Sample records for zinc experiments

  1. Zinc oxide: Connecting theory and experiment

    Dejan Zagorac


    Full Text Available Zinc oxide (ZnO is a material with a great variety of industrial applications including high heat capacity, thermal conductivity and temperature stability. Clearly, it would be of great importance to find new stable and/or metastable modifications of zinc oxide, and investigate the influence of pressure and/or temperature on these structures, and try to connect theoretical results to experimental observations. In order to reach this goal, we performed several research studies, using modern theoretical methods. We have predicted possible crystal structures for ZnO using simulated annealing (SA, followed by investigations of the barrier structure using the threshold algorithm (TA. Finally, we have performed calculations using the prescribed path algorithm (PP, where connections between experimental structures on the energy landscape, and in particular transition states, were investigated in detail. The results were in good agreement with previous theoretical and experimental observations, where available, and we have found several additional (metastable modifications at standard, elevated and negative pressures. Furthermore, we were able to gain new insight into synthesis conditions for the various ZnO modifications and to connect our results to the actual synthesis and transformation routes.

  2. Zinc

    ... slow wound healing, poor sense of taste and smell, diarrhea, and nausea. Moderate zinc deficiency is associated ... nose, as it might cause permanent loss of smell. In June 2009, the US Food and Drug ...

  3. [Zinc].

    Couinaud, C


    Zinc is indispensable for life from bacteria to man. As a trace element it is included in numerous enzymes or serves as their activator (more than 80 zinc metallo-enzymes). It is necessary for nucleic acid and protein synthesis, the formation of sulphated molecules (insulin, growth hormone, keratin, immunoglobulins), and the functioning of carbonic anhydrase, aldolases, many dehydrogenases (including alcohol-dehydrogenase, retinal reductase indispensable for retinal rod function), alkaline phosphatase, T cells and superoxide dismutase. Its lack provokes distinctive signs: anorexia, diarrhea, taste, smell and vision disorders, skin lesions, delayed healing, growth retardation, delayed appearance of sexual characteristics, diminished resistance to infection, and it may be the cause of congenital malformations. Assay is now simplified by atomic absorption spectrophotometry in blood or hair. There is a latent lack prior to any disease because of the vices of modern eating habits, and this increases during stress, infections or tissue healing processes. Its lack is accentuated during long-term parenteral feeding or chronic gastrointestinal affections. Correction is as simple as it is innocuous, and zinc supplements should be given more routinely during surgical procedures.

  4. Ultrasound assisted synthesis of nanocrystalline zinc oxide: Experiments and modelling

    Hosni, Mongia [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Farhat, Samir, E-mail: [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Schoenstein, Frederic; Karmous, Farah; Jouini, Noureddine [Laboratoire des Sciences des Procédés et des Matériaux, LSPM-CNRS, Université Paris 13, 99 av. J.B. Clément, 93430 Villetaneuse (France); Viana, Bruno [LCMCP Chimie-Paristech, UPMC, Collège de France, 11 Rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Mgaidi, Arbi [Laboratoire de chimie minérale industrielle université Tunis el Manar (Tunisia)


    Highlights: • ZnO nanospheres and nanowires were grown using ultrasound and thermal activation techniques. • The growth uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). • A thermochemical model was developed based on thermodynamic equilibrium calculations. • We estimate species distribution in the bubble in temperature range from 5000 K to ambient. • We propose a new mechanism for ZnO growth assisted by ultrasound irradiation. - Abstract: A fast and green approach is proposed for the preparation of nanocrystalline zinc oxide (ZnO) via ultrasonic (US) irradiation in polyol medium. The process uses forced hydrolysis of zinc acetate in diethylene glycol (DEG). The protocol is compared to thermal activation under the same chemical environment. The activation method is found to be playing a critical role in the selective synthesis of morphologically distinct nanostructures. As compared to thermally activated conventional polyol process, (US) permits to considerably reduce reaction time as well as size of particles. In addition, the shape of these nanoparticles was changed from long nanowires to small nanospheres, indicating different reaction mechanisms. To explain this difference, a thermochemical model was developed based on thermodynamic equilibrium calculations. The model estimate species distribution in the bubble in temperature range from 5000 K to ambient simulating quenching process during bubble formation and collapse. Our results indicate the presence of high density of zinc atoms that could be responsible of a high density of nucleation as compared to thermal activation.

  5. Experiments and Monte Carlo modeling of a higher resolution Cadmium Zinc Telluride detector for safeguards applications

    Borella, Alessandro


    The Belgian Nuclear Research Centre is engaged in R&D activity in the field of Non Destructive Analysis on nuclear materials, with focus on spent fuel characterization. A 500 mm3 Cadmium Zinc Telluride (CZT) with enhanced resolution was recently purchased. With a full width at half maximum of 1.3% at 662 keV, the detector is very promising in view of its use for applications such as determination of uranium enrichment and plutonium isotopic composition, as well as measurement on spent fuel. In this paper, I report about the work done with such a detector in terms of its characterization. The detector energy calibration, peak shape and efficiency were determined from experimental data. The data included measurements with calibrated sources, both in a bare and in a shielded environment. In addition, Monte Carlo calculations with the MCNPX code were carried out and benchmarked with experiments.

  6. Long-Term Exclusive Zinc Monotherapy in Symptomatic Wilson Disease : Experience in 17 Patients

    Linn, Francisca H. H.; Houwen, Roderick H. J.; van Hattum, Jan; van der Kleij, Stefan; van Erpecum, Karel J.


    Exclusive monotherapy with zinc in symptomatic Wilson disease is controversial. Seventeen symptomatic patients with Wilson disease were treated with zinc only. The mean age at diagnosis and start of treatment was 18 years (range 13-26) with approximately half presenting as adolescents. Presentation

  7. Sexual experience does not compensate for the disruptive effects of zinc sulfate--lesioning of the main olfactory epithelium on sexual behavior in male mice.

    Keller, Matthieu; Douhard, Quentin; Baum, Michael J; Bakker, Julie


    Recent studies point to an important role for the main olfactory epithelium (MOE) in regulating sexual behavior in male mice. We asked whether sexual experience could compensate for the disruptive effects of lesioning the MOE on sexual behavior in male mice. Male mice, which were either sexually naive or experienced, received an intranasal irrigation of either a zinc sulfate solution to destroy the MOE or saline. Sexual behavior in mating tests with an estrous female was completely abolished in zinc sulfate-treated male mice regardless of whether subjects were sexually experienced or not before the treatment. Furthermore, zinc sulfate treatment clearly disrupted olfactory investigation of both volatile and nonvolatile odors. Destruction of the MOE by zinc sulfate treatment was confirmed by a significant reduction in the expression of Fos protein in the main olfactory bulb following exposure to estrous female urine. By contrast, vomeronasal function did not seem to be affected by zinc sulfate treatment: nasal application of estrous female urine induced similar levels of Fos protein in the mitral and granule cells of the accessory olfactory bulb (AOB) of zinc sulfate- and saline-treated males. Likewise, the expression of soybean agglutinin, which stains the axons of vomeronasal organ neurons projecting to the glomerular layer of the AOB, was similar in zinc sulfate- and saline-treated male mice. These results show that the main olfactory system is essential for the expression of sexual behavior in male mice and that sexual experience does not overcome the disruptive effects of MOE lesioning on this behavior.

  8. Relation of asid-volatile sulfide and clay content of sediment to the bioavailability of zinc and cadmium: laboratory plus field experiment


    Organic matter and iron and maganese oxides have been considered as the major affecting factors for metals in anoxic or oxidized sediment. In recent research, clay and sulfide are found as major factors in oxic or oxidized sediments that might affect bioavailability of metals. To test this hypothesis, the influence of sulfide, measured as acid-volatile sulfide (AVS), and clay content on the bioavailability of zinc and cadmium in sediments was examined. Laboratory simulative experiment and field verification experiment were conducted,showing that the bioavailability of zinc and cadmium is strongly correlated to AVS and clay content in sediments. Taking into account both AVS and clay parameters in sediments together can better indicate the bioavailability of zinc and cadmium rather than considering one of them alone.

  9. Effect of zinc on the content of chemical elements in the lung tissue during obesity in the experiment.

    Churin, B V; Trunova, V A; Sidorina, A V; Zvereva, V V; Astashov, V V


    We found no deviations from normalcy in the content of chemical elements (K, Ca, Mn, Fe, Cu, Zn, Se, Br, Rb, and Sr) in the lungs of rats with mild alimentary obesity, but revealed redistribution of correlations between the elements indicating impaired metabolism in this organ. Zinc supplementation had no effect on the body weight and content of chemical elements (including zinc) in the lung tissue in rats fed high fat diet, but led to significant changes in the correlations between the elements. Bromine, rubidium, and strontium are actively involved in interelement interactions in the lung tissue. These elements should be given more attention in considering biological processes including alimentary obesity.

  10. Lessons from a “Failed” Experiment: Zinc Silicates with Complex Morphology by Reaction of Zinc Acetate, the Ionic Liquid Precursor (ILP Tetrabutylammonium Hydroxide (TBAH, and Glass

    Andreas Taubert


    Full Text Available At elevated temperatures, the ionic liquid precursor (ILP tetrabutylammonium hydroxide reacts with zinc acetate and the glass wall of the reaction vessel. While the reaction of OH- with the glass wall is not surprising as such and could be considered a failed experiment, the resulting materials are interesting for a variety of applications. If done on purpose and under controlled conditions, the reaction with the glass wall results in uniform, well-defined hemimorphite Zn4Si2O7(OH2·nH2O and willemite Zn2SiO4 microcrystals and films. Their morphology can be adjusted by variation of the reaction time and reaction temperature. The hemimorphite can be transformed to Zn2SiO4 via calcination. The process is therefore a viable approach for the fabrication of porous films on glass surfaces with potential applications as catalyst support, among others.

  11. Zinc phosphide toxicities among patients of the University of Benin Teaching Hospital, Benin city, Nigeria: A 10 year experience

    S E Aghahowa


    Full Text Available Background: Due to the poor success rate associated with zinc phosphide ingestion, it became necessary to assess the incidence. Objective: To assess the incidence of zinc phosphide toxicities reported between June 2000 and June 2009 in the University of Benin Teaching Hospital, Benin City, Nigeria. Material and Method : Data were sourced from the archives of casualties of zinc phosphide poisoning. These were entered into a generated case data form after obtaining an ethical permission. Results: All the ages of the 23 casualties reported were within 37.74±13.20 years. The male-female ratio was 4.75:1. Nineteen [78.26%] died after reporting 13.52±11.34 hours following single ingestion. Twenty cases were due to suicidal tendencies; the most common reason given was because of frustration in life related to marital affairs. Among the three unintentional, two were accidental while the other was due to assassination. Postmortem was refused in all the patients that died. One attempted herbal medication. Oil and milk were the most frequent solvents used at home as first-aid care therapy. Three were unintentional. Nine came with empty sachets and containers brought by relatives. Sodium chloride intravenous infusion was the most frequently used. Duration of hospitalization was 13.38±15.60 hours. Intravenous ciprofloxacin and metronidazole were the most common antibiotics used. Oxygen was instituted in 78.26% of the victims during respiratory distress. One ate meal prepared from poisoned rodent and died after reporting. One had alcohol along with the Zinc Phosphide ingestion. Nine were reported at the drug and poison information centre. Conclusion: Attention is needed by all for proper regulation in the handling of poisons and related substances to reduce burden minimally.

  12. Cannabis sativa Cultivation Experiments on Heavy Metal Zinc Contaminated Land%重金属锌污染土地大麻种植试验

    景宁宁; 苏文华; 张光飞; 周睿


    [Objective] The research aimed to study whether Cannabis saliva can be cultivated on heavy metal zinc contaminated land. [Method] The taping method, weighing method and sampling method were used to determine the height, 1/2 of rod diameter, the fresh weight of sub-par and foliage of the Cannabis saliva, as well as indicators of lead, zinc content in soil and Cannabis saliva. [Result] The selected soil lightly polluted by heavy metals zinc, the lead, zinc content exceeded and copper content normal in the Cannabis saliva. The height of Cannabis saliva was significant difference on two places, but 1/2 of rod diameter production as well as differences comparison of male and female had no significant difference. [ Conclusion] The research could provide the reference for the further study for the experiments of Cannabis sativa cultivation on heavy metal zinc contaminated land using various indicators.%[目的]研究在重金属锌污染的土地上能否进行大麻种植.[方法]采用尺量法、称重法和抽样法,测定大麻的株高、1/2杆杆直径,分杆和枝叶称量鲜重,以及土壤和大麻中铅、锌含量指标.[结果]所选土壤受到重金属锌的轻度污染,大麻中铅、锌含量超标,而铜含量正常.两块地的大麻株高有明显差异,但1/2高度处的直径、产量以及雌雄差异比较,都无显著性差异.[结论]该研究可以为进一步利用多种指标研究重金属锌污染土地上大麻种植试验提供参考.

  13. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter


    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells.

  14. Injection of zinc in plants of ANAV. Impact on fuel and operation experience; Inyeccion de cinc en las plantas de ANAV. Impacto sobre el combustible y experiencia de operacion

    Doncell, N.; Gago, J. L.


    Zinc injection performed in the three ANAV (Asociacion Nuclear Asco-Vandellos) plants is part of an overall primary water chemistry program, material management and dose reduction program. The application of zinc shown significant benefits in radiation field reduction as well as in mitigation of PWSCC initiation. Although zinc injection also reduces general corrosion rates and consequently reduces corrosion product transport to the fuel, and evaluation of the risks with respect to fuel performance should be done. ANAV and ENUSA, following industry recommendations, have coordinated the task related to the viability of the program in Asco and Vandellos including monitoring, inspections and control parameters. finally, this article includes a comprehensive review of operating experience and an assessment of fuel performance effects. (Author)

  15. Zinc leaching from tire crumb rubber.

    Rhodes, Emily P; Ren, Zhiyong; Mays, David C


    Because tires contain approximately 1-2% zinc by weight, zinc leaching is an environmental concern associated with civil engineering applications of tire crumb rubber. An assessment of zinc leaching data from 14 studies in the published literature indicates that increasing zinc leaching is associated with lower pH and longer leaching times, but the data display a wide range of zinc concentrations, and do not address the effect of crumb rubber size or the dynamics of zinc leaching during flow through porous crumb rubber. The present study was undertaken to investigate the effect of crumb rubber size using the synthetic precipitation leaching procedure (SPLP), the effect of exposure time using quiescent batch leaching tests, and the dynamics of zinc leaching using column tests. Results indicate that zinc leaching from tire crumb rubber increases with smaller crumb rubber and longer exposure time. Results from SPLP and quiescent batch leaching tests are interpreted with a single-parameter leaching model that predicts a constant rate of zinc leaching up to 96 h. Breakthrough curves from column tests displayed an initial pulse of elevated zinc concentration (~3 mg/L) before settling down to a steady-state value (~0.2 mg/L), and were modeled with the software package HYDRUS-1D. Washing crumb rubber reduces this initial pulse but does not change the steady-state value. No leaching experiment significantly reduced the reservoir of zinc in the crumb rubber.

  16. Cytotoxicity of zinc in vitro.

    Borovanský, J; Riley, P A


    The effect of zinc ions on B16 mouse melanoma lines, HeLa cells and I-221 epithelial cells was investigated in vitro in order to ascertain whether sensitivity to Zn2+ is a general feature of cells in vitro and in an attempt to elucidate the mechanism(s) of zinc cytotoxicity. The proliferation of B16, HeLa and I-221 cell lines was inhibited by 1.25 x 10(-4), 1.50 x 10(-4) and 1.50 x 10(-4) mol/l Zn2+, respectively. The free radical scavengers, methimazole and ethanol, did not suppress the toxicity of Zn2+, neither did superoxide dismutase or catalase. The addition of the chelating agent EDTA reduced the zinc cytotoxicity. It was possible to suppress the cytotoxicity of zinc by increasing the concentration of either Fe2+ or Ca2+ but not Mg2+, which suggests that a prerequisite for the toxic action of zinc is entry into cells using channels that are shared with iron or calcium. This view was supported by experiments in which transferrin intensified the cytotoxic action of zinc in serum-free medium. Another agent facilitating zinc transport, prostaglandin E2, inhibited the proliferation of the B16 melanoma cell line. There were no conspicuous differences in zinc toxicity to pigmented and unpigmented cells. The toxic effect of zinc in the cell systems studied exceeded that of iron, copper, manganese and cobalt in the same concentration range. In vitro, Zn2+ should be regarded as a dangerous cation.

  17. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong


    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  18. The biological inorganic chemistry of zinc ions.

    Krężel, Artur; Maret, Wolfgang


    The solution and complexation chemistry of zinc ions is the basis for zinc biology. In living organisms, zinc is redox-inert and has only one valence state: Zn(II). Its coordination environment in proteins is limited by oxygen, nitrogen, and sulfur donors from the side chains of a few amino acids. In an estimated 10% of all human proteins, zinc has a catalytic or structural function and remains bound during the lifetime of the protein. However, in other proteins zinc ions bind reversibly with dissociation and association rates commensurate with the requirements in regulation, transport, transfer, sensing, signalling, and storage. In contrast to the extensive knowledge about zinc proteins, the coordination chemistry of the "mobile" zinc ions in these processes, i.e. when not bound to proteins, is virtually unexplored and the mechanisms of ligand exchange are poorly understood. Knowledge of the biological inorganic chemistry of zinc ions is essential for understanding its cellular biology and for designing complexes that deliver zinc to proteins and chelating agents that remove zinc from proteins, for detecting zinc ion species by qualitative and quantitative analysis, and for proper planning and execution of experiments involving zinc ions and nanoparticles such as zinc oxide (ZnO). In most investigations, reference is made to zinc or Zn(2+) without full appreciation of how biological zinc ions are buffered and how the d-block cation Zn(2+) differs from s-block cations such as Ca(2+) with regard to significantly higher affinity for ligands, preference for the donor atoms of ligands, and coordination dynamics. Zinc needs to be tightly controlled. The interaction with low molecular weight ligands such as water and inorganic and organic anions is highly relevant to its biology but in contrast to its coordination in proteins has not been discussed in the biochemical literature. From the discussion in this article, it is becoming evident that zinc ion speciation is

  19. Integrated criteria document Zinc

    Cleven RFMJ; Janus JA; Annema JA; Slooff W


    This report contains information on zinc and zinc compounds concerning standards, emissions, exposure levels and effect levels. It includes a risk evaluation and presents proposals for maximum permissible concentrations of zinc in the environment. This study indicates that the concentration of zinc

  20. Update on zinc biology.

    Solomons, Noel W


    Zinc has become a prominent nutrient of clinical and public health interest in the new millennium. Functions and actions for zinc emerge as increasingly ubiquitous in mammalian anatomy, physiology and metabolism. There is undoubtedly an underpinning in fundamental biology for all of the aspects of zinc in human health (clinical and epidemiological) in pediatric and public health practice. Unfortunately, basic science research may not have achieved a full understanding as yet. As a complement to the applied themes in the companion articles, a selection of recent advances in the domains homeostatic regulation and transport of zinc is presented; they are integrated, in turn, with findings on genetic expression, intracellular signaling, immunity and host defense, and bone growth. The elements include ionic zinc, zinc transporters, metallothioneins, zinc metalloenzymes and zinc finger proteins. In emerging basic research, we find some plausible mechanistic explanations for delayed linear growth with zinc deficiency and increased infectious disease resistance with zinc supplementation. Copyright © 2013 S. Karger AG, Basel.

  1. Cadmium tolerance and accumulation of Elsholtzia argyi origining from a zinc/lead mining site - a hydroponics experiment.

    Li, Siliang; Wang, Fengping; Ru, Mei; Ni, Wuzhong


    In this study, a hydroponics experiment was conducted to investigate the characteristics of Cd tolerance and accumulation of Elsholtzia argyi natively growing on the soil with high levels of heavy metals in a Zn/Pb mining site. Seedlings of E. argyi grown for 4 weeks and then were treated with 0(CK), 5,10,15, 20, 25, 30, 40, 50,100 umM Cd for 21 days. Each treatment had three replications. No visual toxic symptoms on shoots of E. argyi were observed at Cd level < or = 50 muM. The results indicated that the dry biomass of each tissue and the whole plants of the treatments with < or =40 umM cadmium were similar to that of the control, implying that E. argyi was a cadmium tolerant plant. The results also showed that the shoot Cd concentration significantly (P < 0.05) increased with the increase in the Cd level in nutrient solution. The shoot Cd concentration of the treatment with 40 umM Cd was as high as 237.9 mg kg(-1), which was higher than 100 mg kg(-1), normally used as the threshold concentration for identifying the Cd hyperaccumulating plant. It could be concluded that E. argyi was a Cd tolerant and accumulating plant species.

  2. Optimization of Lead and Silver Extraction from Zinc Plant Residues in the Presence of Calcium Hypochlorite Using Statistical Design of Experiments

    Behnajady, Bahram; Moghaddam, Javad


    In this work, a chloride/hypochlorite leaching process was performed for zinc plant residues. Sodium chloride and calcium hypochlorite were used as leaching and oxidizing agents, respectively. Fractional factorial method has been used to test main effects, and interactions among factors were investigated. The statistical software named Design-Expert 7 has been utilized to design experiments and subsequent analysis. Parameters and their levels were reaction time ( t = 16 and 120 minutes), reaction temperature [ T = 303 K and 343 K (30 °C and 70 °C)], solid-to-liquid ratio ( S/ L = 1/6 and 1/38), pH (pH = 0.5 and 2), and Ca(OCl)2 concentration ( C = 0.6 and 3 g/L). Analysis of variance was also employed to determine the relationship between experimental conditions and yield levels. Results showed that reaction temperature and pH were significant parameters for both lead and silver extractions but solid-to-liquid ratio had significant effect only on lead extraction. Increasing pH reduced leaching efficiency of lead and silver. However, increasing reaction temperature promoted the extraction of lead and silver. Ultimate optimum conditions from this study were t 1: 16 min, T 2: 343 K (70 °C), ( S/ L)2: 1/38, pH1: 0.5, and C 1: 0.6 g/L. Under these conditions, extractions of lead and silver were 93.60 and 49.21 pct, respectively.

  3. Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes

    E. L. Verde


    Full Text Available Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR. Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated

  4. 四川某铅锌矿选矿试验研究%Researching Experiments on Lead-Zinc Deposit in Sichuan

    顾小玲; 廖雪珍; 高彦萍


    One lead-zinc ore in Sichuan, galena had a relatively close relationship with pyrite and sphalerite .Adopting the process of preferential flotation for the ore recovery, by adding the composite depressor, effective separation of lead and zinc mineral was made, and concentrate of lead and zinc was obtained.The ultimate closed test, lead to concentrate grade of 62. 35%, lead recovery rate 86.29%, the zinc concentrate grade of 55.68%, recovery of zinc 95%.%四川某铅锌矿石,由于方铅矿与黄铁矿、闪锌矿等嵌布关系较密切。确定采用优先浮选的工艺流程对该矿石进行回收利用,通过添加组合抑制剂使铅锌矿物有效分离,获得合格铅、锌精矿。最终闭路试验获得,铅精矿品位62.35%、铅回收率86.29%,锌精矿品位55.68%、锌回收率95.00%。

  5. Method of capturing or trapping zinc using zinc getter materials

    Hunyadi Murph, Simona E.; Korinko, Paul S.


    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  6. Zinc: the neglected nutrient.

    Shambaugh, G E


    Zinc was first recognized as essential for animals at the University of Illinois School of Agriculture in 1916, when it was found that zinc-deficient baby pigs were runty, developed dermatitis on their legs, and were sterile. Zinc deficiency was first recognized in man by Dr. Ananda Prasad of Detroit 26 years ago when he measured serum and hair zinc levels in young male Egyptian dwarfs who had failed to mature and were small in stature. By simply adding zinc to their regular diet, they grew in height and became sexually mature. It is now recognized that dwarfism in males is frequent around the Mediterranean, where wheat is the staple of life and has been grown for 4,000 years on the same soil, thereby resulting in the depletion of zinc. Professor Robert Henkin first suggested that zinc deficiency might cause hearing-nerve impairment. Assay of the soft tissues of the cochlea and vestibule revealed a zinc level higher than that of any other part of the body. Previously, the eye was considered to have the highest level of zinc of any organ. To diagnose zinc deficiency clinically, we use serum zinc assays made at the Mayo Clinic Trace Element Laboratory. With zinc supplementation in patients who are marginally zinc deficient, there has been improvement in tinnitus and sensorineural hearing loss in about one-third of elderly adults. We believe zinc deficiency is one causation of presbycusis; by recognizing and correcting it, a progressive hearing loss can be arrested.

  7. Dosage Effect of Zinc Glycine Chelate on Zinc Metabolism and Gene Expression of Zinc Transporter in Intestinal Segments on Rat.

    Huang, Danping; Hu, Qiaoling; Fang, Shenglin; Feng, Jie


    Zinc plays an essential role in various fundamental biological processes. The focus of this research was to investigate the dosage effect of zinc glycine chelate (Zn-Gly) on zinc metabolism and the gene expression of zinc transporters in intestinal segments. A total of 30 4-week-old SD rats were randomized into five treatment groups. The basal diets for each group were supplemented with gradient levels of Zn (0, 30, 60, 90, and 180 mg/kg) from Zn-Gly. After 1-week experiment, the results showed that serum and hepatic zinc concentration were elevated linearly with supplemental Zn levels from 0 to 180 mg Zn/kg. Serum Cu-Zn SOD activities resulted in a significant (P zinc levels (P zinc content and was significantly higher (P zinc levels and the activities of Cu-Zn SOD and AKP on rats. Dietary Zn-Gly has a certain effect on MT1, Zip4, Zip5, and ZnT1 expression, which expressed differently in intestinal segments with different levels of Zn-Gly load. Besides, Zn-Gly also could regulate PepT1 expression in intestinal segments.

  8. AMPA receptor inhibition by synaptically released zinc.

    Kalappa, Bopanna I; Anderson, Charles T; Goldberg, Jacob M; Lippard, Stephen J; Tzounopoulos, Thanos


    The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses.

  9. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; van Dorsselaer, Alain; Rabilloud, Thierry


    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate


    Bondaruyk О.А.


    Full Text Available Adrenalectomy causes the decline of zinc maintenance in the neurons of hippocampus and B cells of pancreas that has been observed in experiments on rats. The loss of zinc of these cells has been partly compensated by the injection of adrenalin and prednizolon to the adrenalectomized animals. The increase of zinc maintenance in these cells has been caused by the sharp-stress process due to the simultaneous physical activity and immobilization. The given data prove the participation of adrenal glands in the mechanism of zinc exchanges regulation in central (hippocampus and peripheral (cells B of pancreas zinc-containing organs of animals.

  11. Zinc oxide overdose

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used ... prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of ...

  12. Thermally induced microstrain broadening in hexagonal zinc

    Lawson, Andrew C [Los Alamos National Laboratory; Valdez, James A [Los Alamos National Laboratory; Roberts, Joyce A [Los Alamos National Laboratory; Leineweber, Andreas [STUTTGART, GERMANY; Mittemeijer, E J [STUTTGART, GERMANY; Kreher, W [DRESDEN UNIV


    Neutron powder-diffraction experiments on polycrystalline hexagonal zinc show considerable temperature-dependent line broadening. Whereas as-received zinc at 300 K exhibits narrow reflections, during cooling to a minimum temperature of 10K considerable line-broadening appears, which largely disappears again during reheating. The line broadening may be ascribed to microstrains induced by thermal microstresses due to the anisotropy of the thermal expansion (shrinkage) of hexagonal zinc. Differences between the thermal microstrains and theoretical predictions considering elastic deformation of the grains can be explained by plastic deformation and surface effects.

  13. Cadmium and zinc relationships

    Elinder, C.; Piscator, M.


    Higher mammals, such as homo sapiens, accumulate zinc in kidney cortex almost equimolarly with cadmium. A different pattern seems to be present in liverthere is a limited increase of zinc in two species of large farm animals compared with a marked increase in the laboratory. In large farm animals, an equimolar increase of zinc with cadmium in renal cortex seems to indicate that the form of metallothionein that binds equal amounts of cadmium and zinc in present. Differences in cadmium and zinc relationships in large animals and humans compared with laboratory animals must be carefully considered. (4 graphs, 26 references)

  14. Zinc and skin biology.

    Ogawa, Youichi; Kawamura, Tatsuyoshi; Shimada, Shinji


    Of all tissues, the skin has the third highest abundance of zinc in the body. In the skin, the zinc concentration is higher in the epidermis than in the dermis, owing to a zinc requirement for the active proliferation and differentiation of epidermal keratinocytes. Here we review the dynamics and functions of zinc in the skin as well as skin disorders associated with zinc deficiency, zinc finger domain-containing proteins, and zinc transporters. Among skin disorders associated with zinc deficiency, acrodermatitis enteropathica is a disorder caused by mutations in the ZIP4 transporter and subsequent zinc deficiency. The triad acrodermatitis enteropathica is characterized by alopecia, diarrhea, and skin lesions in acral, periorificial, and anogenital areas. We highlight the underlying mechanism of the development of acrodermatitis because of zinc deficiency by describing our new findings. We also discuss the accumulating evidence on zinc deficiency in alopecia and necrolytic migratory erythema, which is typically associated with glucagonomas. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Cadmium and zinc relationships.

    Elinder, C G; Piscator, M


    Cadmium and zinc concentrations in kidney and liver have been measured under different exposure situations in different species including man. The results show that zinc increases almost equimolarly with cadmium in kidney after long-term low-level exposure to cadmium, e.g., in man, horse, pig, and lamb. In contrast, the increase of zinc follows that of cadmium to only a limited extent, e.g., in guinea pig, rabbit, rat, mouse, and chicks. In liver, the cadmium--zinc relationship seems to be reversed in such a way that zinc increases with cadmium more markedly in laboratory animals than in higher mammals. These differences between cadmium and zinc relationships in humans and large farm animals and those in commonly used laboratory animals must be considered carefully before experimental data on cadmium and zinc relationships in laboratory animals can be extrapolated to humans.

  16. Corrosion and solubility in a TSP-buffered chemical environment following a loss of coolant accident: Part 2 – Zinc

    Pease, David; LaBrier, Daniel; Ali, Amir [Department of Nuclear Engineering, University of New Mexico (United States); Blandford, Edward D., E-mail: [Department of Nuclear Engineering, University of New Mexico (United States); Howe, Kerry J. [Department of Civil Engineering, University of New Mexico (United States)


    Highlights: • Zinc release is limited to less than 1 mg/L in TSP-buffered solution under a variety of conditions (pH, temperature, zinc source). • Zinc release in high-temperature non-TSP-buffered environment is approximately 25 mg/L. • Long-term zinc release is controlled by passivation (without TSP) and zinc solubility (with TSP). • Precipitation and solubility of zinc phosphate limit the release of zinc. - Abstract: Bench experiments were conducted to investigate the effect of the presence of trisodium phosphate (TSP) on the corrosion and release of zinc from metallic zinc-bearing surfaces under conditions representative of the containment pool following a postulated loss of coolant accident (LOCA) at a nuclear power generating facility. The experiments showed that in non-buffered (acidic) environments, measurable quantities of zinc are released from zinc-bearing surfaces. Precipitation and solubility of phosphate-based corrosion products, such as zinc phosphate, limit the release of zinc from zinc-bearing surfaces. These experiments have found that under a variety of conditions, including variations of temperature, pH, and across different zinc-bearing surfaces, the release of zinc into solution is limited to <1 mg/L when phosphate is present. When phosphate is not present, zinc release is instead bounded by a markedly higher saturation limit which is a strong function of the solution temperature.

  17. Effect of magnetic field on the crystallization of zinc sulfate

    Freitas A. M. B.


    Full Text Available The effect of magnetic field on the crystallization of diamagnetic zinc sulfate was investigated in a series of controlled batch cooling experiments. Zinc sulfate solutions were exposed to magnetic fields of different intensities, up to a maximum of 0.7T. A clear influence of magnetic field on the following zinc sulfate crystallization parameters was found: an increase in saturation temperature, a decrease in metastable zone width, and an increase in growth rate and average crystal size. These effects were observed for the diamagnetic zinc sulfate, but not in similar, previously reported experiments for paramagnetic copper sulfate.

  18. Recent advances in knowledge of zinc nutrition and human health.

    Hess, Sonja Y; Lönnerdal, Bo; Hotz, Christine; Rivera, Juan A; Brown, Kenneth H


    Zinc deficiency increases the risk and severity of a variety of infections, restricts physical growth, and affects specific outcomes of pregnancy. Global recognition of the importance of zinc nutrition in public health has expanded dramatically in recent years, and more experience has accumulated on the design and implementation of zinc intervention programs. Therefore, the Steering Committee of the International Zinc Nutrition Consultative Group (IZiNCG) completed a second IZiNCG technical document that reexamines the latest information on the intervention strategies that have been developed to enhance zinc nutrition and control zinc deficiency. In particular, the document reviews the current evidence regarding preventive zinc supplementation and the role of zinc as adjunctive therapy for selected infections, zinc fortification, and dietary diversification or modification strategies, including the promotion and protection of breastfeeding and biofortification. The purposes of this introductory paper are to summarize new guidelines on the assessment of population zinc status, as recommended by the World Health Organization (WHO), the United Nations Children's Fund (UNICEF), the International Atomic Energy Agency (IAEA), and IZiNCG, and to provide an overview on several new advances in zinc metabolism. The following papers will then review the intervention strategies individually.

  19. [Zinc and type 2 diabetes].

    Fukunaka, Ayako; Fujitani, Yoshio


    Pancreatic β cells contain the highest amount of zinc among cells within the human body, and hence, the relationship between zinc and diabetes has been a topic of great interest. While many studies demonstrating possible involvement of zinc deficiency in diabetes have been reported, precise mechanisms how zinc regulates glucose metabolism are still far from understood. Recent studies revealed that zinc can transmit signals that are driven by a variety of zinc transporters in a tissue and cell-type specific manner and deficiency in some zinc transporters may cause human diseases. Here, we review the role of zinc in metabolism particularly focusing on the emerging role of zinc transporters in diabetes.

  20. Analysis of cellular responses of macrophages to zinc ions and zinc oxide nanoparticles: a combined targeted and proteomic approach.

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; Van Dorsselaer, Alain; Rabilloud, Thierry


    Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.

  1. Enhanced zinc consumption causes memory deficits and increased brain levels of zinc

    Flinn, J.M.; Hunter, D.; Linkous, D.H.; Lanzirotti, A.; Smith, L.N.; Brightwell, J.; Jones, B.F.


    Zinc deficiency has been shown to impair cognitive functioning, but little work has been done on the effects of elevated zinc. This research examined the effect on memory of raising Sprague-Dawley rats on enhanced levels of zinc (10 ppm ZnCO3; 0.153 mM) in the drinking water for periods of 3 or 9 months, both pre- and postnatally. Controls were raised on lab water. Memory was tested in a series of Morris Water Maze (MWM) experiments, and zinc-treated rats were found to have impairments in both reference and working memory. They were significantly slower to find a stationary platform and showed greater thigmotaxicity, a measure of anxiety. On a working memory task, where the platform was moved each day, zinc-treated animals had longer latencies over both trials and days, swam further from the platform, and showed greater thigmotaxicity. On trials using an Atlantis platform, which remained in one place but was lowered on probe trials, the zinc-treated animals had significantly fewer platform crossings, spent less time in the target quadrant, and did not swim as close to the platform position. They had significantly greater latency on nonprobe trials. Microprobe synchrotron X-ray fluorescence (??SXRF) confirmed that brain zinc levels were increased by adding ZnCO 3 to the drinking water. These data show that long-term dietary administration of zinc can lead to impairments in cognitive function. ?? 2004 Elsevier Inc. All rights reserved.

  2. Improved zinc electrode and rechargeable zinc-air battery

    Ross, P.N. Jr.


    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  3. Implication of zinc excess on soil health.

    Wyszkowska, Jadwiga; Boros-Lajszner, Edyta; Borowik, Agata; Baćmaga, Małgorzata; Kucharski, Jan; Tomkiel, Monika


    This study was undertaken to evaluate zinc's influence on the resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease. The experiment was conducted in a greenhouse of the University of Warmia and Mazury (UWM) in Olsztyn, Poland. Plastic pots were filled with 3 kg of sandy loam with pHKCl - 7.0 each. The experimental variables were: zinc applied to soil at six doses: 100, 300, 600, 1,200, 2,400 and 4,800 mg of Zn(2+) kg(-1) in the form of ZnCl2 (zinc chloride), and species of plant: oat (Avena sativa L.) cv. Chwat and white mustard (Sinapis alba) cv. Rota. Soil without the addition of zinc served as the control. During the growing season, soil samples were subjected to microbiological analyses on experimental days 25 and 50 to determine the abundance of organotrophic bacteria, actinomyces and fungi, and the activity of dehydrogenases, catalase and urease, which provided a basis for determining the soil resistance index (RS). The physicochemical properties of soil were determined after harvest. The results of this study indicate that excessive concentrations of zinc have an adverse impact on microbial growth and the activity of soil enzymes. The resistance of organotrophic bacteria, actinomyces, fungi, dehydrogenases, catalase and urease decreased with an increase in the degree of soil contamination with zinc. Dehydrogenases were most sensitive and urease was least sensitive to soil contamination with zinc. Zinc also exerted an adverse influence on the physicochemical properties of soil and plant development. The growth of oat and white mustard plants was almost completely inhibited in response to the highest zinc doses of 2,400 and 4,800 mg Zn(2+) kg(-1).

  4. Chelators for investigating zinc metalloneurochemistry.

    Radford, Robert J; Lippard, Stephen J


    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals of hippocampal mossy fiber buttons.

  5. Zinc and childhood infections: From the laboratory to new treatment recommendations

    Tor A. Strand


    Full Text Available Zinc is an essential nutrient particularly important for growing children and for those who experience frequent infections. Many children in developing countries have inadequate zinc nutrition that impairs their immune system. Diarrhea and pneumonia are among the leading causes of morbidity and mortality in children of low-income countries. Zinc deficiency increases the susceptibility to these infections and administration of zinc to children with diarrhea and, possibly, pneumonia speeds up recovery. Furthermore, zinc given to otherwise healthy children also reduces the incidence of diarrhea and pneumonia. Thus, thousands of lives can be saved every year by giving zinc to prevent childhood infections or by providing zinc to children with ongoing infections. This paper gives a brief outline of the history of zinc research and reviews existing evidence from clinical trials on the prophylactic and therapeutic effect of oral zinc on childhood pneumonia and diarrhea

  6. Final results of an experiment to search for 2beta processes in zinc and tungsten with the help of radiopure ZnWO4 crystal scintillators

    Belli, P; Cappella, F; Cerulli, R; Danevich, F A; d'Angelo, S; Incicchitti, A; Kobychev, V V; Poda, D V; Tretyak, V I


    A search for the double beta decay of zinc and tungsten isotopes has been performed with the help of radiopure ZnWO4 crystal scintillators (0.1-0.7 kg) at the Gran Sasso National Laboratories of the INFN. The total exposure of the low background measurements is 0.529 kg yr. New improved half-life limits on the double beta decay modes of 64Zn, 70Zn, 180W, and 186W have been established at the level of 10^{18}-10^{21} yr. In particular, limits on double electron capture and electron capture with positron emission in 64Zn have been set: T_{1/2}(2\

  7. Lattice dynamical investigations on Zn diffusion in zinc oxide

    P Vinotha Boorana Lakshmi; K Ramachandran


    Zinc self diffusion in bulk zinc oxide is studied by lattice dynamical approach here to get more insight into the diffusion in nano ZnO. The results reveal that only cationic self diffusion is dominant over anionic self diffusion and that too by single vacancy mechanism. The results are compared with the available experiments and discussed.

