common psychiatric disease. Selective serotonin reuptake inhibitors (SSRIs) are an important class of drugs used in the treatment of MDD. However, many patients do not respond adequately to SSRI therapy. We used a pharmacometabolomics-informed pharmacogenomic research strategy to identify citalopram/escitalopram treatment outcome biomarkers. Metabolomic assay of plasma samples from 20 escitalopram remitters and 20 nonremitters showed that glycine was negatively associated with treatment outcome (P = 0.0054). This observation was pursued by genotyping tag single-nucleotide polymorphisms (SNPs) for genes encoding glycine synthesis and degradation enzymes, using 529 DNA samples from SSRI-treated MDD patients. The rs10975641 SNP in the glycine dehydrogenase (GLDC) gene was associated with treatment outcome phenotypes. Genotyping for rs10975641 was carried out in 1,245 MDD patients in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, and its presence was significant (P = 0.02) in DNA taken from these patients. These results highlight a possible role for glycine in SSRI response and illustrate the use of pharmacometabolomics to "inform" pharmacogenomics.

  8. Bromine-rich Zinc Bromides: Zn6Br12(18-crown-6)2×(Br2)5, Zn4Br8(18-crown-6)2×(Br2)3, and Zn6Br12(18-crown-6)2×(Br2)2.

    Science.gov (United States)

    Hausmann, David; Feldmann, Claus

    2016-06-20

    The bromine-rich zinc bromides Zn6Br12(18-crown-6)2×(Br2)5 (1), Zn4Br8(18-crown-6)2×(Br2)3 (2), and Zn6Br12(18-crown-6)2×(Br2)2 (3) are prepared by reaction of ZnBr2, 18-crown-6, and elemental bromine in the ionic liquid [MeBu3N][N(Tf)2] (N(Tf)2 = bis(trifluoromethylsulfonyl)amide). Zn6Br12(18-crown-6)2×(Br2)5 (1) is formed instantaneously by the reaction. Even at room temperature, compound 1 releases bromine, which was confirmed by thermogravimetry (TG) and mass spectrometry (MS). The release of Br2 can also be directly followed by the color and density of the title compounds. With controlled conditions (2 weeks, 25 °C, absence of excess Br2) Zn6Br12(18-crown-6)2×(Br2)5 (1) slowly releases bromine with conconcurrent generation of Zn4Br8(18-crown-6)2×(Br2)3 (2) (in ionic liquid) and Zn6Br12(18-crown-6)2×(Br2)2 (3) (in inert oil). All bromine-rich zinc bromides contain voluminous uncharged (e.g., Zn3Br6(18-crown-6), Zn2Br4(18-crown-6)) or ionic (e.g., [Zn2Br3(18-crown-6)](+), [(Zn2Br6)×(Br2)2](2-)) building units with dibromine molecules between the Zn oligomers and partially interconnecting the Zn-containing building units. Due to the structural similarity, the bromine release is possible via crystal-to-crystal transformation with retention of the crystal shape.

  9. Quantitative mapping of zinc fluxes in the mammalian egg reveals the origin of fertilization-induced zinc sparks

    Energy Technology Data Exchange (ETDEWEB)

    Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak P.; Woodruff, Teresa K.; O' Halloran, Thomas V.

    2014-12-15

    Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes

  10. Generation of SNCA Cell Models Using Zinc Finger Nuclease (ZFN) Technology for Efficient High-Throughput Drug Screening.

    Science.gov (United States)

    Dansithong, Warunee; Paul, Sharan; Scoles, Daniel R; Pulst, Stefan M; Huynh, Duong P

