WorldWideScience

Sample records for zinc affecting copper

  1. Zinc and copper status of women by physical activity and menstrual status

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Deuster, P.A.; Kyle, S.B.; Moser, P.B.

    1986-03-01

    The zinc and copper status of 33 eumenorrheic (EU) and 12 amenorrheic (AM) female marathon runners and 19 EU and 8 AM nonrunners were determined from 3-day diet records and plasma and erythrocyte (RBC) levels. The study was conducted as a completely randomized 2 x 2 factorial. Mean daily zinc intakes of all groups fell below the recommended dietary allowances. Copper intakes of runners (EU = 1.3 mg; AM = 1.3 mg) were not significantly different. Menstrual status did not affect plasma zinc, RBC zinc or plasma copper levels. Physical activity however, affected RBC zinc and plasma copper levels. Both these parameters were significantly higher in runners. These findings suggest that exercise influences blood zinc and copper levels.

  2. Effects of mine drainage on the River Hayle, Cornwall. Factors affecting concentrations of copper, zinc, and iron in water, sediments and dominant invertebrate fauna

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.E.

    1977-02-15

    Concentrations of copper, zinc and iron were measured in waters, sediments and invertebrates collected from the River Hayle. In river water at least 70% of copper and iron was associated with the ''particulate'' fraction whereas 80% of zinc was in the ''soluble'' form. Although total concentrations of zinc in water exceeded those of copper approximately ten fold, copper predominated over zinc in the sediments by a factor of approximately three. Iron was the most abundant metal recorded in both water and sediments. Seasonal differences in ''total'' metal content of waters suggested that concentrations of copper, zinc and iron increased during periods of high flow and decreased during lower flows. Copper concentrations in the sediment, unlike zinc and iron, showed markedly higher values during the summer sampling period when flows were minimal. In the ''free-living'' Trichoptera larvae, concentrations of copper and zinc in the tissue appeared to follow copper and zinc levels in the water. Similar relationships in Odonata and Plecoptera larvae were not obtained. Factors affecting animal/metal relationships are discussed with particular reference to adaptation shown by organisms exposed to high concentrations of heavy metals in their environment.

  3. Serum zinc, copper, retinol-binding protein, prealbumin, and ceruloplasmin concentrations in infants receiving intravenous zinc and copper supplementation.

    Science.gov (United States)

    Lockitch, G; Godolphin, W; Pendray, M R; Riddell, D; Quigley, G

    1983-02-01

    One hundred twenty-seven newborn infants requiring parenteral nutrition were randomly assigned to receive differing amounts of zinc (40 to 400 micrograms/kg/day) and copper (20 or 40 micrograms/kg/day) supplementation within five birth weight groups (600 to 2,500 gm). The serum zinc concentration remained relatively constant in the group receiving the most zinc supplementation after two weeks of therapy, but declined sharply in the groups receiving less supplementation. No effect of increased copper intake was noted on ceruloplasmin values, but a difference in serum copper concentrations was noted at two weeks. No correlation was noted between serum zinc and copper values or among those for serum zinc, retinol-binding protein, and prealbumin. Reference ranges were defined for serum zinc, copper, retinol-binding protein, prealbumin, and ceruloplasmin in the preterm infant.

  4. Copper and zinc concentrations in serum of healthy Greek adults

    International Nuclear Information System (INIS)

    Kouremenou-Dona, Eleni; Dona, Artemis; Papoutsis, John; Spiliopoulou, Chara

    2006-01-01

    Serum copper and zinc concentrations of 506 (414 males and 92 females) apparently healthy Greek blood donors aged 18-60 years old were determined by flame atomic absorption spectrometry. The mean copper and zinc concentrations were 115.46 ± 23.56 μg/dl and 77.11 ± 17.67 μg/dl, respectively. The mean value for copper and zinc in females was higher than in males, although the difference for zinc was smaller than the one observed for copper. When the subjects were divided into various age groups there appeared to be some increase in copper concentration as a function of age, whereas zinc concentration did not change. There were no significant variations in serum copper and zinc concentrations due to place of residence, occupation and socioeconomic status. This study is the first one evaluating the serum status of copper and zinc in healthy Greeks and it has shown that they are at the highest concentration range for copper and the lowest for zinc compared to literature data on copper and zinc levels for various countries

  5. Copper and zinc concentrations in serum of healthy Greek adults

    Energy Technology Data Exchange (ETDEWEB)

    Kouremenou-Dona, Eleni [A' Hospital of IKA, Athens (Greece); Dona, Artemis [Department of Forensic Medicine and Toxicology, Medical School, University of Athens, M. Asias 75, Goudi, 11527 Athens (Greece)]. E-mail: artedona@med.uoa.gr; Papoutsis, John [Department of Forensic Medicine and Toxicology, Medical School, University of Athens, M. Asias 75, Goudi, 11527 Athens (Greece); Spiliopoulou, Chara [Department of Forensic Medicine and Toxicology, Medical School, University of Athens, M. Asias 75, Goudi, 11527 Athens (Greece)

    2006-04-15

    Serum copper and zinc concentrations of 506 (414 males and 92 females) apparently healthy Greek blood donors aged 18-60 years old were determined by flame atomic absorption spectrometry. The mean copper and zinc concentrations were 115.46 {+-} 23.56 {mu}g/dl and 77.11 {+-} 17.67 {mu}g/dl, respectively. The mean value for copper and zinc in females was higher than in males, although the difference for zinc was smaller than the one observed for copper. When the subjects were divided into various age groups there appeared to be some increase in copper concentration as a function of age, whereas zinc concentration did not change. There were no significant variations in serum copper and zinc concentrations due to place of residence, occupation and socioeconomic status. This study is the first one evaluating the serum status of copper and zinc in healthy Greeks and it has shown that they are at the highest concentration range for copper and the lowest for zinc compared to literature data on copper and zinc levels for various countries.

  6. Supplementation with zinc in rats enhances memory and reverses an age-dependent increase in plasma copper.

    Science.gov (United States)

    Sandusky-Beltran, Leslie A; Manchester, Bryce L; McNay, Ewan C

    2017-08-30

    Zinc and copper are essential trace elements. Dyshomeostasis in these two metals has been observed in Alzheimer's disease, which causes profound cognitive impairment. Insulin therapy has been shown to enhance cognitive performance; however, recent data suggest that this effect may be at least in part due to the inclusion of zinc in the insulin formulation used. Zinc plays a key role in regulation of neuronal glutamate signaling, suggesting a possible link between zinc and memory processes. Consistent with this, zinc deficiency causes cognitive impairments in children. The effect of zinc supplementation on short- and long-term recognition memory, and on spatial working memory, was explored in young and adult male Sprague Dawley rats. After behavioral testing, hippocampal and plasma zinc and copper were measured. Age increased hippocampal zinc and copper, as well as plasma copper, and decreased plasma zinc. An interaction between age and treatment affecting plasma copper was also found, with zinc supplementation reversing elevated plasma copper concentration in adult rats. Zinc supplementation enhanced cognitive performance across tasks. These data support zinc as a plausible therapeutic intervention to ameliorate cognitive impairment in disorders characterized by alterations in zinc and copper, such as Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Leaching and recovery of zinc and copper from brass slag by sulfuric acid

    Directory of Open Access Journals (Sweden)

    I.M. Ahmed

    2016-09-01

    Full Text Available Leaching and recovery processes for zinc and copper from brass slag by sulfuric acid were carried out and iron and aluminum were also precipitated as hydroxides in addition to silica gel. The factors affecting the performance and efficiency of the leaching processsuch as agitation rate, leaching time, acid concentration and temperature were separately investigated. The results obtained revealed that zinc and copper are successfully recovered from these secondary resources, where the percent recovery amounts to 95% and 99% for zinc and copper, respectively. The experimental data of this leaching process were well interpreted with the shrinking core model under chemically controlled processes. The apparent activation energy for the leaching of zinc has been evaluated using the Arrhenius expression. Based on the experimental results, a separation method and a flow sheet were developed and tested to separate zinc, copper, iron, aluminum and silica gel from the brass slag.

  8. Consumption of organic diets does not affect intake and absorption of zinc and copper in men-evidence from two cross-over trials

    DEFF Research Database (Denmark)

    Mark, Alicja Budek; Kápolna, Emese; Laursen, Kristian H.

    2013-01-01

    diets on intake and absorption of zinc and copper in men. Two double-blinded, cross-over, intervention trials (3 dietary periods of 12 days with 2-week-long wash-out) were performed in 2008 (n = 17) and 2009 (n = 16) in young men. The diets were based on 9 crops grown in rigidly controlled organic......Agricultural methods may affect the nutritional composition of plants and cause complex changes in the food matrix. Whether this affects the dietary absorption of minerals that are important for maintaining health thorough life remains unclear. We compared the effects of organic and conventional......; 12.35 ± 0.47 mg per 10 MJ and 44.6% ± 12.1, respectively) and copper (overall mean ± SD; 2.12 ± 0.28 mg per 10 MJ and 41.2% ± 13.2, respectively) were not different between the organic and conventional diets. The growing season had no effect on zinc intake and absorption, but the copper intake...

  9. Factors that Affect the Content of Cadmium, Nickel, Copper and Zinc in Tissues of the Knee Joint.

    Science.gov (United States)

    Roczniak, Wojciech; Brodziak-Dopierała, Barbara; Cipora, Elżbieta; Jakóbik-Kolon, Agata; Kluczka, Joanna; Babuśka-Roczniak, Magdalena

    2017-08-01

    Osteoarthritis causes the degradation of the articular cartilage and periarticular bones. Trace elements influence the growth, development and condition of the bone tissue. Changes to the mineral composition of the bone tissue can cause degenerative changes and fractures. The aim of the research was to determine the content of cadmium (Cd), nickel (Ni), copper (Cu) and zinc (Zn) in the tibia, the femur and the meniscus in men and women who underwent a knee replacement surgery. Samples were collected from 50 patients, including 36 women and 14 men. The determination of trace elements content were performed by ICP-AES method, using Varian 710-ES. Average concentration in the tissues of the knee joint teeth amounted for cadmium 0.015, nickel 0.60, copper 0.89 and zinc 80.81 mg/kg wet weight. There were statistically significant differences in the content of cadmium, copper and zinc in different parts of the knee joint. There were no statistically significant differences in the content of cadmium, nickel, copper and zinc in women and men in the examined parts of the knee joint. Among the elements tested, copper and nickel showed a high content in the connective tissue (the meniscus) compared to the bone tissue (the tibia and the femur).

  10. Leaching and recovery of zinc and copper from brass slag by sulfuric acid

    OpenAIRE

    Ahmed, I.M.; Nayl, A.A.; Daoud, J.A.

    2016-01-01

    Leaching and recovery processes for zinc and copper from brass slag by sulfuric acid were carried out and iron and aluminum were also precipitated as hydroxides in addition to silica gel. The factors affecting the performance and efficiency of the leaching processsuch as agitation rate, leaching time, acid concentration and temperature were separately investigated. The results obtained revealed that zinc and copper are successfully recovered from these secondary resources, where the percent r...

  11. Anaerobic Digestion Alters Copper and Zinc Speciation.

    Science.gov (United States)

    Legros, Samuel; Levard, Clément; Marcato-Romain, Claire-Emmanuelle; Guiresse, Maritxu; Doelsch, Emmanuel

    2017-09-19

    Anaerobic digestion is a widely used organic waste treatment process. However, little is known on how it could alter the speciation of contaminants in organic waste. This study was focused on determining the influence of anaerobic digestion on the speciation of copper and zinc, two metals that generally occur at high concentration in organic waste. Copper and zinc speciation was investigated by X-ray absorption spectroscopy in four different raw organic wastes (predigestion) and their digested counterparts (postdigestion, i.e., digestates). The results highlighted an increase in the digestates of the proportion of amorphous or nanostructured copper sulfides as well as amorphous or nanostructured zinc sulfides and zinc phosphate as compared to raw waste. We therefore suggest that the environmental fate of these elements would be different when spreading either digestates or raw waste on cropland.

  12. Combined copper/zinc attachment to prion protein

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Misfolding of prion protein (PrP) is responsible for diseases such as ``mad-cow disease'' in cattle and Creutzfeldt-Jacob in humans. Extensive experimental investigation has established that this protein strongly interacts with copper ions, and this ability has been linked to its still unknown function. Attachment of other metal ions (zinc, iron, manganese) have been demonstrated as well, but none of them could outcompete copper. Recent finding, however, indicates that at intermediate concentrations both copper and zinc ions can attach to the PrP at the octarepeat region, which contains high affinity metal binding sites. Based on this evidence, we have performed density functional theory simulations to investigate the combined Cu/Zn attachment. We consider all previously reported binding modes of copper at the octarepeat region and examine a possibility simultaneous Cu/Zn attachment. We find that this can indeed occur for only one of the known binding sites, when copper changes its coordination mode to allow for attachment of zinc ion. The implications of the simultaneous attachment on neural function remain to be explored.

  13. Sorption of copper, zinc and cobalt by oat and oat products.

    Science.gov (United States)

    Górecka, Danuta; Stachowiak, Jadwiga

    2002-04-01

    We determined copper, zinc and cobalt sorption by oat and its products under variable pH conditions as well as the content of neutral dietary fiber (NDF) and its fractional composition. Adsorbents in a model sorption system were: oat, dehulled oat, oats bran and oats flakes. Three various buffers (pH 1.8, 6.6 and 8.7) were used as dispersing solutions. Results collected during this study indicate that copper, zinc and cobalt sorption is significantly affected by the type of cereal raw material. Zinc and copper ions are subjected to higher sorption than cobalt ions. Examined metal ions were subjected to high sorption under conditions corresponding to the duodenum environment (pH 8.7), regardless of the kind of adsorbent. A little lower sorption capacity is observed under conditions close to the neutral environment, while the lowest one is found in environment reflecting conditions of stomach juice (pH 1.8). Zinc ions are bound intensively by dehulled oat, while oats flakes bound mostly copper and cobalt, independently on environmental conditions. Contents of dietary fiber in oat, dehulled oat, oat bran and oat flakes were: 40.1, 19.3, 20.3 and 14.3%, respectively. The dominating fraction in all oat products was the fraction of hemicelluloses. The content of remaining fractions varies in dependence on the product.

  14. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    Science.gov (United States)

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-01-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively.

  15. The impact of tertiary wastewater treatment on copper and zinc complexation.

    Science.gov (United States)

    Constantino, C; Gardner, M; Comber, S D W; Scrimshaw, M D; Ellor, B

    2015-01-01

    Tightening quality standards for European waters has seen a move towards enhanced wastewater treatment technologies such as granulated organic carbon treatment and ozonation. Although these technologies are likely to be successful in degrading certain micro-organic contaminants, these may also destroy compounds which would otherwise complex and render metals significantly less toxic. This study examined the impact of enhanced tertiary treatment on the capacity of organic compounds within sewage effluents to complex copper and zinc. The data show that granulated organic carbon treatment removes a dissolved organic carbon (DOC) fraction that is unimportant to complexation such that no detrimental impact on complexation or metal bioavailability is likely to occur from this treatment type. High concentrations of ozone (>1 mg O3/mg DOC) are, however, likely to impact the complexation capacity for copper although this is unlikely to be important at the concentrations of copper typically found in effluent discharges or in rivers. Ozone treatment did not affect zinc complexation capacity. The complexation profiles of the sewage effluents show these to contain a category of non-humic ligand that appears unaffected by tertiary treatment and which displays a high affinity for zinc, suggesting these may substantially reduce the bioavailability of zinc in effluent discharges. The implication is that traditional metal bioavailability assessment approaches such as the biotic ligand model may overestimate zinc bioavailability in sewage effluents and effluent-impacted waters.

  16. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers

    International Nuclear Information System (INIS)

    Quirós, Jennifer; Borges, João P.; Boltes, Karina; Rodea-Palomares, Ismael; Rosal, Roberto

    2015-01-01

    Highlights: • Electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc. • Antimicrobial effect for the bacteria Staphylococcus aureus and Escherichia coli. • Silver strongly reduced colony forming units and bacterial viability. • Silver, copper, and zinc led to a significant increase of non-viable cells on mats. - Abstract: The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the insoluble forms of copper and zinc were dispersed using low molecular weight PVP as capping agent. High molecular weight PVP formed uniform fibers with a narrow distribution of diameters around 500 nm. The fibers were converted into an insoluble network using ultraviolet irradiation crosslinking. The efficiency of metal-loaded mats against the bacteria Escherichia coli and Staphylococcus aureus was tested for different metal loadings by measuring the inhibition of colony forming units and the staining with fluorescent probes for metabolic viability and compromised membranes. The assays included the culture in contact with mats and the direct staining of surface attached microorganisms. The results indicated a strong inhibition for silver-loaded fibers and the absence of significant amounts of viable but non-culturable microorganisms. Copper and zinc-loaded mats also decreased the metabolic activity and cell viability, although in a lesser extent. Metal-loaded fibers allowed the slow release of the soluble forms of the three metals.

  17. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Quirós, Jennifer [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Borges, João P. [CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Boltes, Karina [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805, Alcalá de Henares, Madrid (Spain); Rodea-Palomares, Ismael [Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Rosal, Roberto [Department of Chemical Engineering, University of Alcalá, 28871 Alcalá de Henares, Madrid (Spain); Madrid Institute for Advanced Studies of Water (IMDEA Agua), Parque Científico Tecnológico, E-28805, Alcalá de Henares, Madrid (Spain)

    2015-12-15

    Highlights: • Electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc. • Antimicrobial effect for the bacteria Staphylococcus aureus and Escherichia coli. • Silver strongly reduced colony forming units and bacterial viability. • Silver, copper, and zinc led to a significant increase of non-viable cells on mats. - Abstract: The use of electrospun polyvinylpyrrolidone (PVP) nanofibers containing silver, copper, and zinc nanoparticles was studied to prepare antimicrobial mats using silver and copper nitrates and zinc acetate as precursors. Silver became reduced during electrospinning and formed nanoparticles of several tens of nanometers. Silver nanoparticles and the insoluble forms of copper and zinc were dispersed using low molecular weight PVP as capping agent. High molecular weight PVP formed uniform fibers with a narrow distribution of diameters around 500 nm. The fibers were converted into an insoluble network using ultraviolet irradiation crosslinking. The efficiency of metal-loaded mats against the bacteria Escherichia coli and Staphylococcus aureus was tested for different metal loadings by measuring the inhibition of colony forming units and the staining with fluorescent probes for metabolic viability and compromised membranes. The assays included the culture in contact with mats and the direct staining of surface attached microorganisms. The results indicated a strong inhibition for silver-loaded fibers and the absence of significant amounts of viable but non-culturable microorganisms. Copper and zinc-loaded mats also decreased the metabolic activity and cell viability, although in a lesser extent. Metal-loaded fibers allowed the slow release of the soluble forms of the three metals.

  18. Reagent conditions of the flotation of copper, copper - molybdenum and copper -zinc ores in foreing countries

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1983-01-01

    Reagents-collectors and frothers, used abroad in reagent regimes of flotation of copper, copper-molybdenum and copper zinc ores, have been considered. Xanthogenates, aerofloats, xanthogenformiates, thionocarbamates are mainly used as reagents-collectors. Methylizobutylcarbinol and Daufros are used as reagents-frothers

  19. Effect of infant cereals on zinc and copper absorption during weaning

    International Nuclear Information System (INIS)

    Bell, J.G.; Keen, C.L.; Loennerdal, B.

    1987-01-01

    Zinc and copper absorption from five infant cereal products mixed with water, human milk, or cow's milk was measured using an in vivo absorption model (rat pup) involving gastric intubation of extrinsically radiolabeled diets. Whole-body copper 64 uptake, nine hours after intubation, ranged from 14% to 31% of the dose given for the different cereal combinations. The resultant bioavailability of copper from human milk-cereal combinations (23% to 26%) was significantly lower than that from human milk alone (38%). Whole-body zinc 65 uptake, nine hours after intubation, ranged from 13% to 54% of the dose given for the different cereal combinations. These values were significantly lower than the whole-body zinc 65 uptake from milk alone (61%). Zinc availability was lower (13% to 25%) from dry cereal combinations that contained phytic acid (oatmeal and high-protein varieties) compared with the ready-to-serve cereal-fruit combinations (24% to 54%). The highest zinc uptake (37% to 54%) was from rice-fruit combinations that do not contain phytic acid. We estimated the amounts of zinc and copper that would be absorbed from these cereal products and speculated on the potential impact of these foods on the weaning infant's zinc and copper nutriture. Depending on the feeding practices employed during the weaning period, it is apparent that infant cereals may compromise utilization of zinc and copper from milk diets during weaning

  20. Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc

    International Nuclear Information System (INIS)

    Bambic, Dustin G.; Alpers, Charles N.; Green, Peter G.; Fanelli, Eileen; Silk, Wendy K.

    2006-01-01

    Seasonal and spatial variations in metal concentrations and pH were found in a stream at a restored copper mine site located near a massive sulfide deposit in the Foothill copper-zinc belt of the Sierra Nevada, California. At the mouth of the stream, copper concentrations increased and pH decreased with increased streamflow after the onset of winter rain and, unexpectedly, reached extreme values 1 or 2 months after peaks in the seasonal hydrographs. In contrast, aqueous zinc and sulfate concentrations were highest during low-flow periods. Spatial variation was assessed in 400 m of reach encompassing an acidic, metal-laden seep. At this seep, pH remained low (2-3) throughout the year, and copper concentrations were highest. In contrast, the zinc concentrations increased with downstream distance. These spatial patterns were caused by immobilization of copper by hydrous ferric oxides in benthic sediments, coupled with increasing downstream supply of zinc from groundwater seepage. - Seasonal hydrology and benthic sediments control copper and zinc concentrations in a stream through a restored mine site

  1. Study on copper kinetics in processing sulphide ore mixed with copper and zinc with sulfuric acid leaching under pressure

    Science.gov (United States)

    Wen-bo, LUO; Ji-kun, WANG; Yin, GAN

    2018-01-01

    Sulphide ore mixed with copper and zinc is processed with pressure acid leaching. Research is conducted on the copper kinetic. The stirring rate is set at 600 rpm which could eliminate the influence of external diffusions. Research is conducted on the factors affecting the copper leaching kinetic are temperature, pressure, concentration of sulfuric acid, particle size. The result shows that the apparent activity energy is 50.7 KJ/mol. We could determine that the copper leaching process is shrinking core model of chemical reaction control and work out the leaching equation.

  2. Trend analysis of copper and zinc in animal feed

    NARCIS (Netherlands)

    Adamse, P.; Egmond, van H.J.; Polanen, van A.; Bikker, P.; Jong, de J.

    2011-01-01

    The EC has introduced maximum inclusion levels of copper and zinc salts in animal diets from 1970 onwards and reduced these levels in recent years. In this report historical values are used to give insight into trends in levels of copper and zinc in compound feeds for animals in the Netherlands. The

  3. Copper Doping of Zinc Oxide by Nuclear Transmutation

    Science.gov (United States)

    2014-03-27

    Copper Doping of Zinc Oxide by Nuclear Transmutation THESIS Matthew C. Recker, Captain, USAF AFIT-ENP-14-M-30 DEPARTMENT OF THE AIR FORCE AIR...NUCLEAR TRANSMUTATION THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force...COPPER DOPING OF ZINC OXIDE BY NUCLEAR TRANSMUTATION Matthew C. Recker, BS Captain, USAF Approved: //signed// 27 February 2014 John W. McClory, PhD

  4. Copper and zinc in hair samples from Filipinos with pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Tolosa, L.M.; Sevilla, F. III.

    1987-01-01

    An investigation of the copper and zinc concentrations in active cases of pulmonary tuberculosis was undertaken. Concentrations of copper and zinc in scalp hair of TB patients and controls were determined by atomic absorption spectrophotometry. Elevated copper levels were characteristics of hair samples from TB patients. (Author)

  5. Biovailability of copper and zinc in pig and cattle slurries

    NARCIS (Netherlands)

    Jakubus, M.; Dach, J.; Starmans, D.A.J.

    2013-01-01

    Slurry is an important source of macronutrients, micro-nutrients and organic matter. Despite the considerable fertilizer value of slurry, it may be abundant in amounts of copper and zinc originating from dietary. The study presents quantitative changes in copper and zinc in individual slurries (pig

  6. Different roles of glutathione in copper and zinc chelation in Brassica napus roots.

    Science.gov (United States)

    Zlobin, Ilya E; Kartashov, Alexander V; Shpakovski, George V

    2017-09-01

    We investigated the specific features of copper and zinc excess action on the roots of canola (Brassica napus L.) plants. Copper rapidly accumulated in canola root cells and reached saturation during several hours of treatment, whereas the root zinc content increased relatively slowly. Excessive copper and zinc entry inside the cell resulted in significant cell damage, as evidenced by alterations in plasmalemma permeability and decreases in cellular enzymatic activity. Zinc excess specifically damaged root hair cells, which correlated with a pronounced elevation of their labile zinc level. In vitro, we showed that reduced glutathione (GSH) readily reacted with copper ions to form complexes with blocked sulfhydryl groups. In contrast, zinc ions were ineffective as glutathione blockers, and glutathione molecules did not lose their specific chemical activity in the presence of Zn 2+ ions. The effect of copper and zinc excess on the glutathione pool in canola root cells was analysed by a combination of biochemical determination of total and oxidized glutathione contents and fluorescent staining of free reduced glutathione with monochlorobimane dye. Excess copper led to dose-dependent diminution of free reduced glutathione contents in the root cells, which could not be explained by the loss of total cellular glutathione or its oxidation. In contrast, we observed little effect of much higher intracellular zinc concentrations on the free reduced glutathione content. We concluded that GSH plays an important role in copper excess, but not zinc excess chelation, in canola root cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Association of Maternal Diet With Zinc, Copper, and Iron Concentrations in Transitional Human Milk Produced by Korean Mothers

    Science.gov (United States)

    Kim, Ji-Myung; Lee, Ji-Eun; Cho, Mi Sook; Kang, Bong Soo; Choi, Hyeon

    2016-01-01

    The aims of this study were to evaluate zinc, copper, and iron concentrations in the transitory milk of Korean lactating mothers and to investigate the relationship between these concentrations and maternal diet. Human milk samples were collected between 5 and 15 days postpartum from 96 healthy, lactating mothers in postpartum care centers in Seoul, Korea. Dietary intake during lactation was determined based on a 3-day dietary record. The mean zinc, copper, and iron concentrations in the human milk samples collected were 3.88 ± 1.74 mg/L, 0.69 ± 0.25 mg/L, and 5.85 ± 8.53 mg/L, respectively. The mothers who consumed alcoholic beverages during pregnancy had tended to have lower concentrations of zinc and copper, as well as significantly lower concentrations of iron, in their milk (p < 0.047). In contrast, the mothers who took daily supplements had much higher iron concentrations in their milk (p = 0.002). Dietary intakes of zinc, copper, and iron during lactation did not affect the concentrations of zinc, copper, and iron in the milk samples analyzed. Intakes of vitamin C, selenium, and iodine were associated with the concentration of copper in the milk samples analyzed, and consumption of food categorized as 'meat and meat products' was positively associated with the concentration of zinc. Consumption of rice was the top contributor to the concentrations of all three minerals. In conclusion, associations between maternal diet and nutrient concentrations in transitory human milk can provide useful information, particularly in regard to infant growth. PMID:26839873

  8. Copper, lead and zinc production

    International Nuclear Information System (INIS)

    Ayers, J.; Ternan, S.

    2001-01-01

    This chapter provides information on the by-products and residues generated during the production of copper, lead and zinc. The purpose of this chapter is to describe by-products and residues which are generated, how these may be avoided or minimised, and available options for the utilization and management of residues. (author)

  9. Roadside soils show low plant available zinc and copper concentrations

    International Nuclear Information System (INIS)

    Morse, Natalie; Walter, M. Todd; Osmond, Deanna; Hunt, William

    2016-01-01

    Vehicle combustion and component wear are a major source of metal contamination in the environment, which could be especially concerning where road ditches are actively farmed. The objective of this study was to assess how site variables, namely age, traffic (vehicles day"−"1), and percent carbon (%C) affect metal accumulation in roadside soils. A soil chronosequence was established with sites ranging from 3 to 37 years old and bioavailable, or mobile, concentrations of Zinc (Zn) and Copper (Cu) were measured along major highways in North Carolina using a Mehlich III extraction. Mobile Zn and Cu concentrations were low overall, and when results were scaled via literature values to “total metal”, the results were still generally lower than previous roadside studies. This could indicate farming on lands near roads would pose a low plant toxicity risk. Zinc and Cu were not correlated with annual average traffic count, but were positively correlated with lifetime traffic load (the product of site age and traffic count). This study shows an often overlooked variable, site age, should be included when considering roadside pollution accumulation. Zinc and Cu were more strongly associated with %C, than traffic load. Because vehicle combustion is also a carbon source, it is not obvious whether the metals and carbon are simply co-accumulating or whether the soil carbon in roadside soils may facilitate previously overlooked roles in sequestering metals on-site. - Highlights: • Low plant available zinc and copper concentrations in roadside soils of the southeast U.S. • Metals from vehicular traffic may not be adversely affecting plants in roadside environment. • Traffic volume and site age better predictor of metal pollution than traffic volume alone. - Mobile concentrations of Zn and Cu in roadside soils were below toxic levels. Zn and Cu concentrations were better correlated with lifetime vehicle load, as opposed to traffic volume.

  10. Studies on the role of copper and zinc in liver disorders

    International Nuclear Information System (INIS)

    Dang, H.S.; Jaiswal, D.D.; Wadhwani, C.N.; Somasundaram, S.

    1979-01-01

    Copper and zinc have long been identified as essential trace elements which play an important role in human health and disease. Various proteins containing copper and zinc, e.g. ceruloplasmin and alcohol dehydrogenase, are synthesized in the liver and any change in their levels can affect the corresponding trace element balance in the liver. For a deeper understanding of the role of these trace elements in liver disorders, an animal model study was initiated. Liver necrosis was introduced artificially in rats by feeding them with carbon tetrachloride or ethyl alcohol. A few samples of livers from rabbits infected with Hepatitis virus (B-type) were also included in the study. The status of liver damage was determined by histopathological examination as well as SGOT and SGPT enzyme studies. The technique of neutron activation analysis was used to determine the levels of the trace elements in liver. The inherent errors in the analysis were studied and corrections were applied for all sources of error identified. The results obtained indicate that Cu and Zn levels in liver are elevated following CCl 4 treatment. The Cu and Zn levels in liver tend to remain elevated even after several weeks of termination of CCl 4 treatment, when tissue regeneration had taken place and the SGOT and SGPT levels had fallen down considerably. The changes in Cu and Zn levels in alcohol treatment are marginal. In virus-infected livers the changes in copper and zinc levels are not significant. (author)

  11. Monitoring of labile copper and zinc in estuarine waters using cathodic stripping chronopotentiometry

    International Nuclear Information System (INIS)

    Berg, C.M.G.

    1991-01-01

    Cathodic stripping chronopotentiometry (CSC) is readily suitable for automation, and sensitivity is often not affected by variations in major ion concentration (salinity) or by the dissolved concentration of oxygen. So this technique is very suitable for automated monitoring of certain trace elements in natural waters, including estuarine waters. The suitability of CSC for monitoring is demonstrated by measuring the concentrations of copper and zinc in the Tamar estuary in-line and automatically. The measuring rate was approximately 90h -1 . The concentrations of zinc and copper in the Tamar estuary were shown to behave in agreement with the findings of previous studies; the labile metal concentrations increased in the turbidity maximum and decreased immediately after it (at higher salinities) as a result of particle scavenging; gradual increase was apparent at intermediate salinities as result of pore-water injection, and the metal concentrations followed a dilution pattern with seawater at high salinities. In-line measurements provided a detailed picture of metal behaviour in this estuary and elucidated local inputs. The sensitivity (down to approximately 5 nM Cu and 6 nM Zn) allows monitoring of copper and zinc at levels common in estuarine and coastal waters, but is insufficient to monitor these metals in uncontaminated seawater. (author). 22 refs.; 4 figs

  12. [Interaction among the trace elements zinc, copper and iron after depletion and repletion of dairy cows with zinc].

    Science.gov (United States)

    Kirchgessner, M; Schwarz, F J; Roth, H P; Schwarz, W A

    1978-12-01

    Imbalances in the supply with trace elements may be caused by the excessive administration of one or several elements or the insufficient administration in relation to other trace elements. This article deals with the interactions between the trace elements zinc and copper resp. zinc and iron under the conditions of the insufficient supply with Zn (6 mg per kg dry matter of the fodder) and the supply according to the demand with other trace elements (14 mg copper resp. 83 mg iron per dry matter of the fodder). For this purpose we investigated the copper, iron and zinc content of the milk and the serum of cows that were first depleted of zinc through a semi-synthetic zinc deficiency diet and then repleted with extra allowances of zinc. The closest connections exist between the copper and zinc content of the milk. Thus extreme Zn-deficiency feeding conditions the decreased Zn-content on the one hand and increased Cu-content on the other. In contrast to this, the cows' Zn-excretion in the milk increases after Zn-repletion whereas the Cu-content decreases. This shows a distinctly negative correlation. A loose connection could only be detected for the Cu- and Zn-content of the serum. Though the Zn-content changed considerably in dependence on the Zn-supply, the Cu-content remained largely uninfluenced. The Fe-content of both milk and serum shows no interaction with the nutritive Zn-supply. Only after 19 test weeks of extreme Zn-deficiency could a slight increase of the Fe-concentration be indicated.

  13. Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents by X-ray photoelectron spectroscopy and scanning electron microscopy

    Science.gov (United States)

    Siriwardane, Ranjani V.; Poston, James A.

    1993-05-01

    Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.

  14. Serum Zinc, Iron and Copper Concentrations in Dogs Infected with Hepatozoon canis

    Directory of Open Access Journals (Sweden)

    Kamil Seyrek

    2009-01-01

    Full Text Available In Turkey, canine hepatozoonosis is an emerging infection with a large number of cases detected during the past five years. In the present study, serum zinc, copper and iron concentrations of dogs infected with Hepatozoon canis were measured for the first time. Compared to the controls (n = 10, serum zinc and iron concentrations in infected animals (n = 14 decreased significantly (p p p Hepatozoon canis infection may cause alterations in serum zinc iron and copper concentrations. Furthermore, in the treatment of infected animals addition of zinc and iron to the ration of infected animals should be taken into consideration.

  15. Performance of Grass Filter Strip in Copper and Zinc Removal in Surface and Subsurface Runoff

    Directory of Open Access Journals (Sweden)

    Huo Weijie

    2017-01-01

    Full Text Available Three filter strips were conducted on self-designed soil bins. Taking a filter strip with no vegetation as contrast, the effectiveness of vegetation and soil conditions on heavy metals (including copper and zinc removal efficiencies were investigated by simulated runoff experiment. The results showed that the adsorbed state is the main existing form of heavy metal. For surface runoff, most of total copper and total zinc are trapped in first 4m and it is ineffective to increase the distance beyond 4m for removal. Vegetation has no significant effect on total copper and total zinc removal, while the soil with higher content of organic matter is contributing to total Zn interception. For subsurface runoff, the removal efficiencies of total copper and total zinc can reach to above 95.38% and both vegetation and soil conditions have no significant effects. Vegetation is contributing to copper ion and zinc ion removal significantly. Soil condition is only a significant factor to zinc ion, with higher content of organic matter as a contributing factor.

  16. Daily dietary intake of iron, copper, zinc and manganese in a Spanish population.

    Science.gov (United States)

    Rubio, Carmen; Gutiérrez, Angel José; Revert, Consuelo; Reguera, Juan Ignacio; Burgos, Antonio; Hardisson, Arturo

    2009-11-01

    To evaluate the daily dietary intake of essential metals in the Canary Islands, the iron, copper, zinc and manganese contents in 420 food and drink samples collected in local markets were analysed by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The estimated daily dietary intakes of iron, copper, zinc and manganese are 13.161 mg/day, 2.098 mg/day, 8.954 mg/day and 2.372 mg/day, respectively. The iron dietary intake was found to be below the recommendations fixed for adult women, while the copper and manganese dietary intakes fulfilled the Recommended Dietary Allowances. The mean daily intake of zinc was below the Recommended Dietary Allowance. Cereals were found to be the food group that contributed most to the intake of these metals. While the island of El-Hierro presented iron, copper, zinc and manganese mean intakes over the estimated intakes for the whole archipelago, Fuerteventura island showed the lowest intakes. Tenerife and Fuerteventura showed the lowest iron intakes, being below the recommendations.

  17. Vapour galvanizing (Sherardizing) of copper with zinc

    Energy Technology Data Exchange (ETDEWEB)

    Wortelen, Dietbert; Bracht, Hartmut [Westfaelische Wilhelms-Universitaet Muenster (Germany); Natrup, Frank; Graf, Wolfram [Bodycote Waermebehandlung GmbH, Sprockhoevel (Germany)

    2010-07-01

    Using a vapour galvanizing technique called Sherardizing we investigated the growth kinetics and coefficients of zinc copper phases. For this purpose polished (OFHC)-copper plates and zinc powder have been sealed in quartz ampoules under inert gas atmospheres and annealed at a temperature range between 300 and 410 C. In order to study the coating thickness and the phase composition, cross sections were prepared, which have been analyzed by means of optical microscopy and scanning electron microscopy. We were able to demonstrate that the coating thickness is a function of the parabolic time law and that the formed coatings are composed of two layers referring to the ordered {beta}-CuZn and {gamma}-Cu{sub 5}Zn{sub 8}-phases. To enhance the coating quality, small amounts of ZnCl{sub 2} were added to the zinc powder. It was observed that the coating thickness decreased with increasing ZnCl{sub 2}. Experiments with variable Ar-pressure demonstrated a reduced coating growth with increasing pressures. Further measurements with ZnCl{sub 2} were performed to check whether an electrochemical mechanism is involved in the coating process.

  18. Extraction of copper zinc and iron from hydrochloric acid solutions by means of different extractants

    Energy Technology Data Exchange (ETDEWEB)

    Zhivkova, Svetlana [Institute of Chemical Engineering - Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2011-07-01

    The extraction of copper, zinc and iron from hydrochloric acid solutions has been studied. The experiments have been carried out using various solvents, involving different extraction mechanisms – solvating, anion-exchange, cation-exchange, bifunctional . Mixtures of these extractants have been also used. The extraction properties of these extractant mixtures toward copper, zinc and iron, the effect of used modifiers and diluents have been also investigated. Key words: Copper, Zinc, Iron, Extraction, Extractant, Modifier, Diluent.

  19. Zinc and Copper Effects on Stability of Tubulin and Actin Networks in Dendrites and Spines of Hippocampal Neurons.

    Science.gov (United States)

    Perrin, Laura; Roudeau, Stéphane; Carmona, Asuncion; Domart, Florelle; Petersen, Jennifer D; Bohic, Sylvain; Yang, Yang; Cloetens, Peter; Ortega, Richard

    2017-07-19

    Zinc and copper ions can modulate the activity of glutamate receptors. However, labile zinc and copper ions likely represent only the tip of the iceberg and other neuronal functions are suspected for these metals in their bound state. We performed synchrotron X-ray fluorescence imaging with 30 nm resolution to image total biometals in dendrites and spines from hippocampal neurons. We found that zinc is distributed all along the dendrites while copper is mainly pinpointed within the spines. In spines, zinc content is higher within the spine head while copper is higher within the spine neck. Such specific distributions suggested metal interactions with cytoskeleton proteins. Zinc supplementation induced the increase of β-tubulin content in dendrites. Copper supplementation impaired the β-tubulin and F-actin networks. Copper chelation resulted in the decrease of F-actin content in dendrites, drastically reducing the number of F-actin protrusions. These results indicate that zinc is involved in microtubule stability whereas copper is essential for actin-dependent stability of dendritic spines, although copper excess can impair the dendritic cytoskeleton.

  20. Changes in Serum Zinc, Copper and Ceruloplasmin Levels of Whole Body Gamma Irradiated Rats

    International Nuclear Information System (INIS)

    Abdou, M.I.; Shaban, H.A.; El Gohary, M.I.

    2011-01-01

    Rats are whole body irradiated with different Gamma radiation doses. Zinc and Copper, two important trace elements in the biological processes and Ceruloplasmin, a protein which carries more than 95% of serum Cu and has important roles in many vital processes are followed up in the irradiated rat sera. This work aimed to determine the changes in the serum levels of the three parameters (Zinc, Copper and Ceruloplasmin) through eight weeks follow up period (1st, 2nd, 3rd, 4th, 6th, and 8th week) post whole body gamma irradiation with three sub-lethal doses (2, 3.5 and 5 Gy) of rats. All the experimental animals did not receive any medical treatment. Zinc and Copper were measured using discrete nebulization flame atomic absorption spectrometry. Ceruloplasmin was measured using a colorimetric method. The statistical analyses of the results show that the Zinc levels of the irradiated groups decreased significantly post irradiation and then were recovered at the 6th week post irradiation. The Copper levels of the irradiated groups increased significantly and then were recovered at 6th week post irradiation. The levels of Ceruloplasmin in the same groups increased significantly throughout the whole follow up period. The conclusion is that, Zinc, Copper and Ceruloplasmin levels changed significantly in the irradiated groups compared to the control group with a maximum effect noted in the groups irradiated with the higher doses and that the lower dose irradiated groups recover earlier than the higher ones. Also the correlation between Copper and Zinc is reversible at different doses and that between Copper and Ceruloplasmin is direct

  1. Serum zinc and copper concentrations in maternal and umbilical cord blood. Relation to course and outcome of pregnancy

    DEFF Research Database (Denmark)

    Bro, S; Berendtsen, H; Nørgaard, J

    1988-01-01

    serum zinc and copper concentrations in maternal and umbilical cord blood from 500 Danish mothers at delivery, looking for an association between serum zinc and copper levels and various maternal and foetal complications. Preterm infants (n = 30) had significantly lower serum copper concentrations than...... reference infants (n = 346) (p = 0.01), whereas there was no difference in serum zinc concentrations. Mothers of preterm infants (n = 34) did not differ in serum zinc or copper concentrations from reference mothers (n = 220). Small for date infants (n = 37) and mothers of small for date infants (n = 47) had...... higher serum copper levels than reference infants and mothers (p = 0.02 and p = 0.04, respectively), whereas there was no difference in serum zinc concentrations. Serum zinc and copper concentrations in malformed infants (n = 14) and their mothers (n = 17) did not differ from concentrations in reference...

  2. Zinc and copper levels are not correlated with angiographically-defined coronary artery disease in sudanese patients.

    Science.gov (United States)

    Lutfi, Mohamed F; Elhakeem, Ramaze F; Khogaly, Raga S; Abdrabo, Abdelkarim A; Ali, Ahmed B; Gasim, Gasim I; Adam, Ishag

    2015-01-01

    We investigated zinc and copper levels in angiographically defined obstructive coronary artery disease (CAD) in patients undergoing elective coronary angiography in El-Shaab Hospital, Sudan. We performed a cross-sectional study. One hundred forty-two patients were enrolled. Sociodemographic and medical characteristics were collected using a questionnaire. Glucose, lipid, zinc, and copper levels were measured. Out of 142 patients, 102 (71.8%) had CAD and 40 (28.2%) had patent coronary arteries. There were no significant differences in median (interquartile range) zinc [118.5 (97.2-151.0) vs. 130.0 (106.0-174.0) μg/ml, P = 0.120] and copper [150.6 (125.0-183.0) vs. 158 (132.0-180.0) μg/mL, P = 0.478] levels between patients with CAD and those with patent coronary arteries. In linear regression analysis, there were no associations between CAD and zinc and copper levels. The current study failed to show any significant association between CAD and zinc and copper levels.

  3. Systemic serum amyloid A as a biomarker for exposure to zinc and/or copper-containing metal fumes.

    Science.gov (United States)

    Baumann, R; Gube, M; Markert, A; Davatgarbenam, S; Kossack, V; Gerhards, B; Kraus, T; Brand, P

    2018-01-01

    Zinc- and copper-containing welding fumes increase systemic C-reactive protein (CRP). The aim of this study was to investigate the performance of the biomarkers serum amyloid A (SAA) and soluble vascular cell adhesion molecule-1 (VCAM-1) in this regard. Fifteen male subjects were exposed under controlled conditions to welding fumes containing either zinc, or copper, or copper and zinc for 6 h. Plasma samples were collected before, 6 and 24 h after start of exposure and biomarkers therein were measured by electrochemiluminescent assay. For each exposure, systemic concentrations of systemic SAA, but not VCAM-1, increased significantly at 24 h after exposure start compared with baseline ("copper only": P=0.0005, "zinc only": P=0.027, "copper and zinc": P=0.001). SAA showed a wider range of concentrations than did CRP and its levels increased up to 19-fold after welding fume exposure. The recognition of copper as a potential harmful component in welding fumes, also independent from zinc, deserves further consideration. SAA might represent a new sensitive biomarker for potential subclinical sterile inflammation after inhalation of copper- and/or zinc-containing welding fumes. As elevations of CRP and SAA protein have both been linked to a higher risk for cardiovascular disease, these findings might particularly be important for long-term welders.

  4. Maternal serum copper and zinc levels and premature rupture of the foetal membranes

    International Nuclear Information System (INIS)

    Rahmanian, M.; Jahed, F. S.; Yousefi, B.; Ghorbani, R.

    2014-01-01

    Objective: To examine the correlation of zinc and copper serum concentration level, body mass index, age and parity with premature rupture of the membranes. Methods: The cross-sectional study was conducted between 2009 and 2010 at the fertility ward of Amiralmomenin Hospital of Semnan University of Medical Sciences, Iran. It comprised 100 full-term pregnant women with and without premature rupture of the membranes and 50 non-pregnant women as controls. The diagnosis of rupture of membranes was made on the basis of gross leakage of fluid within the vagina and a positive nitrazin test. A sample of 5mL blood was collected. The levels of zinc and copper were determined by an enzyme-linked immunosorbent assay method. Mean values among the three equal groups were compared using standard analysis of variance. Statistical significance was set at p<0.05. Results: Pregnant women with (p<0.027) and without (p<0.019) premature rupture of the membranes had significantly lower serum zinc concentration than non-pregnant women. Inversely, the maternal serum copper concentration level was higher in both groups of pregnant women than in the controls (p<0.001). However, the results suggest that the decreased plasma zinc concentration and increased copper concentration in pregnant women were not the cause of premature rupture of the membranes at term. Conclusion: Zinc and copper concentration levels in maternal serum had no effect on premature rupture of the membranes. (author)

  5. Simultaneous determination of arsenic, copper, manganese, selenium, and zinc in biological materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Damsgaard, E.; Heydorn, K.

    1976-08-01

    A method for the simultaneous determination of arsenic, copper, manganese, selenium, and zinc in biological material was developed by the incorporation of separation procedures for copper and zinc into an existing procedure. Investigation of the performance characteristics of the method was carried out with reference to copper and zinc. For certain materials characterized by a high Cu/Zn ratio, or a high zinc content, or both, such as liver, copper ihterferes in the determination of zinc thus requiring a small correction by an iterative procedure. Blank values for copper depend on the rinsing of the irradiation container, and a single rinsing with redistilled water was found superior to other rinsing procedures. Nuclear interference was negligible. The accuracy of the method was checked by analysis of Standard Reference Materials and the precision verified by analysis of Intercomparison Samples. Results are presented for 5 male foetuses of 3-5 months' gestational age. The distribution of arsenic, manganese and selenium is similar to that previously reported for adults. With the exception of liver, concentrations of copper in foetal organs were lower than values in the literature indicate. (author)

  6. Fabrication of visible light-triggered photocatalytic materials from the coupling of n-type zinc oxide and p-type copper oxide

    Science.gov (United States)

    Gorospe, A. B.; Herrera, M. U.

    2017-04-01

    Coupling of copper oxide (CuO) and zinc oxide (ZnO) was done by chemical precipitation method. In this method, copper sulfate pentahydrate and zinc sulfate heptahydrate salt precursors were separately dissolved in distilled water; then were mixed together. The copper sulfate-zinc sulfate solution was then combined with a sodium hydroxide solution. The precipitates were collected and washed in distilled water and ethanol several times, then filtered and dried. The dried sample was grounded, and then undergone heat treatment. After heating, the sample was grounded again. Zinc oxide powder and copper oxide powder were also fabricated using chemical precipitation method. X-Ray Diffraction measurements of the coupled CuO/ZnO powder showed the presence of CuO and ZnO in the fabricated sample. Furthermore, other peaks shown by XRD were also identified corresponding to copper, copper (II) oxide, copper sulfate and zinc sulfate. Results of the photocatalytic activity investigation show that the sample exhibited superior photocatalytic degradation of methyl orange under visible light illumination compared to copper oxide powder and zinc oxide powder. This may be attributed to the lower energy gap at the copper oxide-zinc oxide interface, compared to zinc oxide, allowing visible light to trigger its photocatalytic activity.

  7. Copper and zinc content in wild game shot with lead or non-lead ammunition - implications for consumer health protection.

    Science.gov (United States)

    Schlichting, Daniela; Sommerfeld, Christine; Müller-Graf, Christine; Selhorst, Thomas; Greiner, Matthias; Gerofke, Antje; Ulbig, Ellen; Gremse, Carl; Spolders, Markus; Schafft, Helmut; Lahrssen-Wiederholt, Monika

    2017-01-01

    The aim of this study was to examine the contamination of game meat with copper and zinc and establish whether the use of alternative (non-lead) ammunition can lead to higher or unsafe levels of copper and zinc in the meat of roe deer, wild boar and red deer. The research project "Safety of game meat obtained through hunting" (LEMISI) was conducted in Germany with the purpose of examining the entry of lead as well as copper and zinc into the meat of hunted game when using either lead or non-lead ammunition. The outcome of this study shows that the usage of both lead-based ammunition and alternative non-lead ammunition results in the entry of copper and zinc into the edible parts of the game. Using non-lead ammunition does not entail dangerously elevated levels of copper and zinc, so replacing lead ammunition with alternative ammunition does not introduce a further health problem with regard to these metals. The levels of copper and zinc in game meat found in this study are in the range found in previous studies of game. The content of copper and zinc in game meat is also comparable to those regularly detected in meat and its products from livestock (pig, cattle, sheep) for which the mean human consumption rate is much higher. From the viewpoint of consumer health protection, the use of non-lead ammunition does not pose an additional hazard through copper and zinc contamination. A health risk due to the presence of copper and zinc in game meat at typical levels of consumer exposure is unlikely for both types of ammunition.

  8. Serum levels of zinc and copper in epileptic children during long-term therapy with anticonvulsants.

    Science.gov (United States)

    Talat, Mohamed A; Ahmed, Anwar; Mohammed, Lamia

    2015-10-01

    To evaluate the serum levels of zinc and copper in epileptic children during the long-term treatment of anticonvulsant drugs and correlate this with healthy subjects. A hospital-based group matched case-control study was conducted in the Department of Pediatrics, Faculty of Medicine, Zagazig University, Zagazig, Egypt between November 2013 and October 2014. Ninety patients aged 7.1 ± 3.6 years were diagnosed with epilepsy by a neurologist. The control group was selected from healthy individuals and matched to the case group. Serum zinc and copper were measured by the calorimetric method using a colorimetric method kit. The mean zinc level was 60.1 ± 22.6 ug/dl in the cases, and 102.1 ± 18 ug/dl in the controls (p<0.001). The mean copper level was 180.1 ± 32.4 ug/dl in cases compared with 114.5 ± 18.5 ug/dl in controls (p<0.001). Serum zinc levels in epileptic children under drug treatment are lower compared with healthy children. Also, serum copper levels in these patients are significantly higher than in healthy people. No significant difference in the levels of serum copper and zinc was observed in using one drug or multiple drugs in the treatment of epileptic patients.

  9. Zinc and copper status in childbearing age Tunisian women: Relation to age, residential area, socioeconomic situation and physiologic characteristics.

    Science.gov (United States)

    El Ati-Hellal, Myriam; Doggui, Radhouene; Hedhili, Abderrazek; Traissac, Pierre; El Ati, Jalila

    2016-04-01

    Plasma zinc and copper status of 1689 non pregnant Tunisian women, aged 20-49 years old, was determined by flame atomic absorption spectrometry. A multiple regression was run to predict plasma trace element concentrations from age, BMI, marital status, menopause, education level, professional activity, economic level and area of living. The mean zinc and copper values were similar to those measured among comparable populations in earlier studies. However, a high prevalence of low plasma zinc and copper concentrations was observed assuming that women at childbearing age are at high risk of zinc and copper deficiencies and specific intervention may be considered. In univariate analysis, the mean values of plasma zinc and copper were associated with sitting areas and professional activity. For only plasma copper levels, there was an increase with BMI and parity, and a decrease with increasing schooling level and economic score. After adjustment for all variables, profession and parity showed a significant relationship between plasma levels copper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Factors affecting the simultaneous determination of copper, lead, cadmium, and zinc concentrations in human head hair using differential pulse anodic stripping voltammetry method

    International Nuclear Information System (INIS)

    Wandiga, S.O.; Jumba, I.O.

    1982-01-01

    Conditions of analysis of copper, lead, cadmium and zinc content in human hair using differential pulse anodic stripping voltammetry (DPASV) and hanging mercury drop electrode (HMDE) have been established. Sample digestion using using the mixture HCI; H 2 O 2 ;HNO 3 in the ratio 2:1:40 by volume gave the best wet-ashing procedure. The peak currents and peak potentials of zinc, cadmium and lead, copper were maximum at pH 6-7 and 1-3 respectively, when excess H 2 O 2 was eliminated with subsequent addition of hydroxyamine hydrochloride. Matrix concentration effects were minimized by digesting weights not exceeding 50 mg per sample. The effect of selenium (IV) was negligible and was ignored. The detection limit of 0.0036 ng/cm 3 for Cd + 2 was obtained while the values for zinc, lead and copper were 0.0230, 0.0287 and 0.0269 ng/cm 3 respectively at the 95% confidence limit. The observed DPASV condition of analysis of these metals are useful for routine determination of the metals in human hair and should complement the conventional flame absorption spectrophotometry method. (author)

  11. Atomic absorption spectrometric determination of copper, zinc, and lead in geological materials

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.

    1976-01-01

    An atomic absorption spectrometric method is described for the determination of copper, zinc, and lead in geological materials. The sample is digested with HF-HCl-H2O2; the final solution for analysis is in 10 % (v/v) HCl. Copper and zinc are determined directly by aspirating the solution into an air-acetylene flame. A separate aliquot of the solution is used for determination of lead; lead is extracted into TOPO-MIBK from the acidic solution in the presence of iodide and ascorbic acid. For a 0.50-g sample, the limits of determination are 10-2000 p.p.m. for Cu and Zn, and 5-5000 p.p.m. for Pb. As much as 40 % Fe or Ca. and 10 % Al, Mg, or Mn in the sample do not interfere. The proposed method can be applied to the determination of copper, zinc, and lead in a wide range of geological materials including iron- and manganese-rich, calcareous and carbonate samples. ?? 1976.

  12. Clinically distinct presentations of copper deficiency myeloneuropathy and cytopenias in a patient using excessive zinc-containing denture adhesive.

    Science.gov (United States)

    Cathcart, Sahara J; Sofronescu, Alina G

    2017-08-01

    While copper deficiency has long been known to cause cytopenias, copper deficiency myeloneuropathy is a more recently described entity. Here, we present the case of two clinically distinct presentations of acquired copper deficiency syndromes secondary to excessive use of zinc-containing denture adhesive over five years: myeloneuropathy and severe macrocytic anemia and neutropenia. Extensive laboratory testing and histologic evaluation of the liver and bone marrow, were necessary to rule out other disease processes and establish the diagnosis of copper deficiency. The initial presentation consisted of a myelopathy involving the posterior columns. Serum and urine copper were significantly decreased, and serum zinc was elevated. On second presentation (five years later), multiple hematological abnormalities were detected. Serum copper was again decreased, while serum zinc was elevated. Zinc overload is a preventable cause of copper deficiency syndromes. This rare entity presented herein highlights the importance of patient, as well as provider, education. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. Magnesium, zinc and copper estimation in children with attention ...

    African Journals Online (AJOL)

    Magnesium, zinc and copper estimation in children with attention deficit hyperactivity disorder (ADHD) ... Log in or Register to get access to full text downloads. ... for children, Conners' parent rating scale, and Wisconsin's card sorting test.

  14. The study on microstructure and microwave-absorbing properties of lithium zinc ferrites doped with magnesium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Cao Xiaofei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Engineering Ceramics Key Laboratory of Shandong Province, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Sun Kangning [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Engineering Ceramics Key Laboratory of Shandong Province, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China)], E-mail: xiaowenhoulvbu1@yahoo.com.cn; Sun Chang; Leng Liang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China); Engineering Ceramics Key Laboratory of Shandong Province, Shandong University (south part), Jingshi Road 73, Jinan 250061 (China)

    2009-09-15

    Lithium zinc ferrites doped with magnesium and copper were prepared by means of a combination of sol-gel method and subsequent calcination. The crystalline phase and microstructure of different doped lithium zinc ferrites were measured by X-ray powder diffraction and scanning electronic microscopy analysis. The results indicate that there are no remarkable differences in phase composition between pure lithium zinc ferrite and the as-doped lithium zinc ferrites. The effects of magnesium and copper dopants on microwave absorption in low-frequency region were investigated by the transmission/reflection coaxial line method. It was found from the present work that doping with copper improved microwave-absorbing properties, while doping with magnesium had little effect on microwave absorption of pure lithium zinc ferrite.

  15. Serum zinc, copper and iron status of children with coeliac disease on three months of gluten-free diet with or without four weeks of zinc supplements: a randomised controlled trial.

    Science.gov (United States)

    Negi, K; Kumar, R; Sharma, L; Datta, S P; Choudhury, M; Kumar, P

    2018-04-01

    Data about the effect of zinc supplementation with gluten-free diet on normalisation of plasma zinc, copper and iron in patients with coeliac disease are scanty. We evaluated the effect of zinc supplementation on serum zinc, copper and iron levels in patients with coeliac disease, by randomising 71 children newly diagnosed with coeliac disease into two groups: Group A = gluten-free diet (GFD); and Group B = gluten-free diet with zinc supplements (GFD +Zn). The rise in iron and zinc was significantly higher in the latter, but the mean rise of copper levels was slightly higher in the former, but the difference was not significant.

  16. Serum zinc and copper levels in children with febrile convulsion

    Directory of Open Access Journals (Sweden)

    Mohammad Shokrzadeh

    2016-09-01

    Full Text Available Febrile convulsions (FC are the most common neurologic disorder in children 6-60 months of age. Zinc (Zn and copper (Cu play role as cofactors in more than 300 enzymatic activities significantly. The aim of this study was to evaluate the relationship serum levels of Zn and Cu with seizure occurrence in febrile children. In this case-control study, 270 children with 6 month to 6 years were evaluated. The patients were enrolled in three groups: a children with febrile convulsion, b febrile children without convulsion and c healthy ones. After recording of all patients’ characteristics, 5 mL blood was taken from peripheral vessels at the first 12 hours of hospitalization. Absorption of all samples was read by BRAIC (Rayleigh instrument company, WFX-130 model with calibration diagram, considering samples dilution levels. The mean of serum Zn levels in children with FC were significantly lower than other two groups. Mean serum Cu levels in children with FC and non-FC patients were significantly higher than healthy children. No meaningful differences were observed in serum levels of Zn and Cu among the girl or boy cases. This study showed significant lower serum zinc level in children with febrile seizure and meaningful higher serum copper level than control group cases. There was no significant difference in level of serum zinc and copper in term of sex.

  17. Effect of in ovo supplementation of nano forms of zinc, copper, and selenium on post-hatch performance of broiler chicken

    Directory of Open Access Journals (Sweden)

    P. Patric Joshua

    2016-03-01

    Full Text Available Background and Aim: Nanoparticles can bypass conventional physiological ways of nutrient distribution and transport across tissue and cell membranes, as well as protect compounds against destruction prior to reaching their targets. In ovo administration of nanoparticles, may be seen as a new method of nano-nutrition, providing embryos with an additional quantity of nutrients. The aim of the study is to examine the effect of in ovo supplementation of nano forms of zinc, copper and selenium on the hatchability and post hatch performance of broiler chicken. Materials and Methods: Nano form of zinc at 20, 40, 60 and 80 μg/egg, nano form of copper at 4, 8, 12 and 16 μg/egg and nano form of selenium at 0.075, 0.15, 0.225 and 0.3 μg/egg were in ovo supplemented (18th day incubation, amniotic route in fertile broiler eggs. Control group in ovo fed with normal saline alone was also maintained. Each treatment had thirty replicates. Parameters such as hatchability, hatch weight and post hatch performance were studied. Results: In ovo feeding of nano minerals were not harmful to the developing embryo and did not influence the hatchability. Significantly (p<0.05 best feed efficiency for nano forms of zinc (2.16, copper (2.46 and selenium (2.51 were observed, when 40, 4 and 0.225 μg/egg respectively were in ovo supplemented. Except in nano form of copper at 12 μg per egg which had significantly (p<0.05 highest breast muscle percentage there was no distinct trend to indicate that dressing percentage or breast muscle yield was influenced in other treatments. Conclusion: Nano forms of zinc, copper and selenium can be prepared at laboratory conditions. In ovo feeding of nano forms of zinc, copper and selenium at 18th day of incubation through amniotic route does not harm the developing embryo, does not affect hatchability.

  18. The Uses of Copper and Zinc Aluminates to Capture and Convert Carbon dioxide to Syn-gas at Higher Temperature

    Directory of Open Access Journals (Sweden)

    R.Y. Raskar

    2014-03-01

    Full Text Available The uses of copper and zinc aluminates to capture and convert the CO2 to syn-gas were studied at higher temperatures. The samples of copper and zinc aluminates were prepared by solid-solid fusion method by calcining in air at 900 oC for 3 h. Those samples were characterized by acidity/alkalinity, surface area, XRD pattern, IR, SEM images and screening to capture CO2 at the different temperatures. The phases Cu2O, CuO, ZnO, CuAl2O4 and ZnAl2O4 were found to be in the samples of zinc and copper aluminates. Acidity and surface area of the samples of copper and zinc aluminates were found to be in the ranges from 0.063 to 9.37 mmol g-1 and 3.04 to 11.8 m2 g-1, respectively. The captured CO2 by the samples of copper and zinc aluminates was found to be 19.92 to 31.52 wt% for the temperature range 40 to 850 oC. The captured CO2 at 550 oC by variable Zn/Al and Cu/Al mol ratio from 0.5 to 6 of the samples of copper and zinc aluminates was found to be 12.81 to 18.04 wt%. The reduction of carbon dioxide by zinc and copper aluminates was observed. The conversion of CO2 by methane over variable mol ratio of Cu/Al and Zn/Al in copper and zinc aluminates, respectively, at 500 oC showed the production of syn-gas by using the gas hourly space velocities (GHSV 12000, 12000 and 6000 ml. h-1. g-1 of helium, CO2 and methane. The conversions of CO2 by methane over the samples of zinc and copper aluminates were studied at different mol ratios of CO2 to methane.  © 2014 BCREC UNDIP. All rights reservedReceived: 13rd May 2013; Revised: 8th November 2013; Accepted: 8th November 2013[How to Cite: Raskar, R.Y., Gaikwad, A.G. (2014. The Uses of Copper and Zinc Aluminates to Cap-ture and Convert Carbon Dioxide to Syn-gas at Higher Temperature. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 1-15. (doi:10.9767/bcrec.9.1.4899.1-15[Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.4899.1-15

  19. Behavioral and dermatologic changes and low serum zinc and copper concentrations in two premature infants after parenteral alimentation.

    Science.gov (United States)

    Sivasubramanian, K N; Henkin, R I

    1978-11-01

    Two premature infants were observed to develop behavioral and dermatologic changes and low serum zinc and copper concentrations following cessation of prolonged parenteral alimentation, while being fed exclusively with human milk. Following treatment with exogenous oral zinc supplementation, prompt relief of symptoms and increases of serum zinc and copper concentrations were observed in both infants. These patients comprise about 5% of our premature infants who are treated with parenteral alimentation for more than two weeks. We recommend that premature infants on prolonged parenteral alimentation should be monitored for changes in serum zinc and copper concentrations and, if a marked fall is observed, supplementation should be considered.

  20. Effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13

    International Nuclear Information System (INIS)

    Aston, John E.; Apel, William A.; Lee, Brady D.; Peyton, Brent M.

    2010-01-01

    Research highlights: →At. caldus sorbs lead, zinc, and copper across a range of pH and temperature. →At. caldus shows a relatively high sorption capacity for zinc and copper at low pH. → Lead, zinc, and copper sorption decreases in tertiary mixtures. → Copper appears to sorb via a different mechanism(s) than lead or zinc. - Abstract: This study describes the effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13 with a Langmuir model. Copper exhibited the highest loading capacity, 4.76 ± 0.28 mmol g -1 , to viable cells at pH 5.5. The highest k L (binding-site affinity) observed was 61.2 ± 3.0 L mmol -1 to dehydrated cells at pH 4.0. The pHs that maximized loading capacities and binding-site affinities were generally between 4.0 and 5.5, where the sum of free-proton and complexed-metal concentrations was near a minimum. Of additional importance, lead, zinc, and copper sorbed to viable cells at pH values as low as 1.5. Previous studies with other acidithiobacilli did not measure viable-cell sorption below pH 4.0. In separate experiments, desorption studies showed that far less copper was recovered from viable cells than any other metal or cell condition, suggesting that uptake may play an important role in copper sorption by At. caldus strain BC13. To reflect an applied system, the sorption of metal mixtures was also studied. In these experiments, lead, zinc, and copper sorption from a tertiary mixture were 40.2 ± 4.3%, 28.7 ± 3.8%, and 91.3 ± 3.0%, respectively, of that sorbed in single-metal systems.

  1. Luminescence properties of copper(I), zinc(II) and cadmium(II) coordination compounds with picoline ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan Grzegorz, E-mail: gmalecki@us.edu.pl; Maroń, Anna

    2017-06-15

    Mononuclear coordination compounds of copper(I) – [Cu(PPh{sub 3}){sub 2}(picoline)(NO{sub 3})], zinc(II) – [ZnCl{sub 2}(picoline){sub 2}] (picoline=3– and 4–methylpyridine) and polymeric cadmium(II) – [CdCl{sub 2}(β-picoline){sub 2}]{sub n} were prepared and their luminescence properties in solid state and acetonitrile solutions were determined. Single crystal X-ray crystallography revealed distorted tetrahedral geometry around the central ions of the compounds. The compounds exhibit green photoluminescence in solid state and in acetonitrile solutions. The emission of copper(I) compounds originated from metal-to-ligand charge transfer state combined with nitrato-to-picoline charge transfer state i.e. ({sup 1}(M+X)LCT). The presence of nitrato ligand in the coordination sphere of copper(I) compounds quenches the emission. Luminescence of zinc(II) and cadmium(II) compounds results from chloride-to-picoline charge transfer state and the quantum efficiency in the case of the polymeric Cd(II) compound reaches 39%. The photoluminescence quantum yields of the mononuclear zinc(II) compounds vary from 10 to 16% depending on the conditions (solid state, solution). - Graphical abstract: Coordination compounds of copper(I), zinc(II) and polymeric cadmium(II) with picoline ligands were prepared and their luminescence properties in solid state and acetonitrile solutions were determined. The compounds exhibit green photoluminescence in solid state and in acetonitrile solutions. Emission of copper(I) compounds originated from {sup 1}(M+X)LCT state. Luminescence of zinc(II) and cadmium(II) compounds results from chloride-to-picoline charge transfer state and the quantum efficiency in the case of the polymeric Cd(II) compound reaches 39%. The photoluminescence quantum yields of the mononuclear zinc(II) compounds vary from 10 to 16% depending on the conditions (solid state, solution).

  2. Zinc, ferritin, magnesium and copper in a group of Egyptian children with attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Mahmoud Magdy M

    2011-12-01

    Full Text Available Abstract Background Attention deficit hyperactivity disorder is a behavioral syndrome of childhood characterized by inattention, hyperactivity and impulsivity. There were many etiological theories showed dysfunction of some brain areas that are implicated in inhibition of responses and functions of the brain. Minerals like zinc, ferritin, magnesium and copper may play a role in the pathogenesis and therefore the treatment of this disorder. Objective This study aimed to measure levels of zinc, ferritin, magnesium and copper in children with attention deficit hyperactivity disorder and comparing them to normal. Methods This study included 58 children aged 5-15 years with attention deficit hyperactivity disorder attending Minia University Hospital from June 2008 to January 2010. They were classified into three sub-groups: sub-group I included 32 children with in-attentive type, sub-group II included 10 children with hyperactive type and sub-group III included 16 children with combined type according to the DSM-IV criteria of American Psychiatric Association, 2000. The control group included 25 apparently normal healthy children. Results Zinc, ferritin and magnesium levels were significantly lower in children with attention deficit hyperactivity disorder than controls (p value 0.04, 0.03 and 0.02 respectively, while copper levels were not significantly different (p value 0.9. Children with inattentive type had significant lower levels of zinc and ferritin than controls (p value 0.001 and 0.01 respectively with no significant difference between them as regards magnesium and copper levels (p value 0.4 and 0.6 respectively. Children with hyperactive type had significant lower levels of zinc, ferritin and magnesium than controls (p value 0.01, 0.02 and 0.02 respectively with no significant difference between them as regards copper levels (p value 0.9. Children with combined type had significant lower levels of zinc and magnesium than controls (p value 0

  3. Serial changes in selected serum constituents in low birth weight infants on peripheral parenteral nutrition with different zinc and copper supplements.

    Science.gov (United States)

    Lockitch, G; Pendray, M R; Godolphin, W J; Quigley, G

    1985-07-01

    One hundred and five infants of birth weight 2000 g or less who received peripherally administered parenteral nutrition for periods of three or more weeks, were randomly assigned to groups receiving different amounts of zinc and copper supplement. The blood concentrations of zinc, copper, retinol-binding protein, prealbumin, alkaline phosphatase and aspartate transaminase were followed weekly. Mean serum zinc, retinol-binding protein and prealbumin declined significantly over time while alkaline phosphatase rose. Only the group receiving the highest zinc supplement maintained a mean serum zinc concentration within the normal range at seven weeks. No difference in the protein or enzyme concentrations was found between the different zinc supplement groups. No difference was seen in serum copper or ceruloplasmin between copper dose groups although one intravenous supplement was double that of the other.

  4. Association of Zinc, Copper and triglyceride levels with low birth weight deliveries in central Sudan

    International Nuclear Information System (INIS)

    Abass, R. M. E.