  8. Selective extraction of zinc from sulfate leach solution of zinc ore

    覃文庆; 蓝卓越; 黎维中; 邱冠周


    Selective extraction of zinc from sulfate leach solution of zinc ore was studied.D2EHPA dissolved in260# kerosene was used as extractant.The pH-extraction isotherms show the extraction order of D2EHPA for metals is Fe3+>Zn2+>Ca2+>Al3+>Mn2+>Cu2+>Cd2+>Co2+>Ni2+>Mg2+(pH0.5).This confirms that Fe3+ ispreferentially extracted before the extraction of zinc.Extraction experiments were carried out with varying the extractant content,equilibration time,aqueous pH and phase ratio,and the solvent extraction of zinc with sodium saltof D2EHPA were also investigated.Some impurity co-extracted into the zinc loaded organic phase was efficiently removed by scrub,and the Fe3+ was hardly stripped from organic phase by sulfuric acid,hence zinc was separatedfrom Fe3+ by selective stripping.A pregnant zinc sulfate solution with low contaminants was obtained by selectivesolvent extraction.

  9. Exploring zinc coordination in novel zinc battery electrolytes.

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R


    The coordination of zinc ions by tetraglyme has been investigated here to support the development of novel electrolytes for rechargeable zinc batteries. Zn(2+) reduction is electrochemically reversible from tetraglyme. The spectroscopic data, molar conductivity and thermal behavior as a function of zinc composition, between mole ratios [80 : 20] and [50 : 50] [tetraglyme : zinc chloride], all suggest that strong interactions take place between chloro-zinc complexes and tetraglyme. Varying the concentration of zinc chloride produces a range of zinc-chloro species (ZnClx)(2-x) in solution, which hinder full interaction between the zinc ion and tetraglyme. Both the [70 : 30] and [50 : 50] mixtures are promising electrolyte candidates for reversible zinc batteries, such as the zinc-air device.

  10. Effect of short-term zinc supplementation on zinc and selenium tissue distribution and serum antioxidant enzymes

    Andrey A. Skalny


    Full Text Available Background. A significant association between Zn and Se homeostasis exists. At the same time, data on the influence of zinc supplementation on selenium distribution in organs and tissues seem to be absent. Therefore, the primary objective of the current study is to investigate the infl uence of zinc asparaginate supplementation on zinc and selenium distribution and serum superoxide dismutase (SOD and glutathione peroxidase (GPx activity in Wistar rats. Material and methods. 36 rats were used in the experiment. The duration of the experiment was 7 and 14 days in the fi rst and second series, respectively. The rats in Group I were used as the control ones. Animals in Groups II and III daily obtained zinc asparaginate (ZnA in the doses of 5 and 15 mg/kg weight, respectively. Zinc and selenium content in liver, kidneys, heart, muscle, serum and hair was assessed using inductively coupled plasma mass spectrometry. Serum SOD and GPx activity was analysed spectrophotometrically using Randox kits. Results. Intragastric administration of zinc asparaginate signifi cantly increased liver, kidney, and serum zinc content without affecting skeletal and cardiac muscle levels. Zinc supplementation also stimulated selenium retention in the rats’ organs. Moreover, a significant positive correlation between zinc and selenium content was observed. Finally, zinc asparaginate treatment has been shown to modulate serum GPx but not SOD activity. Conclusion. The obtained data indicate that zinc-induced increase in GPx activity may be mediated through modulation of selenium status. However, future studies are required to estimate the exact mechanisms of zinc and selenium interplay.

  11. Effects of Bicarbonate and High pH Conditions on Zinc and Other Nutrients Absorption in Rice

    LU Zhong-xian; MENG Fan-hua; S. VILLAREAL; WEI You-zhang; YU Xiao-ping; YANG Xiao-e; K. L. HEONG; LIN Jian-jun; HU Cui; LIU Jian-xiang


    Zinc deficiency was widely observed in calcareous soil where bicarbonate and high pH were always related with low zinc availability. In a hydroponic experiment, one zinc-efficient rice (IR36) and one zinc-inefficient rice (IR26) genotypes were employed to investigate the effects of bicarbonate and high pH conditions on absorption, transport of zinc and other nutrients (P, K, Ca, Mg,Fe, Cu, Mn) in rice. As compared with the control, high pH inhibited absorption, translocation and accumulation of zinc and other nutrients in both rice genotypes. Bicarbonate had minor effect on zinc-efficient rice genotype (IR36) whereas it could decrease zinc and other nutrient absorption in zinc-inefficient rice genotype (IR26). These results implied that increasing rice tolerance to bicarbonate is one of the most important strategies to improve rice adaptation for zinc-deficit calcareous soil.

  12. Modeling the temporal variability of zinc concentrations in zinc roof runoff-experimental study and uncertainty analysis.

    Sage, Jérémie; El Oreibi, Elissar; Saad, Mohamed; Gromaire, Marie-Christine


    This study investigates the temporal variability of zinc concentrations from zinc roof runoff. The influence of rainfall characteristics and dry period duration is evaluated by combining laboratory experiment on small zinc sheets and in situ measurements under real weather conditions from a 1.6-m(2) zinc panel. A reformulation of a commonly used conceptual runoff quality model is introduced and its ability to simulate the evolution of zinc concentrations is evaluated. A systematic and sharp decrease from initially high to relatively low and stable zinc concentrations after 0.5 to 2 mm of rainfall is observed for both experiments, suggesting that highly soluble corrosion products are removed at early stages of runoff. A moderate dependence between antecedent dry period duration and the magnitude of zinc concentrations at the beginning of a rain event is evidenced. Contrariwise, results indicate that concentrations are not significantly influenced by rainfall intensities. Simulated rainfall experiment nonetheless suggests that a slight effect of rainfall intensities may be expected after the initial decrease of concentrations. Finally, this study shows that relatively simple conceptual runoff quality models may be adopted to simulate the variability of zinc concentrations during a rain event and from a rain event to another.

  13. Effect of Zinc Toxicity on Lymphoid Organs in Chickens

    CUI Heng-min; ZHAO Cui-yan; LI De-bing; PENG Xi; DENG Jun-liang


    The experiment was conducted with the objective of studies on effects of zinc toxicity on lymphoid organs by the methods of experimental pathology and flow cytometry (FCM). 200one-day-old Avian broilers were divided into four groups randomly, and fed on diets as follows: controls (Zn 100mg kg-1)and zinc toxic (Zn 1 500mg kg-1, zinc toxic group Ⅰ; Zn 2 000 mg kg-1, zinc toxic group Ⅱ; Zn 2 500 mg kg-1, zinc toxic group Ⅲ) for seven weeks. The weight and growth index of the thymus, spleen and bursa of Fabricius were reduced in both zinc toxic group Ⅱ and zinc toxic group Ⅲ when compared with those of control group. The G0/G1 phase of the cell cycles of the lymphoid organs was higher, and S, G2+M phases lower in zinc toxic groups Ⅱ and Ⅲ than in control group. Lymphocytes were depleted and degenerate in the lymphoid organs. The reticular cells of the bursa of Fabricius proliferated and the reticular cells of the thymus were also degenerate and necrotic,particularly in zinc toxic groups Ⅱ and Ⅲ. The results demonstrated that more than 1 500 mg kg-1 impaired the progression of lymphocytes from the G0/G1 phase to S phase obviously, inhibited the development of lymphoid organs and caused marked pathological changes in the lymphoid organs. Potential mechanisms underlying these observations are also discussed.

  14. Flotation Experiment Study on a Copper-Lead-Zinc Complex Polymetallic Ore in Inner Mongolia%内蒙古某铜铅锌复杂多金属矿的浮选试验研究

    宋涛; 洪家薇; 刘宸婷


    试验矿样取自内蒙古某地的铜铅锌复杂多金属矿,原矿含Cu 0.25%、Pb 2.53%、Zn 4.47%,并且伴生Ag 92.5 g/t、In 42.5 g/t,研究了该矿石的浮选工艺以及在浮选过程中各种药剂的用量,最终得到铜精矿中含Cu 17.62%、回收率达到58.26%;铅精矿含Pb 66.55%、回收率高达90.39%;锌精矿含Zn 48.12%,回收率90.29%;与此同时,铅精矿含Ag达到1 642.0 g/t、回收率60.3%,锌精矿含In达到248.7 g/t、回收率达到53.5%.结果表明,此浮选工艺可有效处理该复杂多金属矿.%The experiment sample is taken from a copper-lead-zinc complex polymetallic deposit in Inner Mongolia, there are 0. 25 % Cu, 2. 53 % Pb, 4.47% Zn in the raw ore, and it also associated with 92. 5 g/t Ag and 42. 5 g/t In, the flotation process of this ore and also the dosage of agents which used in the flotation process is researched, the copper concentrate contents Cu 17.6% , and the recovery can be reached to 58. 26% ; the lead concentrate contents Pb 66. 55% , the recovery reach up to 90. 39% ; the zinc concentrate contents Ag 1 642.0 g/t, the recovery is 60. 3% ; the zinc concentrate contents In 248. 7 g/t, the recovery is 53.5%. The results showed that this flotation process can treat this complex polymetallic ore effectively.

  15. Fate and Toxicity of Zinc Oxide Nanomaterial in Municipal Wastewaters.

    Smeraldi, Josh; Ganesh, Rajagopalan; Hosseini, Turaj; Khatib, Leila; Olson, Betty H; Rosso, Diego


      The production of zinc nanomaterial has increased significantly over the past several years and, as a result, nanoparticles have navigated their way into wastewater streams. The transportation and toxicity of zinc nanomaterial within the wastewater treatment processes is not well known. In this study, the zinc nanomaterial and its fate were characterized in an activated sludge treatment process. The tests performed included batch studies to evaluate abiotic and biotic removal, toxicity studies to evaluate inhibition to coliform and nitrifying bacteria, and bioreactor studies to evaluate impact on operating parameters. Stock solutions of zinc nanomaterial varied in size from 50 to 500 nm, but when added to an activated sludge solution, the nanoparticles agglomerated to larger sizes such that more than 60% of the zinc nanomaterial settled out of solution. However, when ionic zinc was added to activated sludge, more than 60% of the ionic zinc remained in suspension. It is likely that the ionic strength of the wastewater influenced the aggregation of the nanomaterial. Differences in the extent of removal between ionic and nano zinc species indicate that the mechanisms governing their removal are different. Toxicity analysis showed that zinc nanomaterial did not inhibit growth of coliform and ammonia oxidizing bacteria. However, ionic zinc inhibited the growth of both the coliform and ammonia oxidizing bacteria. Bioreactors were set up using activated sludge that was collected from a local treatment plant operating only in carbon oxidation mode. The treatment plant was operated at an SRT of 1.2 days and an MLSS of 650 mg/L. Several key parameters (COD, MLSS, pH) in the bioreactors were monitored through a 7-day incubation period, but showed no significant changes due to the addition of nano or ionic zinc. It is possible that the toxicity of zinc nanomaterial was not observed in these experiments because the nanomaterial agglomerated and settled out of solution.

  16. Effects of Dietary Zinc Pectin Oligosaccharides Chelate Supplementation on Growth Performance, Nutrient Digestibility and Tissue Zinc Concentrations of Broilers.

    Wang, Zhongcheng; Yu, Huimin; Wu, Xuezhuang; Zhang, Tietao; Cui, Hu; Wan, Chunmeng; Gao, Xiuhua


    The experiment was conducted to investigate the effects of zinc pectin oligosaccharides (Zn-POS) chelate on growth performance, nutrient digestibility, and tissue zinc concentrations of Arbor Acre broilers aged from 1 to 42 days. A total of 576 1-day-old broilers were randomly assigned into 4 groups with 9 replicates per group and 16 chicks per replicate. Chicks were fed either a basal diet (control) or basal diet supplemented with Zn-POS at 300 (Zn-POS-300), 600 (Zn-POS-600), or 900 mg/kg (Zn-POS-900), respectively, for 42 days. A 3-day metabolism trial was conducted during the last week of the experiment feeding. The average daily gain and the average daily feed intake of Zn-POS-600 were significantly higher (P zinc concentrations (P zinc concentrations (P zinc concentrations in liver and pancreas of broilers.

  17. Zinc electrode and rechargeable zinc-air battery

    Ross, Jr., Philip N.


    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  18. Zinc in diet

    ... Zinc is also needed for the senses of smell and taste. During pregnancy, infancy, and childhood the ... sense of taste Problems with the sense of smell Skin sores Slow growth Trouble seeing in the ...

  19. Zinc level and obesity

    Doaa S.E. Zaky


    Conclusion Plasma zinc concentration in obese individuals showed an inverse relationship with the waist circumference and BMI as well as serum low-density lipoprotein-cholesterol and correlated positively with high-density lipoprotein.

  20. Zinc level and obesity

    Doaa S.E Zaky; Eman A Sultan; Mahmoud F Salim; Rana S Dawod


    Background Obesity is a chronic condition that is associated with disturbances in the metabolism of zinc. Therefore, the aim of this study was to investigate the relationship between serum zinc level and different clinical and biochemical parameters in obese individuals. Patients and methods Twenty-four individuals with BMI more than 30 kg/m 2 and 14 healthy controls (BMI < 24 kg/m 2 ) were assessed for BMI and waist circumference using anthropometric measurements. Colorimetric tes...

  1. New chromate-free passivation treatments for zinc, zinc alloy, and zinc-containing coatings and surfaces

    Smith, C. J. E.; King, J. E.; Wright, D. G.; Erricker, S. L.; Wilcox, G.; Treacy, G.; Hovestad, A.; Woodhead, T.; Buckland, J.; Lindsey, L.; Eruli, M.; Koelewijn, H.; Shropshire, I. [Defence Evaluation and Research Agency, Farnborough, Hampshire (United Kingdom)


    Results of a series of experiments to develop chromate-free treatments which provide the same level of corrosion protection and promote adhesion of surface coatings and paint films are discussed. The initial phase of the project identified two different treatments which prompted the investigation of pH, temperature and immersion time, as part of the effort to optimize the processes. When subjected to accelerated corrosion tests, one of the two processes (the PTA process) compared favourably with conventional chromate filming when applied to electrodeposited zinc-nickel coatings. Further investigation revealed that the process also works effectively on brass and nickel substrates and provides an appropriate substrate for the application of lacquer. Development of an effective treatment for zinc coatings, particularly hot dip galvanized zinc, is in progress. This paper discusses the results of toxicological and environmental studies conducted in conjunction with the two processes and reviews lessons learned and opportunities for exploiting the findings. 5 refs., 6 tabs.

  2. Bioleaching of zinc from gold ores using Acidithiobacillus ferrooxidans

    Pakawadee Kaewkannetra; Francisco Jose Garcia-Garcia; Tze Yen Chiu


    that Acidithiobacillus ferrooxidans can successfully leach zinc by as much as 6 times compared with the control experiment (without Acidithiobacillus ferrooxidans ferrooxidans). The maximum efficiency (92.3%) for microbial leaching is obtained in

  3. Parameters Influencing Zinc in Experimental Systems in Vivo and in Vitro

    Johanna Ollig


    Full Text Available In recent years, the role of zinc in biological systems has been a subject of intense research. Despite wide increase in our knowledge and understanding of zinc homeostasis, numerous questions remain to be answered, encouraging further research. In particular, the quantification of intracellular zinc ions and fluctuation, as well as the function of zinc in signaling processes are being intensely investigated. The determination of free intracellular zinc ions is difficult and error-prone, as concentrations are extremely low (in the pico- to nanomolar range, but techniques exist involving fluorescent probes and sensors. In spite of zinc deficiency being accepted as a global problem, causing death and disease worldwide, to date there are no markers to reliably assess a person’s zinc status. This review summarizes the difficulties and major pitfalls when working with zinc in in vitro and in vivo research. Additionally, it specifies important aspects for zinc substitution and supplementation, including the bioavailability of zinc and its intestinal absorption. In particular, it is intended to help researchers with yet minor experience working with zinc efficiently set up experiments and avoid commonly occurring mistakes, starting with the choice and preparation of reagents and instrumentation, and concluding with possibilities for measuring the status of zinc in humans.

  4. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    Veldkamp, T.; Diepen, van, C.A.; Bikker, P.


    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Livestock Research to determine the bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens. A precise estimate of the bioavailability of zinc sources is required both for fulf...

  5. Treatment of zinc deficiency without zinc fortification

    Donald OBERLEAS; Barbara F. HARLAND


    Zinc (Zn) deficiency in animals became of interest until the 1950s. In this paper, progresses in researches on physi-ology of Zn deficiency in animals, phytate effect on bioavailability of Zn, and role of phytase in healing Zn deficiency of animals were reviewed. Several studies demonstrated that Zn is recycled via the pancreas; the problem of Zn deficiency was controlled by Zn homeostasis. The endogenous secretion of Zn is considered as an important factor influencing Zn deficiency, and the critical molar ratio is 10. Phytate (inositol hexaphosphate) constituted up to 90% of the organically bound phosphorus in seeds. Great improvement has been made in recent years on isolating and measuring phytate, and its structure is clear. Phytate is considered to reduce Zn bioavailability in animal. Phytase is the enzyme that hydrolyzes phytate and is present in yeast, rye bran, wheat bran, barley, triticale, and many bacteria and fungi. Zinc nutrition and bioavailability can be enhanced by addition of phytase to animal feeds. Therefore, using phytase as supplements, the most prevalent Zn deficiency in animals may be effectively corrected without the mining and smelting of several tons of zinc daily needed to correct this deficiency by fortification worldwide.

  6. Leaching and recycling of zinc from liquid waste sediments

    PENG Bing; GAO Hui-mei; CHAI Li-yuan; SHU Yu-de


    The selective leaching and recovery of zinc in a zinciferous sediment from a synthetic wastewater treatment was investigated. The main composition of the sediment includes 6% zinc and other metal elements such as Ca, Fe, Cu, Mg. The effects of sulfuric acid concentration, temperature, leaching time and the liquid-to-solid ratio on the leaching rate of zinc were studied by single factor and orthogonal experiments. The maximum difference of leaching rate between zinc and iron, 89.85%, was obtained by leaching under 170 g/L H2SO4 in liquid-to-solid ratio 4.2 mL/g at 65 "C for 1 h, and the leaching rates of zinc and iron were 91.20% and 1.35%, respectively.

  7. Zinc supplementation, production and quality of coffee beans

    Herminia Emilia Prieto Martinez


    Full Text Available Besides its importance in the coffee tree nutrition, there is almost no information relating zinc nutrition and bean quality. This work evaluated the effect of zinc on the coffee yield and bean quality. The experiment was conducted with Coffea arabica L. in "Zona da Mata" region, Minas Gerais, Brazil. Twelve plots were established at random with 4 competitive plants each. Treatments included plants supplemented with zinc (eight plots and control without zinc supplementation (four plots. Plants were subjected to two treatments: zinc supplementation and control. Yield, number of defective beans, beans attacked by berry borers, bean size, cup quality, beans zinc concentration, potassium leaching, electrical conductivity, color index, total tritable acidity, pH, chlorogenic acids contents and ferric-reducing antioxidant activity of beans were evaluated. Zinc positively affected quality of coffee beans, which presented lower percentage of medium and small beans, lower berry borer incidence, lower potassium leaching and electrical conductivity, higher contents of zinc and chlorogenic acids and higher antioxidant activity in comparison with control beans.

  8. Effects of crocin and zinc chloride on blood levels of zinc and metabolic and oxidative parameters in streptozotocin-induced diabetic rats

    Siamak Asri-Rezaei


    Full Text Available Objectives:Crocin is one of constituents of saffron and has antioxidant property. Zinc chloride is one of the common compounds of zinc with antioxidant activity. The present study was aimed to investigate separate and combined treatment effects of crocin and zinc chloride on blood levels of zinc and metabolic and oxidative parameters in diabetic rats. Materials and Methods:Diabetes was induced by intraperitoneal (i.p. injection of 50 mg/kg of streptozotocin (STZ and was confirmed by blood glucose levels higher than 250 mg/dL. After confirmation of diabetes, injections (i.p. of crocin and zinc chloride were performed for six weeks. At the end of the experiment, blood levels of zinc, glucose, insulin, malodialdehyde (MDA, and total antioxidant capacity (TAC were measured. ‎ Results:Crocin (25 and 50 mg/kg and zinc chloride (5 mg/kg significantly recovered the decreased levels of zinc, insulin, and TAC and improved the increased levels of glucose and MDA in STZ-induced diabetic rats. In a combination treatment performed with an ineffective dose of crocin (12.5 mg/kg and a low dose of zinc chloride (1.25 mg/kg, improving effects were observed on the above-mentioned biochemical parameters.‎ Conclusions: The results indicated that separate and combined treatments with crocin and zinc chloride produced improving effects on the blood levels of zinc, glucose, insulin, MDA and TAC in STZ-induced diabetic rats.‎

  9. Zinc Determination in Pleural Fluid

    Nazan DEMİR; DEMİR, Yaşar


    In this study, an enzymatic zinc determination method was applied to pleural fluid, the basis of which was the regaining of the activity of apo carbonic anhydrase by the zinc present in the sample. The method was used for pleural fluid zinc determination in order to show the application to body fluids other than serum. For this purpose, pleural fluids were obtained from 20 patients and zinc concentrations were determined. Carbonic anhydrase was purified by affinity chromatography from bovine ...

  10. Effect of irrigation water salinity and zinc application on yield, yield components and zinc accumulation of wheat

    mohamad ahmadi


    Full Text Available Salinity stress is one of the most important problems of agriculture in crop production in arid and semi arid regions. Under these conditions, in addition to management strategies, proper and adequate nutrition also has an important role in crop improvement. A greenhouse experiment was conducted to study the effect of 4 different irrigation water salinities (blank, 4, 8 and 12 dS m-1, prepared with 1:1 molar ratio of chlorides of calcium and sodium and magnesium sulphate salts. and 5 different zinc applications (0, 10, 20, 30 mg Kg-1 soil and foliar application of salt of zinc sulphate on yield, yield components and zinc concentration of wheat, using a completely randomized design, factorial with three replications. Plant height, spike length, 1000 grain weight, number of grain per spike, grain and straw yield was decreased by Irrigation water salinity. And all of these parameters were improved by zinc application except 1000 grain weight. Zinc absorption and concentration in straw and grain was decreased by Saline water compared to blank. And concentration of zinc significantly was increased in straw and grain by increase zinc application. The results indicated that, zinc application under low to medium salinity conditions improved growth and yield of wheat due to decreasing the impacts salinity.

  11. Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae

    Wu Chang-Yi


    Full Text Available Abstract Background The Zap1 transcription factor is a central player in the response of yeast to changes in zinc status. We previously used transcriptome profiling with DNA microarrays to identify 46 potential Zap1 target genes in the yeast genome. In this new study, we used complementary methods to identify additional Zap1 target genes. Results With alternative growth conditions for the microarray experiments and a more sensitive motif identification algorithm, we identified 31 new potential targets of Zap1 activation. Moreover, an analysis of the response of Zap1 target genes to a range of zinc concentrations and to zinc withdrawal over time demonstrated that these genes respond differently to zinc deficiency. Some genes are induced under mild zinc deficiency and act as a first line of defense against this stress. First-line defense genes serve to maintain zinc homeostasis by increasing zinc uptake, and by mobilizing and conserving intracellular zinc pools. Other genes respond only to severe zinc limitation and act as a second line of defense. These second-line defense genes allow cells to adapt to conditions of zinc deficiency and include genes involved in maintaining secretory pathway and cell wall function, and stress responses. Conclusion We have identified several new targets of Zap1-mediated regulation. Furthermore, our results indicate that through the differential regulation of its target genes, Zap1 prioritizes mechanisms of zinc homeostasis and adaptive responses to zinc deficiency.

  12. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    Veldkamp, T.; Diepen, van J.T.M.; Bikker, P.


    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR

  13. The bioavailability of four zinc oxide sources and zinc sulphate in broiler chickens

    Veldkamp, T.; Diepen, van J.T.M.; Bikker, P.


    Zinc is an essential trace element for all farm animal species. It is commonly included in animal diets as zinc oxide, zinc sulphate or organically bound zinc. Umicore Zinc Chemicals developed zinc oxide products with different mean particle sizes. Umicore Zinc Chemicals requested Wageningen UR Live

  14. Zinc asparaginate supplementation induces redistribution of toxic trace elements in rat tissues and organs

    Skalny Andrey A.


    Full Text Available The primary objective of the current study was the investigation of the influence of zinc asparaginate supplementation for 7 and 14 days on toxic metal and metalloid content in rat organs and tissues. Rats obtained zinc asparaginate in doses of 5 and 15 mg/kg/day for 7 and 14 days. At the end of the experiment rat tissues and organs (liver, kidney, heart, m. gastrocnemius, serum, and hair were collected for subsequent analysis. Estimation of Zn, Al, As, Li, Ni, Sn, Sr content in the harvested organs was performed using inductively coupled plasma mass spectrometry at NexION 300D. The obtained data showed that intragastric administration of zinc significantly increased liver, kidney and serum zinc concentrations. Seven-day zinc treatment significantly affected the toxic trace element content in the animals’ organs. Zinc supplementation significantly decreased particularly liver aluminium, nickel, and tin content, whereas lead tended to increase. Zinc-induced changes in kidney metal content were characterized by elevated lithium and decreased nickel concentration. Zinc-induced alteration of myocardical toxic element content was multidirectional. Muscle aluminium and lead concentration were reduced in response to zinc supplementation. At the same time, serum and hair toxic element concentrations remained relatively stable after 7-day zinc treatment. Zinc asparaginate treatment of 14 days significantly depressed liver and elevated kidney lithium content, whereas a significant zinc-associated decrease was detected in kidney strontium content. Zinc supplementation for 14 days resulted also in multidirectional changes in the content of heart toxic elements. At the same time, significant zinc-associated decrease in muscle lithium and nickel levels was observed. Fourteen-day zinc treatment resulted in significantly increased serum arsenic and tin concentrations, whereas hair trace element content remained relatively stable. Generally, the obtained data

  15. Environmental risk limits for zinc

    Bodar CWM; SEC


    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs refer

  16. Environmental risk limits for zinc

    Bodar CWM; SEC


    Environmental Riks Limits (ERLs) were derived for zinc. ERLs serve as advisory values to set environmental quality standards in the Netherlands. The ERLs for zinc closely follow the outcomes of earlier discussions on zinc within the Water Framework Directive and EC Regulation 793/93. The ERLs ref

  17. Zinc Phosphide Poisoning

    Erdal Doğan


    Full Text Available Zinc phosphide has been used widely as a rodenticide. Upon ingestion, it gets converted to phosphine gas in the body, which is subsequently absorbed into the bloodstream through the stomach and the intestines and gets captured by the liver and the lungs. Phosphine gas produces various metabolic and nonmetabolic toxic effects. Clinical symptoms are circulatory collapse, hypotension, shock symptoms, myocarditis, pericarditis, acute pulmonary edema, and congestive heart failure. In this case presentation, we aim to present the intensive care process and treatment resistance of a patient who ingested zinc phosphide for suicide purposes.

  18. Limitations of experiments performed in artificially made OECD standard soils for predicting cadmium, lead and zinc toxicity towards organisms living in natural soils

    Sydow, Mateusz; Chrzanowski, Lukasz; Cedergreen, Nina


    Development of comparative toxicity potentials of cationic metals in soils for applications in hazard ranking and toxic impact assessment is currently jeopardized by the availability of experimental effect data. To compensate for this deficiency, data retrieved from experiments carried out...... in standardized artificial soils, like OECD soils, could potentially be tapped as a source of effect data. It is, however, unknown whether such data are applicable to natural soils where the variability in pore water concentrations of dissolved base cations is large, and where mass transfer limitations of metal...... uptake can occur. Here, free ion activity models (FIAM) and empirical regression models (ERM, with pH as a predictor) were derived from total metal EC50 values (concentration with effects in 50% of individuals) using speciation for experiments performed in artificial OECD soils measuring ecotoxicological...

  19. Doped zinc oxide microspheres

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.


    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  20. Zinc in multiple sclerosis

    Bredholt, Mikkel; Fredriksen, Jette Lautrup


    In the last 35 years, zinc (Zn) has been examined for its potential role in the disease multiple sclerosis (MS). This review gives an overview of the possible role of Zn in the pathogenesis of MS as well as a meta-analysis of studies having measured Zn in serum or plasma in patients with MS...

  1. Creep Resistant Zinc Alloy

    Frank E. Goodwin


    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  2. Creep Resistant Zinc Alloy

    Frank E. Goodwin


    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  3. Zinc in Multiple Sclerosis

    Bredholt, Mikkel; Frederiksen, Jette Lautrup


    In the last 35 years, zinc (Zn) has been examined for its potential role in the disease multiple sclerosis (MS). This review gives an overview of the possible role of Zn in the pathogenesis of MS as well as a meta-analysis of studies having measured Zn in serum or plasma in patients with MS...

  4. Effect of Nitrogen and Sulfur Oxides on Copper and Zinc Corrosion: An Experiment for Teaching of Corrosion [Efeito dos Óxidos de Nitrogênio e de Enxofre na Corrosão de Cobre e Zinco: Um Experimento para o Ensino da Corrosão

    Ednilson L. S. Vaz; Eduard o N. Codaro; Heloisa A. Acciari


    This paper proposes a didactic experience on the simulation of theatmospheric corrosion of copper and zinc due to the presence of sulfur and nitrogen oxides. Quantitative parameters of corrosion such as gain and loss of mass were determined to assess the variation of the layer thickness of the metal and of the corrosion products. This proposal aims a better understanding of some basic aspects of acid rain formation using fundamental concepts of chemistry such as the reactivity of gases.

  5. Esophageal carcinogenesis in the rat: zinc deficiency and alcohol effects on tumor induction.

    Newberne, P M; Schrager, T F; Broitman, S


    Sprague-Dawley male rats were fed zinc-deficient or supplemented diets for 2 weeks, administered a carcinogenic dose of methylbenzylnitrosamine and observed over 20 or more weeks for effects of superimposing excess zinc or alcohol on development of esophageal tumors. In three separate experiments it was shown that (1) excess zinc offered no protection, (2) switching diets during or after carcinogen exposure pointed toward involvement of zinc in both initiation and promotion, (3) neither ethanol nor 3-methyl butanol alone affected tumorigenesis but the two combined and superimposed on a zinc deficiency resulted in a significant enhancement of neoplasia. In one group of rats fed the zinc-deficient diet only, with no carcinogen, 4 rats developed neoplasms, one of which was malignant. Cell proliferation, an integral component of zinc deficiency, appears to be an important contribution to tumor induction in this model.

  6. First Principles Investigation of Zinc-anode Dissolution in Zinc-air Batteries

    Siahrostami, Samira; Tripkovic, Vladimir; Lundgård, Keld Troen


    the fundamental mechanisms still remain to be fully understood. Here, we present a density functional theory investigation of the zinc dissolution (oxidation) on the anode side in the zinc-air battery. Two models are envisaged, the most stable (0001) surface and a kink surface. The kink model proves to be more...... accurate as it brings about some important features of bulk dissolution and yields results in good agreement with experiments. From the adsorption energies of hydroxyl species and experimental values, we construct a free energy diagram and confirm there is a small overpotential associated with the reaction...

  7. Studies on nanocrystalline zinc coating

    H B Muralidhara; Y Arthoba Naik


    Nano zinc coatings were deposited on mild steel by electrodeposition. The effect of additive on the morphology of crystal size on zinc deposit surface and corrosion properties were investigated. Corrosion tests were performed for dull zinc deposits and bright zinc deposits in aqueous NaCl solution (3.5 wt.%) using electrochemical measurements. The results showed that addition of additive in the deposition process of zinc significantly increased the corrosion resistance. The surface morphology of the zinc deposits was studied by scanning electron microscopy (SEM). The preferred orientation and average size of the zinc electrodeposited particles were obtained by X-ray diffraction analysis. The particles size was also characterized by TEM analysis.

  8. Numerical Simulation of Microwave Sintering of Zinc Oxide

    Fischer, Patrick


    Experiments at the University of Maryland Plasma Physics Laboratory have discovered an unusual temperature response in the form of a "thermal wave" which begins at the center and propagates towards the surface of a zinc oxide sample, when heated in a microwave cavity without the presence of oxygen. This effect is believed to be caused by the irregular temperature dependence of the dielectric properties of zinc oxide, particularly dielectric loss. Two thermocoup...

  9. Zinc finger structure-function in Ikaros

    Marvin; A; Payne


    The zinc finger motif was used as a vehicle for the initial discovery of Ikaros in the context of T-cell differentiation and has been central to all subsequent analyses of Ikaros function.The Ikaros gene is alternately spliced to produce several isoforms that confer diversity of function and consequently have complicated analysis of the function of Ikaros in vivo.Key features of Ikaros in vivo function are associated with six C2H2 zinc fingers;four of which are alternately incorporated in the production of the various Ikaros isoforms.Although no complete structures are available for the Ikaros protein or any of its family members,considerable evidence has accumulated about the structure of zinc fingers and the role that this structure plays in the functions of the Ikaros family of proteins.This review summarizes the structural aspects of Ikaros zinc fingers,individually,and in tandem to provide a structural context for Ikaros function and to provide a structural basis to inform the design of future experiments with Ikaros and its family members.

  10. Interaction Between Yeasts and Zinc

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  11. Zinc homeostasis and neurodegenerative disorders

    Bernadeta eSzewczyk


    Full Text Available Zinc is an essential trace element, whose importance to the function of the central nervous system (CNS is increasingly being appreciated. Alterations in zinc dyshomeostasis has been suggested as a key factor in the development of several neuropsychiatric disorders. In the CNS, zinc occurs in two forms: the first being tightly bound to proteins and, secondly, the free, cytoplasmic or extracellular form found in presynaptic vesicles. Under normal conditions, zinc released from the synaptic vesicles modulates both ionotropic and metabotropic post-synaptic receptors. While under clinical conditions such as traumatic brain injury, stroke or epilepsy, the excess influx of zinc into neurons has been found to result in neurotoxicity and damage to postsynaptic neurons. On the other hand, a growing body of evidence suggests that a deficiency, rather than an excess, of zinc leads to an increased risk for the development of neurological disorders. Indeed, zinc deficiency has been shown to affect neurogenesis and increase neuronal apoptosis, which can lead to learning and memory deficits. Altered zinc homeostasis is also suggested as a risk factor for depression, Alzheimer’s disease, aging and other neurodegenerative disorders. Under normal CNS physiology, homeostatic controls are put in place to avoid the accumulation of excess zinc or its deficiency. This cellular zinc homeostasis results from the actions of a coordinated regulation effected by different proteins involved in the uptake, excretion and intracellular storage/trafficking of zinc. These proteins include membranous transporters (ZnT and Zip and metallothioneins (MT which control intracellular zinc levels. Interestingly, alterations in ZnT and MT have been recently reported in both aging and Alzheimer’s disease. This paper provides an overview of both clinical and experimental evidence that implicates a dysfunction in zinc homeostasis in the pathophysiology of depression, Alzheimer

  12. Pinacol Coupling Reactions Catalyzed by Active Zinc

    Hui ZHAO; Wei DENG; Qing Xiang GUO


    Pinacol coupling reactions catalyzed by active zinc revealed high activity and extensive suitability. The efficiency of the reaction was improved apparently owing to decreasing reductive potential of zinc. In addition, the results indicated that the zinc activity has a direct relation to the coupling reactivity compared to untreated zinc or other general active zinc.

  13. DMPD: Zinc in human health: effect of zinc on immune cells. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 18385818 Zinc in human health: effect of zinc on immune cells. Prasad AS. Mol Med. ...2008 May-Jun;14(5-6):353-7. (.png) (.svg) (.html) (.csml) Show Zinc in human health: effect of zinc on immun...e cells. PubmedID 18385818 Title Zinc in human health: effect of zinc on immune cells. Authors Prasad AS. Pu

  14. Depleted zinc: Properties, application, production.

    Borisevich, V D; Pavlov, A V; Okhotina, I A


    The addition of ZnO, depleted in the Zn-64 isotope, to the water of boiling water nuclear reactors lessens the accumulation of Co-60 on the reactor interior surfaces, reduces radioactive wastes and increases the reactor service-life because of the inhibitory action of zinc on inter-granular stress corrosion cracking. To the same effect depleted zinc in the form of acetate dihydrate is used in pressurized water reactors. Gas centrifuge isotope separation method is applied for production of depleted zinc on the industrial scale. More than 20 years of depleted zinc application history demonstrates its benefits for reduction of NPP personnel radiation exposure and combating construction materials corrosion.

  15. Chloroquine is a zinc ionophore.

    Jing Xue

    Full Text Available Chloroquine is an established antimalarial agent that has been recently tested in clinical trials for its anticancer activity. The favorable effect of chloroquine appears to be due to its ability to sensitize cancerous cells to chemotherapy, radiation therapy, and induce apoptosis. The present study investigated the interaction of zinc ions with chloroquine in a human ovarian cancer cell line (A2780. Chloroquine enhanced zinc uptake by A2780 cells in a concentration-dependent manner, as assayed using a fluorescent zinc probe. This enhancement was attenuated by TPEN, a high affinity metal-binding compound, indicating the specificity of the zinc uptake. Furthermore, addition of copper or iron ions had no effect on chloroquine-induced zinc uptake. Fluorescent microscopic examination of intracellular zinc distribution demonstrated that free zinc ions are more concentrated in the lysosomes after addition of chloroquine, which is consistent with previous reports showing that chloroquine inhibits lysosome function. The combination of chloroquine with zinc enhanced chloroquine's cytotoxicity and induced apoptosis in A2780 cells. Thus chloroquine is a zinc ionophore, a property that may contribute to chloroquine's anticancer activity.