    2015-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by loss of dopaminergic neurons of the substantia nigra. The hallmark of PD is the appearance of neuronal protein aggregations known as Lewy bodies and Lewy neurites, of which α-synuclein forms a major component. Familial PD is rare and is associated with missense mutations of the SNCA gene or increases in gene copy number resulting in SNCA overexpression. This suggests that lowering SNCA expression could be therapeutic for PD. Supporting this hypothesis, SNCA reduction was neuroprotective in cell line and rodent PD models. We developed novel cell lines expressing SNCA fused to the reporter genes luciferase (luc) or GFP with the objective to enable high-throughput compound screening (HTS) for small molecules that can lower SNCA expression. Because SNCA expression is likely regulated by far-upstream elements (including the NACP-REP1 located at 8852 bp upstream of the transcription site), we employed zinc finger nuclease (ZFN) genome editing to insert reporter genes in-frame downstream of the SNCA gene in order to retain native SNCA expression control. This ensured full retention of known and unknown up- and downstream genetic elements controlling SNCA expression. Treatment of cells with the histone deacetylase inhibitor valproic acid (VPA) resulted in significantly increased SNCA-luc and SNCA-GFP expression supporting the use of our cell lines for identifying small molecules altering complex modes of expression control. Cells expressing SNCA-luc treated with a luciferase inhibitor or SNCA siRNA resulted in Z'-scores ≥ 0.75, suggesting the suitability of these cell lines for use in HTS. This study presents a novel use of genome editing for the creation of cell lines expressing α-synuclein fusion constructs entirely under native expression control. These cell lines are well suited for HTS for compounds that lower SNCA expression directly or by acting at long-range sites to the SNCA

  11. Glycine transporter 1 is a target for the treatment of epilepsy

    NARCIS (Netherlands)

    Shen, Hai-Ying; van Vliet, Erwin A.; Bright, Kerry-Ann; Hanthorn, Marissa; Lytle, Nikki K.; Gorter, Jan; Aronica, Eleonora; Boison, Detlev

    2015-01-01

    Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-D-aspartate receptor (NMDAR). In hippocampus, the

  12. Glycine transporter 1 is a target for the treatment of epilepsy

    NARCIS (Netherlands)

    Shen, H-Y; van Vliet, E.A.; Bright, K-A.; Hanthorn, M.; Lytle, N.K.; Gorter, J.; Aronica, E.; Boison, D.

    2015-01-01

    Glycine is the major inhibitory neurotransmitter in brainstem and spinal cord, whereas in hippocampus glycine exerts dual modulatory roles on strychnine-sensitive glycine receptors and on the strychnine-insensitive glycineB site of the N-methyl-d-aspartate receptor (NMDAR). In hippocampus, the

  13. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  14. Genome-wide identification and characterization of stress-associated protein (SAP gene family encoding A20/AN1 zinc-finger proteins in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Zhou Yong

    2018-01-01

    Full Text Available Stress associated proteins (SAPs play important roles in developmental processes, responses to various stresses and hormone stimulation in plants. However, little is known about the SAP gene family in Medicago truncatula. In this study, a total of 17 MtSAP genes encoding A20/AN1 zinc-finger proteins were characterized. Out of these 17 genes, 15 were distributed over all 8 chromosomes at different densities, and two segmental duplication events were detected. The phylogenetic analysis of these proteins and their orthologs from Arabidopsis and rice suggested that they could be classified into five out of the seven groups of SAP family genes, with genes in the same group showing similar structures and conserved domains. The cis-elements of the MtSAP promoters were studied, and many cis-elements related to stress and plant hormone responses were identified. We also investigated the stress-responsive expression patterns of the MtSAP genes under various stresses, including drought, exposure to NaCl and cold. The qRT-PCR results showed that numerous MtSAP genes exhibited transcriptional responses to multiple abiotic stresses. These results lay the foundation for further functional characterization of SAP genes. To the best of our knowledge, this is the first report of a genome-wide analysis of the SAP gene family in M. truncatula.

  15. Silicon-zinc-glycerol hydrogel, a potential immunotropic agent for topical application.

    Science.gov (United States)

    Khonina, Tat'yana G; Ivanenko, Maria V; Chupakhin, Oleg N; Safronov, Alexander P; Bogdanova, Ekaterina A; Karabanalov, Maxim S; Permikin, Vasily V; Larionov, Leonid P; Drozdova, Lyudmila I