    2012-12-01

    Objective, to investigate the maternal and cord level of zinc, Copper and triglyceride in mothers with low birth weight babies (LBW; < 2500 gm) in comparison to mothers with normal weight babies. Method, a case control study was conducted in Medani Hospital, Sudan pre-tested questionnaires were used to gather maternal socio-demographic and clinical data. Zinc and cooper were measured by atomic absorption spectrophotometer. And triglyceride was measured by colorimetric method. Results, case and controls (50 in each arm) were matched in their basic clinical data. The median ( 25-75 Th inter quartile) of maternal zinc ( 62.9 ( 36.3-96.8) vs. 96.2 (84,6-125.7) μg/dl; p <0.001) and copper (81.6 ( 23.7- 167.5) vs. 139.8 (319.8 (31.9 - 186.2) μg/dl; p=0.04) and triglyceride (172 (100-227) vs. 195 ( 133.7-320.2) mg/dl; p=0.052) levels were significantly lower in cases than in the controls. Likewise, cord zinc ( 87.1 (43.3 -118.1) vs. 92.2 (62.0-114.5) μg/dl; p=0.02) and triglyceride ( 45 ( 31.5-95) vs. 149.5 (97.5- 174.2) mg/dl; p<0.00) levels were significantly lower in cord serum of the case than in controls. Conclusions, in this study maternal and fetal zinc, copper and triglyceride levels were lower in mothers with LBW babies compared to mothers with normal birth weight babies. Supplementation with zinc and copper might be necessary to prevent LBW deliveries in this setting. (Author)

  5. Comparative analysis of copper and zinc based agrichemical biocide products: materials characteristics, phytotoxicity and in vitro antimicrobial efficacy

    Directory of Open Access Journals (Sweden)

    Harikishan Kannan

    2016-07-01

    Full Text Available In the past few decades, copper based biocides have been extensively used in food crop protection including citrus, small fruits and in all garden vegetable production facilities. Continuous and rampant use of copper based biocides over decades has led to accumulation of this metal in the soil and the surrounding ecosystem. Toxic levels of copper and its derivatives in both the soil and in the run off pose serious environmental and public health concerns. Alternatives to copper are in great need for the agriculture industry to produce food crops with minimal environmental risks. A combination of copper and zinc metal containing biocide such as Nordox 30/30 or an improved version of zinc-only containing biocide would be a good alternative to copper-only products if the efficacy can be maintained. As of yet there is no published literature on the comparative study of the materials characteristics and phyto-compatibility properties of copper and zinc-based commercial products that would allow us to evaluate the advantages and disadvantages of both versions of pesticides. In this report, we compared copper hydroxide and zinc oxide based commercially available biocides along with suitable control materials to assess their efficacy as biocides. We present a detailed material characterization of the biocides including morphological studies involving electron microscopy, molecular structure studies involving X-ray diffraction, phytotoxicity studies in model plant (tomato and antimicrobial studies involving surrogate plant pathogens (Xanthomonas alfalfae subsp. citrumelonis, Pseudomonas syringae pv. syringae and Clavibacter michiganensis subsp. michiganensis. Zinc based compounds were found to possess comparable to superior antimicrobial properties while exhibiting significantly lower phytotoxicity when compared to copper based products thus suggesting their potential as an alternative.

  6. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site.

    Science.gov (United States)

    Fetherolf, Morgan M; Boyd, Stefanie D; Taylor, Alexander B; Kim, Hee Jong; Wohlschlegel, James A; Blackburn, Ninian J; Hart, P John; Winge, Dennis R; Winkler, Duane D

    2017-07-21

    Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation. Ccs1 binding exposes an electropositive cavity and proposed "entry site" for copper ion delivery on immature Sod1. Copper-mediated sulfenylation leads to a sulfenic acid intermediate that eventually resolves to form the Sod1 disulfide bond with concomitant release of copper into the Sod1 active site. Sod1 is the predominant disulfide bond-requiring enzyme in the cytoplasm, and this copper-induced mechanism of disulfide bond formation obviates the need for a thiol/disulfide oxidoreductase in that compartment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Zinc and Copper status in children with high family risk of premature cardiovascular disease

    International Nuclear Information System (INIS)

    Kelishadi, R.; Alikhassy, H.; Amiri, M.

    2002-01-01

    Zinc and copper are beneficial to health, growth and development and also for the prevention of cardiovascular disease (CVD) with regards to improved dietary habits as a preliminary step in CVD prevention. This study was conducted among 2-18 year old children with high family risk of premature CVD in comparison to controls. One hundred randomly selected children whose parents had premature myocardial infarction were included in this study. The controls were 100 individuals randomly selected from the case group's neighbors and matched for age, sex and socioeconomic status. A four-day food record questionnaire was used to assess zinc and copper intakes and their serum levels were determined using Flame-Atomic Absorption Spectrophotometry. The data were analyzed by SPSS/Windows V6 software, using the student's t and Mantel-Hanzel tests. Significance of differences was considered at P 0.05). Zinc deficiency was more prevalent among the case in boys than their controls (58% vs. 18%, P=0.04). This difference was not significant in girls (44% vs. 40%). The daily intake and serum of level of copper were not significantly different between the case and control groups. No case of copper efficiency was found. The mean systolic blood pressure was not significantly different between the zinc-deficient and zinc-sufficient subjects. Although the mean diastolic blood pressure of the former was higher than the latter, there was no statistically significant difference. About 23.7% of all studied sample had mild-to-moderate degree of failure to thrive, with significantly lower daily intake and serum zinc level than other subjects (5.41+-1.06 mg, 82.09+-12.74 ug/dL vs. 6.89+-2.14 mg, 99.25+-27.15 ug/dL, respectively, P<0.05). It is recommended that emphasis be placed on the consumption of food rich in zinc by children, especially those with high family risk of premature CVD. (author)

  8. The evaluation of zinc and copper content in tooth enamel without any pathological changes - an in vitro study.

    Science.gov (United States)

    Klimuszko, Elzbieta; Orywal, Karolina; Sierpinska, Teresa; Sidun, Jarosław; Golebiewska, Maria

    2018-01-01

    The objectives of the study were to evaluate the content of copper and zinc in individual layers of tooth enamel and to analyze the relationships between the study minerals in individual layers of tooth enamel. Fifteen human permanent teeth were cut off every 150 μm alongside the labial surface. Acid biopsy of each layer was performed. The zinc content was determined using the air-acetylene flame method. The copper content was determined using the electrothermal technique with argon. The mean zinc concentrations increased significantly starting from the outer enamel surface, with the maximum concentration in the 150-300 μm layer. The mean copper concentrations increased substantially from the outer enamel surface to a depth of 150 μm, and then a slight downward trend of this mineral levels was seen, down to a depth of 450 μm. Strong positive correlation was found between the zinc and copper concentrations at depths of 150-300, 450-600 and 600-750 μm. The levels of zinc and copper in the outer enamel layers may have an effect on the increased content of unipolar minerals at deeper enamel layers. The content of the study elements determined may reflect the process of mineralization and maturation of enamel in the pre-eruption period.

  9. Effect of Intensive Phototherapy and Exchange Transfusion on Copper, Zinc and Magnesium Serum Levels in Neonates with Indirect Hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Abdel-Azeem El-Mazary

    2017-02-01

    Full Text Available BackgroundMany studies reported that copper, zinc and magnesium play important roles in the pathogenesis and development of neonatal hyperbilirubinemia. Exchange transfusion and intensive phototherapy are known two modalities of therapy for severe neonatal hyper bilirubinemia, but the effect of them on those trace elements is unknown.Materials and MethodsCopper, Zinc and Magnesium serum levels were measured before and after treatment with intensive phototherapy and exchange transfusion in full term neonates with indirect hyperbilirubinemia admitted to neonatal intensive care unit (NICU of Minia and Sohag University hospitals, Egypt, during 2014-2016 and comparison with normal healthy neonates was done.ResultsThere were significant higher copper and magnesium and lower zinc serum levels in neonates with indirect hyperbilirubinemia than controls before and after intensive phototherapy. These levels were significantly changed after exchange transfusion to be comparable with controls. Significant positive correlations between the total bilirubin levels and hemoglobin, copper, and magnesium serum levels and significant negative correlations with serum zinc levels were present. There were no significant correlations between maternal and neonatal copper, zinc or magnesium serum levels.ConclusionNeonates with indirect hyperbilirubinemia had significant higher copper and magnesium and lower zinc serum levels than healthy neonates which were not related to their maternal serum levels. Intensive phototherapy had no effect on their levels while exchange transfusion changed these levels to be comparable with that of normal healthy neonates.

  10. Evaluation of a commercially available molybdate formulation and zinc oxide boluses in preventing hepatic copper accumulation and thus enzootic icterus in sheep

    Directory of Open Access Journals (Sweden)

    C.J. Botha

    2001-07-01

    Full Text Available The efficacy of a molybdate formulation and a zinc oxide bolus as prophylactic agents for enzootic icterus was evaluated in sheep. Before copper loading, liver biopsies were performed on 12 male, 6-month-old, Mutton Merino sheep to determine hepatic copper (Cu and zinc (Zn concentrations. The animals were restrictively randomised according to liver copper concentrations to 3 treatment groups (n = 4 to achieve similar mean liver copper concentrations per group. All sheep received 4 m /kg of a 0.5 %aqueous solution of CuSO4·5H2O intraruminally 7 days per week for 10 weeks. On Day 0 the sheep in the Mo-group were injected subcutaneously with 42 mg molybdenum (Mo contained in a commercial molybdate formulation. The animals in the Zn-group each received a zinc oxide bolus, containing 43 g zinc oxide, via a rumen cannula. Treatment was repeated on Day 42. Four animals served as untreated controls. Urinary copper excretion, plasma copper concentration, haematocrit and glutamate dehydrogenase (GLDH activity were determined throughout the trial. The animals were sacrificed after 10 weeks and liver samples were submitted for histopathological examination. Liver and kidney copper and zinc concentrations were determined. Neither the molybdate treatment nor the zinc oxide boluses prevented hepatic copper accumulation. The urinary copper excretion, plasma copper concentration, haematocrit and GLDH activity were not significantly different (P > 0.05 from the controls.

  11. The effect of red cell and plasma transfusion on serum zinc and copper levels in the neonate.

    Science.gov (United States)

    Lockitch, G; Godolphin, W J; Pendray, M R; Quigley, G

    1983-11-01

    Transfusion of packed red cells (15 to 20 ml/kg) in 11 preterm infants resulted in a slight increase in mean serum zinc levels on the 3rd post transfusion day but no effect was noted on serum copper levels. No significant difference was found between the changes in serum zinc in 141 paired specimens collected a week apart when zero, one, two or three packed cell transfusions were given in the intervening week. A slight decrease in the mean copper level was noted when one transfusion was given. Transfusion of fresh frozen plasma in six newborns with abdominal wall defects resulted in initial serum copper levels two to three times greater than the reference mean for newborns. No effect was noted on zinc levels. Serum copper results should be interpreted with caution in infants who have been transfused with plasma.

  12. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S. Sreehari, E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Rao, B. Rupa Venkateswara [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Department of Physics, V.R. Siddhartha Engineering College, Vijayawada 52007 (India)

    2014-02-01

    In this paper spectroscopic investigation of Cu{sup 2+} doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu{sup 2+} state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu{sup 2+} is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds.

  13. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    International Nuclear Information System (INIS)

    Sastry, S. Sreehari; Rao, B. Rupa Venkateswara

    2014-01-01

    In this paper spectroscopic investigation of Cu 2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu 2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu 2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds

  14. EXAMINATION OF THE OXIDATION PROTECTION OF ZINC COATINGS FORMED ON COPPER ALLOYS AND STEEL SUBSTRATES

    International Nuclear Information System (INIS)

    Papazoglou, M.; Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.

    2010-01-01

    The exposure of metallic components at aggressive high temperature environments, usually limit their usage at similar application because they suffer from severe oxidation attack. Copper alloys are used in a wide range of high-quality indoor and outdoor applications, statue parts, art hardware, high strength and high thermal conductivity applications. On the other hand, steel is commonly used as mechanical part of industrial set outs or in the construction sector due to its high mechanical properties. The aim of the present work is the examination of the oxidation resistance of pack cementation zinc coatings deposited on copper, leaded brass and steel substrates at elevated temperature conditions. Furthermore, an effort made to make a long-term evaluation of the coated samples durability. The oxidation results showed that bare substrates appear to have undergone severe damage comparing with the coated ones. Furthermore, the mass gain of the uncoated samples was higher than this of the zinc covered ones. Particularly zinc coated brass was found to be more resistant to oxidation conditions in which it was exposed as it has the lower mass gain as compared to the bare substrates and zinc coated copper. Zinc coated steel was also proved to be more resistive than the uncoated steel.

  15. New mechanical chemical equilibrium in the copper-zinc alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Dianez, M.J; Criado, J.M; Donoso, E; Diaz, G

    2006-01-01

    A series of copper zinc alloys have been synthesized in the entire composition range Cu10Zn to Cu70Zn respectively, by mechanical alloying at room temperature in a planetary high-energy mill. A mechanism is proposed for the mechanical alloying reaction of the copper and zinc. It is made clear that the mechanical treatment considerably extends the range of composition of the α phase up to a content of 41% zinc, instead of the 36% accepted by the conventional phase diagrams. Exact determinations of the phase α reticular parameter were carried out as a function of its composition which can be used to determine the zinc content of the brass α. The results show that a brass phase α may be obtained containing 49% zinc in samples that include a mixture of phases α and β' after reaching stationary state as a function of the milling time. The stability field of phases β' and γ also displace noticeably higher values than those expected from the conventional binary Cu-Zn diagram. This behavior has been explained as a function of the nanometric texture generated by the milling (CW)

  16. Copper and zinc distribution coefficients for sandy aquifer materials

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Astrup, Thomas; Boddum, J. K.

    2000-01-01

    Distribution coe�cients (Kd) were measured for copper (Cu) and zinc (Zn) in laboratory batch experiments for 17 sandy aquifer materials at environmentally relevant solute concentrations (Cu: 5±300 mg/l, Zn: 20±3100 mg/l). The Kd values ranged two to three orders of magnitude (Cu: 70±10,800 l/ kg...

  17. Copper, zinc, and cadmium in various fractions of soil and fungi in a Swedish forest.

    Science.gov (United States)

    Vinichuk, Mykhailo M

    2013-01-01

    Ectomycorrhizal fungi profoundly affect forest ecosystems through mediating nutrient uptake and maintaining forest food webs. The accumulation of metals in each transfer step from bulk soil to fungal sporocarps is not well known. The accumulation of three metals copper (Cu), zinc (Zn) and cadmium (Cd) in bulk soil, rhizosphere, soil-root interface, fungal mycelium and sporocarps of mycorrhizal fungi in a Swedish forest were compared. Concentrations of all three metals increased in the order: bulk soil soil-root interface (or rhizosphere) soil and sporocarps occurred against a concentration gradient. In fungal mycelium, the concentration of all three metals was about three times higher than in bulk soil, and the concentration in sporocarps was about two times higher than in mycelium. In terms of accumulation, fungi (mycelium and sporocarps) preferred Cd to Zn and Cu. Zinc concentration in sporocarps and to a lesser extent in mycelium depended on the concentration in soil, whereas, the uptake of Cu and Cd by both sporocarps and mycelium did not correlate with metal concentration in soil. Heavy metal accumulation within the fungal mycelium biomass in the top forest soil layer (0-5 cm) might account for ca. 5-9% of the total amount of Cu, 5-11% of Zn, and 16-32% of Cd. As the uptake of zinc and copper by fungi may be balanced, this implied similarities in the uptake mechanism.

  18. Significant deposits of gold, silver, copper, lead, and zinc in the United States

    Science.gov (United States)

    Long, K.R.; DeYoung, J.H.; Ludington, S.

    2000-01-01

    Approximately 99 percent of past production and remaining identified resources of gold, silver, copper, lead, and zinc in the United States are accounted for by deposits that originally contained at least 2 metric tonnes (t) gold, 85 t silver, 50,000 t copper, 30,000 t lead, or 50,000 t zinc. The U.S. Geological Survey, beginning with the 1996 National Mineral Resource Assessment, is systematically compiling data on these deposits, collectively known as 'significant' deposits. As of December 31, 1996, the significant deposits database contained 1,118 entries corresponding to individual deposits or mining districts. Maintaining, updating and analyzing a database of this size is much easier than managing the more than 100,000 records in the Mineral Resource Data System and Minerals Availability System/Minerals Industry Location System, yet the significant deposits database accounts for almost all past production and remaining identified resources of these metals in the United States. About 33 percent of gold, 22 percent of silver, 42 percent of copper, 39 percent of lead, and 46 percent of zinc are contained in or were produced from deposits discovered after World War II. Even within a database of significant deposits, a disproportionate share of past production and remaining resources is accounted for by a very small number of deposits. The largest 10 producers for each metal account for one third of the gold, 60 percent of the silver, 68 percent of the copper, 85 percent of the lead, and 75 percent of the zinc produced in the United States. The 10 largest deposits in terms of identified remaining resources of each of the five metals contain 43 percent of the gold, 56 percent of the silver, 48 percent of the copper, 94 percent of the lead, and 72 percent of the zinc. Identified resources in significant deposits for each metal are less than the mean estimates of resources in undiscovered deposits from the 1996 U.S. National Mineral Resource Assessment. Identified

  19. Determination of iron, copper, manganese and zinc in the soils, grapes and wines of the Azores

    Directory of Open Access Journals (Sweden)

    María Teresa Ribeiro de Lima

    2004-06-01

    Full Text Available This paper describes the determination of iron, copper, manganese and zinc in the soils, grapes and wines of the three viticultural regions of the Azores. Iron, copper and zinc were determined by flame atomic absorption spectrometry and manganese by graphite furnace atomic absorption. The concentrations of the four elements differed in soils of the three regions; there was no difference in the concentration in grapes, whereas significant differences were observed for the wines as regards the amounts of iron, manganese and zinc. The concentrations of these four elements in wine correspond with the mean values observed for other European regions.

  20. National monitoring study in Denmark finds increased and critical levels of copper and zinc in arable soils fertilized with pig slurry.

    Science.gov (United States)

    Jensen, John; Larsen, Martin Mørk; Bak, Jesper

    2016-07-01

    The increasing consumption of copper and zinc in modern farming is linked to their documented benefit as growth promoting agents and usefulness for controlling diarrhoea. Copper and zinc are inert and non-degradable in the slurry and the environment and thereby introducing new challenges and concern. Therefore, a follow-up to pervious national soil monitoring programs on heavy metals was initiated in 2014 with special focus on the historical trends in soil concentrations of copper and zinc in Danish arable soils. Hereby it is possible to analyse trends for a 28 year period. Data shows that: 1) Amendment of soils with pig slurry has led to a significant increase in soil concentrations of copper and zinc, especially in the latest monitoring period from 1998 to 2014; 2) Predicted no-effect concentrations for soil dwelling species published by the European Union is exceeded for zinc in 45% of all soil samples, with the highest proportion on sandy soils; 3) The current use of zinc and copper in pig production may lead to leaching of metals, especially zinc, from fields fertilized with pig slurry in concentrations that may pose a risk to aquatic species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Multimicronutrient Slow-Release Fertilizer of Zinc, Iron, Manganese, and Copper

    Directory of Open Access Journals (Sweden)

    Siladitya Bandyopadhyay

    2014-01-01

    Full Text Available The process for the production of a slow-release micronutrient fertilizer is described. The compound contains zinc, iron, manganese, and copper as micronutrients and is produced by polymerizing a system containing phosphoric acid, zinc oxide, hematite, pyrolusite, copper sulfate, and magnesium oxide followed by neutralization of the polyphosphate chain with ammonium hydroxide. Changes in temperature, density, and viscosity of the reaction system during polymerization were studied. Reaction kinetics was studied at three different temperatures. Rate curves revealed a multistage process with essentially linear rates at each stage. Thus, each stage displayed zero order kinetics. The product was crystalline and revealed ordering of P-O-P chains. It had low solubility in water but high solubility in 0.33 M citric acid and 0.005 M DTPA. Three different field trials showed significant yield increments using the slow-release micronutrient fertilizer compared to the conventional micronutrients. Yield increments in rice were in the range of 10–55% over control (with no micronutrient and up to 17% over the conventional micronutrient fertilizers. There were significant increases in total uptake of zinc, iron, and manganese in the grain. Slow-release fertilizers also produced significant yield increases in potato as well as significant increase in vitamin C content of the tuber.

  2. potentiometric studies of the complexes formed by copper (ii) and zinc

    African Journals Online (AJOL)

    MBI

    , P. M. B. 3011, Kano, Nigeria e-mail: jnaaliya@yahoo.com. ABSTRACT. The overall stability constants of copper (II) and zinc (II) ions with some polar uncharged amino acids including proline, threonine and asparagines were determined by ...

  3. Genotoxicology: Single and Joint Action of Copper and Zinc to ...

    African Journals Online (AJOL)

    Michael Horsfall

    Synodontis clarias and Tilapia nilotica using the sensitive micronucleus assay in fish genome. ... concentrations are important for the physiological ... Fish were divided into exposure groups for every concentration studied. Fish in twenties were exposed to copper and zinc, forty fish to the mixture of metals, and twenty fish ...

  4. Analysis of Serum and Urinal Copper and Zinc in Chinese Northeast Population with the Prediabetes or Diabetes with and without Complications

    Directory of Open Access Journals (Sweden)

    Jiancheng Xu

    2013-01-01

    Full Text Available This study investigated the association of copper and zinc levels in the serum or urine of patients living in northeast China, with either prediabetes or diabetes. From January 2010 to October 2011, patients with type 1 diabetes (T1D, n=25, type 2 diabetes (T2D, n=137, impaired fasting glucose (IFG, n = 12 or impaired glucose tolerance (IGT, n=15, and age/gender matched controls (n=50 were enrolled. In the T2D group, there were 24 patients with nephropathy, 34 with retinopathy, and 50 with peripheral neuropathy. Serum copper levels were significantly higher in IFG, IGT, and T2D groups. Serum zinc level was dramatically lower, and urinary zinc level was significantly higher in both T1D and T2D subjects compared with controls. The serum zinc/copper ratio was significantly lower in all the patients with IFG, ITG, T1D, and T2D. The serum copper level was positively associated with HbA1c in T2D subjects. Simvastatin treatment in T2D patients had no significant effect on serum and urinary copper and zinc. These results suggest the need for further studies of the potential impact of the imbalanced serum copper and zinc levels on metabolic syndrome, diabetes, and diabetic complications.

  5. ANTIMICROBIAL ACTIVITY OF COPPER AND ZINC ACCUMULATED BY EASTERN OYSTER AMEBOCYTES

    Science.gov (United States)

    Fisher, William S. Submitted. Antimicrobial Activity of Copper and Zinc Accumulated by Eastern Oyster Amebocytes. J. Shellfish Res. 54 p. (ERL,GB 1196). The distribution of eastern oysters Crassostrea virginica near terrestrial watersheds has led to a general impression t...

  6. Practical study on the electrochemical simultaneous removal of copper and zinc from simulated binary-metallic industrial wastewater using a packed-bed cathode

    Directory of Open Access Journals (Sweden)

    Meshaal F. Alebrahim

    2017-06-01

    Full Text Available In this work, electrochemical-simultaneous removal of copper and zinc from simulated binary-metallic industrial wastewater containing different ratios of copper to zinc was studied using a packed-bed continuous-recirculation flow electrolytic reactor. The total nominal initial concentration of both metals, circulating rate of flow and nominal initial pH were held constant. Parameters affecting the removal percent and current efficiency of removal, such as applied current and time of electrolysis were investigated. Results revealed that increased current intensity accelerated the removal of metals and diminish current efficiency. It was also observed that selective removal of both metals is possible when the applied current was of small intensity. Moreover, the factors that led to loss of faradaic efficiency were discussed.

  7. Gastrointestinal and in vitro release of copper, cadmium, indium, mercury and zinc from conventional and copper-rich amalgams

    International Nuclear Information System (INIS)

    Brune, D.; Gjerdet, N.; Paulsen, G.

    1983-01-01

    Particles of a conventional lathe-cut, a spherical non-gamma 2 and a copper amalgam have been gastrointestinally administered to rats for the purpose of evaluation of the dissolution resistance. The animals were sacrificed after 20 hrs. The contents of copper, cadmium, indium, mercury and zinc in kidney, liver, lung or blood were measured using nuclear tracer techniques. From a copper amalgam an extreme release of copper was demonstrated. This study simulates the clinical conditions of elemental release from swallowed amalgam particles after amalgam insertion or after removal of old amalgam fillings. Specimens of the same types of amalgams were also exposed to artificial saliva for a period of 10 days. The amounts of copper and mercury released were measured with flame and flameless atomic absorption spectrophotometry respectively. The levels of copper and mercury released from the copper amalgam were approximately 50 times those of the two other amalgam types studied. (author)

  8. Roadside soils show low plant available zinc and copper concentrations.

    Science.gov (United States)

    Morse, Natalie; Walter, M Todd; Osmond, Deanna; Hunt, William

    2016-02-01

    Vehicle combustion and component wear are a major source of metal contamination in the environment, which could be especially concerning where road ditches are actively farmed. The objective of this study was to assess how site variables, namely age, traffic (vehicles day(-1)), and percent carbon (%C) affect metal accumulation in roadside soils. A soil chronosequence was established with sites ranging from 3 to 37 years old and bioavailable, or mobile, concentrations of Zinc (Zn) and Copper (Cu) were measured along major highways in North Carolina using a Mehlich III extraction. Mobile Zn and Cu concentrations were low overall, and when results were scaled via literature values to "total metal", the results were still generally lower than previous roadside studies. This could indicate farming on lands near roads would pose a low plant toxicity risk. Zinc and Cu were not correlated with annual average traffic count, but were positively correlated with lifetime traffic load (the product of site age and traffic count). This study shows an often overlooked variable, site age, should be included when considering roadside pollution accumulation. Zinc and Cu were more strongly associated with %C, than traffic load. Because vehicle combustion is also a carbon source, it is not obvious whether the metals and carbon are simply co-accumulating or whether the soil carbon in roadside soils may facilitate previously overlooked roles in sequestering metals on-site. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Serum copper and zinc concentrations in a representative sample of the Canarian population.

    Science.gov (United States)

    Díaz Romero, Carlos; Henríquez Sánchez, Patricia; López Blanco, Félix; Rodríguez Rodríguez, Elena; Serra Majem, Lluis

    2002-01-01

    Serum copper (Cu) and zinc (Zn) concentrations of 395 individuals (187 males + 208 females) living in Canary Islands were determined by flame atomic absorption spectrometry. The mean copper and zinc concentrations were 1.10 +/- 0.25 mg/L and 1.16 +/- 0.52 mg/L respectively. Our data were similar to other data published in other Spanish regions. Individuals from Lanzarote presented a mean Cu and Zn concentrations higher (p EL Hierro showed the lowest (p 0.05) among the different age intervals. No clear trends in the serum Cu and Zn concentrations were observed when drinking and smoking habits were considered. The increase of physical exercise reduced (p < 0.05) the serum Cu concentrations.

  10. Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metal biosorption on the growth and cellular structure of Chlorella sp.and Chlamydomonas sp.isolated from rivers in Penang, Malaysia

    Institute of Scientific and Technical Information of China (English)

    W.O.Wan Maznah; A.T. Al-Fawwaz; Misni Surif

    2012-01-01

    In this study,the biosorption of copper and zinc ions by Chlorella sp.and Chlamydomonas sp.isolated from local environments in Malaysia was investigated in a batch system and by microscopic analyses.Under optimal biosorption conditions,the biosorption capacity of Chlorella sp.for copper and zinc ions was 33.4 and 28.5 mg/g,respectively,after 6 hr of biosorption in an immobilised system.Batch experiments showed that the biosorption capacity of algal biomass immobilised in the form of sodium alginate beads was higher than that of the free biomass.Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses revealed that copper and zinc were mainly sorbed at the cell surface during biosorption.Exposure to 5 mg/L of copper and zinc affected both the chlorophyll content and cell count of the algal cells after the first 12 hr of contact time.

  11. An Optical Fiber-Based Sensor Array for the Monitoring of Zinc and Copper Ions in Aqueous Environments

    Directory of Open Access Journals (Sweden)

    Steven Kopitzke

    2014-02-01

    Full Text Available Copper and zinc are elements commonly used in industrial applications as aqueous solutions. Before the solutions can be discharged into civil or native waterways, waste treatment processes must be undertaken to ensure compliance with government guidelines restricting the concentration of ions discharged in solution. While currently there are methods of analysis available to monitor these solutions, each method has disadvantages, be it high costs, inaccuracy, and/or being time-consuming. In this work, a new optical fiber-based platform capable of providing fast and accurate results when performing solution analysis for these metals is described. Fluorescent compounds that exhibit a high sensitivity and selectivity for either zinc or copper have been employed for fabricating the sensors. These sensors demonstrated sub-part-per-million detection limits, 30-second response times, and the ability to analyze samples with an average error of under 10%. The inclusion of a fluorescent compound as a reference material to compensate for fluctuations from pulsed excitation sources has further increased the reliability and accuracy of each sensor. Finally, after developing sensors capable of monitoring zinc and copper individually, these sensors are combined to form a single optical fiber sensor array capable of simultaneously monitoring concentration changes in zinc and copper in aqueous environments.

  12. Determination of Copper and Zinc in Brass: Two Basic Methods

    Science.gov (United States)

    Fabre, Paul-Louis; Reynes, Olivier

    2010-01-01

    In this experiment, the concentrations of copper and zinc in brass are obtained by two methods. This experiment does not require advanced instrumentation, uses inexpensive chemicals, and can be easily carried out during a 3-h upper-level undergraduate laboratory. Pedagogically, the basic concepts of analytical chemistry in solutions, such as pH,…

  13. THE EFFECTS OF COPPER AND ZINC IONS DURING THEIR BINDING WITH HUMAN SERUM γ-GLOBULIN

    Directory of Open Access Journals (Sweden)

    S. B. Cheknev

    2006-01-01

    Full Text Available Abstract. Conformational changes of human serum γ-globulin were studied during and after its binding with copper and zinc ions, using molecular ultrafiltration and differential spectrophotometry. The contents of nonbound metals in the filtrate were evaluated, resp., with sodium diethyl thyocarbamate and o-phenanthroline. It has been shown that copper and zinc exhibited common biological properties during their interactions with protein, but the binding differed sufficiently under similar experimental conditions. E.g., it was confirmed that copper was more active at the external sites of γ-globulin molecule, whereas zinc demonstrated tropicity for the areas of protein intraglobular compartments. The metal-binding sites have been described that differ in their parameters of interactions with cations and their spatial location within globular domains. Approaches are suggested for dynamic analysis of saturation for these differently located sites by the metal ions. We discuss the issues of altered conformational state of the γ-globulin molecule during the binding of cations, as well as potential usage of these data in clinical immunology.

  14. Hydrothermally treated chitosan hydrogel loaded with copper and zinc particles as a potential micro-nutrient based antimicrobial feed additive

    Directory of Open Access Journals (Sweden)

    Parthiban eRajasekaran

    2015-11-01

    Full Text Available Large-scale use of antibiotics in food animal farms as growth promoters is considered as one of the driving factors behind increasing incidence of microbial resistance. Several alternatives are under investigation to reduce the amount of total antibiotics used in order to avoid any potential transmission of drug resistant microbes to humans through food chain. Copper sulfate and zinc oxide salts are used as feed supplement as they exhibit antimicrobial properties in addition to being micronutrients. However, higher dosage of copper and zinc (often needed for growth promoting effect to animals is not advisable because of potential environmental toxicity arising from excreta. Innovative strategies are needed to utilize the complete potential of trace minerals as growth promoting feed supplements. To this end, we describe here the development and preliminary characterization of hydrothermally treated chitosan as a delivery vehicle for copper and zinc nanoparticles that could act as a micronutrient based antimicrobial feed supplement. Material characterization studies showed that hydrothermal treatment makes a chitosan hydrogel that re-arranged to capture the copper and zinc metal particles. Systemic antimicrobial assays showed that this chitosan biopolymer matrix embedded with copper (57.6 μg/ml and zinc (800 μg/ml reduced the load of model gut-bacteria (target organisms of growth promoting antibiotics such as Escherichia coli, Enterococcus faecalis, Staphylococcus aureus and Lactobacillus fermentum under in vitro conditions. Particularly, the chitosan/copper/zinc hydrogel exhibited significantly higher antimicrobial effect against L. fermentum, one of the primary targets of antibiotic growth promoters. Additionally, the chitosan matrix ameliorated the cytotoxicity levels of metal supplements when screened against a murine macrophage cell line RAW 264.7 and in TE-71, a murine thymic epithelial cell line. In this proof of concept study, we show

  15. Assessment of Copper and Zinc Contamination in Soils of Industrial Estates of Arak Region (Iran (

    Directory of Open Access Journals (Sweden)

    Eisa Solgi

    2015-03-01

    Full Text Available Background: Contamination of the environment due to heavy metals is a major concern to human life and the environment. This study was conducted to investigate and quantify the copper and zinc concentrations in industrial estates soil in Arak, Iran. Methods: Four industrial estates were considered for the experimental design, including Arak 1, Arak 2, Arak 3, and Ghotbe Sanaati. For preliminary understanding of soil heavy metals pollution in industrial estates, the concentrations of zinc and copper in the soil are analyzed and investigated to evaluate their concentration and environmental quality based on the contamination factor. Results: The results indicated the soils had been polluted by heavy metals due to industrial processes that concentrate these metals in the soil. Copper concentrations varied from 15.69 to 49.55 mg/kg. Zinc concentrations were found to be between 23.02 and 144.17 mg/kg. The highest concentration of Zn was found in Arak 3 region which may be due to industrial activities while the highest concentration of Cu was observed in the soil of Arak 1 region that may be due to proximity of this industrial estate to Arak city. The findings of the contamination factor showed that the heavy metals are accumulated in the soil of industrial estates that are considered low risk for contamination with zinc and copper. Conclusion: The achievements of this research showed the location of the industrial estate, proximity to highways and main roads, and the area of green space of industrial estates are important factors in determining heavy metals concentration.

  16. Bioextraction of copper and zinc from fly ash from coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Wilczok, T; Cwalina, B; Chrostowska, D

    1986-02-01

    Results are evaluated of investigations carried out by the Institute of Chemistry and Physics of the Silesia Medical Academy in Sosnowiec into feasibility of bacterial leaching for utilization of fly ash from combustion of black coal. Fly ash separated by electrostatic precipitators in the Dolna Odra power plant fired with black coal was used. Copper content in the fly ash on the average was 0.012%, that of zinc was 0.025%. When Thiobacillus ferroxidans, Thiobacillus thiooxidans and bacteria separated from fly ash were used leaching efficiency after 21 days ranged from 69 to 87% in the case of copper and from 48 to 72% in the case of zinc. Origin of bacteria separated from fly ash was unclear. Autochthonous bacteria in the fly ash being leached increased efficiency of bacterial leaching. Effects of autochthonous bacteria were similar to those of the bacterial culture of Thiobacillus ferroxidans and Thiobacillus thiooxidans. Investigation results were shown in a table and 2 diagrams. 19 references.

  17. Zinc and copper levels in the plasma of Nubian goat as affected by the physiological status

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Tag-Eldin Mohamed [Faculty of Animal Production, University of Khartoum, Khartoum (Sudan)

    1997-11-01

    This study is undertaken directed to determine the blood concentration of micro (trace) minerals, particularly zinc (Zn) and copper (Cu), in dairy goats as affected by the different physiological status. Animals selected were the Nubian goats as an important dairy breed in sudan. The animals were divided into eight groups as follows: Young animals (4-6 month old), adult animals (9-12 month old), up to 50 days after first kidding, up to 50 days after second kidding, up to 50 days after third kidding, low yielder, high yielder. Each of the above groups consisted of 5 animals. The analysis was carried by using the spectrophotometer technique and the results revealed that, plasma Zn concentration decreased with increase of age while that of Cu increased with the increase of age. The plasma Zn level showed continuous increase through first pregnancy, after first kidding, after second kidding and after third kidding. It increased in the lactating animals. The plasma Cu concentration fluctuated throughout the groups with different physiological status, it showed the same levels in the pregnant group, up to 50 days after second kidding, and up to 50 days after third kidding groups, while it showed a marked decrease in the group of up to 50 days after first kidding. No significant differences were observed between the low lactating and the high lactating groups. (Author) 68 refs. , 3 tabs. , 2 figs.

  18. Zinc and copper levels in the plasma of Nubian goat as affected by the physiological status

    International Nuclear Information System (INIS)

    Hamid, Tag-Eldin Mohamed

    1997-11-01

    This study is undertaken directed to determine the blood concentration of micro (trace) minerals, particularly zinc (Zn) and copper (Cu), in dairy goats as affected by the different physiological status. Animals selected were the Nubian goats as an important dairy breed in sudan. The animals were divided into eight groups as follows: Young animals (4-6 month old), adult animals (9-12 month old), up to 50 days after first kidding, up to 50 days after second kidding, up to 50 days after third kidding, low yielder, high yielder. Each of the above groups consisted of 5 animals. The analysis was carried by using the spectrophotometer technique and the results revealed that, plasma Zn concentration decreased with increase of age while that of Cu increased with the increase of age. The plasma Zn level showed continuous increase through first pregnancy, after first kidding, after second kidding and after third kidding. It increased in the lactating animals. The plasma Cu concentration fluctuated throughout the groups with different physiological status, it showed the same levels in the pregnant group, up to 50 days after second kidding, and up to 50 days after third kidding groups, while it showed a marked decrease in the group of up to 50 days after first kidding. No significant differences were observed between the low lactating and the high lactating groups. (Author)

  19. Effects of iron, tin, and copper on zinc absorption in humans

    International Nuclear Information System (INIS)

    Valberg, L.S.; Flanagan, P.R.; Chamberlain, M.J.

    1984-01-01

    Zinc absorption as measured by body retention of [65Zn]zinc chloride or a turkey test meal extrinsically labeled with 65Zn was determined in human subjects by whole body counting after 7 days. Average 65Zn absorption from zinc chloride in persons with a high iron-absorbing capacity was similar to persons with a low capacity to absorb iron. Inorganic iron, 920 mumol (51 mg), or HB iron, 480 mumol (26 mg), inhibited 65Zn absorption from 92 mumol (6 mg) of zinc chloride. When 610 mumol of iron (34 mg) was added to a turkey test meal containing 61 mumol of zinc (4 mg), 65Zn absorption was not inhibited. Tin, 306 mumol (36 mg), given with zinc chloride or turkey test meals (61 mumol, 4 mg, of Zn) significantly reduced 65Zn absorption. Copper, 79 mumol (5 mg), had no significant effect on the 65Zn absorption from 7.9 mumol (0.5 mg) of zinc chloride. In summary, the capacity to absorb iron did not influence 65Zn absorption, but both inorganic iron and heme-iron inhibited 65Zn absorption from zinc chloride. Inorganic iron had no effect, however, on 65Zn absorption from the turkey test meal. Tin in a large dose also inhibited 65Zn absorption from both zinc chloride and the turkey test meal

  20. Simultaneous Measurement of Zinc, Copper, Lead and Cadmium in Baby Weaning Food and Powder Milk by DPASV.

    Science.gov (United States)

    Sadeghi, Naficeh; Oveisi, Mohammad Reza; Jannat, Behrooz; Hajimahmoodi, Mannan; Behfar, Abdolazim; Behzad, Masoomeh; Norouzi, Narges; Oveisi, Morvarid; Jannat, Behzad

    2014-01-01

    Apart from the breast milk, infant formula and baby weaning food have a special role in infant diet. Infants and young children are very susceptible to amount of trace elements. Copper and zinc are two elements that add in infant food. Lead and cadmium are heavy metals that enter to food chain unavoidably. DPASV is a benefit and applicable method for measurement of trace elements in food products. In this study, concentration of zinc, copper, lead and cadmium in four brands of baby food (rice and wheat based) and powder milk was analyzed with DPASV and polarograph set. Total Mean ± SE of zinc, copper, lead and cadmium in baby foods (n = 240) were 11.86 ± 1.474 mg/100g, 508.197 ± 83.154 μg/100g, 0.445 ± 0.006, 0.050 ± 0.005 mg/Kg respectively. Also these amount in powder milk (n = 240) were 3.621± 0.529 mg/100g, 403.822 ± 133.953 μg/100g, 0.007 ± 0.003, 0.060 ± 0.040 mg/Kg respectively. Zinc level in baby food type I was higher than lablled value (P = 0.030), but in other brands was not difference. Concentration of copper in all of samples was in labeled range (P > 0.05). In each four products, level of lead and cadmium were lower than the standard limit (P < 0.05). Amount of zinc and lead in baby food I, had difference versus other products. Concentration of zinc, camium in baby food type I, was higher than type II (P = 0.043, 0.001 respectively). Concentration of lead and cadmium in baby food type II, was higher than infant formulas, but are in standard limit.

  1. APPLICATION OF METAL RESISTANT BACTERIA BY MUTATIONAL ENHANCMENT TECHNIQUE FOR BIOREMEDIATION OF COPPER AND ZINC FROM INDUSTRIAL WASTES

    Directory of Open Access Journals (Sweden)

    M. R. Shakibaie ، A. Khosravan ، A. Frahmand ، S. Zare

    2008-10-01

    Full Text Available In this research, using mutation in the metal resistant bacteria, the bioremediation of the copper and zinc from copper factory effluents was investigated. Wastewater effluents from flocculation and rolling mill sections of a factory in the city of Kerman were collected and used for further experiments. 20 strains of Pseudomonas spp. were isolated from soil and effluents surrounding factory and identified by microbiological methods. Minimum inhibitory concentrations for copper (Cu and zinc (Zn were determined by agar dilution method. Those strains that exhibited highest minimum inhibitory concentrations values to the metals (5mM were subjected to 400-3200 mg/L concentrations of the three mutagenic agents, acriflavine, acridine orange and ethidium bromide. After determination of subinhibitory concentrations, the minimum inhibitory concentrations values for copper and zinc metal ions were again determined, which showed more than 10 fold increase in minimum inhibitory concentrations value (10 mM for Cu and 20 mM for Zn with P≤0.05. The atomic absorption spectroscopy of dried biomass obtained from resistant strains after exposure to mutagenic agents revealed that strains 13 accumulate the highest amount of intracellular copper (0.35% Cu/mg dried biomass and strain 10 showed highest accumulation of zinc (0.3% Zn/mg dried biomass respectively with P≤0.05. From above results it was concluded that the treatment of industrial waste containing heavy metals by artificially mutated bacteria may be appropriate solution for effluent disposal problems.

  2. Serum Levels of Zinc, Copper and Their Carrier Proteins in Cattle with theileriosis

    Directory of Open Access Journals (Sweden)

    M Fartashvand

    2011-02-01

    Full Text Available In this study, 90 cattle with theileriosis and 90 healthy cattle were studied based on clinical and laboratory examination including parasitological and biochemical tests. Special biochemical kits were used for determination of zinc, copper, albumin, calcium, magnesium and ferrous levels in sera. Serum levels of transferin and ceruloplasmin were measured with ELISA and Sunderman & Nomoto method, respectively. The serum level of zinc was significantly decreased in cattle suffering from theileriosis (p

  3. Anemia and iron, zinc, copper and magnesium deficiency in Mexican adolescents: National Health and Nutrition Survey 2006.

    Science.gov (United States)

    De la Cruz-Góngora, Vanessa; Gaona, Berenice; Villalpando, Salvador; Shamah-Levy, Teresa; Robledo, Ricardo

    2012-01-01

    To describe the frequency of anemia and iron, zinc, copper and magnesium deficiencies among Mexican adolescents in the probabilistic survey ENSANUT 2006. The sample included 2447 adolescents aged 12 to 19 y. Capillary hemoglobin and venous blood samples were collected to measure the concentrations of ferritin, sTFR, CRP, zinc, iron, copper and magnesium. Logistic regression models were constructed to assess the risk for mineral deficiencies. The overall prevalence of anemia was 11.8 and 4.6%, body iron deficiency 18.2 and 7.9% for females and males, respectively. Overall prevalence of tissue iron deficiency was 6.9%, low serum copper were 14.4 and 12.25%; zinc 28.4 and 24.5%, magnesium 40 and 35.3%; for females and males, respectively. There is a high prevalence of mineral deficiency in Mexican adolescents; females were more prone to have more mineral deficiencies. Nutritional interventions are necessaries in order to reduce and control them.

  4. Excretion of Zinc and Copper Increases in Men during 3 Weeks of Bed Rest, with or without Artificial Gravity.

    Science.gov (United States)

    Heacox, Hayley N; Gillman, Patricia L; Zwart, Sara R; Smith, Scott M

    2017-06-01

    Background: Zinc and copper have many physiologic functions and little or no functional storage capability, so persistent losses of either element present health concerns, especially during extended-duration space missions. Objectives: We evaluated the effects of short-term bed rest (BR), a spaceflight analog, on copper and zinc metabolism to better understand the role of these nutrients in human adaptation to (simulated) spaceflight. We also investigated the effect of artificial gravity on copper and zinc homeostasis. Methods: Zinc and copper balances were studied in 15 men [mean ± SD age: 29 ± 3 y; body mass index (in kg/m 2 ): 26.4 ± 2.2] before, during, and after 21 d of head-down tilt BR, during which 8 of the participants were subjected to artificial gravity (AG) by centrifugation for 1 h/d. Control subjects were transferred onto the centrifuge but were not exposed to centrifugation. The study was conducted in a metabolic ward; all urine and feces were collected. Data were analyzed by 2-factor repeated-measures ANOVA. Results: Urinary zinc excretion values for control and AG groups were 33% and 14%, respectively, higher during BR than before BR, and fecal zinc excretion values for control and AG groups were 36% and 19%, respectively, higher during BR, resulting in 67% and 82% lower net zinc balances for controls and AG, respectively (both P zinc by men during BR suggests that their absorption of these minerals from the diet was reduced, secondary to the release of minerals from bone and muscle. These findings highlight the importance of determining dietary requirements for astronauts on space missions and ensuring provision and intake of all nutrients. © 2017 American Society for Nutrition.

  5. Simultaneous determination of trace-levels of alloying zinc and copper by semi-mercury-free potentiometric stripping analysis with chemometric data treatment

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Hansen, Elo Harald

    1998-01-01

    Assays of copper and zinc in brass samples were performed by Semi-Mercury Free Potentiometric Stripping Analysis (S-MF PSA) using a thin-film mercury covered glassy-carbon working electrode and dissolved oxygen as oxidizing agent during the stripping step. The stripping peak transients were...... resolved by chemometrics which enabled simultaneous determination of both the copper and the zinc concentrations, thereby eliminating the conventional necessary pretreatment of the sample solution, such as initial addition of Ga(III) or solvent extraction of copper. The brass samples were diluted...... by factors in the range 2.104 - 5.105 which resulted in quantification of the copper and of zinc contents comparable to the specified values within 10%. On the basis of the chemometric treatment, an empirical expression is deduced relating the stripping time to the recorded potential....

  6. Stage-specific and age-dependent profiles of zinc, copper, manganese, and selenium in rat seminiferous tubules

    International Nuclear Information System (INIS)

    Homma-Takeda, S.; Nishimura, Y.; Watanabe, Y.; Imaseki, H.; Yukawa, M.

    2004-01-01

    Stage-specific and age-dependent profiles of zinc, copper, manganese, and selenium in testis were examined in Wistar rats by both inductively coupled argon plasma-mass spectrometry (ICP-MS) with a microdissection technique and in situ elemental imaging of micro-PIXE analysis. The young adult animals (10 weeks old) contained higher levels of zinc and manganese in the seminiferous tubules at stages VII-VIII than stages XI through VI and IX-X and the levels were higher than those of the immature and old animals. Copper and selenium levels at stages VII-VIII of the young adult animals were also higher than those of the immature and old animals. In stages VII and VIII, zinc was higher in the central area of the seminiferous epithelium, where spermatozoa were localized, demonstrating a cell-specific property. (author)

  7. Magnesium, zinc and copper estimation in children with attention deficit hyperactivity disorder (ADHD

    Directory of Open Access Journals (Sweden)

    Farida Elbaz

    2017-04-01

    Conclusion: Children with ADHD have lower levels of zinc, copper and magnesium compared to both laboratory reference ranges and to normal controls in both hair and serum. These deficiencies are correlated with the core symptoms of ADHD.

  8. Lead, zinc and copper fine powder with controlled size and shape

    Directory of Open Access Journals (Sweden)

    Mahmoud A Rabah

    2017-12-01

    Full Text Available This study describes the preparation of lead, zinc and copper powders by hydrometallurgy from secondary resources. Chloride, sulphate and acetate salts of zinc, copper and lead were prepared. The powders were prepared by reducing the ionic species of these metals by hydrazine hydrate or ascorbic acid. The effect of addition of some water soluble polar organic solvents to the aqueous salt solutions on the morphology and particle size of the prepared powder was studied. Findings were explained on the basis of the transition state theory and according to the Hughes and Ingold’s rule. Aqueous solutions alone produce metal powder having different size and irregular shape. The presence of polar organic solvents with high molecular weight and polarity produce powders having controlled size and regular morphology. The reason was because solvent polarity enhances the rate of red-ox reactions between metal ions and the reducing agent. The mean particle size of the powder was 60 um with zinc, 80 um with copper, and 90 um with lead. The extent of productivity was ≥98%. Results highlighted that the chemical reduction of the ionic species took place in a sequence steps. The first is a diffusion of the reactants across a boundary layer established at the polar site of the organic solvent molecules. The next step is the direct contact of the reactants. The third step involved reduction to yield powder. The last is the backward diffusion of the powder outside the boundary layer. Results showed that addition of water-miscible solvents having high dielectric constant increased the polarity of the medium. This energizes and enhances the one or more t step of the model to be more rapid to yield particles with small size and symmetrical shape.

  9. Assessment of copper, cadmium and zinc remobilization in Mediterranean marine coastal sediments

    Science.gov (United States)

    Sakellari, Aikaterini; Plavšić, Marta; Karavoltsos, Sotiris; Dassenakis, Manos; Scoullos, Michael

    2011-01-01

    The remobilization of copper, cadmium and zinc in sediments of three selected coastal microenvironments of the Aegean Sea (Eastern Mediterranean) is assessed. Various analytical methods and techniques were employed providing concentrations, profiles and forms of metals and organic matter in sediments and pore waters. At Loutropyrgos, a non-industrial site located, however, within an intensively industrialized enclosed gulf, an intense resupply of zinc in pore water from sediment was recorded, correlating with the highest value of weakly bound fraction of zinc determined at this area. The comparatively high zinc concentrations measured in the pore waters (394 nM), exceed considerably those in the overlying seawater (12.5 nM determined by DGT; 13.5 nM total), resulting in the formation of a strong concentration gradient at the sediment-water interface. Potential zinc flux at the sediment-water interface at Loutropyrgos (based on 0.4 mm DGT profile) was calculated equal to 0.8 mmol.m -2.d -1. The half lives of trace metals at Loutropyrgos site, based on the aforementioned DGT profiles, amount to 0.1 y (Zn), 2.8 y (Cd), 4.5 y (Cu), 2.2 y (Mn) and 0.4 y (Fe) pointing out to the reactivity of these metals at the sediment-water interface. The concentration of dissolved organic carbon (DOC) in pore waters of the three selected sites (2.7-5.2 mg/L) was up to four times higher compared to that of the corresponding overlying seawater. Similarly, the concentrations of carbohydrates in pore waters (0.20-0.91 mg/L monosaccharides; 0.71-1.6 mg/L polysaccharides) are an order of magnitude higher than those of seawater, forming a concentration gradient at the sediment-water interface. Total carbohydrates contribute between 34 and 48% of the organic carbon of the pore waters, being significantly higher than those of seawater from the corresponding areas, which were in the range of 15-21%. The complexing capacity as for copper ions (CCu) determined in pore water ranges widely, from 0

  10. The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium.

    Science.gov (United States)

    Ognik, Katarzyna; Stępniowska, Anna; Cholewińska, Ewelina; Kozłowski, Krzysztof

    2016-09-01

    Copper nanoparticles used as a dietary supplement for poultry could affect the absorption of mineral elements. Hence the aim of the study was to determine the effect of administration of copper nanoparticles to chickens in drinking water on intestinal absorption of iron, zinc, and calcium. The experiment was carried out on 126 chicks assigned to seven experimental groups of 18 birds each (3 replications of 6 individuals each). The control group (G-C) did not receive copper nanoparticles. Groups: Cu-5(7), Cu-10(7), and Cu-15(7) received gold nanoparticles in their drinking water in the amounts of 5 mg/L for group Cu-5(7), 10 mg/L for group Cu-10(7), and 15 mg/L for group Cu-15(7) during 8 to 14, 22 to 28, and 36 of 42 days of the life of the chicks. The birds in groups Cu-5(3), Cu-10(3), and Cu-15(3) received copper nanoparticles in the same amounts, but only during 8 to 10, 22 to 24, and 36 to 38 days of life. Blood for analysis was collected from the wing vein of all chicks at the age of 42 days. After the rearing period (day 42), six birds from each experimental group with body weight similar to the group average were slaughtered. The carcasses were dissected and samples of the jejunum were collected for analysis of absorption of selected minerals. Mineral absorption was tested using the in vitro gastrointestinal sac technique. Oral administration of copper nanoparticles to chickens in the amount of 5, 10, and 15 mg/L led to accumulation of this element in the intestinal walls. The highest level of copper nanoparticles applied increased Cu content in the blood plasma of the birds. The in vitro study suggests that copper accumulated in the intestines reduces absorption of calcium and zinc, but does not affect iron absorption. © 2016 Poultry Science Association Inc.

  11. Accumulation of copper and zinc by balanus amphitrite in a tropical estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Anil, A.C.; Wagh, A.B.

    @iBalanus amphitrite@@ (Cirripedia: Thoracica) a dominant fouling organism was analysed to assess the accumulation potentialities of copper and zinc. It was observed that it could accumulate Cu to 864.77 mu g g-1 dry wt. and Zn to 1937.50 mu g g-1...

  12. Zinc and copper supplementation in acute diarrhea in children: a double-blind randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Mamtani Manju

    2009-05-01

    Full Text Available Abstract Background Diarrhea causes an estimated 2.5 million child deaths in developing countries each year, 35% of which are due to acute diarrhea. Zinc and copper stores in the body are known to be depleted during acute diarrhea. Our objectives were to evaluate the efficacy of zinc and copper supplementation when given with standard treatment to children with acute watery or bloody diarrhea. Methods We conducted a double-blind randomized controlled clinical trial in the Department of Pediatrics at Indira Gandhi Government Medical College Nagpur, India. Eight hundred and eight children aged 6 months to 59 months with acute diarrhea were individually randomized to placebo (Pl, zinc (Zn only, and zinc and copper (Zn+Cu together with standard treatment for acute diarrhea. Results The mean duration of diarrhea from enrolment and the mean stool weight during hospital stay were 63.7 hours and 940 grams, respectively, and there were no significant differences in the adjusted means across treatment groups. Similarly, the adjusted means of the amount of oral rehydration solution or intravenous fluids used, the proportion of participants with diarrhea more than 7 days from onset, and the severity of diarrhea indicated by more than three episodes of some dehydration or any episode of severe dehydration after enrolment, did not differ across the three groups. Conclusion The expected beneficial effects of zinc supplementation for acute diarrhea were not observed. Therapeutic Zn or Zn and Cu supplementation may not have a universal beneficial impact on the duration of acute diarrhea in children. Trial registration The study was registered as an International Standard Randomized Controlled Trial (ISRCTN85071383.

  13. Solid-phase extraction of copper, iron and zinc ions on Bacillus thuringiensis israelensis loaded on Dowex optipore V-493

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa; Melek, Esra [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)], E-mail: msoylak@gmail.com

    2008-11-30

    Bacillus thuringiensis israelensis loaded on Dowex optipore V-493 as new adsorbent for the separation-preconcentration of heavy metal ions has been proposed. The analytical conditions for the quantitative recoveries of copper(II), iron(III) and zinc(II) including pH, amounts of adsorbent, sample volume, etc. were investigated. The influences of alkaline and earth alkaline ions were also reported. The recovery values for the analytes are generally higher than 95%. The preconcentration factor was 37. The limit of detections of the analyte ions (k = 3, N = 21) were 1.14 {mu}g L{sup -1} for copper, 2.01 {mu}g L{sup -1} for iron and 0.14 {mu}g L{sup -1} for zinc. The relative standard deviations of the determinations were found to be lower than 9%. The procedure was validated by analyzing copper, iron and zinc contents in two certified reference materials, NRCC-SLRS-4 Riverine water and NIST SRM 1515 Apple leaves. Agreements between the obtained results and the certified values were achieved. The developed preconcentration method was applied in the flame atomic absorption spectrometric determination of copper, iron and zinc in several samples including a multivitamin-multimineral tablet, dialysis solutions, natural waters and some food samples.

  14. Serum Calcium, Magnesium, Zinc and Copper Levels in Sudanese Women with Preeclampsia

    Science.gov (United States)

    Elmugabil, Abdelmageed; Hamdan, Hamdan Z.; Elsheikh, Anas E.; Rayis, Duria A.; Gasim, Gasim I.

    2016-01-01

    Background Although the exact pathophysiology of preeclampsia is not fully understood, several elemental micronutrient abnormalities have been suggested to play a contributory role in preeclampsia. Aims To investigate the levels of calcium, magnesium, zinc and copper in women with preeclampsia. Subjects and Methods A case—control study was conducted in Omdurman Maternity Hospital, Sudan, during the period of September through December 2014. The cases were women with preeclampsia while healthy pregnant women were the controls. The medical and obstetrics history was gathered using questionnaires. The serum levels of calcium, magnesium, zinc and copper were measured using atomic absorption spectrophotometer. Results There was no significant difference between the two groups in their age, gestational age, parity and body mass index. Zinc and copper levels were not significantly different between the two groups. In comparison with the controls, women with preeclampsia had a significantly lower median (inter-quartile) serum calcium [7.6 (4.0─9.6) vs. 8.1 (10.6─14.2), mg/dl, P = 0.032] and higher levels of magnesium [1.9 (1.4─2.5) vs. 1.4 (1.0─1.9) mg/dl; P = 0.003]. In binary logistic regression, lower calcium (OR = 0.73, 95% CI = 0.56 ─ 0.95, P = 0.021) and higher magnesium (OR = 5.724, 95% CI = 1.23 ─ 26.50, P = 0.026) levels were associated with preeclampsia. There were no significant correlations between levels of hemoglobin and these trace elements. Conclusion The current study showed significant associations between preeclampsia and serum levels of calcium and magnesium. PMID:27911936

  15. Synthesis of novel ionic liquids and evaluation of their leaching performance in the recovery of copper and zinc from industrial brass slag

    International Nuclear Information System (INIS)

    Sahina, A.K.; Atalaya, T.S.; Atbakarb, M.; Ocalb, N.; Saridede, M.N.

    2016-01-01

    Imidazolium-based ionic liquids, 1,3-dibenzylimidazolium trifluoroacetate, 1-benzyl-3-ethylimidazolium trifluoroacetate and 1-benzyl-3-propylimidazolium trifluoroacetate were prepared by simple methods, when compared with those in literature sources, and characterized by IR, NMR and GC-MS and LC-MS. These ILs (Ionic Liquids) were employed as leaching agents in the treatment of industrial copper and zinc bearing slag for the recovery of metals. Results showed that synthesized all novel ionic liquids meet the standard specifications of an ionic liquid. Metal recovery rates decrease with time except for zinc dissolution in 1,3-dibenzylimidazolium trifluoroacetate. 1,3-dibenzylimidazolium trifluoroacetate, when compared with others, is a more effective leaching agent for the treatment of copper and zinc bearing brass slag. Metal recovery rates achieved with this IL are 62.58% for zinc and 24.95% for copper. (Author)

  16. Synthesis of novel ionic liquids and evaluation of their leaching performance in the recovery of copper and zinc from industrial brass slag

    Directory of Open Access Journals (Sweden)

    Ayfer Kilicarslan Sahin

    2016-12-01

    Full Text Available Imidazolium-based ionic liquids, 1,3-dibenzylimidazolium trifluoroacetate, 1-benzyl-3-ethylimidazolium trifluoroacetate and 1-benzyl-3-propylimidazolium trifluoroacetate were prepared by simple methods, when compared with those in literature sources, and characterized by IR, NMR and GC-MS and LC-MS. These ILs (Ionic Liquids were employed as leaching agents in the treatment of industrial copper and zinc bearing slag for the recovery of metals. Results showed that synthesized all novel ionic liquids meet the standard specifications of an ionic liquid. Metal recovery rates decrease with time except for zinc dissolution in 1,3-dibenzylimidazolium trifluoroacetate. 1,3-dibenzylimidazolium trifluoroacetate, when compared with others, is a more effective leaching agent for the treatment of copper and zinc bearing brass slag. Metal recovery rates achieved with this IL are 62.58% for zinc and 24.95% for copper.

  17. Synthesis of novel ionic liquids and evaluation of their leaching performance in the recovery of copper and zinc from industrial brass slag

    Energy Technology Data Exchange (ETDEWEB)

    Sahina, A.K.; Atalaya, T.S.; Atbakarb, M.; Ocalb, N.; Saridede, M.N.

    2016-07-01

    Imidazolium-based ionic liquids, 1,3-dibenzylimidazolium trifluoroacetate, 1-benzyl-3-ethylimidazolium trifluoroacetate and 1-benzyl-3-propylimidazolium trifluoroacetate were prepared by simple methods, when compared with those in literature sources, and characterized by IR, NMR and GC-MS and LC-MS. These ILs (Ionic Liquids) were employed as leaching agents in the treatment of industrial copper and zinc bearing slag for the recovery of metals. Results showed that synthesized all novel ionic liquids meet the standard specifications of an ionic liquid. Metal recovery rates decrease with time except for zinc dissolution in 1,3-dibenzylimidazolium trifluoroacetate. 1,3-dibenzylimidazolium trifluoroacetate, when compared with others, is a more effective leaching agent for the treatment of copper and zinc bearing brass slag. Metal recovery rates achieved with this IL are 62.58% for zinc and 24.95% for copper. (Author)

  18. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhu [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); University of the Chinese Academy of Sciences, Beijing 100049 (China); Wu, Longhua, E-mail: lhwu@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Hu, Pengjie [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Luo, Yongming [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Yantai Institute of Coastal Zone Research, Yantai 264003 (China); Christie, Peter [Agri-Environment Branch, Agri-Food and Biosciences Institute, Newforge Lane, Belfast BT9 5PX (United Kingdom)

    2013-10-15

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola.

  19. Copper changes the yield and cadmium/zinc accumulation and cellular distribution in the cadmium/zinc hyperaccumulator Sedum plumbizincicola

    International Nuclear Information System (INIS)

    Li, Zhu; Wu, Longhua; Hu, Pengjie; Luo, Yongming; Christie, Peter

    2013-01-01

    Highlights: • Low Cu has no significant effect on Sedum plumbizincicola plant growth and Cd and Zn uptake. • Plant held Cu in unactive areas and insoluble forms as de-toxification mechanisms. • Influence of Cu on Zn and Cd uptake and translocation were different. • Cu accumulation in leaf veins may restrain Cd/Zn unloading to the leaves -- Abstract: Non-accumulated metals in mixed metal contaminated soils may affect hyperaccumulator growth and metal accumulation and thus remediation efficiency. Two hydroponics experiments were conducted to investigate the effects of copper (Cu) on cadmium (Cd) and zinc (Zn) accumulation by the Cd/Zn hyperaccumulator Sedum plumbizincicola, Cu toxicity and plant detoxification using chemical sequential extraction of metals, sub-cellular separation, micro synchrotron radiation based X-ray fluorescence, and transmission electron microscopy. Compared with the control (0.31 μM Cu), 5–50 μM Cu had no significant effect on Cd/Zn accumulation, but Cu at 200 μM induced root cell plasmolysis and disordered chloroplast structure. The plants held Cu in the roots and cell walls and complexed Cu in insoluble forms as their main detoxification mechanisms. Exposure to 200 μM Cu for 4 days inhibited plant Cd uptake and translocation but did not affect Zn concentrations in roots and stems. Moreover, unloading of Cd and Zn from stem to leaf was restrained compared to control plants, perhaps due to Cu accumulation in leaf veins. Copper may thus interfere with root Cd uptake and restrain Cd/Zn unloading to the leaves. Further investigation of how Cu affects plant metal uptake may help elucidate the Cd/Zn hyper-accumulating mechanisms of S. plumbizincicola

  20. The use of radioisotopes and low abundance stable isotopes for the study of bioavailability and the metabolism of iron, zinc and copper

    International Nuclear Information System (INIS)

    Aggett, P.J.; Fairweather Tait, S.

    1994-01-01

    The use of whole body counting and imaging with ''area of interest'' counting to monitor the metabolism of zinc in healthy volunteers and patients with coeliac diseases and cirrhosis is described as are studies of interaction between iron and copper. Stable isotopes of iron, copper and zinc have been used to investigate the metabolism of these elements in young infants and have proved useful in assessing the validity of current estimated requirements particularly of iron. Stable isotopes have also been used to improve the classic metabolic balance approach to the study of the homeostasis of zinc in zinc deprived volunteers, and have progressed to studies using plasma kinetic curves of the systemic compartmentation of zinc

  1. Copper and Zinc Deficiency in a Patient Receiving Long-Term Parenteral Nutrition During a Shortage of Parenteral Trace Element Products.

    Science.gov (United States)

    Palm, Eric; Dotson, Bryan

    2015-11-01

    Drug shortages in the United States, including parenteral nutrition (PN) components, have been common in recent years and can adversely affect patient care. Here we report a case of copper and zinc deficiency in a patient receiving PN during a shortage of parenteral trace element products. The management of the patient's deficiencies, including the use of an imported parenteral multi-trace element product, is described. © 2014 American Society for Parenteral and Enteral Nutrition.

  2. Influence of alumina on mineralogy and environmental properties of zinc-copper smelting slags

    Science.gov (United States)

    Mostaghel, Sina; Samuelsson, Caisa; Björkman, Bo

    2013-03-01

    An iron-silicate slag, from a zinc-copper smelting process, and mixtures of this slag with 5wt%, 10wt%, and 15wt% alumina addition were re-melted, semi-rapidly solidified, and characterized using scanning electron microscopy equipped with energy dispersive spectroscopy, and X-ray diffraction. The FactSage™6.2 thermodynamic package was applied to compare the stable phases at equilibrium conditions with experimental characterization. A standard European leaching test was also carried out for all samples to investigate the changes in leaching behaviour because of the addition of alumina. Results show that the commonly reported phases for slags from copper and zinc production processes (olivine, pyroxene, and spinel) are the major constituents of the current samples. A correlation can be seen between mineralogical characteristics and leaching behaviours. The sample with 10wt% alumina addition, which contains high amounts of spinels and lower amounts of the other soluble phases, shows the lowest leachabilities for most of the elements.

  3. Chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Wang, Ning; Ingersoll, Christopher G.; Dorman, Rebecca A.; Brumbaugh, William G.; Mebane, Christopher A.; Kunz, James L.; Hardesty, Douglas K.

    2014-01-01

    Chronic toxicity of cadmium, copper, lead, or zinc to white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) was evaluated in water-only exposures started with newly hatched larvae or approximately 1-mo-old juveniles. The 20% effect concentration (EC20) for cadmium from the sturgeon tests was higher than the EC20 from the trout tests, whereas the EC20 for copper, lead, or zinc for the sturgeon were lower than those EC20s for the trout. When the EC20s from the present study were included in compiled toxicity databases for all freshwater species, species mean chronic value for white sturgeon was in a relatively low percentile of the species sensitivity distribution for copper (9th percentile) and in the middle percentile for cadmium (55th percentile), zinc (40th percentile), or lead (50th percentile). However, the species mean chronic value for rainbow trout was in a high percentile for copper, lead, and zinc (∼68th–82nd percentile), but in a low percentile for cadmium (23rd percentile). The trout EC20s for each of the 4 metals and the sturgeon EC20s for cadmium or lead were above US Environmental Protection Agency chronic ambient water quality criteria (AWQC) or Washington State chronic water quality standards (WQS), whereas the sturgeon EC20s for copper or zinc were approximately equal to or below the chronic AWQC and WQS. In addition, acute 50% effect concentrations (EC50s) for copper obtained in the first 4 d of the chronic sturgeon test were below the final acute value used to derive acute AWQC and below acute WQS for copper.

  4. Eco-physiological studies on the uptake of the pollutants, copper, zinc and phosphate, by certain algae

    Energy Technology Data Exchange (ETDEWEB)

    Rana, B C; Kumar, H D

    1974-01-01

    Certain algae isolated from polluted and nonpolluted habitats were studied for their capacity to absorb copper, zinc, and phosphate from the ambient medium. They were found to possess a high gleaning capacity for these pollutants. The uptake of copper does not seem to require much metabolic energy and is independent of the growth of the alga, but the uptake of zinc seems to depend directly on its growth. Anacystis nidulans and Chlorella vulgaris are fast growing algae; they can absorb high amounts of phosphate and can be gainfully employed for retrieving the phosphate from the medium. However, the algae must be harvested before they excrete some of the phosphates back into the medium.

  5. The distribution of Magnesium, Zinc & Copper in the skin and hair of ...

    African Journals Online (AJOL)

    The distribution of magnesium, zinc and copper was investigated in the hair and skin of African dwarf sheep. The 3 elements were found to be present in varying degrees in these organs. All were more abundant in the hair than in the skin. For instance, 2026 ppm were the highest amount of magnesium found in the hair ...

  6. Transportation and Bioavailability of Copper and Zinc in a Storm Water Retention Pond

    Science.gov (United States)

    Camponelli, K.; Casey, R. E.; Wright, M. E.; Lev, S. M.; Landa, E. R.

    2006-05-01

    Highway runoff has been identified as a non-point source of metals to storm water retention ponds. Zinc and copper are major components of tires and brake pads, respectively. As these automobile parts degrade, they deposit particulates onto the roadway surface. During a storm event, these metal containing particulates are washed into a storm water retention pond where they can then accumulate over time. These metals may be available to organisms inhabiting the pond and surrounding areas. This study focuses on tracking the metals from their deposition on the roadway to their transport and accumulation into a retention pond. The retention pond is located in Owings Mills, MD and collects runoff from an adjacent four lane highway. Pond sediments, background soils, road dust samples, and storm events were collected and analyzed. Copper and zinc concentrations in the pond sediments are higher than local background soils indicating that the pond is storing anthropogenically derived metals. Storm event samples also reveal elevated levels of copper and zinc transported through runoff, along with a large concentration of total suspended solids. After looking at the particulate and dissolved fractions of both metals in the runoff, the majority of the Zn and Cu are in the particulate fraction. Changes in TSS are proportional with changes in particulate bound Zn, indicating that the solid particulates that are entering into the pond are a major contributor of the total metal loading. Sequential extractions carried out on the road dust show that the majority of zinc is extracted in the second and third fractions and could become available to organisms in the pond. There is a small amount of Cu that is being released in the more available stages of the procedure; however the bulk of the Cu is seen in the more recalcitrant steps. In the pond sediments however, both Cu and Zn are only being released from the sediments in the later steps and are most likely not highly available.

  7. Cadmium, zinc, copper, sodium and potassium concentrations in rooster and turkey semen and their correlation.

    Science.gov (United States)

    Massanyi, Peter; Weis, Jan; Lukac, Norbert; Trandzik, Jozef; Bystricka, Judita

    2008-04-01

    The purpose of this study was to assess concentration of selected elements (cadmium, zinc, copper, sodium and potassium) in rooster and turkey semen and to find possible correlations between these elements. Samples were analyzed on the atomic absorption spectrophotometer. The analysis of cadmium showed that the concentration in rooster is 9.06 +/- 7.70 and in turkey 4.10 +/- 3.59 microg/mL. In zinc 5.25 +/- 1.96 microg/mL in rooster and 3.70 +/- 1.26 microg/mL in turkey were detected. Higher concentration of copper was found in rooster semen (6.79 +/- 6.42 microg/mL) in comparison with turkey semen (4.29 +/- 5.43 microg/mL). The level of sodium (3.96 +/- 1.02 microg/mL; 3.14 +/- 0.85 microg/mL) and potassium (2.88 +/- 0.65 microg/mL; 3.42 +/- 1.41 microg/mL) was very similar in both species. Correlation analysis detected high positive correlation between cadmium and zinc (r = 0.701) in rooster and between sodium and potassium (r = 0.899) in turkey semen.