  16. Zinc In CCl4 Toxicity


    Objective To investigate the protective effect of zinc in CCl4-induced hepatotoxicity. Methods Rats were treated with zinc acetate for four days. The zinc doses were 5 mg Zn/kg and 10 mg Zn/kg body weight respectively. Two groups of the zinc acetate-treated rats were later challenged with a single dose of CCl4 (1.5 mL/kg body weight). Results Compared to control animals, the plasma of rats treated with CCl4 showed hyperbilirubinaemia, hypoglycaemia, hypercreatinaemia and hypoproteinaemia. When the animals were however supplemented with zinc in form of zinc acetate before being dosed with CCl4, the 5 mg Zn/kg body weight of zinc acetate reversed the hypoproteinaemia induced by CCl4, whereas the 10mg Zn/kg body weight of zinc acetate reversed the hypoglycaemia, hyperbilimbinaemia and hypercreatinaemia induced by CCl4. Conclusion The 10mug Zn/kg body weight of zinc acetate is more consistent in protecting against CCl4 hepatotoxicity. The possible mechanisms of protection are highlighted.

  17. Castor bean response to zinc fertilization

    Chaves, Lucia Helena Garofalo; Cunha, Tassio Henrique Cavalcanti da Silva; Lima, Vinicius Mota; Cabral, Paulo Cesar Pinto; Barros Junior, Genival; Lacerda, Rogerio Dantas de [Universidade Federal de Campina Grande (UAEAg/UFCG), PB (Brazil). Unidade Academica de Engenharia Agricola


    Zinc is a trace element and it is absolutely essential for the normal healthy growth of plants. This element plays a part of several enzyme systems and other metabolic functions in the plants. Castor beans (Ricinus communis L.) crop is raising attention as an alternative crop for oil and biodiesel production. Despite the mineral fertilization is an important factor for increasing castor beans yield, few researches has been made on this issue, mainly on the use of zinc. In order to evaluate the effects of zinc on growth of this plant an experiment was carried out in a greenhouse, in Campina Grande, Paraiba State, Brazil, from July to December 2007. The substrate for the pot plants was a 6 mm-sieved surface soil (Neossolo Quartzarenico). The experimental design was a completely randomized with three replications. The treatments were composed of five levels of Zn (0; 2; 4; 6 and 8 mg dm{sup -3}), which were applied at the time of planting. One plant of castor bean, cultivar BRS 188 - Paraguacu, was grown per pot after thinning and was irrigated whenever necessary. Data on plant height, number and length of leaves and stem diameter were measured at 21, 34, 77 and 103 days after planting. Under conditions that the experiment was carried out the results showed that the Zn levels used, did not affect the castor bean plants growth. (author)

  18. Zinc injection in German PWR plants

    Stellwag, B. [Framatome ANP GmbH, Erlangen (Germany); Juergensen, M. [Kernkraftwerk Obrigheim GmbH (Germany); Wolter, D. [RWE Power AG, Kraftwerk Biblis (Germany)


    Zinc injection for further reduction of radiation fields was introduced at Unit B of Biblis Nuclear Power Station in September 1996 and at Obrigheim Nuclear Power Station in February 1998. Zinc injection is still being implemented today at these plants. This paper gives an overview of the experience acquired with the method, including the annual refueling outages in the year 2001. The main topic addressed by the paper is the evolution of dose rates at the primary system and work-related doses since introduction of the method. Reductions in high dose rate areas have meanwhile achieved values of 40 to 50%. Annual collective doses per man-hour spent in the controlled access area of the plant as well as personal doses for specific activities are also decreasing. (authors)

  19. Zinc supplementation for tinnitus.

    Person, Osmar C; Puga, Maria Es; da Silva, Edina Mk; Torloni, Maria R


    Tinnitus is the perception of sound without external acoustic stimuli. Patients with severe tinnitus may have physical and psychological complaints and their tinnitus can cause deterioration in their quality of life. At present no specific therapy for tinnitus has been found to be satisfactory in all patients. In recent decades, a number of reports have suggested that oral zinc supplementation may be effective in the management of tinnitus. Since zinc has a role in cochlear physiology and in the synapses of the auditory system, there is a plausible mechanism of action for this treatment. To evaluate the effectiveness and safety of oral zinc supplementation in the management of patients with tinnitus. The Cochrane ENT Information Specialist searched the ENT Trials Register; Central Register of Controlled Trials (CENTRAL 2016, Issue 6); PubMed; EMBASE; CINAHL; Web of Science;; ICTRP and additional sources for published and unpublished trials. The date of the search was 14 July 2016. Randomised controlled trials comparing zinc supplementation versus placebo in adults (18 years and over) with tinnitus. We used the standard methodological procedures recommended by Cochrane. Our primary outcome measures were improvement in tinnitus severity and disability, measured by a validated tinnitus-specific questionnaire, and adverse effects. Secondary outcomes were quality of life, change in socioeconomic impact associated with work, change in anxiety and depression disorders, change in psychoacoustic parameters, change in tinnitus loudness, change in overall severity of tinnitus and change in thresholds on pure tone audiometry. We used GRADE to assess the quality of the evidence for each outcome; this is indicated in italics. We included three trials involving a total of 209 participants. The studies were at moderate to high risk of bias. All included studies had differences in participant selection criteria, length of follow-up and outcome measurement

  20. Inhibitory zinc-enriched terminals in mouse spinal cord

    Danscher, G; Jo, S M; Varea, E;


    The ultrastructural localization of zinc transporter-3, glutamate decarboxylase and zinc ions in zinc-enriched terminals in the mouse spinal cord was studied by zinc transporter-3 and glutamate decarboxylase immunohistochemistry and zinc selenium autometallography, respectively.The distribution...

  1. Zinc absorption by young adults from supplemental zinc citrate is comparable with that from zinc gluconate and higher than from zinc oxide.

    Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnic, Marica; Hurrell, Richard F


    The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with (67)Zn and (70)Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6-71.0) and was not different from that from zinc gluconate with 60.9% (50.6-71.7). Absorption from zinc oxide at 49.9% (40.9-57.7) was significantly lower than from both other supplements (P zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at as NCT01576627.

  2. Effects of Foliar Application of Nano Zinc Chelate and Zinc Sulfate on Zinc Content, Pigments and Photosynthetic Indices of Holy Basil (Ocimum sanctum(

    Zohreh Moghimi pour


    Full Text Available Introduction: Holy basil is a perennial plant belongs to Lamiaceae family. The plant is a perennial and thrives well in the hot and humid climate. Its aerial parts have been in use for food, pharmaceuticals, cosmetics and perfumery industries. Leaves contain 0.5-1.5% essential oil and main oil components are eugenol, methyl eugenol, carvacrol, methyl chavicol and1,8-cineole. A balanced fertilization program with macro and micronutrients is very important in producing high quality yield. Zinc is involved in IAA production, chlorophyll biosynthesis, carbon assimilation, saccharids accumulation, reactive oxygen radicals scavenging and finally carbon utilization in volatile oil biosynthesis. Material and methods: In order to evaluate the effect on zinc foliar application on zinc content of leaves, photosynthetic indices and pigments of holy basil, an experiment was carried out in 2013 at a research farm of Horticultural Science, Shahid Chamran University (31°20'N latitude and 48°40'E longitude and 22.5 m mean sea level, Ahvaz (Iran, a region characterized by semi-dry climate. The experiment was arranged based on Randomized Complete Block Design (RCBD with six treatments and three replications. The treatments were nano zinc chelate (0, 0.5, 1 and 1.5 g.l-1 and zinc sulfate (1 and 1.5 g.l-1 fertilizers. Land preparation includes disking and the formation of raising beds (15cm high and 45cm wide across the top using a press-pan-type bed shaper. Holy basil seeds were sown on two rows on each bed, with 15 cm in-row and 40 cm between-row spacing. The plants were irrigated weekly as needed. Foliar application of zinc fertilizers was done at six-eight leaf stage and were repeated with interval 15 days until full bloom stage. Zinc content, stomata conductance (gs, CO2 under stomata (Ci, transpiration rate (E, net photosynthesis (Pn, light use efficiency (LUE, water use efficiency (WUE and also chlorophyll a, chlorophyll b, chlorophyll a+b and carotenoid

  3. Tissue Plasminogen Activator Alters Intracellular Sequestration of Zinc through Interaction with the Transporter ZIP4

    Emmetsberger, Jaime; Mirrione, Martine M.; Zhou, Chun; Fernandez-Monreal, Monica; Siddiq, Mustafa M.; Ji, Kyungmin; Tsirka, Stella E. (SBU)


    Glutamatergic neurons contain free zinc packaged into neurotransmitter-loaded synaptic vesicles. Upon neuronal activation, the vesicular contents are released into the synaptic space, whereby the zinc modulates activity of postsynaptic neurons though interactions with receptors, transporters and exchangers. However, high extracellular concentrations of zinc trigger seizures and are neurotoxic if substantial amounts of zinc reenter the cells via ion channels and accumulate in the cytoplasm. Tissue plasminogen activator (tPA), a secreted serine protease, is also proepileptic and excitotoxic. However, tPA counters zinc toxicity by promoting zinc import back into the neurons in a sequestered form that is nontoxic. Here, we identify the zinc influx transporter, ZIP4, as the pathway through which tPA mediates the zinc uptake. We show that ZIP4 is upregulated after excitotoxin stimulation of the mouse, male and female, hippocampus. ZIP4 physically interacts with tPA, correlating with an increased intracellular zinc influx and lysosomal sequestration. Changes in prosurvival signals support the idea that this sequestration results in neuroprotection. These experiments identify a mechanism via which neurons use tPA to efficiently neutralize the toxic effects of excessive concentrations of free zinc.

  4. The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri.

    Shahzad, Zaigham; Gosti, Françoise; Frérot, Hélène; Lacombe, Eric; Roosens, Nancy; Saumitou-Laprade, Pierre; Berthomieu, Pierre


    Gene duplication is a major mechanism facilitating adaptation to changing environments. From recent genomic analyses, the acquisition of zinc hypertolerance and hyperaccumulation characters discriminating Arabidopsis halleri from its zinc sensitive/non-accumulator closest relatives Arabidopsis lyrata and Arabidopsis thaliana was proposed to rely on duplication of genes controlling zinc transport or zinc tolerance. Metal Tolerance Protein 1 (MTP1) is one of these genes. It encodes a Zn(2+)/H(+) antiporter involved in cytoplasmic zinc detoxification and thus in zinc tolerance. MTP1 was proposed to be triplicated in A. halleri, while it is present in single copy in A. thaliana and A. lyrata. Two of the three AhMTP1 paralogues were shown to co-segregate with zinc tolerance in a BC1 progeny from a cross between A. halleri and A. lyrata. In this work, the MTP1 family was characterized at both the genomic and functional levels in A. halleri. Five MTP1 paralogues were found to be present in A. halleri, AhMTP1-A1, -A2, -B, -C, and -D. Interestingly, one of the two newly identified AhMTP1 paralogues was not fixed at least in one A. halleri population. All MTP1s were expressed, but transcript accumulation of the paralogues co-segregating with zinc tolerance in the A. halleri X A. lyrata BC1 progeny was markedly higher than that of the other paralogues. All MTP1s displayed the ability to functionally complement a Saccharomyces cerevisiae zinc hypersensitive mutant. However, the paralogue showing the least complementation of the yeast mutant phenotype was one of the paralogues co-segregating with zinc tolerance. From our results, the hypothesis that pentaplication of MTP1 could be a major basis of the zinc tolerance character in A. halleri is strongly counter-balanced by the fact that members of the MTP1 family are likely to experience different evolutionary fates, some of which not concurring to increase zinc tolerance.

  5. Experiment research of technology condition and production practice to silicon content reduction in zinc concentrate%锌精矿降硅工艺条件试验研究与生产实践

    沈卫卫; 王志军; 万玲


    To solve the problem of high content of silicon in the zinc concentrate in Wulagen lead and zinc ore, a small experimental study to reduce the silicon content in zinc concentrate is made. The test result shows that silicate having strong inhibition and dispersion for quartz, feldspar and clay. A proper index of zinc recovery 68.84 %, zinc grade 56.16 %, silicon content 6.45 in zinc concentrate is achieved under the condition of sodium silicate 300 g/t, copper sulphate 150~250 g/t, butyl xanthate 50~80 g/t, the -0.074 mm size-fractionated of grinding fineness accounting for 49.50 %~54.50 %. Production practice shows that the silicon content of zinc concentrate can be reduced from 11.37% to 7.16 %.%针对乌拉根铅锌矿生产现场锌精矿含硅高的问题,进行了降低锌精矿硅含量的小型试验研究.结果表明:水玻璃对石英、长石和黏土等硅酸盐矿物具有较强的抑制和分散作用.在水玻璃、硫酸铜和丁基黄药的用量分别为300 g/t、150~250 g/t和50~80 g/t,磨矿细度为小于0.074 mm 占49.50%~54.50%,浮选浓度为37%~40%条件下,可获得锌回收率68.84%、锌品位56.16%、锌精矿硅含量为6.45%的较好指标.经生产验证:锌精矿硅含量可由11.37%降低到7.16%.

  6. El zinc: oligoelemento esencial

    C. Rubio

    Full Text Available En este artículo se hace una revisión exhaustiva del zinc, elemento metálico esencial para el funcionamiento del organismo. Repasamos y reflejamos aspectos relacionados con la farmacocinética, con las fuentes dietéticas más importantes, así como las IDR (Ingestas Dietéticas Recomendadas del mismo. También se hace mención a los signos y síntomas relacionados tanto con una ingesta deficiente, como con posibles efectos tóxicos, derivados de ingestas excesivas.

  7. Zinc Base Die Castings


    183 B86- 33T SAE N.J .zn Co. B86-33T 1934 SAE N.J.Zn Cc,. Zamak 3N AllO;E Cl C2 Allo~ XXI 221 Zarnak 2 .A.llo;z XXIII .Allol XXIII 202 Zamak 2 O...2 Pb ,Fe, Cd, C:’. 3 special high gra1e ?:inc. • t • • ; -J TABLE II Chemical Composition for Zinc Alloy Nuuber Zam.ak 2 Zamak 3...was alco given regarding the aging of the alloys. The a1loy3 Aupplied were: Zamak 2, Zamak 3, Zamak 3-S (Stabilized to hasten contraction which

  8. Nanostructures of zinc oxide

    Zhong Lin Wang


    Full Text Available Zinc oxide (ZnO is a unique material that exhibits semiconducting, piezoelectric, and pyroelectric multiple properties. Using a solid-vapor phase thermal sublimation technique, nanocombs, nanorings, nanohelixes/nanosprings, nanobows, nanobelts, nanowires, and nanocages of ZnO have been synthesized under specific growth conditions. These unique nanostructures unambiguously demonstrate that ZnO is probably the richest family of nanostructures among all materials, both in structures and properties. The nanostructures could have novel applications in optoelectronics, sensors, transducers, and biomedical science because it is bio-safe.

  9. Roles of zinc and copper in modulating the oxidative refolding of bovine copper, zinc superoxide dismutase.

    Li, Hong-Tao; Jiao, Ming; Chen, Jie; Liang, Yi


    The structural integrity of the ubiquitous enzyme copper, zinc superoxide dismutase (SOD1) depends critically on the correct coordination of zinc and copper. We investigate here the roles of the stoichiometric zinc and copper ions in modulating the oxidative refolding of reduced, denatured bovine erythrocyte SOD1 at physiological pH and room temperature. Fluorescence experiment results showed that the oxidative refolding of the demetalated SOD1 (apo-SOD1) is biphasic, and the addition of stoichiometric Zn(2+) into the refolding buffer remarkably accelerates both the fast phase and the slow phase of the oxidative refolding, compared with without Zn(2+). Aggregation of apo-SOD1 in the presence of stoichiometric Zn(2+) is remarkably slower than that in the absence of Zn(2+). In contrast, the effects of stoichiometric Cu(2+) on both the rates of the oxidative refolding and the aggregation of apo-SOD1 are not remarkable. Experiments of resistance to proteinase K showed that apo-SOD1 forms a conformation with low-level proteinase K resistance during refolding and stoichiometric Cu(2+) has no obvious effect on the resistance to proteinase K. In contrast, when the refolding buffer contains stoichiometric zinc, SOD1 forms a compact conformation with high-level proteinase K resistance during refolding. Our data here demonstrated that stoichiometric zinc plays an important role in the oxidative refolding of low micromolar bovine SOD1 by accelerating the oxidative refolding, suppressing the aggregation during refolding, and helping the protein to form a compact conformation with high protease resistance activity.

  10. The Influence of Nitrogen on the Biological Properties of Soil Contaminated with Zinc.

    Strachel, Rafał; Wyszkowska, Jadwiga; Baćmaga, Małgorzata


    This study analyzed the relationship between nitrogen fertilization and the biological properties of soil contaminated with zinc. The influence of various concentrations of zinc and nitrogen on the microbiological and biochemical activity of soil was investigated. In a laboratory experiment, loamy sand with pHKCl 5.6 was contaminated with zinc (ZnCl2) and fertilized with urea as a source of nitrogen. The activity of acid phosphatase, alkaline phosphatase, urease and β-glucosidase, and microbial counts were determined in soil samples after 2 and 20 weeks of incubation. Zinc generally stimulated hydrolase activity, but the highest zinc dose (1250 mg kg(-1)) led to the inhibition of hydrolases. Nitrogen was not highly effective in neutralizing zinc's negative effect on enzyme activity, but it stimulated the growth of soil-dwelling microorganisms. The changes in soil acidity observed after the addition of urea modified the structure of microbial communities.

  11. A dominant negative heterozygous G87R mutation in the zinc transporter, ZnT-2 (SLC30A2), results in transient neonatal zinc deficiency.

    Lasry, Inbal; Seo, Young Ah; Ityel, Hadas; Shalva, Nechama; Pode-Shakked, Ben; Glaser, Fabian; Berman, Bluma; Berezovsky, Igor; Goncearenco, Alexander; Klar, Aharon; Levy, Jacob; Anikster, Yair; Kelleher, Shannon L; Assaraf, Yehuda G


    Zinc is an essential mineral, and infants are particularly vulnerable to zinc deficiency as they require large amounts of zinc for their normal growth and development. We have recently described the first loss-of-function mutation (H54R) in the zinc transporter ZnT-2 (SLC30A2) in mothers with infants harboring transient neonatal zinc deficiency (TNZD). Here we identified and characterized a novel heterozygous G87R ZnT-2 mutation in two unrelated Ashkenazi Jewish mothers with infants displaying TNZD. Transient transfection of G87R ZnT-2 resulted in endoplasmic reticulum-Golgi retention, whereas the WT transporter properly localized to intracellular secretory vesicles in HC11 and MCF-7 cells. Consequently, G87R ZnT-2 showed decreased stability compared with WT ZnT-2 as revealed by Western blot analysis. Three-dimensional homology modeling based on the crystal structure of YiiP, a close zinc transporter homologue from Escherichia coli, revealed that the basic arginine residue of the mutant G87R points toward the membrane lipid core, suggesting misfolding and possible loss-of-function. Indeed, functional assays including vesicular zinc accumulation, zinc secretion, and cytoplasmic zinc pool assessment revealed markedly impaired zinc transport in G87R ZnT-2 transfectants. Moreover, co-transfection experiments with both mutant and WT transporters revealed a dominant negative effect of G87R ZnT-2 over the WT ZnT-2; this was associated with mislocalization, decreased stability, and loss of zinc transport activity of the WT ZnT-2 due to homodimerization observed upon immunoprecipitation experiments. These findings establish that inactivating ZnT-2 mutations are an underlying basis of TNZD and provide the first evidence for the dominant inheritance of heterozygous ZnT-2 mutations via negative dominance due to homodimer formation.

  12. Danxia Zinc Smelter started construction


    <正>Zinc smelting project of Danxia Smelting Plant has a total investment of about RMB 4 billion, which is designed by Changsha Engineering & Research Institute of Nonferrous Metallurgy and planned to be implemented in three stages. The first stage 100,000 tons of electrolytic zinc improvement work is planned to be completed by the end of 2008. The second and third stages

  13. 硫酸锌溶液脱除钙镁试验及生产应用%Experiment and production application of removal of Ca2+ and Mg2+ from zinc sulphate solution



    Calcium and magnesium contents of one zinc sulphate plant's zinc sulphate product were on the high side and its product's main content was also very low, because zinc oxide ore ,the raw material had high contents of calcium and magnesium, resulting in high content of calcium and magnesium in zinc sulphate solution during the sulfuric acid leaching process. Therefore, the product quality was affected.The removal of Ca2+ and Mg2+ from aqueus zinc sulphate solution with hydrofluoric acid precipitation process was experimentally studied and the production application was also made.Using hydrofluoric acid as precipitant at low temperature and high pH conditions ,Ca2+ and Mg2+ could be removed effectively from the solution.Moreover, the accumulation of fluorine ions in the solution could also be controlled.Thus the product's quality could be improved.%某硫酸锌生产厂,由于原料氧化锌矿中钙镁含量较高,用硫酸浸出后的硫酸锌溶液中钙镁含量也较高,导致生产的硫酸锌产品钙镁含量偏高,主含量偏低,影响了硫酸锌产品质量.对氢氟酸沉淀法脱除硫酸锌溶液中的钙镁离子进行了试验研究及生产应用.用氢氟酸作为沉淀剂,在较低温度和较高pH条件下可有效脱除硫酸锌溶液中的钙镁离子,并能控制氟在溶液中的累积,使制得的硫酸锌产品质量得以提高.

  14. Exploring Faraday's Law of Electrolysis Using Zinc-Air Batteries with Current Regulative Diodes

    Kamata, Masahiro; Paku, Miei


    Current regulative diodes (CRDs) are applied to develop new educational experiments on Faraday's law by using a zinc-air battery (PR2330) and a resistor to discharge it. The results concluded that the combination of zinc-air batteries and the CRD array is simpler, less expensive, and quantitative and gives accurate data.

  15. Nano zinc oxide-sodium alginate antibacterial cellulose fibres.

    Varaprasad, Kokkarachedu; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Seo, Jongchul


    In the present study, antibacterial cellulose fibres were successfully fabricated by a simple and cost-effective procedure by utilizing nano zinc oxide. The possible nano zinc oxide was successfully synthesized by precipitation technique and then impregnated effectively over cellulose fibres through sodium alginate matrix. XRD analysis revealed the 'rod-like' shape alignment of zinc oxide with an interplanar d-spacing of 0.246nm corresponding to the (101) planes of the hexagonal wurtzite structure. TEM analysis confirmed the nano dimension of the synthesized zinc oxide nanoparticles. The presence of nano zinc oxide over cellulose fibres was evident from the SEM-EDS experiments. FTIR and TGA studies exhibited their effective bonding interaction. The tensile stress-strain curves data indicated the feasibility of the fabricated fibres for longer duration utility without any significant damage or breakage. The antibacterial studies against Escherichia coli revealed the excellent bacterial devastation property. Further, it was observed that when all the parameters remained constant, the variation of sodium alginate concentration showed impact in devastating the E. coli. In overall, the fabricated nano zinc oxide-sodium alginate cellulose fibres can be effectively utilized as antibacterial fibres for biomedical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Physical facets of ultrasonic cavitational synthesis of zinc ferrite particles.

    Reddy, Bhaskar Rao; Sivasankar, Thirugnanasambandam; Sivakumar, Manickam; Moholkar, Vijayanand S


    This paper addresses the physical features of the ultrasonic cavitational synthesis of zinc ferrite particles and tries to establish the relationship between cavitation physics and sonochemistry of the zinc ferrite synthesis. A dual approach of coupling experimental results with simulations of radial motion of cavitation bubbles has been adopted. The precursors for the zinc ferrite, viz. ZnO and Fe(3)O(4) are produced in situ by the hydrolysis of Zn and Fe(II) acetates stimulated by (*)OH radicals produced from the transient collapse of the cavitation bubbles. Experiments performed under different conditions create significant variation in the production of (*)OH radicals, and hence, the rate of acetate hydrolysis. Correlation of the results of experiments and simulations sheds light on the important facets of the physical mechanism of ultrasonic cavitational zinc ferrite synthesis. It is revealed that too much or too little rate of acetate hydrolysis results in smaller particle size of zinc ferrite. The first effect of a higher rate of hydrolysis leads to excessively large growth of particles, due to which they become susceptible to the disruptive action of cavitation bubbles. Whereas, the second effect of too small rate of hydrolysis of Zn and Fe(II) acetates restricts the growth of particles. It has been observed that the initial reactant concentration does not influence the mean particle size or the size distribution of zinc ferrite particles. The present investigation clearly confirms that the rate-controlling step of zinc ferrite synthesis through ultrasonic cavitational route is the rate of formation of (*)OH radicals from cavitation bubbles.

  17. 21 CFR 73.1991 - Zinc oxide.


    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Zinc oxide. 73.1991 Section 73.1991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1991 Zinc oxide. (a) Identity. (1) The color additive zinc...). It is principally composed of Zn. (2) Color additive mixtures for drug use made with zinc oxide...

  18. Zinc-air cell with KOH-treated agar layer between electrode and electrolyte containing hydroponics gel

    Otham, R. [International Islamic University, Kuala Lumpur (Malaysia); Yahaya, A. H. [University of Malaya, Dept. of Chemistry, Kuala Lumpur (Malaysia); Arof, A. K. [University of Malaya, Dept. of Physics, Kuala Lumpur (Malaysia)


    Zinc-air electrochemical power sources possess the highest density compared to other zinc anode batteries, due their free and unlimited supply from the ambient air. In this experiment zinc-air cells have been fabricated employing hydroponics gel as an alternative alkaline electrolyte gelling agent. Thin KOH-treated agar layer was applied between the electrode-electrolyte interfaces which produced significant enhancement of the cells' capacities, indicating that the application of thin agar layer will improve the electrode-gelled electrolyte interfaces. Promising results have been achieved with porous zinc anode prepared from dried zinc-graphite-gelatinized agar paste; e g. a zinc-air cell employing a porous zinc anode has demonstrated a capacity of 1470 mAh rated at 0.1 A continuous discharge. 32 refs., 9 figs.

  19. Zinc-bromine battery development

    Richards, Lew; Vanschalwijk, Walter; Albert, George; Tarjanyi, Mike; Leo, Anthony; Lott, Stephen


    This report describes development activities on the zinc-bromine battery system conducted by Energy Research Corporation (ERC). The project was a cost-shared program supported by the U.S. Department of Energy and managed through Sandia. The project began in September 1985 and ran through January 1990. The zinc-bromine battery has been identified as a promising alternative to conventional energy storage options for many applications. The low cost of the battery reactants and the potential for long life make the system an attractive candidate for bulk energy storage applications, such as utility load leveling. The battery stores energy by the electrolysis of an aqueous zinc bromide salt to zinc metal and dissolved bromine. Zinc is plated as a layer on the electrode surface while bromine is dissolved in the electrolyte and carried out of the stack. The bromine is then extracted from the electrolyte with an organic complexing agent in the positive electrolyte storage tank. On discharge the zinc and bromine are consumed, regenerating the zinc bromide salt.

  20. Zinc Oxide Nanoparticle Photodetector

    Sheng-Po Chang


    Full Text Available A zinc oxide (ZnO nanoparticle photodetector was fabricated using a simple method. Under a 5 V applied bias, its dark current and photocurrent were 1.98×10-8 and 9.42×10-7 A, respectively. In other words, a photocurrent-to-dark-current contrast ratio of 48 was obtained. Under incident light at a wavelength of 375 nm and a 5 V applied bias, the detector’s measured responsivity was 3.75 A/W. The transient time constants measured during the turn-ON and turn-OFF states were τON=204 s and τOFF=486 s, respectively.

  1. Zinc and cadmium monosalicylates

    Kharitonov, Yu.Ya.; Tujebakhova, Z.K. (Moskovskij Khimiko-Tekhnologicheskij Inst. (USSR))


    Zinc and cadmium monosalicylates of the composition MSal, where M-Zn or Cd, Sal - twice deprotonated residue of salicylic acid O-HOC/sub 6/H/sub 4/COOH (H/sub 2/Sal), are singled out and characterized. When studying thermograms, thermogravigrams, IR absorption spectra, roentgenograms of cadmium salicylate compounds (Cd(OC/sub 6/H/sub 4/COO) and products of their thermal transformations, the processes of thermal decomposition of the compounds have been characterized. The process of cadmium monosalicylate decomposition takes place in one stage. Complete loss of salicylate acido group occurs in the range of 320-460 deg. At this decomposition stage cadmium oxide is formed. A supposition is made that cadmium complex has tetrahedral configuration, at that, each salicylate group plays the role of tetradentate-bridge ligand. The compound evidently has a polymer structure.

  2. Use of serum zinc concentration as an indicator of population zinc status.

    Hess, Sonja Y; Peerson, Janet M; King, Janet C; Brown, Kenneth H


    Assessing the prevalence and severity of zinc deficiency in populations is critical to determine the need for and appropriate targeting of zinc intervention programs and to assess their effectiveness for improving the health and well-being of high-risk populations. However, there is very little information on the zinc status of populations worldwide due to the lack of consensus on appropriate biochemical indicators of zinc status. The objective of this review was to evaluate the use of serum zinc concentration as an indicator of population zinc status. We have reviewed the response of serum zinc concentration to dietary zinc restriction and zinc supplementation. In addition, we completed pooled analyses of nine zinc intervention trials in young children to assess the relations between serum zinc concentration of individuals before treatment and their responses to zinc supplementation. Also, in updated combined analyses of previously published data, we investigated the relation between the mean initial serum zinc concentration of a study population and their mean growth responses to zinc supplementation in randomized intervention trials among children. The results from depletion/repletion studies indicate that serum zinc concentrations respond appreciably to severe dietary zinc restriction, although there is considerable interindividual variation in these responses. There is also clear evidence that both individual and population mean serum zinc concentrations increase consistently during zinc supplementation, regardless of the initial level of serum zinc concentration. By contrast, an individual's serum zinc concentration does not reliably predict that person's response to zinc supplementation. Serum zinc concentration can be considered a useful biomarker of a population's risk of zinc deficiency and response to zinc interventions, although it may not be a reliable indicator of individual zinc status.

  3. Mononuclear Phenolate Diamine Zinc Hydride Complexes and Their Reactions With CO2.

    Brown, Neil J; Harris, Jonathon E; Yin, Xinning; Silverwood, Ian; White, Andrew J P; Kazarian, Sergei G; Hellgardt, Klaus; Shaffer, Milo S P; Williams, Charlotte K


    The synthesis, characterization, and zinc coordination chemistry of the three proligands 2-tert-butyl-4-[tert-butyl (1)/methoxy (2)/nitro (3)]-6-{[(2'-dimethylaminoethyl)methylamino]methyl}phenol are described. Each of the ligands was reacted with diethylzinc to yield zinc ethyl complexes 4-6; these complexes were subsequently reacted with phenylsilanol to yield zinc siloxide complexes 7-9. Finally, the zinc siloxide complexes were reacted with phenylsilane to produce the three new zinc hydride complexes 10-12. The new complexes 4-12 have been fully characterized by NMR spectroscopy, mass spectrometry, and elemental analyses. The structures of the zinc hydride complexes have been probed using VT-NMR spectroscopy and X-ray diffraction experiments. These data indicate that the complexes exhibit mononuclear structures at 298 K, both in the solid state and in solution (d8-toluene). At 203 K, the NMR signals broaden, consistent with an equilibrium between the mononuclear and dinuclear bis(μ-hydrido) complexes. All three zinc hydride complexes react rapidly and quantitatively with carbon dioxide, at 298 K and 1 bar of pressure over 20 min, to form the new zinc formate complexes 13-15. The zinc formate complexes have been analyzed by NMR spectroscopy and VT-NMR studies, which reveal a temperature-dependent monomer-dimer equilibrium that is dominated by the mononuclear species at 298 K.

  4. [Evaluation of zinc deficiency tolerance in different kinds of apple rootstocks].

    Fan, Xiao-dan; Liu, Fei; Wang, Yan-an; Fu, Chun-xia; Yan, Yu-jing; Sha, Guang-li; Shu, Huai-rui


    The objective of this study was to screen and evaluate the zinc deficiency tolerance among eight apple rootstocks, i.e., Malus baccata, M. rockii, M. xiaojinensis, M. sikkimensis, M. sieversii, M. robusta, M. hupehensis and Malus 'Flame'. The experiment took these 8 kinds of root-stocks as the research materials to observe and analyze the index of the rootstock's height, dry biomass, root architecture and zinc concentration, and with help of the fuzzy membership function to work out a comprehensive evaluation on their zinc deficiency tolerance. The result showed that several obvious zinc deficiency symptoms were observed in three kinds of rootstocks (M. rockii, M. sikkimensis and M. sieversii), such as dwarfed plant and newborn small leaves, while such symptoms were not obvious in M. xiaojinensis and M. 'Flame'. The plant biomass, height and zinc accumulation of aerial part greatly decreased under zinc deficiency stress, while smaller reduction was observed in M. xiaojinensis than in other rootstocks. M. xiaojinensis and M. baccata had higher zinc concentrations in leaves than others. According to the fuzzy membership function and cluster analysis, the resistance of the eight apple rootstocks to zinc deficiency was ranked: M. xiaojinensis was the highest one; M. 'Flame' was the second; M. baccata, M. sikkimensis, M. robusta and M. hupehensis were rather weaker; M. rockii and M. sieversii demonstrated the highest sensitivity to zinc deficiency.

  5. Zinc tolerance and zinc removal ability of living and dried biomass of Desmodesmus communis.

    Novák, Zoltán; Jánószky, Mihály; B-Béres, Viktória; Nagy, Sándor Alex; Bácsi, István


    Effects of zinc on growth, cell morphology, oxidative stress, and zinc removal ability of the common phytoplankton species Desmodesmus communis were investigated at a concentration range of 0.25-160 mg L(-1) zinc. Cell densities and chlorophyll content decreased in treated cultures, changes in coenobia morphology and elevated lipid peroxidation levels appeared above 2.5 mg L(-1) zinc. The most effective zinc removal was observed at 5 mg L(-1) zinc concentration, while maximal amount of removed zinc appeared in 15 mg L(-1) zinc treated culture. Removed zinc is mainly bound on the cell surface. Dead biomass adsorbed more zinc than living biomass relative to unit of dry mass, but living biomass was more effective, relative to initial zinc content. This study comprehensively examines the zinc tolerance and removal ability of D. communis and demonstrates, in comparison with published literature, that these characteristics of different isolates of the same species can vary within a wide range.

  6. Zinc toxicology following particulate inhalation

    Cooper Ross


    Full Text Available The current mini-review describes the toxic effects of zinc inhalation principally in the workplace and associated complications with breathing and respiration. The International Classification of Functioning, Disability and Health Criteria were used to specifically select articles. Most of the commercial production of zinc involves the galvanizing of iron and the manufacture of brass. The recommended daily allowance for adults is 15 mg zinc/day. Metal fume fever associated with inhalation of fumes of ZnO is characterized by fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste and salivation. ZnCl 2 inhalation results in edema in the alveolar surface and the protein therein the lavage fluid is elevated. Particular pathological changes associated with zinc intoxication include: pale mucous membranes; jaundice; numerous Heinz bodies; and marked anemia. Adequate ambient air monitors for permissible exposure limits, excellent ventilation and extraction systems, and approved respirators are all important in providing adequate protection.

  7. Prevalence of Zinc Deficiency by “ Zinc Taste Test” in Pre School Children in Yazd.

    Gh Maleki


    Full Text Available Introduction: Zinc deficiency is a health problem in many communities, especially among children because of growth spurt. Zinc deficiency can cause;growth limitation, delay in sexuel maturity, behavior disorders and abnormalities of immune system,susceptibility to respiratory and gasterointestinal infections and impairment of taste and smell perception. Material and Method: One of the methods of assessment the zinc defeciency is “ Zinc taste test” using zinc sulfate solution 0.1% , this test performed used to assess the zinc deficiency among preshool childeren in Yazd. The results were evaluated with measurments of weight,height and demographic data. 400 preschool children were selected by multi stage random sampling.Having good taste perception of zinc sulfate 0.1% was used as impaired taste test ( zinc deficiency and having bad taste perception as normal zinc level. Results: Regarding to zinc taste test 73.9% of study group had zinc deficiency (77.6%femal, 69.7% male There were no significant relation between zinc deficiency and measurment of weight and height,but there was higher prevalence of zinc deficiency in children who were below the 5th percentile in height and weight by age. Conclusion: 70% of preschool children in yazd had zinc deficiency assessed by “ zinc taste test”,31% of adolecents in Tehran have had zinc deficiency based on plasma , erythrocyte and hairindex. There is no significant relation between zinc deficiency and antropometric and demographic data, in this study and the study that had been done on adolescents in Tehran.Considering the prevalnce of zinc deficiency with “ Zinc taste test” ;it seems more accurate studies need to be done like zinc measurment in WBC,RBC and Platelets and zinc taste test at the same time,if correlation coefficients between zinc taste test and other tests were very strong , we can used zinc tase test in the different age for assessment of zinc body.

  8. Morphology study of electrodeposited zinc from zinc sulfate solutions as anode for zinc-air and zinc-carbon batteries

    Nurhaswani Alias; Ahmad Azmin Mohamad


    The morphology of Zinc (Zn) deposits was investigated as anode for aqueous batteries. The Zn was deposited from zinc sulfate solution in direct current conditions on a copper surface at different current densities. The morphology characterization of Zn deposits was performed via field emission scanning electron microscopy. The Zn deposits transformed from a dense and compact structure to dendritic form with increasing current density. The electrodeposition of Zn with a current density of 0.02...

  9. Characteristic Studies of Micron Zinc Particle Hydrolysis in a Fixed Bed Reactor

    Lv Ming


    Full Text Available Zinc fuel is considered as a kind of promising energy sources for marine propeller. As one of the key steps for zinc marine energy power system, zinc hydrolysis process had been studied experimentally in a fixed bed reactor. In this study, we focus on the characteristics of micron zinc particle hydrolysis. The experimental results suggested that the steam inner diffusion is the controlling step of accumulative zinc particles hydrolysis reaction at a relative lower temperature and a relative higher water partial pressure. In other conditions, the chemical reaction kinetics was the controlling step. And two kinds of chemical reaction kinetics appeared in experiments: the surface reaction and the gas-gas reaction. The latter one occurs usually for larger zinc particles and high reaction temperature. Temperature seems to be one of the most important parameters for the dividing of different reaction mechanisms. Several parameters of the hydrolysis process including heating rate, water partial pressure, the particle size and temperature were also studied in this paper. Results show that the initial reaction temperature of zinc hydrolysis in fixed bed is about 410°C. And the initial reaction temperature increases as the heating rate increases and as the water partial pressure decreases. The total hydrogen yield increases as the heating rate decreases, as the water partial pressure increases, as the zinc particle size decreases, and as the reaction temperature increases. A hydrogen yield of more than 81.5% was obtained in the fixed bed experiments.