    2017-09-30

    Nanoparticles synthesized using sol-gel method are promising agents for biomedical applications, in particular for the therapy and diagnosis of various diseases. Using silicon and zinc glycerolates as biocompatible precursors we synthesized by the sol-gel method a new bioactive silicon-zinc-containing glycerohydrogel combining the positive pharmacological properties of the precursors. In the present work the structural features of silicon-zinc-containing glycerohydrogel and its immunotropic properties were studied. The advanced physical methods, including XRD, TEM, dynamic and electrophoretic light scattering, were used for studying the structural features of the gel. Hydrolysis of zinc monoglycerolate was investigated under gelation conditions. Evaluation of the efficiency of silicon-zinc-containing glycerohydrogel in providing immune functions was carried out using a model of the complicated wound process behind immunosuppression induced by hydrocortisone administration in the Wistar rats. It has been shown that zinc monoglycerolate exists in the state of amorphous nanoparticles in the cells of 3D-network formed due to incomplete hydrolysis of silicon glycerolates and subsequent silanol condensation. Zinc monoglycerolate is not hydrolyzed and does not enter 3D-network of the gel with the formation of Zn-O-Si groups, but it forms a separate phase. Immunotropic action of silicon-zinc-containing glycerohydrogel was revealed by the histology and immunohistochemistry methods. Amorphous nanoparticles of zinc monoglycerolate, water-soluble silicon glycerolates, and products of their hydrolytic transformations, which are present in a aqueous-glycerol medium, are in the first place responsible for the pharmacological activity of hydrogel. The results obtained allow us to consider silicon-zinc-containing glycerohydrogel as a promising immunotropic agent for topical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Comparative evaluation of zinc oxide eugenol versus gelatin sponge soaked in plasma rich in growth factor in the treatment of dry socket: An initial study

    Science.gov (United States)

    Pal, U. S.; Singh, Balendra Pratap; Verma, Vikas

    2013-01-01

    Purpose: The aim of this study was to report a comparison between the zinc oxide eugenol dressing and plasma rich in growth factor (PRGF) with gelatin sponge in the treatment of dry socket. Materials and Methods: This study comprised of 45 patients of dry socket in the span of one year. The patients were randomly divided into three groups on the basis of treatments: Group A (PRGF with gelatin sponge), group B (zinc oxide eugenol group), and group C (irrigation with sterile saline only). The clinical progress was noted at 1st, 2nd, 3rd, 7th, and 15th day after the treatment. Results: Patient's healing was better in group A than in group B but symptomatic pain relief was faster in group B. Group C fared worst in both aspects. Conclusion: We conclude that PRGF with gelatin sponge might be a treatment of choice in the management of dry socket. PMID:23853450

  17. Comparative evaluation of zinc oxide eugenol versus gelatin sponge soaked in plasma rich in growth factor in the treatment of dry socket: An initial study

    Directory of Open Access Journals (Sweden)

    U S Pal

    2013-01-01

    Full Text Available Purpose: The aim of this study was to report a comparison between the zinc oxide eugenol dressing and plasma rich in growth factor (PRGF with gelatin sponge in the treatment of dry socket. Materials and Methods: This study comprised of 45 patients of dry socket in the span of one year. The patients were randomly divided into three groups on the basis of treatments: Group A (PRGF with gelatin sponge, group B (zinc oxide eugenol group, and group C (irrigation with sterile saline only. The clinical progress was noted at 1 st , 2 nd , 3 rd , 7 th , and 15 th day after the treatment. Results: Patient′s healing was better in group A than in group B but symptomatic pain relief was faster in group B. Group C fared worst in both aspects. Conclusion: We conclude that PRGF with gelatin sponge might be a treatment of choice in the management of dry socket.

  18. [Necrosis in fingers and toes following local anaesthesia with adrenaline--an urban legend?].

    Science.gov (United States)

    Finsen, Vilhjalmur

    2013-09-17

    It is often maintained that a local anaesthetic (usually lidocaine) with adrenaline must not be used in fingers and toes because it may cause necrosis due to vascular spasm in end arteries. This review article is an attempt to find evidence to support this warning. Relevant literature was found by means of searches in PubMed limited downwards to 1946 and in EMBASE from 1980 to 2012, and in reference lists. Five review articles on finger necrosis following local anaesthesia concluded that lidocaine with adrenaline does not entail a risk of ischaemic injury. One article found 48 reported cases of finger necrosis in the period 1880 to 2000. Most were from the first half of the 1900s, and none involved lidocaine. Gangrene of part of the finger tip has subsequently been described in one patient with Raynaud's syndrome. No cases of necrosis have been described in a large number of reported accidents in which EpiPen injections contained the same quantity of adrenaline as is found in 60 ml lidocaine with adrenaline. Over a quarter of a million reports have been made of operations on feet, hands, fingers and toes anaesthetised with lidocaine with adrenaline without resulting necrosis. There are no grounds for the warning against using lidocaine with adrenaline in fingers and toes. This anaesthetic offers considerable practical advantages. Care should be taken with infected fingers or fingers with poor circulation.