  8. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism

    Directory of Open Access Journals (Sweden)

    Artur Krężel

    2017-06-01

    Full Text Available Recent discoveries in zinc biology provide a new platform for discussing the primary physiological functions of mammalian metallothioneins (MTs and their exquisite zinc-dependent regulation. It is now understood that the control of cellular zinc homeostasis includes buffering of Zn2+ ions at picomolar concentrations, extensive subcellular re-distribution of Zn2+, the loading of exocytotic vesicles with zinc species, and the control of Zn2+ ion signalling. In parallel, characteristic features of human MTs became known: their graded affinities for Zn2+ and the redox activity of their thiolate coordination environments. Unlike the single species that structural models of mammalian MTs describe with a set of seven divalent or eight to twelve monovalent metal ions, MTs are metamorphic. In vivo, they exist as many species differing in redox state and load with different metal ions. The functions of mammalian MTs should no longer be considered elusive or enigmatic because it is now evident that the reactivity and coordination dynamics of MTs with Zn2+ and Cu+ match the biological requirements for controlling—binding and delivering—these cellular metal ions, thus completing a 60-year search for their functions. MT represents a unique biological principle for buffering the most competitive essential metal ions Zn2+ and Cu+. How this knowledge translates to the function of other families of MTs awaits further insights into the specifics of how their properties relate to zinc and copper metabolism in other organisms.

  9. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism.

    Science.gov (United States)

    Krężel, Artur; Maret, Wolfgang

    2017-06-09

    Recent discoveries in zinc biology provide a new platform for discussing the primary physiological functions of mammalian metallothioneins (MTs) and their exquisite zinc-dependent regulation. It is now understood that the control of cellular zinc homeostasis includes buffering of Zn 2+ ions at picomolar concentrations, extensive subcellular re-distribution of Zn 2+ , the loading of exocytotic vesicles with zinc species, and the control of Zn 2+ ion signalling. In parallel, characteristic features of human MTs became known: their graded affinities for Zn 2+ and the redox activity of their thiolate coordination environments. Unlike the single species that structural models of mammalian MTs describe with a set of seven divalent or eight to twelve monovalent metal ions, MTs are metamorphic. In vivo, they exist as many species differing in redox state and load with different metal ions. The functions of mammalian MTs should no longer be considered elusive or enigmatic because it is now evident that the reactivity and coordination dynamics of MTs with Zn 2+ and Cu⁺ match the biological requirements for controlling-binding and delivering-these cellular metal ions, thus completing a 60-year search for their functions. MT represents a unique biological principle for buffering the most competitive essential metal ions Zn 2+ and Cu⁺. How this knowledge translates to the function of other families of MTs awaits further insights into the specifics of how their properties relate to zinc and copper metabolism in other organisms.

  10. Serum and tissue contents of copper, calcium, iron and magnesium elements in cases of acne vulgaris after zinc therapy

    International Nuclear Information System (INIS)

    El-Said, S.M.; El-Bedewi, A.F.

    2002-01-01

    The effect of zinc therapy on some trace elements contents in serum and skin was studied in normal group (forty) and patients group with acne vulgaris (26 males and 14 females) with age ranged between 14-30 year. They were under medical treatment with 330 mg oral zinc sulfate for 12 weeks. Highly significant decreases in both serum and tissue contents of copper and calcium were detected, as well as, highly significant decrease in the serum content of magnesium was recorded. The serum content of iron was highly significantly increased and that for tissue content was slightly significantly increased. It could be concluded that zinc therapy could be valuable through modulation of copper. calcium, iron and magnesium in acne patients

  11. Mineralogical Study of a Biologically-Based Treatment System That Removes Arsenic, Zinc and Copper from Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Maryam Khoshnoodi

    2013-12-01

    Full Text Available Mineralogical characterization by X-ray diffraction (XRD and a high throughput automated quantitative evaluation of minerals by scanning electron microscopy (QEMSCAN was conducted on samples from a sulphate-reducing biochemical reactor (BCR treating high concentrations of metals (As, Zn, Cu in smelter waste landfill seepage. The samples were also subjected to energy dispersive X-ray (EDX analysis of specific particles. The bulk analysis results revealed that the samples consisted mainly of silicate and carbonate minerals. More detailed phase analysis indicated four different classes: zinc-arsenic sulphosalts/sulphates, zinc-arsenic oxides, zinc phosphates and zinc-lead sulphosalts/sulphates. This suggests that sulphates and sulphides are the predominant types of Zn and As minerals formed in the BCR. Sphalerite (ZnS was a common mineral observed in many of the samples. In addition, X-ray point analysis showed evidence of As and Zn coating around feldspar and amphibole particles. The presence of arsenic-zinc-iron, with or without cadmium particles, indicated arsenopyrite minerals. Copper-iron-sulphide particles suggested chalcopyrite (CuFeS2 and tennantite (Cu,Fe12As4S13. Microbial communities found in each sample were correlated with metal content to describe taxonomic groups associated with high-metal samples. The research results highlight mineral grains that were present or formed at the site that might be the predominant forms of immobilized arsenic, zinc and copper.

  12. Tissue levels of iron, copper, zinc and magnesium in iron deficient rats

    African Journals Online (AJOL)

    The effects of iron deficiency on the levels of iron, copper, zinc and magnesium in the brain, liver, kidney, heart and lungs of albino rats (Rattus novergicus) was investigated. Forty rats were divided into two groups and the first group was fed a control diet containing 1.09g iron/kg diet while the test group was fed diet ...

  13. Organically complexed copper, zinc, and chelating agents in the rivers of Western Puerto Rico

    International Nuclear Information System (INIS)

    Montgomery, J.R.; Echevarria, J.E.

    1975-01-01

    The method for determining soluble chelators gives their concentration in copper-equivalent chelating capacity units in fresh or slightly brackish (less than 3 percent salinity) water. The mean concentration of chelators in the Rio Guanajibo for December 1973 and January 1974 was 0.4 mg of copper per liter of water (N = 21, SD = 0.2) and for February 1974, 0.9 mg/liter (N = 8, SD = 0.4). The combined mean for the Rio Anasco and Culebrinas was 0.5 mg/liter (N = 7, SD = 0.4) in January and February 1974. The mean concentration of ionic copper was 0.5 μg/liter (N = 7, SD = 0.6) and of ionic zinc, 0.2 μg/liter (N = 8, SD = 0.1) in the Rio Guanajibo from November 1972 to February 1973. The concentration of organically bound copper was 0.3 μ/liter (N = 7, SD = 0.2) and that of organically bound zinc was 0.6 μg/liter (N = 8, SD = 0.6); this indicates that there was more than a sufficient quantity of chelator available in the river to complex all the soluble copper. The presence of a high ratio of Ca 2+ to Cu 2+ probably prevents the formation of larger concentrations of organically complexed copper. The mean concentration of chelating agents in the Guanajibo River seems to be directly related to the increased organic input from municipalities and a sugar mill. The concentration of chelators in tropical rivers appears to be higher than that found in Canadian lakes. The mean concentration for particulate organic carbon (POC) was 3653 μg atoms/liter (SD = 3653, N = 29). The dissolved reactive phosphate (DRP) ranged from a mean of 1.1 μg atom/liter. No significant correlation could be found between POC, DRP, and the concentration of chelators

  14. The analysis of pilot-plant products for copper, zinc, and lead with the telsec lab-x-250 analyser

    International Nuclear Information System (INIS)

    Domel, G.

    1977-01-01

    Suites of sulphide material representative of copper, zinc, and lead concentrates, as well as 'intermediate' products, low-grade material, and tailing samples, were analysed with the Telsec Lab-X-250 Analyser, which is a radio-isotope x-rayfluorescence instrument using 'balanced' filters for energy selection. A brief description of the instrument is given, stress being laid on the principle of 'balanced' filters. The determination of optimum instrumental parameters is described, and diagrams are provided to demonstrate the efficacy of energy selection. Correlation diagrams are given for all three elements in each of the materials analysed. The scatter of data points encountered is examined in terms of possible spectral interference and matrix variation. It was found that, within specified limits of acceptability, all three elements could be determined satisfactorily in copper and lead concentrates and in low-grade material. Zinc concentrates could be analysed only for zinc. The mechanisms of the spectral interference effects peculiar to the use of balanced filters are discussed, and a correction procedure is described and applied to improve the correlation for copper in the presence of a high zinc content. It is shown that the poor correlation found for 'intermediate' products and for lead in zinc concentrates is mainly due to matrix variations. The concentration range covered, the sensitivity, the precision, and, where applicable, the detectionlimits are tabulated for all three elements and all types of material analysed. A comparison of the results obtained with the Analyser and those obtained by atomic-absorption spectrophotometry is provided [af

  15. The effects of a lipid‐based nutrient supplement and antiretroviral therapy in a randomized controlled trial on iron, copper, and zinc in milk from HIV‐infected Malawian mothers and associations with maternal and infant biomarkers

    Science.gov (United States)

    Shahab‐Ferdows, Setareh; Gertz, Erik; Flax, Valerie L.; Adair, Linda S.; Bentley, Margaret E.; Jamieson, Denise J.; Tegha, Gerald; Chasela, Charles S.; Kamwendo, Debbie; van der Horst, Charles M.; Allen, Lindsay H.

    2017-01-01

    Abstract We evaluated effects of antiretroviral (ARV) therapy and lipid‐based nutrient supplements (LNSs) on iron, copper, and zinc in milk of exclusively breastfeeding HIV‐infected Malawian mothers and their correlations with maternal and infant biomarkers. Human milk and blood at 2, 6, and 24 weeks post‐partum and blood during pregnancy (≤30 weeks gestation) were collected from 535 mothers/infant‐pairs in the Breastfeeding, Antiretrovirals, and Nutrition study. The participants received ARV, LNS, ARV and LNS, or no intervention from 0 to 28 weeks post‐partum. ARVs negatively affected copper and zinc milk concentrations, but only at 2 weeks, whereas LNS had no effect. Among all treatment groups, approximately 80–90% of copper and zinc and negatively correlated with milk iron at 2 and 6 weeks (r = −.18, p milk minerals with each other were the strongest correlations observed (r = .11–.47, p milk higher in iron when ferritin was higher or TfR lower. At 6 weeks, higher maternal α‐1‐acid glycoprotein and C‐reactive protein were associated with higher milk minerals in mildly anaemic women. Infant TfR was lower when milk mineral concentrations were higher at 6 weeks and when mothers were moderately anaemic during pregnancy. ARV affects copper and zinc milk concentrations in early lactation, and maternal haemoglobin during pregnancy and lactation could influence the association between milk minerals and maternal and infant iron status and biomarkers of inflammation. PMID:28851037

  16. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  17. Divalent cations as modulators of neuronal excitability: Emphasis on copper and zinc

    Directory of Open Access Journals (Sweden)

    RICARDO DELGADO

    2006-01-01

    Full Text Available Based on indirect evidence, a role for synaptically released copper and zinc as modulators of neuronal activity has been proposed. To test this proposal directly, we studied the effect of copper, zinc, and other divalent cations on voltage-dependent currents in dissociated toad olfactory neurons and on their firing rate induced by small depolarizing currents. Divalent cations in the nanomolar range sped up the activation kinetics and increased the amplitude of the inward sodium current. In the micromolar range, they caused a dose dependent inhibition of the inward Na+ and Ca2+ currents (I Na and I Ca and reduced de amplitude of the Ca2+-dependent K+ outward current (I Ca-K. On the other hand, the firing rate of olfactory neurons increased when exposed to nanomolar concentration of divalent cations and decreased when exposed to micromolar concentrations. This biphasic effect of divalent cations on neuronal excitability may be explained by the interaction of these ions with high and low affinity sites in voltage-gated channels. Our results support the idea that these ions are normal modulators of neuronal excitability

  18. Preconcentration and Determination of Copper and Zinc in Natural Water Samples by ICP-AES After Complexation and Sorption on Amberlite XAD-2

    Directory of Open Access Journals (Sweden)

    Ferreira Sérgio Luis Costa

    1998-01-01

    Full Text Available The present paper describes a procedure for separation, preconcentration and sequential determination of trace amounts of copper and zinc in natural water samples, by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES. The proposed method is based on the complexation of copper(II and zinc(II ions by 1-(2-thiazolylazo-2-naphthol (TAN and sorption on to Amberlite XAD-2 resin. Parameters such as: TAN amount, pH effect on the complexation and sorption of TAN complexes, agitation time for complete sorption, concentration of metal ion, mass of Amberlite XAD-2, desorption of metal ions from XAD-2 resin and sample volume were studied. The results demonstrated that the copper(II and zinc(II ions, in the range of 0.10 to 100.00 mug, contained in a solution sample volume of 400 mL, in the pH range of 5.7 to 8.3, on the form of TAN complexes had been quantitatively retained on to XAD-2 resin. The shaking time required for sorption is 1 h using a resin mass of 1.4 g. The solution for determination of copper and zinc by ICP-AES is obtained, after desorption of the ions from the XAD-2 resin, using 5 mL of 2 mol L-1 hydrochloric acid and shaking the system for 5 min. The procedure was applied to the determination of copper and zinc in several natural water samples. The standard addition technique was applied and the obtained recoveries revealed that the proposed procedure has a good accuracy. A high enrichment factor (80 and simplicity are the main advantages in this analytical protocol.

  19. THE FERTILIZATION EFFECT OF PERMANENT MEADOWS WITH SPENT MUSHROM SUBSTRATE ON THE UPTAKING OF MANGANESE, COPPER AND ZINC BY THE MEADOW SWARD

    Directory of Open Access Journals (Sweden)

    Beata Wiśniewska-Kadżajan

    2013-04-01

    Full Text Available The study was conducted in the years 1999–2001 in a meadow with the following fertilizer combinations: control object (without fertilizer, NPK mineral fertilization, fertilizing with manure, manure with NPK fertilization, fertilizing with spent mushroom substrate; spent mushroom substrate with NPK fertilization. The aim of the study was to determine the effect of permanent grassland fertilization both with spent mushroom substrate and the one supplemented with NPK on the uptaking of manganese, copper and zinc by the meadow sward. After the cultivation of mushrooms, in comparison to the standard manure, the substrate used in the experiment was characterized by more than twice higher amount of manganese and zinc. However, the amount of copper in the organic materials was similar. In spite of having supplied lager amount of manganese, zinc and similar amount of copper to the mushrooms substrate, it caused the reduction of the uptake of the elements in the meadow sward. In spite of supplying larger amounts of manganese, zinc and copper the reduction of their uptaking by meadow sward was observed in comparison to manure mushroom substrate. This may be connected with a slightly alkaline reaction of the soil environment, thus limiting the uptake of the studied micronutrients.

  20. Iron, zinc, copper and magnesium nutritional status in Mexican children aged 1 to 11 years.

    Science.gov (United States)

    Morales-Ruán, Ma del Carmen; Villalpando, Salvador; García-Guerra, Armando; Shamah-Levy, Teresa; Robledo-Pérez, Ricardo; Avila-Arcos, Marco Antonio; Rivera, Juan A

    2012-01-01

    To describe the micronutrient nutritional status of a national sample of 1-11 year old Mexican children surveyed in 2006 in National Health and Nutrition Survey (ENSANUT 2006) and their association with dietary and sociodemographic factors. Serum samples were used (n=5 060) to measure the concentrations of ferritin, transferrin receptor, zinc, copper and magnesium. Prevalence of deficiencies in 1-4 and 5-11y old children were for iron (using low ferritin) 26.0 and 13.0%; zinc, 28.1 and 25.8%, respectively; and copper, ≈30% in both age groups. Magnesium low serum concentrations (MLSC), were found in 12.0% and 28.4% of the children, respectively. Being beneficiary of Liconsa (OR=0.32; C.I.95%, 0.17-0.61) or belonging to higher socioeconomic status (OR=0.63; C.I.95%, 0.41-0.97) were protective against iron deficiency. Increasing age (OR=0.59; C.I.95%, 1.19-1.32) and living in the Central Region (OR=0.59; C.I.95%, 0.36-0.97) were protective against MLSC. Deficiencies of iron and zinc are serious public health problems in Mexican children.

  1. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters

    International Nuclear Information System (INIS)

    Santos, Inês C.; Mesquita, Raquel B.R.; Rangel, António O.S.S.

    2015-01-01

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60–160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11–21 for the metal ions. A LOD of 0.23 μg L"−"1 for cadmium, 2.39 μg L"−"1 for zinc, and 0.11 μg L"−"1 for copper and a sampling rate of 12, 13, and 15 h"−"1 for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. - Highlights: • Multi-parametric determination of cadmium, zinc, and copper at the μg L"−"1 level. • In-line metal ions preconcentration using NTA resin. • Minimization of matrix interferences by performing solid phase spectrometry in a SI-LOV platform. • Successful application to metal ions determination in freshwaters.

  2. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Inês C. [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal); Mesquita, Raquel B.R. [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal); Laboratório de Hidrobiologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira no. 228, 4050-313 Porto (Portugal); Rangel, António O.S.S., E-mail: arangel@porto.ucp.pt [CBQF–Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto (Portugal)

    2015-09-03

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60–160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11–21 for the metal ions. A LOD of 0.23 μg L{sup −1} for cadmium, 2.39 μg L{sup −1} for zinc, and 0.11 μg L{sup −1} for copper and a sampling rate of 12, 13, and 15 h{sup −1} for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. - Highlights: • Multi-parametric determination of cadmium, zinc, and copper at the μg L{sup −1} level. • In-line metal ions preconcentration using NTA resin. • Minimization of matrix interferences by performing solid phase spectrometry in a SI-LOV platform. • Successful application to metal ions determination in freshwaters.

  3. Synthesis, characterisation and anion exchange properties of copper, magnesium, zinc and nickel hydroxy nitrates

    Science.gov (United States)

    Biswick, Timothy; Jones, William; Pacuła, Aleksandra; Serwicka, Ewa

    2006-01-01

    Anion exchange reactions of four structurally related hydroxy salts, Cu 2(OH) 3NO 3, Mg 2(OH) 3NO 3, Ni 2(OH) 3NO 3 and Zn 3(OH) 4(NO 3) 2 are compared and trends rationalised in terms of the strength of the covalent bond between the nitrate group and the matrix cation. Powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and elemental analysis are used to characterise the materials. Replacement of the nitrate anions in the zinc and copper salts with benzoate anions is possible although exchange of the zinc salt is accompanied by modification of the layer structure from one where zinc is exclusively six-fold coordinated to a structure where there is both six- and four-fold zinc coordination. Magnesium and nickel hydroxy nitrates, on the other hand, hydrolyse to their respective metal hydroxides.

  4. Analyses of alloys for quelatometry, part one, alloys with copper, lead and zinc

    International Nuclear Information System (INIS)

    Clavijo Diaz, Alfonso

    1995-01-01

    A chemical-mathematic model and experimental method based on the acid base balances is developed for the analysis of metallic ions, isolated or in mixtures. The theoretical titling curves, including chelones-forming agents and metallo-chromic indicator were worked on a personal computer. This chelometric method was applied to the quantitative determination of copper, zinc and lead ions in alloys

  5. In Vitro Bioavailability of Calcium, Magnesium, Iron, Zinc, and Copper from Gluten-Free Breads Supplemented with Natural Additives.

    Science.gov (United States)

    Regula, J; Cerba, A; Suliburska, J; Tinkov, A A

    2018-03-01

    The aim of this study was to measure the content of calcium, magnesium, iron, zinc, and copper and determine the bioavailability of these ingredients in gluten-free breads fortified with milk and selected seeds. Due to the increasing prevalence of celiac disease and mineral deficiencies, it has become necessary to produce food with higher nutritional values which maintains the appropriate product characteristics. This study was designed for gluten-free breads fortified with milk and seeds such as flax, poppy, sunflower seeds, pumpkin seeds or nuts, and flour with amaranth. Subsequently, digestion was performed in vitro and the potential bioavailability of the minerals was measured. In the case of calcium, magnesium, iron, and copper, higher bioavailability was observed in rice bread, and, in the case of copper and zinc, in buckwheat bread. This demonstrated a clear increase in bioavailability of all the minerals when the bread were enriched. However, satisfactory results are obtained only for the individual micronutrients.

  6. Adhesion strength of nickel and zinc coatings with copper base electroplated in conditions of external stimulation by laser irradiance

    Directory of Open Access Journals (Sweden)

    V. V. Dudkina

    2013-04-01

    Full Text Available Purpose. The investigation of laser irradiance influence on the adhesion strength of nickel and zinc coatings with copper base and the research of initial stages of crystallization for nickel and zinc films. Methodology. Electrodeposition of nickel and zinc films from the standard sulphate electrolyte solutions was carried out on the laser-electrolytic installations, built on the basis of gas discharge CO2-laser and solid ruby laser KVANT-12. The adhesion strength of metal coatings with copper base are defined not only qualitatively using the method of meshing and by means of multiple bending, but also quantitatively by means of indention of diamond pyramid into the border line between coating and base of the side section. Spectrum microanalysis of the element composition of the border line “film and base” is carried out using the electronic microscope REMMA-102-02. Findings. Laser irradiance application of the cathode region in the process of electroplating of metal coatings enables the adhesion strength improvement of coating with the base. Experimental results of adhesive strength of the films and the spectrum analysis of the element composition for the border line between film and base showed that during laser-assisted electroplating the diffusion interaction between coating elements and the base metal surface takes place. As a result of this interaction the coating metal diffuses into the base metal, forming transition diffused layer, which enhances the improvement of adhesion strength of the coatings with the base. Originality. It is found out that ion energy increase in the double electric layer during interaction with laser irradiance affects cathode supersaturation at the stage of crystallization. Hence, it also affects the penetration depth of electroplated material ions into the base metal, which leads to the adhesion strength enhancement. Practical value. On the basis of research results obtained during the laser

  7. Evaluation of iron, zinc, copper, manganese and selenium in oral hospital diets.

    OpenAIRE

    Moreira, Daniele Caroline Faria; Sá, Júlia Sommerlatte Manzoli de; Cerqueira, Isabel B.; Oliveira, Ana P. F. de; Morgano, Marcelo Antonio; Quintaes, Késia Diego

    2013-01-01

    Background & aims: Many trace elements are nutrients essential to humans, acting in the metabolism as constituents or as enzymatic co-factors. The iron, zinc, copper, manganese and selenium contents of hospital diets (regular, blend and soft) and of oral food complement (OFC) were determined, evaluating the adequacy of each element in relation to the nutritional recommendations (DRIs) and the percent contribution alone and with OFC. Methods: Duplicate samples were taken of six daily meals ...

  8. Optimization of microwave assisted digestion procedure for the determination of zinc, copper and nickel in tea samples employing flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Soylak, Mustafa; Tuzen, Mustafa; Souza, Anderson Santos; Korn, Maria das Gracas Andrade; Ferreira, Sergio Luis Costa

    2007-01-01

    The present paper describes the development of a microwave assisted digestion procedure for the determination of zinc, copper and nickel in tea samples employing flame atomic absorption spectrometry (FAAS). The optimization step was performed using a full factorial design (2 3 ) involving the factors: composition of the acid mixture (CMA), microwave power (MP) and radiation time (RT). The experiments of this factorial were carried out using a certified reference material of tea GBW 07605 furnished by National Research Centre for Certified Reference Materials, China, being the metal recoveries considered as response. The relative standard deviations of the method were found below 8% for the three elements. The procedure proposed was used for the determination of copper, zinc and nickel in several samples of tea from Turkey. For 10 tea samples analyzed, the concentration achieved for copper, zinc and nickel varied at 6.4-13.1, 7.0-16.5 and 3.1-5.7 (μg g -1 ), respectively

  9. Copper, zinc, molybdenum and uranium distribution in bottom sediments of the Black Sea

    International Nuclear Information System (INIS)

    Zhorov, V.A.; Sovga, E.E.; Solov'eva, L.B.; Oguslavskij, P.G.; Babinets, A.E.; AN Ukrainskoj SSR, Kiev. Inst. Geologicheskikh Nauk)

    1983-01-01

    The results of investigations of bottom sediments of the Black Sea by four expeditions aboard scientific ships ''Academician Vernadsky'', ''Michael Lomonosov'', ''Academician Vavilov'' in 1972-1978, are presented. 70 columns of bottom sediments are studied, about 200 samples are analyzed for Cu, Zn, Mo and U using chemical methods with photometric ending. Charts of Cu, Zn, Mo and U distribution in modern, ancient Black Sea and neoeuxenic sediments of the basin are prepared. Preferable uranium concentration in modern sediments, copper and molybdenum - in sapropelic muds of ancient Black Sea sediments and zinc - in neoeuxenic layers, is shown. Uranium geochemical behaviour is determined by physico-chemical regime of the basin, the presence of restoring situation which promotes the formation of uranium sorption-active forms in the upper layer of modern sediments. Neither sapropelite (organic matter), nor the peculiarities of lithological composition of sediments affect uranium behaviour

  10. Effects of CaEDTA injection on lead, zinc, copper and ALAD in erythrocyte, plasma and urine in lead-exposed workers: a 24-h observation

    Energy Technology Data Exchange (ETDEWEB)

    Aono, H.; Araki, S.

    1984-01-01

    To evaluate the effects of calcium disodium ethylenediamine tetraacetate (CaEDTA) on the concentrations of lead, zinc and copper in plasma, erythrocyte and urine, and the delta-aminolevulinic acid dehydratase (ALAD) activity in erythrocyte, we administered CaEDTA in 1-h intravenous infusion to ten male gun metal founders with blood-lead concentration of 39 to 64 micrograms/dl (mean 49 micrograms/dl). We found that the plasma concentration of lead, following a rapid rise within the first 3 h, fell temporarily to the level significantly lower than the initial level 19 h after start of the infusion. The plasma concentration of zinc fell to the minimal level 5 h after the infusion; and the erythrocyte concentration of zinc and the ALAD activity concurrently rose to the maximal level 5 h after the infusion. By contrast, no significant alteration was observed in the concentrations of copper in plasma and erythrocyte. The maximal level of urinary metal excretion was attained during the period between 1 and 2 h after start of CaEDTA infusion for lead; within 2 h for zinc; and between 2 and 4 h for copper. The urinary metal excretion returned to the initial level 14 to 24 h after infusion for zinc and copper; but lead excretion was still higher than the initial level during this period. The difference in the kinetics of the three metals following CaEDTA injection is discussed in the light of these findings.

  11. Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters.

    Science.gov (United States)

    Santos, Inês C; Mesquita, Raquel B R; Rangel, António O S S

    2015-09-03

    This work describes the development of a solid phase spectrophotometry method in a μSI-LOV system for cadmium, zinc, and copper determination in freshwaters. NTA (Nitrilotriacetic acid) beads with 60-160 μm diameter were packed in the flow cell of the LOV for a μSPE column of 1 cm length. The spectrophotometric determination is based on the colourimetric reaction between dithizone and the target metals, previously retained on NTA resin. The absorbance of the coloured product formed is measured, at 550 nm, on the surface of the NTA resin beads in a solid phase spectrophotometry approach. The developed method presented preconcentration factors in the range of 11-21 for the metal ions. A LOD of 0.23 μg L(-1) for cadmium, 2.39 μg L(-1) for zinc, and 0.11 μg L(-1) for copper and a sampling rate of 12, 13, and 15 h(-1) for cadmium, zinc, and copper were obtained, respectively. The proposed method was successfully applied to freshwater samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Bio-accumulation of copper, zinc, iron and manganese in oyster Saccostrea cucullata, Snail Cerithium rubus and Clam Tellina angulata from the Bombay coast

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnakumari, L.; Nair, V.R; Moraes, C.

    accumulation was high in S. cucullata, manganese in C. rubus and iron in T. angulata. Similarly, copper and zinc in S. cucullata and copper in C. rubus were found occasionally higher than accepted health standards...

  13. The influence of green microstructure and sintering parameters on precipitation process during copper-nickel-zinc ferrites sintering

    International Nuclear Information System (INIS)

    Barba, A.; Clausell, C.; Jarque, J. C.; Monzo, M.

    2014-01-01

    Microstructural changes that occur during heat treatment of copper-nickel-zinc ferrites have been studied. The process of precipitation of the two types of crystals that occur during the sintering process has been analyzed. It is found that this process depends on dry relative density of the press specimens and on the following sintering parameters: sintering temperature, sintering time and cooling rate of the thermal cycle. Crystal precipitates characterization have been done by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) analysis, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). These techniques have allowed to determine the nature of these crystals, which in this case correspond to zinc and copper oxides. It has been used two chemical reactions to explain the bulk precipitation and subsequent re-dissolution of these crystal precipitates during sintering. (Author)

  14. Trace elements studies on Karachi populations, part III: blood copper, zinc, magnesium and lead levels in psychiatric patients with disturbed behavior

    International Nuclear Information System (INIS)

    Manser, W.T.

    1989-01-01

    Blood levels of copper, zinc, magnesium and lead were determined in 29 males and 15 females suffering from disturbed behavior. As far as we could ascertain they were under no medication and belong to low income groups. Male patients had significantly higher levels than female patients for zinc but there was no sexual difference for magnesium or cooper. In patients copper and lead levels were higher than for normals, but no difference could be found for Mg and Zn. At least one metal abnormality was observed in 19 of the males and 9 (60.0%) of the female patients. (author)

  15. 113Cd-NMR investigation of a cadmium-substituted copper, zinc-containing superoxide dismutase from yeast

    DEFF Research Database (Denmark)

    Kofod, Pauli; Bauer, Rogert; Danielsen, Eva

    1991-01-01

    113Cd nuclear magnetic resonance spectroscopy has been used to investigate the metal binding sites of cadmium-substituted copper,zinc-containing superoxide dismutase from baker's yeast. NMR signals were obtained for 113Cd(II) at the Cu site as well as for 113Cd(II) at the Zn site. The two subunits...

  16. Determination of silver, gold, zinc and copper in mineral samples by various techniques of instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Rodriguez R, N. I.; Rios M, C.; Pinedo V, J. L.; Yoho, M.; Landsberger, S.

    2015-09-01

    Using the method of instrumental neutron activation analysis, mineral exploration samples were analyzed in order to determine the concentrations of silver, gold, zinc and copper; these minerals being the main products of benefit of Tizapa and Cozamin mines. Samples were subjected to various techniques, where the type of radiation and counting methods were chosen based on the specific isotopic characteristics of each element. For calibration and determination of concentrations the comparator method was used, certified standards were subjected to the same conditions of irradiation and measurement that the prospecting samples. The irradiations were performed at the research reactor TRIGA Mark II of the University of Texas at Austin. The silver concentrations were determined by Cyclical Epithermal Neutron Activation Analysis. This method in combination with the transfer pneumatic system allowed a good analytical precision and accuracy in prospecting for silver, from photo peak measurement 657.7 keV of short half-life radionuclide 110 Ag. For the determination of gold and zinc, Epithermal Neutron Activation Analysis was used, the photo peaks analyzed corresponded to the energies 411.8 keV of radionuclide 199 Au and 438.6 keV of metastable radionuclide 69m Zn. On the other hand, copper quantification was based on the photo peak analysis of 1039.2 keV produced by the short half-life radionuclide 66 Cu, by Thermal Neutron Activation Analysis. The photo peaks measurement corresponding to gold, zinc and copper was performed using a Compton suppression system, which allowed an improvement in the signal to noise relationship, so that better detection limits and low uncertainties associated with the results were obtained. Comparing elemental concentrations the highest values in silver, zinc and copper was for samples of mine Tizapa. Regarding gold values were found in the same range for both mines. To evaluate the precision and accuracy of the methods used, various geological

  17. Interactions of cadmium with copper, zinc, and iron in different organs and tissues of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Julshamn, K.; Utne, F.; Brackkan, O.R.

    1977-01-01

    The effect of cadmium on tissue concentrations of iron, zinc and copper was studied in male rats. Two littermate groups were fed a stock diet with or without a supplement of 100 ..mu..g cadmium per g. Every three weeks ten animals from each group were sampled and the liver, kidneys, heart, lungs, spleen, testes, muscle, fur, feces and urine were individually analyzed. Except for the fur, all the other organs showed highly significantly increased levels of cadmium when compared with the control group. The iron levels were significantly depressed in all organs. As the content in the feces remained unchanged and the urinary excretion showed an increase, it could be concluded that the cadmium supplementation resulted in a depletion of the body stores of iron. The zinc levels showed a significant increase in the liver and testes and a correspondingly significant decrease in the spleen. The levels of copper generally showed no significant changes.

  18. The effects of CaEDTA injection on lead, zinc, copper and ALAD in erythrocyte, plasma and urine in lead-exposed workers: a 24-h observation.

    Science.gov (United States)

    Aono, H; Araki, S

    1984-01-01

    To evaluate the effects of calcium disodium ethylenediamine tetraacetate (CaEDTA) on the concentrations of lead, zinc and copper in plasma, erythrocyte and urine, and the delta-aminolevulinic acid dehydratase (ALAD) activity in erythrocyte, we administered CaEDTA in 1-h intravenous infusion to ten male gun metal founders with blood-lead concentration of 39 to 64 micrograms/dl (mean 49 micrograms/dl). We found that the plasma concentration of lead, following a rapid rise within the first 3 h, fell temporarily to the level significantly lower than the initial level 19 h after start of the infusion. The plasma concentration of zinc fell to the minimal level 5 h after the infusion; and the erythrocyte concentration of zinc and the ALAD activity concurrently rose to the maximal level 5 h after the infusion. By contrast, no significant alteration was observed in the concentrations of copper in plasma and erythrocyte. The maximal level of urinary metal excretion was attained during the period between 1 and 2 h after start of CaEDTA infusion for lead; within 2 h for zinc; and between 2 and 4 h for copper. The urinary metal excretion returned to the initial level 14 to 24 h after infusion for zinc and copper; but lead excretion was still higher than the initial level during this period. The difference in the kinetics of the three metals following CaEDTA injection is discussed in the light of these findings.

  19. Zinc Antimonides and Copper Chalcogenides as Thermoelectric Materials

    DEFF Research Database (Denmark)

    Blichfeld, Anders Bank

    2017-01-01

    , and linked with the physical properties. The materials crystallography approach, relating physical properties with a structural understating, has been applied in this thesis for two highly interesting materials systems, zinc antimonides and copper chalcogenides. Both of these systems are high profiled....... The preparation parameters used, have a large influence on the homogeneity of the products, and new electric phases were identified and studied for ZnSb. For the samples prepared by physical vapor deposition, the growth takes place under non-thermodynamic conditions, making it possible to access kinetically...... intensity X-ray radiation at large international facilities, making it possible to measure pair distribution function data directly on thin-film samples in a normal incident setup, termed tfPDF. The tfPDF method was demonstrated on the iron antimony system. tfPDF was developed even further to include...

  20. Synthesizing photovoltaic thin films of high quality copper-zinc-tin alloy with at least one chalcogen species

    Science.gov (United States)

    Teeter, Glenn; Du, Hui; Young, Matthew

    2013-08-06

    A method for synthesizing a thin film of copper, zinc, tin, and a chalcogen species ("CZTCh" or "CZTSS") with well-controlled properties. The method includes depositing a thin film of precursor materials, e.g., approximately stoichiometric amounts of copper (Cu), zinc (Zn), tin (Sn), and a chalcogen species (Ch). The method then involves re-crystallizing and grain growth at higher temperatures, e.g., between about 725 and 925 degrees K, and annealing the precursor film at relatively lower temperatures, e.g., between 600 and 650 degrees K. The processing of the precursor film takes place in the presence of a quasi-equilibrium vapor, e.g., Sn and chalcogen species. The quasi-equilibrium vapor is used to maintain the precursor film in a quasi-equilibrium condition to reduce and even prevent decomposition of the CZTCh and is provided at a rate to balance desorption fluxes of Sn and chalcogens.

  1. Zinc or copper deficiency-induced impaired inflammatory response to brain trauma may be caused by the concomitant metallothionein changes

    DEFF Research Database (Denmark)

    Penkowa, Milena; Giralt, M.; Thomsen, Pernille Sjølin

    2001-01-01

    , and this response was significantly blunted by zinc deficiency. The MT-III isoform was moderately increased by both TBI and zinc deficiency. TBI strongly increased oxidative stress levels, as demonstrated by malondialdehyde (MDA), protein tyrosine nitration (NITT), and nuclear factor kappaB (NF-kappaB) levels irs......, all of which were potentiated by zinc deficiency. Further analysis revealed unbalanced expression of prooxidant and antioxidant proteins besides MT, since the levels of inducible nitric oxide synthase (iNOS) and Cu,Zn-SOD were increased and decreased, respectively, by zinc deficiency. All......The role of zinc- and copper-deficient diets on the inflammatory response to traumatic brain injury (TBI) has been evaluated in adult rats. As expected, zinc deficiency decreased food intake and body weight gain, and the latter effect was higher than that observed in pair-fed rats. In noninjured...

  2. STUDY OF CLINICO- EPIDEMIOLOGICAL PROFILE OF PATIENTS ADMITTED WITH INFANTILE TREMOR SYNDROME (ITS AND STATUS OF TRACE ELEMENTS (ZINC, COPPER DEFICIENCY IN THEM

    Directory of Open Access Journals (Sweden)

    Mohan Makwana

    2017-03-01

    Full Text Available BACKGROUND Under nutrition is one of the major problems in the field of Paediatrics. The greatest risk of malnutrition is in the first two years of life. The effects of this early damage on health, brain development, intelligence, educability and productivity are potentially reversible. The current study was an attempt to find out the clinico epidemiological profile, evaluate them for trace elements deficiency and most appropriate management options in those who are admitted with infantile tremor syndrome. MATERIALS AND METHODS The current study was a hospital based cross sectional study that was conducted in the Department of Paediatrics, Dr. S. N. Medical College Jodhpur. Duration of study was One Year. Any child up to the age of three years of age admitted in the paediatric wards with typical features of infantile tremor syndrome. RESULTS Maximum numbers of patients were found between 6 months to 12 months of age, there was slight male predominance. The majority of infants in our study (85% were exclusively breast fed, 66% of cases were having low serum Copper level. 9% of cases were having low serum zinc level. 8% of cases were having low serum copper level with tremors. CONCLUSION In our study the fact that NTS is mainly seen in children who are exclusively breast feed for a longer period with delayed introduction of weaning foods. The main presenting features remain developmental delay, hyper pigmentation and anemia. Among nutritional factors, deficiency of copper and zinc in children plays a big role in development of disease. Thus to prevent the development of nutritional tremor syndrome stress should be on early timely introduction of weaning foods, especially rich in copper and zinc. What is already known about this Study- low levels of trace elements like copper and zinc may be responsible for typical clinical manifestations in patients of infantile tremor syndrome. Pronged and Exclusive breast feeding further aggravate these features

  3. Copper and Zinc Chelation as a Treatment of Alzheimer's Disease

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. The cause of the disease remains unknown, but amyloid- β (A β), a short peptide, is considered causal its pathogenesis. At cellular level, AD is characterized by deposits mainly composed of A β that also contain elevated levels of transition metals ions. Targeting metals is a promising new strategy for AD treatment, which uses moderately strong metal chelators to sequester them from A β or the environment. PBT2 is a chelating compound that has been the most promising in clinical trials. In our work, we use computer simulations to investigate complexes of a close analog of PBT2 with Cu2+ and Zn2+ ions. The calculations employ KS/FD DFT method, which combines Kohn-Sham DFT with the frozen-density DFT to achieve efficient description of explicit solvent beyond the first solvation shell. Our work is based on recent experiments and examines both 1:1 and 2:1 chelator-metal stochiometries detected experimentally. The results show that copper attaches more strongly than zinc, find that 1:1 complexes involve water in the first coordination shell and determine which one of several possible 2:1 geometries is the most preferable.

  4. Zinc and copper levels in children with severe plasmodium falciparum malaria in an area of unstable malaria transmission in eastern Sudan

    International Nuclear Information System (INIS)

    Doka, Y. A.

    2012-08-01

    The aim of this study is to measure the levels of zinc and copper in children suffering from plasmodium falciparum malaria in an area of unstable malaria transmission in Eastern Sudan. The importance of the study emanates from the fact that this type of malaria is prevalent in a serious manner and causes many fatalities and problems. In this study the analytic statistical methodology was adopted using Atomic Absorption Spectroscopy. Subject target groups, confirmed microscopically to be infected with malaria, (severe malaria 35 samples and two control groups: 35 samples of uncomplicated malaria and 35 samples of apparently healthy). The study revealed that there is a significant increase in the level of copper for both types of malaria ( the severe and the uncomplicated) while uncomplicated malaria decreased the level of zinc significantly. The study recommended that zinc supplement could be used for the patients suffering from severe malaria. (Author)

  5. Acute and chronic sensitivity of white sturgeon (Acipenser transmontanus) and rainbow trout (Oncorhynchus mykiss) to cadmium, copper, lead, or zinc in laboratory water-only exposures

    Science.gov (United States)

    Ingersoll, Christopher G.; Contributions by Wang, Ning; Calfee, Robin D.; Beahan, Erinn; Brumbaugh, William G.; Dorman, Rebecca A.; Hardesty, Doug K.; Kunz, James L.; Little, Edward E.; Mebane, Christopher A.; Puglis, Holly J.

    2014-01-01

    this study were used to evaluate the sensitivity of early life stages of white sturgeon and rainbow trout relative to data published for other test organisms. Toxicity data generated from this study also were used to evaluate the level of protection of U.S. Environmental Protection Agency WQC or Washington State water-quality standards (WQS) for copper, zinc, cadmium, or lead to white sturgeon inhabiting the upper Columbia River. Chapter A of this report summarizes the results of acute toxicity tests performed for 4 d with white sturgeon and rainbow trout exposed to copper, cadmium, or zinc. Chapter B of this report summarizes the results of chronic toxicity tests performed for as many as 53 days with white sturgeon or rainbow trout exposed to copper, cadmium, zinc, or lead. Appendixes to the report are available at http://pubs.usgs.gov/sir/2013/5204. Supporting documentation for chapter A toxicity testing is provided in appendix 1. Supporting documentation for chapter B toxicity testing is provided in Appendix 2. Supporting documentation on analysis of water chemistry for chapter A and chapter B is provided in appendix 3 and 4. The rationale for applying corrections to measured copper and zinc values in water samples from some of the toxicity tests performed in chapter A is provided in appendix 5. A summary of dissolved organic carbon measurement variability and implications for biotic ligand model normalization for toxicity data summarized in chapter A and chapter B are provided in appendix 6. An evaluation of an interlaboratory comparison of analyses for dissolved organic carbon in water from the U.S. Geological Survey Columbia Environmental Research Center and University of Saskatchewan is provided in appendix 7. Finally, appendix 8 provides a summary of retesting of white sturgeon in 2012 to determine if improved survival of sturgeon would affect copper effect concentrations in 24-d copper exposures started with newly hatched larvae, and to evaluate the effect of

  6. Structural and optical properties of pure and copper doped zinc oxide nanoparticles

    Science.gov (United States)

    Sajjad, Muhammad; Ullah, Inam; Khan, M. I.; Khan, Jamshid; Khan, M. Yaqoob; Qureshi, Muhammad Tauseef

    2018-06-01

    Pure and copper-doped zinc oxide nanoparticles (NPs) have been synthesized via chemical co-precipitation method where hydrazine is used as reducing agent and aqueous extract of Euphorbia milii plant as capping agent. Main objectives of the reported work are to investigate the effect of copper doping on crystal structure of ZnO nanoparticles; to study the effect of copper doping on optical band gap of ZnO nanoparticles and photoluminescence (PL) study of pure and copper-doped ZnO nanoparticles. To achieve the aforementioned objectives, XRD and SEM tests were performed for the identification and confirmation of crystal structure and morphology of the prepared samples. From XRD data the average grain size for pure ZnO was observed to be 24.62 nm which was first decreased to 18.95 nm for 5 wt% Cu-doped sample and then it was found to increase up to 37.80 nm as the Cu doping was increased to 7 wt%. Optical band gap of pure and Cu-doped ZnO nanoparticles was calculated from diffuse reflectance spectroscopy (DRS) spectra and was found to decrease from 3.13 eV to 2.94 eV as the amount of Cu increases up to 7 wt%. In photoluminescence study, PL technique was used and enhanced visible spectrum was observed. For further characterization FT-IR and EDX tests were also carried out.

  7. A multi-technique investigation of copper and zinc distribution, speciation and potential bioavailability in biosolids

    International Nuclear Information System (INIS)

    Donner, E.; Ryan, C.G.; Howard, D.L.; Zarcinas, B.; Scheckel, K.G.; McGrath, S.P.; Jonge, M.D. de; Paterson, D.; Naidu, R.; Lombi, E.

    2012-01-01

    The use of biosolids in agriculture continues to be debated, largely in relation to their metal contents. Our knowledge regarding the speciation and bioavailability of biosolids metals is still far from complete. In this study, a multi-technique approach was used to investigate copper and zinc speciation and partitioning in one contemporary and two historical biosolids used extensively in previous research and field trials. Using wet chemistry and synchrotron spectroscopy techniques it was shown that copper/zinc speciation in the biosolids was largely equivalent despite the biosolids being derived from different countries over a 50 year period. Furthermore, copper speciation was consistently dominated by sorption to organic matter whereas Zn partitioned mainly to iron oxides. These data suggest that the results of historical field trials are still relevant for modern biosolids and that further risk assessment studies should concentrate particularly on Cu as this metal is associated with the mineralisable biosolids fraction. - Highlights: ► Complementary techniques were used to investigate Cu and Zn speciation in biosolids. ► Historic and contemporary biosolids with differing metal contents were examined. ► Similarities in Cu/Zn speciation were observed irrespective of biosolids provenance. ► Key binding environments identified were organic matter for Cu and Fe oxides for Zn. ► Similarities show historic field trial results are still relevant for biosolids management. - Historic and contemporary biosolids show similarities in Cu/Zn speciation despite having very different total Zn/Cu contents.

  8. Effects of various anesthesia maintenance on serum levels of selenium, copper, zinc, iron and antioxidant capacity

    Directory of Open Access Journals (Sweden)

    Mehmet Akin

    2015-02-01

    Full Text Available BACKGROUND AND OBJECTIVES: In this study, we aimed to investigate the effects of sevoflurane, desflurane and propofol maintenances on serum levels of selenium, copper, zinc, iron, malondialdehyde, and glutathion peroxidase measurements, and antioxidant capacity. METHODS: 60 patients scheduled for unilateral lower extremity surgery which would be performed with tourniquet under general anesthesia were divided into three groups. Blood samples were collected to determine the baseline serum levels of selenium, copper, zinc, iron, malondialdehyde and glutathion peroxidase. Anesthesia was induced using 2-2.5 mg kg-1 propofol, 1 mg kg-1 lidocaine and 0.6 mg kg-1 rocuronium. In the maintenance of anesthesia, under carrier gas of 50:50% O2:N2O 4 L min-1, 1 MAC sevoflorane was administered to Group S and 1 MAC desflurane to Group D; and under carrier gas of 50:50% O2:air 4 L min-1 6 mg kg h-1 propofol and 1 µg kg h-1 fentanyl infusion were administered to Group P. At postoperative blood specimens were collected again. RESULTS: It was observed that only in Group S and P, levels of MDA decreased at postoperative 48th hour; levels of glutathion peroxidase increased in comparison to the baseline values. Selenium levels decreased in Group S and Group P, zinc levels decreased in Group P, and iron levels decreased in all three groups, and copper levels did not change in any groups in the postoperative period. CONCLUSION: According to the markers of malondialdehyde and glutathion peroxidase, it was concluded that maintenance of general anesthesia using propofol and sevoflurane activated the antioxidant system against oxidative stress and using desflurane had no effects on oxidative stress and antioxidant system.

  9. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems.

    NARCIS (Netherlands)

    Havinga, R; Vonk, RJ; Kuipers, F

    1996-01-01

    In the present study we compared, in vivo in rats, the hepatobiliary transport of monovalent (silver:Ag) and divalent metals (zinc:Zn; cadmium:Cd) with that of copper (Cu). Cu can have two oxidation states in vivo, i.e. Cu(I) and Cu(II). Studies were performed in normal Wistar (NW) rats and mutant

  10. Copper and zinc removal from roof runoff: from research to full-scale adsorber systems.

    Science.gov (United States)

    Steiner, M; Boller, M

    2006-01-01

    Large, uncoated copper and zinc roofs cause environmental problems if their runoff is infiltrated into the underground or discharged into receiving waters. Since source control is not always feasible, barrier systems for efficient copper and zinc removal are recommended in Switzerland. During the last few years, research carried out in order to test the performance of GIH-calcite adsorber filters as a barrier system. Adsorption and mass transport processes were assessed and described in a mathematical model. However, this model is not suitable for practical design, because it does not give explicit access to design parameters such as adsorber diameter and adsorber bed depth. Therefore, for e.g. engineers, an easy to use design guideline for GIH-calcite adsorber systems was developed, mainly based on the mathematical model. The core of this guideline is the design of the depth of the GIH-calcite adsorber layer. The depth is calculated by adding up the GIH depth for sorption equilibrium and the depth for the mass transfer zone (MTZ). Additionally, the arrangement of other adsorber system components such as particle separation and retention volume was considered in the guideline. Investigations of a full-scale adsorber confirm the successful application of this newly developed design guideline for the application of GIH-calcite adsorber systems in practice.

  11. The concentration of copper, zinc and molybdenum in serum and red blood cells of Filipinos

    International Nuclear Information System (INIS)

    Cruz, B. de la; Lansangan, L.M.; Asprer, G.A.; Paradero, R.R.; Acuna, T.T.

    1975-01-01

    Eighty-two samples of serum and red blood cells from 32 normal subjects and 50 patients with hypertension, old myocardial infarct and diabetes mellitus were analyzed by neutron activation analysis for copper, zinc and molybdenum. The mean value of copper in the normal serum (0.56 μg/g) was found to be lower than the reported mean values of 1.13 μg/g and 1.15 μg/g for foreign subjects. The mean value of copper in the normal red blood cells (0.55 μg/g) was also found to be lower than the reported values of 0.92 μg/g and 0.95 μg/g among foreigners. The mean concentration of copper in the serum of patients with hypertension and old myocardial infarct (1.02+-0.25 μg/g) and diabetes mellitus (1.06+-0.02 μg/g) were higher than the normal value of 0.56+-0.15 μg/g. The mean concentration of zinc in the serum of patients with hypertension and old myocardial infarct (0.74+-0.38 μg/g) and in diabetes mellitus (0.61+-0.33 μg/g) were lower than the normal value of 1.25+-0.58 μg/g. The level of copper in the red blood cells of patients with hypertension and old myocardial infarct (0.99+-0.62 μg/g) and diabetes mellitus (0.75+-0.39 μg/g) were found to be higher than the normal value of (0.55+-0.41) μg/g). The mean concentration of molybdenum in the red blood cells of patients with hypertension and old myocardial infarct (1.16+-0.73 μg/g) and diabetes mellitus (1.55+-0.91 μg/g) were higher than the normal level of 0.73+-0.43 μg/g. The results are discussed

  12. Effects of zinc pyrithione and copper pyrithione on microbial community function and structure in sediments

    DEFF Research Database (Denmark)

    Petersen, DG; Dahllof, I.; Nielsen, LP

    2004-01-01

    The effects of the new antifouling biocides, zinc pyrithione (ZPT) and copper pyrithione (CPT), on microbial communities in estuarine sediments were studied in microcosms. As functional endpoints, fluxes of nutrients (NO3-, NH4+, HPO42-, Si(OH)(4)) and protein synthesis ([C-14] leucine incorporat......The effects of the new antifouling biocides, zinc pyrithione (ZPT) and copper pyrithione (CPT), on microbial communities in estuarine sediments were studied in microcosms. As functional endpoints, fluxes of nutrients (NO3-, NH4+, HPO42-, Si(OH)(4)) and protein synthesis ([C-14] leucine...... DNA content, whereas the LOEC for CPT was 0.1 nmol/g dry sediment for the nitrate flux and total DNA content. Nitrate fluxes increased significantly following additions of both ZPT and CPT, whereas ammonium fluxes decreased significantly after ZPT addition, suggesting changes in the nitrification...... and denitrification processes. The total DNA content decreased significantly following addition of both ZPT and CPT, but at the highest addition of ZPT (10 nmol ZPT/g dry sediment), an increase in total DNA content was found. Increased protein synthesis and bacterial diversity were also observed at this concentration...

  13. Intensification of zinc dissolution process in sulphuric acid

    Directory of Open Access Journals (Sweden)

    Stanojević D.

    2005-01-01

    Full Text Available Many high purity salts are produced by dissolving pure metal in non-oxidizing mineral acids. If hydrogen overpotential on the given metal is high, then the rate of overall process is defined by reaction of hydrogen ion reduction. This study investigated the possibility of accelerated dissolving of metal zinc in sulphuric acid by introducing copper cathode on which evolving hydrogen is much easier than on zinc. It was found out that the acceleration of zinc dissolving is possible and, at constant surface of copper cathode depends on the quality of electrical contact between copper electrode and zinc.

  14. A possible association between dietary intake of copper, zinc and phosphate and delayed puberty in heifers in Sudan.

    Science.gov (United States)

    Ahmed, M M M; Fadlalla, I M T; Barri, M E S

    2002-02-01

    Zinc and copper deficiencies have been reported in heifers of various breeds at four different locations in Sudan. These were Kuku (5 km north of Khartoum), Seleit (20 km northwest of Khartoum), Medani (180 km south of Khartoum) and El Obeid (600 km west of Khartoum). Phosphorus deficiency was only observed in the serum of heifers at El Obeid. The heifers at all locations showed delayed puberty, stunted growth and infertility. The heifers of the local breeds at El Obeid only attained puberty by 1530 days of age compared with 840 days for the pure Friesian heifers at Seleit. The crossbred animals at Kuku and Medani attained puberty at 1440 and 1020 days of age, respectively. The marginal or low zinc and copper contents in pasture, soil or animal feed may have been predisposing factors for the observed deficiencies and might have been responsible for the delayed age of puberty.

  15. Carbohydrate metabolism in erythrocytes of copper deficient rats.

    Science.gov (United States)

    Brooks, S P J; Cockell, K A; Dawson, B A; Ratnayake, W M N; Lampi, B J; Belonje, B; Black, D B; Plouffe, L J

    2003-11-01

    Dietary copper deficiency is known to adversely affect the circulatory system of fructose-fed rats. Part of the problem may lie in the effect of copper deficiency on intermediary metabolism. To test this, weanling male Long-Evans rats were fed for 4 or 8 weeks on sucrose-based diets containing low or adequate copper content. Copper deficient rats had significantly lower plasma and tissue copper as well as lower plasma copper, zinc-superoxide dismutase activity. Copper deficient rats also had a significantly higher heart:body weight ratio when compared to pair-fed controls. Direct measurement of glycolysis and pentose phosphate pathway flux in erythrocytes using (13)C NMR showed no differences in carbon flux from glucose or fructose to pyruvate but a significantly higher flux through the lactate dehydrogenase locus in copper deficient rats (approximately 1.3 times, average of glucose and glucose + fructose measurements). Copper-deficient animals had significantly higher erythrocyte concentrations of glucose, fructose, glyceraldehyde 3-phosphate and NAD(+). Liver metabolite levels were also affected by copper deficiency being elevated in glycogen and fructose 1-phosphate content. The results show small changes in carbohydrate metabolism of copper deficient rats.

  16. Zinc and copper distribution in swine wastewater treated by anaerobic digestion.

    Science.gov (United States)

    Cestonaro do Amaral, André; Kunz, Airton; Radis Steinmetz, Ricardo Luís; Justi, Karin Cristiane

    2014-08-01

    Swine wastewater contain high levels of metals, such as copper and zinc, which can cause a negative impact on the environment. Anaerobic digestion is a process commonly used to remove carbon, and can act on metal availability (e.g., solubility or oxidation state). The present study aimed to evaluate the influence of anaerobic digestion on total Zn and Cu contents, and their chemical fractioning due to the biodegradation of the effluent over different hydraulic retention times (HRTs). The sequential extraction protocol proposed by the Community Bureau of Reference (BCR), plus two additional fractions, was the method chosen for this study of Cu and Zn distribution evaluation in swine wastewater. The Zn and Cu concentrations in raw swine manure were 63.58 ± 27.72 mg L(-1) and 8.98 ± 3.99 mg L(-1), respectively. The metal retention capacity of the bioreactor decreased when the HRT was reduced from 17.86 d to 5.32 d. Anaerobic digestion had a direct influence on zinc and copper distribution when raw manure (RM) and digested manure (DM) were compared. The reducible fraction showed a reduction of between 3.17% and 7.84% for Zn and between 2.52% and 11.92% for Cu when DM was compared with RM. However, the metal concentration increased in the oxidizable fraction of DM, viz. from 3.01% to 10.64% for Zn and from 4.49% to 16.71% for Cu, thus demonstrating the effect of anaerobic conditions on metal availability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Copper in Surface Soil of Veles Region, Macedonia

    International Nuclear Information System (INIS)

    Panchevski, Zlatko; Stafilov, Trajche; Frontasyeva, Marina V.

    2006-01-01

    For the first time a systematic study of copper distribution in surface soil over of the Veles region, known for its lead and zinc industrial activity, was undertaken. A total of 201 soil samples were collected according to a dense net (0.5 km) in urban and less dense net (1 km) in rural areas. Copper was determined by flame atomic absorption spectrometry (FAAS) using microwave digestion technique with two different types of solvents: aqua regia (HCI and HNO 3 )and the mixture of strong acids (HNO 3 , HCI, and HF). So far the same soil samples were subjected to reactor non-destructive multi-element instrumental neutron activation analysis (INAA), it served as a reference analytical technique for bulk copper determination. The results obtained by two methods of FAAS and INAA are discussed. GIS technology was applied to reveal the areas most affected by copper contamination. It was found that the content of copper in soil samples around the lead and zinc smelter plant is the highest and reaches 1800 mg/kg. Copper content in surface soil all around the town of Veles exceeds maximum permissible level for urban surface soil. Elevated copper content in some rural areas of the Veles region most likely could be explained through using copper containing fungicides for agricultural needs. (Author)

  18. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    Science.gov (United States)

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  19. DISSOLVED ORGANIC-MATTER, CADMIUM, COPPER AND ZINC IN PIG SLURRY-SIZE AND SOIL SOLUTION-SIZE EXCLUSION CHROMATOGRAPHY FRACTIONS

    NARCIS (Netherlands)

    DELCASTILHO, P; DALENBERG, JW; BRUNT, K; BRUINS, AP

    1993-01-01

    Sephadex size exclusion chromatography was used to prepare molecular size fractions from liquid pig slurry, before and after aerobic interaction with a loamy-sand soil. In the liquid fractions organic matter was characterized and some components were identified. The distribution of zinc and copper

  20. Influence of high doses of manganese, copper, zinc and boron on some legumes

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, G

    1973-01-01

    Macroscopic and microscopic examinations showed the following symptoms of an excess in trace elements: (1) High doses of manganese (50-150 ppm) cause dark patches (chloroplast accumulation) in young leaves, and necrosis of the leaf margin (MnO/sub 2/ accumulation) in older leaves. The roots become brown and die off. Roots newly formed in compensation are strikingly light-colored. (2) High doses of copper (5-40 ppm) cause iron deficiency chlorosis. A large number of side roots develop in quick succession as a result of damage to the root apex, so that a thick tangle of roots is formed. (3) High doses of zinc (50-150 ppm) bring about dark green, very brittle young leaves with very high ZnO content. The older leaves become red and then yellow. The roots remain stunted because of inhibited growth in length. (4) High doses of boron (30-90 ppm) cause a leaf necrosis which proceeds in the sequence tip, margin, lamina. The roots are not affected in any characteristic way. They become brown and die off.

  1. Contents of cadmium, copper, zinc, and lead in organs of Rhizophora mangle in Sevilla River mouth - Cienaga Grande de Santa Marta, Colombian Caribbean

    International Nuclear Information System (INIS)

    Naranjo Sanchez, Yury A; Troncoso, Olivo Walberto

    2008-01-01

    In order to determine the contents of cadmium, copper, zinc, and lead in leaves, stalks, and root of Rhizophora mangle, samples from three parcels located in the river Sevilla mouth - Cienaga Grande de Santa Marta, were taken in October 2003. Measures of metals concentrations were made through the Inductively Coupled Plasma Atomic Emission Spectrometry technique (ICP-AES). The results indicated that lead concentration in R. mangle organs was below method detection limit ≤38 g/g) except the absorbent root (16.3 g/g); and significant differences exist in the contents of cadmium, copper, zinc, and lead into R. mangle organs, following this concentration order: absorbent roots ≥ stalk ≥ young leaves ≥adult leaves ≥ aerial roots

  2. The technical and economic efficiency in the mineral processing for lead-zinc and copper ores by Microsoft excel

    OpenAIRE

    Krstev, Aleksandar; Krstev, Boris; Krstev, Dejan; Vuckovski, Zoran

    2012-01-01

    The comparisons between economical and technical efficiency for lead flotation indicators, zinc flotation indicators in Sasa mine, Toranica and Zletovo mine. The comparisons for economic and technical efficiency for copper flotation indicators in Bucim mine. The possibility of equaled between both efficiencies for flotation indicators from mentioned mines using Microsoft Excel 2010.

  3. Increased Zinc Availability Enhances Initial Aggregation and Biofilm Formation of Streptococcus pneumoniae.

    Science.gov (United States)

    Brown, Lindsey R; Caulkins, Rachel C; Schartel, Tyler E; Rosch, Jason W; Honsa, Erin S; Schultz-Cherry, Stacey; Meliopoulos, Victoria A; Cherry, Sean; Thornton, Justin A

    2017-01-01

    Bacteria growing within biofilms are protected from antibiotics and the immune system. Within these structures, horizontal transfer of genes encoding virulence factors, and promoting antibiotic resistance occurs, making biofilms an extremely important aspect of pneumococcal colonization and persistence. Identifying environmental cues that contribute to the formation of biofilms is critical to understanding pneumococcal colonization and infection. Iron has been shown to be essential for the formation of pneumococcal biofilms; however, the role of other physiologically important metals such as copper, zinc, and manganese has been largely neglected. In this study, we investigated the effect of metals on pneumococcal aggregation and early biofilm formation. Our results show that biofilms increase as zinc concentrations increase. The effect was found to be zinc-specific, as altering copper and manganese concentrations did not affect biofilm formation. Scanning electron microscopy analysis revealed structural differences between biofilms grown in varying concentrations of zinc. Analysis of biofilm formation in a mutant strain lacking the peroxide-generating enzyme pyruvate oxidase, SpxB, revealed that zinc does not protect against pneumococcal H 2 O 2 . Further, analysis of a mutant strain lacking the major autolysin, LytA, indicated the role of zinc as a negative regulator of LytA-dependent autolysis, which could affect biofilm formation. Additionally, analysis of cell-cell aggregation via plating and microscopy revealed that high concentrations of zinc contribute to intercellular interaction of pneumococci. The findings from this study demonstrate that metal availability contributes to the ability of pneumococci to form aggregates and subsequently, biofilms.

  4. Standard Practice for Use of Mattsson's Solution of pH 7.2 to Evaluate the Stress- Corrosion Cracking Susceptibility of Copper-Zinc Alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice covers the preparation and use of Mattsson's solution of pH 7.2 as an accelerated stress-corrosion cracking test environment for brasses (copper-zinc base alloys). The variables (to the extent that these are known at present) that require control are described together with possible means for controlling and standardizing these variables. 1.2 This practice is recommended only for brasses (copper-zinc base alloys). The use of this test environment is not recommended for other copper alloys since the results may be erroneous, providing completely misleading rankings. This is particularly true of alloys containing aluminum or nickel as deliberate alloying additions. 1.3 This practice is intended primarily where the test objective is to determine the relative stress-corrosion cracking susceptibility of different brasses under the same or different stress conditions or to determine the absolute degree of stress corrosion cracking susceptibility, if any, of a particular brass or brass component ...

  5. Occurrence of lead, copper, zinc, and arsenic compounds in atmospheric dusts, and the sources of these impurities

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J T; Bloxam, H C.L.

    1933-06-30

    The authors indicate that the combustion of fossil fuels such as coal for industrial and electrical power causes the deposition of zinc, arsenic, copper, and lead which are then found in the dust and soots of most urban areas. They express the fear that these dusts, if not poisonous, may be expected to be injurious to the health of man, animals, and plants.

  6. The Effect of Salinity on the Release of Copper (Cu, Lead (Pb And Zinc (Zn from Tailing

    Directory of Open Access Journals (Sweden)

    Apriani Sulu Parubak

    2010-06-01

    Full Text Available The effects of salinity on the release of copper (Cu, lead (Pb and zinc (Zn in tailing sediment have been studied by stripping voltammetry. The purpose of the research is to know the effect of salinity on the release of metals with certain pH, conductivity and variety of metals. Simultaneous determination of copper, lead and zinc in tailing was done by Differential Pulse Anodic Stripping Voltammetry (DPASV onto hanging mercury drop electrode (HMDE and nitric acid 65% as support electrolyte. The limit of detection for this method 0.60 µg/L, 0.150 µg/L and 0.238 µg/L for copper, lead and iMc respectively. The stripping solution of 300/00 salinity with pH= 7.85, conductivity= 46.62 mS/cm gives the amounts of released metals as follows :14.867 µg/L Cu, 0.976 µg/L Pb and 6.224 µg/L Zn. These results are higher as compared with the results from 15 0/00 salinity with pH= 7.66, conductivity= 23.22 mS/cm that give released metals of Cu= 7.988 µg/L, Pb= 0.311 µg/L and Zn= 4.699 µg/L. the results from ANOVA suggest that this is due to different in salinity of the solution. It also found that the conductivity does not give any effect. It can be concluded that the higher salinity will that give higher concentration or released metals.

  7. Zinc and Copper Release Kinetics in a Calcareous Soil amended with Manure and Vermicompost

    Directory of Open Access Journals (Sweden)

    hamid reza motaghian

    2017-02-01

    Full Text Available Introduction: Use of organic fertilizers such as vermicompost in agricultural soils with low organic matter content is almost considered as a one way for adding nutrients in these soils. However, application of these fertilizers may affect micronutrient release characteristics. Micronutrient release Kinetics in soils especially in amended soils give information about potential of amended soils to release these elements into solution. Although it is important to study kinetics of micronutrient release from soils to identify soil micronutrients buffering capacity, little attention has been paid to micronutrients desorption rate studies especially in amended soils. The rate of release micronutrients from soil solid phase by considering micronutrients as adsorbed ions or in mineral forms is an important parameter in nutrition of plants by microelements and a dynamic factor that regulates its continuous supply to growing plants; nonetheless, little attention has been paid to micronutrients kinetics inrelease studies. Material and Methods: In this study, kinetics of zinc (Zn and copper (Cu were compared in one calcareous soil amended with 0, 0.5, and 1% (w/w of manure and vermicompost in a completely randomized design and then amended and un-amended soils were incubated at field capacity, for 30 days. After incubation period, amended and un-amended soils were air-dried and were prepared to kinetics study. Kinetics of Zn and Cu release were studied by successive extraction with DTPA-TEA solution. Two grams of the amended and un-amended soils, in triplicate, suspended in 20 ml DTPA-TEA solution were equilibrated at 25±10C for 1, 8, 24, 48, 72, 96, 120, 144, 168, 336 and 504 h by shaking for 15 min. before incubation and 15 min. before the suspensions were centrifuged. Seven drops of toluene were added to each 1000 ml of extractant to inhibit microbial activity. Zinc and copper desorption with time was fitted by using different equations (Zero

  8. Consequences of radiotherapy on nutritional status, dietary intake, serum zinc and copper levels in patients with gastrointestinal tract and head and neck cancer

    International Nuclear Information System (INIS)

    Mahadavi, R.; Faramarzi, E.; Mohamed-Zadeh, M.; Ghaemmaghami, J.; Jabbari, Morteza V.

    2007-01-01

    Malnutrition occurs frequently in cancer patients and is multifactorial and can lead to negative outcomes. So we studied the effect of radiotherapy on nutritional status, weight changes, dietary intake, serum zinc and copper levels. During the period of October to March 2005, 45 cancer patients who referred to the Radiotherapy Center, Imam Khomeini Hospital, Iran were recruited. We assessed the nutritional status of patients using Patient-Generated Subjective Global Assessment (PG-SGA) questionnaire. Patients on the basis of location of radiotherapy classified to mediastinum, head and neck pelvic groups. Changes in dietary intake (using 24 hour recall method) and body weight were evaluated prior to and during radiotherapy. At the onset and the end of radiotherapy, serum levels of Zinc, copper and albumin were determined. After treatment malnutrition increased significantly in all patients (p=0.01) and in head and neck (p=0.007) and pelvic groups (p=0.04). The decreased bodyweight of patients was significant in head and neck (p=0.02) and pelvic groups (p=0.05). The mean daily energy and protein intake of head and neck and pelvic groups decreased during radiotherapy while energy intake increased significantly in mediastinum group (p=0.01). After treatment, significant decreases also observed in mean serum zinc, copper and albumin levels (p<0.05). Because of negative effect of radiotherapy on oral feeding, nutritional assessment and intervention should be an integral part of treatment. Also, it would be worthwhile studying the effect of zinc supplementation on dietary intake and nutritional status of patients. (author)

  9. Effect of zinc therapy in patients with psoriasis and a topic dermatitis on some trace elements in serum and skin

    International Nuclear Information System (INIS)

    ElBedewl, A.E.; ElSaid, S.M.

    2002-01-01

    The effects of zinc therapy on some trace elements in serum and skin had been studied in forty patients with psoriasis and a topic dermatitis with age range between 20-65 years. Patients were treated with 330 mg oral zinc sulfate for 12 week. Significant increases in both serum and skin copper levels were detected. Also, serum and skin calcium and magnesium levels in both psoriatic and a topic patients were significantly decreased, while iron level was significantly increased in psoriasis and significantly decreased in a topic patients. It could be conclude that zinc therapy could affect copper, calcium, iron and magnesium levels in both psoriatic and a topic patients

  10. Specific Labeling of Zinc Finger Proteins using Non-canonical Amino Acids and Copper-free Click Chemistry

    Science.gov (United States)

    Kim, Younghoon; Kim, Sung Hoon; Ferracane, Dean; Katzenellenbogen, John A.

    2012-01-01

    Zinc finger proteins (ZFPs) play a key role in transcriptional regulation and serve as invaluable tools for gene modification and genetic engineering. Development of efficient strategies for labeling metalloproteins such as ZFPs is essential for understanding and controlling biological processes. In this work, we engineered ZFPs containing cysteine-histidine (Cys2-His2) motifs by metabolic incorporation of the unnatural amino acid azidohomoalanine (AHA), followed by specific protein labeling via click chemistry. We show that cyclooctyne promoted [3 + 2] dipolar cycloaddition with azides, known as copper-free click chemistry, provides rapid and specific labeling of ZFPs at high yields as determined by mass spectrometry analysis. We observe that the DNA-binding activity of ZFPs labeled by conventional copper-mediated click chemistry was completely abolished, whereas ZFPs labeled by copper-free click chemistry retain their sequence-specific DNA-binding activity under native conditions, as determined by electrophoretic mobility shift assays, protein microarrays and kinetic binding assays based on Förster resonance energy transfer (FRET). Our work provides a general framework to label metalloproteins such as ZFPs by metabolic incorporation of unnatural amino acids followed by copper-free click chemistry. PMID:22871171

  11. Determination of copper, manganese, nickel and zinc in different cigarette brands available in pakistan

    International Nuclear Information System (INIS)

    Siddiqui, I.; Hashmi, D.R.; Khan, F.A.

    2008-01-01

    Mean values of copper, manganese, nickel and zinc in different cigarette brands sold in Pakistan were found to be in the range of 8.61 to 94.67 macro g/g, 26.40 to 98.20 macro g/g, 0.61 to 8.58 macro g/g and 16.92 to 99.60 macro g/g, respectively, through Atomic Absorption Spectrophotometer (AAS). The results are discussed with reference to and in comparison with the mean average concentration of these elements reported in the cigarettes of other countries. (author)

  12. Copper, manganese, zinc and magnesium content in endocrine organs of horses, cattle and pigs

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckl, W; Weiser, M

    1968-07-01

    In horses, cattle and pigs the content of copper, manganese, zinc and magnesium was determined in the pituitary, adrenal, thyroid, pancreas, ovary and thymus, and the mean values and standard deviations were determined. Within the same animal there were considerable variations of each element as between the different endocrine glands and similar significant differences from one animal to another. These results are not extensive enough to permit any conclusion on the relationship of the examined elements to the endocrine function or their influence on the enzyme activity. 1 table.