  10. Effect of Zinc Sulfate on Quantitative and Qualitative Characteristics of Corn (Zea Mays) in Drought Stress

    F. Vazin


    .... To study the effect of drought stress and zinc spray on the yield and yield components of corn, an experiment was carried out during the crop seasons of 2010 and 2011 on Research Farm, Islamic Azad...

  11. Zinc Concentration in Rice (Oryza sativa L.) Grains and Allocation in Plants as Affected by Different Zinc Fertilization Strategies

    Yin, Hong Juan; Gao, Xiao Peng; Stomph, Tjeerd Jan; Li, Lu Jiu; Zhang, Fu Suo; Zou, Chun Qin


    Concern over the food chain transfer of zinc (Zn) is increasing because of its importance in human health. A field experiment was conducted on a low Zn soil to determine the effect of different Zn fertilization strategies on grain Zn concentration and Zn allocation in different plant tissues of r

  12. [Role of zinc in type 2 diabetes].

    Tamaki, Motoyuki; Fujitani, Yoshio


    Pancreatic β cells contain the highest amount of zinc among cells within the human body, and hence, the relationship between zinc and diabetes has been of great interest. To date, many studies of zinc and diabetes have been reported, including studies demonstrating that diabetic patients and mice have a decreased amount of zinc in the pancreas. Zinc may counteract the deleterious effects of oxidative stress, which contributes to reduced insulin resistance, and may also protect pancreatic β cells from glucolipotoxicity. Recently, we have shown that SLC30A8/zinc transporter 8, which is a transporter expressed on the surface of insulin granules, plays a key role in zinc transport into insulin granules and in the regulation of hepatic insulin clearance. Here, we review the role of zinc in whole-body maintenance and the latest information on the relationship between zinc and diabetes.

  13. Adsorption of zinc on natural sediment of Tafna River (Algeria)

    Dali-youcef, N. [Universite des Sciences et Technologies de Lille, Laboratoire de Chimie Analytique et Marine, UMR CNRS 8110 PBDS and FR 1818, Bat. C8 2eme etage, 59655 Villeneuve d' Ascq Cedex (France)]. E-mail:; Ouddane, B. [Universite des Sciences et Technologies de Lille, Laboratoire de Chimie Analytique et Marine, UMR CNRS 8110 PBDS and FR 1818, Bat. C8 2eme etage, 59655 Villeneuve d' Ascq Cedex (France); Derriche, Z. [Universite des Sciences et Technologies de d' Oran, Laboratoire de Physico-chimie des Materiaux, El M' Naouar, BP 1505, 31000 Oran (Algeria)


    The environmental impact of metal additions to sediment depends on its sorption ability. The paper presents a study of zinc adsorption using the experiment data on natural sediment of Tafna River in northwest of Algeria. The effect of various operating variables, namely initial concentration, mass of sediment, and contact time, have been studied. The optimum contact time needed to reach equilibrium is of the order of 30 min and is independent of initial concentration and mass of zinc ions. The extent of adsorption increases with increase of concentration, and with decrease of adsorbent mass. The content of carbonate in sediment increases the adsorption indicating the active support material towards zinc ions. A batch sorption model, which assumes the pseudo-second-order mechanism, is developed to predict the rate constant of the sorption, the equilibrium sorption capacity and the initial sorption rate with the effect of initial zinc ion concentration and sediment dose. Various thermodynamic parameters, such as {delta}G{sup o}, {delta}H{sup o} and {delta}S{sup o}, have been calculated. The thermodynamics of zinc ion/sediment system indicates spontaneous, endothermic and randomness nature of the process.

  14. The Clinical Experience of Treating Impetigo With Zinc Chloride Paste and Clear Heat Soup%氯锌糊剂合清暑汤治疗黄水疮的临床体会



    Objective Analysis of zinc chloride paste together Qingshu soup for clinical treatment of impetigo. Methods Observation group and the control group of patients admitted to hospital immediately after the disease was observed in two different methods were used to clear the condition after treatment, using only zinc chloride paste treating 54 cases in the control group, the treatment was observed in the group of patients is the integrated use of chlorine Qingshu soup with zinc paste. Results The total effective rate of observation group 98.15%in the control group was 87.04%, significantly higher than the total efficiency of the observation group, there was a significant difference (P<0.05) group.ConclusionIn the treatment of impetigo in combination with zinc chloride paste Qingshu soup, can achieve significant clinical efficacy.%目的:分析氯锌糊剂合清暑汤对于黄水疮的临床治疗效果。方法观察组与对照组病例入院后立即对病情进行观察,明确病情后分别采用两种不同的方法进行治疗,治疗对照组的54例时仅采用了氯锌糊剂,而在治疗观察组病例时则是综合运用了清暑汤与氯锌糊剂。结果观察组的总有效率为98.15%,对照组为87.04%,观察组的总有效率明显高于对照组,两组存在显著性差异(P<0.05)。结论在治疗黄水疮时联合应用氯锌糊剂与清暑汤,能够获得显著的临床疗效。

  15. Laboratory Study on the Removal of Fluorine from High Fluorine Bearing Zinc Oxide Ore

    Yaozhong LAN; Liaoyuan YE; Rose W. Smith


    An ever increasing demand for zinc has resulted in worldwide efforts to exploit complex and lean grade reserves of zinc oxide ore. In this study experiments were done on zinc recovery from high-fluorine bearing zinc oxide ore. First the effect of different variables on fluorine removal was investigated. Optimum experimental conditions occurred when the temperature was 1173 K, roasting time was 90 min and air flow was at a velocity of 5 m/min, the fluorine removal from the samples reached over 93%. The results obtained indicate that fluorine removal is not enhanced by adding diluted sulfuric acid or water as a binder. Second the roasted materials were leached with a diluted sulfuric acid,neutralized, flocculated and filtrated. The residual fluorine content in the leached solutions was less than 38 mg/L,which satisfies the requirement of fluorine content in the leached solutions for the production of electrolytic zinc.

  16. Volatilization of zinc and lead in direct recycling of stainless steel making dust

    PENG Ji(彭及); PENG Bing(彭兵); YU Di(余笛); TANG Mo-tang(唐谟堂); J.Lobel; J.A.Kozinski


    The volatilization of zinc and lead from the stainless steel making dust pellets in the direct recycling procedure was conducted by using a thermo-gravimetric analyzer and a Tamman furnace in the nitrogen atmosphere respectively. The results show that the temperature has a significant effect on the volatilization rates of zinc and lead,and the carbon content in the pellets has no effect on the volatilization process. The volatilization of zinc is controlled by the chemical reaction between zinc oxide and carbon monoxide, while the volatilization of lead is controlled by the evaporation front liquid phase to the atmosphere. The volatilization of zinc and lead mainly happen at about 1 000 ℃according to non-isothermal experiment.

  17. Evaluation of Application Methods Efficiency of Zinc and Iron for Canola(Brassica napus L.

    Ahmad BYBORDI


    Full Text Available In order to evaluation of application method efficiency of zinc and iron microelements in canola, an experiment was conducted in the Agricultural Research Station of Eastern Azerbaijan province in 2008. The experimental design was a RCBD with eight treatments (F1: control, F2: iron, F3: zinc, F4: iron + zinc in the form of soil utility, F5: iron, F6: zinc, F7: iron+ zinc in the form of solution foliar application, and F8: iron + zinc in the form of soil utility and foliar application. Analysis of variance showed that there were significant differences among treatments on given traits, antioxidant enzymes activity, fatty acids percentage, plant height, seed weight to capitulum weight ratio, protein percentage, oil percentage, oil yield, 1000 seed weight, seed yield, nitrogen, phosphorous and potassium percentage of leaves, zinc and iron content of leaves and capitulum diameters. The highest seed yield, oil yield, oil percentage, 1000 seed weight, seed weight to capitulum weight ratio and protein percentage were obtained from the soil and foliar application of iron + zinc treatments (F8. Also, the highest amounts of nitrogen, phosphorous and potassium concentration in leaves were achieved from control treatment which was an indication of non-efficiency of iron and zinc on the absorption rate of these substances in the leaves. The correlation between effective traits on the seed yield, such as, capitalism diameter, number of seed rows in capitulum, seed weight to capitulum weight ratio and 1000 seed weight were positively significant. In general, foliar and soil application of zinc and iron had the highest efficiency in aspect of seed production. The comparison of the various methods of fertilization showed that foliar application was more effective than soil application. Also, micronutrient foliar application increased concentration of elements, especially zinc and iron. Antioxidant enzymes activity was different in response to treatments also the

  18. Physiological concentrations of zinc reduce taurine-activated GlyR responses to drugs of abuse

    Kirson, Dean; Cornelison, Garrett L.; Philpo, Ashley E.; Todorovic, Jelena; Mihic, S. John


    Taurine is an endogenous ligand acting on glycine receptors in many brain regions, including the hippocampus, prefrontal cortex, and nucleus accumbens (nAcc). These areas also contain low concentrations of zinc, which is known to potentiate glycine receptor responses. Despite an increasing awareness of the role of the glycine receptor in the rewarding properties of drugs of abuse, the possible interactions of these compounds with zinc has not been thoroughly addressed. Two-electrode voltage-clamp electrophysiological experiments were performed on α1, α2 α1β and a2β glycine receptors expressed in Xenopus laevis oocytes. The effects of zinc alone, and zinc in combination with other positive modulators on the glycine receptor, were investigated when activated by the full agonist glycine versus the partial agonist taurine. Low concentrations of zinc enhanced responses of maximally-effective concentrations of taurine but not glycine. Likewise, chelation of zinc from buffers decreased responses of taurine- but not glycine-mediated currents. Potentiating concentrations of zinc decreased ethanol, isoflurane, and toluene enhancement of maximal taurine currents with no effects on maximal glycine currents. Our findings suggest that the concurrence of high concentrations of taurine and low concentrations of zinc attenuate the effects of additional modulators on the glycine receptor, and that these conditions are more representative of in vivo functioning than effects seen when these modulators are applied in isolation. PMID:23973295

  19. Physiological concentrations of zinc reduce taurine-activated GlyR responses to drugs of abuse.

    Kirson, Dean; Cornelison, Garrett L; Philpo, Ashley E; Todorovic, Jelena; Mihic, S John


    Taurine is an endogenous ligand acting on glycine receptors in many brain regions, including the hippocampus, prefrontal cortex, and nucleus accumbens (nAcc). These areas also contain low concentrations of zinc, which is known to potentiate glycine receptor responses. Despite an increasing awareness of the role of the glycine receptor in the rewarding properties of drugs of abuse, the possible interactions of these compounds with zinc has not been thoroughly addressed. Two-electrode voltage-clamp electrophysiological experiments were performed on α1, α2 α1β and α2β glycine receptors expressed in Xenopus laevis oocytes. The effects of zinc alone, and zinc in combination with other positive modulators on the glycine receptor, were investigated when activated by the full agonist glycine versus the partial agonist taurine. Low concentrations of zinc enhanced responses of maximally-effective concentrations of taurine but not glycine. Likewise, chelation of zinc from buffers decreased responses of taurine- but not glycine-mediated currents. Potentiating concentrations of zinc decreased ethanol, isoflurane, and toluene enhancement of maximal taurine currents with no effects on maximal glycine currents. Our findings suggest that the concurrence of high concentrations of taurine and low concentrations of zinc attenuate the effects of additional modulators on the glycine receptor, and that these conditions are more representative of in vivo functioning than effects seen when these modulators are applied in isolation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Bioavailability of iron, zinc, folic acid, and vitamin A from fortified maize.

    Moretti, Diego; Biebinger, Ralf; Bruins, Maaike J; Hoeft, Birgit; Kraemer, Klaus


    Several strategies appear suitable to improve iron and zinc bioavailability from fortified maize, and fortification per se will increase the intake of bioavailable iron and zinc. Corn masa flour or whole maize should be fortified with sodium iron ethylenediaminetetraacetate (NaFeEDTA), ferrous fumarate, or ferrous sulfate, and degermed corn flour should be fortified with ferrous sulfate or ferrous fumarate. The choice of zinc fortificant appears to have a limited impact on zinc bioavailability. Phytic acid is a major inhibitor of both iron and zinc absorption. Degermination at the mill will reduce phytic acid content, and degermed maize appears to be a suitable vehicle for iron and zinc fortification. Enzymatic phytate degradation may be a suitable home-based technique to enhance the bioavailability of iron and zinc from fortified maize. Bioavailability experiments with low phytic acid-containing maize varieties have suggested an improved zinc bioavailability compared to wild-type counterparts. The bioavailability of folic acid from maize porridge was reported to be slightly higher than from baked wheat bread. The bioavailability of vitamin A provided as encapsulated retinyl esters is generally high and is typically not strongly influenced by the food matrix, but has not been fully investigated in maize.

  1. Zinc Plating Industry Drives Zinc Consumption by Power Grids, Railways and Highways


    <正>On the afternoon of June 30, at the Chengdu Lead and Zinc Summit, more than 150 partici-pants voted for the product they felt drives zinc consumption the most. 48% went for zinc plat-ing products, 16% voted for zinc oxide,

  2. High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling.

    Yang Yang

    Full Text Available Zinc ions highly concentrate in hippocampus and play a key role in modulating spatial learning and memory. At a time when dietary fortification and supplementation of zinc have increased the zinc consuming level especially in the youth, the toxicity of zinc overdose on brain function was underestimated. In the present study, weaning ICR mice were given water supplemented with 15 ppm Zn (low dose, 60 ppm Zn (high dose or normal lab water for 3 months, the behavior and brain zinc homeostasis were tested. Mice fed high dose of zinc showed hippocampus-dependent memory impairment. Unexpectedly, zinc deficiency, but not zinc overload was observed in hippocampus, especially in the mossy fiber-CA3 pyramid synapse. The expression levels of learning and memory related receptors and synaptic proteins such as NMDA-NR2A, NR2B, AMPA-GluR1, PSD-93 and PSD-95 were significantly decreased in hippocampus, with significant loss of dendritic spines. In keeping with these findings, high dose intake of zinc resulted in decreased hippocampal BDNF level and TrkB neurotrophic signaling. At last, increasing the brain zinc level directly by brain zinc injection induced BDNF expression, which was reversed by zinc chelating in vivo. These results indicate that zinc plays an important role in hippocampus-dependent learning and memory and BDNF expression, high dose supplementation of zinc induces specific zinc deficiency in hippocampus, which further impair learning and memory due to decreased availability of synaptic zinc and BDNF deficit.

  3. High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling.

    Yang, Yang; Jing, Xiao-Peng; Zhang, Shou-Peng; Gu, Run-Xia; Tang, Fang-Xu; Wang, Xiu-Lian; Xiong, Yan; Qiu, Mei; Sun, Xu-Ying; Ke, Dan; Wang, Jian-Zhi; Liu, Rong


    Zinc ions highly concentrate in hippocampus and play a key role in modulating spatial learning and memory. At a time when dietary fortification and supplementation of zinc have increased the zinc consuming level especially in the youth, the toxicity of zinc overdose on brain function was underestimated. In the present study, weaning ICR mice were given water supplemented with 15 ppm Zn (low dose), 60 ppm Zn (high dose) or normal lab water for 3 months, the behavior and brain zinc homeostasis were tested. Mice fed high dose of zinc showed hippocampus-dependent memory impairment. Unexpectedly, zinc deficiency, but not zinc overload was observed in hippocampus, especially in the mossy fiber-CA3 pyramid synapse. The expression levels of learning and memory related receptors and synaptic proteins such as NMDA-NR2A, NR2B, AMPA-GluR1, PSD-93 and PSD-95 were significantly decreased in hippocampus, with significant loss of dendritic spines. In keeping with these findings, high dose intake of zinc resulted in decreased hippocampal BDNF level and TrkB neurotrophic signaling. At last, increasing the brain zinc level directly by brain zinc injection induced BDNF expression, which was reversed by zinc chelating in vivo. These results indicate that zinc plays an important role in hippocampus-dependent learning and memory and BDNF expression, high dose supplementation of zinc induces specific zinc deficiency in hippocampus, which further impair learning and memory due to decreased availability of synaptic zinc and BDNF deficit.

  4. Dissociation of synaptic zinc level and zinc transporter 3 expression during postnatal development and after sensory deprivation in the barrel cortex of mice.

    Liguz-Lecznar, Monika; Nowicka, Dorota; Czupryn, Artur; Skangiel-Kramska, Jolanta


    In the neocortex, synaptic zinc level is regulated by sensory experience. Previously, we found that trimming of mystacial vibrissae resulted in an increase of synaptic zinc level in corresponding deprived barrels in the cortex of mice. The present study focused on the relationship between synaptic zinc and zinc transporter 3 (ZnT3) protein expression in the barrel cortex of mice during postnatal development and after sensory deprivation of selected vibrissae. Using immunocytochemistry and western blot analysis, we found that ZnT3 expression is delayed as compared with the onset of synaptic zinc and presynaptic markers, such as synapsin I and synaptophysin. Further, neither long-term deprivation in young mice nor short deprivation in adult mice, that resulted in an increase of synaptic zinc level, produced alterations in ZnT3, synapsin I or synaptophysin expression in deprived barrels. These results suggest that in the barrel cortex ZnT3, synapsin I or synaptophysin are not determinant for the activity-dependent regulation of the synaptic zinc level.

  5. Zinc supplementation in children with cystic fibrosis

    Cystic fibrosis (CF) leads to malabsorption of macro- and micronutrients. Symptomatic zinc deficiency has been reported in CF but little is known about zinc homeostasis in children with CF. Zinc supplementation (Zn suppl) is increasingly common in children with CF but it is not without theoretcial r...

  6. 21 CFR 558.78 - Bacitracin zinc.


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Bacitracin zinc. 558.78 Section 558.78 Food and... in Animal Feeds § 558.78 Bacitracin zinc. (a) Specifications. Type A medicated articles containing bacitracin zinc equivalent to 10, 25, 40, or 50 grams per pound bacitracin. (b) Approvals. See No. 046573...

  7. 21 CFR 582.5991 - Zinc oxide.


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc oxide. 582.5991 Section 582.5991 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is...

  8. 21 CFR 182.8991 - Zinc oxide.


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Zinc oxide. 182.8991 Section 182.8991 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8991 Zinc oxide. (a) Product. Zinc oxide. (b) Conditions of use. This substance is generally recognized as safe when used...

  9. 21 CFR 73.2991 - Zinc oxide.


    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Zinc oxide. 73.2991 Section 73.2991 Food and Drugs... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2991 Zinc oxide. (a) Identity and specifications. The color additive zinc oxide shall conform in identity and specifications to the requirements of §...

  10. Zinc metalloproteins as medicinal targets.

    Anzellotti, A I; Farrell, N P


    Zinc bioinorganic chemistry has emphasized the role of the metal ion on the structure and function of the protein. There is, more recently, an increasing appreciation of the role of zinc proteins in a variety of human diseases. This critical review, aimed at both bioinorganic and medicinal chemists, shows how apparently widely-diverging diseases share the common mechanistic approaches of targeting the essential function of the metal ion to inhibit activity. Protein structure and function is briefly summarized in the context of its clinical relevance. The status of current and potential inhibitors is discussed along with the prospects for future developments (162 references).

  11. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  12. Structural and Functional Studies of the Protamine 2-Zinc Complex from Syrian Gold Hamster (Mesocricetus Auratus) Spermatids and Sperm

    Dolan, Cheryl E. [Univ. of California, Davis, CA (United States)


    . Based on these results, we propose the binding of zinc to protamine 2 molecules stabilizes a dimerization domain in other mammalian sperm. Future experiments will use the knowledge we gained of the interactions between protamine 1 and DNA from the NMR studies to obtain structural data for the DNA-protamine 2-zinc complex.

  13. Zinc dyshomeostasis during polymicrobial sepsis in mice involves zinc transporter Zip14 and can be overcome by zinc supplementation.

    Wessels, Inga; Cousins, Robert J


    Integrity of the immune system is particularly dependent on the availability of zinc. Recent data suggest that zinc is involved in the development of sepsis, a life-threatening systemic inflammation with high death rates, but with limited therapeutic options. Altered cell zinc transport mechanisms could contribute to the inflammatory effects of sepsis. Zip14, a zinc importer induced by proinflammatory stimuli, could influence zinc metabolism during sepsis and serve as a target for therapy. Using cecal ligation-and-puncture (CLP) to model polymicrobial sepsis, we narrowed the function of ZIP14 to regulation of zinc homeostasis in hepatocytes, while hepatic leukocytes were mostly responsible for driving inflammation, as shown by higher expression of IL-1β, TNFα, S100A8, and matrix metalloproteinase-8. Using Zip14 knockout (KO) mice as a novel approach, we found that ablation of Zip14 produced a delay in development of leukocytosis, prevented zinc accumulation in the liver, altered the kinetics of hypozincemia, and drastically increased serum IL-6, TNFα, and IL-10 concentrations following CLP. Hence, this model revealed that the zinc transporter ZIP14 is a component of the pathway for zinc redistribution that contributes to zinc dyshomeostasis during polymicrobial sepsis. In contrast, using the identical CLP model, we found that supplemental dietary zinc reduced the severity of sepsis, as shown by amelioration of cytokines, calprotectins, and blood bacterial loads. We conclude that the zinc transporter ZIP14 influences aspects of the pathophysiology of nonlethal polymicrobial murine sepsis induced by CLP through zinc delivery. The results are promising for the use of zinc and its transporters as targets for future sepsis therapy.

  14. Pharmacokinetics of zinc tannate after intratesticular injection.

    Migally, N B; Fahim, M S


    Forty-eight sexually mature male rats were injected intratesticularly with either 1, 3, or 6 mg zinc tannate (Kastrin) or with saline (as control). Zinc localized only in low concentration in primary spermatocytes and could not be detected in spermatogonia, Sertoli cells, spermatids, or spermatozoa. Forty-eight hours after injection of 1 mg Kastrin, zinc was accumulated in the spermatogonia and primary spermatocytes while, after injection of 3 mg, zinc was preferentially localized in Sertoli cells and spermatids; however, zinc was observed in the spermatids and spermatozoa 48 h after injection with 6 mg, and germ cells lost their identity and were fragmented after 1 week.

  15. Non-Chromate Passivation of Zinc

    Tang, Peter Torben; Bech-Nielsen, G.


    . There is no known environmental or health risk involved using the treatments mentioned above. All components used in the baths are non toxic compared to Cr(VI). Alloy coatings such as zinc/nickel, zinc/cobalt, zinc/tin and all types of pure zinc coating (from cyanide, acidic or alkaline baths) have been treated...... minutes, in any one of the baths, at 60¢XC. Some movement of the submerged samples, or stirring with air-bubbles, should be applied, just as a thorough rinse of the zinc surface immediately before the pas-sivation is extremely important....

  16. Non-Chromate Passivation of Zinc

    Tang, Peter Torben; Bech-Nielsen, G.


    . There is no known environmental or health risk involved using the treatments mentioned above. All components used in the baths are non toxic compared to Cr(VI). Alloy coatings such as zinc/nickel, zinc/cobalt, zinc/tin and all types of pure zinc coating (from cyanide, acidic or alkaline baths) have been treated...... successfully. The corrosion resistance against white rust on zinc and zinc alloys is just as good as that of yellow chromate, although the result de-pends on the corrosion test method as well as on the nature of the zinc substrate pas-sivated. The passivation procedure is simply a dip for approxi-mately 2...

  17. Zinc Therapy in Dermatology: A Review

    Mrinal Gupta


    Full Text Available Zinc, both in elemental or in its salt forms, has been used as a therapeutic modality for centuries. Topical preparations like zinc oxide, calamine, or zinc pyrithione have been in use as photoprotecting, soothing agents or as active ingredient of antidandruff shampoos. Its use has expanded manifold over the years for a number of dermatological conditions including infections (leishmaniasis, warts, inflammatory dermatoses (acne vulgaris, rosacea, pigmentary disorders (melasma, and neoplasias (basal cell carcinoma. Although the role of oral zinc is well-established in human zinc deficiency syndromes including acrodermatitis enteropathica, it is only in recent years that importance of zinc as a micronutrient essential for infant growth and development has been recognized. The paper reviews various dermatological uses of zinc.

  18. Zinc-The key to preventing corrosion

    Kropschot, S.J.; Doebrich, Jeff L.


    Centuries before it was identified as an element, zinc was used to make brass (an alloy of zinc and copper) and for medicinal purposes. Metallic zinc and zinc oxide were produced in India sometime between the 11th and 14th centuries and in China in the 17th century, although the discovery of pure metallic zinc is credited to the German chemist Andreas Marggraf, who isolated the element in 1746. Refined zinc metal is bluish-white when freshly cast; it is hard and brittle at most temperatures and has relatively low melting and boiling points. Zinc alloys readily with other metals and is chemically active. On exposure to air, it develops a thin gray oxide film (patina), which inhibits deeper oxidation (corrosion) of the metal. The metal's resistance to corrosion is an important characteristic in its use.

  19. Recovery of zinc from low-grade zinc oxide ores by solvent extraction

    覃文庆; 蓝卓越; 黎维中


    The recovery of zinc from low-grade zinc oxide ores with solvent extraction-electrowinning technique was investigated by using D2EHPA as extractant and 260# kerosene as diluent. The results show that it is possible to selectively leach zinc from the ores by heap leaching. The zinc concentration of leach solution in the first leaching cycle is 32.57 g/L, and in the sixteenth cycle the zinc concentration is 8.27g/L after solvent extraction. The leaching solution is subjected to solvent extraction, scrubbing and selective stripping for enrichment of zinc and removal of impurities. The pregnant zinc sulfate solution produced from the stripping cycle is suitable for zinc electrowinning.Extra-pure zinc metal was obtained in the electrowinning test under conventional conditions.

  20. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review

    Rebecca L. Wilson


    Full Text Available Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE; spontaneous preterm birth (sPTB; low birthweight (LBW; and gestational diabetes (GDM. Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g and those who gave birth to an infant of adequate weight (>2500 g, particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg. No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status.

  1. Association between Maternal Zinc Status, Dietary Zinc Intake and Pregnancy Complications: A Systematic Review

    Wilson, Rebecca L.; Grieger, Jessica A.; Bianco-Miotto, Tina; Roberts, Claire T.


    Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE); spontaneous preterm birth (sPTB); low birthweight (LBW); and gestational diabetes (GDM). Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g) and those who gave birth to an infant of adequate weight (>2500 g), particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg). No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status. PMID:27754451

  2. The five AhMTP1 zinc transporters undergo different evolutionary fates towards adaptive evolution to zinc tolerance in Arabidopsis halleri.

    Zaigham Shahzad


    Full Text Available Gene duplication is a major mechanism facilitating adaptation to changing environments. From recent genomic analyses, the acquisition of zinc hypertolerance and hyperaccumulation characters discriminating Arabidopsis halleri from its zinc sensitive/non-accumulator closest relatives Arabidopsis lyrata and Arabidopsis thaliana was proposed to rely on duplication of genes controlling zinc transport or zinc tolerance. Metal Tolerance Protein 1 (MTP1 is one of these genes. It encodes a Zn(2+/H(+ antiporter involved in cytoplasmic zinc detoxification and thus in zinc tolerance. MTP1 was proposed to be triplicated in A. halleri, while it is present in single copy in A. thaliana and A. lyrata. Two of the three AhMTP1 paralogues were shown to co-segregate with zinc tolerance in a BC1 progeny from a cross between A. halleri and A. lyrata. In this work, the MTP1 family was characterized at both the genomic and functional levels in A. halleri. Five MTP1 paralogues were found to be present in A. halleri, AhMTP1-A1, -A2, -B, -C, and -D. Interestingly, one of the two newly identified AhMTP1 paralogues was not fixed at least in one A. halleri population. All MTP1s were expressed, but transcript accumulation of the paralogues co-segregating with zinc tolerance in the A. halleri X A. lyrata BC1 progeny was markedly higher than that of the other paralogues. All MTP1s displayed the ability to functionally complement a Saccharomyces cerevisiae zinc hypersensitive mutant. However, the paralogue showing the least complementation of the yeast mutant phenotype was one of the paralogues co-segregating with zinc tolerance. From our results, the hypothesis that pentaplication of MTP1 could be a major basis of the zinc tolerance character in A. halleri is strongly counter-balanced by the fact that members of the MTP1 family are likely to experience different evolutionary fates, some of which not concurring to increase zinc tolerance.

  3. Speciation and bioavailability of zinc in amended sediments

    Williams, Aaron G.B.; Scheckel, Kirk G.; McDermott, Gregory; Gratson, David; Neptune, Dean; Ryan, James A.


    The speciation and bioavailability of zinc (Zn) in smelter-contaminated sediments were investigated as a function of phosphate (apatite) and organic amendment loading rate. Zinc species identified in preamendment sediment were zinc hydroxide-like phases, sphalerite, and zinc sorbed to an iron oxide via X-ray adsorption near edge structure (XANES) spectroscopy. Four months after adding the amendments to the contaminated sediment, hopeite, a Zn phosphate mineral, was identified indicating phosphate was binding and sequestering available Zn and Zn pore water concentrations were decreased at levels of 90% or more. Laboratory experiments indicate organic amendments exhibit a limited effect and may hinder sequestration of pore water Zn when mixed with apatite. The acute toxicity of the sediment Zn was evaluated with Hyalella azteca, and bioaccumulation of Zn with Lumbriculus variegates. The survivability of H. azteca increased as a function of phosphate (apatite) loading rate. In contaminated sediment without apatite, no specimens of H. azteca survived. The bioaccumulation of Zn in L. variegates also followed a trend of decreased bioaccumulation with increased phosphate loading in the contaminated sediment. The research supports an association between Zn speciation and bioavailability.

  4. Influence of phytase, EDTA, and polyphenols on zinc absorption in adults from porridges fortified with zinc sulfate or zinc oxide.

    Brnić, Marica; Wegmüller, Rita; Zeder, Christophe; Senti, Gabriela; Hurrell, Richard F


    Fortification of cereal staples with zinc is recommended to combat zinc deficiency. To optimize zinc absorption, strategies are needed to overcome the inhibitory effect of phytic acid (PA) and perhaps polyphenols. Five zinc absorption studies were conducted in young adults consuming maize or sorghum porridges fortified with 2 mg zinc as zinc sulfate (ZnSO4) or zinc oxide (ZnO) and containing combinations of PA or polyphenols as potential inhibitors and EDTA and phytase as potential enhancers. Fractional absorption of zinc (FAZ) was measured by using the double isotopic tracer ratio method. Adding phytase to the maize porridge immediately before consumption or using phytase for dephytinization during meal preparation both increased FAZ by >80% (both P zinc molar ratio of 1:1 increased FAZ from maize porridge fortified with ZnSO4 by 30% (P = 0.01) but had no influence at higher EDTA ratios or on absorption from ZnO. FAZ was slightly higher from ZnSO4 than from ZnO (P = 0.02). Sorghum polyphenols had no effect on FAZ from dephytinized sorghum porridges but decreased FAZ by 20% from PA-rich sorghum porridges (P zinc absorption from zinc-fortified cereals, EDTA at a 1:1 molar ratio modestly enhanced zinc absorption from ZnSO4-fortified cereals but not ZnO-fortified cereals, and sorghum polyphenols inhibited zinc absorption in the presence, but not absence, of PA. This trial was registered at as NCT01210794.

  5. Albumin-normalized serum zinc: a clinically useful parameter for detecting taste impairment in patients undergoing dialysis.

    Tsutsumi, Rie; Ohashi, Kie; Tsutsumi, Yasuo M; Horikawa, Yousuke T; Minakuchi, Jyun; Minami, Sachi; Harada, Nagakatsu; Sakaue, Hiroshi; Sakai, Tohru; Nakaya, Yutaka


    Patients with renal failure often experience decreased serum zinc that remains uncorrected after dialysis. A complication of this depletion is taste impairment, which can detrimentally influence diet and nutrition. However, because more than half of all serum zinc is bound to albumin, we hypothesized that normalizing serum zinc to albumin levels may be associated with taste impairment. A total of 65 patients undergoing dialysis but not receiving supplementary zinc and 120 control patients not undergoing dialysis (60 malnourished patients and 60 healthy controls) were tested for their receptiveness to saltiness using various salt concentrations. Patients' total protein and albumin levels were measured, and linear regressions were extrapolated between serum zinc levels and total protein or albumin. Patients undergoing dialysis had significantly lower levels of total serum zinc compared with control patients. However, uncorrected zinc levels were not correlated with taste impairment. Normalizing zinc levels against total protein or albumin resulted in extrapolated equations that revealed a significant correlation with taste impairment. Our data suggest a statistical correlation between zinc and albumin in both healthy subjects and patients undergoing maintenance hemodialysis, or protein-energy malnutrition without hemodialysis, allowing for a quantitative measure for taste impairment.

  6. Reduction of phytic acid in soybean products improves zinc bioavailability in rats.

    Zhou, J R; Fordyce, E J; Raboy, V; Dickinson, D B; Wong, M S; Burns, R A; Erdman, J W


    The inhibitory effect of phytic acid in soybean products on zinc bioavailability was evaluated in two experiments in rats. In Experiment 1, soybean flours containing different natural phytic acid levels produced by sand culture techniques that limited phosphorus during growth of the soybean plants were formulated into diets. The rats fed a higher phytic acid level diet had lower food intake, depressed weight gain, and lower tibia zinc gain (P phytic acid level was found. In Experiment 2, two commercially produced soybean isolates containing either normal phytic acid level or a reduced level were formulated into diets. Slope ratio analysis revealed that relative zinc bioavailability from phytic acid-containing soybean isolate-based diets was significantly reduced (P phytic acid soybean isolate-containing diets resulted in a significant increase of zinc bioavailability compared with normal phytic acid diets (P phytic acid is the primary inhibitory factor in soybean products that results in reduced zinc bioavailability and that phytate reduction in soybean protein increases zinc bioavailability.

  7. El zinc: oligoelemento esencial Zinc: an essential oligoelement

    C. Rubio


    Full Text Available En este artículo se hace una revisión exhaustiva del zinc, elemento metálico esencial para el funcionamiento del organismo. Repasamos y reflejamos aspectos relacionados con la farmacocinética, con las fuentes dietéticas más importantes, así como las IDR (Ingestas Dietéticas Recomendadas del mismo. También se hace mención a los signos y síntomas relacionados tanto con una ingesta deficiente, como con posibles efectos tóxicos, derivados de ingestas excesivas.This article comprehensively reviews zinc, the metallic element essential for body functioning. We review and highlight issues related to pharmacokinetics, the most important dietary sources, as well as its RDIs (Recommended Dietary Intakes. We also focus on signs and symptoms related with both a deficient intake and possible toxic effects derived from excessive intakes.

  8. The Experiment Research on Recovering Scheelite out of Copper Zinc Sulfur Tailings%从铜锌硫浮选尾矿中综合回收白钨的试验研究

    周源; 吴燕玲


    This article studies the scheelite recovery and utilization out of the copper zinc sulfur tailings. A flowsheet of sulfur floatation after desulphurization is suggested by series of lab tests. Oleic acid and 731 oxidation paraffin wax soap are used as combination collectors at normal temperature. Through small closed -circuit tests, tungsten concentrates were obtained with WO3 concentrate grade of 66.12 % and tungsten recovery rate of 81.03 %.S%针对某铜锌硫矿区早期丢弃尾矿,造成有价组分白钨的严重浪费,进行白钨综合回收利用的选矿试验研究,通过详细的条件试验确定预先脱硫后白钨浮选的工艺流程和药剂制度.白钨矿浮选采用油酸和731氧化石蜡皂组合捕收剂在常温条件下进行.小型闭路试验获得了白钨精矿钨品位66.12%、钨回收率81.03%的良好试验指标,成功地实现了尾矿中白钨二次资源的回收利用.

  9. Effects of moderate zinc deficiency on cognitive performance in young adult rats.

    Massaro, T F; Mohs, M; Fosmire, G


    Two experiments were conducted to establish a dietary zinc level which approximates a moderate deficiency in the young adult rat and to determine if a concurrent zinc deficiency affects cognitive performance. Male rats were fed varying levels of zinc in diet throughout a 17-day period. The lowest dietary level that depressed serum and bone zinc without influencing food consumption or body weight gains was observed to be 5.8 microgram Zn/g diet. Young adult rats maintained on either a zinc adequate (24.4 microgram Zn/g) or low-zinc (5.3 microgram Zn/g) diet were tested in a modified Skinner Box involving tests of visual, auditory, association, and discrimination learning. No differences were observed in the visual discrimination performance of the zinc deficient animals when compared with control counterparts. Deficits in the ability to transfer a learned association between visual and auditory stimuli were observed, however, in the deficient group during the transfer test phase. The latter performed better during the final auditory discrimination task in transferring a learned food-relevant cue.

  10. Statistical evaluation and optimization of zinc electrolyte hot purification process by Taguchi method

    Bahram Behnajady; Javad Moghaddam


    The neutral zinc sulfate solution obtained from hydrometallurgical process of Angouran zinc concentrate has cadmium, nickel and cobalt impurities, that must be purified before electrowinning. Therefore, cadmium and nickel are usually cemented out by addition of zinc dust and remained nickel and cobalt cemented out at second stage with zinc powder and arsenic trioxide. In this research, a new approach is described for determination of effective parameters and optimization of zinc electrolyte hot purification process using statistical design of experiments. The Taguchi method based on orthogonal array design (OAD) has been used to arrange the experimental runs. The experimental conditions involved in the work are as follows: the temperature range of 70−90°C for reaction temperature (T), 30−90 min for reaction time (t), 2−4 g/L for zinc powder mass concentration (M), one to five series for zinc dust particle size distributions (S1−S5), and 0.1−0.5 g/L (C) for arsenic trioxide mass concentration. Optimum conditions for hot purification obtained in this work areT4 (85 °C),t4=75 min,M4=3.5 g/L,S4 (Serie 4), andC2=0.2 g/L.

  11. Computational protocol for predicting the binding affinities of zinc containing metalloprotein-ligand complexes.

    Jain, Tarun; Jayaram, B


    Zinc is one of the most important metal ions found in proteins performing specific functions associated with life processes. Coordination geometry of the zinc ion in the active site of the metalloprotein-ligand complexes poses a challenge in determining ligand binding affinities accurately in structure-based drug design. We report here an all atom force field based computational protocol for estimating rapidly the binding affinities of zinc containing metalloprotein-ligand complexes, considering electrostatics, van der Waals, hydrophobicity, and loss in conformational entropy of protein side chains upon ligand binding along with a nonbonded approach to model the interactions of the zinc ion with all the other atoms of the complex. We examined the sensitivity of the binding affinity predictions to the choice of Lennard-Jones parameters, partial atomic charges, and dielectric treatments adopted for system preparation and scoring. The highest correlation obtained was R2 = 0.77 (r = 0.88) for the predicted binding affinity against the experiment on a heterogenous dataset of 90 zinc containing metalloprotein-ligand complexes consisting of five unique protein targets. Model validation and parameter analysis studies underscore the robustness and predictive ability of the scoring function. The high correlation obtained suggests the potential applicability of the methodology in designing novel ligands for zinc-metalloproteins. The scoring function has been web enabled for free access at as BAPPL-Z server (Binding Affinity Prediction of Protein-Ligand complexes containing Zinc metal ions).