  19. EMG finger movement classification based on ANFIS

    Science.gov (United States)

    Caesarendra, W.; Tjahjowidodo, T.; Nico, Y.; Wahyudati, S.; Nurhasanah, L.

    2018-04-01

    An increase number of people suffering from stroke has impact to the rapid development of finger hand exoskeleton to enable an automatic physical therapy. Prior to the development of finger exoskeleton, a research topic yet important i.e. machine learning of finger gestures classification is conducted. This paper presents a study on EMG signal classification of 5 finger gestures as a preliminary study toward the finger exoskeleton design and development in Indonesia. The EMG signals of 5 finger gestures were acquired using Myo EMG sensor. The EMG signal features were extracted and reduced using PCA. The ANFIS based learning is used to classify reduced features of 5 finger gestures. The result shows that the classification of finger gestures is less than the classification of 7 hand gestures.

  20. Analyses results of the EHF FW Panel with welded fingers

    International Nuclear Information System (INIS)

    Sviridenko, M.N.; Leshukov, A.Yu.; Razmerov, A.V.; Tomilov, S.N.; Danilov, I.V.; Strebkov, Yu.S.; Mazul, I.V.; Labusov, A.; Gervash, A.A.; Belov, A.V.; Semichev, D.

    2014-01-01

    Highlights: • The design of FW panel with welded fingers has been developed. • The FW panel with welded fingers has been analyzed. • The pressure drop in FW panel coolant path do not exceed allowable one. • The mass flow rate distribution between finger pairs are on acceptable level. • Temperatures in FW components do not exceed allowable one. - Abstract: According to Procurement Arrangement (PA) Russian Federation will procure 40% of enhanced heat flux first wall (FW) panels. The signing of PA is scheduled on November 2013. In framework of PA preparation the RF specialists perform EHF FW design optimization in order to provide the ability to operation of EHF FW panel under ITER conditions. This article contains the design description of EHF FW 14 developed by RF and following analysis have been performed: • Hydraulic analysis; • Transient thermal analysis; • Structural analysis. Analyses results show that new design of FW panel with two straight welds for finger fixation on FW beam developed by RF specialists can be used as a reference design for ITER blanket EHF FW panel loaded by 5 MW/m 2 peak heat flux

  1. Fingers that change color

    Science.gov (United States)

    ... gov/ency/article/003249.htm Fingers that change color To use the sharing features on this page, please enable JavaScript. Fingers or toes may change color when they are exposed to cold temperatures or ...

  2. RETRACTED ARTICLE: Nutritional, technological, and medical approach of finger millet (Eleusine coracana)

    OpenAIRE

    Amir Gull; Gulzar Ahmad Nayik; Kamlesh Prasad; Pradyuman Kumar

    2015-01-01

    Finger millet (Eleusine coracana L.) is also known as African millet and is commonly called “ragi” in India. It has excellent nutritional value and is even superior to other common cereals. It is a richest source of calcium (344 mg) and magnesium (408 mg) than other millets. Predominant fatty acids of this millet are oleic (49%), linoleic (25%), and palmitic acids (25%). Finger millet contains both water-soluble and lipo-soluble vitamins. Emerging bakery products prepared from this millet are...

  3. NCBI nr-aa BLAST: CBRC-PTRO-08-0058 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PTRO-08-0058 ref|NP_009060.2| zinc finger protein of the cerebellum 2 [Homo sa...piens] sp|O95409|ZIC2_HUMAN Zinc finger protein ZIC 2 (Zinc finger protein of the cerebellum 2) gb|AAG28409....1|AF193855_1 zinc finger protein of cerebellum ZIC2 [Homo sapiens] emb|CAH70367.1| Zic family member 2 (odd-

  4. Glycine and Folate Ameliorate Models of Congenital Sideroblastic Anemia.

    Directory of Open Access Journals (Sweden)