  13. Zinc treatment increases the titre of ‘Candidatus Liberibacter asiaticus’ in Huanglongbing-affected citrus plants while affecting the bacterial microbiomes

    Science.gov (United States)

    Huanglongbing (HLB)-affected citrus often display zinc deficiency symptoms. In this study, supplemental zinc was applied to citrus to determine its effect on Candidatus Liberibacter asiaticus (Las) titer, HLB symptoms, and leaf microbiome. HLB-affected citrus were treated with various amounts of zi...

  14. Anemia and iron, zinc, copper and magnesium deficiency in Mexican adolescents: National Health and Nutrition Survey 2006 Anemia y deficiencia de hierro, zinc, cobre y magnesio en adolescentes mexicanos: resultados de la ENSANUT 2006

    Directory of Open Access Journals (Sweden)

    Vanessa De la Cruz-Góngora

    2012-04-01

    Full Text Available OBJETIVE: To describe the frequency of anemia and iron, zinc, copper and magnesium deficiencies among Mexican adolescents in the probabilistic survey ENSANUT 2006. MATERIALS AND METHODS: The sample included 2447 adolescents aged 12 to 19 y. Capillary hemoglobin and venous blood samples were collected to measure the concentrations of ferritin, sTFR, CRP, zinc, iron, copper and magnesium. Logistic regression models were constructed to assess the risk for mineral deficiencies. RESULTS: The overall prevalence of anemia was 11.8 and 4.6%, body iron deficiency 18.2 and 7.9% for females and males, respectively. Overall prevalence of tissue iron deficiency was 6.9%, low serum copper were14.4 and 12.25%; zinc 28.4 and 24.5%, magnesium 40 and 35.3%; for females and males, respectively. CONCLUSIONS: There is a high prevalence of mineral deficiency in Mexican adolescents; females were more prone to have more mineral deficiencies. Nutritional interventions are necessaries in order to reduce and control them.OBJETIVO: Describir la prevalencia de anemia y deficiencia de hierro, zinc, cobre y magnesio en adolescentes mexicanos en la encuesta probabilística ENSANUT 2006. MATERIAL Y MÉTODOS: La muestra incluyó 2447 adolescentes de 12 a 19 años de edad. Se tomó hemoglobina capilar y muestras de sangre venosa para medir las concentraciones séricas de ferritina, sTFR, CRP, zinc, hierro, cobre y magnesio. Se construyeron modelos de regresión logística para evaluar el riesgo de deficiencia de minerales. RESULTADOS: La prevalencia de anemia fue de 11.8% en mujeres y 4.6% en hombres. Las deficiencias de hierro fueron de 18.2 y 7.9% La deficiencia tisular de hierro fue 6.9%; la baja concentración de cobre fue de 14.4 y 12.25% la de zinc de 28.4 y 24.5%, la de magnesio fue 40 y 35.3% en mujeres y hombres, respectivamente. CONCLUSIONES: Existe una alta prevalencia de deficiencia de minerales en los adolescentes; las mujeres tuvieron mayor riesgo. Son necesarias

  15. potentiometric studies of the complexes formed by copper (ii)

    African Journals Online (AJOL)

    MBI

    The overall stability constants of copper (II) and zinc (II) ions with some polar ... The average number of coordinated amino acids to the copper (II) and zinc (II) ions .... of chelated rings (Yamuchi and Odani, 1996). ... Synthesis and techniques in.

  16. Determination of copper, iron and zinc in spirituous beverages by total reflection X-ray fluorescence spectrometry

    Science.gov (United States)

    Capote, T.; Marcó, L. M.; Alvarado, J.; Greaves, E. D.

    1999-10-01

    The concentration of copper in traditional homemade alcoholic distillates produced in Venezuela (Cocuy de Penca) were determined by total reflection X-ray fluorescence (TXRF) using vanadium as internal standard. The results were compared to those obtained by flame atomic absorption spectrometry (FAAS). Three preparative methods of addition of vanadium were compared: classical internal standard addition, 'layer on layer' internal standard addition and in situ addition of internal standard. The TXRF procedures were accurate and the precision was comparable to that obtained by the FAAS technique. Copper levels were above the maximum allowed limits for similar beverages. Zinc and iron in commercial and homemade distilled beverages were also analyzed by TXRF with in situ addition of internal standard demonstrating the usefulness of this technique for trace metal determination in distillates.

  17. Potential for acid emissions affecting trace element nutrition of livestock

    International Nuclear Information System (INIS)

    Smart, M.E.

    1992-01-01

    The role of sour gas emissions in trace element nutrition of livestock is discussed. Trace mineral nutrition and the evaluation of factors affecting it is very complex. Some trace minerals are antagonistic to each other, for example a dietary sulfur content of greater than 0.4% will suppress the availability of copper to ruminants. Dietary plants, age, pregnancy, and disease can all alter trace element concentrations. Species and breed of animal play a significant role in copper metabolism. Clinical signs associated with copper and zinc deficiency are discussed. These symptoms include lameness, lack of hair pigmentation, infertility, and scouring. Some of these symptoms may be caused by excess molybdenum. Clinical features associated with zinc deficiency include parakeratosis and inflammation of the skin. 4 figs., 1 tab

  18. One-shot flow injection spectrophotometric simultaneous determination of copper, iron and zinc in patients' sera with newly developed multi-compartment flow cell

    International Nuclear Information System (INIS)

    Teshima, Norio; Gotoh, Shingo; Ida, Kazunori; Sakai, Tadao

    2006-01-01

    We propose here an affordable flow injection method for simultaneous spectrophotometric determination of copper, iron and zinc in patients' sera. The use of a newly designed multi-compartment flow cell allowed the simultaneous determination of the three metals with a single injection ('one-shot') and a double beam spectrophotometer. The chemistry relied on the reactions of these metals with 2-(5-nitro-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amino]phenol (nitro-PAPS) to form corresponding colored complexes. At pH 3.8, only copper-nitro-PAPS complex was formed in the presence of pyrophosphate as a masking agent for iron, and then the copper and iron(II) complexes were formed in the presence of reductant (ascorbic acid) at the same pH, and finally all three metals reacted with nitro-PAPS at pH 8.6. The characteristics were introduced into the flow system to determine each metal selectively and sensitively. Under the optimum conditions, linear calibration curves for the three metals were obtained in the range of 0.01-1 mg L -1 with a sample throughput rate of 20 h -1 . The limits of detection (3σ) were 3.9 μg L -1 for copper, 4.1 μg L -1 for iron and 4.0 μg L -1 for zinc. The proposed method was applied to analysis of some patients' sera

  19. Adsorption characteristics of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ) by four kinds of immobilized fungi residues.

    Science.gov (United States)

    Li, Xia; Zhang, Dan; Sheng, Fei; Qing, Hui

    2018-01-01

    This study investigated the adsorption characteristics of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ) by immobilized Flammulina velutipes, Auricularia polytricha, Pleurotus eryngii and Pleurotus ostreatus residues. Lagergren model, elovich and intraparticle diffusion model were used to present the adsorption kinetics, and it was proved that Langmuir isotherm model and pseudo-second order kinetics are the best suitable model with high correlation coefficient to characterize the adsorption process of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ). The results showed that adsorption process finished in 120min at pH 6.0. The adsorption rate of Cu 2+ , Zn 2+ and Hg 2+ were reached to 53.8-84.1% of total in the initial 60min, and finished in 120min. Ion exchange and complexation of F. velutipes were the main mechanisms for adsorption of metal ions by characterizations of Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR). In addition the functional group of cell walls such as hydroxyl, amide, carbonyl, phosphoric played a critical role in ions adsorption of edible mushroom residues. Cu 2+ , Zn 2+ and Hg 2+ in wastewater could be efficiently removed by F. velutipes residue with removal ratio of 73.11%, 66.67% and 69.35%, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Effects of replacing a dietary antibacterial agent (zinc bacitracin) with copper salts in Cherry Valley Pekin meat ducks.

    Science.gov (United States)

    Wu, D W; Wang, L C; Wen, C; Hooge, D M; Liang, C; Zhou, Y M

    2013-01-01

    1. A study was conducted to investigate the effectiveness of high dietary copper concentrations obtained from tribasic copper chloride (TBCC, 58% copper) and copper sulphate pentahydrate (CuSO4, 25% copper) in replacing antibiotic growth promoters (AGP) in duck diets. 2. A total of 960 one-day-old Cherry Valley meat-strain ducks were divided into 3 treatment groups, with 8 replicates per treatment, in a 6-week feeding trial. The ducks were fed a basal diet supplemented with AGP (40 mg zinc bacitracin/kg and 40 mg garlicin/kg of diet) or 150 mg of Cu/kg of diet, given as either CuSO4 or TBCC. 3. The body weight, average daily gain, average daily feed intake and mortality of ducks were not affected by the dietary treatments. However, the feed/gain ratio of ducks that were fed TBCC diets was significantly lower than those of ducks that were fed CuSO4 diets and were similar to those in the AGP group. 4. TBCC increased the Cu content in the liver tissue of ducks compared with the content in those that were fed the diet supplemented with AGP. TBCC also increased the Fe and Zn content in breast muscles compared with that in ducks that were fed the diet supplemented with CuSO4. 5. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were significantly higher in the serum of ducks that received the diet supplemented with TBCC than AGP or CuSO4. TBCC treatment decreased the malondialdehyde (MDA) content in serum of ducks compared with groups supplemented with CuSO4. 6. No significant difference was observed in liver or muscle fat content among the different dietary treatment groups. The serum low-density lipoprotein cholesterol concentration was lower in ducks fed AGP diets than those fed CuSO4 diets. 7. It was concluded that the replacement of AGP with 150 mg of Cu/kg of feed from TBCC improved the feed efficiency, trace mineral deposition and antioxidant status more than when the source of copper was CuSO4.

  1. Determination of calcium, copper, chromium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Fernandes, E.A.N.

    1981-01-01

    The direct determinacao of calcium, copper, chomium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry with, air-acetylene flame is proposed. Effects of fuel/oxidant ratio, burner height and water content in the samples were investigated in detail. The method allows the determition of the elements with good precision (r.s.d. -1 for the elements tested. (author) [pt

  2. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats

    International Nuclear Information System (INIS)

    Ytreberg, Erik; Bighiu, Maria Alexandra; Lundgren, Lennart; Eklund, Britta

    2016-01-01

    Tributyltin (TBT) and other organotin compounds have been restricted for use on leisure boats since 1989 in the EU. Nonetheless, release of TBT is observed from leisure boats during hull maintenance work, such as pressure hosing. In this work, we used a handheld X-ray Fluorescence analyser (XRF) calibrated for antifouling paint matrixes to measure tin, copper and zinc in antifouling paints coated on leisure boats in Sweden. Our results show that over 10% of the leisure boats (n = 686) contain >400 μg/cm 2 of tin in their antifouling coatings. For comparison, one layer (40 μm dry film) of a TBT-paint equals ≈ 800 μg Sn/cm 2 . To our knowledge, tin has never been used in other forms than organotin (OT) in antifouling paints. Thus, even though the XRF analysis does not provide any information on the speciation of tin, the high concentrations indicate that these leisure boats still have OT coatings present on their hull. On several leisure boats we performed additional XRF measurements by progressively scraping off the top coatings and analysing each underlying layer. The XRF data show that when tin is detected, it is most likely present in coatings close to the hull with several layers of other coatings on top. Thus, leaching of OT compounds from the hull into the water is presumed to be negligible. The risk for environmental impacts arises during maintenance work such as scraping, blasting and high pressure hosing activities. The data also show that many boat owners apply excessive paint layers when following paint manufacturers recommendations. Moreover, high loads of copper were detected even on boats sailing in freshwater, despite the more than 20 year old ban, which poses an environmental risk that has not been addressed until now. - Highlights: • A new XRF application for analysing metals in antifouling paints has been used. • Almost 700 leisure boats were analysed for tin, copper and zinc. • Over 10% of the leisure boats contained high, >400

  3. Gold cementation with zinc powder from leaching solutions with ammonia-thiosulphate

    International Nuclear Information System (INIS)

    Navarro, P.; Vargas, C.; Alvarez, R.; Alguacil, F. J.

    2005-01-01

    The cementation of gold with powder of zinc, from solutions with thiosulphate and ammonia, was studied. the variables evaluated were: thiosulphate concentration, ammonia concentration, pH, copper concentration and zinc concentration. the results have revealed the great importance of ammonia/thiosulphate relationship in this process and that the impurities presence like copper and zinc will to inhibit the cementation process. (Author) 16 refs

  4. Effect of excess dietary iron as ferrous sulfate and excess dietary ascorbic acid on liver zinc, copper and sulfhydryl groups and the ovary

    International Nuclear Information System (INIS)

    Edwards, C.H.; Adkins, J.S.; Harrison, B.

    1986-01-01

    Female guinea pigs of the NIH 13/N strain, weighing between 475 and 512 g, were fed diets supplemented with 50 to 2500 mg of iron per kg of diet as ferrous sulfate and 0.2 to 8.0 g of ascorbic acid per kg of diet. A significant effect was observed on tissue copper and zinc, ovary weight and liver protein sulfhydryl groups. The mean ovary weight for guinea pigs fed 2500 mg of iron was significantly less than that of animals fed 50 mg of iron, 0.045 +/- 0.012 g and 0.061 +/- 0.009 g, respectively. Liver zinc content of animals fed 2500 mg of iron and 200 mg of ascorbic acid per kg of diet was significantly less than that of animals fed 50 mg of iron and 200 mg of ascorbic acid, 16.3 +/- 3.3 μg and 19.6 +/- 1.6 μg, respectively. There was no difference in liver copper due to dietary iron, but when dietary ascorbic acid was increased to 8 g per kg of diet, there was a significant decrease (from 22.8 +/- 8.1 μg to 10.5 +/- 4.8 μg) in liver copper. Excess dietary ascorbic acid decreased ovarian zinc significantly when increased to 8 g per kg of diet, 2929 +/- 919 μg vs 1661 +/- 471 μg, respectively, when compared to the control group

  5. Adsorption of copper, cadmium and zinc on suspended sediments in a stream contaminated by acid mine drainage: The effect of seasonal changes in dissolved organic carbon

    International Nuclear Information System (INIS)

    Macalady, D.L.; Ranville, J.F.; Smith, K.S.; Daniel, S.R.

    1991-01-01

    The release of metal-rich, acidic waters from abandoned mining operations is a major problem in Colorado and throughout the Western United States. In Colorado, over 600 km of stream reach are estimated to be affected by such releases (Wentz, 1974). The metals released adversely affect stream biota, including fish. It is therefore important to understand the chemical processes which influence metal transport in these waters. The report details studies of the role of suspended sediments with respect to the transport of several important trace metals in a stream impacted by acid mine drainage. The role of streambed sediments was studied in the same system as part of an earlier project (Acid Mine Drainage: streambed sorption of copper, cadmium and zinc, PB--93-118263)

  6. Removal of Cadmium, Zinc, Lead and Copper by Sorption on Leaching Residue from Nickel Production

    Directory of Open Access Journals (Sweden)

    Miroslava Václavíková

    2006-12-01

    Full Text Available A leaching resudue from the nickel production (LRNi, was used to study the removal of selected bivalent cations (Cd, Pb, Cu and Zn from model aqueous solutions. Batch-type experiments have been performed in solutions with initial concentrations of heavy metals in the range of 20-400 mg.L-1 and the adsorbent dosage 2 g.L-1. All adsorption experiments were carried out at ambient temperature (22+1°C in orbital shaker. The experimental data were modeled with Langmuir and Freundlich isotherms. The relatively high uptake indicated that LRNi can adsorb considerable amounts of cadmium and zinc (maximum uptake capacity for cadmium: 25 mg/g at pH 7.2 and ca. 40 mg/g for zinc at pH 7. A significant uptake was also observed for copper and lead at pH 5.8 and 6 respectively, which was attributed to the precipitation of the respective insoluble hydroxides.

  7. Trace Elements Iron, Copper and Zinc in Vitreous of Patients with Various Vitreoretinal Diseases

    Directory of Open Access Journals (Sweden)

    Sulochana Konerirajapuram

    2004-01-01

    Full Text Available Purpose: To measure the concentrations of iron, copper and zinc in human vitreous and to interpret their levels with various vitreoretinal diseases like proliferative diabetic retinopathy, retinal detachment, intraocular foreign body, Eales′ disease and macular hole. Methods: Undiluted vitreous fluid collected during pars plana vitrectomy was used to measure trace elements using an atomic absorption spectrophotometer. Results: The level of vitreous iron increased threefold in Eales′ disease (1.85 ± 0.36 pg/ml, 2.5-fold in proliferative diabetic retinopathy (1.534 ± 0.17 pg/ml and 2.3-fold in eyes with intraocular foreign body (1.341 ± 0.25 pg/ml when compared with macular hole (0.588 ± 0.16 pg/ml. This was statistically significant (P < 0.05. Zinc was found to be low in Eales′ disease (0.57 ± 0.22 pg/ml when compared with other groups, though the difference was not statistically significant. Conclusion: The increased level of iron with decreased zinc content in Eales′ disease confirms the earlier reported oxidative stress mechanism for the disease. In proliferative diabetic retinopathy and intraocular foreign body the level of iron increases. This is undesirable as iron can augment glycoxidation, which can lead to increased susceptibility to oxidative damage, in turn causing vitreous liquefaction, posterior vitreous detachment and ultimately retinal detachment and vision loss

  8. Determination of silver, gold, zinc and copper in mineral samples by various techniques of instrumental neutron activation analysis; Determinacion de plata, oro, zinc y cobre en muestras minerales mediante diversas tecnicas de analisis por activacion de neutrones instrumental

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez R, N. I.; Rios M, C.; Pinedo V, J. L. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Yoho, M.; Landsberger, S., E-mail: neisla126@hotmail.com [University of Texas at Austin, Nuclear Engineering Teaching Laboratory, Austin 78712, Texas (United States)

    2015-09-15

    Using the method of instrumental neutron activation analysis, mineral exploration samples were analyzed in order to determine the concentrations of silver, gold, zinc and copper; these minerals being the main products of benefit of Tizapa and Cozamin mines. Samples were subjected to various techniques, where the type of radiation and counting methods were chosen based on the specific isotopic characteristics of each element. For calibration and determination of concentrations the comparator method was used, certified standards were subjected to the same conditions of irradiation and measurement that the prospecting samples. The irradiations were performed at the research reactor TRIGA Mark II of the University of Texas at Austin. The silver concentrations were determined by Cyclical Epithermal Neutron Activation Analysis. This method in combination with the transfer pneumatic system allowed a good analytical precision and accuracy in prospecting for silver, from photo peak measurement 657.7 keV of short half-life radionuclide {sup 110}Ag. For the determination of gold and zinc, Epithermal Neutron Activation Analysis was used, the photo peaks analyzed corresponded to the energies 411.8 keV of radionuclide {sup 199}Au and 438.6 keV of metastable radionuclide {sup 69m}Zn. On the other hand, copper quantification was based on the photo peak analysis of 1039.2 keV produced by the short half-life radionuclide {sup 66}Cu, by Thermal Neutron Activation Analysis. The photo peaks measurement corresponding to gold, zinc and copper was performed using a Compton suppression system, which allowed an improvement in the signal to noise relationship, so that better detection limits and low uncertainties associated with the results were obtained. Comparing elemental concentrations the highest values in silver, zinc and copper was for samples of mine Tizapa. Regarding gold values were found in the same range for both mines. To evaluate the precision and accuracy of the methods used

  9. Survey of four marine antifoulant constituents (copper, zinc, diuron and Irgarol 1051) in two UK estuaries.

    Science.gov (United States)

    Comber, S D W; Gardner, M J; Boxall, A B A

    2002-06-01

    A field survey of antifoulant concentrations was undertaken in two UK estuaries (Hamble and Orwell) in 1998 and 1999. The two locations offered variations in physical aspects (Orwell estuary being significantly larger than the Hamble) as well as differences in boat densities (Hamble having almost twice as many vessels moored in the estuary and marinas). Samples were analysed for copper, zinc, diuron and Irgarol 1051, and were collected in summer and winter in order to identify potential seasonal variations in concentrations. The effect that different marina types (e.g. locked marina, one located in a natural inlet and pontooned ones in the open estuary) had on antifoulant concentrations were also investigated. Concentrations of the organic booster biocides, diuron and Irgarol 1051 in the marinas and estuaries were mainly influenced by leaching from antifoulant paints applied to the hulls of leisure craft, and so levels reflected the number of vessels present in the water. As a consequence significantly higher concentrations were found in marinas (up to ca. 900 ng l(-1) for diuron and 240 ng l(-1) for Irgarol 1051) compared with estuaries (up to ca. 400 ng l(-1) for diuron and 100 ng l(-1) for Irgarol 1051) and in summer compared with winter. Sediment concentrations of Irgarol 1051 and diuron were rarely detectable other than in the marinas where high concentrations were detected near slipways assumed to be derived from washed off paint chips. Dissolved concentration profiles for copper and zinc in the estuaries and marinas were different from those for the organic booster biocides partly because other sources of these metals contributed to estuarine and marina loads. In particular, riverine loads and inputs from sacrificial anodes attached to leisure craft, exhibited a major influence of estuarine levels of zinc. Consequently, only in the Hamble estuary for copper was there a clear distinction between summer (typically 3-4 microg l(-1)) and winter dissolved values

  10. Flexible substrate compatible solution processed P-N heterojunction diodes with indium-gallium-zinc oxide and copper oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Ishan; Deepak, E-mail: saboo@iitk.ac.in

    2017-04-15

    Highlights: • Both n and p-type semiconductors are solution processed. • Temperature compatibility with flexible substrates such as polyimide. • Compatibility of p-type film (CuO) on n-type film (IZO). • Diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. • Construction of band alignment using XPS. - Abstract: Printed electronics on flexible substrates requires low temperature and solution processed active inks. With n-type indium-gallium-zinc oxide (IGZO) based electronics maturing for thin film transistor (TFT), we here demonstrate its heterojunction diode with p-copper oxide, prepared by sol-gel method and processed at temperatures compatible with polyimide substrates. The phase obtained for copper oxide is CuO. When coated on n-type oxide, it is prone to develop morphological features, which are minimized by annealing treatment. Diodes of p-CuO films with IGZO are of poor quality due to its high resistivity while, conducting indium-zinc oxide (IZO) films yielded good diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. A detailed measurement at the interface by X-ray photoelectron spectroscopy and optical absorption ascertained the band alignment to be of staggered type. Consistently, the current in the diode is established to be due to electrons tunnelling from n-IZO to p-CuO.

  11. The effect of postoperative radiotherapy on leukocyte zinc, serum trace elements and nutritional status of breast cancer patients

    International Nuclear Information System (INIS)

    Antila, H.M.J.; Salo, M.S.; Kirvelae, O.; Nikkanen, V.

    1992-01-01

    Mononuclear (MNC) and polymorphonuclear cell (PMNC) zinc content was determined together with serum zinc, copper, selenium and iron concentrations in 24 operable breast cancer patients during and after postoperative radiotherapy. Anthropometric and biochemical indices of nutritional status were measured as background data. The measurements were carried out in the years 1987-1988. Nine patients used unconventional multivitamin or trace element preparations. A steady but statistically insignificant decrease in PMNC zinc was seen during treatment. No changes occurred in MNC zinc. Serum copper levels increased in five patients possibly due to tamoxifen treatment, but no other alterations occurred in serum trace element levels. Appetite was well maintained and nutritional status remained unaltered. Postoperative radiotherapy for breast carcinoma had thus no effect on either trace element or nutritional status. Patient-initiated alternative treatments did not significantly affect their trace element levels. This was probably due to small supplementation doses or irregular use of the preparations. (orig.)

  12. Study of transport properties of copper/zinc-oxide-nanorods-based Schottky diode fabricated on textile fabric

    International Nuclear Information System (INIS)

    Khan, Azam; Hussain, Mushtaque; Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Nur, Omer; Willander, Magnus

    2013-01-01

    In this work, a copper/zinc-oxide (ZnO)-nanorods-based Schottky diode was fabricated on the textile fabric substrate. ZnO nanorods were grown on a silver-coated textile fabric substrate by using the hydrothermal route. Scanning electron microscopy and x-ray diffraction techniques were used for the structural study. The electrical characterization of copper/ZnO-nanorods-based Schottky diodes was investigated by using a semiconductor parameter analyzer and an impedance spectrometer. The current density–voltage (J–V) and capacitance–voltage (C–V) measurements were used to estimate the electrical parameters. The threshold voltage (V th ), ideality factor (η), barrier height (ϕ b ), reverse saturation current density (J s ), carrier concentration (N D ) and built-in potential (V bi ) were determined by using experimental data and (simulated) curve fitting. This study describes the possible fabrication of electronic and optoelectronic devices on textile fabric substrate with an acceptable performance. (paper)

  13. Copper Removal from A-01 Outfall by Ion Exchange

    International Nuclear Information System (INIS)

    Oji, L.N.

    1999-01-01

    Chelex100, a commercially available ion exchange resin, has been identified in this study as having a significant affinity for copper and zinc in the A-01 outfall water. Removal of copper and zinc from A-01 outfall water will ensure that the outfall meets the state of South Carolina's limit on these heavy metals

  14. Radiation induced structural changes in alpha-copper-zinc alloys

    International Nuclear Information System (INIS)

    Schuele, W.; Gieb, M.

    1991-01-01

    During irradiation of alpha-copper-zinc alloys with high energy electrons and protons a decrease of the electrical resistivity due to an increase of the degree of short range order is observed through radiation enhanced diffusion followed by an increase of the electrical resistivity through the formation of radiation induced interstitial clusters. The initial formation rate of interstitial clusters increases about linearly with the displacement rate for electron and proton irradiation. The largest initial formation rate is found between 60 and 130 0 C becoming negligibly small above 158 0 C and decreases drastically below 60 0 C. The dynamic steady state interstitial cluster concentration increases with decreasing irradiation temperature in the investigated temperature range between 158 and 40 0 C. Above 158 0 C the formation rate of interstitial clusters is negligibly small. Thus the transition temperature for radiation induced interstitial cluster formation is 158 0 C, depending mainly on the migration activation energy of vacancies. The radiation induced interstitial clusters are precipitates in those alloys in which the diffusion rate of the undersized component atoms via an interstitialcy diffusion mechanism is larger than that of the other atoms

  15. Influence of silver and copper doping on luminescent properties of zinc-phosphate glasses after x-ray irradiation

    Science.gov (United States)

    Murashov, Alexander A.; Sidorov, Alexander I.; Shakhverdov, Teimur A.; Stolyarchuk, Maxim V.

    2017-11-01

    It is shown, experimentally, that in silver- and copper-containing zinc-phosphate glasses, metal molecular clusters are formed during the glass synthesis. X-ray irradiation of these glasses led to the considerable increase of its luminescence in visible spectral range. This effect is caused by the transformation of the charged metal molecular clusters into the neutral state. Luminescence and excitation spectra of the glass, doped with silver and copper simultaneously, change significantly in comparison with the spectra of glasses doped with one metal. The reason for this can be the formation of hybrid AgnCum molecular clusters. The computer simulation of the structure and optical properties of such clusters by the time-dependent density functional theory method is presented. It is shown that the optimal luminescent material for photonics application, in comparison with other studied materials, is glass, containing hybrid molecular clusters.

  16. Potential Influence of Selenium, Copper, Zinc and Cadmium on L-Thyroxine Substitution in Patients with Hashimoto Thyroiditis and Hypothyroidism.

    Science.gov (United States)

    Rasic-Milutinovic, Z; Jovanovic, D; Bogdanovic, G; Trifunovic, J; Mutic, J

    2017-02-01

    Background: Besides genetic factors, it is known that some trace elements, as Selenium, Copper, and Zinc are essential for thyroid gland fuction and thyroid hormone metabolism. Moreover, there were some metals effect that suggested patterns associated with overt thyroid disease. Aim of study: Hashimoto thyroiditis (HT), chronic autoimune inflamation of thyroid gland with cosequtive hipothyroidism, is common disease in Serbia, and we thought it is worthwile to explore potential effects of essential and toxic metals and metalloides on thyroid function and ability to restore euthyroid status of them. Results: This cross-sectional, case-control, study investigated the status of essential elements (Selenium,Copper,and Zinc) and toxic metals and metalloides (Al, Cr, Mn, Co, As, Cd, Sb, Ba, Be, Pb and Ni) from the blood of 22 female, patients with Hashimoto thyroiditis and overt hypothyroidism, and compared it with those of 55 female healthy persons. We tried to establish the presence of any correlation between previous mentioned elements and thyroid function in hypothyroid patients and healthy participants. Conclusions: The results of our study suggested that the blood concentration of essential trace elements, especially the ratio of Copper, and Selenium may influence directly thyroid function in patients with HT and overt hypothyroidism.Thus, our findings may have implication to life-long substitution therapy in terms of l-thyroxine dose reduction. Furthermore, for the first time, our study shown potential toxic effect of Cadmium on thyroid function in HT patients, which may implicate the dose of l-thyroxine substitution. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Zinc phosphate conversion coatings

    Science.gov (United States)

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  18. Leaching of copper and zinc from spent antifouling paint particles

    International Nuclear Information System (INIS)

    Singh, Nimisha; Turner, Andrew

    2009-01-01

    Leaching of Cu and Zn from a composite of spent antifouling paint particles, containing about 300 mg g -1 and 110 mg g -1 of the respective metals, was studied in batch experiments. For a given set of simulated environmental conditions, release of Cu was independent of paint particle concentration due to attainment of pseudo-saturation, but Zn was less constrained by solubility effects and release increased with increasing particle concentration. Leaching of Cu increased but Zn decreased with increasing salinity, consistent with mechanisms governing the dissolution of Cu 2 O in the presence of chloride and Zn acrylates in the presence of seawater cations. Because of complex reaction kinetics and the presence of calcium carbonate in the paint matrix, metal leaching appeared to be greater at 4 deg. C than 19 deg. C under many conditions. These findings have important environmental and biological implications regarding the deliberate or inadvertent disposal of antifouling paint residues. - Copper and zinc are readily leached from particles of spent antifouling paint under a range of environmental conditions

  19. Leaching of copper and zinc from spent antifouling paint particles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nimisha [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Turner, Andrew [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: aturner@plymouth.ac.uk

    2009-02-15

    Leaching of Cu and Zn from a composite of spent antifouling paint particles, containing about 300 mg g{sup -1} and 110 mg g{sup -1} of the respective metals, was studied in batch experiments. For a given set of simulated environmental conditions, release of Cu was independent of paint particle concentration due to attainment of pseudo-saturation, but Zn was less constrained by solubility effects and release increased with increasing particle concentration. Leaching of Cu increased but Zn decreased with increasing salinity, consistent with mechanisms governing the dissolution of Cu{sub 2}O in the presence of chloride and Zn acrylates in the presence of seawater cations. Because of complex reaction kinetics and the presence of calcium carbonate in the paint matrix, metal leaching appeared to be greater at 4 deg. C than 19 deg. C under many conditions. These findings have important environmental and biological implications regarding the deliberate or inadvertent disposal of antifouling paint residues. - Copper and zinc are readily leached from particles of spent antifouling paint under a range of environmental conditions.

  20. ZINC MITIGATION INTERIM REPORT - THERMODYNAMIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.

    2010-12-17

    An experimental program was initiated in order to develop and validate conditions that will effectively trap Zn vapors that are released during extraction. The proposed work is broken down into three tasks. The first task is to determine the effectiveness of various pore sizes of filter elements. The second task is to determine the effect of filter temperature on zinc vapor deposition. The final task is to determine whether the zinc vapors can be chemically bound. The approach for chemically binding the zinc vapors has two subtasks, the first is a review of literature and thermodynamic calculations and the second is an experimental approach using the best candidates. This report details the results of the thermodynamic calculations to determine feasibility of chemically binding the zinc vapors within the furnace module, specifically the lithium trap (1). A review of phase diagrams, literature, and thermodynamic calculations was conducted to determine if there are suitable materials to capture zinc vapor within the lithium trap of the extraction basket. While numerous elements exist that form compounds with zinc, many of these also form compounds with hydrogen or the water that is present in the TPBARs. This relatively comprehensive review of available data indicates that elemental cobalt and copper and molybdenum trioxide (MoO3) may have the requisite properties to capture zinc and yet not be adversely affected by the extraction gases and should be considered for testing.

  1. Steric Effects on the Binding of Phosphate and Polyphosphate Anions by Zinc(II) and Copper(II) Dinuclear Complexes of m-Xylyl-bis-cyclen.

    Science.gov (United States)

    Esteves, Catarina V; Esteban-Gómez, David; Platas-Iglesias, Carlos; Tripier, Raphaël; Delgado, Rita

    2018-05-11

    The triethylbenzene-bis-cyclen (cyclen = 1,4,7,10-tetraazacyclododecane) compound (tbmce) was designed with an imposed structural rigidity at the m-xylyl spacer to be compared to a less restrained and known parent compound (bmce). The framework of both compounds differs only in the substituents of the m-xylyl spacer. The study was centered in the differences observed in the acid-base reactions of both compounds, their copper(II) and zinc(II) complexation behaviors, as well as in the uptake of phosphate and polyphosphate anions (HPPi 3- , ATP 4- , ADP 3- , AMP 2- , PhPO 4 2- , and HPO 4 2- ). On the one hand, the acid-base reactions showed lower values for the third and fourth protonation constants of tbmce than for bmce, suggesting that the ethyl groups of the spacer in tbmce force the two cyclen units to more conformational restricted positions. On the other hand, the stability constant values for copper(II) and zinc(II) complexes revealed that bmce is a better chelator than tbmce pointing out to additional conformational restraints imposed by the triethylbenzene spacer. The binding studies of phosphates by the dinuclear copper(II) and zinc(II) complexes showed much smaller effective association constants for the dicopper complexes. Single-crystal X-ray and computational (density functional theory) studies suggest that anion binding promotes the formation of tetranuclear entities in which anions are bridging the metal centers. Our studies also revealed the dinuclear zinc(II) complex of bmce as a promising receptor for phosphate anions, with the largest effective association constant of 5.94 log units being observed for the formation of [Zn 2 bmce(HPPi)] + . Accordingly, a colorimetric study via an indicator displacement assay to detect phosphates in aqueous solution found that the [Zn 2 bmce] 4+ complex acts as the best receptor for pyrophosphate displaying a detection limit of 2.5 nM by changes visible to naked eye.

  2. EFFECT OF SEASON ON SERUM COPPER AND ZINC CONCENTRATIONS IN CROSSBRED GOATS HAVING DIFFERENT REPRODUCTIVE STATUS UNDER SEMIARID RANGELAND CONDITIONS IN SOUTHERN MEXICO STATE

    Directory of Open Access Journals (Sweden)

    José Fernando Vázquez-Armijo

    2010-10-01

    Full Text Available The effect of season (rainy: RS, and dry: DS and reproductive status on copper (Cu and zinc (Zn concentrations in blood serum of crossbred goats (BW= 36.01 ± 1.59 kg were studied under semiarid rangeland conditions in Southern Mexico State. Blood samples from 80 crossbred goats were taken each season (RS and DS. The goats were clustered into 10 different groups considering their reproductive status. Concentrations of Cu and Zn in serum were assayed using atomic absorption. Data were analyzed using a general linear model procedure for a completely randomized design and differences among means were examined using a Tukey test. Blood serum concentrations of Cu and Zn were affected by reproductive status and season (P

  3. Recovery of Copper from Copper Slag by Hydrometallurgy Method, from Iraqi Factories Waste

    Directory of Open Access Journals (Sweden)

    Bahaa Sami Mahdi

    2018-05-01

    Full Text Available   In this research, the recovery of copper from copper slag is investigated using hydrometallurgy method. Slag samples were taken from Al-Shaheed State Company. The results of the chemical analysis showed that the slag contained 11.4% of copper. The recovery process included two stages; the first stage is leaching using diluted sulfuric acid. The most important variables that effect on the leaching process was studied, such as acid concentration, hydrogen peroxide adding, particle size, liquid to solid, stirring speed and leaching time by changing the condition and the stabilizing of other factors at room temperature.               The second stage is precipitation of copper from leaching solution by zinc powder with different weights and times, at room temperature and 1.5 PH value. The results of the first stage manifested that about 99.7% of the copper have been dissolved at the following operational conditions: 50% acid concentration, 5 ml hydrogen peroxide adding, particle size (-75+53 micron, 1:10 liquid to solid, 500 rpm stirring speed and 25 min of leaching time. The highest percentage of copper precipitation in the second stage was 99.8% when added 3gm zinc powder at 20 min. The XRD result revealed that the predominant phase was pure copper. The results of EDS exhibited that a few percentage of oxygen appeared with copper powder. The final of copper recovery ratio was 99.3% with 99.2% purity.

  4. Economic evaluation of zinc and copper use in treating acute diarrhea in children: A randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Dhande Leena A

    2003-08-01

    Full Text Available Abstract Background The therapeutic effects of zinc and copper in reducing diarrheal morbidity have important cost implications. This health services research study evaluated the cost of treating a child with acute diarrhea in the hospital, the impact of micronutrient supplementation on the mean predicted costs and its cost-effectiveness as compared to using only standard oral rehydration solution (ORS, from the patient's and government's (providers perspective. Methods Children aged 6 months to 59 months with acute diarrhea were randomly assigned to receive either the intervention or control. The intervention was a daily dose of 40 mg of zinc sulfate and 5 mg of copper sulfate powder dissolved in a liter of standard ORS (n = 102. The control was 50 mg of standard ORS powder dissolved in a liter of standard ORS (n = 98. The cost measures were the total mean cost of treating acute diarrhea, which included the direct medical, the direct non-medical and the indirect costs. The effectiveness measures were the probability of diarrhea lasting ≤ 4 days, the disability adjusted life years (DALYs and mortality. Results The mean total cost of treating a child with acute diarrhea was US $14 of which the government incurred an expenditure of 66%. The factors that increased the total were the number of stools before admission (p = 0.01, fever (p = 0.01, increasing grade of dehydration (p = 0.00, use of antibiotics (p = 0.00, use of intra-venous fluids (p = 0.00, hours taken to rehydrate a child (p = 0.00, the amount of oral rehydration fluid used (p = 0.00, presence of any complications (p = 0.00 and the hospital stay (p = 0.00. The supplemented group had a 8% lower cost of treating acute diarrhea, their cost per unit health (diarrhea lasting ≤ 4 days was 24% less and the incremental cost-effectiveness ratio indicated cost savings (in Rupees with the intervention [-452; 95%CI (-11306, 3410]. However these differences failed to reach conventional levels

  5. The mineralogy and geochemistry of the copper lead and zinc sulphides of the Otavi Mountainland

    International Nuclear Information System (INIS)

    Emslie, D.P.

    1980-01-01

    A study of 44 samples from the area revealed that the major primary sulphides, which constitute the bulk of the mineralization, are galena, sphalerite, chalcopyrite, and tennantite. The copper mineralization is concentrated in the Huttenberg Formation of the Tsumeb Subgroup and in the Nosib Subgroup, and the lead and zinc mineralization mainly in the Berg Aukas, Gauss, Auros, Maieberg, and Elandshoek Formations of the Otavi Group. Antimony, manganese, and silver were detected in all the samples of galena analysed, and selenium in four deposits. Silver, iron, and zinc were found within tennantite exsolutions in sphalerite. The concentrations of these minor and trace elements are probably too low to affect the economic potential of any of the deposits. Manganese was also observed in samples of sphalerite, which were found to vary in colour according to their manganese content, being dark red when the manganese content is high and ranging through orange to yellow as the manganese content decreases.The deposits of the Otavi Mountainland are similar in many ways to deposits of the Mississippi Valley type, and a similar genesis is proposed for the Mountainland. It is sugessted that the genesis involved the deposition of sediments and chemical deposits in the Swakop Basin, the leaching of the contained metals from the clay particles by the fluid trapped in the sediments, and the transportation of these metals in brine solutions. Bacterial action resulted in the formation of hydrogen sulphide, which was then trapped in the solutions. Bacterial action resulted in the formation of hydrogen sulphide, which was then trapped in the carbonates and later released when the dolomitic rocks of the area were subjected to folding, faulting, and brecciation. On its release, the hydrogen sulphide reacted with the brine solutions to form sulphide deposits in the fault and breccia zones

  6. Electrochemical stripping determination of traces of copper, lead, cadmium and zinc in zirconium metal and zirconium dioxide

    International Nuclear Information System (INIS)

    Stulik, K.; Beran, P.; Dolezal, J.; Opekar, F.

    1978-01-01

    Procedures have been developed for the determination of copper, lead, cadmium and zinc in zirconium metal and zirconium dioxide, at concentrations of 1ppm or less. Zirconium metal was dissolved in sulphuric acid, and zirconium dioxide decomposed under pressure with hydrofluoric acid. Sample solutions were prepared in dilute sulphuric acid. For the stripping determination, the sample solution was either mixed with a complexing tartrate base electrolyte or the pre-electrolysis was carried out in acid solution, with the acid solution being exchanged for a pure base electrolyte (e.g. an acetate buffer) for the stripping step. The stripping step was monitored by d.c., differential pulse and Kalousek commutator voltammetry and the three methods were compared. A stationary mercury-drop electrode can generally be used for all the methods, whereas a mercury-film electrode is suitable only for the d.c. voltammetric determination of copper, lead and cadmium, as pulse measurements with films are poorly reproducible and the electrodes are easily damaged. The relative standard deviation does not exceed 20%. Some samples contained relatively large amounts of copper, which is best separated by electrodeposition on a platinum electrode. (author)

  7. A zinc, copper and citric acid biocomplex shows promise for control of Xylella fastidiosa subsp. pauca in olive trees in Apulia region (southern Italy)

    Science.gov (United States)

    The bacterium Xylella fastidiosa subsp. pauca is associated with the “olive quick decline syndrome” in the Apulia region of southern Italy. To investigate control of this phytopathogen, a compound containing zinc and copper complexed with citric-acid hydracids (Dentamet®) was evaluated for in vitro ...

  8. The copper metallome in prokaryotic cells

    DEFF Research Database (Denmark)

    Rensing, Christopher Günther T; Alwathnani, Hend A.; McDevitt, Sylvia F.

    2016-01-01

    and protozoans also utilize heavy metals such as copper and zinc in the killing of phagocytized bacteria. It seems, therefore, not surprising that many bacteria including pathogens harbor additional copper resistance determinants. However, the occurrence of these resistance determinants is more widespread than...

  9. Copper, Zinc Superoxide Dismutase is Primarily a Cytosolic Protein in Human Cells

    Science.gov (United States)

    Crapo, James D.; Oury, Tim; Rabouille, Catherine; Slot, Jan W.; Chang, Ling-Yi

    1992-11-01

    The intracellular localization of human copper, zinc superoxide dismutase (Cu,Zn-SOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) was evaluated by using EM immunocytochemistry and both isolated human cell lines and human tissues. Eight monoclonal antibodies raised against either native or recombinant human Cu,Zn-SOD and two polyclonal antibodies raised against either native or recombinant human Cu,Zn-SOD were used. Fixation with 2% paraformaldehyde/0.2% glutaraldehyde was found necessary to preserve normal distribution of the protein. Monoclonal antibodies were less effective than polyclonal antibodies in recognizing the antigen after adequate fixation of tissue. Cu,Zn-SOD was found widely distributed in the cell cytosol and in the cell nucleus, consistent with it being a soluble cytosolic protein. Mitochondria and secretory compartments did not label for this protein. In human cells, peroxisomes showed a labeling density slightly less than that of cytoplasm.

  10. Copper to Zinc Ratio as Disease Biomarker in Neonates with Early-Onset Congenital Infections

    Science.gov (United States)

    Wisniewska, Monika; Cremer, Malte; Wiehe, Lennart; Becker, Niels-Peter; Rijntjes, Eddy; Martitz, Janine; Renko, Kostja; Bührer, Christoph; Schomburg, Lutz

    2017-01-01

    Copper (Cu) and zinc (Zn) are essential trace elements for regular development. Acute infections alter their metabolism, while deficiencies increase infection risks. A prospective observational case-control study was conducted with infected (n = 21) and control (n = 23) term and preterm newborns. We analyzed trace element concentrations by X-ray fluorescence, and ceruloplasmin (CP) by Western blot. Median concentration of Cu at birth (day 1) was 522.8 [387.1–679.7] μg/L, and Zn was 1642.4 ± 438.1 μg/L. Cu and Zn correlated positively with gestational age in control newborns. Cu increased in infected newborns from day 1 to day 3. CP correlated positively to Cu levels at birth in both groups and on day 3 in the group of infected neonates. The Cu/Zn ratio was relatively high in infected newborns. Interleukin (IL)-6 concentrations on day 1 were unrelated to Cu, Zn, or the Cu/Zn ratio, whereas C-reactive protein (CRP) levels on day 3 correlated positively to the Cu/Zn -ratio at both day 1 and day 3. We conclude that infections affect the trace element homeostasis in newborns: serum Zn is reduced, while Cu and CP are increased. The Cu/Zn ratio combines both alterations, independent of gestational age. It may, thus, constitute a meaningful diagnostic biomarker for early-onset infections. PMID:28358335

  11. Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry

    International Nuclear Information System (INIS)

    Silva, Edson Luiz; Santos Roldan, Paulo dos; Gine, Maria Fernanda

    2009-01-01

    A procedure for simultaneous separation/preconcentration of copper, zinc, cadmium, and nickel in water samples, based on cloud point extraction (CPE) as a prior step to their determination by inductively coupled plasma optic emission spectrometry (ICP-OES), has been developed. The analytes reacted with 4-(2-pyridylazo)-resorcinol (PAR) at pH 5 to form hydrophobic chelates, which were separated and preconcentrated in a surfactant-rich phase of octylphenoxypolyethoxyethanol (Triton X-114). The parameters affecting the extraction efficiency of the proposed method, such as sample pH, complexing agent concentration, buffer amount, surfactant concentration, temperature, kinetics of complexation reaction, and incubation time were optimized and their respective values were 5, 0.6 mmol L -1 , 0.3 mL, 0.15% (w/v), 50 deg. C, 40 min, and 10 min for 15 mL of preconcentrated solution. The method presented precision (R.S.D.) between 1.3% and 2.6% (n = 9). The concentration factors with and without dilution of the surfactant-rich phase for the analytes ranged from 9.4 to 10.1 and from 94.0 to 100.1, respectively. The limits of detection (L.O.D.) obtained for copper, zinc, cadmium, and nickel were 1.2, 1.1, 1.0, and 6.3 μg L -1 , respectively. The accuracy of the procedure was evaluated through recovery experiments on aqueous samples.

  12. Genome wide association mapping of grain arsenic, copper, molybdenum and zinc in rice (Oryza sativa L. grown at four international field sites.

    Directory of Open Access Journals (Sweden)

    Gareth J Norton

    Full Text Available The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of ∼ 300 accessions and 36.9 k single nucleotide polymorphisms (SNPs. The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel. This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally-variable traits in a highly genetically structured diversity panel.

  13. Zinc and antioxidant vitamin deficiency in patients with severe sickle cell anemia

    International Nuclear Information System (INIS)

    Hasanato, R.M. W.

    2006-01-01

    Patients with severe sickle cell anemia (SCA) have a higher potential for oxidative damage due to chronic redox imbalance in red blood cells that often leads to hemolysis, endothelial injury and recurrent vaso-occlusive episodes. This study evaluated the plasma levels of Vitamin A, C and E as indicators of antioxidants status. In addition, serum levels of zinc and copper were also estimated. Twenty-five adult patients with severe sickle cell anemia (12 males and 13 females aged 29.72+-12.94 years) and 25 matched controls were studied. Plasma levels of vitamin A, C and E were measured by HPLC technique. Serum zinc and copper levels were measured by atomic absorption spectrometry. There was significant decrease in plasma levels of vitamins A, C and E and in serum levels of zinc in patients with SCA as compared with controls (P<0.0001). Serum copper levels were significantly elevated compared with controls (P<0.0001). These findings emphasized the significant deficiencies of the antioxidant vitamins A, C and E and the trace element zinc along with the significant elevation of serum copper in patients with severe sickle cell disease. Further studies are needed to find out whether supplementation of antioxidant vitamins and zinc may ameliorate some sickle cell disease complications. (author)

  14. Synthesis and characterization of Eichhornia-mediated copper oxide ...

    Indian Academy of Sciences (India)

    In this paper, we report the biosynthesis and characterization of copper oxide nanoparticles ... copper oxide nanoparticles by simple, cost-effective and ecofriendly method as an alternative to other available ... Currently, zinc oxide, gold, silver.

  15. Role of copper, zinc, and selenium in uterine cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sarita, P.; Naga Raju, G.J. [Department of Physics, Institute of Technology, GITAM University, Visakhapatnam (India); Bhuloka Reddy, S. [Swami Jnanananda Laboratories for Nuclear Research, Andhra Universily, Visakahpatnam (India)

    2013-07-01

    Full text: The objective of this study was to evaluate the levels of trace elements in blood sera of uterine cervix cancer patients, analyze their alteration with respect to healthy controls, ascertain the role played by them in the initiation, promotion and inhibition of cancer, and identify the best predictors amongst these for disease occurrence and progression. Moreover, the variation of trace elemental content in the sera of cervix cancer patients with the clinical stage of disease and with therapy was also studied. Particle induced X-ray emission (PIXE), a well established method for elemental analysis, was used in this work to identify and quantify trace elements in the blood sera of uterine cervix cancer subjects and healthy control subjects. The PIXE measurements were carried out using 2.5 MeV collimated proton beam from the 3 MV Tandem Pelletron Accelerator at lon Beam Laboratory, Institute of Physics, Bhubaneswar, India. Among all the trace elements identified in this work, statistically significant alterations in serum levels of copper, zinc, and selenium were observed among the various studied groups. The observed alterations are discussed with respect to the possible mechanisms by which these elements might influence the carcinogenic process. (author)

  16. Role of copper, zinc, and selenium in uterine cervical cancer

    International Nuclear Information System (INIS)

    Sarita, P.; Naga Raju, G.J.; Bhuloka Reddy, S.

    2013-01-01

    Full text: The objective of this study was to evaluate the levels of trace elements in blood sera of uterine cervix cancer patients, analyze their alteration with respect to healthy controls, ascertain the role played by them in the initiation, promotion and inhibition of cancer, and identify the best predictors amongst these for disease occurrence and progression. Moreover, the variation of trace elemental content in the sera of cervix cancer patients with the clinical stage of disease and with therapy was also studied. Particle induced X-ray emission (PIXE), a well established method for elemental analysis, was used in this work to identify and quantify trace elements in the blood sera of uterine cervix cancer subjects and healthy control subjects. The PIXE measurements were carried out using 2.5 MeV collimated proton beam from the 3 MV Tandem Pelletron Accelerator at lon Beam Laboratory, Institute of Physics, Bhubaneswar, India. Among all the trace elements identified in this work, statistically significant alterations in serum levels of copper, zinc, and selenium were observed among the various studied groups. The observed alterations are discussed with respect to the possible mechanisms by which these elements might influence the carcinogenic process. (author)

  17. Luminescent zinc(ii) and copper(i) complexes for high-performance solution-processed monochromic and white organic light-emitting devices.

    Science.gov (United States)

    Cheng, Gang; So, Gary Kwok-Ming; To, Wai-Pong; Chen, Yong; Kwok, Chi-Chung; Ma, Chensheng; Guan, Xiangguo; Chang, Xiaoyong; Kwok, Wai-Ming; Che, Chi-Ming

    2015-08-01

    The synthesis and spectroscopic properties of luminescent tetranuclear zinc(ii) complexes of substituted 7-azaindoles and a series of luminescent copper(i) complexes containing 7,8-bis(diphenylphosphino)-7,8-dicarba- nido -undecaborate ligand are described. These complexes are stable towards air and moisture. Thin film samples of the luminescent copper(i) complexes in 2,6-dicarbazolo-1,5-pyridine and zinc(ii) complexes in poly(methyl methacrylate) showed emission quantum yields of up to 0.60 (for Cu-3 ) and 0.96 (for Zn-1 ), respectively. Their photophysical properties were examined by ultrafast time-resolved emission spectroscopy, temperature dependent emission lifetime measurements and density functional theory calculations. Monochromic blue and orange solution-processed OLEDs with these Zn(ii) and Cu(i) complexes as light-emitting dopants have been fabricated, respectively. Maximum external quantum efficiency (EQE) of 5.55% and Commission Internationale de l'Eclairage (CIE) coordinates of (0.16, 0.19) were accomplished with the optimized Zn-1 -OLED while these values were, respectively 15.64% and (0.48, 0.51) for the optimized Cu-3 -OLED. Solution-processed white OLEDs having maximum EQE of 6.88%, CIE coordinates of (0.42, 0.44), and colour rendering index of 81 were fabricated by using these luminescent Zn(ii) and Cu(i) complexes as blue and orange light-emitting dopant materials, respectively.

  18. Trace elements studies on Karachi population part IV: blood copper, zinc, magnesium and lead levels in psychiatric patients with depression, mental retardation and seizure disorder

    International Nuclear Information System (INIS)

    Manser, W.T.

    1989-01-01

    Blood copper, zinc, magnesium and lead levels were determined by atomic absorption spectroscopy for 15 males and 16 female suffering from depression, 6 males and 1 female with mental retardation and 3 males and 4 females with seizure disorders. They were all under no medication and belong to low income groups. No difference in copper levels was found between the sexes in any of the groups. The levels in all the groups were significantly higher than in the normals. In depressives, males had significantly higher zinc levels than females and only female depressives had lower levels from normals. In both depressives and normals, males had higher magnesium levels than females but no group of patients had significantly different levels from normals. Lead levels were significantly higher in female depressives and for those with seizure disorders than for controls. At least one metal abnormality was found in 21 (67.7%) depressive, 5 (71.4%) of those with mental retardation and 6 (85.7%) with seizure disorders. (author)

  19. Bioavailability of zinc and copper in biosolids compared to their soluble salts

    International Nuclear Information System (INIS)

    Heemsbergen, Diane A.; McLaughlin, Mike J.; Whatmuff, Mark; Warne, Michael St.J.; Broos, Kris; Bell, Mike; Nash, David; Barry, Glenn; Pritchard, Deb; Penney, Nancy

    2010-01-01

    For essential elements, such as copper (Cu) and zinc (Zn), the bioavailability in biosolids is important from a nutrient release and a potential contamination perspective. Most ecotoxicity studies are done using metal salts and it has been argued that the bioavailability of metals in biosolids can be different to that of metal salts. We compared the bioavailability of Cu and Zn in biosolids with those of metal salts in the same soils using twelve Australian field trials. Three different measures of bioavailability were assessed: soil solution extraction, CaCl 2 extractable fractions and plant uptake. The results showed that bioavailability for Zn was similar in biosolid and salt treatments. For Cu, the results were inconclusive due to strong Cu homeostasis in plants and dissolved organic matter interference in extractable measures. We therefore recommend using isotope dilution methods to assess differences in Cu availability between biosolid and salt treatments. - Metals in biosolids are not necessarily less bioavailable than their soluble salt.

  20. Bioavailability of zinc and copper in biosolids compared to their soluble salts

    Energy Technology Data Exchange (ETDEWEB)

    Heemsbergen, Diane A., E-mail: diane.heemsbergen@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); McLaughlin, Mike J., E-mail: mike.mclaughlin@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5064 (Australia); Whatmuff, Mark, E-mail: mark.whatmuff@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); NSW Department of Primary Industries, Locked Bag 4 Richmond, NSW 2753 (Australia); Warne, Michael St.J., E-mail: michael.warne@csiro.a [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); Broos, Kris, E-mail: kris.broos@vito.b [Centre for Environmental Contaminants Research, CSIRO Land and Water, PMB 2, Glen Osmond, Adelaide, SA 5064 (Australia); Bell, Mike, E-mail: Mike.Bell@dpi.qld.gov.a [Department of Primary Industries, Kingaroy, Queensland 4610 (Australia); Nash, David, E-mail: David.Nash@dpi.vic.gov.a [Department of Primary Industries, Ellinbank, Victoria 3821 (Australia); Barry, Glenn, E-mail: Glenn.Barry@nrw.qld.gov.a [Department of Natural Resources and Mines, Indooroopilly, Queensland 4068 (Australia); Pritchard, Deb, E-mail: D.Pritchard@curtin.edu.a [Curtin University of Technology, Muresk Institute, Northam, Western Australia 6401 (Australia); Penney, Nancy, E-mail: Nancy.Penney@WaterCorporation.com.a [Water Corporation of Western Australia, Leederville, Western Australia 6001 (Australia)

    2010-05-15

    For essential elements, such as copper (Cu) and zinc (Zn), the bioavailability in biosolids is important from a nutrient release and a potential contamination perspective. Most ecotoxicity studies are done using metal salts and it has been argued that the bioavailability of metals in biosolids can be different to that of metal salts. We compared the bioavailability of Cu and Zn in biosolids with those of metal salts in the same soils using twelve Australian field trials. Three different measures of bioavailability were assessed: soil solution extraction, CaCl{sub 2} extractable fractions and plant uptake. The results showed that bioavailability for Zn was similar in biosolid and salt treatments. For Cu, the results were inconclusive due to strong Cu homeostasis in plants and dissolved organic matter interference in extractable measures. We therefore recommend using isotope dilution methods to assess differences in Cu availability between biosolid and salt treatments. - Metals in biosolids are not necessarily less bioavailable than their soluble salt.

  1. Effects of dissolved metals and other hydrominerals on in vivo intestinal zinc uptake in freshwater rainbow trout

    International Nuclear Information System (INIS)

    Glover, Chris N.; Hogstrand, Christer

    2003-01-01

    For aquatic organisms, zinc is both an essential nutrient and an environmental contaminant. The intestine is potentially the most important route of zinc absorption, yet little is known regarding this uptake pathway for zinc in fish. A recently developed in vivo perfusion system was used to investigate the effect of luminal composition upon intestinal zinc uptake in freshwater rainbow trout (Oncorhynchus mykiss). Perfusate cadmium and copper had specific, yet distinct, antagonistic effects upon lumen to tissue zinc movement. Copper significantly reduced the proportion of zinc taken up from the perfusate, and concomitantly limited the passage of zinc into the circulation and beyond. Conversely, cadmium decreased subepithelial zinc accumulation, with rates falling to 29 nmol g -1 h -1 from the control (zinc alone) values of 53 nmol g -1 h -1 . Calcium had a similar action to copper, also reducing post-intestinal zinc accumulation from 0.06 to 0.02 nmol g -1 h -1 , an effect attributed to interactions between calcium and the zinc uptake pathway. In addition to these effects, luminal composition also had a marked influence upon epithelial response to zinc. Calcium, copper and magnesium all greatly reduced zinc-induced mucus secretion. Cadmium, a toxic metal, significantly increased mucus secretion. It is proposed that these modifications were related to the essentiality of each element, and their potential mechanisms of uptake. Despite changes at the epithelium, the post-epithelial accumulation of zinc was dependent mainly upon the nature of the competing cation. Intestinal saline ion substitution experiments suggested a potential link of potassium ion efflux to zinc uptake. The effect of pH buffering of luminal solutions was also investigated

  2. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China

    International Nuclear Information System (INIS)

    Deng, H.; Ye, Z.H.; Wong, M.H.

    2004-01-01

    The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed

  3. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China

    Energy Technology Data Exchange (ETDEWEB)

    Deng, H.; Ye, Z.H.; Wong, M.H

    2004-11-01

    The concentrations of lead, zinc, copper and cadmium accumulated by 12 emergent-rooted wetland plant species including different populations of Leersia hexandra, Juncus effusus and Equisetum ramosisti were investigated in field conditions of China. The results showed that metal accumulation by wetland plants differed among species, populations and tissues. Populations grown in substrata with elevated metals contained significantly higher metals in plants. Metals accumulated by wetland plants were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. That some species/populations could accumulate relatively high metal concentrations (far above the toxic concentration to plants) in their shoots indicates that internal detoxification metal tolerance mechanism(s) are also included. The factors affecting metal accumulation by wetland plants include metal concentrations, pH, and nutrient status in substrata. Mostly concentrations of Pb and Cu in both aboveground and underground tissues of the plants were significantly positively related to their total and/or DTPA-extractable fractions in substrata while negatively to soil N and P, respectively. The potential use of these wetland plants in phytoremediation is also discussed.

  4. Influence of injected caffeine on the metabolism of calcium and the retention and excretion of sodium, potassium, phosphorus, magnesium, zinc and copper in rats.

    Science.gov (United States)

    Yeh, J K; Aloia, J F; Semla, H M; Chen, S Y

    1986-02-01

    Mineral metabolism was studied by the metabolic balance technique in rats with and without administration of caffeine. Caffeine was injected subcutaneously each day at either 2.5 mg or 10 mg/100 g body weight for 2 wk before the balance studies. Urinary volume excretion was higher in the group given caffeine than in the control group, but the creatinine clearance was not different. Urinary excretion of potassium, sodium, inorganic phosphate, magnesium and calcium, but not of zinc and copper, was also higher in the rats given caffeine. The rank order of the difference was the same as the percent of ingested mineral excreted in urine in the absence of caffeine. Caffeine caused a negative balance of potassium, sodium and inorganic phosphate. There was no significant difference from the control levels and in the apparent metabolic balance of calcium and magnesium. The urinary and fecal excretion of zinc and copper were found to be unaffected by caffeine. It is suggested that chronic administration of caffeine may lead to a tendency toward deficiency of those minerals that are excreted primarily in urine.

  5. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  6. Imbalance of morphofunctional responses of Jurkat T lymphoblasts at short-term culturing with relief zinc- or copper-containing calcium phosphate coating on titanium.

    Science.gov (United States)

    Litvinova, L S; Shupletsova, V V; Dunets, N A; Khaziakhmatova, O G; Yurova, K A; Khlusova, M Yu; Slepchenko, G B; Cherempey, E G; Sharkeev, Yu P; Komarova, E G; Sedelnikova, M B; Khlusov, I A

    2017-01-01

    Morphofunctional response of Jurkat T cells that were cultured for 24 h on substrates prepared from commercially pure titanium with relief microarc bilateral calcium phosphate coating containing copper or zinc was studied. Changes in the concentration of essential trace elements contained in this coating can cause significant imbalance of molecular processes of differentiation, secretion, apoptosis, and necrosis and reduce tumor cell survival.

  7. Nanoparticles of zinc sulfide doped with manganese, nickel and copper as nanophotocatalyst in the degradation of organic dyes

    International Nuclear Information System (INIS)

    Pouretedal, Hamid Reza; Norozi, Abbas; Keshavarz, Mohammad Hossein; Semnani, Abolfazl

    2009-01-01

    Nanoparticles of zinc sulfide as undoped and doped with manganese, nickel and copper were used as photocatalyst in the photodegradation of methylene blue and safranin as color pollutants. Photoreactivity of doped zinc sulfide was varied with dopant, mole fraction of dopant to zinc ion, pH of solution, dosage of photocatalyst and concentration of dye. The characterization of nanoparticles was studied using X-ray powder diffraction (XRD) patterns and UV-vis spectra. The maximum degradation efficiency was obtained in the presence of Zn 0.98 Mn 0.02 S, Zn 0.94 Ni 0.06 S and Zn 0.90 Cu 0.10 S as nanophotocatalyst. The effect of dosage of photocatalyst was studied in the range of 20-250 mg/L. It was seen that 150.0 mg/L of photocatacyst is an optimum value for the dosage of photocatalyst. The most degradation efficiency was obtained in alkaline pH of 11.0 with study of photodegradation in pH amplitude of 2-12. The degradation efficiency was decreased in dye concentrations above of 5.0 mg/L for methylene blue and safranin dyes. In the best conditions, the degradation efficiency was obtained 87.3-95.6 and 85.4-93.2 for methylene blue and safranin, respectively

  8. Chloroquine is a zinc ionophore.

    Directory of Open Access Journals (Sweden)

    Jing Xue

    Full Text Available Chloroquine is an established antimalarial agent that has been recently tested in clinical trials for its anticancer activity. The favorable effect of chloroquine appears to be due to its ability to sensitize cancerous cells to chemotherapy, radiation therapy, and induce apoptosis. The present study investigated the interaction of zinc ions with chloroquine in a human ovarian cancer cell line (A2780. Chloroquine enhanced zinc uptake by A2780 cells in a concentration-dependent manner, as assayed using a fluorescent zinc probe. This enhancement was attenuated by TPEN, a high affinity metal-binding compound, indicating the specificity of the zinc uptake. Furthermore, addition of copper or iron ions had no effect on chloroquine-induced zinc uptake. Fluorescent microscopic examination of intracellular zinc distribution demonstrated that free zinc ions are more concentrated in the lysosomes after addition of chloroquine, which is consistent with previous reports showing that chloroquine inhibits lysosome function. The combination of chloroquine with zinc enhanced chloroquine's cytotoxicity and induced apoptosis in A2780 cells. Thus chloroquine is a zinc ionophore, a property that may contribute to chloroquine's anticancer activity.

  9. Evaluation of Antioxidant and Cytotoxicity Activities of Copper Ferrite (CuFe2O4 and Zinc Ferrite (ZnFe2O4 Nanoparticles Synthesized by Sol-Gel Self-Combustion Method

    Directory of Open Access Journals (Sweden)

    Samikannu Kanagesan

    2016-08-01

    Full Text Available Spinel copper ferrite (CuFe2O4 and zinc ferrite (ZnFe2O4 nanoparticles were synthesized using a sol-gel self-combustion technique. The structural, functional, morphological and magnetic properties of the samples were investigated by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, Transmission electron microscopy (TEM and vibrating sample magnetometry (VSM. XRD patterns conform to the copper ferrite and zinc ferrite formation, and the average particle sizes were calculated by using a transmission electron microscope, the measured particle sizes being 56 nm for CuFe2O4 and 68 nm for ZnFe2O4. Both spinel ferrite nanoparticles exhibit ferromagnetic behavior with saturation magnetization of 31 emug−1 for copper ferrite (50.63 Am2/Kg and 28.8 Am2/Kg for zinc ferrite. Both synthesized ferrite nanoparticles were equally effective in scavenging 2,2-diphenyl-1-picrylhydrazyl hydrate (DPPH free radicals. ZnFe2O4 and CuFe2O4 nanoparticles showed 30.57% ± 1.0% and 28.69% ± 1.14% scavenging activity at 125 µg/mL concentrations. In vitro cytotoxicity study revealed higher concentrations (>125 µg/mL of ZnFe2O4 and CuFe2O4 with increased toxicity against MCF-7 cells, but were found to be non-toxic at lower concentrations suggesting their biocompatibility.

  10. Aluminium or copper substrate panel for selective absorption of solar energy

    Science.gov (United States)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1979-01-01

    A method for making panels which selectively absorb solar energy is disclosed. The panels are comprised of an aluminum substrate, a layer of zinc thereon, a layer of nickel over the zinc layer and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a layer of nickel thereon and a layer of solar energy absorbing nickel oxide distal from the copper substrate.

  11. Zinc-The key to preventing corrosion

    Science.gov (United States)

    Kropschot, S.J.; Doebrich, Jeff L.

    2011-01-01

    Centuries before it was identified as an element, zinc was used to make brass (an alloy of zinc and copper) and for medicinal purposes. Metallic zinc and zinc oxide were produced in India sometime between the 11th and 14th centuries and in China in the 17th century, although the discovery of pure metallic zinc is credited to the German chemist Andreas Marggraf, who isolated the element in 1746. Refined zinc metal is bluish-white when freshly cast; it is hard and brittle at most temperatures and has relatively low melting and boiling points. Zinc alloys readily with other metals and is chemically active. On exposure to air, it develops a thin gray oxide film (patina), which inhibits deeper oxidation (corrosion) of the metal. The metal's resistance to corrosion is an important characteristic in its use.

  12. Sequential Extraction as Novel Approach to Compare 12 Medicinal Plants From Kenya Regarding Their Potential to Release Chromium, Manganese, Copper, and Zinc.

    Science.gov (United States)

    Mogwasi, R; Zor, S; Kariuki, D K; Getenga, M Z; Nischwitz, V

    2018-04-01

    This study is focusing on a novel approach to screen a large number of medicinal plants from Kenya regarding their contents and availability of selected metals potentially relevant for treatment of diabetes patients. For this purpose, total levels of zinc, chromium, manganese, and copper were determined by flame atomic absorption spectrometry and inductively coupled plasma mass spectrometry as well as BCR sequential extraction to fractionate the elemental species in anti-diabetic medicinal plants collected from five natural locations in two sub counties in Nyamira County, Kenya. Solanum mauense had the highest zinc level of 123.0 ± 3.1 mg/kg while Warburgia ugandensis had the lowest level of 13.9 ± 0.4 mg/kg. The highest level of copper was in Bidens pilosa (29.0 ± 0.6 mg/kg) while the lowest was in Aloe vera (3.0 ± 0.1 mg/kg). Croton macrostachyus had the highest manganese level of 1630 ± 40 mg/kg while Clerodendrum myricoides had the lowest (80.2 ± 1.2 mg/kg). The highest level of chromium was in Solanum mauense (3.20 ± 0.06 mg/kg) while the lowest (0.04 ± 0.01 mg/kg) were in Clerodendrum myricoides and Warburgia ugandesis among the medicinal plants from Nyamira and Borabu, respectively. The levels of the elements were statistically different from that of other elements while the level of a given element was not statistically different in the medicinal plants from the different sub counties. Sequential extraction was performed to determine the solubility and thus estimate the bioavailability of the four investigated essential and potentially therapeutically relevant metals. The results showed that the easily bioavailable fraction (EBF) of chromium, manganese, zinc, and copper ranged from 6.7 to 13.8%, 4.1 to 10%, 2.4 to 10.2%, and 3.2 to 12.0% while the potentially bioavailable fraction (PBF) ranged from 50.1 to 67.6%, 32.2 to 48.7%, 23.0 to 41.1%, and 34.6 to 53.1%, respectively. Bidens pilosa, Croton macrostachyus, Ultrica dioica

  13. Accumulation of heavy metals (cadmium, zinc, and copper) from smelter in forest ecosystems and their uptakes by Shiitake mushroom (Lentinus edodes (Berk) Sing. ) and Nameko mushroom (Pholiota glutinosa Kawamura) through polluted bed logs

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, T.; Fujita, K.; Furukawa, H.; Yoshimoto, M.

    1977-12-01

    Mushrooms cultivated on sawdust medium which had been innoculated with heavy metals accumulated the metals increasingly in stems, pileus, gill and spores, in that order. There were strain differences, in accumulation, and highest concentration was found in the first-born fruit body. At 2 ppm, cadmium did not affect yield of the fruiting body. At 20 ppm, however, yield was seriously reduced. Species differences in absorption capacity for heavy metals were noted. Seasonal variations in cadmium and copper accumulation were noted, along with zinc. Cadmium concentration in fruiting bodies increased with increase of cadmium concentration in the growth substrate. 23 figures, 16 tables.