  12. Transcriptomic profiling of Arabidopsis gene expression in response to varying micronutrient zinc supply

    Herlânder Azevedo


    Full Text Available Deficiency of the micronutrient zinc is a widespread condition in agricultural soils, causing a negative impact on crop quality and yield. Nevertheless, there is an insufficient knowledge on the regulatory and molecular mechanisms underlying the plant response to inadequate zinc nutrition [1]. This information should contribute to the development of plant-based solutions with improved nutrient-use-efficiency traits in crops. Previously, the transcription factors bZIP19 and bZIP23 were identified as essential regulators of the response to zinc deficiency in Arabidopsis thaliana [2]. A microarray experiment comparing gene expression between roots of wild-type and the mutant bzip19 bzip23, exposed to zinc deficiency, led to the identification of differentially expressed genes related with zinc homeostasis, namely its transport and plant internal translocation [2]. Here, we provide the detailed methodology, bioinformatics analysis and quality controls related to the microarray gene expression profiling published by Assunção and co-workers [2]. Most significantly, the present dataset comprises new experimental variables, including analysis of shoot tissue, and zinc sufficiency and excess supply. Thus, it expands from 8 to 42 microarrays hybridizations, which have been deposited at the Gene Expression Omnibus (GEO under the accession number GSE77286. Overall, it provides a resource for research on the molecular basis and regulatory events of the plant response to zinc supply, emphasizing the importance of Arabidopsis bZIP19 and bZIP23 transcription factors.

  13. The effect of preparation of biogenic sorbent on zinc sorption

    Jana Jenčárová


    Full Text Available The aim of this study is to prepare biogenic sulphides by using bacteria for the removal of zinc cations from their solutions. Theproduction was realized in a bioreactor under anaerobic conditions at 30 °C. Sorbents were prepared by sulphate-reducing bacteria indifferent nutrient medium modifications, under two modes of bacteria cultivation. Created precipitates of iron sulphides were removedfrom the liquid phase of the cultivation medium by filtration, dried and used for the sorption experiments.

  14. MTF-1-mediated repression of the zinc transporter Zip10 is alleviated by zinc restriction.

    Louis A Lichten

    Full Text Available The regulation of cellular zinc uptake is a key process in the overall mechanism governing mammalian zinc homeostasis and how zinc participates in cellular functions. We analyzed the zinc transporters of the Zip family in both the brain and liver of zinc-deficient animals and found a large, significant increase in Zip10 expression. Additionally, Zip10 expression decreased in response to zinc repletion. Moreover, isolated mouse hepatocytes, AML12 hepatocytes, and Neuro 2A cells also respond differentially to zinc availability in vitro. Measurement of Zip10 hnRNA and actinomycin D inhibition studies indicate that Zip10 was transcriptionally regulated by zinc deficiency. Through luciferase promoter constructs and ChIP analysis, binding of MTF-1 to a metal response element located 17 bp downstream of the transcription start site was shown to be necessary for zinc-induced repression of Zip10. Furthermore, zinc-activated MTF-1 causes down-regulation of Zip10 transcription by physically blocking Pol II movement through the gene. Lastly, ZIP10 is localized to the plasma membrane of hepatocytes and neuro 2A cells. Collectively, these results reveal a novel repressive role for MTF-1 in the regulation of the Zip10 zinc transporter expression by pausing Pol II transcription. ZIP10 may have roles in control of zinc homeostasis in specific sites particularly those of the brain and liver. Within that context ZIP10 may act as an important survival mechanism during periods of zinc inadequacy.

  15. Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus.

    Lu, Qiping; Haragopal, Hariprakash; Slepchenko, Kira G; Stork, Christian; Li, Yang V


    Zinc (Zn(2+)) is required for numerous cellular functions. As such, the homeostasis and distribution of intracellular zinc can influence cellular metabolism and signaling. However, the exact distribution of free zinc within live cells remains elusive. Previously we showed the release of zinc from thapsigargin/IP3-sensitive endoplasmic reticulum (ER) storage in cortical neurons. In the present study, we investigated if other cellular organelles also contain free chelatable zinc and function as organelle storage for zinc. To identify free zinc within the organelles, live cells were co-stained with Zinpyr-1, a zinc fluorescent dye, and organelle-specific fluorescent dyes (MitoFluor Red 589: mitochondria; ER Tracker Red: endoplasmic reticulum; BODIPY TR ceramide: Golgi apparatus; Syto Red 64: nucleus). We examined organelles that represent potential storing sites for intracellular zinc. We showed that zinc fluorescence staining was co-localized with MitoFluor Red 589, ER Tracker Red, and BODIPY TR ceramide respectively, suggesting the presence of free zinc in mitochondria, endoplasmic reticulum, and the Golgi apparatus. On the other hand, cytosol and nucleus had nearly no detectable zinc fluorescence. It is known that nucleus contains high amount of zinc binding proteins that have high zinc binding affinity. The absence of zinc fluorescence suggests that there is little free zinc in these two regions. It also indicates that the zinc fluorescence detected in mitochondria, ER and Golgi apparatus represents free chelatable zinc. Taken together, our results support that these organelles are potential zinc storing organelles during cellular zinc homeostasis.

  16. The Current Trend of China’s Zinc Consumption


    <正> According to estimations of zinc consumptionby China’s major zinc consumption industries,the growth rate of China’s actual zinc con-sumption in the period 1998-2002 was 10.2percent.Of China’s total zinc consumption inyear 2002,galvanizing zinc made 36 percent,

  17. Response of corn silage (Zea mays L.) to zinc fertilization on a sandy soil under field and

    Saad Drissi; Abdelhadi Aït Houssa; Ahmed Bamouh; Mohamed Benbella


    The purpose of the experiments was to evaluate zinc (Zn) fertilization effect on growth, yield and yield components of corn silage grown on a sandy soil under field and outdoor container conditions...

  18. Zinc stannate nanostructures: hydrothermal synthesis

    Sunandan Baruah and Joydeep Dutta


    Full Text Available Nanostructured binary semiconducting metal oxides have received much attention in the last decade owing to their unique properties rendering them suitable for a wide range of applications. In the quest to further improve the physical and chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate or zinc tin oxide (ZTO is a class of ternary oxides that are known for their stable properties under extreme conditions, higher electron mobility compared to its binary counterparts and other interesting optical properties. The material is thus ideal for applications from solar cells and sensors to photocatalysts. Among the different methods of synthesizing ZTO nanostructures, the hydrothermal method is an attractive green process that is carried out at low temperatures. In this review, we summarize the conditions leading to the growth of different ZTO nanostructures using the hydrothermal method and delve into a few of its applications reported in the literature.

  19. Morphology study of electrodeposited zinc from zinc sulfate solutions as anode for zinc-air and zinc-carbon batteries

    Nurhaswani Alias


    Full Text Available The morphology of Zinc (Zn deposits was investigated as anode for aqueous batteries. The Zn was deposited from zinc sulfate solution in direct current conditions on a copper surface at different current densities. The morphology characterization of Zn deposits was performed via field emission scanning electron microscopy. The Zn deposits transformed from a dense and compact structure to dendritic form with increasing current density. The electrodeposition of Zn with a current density of 0.02 A cm−2 exhibited good morphology with a high charge efficiency that reached up to 95.2%. The Zn deposits were applied as the anode in zinc–air and zinc–carbon batteries, which gave specific discharge capacities of 460 and 300 mA h g−1, respectively.

  20. The Zinc Concentration in the Diet and the Length of the Feeding Period Affect the Methylation Status of the ZIP4 Zinc Transporter Gene in Piglets.

    Diana Karweina

    Full Text Available High doses of zinc oxide are commonly used in weaned pig diets to improve performance and health. Recent reports show that this may also lead to an imbalanced zinc homeostasis in the animal. For a better understanding of the regulatory mechanisms of different zinc intakes, we performed a feeding experiment to assess potential epigenetic regulation of the ZIP4 gene expression via DNA methylation in the small intestine of piglets. Fifty-four piglets were fed diets with 57 (LZn, 164 (NZn or 2,425 (HZn mg Zn/kg feed for one or four weeks. The ZIP4 expression data provided significant evidence for counter-regulation of zinc absorption with higher dietary zinc concentrations. The CpG +735 in the second exon had a 56% higher methylation in the HZn group compared to the others after one week of feeding (8.0·10-4 < p < 0.035; the methylation of this CpG was strongly negatively associated with the expression of the long ZIP4 transcripts (p < 0.007. In the LZn and NZn diets, the expression of the long ZIP4 transcripts were lower after four vs. one week of feeding (2.9·10-4 < p < 0.017. The strongest switch leading to high DNA methylation in nearly all analysed regions was dependent on feeding duration or age in all diet groups (3.7·10-10 < p < 0.099. The data suggest that DNA methylation serves as a fine-tuning mechanism of ZIP4 gene regulation to maintain zinc homeostasis. Methylation of the ZIP4 gene may play a minor role in the response to very high dietary zinc concentration, but may affect binding of alternate zinc-responsive transcription factors.

  1. The Zinc Concentration in the Diet and the Length of the Feeding Period Affect the Methylation Status of the ZIP4 Zinc Transporter Gene in Piglets.

    Karweina, Diana; Kreuzer-Redmer, Susanne; Müller, Uwe; Franken, Tobias; Pieper, Robert; Baron, Udo; Olek, Sven; Zentek, Jürgen; Brockmann, Gudrun A


    High doses of zinc oxide are commonly used in weaned pig diets to improve performance and health. Recent reports show that this may also lead to an imbalanced zinc homeostasis in the animal. For a better understanding of the regulatory mechanisms of different zinc intakes, we performed a feeding experiment to assess potential epigenetic regulation of the ZIP4 gene expression via DNA methylation in the small intestine of piglets. Fifty-four piglets were fed diets with 57 (LZn), 164 (NZn) or 2,425 (HZn) mg Zn/kg feed for one or four weeks. The ZIP4 expression data provided significant evidence for counter-regulation of zinc absorption with higher dietary zinc concentrations. The CpG +735 in the second exon had a 56% higher methylation in the HZn group compared to the others after one week of feeding (8.0·10-4 < p < 0.035); the methylation of this CpG was strongly negatively associated with the expression of the long ZIP4 transcripts (p < 0.007). In the LZn and NZn diets, the expression of the long ZIP4 transcripts were lower after four vs. one week of feeding (2.9·10-4 < p < 0.017). The strongest switch leading to high DNA methylation in nearly all analysed regions was dependent on feeding duration or age in all diet groups (3.7·10-10 < p < 0.099). The data suggest that DNA methylation serves as a fine-tuning mechanism of ZIP4 gene regulation to maintain zinc homeostasis. Methylation of the ZIP4 gene may play a minor role in the response to very high dietary zinc concentration, but may affect binding of alternate zinc-responsive transcription factors.

  2. Production of nano zinc, zinc sulphide and nanocomplex of magnetite zinc oxide by Brevundimonas diminuta and Pseudomonas stutzeri.

    Mirhendi, Mansoureh; Emtiazi, Giti; Roghanian, Rasoul


    ZnO (Zincite) nanoparticle has many industrial applications and is mostly produced by chemical reactions, usually prepared by decomposition of zinc acetate or hot-injection and heating-up method. Synthesis of semi-conductor nanoparticles such as ZnS (Sphalerite) by ultrasonic was previously reported. In this work, high-zinc tolerant bacteria were isolated and used for nano zinc production. Among all isolated microorganisms, a gram negative bacterium which was identified as Brevundimonas diminuta could construct nano magnetite zinc oxide on bacterial surface with 22 nm in size and nano zinc with 48.29 nm in size. A piece of zinc metal was immersed in medium containing of pure culture of B. diminuta. Subsequently, a yellow-white biofilm was formed which was collected from the surface of zinc. It was dried at room temperature. The isolated biofilm was analysed by X-ray diffractometer. Interestingly, the yield of these particles was higher in the light, with pH 7 at 23°C. To the best of the authors knowledge, this is the first report about the production of nano zinc metal and nano zinc oxide that are stable and have anti-bacterial activities with magnetite property. Also ZnS (sized 12 nm) produced by Pseudomonas stutzeri, was studied by photoluminescence and fluorescent microscope.

  3. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M


    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight

  4. Recovery of Zinc from Zinc Ash and Flue Dusts by Hydrometallurgical Processing

    Thorsen, G.; Grislingås, A.; Steintveit, G.


    A process has been developed for recovering zinc and other metal values from chloride-containing solid zinc waste materials such as zinc ash from galvanizing baths, and flue dusts from zinc smelting and Waelz processes. The waste is leached with a liquid organic phase containing a cation exchanger; the commercial carboxylic acid Versatic 911 is highly efficient for this operation. Halogens present in the organic phase are readily washed out with water. Zinc and other metal values are then selectively stripped with sulfuric acid, generating a neutral solution of zinc sulfate suitable for electrolytic production of zinc metal. Alternatively, zinc sulfate can be crystallized directly from the organic phase by stripping with concentrated sulfuric acid.

  5. The zinc electrode - Its behaviour in the nickel oxide-zinc accumulator

    Certain aspects of zinc electrode reaction and behavior are investigated in view of their application to batteries. The properties of the zinc electrode in a battery system are discussed, emphasizing porous structure. Shape change is emphasized as the most important factor leading to limited battery cycle life. It is shown that two existing models of shape change based on electroosmosis and current distribution are unable to consistently describe observed phenomena. The first stages of electrocrystallization are studied and the surface reactions between the silver substrate and the deposited zinc layer are investigated. The reaction mechanism of zinc and amalgamated zinc in an alkaline electrolyte is addressed, and the batter system is studied to obtain information on cycling behavior and on the shape change phenomenon. The effect on cycle behavior of diferent amalgamation techniques of the zinc electrode and several additives is addressed. Impedance measurements on zinc electrodes are considered, and battery behavior is correlated with changes in the zinc electrode during cycling.

  6. High performance zinc anode for battery applications

    Casey, John E., Jr. (Inventor)


    An improved zinc anode for use in a high density rechargeable alkaline battery is disclosed. A process for making the zinc electrode comprises electrolytic loading of the zinc active material from a slightly acidic zinc nitrate solution into a substrate of nickel, copper or silver. The substrate comprises a sintered plaque having very fine pores, a high surface area, and 80-85 percent total initial porosity. The residual porosity after zinc loading is approximately 25-30%. The electrode of the present invention exhibits reduced zinc mobility, shape change and distortion, and demonstrates reduced dendrite buildup cycling of the battery. The disclosed battery is useful for applications requiring high energy density and multiple charge capability.

  7. The role of zinc in acute pyelonephritis.

    Mahyar, Abolfazl; Ayazi, Parviz; Farzadmanesh, Shahin; Sahmani, Mehdi; Oveisi, Sonia; Chegini, Victoria; Esmaeily, Shiva


    This study was conducted to determine the serum concentration of zinc in children with acute pyelonephritis. Serum zinc levels of 60 children with acute pyelonephritis and 60 healthy children were compared. Acute pyelonephritis was diagnosed using Tc-99m dimercaptosuccinic acid (DMSA) renal scan. Serum zinc levels were measured by the atomic absorption flame spectrophotometry. The levels in question in the case and control groups were 70.73 ± 14.15 and 87.61 ± 12.68 mcg/dL, respectively (P=0.001). There was no correlation between serum zinc level with inflammatory markers, severity of acute pyelonephritis and duration of the disease. This study showed that there is a correlation between serum zinc level and acute pyelonephritis. Zinc would therefore appear to play a certain role in the pathogenesis of acute pyelonephritis.

  8. Mathematical simulation of direct reduction process in zinc-bearing p ellets

    Ying Liu; Fu-yong Su; Zhi Wen; Zhi Li; Hai-quan Yong; Xiao-hong Feng


    A one-dimensional unsteady mathematical model was established to describe direct reduction in a composite pellet made of metallurgical dust. The model considered heat transfer, mass transfer, and chemical reactions including iron oxide reductions, zinc oxide reduction and carbon gasification, and it was numerically solved by the tridiagonal matrix algorithm (TDMA). In order to verify the model, an experiment was performed, in which the profiles of temperature and zinc removal rate were measured during the reduction process. Results calculated by the mathematical model were in fairly good agreement with experimental data. Finally, the eff ects of furnace temperature, pellet size, and carbon content were investigated by model calculations. It is found that the pellet temperature curve can be divided into four parts according to heating rate. Also, the zinc removal rate increases with the increase of furnace temperature and the decrease of pellet size, and carbon content in the pellet has little influence on the zinc removal rate.

  9. Use of anodic oxide films to control the diffusion of zinc in GaAs

    Cutlerywala, H.; Roedel, R. J.


    Experiments were performed to diffuse zinc into GaAs through anodic oxide layers of varying thickness and density. Using electrochemical profiling to determine both the electrically active zinc concentration and the diffusion depth with high resolution, the following results were found. The depth of the junction varies inversely with the thickness and the density of the oxide. However, the surface concentration appears to be independent of oxide thickness or density, attaining a value identical to that found for diffusion into a bare GaAs sample. These results demonstrate that the most significant impact of the oxide is to delay the introduction of the zinc into the GaAs lattice. In short, the anodic oxide cannot be used as either a mask or as a zinc concentration attenuator.

  10. Sorption Kinetics for the Removal of Cadmium and Zinc onto Palm Kernel Shell Based Activated Carbon

    Muhammad Muhammad


    Full Text Available The kinetics and mechanism of cadmium and zinc adsorption on palm kernel shell based activated carbons (PKSAC have been studied. A series of batch laboratory studies were conducted in order to investigate the suitability of palm kernel shell based activated carbon (PKSAC for the removal of cadmium (cadmium ions and zinc (zinc ions from their aqueous solutions. All batch experiments were carried out at pH 7.0 and a constant temperature of 30+-1°C using an incubator shaker that operated at 150 rpm. The kinetics investigated includes the pseudo first order, the pseudo-second order and the intraparticle diffusion models. The pseudo-second order model correlate excellently the experimental data, suggesting that chemisorption processes could be the rate-limiting step. Keywords: adsorption, cadmium, kinetics, palm kernel shell, zinc

  11. Corrosion Resistance of an electrodeposited Zinc Coating Containing CeO2 Nanoparticles

    HE Jian-ping; LUO Xin-yi; CHEN Su-jing; WANG Xian-you


    A Zinc coating containing CeO2 nanoparticles has been deposited by electrodeposition in a zinc plating bath.The content of CeO2 in the coating is 0.22 mass%. The results of weight loss experiments and electrochemistry tests show that corrosion resistance of the Zinc coating containing CeO2 nanoparticles is remarkably improved in contrast to the pure zinc coating in 0.5 M MgSO4 solution. The effects of CeO2 microparticles on the corrosion resistance of the zinc coating have been studied, the results show that CeO2 microparticles have no effect on the corrosion resistance of the zinc coating. SEM and XRD experiments suggest that the presence of CeO2 nanoparticles in the coating causes the modification of the surface morphology and preferential orientation of the crystal planes; therefore, the reason for the enhancement of corrosion resistance is mainly related to improvement of the structure of the coating.

  12. Zinc alloy enhances strength and creep resistance

    Machler, M. [Fisher Gauge Ltd., Peterborough, Ontario (Canada). Fishercast Div.


    A family of high-performance ternary zinc-copper-aluminum alloys has been developed that provides higher strength, hardness, and creep resistance than the traditional zinc-aluminum alloys Zamak 3, Zamak 5, and ZA-8. Designated ACuZinc, mechanical properties comparable to those of more expensive materials make it suitable for high-load applications and those at elevated temperatures. This article describes the alloy`s composition, properties, and historical development.

  13. Zinc therapy for different causes of diarrhea

    Hafaz Zakky Abdillah; Supriatmo Supriatmo; Melda Deliana; Selvi Nafianti; Atan Baas Sinuhaji


    Background The incidence of diarrhea in Indonesia has declined in the past five years. In spite of the increasing number of studies on the treatment for acute diarrhea, especially the use of zinc, it is not known if bacterial vs. non-bacterial etiology makes a difference in the reduction of severity of acute diarrhea in children on zinc therapy. Objective To assess the effect of zinc therapy in reducing the severity of acute bacterial and non-bacterial diarrhea. Method...

  14. Consequence of irrigation with arsenic and zinc contaminated water on accumulation of zinc in radishes plant

    Hossein Banejad


    Conclusion: It was found that zinc concentration in radish roots, tubers, and leafs is correlated with the concentration of zinc in water. Moreover, there was a competition between the absorption of zinc and arsenic in plants. With increasing arsenic in irrigation water, transition of Zn was reduced to aerial part.

  15. Reversal of uraemic impotence by zinc.

    Antoniou, L D; Shalhoub, R J; Sudhakar, T; Smith, J C


    In eight impotent haemodialysed men with low plasma-zinc levels sexual function, including potency, frequency of intercourse, libido, and plasma testosterone, follicle-stimulating hormone, and luteinising hormone levels, was determined before and after therapy with zinc (four patients) or placebo (four patients). Dialytic administration of zinc strikingly improved potency in all patients and raised the plasma-testosterone to normal in the two with low pretreatment plasma-testosterone levels. Placebo did not improve sexual function in any patient. Zinc deficiency is a reversible cause of gonadal dysfunction in uraemia.

  16. Zinc and Brass in Archaeological Perspective

    J. S. Kharakwal


    Full Text Available Brass has a much longer history than zinc. There has been a bit of confusion about the early beginning of zinc as several claims are made out side of India. Both literary as well as archaeological records reveal that production of pure zinc had begun in the second half of the first millennium BC, though production on commercial scale begun in the early Medieval times. This paper attempts to examine the archaeological record and literary evidence to understand the actual beginning of brass and zinc in India.

  17. Zinc oxide varistor; Sanka aen barisuta

    Igarashi, H.


    Characteristics of zinc oxide varistors, applications to electronic equipment protection and to power arrester are explained. Zinc oxide varistors were invented in Japan, which function by ceramics boundary phenomena and are applied to various fields from power plants to houses. Zinc oxide varistors protect electronic equipment from malfunctions and destructions by surge voltage, accordingly have spread rapidly. Protection performance of the power arresters has been improved by development of zinc oxide varistors for electric power, and power arresters came to be used to protect electric lines all over the world. (NEDO)

  18. Evolution of zinc morphology during continuous electrodeposition


    The morphology evolution of zinc continuous electrodeposits with nano-sized crystals on the ferrite substrate has been studied by in-situ scanning tunnel spectroscopy (STM). It is found that the morphology of zinc electrodeposits varies from initial granules with a size of about 30 nm to layered platelets with increasing deposition time. Meanwhile, the crystal structure of the zinc electrodeposits is identified to be hexagonal η-phase by X-ray diffraction. The orientation relationship between zinc crystals and the substrate surface can be interpreted in terms of the misfit and the atomic correspondence of the interphase boundary between the η-phase deposits and α-Fe substrate.

  19. Zinc absorption in inflammatory bowel disease

    Valberg, L.S.; Flanagan, P.R.; Kertesz, A.; Bondy, D.C.


    Zinc absorption was measured in 29 patients with inflammatory bowel disease and a wide spectrum of disease activity to determine its relationship to disease activity, general nutritional state, and zinc status. Patients with severe disease requiring either supplementary oral or parenteral nutrition were excluded. The mean 65ZnCl2 absorption, in the patients, determined using a 65Zn and 51Cr stool-counting test, 45 +/- 17% (SD), was significantly lower than the values, 54 +/- 16%, in 30 healthy controls, P less than 0.05. Low 65ZnCl2 absorption was related to undernutrition, but not to disease activity in the absence of undernutrition or to zinc status estimated by leukocyte zinc measurements. Mean plasma zinc or leukocyte zinc concentrations in patients did not differ significantly from controls, and only two patients with moderate disease had leukocyte zinc values below the 5th percentile of normal. In another group of nine patients with inflammatory bowel disease of mild-to-moderate severity and minimal nutritional impairment, 65Zn absorption from an extrinsically labeled turkey test meal was 31 +/- 10% compared to 33 +/- 7% in 17 healthy controls, P greater than 0.1. Thus, impairment in 65ZnCl2 absorption in the patients selected for this study was only evident in undernourished persons with moderate or severe disease activity, but biochemical evidence of zinc deficiency was uncommon, and clinical features of zinc depletion were not encountered.

  20. Effect of zinc supplements in the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat heart.

    Kansal, Sunil Kumar; Jyoti, Uma; Sharma, Samridhi; Kaura, Arun; Deshmukh, Rahul; Goyal, Sandeep


    Hyperlipidemia is regarded as independent risk factor in the development of ischemic heart disease, and it can increase the myocardial susceptibility to ischemia-/reperfusion (I/R)-induced injury. Hyperlipidemia attenuates the cardioprotective response of ischemic preconditioning (IPC). The present study investigated the effect of zinc supplements in the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat hearts. Hyperlipidemia was induced in rat by feeding high-fat diet (HFD) for 6 weeks then the serum lipid profile was observed. In experiment, the isolated Langendorff rat heart preparation was subjected to 4 cycles of ischemic preconditioning (IPC), then 30 min of ischemia followed by 120 min of reperfusion. Myocardial infarct size was elaborated morphologically by triphenyltetrazolium chloride (TTC) staining and biochemically by lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) release from coronary effluent and left ventricular collagen content. However, the effect of zinc supplement, i.e., zinc pyrithione (10 μM) perfused during reperfusion for 120 min, significantly abrogated the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat heart whereas administration of chelator of this zinc ionophore, i.e., N,N,N',N'-tetrakis(2-pyridylmethyl)ethylene diamine (TPEN; 10 μM), perfused during reperfusion 2 min before the perfusion of zinc pyrithione abrogated the cardioprotective effect of zinc supplement during experiment in hyperlipidemic rat heart. Thus, the administration of zinc supplements limits the infarct size, LDH, and CK-MB and enhanced the collagen level which suggests that the attenuated cardioprotective effect of IPC in hyperlipidemic rat is due to zinc loss during reperfusion caused by ischemia/reperfusion.

  1. Zinc Nutrition and Metabolism of Plants as Influenced by Supply of Phosphorus and Zinc



    A solution culture experiment was conducted to investigate the growth,the accumulation and translocation of Zn,and the metabolic changes of 24 days old plants of corn and wheat with the varied suply of phosphorus(0,0.12,0.6 and 3.0mmol L-1)and zinc (0.1 and 2.0umol L-1) under controlled environmental conditions.The results showed the highest dry matter production of both corn and wheat under the moder ate combination of phosphorus(0.6mmol L-1) and zinc(2.0 umolL-1) as compared with other imbalance applications of phosphorus and zinc.Excessive P supply significantly inhibited the translocation of Zn from roots of corn to the aboveground part,thus decreasing the content of Zn in the shoots.Application of 3.0 mmolL-1 P could also reduce the water-soluble Zn in plant tissues,leading to an increase in the cell plasma membrane permeability,a decrease in the dehydrogenase activity in roots and the activity of nitrate reductase in leaves,and a decline in the uptake of nitrate by plants.A similar decrease occurred in superoxide dismutase(SOD) and plasma membrane adenosine triphosphatase(ATPase)activity in Zn-deficient plants.But,with increasing P supply the activity of ATP ase in both corn and wheat increased and reached the maximum at the P-supplying level of 3.0 mmolL-1.Similar to the effect of high P or low P(0.12mmolL-1) supply could be detrimental to dry matter production and physiological functioning of the plants.Corn plants showed a more significant response to the imbalance supply of P and Zn than wheat plants.The possible physiological and biochemical mechanism of phosphorus-zinc antagonistic interaction in corn and wheat might be attributed to decrease in physiological availability and activation of Zn.

  2. Zinc Biosorption by Seaweed Illustrated by the Zincon Colorimetric Method and the Langmuir Isotherm

    Areco, Maria Mar; dos Santos Afonso, Maria; Valdman, Erika


    An experiment is conducted to promote biotechnology knowledge that is an emerging technology on cleaning treatment, showing the potential of seaweed to remove heavy-metal ions from solution. The rapid and accurate determination of zinc in aqueous solution by the zincon colorimetric method gives an interesting and simple experiment for any…

  3. The influence of zinc on the uptake and loss of cadmium and lead in the woodlouse, Porcellio scaber (Isopoda, Oniscidea).

    Witzel, B


    Uptake of cadmium, lead, and zinc was studied in juvenile Porcellio scaber in feeding experiments over 5 months. The metals were offered separately and in different combinations and concentrations in the food. The ability of P. scaber to eliminate the accumulated metals was studied subsequently for 3 months on uncontaminated food. Characteristic patterns of accumulation are described for the three metals. The combination of lead and zinc resulted in only minor differences in these patterns. On the other hand, the combination of zinc and cadmium at high concentrations completely changed the accumulation patterns for both metals. Not only cadmium but also zinc was excreted by P. scaber exclusively when the animals had been contaminated with both metals. In contrast both metals were stored permanently when offered separately. Possible reasons for the interactions of cadmium and zinc are discussed.

  4. Zinc phthalocyanine labelled polyethylene glycol: preparation, characterization, interaction with bovine serum albumin and near infrared fluorescence imaging in vivo.

    Lv, Feng; Cao, Bo; Cui, Yanli; Liu, Tianjun


    Zinc phthalocyanine labelled polyethylene glycol was prepared to track and monitor the in vivo fate of polyethylene glycol. The chemical structures were characterized by nuclear magnetic resonance and infrared spectroscopy. Their light stability and fluorescence quantum yield were evaluated by UV-Visible and fluorescence spectroscopy methods. The interaction of zinc phthalocyanine labelled polyethylene glycol with bovine serum albumin was evaluated by fluorescence titration and isothermal titration calorimetry methods. Optical imaging in vivo, organ aggregation as well as distribution of fluorescence experiments for tracking polyethylene glycol were performed with zinc phthalocyanine labelled polyethylene glycol as fluorescent agent. Results show that zinc phthalocyanine labelled polyethylene glycol has good optical stability and high emission ability in the near infrared region. Imaging results demonstrate that zinc phthalocyanine labelled polyethylene glycol can track and monitor the in vivo process by near infrared fluorescence imaging, which implies its potential in biomaterials evaluation in vivo by a real-time noninvasive method.

  5. Characterization of a zinc-cerium flow battery

    Leung, P. K.; Ponce-de-León, C.; Low, C. T. J.; Shah, A. A.; Walsh, F. C.

    The performance of a divided, parallel-plate zinc-cerium redox flow battery using methanesulfonic acid electrolytes was studied. Eight two and three-dimensional electrodes were tested under both constant current density and constant cell voltage discharge. Carbon felt and the three-dimensional platinised titanium mesh electrodes exhibited superior performance over the 2-dimensional electrodes. The charge and discharge characteristics of the redox flow battery were studied under different operating conditions and Zn/Ce reactant, as well as methansulfonic acid concentration. The cell performance improved at higher operating temperatures and faster electrolyte flow velocities. The number of possible cycles increased at reduced states of charge. During 15 min charge/discharge per cycle experiment, 57 cycles were obtained and the zinc reaction was found to be the limiting process during long term operation.

  6. Composite corrosion inhibitors for secondary alkaline zinc anodes

    JIA Zheng; ZHOU De-rui; ZHANG Cui-fen


    The corrosion inhibition property of PEG600 and In(OH)3 as composite corrosion inhibitors for secondary alkaline zinc electrodes was studied,and the inhibition efficiency was determined as 81.9%.The research focused on the mechanism by the methods of electrochemical impedance spectroscopy,polarization curves and IR spectroscopy.The results indicate that the corrosion inhibition effectiveness is attributed to the joint inhibition of anodic zinc dissolution and cathodic hydrogen evolution.And the anodic process is depressed to a greater extent than the cathodic process.The synergistic mechanism of the composite inhinbitors proves to be the enhancement of adsorption of PEG600 by In(OH)3.Potentiostatic experiment results and SEM images verify the inhibition of dendritic growth by the composite inhibitors.

  7. Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens.

    Fones, H N; McCurrach, H; Mithani, A; Smith, J A C; Preston, G M


    Metal-hyperaccumulating plants, which are hypothesized to use metals for defence against pests and pathogens, provide a unique context in which to study plant-pathogen coevolution. Previously, we demonstrated that the high concentrations of zinc found in leaves of the hyperaccumulator Noccaea caerulescens provide protection against bacterial pathogens, with a potential trade-off between metal-based and pathogen-induced defences. We speculated that an evolutionary arms race between zinc-based defences in N. caerulescens and zinc tolerance in pathogens might have driven the development of the hyperaccumulation phenotype. Here, we investigate the possibility of local adaptation by bacteria to the zinc-rich environment of N. caerulescens leaves and show that leaves sampled from the contaminated surroundings of a former mine site harboured endophytes with greater zinc tolerance than those within plants of an artificially created hyperaccumulating population. Experimental manipulation of zinc concentrations in plants of this artificial population influenced the zinc tolerance of recovered endophytes. In laboratory experiments, only endophytic bacteria isolated from plants of the natural population were able to grow to high population densities in any N. caerulescens plants. These findings suggest that long-term coexistence with zinc-hyperaccumulating plants leads to local adaptation by endophytic bacteria to the environment within their leaves. © 2016 The Author(s).

  8. Cytotoxicity of zinc nanoparticles fabricated by Justicia adhatoda L. on root tips of Allium cepa L.--a model approach.

    Taranath, T C; Patil, Bheemanagouda N; Santosh, T U; Sharath, B S


    Zinc nanoparticles were synthesized using aqueous leaf extract of Justicia adhatoda L. The characterization of nanoparticles was done by ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), and high-resolution transmission electron microscopy (HR-TEM). The characteristic absorption peak of the UV spectrum was recorded at 379 nm. The FTIR data revealed the possible biomolecules involved in bioreduction and capping of zinc nanoparticles for efficient stabilization. AFM and HR-TEM images have shown that the size of zinc nanoparticles ranges from 55 to 83 nm and they are spherical in shape. The biogenic zinc nanoparticles were evaluated for their toxic effect on mitotic chromosomes of Allium cepa as a model system. Experiments were conducted in triplicate to assay the effect of 25, 50, 75, and 100 % of zinc nanoparticles on mitotic chromosomes at an interval of 6 h duration for 24 h. The investigation revealed that the mitotic index (MI) was decreased with increased concentration of zinc nanoparticles and exposure duration. The results revealed that zinc nanoparticles have induced abnormalities like anaphase bridge formation, diagonal anaphase, C-metaphase, sticky metaphase, laggards, and sticky anaphase at different percentages and times of exposure. It is evident from the observation that mitotic cell division becomes abortive at 100 % treatment of zinc nanoparticles.

  9. Local adaptation is associated with zinc tolerance in Pseudomonas endophytes of the metal-hyperaccumulator plant Noccaea caerulescens

    Fones, H. N.; McCurrach, H.; Mithani, A.; Smith, J. A. C.


    Metal-hyperaccumulating plants, which are hypothesized to use metals for defence against pests and pathogens, provide a unique context in which to study plant–pathogen coevolution. Previously, we demonstrated that the high concentrations of zinc found in leaves of the hyperaccumulator Noccaea caerulescens provide protection against bacterial pathogens, with a potential trade-off between metal-based and pathogen-induced defences. We speculated that an evolutionary arms race between zinc-based defences in N. caerulescens and zinc tolerance in pathogens might have driven the development of the hyperaccumulation phenotype. Here, we investigate the possibility of local adaptation by bacteria to the zinc-rich environment of N. caerulescens leaves and show that leaves sampled from the contaminated surroundings of a former mine site harboured endophytes with greater zinc tolerance than those within plants of an artificially created hyperaccumulating population. Experimental manipulation of zinc concentrations in plants of this artificial population influenced the zinc tolerance of recovered endophytes. In laboratory experiments, only endophytic bacteria isolated from plants of the natural population were able to grow to high population densities in any N. caerulescens plants. These findings suggest that long-term coexistence with zinc-hyperaccumulating plants leads to local adaptation by endophytic bacteria to the environment within their leaves. PMID:27170725

  10. Zinc-regulated DNA binding of the yeast Zap1 zinc-responsive activator.

    Avery G Frey

    Full Text Available The Zap1 transcription factor of Saccharomyces cerevisiae plays a central role in zinc homeostasis by controlling the expression of genes involved in zinc metabolism. Zap1 is active in zinc-limited cells and repressed in replete cells. At the transcriptional level, Zap1 controls its own expression via positive autoregulation. In addition, Zap1's two activation domains are regulated independently of each other by zinc binding directly to those regions and repressing activation function. In this report, we show that Zap1 DNA binding is also inhibited by zinc. DMS footprinting showed that Zap1 target gene promoter occupancy is regulated with or without transcriptional autoregulation. These results were confirmed using chromatin immunoprecipitation. Zinc regulation of DNA binding activity mapped to the DNA binding domain indicating other parts of Zap1 are unnecessary for this control. Overexpression of Zap1 overrode DNA binding regulation and resulted in constitutive promoter occupancy. Under these conditions of constitutive binding, both the zinc dose response of Zap1 activity and cellular zinc accumulation were altered suggesting the importance of DNA binding control to zinc homeostasis. Thus, our results indicated that zinc regulates Zap1 activity post-translationally via three independent mechanisms, all of which contribute to the overall zinc responsiveness of Zap1.

  11. Solubilization and Transformation of Insoluble Zinc Compounds by Fungi Isolated from a Zinc Mine

    Thanawat Sutjaritvorakul


    Full Text Available Fungi were isolated from zinc-containing rocks and mining soil. They were screened for the ability to solubilize and transform three insoluble zinc compounds: ZnO, Zn3(PO4, and ZnCO3. Fungi were plated on potato dextrose agar (PDA medium which was supplemented with 0.5% (w/v of insoluble zinc compounds. Of the strains tested, four fungal isolates showed the highest efficiency for solubilizing all the insoluble zinc compounds, producing clearing zone diameters > 40 mm. These were identified as a Phomopsis spp., Aspergillus sp.1, Aspergillus sp.2, and Aspergillus niger. Zinc oxide was the most easily solubilized compound and it was found that 87%, 52%, and 61% of the tested fungi (23 isolates were able to solubilize zinc oxide, zinc phosphate, and zinc carbonate, respectively. Precipitation of zinc-containing crystals was observed in zinc oxide-containing agar medium underneath colonies of Aspergillus sp.1, and these were identified as zinc oxalate. It is suggested that these kinds of fungi have the potential application in bioremediation practices for heavy metal contaminated soils.