    J Pedro Fernández-Murray

    2016-01-01

    Full Text Available Sideroblastic anemias are acquired or inherited anemias that result in a decreased ability to synthesize hemoglobin in red blood cells and result in the presence of iron deposits in the mitochondria of red blood cell precursors. A common subtype of congenital sideroblastic anemia is due to autosomal recessive mutations in the SLC25A38 gene. The current treatment for SLC25A38 congenital sideroblastic anemia is chronic blood transfusion coupled with iron chelation. The function of SLC25A38 is not known. Here we report that the SLC25A38 protein, and its yeast homolog Hem25, are mitochondrial glycine transporters required for the initiation of heme synthesis. To do so, we took advantage of the fact that mitochondrial glycine has several roles beyond the synthesis of heme, including the synthesis of folate derivatives through the glycine cleavage system. The data were consistent with Hem25 not being the sole mitochondrial glycine importer, and we identify a second SLC25 family member Ymc1, as a potential secondary mitochondrial glycine importer. Based on these findings, we observed that high levels of exogenous glycine, or 5-aminolevulinic acid (5-Ala a metabolite downstream of Hem25 in heme biosynthetic pathway, were able to restore heme levels to normal in yeast cells lacking Hem25 function. While neither glycine nor 5-Ala could ameliorate SLC25A38 congenital sideroblastic anemia in a zebrafish model, we determined that the addition of folate with glycine was able to restore hemoglobin levels. This difference is likely due to the fact that yeast can synthesize folate, whereas in zebrafish folate is an essential vitamin that must be obtained exogenously. Given the tolerability of glycine and folate in humans, this study points to a potential novel treatment for SLC25A38 congenital sideroblastic anemia.

  5. Multifunctional G-rich and RRM-containing domains of TbRGG2 perform separate yet essential functions in trypanosome RNA editing.

    Science.gov (United States)

    Foda, Bardees M; Downey, Kurtis M; Fisk, John C; Read, Laurie K

    2012-09-01

    Efficient editing of Trypanosoma brucei mitochondrial RNAs involves the actions of multiple accessory factors. T. brucei RGG2 (TbRGG2) is an essential protein crucial for initiation and 3'-to-5' progression of editing. TbRGG2 comprises an N-terminal G-rich region containing GWG and RG repeats and a C-terminal RNA recognition motif (RRM)-containing domain. Here, we perform in vitro and in vivo separation-of-function studies to interrogate the mechanism of TbRGG2 action in RNA editing. TbRGG2 preferentially binds preedited mRNA in vitro with high affinity attributable to its G-rich region. RNA-annealing and -melting activities are separable, carried out primarily by the G-rich and RRM domains, respectively. In vivo, the G-rich domain partially complements TbRGG2 knockdown, but the RRM domain is also required. Notably, TbRGG2's RNA-melting activity is dispensable for RNA editing in vivo. Interactions between TbRGG2 and MRB1 complex proteins are mediated by both G-rich and RRM-containing domains, depending on the binding partner. Overall, our results are consistent with a model in which the high-affinity RNA binding and RNA-annealing activities of the G-rich domain are essential for RNA editing in vivo. The RRM domain may have key functions involving interactions with the MRB1 complex and/or regulation of the activities of the G-rich domain.

  6. Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells

    NARCIS (Netherlands)

    Barker, N.; Clevers, H.

    2010-01-01

    Molecular markers are used to characterize and track adult stem cells. Colon cancer research has led to the identification of 2 related receptors, leucine-rich repeat-containing, G-protein-coupled receptors (Lgr)5 and Lgr6, that are expressed by small populations of cells in a variety of adult

  7. Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template.

    Science.gov (United States)

    Ran, Yidong; Patron, Nicola; Kay, Pippa; Wong, Debbie; Buchanan, Margaret; Cao, Ying-Ying; Sawbridge, Tim; Davies, John P; Mason, John; Webb, Steven R; Spangenberg, German; Ainley, William M; Walsh, Terence A; Hayden, Matthew J

    2018-05-07

    Sequence-specific nucleases have been used to engineer targeted genome modifications in various plants. While targeted gene knockouts resulting in loss of function have been reported with relatively high rates of success, targeted gene editing using an exogenously supplied DNA repair template and site-specific transgene integration has been more challenging. Here, we report the first application of zinc finger nuclease (ZFN)-mediated, nonhomologous end-joining (NHEJ)-directed editing of a native gene in allohexaploid bread wheat to introduce, via a supplied DNA repair template, a specific single amino acid change into the coding sequence of acetohydroxyacid synthase (AHAS) to confer resistance to imidazolinone herbicides. We recovered edited wheat plants having the targeted amino acid modification in one or more AHAS homoalleles via direct selection for resistance to imazamox, an AHAS-inhibiting imidazolinone herbicide. Using a cotransformation strategy based on chemical selection for an exogenous marker, we achieved a 1.2% recovery rate of edited plants having the desired amino acid change and a 2.9% recovery of plants with targeted mutations at the AHAS locus resulting in a loss-of-function g