  14. Copper-resistant halophilic bacterium isolated from the polluted Maruit Lake, Egypt.

    Science.gov (United States)

    Osman, O; Tanguichi, H; Ikeda, K; Park, P; Tanabe-Hosoi, S; Nagata, S

    2010-04-01

    To isolate and characterize copper-resistant halophilic bacteria from the polluted Maruit Lake, Egypt and identify the role of plasmids in toxic metal resistance. We isolated strain MA2, showing high copper resistance up to the 1.5 mmol l(-1) concentration; it was also resistant to other metals such as nickel, cobalt and zinc and a group of antibiotics. Partial 16S rRNA analysis revealed that strain MA2 belonged to the genus Halomonas. Copper uptake, measured by atomic absorption spectrophotometery, was higher in the absence of NaCl than in the presence of 0.5-1.0 mol l(-1) NaCl during 5-15 min of incubation. Cell fractionation and electron microscopic observation clarified that most of the copper accumulated in the outer membrane and periplasmic fractions of the cells. Plasmid screening yielded two plasmids: pMA21 (11 kb) and pMA22 (5 kb). Plasmid curing resulted in a strain that lost both the plasmids and was sensitive to cobalt and chromate but not copper, nickel and zinc. This cured strain also showed weak growth in the presence of 0.5-1.0 mol l(-1) NaCl. Partial sequencing of both plasmids led to the identification of different toxic metals transporters but copper transporters were not identified. The highest cell viability was found in the presence of 1.0 mol l(-1) NaCl at different copper concentrations, and copper uptake was optimal in the absence of NaCl. Plasmid pMA21 encoded chromate, cobalt, zinc and cadmium transporters, whereas pMA22 encoded specific zinc and RND (resistance, nodulation, cell division) efflux transporters as well as different kinds of metabolic enzymes. Copper resistance was mainly incorporated in the chromosome. Strain MA2 is a fast and efficient tool for copper bioremediation and the isolated plasmids show significant characteristics of both toxic metal and antibiotic resistance.

  15. Changes in serum selenium, copper, zinc levels and cu/zn ratio in patients with pulmonary tuberculosis during therapy.

    Science.gov (United States)

    Ciftci, T Ulukavak; Ciftci, B; Yis, O; Guney, Y; Bilgihan, A; Ogretensoy, M

    2003-10-01

    The effectiveness and success of antituberculosis therapy is mainly measured by its ability to identify the organism in the sputum. In certain cases, available tuberculosis tests are not satisfactory and do not provide enough information on the effectiveness of antituberculosis therapy. Copper (Cu), zinc (Zn), and selenium (Se) are the essential elements that play a crucial role in the immune system. The serum levels of these elements vary in many diseases including tuberculosis. In this study, we investigate whether the serum levels of Cu, Zn, and Se change during antituberculosis therapy. We have included 22 pulmonary tuberculosis cases that were newly diagnosed with positive sputum and 18 healthy subjects. At the beginning and 2 mo after therapy, serum levels of Cu, Zn, and Se were measured by atomic absorption spectrometry. Despite Se and Cu levels not being affected during the treatment, we found that there was a significant increase in the levels of Zn and a decrease in the Cu/Zn ratio. Serum Zn levels and the Cu/Zn ratio could be used as a valuable laboratory tool for the clinicians to assess response to therapy or effectiveness of the ongoing antituberculosis therapy.

  16. Effect of zinc, copper and mercury on Channa marulius (Hamilton)

    Energy Technology Data Exchange (ETDEWEB)

    Khangarot, B.S.

    1981-01-01

    Static bioassay acute toxicity tests of zinc, copper and mercury were conducted to determine the median lethal concentrations (LC/sub 50/S) of a freshwater telcost Channa marulius (HAM.) The 96 h LC/sub 50/ for Zn/sup 2 +/ were 25.61 mg/l; 0.90 mg/l for Cu/sup 2 +/ and 0.314 mg/l for Hg/sup 2 +/. However, these values decreased at 240 h of exposure and were: 21.09 mg Zn/sup 2 +//l; 0.66 mg Cu/sup 2 +//l; and 0.31 mg Hg/sup 2 +//l. The relative potency ratio of Zn/Hg, Zn/Cu and Cu/Hg suggests that fish were most sensitive to Hg, followed by Cu and Zn ions. The acute toxicities of mixtures of Zn/sup 2 +/-Cu/sup 2 +/; Zn/sup 2 +/-Hg/sup 2 +/; Cu/sup 2 +/-Hg/sup 2 +/ and Zu/sup 2 +/-Cu/sup 2 +/-Hg/sup 2 +/ up to 48 h of exposure were also investigated. The additive index and ranges for Zn/sup 2 +/-Cu/sup 2 +/ were -0.241 for Zn-Hg; 0.285 for Cu-Hg; and -0.542 for Zn-Cu-Hg. All the mixtures tested showed a greater than additive toxicity because index ranges overlapped zero.

  17. Clinical Aspects of Trace Elements: Zinc in Human Nutrition – Zinc Deficiency and Toxicity

    Directory of Open Access Journals (Sweden)

    Michelle M Pluhator

    1996-01-01

    Full Text Available Available evidence suggests that trace elements, such as zinc, once thought to have no nutritional relevance, are possibly deficient in large sections of the human population. Conditioned deficiencies have been reported to result from malabsorption syndromes, acrodermatitis enteropathica, alcoholism, gastrointestinal disease, thermal injury, chronic diseases (eg, diabetes, sickle cell anemia, and in total parenteral nutrition therapy. Awareness that patients with these problems are at risk has led health professionals to focus increasingly on the importance of zinc therapy in the prevention and treatment of deficiency. More recently zinc toxicity and its role in human nutrition and well-being have come under investigation. Reports have focused on the role of zinc toxicity in causes of copper deficiency, changes in the immune system and alterations in blood lipids. As the numerous challenges presented by the study of zinc in human nutrition are met, more appropriate recommendations for dietary and therapeutic zinc intake are being made.

  18. Low Zinc Status and Absorption Exist in Infants with Jejunostomies or Ileostomies Which Persists after Intestinal Repair

    Directory of Open Access Journals (Sweden)

    Steven A. Abrams

    2012-09-01

    Full Text Available There is very little data regarding trace mineral nutrition in infants with small intestinal ostomies. Here we evaluated 14 infants with jejunal or ileal ostomies to measure their zinc absorption and retention and biochemical zinc and copper status. Zinc absorption was measured using a dual-tracer stable isotope technique at two different time points when possible. The first study was conducted when the subject was receiving maximal tolerated feeds enterally while the ostomy remained in place. A second study was performed as soon as feasible after full feeds were achieved after intestinal repair. We found biochemical evidence of deficiencies of both zinc and copper in infants with small intestinal ostomies at both time points. Fractional zinc absorption with an ostomy in place was 10.9% ± 5.3%. After reanastamosis, fractional zinc absorption was 9.4% ± 5.7%. Net zinc balance was negative prior to reanastamosis. In conclusion, our data demonstrate that infants with a jejunostomy or ileostomy are at high risk for zinc and copper deficiency before and after intestinal reanastamosis. Additional supplementation, especially of zinc, should be considered during this time period.

  19. Zinc, copper and lead contents of wines. Comparison between the total concentrations by atomic absorption spectrometry and the concentrations of the free ions by polarography

    Directory of Open Access Journals (Sweden)

    J.-B. Fournier

    1998-03-01

    Full Text Available In the introduction of this article, some examples of the use of trace element data in the characterisation of viticultural produce are reminded. This paper described the determination of zinc, copper and lead by two techniques based on radically different principles. The atomic absorption spectrometry, applied after the mineralisation of the samples by wet process, allows the determination of the total element contents in wine. The polarography allows the analysis of the concentrations of these elements that are under labile chemical forms, and which are dissolved under the ionic forms Zn++, Cu++ and Pb++. The wines analysed in this study were produced from three different parcels chosen in relation to their geological qualities. The vines implanted on these parcels are strictly identical, and three fermentation techniques were applied to each lots of grapes. The results obtained shows that the copper is only under ionic form and that the temperature of the fermentation influences the total copper level in the final wine. At the opposite, there is no ion Pb++ in the samples, but a long duration of maceration increases the lead content. Concerning zinc, only the ions Zn++ are present in the wine in case of a short duration of the maceration. When this duration increases, some other chemical forms of zinc are dissolved in addition to the ions Zn++ which are instantaneously dissociated in aqueous solutions. The problem of the contamination of grapes by the materials used, the phytosanitary treatments and the atmospheric pollution is discussed. The knowledge of the proportion of a trace element that is under ionic forms is indispensable to evaluate the bio-availability of the considered element and the toxicologic risks. The advent and the expansion of the electrochemical methods is expected as an important advance in this field of research.

  20. Complexes cobalt(II, zinc(II and copper(II with some newly synthesized benzimidazole derivatives and their antibacterial activity

    Directory of Open Access Journals (Sweden)

    S. O. PODUNAVAC-KUZMANOVIC

    1999-05-01

    Full Text Available The preparation and properties of some complexes of cobalt(II, zinc(II and copper(II with several newly synthesized benzimidazole derivatives (L are reported. The complexes, of the general formula [MCl2L2] (M=Co(II, Zn(II and [CuCl2L(H2O], have a tetrahedral structure. The complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility measurements, IR and absorption electronic spectra. The antibacterial activitiy of the benzimidazoles and their complexes was evaluated against Erwinia carotovora subsp. carotovora and Erwinia amylovora. The complexes were found to be more toxic than the ligands.

  1. Is a high serum copper concentration a risk factor for implantation failure?

    Science.gov (United States)

    Matsubayashi, Hidehiko; Kitaya, Kotaro; Yamaguchi, Kohei; Nishiyama, Rie; Takaya, Yukiko; Ishikawa, Tomomoto

    2017-08-10

    Copper-containing contraceptive devices may deposit copper ions in the endometrium, resulting in implantation failure. The deposition of copper ions in many organs has been reported in patients with untreated Wilson's disease. Since these patients sometimes exhibit subfertility and/or early pregnancy loss, copper ions were also considered to accumulate in the uterine endometrium. Wilson's disease patients treated with zinc successfully delivered babies because zinc interfered with the absorption of copper from the gastrointestinal tract. These findings led to the hypothesis that infertile patients with high serum copper concentrations may have implantation failure due to the excess accumulation of copper ions. The relationship between implantation (pregnancy) rates and serum copper concentrations has not yet been examined. The Japanese government recently stated that actual copper intake was higher among Japanese than needed. Therefore, the aim of the present study was to investigate whether serum copper concentrations are related to the implantation (pregnancy) rates of human embryos in vivo. We included 269 patients (age copper, and zinc concentrations were measured 16 days after the first date of progesterone replacement. We compared 96 women who were pregnant without miscarriage at 10 weeks of gestation (group P) and 173 women who were not pregnant (group NP). No significant differences were observed in age or BMI between the groups. Copper concentrations were significantly higher in group NP (average 193.2 μg/dL) than in group P (average 178.1 μg/dL). According to the area under the curve (AUC) on the receiver operating characteristic curve for the prediction of clinical pregnancy rates, the Cu/Zn ratio (AUC 0.64, 95% CI 0.54-0.71) was a better predictor than copper or zinc. When we set the cut-off as 1.59/1.60 for the Cu/Zn ratio, sensitivity, specificity, the positive predictive value, and negative predictive value were 0.98, 0.29, 0.71, and 0

  2. Factors affecting the hot-dip zinc coatings structure

    International Nuclear Information System (INIS)

    Sere, P.R.; Cuclcasi, J.D.; Elsner, C.I.; Sarli, A.R.

    1997-01-01

    Coating solidification during hot-dip galvanizing is a very complex process due to Al-Fe, Al-Fe-Zn and Fe-Zn intermetallic compounds development . Fe-Zn intermetallics are brittle and detrimental for the coating ductility, while the diffusion towards the surface of a segregated insoluble alloying such as antimonium causes the sheet darkness. Steel of different roughness were hot-dip galvanized under different operation conditions using a laboratory scale simulator. The effect of steel roughness and process parameters upon coating characteristics were analysed. Experimental results showed that the steel roughness affects the coating thickness, zinc grain size and texture as well as the out-bursts development, while the process parameters affects the Fe 2 Al 5 morphology and antimonium segregation. (Author) 11 refs

  3. Arsenic, copper and zinc occurrence at the Wangaloa coal mine, southeast Otago, New Zealand

    International Nuclear Information System (INIS)

    Black, A.; Craw, D.

    2001-01-01

    Waste piles, created from open cast coal mining activities at the abandoned Wangaloa mine in SE Otago, have exposed pyrite (FeS 2 ) to atmospheric conditions. This has led to the acidification of the surface tailings and nearby drainage waters (acid mine drainage, AMD). Mobilisation of trace metals arsenic (As), copper (Cu), and zinc (Zn) has occurred, partly as a result of the low pH levels (ca. pH 2-4), leading to elevated concentrations of these metals in receiving waters. Authigenic pyrite deposited in a marginal marine coal-forming environment is enriched in As with levels reaching up to 100 ppm. Copper and Zn in solid solution are not elevated above background levels in either coal measures or associated pyrite. Water discharges, sediments, waste rock and background samples were sampled and analysed during the driest (summer) and wettest (winter) seasons of 1998 and 1999. During the winter season, water discharging from the waste piles contained up to 0.7 ppm (mg/kg) As, as measured in 1998. During the 1999 wettest season, no such levels of As were observed, with the highest level attaining 0.07 ppm As. Copper and Zn were locally elevated in waters, with Zn concentrations reaching 1 ppm. During the summer season of 1999, only one sampling site recorded elevated metal concentrations. Adverse effects from the remnant waste piles appear to be highly localised due to downstream natural remediation processes occurring in a wetland area. The absence of strongly elevated metal concentrations during the drier season is a result of strongly depressed water levels within the waste piles. Flushing of acid and metals occurs when the water levels increase with the onset of the winter season. During the summer season, pyrite within the waste piles has been readily decomposing from the increased availability and transport of atmospheric oxygen

  4. and copper(II)

    Indian Academy of Sciences (India)

    Unknown

    (II) and copper(II)–zinc(II) complexes. SUBODH KUMAR1, R N PATEL1*, P V KHADIKAR1 and. K B PANDEYA2. 1 Department of Chemistry, APS University, Rewa 486 003, India. 2 CSJM University, Kanpur 208 016, India e-mail: (R N Patel) ...

  5. Evaluation of iron, zinc, copper, manganese and selenium in oral hospital diets.

    Science.gov (United States)

    Moreira, Daniele C F; de Sá, Júlia S M; Cerqueira, Isabela B; Oliveira, Ana P F; Morgano, Marcelo A; Quintaes, Késia D

    2014-10-01

    Many trace elements are nutrients essential to humans, acting in the metabolism as constituents or as enzymatic co-factors. The iron, zinc, copper, manganese and selenium contents of hospital diets (regular, blend and soft) and of oral food complement (OFC) were determined, evaluating the adequacy of each element in relation to the nutritional recommendations (DRIs) and the percent contribution alone and with OFC. Duplicate samples were taken of six daily meals and of the OFC on two non-consecutive days from a hospital in Belo Horizonte (MG, Brazil) in May and September of 2010 and January of 2011. The elements were determined by ICP OES. Of the diets, the soft diet showed the highest elements content. Offering the OFC was insufficient to provide adequate levels of the trace elements. The oral hospital diets were inadequate in relation to the RDAs for the trace elements studied and the use of the OFCs was insufficient to compensate the values. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  6. Zinc therapy on children with Psoriasis modulates trace elements in serum and tissue

    International Nuclear Information System (INIS)

    El-Said, S. A.

    2013-01-01

    This study illustrates the effect of zinc therapy on some trace elements in either serum and skin which has been done on twenty patients with psoriasis with age range between 4 -13 years. They were under medical treatment with 5 milligram; oral zinc sulfate for 12 weeks. A significant increase in both serum and tissue copper and iron levels was detected by atomic absorption spectrophotometer . In addition, a significant decrease in both serum and tissue calcium and magnesium in psoriatic patients. It has been concluded that zinc therapy could be valuable through modulation of copper, calcium, iron and magnesium in psoriatic patients.

  7. Survey of Serum Zinc and Copper Levels in the Patients with Brucellosis and Comparing with Healthy Persons

    Directory of Open Access Journals (Sweden)

    P Eini

    2014-08-01

    Full Text Available Introduction: Brucellosis is a zoonotic infection. Metabolism of trace elements such as zinc and copper can influence the response of immunity system and can activate host 's immunochemical mechanisms against the organism. Therefore, this study aimed to determine changes in serum levels of Zn and Cu in patients with brucellosis in pre and post treatment compared with healthy persons. Methods: In this individual matched case-control study, 26 patients participated who were admitted to infectious unit of Farshchian Hospital with brucellosis. Moreover, 26 healthy individuals were included in the control group. 5mL of venous blood was taken from all cases in pre-treatment as well post-treatment. Then, the serum samples were diluted with deionized water, and Cu and Zn levels were measured by using Atomic Absorption Spectrophotometer. Results: In this study, 26 patients with brucellosis were enrolled, who were 13 men (50% and 13 women (50%. No significant difference was observed between the patients and the control group in regard with their age and sex. Serum level of Cu in patients with brucellosis was found to be 100.31µg/dl and 92.81µg/dl, respectively before and after the treatment (P=0.495. Serum level of Cu in healthy individuals was reported to be 97.96µg/dl. In addition, serum level of Zn in the patients and controls was 93 µg/dl and 96.38 µg/dl, respectively (P= 0.625. Patients' Zn Serum level was found to be 90.27µg/dl after the treatment. Conclusion: In this study, no significant changes were observed in serum levels of copper and zinc in the patients with brucellosis in comparison with the control group. Besides, no significant changes were reported in serum levels of these elements in the patients in the end of treatment.

  8. Dietary phytate, zinc and hidden zinc deficiency.

    Science.gov (United States)

    Sandstead, Harold H; Freeland-Graves, Jeanne H

    2014-10-01

    Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. Variabilidade espacial e disponibilidade de cobre e zinco em solos de vinhedos e adjacências Spatial variability and copper and zinc availability in vineyards and nearby soils

    Directory of Open Access Journals (Sweden)

    Gustavo Souza Valladares

    2009-09-01

    agrochemicals that are composed by zinc and copper. The objective of this work was to assess the concentration of available copper and zinc, extracted by DTPA, and evaluate its spatial distribution using geostatistics in experimental and commercial vineyards and under other land uses and covers in the surroundings of the cultivated areas. Soil samples were collected at the 0.0-0.15 and 0.15-0.30 m depth in 100 locations. Two catchment areas located at the APTA-Fruits Center of the Secretary of Agriculture of São Paulo State in Jundiaí, Brazil were used in that study. It is a vineyard area with predominance of Umbrept and Udult soils. Initially data were assessed with descriptive statistics, hypothesis test and Pearson linear simple correlation. For the spatial analysis it was utilized semivariograms and crossed semivariograms, and kriging for data interpolation and isolines map generation. High contents of copper and zinc were verified in the area, being the higher ones in the soil under vineyard, probably due to the intensive use of agrochemicals. In these latter soils it was found high positive correlation between copper and zinc content, pH, organic matter, and base saturation. Higher copper and zinc contents were found in the commercial vineyards compared to the experimental fields. The spatial analysis of data allowed to evaluate the spatial distribution of copper and zinc content as well as to verify the positive spatial correlation between those two elements in the 0.15-0.30 m depth by crossed semivariogram.

  10. Intestinal absorption and excretion of zinc in streptozotocin-diabetic rats as affected by dietary zinc and protein

    International Nuclear Information System (INIS)

    Johnson, W.T.; Canfield, W.K.

    1985-01-01

    65 Zn was used to examine the effects of dietary zinc and protein on true zinc absorption and intestinal excretion of endogenous zinc by an isotope dilution technique in streptozotocin-diabetic and control rats. Four groups each of diabetic and control rats were fed diets containing 20 ppm Zn, 20% egg white protein (HMHP); 20 ppm Zn, 10% egg white protein (HMLP); 10 ppm Zn, 20% egg white protein (LMHP); and 10 ppm Zn, 10% egg white protein (LMLP). Measurement of zinc balance was begun 9 d after an i.m. injection of 65 Zn. True zinc absorption and the contribution of endogenous zinc to fecal zinc excretion were calculated from the isotopically labeled and unlabeled zinc in the feces, duodenum and kidney. Results from the isotope dilution study indicated that diabetic rats, but not control rats, absorbed more zinc from 20 ppm zinc diets than from 10ppm zinc diets and that all rats absorbed more zinc from 20% protein diets than from 10% protein diets. Furthermore, all rats excreted more endogenous zinc from their intestines when dietary zinc and protein levels resulted in greater zinc absorption. In diabetic and control rats, consuming equivalent amounts of zinc, the amount of zinc absorbed was not significantly different, but the amount of zinc excreted by the intestine was less in the diabetic rats. Decreased intestinal excretion of endogenous zinc may be a homeostatic response to the increased urinary excretion of endogenous zinc in the diabetic rats and may also lead to the elevated zinc concentrations observed in some organs of the diabetic rats

  11. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III Oxide

    Directory of Open Access Journals (Sweden)

    Zuzana Koudelkova

    2017-08-01

    Full Text Available In this study, the preparation and electrochemical application of a chromium(III oxide modified carbon paste electrode (Cr-CPE and a screen printed electrode (SPE, made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L−1 for Zn(II, 3 and 10 µg·L−1 for Cd(II, 3 and 10 µg·L−1 for Pb(II, 3 and 10 µg·L−1 for Cu(II, and 3 and 10 µg·L−1 for Ag(I, respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L−1 for Zn(II, 25 µg·L−1 for Cd(II, 3 µg·L−1 for Pb(II and 3 µg·L−1 for Cu(II. Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  12. Determination of Zinc, Cadmium, Lead, Copper and Silver Using a Carbon Paste Electrode and a Screen Printed Electrode Modified with Chromium(III) Oxide.

    Science.gov (United States)

    Koudelkova, Zuzana; Syrovy, Tomas; Ambrozova, Pavlina; Moravec, Zdenek; Kubac, Lubomir; Hynek, David; Richtera, Lukas; Adam, Vojtech

    2017-08-09

    In this study, the preparation and electrochemical application of a chromium(III) oxide modified carbon paste electrode (Cr-CPE) and a screen printed electrode (SPE), made from the same material and optimized for the simple, cheap and sensitive simultaneous determination of zinc, cadmium, lead, copper and the detection of silver ions, is described. The limits of detection and quantification were 25 and 80 µg·L -1 for Zn(II), 3 and 10 µg·L -1 for Cd(II), 3 and 10 µg·L -1 for Pb(II), 3 and 10 µg·L -1 for Cu(II), and 3 and 10 µg·L -1 for Ag(I), respectively. Furthermore, this promising modification was transferred to the screen-printed electrode. The limits of detection for the simultaneous determination of zinc, cadmium, copper and lead on the screen printed electrodes were found to be 350 µg·L -1 for Zn(II), 25 µg·L -1 for Cd(II), 3 µg·L -1 for Pb(II) and 3 µg·L -1 for Cu(II). Practical usability for the simultaneous detection of these heavy metal ions by the Cr-CPE was also demonstrated in the analyses of wastewaters.

  13. Zinc Transport Differs in Rat Spermatogenic Cell Types and Is Affected by Treatment with Cyclophosphamide1

    Science.gov (United States)

    Downey, Anne Marie; Hales, Barbara F.; Robaire, Bernard

    2016-01-01

    Adequate zinc levels are required for proper cellular functions and for male germ cell development. Zinc transport is accomplished by two families of zinc transporters, the ZIPs and the ZnTs, that increase and decrease cytosolic zinc levels, respectively. However, very little is known about zinc transport in the testis. Furthermore, whether cytotoxic agents such as cyclophosphamide (CPA), a known male germ cell toxicant, can affect zinc transport and homeostasis is unknown. We examined zinc transporter expression and zinc transport in pachytene spermatocytes (PS) and round spermatids (RS) in a normal state and after exposure to CPA. We observed differences in the expression of members of the ZnT and ZIP families in purified populations of PS and RS. We also observed that RS accumulate more zinc over time than PS. The expression of many zinc binding genes was altered after CPA treatment. Interestingly, we found that the expression levels of ZIP5 and ZIP14 were increased in PS from animals treated daily with 6 mg/kg CPA for 4 wk but not in RS. This up-regulation led to an increase in zinc uptake in PS but not in RS from treated animals compared to controls. These data suggest that CPA treatment may alter zinc homeostasis in male germ cells leading to an increased need for zinc. Altered zinc homeostasis may disrupt proper germ cell development and contribute to infertility and effects on progeny. PMID:27281708

  14. Effect of molybdenum on the severity of toxicity symptoms in flax induced by an excess of either manganese, zinc, copper, nickel or cobalt in the nutrient solution

    Energy Technology Data Exchange (ETDEWEB)

    Millikan, C R

    1947-01-01

    The addition of molybdenum to solutions containing an excess of either manganese, zinc, copper, nickel or cobalt respectively, resulted in decreases in the severity of iron deficiency symptoms which normally occurred when flax was grown in solutions containing the same concentrations of any of these elements, but without molybdenum. The efficacy of molybdenum in this regard increased with increasing concentration up to 25 parts per million. However, concentrations of 0.5 to 2 parts per million of molybdenum had little effect on the severity of iron deficiency symptoms at the concentrations of heavy metals used. Molybdenum 5, 10 or 25 parts per million also retarded the date of appearance and reduced the severity of lower leaf necrosis which is another characteristic symptom of the presence of excess manganese (25 to 100 parts per million) in the nutrient solution. It is concluded that an essential function of molybdenum is intimately associated with the regulation of the deleterious effect of manganese, zinc, copper, nickel or cobalt on the physiological availability of iron to the plant. 46 references, 3 figures.

  15. The spectrographic determination of minor and trace elements in copper, lead, and zinc concentrates

    International Nuclear Information System (INIS)

    Breckenridge, R.L.; Russell, G.M.; Watson, A.E.

    1976-01-01

    This report deals with the development of a method for the determination, by an emission-spectrographic technique, of magnesium, manganese, aluminium, silver, calcium, chromium, cobalt, titanium, antimony, cadmium, molybdenum, zirconium, nickel, boron, vanadium, arsenic, beryllium, tin, germanium, and bismuth in copper, lead, and zinc sulphide concentrates. The method involves the preparation of complex standards in which the volatile elements arsenic, antimony, cadmium, tin, and bismuth are incorporated as sulphide compounds at temperatures of 800 degrees Celsius in evacuated silica tubes together with a synthetic sulphide matrix. These standards are then mixed with the other minor and trace elements to form composite standards. The conditions for excitation with a direct-current arc, and the analytical lines for the elements and internal standards, are given. The procedure is rapid and convenient, and involves the minimum of sample preparation. The accuracy is about 10 per cent, and the method has a coefficient of variation for the various elements of between 2 and 13 per cent

  16. THE ZN-SITE IN BOVINE COPPER, ZINC SUPEROXIDE-DISMUTASE STUDIED BY CD-111 PAC

    DEFF Research Database (Denmark)

    Kofod, Pauli; Bjerrum, Morten J.; Bauer, Rogert

    1991-01-01

    The active site in bovine copper, zinc superoxide dismutase (Cu2. Zn2 SOD) has been studied by 111Cd time differential Perturbed Angular Correlation (PAC) on enzyme with Zn2+ replaced by excited 'Cd2+. The PAC spectra obtained for both the oxidized and the reduced form of Cu2Cd2SOD show...... no asymmetry between the two Zn-sites in the dimeric enzyme. The spectv further reveal that a significant change has taken place at the Zn-site in the reduced form compared to the oxidized form. Semi-empirical calculations based on the Angular Overlap Model (AOM) and coordinates from the crystal structure...... of the native enzyme are in agreement with the experimental PAC data of the oxidized enzyme. The results indicate that Cd2+ coordinates in the same manner as Zn2+ and that the crystal structure of SOD is valid for the enzyme in solution. The PAC spectrum of the reduced enzyme can be explained by extending...

  17. Cu,Zn-superoxide dismutase is lower and copper chaperone CCS is higher in erythrocytes of copper-deficient rats and mice.

    Science.gov (United States)

    West, Elizabeth C; Prohaska, Joseph R

    2004-09-01

    Discovery of a sensitive blood biochemical marker of copper status would be valuable for assessing marginal copper intakes. Rodent models were used to investigate whether erythrocyte concentrations of copper,zinc-superoxide dismutase (SOD), and the copper metallochaperone for SOD (CCS) were sensitive to dietary copper changes. Several models of copper deficiency were studied in postweanling male Holtzman rats, male Swiss Webster mice offspring, and both rat and mouse dams. Treatment resulted in variable but significantly altered copper status as evaluated by the presence of anemia, and lower liver copper and higher liver iron concentrations in copper-deficient compared with copper-adequate animals. Associated with this copper deficiency were consistent reductions in immunoreactive SOD and robust enhancements in CCS. In most cases, the ratio of CCS:SOD was several-fold higher in red blood cell extracts from copper-deficient compared with copper-adequate rodents. Determination of red cell CCS:SOD may be useful for assessing copper status of humans.

  18. [Leaching of nonferrous metals from copper-smelting slag with acidophilic microorganisms].

    Science.gov (United States)

    Murav'ev, M I; Fomchenko, N V

    2013-01-01

    The leaching process of copper and zinc from copper converter slag with sulphuric solutions of trivalent iron sulphate obtained using the association of acidophilic chemolithotrophic microorganisms was investigated. The best parameters of chemical leaching (temperature 70 degrees C, an initial concentration of trivalent iron in the leaching solution of 10.1 g/L, and a solid-phase content in the suspension of 10%) were selected. Carrying out the process under these parameters resulted in the recovery of 89.4% of copper and 39.3% of zinc in the solution. The possibility of the bioregeneration of trivalent iron in the solution obtained after the chemical leaching of slag by iron-oxidizingacidophilic chemolithotrophic microorganisms without inhibiting their activity was demonstrated.

  19. The Response of a 16S Ribosomal RNA Gene Fragment Amplified Community to Lead, Zinc, and Copper Pollution in a Shanghai Field Trial

    Directory of Open Access Journals (Sweden)

    Shumeng Kou

    2018-03-01

    Full Text Available Industrial and agricultural activities have caused extensive metal contamination of land throughout China and across the globe. The pervasive nature of metal pollution can be harmful to human health and can potentially cause substantial negative impact to the biosphere. To investigate the impact of anthropogenic metal pollution found in high concentrations in industrial, agricultural, and urban environments, 16S ribosomal RNA gene amplicon sequencing was used to track change in the amplified microbial community after metal contamination in a large-scale field experiment in Shanghai. A total of 1,566 operational taxonomic units (OTUs identified from 448,108 sequences gathered from 20 plots treated as controls or with lead, zinc, copper, or all three metals. Constrained Analysis of Principal Coordinates ordination did not separate control and lead treatment but could separate control/lead, zinc, copper, and three metal treatment. DESeq2 was applied to identify 93 significantly differentially abundant OTUs varying in 211 pairwise instances between the treatments. Differentially abundant OTUs representing genera or species belonging to the phyla Chloroflexi, Cyanobacteria, Firmicutes, Latescibacteria, and Planctomycetes were almost universally reduced in abundance due to zinc, copper, or three metal treatment; with three metal treatment abolishing the detection of some OTUs, such as Leptolyngbya, Desmonostoc muscorum, and Microcoleus steenstrupii. The greatest increases due to metal treatment were observed in Bacteroidetes, Actinobacteria, Chlamydiae, Nitrospirae, and Proteobacteria (α, β, δ, and γ; the most (relative abundant being uncharacterized species within the genera Methylobacillus, Solirubrobacter, and Ohtaekwangia. Three metal treatment alone resulted in identification of 22 OTUs (genera or species which were not detected in control soil, notably including Yonghaparkia alkaliphila, Pedobacter steynii, Pseudolabrys taiwanensis

  20. The Response of a 16S Ribosomal RNA Gene Fragment Amplified Community to Lead, Zinc, and Copper Pollution in a Shanghai Field Trial.

    Science.gov (United States)

    Kou, Shumeng; Vincent, Gilles; Gonzalez, Emmanuel; Pitre, Frederic E; Labrecque, Michel; Brereton, Nicholas J B

    2018-01-01

    Industrial and agricultural activities have caused extensive metal contamination of land throughout China and across the globe. The pervasive nature of metal pollution can be harmful to human health and can potentially cause substantial negative impact to the biosphere. To investigate the impact of anthropogenic metal pollution found in high concentrations in industrial, agricultural, and urban environments, 16S ribosomal RNA gene amplicon sequencing was used to track change in the amplified microbial community after metal contamination in a large-scale field experiment in Shanghai. A total of 1,566 operational taxonomic units (OTUs) identified from 448,108 sequences gathered from 20 plots treated as controls or with lead, zinc, copper, or all three metals. Constrained Analysis of Principal Coordinates ordination did not separate control and lead treatment but could separate control/lead, zinc, copper, and three metal treatment. DESeq2 was applied to identify 93 significantly differentially abundant OTUs varying in 211 pairwise instances between the treatments. Differentially abundant OTUs representing genera or species belonging to the phyla Chloroflexi, Cyanobacteria, Firmicutes, Latescibacteria, and Planctomycetes were almost universally reduced in abundance due to zinc, copper, or three metal treatment; with three metal treatment abolishing the detection of some OTUs, such as Leptolyngbya , Desmonostoc muscorum , and Microcoleus steenstrupii . The greatest increases due to metal treatment were observed in Bacteroidetes, Actinobacteria, Chlamydiae, Nitrospirae, and Proteobacteria (α, β, δ, and γ); the most (relative) abundant being uncharacterized species within the genera Methylobacillus , Solirubrobacter , and Ohtaekwangia . Three metal treatment alone resulted in identification of 22 OTUs (genera or species) which were not detected in control soil, notably including Yonghaparkia alkaliphila , Pedobacter steynii , Pseudolabrys taiwanensis , Methylophilus

  1. QUANTITATIVE CHANGES OF IRON, MANGANESE, ZINC AND COPPER IN PINE BARK COMPOSTED WITH PLANT MASS AND EFFECTIVE MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Jacek Czekała

    2014-10-01

    Full Text Available The objective of the investigation was to ascertain changes in the total contents, as well as water-soluble forms of iron, manganese, zinc and copper during the process of composting of pine bark with plant material (PM, with or without the addition of effective microorganisms (EM. Experiments were carried out at a forest nursery area and comprised the following treatments: pile 1. pine bark, pile 2. pine bark + PM, pile 3. pine bark + PM + EM. Compost piles were formed from pine bark (4 m3 and as described above, 2 Mg of plant material were added to pile 2 and to pile 3 – plant material and effective microorganisms in the amount of 3 dm3·m-3 bark. All compost files were also supplemented with 0.3 kg P2O5·m-3 (in the form of superphosphate 20% P2O5 and 0,1 kg K2O·m-3 (in the form of potassium salt 60%. The plant material comprised a mixture of buckwheat, field pea, serradella and vetch harvested before flowering. Piles were mixed and formed with the tractor aerator. At defined dates, using the method of atomic spectrophotometry, total contents of iron, manganese, zinc and copper, as well as their water-soluble forms were determined. It was found that all the examined elements underwent changes, albeit with different dynamics. This was particularly apparent in the case of water-soluble forms. This solubility was, in general, high during the initial days of the process and declined with the passage of time. No significant impact of effective microorganisms on the solubility of the examined chemical elements was determined, especially in mature composts.

  2. 78 FR 65573 - Migratory Bird Hunting; Application for Approval of Copper-Clad Iron Shot and Fluoropolymer Shot...

    Science.gov (United States)

    2013-11-01

    ... shot, causing sediment/soil and water contamination and the direct ingestion of shot by aquatic and.... Shot[supreg]. * Coatings of copper, nickel, tin, zinc, zinc chloride, zinc chrome, and fluoropolymers...

  3. Spectrophotometric determination of zinc in impure solutions

    International Nuclear Information System (INIS)

    Rodriguez Hernandez, B.; Reyes Tamaral, A.

    1972-01-01

    A dithizone colorimetric method is described for determining zinc concentrations of 0.001 to 5 g/l in aqueous solutions from Rio Tinto Mines, containing copper, iron and other impurities. Citrate, cyanide and bis-2hydroxyethyl)-dithiocarbamate are added to the aqueous sample of masking several metals, and zinc is extracted at pH 5 with a solution of dithizone in carbon tetrachloride. Excess of dithizone is removed with sodium sulphide, and optical density of zinc dithionate in organic solution is measured at 5.35 nm. Calibration curves obey Beer's law up to 0.5 micro Zn/ml. (Author) 5 refs

  4. Effect of long-term zinc pollution on soil microbial community resistance to repeated contamination.

    Science.gov (United States)

    Klimek, Beata

    2012-04-01

    The aim of the study was to compare the effects of stress (contamination trials) on the microorganisms in zinc-polluted soil (5,018 mg Zn kg(-1) soil dry weight) and unpolluted soil (141 mg Zn kg(-1) soil dw), measured as soil respiration rate. In the laboratory, soils were subjected to copper contamination (0, 500, 1,500 and 4,500 mg kg(-1) soil dw), and then a bactericide (oxytetracycline) combined with a fungicide (captan) along with glucose (10 mg g(-1) soil dw each) were added. There was a highly significant effect of soil type, copper treatment and oxytetracycline/captan treatment. The initial respiration rate of chronically zinc-polluted soil was higher than that of unpolluted soil, but in the copper treatment it showed a greater decline. Microorganisms in copper-treated soil were more susceptible to oxytetracycline/captan contamination. After the successive soil contamination trials the decline of soil respiration was greater in zinc-polluted soil than in unpolluted soil.

  5. Toxicity and deficiency of copper in Elsholtzia splendens affect photosynthesis biophysics, pigments and metal accumulation.

    Science.gov (United States)

    Peng, Hongyun; Kroneck, Peter M H; Küpper, Hendrik

    2013-06-18

    Elsholtzia splendens is a copper-tolerant plant species growing on copper deposits in China. Spatially and spectrally resolved kinetics of in vivo absorbance and chlorophyll fluorescence in mesophyll of E. splendens were used to investigate the copper-induced stress from deficiency and toxicity as well as the acclimation to excess copper stress. The plants were cultivated in nutrient solutions containing either Fe(III)-EDTA or Fe(III)-EDDHA. Copper toxicity affected light-acclimated electron flow much stronger than nonphotochemical quenching (NPQ) or dark-acclimated photochemical efficiency of PSIIRC (Fv/Fm). It also changed spectrally resolved Chl fluorescence kinetics, in particular by strengthening the short-wavelength (<700 nm) part of NPQ altering light harvesting complex II (LHCII) aggregation. Copper toxicity reduced iron accumulation, decreased Chls and carotenoids in leaves. During acclimation to copper toxicity, leaf copper decreased but leaf iron increased, with photosynthetic activity and pigments recovering to normal levels. Copper tolerance in E. splendens was inducible; acclimation seems be related to homeostasis of copper and iron in E. splendens. Copper deficiency appeared at 10 mg copper per kg leaf DW, leading to reduced growth and decreased photosynthetic parameters (F0, Fv/Fm, ΦPSII). The importance of these results for evaluating responses of phytoremediation plants to stress in their environment is discussed.

  6. Synthesis and characterization of strontium molybdate doped with copper, cobalt and zinc for purposes photocatalytic

    International Nuclear Information System (INIS)

    Dutra, F.B.; Silva, M.M.S.; Moriyama, A.L.L.; Souza, C.P.

    2016-01-01

    The broad concerns of contemporary society with environmental problems requires legislation and more effective techniques for wastewater treatment. In recent years, ceramic materials that have properties such as high melting points and high stability have been receiving great emphasis in several studies in particular heterogeneous photocatalysis, rapid and efficient method for the complete mineralization of contaminants. In this context, the present work deals with the synthesis and characterization of molybdate Strontium (SrMoO4) doped with copper, cobalt and zinc for the purpose of photocatalytic studies. The compounds were synthesized by complexation method EDTA / Citrate basic medium. The powders were characterized by Thermogravimetric Analysis (TG), X-Ray Diffraction (XRD), Particle size distribution by laser diffraction, Spectroscopy in the UV-Visible region, Energy Dispersive Spectroscopy (EDS) and Scanning Electron Microscopy (SEM), showing promising results as the crystalline phase of development and potential uses for the purpose of heterogeneous photocatalysis. (author)

  7. Zinc Signals and Immunity.

    Science.gov (United States)

    Maywald, Martina; Wessels, Inga; Rink, Lothar

    2017-10-24

    Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.

  8. Occupancy of a C2-C2 type 'zinc-finger' protein domain by copper. Direct observation by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Hutchens, T W; Allen, M H; Li, C M; Yip, T T

    1992-09-07

    The metal ion specificity of most 'zinc-finger' metal binding domains is unknown. The human estrogen receptor protein contains two different C2-C2 type 'zinc-finger' sequences within its DNA-binding domain (ERDBD). Copper inhibits the function of this protein by mechanisms which remain unclear. We have used electrospray ionization mass spectrometry to evaluate directly the 71-residue ERDBD (K180-M250) in the absence and presence of Cu(II) ions. The ERDBD showed a high affinity for Cu and was completely occupied with 4 Cu bound; each Cu ion was evidently bound to only two ligand residues (net loss of only 2 Da per bound Cu). The Cu binding stoichiometry was confirmed by atomic absorption. These results (i) provide the first direct physical evidence for the ability of the estrogen receptor DNA-binding domain to bind Cu and (ii) document a twofold difference in the Zn- and Cu-binding capacity. Differences in the ERDBD domain structure with bound Zn and Cu are predicted. Given the relative intracellular contents of Zn and Cu, our findings demonstrate the need to investigate further the Cu occupancy of this and other zinc-finger domains both in vitro and in vivo.

  9. The effect of zinc on the microstructure and phase transformations of casting Al-Cu alloys

    Directory of Open Access Journals (Sweden)

    Manasijević Ivana I.

    2016-01-01

    Full Text Available Copper is one of the main alloying elements for aluminum casting alloys. As an alloying element, copper significantly increases the tensile strength and toughness of alloys based on aluminum. The copper content in the industrial casting aluminum alloys ranges from 3,5 to 11 wt.%. However, despite the positive effect on the mechanical properties, copper has a negative influence on the corrosion resistance of aluminum and its alloys. In order to further improve the properties of Al-Cu alloys they are additional alloyed with elements such as zinc, magnesium and others. In this work experimental and analytical examination of the impact of zinc on the microstructure and phase transformations of Al-Cu alloys was carried out. In order to determine the effect of the addition of zinc to the structure and phase transformations of Al-Cu alloys two alloys of Al-Cu-Zn system with selected compositions were prepared and then examined using scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDX. The experimental results were compared with the results of thermodynamic calculations of phase equilibria.

  10. Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition.

    Science.gov (United States)

    Jin, Zhisheng; Liu, Taoze; Yang, Yuangen; Jackson, Daniel

    2014-06-01

    Over the past few decades, zinc smelting activities in Guizhou, China have produced numerous slag dumps, which are often dispersed on roadsides and hill slopes throughout the region. During periods of acid rain, these exposed slags release heavy metals into surface water bodies. A column leaching study was designed to test the potential release of the heavy metals cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) under simulated acid rain events. Two slags with varying environmental exposure periods were packed in columns and subjected to leaching solutions of pH 3.5, 5.5, or DI H2O at intervals of 1, 7, 14, 28, 56d. Pulse concentrations of Cd in leachate were found above 5μg/L, Cr, Pb, and Zn >10μg/L, whereas, Cu reached 10μg/L. After five leaching events, the leachability (percentage of cumulative heavy metal leached after five leaching events as in its respective total concentration in slags) of Cd was 0.05 percent and 0.035 percent from the old and young slag, respectively. Cr (0.035 percent and 0.05 percent) was greater than Cu (0.002 percent and 0.005 percent) and Zn (0.006 percent and 0.003 percent), while the lowest leachability was observed for Pb (0.0005 percent and 0.0002 percent) from the old and young slags, respectively. Reaction rates (release amount of heavy metals in certain period of leaching) of heavy metals in the leachates demonstrated the sequence of Zn>Cr>Cd, Cu>Pb. Leaching release of heavy metals was jointly affected by the pH of leaching solution and mineral composition of slags (including chemical forms of Cd, Cr, Cu, Pb, and Zn). Environmental exposure period of slags, resulting in the alteration of minerals, could affect the release process of heavy metals in leaching as well. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Neutron-Phonon Interaction Studies in Copper, Zinc and Magnesium Single Crystals

    International Nuclear Information System (INIS)

    Maliszewski, E.; Sosnowski, J.; Blinowski, K.; Kozubowski, J.; Padlo, L.; Sledziewska, D.

    1963-01-01

    The phonon dispersion relations in copper single crystals has been studied by means of a triple-axis crystal neutron spectrometer. In the [100] direction the transversal branch, not reported in the papers of Cabie and Jacrot, has been found. This branch fits well to the recent data of sound velocity; however, it differs partly from the X-ray results of Jacobsen. For the longitudinal branch in the [100] direction the dispersion curve obtained by Cribier and Jacrot is lying well above the Jacobsen's curve, and the experimental points reported in the present paper support the results of Cribier and Jacrot. The phonon dispersion relations in zinc and magnesium single crystals has been studied using the cold neutron method and by means of a triple-axis crystal neutron spectrometer as well. The scattering surfaces in the [1010] plane were traced, the AT and AL branches found and the phonon dispersion relations in the [001] and [010] directions obtained. The results have been compared with those obtained by Johnson with X-rays. In the [001] direction the present results fit well lo Johnson's foe the AL branch. In the [010] direction for the AT branch a large discrepancy has been found between Johnson's and the present results. Some explanation of this discrepancy is given. Similar measurements in the same directions in magnesium single crystals are under way and will be reported. (author) [fr

  12. The effect of iron and copper impurities on the wettability of sphalerite (110) surface.

    Science.gov (United States)

    Simpson, Darren J; Bredow, Thomas; Chandra, Anand P; Cavallaro, Giuseppe P; Gerson, Andrea R

    2011-07-15

    The effect of impurities in the zinc sulfide mineral sphalerite on surface wettability has been investigated theoretically to shed light on previously reported conflicting results on sphalerite flotation. The effect of iron and copper impurities on the sphalerite (110) surface energy and on the water adsorption energy was calculated with the semi-empirical method modified symmetrically orthogonalized intermediate neglect of differential overlap (MSINDO) using the cyclic cluster model. The effect of impurities or dopants on surface energies is small but significant. The surface energy increases with increasing surface iron concentration while the opposite effect is reported for increasing copper concentration. The effect on adsorption energies is much more pronounced with water clearly preferring to adsorb on an iron site followed by a zinc site, and copper site least favorable. The theoretical results indicate that a sphalerite (110) surface containing iron is more hydrophilic than the undoped zinc sulfide surface. In agreement with the literature, the surface containing copper (either naturally or by activation) is more hydrophobic than the undoped surface. Copyright © 2011 Wiley Periodicals, Inc.

  13. Zinc resistance of Staphylococcus aureus of animal origin is strongly associated with methicillin resistance

    DEFF Research Database (Denmark)

    Cavaco, Lina; Hasman, Henrik; Aarestrup, Frank Møller

    2011-01-01

    This study was conducted to determine the occurrence of zinc and copper resistances in methicillin-resistant Staphylococcus aureus (MRSA) from swine and veal calves in a global strain collection.The test population consisted of 476 porcine MRSA isolates from ten European countries, 18 porcine MRSA...... of the pig MRSA from Europe and the seven Chinese isolates belonged to other CCs and 3 isolates were not classified into a CC.All isolates were tested for susceptibility to zinc chloride and copper sulphate using agar dilution and tested by PCR for the czrC gene encoding zinc resistance.Phenotypic zinc...... resistance (MIC>2mM) was observed in 74% (n=324) and 42% (n=39) of European MRSA CC398 from pigs and veal calves, respectively, and in 44% of the Canadian isolates (n=8), but not among the Chinese isolates. Almost all (99%) zinc-resistant MRSA carried czrC. Of the 37 European non-CC398 MRSA, 62% were...

  14. Recent trends and current practices for secondary processing of zinc and lead. Part II: zinc recovery from secondary sources.

    Science.gov (United States)

    Sahu, Kamala Kanta; Agrawal, Archana; Pandey, Banshi Dhar

    2004-08-01

    Almost all metallurgical processes are associated with the generation of wastes and residues that may be hazardous or non-hazardous in nature depending upon the criteria specified by institutions such as the US Environment Protection Agency, etc. Wastes containing heavy and toxic metals such as arsenic, cadmium, chromium, nickel, lead, copper, mercury, zinc, etc., that are present beyond permissible limits deemed to be treated or disposed of, and non-hazardous wastes can be utilized for metal recovery or safe disposal. Zinc is in growing demand all over the world. In India, a major amount of zinc is imported and therefore processing of zinc secondaries will assist in satisfying the gap between demand and supply to some extent. This report mainly focuses on the current practices and recent trends on the secondary processing of zinc. Attempts made by various laboratories to develop ecofriendly processes for the recovery of zinc from secondary raw materials are also described and discussed.

  15. Adsorption of Zinc Contained in the Poultry Feedstuff onto Clinoptilolite

    Directory of Open Access Journals (Sweden)

    E. Šucman

    2007-01-01

    Full Text Available The aim of this work was to find whether an adsorbent used as an additive in the feed mixtures could influence the concentration of free available zinc. The feed supplement ZeoFeed, which often constitutes a part of animal feed mixtures, mainly for poultry, was used as adsorbent in the amount of 10 g kg-1 of the feed mixture. A substantial part of ZeoFeed is clinoptilolite, a natural form of zeolite. Two sample preparation methods were used for the determination of zinc. The microwave-assisted wet digestion method was used to achieve a complete decomposition of the feed mixture in order to determine the total zinc concentration. The extraction method represented a simplified model of the processes in the digestive fluid tract. The extraction was done under laboratory temperature for 30, 60 and 120 min. Concentrations of zinc both in digests and extracts were determined by the method of the differential pulse anodic stripping voltammetry. The total zinc concentration (mean ± 95% confidence interval in the feed mixture without addition of clinoptilolite was found to be 145 ± 32.0 mg kg-1 and in the feed mixture with added clinoptilolite 146 ± 11.5 mg kg-1. The concentrations of free available zinc were approximately ten times lesser than the total amount. The analysis of extracts showed that no statistically significant differences between concentrations of zinc in extracts without clinoptilolite and with clinoptilolite addition have been found. The extraction time did not affect the extracted amount of zinc significantly. In addition to zinc, also other three trace elements, namely the essential trace element copper and the toxic trace elements cadmium and lead, were measured. However, these data have only preliminary value and need further verification.

  16. Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction*

    Science.gov (United States)

    Yang, Wei-dong; Wang, Yu-yan; Zhao, Feng-liang; Ding, Zhe-li; Zhang, Xin-cheng; Zhu, Zhi-qiang; Yang, Xiao-e

    2014-01-01

    Willows (Salix spp.) have shown high potential for the phytoextraction of heavy metals. This study compares variations in copper (Cu) and zinc (Zn) tolerance and accumulation potential among 12 willow clones grown in a nutrient solution treated with 50 μmol/L of Cu or Zn, respectively. The results showed differences in the tolerance and accumulation of Cu and Zn with respect to different species/clones. The biomass variation among clones in response to Cu or Zn exposure ranged from the stimulation of growth to inhibition, and all of the clones tested showed higher tolerance to Cu than to Zn. The clones exhibited less variation in Cu accumulation but larger variation in Zn accumulation. Based on translocation factors, it was found that most of the Cu was retained in the roots and that Zn was more mobile than Cu for all clones. It is concluded that most willow clones are good accumulators of Zn and Cu. PMID:25183033

  17. Chemical bath deposited zinc sulfide buffer layers for copper indium gallium sulfur-selenide solar cells and device analysis

    International Nuclear Information System (INIS)

    Kundu, Sambhu; Olsen, Larry C.

    2005-01-01

    Cadmium-free copper indium gallium sulfur-selenide (CIGSS) thin film solar cells have been fabricated using chemical bath deposited (CBD) zinc sulfide (ZnS) buffer layers. Shell Solar Industries provided high quality CIGSS absorber layers. The use of CBD-ZnS, which is a higher band gap material than CdS, improved the quantum efficiency of fabricated cells at lower wavelengths, leading to an increase in short circuit current. The best cell to date yielded an active area (0.43 cm 2 ) efficiency of 13.3%. The effect of the ZnS buffer layer thickness on device performance was studied carefully. This paper also presents a discussion of issues relevant to the use of the CBD-ZnS buffer material for improving device performance

  18. The effect of zinc supplementation on linear growth, body composition, and growth factors in preterm infants.

    Science.gov (United States)

    Díaz-Gómez, N Marta; Doménech, Eduardo; Barroso, Flora; Castells, Silvia; Cortabarria, Carmen; Jiménez, Alejandro

    2003-05-01

    The aim of our study was to evaluate the effect of zinc supplementation on linear growth, body composition, and growth factors in premature infants. Thirty-six preterm infants (gestational age: 32.0 +/- 2.1 weeks, birth weight: 1704 +/- 364 g) participated in a longitudinal double-blind, randomized clinical trial. They were randomly allocated either to the supplemental (S) group fed with a standard term formula supplemented with zinc (final content 10 mg/L) and a small quantity of copper (final content 0.6 mg/L), or to the placebo group fed with the same formula without supplementation (final content of zinc: 5 mg/L and copper: 0.4 mg/L), from 36 weeks postconceptional age until 6 months corrected postnatal age. At each evaluation, anthropometric variables and bioelectrical impedance were measured, a 3-day dietary record was collected, and a blood sample was taken. We analyzed serum levels of total alkaline phosphatase, skeletal alkaline phosphatase (sALP), insulin growth factor (IGF)-I, IGF binding protein-3, IGF binding protein-1, zinc and copper, and the concentrations of zinc in erythrocytes. The S group had significantly higher zinc levels in serum and erythrocytes and lower serum copper levels with respect to the placebo group. We found that the S group had a greater linear growth (from baseline to 3 months corrected age: Delta score deviation standard length: 1.32 +/-.8 vs.38 +/-.8). The increase in total body water and in serum levels of sALP was also significantly higher in the S group (total body water: 3 months; corrected age: 3.8 +/-.5 vs 3.5 +/-.4 kg, 6 months; corrected age: 4.5 +/-.5 vs 4.2 +/-.4 kg; sALP: 3 months; corrected age: 140.2 +/- 28.7 vs 118.7 +/- 18.8 micro g/L). Zinc supplementation has a positive effect on linear growth in premature infants.

  19. Iron, zinc, copper and magnesium nutritional status in Mexican children aged 1 to 11 years Estado nutricio de hierro, zinc, cobre y magnesio en niños mexicanos de 1 a 11 años de edad

    Directory of Open Access Journals (Sweden)

    Ma. del Carmen Morales-Ruán

    2012-04-01

    Full Text Available OBJECTIVE: To describe the micronutrient nutritional status of a national sample of 1-11 year old Mexican children surveyed in 2006 in National Health and Nutrition Survey (ENSANUT 2006 and their association with dietary and sociodemographic factors. MATERIALS AND METHODS: Serum samples were used (n=5 060 to measure the concentrations of ferritin, transferrin receptor, zinc, copper and magnesium. RESULTS: Prevalence of deficiencies in 1-4 and 5-11y old children were for iron (using low ferritin 26.0 and 13.0%; zinc, 28.1 and 25.8%, respectively; and copper, ≈30% in both age groups. Magnesium low serum concentrations (MLSC, were found in 12.0% and 28.4% of the children, respectively. Being beneficiary of Liconsa (OR=0.32; C.I.95%, 0.17-0.61 or belonging to higher socioeconomic status (OR=0.63; C.I.95%, 0.41-0.97 were protective against iron deficiency. Increasing age (OR=0.59; C.I.95%, 1.19-1.32 and living in the Central Region (OR=0.59; C.I.95%, 0.36-0.97 were protective against MLSC. CONCLUSIONS: Deficiencies of iron and zinc are serious public health problems in Mexican children.OBJETIVO: Describir el estado nutricio de micronutrimentos en niños de 1-11 años de edad de la Encuesta Nacional de Salud y Nutrición 2006 y su asociación con factores dietéticos y sociodemográficos. MATERIAL Y MÉTODOS: Se usaron muestras séricas (n=5060 para medir las concentraciones de ferritina, receptor de transferrina, zinc, cobre y magnesio. RESULTADOS: La prevalencias de deficiencias en niños de 1-4 y de 5 a 11 años fueron para ferritina, 26.0 y 13%; zinc, 28.1 y 25.8% respectivamente y cobre ≈30% en ambos grupos. Las concentraciones bajas de magnesio (CBM fueron 12.0 y 28.4%, respectivamente. Ser beneficiario de Liconsa (RM=0.32; IC 95%: 0.17-0.61 y pertenecer al nivel socioeconómico alto (RM=0.63; IC, 95%: 0.41-0.97 fueron protectores para deficiencia de hierro. La edad (RM=1.26; IC, 95%: 1.19-1.32 y vivir en la región Centro (RM=0.59; IC, 95

  20. Tryptophan 32 potentiates aggregation and cytotoxicity of a copper/zinc superoxide dismutase mutant associated with familial amyotrophic lateral sclerosis.

    Science.gov (United States)

    Taylor, David M; Gibbs, Bernard F; Kabashi, Edor; Minotti, Sandra; Durham, Heather D; Agar, Jeffrey N

    2007-06-01

    One familial form of the neurodegenerative disease, amyotrophic lateral sclerosis, is caused by gain-of-function mutations in the gene encoding copper/zinc superoxide dismutase (SOD-1). This study provides in vivo evidence that normally occurring oxidative modification to SOD-1 promotes aggregation and toxicity of mutant proteins. The oxidation of Trp-32 was identified as a normal modification being present in both wild-type enzyme and SOD-1 with the disease-causing mutation, G93A, isolated from erythrocytes. Mutating Trp-32 to a residue with a slower rate of oxidative modification, phenylalanine, decreased both the cytotoxicity of mutant SOD-1 and its propensity to form cytoplasmic inclusions in motor neurons of dissociated mouse spinal cord cultures.

  1. Dietary Zinc Intake and Plasma Zinc Concentrations in Children with Short Stature and Failure to Thrive.

    Science.gov (United States)

    Yazbeck, Nadine; Hanna-Wakim, Rima; El Rafei, Rym; Barhoumi, Abir; Farra, Chantal; Daher, Rose T; Majdalani, Marianne

    2016-01-01

    The burden of zinc deficiency on children includes an increased incidence of diarrhea, failure to thrive (FTT) and short stature. The aim of this study was to assess whether children with FTT and/or short stature have lower dietary zinc intake and plasma zinc concentrations compared to controls. A case-control study conducted at the American University of Beirut Medical Center included 161 subjects from 1 to 10 years of age. Cases had a statistically significant lower energy intake (960.9 vs. 1,135.2 kcal for controls, p = 0.010), lower level of fat (30.3 vs. 36.5 g/day, p = 0.0043) and iron intake (7.4 vs. 9.1 mg/day, p = 0.034). There was no difference in zinc, copper, carbohydrate and protein intake between the 2 groups. The plasma zinc concentration did not differ between the cases and controls (97.4 vs. 98.2 μg/dl, p = 0.882). More cases had mild-to-moderate zinc deficiency when compared to controls with 10.3 vs. 3.6%, p = 0.095. Our study did not show statistically significant difference in dietary zinc intake and plasma zinc concentrations between children with FTT and/or short stature compared to healthy controls. A prospective study is planned to assess the effect of zinc supplementation on growth parameters in FTT children. © 2016 S. Karger AG, Basel.

  2. Use of zinc and copper (I) salts to reduce sulfur and nitrogen impurities during the pyrolysis of plastic and rubber waste to hydrocarbons

    Science.gov (United States)

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1984-01-01

    An improvement in a process for the pyrolytic conversion of rubber and plastic waste to hydrocarbon products which results in reduced levels of nitrogen and sulfur impurities in these products. The improvement comprises pyrolyzing the waste in the presence of at least about 1 weight percent of salts, based on the weight of the waste, preferably chloride or carbonate salts, of zinc or copper (I). This invention was made under contract with or subcontract thereunder of the Department of Energy Contract #DE-AC02-78-ER10049.

  3. Environmental significance of copper, lead, manganese, uranium and zinc speciation in the event of contaminated waters release from the Ranger Uranium Mining Complex

    International Nuclear Information System (INIS)

    Noller, B.N.; Currey, N.A.

    1983-01-01

    The likely impact of the accidental release of tailings dam water during the dry season at the Ranger Uranium Mining Complex was examined. A speciation scheme utilising sizing by filtration and ion-exchange with Chelex 100 has given an insight into the likely partitioning of zinc, copper, lead, manganese and uranium following the addition of tailings dam water to samples from waterbodies in the vicinity of the uranium mining/milling complex. The speciation findings are discussed in terms of likely toxic effects on fish

  4. Investigation of the susceptibility to solidification cracking in copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Richard [Avesta Sheffield R and D, Avesta (Sweden)

    2000-04-01

    A test procedure has been developed at LuTH for investigating the susceptibility to cracking at high temperatures in weldments. It has been proposed to adapt this testing procedure to investigate the cracking susceptibility at high temperatures during strip casting of certain copper alloys. Six different materials were selected for investigation - OFHC copper, tellurium containing copper, 4% tin bronze, 6% tin bronze, 30% zinc brass and 35% zinc brass. The aim of the investigation was to characterize the cracking susceptibility of the candidate materials so as to be able to rank and compare them in a quantitative manner. A further aim of the work was to study the suitability of using the data on the cracking indices generated in the present work in thermomechanical models of the casting process to optimize the casting parameters for each of the materials.

  5. Effect of Ammonium Chloride on the Efficiency with Which Copper Sulfate Activates Marmatite: Change in Solution Composition and Regulation of Surface Composition

    Directory of Open Access Journals (Sweden)

    Shengdong Zhang

    2018-06-01

    Full Text Available Zinc sulfide minerals are the primary choice for zinc extraction and marmatite is one of the two most common zinc sulphide minerals (sphalerite and marmatite, therefore it is of great significance to study and optimize the flotation of marmatite. To improve the activation of copper sulfate on marmatite, a method involving the addition of ammonium chloride is devised. The method has been proven to be an effective way of improving the activation efficiency of copper sulfate towards marmatite under alkaline conditions. The strengthening mechanism was studied using micro-flotation, adsorption test, X-ray photoelectron spectroscopy, and by analyzing changes in solution composition. Flotation test results show that the activation effect of the copper sulfate towards marmatite is enhanced with the addition of ammonium chloride. According to the results of the adsorption measurements and X-ray photoelectron spectroscopy analysis, when the marmatite surface is activated using copper sulfate with added ammonia chloride, it adsorbs more copper sulfide and less copper hydroxide and zinc hydroxide. These changes in surface composition are believed to occur via the following process: NH3(aq promotes the dissolution of zinc hydroxide and then facilitates the conversion of surface copper hydroxide to copper sulfide. In addition, the occurrence of Cu(NH3n2+ can promote the adsorption of copper ions (Cu2+ can be stored as Cu(NH3n2+ via complexation, and then, when the concentration of copper ions decreases, Cu2+ can be released through the decompositionof Cu(NH3n2+. Hence, the copper ion concentration can be maintained and this can facilitate the adsorption of Cu2+ on marmatite. Based on a comprehensive analysis of all our results, we propose that adding ammonium chloride to the copper sulfate changes the solution components (i.e., the presence of NH3(aq and Cu(NH3n2+ and then regulates the surface composition of marmatite. The change in surface composition

  6. Gold cementation with zinc powder from leaching solutions with ammonia-thiosulphate; Cementacion de oro con polvo de cinc en soluciones de lixiviacion coon amoniaco-tiosulfato

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.; Vargas, C.; Alvarez, R.; Alguacil, F. J.

    2005-07-01

    The cementation of gold with powder of zinc, from solutions with thiosulphate and ammonia, was studied. the variables evaluated were: thiosulphate concentration, ammonia concentration, pH, copper concentration and zinc concentration. the results have revealed the great importance of ammonia/thiosulphate relationship in this process and that the impurities presence like copper and zinc will to inhibit the cementation process. (Author) 16 refs.

  7. Energy and environmental implications of copper production

    Energy Technology Data Exchange (ETDEWEB)

    Alvardo, Sergio [Chile Univ., Dept. of Mechanical Engineering, Santiago (Chile); Maldonado, Pedro; Jaques, Ivan [Chile Univ., Energy Research Program, Santiago (Chile)

    1999-04-01

    Primary copper production is a major activity in the mining sector. It is highly energy-intensive, ranking third in specific energy consumption (SEC) among the five major basic metals (aluminum, copper, iron, lead and zinc) and poses important environmental hazards. We examine the large discrepancy between theoretical (from thermodynamics) and actual (from empirical data) SECs and then describe relevant environmental issues, focusing on the most significant energy-related environmental impacts of primary copper production with emphasis on greenhouse-gas (GHG) emissions. An example of GHG energy-related abatement that concurrently improves energy use is presented. (Author)

  8. Characterization of copper-zinc mixed oxide system in relation to different precursor structure and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Porta, P; De Rossi, S; Ferraris, G [Centro del CNR su ' Struttura e Attivia Catalitica di Sistemi di Ossidi' (SACSO), Rome (Italy); Pompa, F [ENEA, TIB Scienza dei Materiali, Rome (Italy)

    1991-03-01

    Hydroxycarbonate and hydroxynitrate precursors of CuO-ZnO catalysts (Cu/Zn atomic ratio=67/33) have been prepared by two different methods; the precursor obtained by precipitation at 333 K and constant pH=8 from mixed nitrate solution with excess of sodium bicarbonate consisted of zincian malachite and aurichalcite, while that obtained by addition of sodium carbonate solution to Cu-Zn nitrate solution is essentially copper hydroxynitrate plus some amount of aurichalcite. By thermal decomposition at 623 K both types of precursor gave a mixture of CuO and ZnO. The mixed oxides were then treated at 873, 1073 and 1273 K in air. X-ray diffraction, diffuse reflectance spectroscopy, scanning electron microscopy and surface area determination were used to characterize the mixed oxide systems. The precursor containing zincian malachite plus aurichalcite, after calcination at 623 K gave rise to well dispersed and much smaller particles of CuO and ZnO than the precursor containing copper hydroxynitrate plus aurichalcite. No Cu{sup 2+} in solid solution in the ZnO zincite structure Zn{sup 2+} in the CuO tenorite lattice were detected by reflectance spectroscopy up to 873 K; the presence of tetrahedral copper (Cu{sub x}Zn{sub 1-x}O solid solution formation at least at the surface) was evident only in samples calcined at temperatures higher than 1073 K. X-ray diffraction analysis for lattice parameter determination showed that only for samples treated at 1273 K both Cu{sub x}Zn{sub 1-x}O and Zn{sub y}Cu{sub 1-y}O solid solution formations are detectable. An unexpected volume decrease of Zn{sub y}Cu{sub 1-y}O with respect to pure CuO was revealed; the introduction of zinc in the tenorite structure probably changes the local metal symmetry from nearly square planar towards octahedral, producing an overall less distorted and more compact structure. (orig.).

  9. [Reference values of iron, iodine, zinc, selenium, copper, molybdenum, vitamin C, vitamin E, vitamin K, carotenoids and polyphenols for the Venezuelan population].

    Science.gov (United States)

    García-Casal, Maria Nieves; Landaeta, Maritza; Adrianza de Baptista, Gertrudis; Murillo, Carolain; Rincón, Mariela; Bou Rached, Lizet; Bilbao, Arantza; Anderson, Hazel; García, Doris; Franquiz, Julia; Puche, Rafael; Garcia, Omar; Quintero, Yurimay; Peña-Rosas, Juan Pablo

    2013-12-01

    The review on iron, iodine, zinc, selenium, copper, molybdenum, vitamin C, vitamin E, vitamin K, carotenoids and polyphenols recommendations for Venezuela comprise the definitions adopted worldwide known as Dietary Reference Intakes (DRIs) that include Recommended Dietary Allowance (RDA), Estimated Average Requirement (EAR), Adequate Intake (AI) and Tolerable Upper Intake Levels (UL). The RDA for iron: 11 mg/day for infants Vitamin C: 40-50 mg/day for infants, 15-45 mg/ day for children, 75 mg/day for male adolescents, 65 mg/day for female adolescents, 90 mg/day for adult males, 75 mg/day for adult females, 80-85 mg/day during pregnancy and 115-120 mg/day during lactation. Recommendations for copper, selenium, molybdenum, vitamins E, K, carotenoids and polyphenols are also presented. These recommendations will help to design adequate and efficient policies that could help to avoid or to treat the consequences derived from the deficiency or the excess of these nutrients.

  10. Arsenic, chromium, copper, iron, manganese, lead, selenium and ...

    African Journals Online (AJOL)

    Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the tissues of the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913), from the Vaal Dam, South Africa, and associated consumption risks.

  11. Thioredoxin-albumin fusion protein prevents copper enhanced zinc-induced neurotoxicity via its antioxidative activity.

    Science.gov (United States)

    Tanaka, Ken-Ichiro; Shimoda, Mikako; Chuang, Victor T G; Nishida, Kento; Kawahara, Masahiro; Ishida, Tatsuhiro; Otagiri, Masaki; Maruyama, Toru; Ishima, Yu

    2018-01-15

    Zinc (Zn) is a co-factor for a vast number of enzymes, and functions as a regulator for immune mechanism and protein synthesis. However, excessive Zn release induced in pathological situations such as stroke or transient global ischemia is toxic. Previously, we demonstrated that the interaction of Zn and copper (Cu) is involved in the pathogenesis of Alzheimer's disease and vascular dementia. Furthermore, oxidative stress has been shown to play a significant role in the pathogenesis of various metal ions induced neuronal death. Thioredoxin-Albumin fusion (HSA-Trx) is a derivative of thioredoxin (Trx), an antioxidative protein, with improved plasma retention and stability of Trx. In this study, we examined the effect of HSA-Trx on Cu 2+ /Zn 2+ -induced neurotoxicity. Firstly, HSA-Trx was found to clearly suppress Cu 2+ /Zn 2+ -induced neuronal cell death in mouse hypothalamic neuronal cells (GT1-7 cells). Moreover, HSA-Trx markedly suppressed Cu 2+ /Zn 2+ -induced ROS production and the expression of oxidative stress related genes, such as heme oxygenase-1. In contrast, HSA-Trx did not affect the intracellular levels of both Cu 2+ and Zn 2+ after Cu 2+ /Zn 2+ treatment. Finally, HSA-Trx was found to significantly suppress endoplasmic reticulum (ER) stress response induced by Cu 2+ /Zn 2+ treatment in a dose dependent manner. These results suggest that HSA-Trx counteracted Cu 2+ /Zn 2+ -induced neurotoxicity by suppressing the production of ROS via interfering the related gene expressions, in addition to the highly possible radical scavenging activity of the fusion protein. Based on these findings, HSA-Trx has great potential as a promising therapeutic agent for the treatment of refractory neurological diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Spectrophotometric determination of zinc in impure solutions; Determinacion Espectrofotometrica de Zinc en muestras de rio-Tinto prvia estracciond el Ditizonato con Tetracloruro

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Hernandez, B; Reyes Tamaral, A

    1972-07-01

    A dithizone colorimetric method is described for determining zinc concentrations of 0.001 to 5 g/l in aqueous solutions from Rio Tinto Mines, containing copper, iron and other impurities. Citrate, cyanide and bis-(2hydroxyethyl)-dithiocarbamate are added to the aqueous sample of masking several metals, and zinc is extracted at pH 5 with a solution of dithizone in carbon tetrachloride. Excess of dithizone is removed with sodium sulphide, and optical density of zinc dithionate in organic solution is measured at 5.35 nm. Calibration curves obey Beer's law up to 0.5 micro Zn/ml. (Author) 5 refs.

  13. Spectrophotometric determination of zinc in impure solutions; Determinacion Espectrofotometrica de Zinc en muestras de rio-Tinto prvia estracciond el Ditizonato con Tetracloruro

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Hernandez, B.; Reyes Tamaral, A.

    1972-07-01

    A dithizone colorimetric method is described for determining zinc concentrations of 0.001 to 5 g/l in aqueous solutions from Rio Tinto Mines, containing copper, iron and other impurities. Citrate, cyanide and bis-(2hydroxyethyl)-dithiocarbamate are added to the aqueous sample of masking several metals, and zinc is extracted at pH 5 with a solution of dithizone in carbon tetrachloride. Excess of dithizone is removed with sodium sulphide, and optical density of zinc dithionate in organic solution is measured at 5.35 nm. Calibration curves obey Beer's law up to 0.5 micro Zn/ml. (Author) 5 refs.