  12. Clinical Aspects of Trace Elements: Zinc in Human Nutrition - Assessment of Zinc Status

    Michelle M Pluhator


    Full Text Available Because the limiting and vulnerable zinc pool has not been identified, it becomes a challenge to determine which of the many zinc pools is most susceptible to deficiency. As a consequence, defining and assessing zinc status in the individual patient is a somewhat uncertain process. Laboratory analysis of zinc status is difficult because no single biochemical criterion can reliably reflect zinc body stores. Many indexes have been examined in the hopes of discovering a method for the assessment of zinc nutriture. None of the methods currently used can be wholeheartedly recommended because they are fraught with problems that affect their use and interpretation. However, these methods remain in use for clinical and research purposes, though their benefits and drawbacks must always be acknowledged. Until an acceptable method of analysis is discovered, clinicians must rely for confirmation of zinc deficiency on a process of supplementing with zinc and observing the patient’s response. The main indexes (plasma/serum, erythrocyte, leukocyte, neutrophil, urine, hair and salivary zinc levels, taste acuity and oral zinc tolerance tests, and measurement of metallothionein levels are reviewed. Measurement of plasma or erythrocyte metallothionein levels shows promise as a future tool for the accurate determination of zinc status.

  13. The Potential for Zinc Stable Isotope Techniques and Modelling to Determine Optimal Zinc Supplementation

    Cuong D. Tran


    Full Text Available It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease.

  14. Intravenous zinc therapy for acquired zinc deficiency secondary to gastric bypass surgery: a case report.

    Vick, Garrett; Mahmoudizad, Rod; Fiala, Katherine


    Zinc deficiency may result from either a congenitally inherited defect of zinc absorption or is acquired secondarily from a variety of factors affecting dietary zinc intake, absorption, or loss. We report a case of acquired zinc deficiency secondary to gastric bypass surgery that resulted in vulvar cutaneous manifestations of delayed onset, with failure to clear after oral supplementation with zinc. The patient experienced improvement of symptoms only after administration of intravenous zinc supplementation. Upon review of the current literature, it is thought that the patient's original suboptimal response to oral supplementation and improvement after receiving intravenous zinc were related to the intentional surgical alteration and bypass of the absorptive capacity of the duodenum and jejunum. With the current prevalence of obesity and availability of surgical weight loss therapies, it is important to be mindful of the resulting nutritional deficiencies, their clinical manifestations, and factors affecting the efficacy of therapeutic approaches as seen in this case.

  15. Molybdate based passivation of zinc

    Tang, Peter Torben; Bech-Nielsen, Gregers; Møller, Per


    In order to reduce corrosion rates, zinc plated parts are usually chromated. Recently chromates have caused increasingly environmental concern, for both allergic effects among workers touching chro-mated parts and toxic effects on fish, plants and bacteria. A molybdate based alternative has been...... developed to replace chromates in several passivation applica-tions. Depending on the environment in which the passivated parts are to be exposed, the protection that this alternative treatment provides range from less efficient to more efficient as compared to chromate. These aspects as well as issues...

  16. Bidirectional reflectance of zinc oxide

    Scott, R.


    This investigation was undertaken to determine original and useful information about the bidirection reflectance of zinc oxide. The bidirectional reflectance will be studied for the spectra between .25-2.5 microns and the hemisphere above the specimen. The following factors will be considered: (1) surface conditions; (2) specimen preparation; (3) specimen substrate, (4) polarization; (5) depolarization; (6) wavelength; and (7) angles of incident and reflection. The bidirectional reflectance will be checked by experimentally determined angular hemispherical measurements or hemispherical measurements will be used to obtain absolute bidirectional reflectance.

  17. Zinc dosing and glucose tolerance in humans

    Greenley, S.; Taylor, M.


    Animal data suggest the existence of a physiologic relationship between glucoregulatory hormones and zinc metabolism. In order to investigate this proposed relationship in humans, they examined the effect of moderately elevated plasma zinc levels on blood glucose clearance. Eight women (24-37 yrs) served as subjects for the study. Fasted volunteers were tested under two experimental conditions (a) ingestion of 50 g D-glucose (b) ingestion of 25 mg zinc followed 60 min later by ingestion of 50 g D-glucose. Five ml venous blood was drawn into trace-metal-free, fluoride-containing vacutainer tubes prior to and 15, 30, 45, 60, 90, and 120 min after glucose ingestion. Plasma was analyzed for glucose and zinc; glycemic responses were quantified by computing areas under the curves and times to peak concentration. Their human data indicate varied glycemic responses to the acute elevation of plasma zinc: 4 subjects showed little apparent effect; 3 subjects marginally increased either the area under the curve or time to peak and 1 subject (classified as suspect diabetic in the non-zinc condition) showed marked improvement in glycemic response following zinc ingestion. Their preliminary results suggest that blood glucose clearance may be affected in some individuals by the acute elevation of plasma zinc.

  18. Zinc anode alloy for sacrificial anodes

    Jore, T.N.


    A zinc anode for sacrifical anodes, for preventing intercrystalline corrosion, comprises 0.10-050% by weight Al, 0.025-1.15% by weight Cd, and the remainder zinc and impurities caused by the production method, wherein the alloy also contains 0.01-1.0% magnesium.

  19. Effect of zinc salt solutions on the development of chlorophyll and formation of seeds of maize hybrids

    M. D. Tafij


    Full Text Available Zinc as an element is considered as one of the most limiting nutrients for crop production, mainly for cereals in the arid areas of the world. The article explores the impact of zinc salts at different concentrations on the course of physiological biochemical processes, germination and development of nine investigated hybrids of maize. In particular, we investigate how zinc nitrate solutions influence physiological biochemical processes of different maize hybrids. It is established that high concentration of zinc salt solution can arrest or inhibit processes of plants growth, exerting an effect typical of heavy metals. The influence of 0.01% and 0.02% of zinc nitrate aqueous solution on the content of chlorophyll and number of seeds on the stalks of different corn hybrids was studied. The results of experiments in which germinating seeds were placed in Petri dishes containing 0.01% and 0.02% nitrate zinc solutions showed that zinc in these quantities stimulates the synthesis of chlorophyll in the leaves in all studied hybrids, thereby stimulating plant growth. Thereafter, low concentrations of salt solutions of the same element stimulated all development processes. Zinc enters the active enzyme centers and participates directly in chlorophyll synthesis. The spray of solutions as foliar fertilizers at critical stages of corn growth increases the number of seeds, the diameter and length of stalk in the early ripening hybrids group, compared with the control. It was shown that lack of zinc affects the formation of seeds. The results of the field experiments showed that corn foliar feeding with 0.01% sodium nitrate increased productivity of the studied hybrids. Symptoms of zinc deficiency develop throughout the whole plant or are localized on the old lower leaves. At first, brownish grey and purple-coloured spots appear on the leaves of the lower and middle layers and then spread over the rest of the plant. The tissue of the areas like these simply

  20. Joint Performance for Laser Cutting-welding of Zinc-coated Tailored Blanks

    WANG Chunming; HU Lunji; LIU Jianhua; HU Xiyuan; DU Hanbin


    The process of laser butt welding of zinc-coated steel ( SGCD3 and WLZn ) blanks was presented, whose edges were prepared by laser cutting. The properties of the butt joints, such as tensile strength, bending, stamping, weld shape, and corrosion- resistant were tested. The experiments of laser cutting and welding were carried out on a custom-made system designed, which is a set of equipment for wide sheet butt welding based on a laser cutting-welding combination process. The experiments proved the technological feasibility of laser butt welding for thin zinc coated steel sheets whose edges were prepared by laser cutting on the same equipment.


    Pytko-Polończyk, Jolanta; Antosik, Agata; Zajac, Magdalena; Szlósarczyk, Marek; Krywult, Agnieszka; Jachowicz, Renata; Opoka, Włodzimierz


    Caries is the most popular problem affecting teeth and this is the reason why so many temporary dental filling materials are being developed. An example of such filling is zinc oxide paste mixed with eugenol, Thymodentin and Coltosol F®. Zinc-oxide eugenol is used in dentistry because of its multiplied values: it improves heeling of the pulp by dentine bridge formation; has antiseptic properties; is hygroscopic. Because of these advantages compouds of zinc oxide are used as temporary fillings, especially in deep caries lesions when treatment is oriented on support of vital pulp. Temporary dental fillings based on zinc oxide are prepared ex tempone by simple mixing powder (Thymodentin) and eugenol liqiud together or a ready to use paste Coltosol F®. Quantitative composition depends mainly on experience of person who is preparing it, therefore, exact qualitative composition of dental fillings is not replicable. The main goal of the study was to develop appropriate dental fillings in solid form containing set amount of zinc oxide. Within the study, the influence of preparation method on solid dental fillings properties like mechanical properties and zinc ions release were examined.

  2. Influence of ultrasound power and frequency upon corrosion kinetics of zinc in saline media.

    Doche, M-L; Hihn, J-Y; Mandroyan, A; Viennet, R; Touyeras, F


    This paper is devoted to zinc corrosion and oxidation mechanism in an ultrasonically stirred aerated sodium sulfate electrolyte. It follows a previous study devoted to the influence of 20 kHz ultrasound upon zinc corrosion in NaOH electrolytes [Ultrason. Sonochemis. 8 (2001) 291]. In the present work, various ultrasound regimes were applied by changing the transmitted power and the wave frequency (20 and 40 kHz). Unlike NaOH electrolyte which turns the zinc electrode into a passive state, Na2SO4 saline media induces soft corrosion conditions. This allows a study of the combined effects of ultrasonically modified hydrodynamic and mechanical damage (cavitation) upon the zinc corrosion process. A series of initial experiments were carried out so as to determine the transmitted power and to characterize mass transfer distribution in the electrochemical cell. Zinc corrosion and oxidation process were subsequently studied with respect to the vibrating parameters. When exposed to a 20 kHz ultrasonic field, and provided that the electrode is situated at a maximum mass transfer point, the corrosion rate reaches values six to eight times greater than in silent conditions. The zinc oxidation reaction, in the absence of competitive reduction reactions, is also activated by ultrasound (20 and 40 kHz) but probably through a different process of surface activation.

  3. Effect of Lead—Zinc Interaction on Size of Microbial Biomss in Red Soil



    A laboratory incubation experiment was onducted to evaluate the effects of lead and zinc applied alone or in various combinations on the size of microbial biomass in a red soil.Treatments included the application of lead at six different levels i.e.,0(background),100,200,300,450 and 600μg g-1 soil along with each of the four levels of zinc(0,50,150 or 250μg g-1 soil).Application of lead or zinc alone to soil significantly(P<0.001) affected the soil microbial biomass,The microbial biomass carbon(Cmic) ,bimass nitrogen(Nmic) and biomass phosphours(Pmic) decreased sharply in soils contaminted with led or zinc. Combinewd application of lead and zinc resulted in a greater biocidal effect on soil microbial biomass,which was signifcantly higher(P<0.001) than that when either lead or zinc was applied alone.Consistent increased in the biomass C:N and decline in the biomass C:P rations were aslo observed with the increased metal(Pb and Zn) toxictiy in the soil.


    Lucilia Alves Linhares


    Full Text Available In environmental studies, knowledge of the chemical forms of copper and zinc and the relationships with the levels available, are important for predicting the elements behavior in the soil-plant system. To assess the distribution of copper and zinc in soils of Minas Gerais State and their relations with their availability, an experiment was carried out on samples from six natural soils at two depths. The soil samples were incubated with the elements of interest and subjected to sequential extraction for separation of the elements in six fractions defined operationally. The results showed that the technique provided valuable information regarding the interaction of copper and zinc in soil and their speciation in various fractions of soils. There was a larger distribution of zinc in the exchangeable fraction and residual, while copper was preferably associated to more stable chemical forms, that is, related to reducible and residual forms. The nearly null extractions of copper and zinc from the soluble fraction and the exchangeable Argilúvico Chernosol (soil 2 and Tb eutrophic Haplic Cambisol (soil 3 systems correspond to the soil-metal system with the largest retention and lower availability of the elements in these soils. The predominance of copper and zinc associated mainly with the soluble and exchangeable fractions in Cambisol (soil 4 and latosol orthic Quartzarenic Neosol (soil 6 showed increased mobility and availability of the metals in more acidic and sandy soil when compared with the other soils.

  5. Synthesis and Characterization of Zinc Borate Nanowhiskers and Their Inflaming Retarding Effect in Polystyrene

    Pingqiang Gao


    Full Text Available Zinc borate nanowhiskers 4ZnO·B2O3·H2O were in situ successfully synthesized via one-step precipitation reaction. A set of experiments was performed to evaluate the influence of reaction temperature. Increasing the temperature up to 70°C led to the high purity of zinc borate nanowhiskers with a monoclinic crystal structure measuring 50 nm to 100 nm in diameter and approximately 1 µm in length. However, higher temperature decreases the crystallization due to the emergence of other styles of zinc borate. Flame-resistant nanocomposites of polystyrene and zinc borate nanowhiskers were also successfully synthesized. The samples were investigated by XRD, FESEM, FTIR, and TG. The mechanical properties of the composites were also tested. The incorporation of zinc borate nanowhiskers improved the thermal and mechanical properties for polystyrene. FESEM images show that zinc borate nanowhiskers increased the smoothness of composites. The composites presented good responsive behavior in relation to LOI (limiting oxygen index allowing them to be suitable for green flame retardants.

  6. Recent advances in zinc-air batteries.

    Li, Yanguang; Dai, Hongjie


    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.

  7. Zinc Is Involved in Depression by Modulating G Protein-Coupled Receptor Heterodimerization.

    Tena-Campos, Mercè; Ramon, Eva; Lupala, Cecylia S; Pérez, Juan J; Koch, Karl-W; Garriga, Pere


    5-Hydroxytryptamine 1A receptor and galanin receptor 1 belong to the G protein-coupled receptors superfamily, and they have been described to heterodimerize triggering an anomalous physiological state that would underlie depression. Zinc supplementation has been widely reported to improve treatment against major depressive disorder. Our work has focused on the study and characterization of these receptors and its relationships with zinc both under purified conditions and in cell culture. To this aim, we have designed a strategy to purify the receptors in a conformationally active state. We have used receptors tagged with the monoclonal Rho-1D4 antibody and employed ligand-assisted purification in order to successfully purify both receptors in a properly folded and active state. The interaction between both purified receptors has been analyzed by surface plasmon resonance in order to determine the kinetics of dimerization. Zinc effect on heteromer has also been tested using the same methodology but exposing the 5-hydroxytryptamine 1A receptor to zinc before the binding experiment. These results, combined with Förster resonance energy transfer (FRET) measurements, in the absence and presence of zinc, suggest that this ion is capable of disrupting this interaction. Moreover, molecular modeling suggests that there is a coincidence between zinc-binding sites and heterodimerization interfaces for the serotonin receptor. Our results establish a rational explanation for the role of zinc in the molecular processes associated with receptor-receptor interactions and its relationship with depression, in agreement with previously reported evidence for the positive effects of zinc in depression treatment, and the involvement of our target dimer in the same disease.

  8. Effectiveness of zinc in modulating perinatal effects of arsenic on the teratological effects in mice offspring.

    Ahmad, Mohammad; Wadaa, Mohammad A M; Farooq, Muhammad; Daghestani, Maha H; Sami, Ahmed S


    Exposure to arsenic via drinking water is considered as a worldwide problem. Studies have shown that arsenic exposure during pregnancy affects embryogenesis and offspring development in rats and mice. Zinc as a micronutrient regulates many physiological functions, including an antioxidative role under various toxic conditions. However, studies on the perinatal protective effect of zinc on offspring need further attention. The present study was designed to evaluate the potential protective role of zinc in mitigating the adverse effects in the offspring of arsenic exposure during pregnancy. The arsenic (40mg/kg body weight) and zinc (4% w/v) doses formed the only drinking fluid source for the experimental groups of dams during the perinatal period of the experiment. The early development of sensory motor coordination reflexes together with morphological development in the male pups was measured during the weaning period. In adolescence, the offspring were tested for their motor behavior. The enzyme γ-glutamyl transferase (γ-GT) and the oxidative stress indices like reduced glutathione (GSH) and lipid peroxidation (TBARS) were also estimated in the serum of the young adult male mice. Perinatal arsenic exposure caused depletion in body weight gain, delay in morphological development and retardation in the development of all sensory motor reflexes of the pups. In young adults, significant decrease in motor behavior with significant decrease in GSH level in the serum was observed. On the other hand, γ-GT and TBARS were significantly increased in the serum due to arsenic treatment. However, animals exposed to arsenic in the presence of zinc showed a remarkable ameliorating effect of zinc on all observed teratological and biochemical arsenic toxicity in male offspring. It was observed that zinc has an antioxidative role in the perinatal toxicity of arsenic. It is concluded from the present study that zinc consumed during the perinatal period of pregnancy can ameliorate

  9. Effects of Dietary Zinc Oxide and a Blend of Organic Acids on Broiler Live Performance, Carcass Traits, and Serum Parameters

    BG Sarvari


    Full Text Available ABSTRACT This experiment was carried out to evaluate the effect of different dietary supplementation levels of zinc oxide and of an organic acid blend on broiler performance, carcass traits, and serum parameters. A total of 2400 one-day-old male Ross 308 broiler chicks, with average initial body weight 44.21±0.19g, was distributed according to a completely randomized design in a 2 x 3 factorial arrangement. Six treatments, consisting of diets containing two zinc oxide levels (0 and 0.01% of the diet and three organic acid blend levels (0, 0.15, and 0.30% were applied, with eight replicates of 50 birds each. The experimental diets were supplied ad libitum for 42 days. There were significant performance differences among birds fed the different zinc oxide and organic acid blend levels until 42 d of age (p<0.01. The result of this experiment showed that the organic acid blend did not affect feed intake, but zinc oxide increased feed intake. Carcass traits were not influenced by the experimental supplements. Zinc oxide supplementation increased serum alkaline phosphatase level (p<0.01. The organic acid blend reduced serum cholesterol and triglyceride levels (p<0.05. No interactions were found between zinc oxide and the organic acid blend for none of the evaluated parameters. We concluded that zinc oxide and the evaluated organic acid blend improve broiler performance.

  10. Thermodynamic Modeling of Zinc Speciation in Electric Arc Furnace Dust

    Pickles, Chris A.


    The remelting of automobile scrap, containing galvanized steel, in an electric arc furnace (EAF) results in the generation of a dust, which contains considerable amounts of zinc and other metals. Typically, the amount of zinc is of significant commercial value, but the recovery of this metal can be hindered by the varied speciation of zinc. The majority of the zinc exists as zincite (ZnO) and zinc ferrite (ZnFe2O4) or ferritic spinels ((Zn x Mn y Fe1-x-y )Fe2O4), but other zinccontaining species such as zinc chloride, zinc hydroxide chlorides, hydrated zinc sulphates and zinc silicates have also been identified. There is a scarcity of research literature on the thermodynamic aspects of the formation of these zinc-containing species, in particular, the minor zinc-containing species. Therefore, in this study, the equilibrium module of HSC Chemistry® 6.1 was utilized to calculate the types and the amounts of the zinc-containing species. The variables studied were: the gas composition, the temperature and the dust composition. At high temperatures, zincite forms via the reaction of zinc vapour with oxygen gas and the zinc-manganese ferrites form as a result of the reaction of iron-manganese particles with zinc vapour and oxygen. At intermediate temperatures, zinc sulphates are produced through the reaction of zinc oxide and sulphur dioxide gas. As room temperature is approached, zinc chlorides and fluorides form by the reaction of zinc oxide with hydrogen chloride and hydrogen fluoride gases, respectively. Zinc silicate likely forms via the high temperature reaction of zinc vapour and oxygen with silica. In the presence of excess water and as room temperature is approached, the zinc sulphates, chlorides and fluorides can become hydrated.

  11. Zinc deficiency: a special challenge.

    Hambidge, K Michael; Krebs, Nancy F


    In the development and testing of programs designed to improve complementary feeding globally, local nonfortified food-based solutions comprise an important strategy for the foreseeable future. These solutions are especially vital for the rural poor of less-developed countries. Zinc is notable among individual nutrients that have been designated as "problem" nutrients, adequate intake of which is difficult from complementary foods without fortification. This article considers the potential role of meat +/- liver in addressing this apparent problem. In a recent Colorado study, beef and cereal have been determined to be equally acceptable between age 5-7 mo as first and regular complementary foods. Average intake and absorption of Zn from beef by 7 mo of age, together with the modest intake/absorption of Zn from breast milk at that age, were adequate to meet average dietary and physiologic zinc requirements, respectively. Barriers to acceptability and availability of affordable meat are considered, but these are neither universal nor irresolvable in all populations.

  12. The effect of zinc deficiency and zinc supplementation on element levels in the bone tissue of ovariectomized rats: histopathologic changes.

    Baltaci, Abdulkerim Kasim; Sunar, Fusun; Mogulkoc, Rasim; Acar, Musa; Toy, Hatice


    Study aimed to determine the effects of zinc supplementation/deficiency on the histological structure and elements levels in bone tissue in ovariectomized rats. The study included 40 Sprague-Dawley type adult female rats, divided as follows: Control, ovariectomized, ovariectomized + zinc supplemented, ovariectomized + zinc deficient groups. At the end of the study bone tissues (femur) were collected to determine the levels of calcium, phosphorus, magnesium, zinc, iron, aluminium, chrome, lithium, lead, nickel, and manganese. The bone tissue was examined for histopathology. Ovariectomy leaded to significant decrease in magnesium. Zinc supplementation to ovariectomized rats restored the reduced calcium, phosphorus, zinc. However, zinc deficiency in ovariectomized rats further reduced calcium, phosphorus, zinc, and manganese levels. Zinc deficiency in ovariectomized significantly increased Al, Cr, Li, Pb, and Ni levels. Tissue integrity was impaired due to ovariectomy and zinc deficiency. Ovariectomy and zinc deficiency leads significant decreases elements of the bone.

  13. Effects of zinc supplementation and zinc chelation on in vitro β-cell function in INS-1E cells

    Nygaard, Sanne Bjørn; Larsen, Agnete; Knuhtsen, Astrid;


    BACKGROUND: Zinc is essential for the activities of pancreatic β-cells, especially insulin storage and secretion. Insulin secretion leads to co-release of zinc which contributes to the paracrine communication in the pancreatic islets. Zinc-transporting proteins (zinc-regulated transporter, iron......-regulated transporter-like proteins [ZIPs] and zinc transporters [ZnTs]) and metal-buffering proteins (metallothioneins, MTs) tightly regulate intracellular zinc homeostasis. The present study investigated how modulation of cellular zinc availability affects β-cell function using INS-1E cells. RESULTS: Using INS-1E...... cells, we found that zinc supplementation and zinc chelation had significant effects on insulin content and insulin secretion. Supplemental zinc within the physiological concentration range induced insulin secretion. Insulin content was reduced by zinc chelation with N,N,N',N-tektrakis(2-pyridylmethyl...

  14. Zinc distribution in blood components, inflammatory status, and clinical indexes of disease activity during zinc supplementation in inflammatory rheumatic diseases.

    Peretz, A; Nève, J; Jeghers, O; Pelen, F


    The effects of zinc supplementation on zinc status and on clinical and biological indicators of inflammation were investigated in 18 patients with chronic inflammatory rheumatic diseases and in 9 healthy control subjects. Patients with mild and recent onset disease were assigned to a 60-d trial to receive either 45 mg Zn (as gluconate)/d or a placebo, while control subjects received the zinc supplement. Baseline mean plasma zinc of the patients was low whereas mononuclear cell zinc content was elevated, suggesting a redistribution of the element related to the inflammatory process rather than to a zinc-deficient state. Zinc supplementation increased plasma zinc to a similar extent in patients and in control subjects, which suggested no impairment of zinc intestinal absorption as a result of the inflammatory process. On the contrary, erythrocyte and leukocyte zinc concentrations were not modified in the two groups examined. No beneficial effect of zinc treatment could be demonstrated on either clinical or inflammation indexes.

  15. Nucleation and growth in alkaline zinc electrodeposition An Experimental and Theoretical study

    Desai, Divyaraj

    -order accuracy. Existing phase-field models of solidification and electrodeposition are used to simulate the growth and formation of individual zinc crystals. The driving force for solidification models (i.e. supersaturation) is reinterpreted in terms of overpotential under the assumption of a conductive electrolyte. The final morphologies are astonishingly similar to those observed in dynamical experiments. Further, the phase-field models obey the predictions of the linear perturbation analysis, which gives good credibility to the phase-field approach to simulate electrodeposition processes.


    O. M. Kuchkovsky


    Full Text Available Physiological mechanisms of convulsions status during epilepsy or episindrom significantly different from the mechanisms, which were describe for other disorders associated with glutamatergic system, such as schizophrenia (a decrease of glutamate in neurons and increased dopaminergic load, drug addiction and alcoholism (the formation of endogenous opioids and dopamine, strengthening the role of GABA-ergic system. With glutamatergic transmission are сconnect not only convulsive state, but also the realization of higher integrative functions. Therefore, the development of epilepsy, particularly  which caused glutamate, implemented by activating Zn-ergic hippocampal neurons, associate with complex changes in human mental functions. Based on a scientific literature about  of the role of chelating zinc in the mechanisms of glutamatergic transmission, we can  suggest it participation in the mechanisms of formation of epilepsy  convulsions. In experience on animals, was show that in the animal organism of stressing correlative changes observe zinc content and secretory material in the hippocampus, Paneth cells  and B cells of pancreas. The nature of the changes depend on the stressor. When this change of zinc content in the hippocampus and hypothalamus (as the main regulator of stress reaction were multidirectional that this can be explained by the release of metal together with secretory material in the hypothalamus into the bloodstream. Research epileptic activity  of hippocampus by administering to the animal chelate 8 BSQ allowed to establish the dependence between convulsant action  and first  stress condition of the animal. Evocation of stress by 8-BSQ and physical activity, immobilization and alcohol abuse found that the convulsive effect of this reagent during intravitreal research increased in the case of prior exposure by specified kinds of stressors. In this pre-convulsive effect on exertion increased by 266% and the zinc content

  17. Serum zinc levels in gestational diabetes

    Rahimi Sharbaf F


    Full Text Available "nBackground: Maternal zinc deficiency during pregnancy has been related to adverse pregnancy outcomes. Most studies in which pregnant women have been supplemented with zinc to examine its effects on the outcome of the pregnancy have been carried out in industrialized countries and the results have been inconclusive. It has been shown that women with gestational diabetes (GDM have lower serum zinc levels than healthy pregnant women, and higher rates of macrosomia. Zinc is required for normal glucose metabolism, and strengthens the insulin-induced transportation of glucose into cells by its effect on the insulin signaling pathway. The purpose of this study was to assess the serum zinc levels of GDM patients and evaluate the effect of zinc supplementation. "nMethods: In the first stage of this prospective controlled study, we enrolled 70 women who were 24-28 weeks pregnant at the Prenatal Care Center of Mirza Kochak Khan Hospital, Tehran, Iran. The serum zinc level of each subject was determined. In the second stage, among these 70 subjects, the diabetics receiving insulin were divided into two groups, only one of which received a zinc supplement and the other group was the control group. Birth weight of neonates and insulin dosages were recorded. "nResults: The mean serum zinc level in the GDM group was lower than that of the control group (94.83 vs. 103.49mg/dl, respectively and the mean birth weight of neonates from the GDM women who received the zinc supplement was lower than that of the control group (3849g vs. 4136g. The rate of macrosomia was lower in the zinc supplemented group (20% vs. 53%. The mean of increase of insulin after receiving the zinc supplement was lower (8.4u vs. 13.53. "nConclusion: Maternal insulin resistance is associated with the accumulation of maternal fat tissue during early stages of pregnancy and greater fetoplacental nutrient availability in later stages, when 70% of fetal growth occurs, resulting in macrosomia. In

  18. Studies on the bioavailability of zinc in humans: intestinal interaction of tin and zinc.

    Solomons, N W; Marchini, J S; Duarte-Favaro, R M; Vannuchi, H; Dutra de Oliveira, J E


    Mineral/mineral interactions at the intestinal level are important in animal nutrition and toxicology, but only limited understanding of their extent or importance in humans has been developed. An inhibitory interaction of dietary tin on zinc retention has been recently described from human metabolic studies. We have explored the tin/zinc interaction using the change-in-plasma-zinc-concentration method with a standard dosage of 12.5 mg of zinc as zinc sulfate in 100 ml of Coca-Cola. Sn/Zn ratios of 2:1, 4:1, and 8:1, constituted by addition of 25, 50, and 100 mg of tin as stannous chloride, had no significant overall effect on zinc uptake. The 100-mg dose of tin produced noxious gastrointestinal symptoms. Addition of iron as ferrous sulfate to form ratios of Sn/Fe/Zn of 1:1:1 and 2:2:1 with the standard zinc solution and the appropriate doses of tin produced a reduction of zinc absorption not dissimilar from that seen previously with zinc and iron alone, and addition of picolinic acid did not influence the uptake of zinc from the solution with the 2:2:1 Sn/Fe/Zn ratio.


    Ľuboš Harangozo


    Full Text Available The yeast Saccharomyces cerevisiae is the best known microorganism and therefore widely used in many branches of industry. This study aims to investigate the accumulation of three inorganic zinc salts. Our research presents the ability of this yeast to absorb zinc from liquid medium and such enriched biomass use as a potential source of microelements in animal and/or human nutrition. It was found that the addition of different zinc forms, i.e. zinc nitrate, zinc sulphate and zinc chloride in fixed concentrations of 0, 25, 50 and 100 mg.100 ml-1 did not affect the amount of dry yeast biomass yielded, i.e. 1.0 – 1.2 g of yeast cells from 100 ml of cultivation medium, while higher presence of zinc solutions caused significantly lower yield of yeast biomass. The highest amount of zinc in yeast cells was achieved when added in the form of zinc nitrate in concentration of 200 mg.100 ml-1 YPD medium. The increment of intracellular zinc was up to 18.5 mg.g-1 of yeast biomass.

  20. PIAS1-modulated Smad2/4 complex activation is involved in zinc-induced cancer cell apoptosis.

    Yang, N; Zhao, B; Rasul, A; Qin, H; Li, J; Li, X


    Prostate cancer is one of the most frequently diagnosed cancers among men. Dietary intake of nutrients is considered crucial for preventing the initiation of events leading to the development of carcinoma. Many dietary compounds have been considered to contribute to cancer prevention including zinc, which has a pivotal role in modulating apoptosis. However, the mechanism for zinc-mediated prostate cancer chemoprevention remains enigmatic. In this study, we investigated the therapeutic effect of zinc in prostate cancer chemoprevention for the first time. Exposure to zinc induced apoptosis and resulted in transactivation of p21(WAF1/Cip1) in a Smad-dependent and p53-independent manner in prostate cancer cells. Smad2 and PIAS1 proteins were significantly upregulated resulting in dramatically increased interactions between Smad2/4 and PIAS1 in the presence of zinc in LNCaP cells. Furthermore, it was found that the zinc-induced Smad4/2/PIAS1 transcriptional complex is responsible for Smad4 binding to SBE1 and SBE3 regions within the p21(WAF1/Cip1) promoter. Exogenous expression of Smad2/4 and PIAS1 promotes zinc-induced apoptosis concomitant with Smad4 nuclear translocation, whereas endogenous Smad2/4 silencing inhibited zinc-induced apoptosis accompanying apparent p21(WAF1/Cip1) reduction. Moreover, the knockdown of PIAS1 expression attenuated the zinc-induced recruitment of Smad4 on the p21(WAF1/Cip1) promoter. The colony formation experiments demonstrate that PIAS1 and Smad2/4 silencing could attenuate zinc apoptotic effects, with a proliferation of promoting effects. We further demonstrate the correlation of apoptotic sensitivity to zinc and Smad4 and PIAS1 in multiple cancer cell lines, demonstrating that the important roles of PIAS1, Smad2, and Smad4 in zinc-induced cell death and p21(WAF1/Cip1) transactivation were common biological events in different cancer cell lines. Our results suggest a new avenue for regulation of zinc-induced apoptosis, and provide a

  1. Hyperaccumulation of zinc by zinc-depleted Candida utilis grown in chemostat culture.

    Lawford, H G; Pik, J R; Lawford, G R; Williams, T; Kligerman, A


    The steady-state levels of zinc in Candida utilis yeast grown in continuous culture under conditions of zinc limitations are zinc-depleted cells from a zinc-limited chemostat possess the capacity to accumulate and store zinc at levels far in excess of the steady-state level of 4 nmol/mg dry biomass observed in carbon-limited chemostat cultures. Zinc uptake is energy-dependent and apparently undirectional since accumulated 65Zn neither exists from preloaded cells nor exchanges with cold Zn2+. The transport system exhibits a high affinity for Zn2+ (Km =.36micrM) with a Vmaxof 2.2 nmol per minute per milligram dry weight of cells. Growth during the period of the uptake assay is responsible for the apparent plateau level of 35 nmol Zn2+/mg dry weight of cells achieved after 20-30 min in the presence of 65Zn at pH 4.5 and 30 degrees C. Inhibition of growth during the uptake assay by cycloheximide results in a biphasic linear pattern of zinc accumulation where the cellular zinc is about 60 nmol/mg dry weight after 1 h. The enhanced level of accumulated zinc is not inhibtory to growth. Zinc-depleted C. utilis contains elevated amounts of polyphosphate and this anionic evidence does not allow discrimination between possible regulation of zinc homestasis either by inhibitions of zinc efflux through control of the membrane carrier or by control of the synthesis of a cytoplasmic zinc-sequestering macromolecule.

  2. Zinc Binding by Lactic Acid Bacteria

    Jasna Mrvčić


    Full Text Available Zinc is an essential trace element in all organisms. A common method for the prevention of zinc deficiency is pharmacological supplementation, especially in a highly available form of a metalloprotein complex. The potential of different microbes to bind essential and toxic heavy metals has recently been recognized. In this work, biosorption of zinc by lactic acid bacteria (LAB has been investigated. Specific LAB were assessed for their ability to bind zinc from a water solution. Significant amount of zinc ions was bound, and this binding was found to be LAB species-specific. Differences among the species in binding performance at a concentration range between 10–90 mg/L were evaluated with Langmuir model for biosorption. Binding of zinc was a fast process, strongly influenced by ionic strength, pH, biomass concentration, and temperature. The most effective metal-binding LAB species was Leuconostoc mesenteroides (27.10 mg of Zn2+ per gram of dry mass bound at pH=5 and 32 °C, during 24 h. FT-IR spectroscopy analysis and electron microscopy demonstrated that passive adsorption and active uptake of the zinc ions were involved.

  3. Interactions of cadmium and zinc during pregnancy

    Sorell, T.L.


    The interactions of cadmium exposure and zinc during pregnancy were investigated by studying rats exposed to 0, 5, 50, or 100 ppm cadmium (as CdCl{sub 2}) in the drinking water from day 6 to day 20 of pregnancy. On day 20 of pregnancy, fetuses of rats exposed to 50 and 100 ppm of cadmium were slightly but significantly smaller than those of control animals. Fetal weight was negatively correlated with fetal cadmium concentration and positively correlated with fetal cadmium concentration. Significant fetal cadmium accumulation occurred in both the 50 and 100 ppm cadmium exposure groups; fetal zinc concentrations were decreased. Maternal liver and kidney zinc concentrations were slightly elevated, and the possible role of maternal organ sequestration of available zinc is discussed. The activity of two zinc metalloenzymes, alkaline phosphatase and {delta}-aminolevulinic acid dehydratase, was decreased in maternal and fetal tissues, providing evidence of an alteration in zinc metabolism. In addition, the placental transport of {sup 65}Zn was characterized in control animals and compared to exposed groups; placental zinc transport was significantly decreased in the 50 and 100 ppm exposure groups.

  4. Zinc-Laccase Biofuel Cell

    Abdul Aziz Ahmad


    Full Text Available A zinc-laccase biofuel cell adapting the zinc-air cell design features is investigated. A simple cell design configuration is employed: a membraneless single chamber and a freely suspended laccase in a quasi-neutral buffer electrolyte. The cell is characterised according to its open-circuit voltage, polarization profile, power density plot and discharge capacity at constant current. The biocatalytic role of laccase is evident from the polarization profile and power output plot. Performance comparison between a single chamber and dual chamber cell design is also presented. The biofuel cell possessed an open-circuit voltage of 1.2 V and delivered a maximum power density of 0.9 mW/cm2 at current density of 2.5 mA/cm2. These characteristics are comparable to biofuel cell utilising a much more complex system design.KEY WORDS (keyword:  Biofuel cell, Bioelectrochemical cell, Zinc anode, Laccase and Oxidoreductase.ABSTRAK: Sel bio-bahan api zink-laccase dengan adaptasi daripada ciri-ciri rekabentuk sel zink-udara telah dikaji. Sel dengan konfigurasi rekabentuk yang mudah digunapakai: ruangan tunggal tanpa membran dan laccase diampaikan secara bebas di dalam elektrolit pemampan quasi-neutral. Sel dicirikan berdasarkan voltan litar terbuka, profil polarisasi, plot ketumpatan kuasa dan kapasiti discas pada arus malar. Peranan laccase sebagai bio-pemangkin adalah amat ketara daripada profil polarisasi dan plot ketumpatan kuasa. Perbandingan prestasi di antara sel dengan rekabentuk ruangan tunggal and dwi-ruangan turut diketengahkan. Seperti dijangkakan, sel dengan rekabentuk ruangan tunggal menunjukkan kuasa keluaran yang lebih rendah jika dibandingkan dengan rekabentuk dwi-ruangan kemungkinan disebabkan fenomena cas bocor. Sel bio-bahan api ini mempunyai voltan litar terbuka 1.2 V dan memberikan ketumpatan kuasa maksima 0.9 mW/cm2 pada ketumpatan arus 2.5 mA/cm2. Ciri-ciri ini adalah sebanding dengan sel bio-bahan api yang menggunapakai rekabentuk sel

  5. Maternal zinc status is associated with breast milk zinc concentration and zinc status in breastfed infants aged 4-6 months.

    Dumrongwongsiri, Oraporn; Suthutvoravut, Umaporn; Chatvutinun, Suthida; Phoonlabdacha, Phanphen; Sangcakul, Areeporn; Siripinyanond, Artitaya; Thiengmanee, Usana; Chongviriyaphan, Nalinee


    Breast milk provides adequate nutrients during the first 6 months of life. However, there are some reports of zinc deficiency in breastfed infants. This study was conducted to determine the prevalence of zinc deficiency in infants aged 4-6 months and the associated factors. Healthy infants aged 4-6 months and their mothers were enrolled. They were classified by feeding types as breastfed (BF), formula-fed (FF), and mixed groups (MF). Data collection included demographic data, perinatal data, given diets, and anthropometric measurement. Blood from infants and lactating mothers, and breast milk samples were collected to assess plasma and breast milk zinc concentrations. From 158 infants, the prevalence of zinc deficiency (plasma level below 10.7 mol/L) was 7.6%, and according to feeding groups 14.9%, 5.3%, and 2.9% in the BF, the FF, and the MF groups, respectively. Breastfed infants with zinc deficiency had significantly lower maternal zinc concentrations compared with those without zinc deficiency. There was a higher proportion of maternal zinc deficiency in zinc-deficient infants than those without zinc deficiency (66.7% vs 16.2%, p=0.02). There was a positive correlation between zinc concentrations in breast milk and plasma zinc concentrations of infants (r=0.62, p=0.01) and plasma zinc concentrations of lactating mothers (r=0.56, p=0.016). Using the regression analysis, infant zinc status was associated with maternal plasma zinc concentrations among breastfed infants. The results of this study suggest that breastfed infants aged 4-6 months may have a risk of zinc deficiency and that risk is associated with maternal zinc status and breast milk zinc concentrations.

  6. A Study of the Survival and Oxygen Deficiency at the Zebra Mussel (Dreissena polymorpha Treated with Zinc (Zn

    Bogdan N. Nikolov


    Full Text Available The current paper studies the change of respiratory rate and survival of Dreissena polymorpha at short exposure to zinc under laboratory conditions. The experiment is lasted 96h and three different concentrations of ZnSO4.7H2O were used - 0.5mg/l, 1.5mg/l; 2,0 mg/l. Survival and intensity of breathing of Dreissena polymorpha decreases with the increasing concentration of zinc in the water.

  7. Effectiveness of Arbuscular Mycrrhizal Fungi in Phytoremediation of Zinc Contaminated Calcareous Soil by Vetiver Grass

    M. Bahraminia


    Full Text Available A greenhouse experiment was conducted to evaluate the effectiveness of arbuscular mycorrhizal (AM fungi in phytoremediation of zinc contaminated calcareous soil by vetiver grass. Experiment was a factorial arranged in a completely randomized design (CRD with three replications. Two factors consisted of Zn levels (10, 150, 300 and 600 mg kg-1 as ZnSO4.7H2O and AM fungi (control, Glomus intraradices, Glomus versiforme. Shoot and root dry weights decreased as Zn levels increased. Mycorrhizal inoculation increased those plant measured parameters compared to those of control. With increasing Zn levels, and mycorrhizal inoculation, Zn uptake of shoot and root increased. Root colonization with mycorrhizal inoculation increased, but decreased as Zn levels increased. Mycorrhizal inoculation increased zinc extraction, uptake and translocation efficiencies. Zinc translocation factor decreased as Zn levels increased, however inoculation with AM fungi increased it. Zinc extraction and uptake efficiencies of G. intraradices were more than G. versiforme,while zinc translocation efficiency and factor were vice versa.

  8. Clinical Aspects of Trace Elements: Zinc in Human Nutrition – Zinc Deficiency and Toxicity

    Michelle M Pluhator


    Full Text Available Available evidence suggests that trace elements, such as zinc, once thought to have no nutritional relevance, are possibly deficient in large sections of the human population. Conditioned deficiencies have been reported to result from malabsorption syndromes, acrodermatitis enteropathica, alcoholism, gastrointestinal disease, thermal injury, chronic diseases (eg, diabetes, sickle cell anemia, and in total parenteral nutrition therapy. Awareness that patients with these problems are at risk has led health professionals to focus increasingly on the importance of zinc therapy in the prevention and treatment of deficiency. More recently zinc toxicity and its role in human nutrition and well-being have come under investigation. Reports have focused on the role of zinc toxicity in causes of copper deficiency, changes in the immune system and alterations in blood lipids. As the numerous challenges presented by the study of zinc in human nutrition are met, more appropriate recommendations for dietary and therapeutic zinc intake are being made.

  9. Preparation of zinc oxide particles by using layered basic zinc acetate as a precursor

    Tang, Lanqin, E-mail: [College of Chemical and Biological Engineering, Yancheng Institute of Technology, 9 Yingbin Avenue, Yancheng 224051 (China); College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Ding, Xuefeng; Zhao, Xu; Wang, Zichen; Zhou, Bing [College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)


    Highlights: Black-Right-Pointing-Pointer A simple aqueous solution process has been applied to prepare zinc oxide particles. Black-Right-Pointing-Pointer This novel method exempts traditional calcinations. Black-Right-Pointing-Pointer Various zinc oxide particles are obtained. - Abstract: TEA and NaOH are applied to transform layered basic zinc acetate into zinc oxide particles by a simple aqueous solution process (<100 Degree-Sign C). Zinc oxide with different morphologies, including dumbbells, earthnuts, ellipsoids and hexagonal pillars, are obtained by carefully controlling the amounts of sodium hydroxide, triethanolamine, and reaction temperature. Field emission scanning electron microscope images, X-ray powder diffraction patterns, X-ray photoelectron spectroscopy spectra and room-temperature photoluminescence spectra are used to characterize final products. Furthermore, a possible growth mechanism is discussed in this paper. This easy procedure for zinc oxide fabrication offers the possibility of a generalized approach to the production of metal oxide with tunable morphology.

  10. Zinc Deficiency in Humans and its Amelioration

    Yashbir Singh Shivay


    Zinc (Zn) deficiency in humans has recently received considerable attention. Global mortality in children under 5 years of age in 2004 due to Zn deficiency was estimated at 4,53,207 as against 6,66,771 for vitamin A deficiency; 20,854 for iron deficiency and 3,619 for iodine deficiency. In humans 2800-3000 proteins contain Zn prosthetic group and Zn is an integral component of zinc finger prints that regulate DNA transcription. Zinc is a Type-2 nutrient, which means that its concentration in ...

  11. The zinc dyshomeostasis hypothesis of Alzheimer's disease.

    Travis J A Craddock

    Full Text Available Alzheimer's disease (AD is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ, intracellular neurofibrillary tangles (NFTs composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau, and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1 used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2 performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3 used metallomic imaging mass spectrometry (MIMS to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of

  12. Zinc and biotin deficiencies after pancreaticoduodenectomy.

    Yazbeck, N; Muwakkit, S; Abboud, M; Saab, R


    We report zinc and biotin deficiencies after pancreaticoduodenectomy in a 16 year old female presenting clinically with marked alopecia, total body hair loss, dry skin with scales, and maculopathy with significant vision loss. These micronutrient deficiencies likely occurred due to resection of the duodenum and proximal jejunum, sites of primary absorption of several micronutrients and their protein carriers, including zinc and biotin. Early diagnosis is essential to prevent irreversible sequelae. Adequate supplementation of zinc and biotin as well as dietary advice is needed for clinical improvement.

  13. Zinc therapy for different causes of diarrhea

    Hafaz Zakky Abdillah; Supriatmo; Melda Deliana; Selvi Nafianti; Atan Baas Sinuhaji


    Background The incidence of diarrhea in Indonesia has declined in the past five years. In spite of the increasing number of studies on the treatment for acute diarrhea, especially the use of zinc, it is not known if bacterial vs. non-bacterial etiology makes a difference in the reduction of severity of acute diarrhea in children on zinc therapy. Objective To assess the effect of zinc therapy in reducing the severity of acute bacterial and non-bacterial diarrhea. Methods We performed a...

  14. Zinc supplementation in burn patients.

    Caldis-Coutris, Nancy; Gawaziuk, Justin P; Logsetty, Sarvesh


    Micronutrient supplementation is a common practice throughout many burn centers across North America; however, uncertainty pertaining to dose, duration, and side effects of such supplements persists. The authors prospectively collected data from 23 hospitalized patients with burn sizes ranging from 10 to 93% TBSA. Each patient received a daily multivitamin and mineral supplement, 50 mg zinc (Zn) daily, and 500 mg vitamin C twice daily. Supplements were administered orally or enterally. Albumin, prealbumin, C-reactive protein, serum Zn, and serum copper were measured weekly during hospital admission until levels were within normal reference range. Our study concluded that 50 mg daily dose of Zn resulted in normal serum levels in 19 of 23 patients at discharge; 50 mg Zn supplementation did not interfere with serum copper levels; and Zn supplements, regardless of administration route, did not result in gastrointestinal side effects.

  15. Effects of zinc transporters on Cryptococcus gattii virulence

    Schneider, Rafael de Oliveira; Diehl, Camila; dos Santos, Francine Melise; Piffer, Alícia Corbellini; Garcia, Ane Wichine Acosta; Kulmann, Marcos Iuri Roos; Schrank, Augusto; Kmetzsch, Lívia; Vainstein, Marilene Henning; Staats, Charley C.


    Zinc is an essential nutrient for all living organisms because it is a co-factor of several important proteins. Furthermore, zinc may play an essential role in the infectiousness of microorganisms. Previously, we determined that functional zinc metabolism is associated with Cryptococcus gattii virulence. Here, we characterized the ZIP zinc transporters in this human pathogen. Transcriptional profiling revealed that zinc levels regulated the expression of the ZIP1, ZIP2 and ZIP3 genes, althoug...

  16. First Principles Investigation of Zinc-anode Dissolution in Zinc-air Batteries

    Siahrostami, Samira; Tripkovic, Vladimir; Lundgård, Keld Troen; Jensen, Kristian E.; Hansen, Heine A.; Hummelshøj, Jens Strabo; Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs; Nørskov, Jens K.; Rossmeisl, Jan


    With surging interest in high energy density batteries, much attention has recently been devoted to metal-air batteries. The zinc-air battery has been known for more than hundred years and is commercially available as a primary battery, but recharging has remained elusive; in part because the fundamental mechanisms still remain to be fully understood. Here, we present a density functional theory investigation of the zinc dissolution (oxidation) on the anode side in the zinc-air battery. Two m...

  17. Effect of Zinc on Efficacy of Iron Supplementation in Improving Iron and Zinc Status in Women

    Phuong Nguyen


    Full Text Available Iron and zinc may interact in micronutrient supplements and thereby decrease efficacy. We investigated interactive effects of combined zinc and iron supplementation in a randomized controlled trial conducted in 459 Guatemalan women. Four groups were supplemented for 12 weeks: (1 weekly iron and folic acid (IFA; (2 weekly IFA and 30 mg zinc; (3 daily IFA; (4 daily IFA and 15 mg zinc. Effects were assessed by generalized linear regression. Baseline hemoglobin (Hb concentration was 137.4±15.5 g/L, 13% were anemic and 54% had zinc deficiency. Hb cconcentrations were similar by supplement type, but Hb concentrations improved significantly in anemic women at baseline (increase of 21.8 g/L. Mean percentage changes in serum ferritin were significantly higher in daily compared to weekly supplemented groups (86% versus 32%. The addition of zinc to IFA supplements had no significant impact on iron or zinc status. In conclusion, adding zinc to IFA supplements did not modify efficacy on iron status or improve zinc status, but daily supplementation was more efficacious than weekly in improving iron stores.

  18. Associations between Dietary Iron and Zinc Intakes, and between Biochemical Iron and Zinc Status in Women

    Karen Lim


    Full Text Available Iron and zinc are found in similar foods and absorption of both may be affected by food compounds, thus biochemical iron and zinc status may be related. This cross-sectional study aimed to: (1 describe dietary intakes and biochemical status of iron and zinc; (2 investigate associations between dietary iron and zinc intakes; and (3 investigate associations between biochemical iron and zinc status in a sample of premenopausal women aged 18–50 years who were recruited in Melbourne and Sydney, Australia. Usual dietary intakes were assessed using a 154-item food frequency questionnaire (n = 379. Iron status was assessed using serum ferritin and hemoglobin, zinc status using serum zinc (standardized to 08:00 collection, and presence of infection/inflammation using C-reactive protein (n = 326. Associations were explored using multiple regression and logistic regression. Mean (SD iron and zinc intakes were 10.5 (3.5 mg/day and 9.3 (3.8 mg/day, respectively. Median (interquartile range serum ferritin was 22 (12–38 μg/L and mean serum zinc concentrations (SD were 12.6 (1.7 μmol/L in fasting samples and 11.8 (2.0 μmol/L in nonfasting samples. For each 1 mg/day increase in dietary iron intake, zinc intake increased by 0.4 mg/day. Each 1 μmol/L increase in serum zinc corresponded to a 6% increase in serum ferritin, however women with low serum zinc concentration (AM fasting < 10.7 μmol/L; AM nonfasting < 10.1 μmol/L were not at increased risk of depleted iron stores (serum ferritin <15 μg/L; p = 0.340. Positive associations were observed between dietary iron and zinc intakes, and between iron and zinc status, however interpreting serum ferritin concentrations was not a useful proxy for estimating the likelihood of low serum zinc concentrations and women with depleted iron stores were not at increased risk of impaired zinc status in this cohort.

  19. Strong quantum confinement effects in thin zinc selenide films

    Baskoutas, S.; Poulopoulos, P.; Karoutsos, V.; Angelakeris, M.; Flevaris, N. K.


    Thin Zinc Selenide films in the thickness range 3-50 nm have been prepared on high quality glass substrates by e-beam evaporation under ultrahigh vacuum conditions. Optical absorption spectroscopy experiments reveal a systematically increasing blue shift of the effective bandgap energy as the film thickness decreases, reaching a maximum value of 0.32 eV for the thinner film. The experimental results, which indicate the presence of strong quantum confinement effects, are fairly well described by theoretical calculations based on the potential morphing method, using as a confining potential the finite square well potential with height of the barriers equal to 5 eV.

  20. Measurement of Zinc Absorption From Meals: Comparison of Extrinsi Zinc Labeling and Independent Measurements of Dietary Zinc Absorption

    Sheng, Xiao-Yang; Hambidge, K. Michael; Miller, Leland V.; Westcott, Jamie E.; Lei, Sian; Krebs, Nancy F.


    Background Extrinsic labeling techniques are typically used to measure fractional absorption of zinc (FAZextrinsic) but none have been adequately evaluated. Objective To compare determination of the quantity of zinc absorbed (TAZextrinsic) using measurements of FAZextrinsic with results of simultaneous determinations of dietary zinc absorbed (TAZmetabolic) that are not dependent on labeling ingested food with an extrinsic tracer (modified metabolic balance technique). Design 70Zn was administered orally with all meals for 6 consecutive days to 21 healthy, free-living adult women consuming a constant diet. 68Zn and 67Zn were administered intravenously. FAZextrinsic was measured using a dual isotope tracer ratio technique and multiplied by dietary zinc to give TAZextrinsic TAZmetabolic was determined by addition of net absorption of zinc and endogenous fecal zinc, the latter determined by an isotope dilution technique. Results TAZextrinsic and TAZmetabolic were 3.0 ± 1.1mg/day and 3.1 ± 1.1 mg/day respectively, paired t-test p = 0.492. The correlation coefficient for TAZextrinsic and TAZmetabolic was 0.91, and for FAZextrinsic and FAZmetabolic was 0.95. A Bland Altman analysis indicated a bias of 0.07, and the limits of agreement of −0.86 to 1.01 for TAZextrinsic and TAZmatabolic Conclusion These results from two independent methods provide reasonable validation of our extrinsic labeling technique for a wide range of composite diets. PMID:20209474

  1. Zinc and its importance for human health: An integrative review.

    Roohani, Nazanin; Hurrell, Richard; Kelishadi, Roya; Schulin, Rainer


    Since its first discovery in an Iranian male in 1961, zinc deficiency in humans is now known to be an important malnutrition problem world-wide. It is more prevalent in areas of high cereal and low animal food consumption. The diet may not necessarily be low in zinc, but its bio-availability plays a major role in its absorption. Phytic acid is the main known inhibitor of zinc. Compared to adults, infants, children, adolescents, pregnant, and lactating women have increased requirements for zinc and thus, are at increased risk of zinc depletion. Zinc deficiency during growth periods results in growth failure. Epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems are the organs most affected clinically by zinc deficiency. Clinical diagnosis of marginal Zn deficiency in humans remains problematic. So far, blood plasma/serum zinc concentration, dietary intake, and stunting prevalence are the best known indicators of zinc deficiency. Four main intervention strategies for combating zinc deficiency include dietary modification/diversification, supplementation, fortification, and bio-fortification. The choice of each method depends on the availability of resources, technical feasibility, target group, and social acceptance. In this paper, we provide a review on zinc biochemical and physiological functions, metabolism including, absorption, excretion, and homeostasis, zinc bio-availability (inhibitors and enhancers), human requirement, groups at high-risk, consequences and causes of zinc deficiency, evaluation of zinc status, and prevention strategies of zinc deficiency.

  2. Zinc and its importance for human health: An integrative review

    Nazanin Roohani


    Full Text Available Since its first discovery in an Iranian male in 1961, zinc deficiency in humans is now known to be an important malnutrition problem world-wide. It is more prevalent in areas of high cereal and low animal food consumption. The diet may not necessarily be low in zinc, but its bio-availability plays a major role in its absorption. Phytic acid is the main known inhibitor of zinc. Compared to adults, infants, children, adolescents, pregnant, and lactating women have increased requirements for zinc and thus, are at increased risk of zinc depletion. Zinc deficiency during growth periods results in growth failure. Epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems are the organs most affected clinically by zinc deficiency. Clinical diagnosis of marginal Zn deficiency in humans remains problematic. So far, blood plasma/serum zinc concentration, dietary intake, and stunting prevalence are the best known indicators of zinc deficiency. Four main intervention strategies for combating zinc deficiency include dietary modification/diversification, supplementation, fortification, and bio-fortification. The choice of each method depends on the availability of resources, technical feasibility, target group, and social acceptance. In this paper, we provide a review on zinc biochemical and physiological functions, metabolism including, absorption, excretion, and homeostasis, zinc bio-availability (inhibitors and enhancers, human requirement, groups at high-risk, consequences and causes of zinc deficiency, evaluation of zinc status, and prevention strategies of zinc deficiency.

  3. Optical and morphological characteristics of zinc selenide-zinc sulfide solid solution crystals

    Singh, N. B.; Su, Ching-Hua; Arnold, Bradley; Choa, Fow-Sen


    Experiments were performed to study the effect of point defects on the optical and morphological characteristics of zinc selenide-zinc sulfide ZnSe-ZnS (ZnSexS(1-x)) solid solution crystals grown under terrestrial (1-g) condition. We used the composition ZnSe0.91S0.09 and ZnSe0.73S0.27 for the detailed studies. Crystals of 8 mm and 12 mm diameter were grown using physical vapor transport methods. These crystals did not exhibit gross defects such as voids, bubbles or precipitates. The photoluminescence spectra indicated strong red emission for the 610-630-nm wavelength region in both crystals. This emission could be explained on the basis of high energy irradiation of Zn selenide. For the ZnSe0.73S0.27 crystal, absorption starts at a lower wavelength range (300 nm) when compared to the ZnSe0.91S0.09 crystal presumably due to the much higher bandgap of ZnS than that of ZnSe. Sharp peaks at 451 and 455 nm were observed for both samples corresponding to the band edge transitions, followed by a strong peak at 632 nm. These results were consistent with the observations based on Raman spectroscopy studies. Under 532-nm laser illumination both transverse optical (TO) and longitudinal optical (LO) phonon peaks appeared at Raman shifts of 220 and 280 Δcm-1, respectively. These peaks are similar to those observed for pure ZnSe Raman spectra for which TO and LO occur at 200 and 250 Δcm-1 for the x-axis (first order) polarization.

  4. Effect of different levels of dietary zinc supplementation on body weight and learning ability in rats%不同剂量补锌对大鼠体重和学习记忆的影响

    朱虹; 李积胜


    [Objective]:To investigate the effect of increasing dietary zinc supplementation on body weight and learning ability in rats.[Methods]Zinc supplemental diet contained 200, 400, 600, 800 or 1 600 mg/kg zinc,respectively.Y-labyrinth test was applied to exam the learning and memory function of rats.[Results]Significantly greater weight gain was observed in rats fed with 400 mg/kg zinc diet than in rats fed with 200 mg/kg zinc diet(P<0.05). During the early experiment, lower weight increments were notably observed in rats with 600, 800 or 1 600 mg/kg zinc supplementation than that in control group, respectively. But the influence on weight relief became weaker in pace with time on the whole. Learning and memory function for rats were strikingly improved at level of 200 mg/kg zinc diet compared with the control level(P<0.05), and were damaged in varying degrees at higher(except 1 600 mg/kg) zinc supplementation levels in feeds, among which,800 mg/kg zinc dosage had produced obviously lesion for learning ability in rats compared with normal, 200 or 1 600 mg/kg zinc levels(P<0.05, respectively).[Conclusion]These results suggest that different levels of zinc supplementation have some incompletely parallel effects on the growth, memory and capacity to learn in rats.

  5. The ZupT transporter plays an important role in zinc homeostasis and contributes to Salmonella enterica virulence

    Cerasi, Mauro; Liu, Janet Z.; Ammendola, Serena; Poe, Adam J.; Petrarca, Patrizia; Pesciaroli, Michele; Pasquali, Paolo; Raffatellu, Manuela; Battistoni, Andrea


    Zinc is an essential metal for cellular homeostasis and function in both eukaryotes and prokaryotes. To acquire this essential nutrient, bacteria employ transporters characterized by different affinity for the metal. Several studies have investigated the role of the high affinity transporter ZnuABC in the bacterial response to zinc shortage, showing that this transporter has a key role in adapting bacteria to zinc starvation. In contrast, the role of the low affinity zinc importer ZupT has been the object of limited investigations. Here we show that a Salmonella strain lacking ZupT is impaired in its ability to grow in metal devoid environments and that a znuABC zupT strain exhibits a severe growth defect in zinc devoid media, is hypersensitive to oxidative stress and contains reduced level of intracellular free zinc. Moreover, we show that ZupT plays a role also in the ability of S. Typhimurim to colonize the host tissues. During systemic infections, the single zupT mutant strain was attenuated only in Nramp1+/+ mice, but competition experiments between znuABC and znuABC zupT mutants revealed that ZupT contributes to metal uptake in vivo independently from the presence a functional Nramp1 transporter. Altogether, the here reported results show that ZupT plays an important role in Salmonella zinc homeostasis, being involved in metal import both in vitro and in infected animals. PMID:24430377

  6. AutoDock4Zn: An Improved AutoDock Force Field for Small-Molecule Docking to Zinc Metalloproteins


    Zinc is present in a wide variety of proteins and is important in the metabolism of most organisms. Zinc metalloenzymes are therapeutically relevant targets in diseases such as cancer, heart disease, bacterial infection, and Alzheimer’s disease. In most cases a drug molecule targeting such enzymes establishes an interaction that coordinates with the zinc ion. Thus, accurate prediction of the interaction of ligands with zinc is an important aspect of computational docking and virtual screening against zinc containing proteins. We have extended the AutoDock force field to include a specialized potential describing the interactions of zinc-coordinating ligands. This potential describes both the energetic and geometric components of the interaction. The new force field, named AutoDock4Zn, was calibrated on a data set of 292 crystal complexes containing zinc. Redocking experiments show that the force field provides significant improvement in performance in both free energy of binding estimation as well as in root-mean-square deviation from the crystal structure pose. The new force field has been implemented in AutoDock without modification to the source code. PMID:24931227

  7. AutoDock4(Zn): an improved AutoDock force field for small-molecule docking to zinc metalloproteins.

    Santos-Martins, Diogo; Forli, Stefano; Ramos, Maria João; Olson, Arthur J


    Zinc is present in a wide variety of proteins and is important in the metabolism of most organisms. Zinc metalloenzymes are therapeutically relevant targets in diseases such as cancer, heart disease, bacterial infection, and Alzheimer's disease. In most cases a drug molecule targeting such enzymes establishes an interaction that coordinates with the zinc ion. Thus, accurate prediction of the interaction of ligands with zinc is an important aspect of computational docking and virtual screening against zinc containing proteins. We have extended the AutoDock force field to include a specialized potential describing the interactions of zinc-coordinating ligands. This potential describes both the energetic and geometric components of the interaction. The new force field, named AutoDock4Zn, was calibrated on a data set of 292 crystal complexes containing zinc. Redocking experiments show that the force field provides significant improvement in performance in both free energy of binding estimation as well as in root-mean-square deviation from the crystal structure pose. The new force field has been implemented in AutoDock without modification to the source code.

  8. Repression of sulfate assimilation is an adaptive response of yeast to the oxidative stress of zinc deficiency.

    Wu, Chang-Yi; Roje, Sanja; Sandoval, Francisco J; Bird, Amanda J; Winge, Dennis R; Eide, David J


    The Zap1 transcription factor is a central player in the response of yeast to changes in zinc status. Previous studies identified over 80 genes activated by Zap1 in zinc-limited cells. In this report, we identified 36 genes repressed in a zinc- and Zap1-responsive manner. As a result, we have identified a new mechanism of Zap1-mediated gene repression whereby transcription of the MET3, MET14, and MET16 genes is repressed in zinc-limited cells. These genes encode the first three enzymes of the sulfate assimilation pathway. We found that MET30, encoding a component of the SCF(Met30) ubiquitin ligase, is a direct Zap1 target gene. MET30 expression is increased in zinc-limited cells, and this leads to degradation of Met4, a transcription factor responsible for MET3, MET14, and MET16 expression. Thus, Zap1 is responsible for a decrease in sulfate assimilation in zinc-limited cells. We further show that cells that are unable to down-regulate sulfate assimilation under zinc deficiency experience increased oxidative stress. This increased oxidative stress is associated with an increase in the NADP(+)/NADPH ratio and may result from a decrease in NADPH-dependent antioxidant activities. These studies have led to new insights into how cells adapt to nutrient-limiting growth conditions.

  9. The Nuts and Bolts of Zinc-Nickel: OEM Zinc Nickel Implementation on Fasteners - Getting It Into Production


    Blake Simpson Louie Tran The Nuts and Bolts of Zinc- Nickel OEM Zinc Nickel Implementation on Fasteners – Getting It Into Production Report...REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE The Nuts and Bolts of Zinc- Nickel : OEM Zinc Nickel Implementation on...currently in production 2. Problem at Hand – Hexavalent Chromates 3. Transition to Zinc- Nickel 4. Preliminary Testing 5. Plan moving forward for

  10. The effect of zinc supplementation on the urinary excretion of elements in female athletes.

    Eskici, Gunay; Gunay, Mehmet; Baltaci, Abdulkerim Kasim; Mogulkoc, Rasim


    This study was carried out to find out how oral zinc supplementation to elite athletes affects the element changes in the urine. The study registered 10 female athletes who were on the women's volleyball team of Gazi University Sports Club and whose mean age, weight, and height were 14.2±0.42 years, 59.8±7.79kg and 173.6±6.15 cm. The study protocol was approved by the local ethics committee. The athletes who continued their daily routine training sessions (6 days/week) were supplemented with 220mg/day oral zinc sulfate for 4 weeks. In order to induce exhaustion, the subjects were put to a 20-meter shuttle run test before and after supplementation. A total, 7 times urine samples were collected follows as pre and post exercise before the start of the experiment and at the end (4 times), at the end of first, second and third week (3 times). Urinary levels of magnesium, phosphorus, and calcium (mg/dl), as well as zinc, copper, and selenium (μg/dl) were analyzed in the atomic emission device (ICP-MS). Arithmetic means and standard errors of the data were calculated. Kruskal Wallis test was used to determine differences between weeks. Values for which p<0,05 were considered significant. When compared to resting values, urinary excretion of copper and selenium decreased in exercise (p<0,05), but increased with zinc supplementation (p<0,05). Pre- and post-supplementation exercise resulted in reduced urinary zinc excretion (p<0,05). Zinc supplementation increased urinary zinc excretion in one-week intervals over the course of 4 weeks (p<0,05), and reduced selenium levels (p<0,05). When zinc is supplemented to athletes, the relation between the duration and dose of supplementation is important. The results of the study indicated that zinc does not have any negative effect on the urinary excretion of the concerned elements. It can thus be concluded that athletes may benefit from zinc support.

  11. Sealed Cylindrical Silver/Zinc Batteries Project

    National Aeronautics and Space Administration — RBC Technologies has significanly improved the cycle life and wet life of silver/zinc battery technology through novel separator and anode formulations. This...

  12. Zinc-induced protection against cadmium

    Early, J.L.; Schnell, R.C.


    Pretreatment of male rats with cadmium acetate potentiates the duration of hexobarbital hypnosis and inhibits the rate of hepatic microsomal drug metabolism. Pretreatment of rats with zinc acetate protects against these alterations in drug action elicited by cadmium.

  13. Role of zinc in plasma membrane function

    O'Dell, B L


    ... with a posttranslational change in plasma membrane proteins. Among the signs of zinc deficiency in rats is a bleeding tendency associated with failure of platelet aggregation, a phenomenon that correlates with impaired uptake of Ca(2+) when stimulated...

  14. Controlling fires in silver/zinc batteries

    Boshers, W. A.; Britz, W. A.


    Silver/zinc storage battery fires are often difficult to extinguish. Improved technique employs manifold connected to central evacuation chamber to rapidly vent combustion-supporting gases generated by battery plate oxides.

  15. Model of how plants sense zinc deficiency

    Assuncao, Ana G.L.; Persson, Daniel Olof; Husted, Søren;


    to develop plant-based solutions addressing nutrient-use-efficiency and adaptation to nutrient-limited or -toxic soils. Recently two transcription factors of the bZIP family (basic-region leucine zipper) have been identified in Arabidopsis and shown to be pivotal in the adaptation response to zinc deficiency....... They represent not only the first regulators of zinc homeostasis identified in plants, but also a very promising starting-point that can provide new insights into the molecular basis of how plants sense and adapt to the stress of zinc deficiency. Considering the available information thus far we propose...... in this review a putative model of how plants sense zinc deficiency....

  16. Malate Exudation by Six Aerobic Rice Genotypes Varying in Zinc Uptake Efficiency

    Gao, X.; Zhang, F.; Hoffland, E.


    Received for publication February 2, 2009. Zinc (Zn) uptake by plant roots from soils low in plant-available Zn may be increased by Zn-mobilizing rhizosphere processes, including exudation of low-molecular-weight organic anions. A rhizotron experiment with a low Zn clay soil and a nutrient solution

  17. Effect of Selenium, Zinc, Vitamin C and E on Boar Ejaculate Quality at Heat Stress

    Pavel Horký


    Full Text Available The aim of experiment was to test effect of selected antioxidants (selenium, zinc, vitamin C and E to reduce the impact of heat stress at boars. In the experiment, boars of Duroc breed were tested. The first control group (n = 10 was not supplemented with antioxidants. The second experimental group (n = 10 was supplemented with antioxidants in the following quantities of 0.5 mg of selenium (seleno-methionine, 100 mg of zinc (zinc-methionine, 70 mg of vitamin E (alpha‑tocopherol and 350 mg of vitamin C (ascorbic acid per kilogram of their feed. The experiment was carried out for 120 days and took place in summer (June to September. During the experiment, average and maximum daily temperatures, where boars were stabled, were monitored. Average daily temperature ranged from 12 to 28 °C. Maximum temperature during the day was from 13 to 32 °C. The evaluation of the semen quality has revealed increased number of abnormal spermatozoa in the control group of boars by 39 % (P < 0.05. There were observed no significant changes at other monitored parameters (ejaculate volume, total count of produced sperm, motility and sperm concentration. The results show that the addition of selenium, zinc, vitamin C and E may reduce the effect of heat stress to some extent at breeding boars.

  18. Zinc coordination spheres in protein structures.

    Laitaoja, Mikko; Valjakka, Jarkko; Jänis, Janne


    Zinc metalloproteins are one of the most abundant and structurally diverse proteins in nature. In these proteins, the Zn(II) ion possesses a multifunctional role as it stabilizes the fold of small zinc fingers, catalyzes essential reactions in enzymes of all six classes, or assists in the formation of biological oligomers. Previously, a number of database surveys have been conducted on zinc proteins to gain broader insights into their rich coordination chemistry. However, many of these surveys suffer from severe flaws and misinterpretations or are otherwise limited. To provide a more comprehensive, up-to-date picture on zinc coordination environments in proteins, zinc containing protein structures deposited in the Protein Data Bank (PDB) were analyzed in detail. A statistical analysis in terms of zinc coordinating amino acids, metal-to-ligand bond lengths, coordination number, and structural classification was performed, revealing coordination spheres from classical tetrahedral cysteine/histidine binding sites to more complex binuclear sites with carboxylated lysine residues. According to the results, coordination spheres of hundreds of crystal structures in the PDB could be misinterpreted due to symmetry-related molecules or missing electron densities for ligands. The analysis also revealed increasing average metal-to-ligand bond length as a function of crystallographic resolution, which should be taken into account when interrogating metal ion binding sites. Moreover, one-third of the zinc ions present in crystal structures are artifacts, merely aiding crystal formation and packing with no biological significance. Our analysis provides solid evidence that a minimal stable zinc coordination sphere is made up by four ligands and adopts a tetrahedral coordination geometry.

  19. A biokinetic model for zinc for use in radiation protection

    Leggett, R.W., E-mail:


    The physiology of the essential trace element zinc has been studied extensively in human subjects using kinetic analysis of time-dependent measurements of administered zinc tracers. A number of biokinetic models describing zinc exchange between plasma and tissues and endogenous excretion of zinc have been derived as fits to data for specific study groups. More rudimentary biokinetic models for zinc have been developed to estimate radiation doses from internally deposited radioisotopes of zinc. The latter models are designed to provide broadly accurate estimates of cumulative decays of zinc radioisotopes in tissues and are not intended as realistic descriptions of the directions of movement of zinc in the body. This paper reviews biokinetic data for zinc and proposes a physiologically meaningful biokinetic model for systemic zinc for use in radiation protection. The proposed model bears some resemblance to zinc models developed in physiological studies but depicts a finer division of systemic zinc and is based on a broader spectrum of data than previous models. The proposed model and the model for zinc currently recommended by the International Commission on Radiological Protection yield reasonably similar estimates of total-body retention and effective dose for internally deposited radioisotopes of zinc but much different systemic distributions of activity and much different dose estimates for some individual tissues, particularly the liver. - Highlights: Black-Right-Pointing-Pointer Zinc is an essential trace element with numerous functions in the human body. Black-Right-Pointing-Pointer Several biokinetic models for zinc have been developed from tracer studies on humans. Black-Right-Pointing-Pointer More rudimentary biokinetic models for zinc have been developed in radiation protection. Black-Right-Pointing-Pointer Biokinetic data for zinc are reviewed and a new biokinetic model is proposed for radiation protection. Black-Right-Pointing-Pointer The proposed model

  20. Zinc to cadmium replacement in the A. thaliana SUPERMAN Cys₂ His₂ zinc finger induces structural rearrangements of typical DNA base determinant positions.

    Malgieri, Gaetano; Zaccaro, Laura; Leone, Marilisa; Bucci, Enrico; Esposito, Sabrina; Baglivo, Ilaria; Del Gatto, Annarita; Russo, Luigi; Scandurra, Roberto; Pedone, Paolo V; Fattorusso, Roberto; Isernia, Carla


    Among heavy metals, whose toxicity cause a steadily increasing of environmental pollution, cadmium is of special concern due to its relatively high mobility in soils and potential toxicity at low concentrations. Given their ubiquitous role, zinc fingers domains have been proposed as mediators for the toxic and carcinogenic effects exerted by xenobiotic metals. To verify the structural effects of zinc replacement by cadmium in zinc fingers, we have determined the high resolution structure of the single Cys₂ His₂ zinc finger of the Arabidopsis thaliana SUPERMAN protein (SUP37) complexed to the cadmium ion by means of UV-vis and NMR techniques. SUP37 is able to bind Cd(II), though with a dissociation constant higher than that measured for Zn(II). Cd-SUP37 retains the ββα fold but experiences a global structural rearrangement affecting both the relative orientation of the secondary structure elements and the position of side chains involved in DNA recognition: among them Ser17 side chain, which we show to be essential for DNA binding, experiences the largest displacement.

  1. Mechanisms of zinc incorporation in aluminosilicate crystalline structures and the leaching behaviour of product phases.

    Tang, Yuanyuan; Shih, Kaimin


    This study quantitatively evaluates a waste-to-resource strategy of blending zinc-laden sludge and clay material for low-cost ceramic products. Using ZnO as the simulated zinc-laden sludge to sinter with kaolinite, both zinc aluminate spinel (ZnAl₂O₄) and willemite (Zn₂SiO₄) phases were formed during the sintering process. To analyse the details of zinc incorporation reactions, γ-Al₂O₃and quartz were further used as precursors to observe ZnAl₂O₄and Zn₂SiO₄formations. By firing the ZnO mixtures and their corresponding precursors at 750-1350°C for 3 h, the efficiency of zinc transformation was determined through Rietveld refinement analyses of X-ray diffraction data. The results also show different incorporation behaviour for kaolinite and mullite precursors during the formation of ZnAl2O₄and Zn2SiO₄in the system. In addition, with a competitive formation between ZnAl₂O₄and Zn₂SiO₄, the ZnAl₂O₄spinel phase is predominant at temperatures higher than 1050°C. This study used a prolonged leaching test modified from the US Environmental Protection Agency's toxicity characteristic leaching procedure to evaluate ZnO, ZnAl₂O₄, and Zn₂SiO₄product phases. The zinc concentrations in ZnO and Zn₂SiO₄leachates were about two orders of magnitude higher than that of ZnAl₂O₄ leachate at the end of the experiment, indicating that ZnAl₂O₄formation is the preferred stabilization mechanism for incorporating zinc in ceramic products.

  2. Potential interaction between zinc ions and a cyclodextrin-based diclofenac formulation.

    Hamdan, Imad I; El-Sabawi, Dina; Abdel Jalil, Mariam


    Complexes of diclofenac sodium (DF-Na) with hydroxypropyl betacyclodextrin (HPβCD) were prepared by co-evaporation in a 1:1 ratio and characterized in light of previously reported data. Phase solubility diagrams were obtained for DF-Na with HPβCD in the presence and absence of zinc ions. Dissolution profiles were obtained for DF-Na and its HPβCD complex at acidic (pH 1.2) as well as in phosphate buffer (pH 6.8), in the presence and absence of zinc. HPβCD, as expected, was shown to improve the dissolution of DF-Na in acidic medium but not in phosphate buffer (pH 6.8). The presence of zinc ions decreased the in vitro dissolution of DF-HPβCD complex in acidic medium (pH 1.2) but not in phosphate buffer (pH 6.8). It was confirmed that the precipitate that was formed by zinc ions in the presence of HPβCD and DF-Na contained no cyclodextrin and most likely it was a mixture of the complexes: DF2-Zn and DF-Zn with some molecules of water. In vivo experiments on rats have shown that HPβCD has no statistically significant effect on absorption or bioavailability of DF-Na in spite of the observed improvement of its in vitro dissolution by HPβCD. Moreover, zinc ions were shown to decrease the absorption rate of DF-Na in rats model but did neither significantly alter the absorption nor bioavailability of DF-HPβCD complex. The zinc induced precipitates of DF were shown to have significantly different crystalline properties when HPβCD was present. Therefore, the pharmaceutical details of a DF-Na preparation should be considered when designing the formulation and predicting possible interaction between DF-Na (or other potential NSAIDs) and zinc metal.