  14. Raney copper catalysts for the water-gas shift reaction - II. Initial catalyst optimisation

    CSIR Research Space (South Africa)

    Mellor, JR

    1997-12-23

    Full Text Available The initial Raney copper WGS activity based on catalyst volume has been shown to be comparable to industrial and co-precipitated alternatives under varying reaction conditions. The presence of zinc oxide in the Raney copper structure was shown...

  15. Zinc toxicity among galvanization workers in the iron and steel industry.

    Science.gov (United States)

    El Safty, Amal; El Mahgoub, Khalid; Helal, Sawsan; Abdel Maksoud, Neveen

    2008-10-01

    Galvanization is the process of coating steel or cast iron pieces with zinc, allowing complete protection against corrosion. The ultimate goal of this work was to assess the effect of occupational exposure to zinc in the galvanization process on different metals in the human body and to detect the association between zinc exposure and its effect on the respiratory system. This study was conducted in 111 subjects in one of the major companies in the iron and steel industry. There were 61 subjects (workers) who were involved in the galvanization process. Fifty adult men were chosen as a matched reference group from other departments of the company. All workers were interviewed using a special questionnaire on occupational history and chest diseases. Ventilatory functions and chest X rays were assessed in all examined workers. Also, complete blood counts were performed, and serum zinc, iron, copper, calcium, and magnesium levels were tested. This study illustrated the relation between zinc exposure in the galvanization process and high zinc levels among exposed workers, which was associated with a high prevalence rate of metal fume fever (MFF) and low blood copper and calcium levels. There was no statistically significant difference between the exposed and control groups with regards to the magnesium level. No long-term effect of metals exposure was detected on ventilatory functions or chest X rays among the exposed workers.

  16. Survey of heavy metal pollution (copper, lead, zinc, cadmium, iron and manganese in drinking water resources of Nurabad city, Lorestan, Iran 2013

    Directory of Open Access Journals (Sweden)

    GHodratolah Shams Khorramabadi

    2016-09-01

    Full Text Available Background: Healthy water passes through the pipelines from supply resources to consuming places in which passing from these stages may cause some cases of contamination like heavy metal contamination. Therefore, the aim of this study was to evaluate the contamination of heavy metals (copper, lead, zinc, cadmium, iron, and manganese in water resources of Nurabad city of Lorestan in 2013. Materials and Methods: In this cross-sectional study, samples were collected from 7 wells of drinking water and 2 water storage tanks during 6 months in Nurabad. So that, heavy metal parameters such as copper, lead, zinc, cadmium, iron, and manganese were measured using an atomic absorption device and also electrical conductivity, sulfate, chloride and total dissolved solids were also measured in accordance with standard methods. Results: Results indicated that the concentration of studied metals in water sources was lower than the national standards and World Health Organization standard, and in the water supply system the concentration of some metals was more than standard level. Moreover, the results showed that the concentration of studied heavy metals were more in winter than in autumn. Conclusion: Generally, in the water resources of Nurabad city the concentration of studied heavy metals was lower than the national standards and World Health Organization standard and there are not problems for water consumers. However, due to public health and the presence of a high concentration of these metals in the distribution supply, the heavy metal concentration in drinking water of this region should be monitored regularly by responsible organizations.

  17. Neurotoxicity of dental amalgam is mediated by zinc.

    Science.gov (United States)

    Lobner, D; Asrari, M

    2003-03-01

    The use of dental amalgam is controversial largely because it contains mercury. We tested whether amalgam caused toxicity in neuronal cultures and whether that toxicity was caused by mercury. In this study, we used cortical cell cultures to show for the first time that amalgam causes nerve cell toxicity in culture. However, the toxicity was not blocked by the mercury chelator, 2,3-dimercaptopropane-1-sulphonate (DMPS), but was blocked by the metal chelator, calcium disodium ethylenediaminetetraacetate (CaEDTA). DMPS was an effective mercury chelator in this system, since it blocked mercury toxicity. Of the components that comprise amalgam (mercury, zinc, tin, copper, and silver), only zinc neurotoxicity was blocked by CaEDTA. These results indicate that amalgam is toxic to nerve cells in culture by releasing zinc. While zinc is known to be neurotoxic, ingestion of zinc is not a major concern because zinc levels in the body are tightly regulated.

  18. Quadrupole interaction in zinc metal

    International Nuclear Information System (INIS)

    Vetterling, W.T.; Pound, R.V.

    1977-01-01

    To allow measurement of the quadrupole interaction in zinc metal, the enriched ZnO was reduced to zinc metal powder and compressed into a pill of thickness 1.4 gm/cm 2 . Sources were made by diffusing 20 mCi of 67 Ga into sintered copper pills. The transducer was based on a cylinder of PZT-4 with 1 / 2 -inch length and could cover linearly a velocity range of +-100 μ/s at 200 Hz. The multiscalar was a modified Northern model NS600, with a minimum dwell time of 20 μs, and with a 10-count buffer at the input to eliminate deadtime from memory cycling

  19. Fluoride Alters Serum Elemental (Calcium, Magnesium, Copper, and Zinc) Homeostasis Along with Erythrocyte Carbonic Anhydrase Activity in Fluorosis Endemic Villages and Restores on Supply of Safe Drinking Water in School-Going Children of Nalgonda District, India.

    Science.gov (United States)

    Khandare, Arjun L; Validandi, Vakdevi; Boiroju, Naveen

    2018-02-17

    The present study aimed to determine the serum trace elements (copper (Cu), zinc (Zn), calcium (Ca), magnesium (Mg)) along with erythrocyte carbonic anhydrase (CA) activity and effect of intervention with safe drinking water for 5 years in the school children of fluorosis endemic area. For this purpose, three categories of villages were selected based on drinking water fluoride (F): Category I (control, F = 1.68 mg/L), category II (affected F = 3.77 mg/L), and category III (intervention village) where initial drinking water F was 4.51 mg/L, and since the last 5 years, they were drinking water containing water for 5 years in school-going children.

  20. BWR fuel experience with zinc injection

    International Nuclear Information System (INIS)

    Levin, H.A.; Garcia, S.E.

    1995-01-01

    In 1982 a correlation between low primary recirculation system dose rates in BWR's and the presence of ionic zinc in reactor water was identified. The source of the zinc was primarily from Admiralty brass condensers. Plants with brass condensers are called ''natural zinc'' plants. Brass condensers were also a source of copper that was implicated in crude induced localized corrosion (CILC) fuel failures. In 1986 the first BWR intentionally injected zinc for the benefits of dose rate control. Although zinc alone was never implicated in fuel degradation of failures, a comprehensive fuel surveillance program was initiated to monitor fuel performance. Currently there are 14 plants that are injecting zinc. Six of these plants are also on hydrogen water chemistry. This paper describes the effect on both Zircaloy corrosion and the cruding characteristics as a result of these changes in water chemistry. Fuel rod corrosion was found to be independent of the specific water chemistry of the plants. The corrosion behavior was the same with the additions of zinc alone or zinc plus hydrogen and well within the operating experience for fuel without either of these additions. No change was observed in the amounts of crude deposited on the fuel rods, both for the adherent and loosely held deposits. One of the effects of the zinc addition was the trend to form more of the zinc rich iron spinel in the fuel deposits rather than the hematite deposits that are predominantly formed with non additive water chemistry

  1. Stability constants of glutarate complexes of copper(II), zinc(II), cobalt(II) and uranyl(II) by paper electrophoresis

    International Nuclear Information System (INIS)

    Singh, R.K.P.; Yadava, J.R.; Yadava, K.L.

    1981-01-01

    Stability constants of Copper(II), Zinc(II), Cobalt(II) and Uranyl(II) glutarates have been determined by paper electrophoresis. Glutaric acid (0.005 mol dmsup(-3)) was added to the background electrolyte : 0.1 mol dmsup(-3) HClO 4 . The proportions of (CH 2 ) 3 COOH COO - and (CH 2 ) 3 C 2 O 4 2- were varied by changing the pH of the electrolyte. These anions yielded the complexes Cu(CH 2 ) 3 C 2 O 4 , [Zn(CH 2 ) 3 COOH COO] + [Co(CH 2 ) 3 COOH COO] + and UO 2 (CH 2 ) 3 C 2 O 4 whose stability constants are found to be 10sup(3.9), 10sup(2.9), 10sup(2.7) and 10sup(13.5) respectively. (author)

  2. Bioavailability of Trace Elements in Beans and Zinc-Biofortified Wheat in Pigs

    DEFF Research Database (Denmark)

    Carlson, Dorthe; Nørgaard, Jan Værum; Torun, B

    2012-01-01

    The objectives of this experiment were to study bioavailability of trace elements in beans and wheat containing different levels of zinc and to study how the water solubility of trace elements was related to the bioavailability in pigs. Three wheat and two bean types were used: wheat of Danish...... origin as a control (CtrlW), two Turkish wheat types low (LZnW) and high (HZnW) in zinc, a common bean (Com), and a faba bean (Faba). Two diets were composed by combining 81 % CtrlW and 19 % Com or Faba beans. Solubility was measured as the trace element concentration in the supernatant of feedstuffs......, and diets incubated in distilled water at pH 4 and 38°C for 3 h. The bioavailability of zinc and copper of the three wheat types and the two bean-containing diets were evaluated in the pigs by collection of urine and feces for 7 days. The solubility of zinc was 34–63 %, copper 18–42 %, and iron 3...

  3. Determination of zinc concentration in female reproductive system by instrumental neutron activation

    International Nuclear Information System (INIS)

    Carvalho, Fernando Ramos de

    2009-01-01

    Non-surgical female sterilization through the transcervical insertion of quinacrine pellets was considered a definitive, low-cost, safe and effective contraceptive method. The zinc, present in both uterus and Fallopian tubes, inhibit the quinacrine efficiency. The addition of copper increases the efficacy of quinacrine, reducing the risk of pregnancy due to the failure to obstruct the Fallopian tubes. The copper neutralized the deleterious effect of the zinc and so the treatment efficacy is increased. In order to obtain a mapping to study the zinc content in the female reproductive system, samples of both uterus and Fallopian tubes were analyzed by instrumental neutron activation. The results show that, on average, the obtained zinc concentrations in tubes (89 μg-g -1 ) is lower than in the uterus (118 μg-g -1 ), confirming results obtained by other authors. These results will support a research project about non-surgical female sterilization of the 'Faculdade de Medicina da Universidade Federal de Minas Gerais' (Medical School of Federal University of Minas Gerais). The used methodology and obtained results are here reported. (author)

  4. Determination of zinc concentration in female reproductive system by instrumental neutron activation

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fernando Ramos de, E-mail: framosc@oi.com.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Oliveira, Arno Heeren de, E-mail: heeren@nuclear.ufmg.b [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Medicina. Dept. de Ginecologia e Obstetricia; Ferreira, Claudia R.C.; Ferreira, Ricardo Alberto Neto; Menezes, Maria Angela de B.C., E-mail: claudia@medicina.ufmg.b, E-mail: ranf@cdtn.b, E-mail: menezes@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    Non-surgical female sterilization through the transcervical insertion of quinacrine pellets was considered a definitive, low-cost, safe and effective contraceptive method. The zinc, present in both uterus and Fallopian tubes, inhibit the quinacrine efficiency. The addition of copper increases the efficacy of quinacrine, reducing the risk of pregnancy due to the failure to obstruct the Fallopian tubes. The copper neutralized the deleterious effect of the zinc and so the treatment efficacy is increased. In order to obtain a mapping to study the zinc content in the female reproductive system, samples of both uterus and Fallopian tubes were analyzed by instrumental neutron activation. The results show that, on average, the obtained zinc concentrations in tubes (89 mug-g{sup -1}) is lower than in the uterus (118 mug-g{sup -1}), confirming results obtained by other authors. These results will support a research project about non-surgical female sterilization of the 'Faculdade de Medicina da Universidade Federal de Minas Gerais' (Medical School of Federal University of Minas Gerais). The used methodology and obtained results are here reported. (author)

  5. Characterization of copper resistant ciliates: Potential candidates for ...

    African Journals Online (AJOL)

    Jane

    2011-08-17

    Aug 17, 2011 ... algae (Rehman and Shakoori, 2001), yeast (Shakoori et al., 2005) ... organisms, this study was undertaken to determine the efficiency of ...... copper, mercury and zinc to ciliates from activated sludge plants. Bull. Environ.

  6. Nicotianamine Secretion for Zinc Excess Tolerance

    NARCIS (Netherlands)

    Aarts, M.G.M.

    2014-01-01

    Plants acquire micronutrients such as iron (Fe), zinc (Zn), manganese, or copper from soil. These micronutrients are often not readily available and they need to be mobilized to the proper free ionic form in order to be taken up by plant roots. Perhaps the only exception to this is the uptake of Fe

  7. Infection and immunity in Down syndrome: a trial of long-term low oral doses of zinc.

    Science.gov (United States)

    Lockitch, G; Puterman, M; Godolphin, W; Sheps, S; Tingle, A J; Quigley, G

    1989-05-01

    To determine whether orally administered zinc supplements could correct the abnormal humoral and cell-mediated immunity of Down syndrome, we randomly assigned 64 children with Down syndrome, aged 1 to 19 years and living at home, to receive either zinc gluconate or placebo daily for 6-month periods with crossover from one regimen to another. Control subjects were siblings and age-matched, unrelated children. Serum zinc, copper, and measures of immune system competence were tested at 3- or 6-month intervals. Parents kept daily logs of clinical symptoms such as cough and diarrhea and of physician visits. Mean serum zinc concentrations increased to about 150% of baseline during zinc supplementation, but we found no effect on serum levels of copper, immunoglobulins, or complement; on lymphocyte number or subset distribution; or on in vitro response to mitogens. Children with Down syndrome who were receiving zinc had a trend toward fewer days or episodes of cough and fever but no change in other clinical variables. Long-term, low-dose oral zinc supplementation to improve depressed immune response or to decrease infections in children with Down syndrome cannot be recommended.

  8. Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon

    International Nuclear Information System (INIS)

    Shu, W.S.; Ye, Z.H.; Lan, C.Y.; Zhang, Z.Q.; Wong, M.H.

    2002-01-01

    Metal-tolerant populations of the plants Paspalum distichum and Cunodon dactylon were identified. - Both Fankou and Lechang lead/zinc (Pb/Zn) mine tailings located at Guangdong Province contained high levels of total and DTPA-extractable Pb, Zn and Cu. Paspalum distichum and Cynodon dactylon were dominant species colonized naturally on the tailings. Lead, zinc and copper accumulation and tolerance of different populations of the two grasses growing on the tailings were investigated. Tillers of these populations including those from an uncontaminated area were subjected to the following concentrations: 5, 10, 20, 30 and 40 mg l -1 Pb, 2.5, 5, 10, 20 and 30 mg l -1 Zn, or 0.25, 0.50, 1 and 2 mg l -1 Cu for 14 days, respectively, then tolerance index (TI) and EC 50 (the concentrations of metals in solutions which reduce 50% of normal root growth) were calculated. The results indicated that both Lechang and Fankou populations of the two grasses showed a greater tolerance to the three metals than those growing on the uncontaminated area, which suggested that co-tolerant ecotypes have evolved in the two grasses. P. distichum collected from Fankou tailings had the highest tolerance to Cu while Lechang population the highest tolerance to Pb and Zn among the tested populations, and tolerance levels in P. distichum were related to metal concentrations in the plants. P. distichum had a better growth performance than C. dactylon when both of them were grown on the tailings sites. Tolerant populations of these species would serve as potential candidates for re-vegetation of wastelands contaminated with Pb, Zn and Cu

  9. Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon

    Energy Technology Data Exchange (ETDEWEB)

    Shu, W.S.; Ye, Z.H.; Lan, C.Y.; Zhang, Z.Q.; Wong, M.H

    2002-12-01

    Metal-tolerant populations of the plants Paspalum distichum and Cunodon dactylon were identified. - Both Fankou and Lechang lead/zinc (Pb/Zn) mine tailings located at Guangdong Province contained high levels of total and DTPA-extractable Pb, Zn and Cu. Paspalum distichum and Cynodon dactylon were dominant species colonized naturally on the tailings. Lead, zinc and copper accumulation and tolerance of different populations of the two grasses growing on the tailings were investigated. Tillers of these populations including those from an uncontaminated area were subjected to the following concentrations: 5, 10, 20, 30 and 40 mg l{sup -1} Pb, 2.5, 5, 10, 20 and 30 mg l{sup -1} Zn, or 0.25, 0.50, 1 and 2 mg l{sup -1} Cu for 14 days, respectively, then tolerance index (TI) and EC{sub 50} (the concentrations of metals in solutions which reduce 50% of normal root growth) were calculated. The results indicated that both Lechang and Fankou populations of the two grasses showed a greater tolerance to the three metals than those growing on the uncontaminated area, which suggested that co-tolerant ecotypes have evolved in the two grasses. P. distichum collected from Fankou tailings had the highest tolerance to Cu while Lechang population the highest tolerance to Pb and Zn among the tested populations, and tolerance levels in P. distichum were related to metal concentrations in the plants. P. distichum had a better growth performance than C. dactylon when both of them were grown on the tailings sites. Tolerant populations of these species would serve as potential candidates for re-vegetation of wastelands contaminated with Pb, Zn and Cu.

  10. The influence of green microstructure and sintering parameters on precipitation process during copper-nickel-zinc ferrites sintering

    Directory of Open Access Journals (Sweden)

    Barba, Antonio

    2014-04-01

    Full Text Available Microstructural changes that occur during heat treatment of copper-nickel-zinc ferrites have been studied. The process of precipitation of the two types of crystals that occur during the sintering process has been analyzed. It is found that this process depends on dry relative density of the press specimens and on the following sintering parameters: sintering temperature, sintering time and cooling rate of the thermal cycle. Crystal precipitates characterization have been done by scanning electron microscopy (SEM, energy-dispersive X-ray (EDX analysis, X-ray diffraction (XRD, and X-ray photoelectron spectroscopy (XPS. These techniques have allowed to determine the nature of these crystals, which in this case correspond to zinc and copper oxides. It has been used two chemical reactions to explain the bulk precipitation and subsequent re-dissolution of these crystal precipitates during sintering.En este trabajo se han estudiado los cambios microestructurales que se producen durante el tratamiento térmico de las ferritas de cobre-níquel-cinc y se ha analizado el proceso de precipitación de los dos tipos de cristales que aparecen durante el proceso de sinterización. Se ha encontrado que este proceso depende de la densidad relativa en seco de las muestras compactadas y de las siguientes variables de la etapa de sinterización: temperatura y tiempo de sinterización y velocidad de enfriamiento. La caracterización de los cristales precipitados se ha realizado por microscopía electrónica de barrido (MEB, microanálisis por dispersión de energía de rayos X (EDX, difracción de rayos X (DRX, y espectroscopía de fotoelectrones de rayos X (XPS. Estas técnicas han permitido determinar la naturaleza de estos cristales, que en este caso corresponden a los óxidos de cinc y de cobre. Se han propuesto dos reacciones químicas que permiten explicar el proceso de precipitación y la posterior re-disolución de estos cristales precipitados durante la

  11. Micronutrient problems in Brazilian soils with special emphasis on zinc

    International Nuclear Information System (INIS)

    Stewart, J.W.B.; Neptune, A.M.L.; Sao Paulo Univ., Piracicaba

    1975-01-01

    Brazil, with approximately 50% of the total land area in South America, has areas in which different micronutrient deficiencies (zinc, boron, copper, iron, manganese and molybdenum) have been noted in specific crops. This paper reviews the published research on such deficiencies and puts special emphasis on zinc which appears to be the most widespread deficiency. The need for an integrated approach to determining the extent of micronutrient deficiencies is discussed. (author)

  12. Effect of intradermal human recombinant copper-zinc superoxide dismutase on random pattern flaps in rats.

    Science.gov (United States)

    Schein, Ophir; Westreich, Melvyn; Shalom, Avshalom

    2013-09-01

    Studies have focused on enhancing flap viability using superoxide dismutase (SOD), but only a few used SOD from human origin, and most gave the compound systemically. We evaluated the ability of SOD to improve random skin flap survival using human recombinant copper-zinc superoxide dismutase (Hr-CuZnSOD) in variable doses, injected intradermally into the flap. Seventy male Sprague Dawley rats were randomly assigned into 4 groups. Cephalic random pattern flaps were elevated on their backs and intradermal injections of different dosages of Hr-CuZnSOD were given 15 minutes before surgery. Flap survival was evaluated by fluorescein fluorescence. Analysis of variance (ANOVA) and t test statistical analyses were performed. Flap survival in all treated groups was significantly better than in the controls. The beneficial effect of HR-CuZnSOD on flap survival is attained when it is given intradermally into the flap tissue. Theoretically, Hr-CuZnSOD delivered with local anesthetics used in flap elevation may be a valuable clinical tool. Copyright © 2012 Wiley Periodicals, Inc.

  13. Characterization and metal-induced gene transcription of two new copper zinc superoxide dismutases in the solitary ascidian Ciona intestinalis

    International Nuclear Information System (INIS)

    Ferro, Diana; Franchi, Nicola; Mangano, Valentina; Bakiu, Rigers; Cammarata, Matteo; Parrinello, Nicolò; Santovito, Gianfranco; Ballarin, Loriano

    2013-01-01

    Highlights: •Ciona intestinalis express two copper-zinc superoxide dismutases (Cu,Zn SODs), one extracellular (Ci-SODa) and one intracellular isoform (Ci-SODb). •Promoters contain consensus sequences similar to mammalian MRE. •Metal exposure results in a significant increase of gene transcription: ci-soda is induced especially by copper and zinc, the increase of ci-sodb transcription is more evident after cadmium exposure. •Genes are mostly transcribed in circulating hemocytes and in ovarian follicular cells. -- Abstract: Antioxidant enzymes are known to protect living organisms against the oxidative stress risk, also induced by metals. In the present study, we describe the purification and molecular characterization of two Cu,Zn superoxide dismutases (SODs), referred to as Ci-SODa and Ci-SODb, from Ciona intestinalis, a basal chordate widely distributed in temperate shallow seawater. The putative amino acid sequences were compared with Cu,Zn SODs from other metazoans and phylogenetic analyses indicate that the two putative Ci-SODs are more related to invertebrate SODs than vertebrate ones. Both phylogenetic and preliminary homology modeling analyses suggest that Ci-SODa and Ci-SODb are extracellular and intracellular isoform, respectively. The mRNA of the two Cu,Zn SODs was localized in hemocytes and in ovarian follicular cells, as revealed by in situ hybridization. The time course of SOD mRNA levels in the presence of three different metals showed upregulation of ci-soda and inhibition of ci-sodb. Spectrophotometric analysis confirms the presence of SOD activity in Ciona tissues. Our in silico analyses of the ci-soda promoter region revealed putative consensus sequences similar to mammalian metal-responsive elements (MRE), suggesting that the transcription of these genes directly depends on metals. These data emphasize the importance of complex metal regulation of ci-soda and ci-sodb transcription, as components of an efficient detoxification pathway

  14. Characterization and metal-induced gene transcription of two new copper zinc superoxide dismutases in the solitary ascidian Ciona intestinalis

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, Diana [Department of Biology, University of Padova, Padova (Italy); Institute for Evolution and Biodiversity, Westfälische Wilhelms-Universität, Münster (Germany); Franchi, Nicola [Department of Biology, University of Padova, Padova (Italy); Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Mangano, Valentina [Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Bakiu, Rigers [Department of Crop Production, Agricultural University of Tirana, Tirana (Albania); Cammarata, Matteo; Parrinello, Nicolò [Department of Biological, Chemical, Pharmaceutical Science and Technology, University of Palermo, Palermo (Italy); Santovito, Gianfranco, E-mail: gianfranco.santovito@unipd.it [Department of Biology, University of Padova, Padova (Italy); Ballarin, Loriano [Department of Biology, University of Padova, Padova (Italy)

    2013-09-15

    Highlights: •Ciona intestinalis express two copper-zinc superoxide dismutases (Cu,Zn SODs), one extracellular (Ci-SODa) and one intracellular isoform (Ci-SODb). •Promoters contain consensus sequences similar to mammalian MRE. •Metal exposure results in a significant increase of gene transcription: ci-soda is induced especially by copper and zinc, the increase of ci-sodb transcription is more evident after cadmium exposure. •Genes are mostly transcribed in circulating hemocytes and in ovarian follicular cells. -- Abstract: Antioxidant enzymes are known to protect living organisms against the oxidative stress risk, also induced by metals. In the present study, we describe the purification and molecular characterization of two Cu,Zn superoxide dismutases (SODs), referred to as Ci-SODa and Ci-SODb, from Ciona intestinalis, a basal chordate widely distributed in temperate shallow seawater. The putative amino acid sequences were compared with Cu,Zn SODs from other metazoans and phylogenetic analyses indicate that the two putative Ci-SODs are more related to invertebrate SODs than vertebrate ones. Both phylogenetic and preliminary homology modeling analyses suggest that Ci-SODa and Ci-SODb are extracellular and intracellular isoform, respectively. The mRNA of the two Cu,Zn SODs was localized in hemocytes and in ovarian follicular cells, as revealed by in situ hybridization. The time course of SOD mRNA levels in the presence of three different metals showed upregulation of ci-soda and inhibition of ci-sodb. Spectrophotometric analysis confirms the presence of SOD activity in Ciona tissues. Our in silico analyses of the ci-soda promoter region revealed putative consensus sequences similar to mammalian metal-responsive elements (MRE), suggesting that the transcription of these genes directly depends on metals. These data emphasize the importance of complex metal regulation of ci-soda and ci-sodb transcription, as components of an efficient detoxification pathway

  15. The effect of composition on volatility from a copper alloy

    International Nuclear Information System (INIS)

    McCarthy, K.A.; Smolik, G.R.; Wallace, R.S.

    1994-01-01

    During a Loss of Coolant Accident (LOCA) activated structural material can be mobilized through oxidation. Information on how much material is mobilized in an accident is necessary for performing safety assessments of fusion reactor designs. The Fusion Safety Program at the Idaho National Engineering Laboratory has an experimental program to measure mobilized mass as a function of temperature for various oxidizing environments. Materials studied have included beryllium (important because of its toxicity), copper alloys, a niobium alloy, PCA and HT-9 steel, tungsten (pure and an alloy), and a vanadium alloy. Some materials undergo a significant change in composition during irradiation. An example of this is copper (a candidate for the ITER first wall, divertor substrate, and various instrumentation probes and antennas), which can have as much as 1 wt% zinc due to transmutation. Additionally, as the design for ITER evolves, a slightly different copper alloy may be selected. Compositional changes may affect the extent that various elements are volatilized due to such mechanisms as diffusion through the alloy, and penetration and release from oxide layers formed on the material. To accurately calculate offsite doses for various irradiation scenarios, one must understand the effect of composition on volatility

  16. SLC30A9 mutation affecting intracellular zinc homeostasis causes a novel cerebro-renal syndrome.

    Science.gov (United States)

    Perez, Yonatan; Shorer, Zamir; Liani-Leibson, Keren; Chabosseau, Pauline; Kadir, Rotem; Volodarsky, Michael; Halperin, Daniel; Barber-Zucker, Shiran; Shalev, Hanna; Schreiber, Ruth; Gradstein, Libe; Gurevich, Evgenia; Zarivach, Raz; Rutter, Guy A; Landau, Daniel; Birk, Ohad S

    2017-04-01

    A novel autosomal recessive cerebro-renal syndrome was identified in consanguineous Bedouin kindred: neurological deterioration was evident as of early age, progressing into severe intellectual disability, profound ataxia, camptocormia and oculomotor apraxia. Brain MRI was normal. Four of the six affected individuals also had early-onset nephropathy with features of tubulo-interstitial nephritis, hypertension and tendency for hyperkalemia, though none had rapid deterioration of renal function. Genome wide linkage analysis identified an ∼18 Mb disease-associated locus on chromosome 4 (maximal logarithm of odds score 4.4 at D4S2971; θ = 0). Whole exome sequencing identified a single mutation in SLC30A9 within this locus, segregating as expected within the kindred and not found in a homozygous state in 300 Bedouin controls. We showed that SLC30A9 (solute carrier family 30 member 9; also known as ZnT-9) is ubiquitously expressed with high levels in cerebellum, skeletal muscle, thymus and kidney. Confocal analysis of SH-SY5Y cells overexpressing SLC30A9 fused to enhanced green fluorescent protein demonstrated vesicular cytosolic localization associated with the endoplasmic reticulum, not co-localizing with endosomal or Golgi markers. SLC30A9 encodes a putative zinc transporter (by similarity) previously associated with Wnt signalling. However, using dual-luciferase reporter assay in SH-SY5Y cells we showed that Wnt signalling was not affected by the mutation. Based on protein modelling, the identified mutation is expected to affect SLC30A9's highly conserved cation efflux domain, putatively disrupting its transmembrane helix structure. Cytosolic Zn2+ measurements in HEK293 cells overexpressing wild-type and mutant SLC30A9 showed lower zinc concentration within mutant rather than wild-type SLC30A9 cells. This suggests that SLC30A9 has zinc transport properties affecting intracellular zinc homeostasis, and that the molecular mechanism of the disease is through

  17. IS COPPER REQUIRED FOR EASTERN OYSTER SETTING AND METAMORPHOSIS?

    Science.gov (United States)

    Recent field research with eastern oysters demonstrated higher defense activities, including hemocyte numbers, locomotion and bactericidal ability, associated with locations exhibiting relatively high contamination. Copper and zinc, found in high concentrations in tissues of oyst...

  18. Ionized zinc vacancy mediated ferromagnetism in copper doped ZnO thin films

    Directory of Open Access Journals (Sweden)

    Shi-Yi Zhuo

    2012-03-01

    Full Text Available This paper reports the origin of ferromagnetism in Cu-doped ZnO thin films. Room-temperature ferromagnetism is obtained in all the thin films when deposited at different oxygen partial pressure. An obviously enhanced peak corresponding to zinc vacancy is observed in the photoluminescence spectra, while the electrical spin resonance measurement implies the zinc vacancy is negative charged. After excluding the possibility of direct exchange mechanisms (via free carriers, we tentatively propose a quasi-indirect exchange model (via ionized zinc vacancy for Cu-doped ZnO system.

  19. Lead and zinc removal with storage period in porous asphalt ...

    African Journals Online (AJOL)

    2013-03-01

    Mar 1, 2013 ... total suspended sediments (TSS)), nutrients (e.g., total Kjeldahl nitrogen (TKN)), oil ... (e.g., lead, copper and zinc), are carried by stormwater runoff ..... The essential mineral of limestone ..... kinetics of basalt–water interaction.

  20. Sodium diethyldithiocarbamate as accelerator of the rate of copper cementation

    Directory of Open Access Journals (Sweden)

    Abeer A. El-Saharty

    2015-12-01

    Full Text Available The effects of Cu2+ ion concentration and temperature on the cementation rate of copper from copper sulphate on zinc and the effect of additives of the organic compound “sodium diethyldithiocarbamate” (NaDDC were studied. It was noticed that the cementation increases significantly by increasing the concentrations of NaDDC. The rate of cementation increased by 58.58−100.31%. Our data showed that sodium diethyldithiocarbamate reacts with the Cu2+ solution giving a complex of copper diethyldithiocarbamate, which enhances the rate of cementation.

  1. Serum Copper Level Significantly Influences Platelet Count, Lymphocyte Count and Mean Cell Hemoglobin in Sickle Cell Anemia

    Directory of Open Access Journals (Sweden)

    Okocha Chide

    2015-12-01

    Full Text Available Background Changes in serum micro nutrients levels affect a number of critically important metabolic processes; these could potentially influence blood counts and ultimately disease presentation in patients with sickle cell anemia (SCA. Objectives To evaluate the influence of serum micro-nutrients levels; zinc, copper, selenium and magnesium on blood counts in steady state SCA patients. Methods A cross sectional study that involved 28 steady state adult SCA subjects. Seven milliliters (mls of blood was collected; 3 mls was for hemoglobin electrophoresis and full blood count determination while 4 mls was for measurement of serum micro nutrients levels, by the atomic absorption spectrophotometry. Correlation between serum micro-nutrient levels and blood counts was done by the Pearson’s linear regression. Ethical approval was obtained from the institutional review board and each participant gave informed consent. All data was analyzed by SPSS software version 20. Results There was a significant correlation between serum copper levels and mean cell hemoglobin (MCH, platelet and lymphocyte counts (r = 0.418; P = 0.02, r = -0.376; P = 0.04 and r = -0.383; P = 0.04, respectively. There were no significant correlations between serum levels of other micro nutrients (selenium, zinc and magnesium and blood counts. Conclusions Copper influences blood count in SCA patients probably by inducing red cell haemolysis, oxidant tissue damage and stimulating the immune system.

  2. Avaliação da solubilidade de cobre e zinco em caldos de leguminosas Evaluation of the solubility of copper and zinc in a salty, watrry vegetatable soup

    Directory of Open Access Journals (Sweden)

    Édira Castello Branco de Andrade

    2003-12-01

    Full Text Available Os metais cobre e zinco podem se apresentar sob diversas formas químicas na natureza: como sais, estando sob a forma de íons I e II ou como compostos orgânicos, complexados com aminoácidos e proteínas. A forma mais biodisponível ao organismo é a forma de compostos organo quelados. Avaliando os teores dos metais em caldo de leguminosas processadas termicamente em meios salino e aquoso é possível avaliar a solubilidade destes metais. Duas marcas e dois lotes de amostras de feijão preto, feijão branco, feijão carioquinha, feijão mulatinho, feijão manteiga, ervilha e lentilha foram processadas termicamente em meios salino e aquoso e determinou-se os teores totais de cobre e zinco em seus caldos. Os caldos foram dissolvidos em HCl 2molL-1 e o teor total de cobre e zinco nas amostras foi determinado através da espectroscopia de absorção atômica em chama. Na análise da rejeição de resultados foi aplicado o teste Dixon e o teste t de student. Os resultados mostraram que a solubilidade média dos metais cobre e zinco nos meios aquoso e salino foram respectivamente 8 e 6%. Acredita-se que os compostos de cobre e zinco nas leguminosas analisadas não são compostos inorgânicos facilmente solúveis em água. Estudos de especiação podem auxiliar na análise da biodisponibilidade destes metais.Copper and zinc can appear in nature under chemical forms, such as salts, being as íons I and II or as organic compounds, synthesized as amino acids and proteins. The most bio-available form to the human body are organic compounds. The solubility of these metals can be determined by evaluating their ratio in a both of legumes thermally processed in an aqueous and a saline mediium. Samples of several varieties of beans, peas, lentils and chickpeas, in two batches containing two different brands of each variety, were thermally processeced in an aqueous and a saline medium and the total ratio of copper and zinc in their respective broths was

  3. The Role of Metal Binding in the Amyotrophic Lateral Sclerosis-Related Aggregation of Copper-Zinc Superoxide Dismutase

    Directory of Open Access Journals (Sweden)

    Ivana Sirangelo

    2017-08-01

    Full Text Available Protein misfolding and conformational changes are common hallmarks in many neurodegenerative diseases involving formation and deposition of toxic protein aggregates. Although many players are involved in the in vivo protein aggregation, physiological factors such as labile metal ions within the cellular environment are likely to play a key role. In this review, we elucidate the role of metal binding in the aggregation process of copper-zinc superoxide dismutase (SOD1 associated to amyotrophic lateral sclerosis (ALS. SOD1 is an extremely stable Cu-Zn metalloprotein in which metal binding is crucial for folding, enzymatic activity and maintenance of the native conformation. Indeed, demetalation in SOD1 is known to induce misfolding and aggregation in physiological conditions in vitro suggesting that metal binding could play a key role in the pathological aggregation of SOD1. In addition, this study includes recent advances on the role of aberrant metal coordination in promoting SOD1 aggregation, highlighting the influence of metal ion homeostasis in pathologic aggregation processes.

  4. Comparison of sodium, potassium, calcium, magnesium, zinc, copper and iron concentrations of elements in 24-h urine and spot urine in hypertensive patients with healthy renal function.

    Science.gov (United States)

    Zhang, Tianjing; Chang, Xiaoyu; Liu, Wanlu; Li, Xiaoxia; Wang, Faxuan; Huang, Liping; Liao, Sha; Liu, Xiuying; Zhang, Yuhong; Zhao, Yi

    2017-12-01

    Sodium, potassium, calcium, magnesium, zinc, copper and iron are associated with the sequela of hypertension. The most reliable method for testing those elements is by collecting 24-h urine samples. However, this is cumbersome and collection of spot urine is more convenient in some circumstance. The aim of this study was to compare the concentrations of different elements in 24-h urine and spot urine. Data was collected from a sub-study of China Salt Substitute and Stroke Study. 240 participants were recruited randomly from 12 villages in two counties in Ningxia, China. Both spot and 24-h urine specimens were collected from each patient. Routine urine test was conducted, and concentration of elements was measured using microwave digestion and Inductively Coupled Plasma-Optical Emission Spectrometry. Partial correlation analysis and Spearman correlation analysis were used to investigate the concentration of different elements and the relationship between 24- h urine and spot urine. A partial correlation in sodium, potassium, calcium, magnesium and iron was found between paired 24-h urine and spot urine samples except copper and zinc: 0.430, 0.426, 0.550, 0.221 and 0.191 respectively. Spot urine can replace 24-h urine for estimating some of the elements in hypertensive patients with normal renal function. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Organic and inorganic sources of zinc, copper and selenium in diets for dairy cows: intake, blood metabolic profile, milk yield and composition

    Directory of Open Access Journals (Sweden)

    Cristina Simões Cortinhas

    2012-06-01

    Full Text Available The present study was carried out with the objective of evaluating the effects of feeding dairy cows with organic or inorganic sources of zinc (Zn, copper (Cu and selenium (Se on blood concentrations of these minerals, blood metabolic profiles, nutrient intake and milk yield and composition. Nineteen Holstein cows were selected and randomly assigned to two groups for receiving organic (n = 9 or inorganic (n = 10 sources of Zn, Cu and Se from 60 days before the expected date of calving to 80 days of lactation. Samples of feed, orts and milk were collected for analysis. Body condition score (BCS was determined and blood samples were collected for analysis of Zn, Cu and Se concentrations, as well as for metabolic profile. Supplying organic or inorganic sources of Zn, Cu, and Se did not affect dry matter and nutrient intake, blood metabolic profile, milk yield and composition, plasma concentration of these minerals, and BCS or change the BCS in cows from 60 days before the expected date of calving to 80 days of lactation. An effect of time was observed on all feed intake variables, plasma concentrations of Zn and Se, milk yield, milk protein content, BCS and change in BCS.

  6. How historical copper contamination affects soil structure and mobilization and transport of colloids

    DEFF Research Database (Denmark)

    Paradelo, Marcos; Møldrup, Per; Holmstrup, Martin

    between 0.01 to 0.43 pore volumes, with longer times for the most contaminated point, likely related with its higher soil density and lower air permeability. The copper pollution affected colloid and tracer transport in the soil columns. The release of colloids especially in the most contaminated points...

  7. A Case of Isolated Elevated Copper Levels during Pregnancy

    Directory of Open Access Journals (Sweden)

    LaToya R. Walker

    2011-01-01

    Full Text Available Introduction. Outside of Wilson's Disease, abnormal copper metabolism is a rare condition. In pregnancy, excess copper levels can be associated with intrauterine growth restriction, preeclampsia and neurological disease. Case Report. A 32 year old Gravida 4 para 2012 with an obstetrical history complicated by elevated copper levels presented for routine prenatal care. Her children had elevated copper levels at birth, with her firstborn child being diagnosed with autism and suffering three myocardial infarctions and being treated for elevated copper levels. During her prior pregnancies, she declined treatment for her elevated copper levels. During this pregnancy, she had declined chelation therapy and instead choose zinc therapy. She delivered a healthy infant with normal copper levels. Conclusion. Alterations in copper metabolism are rare, the consequences in pregnancy can be devastating. While isolated elevations of copper in pregnancy is exceedingly rare, it is treated the same as Wilson's disease. The goal is to prevent fetal growth restricting and neurological sequelae in the newborn and preeclampsia in the mother. Counseling, along with treatment options and timely delivery can greatly improve neonatal and maternal outcome.

  8. Electrodeposition of zinc oxide/tetrasulfonated copper phthalocyanine hybrid thin film for dye-sensitized solar cell application

    International Nuclear Information System (INIS)

    Luo Xinze; Xu Lin; Xu Bingbing; Li Fengyan

    2011-01-01

    Hybrid film of zinc oxide (ZnO) and tetrasulfonated copper phthalocyanine (TSPcCu) was grown on an indium tin oxide (ITO) glass by one-step cathodic electrodeposition from aqueous mixtures of Zn(NO 3 ) 2 , TSPcCu and KCl. The addition of TSPcCu strongly influences the morphology and crystallographic orientation of the ZnO. The nanosheets stack of ZnO leads to a porous surface structure which is advantageous to further adsorb organic dyes. The photovoltaic properties were investigated by assembling the DSSC device based on both the only ZnO film and the ZnO/TSPcCu hybrid films. Photoelectrochemical analysis revealed that the optimized DSSC device with TSPcCu represented a more than three-fold improvement in power conversion efficiency than the device without TSPcCu. The DSSC based on ZnO/TSPcCu hybrid films demonstrates an open circuit voltage of 0.308 V, a short circuit current of 90 μA cm -2 , a fill factor of 0.26, and a power conversion efficiency of 0.14%.

  9. Electrodeposition of zinc oxide/tetrasulfonated copper phthalocyanine hybrid thin film for dye-sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Luo Xinze [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China); College of Chemistry and Biological Science, Yili Normal University, Yining 835000, (China); Xu Lin, E-mail: linxu@nenu.edu.cn [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China); Xu Bingbing; Li Fengyan [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2011-05-15

    Hybrid film of zinc oxide (ZnO) and tetrasulfonated copper phthalocyanine (TSPcCu) was grown on an indium tin oxide (ITO) glass by one-step cathodic electrodeposition from aqueous mixtures of Zn(NO{sub 3}){sub 2}, TSPcCu and KCl. The addition of TSPcCu strongly influences the morphology and crystallographic orientation of the ZnO. The nanosheets stack of ZnO leads to a porous surface structure which is advantageous to further adsorb organic dyes. The photovoltaic properties were investigated by assembling the DSSC device based on both the only ZnO film and the ZnO/TSPcCu hybrid films. Photoelectrochemical analysis revealed that the optimized DSSC device with TSPcCu represented a more than three-fold improvement in power conversion efficiency than the device without TSPcCu. The DSSC based on ZnO/TSPcCu hybrid films demonstrates an open circuit voltage of 0.308 V, a short circuit current of 90 {mu}A cm{sup -2}, a fill factor of 0.26, and a power conversion efficiency of 0.14%.

  10. The impact of a copper smelter on adjacent soil zinc and cadmium fractions and soil organic carbon

    Energy Technology Data Exchange (ETDEWEB)

    Liu Ling; Wu Longhua; Luo Yongming [Key Lab. of Soil Environment and Pollution Remediation, Chinese Academy of Sciences, NJ (China); Zhang Changbo [Shanghai Academy of Environmental Sciences, SH (China); Jiang Yugen; Qiu Xiya [Soils and Fertilisers Div., Fuyang City Agricultural Bureau, Hangzhou, ZJ (China)

    2010-07-15

    Purpose: We investigated the chemical fractions of Zn, Cd and Cu in soils collected from positions at different distances from a copper smelter and studied the relationships between distribution patterns of Zn, Cd and Cu, fractions and soil organic carbon (SOC), especially ''black carbon'' (BC), in contaminated soils. The relationships between soil particle size and concentrations of Zn and Cd in contaminated soil were also examined. Materials and methods: Soil samples were collected from field sites at different distances from the copper smelter, air-dried and passed through 0.25-mm and 0.149-mm nylon mesh sieves. The SOC and BC were determined. Aqua regia and sequentially extracted Zn, Cd and Cu fractions in soil and the different sizes of soil particles, and metal concentrations (Zn, Cd and Cu) in BC were also determined. Results and discussion: The soils were heavily contaminated by fly ash from the copper smelter. Concentrations of Zn, Cd and Cu in soil and SOC decreased with increasing distance from the smelter. Concentrations of Zn and Cd in the surface soil (0-15 cm) decreased from 27,017 to 892 mg kg{sup -1} and from 18.7 to 1.04 mg kg{sup -1}, respectively. Soil BC and concentrations of Zn, Cd and Cu in the BC fraction showed significant and positive relationships with the corresponding aqua regia metal concentrations in soil. Soil Zn and Cd occurred predominantly in the exchangeable and reducible fractions, but residual and oxidisable fractions of Cu that were not considered mobile or bioavailable were predominant (>60%). Concentrations of Zn and Cd in the soil particle size fractions tended to increase with decreasing particle size. Conclusions: The Cd and Zn and BC were all derived from the fly ash of the smelter. Concentrations of Zn and Cd and BC in the soil decreased significantly with increasing distance from the smelter. Zinc and Cd in contaminated soils increased as particle size decreased, and were mainly in highly available

  11. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    Science.gov (United States)

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  12. Concentrations of Cadmium, Copper, and Zinc in Macrobrachium rosenbergii (Giant Freshwater Prawn) from Natural Environment.

    Science.gov (United States)

    Idrus, Farah Akmal; Basri, Masania Mohd; Rahim, Khairul Adha A; Rahim, Nur Syazwani Abd; Chong, Melissa Dennis

    2018-03-01

    This study analyzed the levels of cadmium (Cd), copper (Cu), and zinc (Zn) by the flame atomic absorption spectrophotometer (FAAS), in the muscle tissues, exoskeletons, and gills from freshwater prawn (Macrobrachium rosenbergii) (n = 20) harvested from natural habitat in Kerang River, Malaysia on 25th November 2015. Significant increase of the metals level in muscle tissue and gill (r > 0.70, p < 0.05) were observed with increase in length except for Cu in gills. No relationship was found between metals level in exoskeleton and length. The concentrations of Cd, Cu and Zn were significantly higher (p < 0.05) in males (muscle tissues and exoskeleton) except for Cd in exoskeleton. In gills, only Cu was significantly higher (p < 0.05) in female than male. All samples contained metals below the permissible limit for human consumption (i.e., Cd < 2.00 mg/kg; Cu < 30.00 mg/kg; Zn < 150 mg/kg). Annual metals monitoring in prawn and environmental samples is recommended to evaluate changes of metals bioaccumulation and cycling in the system, which is useful for resources management.

  13. Anomalous concentrations of zinc and copper in highmoor peat bog, southeast coast of Lake Baikal

    Science.gov (United States)

    Bobrov, V. A.; Bogush, A. A.; Leonova, G. A.; Krasnobaev, V. A.; Anoshin, G. N.

    2011-08-01

    When examining the peat deposit discovered in Vydrinaya bog, South Baikal region, the authors encountered anomalous Zn and Cu concentrations for highmoors being up to 600-500 ppm on a dry matter basis in the Early Holocene beds (360-440 cm) formed 11 000-8500 years ago. It has been demonstrated that Zn and Cu are present inside the plant cells of peat moss in the form of authigenic sulfide minerals of micron size. Apart from Zn and Cu, native Ag particles (5-7 um) have been encountered in the peat of the Vydrinaya bog at a depth of 390-410 cm; these particles formed inside the organic matter of the plasma membrane of peat moss containing Ca, Al, S, and Cu. This study suggests probable patterns of the formation of zinc sulfides, copper sulfides, and native silver in peat moss. The results obtained indicate that biogenic mineral formation plays a significant role in this system, which is a very important argument in the discussion on the ore genesis, in which physicochemical processes are normally favored, while the role of living matter is quite frequently disregarded.

  14. Leptin, NPY, Melatonin and Zinc Levels in Experimental Hypothyroidism and Hyperthyroidism: The Relation to Zinc.

    Science.gov (United States)

    Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim

    2017-06-01

    Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT 3 , FT 4 , TT 3 , and TT 4 ) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.

  15. Zinc and immunity: An essential interrelation.

    Science.gov (United States)

    Maares, Maria; Haase, Hajo

    2016-12-01

    The significance of the essential trace element zinc for immune function has been known for several decades. Zinc deficiency affects immune cells, resulting in altered host defense, increased risk of inflammation, and even death. The micronutrient zinc is important for maintenance and development of immune cells of both the innate and adaptive immune system. A disrupted zinc homeostasis affects these cells, leading to impaired formation, activation, and maturation of lymphocytes, disturbed intercellular communication via cytokines, and weakened innate host defense via phagocytosis and oxidative burst. This review outlines the connection between zinc and immunity by giving a survey on the major roles of zinc in immune cell function, and their potential consequences in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Research on the effect of alkali roasting of copper dross on leaching rate of indium

    Science.gov (United States)

    Dafang, Liu; Fan, Xingxiang; Shi, Yifeng; Yang, Kunbin

    2017-11-01

    The byproduct copper dross produced during refining crude lead was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and fluorescence spectrometer (XRF), which showed that copper dross mainly contained lead, copper, zinc, arsenic, antimony, bismuth, sulfur and a small amount of indium and silver etc. The mineralogical phase change of oxidation roasting of copper dross by adding sodium hydroxide was analyzed with the help of XRD and SEM. The effects of water leaching, ratio of sodium hydroxide, roasting time, and roasting temperature on leaching rate of indium were investigated mainly. The experimental results showed that phase of lead metal and sulfides of lead, copper and zinc disappeared after oxidation roasting of copper dross by adding sodium hydroxide, new phase of oxides of lead, copper, zinc and sodium salt of arsenic and antimony appeared. Water leaching could remove arsenic, and acid leaching residue obtained was then leached with acid. The leaching rate of indium was higher 6.98% compared with alkali roasting of copper dross-acid leaching. It showed that removing arsenic by water leaching and acid leaching could increase the leaching rate of indium and be beneficial to reducing subsequent acid consumption of extracting indium by acid leaching. The roasting temperature had a significant effect on the leaching rate of indium, and leaching rate of indium increased with the rise of roasting temperature. When roasting temperature ranged from 450°C to 600°C, leaching rate of indium increased significantly with the rise of roasting temperature. When roasting temperature rose from 450°C to 600°C, leaching rate of indium increased by 60.29%. The amount of sodium hydroxide had an significant effect on the leaching rate of indium, and the leaching of indium increased with the increase of the amount of sodium hydroxide, and the leaching rate of indium was obviously higher than that of copper dross blank roasting and acid leaching.

  17. Ferrite formation in the MeO – Fe2O3 (Me - Zn, Cd, Cu) systems and its impact for the zinc hydrometallurgy

    International Nuclear Information System (INIS)

    Boyanov, Boyan S.; Cherkezova-Zheleva, Zara

    2011-01-01

    Study on the solid state interactions between MeO (Me - Zn, Cd, Cu) and α-Fe 2 O 3 is very important for metallurgy as well as for the preparation of magnetic materials and new catalysts. Zinc, copper and cadmium ferrites are obtained by the conventional ceramic technology. Chemical, DTA and TG analyses, Mössbauer spectroscopy and X-ray phase analysis have been used in the study of intermediate and final products of solid state interactions. The kinetics of formation of MeFe 2 O 4 is investigated by different kinetics equations and the activation energy values are obtained. The ferrite formation process in the system ZnO - α-Fe 2 O 3 and the effectiveness of zinc extraction during the hydrometallurgical treatment of the zinc calcine and the fuming of zinc containing slags are discussed. Key words: ferrites, zinc, copper, cadmium, kinetics, zinc concentrate, Mössbauer spectroscopy, Xray phase analysis

  18. A multi-platform metabolomics approach demonstrates changes in energy metabolism and the transsulfuration pathway in Chironomus tepperi following exposure to zinc

    International Nuclear Information System (INIS)

    Long, Sara M.; Tull, Dedreia L.; Jeppe, Katherine J.; De Souza, David P.; Dayalan, Saravanan; Pettigrove, Vincent J.; McConville, Malcolm J.; Hoffmann, Ary A.

    2015-01-01

    Highlights: • An integrated metabolomics approach was applied to examine zinc exposure in midges. • Changes in carbohydrate and energy metabolism were observed using GC–MS. • Transsulfuration pathway is affected by zinc exposure. • Heavy metals other than zinc affect the transsulfuration pathways differently. - Abstract: Measuring biological responses in resident biota is a commonly used approach to monitoring polluted habitats. The challenge is to choose sensitive and, ideally, stressor-specific endpoints that reflect the responses of the ecosystem. Metabolomics is a potentially useful approach for identifying sensitive and consistent responses since it provides a holistic view to understanding the effects of exposure to chemicals upon the physiological functioning of organisms. In this study, we exposed the aquatic non-biting midge, Chironomus tepperi, to two concentrations of zinc chloride and measured global changes in polar metabolite levels using an untargeted gas chromatography–mass spectrometry (GC–MS) analysis and a targeted liquid chromatography–mass spectrometry (LC–MS) analysis of amine-containing metabolites. These data were correlated with changes in the expression of a number of target genes. Zinc exposure resulted in a reduction in levels of intermediates in carbohydrate metabolism (i.e., glucose 6-phosphate, fructose 6-phosphate and disaccharides) and an increase in a number of TCA cycle intermediates. Zinc exposure also resulted in decreases in concentrations of the amine containing metabolites, lanthionine, methionine and cystathionine, and an increase in metallothionein gene expression. Methionine and cystathionine are intermediates in the transsulfuration pathway which is involved in the conversion of methionine to cysteine. These responses provide an understanding of the pathways affected by zinc toxicity, and how these effects are different to other heavy metals such as cadmium and copper. The use of complementary

  19. A multi-platform metabolomics approach demonstrates changes in energy metabolism and the transsulfuration pathway in Chironomus tepperi following exposure to zinc

    Energy Technology Data Exchange (ETDEWEB)

    Long, Sara M., E-mail: hoskins@unimelb.edu.au [Centre for Aquatic Pollution, Identification and Management (CAPIM), School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, 3052 (Australia); Tull, Dedreia L., E-mail: dedreia@unimelb.edu.au [Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, 3052 (Australia); Jeppe, Katherine J., E-mail: k.jeppe@unimelb.edu.au [Centre for Aquatic Pollution, Identification and Management (CAPIM), School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, 3052 (Australia); Centre for Aquatic Pollution, Identification and Management (CAPIM), School of BioSciences, The University of Melbourne, 3010 (Australia); De Souza, David P., E-mail: desouzad@unimelb.edu.au [Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, 3052 (Australia); Dayalan, Saravanan, E-mail: sdayalan@unimelb.edu.au [Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, 3052 (Australia); Pettigrove, Vincent J., E-mail: vpet@unimelb.edu.au [Centre for Aquatic Pollution, Identification and Management (CAPIM), School of BioSciences, The University of Melbourne, 3010 (Australia); McConville, Malcolm J., E-mail: malcolmm@unimelb.edu.au [Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Road, Parkville, 3052 (Australia); Hoffmann, Ary A., E-mail: ary@unimelb.edu.au [Centre for Aquatic Pollution, Identification and Management (CAPIM), School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, 3052 (Australia); School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road, Parkville, 3052 (Australia)

    2015-05-15

    Highlights: • An integrated metabolomics approach was applied to examine zinc exposure in midges. • Changes in carbohydrate and energy metabolism were observed using GC–MS. • Transsulfuration pathway is affected by zinc exposure. • Heavy metals other than zinc affect the transsulfuration pathways differently. - Abstract: Measuring biological responses in resident biota is a commonly used approach to monitoring polluted habitats. The challenge is to choose sensitive and, ideally, stressor-specific endpoints that reflect the responses of the ecosystem. Metabolomics is a potentially useful approach for identifying sensitive and consistent responses since it provides a holistic view to understanding the effects of exposure to chemicals upon the physiological functioning of organisms. In this study, we exposed the aquatic non-biting midge, Chironomus tepperi, to two concentrations of zinc chloride and measured global changes in polar metabolite levels using an untargeted gas chromatography–mass spectrometry (GC–MS) analysis and a targeted liquid chromatography–mass spectrometry (LC–MS) analysis of amine-containing metabolites. These data were correlated with changes in the expression of a number of target genes. Zinc exposure resulted in a reduction in levels of intermediates in carbohydrate metabolism (i.e., glucose 6-phosphate, fructose 6-phosphate and disaccharides) and an increase in a number of TCA cycle intermediates. Zinc exposure also resulted in decreases in concentrations of the amine containing metabolites, lanthionine, methionine and cystathionine, and an increase in metallothionein gene expression. Methionine and cystathionine are intermediates in the transsulfuration pathway which is involved in the conversion of methionine to cysteine. These responses provide an understanding of the pathways affected by zinc toxicity, and how these effects are different to other heavy metals such as cadmium and copper. The use of complementary

  20. Magnesium, zinc and copper estimation in children with attention ...

    African Journals Online (AJOL)

    Farida Elbaz

    2016-05-14

    May 14, 2016 ... ADHD [3]. Zinc is an important cofactor for metabolism rel- evant to ... Diagnostic and Statistical Manual, fourth edition-Revised. (DSM-R IV) criteria ... 5–10 mg of hair was required for the hair analysis assay. Approximately 100 ...

  1. Study by acoustic emission and electrochemical methods of the corrosion and the protection of the copper-zinc alloy (60/40) in neutral and alkaline media

    International Nuclear Information System (INIS)

    Assouli, B.

    2002-12-01

    The aim of this work is to study and characterize, by electrochemical methods and acoustic emission, the corrosion and the protection of the copper-zinc alloy (60/40) having a metallographic structure αβ'. The electrochemical measurements, in neutral, chlorinated or alkaline medium have allowed, to study the corrosion resistance of the copper-zinc and to show that the corrosion of this alloy, in the used media, is determined by a diffusional mechanism. The observations to the optical and scanning electron microscopes and the EDX analyzes have confirmed that this corrosion phenomenon is mainly due to the selective dissolution of the β' phase. The acoustic emission has shown, during this corrosion, the presence of two emissive sources whose initiation has been attributed to the relaxation of the micro- and macro- residual stresses of the α phase. These stresses have been characterized by X-ray diffraction and the salvoes emitted during the relaxation of these stresses have been discriminated by the characteristic frequencies and by the barycenter of their spectral density. The protection of this alloy has been carried out by the 2-mercapto-benzimidazole (MBI). This last compound has been tested both as inhibitor added directly in the corrosive medium and/or as polymer film previously deposited by an electrochemical way (p-MBI). The MBI is very efficient for an inhibition in a chlorinated alkaline medium. It is an interphase inhibitor. The p-MBI is efficient too in a neutral chlorinated medium and is moreover non pollutant for the environment. (O.M.)

  2. Arsenic, chromium, copper, iron, manganese, lead, selenium and ...

    African Journals Online (AJOL)

    2014-05-20

    May 20, 2014 ... Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the ... and sediment were collected and trace element concentrations were measured with an ICP-MS. ..... Clay minerals are known to have high sorption affinities ..... sediment/water quality interaction with particular reference to the.

  3. The effects of Copper and Zinc on survival, growth and reproduction of the cladoceran Daphnia longispina: introducing new data in an "old" issue.

    Science.gov (United States)

    Martins, Celso; Jesus, Fátima T; Nogueira, António J A

    2017-11-01

    Metal contamination is still a major environmental issue due to their continuous deposition and persistence. In this work we intended to assess the impact that Copper (Cu) and Zinc (Zn) exert in life-history parameters of Daphnia longispina, a common cladoceran in freshwater environments. Thus, we studied the effects of Cu (20-300 µg/L) and Zn (500-4000 µg/L) on the survival, growth, reproduction, feeding rate and population growth rate of D. longispina. Though survival was only reduced for the highest concentration of each metal, other endpoints were strongly affected by lower concentrations. Growth was affected by both metals, especially in the period 0-7 d, being significant for Cu ≥ 40 µg/L and Zn ≥ 500 µg/L. Indeed, growth endpoints at day 7 (body length and growth rate) were equally or more sensitive than the corresponding endpoints at day 21. The size at first reproduction decreased (significant for Cu ≥ 40 µg/L and Zn ≥ 500 µg/L). Reproduction decreased, which was partially explained by the reduced growth, but additional effects were supported by a direct effect of metals on reproduction (based on the relationship body length-brood size). Reduced growth and reproduction are likely a food mediated effect due to feeding inhibition caused by the metals. Globally, the studied endpoints were affected by Cu and Zn differently, supporting a chemical-specificity of the effects, with Zn causing more pronounced effects than Cu. This work presents an innovative approach to the effects of Cu and Zn to D. longispina, giving a general and comprehensive overview of those effects.

  4. Removal of cobalt and nickel from zinc sulphate solutions using activated cementation

    Directory of Open Access Journals (Sweden)

    Boyanov B.

    2004-01-01

    Full Text Available The influence of different parameters (duration, temperature, zinc dust quantity, concentration of activators - copper and antimony on the process of activated cementation of Co and Ni has been studied. We have worked with industrial zinc sulphate solutions. During the process of activated cementation of Co and Ni, copper (involved as CuSO4.5H2O and antimony (involved as Sb2O3 were used as activators. The lowest values of Co content have been obtained at a temperature of 80-85 oC, CCu = 200-300 mg/dm3 and 18 multiple surplus of zinc dust. After adding Cu to the solution, mainly the cementation of Ni is activated, and that of Co is activated to a lower degree. It was found that when GSb : GCo ratio is between 0.5 : 1 and 2 : 1, the solution is purified from Co and Ni to a great degree. After intensive stirring and increasing the duration of the process the cement sediments dissolve reversely. This holds true of Co to a greater extent, as compared to Ni. The results obtained will be used to establish optimal conditions for the carrying out of activated cementation in Zinc Production Plant in KCM SA, Plovdiv.

  5. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria

    DEFF Research Database (Denmark)

    Elguindi, J; Moffitt, S; Hasman, Henrik

    2010-01-01

    of both copper ion-resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions, while E. faecium strains were less affected. Electroplated copper...... on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells, which contributed directly to bacterial killing....

  6. The contribution of ecdysis to the fate of copper, zinc and cadmium in grass shrimp, Palaemonetes pugio holthius

    Energy Technology Data Exchange (ETDEWEB)

    Keteles, K.A.; Fleeger, J.W. [Louisiana State Univ., Dept. of Biological Sciences, Baton Rouge, LA (United States)

    2001-07-01

    Depuration through ecdysis by grass shrimp, Palaemonetes pugio, was examined by exposure to a sublethal mixture of copper, zinc and cadmium for 72 h, followed by placement in uncontaminated water to molt. Percent eliminated with the exuviae varied for each metal; of the total intermolt body burden, 11% Cu, 18% Zn and 26% Cd was associated with the exuviae. Cu concentrations of intermolt exoskeletons were significantly higher than of the exuviae of post-ecdysis shrimp suggesting that Cu contained in the exoskeleton was reabsorbed before molting. Exuvial Cd concentration was not significantly different than the concentration of the intermolt exoskeleton, suggesting that most Cd in the exoskeleton was depurated with the exuviae. Although Zn whole-body burdens were lower after a molt, Zn losses were most likely due to excretion because exuvial concentrations were significantly lower than in the intermolt exoskeleton. Cu, Cd and Zn concentrations in exuvaie shed in metal-enriched water were significantly higher due to adsorption than exuvaie produced in uncontaminated water. (Author)

  7. Copper, cadmium, and zinc concentrations in aquatic food chains from the Upper Sacramento River (California) and selected tributaries

    Science.gov (United States)

    Saiki, M.K.; Castleberry, D. T.; May, T. W.; Martin, B.A.; Bullard, F. N.

    1995-01-01

    Metals enter the Upper Sacramento River above Redding, California, primarily through Spring Creek, a tributary that receives acid-mine drainage from a US EPA Superfund site known locally as Iron Mountain Mine. Waterweed (Elodea canadensis) and aquatic insects (midge larvae, Chironomidae; and mayfly nymphs, Ephemeroptera) from the Sacramento River downstream from Spring Creek contained much higher concentrations of copper (Cu), cadmium (Cd), and zinc (Zn) than did similar taxa from nearby reference tributaries not exposed to acid-mine drainage. Aquatic insects from the Sacramento River contained especially high maximum concentrations of Cu (200 mg/kg dry weight in midge larvae), Cd (23 mg/kg dry weight in mayfly nymphs), and Zn (1,700 mg/kg dry weight in mayfly nymphs). Although not always statistically significant, whole-body concentrations of Cu, Cd, and Zn in fishes (threespine stickleback, Gasterosteus aculeatus; Sacramento sucker, Catostomus occidentalis; Sacramento squawfish, Ptychocheilus grandis; and chinook salmon, Oncorhynchus tshawytasch) from the Sacramento River were generally higher than in fishes from the reference tributaries.

  8. Zinc-induced hemolytic anemia caused by ingestion of pennies by a pup

    International Nuclear Information System (INIS)

    Latimer, K.S.; Jain, A.V.; Inglesby, H.B.; Clarkson, W.D.; Johnson, G.B.

    1989-01-01

    A 4-month-old Pomeranian pup was examined because of anorexia, salivation, and persistent vomiting. Initial laboratory testing revealed marked hemolytic anemia with spherocytosis. Survey abdominal radiography revealed 4 metal objects which, when removed by gastrotomy, were identified as pennies. Of 4 pennies, 3 were minted since 1983 and were heavily pitted over the surface and rim. Partially digested pennies were composed of a copper-plated high zinc concentration alloy. Further laboratory testing indicated a marked increase in serum zinc concentration in the pup (28.8 mg/L), confirming metal toxicosis. Serum zinc concentrations decreased during recovery

  9. Avaliação do uso de ervas medicinais como suplemento nutricional de ferro, cobre e zinco Evaluation of the use of medicinal grass as nutritional supplement of iron, copper and zinc

    Directory of Open Access Journals (Sweden)

    Édira Castello Branco de Andrade

    2005-09-01

    Full Text Available O cobre, ferro e zinco, considerados elementos essenciais ao corpo humano, apresentam biodisponibilidade variável em função da forma química que se encontram em um alimento. As ervas medicinais, amplamente utilizadas, podem apresentar novas indicações quanto a suplementação destes metais. Este trabalho tem por objetivo avaliar os teores de cobre, ferro e zinco em ervas medicinais, pós e ervas secas, e promover a extração seqüencial visando a biodisponibilidade. Os teores de cobre, ferro e zinco foram determinados através da espectroscopia de absorção atômica. A extração seqüencial foi aplicada com os extratores cloreto de cálcio 1,0M; ácido acético 0,1M com acetato de amônio 5% (pH=5,0; ácido acético 0,5M e HCl 0,5M. Os resultados apresentaram teores altos de cobre, ferro e zinco, quando comparados com outras fontes alimentícias destes metais, além de indicar que os mesmos se apresentam sob, no mínimo, 4 espécies químicas distintas nas ervas analisadas. O extrator I foi o de melhor eficiência para os três metais. Considerando que o consumo destas ervas é feito com visão farmacológica, acredita-se que uso das mesmas em preparos de alimentos pode favorecer a suplementação dos metais cobre, ferro e zinco.Copper, iron and zinc, considered essential elements in the human body, present changeable biodisponibility in chemical form more than if found in a food. Medicinal plants, widely used, can present new indications as to how much the suplementation of these metals, aiming at such an objective, can be shown to evaluate the amounts of copper, iron, and zinc in medicinal plants, powder and dry grass, and to promote the extraction sequencial aiming at the biodisponibility. The copper amount, iron and zinc had been determined through the spectroscopy of atomic absorption. The extraction sequencial was applied with the extractors calcium chloride 1,0M; acetic acid 0,1M with ammonium acetate 5% ( pH=5,0 ; acetic acid 0

  10. The concentration of heavy metals: zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people

    International Nuclear Information System (INIS)

    Wandiga, S.O.; Jumba, I.O.

    1982-01-01

    An intercomparative analysis of the concentration of heavy metals:zinc, cadmium, lead, copper, mercury, iron and calcium in head hair of a randomly selected sample of Kenyan people using the techniques of atomic absorption spectrophotometry (AAS) and differential pulse anodic stripping voltammetry (DPAS) has been undertaken. The percent relative standard deviation for each sample analysed using either of the techniques show good sensitivity and correlation between the techniques. The DPAS was found to be slightly sensitive than the AAs instrument used. The recalculated body burden rations of Cd to Zn, Pb to Fe reveal no unusual health impairement symptoms and suggest a relatively clean environment in Kenya.(author)

  11. Urinary excretion of copper, zinc and iron with and without D-penicillamine administration in relation to hepatic copper concentration in dogs

    NARCIS (Netherlands)

    Fieten, H.|info:eu-repo/dai/nl/314112596; Hugen, S.; van den Ingh, T.S.G.A.M.; Hendriks, W.H.|info:eu-repo/dai/nl/298620936; Vernooij, Hans|info:eu-repo/dai/nl/340304596; Bode, P.; Watson, A.L.; Leegwater, P.A.J.|info:eu-repo/dai/nl/074236539; Rothuizen, J.|info:eu-repo/dai/nl/071276033

    2013-01-01

    Abstract Hereditary copper-associated hepatitis in dogs resembles Wilson’s disease, a copper storage disease in humans. Values for urinary copper excretion are well established in the diagnostic protocol of Wilson’s disease, whereas in dogs these have not been evaluated. The objectives of this study

  12. Urinary excretion of copper, zinc and iron with and without D-penicillamine administration in relation to hepatic copper concentration in dogs

    NARCIS (Netherlands)

    Fieten, H.; Hugen, S.; Ingh, van den T.S.G.A.M.; Hendriks, W.H.; Vernooij, J.C.M.; Bode, P.; Watson, A.L.; Leegwater, P.A.J.; Rothuizen, J.

    2013-01-01

    Hereditary copper-associated hepatitis in dogs resembles Wilson’s disease, a copper storage disease in humans. Values for urinary copper excretion are well established in the diagnostic protocol of Wilson’s disease, whereas in dogs these have not been evaluated. The objectives of this study were to

  13. Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems

    Directory of Open Access Journals (Sweden)

    Sung Ryul Lee

    2018-01-01

    Full Text Available Zinc is recognized as an essential trace metal required for human health; its deficiency is strongly associated with neuronal and immune system defects. Although zinc is a redox-inert metal, it functions as an antioxidant through the catalytic action of copper/zinc-superoxide dismutase, stabilization of membrane structure, protection of the protein sulfhydryl groups, and upregulation of the expression of metallothionein, which possesses a metal-binding capacity and also exhibits antioxidant functions. In addition, zinc suppresses anti-inflammatory responses that would otherwise augment oxidative stress. The actions of zinc are not straightforward owing to its numerous roles in biological systems. It has been shown that zinc deficiency and zinc excess cause cellular oxidative stress. To gain insights into the dual action of zinc, as either an antioxidant or a prooxidant, and the conditions under which each role is performed, the oxidative stresses that occur in zinc deficiency and zinc overload in conjunction with the intracellular regulation of free zinc are summarized. Additionally, the regulatory role of zinc in mitochondrial homeostasis and its impact on oxidative stress are briefly addressed.

  14. 77 FR 47030 - Seamless Refined Copper Pipe and Tube From the People's Republic of China: Preliminary Results of...

    Science.gov (United States)

    2012-08-07

    ... 0.8 Te--Tellurium 0.8 Zn--Zinc 1.0 Zr--Zirconium 0.3 Other elements (each) 0.3 Excluded from the... and sells a small amount of copper slag and copper ash; therefore, the Department has granted a by...

  15. Preparation and adsorption characteristics for heavy metals of active silicon adsorbent from leaching residue of lead-zinc tailings.

    Science.gov (United States)

    Lei, Chang; Yan, Bo; Chen, Tao; Xiao, Xian-Ming

    2018-05-19

    To comprehensively reuse the leaching residue obtained from lead-zinc tailings, an active silicon adsorbent (ASA) was prepared from leaching residue and studied as an adsorbent for copper(II), lead(II), zinc(II), and cadmium(II) in this paper. The ASA was prepared by roasting the leaching residue with either a Na 2 CO 3 /residue ratio of 0.6:1 at 700 °C for 1 h or a CaCO 3 /residue ratio of 0.8:1 at 800 °C for 1 h. Under these conditions, the available SiO 2 content of the ASA was more than 20%. The adsorption behaviors of the metal ions onto the ASA were investigated and the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models were used to analyze the adsorption isotherm. The result showed that the maximum adsorption capacities of copper(II), lead(II), cadmium(II), and zinc(II) calculated by the Langmuir model were 3.40, 2.83, 0.66, and 0.62 mmol g -1 , respectively. The FT-IR spectra of the ASA and the mean free adsorption energies indicated that ion exchange was the mechanism of copper(II), lead(II), and cadmium(II) adsorption and that chemical reaction was the mechanism of zinc(II) adsorption. These results provide a method for reusing the leaching residue obtained from lead-zinc tailings and show that the ASA is an effective adsorbent for heavy metal pollution remediation.

  16. A comparative study of stream water and stream sediment as geochemical exploration media in the Rio Tanama porphyry copper district, Puerto Rico

    Science.gov (United States)

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    To test the relative effectiveness of stream water and sediment as geochemical exploration media in the Rio Tanama porphyry copper district of Puerto Rico, we collected and subsequently analyzed samples of water and sediment from 29 sites in the rivers and tributaries of the district. Copper, Mo, Pb, Zn, SO42-, and pH were determined in the waters; Cu, Mo, Pb, and Zn were determined in the sediments. In addition, copper in five partial extractions from the sediments was determined. Geochemical contrast (anomaly-to-background quotient) was the principal criterion by which the effectiveness of the two media and the five extractions were judged. Among the distribution patterns of metals in stream water, that of copper most clearly delineates the known porphyry copper deposits and yields the longest discernable dispersion train. The distribution patterns of Mo, Pb, and Zn in water show little relationship to the known mineralization. The distribution of SO42- in water delineates the copper deposits and also the more extensive pyrite alteration in the district; its recognizable downstream dispersion train is substantially longer than those of the metals, either in water or sediment. Low pH values in small tributaries delineate areas of known sulfide mineralization. The distribution patterns of copper in sediments clearly delineate the known deposits, and the dispersion trains are longer than those of copper in water. The partial determinations of copper related to secondary iron and manganese oxides yield the strongest geochemical contrasts and longest recognizable dispersion trains. Significantly high concentrations of molybdenum in sediments were found at only three sites, all within one-half km downstream of the known copper deposits. The distribution patterns of lead and zinc in sediments are clearly related to the known primary lead-zinc haloes around the copper deposits. The recognizable downstream dispersion trains of lead and zinc are shorter than those of

  17. Does the oral zinc tolerance test measure zinc absorption

    Energy Technology Data Exchange (ETDEWEB)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi /sup 65/ZnCl/sub 2/ and a non-absorbed marker, /sup 51/CrCl/sub 3/, dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with /sup 65/Zn and /sup 51/Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and /sup 65/Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and /sup 65/Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption.

  18. Does the oral zinc tolerance test measure zinc absorption

    International Nuclear Information System (INIS)

    Valberg, L.S.; Flanagan, P.R.; Brennan, J.; Chamberlain, M.J.

    1985-01-01

    Increases in plasma zinc concentration were compared with radiozinc absorption after oral test doses. Ten healthy, fasting subjects were each given 385 mumol zinc chloride (25 mg Zn) labelled with 0.5 muCi 65 ZnCl 2 and a non-absorbed marker, 51 CrCl 3 , dissolved in 100 ml of water; another 10 persons were given 354 mumol zinc chloride and 125 g of minced turkey containing 31 mumol zinc also labelled with 65 Zn and 51 Cr. Measurements were made of plasma zinc concentration at hourly intervals for 5 hours, radiozinc absorption by stool counting of unabsorbed radioactivity 12-36 hours later, and radiozinc retention by whole body counting at 7 days. The mean percentage of radiozinc absorbed and retained in the body from the two test meals was found to be identical (42%). In contrast the increased area under the plasma zinc curve up to 5 hours after the turkey meal, 28 +/- 9 mumol/L (mean +/- SD) was significantly less than that for zinc chloride alone, 47 +/- 15 mumol/L, p less than 0.005. Despite this difference, a good correlation was found between the area under the plasma zinc curve and 65 Zn absorption in individual subjects after each meal. The discrepancy between the results of zinc absorption derived from the plasma zinc curve and 65 Zn absorption for the liquid and solid test meals was most likely explained by binding of zinc to food and delayed gastric emptying of the solid meal. With a test meal of turkey meat at least this dampened the plasma appearance of zinc but did not affect its overall absorption

  19. Distribution of zinc-65 in Agrostis tenuis Sibth. and A. stolonifera L. tissues

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, P J

    1969-11-01

    The distribution of /sup 65/Zn in zinc-tolerant and copper-tolerant plants of Agrotis spp. from toxic mine-tailings in England and Wales was compared with zinc distribution in non-tolerant plants. Isotope was applied in culture solution in which the plants were growing. No differences could be demonstrated between the plants by whole-plant radioautography, or by zinc analyses of the tops. Root/shoot ratios calculated from specific activity values varied with population, the non-tolerant plants having the lowest and the zinc-tolerant plants the highest ratio. After solvent (80% ethanol and water) extractions, the root residue of zinc-tolerant plants contained a higher percentage of /sup 65/Zn than that of non-tolerant plants. Chemical fractionation of the roots revealed that the main difference was that the amount of /sup 65/Zn in the pectate extract of the cell wall was high in zinc-tolerant plants and low in non-tolerant plants. The /sup 65/Zn distribution in the copper-tolerant plants was similar to that in the non-tolerant plants, indicating that the tolerance mechanisms for the two elements are different. Soluble protein and RNA preparations were made but they contained low levels of /sup 65/Zn. An exception was the relatively high value for RNA from zinc-tolerant A. stolonifera shoots. An anionic complex of /sup 65/Zn in the soluble fraction was investigated. This complex accounted for most of the radioactivity in A. tenuis extracts of shoots but the concentration of the complex was low in A. stolonifera shoots, and in root extracts of all plants examined. 18 references, 2 figures, 4 tables.

  20. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    Science.gov (United States)

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  1. Cyanide and Copper Recovery from Barren Solution of the Merrill Crowe Process

    Science.gov (United States)

    Parga, José R.; Valenzuela, Jesús L.; Díaz, J. A.

    This paper is a brief overview of the role of inducing the nucleated precipitation of copper and cyanide in a flashtube serpentine reactor, using sodium sulfide as the precipitate and sulfuric acid as pH control. The results showed that pH had a great effect on copper cyanide removal efficiency and the optimum pH was about 3 to 3.5. At this pH value copper cyanide removal efficiency could be achieved above 97 and 99 %, when influent copper concentration ions were 650 and 900 ppm respectively. In this process the cyanide associated with the copper, zinc, iron cyanide complexes are released as HCN gas under strong acidic conditions, allowing it to be recycled back to the cyanidation process as free cyanide.

  2. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    Science.gov (United States)

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. PREPARATION OF ZINC ENRICHED YEAST (SACCHAROMYCES CEREVISIAE BY CULTIVATION WITH DIFFERENT ZINC SALTS

    Directory of Open Access Journals (Sweden)

    Ľuboš Harangozo

    2012-02-01

    Full Text Available The yeast Saccharomyces cerevisiae is the best known microorganism and therefore widely used in many branches of industry. This study aims to investigate the accumulation of three inorganic zinc salts. Our research presents the ability of this yeast to absorb zinc from liquid medium and such enriched biomass use as a potential source of microelements in animal and/or human nutrition. It was found that the addition of different zinc forms, i.e. zinc nitrate, zinc sulphate and zinc chloride in fixed concentrations of 0, 25, 50 and 100 mg.100 ml-1 did not affect the amount of dry yeast biomass yielded, i.e. 1.0 – 1.2 g of yeast cells from 100 ml of cultivation medium, while higher presence of zinc solutions caused significantly lower yield of yeast biomass. The highest amount of zinc in yeast cells was achieved when added in the form of zinc nitrate in concentration of 200 mg.100 ml-1 YPD medium. The increment of intracellular zinc was up to 18.5 mg.g-1 of yeast biomass.

  4. 6646 Volume 12 No. 6 October 2012 ROLE OF ZINC IN HUMAN ...

    African Journals Online (AJOL)

    Pauline

    2012-10-06

    Oct 6, 2012 ... good animal sources of zinc among the white meats, while nuts and legumes are ... Fish, roots and tubers, green leafy vegetables and fruits, are .... several weeks can interfere with copper bioavailability by the induction of the.

  5. Bioavailability of zinc, copper, and manganese from infant diets

    International Nuclear Information System (INIS)

    Bell, J.G.

    1987-01-01

    A series of trace element absorption experiments were performed using the Sprague-Dawley suckling rat put and infant rhesis monkey (Macaca mulatta) with extrinsic radiolabeling to assess the bioavailability of Zn, Cu, and Mn from infant diets and to examine specific factors that affect absorption of these essential nutrients. Bioavailability of Cu as assessed by 6 h liver uptake (% of 64 Cu dose) was highest from human milk and cow milk based formula and significantly lower from cow milk and soy based formula. Copper bioavailability from infant cereal products as assessed by whole body uptake (% of 64 Cu dose) in d 20 rats, 9 h postintubation, was low compared to the bioavailability from cow milk or human milk alone. 65 Zn uptake in d 20 rats, 9 h postintubation, was significantly lower from cereals fed alone or in combination with cow or human milk as compared to the uptake from the milks fed alone. Zn bioavailability varied among cereal diets, (lowest from cereals containing phytate and highest from cereal/fruit products). Mn bioavailability from infant diets was assessed using a modified suckling rat pup model. Bioavailability (24 h whole body retention of 54 Mn) was high from all milks and commercial formulas tested

  6. Copper alloys deterioration due to anthropogenic action

    Energy Technology Data Exchange (ETDEWEB)

    Duran, A.; Perez-Rodriguez, J. L.; Herrera, L. K.; Jimenez-de-Haro, M. C.; Robador, M. D.; Justo, A.; Blanes, J. M.; Perez-Ferrer, J. C.

    2008-07-01

    Results are presented from several samples taken from leaves of the Pardon Portico of Mosque-Cathedral or Cordoba, where an alteration on their surface was detected. Metal samples analyzed using X-ray microanalysis and powder x-ray diffraction were predominantly constituted by copper with some amounts of zinc attributed to brass, whereas other samples were also constituted by copper, tin and lead attributed to bronze. surface samples were analyzed using the same techniques. In addition Fourier transform infrared spectroscopy was also used. The main compound identified in all the surface of the leaves is copper chloride hydroxide (atacamite). Lead chlorides have also been found. These data show that the sudden alteration that appears may be attributed to the use of some cleaning product containing chloride. Other compounds detected in the surface were gypsum, quartz and oxalates coming from environmental contamination. (Author) 17 refs.

  7. Role of vitamin C and E supplementation on IL-6 in response to training

    DEFF Research Database (Denmark)

    Yfanti, Christina; Fischer, Christian P.; Nielsen, Søren

    2012-01-01

    , including catalase, copper-zinc superoxide dismutase, and glutathione peroxidase 1 mRNA expression in the VT group. However, skeletal muscle protein content of catalase, copper-zinc superoxide dismutase, or glutathione peroxidase 1 was not affected by training or supplementation. In conclusion, our results...

  8. The development of a micropatterned electrode for studies of zinc electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Sutija, Dave P. [Univ. of California, Berkeley, CA (United States); Muller, Rolf H. [Univ. of California, Berkeley, CA (United States); Tobias, Charles W. [Univ. of California, Berkeley, CA (United States)

    1986-12-01

    A micropatterned electrode was prepared for the study of electrocrystallization. Using microphotolithography, in conjunction with evaporation and pulse electrodeposition of thin films, a set of artificially roughened electrodes with hemispherical surface features five microns in diameter was developed. Voltammetric studies were conducted to determine the best electrode material. Gold, platinum, and various carbon surfaces were evaluated for zinc nucleation density and hydrogen overpotential. Surface homogeneity was examined by both light and scanning electron microscopy. Gold was determined to possess the best combination of material properties: chemical inertness, low melting point, and a high work function allowing underpotential deposition of zinc which reduces the rate of hydrogen evolution. Stripping coulometry was employed to determine zinc limiting currents, and evaluate effective diffusion coefficients in concentrated zinc chloride solutions. Although the method worked well for dilute zinc chloride and copper sulfate solutions, it failed at higher current densities; the emergence of surface roughness obscured actual limiting current plateaus.

  9. Synthesis and characterization of iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes of salicylidene-N-anilinoacetohydrazone (H2L1) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H2L2).

    Science.gov (United States)

    AbouEl-Enein, S A; El-Saied, F A; Kasher, T I; El-Wardany, A H

    2007-07-01

    Salicylidene-N-anilinoacetohydrazone (H(2)L(1)) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H(2)L(2)) and their iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes have been synthesized and characterized by IR, electronic spectra, molar conductivities, magnetic susceptibilities and ESR. Mononuclear complexes are formed with molar ratios of 1:1, 1:2 and 1:3 (M:L). The IR studies reveal various modes of chelation. The electronic absorption spectra and magnetic susceptibility measurements show that the iron(III), nickel(II) and cobalt(II) complexes of H(2)L(1) have octahedral geometry. While the cobalt(II) complexes of H(2)L(2) were separated as tetrahedral structure. The copper(II) complexes have square planar stereochemistry. The ESR parameters of the copper(II) complexes at room temperature were calculated. The g values for copper(II) complexes proved that the Cu-O and Cu-N bonds are of high covalency.

  10. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  11. Effects of metformin treatment on Iron, Zinc and Copper status concentration in the serum of female rats with induced polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Muhsin S. G. Al-Moziel

    2013-07-01

    Full Text Available This study conducted to investigate the effects of metformin drug on serum Iron, Zinc and Copper concentration in Estradiol Valerate(EV induced polycystic ovary syndrome(PCOS in virgin rats. Thirty virgin rats were randomly allotted to constitute Normal control (NC-I group and induced polycystic ovary (PCO-I and PCO-II groups having 10 rats in each group. Rats from NC-I group were administered intramuscularly with 0.2 ml of corn oil whereas polycystic ovary was induced in rats from PCO-I and PCO-II groups by administering single intra-muscular injection of estradiol Valerate 4mg/rat. The rats from PCO-I and PCO-II groups were left for 60 days for development of polycystic ovary syndrome. Animals from PCO-I group were then administered with 0.2 ml normal saline as oral gavage for 15 days, these animals were kept as PCO control group animals whereas those from PCO-II groups received metformin (50mg/kg B.wt as oral gavage for 15 days, these animals served as metformin treated PCO group animals. All the rats were thereafter sacrificed for collecting blood from inferior vena-cava. Serum samples from each rat were assessed for iron, zinc and copper status in each experimental group. The results revealed a significant (p≤0.05 increase in serum Fe and Zn and a significant (p≤0.05 decrease in serum Cu concentration in PCO group 1 compared with control non-treated group. The PCO group2 treated with metformin showed a significant (p≤0.05 decrease in serum Fe concentration as compared with those in animals from group NC-I and PCO-I. While, no significant differences were found in serum Zn concentration between all treated groups. On the other hand, a significant (p≤0.05 increase in serum Cu concentration appeared in metformin treated group compared with PCO group 1 which appears significant decrease compared with control group.

  12. Evaluation Of Antioxidant Enzymes, Copper, Zinc And Selenium In Preterm And Full Term Neonates

    International Nuclear Information System (INIS)

    Moawad, A.T.; Mohamed, A.A.; EL Shafie, A.I.

    2011-01-01

    Although oxidative stress-related disease like bronchopulmonary dysplasia, respiratory distress syndrome and retinopathy mostly affect neonates with extremely low birth weight, healthy preterm might also be at risk of oxidative damages. Zinc (Zn), copper (Cu) and selenium (Se) are essential trace elements for metabolism, growth, neurological and immunological function. Trace elements are considered the essential components or cofactors in the antioxidant system especially glutathione peroxidase (GSHPx) and superoxide dismutase (SOD) enzymes. The current study was conducted on 60 neonates divided into two groups; the first group consisted of 30 healthy preterm neonates (14 males and 16 females) with mean gestational age of 34.5±0.3 weeks and mean birth weight of 1742.25 ± 130.11. The second group consisted of 30 full term neonates with mean gestational age of 39.1±0.81 weeks and mean birth weight of 3210±150.25 g. All the neonates were breast fed without any other supplementation to avoid any change in trace elements concentrations. Furthermore, all neonates were subjected to full history thorough clinical examination and laboratory investigation including determinations of plasma levels of Zn, Cu and Se using atomic absorption spectrophotometer. The erythrocyte levels of GSHPx and SOD enzymes were measured. The data revealed that plasma levels of Cu and Zn were significantly decreased in premature neonates than full term subjects but plasma level of Se showed non-significant difference between the premature and full term infants. The erythrocyte levels of GSHPx and SOD were significantly decreased in preterm than full term infants. There were no correlations between erythrocytes levels of GSHPx and the serum levels of Zn, Cu and Se in both preterm or term subjects, while SOD was significantly correlated with plasma levels of Cu and Zn, and no correlation with plasma level of Se was observed. According to the obtained results, it could be concluded that the

  13. Research within the coordinated programme on isotope-aided micro-nutrient studies in rice production with special reference to zinc deficiency

    International Nuclear Information System (INIS)

    Tahir, M.

    1981-03-01

    A series of pot and field experiments with flooded rice were carried out on contrasting soil types of the Punjab, Pakistan to study the zinc status of soils, evaluate chemical methods for extracting available zinc and copper in flooded rice soils, study the residual effects of zinc fertilizer, evaluate the efficiency of zinc application to rice. The results show a wide-spread deficiency of Zn and, to some extent, of Cu in rice plants; (2) the correlation coefficient values between soil-available Zn and Cu and that extracted by rice plants were very small; (3) the various sources of Zn applied to rice by different ways proved quite effective in alleviating Zn deficiency under pot and field experiments; (4) uptake of N, P, Cu in rice plants was variably affected with Zn applied; (5) the addition of P in any form alone and with Zn or Cu invariably depressed Zn uptake by rice plants; (6) both Zn and Cu concentrations in plants were depressed with manure applications alone, as well as when Zn or Cu was respectively applied with it; (7) Zn reduced Cu while Cu induced Zn concentration in plants

  14. Biologic assessment of copper-containing amalgams.

    Science.gov (United States)

    Mjor, I A; Eriksen, H M; Haugen, E; Skogedal, O

    1977-12-01

    In order to reduce creep and avoid marginal fractures in amalgam restorations, new alloys containing higher proportions of copper have been introduced. Fillings of these materials were placed in cavities prepared in the deciduous teeth of monkeys or placed in polyethylene tubes and implanted subcutaneously in rats. Conventional silver/tin alloys and zinc oxide eugenol cement were used as reference materials. Despite limitations due to the varying depths of cavities and the small number of animals involved it was concluded that the high copper alloys caused more severe pulp damage than the other materials studied. In the implantation studies many of the high copper specimens were exfoliated before the end of the experimental period. It is concluded that in deep cavities these materials require the use of a non-toxic base or lining material although as they are commonly used in young children's teeth the placement of linings and the isolation of the cavity pose problems.

  15. Cobalt(II), nickel(II), copper(II), zinc(II) and hafnium(IV) complexes of N'-(furan-3-ylmethylene)-2-(4-methoxyphenylamino)acetohydrazide.

    Science.gov (United States)

    Emam, Sanaa M; El-Saied, Fathy A; Abou El-Enein, Saeyda A; El-Shater, Heba A

    2009-03-01

    Cobalt(II), nickel(II), copper(II), zinc(II) and hafnium(IV) complexes of furan-2-carbaldehyde 4-methoxy-N-anilinoacetohydrazone were synthesized and characterized by elemental and thermal (TG and DTA) analyses, IR, UV-vis and (1)H NMR spectra as well as magnetic moment and molar conductivity. Mononuclear complexes are obtained with 1:1 molar ratio except complexes 3 and 9 which are obtained with 1:2 molar ratios. The IR spectra of ligand and metal complexes reveal various modes of chelation. The ligand behaves as a neutral bidentate one and coordination occurs via the carbonyl oxygen atom and azomethine nitrogen atom. The ligand behaves also as a monobasic tridentate one and coordination occurs through the enolic oxygen atom, azomethine nitrogen atom and the oxygen atom of furan ring. Moreover, the ligand behaves as a neutral tridentate and coordination occurs via the carbonyl oxygen, azomethine nitrogen and furan oxygen atoms as well as a monobasic bidentate and coordination occurs via the enolic oxygen atom and azomethine nitrogen atom. The electronic spectra and magnetic moment measurements reveal that all complexes possess octahedral geometry except the copper complex 10 possesses a square planar geometry. The thermal studies showed the type of water molecules involved in metal complexes as well as the thermal decomposition of some metal complexes.

  16. Zinc Status Affects Glucose Homeostasis and Insulin Secretion in Patients with Thalassemia

    Directory of Open Access Journals (Sweden)

    Ellen B. Fung

    2015-06-01

    Full Text Available Up to 20% of adult patients with Thalassemia major (Thal live with diabetes, while 30% may be zinc deficient. The objective of this study was to explore the relationship between zinc status, impaired glucose tolerance and insulin sensitivity in Thal patients. Charts from thirty subjects (16 male, 27.8 ± 9.1 years with Thal were reviewed. Patients with low serum zinc had significantly lower fasting insulin, insulinogenic and oral disposition indexes (all p < 0.05 and elevated glucose response curve, following a standard 75 g oral load of glucose compared to those with normal serum zinc after controlling for baseline (group × time interaction p = 0.048. Longitudinal data in five patients with a decline in serum zinc over a two year follow up period (−19.0 ± 9.6 μg/dL, showed consistent increases in fasting glucose (3.6 ± 3.2 mg/dL and insulin to glucose ratios at 120 min post glucose dose (p = 0.05. Taken together, these data suggest that the frequently present zinc deficiency in Thal patients is associated with decreased insulin secretion and reduced glucose disposal. Future zinc trials will require modeling of oral glucose tolerance test data and not simply measurement of static indices in order to understand the complexities of pancreatic function in the Thal patient.

  17. Characteristics from Recycled of Zinc Anode used as a Corrosion Preventing Material on Board Ship

    Science.gov (United States)

    Barokah, B.; Semin, S.; Kaligis, D. D.; Huwae, J.; Fanani, M. Z.; Rompas, P. T. D.

    2018-02-01

    The objective of this research is to obtain the values of chemical composition, electrochemical potential and electrochemical efficiency. Methods used were experiment with physical tests conducted in metallurgical laboratory and DNV-RP-B401 cathode protection design DNV (Det Norske Veritas) standard. The results showed that the composition of chemical as Zinc (Zn), Aluminium, Cadmium, Plumbumb, Copper and Indium is suitable of standard. The values of electrochemical potential and electrochemical efficiency were respectively. However it can be concluded that the normal meaning of recycled zinc anode with increasing melting temperature can produce zinc anode better than original zinc anode and can be used as cathode protection on board ships. This research can assist in the management of used zinc anode waste, the supply of zinc anodes for consumers at relatively low prices, and recommendations of using zinc anodes for the prevention of corrosion on board ship.

  18. Flotation of traces of silver and copper(II) ions with a methyl cellosolve solution of dithizone.

    Science.gov (United States)

    Hiraide, M; Mizuike, A

    1975-06-01

    Microgram quantities of silver and copper(II) ions in aqueous solutions are collected on dithizone precipitates, which are then floated with the aid of small nitrogen bubbles. This separation technique has been successfully applied to the atomic-absorption spectrophotometric determination of down to a tenth ppm of silver and copper in high-purity lead and zinc metals.

  19. Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats.

    Science.gov (United States)

    Kuldeep, Anjana; Nair, Neena; Bedwal, Ranveer Singh

    2017-06-01

    The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30-40 days of age, pre-pubertal period) of 40-50 g body weight were divided into the following: the ZC (zinc control) group-fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group-fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group-received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.

  20. Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells

    DEFF Research Database (Denmark)

    Nygaard, Sanne Bjørn; Larsen, Agnete; Knuhtsen, Astrid

    2014-01-01

    BACKGROUND: Zinc is essential for the activities of pancreatic β-cells, especially insulin storage and secretion. Insulin secretion leads to co-release of zinc which contributes to the paracrine communication in the pancreatic islets. Zinc-transporting proteins (zinc-regulated transporter, iron......-regulated transporter-like proteins [ZIPs] and zinc transporters [ZnTs]) and metal-buffering proteins (metallothioneins, MTs) tightly regulate intracellular zinc homeostasis. The present study investigated how modulation of cellular zinc availability affects β-cell function using INS-1E cells. RESULTS: Using INS-1E...... cells, we found that zinc supplementation and zinc chelation had significant effects on insulin content and insulin secretion. Supplemental zinc within the physiological concentration range induced insulin secretion. Insulin content was reduced by zinc chelation with N,N,N',N-tektrakis(2-pyridylmethyl...

  1. Copper (II) and zinc (II) complexes with flavanone derivatives: Identification of potential cholinesterase inhibitors by on-flow assays.

    Science.gov (United States)

    Sarria, André Lucio Franceschini; Vilela, Adriana Ferreira Lopes; Frugeri, Bárbara Mammana; Fernandes, João Batista; Carlos, Rose Maria; da Silva, Maria Fátima das Graças Fernandes; Cass, Quezia Bezerra; Cardoso, Carmen Lúcia

    2016-11-01

    Metal chelates strongly influence the nature and magnitude of pharmacological activities in flavonoids. In recent years, studies have shown that a promising class of flavanone-metal ion complexes can act as selective cholinesterase inhibitors (ChEIs), which has led our group to synthesize a new series of flavanone derivatives (hesperidin, hesperetin, naringin, and naringenin) complexed to either copper (II) or zinc (II) and to evaluate their potential use as selective ChEIs. Most of the synthesized complexes exhibited greater inhibitory activity against acetylcholinesterase (AChE) than against butyrylcholinesterase (BChE). Nine of these complexes constituted potent, reversible, and selective ChEIs with inhibitory potency (IC 50 ) and inhibitory constant (K i ) ranging from 0.02 to 4.5μM. Copper complexes with flavanone-bipyridine derivatives afforded the best inhibitory activity against AChE and BChE. The complex Cu(naringin)(2,2'-bipyridine) (11) gave IC 50 and K i values of 0.012±0.002 and 0.07±0.01μM for huAChE, respectively, which were lower than the inhibitory values obtained for standard galanthamine (IC 50 =206±30.0 and K i =126±18.0μM). Evaluation of the inhibitory activity of this complex against butyrylcholinesterase from human serum (huBChE) gave IC 50 and K i values of 8.0±1.4 and 2.0±0.1μM, respectively. A Liquid Chromatography-Immobilized Capillary Enzyme Reactor by UV detection (LC-ICER-UV) assay allowed us to determine the IC 50 and K i values and the type of mechanism for the best inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Surface and capillary forces encountered by zinc sulfide microspheres in aqueous electrolyte.

    Science.gov (United States)

    Gillies, Graeme; Kappl, Michael; Butt, Hans-Jürgen

    2005-06-21

    The colloid probe technique was used to investigate the interactions between individual zinc sulfide (ZnS) microspheres and an air bubble in electrolyte solution. Incorporation of zinc ions into the electrolyte solution overcomes the disproportionate zinc ion dissolution and mimics high-volume-fraction conditions common in flotation. Determined interaction forces revealed a distinct lack of long-ranged hydrophobic forces, indicated by the presence of a DLVO repulsion prior to particle engulfment. Single microsphere contact angles were determined from particle-bubble interactions. Contact angles increased with decreasing radii and with surface oxidation. Surface modification by the absorption of copper and subsequently potassium O-ethyldithiocarbonate (KED) reduced repulsive forces and strongly increased contact angles.

  3. Addictive drugs and their duration affecting on trace elements levels in men

    International Nuclear Information System (INIS)

    Nadeem, A.; Iqbal, K.; Shafiq, T.; Rehman, S.

    2008-01-01

    During the drug addiction the blood biochemistry particularly level of trace elements in blood is widely affected. Eighty male addicts of various age groups along with seventeen normal subjects were studied. The plasma Zinc and manganese concentration was high in addict person as compared to normal subjects. Where as a significant decrease in iron concentration was observed in addicts. The plasma copper concentration was also low in addicts as compared to normal subjects. In conclusion drug addiction leads to many biochemical changes that may have detritus effects on health status of addicts. (author)

  4. [Advances in the research of zinc deficiency and zinc supplementation treatment in patients with severe burns].

    Science.gov (United States)

    Wang, X X; Zhang, M J; Li, X B

    2018-01-20

    Zinc is one of the essential trace elements in human body, which plays an important role in regulating acute inflammatory response, glucose metabolism, anti-oxidation, immune and gastrointestinal function of patients with severe burns. Patients with severe burns may suffer from zinc deficiency because of insufficient amount of zinc intake from the diet and a large amount of zinc lose through wounds and urine. Zinc deficiency may affect their wound healing process and prognosis. This article reviews the characteristics of zinc metabolism in patients with severe burns through dynamic monitoring the plasma and urinary concentration of zinc. An adequate dosage of zinc supplemented to patients with severe burns by an appropriate method can increase the level of zinc in plasma and skin tissue and improve wound healing, as well as reduce the infection rates and mortality. At the same time, it is important to observe the symptoms and signs of nausea, dizziness, leukopenia and arrhythmia in patients with severe burns after supplementing excessive zinc.

  5. Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings.

    Science.gov (United States)

    Shi, Xiang; Chen, Yi-Tai; Wang, Shu-Feng; Pan, Hong-Wei; Sun, Hai-Jing; Liu, Cai-Xia; Liu, Jian-Feng; Jiang, Ze-Ping

    2016-11-01

    Selecting plant species that can overcome unfavorable conditions and increase the recovery of degraded mined lands remains a challenge. A pot experiment was conducted to evaluate the feasibility of using transplanted tree seedlings for the phytoremediation of lead/zinc and copper mine tailings. One-year-old bare-root of woody species (Rhus chinensis Mill, Quercus acutissima Carruth, Liquidambar formosana Hance, Vitex trifolia Linn. var. simplicifolia Cham, Lespedeza cuneata and Amorpha fruticosa Linn) were transplanted into pots with mine tailings and tested as potential metal-tolerant plants. Seedling survival, plant growth, root trait, nutrient uptake, and metal accumulation and translocation were assessed. The six species grew in both tailings and showed different tolerance level. A. fruticosa was highly tolerant of Zn, Pb and Cu, and grew normally in both tailings. Metal concentrations were higher in the roots than in the shoots of the six species. All of the species had low bioconcentration and translocation factor values. However, R. chinensis and L. formosana had significantly higher translocation factor values for Pb (0.88) and Zn (1.78) than the other species. The nitrogen-fixing species, A. fruticosa, had the highest tolerance and biomass production, implying that it has great potential in the phytoremediation of tailing areas in southern China.

  6. Determination and evaluation of cadmium, copper, nickel, and zinc in agricultural soils of western Macedonia, Greece.

    Science.gov (United States)

    Papadopoulos, A; Prochaska, C; Papadopoulos, F; Gantidis, N; Metaxa, E

    2007-10-01

    The objective of this study was to determine the levels of major phytotoxic metals--including cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn)--in agricultural soils of Western Macedonia, Greece. We also wanted to determine the possible relationships among elements and between soil properties and elemental concentrations. Surface soil samples, n = 570, were collected and analyzed. The results of the elemental analysis showed that the mean metal concentrations were consistent with reported typical concentrations found in Greek agricultural soils in the cases of Zn and Cu. Cd exhibited lower and Ni higher mean concentrations than the typical levels reported in the literature. Metal concentrations in the majority of the examined samples (>69%) were found to be higher than the respective critical plant-deficiency levels. However, only 0.4% and 0.2% of the analyzed soil samples, respectively, exhibited Cd and Ni concentrations higher than the levels that cause plant toxicity, as referenced by other investigators. These results suggest that the soils studied can be considered as unpolluted with respect to the examined food-chain metal contaminants. However, the levels of the metal concentrations in some of the soil samples, and the low correlation of the metals with soil properties, suggest an anthropogenic rather that lithogenic origin.

  7. Models for the mechanism for activating copper-zinc superoxide dismutase in the absence of the CCS Cu chaperone in Arabidopsis.

    Science.gov (United States)

    Huang, Chien-Hsun; Kuo, Wen-Yu; Jinn, Tsung-Luo

    2012-03-01

    Copper-zinc superoxide dismutase (CuZnSOD; CSD) is an important antioxidant enzyme for oxidative stress protection. To date, two activation pathways have been identified in many species. One requiring the CCS, Cu chaperone for SOD, to insert Cu and activate CSD (referred to as CCS-dependent pathway), and the other works independently of CCS (referred to as CCS-independent pathway). In our previous study, we suggest an unidentified factor will work with glutathione (GSH) for CSD activation in the absence of the CCS. Here, two models of the CCS-independent mechanism are proposed. The role of the unidentified factor may work as a scaffold protein, which provides a platform for the CSD protein and Cu-GSH to interact, or as a Cu carrier, which itself can bind Cu and interact with CSD proteins. We also suggest that the CSD protein conformation at C-terminal is important in providing a docking site for unidentified factor to access.

  8. Concentrations of arsenic, copper, cobalt, lead and zinc in cassava (Manihot esculenta Crantz) growing on uncontaminated and contaminated soils of the Zambian Copperbelt

    Science.gov (United States)

    Kříbek, B.; Majer, V.; Knésl, I.; Nyambe, I.; Mihaljevič, M.; Ettler, V.; Sracek, O.

    2014-11-01

    The concentrations of arsenic (As), copper (Cu), cobalt (Co), lead (Pb) and zinc (Zn) in washed leaves and washed and peeled tubers of cassava (Manihot esculenta Crantz, Euphorbiaceae) growing on uncontaminated and contaminated soils of the Zambian Copperbelt mining district have been analyzed. An enrichment index (EI) was used to distinguish between contaminated and uncontaminated areas. This index is based on the average ratio of the actual and median concentration of the given contaminants (As, Co, Cu, mercury (Hg), Pb and Zn) in topsoil. The concentrations of copper in cassava leaves growing on contaminated soils reach as much as 612 mg kg-1 Cu (total dry weight [dw]). Concentrations of copper in leaves of cassava growing on uncontaminated soils are much lower (up to 252 mg kg-1 Cu dw). The concentrations of Co (up to 78 mg kg-1 dw), As (up to 8 mg kg-1 dw) and Zn (up to 231 mg kg-1 dw) in leaves of cassava growing on contaminated soils are higher compared with uncontaminated areas, while the concentrations of lead do not differ significantly. The concentrations of analyzed chemical elements in the tubers of cassava are much lower than in its leaves with the exception of As. Even in strongly contaminated areas, the concentrations of copper in the leaves and tubers of cassava do not exceed the daily maximum tolerance limit of 0.5 mg kg-1/human body weight (HBW) established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). The highest tolerable weekly ingestion of 0.025 mg kg-1/HBW for lead and the highest tolerable weekly ingestion of 0.015 mg kg-1/HBW for arsenic are exceeded predominantly in the vicinity of smelters. Therefore, the preliminary assessment of dietary exposure to metals through the consumption of uncooked cassava leaves and tubers has been identified as a moderate hazard to human health. Nevertheless, as the surfaces of leaves are strongly contaminated by metalliferous dust in the polluted areas, there is still a potential hazard

  9. Tolerance to and Accumulation of Cadmium, Copper, and Zinc by Cupriavidus necator

    Directory of Open Access Journals (Sweden)

    Rayssa Pereira Vicentin

    2018-03-01

    Full Text Available ABSTRACT Preliminary results of in vitro experiments with multicontaminated soils and solid media indicated that nodulating diazotrophic bacteria of the genus Cupriavidus are promising for the remediation of contaminated environments due to their symbiosis with legumes and metal tolerance. Thus, strains of Cupriavidus spp. (LMG 19424T, UFLA 01-659, UFLA 01-663, and UFLA 02-71 were tested for their ability to tolerate and bioaccumulate cadmium (Cd, copper (Cu, and zinc (Zn in Luria-Bertani broth. Changes in the growth pattern of Cupriavidus strains in the presence or absence of heavy metals were analyzed by scanning electron microscopy and metal allocation by transmission electron microscopy, to clarify the mechanisms of bioremediation. Highest tolerance was detected for strain UFLA 01-659 (minimum inhibitory concentration of 5, 4.95, and 14.66 mmol L−1 of Cd, Cu, and Zn, respectively. Among the removal rates of the metals tested (9.0, 4.6, and 3.2 mg L−1 of Cd, Cu, and Zn, respectively, the bacterial activity was clearly highest for Cd. The efficiency of strain UFLA 01-659 in removing the heavy metals is associated with its high biomass production and/or higher contents of heavy metals adsorbed and absorbed in the biomass. In response to the presence of heavy metals in the liquid culture medium, the bacteria produced exopolysaccharides and small and aggregated cells. However, these responses varied according to the strains and heavy metals. Regarding allocation, all heavy metals were adsorbed on the cell wall and membrane, whereas complexation was observed intracellularly and only for Cu and Zn. These results indicate the possibility of using C. necator UFLA 01-659 for remediation in areas with very high Cd, Cu, and Zn contents.

  10. The protective role of Gamma-Tocopherol and zinc cysteine against oxidative stress induced by gamma irradiation in albino rats

    International Nuclear Information System (INIS)

    Anis, L.M.

    2004-01-01

    The present study aimed to evaluate the capability of α tocopherol (naturally occurring antioxidant) and zinc cysteine against radiation induced oxidative stress. α Tocopherol was dissolved in corn oil and g, to the animals for ten successive days at a dose of 20 mg/kg b weight/day. Zinc cysteine was delivered to rats via intraperitoneal inject at a concentration of 25 mg/kg body weight/day for two successive days, rats were exposed to whole body gamma irradiation at a dose level of Gy. The activities of super oxide dismutase (SOD) and catalase and also concentrations of reduced glutathione (GSH) and malonaldehyde (Mi . were determined in the blood. The levels of metallothionein, zinc and copper were estimated in the serum, liver and kidney of the tested animals. The obtained results revealed that administration of a-tocopherol and zinc cysteine before gamma radiation exposure diminish significantly the decrease in blood SOD and catalase activities as compared to untreated irradiated rats. Also, the decrease in blood GSH concentration was less manifested and the decrease in the level of MDA was significant. The pre-gamma irradiation administration of zinc cysteine induced significant changes in the levels of metallothionein compared to both a-tocopherol supplemented and gamma irradiated rat groups. The amelioration occurred in the levels of zinc and copper postulated the positive role of vitamin E and zinc cysteine in alleviating all the levels of these elements

  11. Estado nutricional, ferro, cobre e zinco em escolares de favelas da cidade de São Paulo Nutritional status, iron, copper, and zinc in school children of shantytowns of Sao Paulo

    Directory of Open Access Journals (Sweden)

    Elisabete B. Santos

    2007-08-01

    Full Text Available OBJETIVO: Avaliar a antropometria, a composição corporal e o estado nutricional em ferro, cobre e zinco segundo o gênero, de crianças e adolescentes institucionalizados, moradores de duas favelas da cidade de São Paulo. MÉTODOS: Estudo transversal utilizando medidas de peso, estatura, circunferência braquial, dobras cutâneas, bioimpedância elétrica, os escores Z da relação estatura para idade, índice de massa corporal, área do braço, área muscular do braço e área de gordura do braço. Os percentuais de gordura corporal e massa magra foram analisados segundo fórmulas de Siri e Slaughter. Foram determinados hemoglobina, hematócrito, ferro, ferritina, cobre e zinco séricos. RESULTADOS: Foram maiores o peso corporal, circunferência do braço, dobras cutâneas do tríceps e subescapular, resistência elétrica, escores Z da área do braço, área muscular do braço e percentual de gordura corporal no sexo feminino em relação ao masculino. Baixa estatura foi encontrada em 8% das meninas e 5,6% dos meninos, sem diferença quanto ao gênero. Houve menor prevalência de desnutrição (2% das meninas e 5,6% nos meninos, do que de sobrepeso e obesidade (30% e 11,2%, respectivamente. Observou-se anemia em 24,4% e ferropenia em 10,5% dos escolares com ou sem anemia. Apresentaram valores abaixo do limite inferior do padrão de referência para cobre e zinco séricos, respectivamente três e sete indivíduos. CONCLUSÃO: Na população estudada, de baixo nível econômico e institucionalizada, ocorre o processo de transição nutricional e alta prevalência de anemia que não resulta da interação ferro, cobre e zinco.OBJECTIVE: To assess the anthropometry, body composition and iron, copper and zinc nutritional status, according to gender, of institutionalized children and adolescents living in two shantytowns in the city of Sao Paulo. METHODS: A cross sectional study using weight, height, arm circumference, skinfolds, electrical

  12. Manganese, iron and copper contents in leaves of maize plants ...

    African Journals Online (AJOL)

    Micronutrients such as boron (B), copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) play important physiological roles in humans and animals. Zn and B are the micronutrients most often deficient in maize, in Iran. A completely randomized factorial block design experiment was carried out at Fars province of Iran during ...

  13. Effect of co-doping of sodium on the thermoluminescence dosimetry properties of copper-doped zinc lithium borate glass system

    International Nuclear Information System (INIS)

    Saidu, A.; Wagiran, H.; Saeed, M.A.; Alajerami, Y.S.M.; Kadir, A.B.A.

    2016-01-01

    The effect of sodium as a co-dopant on the thermoluminescence (TL) properties of copper-doped zinc lithium borate (ZLB: Cu) subjected to Co-60 gamma radiation is reported in this study. TL intensity is enhanced with the introduction of sodium in ZLB: Cu. The obtained glow curve is simple with a single peak. The annealing procedure and the best heating rate for the proposed thermoluminescent dosimeter (TLD) are established, and the phosphor is reusable. The TL response within the dose range of 0.5–1000 Gy is investigated. The results show that the thermal fading behaviour is improved significantly. - Highlights: • Dosimetry properties of an improved TL dosimeter. • The dosimeter is made of lithium borate, modified with ZnO, doped with CuO and co-doped with Na 2 O. • With addition of Na to Cu in the ZLB host, TL yield and sensitivity has significantly enhanced. • The fading behaviour has also been minimized significantly. • The new material is also characterized with the linear dose response, and good reproducibility behaviour.

  14. The Guadiamar soils: characterization and evolution of soils affected by the pyrite sludge; Los suelos del Guadiamar: estudios de caracterizacion y de la evolucion de los suelos contaminados por el lodo

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, C.; Anton-Pacheco, C.; Barettino, D.; Lopez Pamo, E. [Instituto Geologico y Minero de Espana. Madrid (Spain); Cabrera, F.; Fernandez, J. E.; Giron, I. F.; Moreno, F. [Instituto de Recursos Naturales y Agrobiologia de Sevilla (Spain); Fernandez, A. M.; Garcia-Gutierrez, M.; Pelayo, M.; Rivas, P.; Villar, M. V. [Ciemat. Madrid (Spain); Giraldez, J. V.; Vanderlinden, K. [Universidad de Cordoba (Spain); Ordonez, R. [CIFA. Cordoba (Spain)

    2001-07-01

    The study of the geochemical background shows the evidence of high contents in heavy metals in the soils from the affected area of the Guadimar basin before the Aznalcollar mine spill. This means a previous contamination due to the Aznalcollar mineralizations, and above all, to the intense mining works of the last two decades. Two areas been defined, with different geochemical background: Guadiamar alluvial soils and soils over the marsh deposits in the southern area of the affected zone. These southern soils have, higher contents of iron, zinc and copper and slightly lower of lead and arsenic, compared to the contents from the alluvial. The soils of the affected area of the Guadiamar basin are quite heterogeneous and show a high spatial variability of its physical and mineralogical characteristics. Once the sludge removal operations are finished, a high spatial variability of the concentration of soils of different elements related to the contamination has been observed. This variability is observed at a very small scale, so that in a few metres this concentrations vary in some order of magnitude. This variability is also related to the remnant sludge, because the cleanup did not remove the whole of the mining waste, and this remaining part has been incorporated to the soils during the soil remediation operations. At a basin scale, an important increase of the contaminant concentrations has been observed in the upper part of the soils. This concentration mean values are from 3 to 6 times the geochemical background levels, depending on the element considered. These increase are higher for zinc, and lower for lead, arsenic and copper, in that order. The concentrations of these elements in soils decrease with the depth. The highest concentrations for arsenic and lead were observed in the zone where the pyritic sludge was deposited, whereas the highest zinc concentrations are determined in the southern part, where the acid water were retained. After the soil

  15. Adhesion of Zinc Hot-dip Coatings

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2014-01-01

    Full Text Available The work is focused on verification of quality adhesion of zinc coating. It describes elements which affect quality and adhesive solidity within the coating. For assessment itself it will be neccessary to get know the basic elements which can affect adhesion of hot-dip coating which will be essential for choosing suitable samples for verification itself. These elements characterise acoustic responses during delamination coating. They affect elements influencing progress of signal. In research there is also a summary of existing methods for testing adhesion of coatings. As a result a new proposal of a new method comes out for purpose of quality testing of adhesion zinc hot-dip coating. The results of verification of this method are put to scientific analysis and findings lead to assessment of proposed method and its application in technical practise.The goal of this contribution is also include to proposed methodology testing adhesion zinc coating by nondestructive diagnostic method of acoustic emission (AE, which would monitor characterise progress of coating delamination of hot-dip zinc from basic material in way to adhesion tests would be practicable in situ. It can be enabled by analysis and assessment of results acquired by method AE and its application within verification of new method of adhesion anti-corrosive zinc coating.

  16. Spectrophotometric Determination of Zinc Using 7-(4-Nitrophenylazo-8-Hydroxyquinoline-5-Sulfonic Acid

    Directory of Open Access Journals (Sweden)

    Korn Maria das Graças Andrade

    1999-01-01

    Full Text Available A sensitive and selective spectrophotometric method is proposed for the rapid determination of zinc(II using an 8-hydroxyquinoline derivative, 7-(4-nitrophenylazo-8-hydroxyquinoline-5-sulfonic acid (p-NIAZOXS, as a new spectrophotometric reagent. The reaction between the p-NIAZOXS and zinc(II is instantaneous at pH 9.2 (borax buffer and the absorbance remains stable for over 24 h. The method allows the determination of zinc over the range of 0.05-1.0 mug mL-1 with a molar absorptivity of 3.75x10(4 L mol-1 cm-1 and features a detection limit of 15 ng mL-1. The proposed method has been successfully applied to the determination of zinc in several pharmaceutical preparations and copper alloys. The precision (R.S.D. < 2% and the accuracy obtained were satisfactory.

  17. Benzotriazole as an inhibitor of brass corrosion in chloride solution

    International Nuclear Information System (INIS)

    Kosec, Tadeja; Milosev, Ingrid; Pihlar, Boris

    2007-01-01

    The current research explores the formation of protective layers on copper, zinc and copper-zinc (Cu-10Zn and Cu-40Zn) alloys in chloride solution containing benzotriazole (BTAH), by use of electrochemical techniques, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Electrochemical reactions and surface products formed at the open circuit potential and as a function of the potential range are discussed. The addition of benzotriazole to aerated, near neutral 0.5 M NaCl solution affects the dissolution of copper, zinc, Cu-10Zn and Cu-40Zn alloys. The research also compares the inhibition efficiency and Gibbs adsorption energies of the investigated process. Benzotriazole, generally known as an inhibitor of copper corrosion is also shown to be an efficient inhibitor for copper-zinc alloys and zinc metal. The surface layer formed on alloys in BTAH-inhibited solution comprised both oxide and polymer components, namely Cu 2 O and ZnO oxides, and Cu(I)-BTA and Zn(II)-BTA polymers. The formation of this mixed copper-zinc oxide polymer surface film provides an effective barrier against corrosion of both metal components in chloride solution

  18. Transport of trace metals in the Magela Creek system, Northern Territory. I. Concentrations and loads of iron, manganese, cadmium, copper, lead and zinc during flood periods in the 1978-1979 wet season

    International Nuclear Information System (INIS)

    Hart, B.T.; Davies, S.H.R.; Thomas, P.A.

    1981-12-01

    In order that realistic effluent standards may be established for the Ranger uranium operations at Jabiru, Northern Territory, it is necessary that there be a clear and detailed knowledge of the pre-mining levels of trace metals and their behaviour within the Magela Creek system. During the wet season, floodwaters were sampled for conductivity, suspended solids and the trace metals, iron, manganese, cadmium, copper, lead and zinc. All concentrations were found to be very low, as were the denudation rates for the trace metals and suspended materials

  19. Zinc-oxide nanorod / copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    International Nuclear Information System (INIS)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin

    2014-01-01

    A novel p - n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current - voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 .deg. C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 .deg. C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 .deg. C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  20. Zinc-oxide nanorod / copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin [Chungnam National University, Daejeon (Korea, Republic of)

    2014-11-15

    A novel p - n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current - voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 .deg. C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 .deg. C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 .deg. C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  1. Relative tolerance of a range of Australian native plant species and lettuce to copper, zinc, cadmium, and lead.

    Science.gov (United States)

    Lamb, Dane T; Ming, Hui; Megharaj, Mallavarapu; Naidu, Ravi

    2010-10-01

    The tolerance of wild flora to heavy-metal exposure has received very little research. In this study, the tolerance of four native tree species, four native grass species, and lettuce to copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) was investigated in a root-elongation study using Petri dishes. The results of these studies show a diverse range of responses to Cu, Zn, Cd, and Pb amongst the tested plant species. Toxicity among metals decreased in the following order: Cd ~ Cu > Pb > Zn. Metal concentrations resulting in a 50% reduction in growth (EC(50)) varied considerably, ranging from (microM) 30 (Dichanthium sericeum) to >2000 (Acacia spp.) for Cu; from 260 (Lactuca sativa) to 2000 (Acacia spp.) for Zn; from 27 (L. sativa) to 940 (Acacia holosericea) for Cd; and from 180 (L. sativa) to >1000 (Acacia spp.) for Pb. Sensitive native plant species identified included D. sericeum, Casuarina cunninghamiana, and Austrodanthonia caespitosa. However, L. sativa (lettuce) was also among the most sensitive to all four metals. Acacia species showed a high tolerance to metal exposure, suggesting that the Acacia genus shows potential for use in contaminated-site revegetation.

  2. Main biomarkers associated with age-related plasma zinc decrease and copper/zinc ratio in healthy elderly from ZincAge study.

    Science.gov (United States)

    Giacconi, R; Costarelli, L; Piacenza, F; Basso, A; Rink, L; Mariani, E; Fulop, T; Dedoussis, G; Herbein, G; Provinciali, M; Jajte, J; Lengyel, I; Mocchegiani, E; Malavolta, M

    2017-12-01

    Zinc (Zn) plays an essential role in many biological processes including immune response. Impaired Zn status promotes immune dysfunction, and it has been associated with enhanced chronic inflammation during aging. It has been suggested that the measurement of circulating Zn by itself could not reflect the real Zn status of an individual. It is therefore necessary to identify other determinants associated with plasma Zn to better understanding how physiopathological conditions during aging may affect the concentration of this metal. We have investigated the association between Zn levels and some biomarkers in 1090 healthy elderly from five European countries to increase the accuracy in the assessment of the Zn status. Stepwise multivariate linear regression models were used to analyze the influence of factors such as age, dietary intake, inflammatory mediators, laboratory parameters and polymorphisms previously associated with Zn homeostasis. Plasma Zn decrement was most strongly predicted by age, while positive correlations were found with albumin, RANTES and Zn intake after adjustment for multiple confounders. HSP70 +1267 AA genotype was an independent factor associated with Zn plasma concentrations. Cu/Zn ratio was positively associated with markers of systemic inflammation and age and negatively associated with albumin serum levels. Our findings show the most important independent determinants of plasma Zn concentration and Cu/Zn ratio variability in elderly population and suggest that the decline with age of Zn circulating levels is more dependent on physiopathological changes occurring with aging rather than to its nutritional intake.

  3. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Nadja Rebecca [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland); Wehrli, Bernhard [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland)

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L{sup −1} molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L{sup −1}. From OPV, copper (14 μg L{sup −1}), zinc (87 μg L{sup −1}) and silver (78 μg L{sup −1}) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. - Highlights: • Photovoltaics may be disposed in the environment after usage. • Copper indium gallium selenide (CIGS) and organic (OPV) cells were compared. • Morphological and molecular effects were assessed in zebrafish embryos. • Environmental condition affected metal leaching and ecotoxicological activity. • Damaged CIGS cells pose higher risk to the environment than OPV cells.

  4. Up-gradation of MoO{sub 3} and separation of copper, iron, zinc from roasted molybdenum ore by a leaching process

    Energy Technology Data Exchange (ETDEWEB)

    Jin-Young, Lee; Jyothi Rajesh, Kumar; Ho-Seok, Jeon; Joon-Soo, Kim, E-mail: rajeshkumarphd@rediffmail.com, E-mail: rkumarphd@kigam.re.kr [Extractive Metallurgy Department, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM) (Korea, Republic of)

    2013-04-15

    The present research paper deals with the oxidation process of molybdenum ore. The main target of the present study is the up-gradation of MoO{sub 3} from roasted molybdenum ore by a leaching process without waste generation. The most important application of hydrometallurgical processing is the leaching process of the ore and it is the primary process to make pure metal from ore. The present investigations optimize the following experimental parameters to improve the concentration of MoO{sub 3} as well as the separation of copper, iron and zinc in roasted molybdenum ore: effect of acid concentration, temperature, pulp density and leaching time were studied systematically. The temperature study was carried out at 550-595 Degree-Sign C for the oxidation process. The XRD result shows that oxidation process of molybdenum ore and SEM pictures were taken for particles before and after the oxidation process at 585 Degree-Sign C for 360 min. (author)

  5. Influence of Zinc Supplementation in Acute Diarrhea Differs by the Isolated Organism

    Directory of Open Access Journals (Sweden)

    Archana B. Patel

    2010-01-01

    Full Text Available Zinc supplementation is recommended in all acute diarrheas in children from developing countries. We aimed to assess whether zinc supplementation would be equally effective against all the common organisms associated with acute diarrheas. We used data on 801 children with acute diarrhea recruited in a randomized, double blind controlled trial (ISRCTN85071383 of zinc and copper supplementation. Using prespecified subgroup analyses, multidimensionality reduction analyses, tests of heterogeneity, and stepwise logistic regression for tests of interactions, we found that the influence of zinc on the risk of diarrhea for more than 3 days depended on the isolated organism—beneficial in Klebsiella, neutral in Esherichia coli and parasitic infections, and detrimental in rotavirus coinfections. Although we found similar results for the outcome of high stool volume, the results did not reach statistical significance. Our findings suggest that the current strategy of zinc supplementation in all cases of acute diarrheas in children may need appropriate fine tuning to optimize the therapeutic benefit based on the causative organism, but further studies need to confirm and extend our findings.

  6. Influence of zinc on the biokinetics of Zn-65 and hepatic trace elements of ethanol treated rats

    International Nuclear Information System (INIS)

    Dhawan, D.K.; Pathak, A.; Pathak, R.; Mahmood, A.

    2002-01-01

    Influence of zinc on the biokinetics of 65 Zn and hepatic trace elements of ethanol treated rats. The effect of zinc on the biokinetics of 65 Zn in liver and whole body and its relation to the hepatic levels of different elements was evaluated in male wistar rats under alcoholic conditions. The rats were segregated into four treatment groups viz., normal control, ethanol treated, zinc treated and combined zinc+ethanol treated. Animals were fed 3ml of 30% ethanol orally daily and zinc in the form of zinc sulfate (ZnSo 4 7H 2 O) was administrated to rats at a dose level of 227mg/L mixed in their drinking water for a total duration of 2 months. Whole body counting studies indicated that the Tb 1 i.e., the faster elimination of the radiotracer. On the contrary, Tb 2 i.e., the slower component was increased significantly following ethanol treatment. Percent uptake values of 65 Zn were found to be increased in liver, intestine, muscle and kidney and decreased in bone under alcoholic conditions. A significant elevation was noticed in in vitro uptake 65 Zn in ethanol treated animals. In the above said conditions, the values were reverted back to within normal limits upon zinc supplementation to these ethanol intoxicated animals, except in the case of in vitro 65 Zn uptake in liver where the uptake was further increased upon combined treatment. A significant decrease in zinc contents was noticed in ethanol treated rats, which however were raised to normal levels upon zinc supplementation. Copper levels, on the other hand, were found to be significantly enhanced in both ethanol fed and combined ethanol+zinc supplemented animals. Calcium levels were found to e significantly decreased in both ethanol and zinc treated rats, which however were further reduced upon zinc supplementation to ethanol fed rats. However, no significant change was observed in the concentrations of sodium and potassium in any of the treatment groups. Therefore, zinc appears to play a protective role by

  7. A syndrome of acute zinc deficiency during total parenteral alimentation in man.

    Science.gov (United States)

    Kay, R G; Tasman-Jones, C; Pybus, J; Whiting, R; Black, H

    1976-01-01

    Changes in the plasma and urine levels of the trace metal zinc have been followed in a series of 37 adult patients totally supported by intravenous alimentation. Copper has also been determined in more recent cases. In such a seriously ill group, although urinary zinc loss may be very high at the height of catabolism, severe plasma depletion does not occur unless there is a subsequent phase of sustained anabolism and weight gain. In four patients plasma zinc fell to very low levels during this phase and three of this group developed a syndrome characterized by diarrhea, mental depression, para-nasal, oral and peri-oral dermatitis, and alopecia. The response to oral or intravenous zinc therapy is striking, except for hair regrowth which is delayed but eventually complete. The syndrome we have recognized in adult man has not been previously described. It resembles however the parakeratosis of zinc deficient swine and it is also very similar to Acrodermatitis enteropathica, a genetically determined disorder of infants very recently linked to zinc deficiency. Zinc is clearly essential to human metabolism and it should be included in all parenteral alimentation regimes particularly during the period of rapid, sustained, weight gain. Images Fig. 1. Fig. 2. Fig. 3. Fig. 6. Fig. 7. Fig. 9. Fig. 10. PMID:817677

  8. Development of a simulated earthworm gut for determining bioaccessible arsenic, copper, and zinc from soil.

    Science.gov (United States)

    Ma, Wai K; Smith, Ben A; Stephenson, Gladys L; Siciliano, Steven D

    2009-07-01

    Soil physicochemical characteristics and contamination levels alter the bioavailability of metals to terrestrial invertebrates. Current laboratory-derived benchmark concentrations used to estimate risk do not take into account site-specific conditions, such as contaminant sequestration, and site-specific risk assessment requires a battery of time-consuming and costly toxicity tests. The development of an in vitro simulator for earthworm bioaccessibility would significantly shorten analytical time and enable site managers to focus on areas of greatest concern. The simulated earthworm gut (SEG) was developed to measure the bioaccessibility of metals in soil to earthworms by mimicking the gastrointestinal fluid composition of earthworms. Three formulations of the SEG (enzymes, microbial culture, enzymes and microbial culture) were developed and used to digest field soils from a former industrial site with varying physicochemical characteristics and contamination levels. Formulations containing enzymes released between two to 10 times more arsenic, copper, and zinc from contaminated soils compared with control and 0.01 M CaCl2 extractions. Metal concentrations in extracts from SEG formulation with microbial culture alone were not different from values for chemical extractions. The mechanism for greater bioaccessible metal concentrations from enzyme-treated soils is uncertain, but it is postulated that enzymatic digestion of soil organic matter might release sequestered metal. The relevance of these SEG results will need validation through further comparison and correlation with bioaccumulation tests, alternative chemical extraction tests, and a battery of chronic toxicity tests with invertebrates and plants.

  9. Enrichment of copper and recycling of cyanide from copper-cyanide waste by solvent extraction

    Science.gov (United States)

    Gao, Teng-yue; Liu, Kui-ren; Han, Qing; Xu, Bin-shi

    2016-11-01

    The enrichment of copper from copper-cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper-cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.

  10. Copper metabolism and its interactions with dietary iron, zinc, tin and selenium in rats

    NARCIS (Netherlands)

    Yu, S.

    1993-01-01

    This thesis describes various studies on copper metabolism and its interactions with selected dietary trace elements in rats. The rats were fed purified diets throughout. High intakes of iron or tin reduced copper concentrations in plasma, liver and kidneys. The dietary treatments also

  11. Phytoremediation of copper and zinc in sewage sludge amended soils using jatropha curcas and hibiscus cannabinus

    International Nuclear Information System (INIS)

    Aishah, R.M.; Shamshuddin, J.; Fauziah, C.I.

    2016-01-01

    Phytoremediation can be potentially used to remediate heavy metal contaminated soils. A glasshouse experiment was conducted to determine the extent of Jatropha curcas and Hibiscus cannabinus efficiency to the remediation of zinc and copper contaminated soils amended with sewage sludge. An Oxisol (Munchong Series) and an Ultisol (Bungor Series) were used in this experiment, which was laid out using a randomized completely block design in six replication. The plants in pots having soil containing 0, 5 and 10% (w/w) sewage sludge were grown for six months. Phytoremediation can take place successfully as shown by the decrease of total Zn and Cu in the treated soils, where the concentrations of Zn and Cu in the tested soils were higher before planting as compared to after planting. Most of the Zn and Cu taken up by the tested plants were stored in the shoots (leaves+ stem). The fractionation of Zn and Cu in sewage sludge, untreated and treated soils was studied before and after planting. The results of the fractionation study showed that the dominant Zn and Cu in the soil were in their residual form. At harvest, the percentages of water soluble and exchangeable fraction were increased, implying that some of the residual fraction may have changed to other forms. In general, there was no significant difference between the different metal fractions in the Oxisol and Ultisol. (author)

  12. The immune system and the impact of zinc during aging

    Directory of Open Access Journals (Sweden)

    Haase Hajo

    2009-06-01

    Full Text Available Abstract The trace element zinc is essential for the immune system, and zinc deficiency affects multiple aspects of innate and adaptive immunity. There are remarkable parallels in the immunological changes during aging and zinc deficiency, including a reduction in the activity of the thymus and thymic hormones, a shift of the T helper cell balance toward T helper type 2 cells, decreased response to vaccination, and impaired functions of innate immune cells. Many studies confirm a decline of zinc levels with age. Most of these studies do not classify the majority of elderly as zinc deficient, but even marginal zinc deprivation can affect immune function. Consequently, oral zinc supplementation demonstrates the potential to improve immunity and efficiently downregulates chronic inflammatory responses in the elderly. These data indicate that a wide prevalence of marginal zinc deficiency in elderly people may contribute to immunosenescence.

  13. 65Zinc and endogenous zinc content and distribution in islets in relationship to insulin content

    International Nuclear Information System (INIS)

    Figlewicz, D.P.; Forhan, S.E.; Hodgson, A.T.; Grodsky, G.M.

    1984-01-01

    Uptake of 65 Zn and distribution of 65 Zn, total zinc, and insulin were measured in rat islets and islet granules under different conditions of islet culture. Specific activity of islet zinc ( 65 Zn/zinc) was less than 15% that of extracellular zinc even after 48 h. In contrast, once in the islet, 65 Zn approached 70% of equilibrium with granular zinc in 24 h and apparent equilibrium by 48 h. During a 24-h culture, at either high or low glucose, reduction of both islet zinc and insulin occurred. However, zinc depletion was greater than that predicted if zinc loss was proportional to insulin depletion and occurred only from the granular compartment, which represents only one third of the total islet zinc. Extension of culture to 48 h caused additional insulin depletion, but islet zinc was unchanged. Omission of calcium during the 48-h culture caused a predicted increase in insulin retention, presumably by inhibiting secretion; however, zinc retention was not increased proportionately. Pretreatment of rats with tolbutamide caused a massive depletion of insulin stored in isolated islets, with little change in total islet zinc; subsequent culture of these islets resulted in a greater loss of granular zinc than predicted from the small loss of granular insulin. None of the conditions tested affected the percentage of either 65 Zn or total zinc that was distributed in the islet granules. Results show that zinc exists in a metabolically labile islet compartment(s) as well as in secretory granules; and extra-granular zinc, although not directly associated with insulin storage, may act as a reservoir for granular zinc and may regulate insulin synthesis, storage, and secretion in ways as yet unknown

  14. A laboratory study of removing Arsenic from a synthetic copper concentrate

    International Nuclear Information System (INIS)

    Tajadod, J.

    2000-01-01

    Arsenic is the 20th most abundant element if the earth's crust at a level of about 2 ppm. It is a constituent of over 300 minerals and is commonly found in non-ferrous ores such as copper, lead, zinc, gold and uranium. Efficient separation of arsenic minerals from other sulphide minerals is of great importance for the metallurgical performance of flotation processes. This work was undertaken to study the separation of engirt, an arsenic-bearing mineral from chalcopyrite in copper concentrates. To achieve this aim the possible depression of engirt using some sulphide depressants was studied

  15. Determination of high content of copper lead zinc silver in Geo-logical Samples by Flame Atomic Absorption Spectrometry%火焰原子吸收法测定地质样品中高含量的铜铅锌银

    Institute of Scientific and Technical Information of China (English)

    文双辉

    2014-01-01

    This paper deals with the method of non sensitive line determination of high content of copper lead zinc silver in Geological Samples by flame atomic absorption spectrometry, The optimum condi-tions for determination of each component are determined through ex-periment The working curve range 0-125 ug g/ ml,Determination of values and standard values,Component relative standard deviation (n=11) were lower than 1%, suitable for the determination of copper lead zinc silver in the range of 1%-15% samples.%本文研究了采用非灵敏线火焰原子吸收法测定地质样中较高含量的铜铅锌银的方法,通过实验确定了各组分测定的最佳条件。工作曲线范围0-125微克/毫升,测定值与标准值相吻合,各组分相对标准差(n=11)均低于1%,适合地质样品中较高含量铜铅锌银的测定。

  16. Avaliação do teor de cobre e zinco em carnes cruas, processadas termicamente, resfriadas e congeladas no período de um mês Evaluation of copper and zinc in meats thermally processed and conservated in freezer for a month

    Directory of Open Access Journals (Sweden)

    Édira Castello Branco de Andrade

    2004-09-01

    Full Text Available Para que elementos químicos, como o cobre e o zinco, sejam utilizados pelos sistemas biológicos, é necessário que estejam disponíveis para absorção, sendo assim, apenas a sua abundância na natureza não é fator que garanta a sua absorção. As carnes bovinas e de aves são de grande importância na alimentação, justamente por serem alimentos fonte de proteínas de alto valor biológico e lipídios. Processos de conservação através de refrigeração e congelamento, bem como processamento térmico, podem alterar fisicamente as carnes. Este trabalho tem como objetivo avaliar o comportamento de cobre e zinco em carnes resfriadas e conservadas em temperatura de congelamento por um período de 1 mês, processadas termicamente e in natura. Os teores de cobre e zinco foram determinados através da espectroscopia de absorção atômica. Os dados foram tratados estatisticamente através do teste de Grubs e t de Student. Mesmo com perdas no processamento térmico, e com a conservação em temperatura de congelamento durante o período de 4 semanas, o teor de cobre na maioria das amostras estudadas foi superior a 0,025mg%, e o do zinco superior a 0,3mg% para as amostras de carnes de aves e 0,6mg% para as amostras de carnes bovinas.Copper and zinc can appear in nature under chemical forms, the solubility of theses metals can be determinated bio-availability.Meats from cattle or chicken are sources of proteins and lipids wich are very important for human nutrition. Thermal processing as cooking, refrigeration and freezing can modifie fisical and chemical structures of meats tissues.Samples of meat from cattle and chicken, in two batches of each variety, were thermally processed and conservated in freezer for a month, and the total ratio of copper and zinc was determined through flame atomic absorption spectroscopy. Both the Grubs and t test by Student were used for the analysis. It was observed that, after freezing and thermal processing copper

  17. IRON, ZINC, AND FERRITIN ACCUMULATION IN COMMON BEANS

    DEFF Research Database (Denmark)

    Urbanski, Dorian Fabian; Sørensen, Kirsten; Jurkiewicz, Anna Malgorzata

    Iron and zinc malnutrition are major threats to human health and development around the world. The World Health Organization states that over two billion people are affected by iron deficiency. In particular children and pregnant women in developing countries are affected by iron deficiency...... in mature seeds, but the ferritin protein was suggested to be the major iron storing protein in legumes [1]. Both iron and zinc localization, as well as speciation, can have an impact on their nutritional availability. We will present detailed information about iron, zinc, and ferritin distribution...

  18. Manufacturing of copper-graphite brushes for automobile applications

    International Nuclear Information System (INIS)

    Answar, M.Y.

    2006-01-01

    Copper-graphite brushes are used in high-volume automotive applications, such as ignition switches, window lifts, wiper motors, engine cooling fans, ABS break system and seat actuators etc. The amount of graphite in these brushes may range from 5 -20 wt. %. In this paper, some of the results of a study carried out using locally produced electrolytic copper powder and imported graphite powder are being summarized. The green compacts were produced by compaction at 650 MPa. These compacts were sintered at temperatures between 950 to 1050 degree C for various time intervals. The effects of sintering temperatures and time on the properties are analyzed. The influence of small additions of zinc on hardness of the sintered alloy compacts is also investigated. (author)

  19. Niche partitioning within genus Nitrospira is affected by environmental copper concentration

    DEFF Research Database (Denmark)

    Fowler, Jane; Dechesne, Arnaud; Wagner, Florian Benedikt

    and at times limiting nutrient in nitrifying environments. We sought to examine the effects of copper on niche partitioning within the genus Nitrospira in full-scale filters. Sand samples from the top of an after-filter that displayed incomplete ammonium oxidation at Nærum waterworks were taken prior to Cu...... once copper limitation was removed, likely resulting in the out-competition of Clade B Nitrospira ammonium oxidizers. These results suggest that copper availability plays a role in determining the diversity and distribution of Nitrospira spp. in nitrifying environments....

  20. Bioleaching of copper, cobalt and zinc from black shale by ...

    African Journals Online (AJOL)

    Extractions were compared with chemical leaching, where leaching up to 54.27% Co and 35.16% Zn were achieved in medium of 1% oxalic acid whereas, copper up to 51.22% extracted in medium containing 1% citric acid. Recovery of metals from this ore has indicated that this low grade discarded ore may be potential ...

  1. Evaluation of Lead, Cadmium, Zinc and Copper Levels in Blood, Hair and Teeth of Children

    International Nuclear Information System (INIS)

    Abdel -Latif, A.; EL- Bedewi, A.F.; Gad, A.; Mortada, A.A.

    2004-01-01

    There is a general agreement that children are a population that suffered increased risk of lead (Pb) and cadmium (Cd) exposure with adverse health effects. The aim of this study is to evaluate the environmental exposure to Pb and Cd in children living in Cairo since birth and their effects on other essential elements such as zinc (Zn) and copper (Cu). The relationships between these indicators for exposure and children characteristics such as sex, weight, height, blood pressure and smoking habits of parents were also estimated. Forty children (23 males and 17 females) aged 5-7 years had been included in this study. Levels of elements in the samples were determined using atomic absorption spectroscopy. The levels of Pb in blood (Pb-B), hair (Pb-H) and teeth (Pb-T) were 18.17 ± 5.35 fig/dl, 6.29 ± 2.07 fig/g and 8.07± 1.98 fig/g, respectively. Significant differences were observed between boys and girls as regards Pb-H (P<0.001)and Pb-T(P<0.05). The Cd levels were 0.603 ±0.08 μg/dl in blood (Cd-B), 0.933 ± 0.18 fig/g in hair (Cd-H) and 4.825± 0.57 μg/g in teeth (Cd-T). Boys showed higher significant increases in Cd-B than girls (P < 0.001). Concerning Zn, the levels were 57.43± 6.86 μg/dl,148.18± 11.76μg/g and 100.32± 20.28 μg/dl in blood (Zn-B), hair (Zn-H) and teeth(Zn-T),correspondingly Girls displayed significant higher levels of Zn-H than boys (P < 0.05). Regarding Cu in blood (Cu-B), in hair (Cu-H) and in teeth (Cu-T), they were 113.42± 9.89 μg/dl, 17.9±4.18 μg/g and 10.6± 3.04 μg/g, respectively. Girls showed significant higher levels of Cu-H than boys (P < 0.05). The passive smoking children exhibited significant increased levels of Pb, Cd and Cu in blood, hair and teeth when compared to the non-exposed children. On the other hand, passive smoking leads to decrease in Zn concentrations in the three studied samples. The proper mechanism of Zn affection was explained by interactions with Cd, Pb and Cu. Correlation between Pb and Cd with

  2. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize.

    Directory of Open Access Journals (Sweden)

    Yanfang Xue

    Full Text Available The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn, iron (Fe, manganese (Mn and copper (Cu in maize (Zea mays L. were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain. Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N levels. Fe, Mn and Cu RIEs (average 64.4, 18.1 and 5.3 g, respectively were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60% and decreased Zn concentrations in straw (a 56% decrease and grain (decreased from 16.9 to 12.2 mg kg-1 rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively. The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.

  3. Zinc fingers, zinc clusters, and zinc twists in DNA-binding protein domains

    International Nuclear Information System (INIS)

    Vallee, B.L.; Auld, D.S.; Coleman, J.E.

    1991-01-01

    The authors recognize three distinct motifs of DNA-binding zinc proteins: (i) zinc fingers, (ii) zinc clusters, and (iii) zinc twists. Until very recently, x-ray crystallographic or NMR three-dimensional structure analyses of DNA-binding zinc proteins have not been available to serve as standards of reference for the zinc binding sites of these families of proteins. Those of the DNA-binding domains of the fungal transcription factor GAL4 and the rat glucocorticoid receptor are the first to have been determined. Both proteins contain two zinc binding sites, and in both, cysteine residues are the sole zinc ligands. In GAL4, two zinc atoms are bound to six cysteine residues which form a zinc cluster akin to that of metallothionein; the distance between the two zinc atoms of GAL4 is ∼3.5 angstrom. In the glucocorticoid receptor, each zinc atom is bound to four cysteine residues; the interatomic zinc-zinc distance is ∼13 angstrom, and in this instance, a zinc twist is represented by a helical DNA recognition site located between the two zinc atoms. Zinc clusters and zinc twists are here recognized as two distinctive motifs in DNA-binding proteins containing multiple zinc atoms. For native zinc fingers, structural data do not exist as yet; consequently, the interatomic distances between zinc atoms are not known. As further structural data become available, the structural and functional significance of these different motifs in their binding to DNA and other proteins participating in the transmission of the genetic message will become apparent

  4. Impacts of ambient salinity and copper on brown algae: 2. Interactive effects on phenolic pool and assessment of metal binding capacity of phlorotannin

    Energy Technology Data Exchange (ETDEWEB)

    Connan, Solene, E-mail: solene.connan@gmail.com [Botany and Plant Science, School of Natural Sciences, Environmental Change Institute and Martin Ryan Institute, National University of Ireland Galway, Galway (Ireland); Stengel, Dagmar B., E-mail: dagmar.stengel@nuigalway.ie [Botany and Plant Science, School of Natural Sciences, Environmental Change Institute and Martin Ryan Institute, National University of Ireland Galway, Galway (Ireland)

    2011-07-15

    The aim of this study was to establish in laboratory experiments a quantitative link between phenolic pool (production, composition and exudation) in Ascophyllum nodosum and Fucus vesiculosus and their potential to bind metals. Additionally, the copper binding capacity of purified phlorotannin was investigated. A reduction in salinity decreased total phenolic contents, altered phenolic composition by increasing proportion of cell-wall phenolics, and also increased phenolic exudation of the two seaweed species. After 15 days at a salinity of 5, the inhibition of photosynthesis observed previously for A. nodosum coincided with the high exudation of phenolic compounds into the surrounding water of the seaweed tips which resulted in a significant reduction of phenolic contents. Increased copper concentration also reduced total phenolic contents, changed phenolic composition (increase in proportion and level of cell-wall phenolics), and positively affected phenolic exudation of A. nodosum and F. vesiculosus. A decrease in salinity enhanced the copper toxicity and caused the earlier impact on the physiology of seaweed tips. An involvement of phlorotannins in copper binding is also demonstrated; purified phlorotannins from A. nodosum collected from a site with little anthropogenic activity contained all four metals tested. When placed in copper-enriched water, as for the seaweed material, copper contents of the phenolics increased, zinc and cadmium contents decreased, but no change in chromium content was observed. The use of cell-wall phenolic content as biomarker of copper contamination seems promising but needs further investigation.

  5. Cathodic hydrogen charging of zinc

    International Nuclear Information System (INIS)

    Panagopoulos, C.N.; Georgiou, E.P.; Chaliampalias, D.

    2014-01-01

    Highlights: •Incorporation of hydrogen into zinc and formation of zinc hydrides. •Investigation of surface residual stresses due to hydrogen diffusion. •Effect of hydrogen diffusion and hydride formation on mechanical properties of Zn. •Hydrogen embrittlement phenomena in zinc. -- Abstract: The effect of cathodic hydrogen charging on the structural and mechanical characteristics of zinc was investigated. Hardening of the surface layers of zinc, due to hydrogen incorporation and possible formation of ZnH 2 , was observed. In addition, the residual stresses brought about by the incorporation of hydrogen atoms into the metallic matrix, were calculated by analyzing the obtained X-ray diffraction patterns. Tensile testing of the as-received and hydrogen charged specimens revealed that the ductility of zinc decreased significantly with increasing hydrogen charging time, for a constant value of charging current density, and with increasing charging current density, for a constant value of charging time. However, the ultimate tensile strength of this material was slightly affected by the hydrogen charging procedure. The cathodically charged zinc exhibited brittle transgranular fracture at the surface layers and ductile intergranular fracture at the deeper layers of the material

  6. A novel XRF method to measure environmental release of copper and zinc from antifouling paints.

    Science.gov (United States)

    Ytreberg, Erik; Lagerström, Maria; Holmqvist, Albin; Eklund, Britta; Elwing, Hans; Dahlström, Magnus; Dahl, Peter; Dahlström, Mia

    2017-06-01

    The release of copper (Cu) and zinc (Zn) from vessels and leisure crafts coated with antifouling paints can pose a threat to water quality in semi-enclosed areas such as harbors and marinas as well as to coastal archipelagos. However, no reliable, practical and low-cost method exists to measure the direct release of metals from antifouling paints. Therefore, the paint industry and regulatory authorities are obliged to use release rate measurements derived from either mathematical models or from laboratory studies. To bridge this gap, we have developed a novel method using a handheld X-Ray Fluorescence spectrometer (XRF) to determine the cumulative release of Cu and Zn from antifouling paints. The results showed a strong linear relationship between XRF K α net intensities and metal concentrations, as determined by ICP-MS. The release of Cu and Zn were determined for coated panels exposed in harbors located in the Baltic Sea and in Kattegat. The field study showed salinity to have a strong impact on the release of Cu, i.e. the release increased with salinity. Contrary, the effect of salinity on Zn was not as evident. As exemplified in this work, the XRF method also makes it possible to identify the governing parameters to the release of Cu and Zn, e.g. salinity and type of paint formulation. Thus, the XRF method can be used to measure environmentally relevant releases of metallic compounds to design more efficient and optimized antifouling coatings. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Correlations in distribution and concentration of calcium, copper and iron with zinc in isolated extracellular deposits associated with age-related macular degeneration

    Science.gov (United States)

    Flinn, Jane M; Kakalec, Peter; Tappero, Ryan; Jones, Blair F.; Lengyel, Imre

    2014-01-01

    Zinc (Zn) is abundantly enriched in sub-retinal pigment epithelial (RPE) deposits, the hallmarks of age-related macular degeneration (AMD), and is thought to play a role in the formation of these deposits. However, it is not known whether Zn is the only metal relevant for sub-RPE deposit formation. Because of their involvement in the pathogenesis of AMD, we determined the concentration and distribution of calcium (Ca), iron (Fe) and copper (Cu) and compared these with Zn in isolated and sectioned macular (MSD), equatorial (PHD) and far peripheral (FPD) sub-RPE deposits from an 86 year old donor eye with post mortem diagnosis of early AMD. The sections were mounted on Zn free microscopy slides and analyzed by microprobe synchrotron X-ray fluorescence (μSXRF). Metal concentrations were determined using spiked sectioned sheep brain matrix standards, prepared the same way as the samples. The heterogeneity of metal distributions was examined using pixel by pixel comparison. The orders of metal concentrations were Ca ⋙ Zn > Fe in all three types of deposits but Cu levels were not distinguishable from background values. Zinc and Ca were consistently present in all deposits but reached highest concentration in MSD. Iron was present in some but not all deposits and was especially enriched in FPD. Correlation analysis indicated considerable variation in metal distribution within and between sub-RPE deposits. The results suggest that Zn and Ca are the most likely contributors to deposit formation especially in MSD, the characteristic risk factor for the development of AMD in the human eye.

  8. Iron and zinc concentrations and 59Fe retention in developing fetuses of zinc-deficient rats

    International Nuclear Information System (INIS)

    Rogers, J.M.; Loennerdal, B.H.; Hurley, L.S.; Keen, C.L.

    1987-01-01

    Because disturbances in iron metabolism might contribute to the teratogenicity of zinc deficiency, we examined the effect of zinc deficiency on fetal iron accumulation and maternal and fetal retention of 59 Fe. Pregnant rats were fed from mating a purified diet containing 0.5, 4.5 or 100 micrograms Zn/g. Laparotomies were performed on d 12, 16, 19 and 21 of gestation. Maternal blood and concepti were analyzed for zinc and iron. Additional groups of dams fed 0.5 or 100 micrograms Zn/g diet were gavaged on d 19 with a diet containing 59 Fe. Six hours later maternal blood and tissues, fetuses and placentas were counted for 59 Fe. Maternal plasma zinc, but not iron, concentration was affected by zinc deficiency on d 12. Embryo zinc concentration on d 12 increased with increasing maternal dietary zinc, whereas iron concentration was not different among groups. On d 16-21 plasma iron was higher in dams fed 0.5 micrograms Zn/g diet than in those fed 4.5 or 100 micrograms/g, whereas plasma zinc was lower in dams fed 0.5 or 4.5 micrograms Zn/g than in those fed 100 micrograms Zn/g diet. On d 19 zinc concentration in fetuses from dams fed 0.5 micrograms/g zinc was not different from that of those fed 4.5 micrograms/g zinc, and iron concentration was higher in the 0.5 microgram Zn/g diet group. The increase in iron concentration in zinc-deficient fetuses thus occurs too late to be involved in major structural teratogenesis. Although whole blood concentration of 59 Fe was not different in zinc-deficient and control dams, zinc-deficient dams had more 59 Fe in the plasma fraction

  9. Zinc, nitrogen and salinity interaction on agronomic traits and some ...

    African Journals Online (AJOL)

    use

    2011-11-23

    Nov 23, 2011 ... percentage decreased due to nitrogen, zinc and salinity in the first year but .... Analysis of variance on canola traits affected by nitrogen, zinc and salinity at ...... a result less of the latter are available for fat synthesis ... Na+ and Cl- in plant tissues, effects of nitrogen and zinc ... Zinc alleviates cadmium-induced.

  10. Aplicação de água residuária de suinocultura em solo cultivado com soja: cobre e zinco no material escoado e no solo Swine wastewater application in soil cultivated with soybean: copper and zinc in the runoff material and in the soil

    Directory of Open Access Journals (Sweden)

    Tatiane C. dal Bosco

    2008-12-01

    Full Text Available O objetivo deste trabalho foi avaliar a poluição difusa referente ao cobre e ao zinco no solo e no material de escoamento superficial quando da aplicação de água residuária de suinocultura (ARS em solo cultivado com soja, sob condição de chuva simulada. O experimento foi instalado em Toledo - PR, sendo aplicadas ao solo cinco taxas de ARS (0; 50; 100; 150 e 200 m³ ha-1 no ciclo, em três repetições por tratamento, divididas em seis aplicações ao longo do ciclo da soja. Foram instaladas calhas coletoras do material escoado e fizeram-se seis simulações de chuva durante o experimento, resultando em seis coletas do material escoado. Ao final do ciclo da soja, foram coletadas amostras de solo em cada uma das parcelas experimentais, em três profundidades, para a determinação do pH, da capacidade de troca de cátions, da matéria orgânica, do cobre e do zinco. Observou-se que houve perda de cobre e de zinco via escoamento superficial e que as maiores concentrações de cobre foram verificadas nas profundidades de 20-40 e 40-60 cm, enquanto o zinco apresentou maior concentração na camada de 0-20 cm e, ao final do experimento, aumentou nas demais profundidades.The objective of this work was to evaluate the diffuse pollution regarding to the copper and to the zinc in the soil and in the runoff material due to the application of swine wastewater (ARS in soil cultivated with soybean, under simulated rain condition. The experiment was installed in Toledo - PR, Brazil, and it was applied to the soil five rates of ARS (0; 50; 100; 150 and 200 m³ ha-1 in the cycle, in three replications for treatment, divided in six applications along the cycle of the soybean. Gutters were installed gutters to collect the runoff material and it was made six rain simulations during the experiment, resulting in six collections of the runoff. At the end of the soybean cycle, soil samples were collected in each one of the experimental plots, at three depths

  11. Food survey: levels and potential health risks of chromium, lead, zinc and copper content in fruits and vegetables consumed in Algeria.

    Science.gov (United States)

    Cherfi, Abdelhamid; Abdoun, Samira; Gaci, Ouardia

    2014-08-01

    A food survey was carried out with the aim to investigate the levels of lead (Pb), zinc (Zn), copper (Cu) and chromium (Cr) in various fruits and vegetables sold in Algeria. Concentrations (mg/kgdry wt.) in selected foodstuffs were detected within the following ranges: 4-29.49, 11.17-49, 12.33-39.33 and 3-16.33 for Cu, Zn, Pb and Cr respectively. The food ingestion rate of the selected items was investigated by self-administered questionnaires which were filled by a total of 843 people randomly recruited at the exit of markets. The potential health risk for consumers was investigated by estimating the daily intake (EDI) and the target hazard quotient (THQ) for each heavy metal. For all foodstuffs, the EDI and the THQ were below the threshold values for Cu, Zn and Cr while they exceeded the thresholds for Pb (EDI: 15.66μgPb/kg body weight/day; THQ: 4.37), indicating an obvious health risk over a life time of exposure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Meals and dephytinization affect calcium and zinc absorption in Nigerian children with rickets

    Science.gov (United States)

    Nutritional rickets resulting from calcium insufficiency is common in Nigeria, and high dietary phytate is thought to inhibit calcium and zinc absorption. We compared the effects of a high-phytate meal and enzymatic dephytinization on calcium and zinc absorption in Nigerian children with and without...

  13. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    Science.gov (United States)

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  14. Comparação dos teores de cobre e zinco em leguminosas cruas e após serem processadas termicamente em meio salino e aquoso Evaluation of total amount of copper and zinc by legumes raw and thermally processed ina an aqueous and saline medium

    Directory of Open Access Journals (Sweden)

    E. C. B. Andrade

    2004-09-01

    Full Text Available O cobre e o zinco participam de diversas reações no organismo, diretamente ou como co-fatores de enzimas, e são considerados essenciais. Avaliar os teores destes, em leguminosas cruas e após processamento térmico, permite um conhecimento do comportamento destes metais em meio salino e aquoso o que auxiliará no conhecimento do aproveitamento destes pelo organismo humano. Amostras de feijões preto, branco, carioquinha, manteiga, mulatinho, ervilha, lentilha e grão-de-bico, duas marcas de cada tipo e em dois lotes, foram analisadas quanto ao teor total de cobre e zinco quando cruas e processadas termicamente em meio salino e aquoso. A abertura das amostras foi feita por calcinação a 550ºC. As amostras que foram processadas termicamente, passaram por dessecação em estufa a 105ºC antes da calcinação. O teor total de cobre e zinco nas amostras foi determinado através da espectrometria de absorção atômica em chama. Na análise da rejeição de resultados foram aplicados o teste Dixon e o teste t de Student. Observou-se que, após o processamento térmico em meio salino ou aquoso, a maioria das amostras não teve perda significativa dos teores de cobre e zinco em relação às amostras cruas. Considerando que os teores médios do cobre e zinco nas amostras cruas foram, respectivamente, de 0,75mg% e 3,2mg% ao ser consumido uma porção média de leguminosas, cerca de 50g, a mesma fornece aproximadamente 19% e 10% das necessidades diárias de cobre e zinco, respectivamente, para um homem adulto segundo a R.D.A.Copper and zinc are considered essential oligoelements to human nutrition, taking part in several reactions either directly or as enzymatic co-fators. The amount of these elements in legumes, both raw and thermally processed in an aqueous and saline medium, provides an insight into their behavior, thus allowing an understanding of how these metals are best utilized by the human body. Two different commercial samples of raw and

  15. Normal-tissue radioprotection by overexpression of the copper-zinc and manganese superoxide dismutase genes

    Energy Technology Data Exchange (ETDEWEB)

    Veldwijk, Marlon R. [Dept. of Radiation Oncology, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim (Germany); Pharmacology of Cancer Treatment (G402), German Cancer Research Center, Heidelberg (Germany); Herskind, Carsten; Wenz, Frederik [Dept. of Radiation Oncology, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim (Germany); Sellner, Leopold; Zeller, W. Jens [Pharmacology of Cancer Treatment (G402), German Cancer Research Center, Heidelberg (Germany); Radujkovic, Aleksandar [Dept. of Internal Medicine V, Univ. of Heidelberg (Germany); Laufs, Stephanie [Dept. of Experimental Surgery, Univ. Medical Center Mannheim, Univ. of Heidelberg, Mannheim (Germany); Molecular Oncology of Solid Tumors (G360), German Cancer Research Center, Heidelberg (Germany); Fruehauf, Stefan [Center for Tumor Diagnostic and Therapy, Paracelsus-Klinik, Osnabrueck (Germany)

    2009-08-15

    Background and Purpose: Protection of normal tissue against radiation-induced damage may increase the therapeutic ratio of radiotherapy. A promising strategy for testing this approach is gene therapy-mediated overexpression of the copper-zinc (CuZnSOD) or manganese superoxide dismutase (MnSOD) using recombinant adeno-associated viral (rAAV2) vectors. The purpose of this study was to test the modulating effects of the SOD genes on human primary lung fibroblasts (HPLF) after irradiation. Material and Methods: HPLF were transduced with rAAV2 vectors containing cDNA for the CuZnSOD, MnSOD or a control gene. The cells were irradiated (1-6 Gy), and gene transfer efficiency, apoptosis, protein expression/activity, and radiosensitivity measured by the colony-forming assay determined. Results: After transduction, 90.0% {+-} 6.4% of the cells expressed the transgene. A significant fivefold overexpression of both SOD was confirmed by an SOD activity assay (control: 21.1 {+-} 12.6, CuZnSOD: 95.1 {+-} 17.1, MnSOD: 108.5 {+-} 36.0 U SOD/mg protein) and immunohistochemistry. CuZnSOD and MnSOD overexpression resulted in a significant radioprotection of HPLF compared to controls (surviving fraction [SF] ratio SOD/control > 1): CuZnSOD: 1.18-fold (95% confidence interval [CI]: 1.06-1.32; p = 0.005), MnSOD: 1.23-fold (95% CI: 1.07-1.43; p = 0.01). Conclusion: Overexpression of CuZnSOD and MnSOD in HPLF mediated an increase in clonogenic survival after irradiation compared to controls. In previous works, a lack of radioprotection in SOD-overexpressing tumor cells was observed. Therefore, the present results suggest that rAAV2 vectors are promising tools for the delivery of radioprotective genes in normal tissue. (orig.)

  16. Synthesis, characterization and thermal studies of nickel (II), copper (II), zinc (II) and cadmium (II) complexes with some mixed ligands

    International Nuclear Information System (INIS)

    Mitra, Samiran; Kundu, Parimal; Singh, Rajkumar Bhubon

    1998-01-01

    Dichloro-(DCA) and trichloroacetate(TCA) -cyclic ligand morpholine (Morph)/thiomorpholine (Tmorph)/methylmorpholine (Mmorph)/dimethyl-piperazine (DMP) complexes of nickel (II), copper (II), zinc (II) and cadmium (II) with the compositions [Ni(tmorph) 2 (DCA) 2 ], [Ni(tmorph) 2 (TCA) 2 ].2H 2 O, [Cu(DMP) 2 (TCA) 2 ],[ML 2 X 2 ].nH 2 O where M=Zn II or Cd II , L=Morph, DMP or tmorph and X=DCA or TCA and n=O except in case of [Cd (Morph) 2 (TCA) 2 ] where n=1 have been synthesised. Some intermediate complexes have been isolated by temperature arrest technique (pyrolysis) and characterised. Configurational and conformational changes have been studied by elemental analyses, IR and electronic spectra, magnetic moment data (in the case of Ni(II) and Cu(II) complexes) and thermal analysis. E a * , ΔH, and ΔS for the decomposition reaction of these complexes are evaluated and the stability of the complexes with respect to activation energy has also been compared. The linear correlation has been found between E a * and ΔS for the decomposition of the complexes. (author)

  17. Zinc Absorption from Micronutrient Powder Is Low but Is not Affected by Iron in Kenyan Infants

    Directory of Open Access Journals (Sweden)

    Fabian Esamai

    2014-12-01

    Full Text Available Interference with zinc absorption is a proposed explanation for adverse effects of supplemental iron in iron-replete children in malaria endemic settings. We examined the effects of iron in micronutrient powder (MNP on zinc absorption after three months of home fortification with MNP in maize-based diets in rural Kenyan infants. In a double blind design, six-month-old, non-anemic infants were randomized to MNP containing 5 mg zinc, with or without 12.5 mg of iron (MNP + Fe and MNP − Fe, respectively; a control (C group received placebo powder. After three months, duplicate diet collections and zinc stable isotopes were used to measure intake from MNP + non-breast milk foods and fractional absorption of zinc (FAZ by dual isotope ratio method; total absorbed zinc (TAZ, mg/day was calculated from intake × FAZ. Mean (SEM TAZ was not different between MNP + Fe (n = 10 and MNP − Fe (n = 9 groups: 0.85 (0.22 and 0.72 (0.19, respectively, but both were higher than C (n = 9: 0.24 (0.03 (p = 0.04. Iron in MNP did not significantly alter zinc absorption, but despite intakes over double estimated dietary requirement, both MNP groups’ mean TAZ barely approximated the physiologic requirement for age. Impaired zinc absorption may dictate need for higher zinc doses in vulnerable populations.

  18. Impact of residual elements on zinc quality in the production of zinc oxide

    Directory of Open Access Journals (Sweden)

    N. Luptáková

    2016-07-01

    Full Text Available The paper is focused on zinc oxide manufacturing process. The present work deals with the character and morphology of the input material for the production of ZnO by the indirect pyrometallurgical process. Undesirable phases in the feedstock can be identified through profound recognition of the source material and the nature of its microstructure. If these compounds diffuse into the lining during thermal processes, they become the cause of stress in metallurgical ceramics. The emergence of these chemical reactions may subsequently affect the entire metallurgical zinc smelting process. The results obtained by analysis are used to minimize waste - zinc slag and to eliminate the conditions which enable the formation of the undesired product, thereby increasing the productivity of the ZnO production.

  19. Intense pulsed light annealing of copper zinc tin sulfide nanocrystal coatings

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Bryce A.; Smeaton, Michelle A.; Holgate, Collin S.; Trejo, Nancy D.; Francis, Lorraine F., E-mail: francis@umn.edu; Aydil, Eray S., E-mail: aydil@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, Minnesota 55455 (United States)

    2016-09-15

    A promising method for forming the absorber layer in copper zinc tin sulfide [Cu{sub 2}ZnSnS{sub 4} (CZTS)] thin film solar cells is thermal annealing of coatings cast from dispersions of CZTS nanocrystals. Intense pulsed light (IPL) annealing utilizing xenon flash lamps is a potential high-throughput, low-cost, roll-to-roll manufacturing compatible alternative to thermal annealing in conventional furnaces. The authors studied the effects of flash energy density (3.9–11.6 J/cm{sup 2}) and number of flashes (1–400) during IPL annealing on the microstructure of CZTS nanocrystal coatings cast on molybdenum-coated soda lime glass substrates (Mo-coated SLG). The annealed coatings exhibited cracks with two distinct linear crack densities, 0.01 and 0.2 μm{sup −1}, depending on the flash intensity and total number of flashes. Low density cracking (0.01 μm{sup −1}, ∼1 crack per 100 μm) is caused by decomposition of CZTS at the Mo-coating interface. Vapor decomposition products at the interface cause blisters as they escape the coating. Residual decomposition products within the blisters were imaged using confocal Raman spectroscopy. In support of this hypothesis, replacing the Mo-coated SLG substrate with quartz eliminated blistering and low-density cracking. High density cracking is caused by rapid thermal expansion and contraction of the coating constricted on the substrate as it is heated and cooled during IPL annealing. Finite element modeling showed that CZTS coatings on low thermal diffusivity materials (i.e., SLG) underwent significant differential heating with respect to the substrate with rapid rises and falls of the coating temperature as the flash is turned on and off, possibly causing a build-up of tensile stress within the coating prompting cracking. Use of a high thermal diffusivity substrate, such as a molybdenum foil (Mo foil), reduces this differential heating and eliminates the high-density cracking. IPL annealing in presence of sulfur

  20. Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women

    Directory of Open Access Journals (Sweden)

    Karen Lim

    2015-04-01

    Full Text Available Iron and zinc are found in similar foods and absorption of both may be affected by food compounds, thus biochemical iron and zinc status may be related. This cross-sectional study aimed to: (1 describe dietary intakes and biochemical status of iron and zinc; (2 investigate associations between dietary iron and zinc intakes; and (3 investigate associations between biochemical iron and zinc status in a sample of premenopausal women aged 18–50 years who were recruited in Melbourne and Sydney, Australia. Usual dietary intakes were assessed using a 154-item food frequency questionnaire (n = 379. Iron status was assessed using serum ferritin and hemoglobin, zinc status using serum zinc (standardized to 08:00 collection, and presence of infection/inflammation using C-reactive protein (n = 326. Associations were explored using multiple regression and logistic regression. Mean (SD iron and zinc intakes were 10.5 (3.5 mg/day and 9.3 (3.8 mg/day, respectively. Median (interquartile range serum ferritin was 22 (12–38 μg/L and mean serum zinc concentrations (SD were 12.6 (1.7 μmol/L in fasting samples and 11.8 (2.0 μmol/L in nonfasting samples. For each 1 mg/day increase in dietary iron intake, zinc intake increased by 0.4 mg/day. Each 1 μmol/L increase in serum zinc corresponded to a 6% increase in serum ferritin, however women with low serum zinc concentration (AM fasting < 10.7 μmol/L; AM nonfasting < 10.1 μmol/L were not at increased risk of depleted iron stores (serum ferritin <15 μg/L; p = 0.340. Positive associations were observed between dietary iron and zinc intakes, and between iron and zinc status, however interpreting serum ferritin concentrations was not a useful proxy for estimating the likelihood of low serum zinc concentrations and women with depleted iron stores were not at increased risk of impaired zinc status in this cohort.

  1. Copper intoxication in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Gazaryan, V.S.; Sogoyan, I.S.; Agabalov, G.A.; Mesropyan, V.V.

    1966-01-01

    Of 950 sheep fed hay from a vineyard sprayed regularly with copper sulfate, 143 developed clinical copper poisoning and 103 died. The Cu content of the hay was 10.23 mg%, of the liver of dead sheep 17-52 mg%, and of the blood serum of affected sheep 0.86 mg%. The symptoms and the histological findings in kidneys and liver are described.

  2. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    International Nuclear Information System (INIS)

    Sergeant, C.; Vesvres, M.H.; Deves, G.; Guillou, F.

    2005-01-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter

  3. Calcium, potassium, iron, copper and zinc concentrations in the white and gray matter of the cerebellum and corpus callosum in brain of four genetic mouse strains

    Energy Technology Data Exchange (ETDEWEB)

    Sergeant, C. [CNRS-Universite de Bordeaux I, UMR 5084, Chimie Nucleaire Analytique et Bio environnementale, Le Haut Vigneau, BP120, 33175 Bordeaux-Gradignan (France)]. E-mail: sergeant@cenbg.in2p3.fr; Vesvres, M.H. [CNRS-Universite de Bordeaux I, UMR 5084, Chimie Nucleaire Analytique et Bio environnementale, Le Haut Vigneau, BP120, 33175 Bordeaux-Gradignan (France); Deves, G. [CNRS-Universite de Bordeaux I, UMR 5084, Chimie Nucleaire Analytique et Bio environnementale, Le Haut Vigneau, BP120, 33175 Bordeaux-Gradignan (France); Guillou, F. [INRA-CNRS-Universite de Tours-Haras nationaux, UMR 6175, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly (France)

    2005-04-01

    In the central nervous system, metallic cations are involved in oligodendrocyte maturation and myelinogenesis. Moreover, the metallic cations have been associated with pathogenesis, particularly multiple sclerosis and malignant gliomas. The brain is vulnerable to either a deficit or an excess of available trace elements. Relationship between trace metals and myelinogenesis is important in understanding a severe human pathology : the multiple sclerosis, which remains without efficient treatment. One approach to understand this disease has used mutant or transgenic mice presenting myelin deficiency or excess. But to date, the concentration of trace metals and mineral elements in white and gray matter areas in wild type brain is unknown. The aim of this study is to establish the reference concentrations of trace metals (iron, copper and zinc) and minerals (potassium and calcium) in the white and gray matter of the mouse cerebellum and corpus callosum. The brains of four different genetic mouse strains (C57Black6/SJL, C57Black6/D2, SJL and C3H) were analyzed. The freeze-dried samples were prepared to allow PIXE (Proton-induced X-ray emission) and RBS (Rutherford backscattering spectrometry) analyses with the nuclear microprobe in Bordeaux. The results obtained give the first reference values. Furthermore, one species out of the fours testes exhibited differences in calcium, iron and zinc concentrations in the white matter.

  4. Processing of Copper Zinc Tin Sulfide Nanocrystal Dispersions for Thin Film Solar Cells

    Science.gov (United States)

    Williams, Bryce Arthur

    A scalable and inexpensive renewable energy source is needed to meet the expected increase in electricity demand throughout the developed and developing world in the next 15 years without contributing further to global warming through CO2 emissions. Photovoltaics may meet this need but current technologies are less than ideal requiring complex manufacturing processes and/or use of toxic, rare-earth materials. Copper zinc tin sulfide (Cu 2ZnSnS4, CZTS) solar cells offer a true "green" alternative based upon non-toxic and abundant elements. Solution-based processes utilizing CZTS nanocrystal dispersions followed by high temperature annealing have received significant research attention due to their compatibility with traditional roll-to-roll coating processes. In this work, CZTS nanocrystal (5-35 nm diameters) dispersions were utilized as a production pathway to form solar absorber layers. Aerosol-based coating methods (aerosol jet printing and ultrasonic spray coating) were optimized for formation of dense, crack-free CZTS nanocrystal coatings. The primary variables underlying determination of coating morphology within the aerosol-coating parameter space were investigated. It was found that the liquid content of the aerosol droplets at the time of substrate impingement play a critical role. Evaporation of the liquid from the aerosol droplets during coating was altered through changes to coating parameters as well as to the CZTS nanocrystal dispersions. In addition, factors influencing conversion of CZTS nanocrystal coatings into dense, large-grained polycrystalline films suitable for solar cell development during thermal annealing were studied. The roles nanocrystal size, carbon content, sodium uptake, and sulfur pressure were found to have pivotal roles in film microstructure evolution. The effects of these parameters on film morphology, grain growth rates, and chemical makeup were analyzed from electron microscopy images as well as compositional analysis

  5. The cardiac copper chaperone proteins Sco1 and CCS are up-regulated, but Cox 1 and Cox4 are down-regulated, by copper deficiency.

    Science.gov (United States)

    Getz, Jean; Lin, Dingbo; Medeiros, Denis M

    2011-10-01

    Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS-PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.

  6. Oral Zinc Supplementation Reduces the Erythropoietin Responsiveness Index in Patients on Hemodialysis

    Directory of Open Access Journals (Sweden)

    Hiroki Kobayashi

    2015-05-01

    Full Text Available Background: In hemodialysis (HD patients, zinc depletion caused by inadequate intake, malabsorption, and removal by HD treatment leads to erythropoiesis-stimulating agent (ESA hyporesponsiveness. This study investigated the effects of zinc supplementation in HD patients with zinc deficiency on changes in the erythropoietin responsiveness index (ERI. Methods: Patients on HD with low serum zinc levels (<65 μg/dL were randomly assigned to two groups: The polaprezinc group (who received daily polaprezinc, containing 34 mg/day of zinc (n = 35 and the control group (no supplementation (n = 35 for 12 months. All the 70 patients had been taking epoetin alpha as treatment for renal anemia. ERI was measured with the following equation: Weekly ESA dose (units/dry weight (kg/hemoglobin (g/dL. Results: There were no significant changes in hemoglobin levels within groups or between the control and polaprezinc groups during the study period. Although reticulocyte counts were increased immediately after zinc supplementation, this change was transient. Serum zinc levels were significantly increased and serum copper levels were significantly decreased in the polaprezinc group after three months; this persisted throughout the study period. Although there was no significant change in the serum iron or transferrin saturation levels in the polaprezinc group during the study period, serum ferritin levels significantly decreased following polaprezinc treatment. Further, in the polaprezinc group, ESA dosage and ERI were significantly decreased at 10 months and nine months, respectively, as compared with the baseline value. Multiple stepwise regression analysis revealed that the change in the serum zinc level was an independent predictor of lowered ERI. Conclusions: Zinc supplementation reduces ERI in patients undergoing HD and may be a novel therapeutic strategy for patients with renal anemia and low serum zinc levels.

  7. Assessment of Copper and Zinc in Soils of a Vineyard Region in the State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Gláucia Cecília Gabrielli dos Santos

    2013-01-01

    Full Text Available This soil acidification may increase the bioavailability of copper (Cu and zinc (Zn in soils. The objective of this study was to verify the concentrations of Cu and Zn in soils of a vineyard region, including sample acidification, to simulate acid rain. The study was developed in an area of vineyard cultivation, with an adjacent land having other crops grown, in the state of São Paulo, Brazil. Soil samples were collected and GPS located under different uses and coverings. The extracted solutions used to determine the available Cu and Zn forms were diethylenetriaminepentaacetic acid (DTPA, pH 7.3, and calcium chloride 0.01 M. The total forms were obtained by HNO3 digestion. The amounts of Cu and Zn extracted using DTPA were considered high in most of the samples and were greater in the areas cultivated with vineyards that had received fungicide applications for several decades. The total forms were higher in vineyard soils. The amounts of Cu and Zn extracted using CaCl2 did not have good correlation with vineyards or with other metals' forms. The results confirmed that the soil was enriched with Cu and Zn due to the management of the vineyards with chemicals for several decades.

  8. Modeling of Chromium, Copper, Zinc, Arsenic and Lead Using Portable X-ray Fluorescence Spectrometer Based on Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Fang Li

    2017-09-01

    Full Text Available A modeling method based on discrete wavelet transform (DWT was introduced to analyze the concentration of chromium, copper, zinc, arsenic and lead in soil with a portable X-ray fluorescence (XRF spectrometer. A total of 111 soil samples were collected and observed. Denoising and baseline correction were performed on each spectrum before modeling. The optimum conditions for pre-processing were denoising with Coiflet 3 on the 3rd level and baseline correction with Coiflet 3 on the 9th level. Calibration curves were established for the five heavy metals (HMs. The detection limits were compared before and after the application of DWT, the qualitative detection limits and the quantitative detection limits were calculated to be three and ten times as high as the standard deviation with silicon dioxide (blank, respectively. The results showed that the detection limits of the instrument using DWT were lower, and that they were below national soil standards; the determination coefficients (R2 based on DWT-processed spectra were higher, and ranged from 0.990 to 0.996, indicating a high degree of linearity between the contents of the HMs in soil and the XRF spectral characteristic peak intensity with the instrument measurement.

  9. Recovery of copper and cyanide from waste cyanide solutions using emulsion liquid membrane with LIX 7950 as the carrier.

    Science.gov (United States)

    Xie, Feng; Wang, Wei

    2017-08-01

    The feasibility of using emulsion liquid membranes (ELMs) with the guanidine extractant LIX 7950 as the mobile carrier for detoxifying copper-containing waste cyanide solutions has been determined. Relatively stable ELMs can be maintained under suitable stirring speed during mixing ELMs and the external solution. Effective extraction of copper cyanides by ELMs only occurs at pH below 11. High copper concentration in the external phase and high volume ratio of the external phase to ELMs result in high transport rates of copper and cyanide. High molar ratio of cyanide to copper tends to suppress copper extraction. The presence of thiocyanate ion significantly depresses the transport of copper and cyanide through the membrane while the thiosulfate ion produces less impact on copper removal by ELMs. Zinc and nickel cyanides can also be effectively extracted by ELMs. More than 90% copper and cyanide can be effectively removed from alkaline cyanide solutions by ELMs under suitable experimental conditions, indicating the effectiveness of using the designed ELM for recovering copper and cyanide from waste cyanide solutions.

  10. Interdependence of free zinc changes and protein complex assembly - insights into zinc signal regulation.

    Science.gov (United States)

    Kocyła, Anna; Adamczyk, Justyna; Krężel, Artur

    2018-01-24

    Cellular zinc (Zn(ii)) is bound with proteins that are part of the proteomes of all domains of life. It is mostly utilized as a catalytic or structural protein cofactor, which results in a vast number of binding architectures. The Zn(ii) ion is also important for the formation of transient protein complexes with a Zn(ii)-dependent quaternary structure that is formed upon cellular zinc signals. The mechanisms by which proteins associate with and dissociate from Zn(ii) and the connection with cellular Zn(ii) changes remain incompletely understood. In this study, we aimed to examine how zinc protein domains with various Zn(ii)-binding architectures are formed under free Zn(ii) concentration changes and how formation of the Zn(ii)-dependent assemblies is related to the protein concentration and reactivity. To accomplish these goals we chose four zinc domains with different Zn(ii)-to-protein binding stoichiometries: classical zinc finger (ZnP), LIM domain (Zn 2 P), zinc hook (ZnP 2 ) and zinc clasp (ZnP 1 P 2 ) folds. Our research demonstrated a lack of changes in the saturation level of intraprotein zinc binding sites, despite various peptide concentrations, while homo- and heterodimers indicated a concentration-dependent tendency. In other words, at a certain free Zn(ii) concentration, the fraction of a formed dimeric complex increases or decreases with subunit concentration changes. Secondly, even small or local changes in free Zn(ii) may significantly affect protein saturation depending on its architecture, function and subcellular concentration. In our paper, we indicate the importance of interdependence of free Zn(ii) availability and protein subunit concentrations for cellular zinc signal regulation.

  11. Availability of arsenic, copper, lead, thallium, and zinc to various vegetables grown in slag-contaminated soils.

    Science.gov (United States)

    Bunzl, K; Trautmannsheimer, M; Schramel, P; Reifenhäuser, W

    2001-01-01

    To anticipate a possible hazard resulting from the plant uptake of metals from slag-contaminated soils, it is useful to study whether vegetables exist that are able to mobilize a given metal in the slag to a larger proportion than in an uncontaminated control soil. For this purpose, we studied the soil to plant transfer of arsenic, copper, lead, thallium, and zinc by the vegetables bean (Phaseolus vulgaris L. 'dwarf bean Modus'), kohlrabi (Brassica oleracea var. gongylodes L.), mangold (Beta vulgaris var. macrorhiza ), lettuce (Lactuca sativa L. 'American gathering brown'), carrot (Daucus carota L. 'Rotin', 'Sperlings's'), and celery [Apium graveiolus var. dulce (Mill.) Pers.] from a control soil (Ap horizon of a Entisol) and from a contaminated soil (1:1 soil-slag mixtures). Two types of slags were used: an iron-rich residue from pyrite (FeS2) roasting and a residue from coal firing. The metal concentrations in the slags, soils, and plants were used to calculate for each metal and soil-slag mixture the plant-soil fractional concentration ratio (CRfractional,slag), that is, the concentration ratio of the metal that results only from the slag in the soil. With the exception of TI, the resulting values obtained for this quantity for As, Cu, Pb, and Zn and for all vegetables were significantly smaller than the corresponding plant-soil concentration ratios (CRcontrol soil) for the uncontaminated soil. The results demonstrate quantitatively that the ability of a plant to accumulate a given metal as observed for a control soil might not exist for a soil-slag mixture, and vice versa.

  12. A Statistical Review of Alternative Zinc and Copper Extraction from Mineral Fertilizers and Industrial By-Products.

    Science.gov (United States)

    Cenciani de Souza, Camila Prado; Aparecida de Abreu, Cleide; Coscione, Aline Renée; Alberto de Andrade, Cristiano; Teixeira, Luiz Antonio Junqueira; Consolini, Flavia

    2018-01-01

    Rapid, accurate, and low-cost alternative analytical methods for micronutrient quantification in fertilizers are fundamental in QC. The purpose of this study was to evaluate whether zinc (Zn) and copper (Cu) content in mineral fertilizers and industrial by-products determined by the alternative methods USEPA 3051a, 10% HCl, and 10% H2SO4 are statistically equivalent to the standard method, consisting of hot-plate digestion using concentrated HCl. The commercially marketed Zn and Cu sources in Brazil consisted of oxides, carbonate, and sulfate fertilizers and by-products consisting of galvanizing ash, galvanizing sludge, brass ash, and brass or scrap slag. The contents of sources ranged from 15 to 82% and 10 to 45%, respectively, for Zn and Cu. The Zn and Cu contents refer to the variation of the elements found in the different sources evaluated with the concentrated HCl method as shown in Table 1. A protocol based on the following criteria was used for the statistical analysis assessment of the methods: F-test modified by Graybill, t-test for the mean error, and linear correlation coefficient analysis. In terms of equivalents, 10% HCl extraction was equivalent to the standard method for Zn, and the results of the USEPA 3051a and 10% HCl methods indicated that these methods were equivalents for Cu. Therefore, these methods can be considered viable alternatives to the standard method of determination for Cu and Zn in mineral fertilizers and industrial by-products in future research for their complete validation.

  13. Direct separation of 67Ga citrate from zinc and copper target materials by an ion exchange

    International Nuclear Information System (INIS)

    El-Azony, K.M.; Ferieg, Kh.; Saleh, Z.A.

    2004-01-01

    The separation of 6 7G a from zinc and copper target materials using an anion- f:exchanger (Dowex21K) and 0.1 M citrate buffer at pH 6 is described. The gallium-67 was separated in citrate solution and can be directly used for medical applications. Gallium-67 with a half-life of 78.3 h and gamma-rays with energies of 93, 185 and 300 keV is a cyclotron produced radioisotope for which a considerable demand exists. 6 7G a is frequently produced through proton or deuteron bombardment of natural or enriched Zn targets (Helus and Maier-Borst, 1973). It is usually separated from Zn by ion exchange chromatography (Helus and Maier-Borst, 1973; van der Walt and Strelow, 1983) or by liquid extraction Helus and Maier-Borst, 1973; Hupf and Beaver, 1970). The isotope is usually supplied in citrate solution which is widely used as 6 7G a Gallium citrate which is a well-established radiopharmaceutical for imaging soft tissue tumors and abscesses. Several routes for large scale production of 6 7G a and the development of medical applications have been reported (Silvester and Thakur, 1970; Dahl and Tilbury, 1972; Steyn and Meyer,1973; Vlatkovic et al., 1975; Neirinckx, 1976; Thakur, 1977). Various attempts were carried out to separate gallium-67 by using different ion exchange methods (Strelow et al., 1971; Das and Ramamoorthy, 1995; Boothe et al.,1991) through the labelling of citrate by using 6 7G a was carried out for medical applications

  14. Trace Element Status (Zinc, Copper, Selenium, Iron, Manganese) in Patients with Long-Term Home Parenteral Nutrition.

    Science.gov (United States)

    Dastych, Milan; Šenkyřík, Michal; Dastych, Milan; Novák, František; Wohl, Petr; Maňák, Jan; Kohout, Pavel

    2016-01-01

    The objective of the present study was to determine concentrations of zinc (Zn), copper (Cu), iron (Fe), selenium (Se) in blood plasma and manganese (Mn) in the whole blood in patients with long-term home parenteral nutrition (HPN) in comparison to the control group. We examined 68 patients (16 men and 52 women) aged from 28 to 68 years on a long-term HPN lasting from 4 to 96 months. The short bowel syndrome was an indication for HPN. The daily doses of Zn, Cu, Fe, Se and Mn in the last 3 months were determined. No significant differences in blood plasma were found for Zn, Cu and Fe in patients with HPN and in the control group (p > 0.05). The concentration of Mn in whole blood was significantly increased in HPN patients (p < 0.0001), while Se concentration in these patients was significantly decreased (p < 0.005). The concentration of Mn in the whole blood of 16 patients with cholestasis was significantly increased compared to the patients without cholestasis (p < 0.001). The Cu concentration was increased with no statistical significance. In long-term HPN, the status of trace elements in the patients has to be continually monitored and the daily substitution doses of these elements have to be flexibly adjusted. Dosing schedule needs to be adjusted especially in cases of cholestatic hepatopathy. A discussion about the optimal daily dose of Mn in patients on HPN is appropriate. For clinical practice, the availability of a substitution mixture of trace elements lacking Mn would be advantageous. © 2016 S. Karger AG, Basel.

  15. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  16. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.

    2013-01-01

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  17. Fear-of-intimacy-mediated zinc transport controls the function of zinc-finger transcription factors involved in myogenesis.

    Science.gov (United States)

    Carrasco-Rando, Marta; Atienza-Manuel, Alexandra; Martín, Paloma; Burke, Richard; Ruiz-Gómez, Mar

    2016-06-01

    Zinc is a component of one-tenth of all human proteins. Its cellular concentration is tightly regulated because its dyshomeostasis has catastrophic health consequences. Two families of zinc transporters control zinc homeostasis in organisms, but there is little information about their specific developmental roles. We show that the ZIP transporter Fear-of-intimacy (Foi) is necessary for the formation of Drosophila muscles. In foi mutants, myoblasts segregate normally, but their specification is affected, leading to the formation of a misshapen muscle pattern and distorted midgut. The observed phenotypes could be ascribed to the inactivation of specific zinc-finger transcription factors (ZFTFs), supporting the hypothesis that they are a consequence of intracellular depletion of zinc. Accordingly, foi phenotypes can be rescued by mesodermal expression of other ZIP members with similar subcellular localization. We propose that Foi acts mostly as a transporter to regulate zinc intracellular homeostasis, thereby impacting on the activity of ZFTFs that control specific developmental processes. Our results additionally suggest a possible explanation for the presence of large numbers of zinc transporters in organisms based on differences in ion transport specificity and/or degrees of activity among transporters. © 2016. Published by The Company of Biologists Ltd.

  18. Virtual electrochemical nitric oxide analyzer using copper, zinc superoxide dismutase immobilized on carbon nanotubes in polypyrrole matrix.

    Science.gov (United States)

    Madasamy, Thangamuthu; Pandiaraj, Manickam; Balamurugan, Murugesan; Karnewar, Santosh; Benjamin, Alby Robson; Venkatesh, Krishna Arun; Vairamani, Kanagavel; Kotamraju, Srigiridhar; Karunakaran, Chandran

    2012-10-15

    In this work, we have designed and developed a novel and cost effective virtual electrochemical analyzer for the measurement of NO in exhaled breath and from hydrogen peroxide stimulated endothelial cells using home-made potentiostat. Here, data acquisition system (NI MyDAQ) was used to acquire the data from the electrochemical oxidation of NO mediated by copper, zinc superoxide dismutase (Cu,ZnSOD). The electrochemical control programs (graphical user-interface software) were developed using LabVIEW 10.0 to sweep the potential, acquire the current response and process the acquired current signal. The Cu,ZnSOD (SOD1) immobilized on the carbon nanotubes in polypyrrole modified platinum electrode was used as the NO biosensor. The electrochemical behavior of the SOD1 modified electrode exhibited the characteristic quasi-reversible redox peak at the potential, +0.06 V vs. Ag/AgCl. The biological interferences were eliminated by nafion coated SOD1 electrode and then NO was measured selectively. Further, this biosensor showed a wide linear range of response over the concentration of NO from 0.1 μM to 1 mM with a detection limit of 0.1 μM and high sensitivity of 1.1 μA μM(-1). The electroanalytical results obtained here using the developed virtual electrochemical instrument were also compared with the standard cyclic voltammetry instrument and found in agreement with each other. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Effect of high dietary zinc on plasma ceruloplasmin and erythrocyte superoxide dismutase activities in copper-depleted and repleted rats.

    Science.gov (United States)

    Panemangalore, M; Bebe, F N

    1996-01-01

    The effect of moderately high dietary zinc (Zn) on the activities of plasma (PL) ceruloplasmin (CP), and PL and erythrocyte (RBC) copper (Cu), Zn superoxide dismutase (SOD) was determined in weanling rats fed Cu-deficient (DEF; CON; 5 mg Cu/kg) copper diets containing normal or high Zn (HZn; 60 mg/kg) for 4 wk and supplemented with oral Cu (CuS; 5 mg/L) in drinking water for 0, 1, 3, or 7 d. PL Cu decreased (67% compared to CON; p DEF and increased to control level after 3 d of CuS; increased in the MAR group after 1 d of CuS. HZn reduced overall PL Cu by 27% in all groups, but did not alter the linear increase in PL Cu between 0 and 3 d of Cu S. PL CP activity altered concomitantly with PL Cu levels: The time course of increase in CP activity after 0-3 d of CuS was not influenced by HZn in the diet and CP declined in the DEF group by 92%. There was no correlation between dietary Cu level and PL CP. PL SOD activity decreased by 46% (p DEF group, increased to control activity after 1 d of CuS and declined slightly after 7 d; MAR diet did not alter PL SOD. HZn diet increased PL SOD activity in all groups by 150%, reduced activity in the DEF and MAR groups by 65 and 37% and delayed the recovery of PL SOD after CuS. RBC SOD declined in the DEF and MAR groups by 56 and 33% (p < or = 0.05) and did not respond to CuS; HZn diet did not influence RBC SOD activity. These data indicate that moderately high Zn in the diet reduces PL Cu, but not PL CP activity or the recovery of PL Cu or CP activity after oral CuS of Cu-deficient rats, modifies the response of PL SOD to dietary Cu, but does not influence RBC SOD activity.

  20. Simultaneous Spectrophotometric Determination of Copper, Nickel, and Zinc Using 1-(2-Thiazolylazo)-2-Naphthol in the Presence of Triton X-100 Using Chemometric Methods

    International Nuclear Information System (INIS)

    Low, Kah Hin; Zain, Sharifuddin Md; Abas, Mhd. Radzi; Misran, Misni; Mohd, Mustafa Ali

    2009-01-01

    Multivariate models were developed for the simultaneous spectrophotometric determination of copper (II), nickel (II) and zinc (II) in water with 1-(2-thiazolylazo)-2-naphthol as chromogenic reagent in the presence of Triton X-100. To overcome the drawback of spectral interferences, principal component regression (PCR) and partial least square (PLS) multivariate calibration approaches were applied. Performances were validated with several test sets, and their results were then compared. In general, no significant difference in analytical performance between PLS and PCR models. The root mean square error of prediction (RMSEP) using three components for Cu 2+ , Ni 2+ and Zn 2+ were 0.018, 0.010, 0.011 ppm, respectively. Figures of merit such as sensitivity, analytical sensitivity, limit of detection (LOD) were also estimated. High reliability was achieved when the proposed procedure was applied to simultaneous determination of Cu 2+ , Ni 2+ and Zn 2+ in synthetic mixture and tap water

  1. High accuracy experimental determination of copper and zinc mass attenuation coefficients in the 100 eV to 30 keV photon energy range

    Science.gov (United States)

    Ménesguen, Y.; Gerlach, M.; Pollakowski, B.; Unterumsberger, R.; Haschke, M.; Beckhoff, B.; Lépy, M.-C.

    2016-02-01

    The knowledge of atomic fundamental parameters such as mass attenuation coefficients with low uncertainties, is of decisive importance in elemental quantification using x-ray fluorescence analysis techniques. Several databases are accessible and frequently used within a large community of users. These compilations are most often in good agreement for photon energies in the hard x-ray ranges. However, they significantly differ for low photon energies and around the absorption edges of any element. In a joint cooperation of the metrology institutes of France and Germany, mass attenuation coefficients of copper and zinc were determined experimentally in the photon energy range from 100 eV to 30 keV by independent approaches using monochromatized synchrotron radiation at SOLEIL (France) and BESSY II (Germany), respectively. The application of high-accuracy experimental techniques resulted in mass attenuation coefficient datasets determined with low uncertainties that are directly compared to existing databases. The novel datasets are expected to enhance the reliability of mass attenuation coefficients.

  2. Repletion of zinc in zinc-deficient cells strongly up-regulates IL-1β-induced IL-2 production in T-cells.

    Science.gov (United States)

    Daaboul, Doha; Rosenkranz, Eva; Uciechowski, Peter; Rink, Lothar

    2012-10-01

    Mild zinc deficiency in humans negatively affects IL-2 production resulting in declined percentages of cytolytic T cells and decreased NK cell lytic activity, which enhances the susceptibility to infections and malignancies. T-cell activation is critically regulated by zinc and the normal physiological zinc level in T-cells slightly lies below the optimal concentration for T-cell functions. A further reduction in zinc level leads to T-cell dysfunction and autoreactivity, whereas high zinc concentrations (100 μM) were shown to inhibit interleukin-1 (IL-1)-induced IL-1 receptor kinase (IRAK) activation. In this study, we investigated the molecular mechanism by which zinc regulates the IL-1β-induced IL-2 expression in T-cells. Zinc supplementation to zinc-deficient T-cells increased intracellular zinc levels by altering the expression of zinc transporters, particularly Zip10 and Zip12. A zinc signal was observed in the murine T-cell line EL-4 6.1 after 1 h of stimulation with IL-1β, measured by specific zinc sensors FluoZin-3 and ZinPyr-1. This signal is required for the phosphorylation of MAPK p38 and NF-κB subunit p65, which triggers the transcription of IL-2 and strongly increases its production. These results indicate that short-term zinc supplementation to zinc-deficient T-cells leads to a fast rise in zinc levels which subsequently enhance cytokine production. In conclusion, low and excessive zinc levels might be equally problematic for zinc-deficient subjects, and stabilized zinc levels seem to be essential to avoid negative concentration-dependent zinc effects on T-cell activation.

  3. Symptomatic zinc deficiency in experimental zinc deprivation.

    OpenAIRE

    Taylor, C M; Goode, H F; Aggett, P J; Bremner, I; Walker, B E; Kelleher, J

    1992-01-01

    An evaluation of indices of poor zinc status was undertaken in five male subjects in whom dietary zinc intake was reduced from 85 mumol d-1 in an initial phase of the study to 14 mumol d-1. One of the subjects developed features consistent with zinc deficiency after receiving the low zinc diet for 12 days. These features included retroauricular acneform macullo-papular lesions on the face, neck, and shoulders and reductions in plasma zinc, red blood cell zinc, neutrophil zinc and plasma alkal...

  4. Statistical Evaluation and Optimization of Factors Affecting the Leaching Performance of Copper Flotation Waste

    OpenAIRE

    Çoruh, Semra; Elevli, Sermin; Geyikçi, Feza

    2012-01-01

    Copper flotation waste is an industrial by-product material produced from the process of manufacturing copper. The main concern with respect to landfilling of copper flotation waste is the release of elements (e.g., salts and heavy metals) when in contact with water, that is, leaching. Copper flotation waste generally contains a significant amount of Cu together with trace elements of other toxic metals, such as Zn, Co, and Pb. The release of heavy metals into the environment has resulted in ...

  5. Mineralogy affects geoavailability, bioaccessibility and bioavailability of zinc

    International Nuclear Information System (INIS)

    Molina, Ramon M.; Schaider, Laurel A.; Donaghey, Thomas C.; Shine, James P.; Brain, Joseph D.

    2013-01-01

    We correlated mineralogical and particle characteristics of Zn-containing particles with Zn geoavailability, bioaccessibility, and bioavailability following gavage and intranasal (IN) administration in rats. We compared samples of Zn/Pb mine waste and five pulverized pure-phase Zn minerals ( 65 Zn. We assessed geoavailability using sequential extractions and bioaccessibility using in vitro extraction tests simulating various pH and biological conditions. Zn in vivo bioavailability and in vitro bioaccessibility decreased as follows: mine waste > hydrozincite > hemimorphite > zincite ≈ smithsonite >> sphalerite. We found significant correlations among geoavailability, bioaccessibility and bioavailability. In particular, Zn bioavailability post-gavage and post-IN was significantly correlated with bioaccessibility in simulated phagolysosomal fluid and gastric fluid. These data indicate that solid phase speciation influences biological uptake of Zn and that in vitro tests can be used to predict Zn bioavailability in exposure assessment and effective remediation design. Highlights: •Zinc particle mineralogy influences bioaccessibility and bioavailability. •Zn bioavailability via gavage was 1.2–1.6 times higher than via intranasal route. •Zn particle geoavailability correlates with bioaccessibility. •In vitro bioaccessibility tests can predict in vivo Zn bioavailability. •Metal speciation and geochemical alterations can impact Zn bioavailability. -- Zinc mineralogy influences in vitro bioaccessibility and in vivo bioavailability and in vitro extraction tests can be used to predict Zn bioavailability from particles

  6. Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Bortolon, Leandro; Pieniz, Simone; Giacometti, Marcelo; Roehrs, Dione D; Lambais, Mácio R; Camargo, Flávio A O

    2011-12-01

    This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.

  7. High emittance black nickel coating on copper substrate for space applications

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaram, Soniya, E-mail: jrf0013@isac.gov.in; Pillai, Anju M., E-mail: anjum@isac.gov.in; Rajendra, A., E-mail: rajendra@isac.gov.in; Sharma, A.K., E-mail: aks@isac.gov.in

    2015-09-15

    Highlights: • High emittance black nickel coating is obtained on copper substrate. • The effect of various process parameters on IR emittance is studied systematically. • Process parameters are optimized to develop a high emittance black nickel coating. • Coating obtained using the finalized parameters exhibited an emittance of 0.83. • SEM and EDAX are used for coating characterization. - Abstract: Black nickel, an alloy coating of zinc and nickel, is obtained on copper substrate by pulse electrodeposition from a modified Fishlock bath containing nickel sulphate, nickel ammonium sulphate, zinc sulphate and ammonium thiocyanate. A nickel undercoat of 4–5 μm thickness is obtained using Watts bath to increase the corrosion resistance and adhesion of the black nickel coating. The effect of bath composition, temperature, solution pH, current density and plating time on the coating appearance and corresponding infra-red emittance of the coating is investigated systematically. Process parameters are optimized to develop a high emittance space worthy black nickel coating to improve the heat radiation characteristics. The effect of the chemistry of the plating bath on the coating composition was studied using energy dispersive X-ray analysis (EDAX) of the coatings. The 5–6 μm thick uniform jet black zinc–nickel alloy coating obtained with optimized process exhibited an emittance of 0.83 and an absorbance of 0.92. The zinc to nickel ratio of black nickel coatings showing high emittance and appealing appearance was found to be in the range 2.3–2.4.

  8. Accumulation and hyperaccumulation of copper in plants

    Science.gov (United States)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  9. Photocatalysis application of zinc oxide fibers obtained by electrospinning

    International Nuclear Information System (INIS)

    Gerchman, D.; Alves, A.K.; Berutti, F.A.; Bergmann, C.P.

    2010-01-01

    Using the electrospinning technique, composite fibers of polyvinylbutyral and zinc nitrate were obtained. After a heat treatment at 600 deg C, nanostructured zinc oxide fibers were obtained. The fibers were characterized using X ray diffraction. The photocatalytic activity of the nanostructured fibers was determined using the photodegradation of a methyl orange solution. The increase in the heat treatment temperature decreases the photoactivity of the zinc oxide. The heat treatment, the phases and the surface area, affect the physical, chemical and photocatalytic activity of the zinc oxide. (author)

  10. Effects of zinc and nitrogen application on agronomic traits and ...

    African Journals Online (AJOL)

    Among yield components only number of seed per silique was affected by zinc and increased in the first year. Oil percentage decreased due to nitrogen, zinc and salinity in the first year but zinc had no significant effect on oil in the second year. Salinity stress increased glucosinolate and protein content. Other treatments had ...

  11. Severe zinc responsive dermatosis in a litter of Pharaoh Hounds.

    Science.gov (United States)

    Campbell, Gregory A; Crow, Dennis

    2010-07-01

    A litter of 3-month-old Pharaoh Hound puppies presented to the referring veterinarian with severe generalized erythematous-crusted papules with pruritus, accompanied by exfoliation and erythema of footpads, inappetence, lethargy, and retarded growth. Three of 5 puppies (2 male and 1 female) were affected. Representative areas were biopsied from 1 affected male puppy and were routinely processed. Histologically, there was marked epidermal hyperplasia with a disorganized appearance of the epidermis and massive parakeratotic hyperkeratosis, compatible with zinc-responsive dermatosis. Low serum zinc concentrations were documented, and the affected animals partially responded to intravenous zinc supplementation but did not respond to oral supplementation. One male puppy died as a result of unrelated causes and was necropsied. The remaining 4 puppies were followed over 2 years. Growth was stunted, and enamel hypoplasia of permanent dentition developed compared with unaffected littermates. Intravenous zinc supplementation at 3-4 week intervals was required to prevent further skin lesion development. One dog died at 3 years of age of renal failure.

  12. Zinc electrodeposition from alkaline zincate solution by pulsating overpotentials

    Directory of Open Access Journals (Sweden)

    MILOS V. SIMICIC

    2000-09-01

    Full Text Available It is well known that smooth zinc deposits cannot be obtained from alkaline zincate using constant overpotential and current rate. During prolonged metal deposition, spongy and dendritic deposits are formed. It has been shown that the deposits are less agglomerated in the case of square-wave pulsating overpotentials regime than the ones obtained in case of constant overpotential regime. This is explained in a semiquantitative way by two phenomena: selective anodic dissolution during overpotentials “off” period and decreasing diffusion control. These effects is more pronounced at higher pause-to-pulse ratio. Increasing the pause-to-pulse ratio causes a reduction of the ratio between diffusion and activation overpotential, resulting in a more compact deposit. Confirmation of the proposed semiquantitative mathematical model was obtained by zinc electrodeposition onto a copper wire from a 0.1 M zincate solution in 1.0 M KOH at room temperature.

  13. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi

    2016-03-18

    Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remains unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.

  14. Effects of chronic copper exposure during early life in rhesus monkeys.

    Science.gov (United States)

    Araya, Magdalena; Kelleher, Shannon L; Arredondo, Miguel A; Sierralta, Walter; Vial, María Teresa; Uauy, Ricardo; Lönnerdal, Bo

    2005-05-01

    Whether infants regulate copper absorption and the potential effects of excess copper in early life remain poorly defined. The objective of the study was to assess copper retention, liver copper content, and liver function in infant rhesus monkeys fed infant formula containing 6.6 mg Cu/L. From birth to 5 mo of age, infant rhesus monkeys were fed formula that was supplemented with copper (0.6 mg Cu/L; n = 5) or not supplemented (n = 4). In all animals, weight and crown-rump length (by anthropometry), hemoglobin, hematocrit, plasma ceruloplasmin activity, and zinc and copper concentrations were measured monthly (birth to 6 mo) and at 8 and 12 mo. When the animals were 1, 5, and 8 mo old, liver copper and metallothionein concentrations, liver histology (by light and electron microscopy), and the number of Kupffer cells were assessed, and 67Cu retention was measured. Liver function was assessed by measurement of plasma alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, and alkaline phosphatase activities and protein, albumin, bilirubin, and blood urea nitrogen concentrations. 67Cu retention was 19.2% and 10.9% after 1 and 5 mo of copper treatment, respectively, compared with approximately 75% in controls at age 2 mo. At age 8 mo, 67Cu retention was 22.9% in copper-treated animals and 31.5% in controls. Liver histology remained normal by light microscopy, with mild ultrastructural signs of cell damage at 5 mo. Liver copper concentration was 4711, 1139, and 498 microg/g dry tissue at 1, 5, and 8 mo, respectively, in copper-treated animals and 250 microg/g at 2 mo in controls. Measurements could not be completed in all animals. No clinical evidence of copper toxicity was observed. Copper absorption was down-regulated; increases in liver copper content at ages 1 and 5 mo did not result in histologic damage. Ultrastructural changes at age 5 mo could signal early cellular damage.

  15. Influence of Matrix Composition on the Bioaccessibility of Copper, Zinc and Nickel in Urban Residential Dust and Soil

    International Nuclear Information System (INIS)

    Rasmussen, P.; Beauchemin, S.; Nugent, M.; Dugandzic, R.; Lanouette, M.; Chenier, M.

    2008-01-01

    This study examines factors affecting oral bioaccessibility of metals in household dust, in particular metal speciation, organic carbon content, and particle size, with the goal of addressing risk assessment information requirements. Investigation of copper (Cu) and zinc (Zn) speciation in two size fractions of dust (< 36 μ m and 80-150 μ m) using synchrotron X-ray absorption spectroscopy (XAS) indicates that the two metals are bound to different components of the dust: Cu is predominately associated with the organic phase of the dust, while Zn is predominately associated with the mineral fraction. Total and bioaccessible Cu, nickel (Ni), and Zn were determined (on dry weight basis) in the < 150 μ m size fraction of a set of archived indoor dust samples (n = 63) and corresponding garden soil samples (n = 66) from the City of Ottawa, Canada. The median bioaccessible Cu content is 66 μ g g-1 in dust compared to 5 μ g g-1 in soil; the median bioaccessible Ni content is 16 μ g g-1 in dust compared to 2 μ g g-1 in soil; and the median bioaccessible Zn content is 410 μ g g-1 in dust compared to 18 μ g g-1 in soil. For the same data set, the median total Cu content is 152 μ g g-1 in dust compared to 17 μ g g-1 in soil; the median total Ni content is 41 μ g g-1 in dust compared to 13 μ g g-1 in soil; and the median total Zn content is 626 μ g g-1 in dust compared to 84 μ g g-1 in soil. Organic carbon is elevated in indoor dust (median 28%) compared to soil (median 5%), and is a key factor controlling metal partitioning and therefore bioaccessibility. The results show that house dust and soil have distinct geochemical signatures and should not be treated as identical media in exposure and risk assessments. Separate measurements of the indoor and outdoor environment are essential to improve the accuracy of residential risk assessments.

  16. Fortification of staple foods with zinc for improving zinc status and other health outcomes in the general population.

    Science.gov (United States)

    Shah, Dheeraj; Sachdev, Harshpal S; Gera, Tarun; De-Regil, Luz Maria; Peña-Rosas, Juan Pablo

    2016-06-09

    no reported adverse effect of fortification of foods with zinc on indicators of iron or copper status. Fortification of foods with zinc may improve the serum zinc status of populations if zinc is the only micronutrient used for fortification. If zinc is added to food in combination with other micronutrients, it may make little or no difference to the serum zinc status. Effects of fortification of foods with zinc on other outcomes including zinc deficiency, children's growth, cognition, work capacity of adults, or on haematological indicators are unknown. Given the small number of trials and participants in each trial, further investigation of these outcomes is required.

  17. Zinc

    Science.gov (United States)

    ... Consumer Datos en español Health Professional Other Resources Zinc Fact Sheet for Consumers Have a question? Ask ... find out more about zinc? Disclaimer What is zinc and what does it do? Zinc is a ...

  18. Zinc oxide nanoparticles for water disinfection

    Directory of Open Access Journals (Sweden)

    Emelita Asuncion S. Dimapilis

    2018-03-01

    Full Text Available The world faces a growing challenge for adequate clean water due to threats coming from increasing demand and decreasing supply. Although there are existing technologies for water disinfection, their limitations, particularly the formation of disinfection-by-products, have led to researches on alternative methods. Zinc oxide, an essential chemical in the rubber and pharmaceutical industries, has attracted interest as antimicrobial agent. In nanoscale, zinc oxide has shown antimicrobial properties which make its potential great for various applications. This review discusses the synthesis of zinc oxide with focus on precipitation method, its antimicrobial property and the factors affecting it, disinfection mechanisms, and the potential application to water disinfection.

  19. Zinc Deficiency in Latin America and the Caribbean.

    Science.gov (United States)

    Cediel, Gustavo; Olivares, Manuel; Brito, Alex; Cori, Héctor; López de Romaña, Daniel

    2015-06-01

    Zinc deficiency affects multiple vital functions in the life cycle, especially growth. Limited information is available on the magnitude of zinc deficiency in Latin America and the Caribbean. To examine the latest available information on both the prevalence of zinc deficiency and the risk of zinc deficiency in Latin America and the Caribbean. The prevalence of zinc deficiency was identified through a systematic review looking for the latest available data on serum zinc concentrations from surveys or studies with national representativeness conducted in Latin America and the Caribbean. The risk of zinc deficiency in Latin America and the Caribbean was estimated based on dietary zinc inadequacy (according to the 2011 National Food Balance Sheets) and stunting in children under 5 years of age. Only four countries had available national biochemical data. Mexican, Colombian, Ecuadorian, and Guatemalan children under 6 years of age and women 12 to 49 years of age had a high prevalence of zinc deficiency (19.1% to 56.3%). The countries with the highest risk of zinc deficiency (estimated prevalence of inadequate zinc intake > 25% plus prevalence of stunting > 20%) were Belize, Bolivia, El Salvador, Guatemala, Haiti, Honduras, Nicaragua, and Saint Vincent and the Grenadines. Zinc dietary inadequacy was directly correlated with stunting (r = 0.64, p zinc deficiency in children under 6 years of age and women 12 to 49 years of age. High rates of both estimated zinc dietary inadequacy and stunting were also reported in most Latin America and Caribbean countries.

  20. Models for the field-based toxicity of copper and zinc salts to wheat in 11 Australian soils and comparison to laboratory-based models

    International Nuclear Information System (INIS)

    Warne, Michael St.J.; Heemsbergen, Diane; McLaughlin, Mike; Bell, Mike; Broos, Kris; Whatmuff, Mark; Barry, Glenn; Nash, David; Pritchard, Deb; Penney, Nancy

    2008-01-01

    Laboratory-based relationships that model the phytotoxicity of metals using soil properties have been developed. This paper presents the first field-based phytotoxicity relationships. Wheat (Triticum aestivum L.) was grown at 11 Australian field sites at which soil was spiked with copper (Cu) and zinc (Zn) salts. Toxicity was measured as inhibition of plant growth at 8 weeks and grain yield at harvest. The added Cu and Zn EC10 values for both endpoints ranged from approximately 3 to 4760 mg/kg. There were no relationships between field-based 8-week biomass and grain yield toxicity values for either metal. Cu toxicity was best modelled using pH and organic carbon content while Zn toxicity was best modelled using pH and the cation exchange capacity. The best relationships estimated toxicity within a factor of two of measured values. Laboratory-based phytotoxicity relationships could not accurately predict field-based phytotoxicity responses. - Field-based toxicity of Cu and Zn to wheat can be modelled using soil properties. Laboratory-based models should not be used to estimate toxicity in the field