  3. Zinc and zinc transporters in macrophages and their roles in efferocytosis in COPD.

    Rhys Hamon

    Full Text Available Our previous studies have shown that nutritional zinc restriction exacerbates airway inflammation accompanied by an increase in caspase-3 activation and an accumulation of apoptotic epithelial cells in the bronchioles of the mice. Normally, apoptotic cells are rapidly cleared by macrophage efferocytosis, limiting any secondary necrosis and inflammation. We therefore hypothesized that zinc deficiency is not only pro-apoptotic but also impairs macrophage efferocytosis. Impaired efferocytic clearance of apoptotic epithelial cells by alveolar macrophages occurs in chronic obstructive pulmonary disease (COPD, cigarette-smoking and other lung inflammatory diseases. We now show that zinc is a factor in impaired macrophage efferocytosis in COPD. Concentrations of zinc were significantly reduced in the supernatant of bronchoalveolar lavage fluid of patients with COPD who were current smokers, compared to healthy controls, smokers or COPD patients not actively smoking. Lavage zinc was positively correlated with AM efferocytosis and there was decreased efferocytosis in macrophages depleted of Zn in vitro by treatment with the membrane-permeable zinc chelator TPEN. Organ and cell Zn homeostasis are mediated by two families of membrane ZIP and ZnT proteins. Macrophages of mice null for ZIP1 had significantly lower intracellular zinc and efferocytosis capability, suggesting ZIP1 may play an important role. We investigated further using the human THP-1 derived macrophage cell line, with and without zinc chelation by TPEN to mimic zinc deficiency. There was no change in ZIP1 mRNA levels by TPEN but a significant 3-fold increase in expression of another influx transporter ZIP2, consistent with a role for ZIP2 in maintaining macrophage Zn levels. Both ZIP1 and ZIP2 proteins were localized to the plasma membrane and cytoplasm in normal human lung alveolar macrophages. We propose that zinc homeostasis in macrophages involves the coordinated action of ZIP1 and ZIP2

  4. Catalase in testes and epididymidis of wistar rats fed zinc deficient diet.

    Bedwal, S; Prasad, S; Nair, N; Saini, M R; Bedwal, R S


    Catalase activities have been evaluated in testes and caput and cauda epididymis of Wistar rats fed on zinc deficient diet for 2 and 4 weeks. The enzyme activity has been measured as chromic acetate formed by heating of dichromate (in acetic acid) in presence of H(2) O(2) with perchromic acid as an unstable intermediate. Observed non-significant increase in catalase activity in testes as well as in caput and cauda epididymis of 2 weeks experiments has been related to low levels of H(2) O(2) produced in two organs whereas significant (Pspermatozoa in epididymis. Thus, zinc deficiency increases catalase activity in testes and epididymis.

  5. The self-aggregation of chiral threonine-linked porphyrins and their zinc(Ⅱ) complexes


    The self-aggregation of chiral threonine-linked porphyrins and their zinc(Ⅱ) complexes in water-alcohol system and water-alcohol-NaCl system has been studied by circular dichroism (CD),UV-Vis absorption spectra and fluorescence spectra methods.The experiment results indicate that chiral threonine-linked porphyrins and their zinc(Ⅱ) complexes have two different kinds of aggregates in water-alcohol system and water-alcohol-NaCl system.And the porphyrins may form highly organized and orientated aggregates in water-alcohol-NaCl system.The aggregates in water-alcohol-NaCl system may have helical structures.

  6. Hyperforin changes the zinc-storage capacities of brain cells.

    Gibon, Julien; Richaud, Pierre; Bouron, Alexandre


    In vitro and in vivo experiments were carried out to investigate the consequences on brain cells of a chronic treatment with hyperforin, a plant extract known to dissipate the mitochondrial membrane potential and to release Zn(2+) and Ca(2+) from these organelles. Dissociated cortical neurons were grown in a culture medium supplemented with 1 μM hyperforin. Live-cell imaging experiments with the fluorescent probes FluoZin-3 and Fluo-4 show that a 3 day-hyperforin treatment diminishes the size of the hyperforin-sensitive pools of Ca(2+) and Zn(2+) whereas it increases the size of the DTDP-sensitive pool of Zn(2+) without affecting the ionomycin-sensitive pool of Ca(2+). When assayed by quantitative PCR the levels of mRNA coding for metallothioneins (MTs) I, II and III were increased in cortical neurons after a 3 day-hyperforin treatment. This was prevented by the zinc chelator TPEN, indicating that the plant extract controls the expression of MTs in a zinc-dependent manner. Brains of adult mice who received a daily injection (i.p.) of hyperforin (4 mg/kg/day) for 4 weeks had a higher sulphur content than control animals. They also exhibited an enhanced expression of the genes coding for MTs. However, the long-term treatment did not affect the brain levels of calcium and zinc. Based on these results showing that hyperforin influences the size of the internal pools of Zn(2+), the expression of MTs and the brain cellular sulphur content, it is proposed that hyperforin changes the Zn-storage capacity of brain cells and interferes with their thiol status.

  7. Oral Zinc Supplementation for the Treatment of Acute Diarrhea in Children: A Systematic Review and Meta-Analysis

    Laura M. Lamberti


    Full Text Available Evidence supporting the impact of therapeutic zinc supplementation on the duration and severity of diarrhea among children under five is largely derived from studies conducted in South Asia. China experiences a substantial portion of the global burden of diarrhea, but the impact of zinc treatment among children under five has not been well documented by previously published systematic reviews on the topic. We therefore conducted a systematic literature review, which included an exhaustive search of the Chinese literature, in an effort to update previously published estimates of the effect of therapeutic zinc. We conducted systematic literature searches in various databases, including the China National Knowledge Infrastructure (CNKI, and abstracted relevant data from studies meeting our inclusion and exclusion criteria. We used STATA 12.0 to pool select outcomes and to generate estimates of percentage difference and relative risk comparing outcomes between zinc and control groups. We identified 89 Chinese and 15 non-Chinese studies for the review, including studies in 10 countries from all WHO geographic regions, and analyzed a total of 18,822 diarrhea cases (9469 zinc and 9353 control. None of the included Chinese studies had previously been included in published pooled effect estimates. Chinese and non-Chinese studies reported the effect of therapeutic zinc supplementation on decreased episode duration, stool output, stool frequency, hospitalization duration and proportion of episodes lasting beyond three and seven days. Pooling Chinese and non-Chinese studies yielded an overall 26% (95% CI: 20%−32% reduction in the estimated relative risk of diarrhea lasting beyond three days among zinc-treated children. Studies conducted in and outside China report reductions in morbidity as a result of oral therapeutic zinc supplementation for acute diarrhea among children under five years of age. The WHO recommendation for zinc treatment of diarrhea

  8. Synergic effect of salinity and zinc stress on growth and photosynthetic responses of the cordgrass, Spartina densiflora

    Redondo-Gómez, Susana; Andrades-Moreno, Luis; Mateos-Naranjo, Enrique; Parra, Raquel; Valera-Burgos, Javier; Aroca, Ricardo


    Spartina densiflora is a C4 halophytic species that has proved to have a high invasive potential which derives from its physiological plasticity to environmental factors, such as salinity. It is found in coastal marshes of south-west Spain, growing over sediments with between 1 mmol l−1 and 70 mmol l−1 zinc. A glasshouse experiment was designed to investigate the synergic effect of zinc from 0 mmol l−1 to 60 mmol l−1 at 0, 1, and 3% NaCl on the growth and the photosynthetic apparatus of S. densiflora by measuring chlorophyll fluorescence parameters and gas exchange, and its recovery after removing zinc. Antioxidant enzyme activities and total zinc, sodium, calcium, iron, magnesium, manganese, phosphorus, potassium, and nitrogen concentrations were also determined. Spartina densiflora showed the highest growth at 1 mmol l−1 zinc and 1% NaCl after 90 d of treatment; this enhanced growth was supported by the measurements of net photosynthetic rate (A). Furthermore, there was a stimulatory effect of salinity on accumulation of zinc in tillers of this species. Zinc concentrations >1 mmol l−1 reduced growth of S. densiflora, regardless of salinity treatments. This declining growth may be attributed to a decrease in A caused by diffusional limitation of photosynthesis, owing to the modification of the potassium/calcium ratio. Also, zinc and salinity had a marked overall effect on the photochemical (photosystem II) apparatus, partially mediated by the accumulation of H2O2 and subsequent oxidative damage. However, salinity favoured the recovery of the photosynthetic apparatus to the toxic action of zinc, and enhanced the nutrient uptake. PMID:21841175

  9. Relationship between gastric levels and antiulcerogenic activity of zinc.

    Navarro, C; Ramis, A; Sendrós, S; Bulbena, O; Ferrer, L; Escolar, G


    The relationship between the absorption of an organic zinc salt, zinc acexamate, and its antiulcerogenic activity in a model of cold-restraint stress was studied. Serum and gastric levels of zinc, as well as its antiulcerogenic effect, were determined after oral or intravenous administration of zinc acexamate. Cytochemical and X-ray microanalysis techniques were also applied. In the rats subjected to cold-restraint stress, gastric levels of zinc correlated with the antiulcerogenic effect observed after administration of zinc acexamate. However, it was not possible to establish a relationship between serum levels and the pharmacologic effect of zinc. Our results in animals subjected to regular diet indicate that the antiulcerogenic effect exhibited by zinc compounds could be associated with the presence of zinc at different levels of gastric tissue.

  10. A biokinetic model for zinc for use in radiation protection

    Leggett, Richard Wayne [ORNL


    The physiology of the essential trace element zinc has been studied extensively in human subjects using kinetic analysis of time-dependent measurements of administered zinc tracers. A number of biokinetic models describing zinc exchange between plasma and tissues and loss of systemic zinc in excreta have been developed from the derived data. More rudimentary biokinetic models for zinc have been developed to estimate radiation doses from internally deposited radioisotopes of zinc. The latter models are designed to provide broadly accurate estimates of cumulative decays of zinc radioisotopes in tissues and are not intended as realistic descriptions of the directions of movement of zinc in the body. This paper reviews biokinetic data for zinc and proposes a physiologically meaningful biokinetic model for systemic zinc for use in radiation protection. The proposed model bears some resemblance to zinc models developed in physiological studies but depicts a finer division of systemic zinc and is based on a broader spectrum of data than previous models. The proposed model and current radiation protection model for zinc yield broadly similar estimates of effective dose from internally deposited radioisotopes of zinc but substantially different dose estimates for several individual tissues, particularly the liver.

  11. Serum and semen zinc levels in normozoospermic and oligozoospermic men

    Madding, C.I.; Jacob, M.; Ramsay, V.P.; Sokol, R.Z.


    We studied 11 unselected men who presented to a Reproductive Endocrinology Clinic with histories of infertility and low sperm counts. Reproductive hormones and semen und serum zinc levels were measured. All men had semen analyses performed on at least three separate occasions. A similar set of laboratory evaluations were performed on 11 other men who had normal semen analyses and no history of infertility. No abnormalities of reproductive hormones were found in either group. Mean serum zinc levels were significantly lower in the infertile men. Mean semen zinc levels were not significantly different. There was no correlation between serum and semen zinc levels in either group. A significant correlation was found between sperm count and semen zinc in the volunteers with normal counts, but not in the oligozoospermic men. The results obtained in this study suggest that lowered serum zinc is more common than formerly appreciated in unselected patients with infertility. The high level of zinc found in semen is due primarily to the secretions of the prostate gland and reflects prostatic stores. Serum zinc is thought to be a reasonable indicator of zinc status. The lack of correlation between serum zinc and semen zinc found in our study suggests that mild zinc deficiency may lower serum zinc while the larger prostatic zinc stores remain unaffected.

  12. Zinc and Regulation of Inflammatory Cytokines: Implications for Cardiometabolic Disease

    Samir Samman


    Full Text Available In atherosclerosis and diabetes mellitus, the concomitant presence of low-grade systemic inflammation and mild zinc deficiency highlights a role for zinc nutrition in the management of chronic disease. This review aims to evaluate the literature that reports on the interactions of zinc and cytokines. In humans, inflammatory cytokines have been shown both to up- and down-regulate the expression of specific cellular zinc transporters in response to an increased demand for zinc in inflammatory conditions. The acute phase response includes a rapid decline in the plasma zinc concentration as a result of the redistribution of zinc into cellular compartments. Zinc deficiency influences the generation of cytokines, including IL-1β, IL-2, IL-6, and TNF-α, and in response to zinc supplementation plasma cytokines exhibit a dose-dependent response. The mechanism of action may reflect the ability of zinc to either induce or inhibit the activation of NF-κB. Confounders in understanding the zinc-cytokine relationship on the basis of in vitro experimentation include methodological issues such as the cell type and the means of activating cells in culture. Impaired zinc homeostasis and chronic inflammation feature prominently in a number of cardiometabolic diseases. Given the high prevalence of zinc deficiency and chronic disease globally, the interplay of zinc and inflammation warrants further examination.

  13. Assessing the Zinc solubilization ability of Gluconacetobacter diazotrophicus in maize rhizosphere using labelled (65)Zn compounds.

    Sarathambal, C; Thangaraju, M; Paulraj, C; Gomathy, M


    Solubilization of insoluble zinc compounds like ZnCO(3) and ZnO by G. diazotrophicus was confirmed using radiotracers. The zinc compounds (ZnCO(3) and ZnO) were tagged with (65)Zn. (65)ZnCO(3) and (65)ZnO was effectively solubilized and the uptake of zn by the plants also more in G. diazotrophicus inoculated treatments compared to the uninoculated treatments. Three types of soils (Zn deficientsterile, Zn deficient-unsterile, and Zn sufficient-sterile) were used in experiment. Among the three soils, Zn deficient-unsterile soil registered maximum zinc solubilization compared to other two soils. This may be due to other soil microorganisms in unsterile soil. Application of ZnO with G. diazotrophicus showed better uptake of the nutrient.

  14. Mechanics property Study for Interface Bim Composite of Zinc Alloy ZAS35/Carbon Steel

    陈基勇; 耿浩然; 杨爱玲


    The distortional fields of interface-U-field and V-field-have been obtained after the mechanics property for the geometric distortion of interface of cracked zinc alloy ZAS35/carbon steel is analyzed by means of a laser moire interferometry. The optimum cast preheating temperature has been decided in the light of the experiment of shear strength. After the microstructure of interface of bimetal composite of zinc alloy ZAS35/carbon steel is analyzed and studied with a X ray diffraction and an electronic scanning mirror (ESM), the phase component of metallurgical bond of interface of zinc alloy ZAS35/carbon steel has been gained, and the results of interface scan of distribution of elements Fe/Zn have been obtained with the dip coating temperature of 700(C. The above working theory, the experimental technology and its results will be introduced in this paper, and its results will be analyzed.

  15. Establishment of water quality index (Na+, Ca2+) for purified water reused to zinc electrolysis process

    CHAI Li-yuan; XIAO Hai-juan; WANG Yun-yan; PEI Fei; SHU Yu-de; ZHANG Jin-long


    The effects of Na+ and Ca2+ in the purified water on the conductivity of zinc electrolyte and the current efficiency of zinc electrolysis were studied by the alternating current bridge method and the simulated electrolysis experiments, and the water quality index of reused water was established. The results show that the conductivity of the solution and the current efficiency decrease as these two kinds of positive ions are added in the electrolyte. The effect of Ca2+ is much more remarkable than that of Na+. ρ(Na+)≤ 8 g/L and ρ(Ca2+)≤20 mg/L are the quality indexes in the zinc electrolysis process and the concentrations of Na+ and Ca2+ in the purified water reused to the process should be less than the limited values, i.e. the water quality index of the purified water should be controlled by its reused amount.

  16. Bioprotective effect of zinc in macro- and nanoaquachelate form on embryonal development of rats in conditions of lead intoxication

    Beletskaya E.M.


    Full Text Available The article presents results of studied influence of low doses of lead and zinc (nanozinc on embryonal development in a la¬boratory experiment on rats. Negative influence of lead on pregnancy of laboratory animals, manifested in violation of the physiological dynamics of the rectal temperature and decrease in body weight gain was revealed. Embryotoxic effect of low doses of lead results in increased fetal mortality by 2.16 times compared to the control group of animals, de¬terioration of the morphometric indices of fetuses, violation of placentogenesis. Simultaneous injections of zinc on back¬ground of lead intoxication causes a protective effect on the body of pregnant rats and embryonal development of the offspring, more pronounced for zinc citrate, received by using aquananotehnology, as compared to zinc chloride. Thus, by morphometry indices, male fetuses were more sensitive to prenatal lead exposure in comparison to female fetuses.

  17. The artificial zinc finger coding gene 'Jazz' binds the utrophin promoter and activates transcription.

    Corbi, N; Libri, V; Fanciulli, M; Tinsley, J M; Davies, K E; Passananti, C


    Up-regulation of utrophin gene expression is recognized as a plausible therapeutic approach in the treatment of Duchenne muscular dystrophy (DMD). We have designed and engineered new zinc finger-based transcription factors capable of binding and activating transcription from the promoter of the dystrophin-related gene, utrophin. Using the recognition 'code' that proposes specific rules between zinc finger primary structure and potential DNA binding sites, we engineered a new gene named 'Jazz' that encodes for a three-zinc finger peptide. Jazz belongs to the Cys2-His2 zinc finger type and was engineered to target the nine base pair DNA sequence: 5'-GCT-GCT-GCG-3', present in the promoter region of both the human and mouse utrophin gene. The entire zinc finger alpha-helix region, containing the amino acid positions that are crucial for DNA binding, was specifically chosen on the basis of the contacts more frequently represented in the available list of the 'code'. Here we demonstrate that Jazz protein binds specifically to the double-stranded DNA target, with a dissociation constant of about 32 nM. Band shift and super-shift experiments confirmed the high affinity and specificity of Jazz protein for its DNA target. Moreover, we show that chimeric proteins, named Gal4-Jazz and Sp1-Jazz, are able to drive the transcription of a test gene from the human utrophin promoter.

  18. Biomimetic ion nanochannels as a highly selective sequential sensor for zinc ions followed by phosphate anions.

    Han, Cuiping; Su, Haiyan; Sun, Zhongyue; Wen, Long; Tian, Demei; Xu, Kai; Hu, Junfeng; Wang, Aming; Li, Haibing; Jiang, Lei


    A novel biomimetic ion-responsive multi-nanochannel system is constructed by covalently immobilizing a metal-chelating ligand, 2,2'-dipicolylamine (DPA), in polyporous nanochannels prepared in a polymeric membrane. The DPA-modified multi-nanochannels show specific recognition of zinc ions over other common metal ions, and the zinc-ion-chelated nanochannels can be used as secondary sensors for HPO4(2-) anions. The immobilized DPA molecules act as specific-receptor binding sites for zinc ions, which leads to the highly selective zinc-ion response through monitoring of ionic current signatures. The chelated zinc ions can be used as secondary recognition elements for the capture of HPO4(2-) anions, thereby fabricating a sensing nanodevice for HPO4(2-) anions. The success of the DPA immobilization and ion-responsive events is confirmed by measurement of the X-ray photoelectron spectroscopy (XPS), contact angle (CA), and current-voltage (I-V) characteristics of the systems. The proposed nanochannel sensing devices display remarkable specificity, high sensitivity, and wide dynamic range. In addition, control experiments performed in complex matrices suggest that this sensing system has great potential applications in chemical sensing, biotechnology, and many other fields.

  19. Iron and zinc retention in common beans (Phaseolus vulgaris L. after home cooking

    Lucia M. J. Carvalho


    Full Text Available Background : According to the World Health Organization (WHO, iron, iodine, and Vitamin A deficiencies are the most common forms of malnutrition, leading to severe public health consequences. The importance of iron and zinc in human nutrition and the number of children found to be deficient in these nutrients make further studies on retention in cooked grains and cooked bean broth important. Objectives : This work aimed to evaluate iron and zinc retention in six common bean (Phaseolus vulgaris L. cultivars under the following conditions: raw beans, regular pot cooking, pressure cooking, with and without previous water soaking, and broth. Design : Determination of iron and zinc content in the raw, cooked bean grains and broth samples was carried out by Inductively Coupled Plasma (ICP Optical Emission Spectrometry (Spectro Analytical Instrument – Spectroflame P. All experiments and analyses were carried out in triplicate. Results : Overall, regardless of the cooking method, with or without previous water soaking, the highest zinc concentration was found in the cooked bean grains. However, pressure cooking and previous water soaking diminished iron retention in the cooked grains, while increasing it in the bean broth. Conclusion : The common bean was confirmed to be an excellent source of iron and zinc for human consumption, and it was suggested that beans should be consumed in a combined form, i.e. grain with bean broth.

  20. Effect of zinc and nitric oxide on monocyte adhesion to endothelial cells under shear stress.

    Lee, Sungmun; Eskin, Suzanne G; Shah, Ankit K; Schildmeyer, Lisa A; McIntire, Larry V


    This study describes the effect of zinc on monocyte adhesion to endothelial cells under different shear stress regimens, which may trigger atherogenesis. Human umbilical vein endothelial cells were exposed to steady shear stress (15 dynes/cm(2) or 1 dyne/cm(2)) or reversing shear stress (time average 1 dyne/cm(2)) for 24 h. In all shear stress regimes, zinc deficiency enhanced THP-1 cell adhesion, while heparinase III reduced monocyte adhesion following reversing shear stress exposure. Unlike other shear stress regimes, reversing shear stress alone enhanced monocyte adhesion, which may be associated with increased H(2)O(2) and superoxide together with relatively low levels of nitric oxide (NO) production. L-N(G)-Nitroarginine methyl ester (L-NAME) treatment increased monocyte adhesion under 15 dynes/cm(2) and under reversing shear stress. After reversing shear stress, monocyte adhesion dramatically increased with heparinase III treatment followed by a zinc scavenger. Static culture experiments supported the reduction of monocyte adhesion by zinc following endothelial cell cytokine activation. These results suggest that endothelial cell zinc levels are important for the inhibition of monocyte adhesion to endothelial cells, and may be one of the key factors in the early stages of atherogenesis.

  1. Microwave Synthesis of Zinc Hydroxy Sulfate Nanoplates and Zinc Oxide Nanorods in the Classroom

    Dziedzic, Rafal M.; Gillian-Daniel, Anne Lynn; Peterson, Greta M.; Martínez-Herna´ndez, Kermin J.


    In this hands-on, inquiry-based lab, high school and undergraduate students learn about nanotechnology by synthesizing their own nanoparticles in a single class period. This simple synthesis of zinc oxide nanorods and zinc hydroxy sulfate nanoplates can be done in 15 min using a household microwave oven. Reagent concentration, reaction…

  2. Possible role of zinc in diminishing lead-related occupational stress-a zinc nutrition concern.

    Wani, Ab Latif; Ahmad, Ajaz; Shadab, G G H A; Usmani, Jawed Ahmad


    Lead and zinc are mostly present at the same occupational source and usually found as co-contaminants. Lead is known to associate with detrimental effects to humans. Zinc however is an essential nutrient and its deficiency causes debilitating effects on growth and development. Besides, it acts as core ion of important enzymes and proteins. The purpose of this study was to examine if zinc concentrations are associated with blood lead levels and if zinc may prevent lead-induced DNA damage. Blood samples were collected from 92 workers as participants occupationally exposed to lead or lead and zinc and 38 comparison participants having no history of such exposure. Lead and zinc levels were determined from blood by atomic absorption spectrophotometry and genetic damage was assessed by comet assay. Correlation was calculated by Spearman's rho. Lead concentrations were observed to increase among workers with increase in years of exposure. There was a significant difference (p lead levels between workers and controls. In addition, significant difference (p lead, while as the inverse effect of zinc on DNA damage. The results suggest that zinc may influence body lead absorption and may have a role in preventing the genetic damage caused by lead.

  3. Effect of zinc from zinc sulfate on trace mineral concentrations of milk in Varamini ewes

    Zali, A.; Ganjkhanlou, M.


    This study was conducted to evaluate the effect of feeding supplemental zinc (zinc sulfate) in different levels (15, 30, or 45 mg/kg) on trace mineral concentrations in milk of ewes. Thirty lactating Varaminni ewes were assigned to three experimental groups according to their live body weights, milk

  4. Bioavailability of zinc in Wistar rats fed with rice fortified with zinc oxide.

    Della Lucia, Ceres Mattos; Santos, Laura Luiza Menezes; Rodrigues, Kellen Cristina da Cruz; Rodrigues, Vivian Cristina da Cruz; Martino, Hércia Stampini Duarte; Sant'Ana, Helena Maria Pinheiro


    The study of zinc bioavailability in foods is important because this mineral intake does not meet the recommended doses for some population groups. Also, the presence of dietary factors that reduce zinc absorption contributes to its deficiency. Rice fortified with micronutrients (Ultra Rice®) is a viable alternative for fortification since this cereal is already inserted into the population habit. The aim of this study was to evaluate the bioavailability of zinc (Zn) in rice fortified with zinc oxide. During 42 days, rats were divided into four groups and fed with diets containing two different sources of Zn (test diet: UR® fortified with zinc oxide, or control diet: zinc carbonate (ZnCO3)), supplying 50% or 100%, respectively, of the recommendations of this mineral for animals. Weight gain, food intake, feed efficiency ratio, weight, thickness and length of femur; retention of zinc, calcium (Ca) and magnesium (Mg) in the femur and the concentrations of Zn in femur, plasma and erythrocytes were evaluated. Control diet showed higher weight gain, feed efficiency ratio, retention of Zn and Zn concentration in the femur (p 0.05) for dietary intake, length and thickness of the femur, erythrocyte and plasmatic Zn between groups. Although rice fortified with zinc oxide showed a lower bioavailability compared to ZnCO3, this food can be a viable alternative to be used as a vehicle for fortification.

  5. Growth of zinc oxide nanostructures

    K Sreenivas; Sanjeev Kumar; Jaya Choudhury; Vinay Gupta


    Zinc oxide (ZnO) nanowhiskers have been prepared using a multilayer ZnO(50 nm)/Zn(20 nm)/ZnO(2 m) structure on a polished stainless steel (SS) substrate by high rate magnetron sputtering. The formation of uniformly distributed ZnO nanowhiskers with about 20 nm dia. and 2 to 5 m length was observed after a post-deposition annealing of the prepared structure at 300–400 ° C. An array of highly -axis oriented ZnO columns (70–300 nm in dia. and up to 10 m long) were grown on Si substrates by pulsed laser deposition (PLD) at a high pressure (1 Torr), and Raman studies showed the activation of surface phonon modes. The nanosized powder (15–20 nm) and nanoparticle ZnO films on glass substrate were also prepared by a chemical route. Nanowhiskers showed enhanced UV light detection characteristics, and the chemically prepared ZnO nanoparticle films exhibited good sensing properties for alcohol.

  6. Nanoscale zinc silicate from phytoliths

    Qadri, S. B.; Gorzkowski, E. P.; Rath, B. B.; Feng, C. R.; Amarasinghe, R.; Freitas, J. A.; Culbertson, J. C.; Wollmershauser, J. A.


    We report a faster, less expensive method of producing zinc silicate nanoparticles. Such particles are used in high volume to make phosphors and anti-corrosion coatings. The approach makes use of phytoliths (plant rocks), which are microscopic, amorphous, and largely silicate particles embedded in plants, that lend themselves to being easily broken down into nanoparticles. Nanoparticles of Zn2SiO4 were produced in a two stage process. In the refinement stage, plant residue, mixed with an appropriate amount of ZnO, was heated in an argon atmosphere to a temperature exceeding 1400 °C for four to six hours and then heated in air at 650 °C to remove excess carbon. TEM shows 50-100 nm nanoparticles. Raman scattering indicates that only the -Zn2SiO4 crystalline phase was present. X-ray analysis indicated pure rhombohedral R 3 bar phase results from using rice/wheat husks. Both samples luminesced predominantly at 523 nm when illuminated with X-rays or UV laser light.

  7. A new zinc binding fold underlines the versatility of zinc binding modules in protein evolution.

    Sharpe, Belinda K; Matthews, Jacqueline M; Kwan, Ann H Y; Newton, Anthea; Gell, David A; Crossley, Merlin; Mackay, Joel P


    Many different zinc binding modules have been identified. Their abundance and variety suggests that the formation of zinc binding folds might be relatively common. We have determined the structure of CH1(1), a 27-residue peptide derived from the first cysteine/histidine-rich region (CH1) of CREB binding protein (CBP). This peptide forms a highly ordered zinc-dependent fold that is distinct from known folds. The structure differs from a subsequently determined structure of a larger region from the CH3 region of CBP, and the CH1(1) fold probably represents a nonphysiologically active form. Despite this, the fold is thermostable and tolerant to both multiple alanine mutations and changes in the zinc-ligand spacing. Our data support the idea that zinc binding domains may arise frequently. Additionally, such structures may prove useful as scaffolds for protein design, given their stability and robustness.

  8. Absorption of Some Nutrient as Affected by Mycorrhizae, Different Levels of Zinc and Drought Stress in Maize

    N.A Sajedi


    Full Text Available Abstract In order to investigate absorption of some nutrient as affected by mycorrhizae, different levels of zinc and drought stress in maize (KSC 704, an experiment was carried out in research farm of Islamic Azad University–Arak in 2006-2007. The Experiment was conducted in factorial arrangement based on randomized complete block design with three replications. Treatments consist of irrigation levels: I1= %100, I2= %75 and I3= %50 crop water requirement, mycorrhiza fungus (Glumus intraradices at two levels (inoculation and non inoculation and zinc sulfate at three levels: 0, 25 and 45 kg ha-1. Results showed that drought stress increased absorption of nitrogen, potassium and protein percentage, but reduced absorption of phosphorous. Inoculation with mycorrhizae increased absorption of nutrients. Using of zinc sulfate increased absorption of nitrogen, potassium, phosphorous and protein percentage. Inoculation of mycorrhiza under drought stress had not significant effect on absorption of nutrients and protein percentage of grain. Using of zinc sulfate under drought stress increased absorption of nitrogen, potassium and protein percentage of grain but reduced absorption of phosphorous. interactions effects of mycorrhizae and zinc sulfate increased absorption of nutritional elements. The highest amounts of nitrogen and potassium absorption and protein percentage of grain were observed in combination of irrigation equal to 50% of crop water demand, mycorrhiza + 25 kg ha-1 zinc sulfate. The highest grain yield was observed from combination of optimum irrigation, without mycorrhiza + 45 kg ha-1 zinc sulfate. It was concluded that with irrigation equal to 75% water requirement + inoculation with mycorrhiza + 45kg ha-1 zinc sulfate optimum crop yield could be obtained. Keywords: Drought stress, Mycorrhiza, Nutrition of elements, Protein, Maize

  9. Low serum zinc level in dpression

    SA Mousavi


    Full Text Available BACKGROUND: Major Depressive Disorder (MDD is a common disorder, with a lifetime prevalence of about 15 percent, perhaps as high as 25 percent for women. The etiology of MDD is too complex to be explained totally by a single social, developmental, or biological theory. A variety of factors appear to work together to cause or precipitate depressive disorders. Various functions have been reported for trace elements such as zink in recovery or exacerbation of depression. METHODS: In this experimental study, we studied 46 patients with MDD based on DSM IV criteria, among the patients referred to mental disorders clininc of Noor Hospital. Twenty Patients were men and 26 were women. Thirty two volunteers of general population were evaluated for depression with Beck depression test who did not show any depressive symptoms with this test. A blood sample of 5cc was obtained from each person and the serum zinc concentration was measured. Data gathered and analyzed with SPSS, logistic regression and chi-squar tests. RESULTS: Serum zinc concentrations were 74 to 130 mg/dl in men and 60 to 128 mg/dl in women of control group. Serum zinc concentration was 30 to 60 mg/dl in depressive patients that it was lower in women than men. The difference between serum zinc concentrations of normal and depressive persons was meaningful (P = 0.02. CONCLUSION: In our study, the serum concentration of zinc was about half of normal value. This study replicates previous findings that major depressed subjects show significantly lowered serum zinc concentration. KEYWORDS: Depression, zinc.

  10. Zinc, copper and selenium in reproduction.

    Bedwal, R S; Bahuguna, A


    Of the nine biological trace elements, zinc, copper and selenium are important in reproduction in males and females. Zinc content is high in the adult testis, and the prostate has a higher concentration of zinc than any other organ of the body. Zinc deficiency first impairs angiotensin converting enzyme (ACE) activity, and this in turn leads to depletion of testosterone and inhibition of spermatogenesis. Defects in spermatozoa are frequently observed in the zinc-deficient rat. Zinc is thought to help to extend the functional life span of the ejaculated spermatozoa. Zinc deficiency in the female can lead to such problems as impaired synthesis/secretion of (FSH) and (LH), abnormal ovarian development, disruption of the estrous cycle, frequent abortion, a prolonged gestation period, teratogenicity, stillbirths, difficulty in parturition, pre-eclampsia, toxemia and low birth weights of infants. The level of testosterone in the male has been suggested to play a role in the severity of copper deficiency. Copper-deficient female rats are protected against mortality due to copper deficiency, and the protection has been suggested to be provided by estrogens, since estrogens alter the subcellular distribution of copper in the liver and increase plasma copper levels by inducing ceruloplasmin synthesis. The selenium content of male gonads increases during pubertal maturation. Selenium is localized in the mitochondrial capsule protein (MCP) of the midpiece. Maximal incorporation in MCP occurs at steps 7 and 12 of spermatogenesis and uptake decreases by step 15. Selenium deficiency in females results in infertility, abortions and retention of the placenta. The newborns from a selenium-deficient mother suffer from muscular weakness, but the concentration of selenium during pregnancy does not have any effect on the weight of the baby or length of pregnancy. The selenium requirements of a pregnant and lactating mother are increased as a result of selenium transport to the fetus via

  11. Zinc Fortification Decreases ZIP1 Gene Expression of Some Adolescent Females with Appropriate Plasma Zinc Levels

    Rosa O. Méndez


    Full Text Available Zinc homeostasis is achieved after intake variation by changes in the expression levels of zinc transporters. The aim of this study was to evaluate dietary intake (by 24-h recall, absorption, plasma zinc (by absorption spectrophotometry and the expression levels (by quantitative PCR, of the transporters ZIP1 (zinc importer and ZnT1 (zinc exporter in peripheral white blood cells from 24 adolescent girls before and after drinking zinc-fortified milk for 27 day. Zinc intake increased (p < 0.001 from 10.5 ± 3.9 mg/day to 17.6 ± 4.4 mg/day, and its estimated absorption from 3.1 ± 1.2 to 5.3 ± 1.3 mg/day. Mean plasma zinc concentration remained unchanged (p > 0.05 near 150 µg/dL, but increased by 31 µg/dL (p < 0.05 for 6/24 adolescents (group A and decreased by 25 µg/dL (p < 0.05 for other 6/24 adolescents (group B. Expression of ZIP1 in blood leukocytes was reduced 1.4-fold (p < 0.006 in group A, while for the expression of ZnT1 there was no difference after intervention (p = 0.39. An increase of dietary zinc after 27-days consumption of fortified-milk did not increase (p > 0.05 the plasma level of adolescent girls but for 6/24 participants from group A in spite of the formerly appropriation, which cellular zinc uptake decreased as assessed by reduction of the expression of ZIP1.

  12. Effect of low zinc intake on absorption and excretion of zinc by infants studied with 70Zn as extrinsic tag.

    Ziegler, E E; Serfass, R E; Nelson, S E; Figueroa-Colón, R; Edwards, B B; Houk, R S; Thompson, J J


    The effect of low dietary intake of zinc was studied in six normal infants with the use of 70Zn as an extrinsic tag. Of the two study formulas, one provided a zinc intake similar to that of customary infant formulas ("high" intake), whereas the other provided a "low" zinc intake. Two zinc absorption studies were performed with each formula (sequence: high-low-low-high). Extrinsically labeled formula was fed for 24 h and excreta were collected for 72 h. Zinc isotope ratios were determined by inductively coupled plasma mass spectrometry (ICP/MS). When zinc intake was high, net zinc absorption was 9.1 +/- 8.7% (mean +/- SD) of intake and net zinc retention was 74 +/- 91 micrograms/(kg.d). True zinc (70Zn) absorption was 16.8 +/- 5.8% of intake and fecal excretion of endogenous zinc was 78 +/- 56 micrograms/(kg.d). When zinc intake was low, net absorption of zinc increased significantly (P less than 0.001) to 26.0 +/- 13.0% of intake, but net retention was not significantly different at 42 +/- 33 micrograms/(kg.d). True absorption of zinc also increased significantly (P less than 0.001) to 41.1 +/- 7.8% of intake, whereas fecal endogenous zinc decreased (P less than 0.05) to 34 +/- 16 micrograms/(kg.d) during low zinc intake. Thus, infants maintain zinc balance in the face of low zinc intake through increased efficiency of absorption and decreased excretion of endogenous zinc.

  13. Removal of lead and zinc ions from aqueous solutions using clinoptilolite

    Golomeova, Mirjana; Zendelska, Afrodita; Krstev, Boris; Golomeov, Blagoj; Blažev, Krsto


    The removed of lead and zinc ions from synthetic aqueous solutions was performed using clinoptilolite. In order to determine the effectivity of clinoptilolite a series of experiments were performed under batch conditions from single ion solutions. Experiments were carried out at different initial ions concentration, different initial pH values and different adsorbent mass. The adsorption kinetics is reasonably fast. It means that in the first 20 min approximately 90% o...

  14. Effect of Different Levels of Zinc on the Performance and Humoral Immunity Response in Broiler Chicken

    S Sharbatdar; M Shamse Shargh; A Hesabi Namaghi; S. Hasani; R Hadadian


    This experiment was conducted to evaluate the effects of different levels of zinc on the performance and humoral immunity response in broiler chickens with 250 Ross broiler chickens with five experimental treatments consisted of five replicates in a completely randomized design. Treatments were diets containing: basal diet (control) and basal diet plus 40, 80, 120 and 160 mg Zn/kg. Results of the experiment indicated that birds were fed on diets containing 120 mg Zn/kg and control showed the ...

  15. Role of nutritional zinc in the prevention of osteoporosis.

    Yamaguchi, Masayoshi


    Zinc is known as an essential nutritional factor in the growth of the human and animals. Bone growth retardation is a common finding in various conditions associated with dietary zinc deficiency. Bone zinc content has been shown to decrease in aging, skeletal unloading, and postmenopausal conditions, suggesting its role in bone disorder. Zinc has been demonstrated to have a stimulatory effect on osteoblastic bone formation and mineralization; the metal directly activates aminoacyl-tRNA synthetase, a rate-limiting enzyme at translational process of protein synthesis, in the cells, and it stimulates cellular protein synthesis. Zinc has been shown to stimulate gene expression of the transcription factors runt-related transcription factor 2 (Runx2) that is related to differentiation into osteoblastic cells. Moreover, zinc has been shown to inhibit osteoclastic bone resorption due to inhibiting osteoclast-like cell formation from bone marrow cells and stimulating apoptotic cell death of mature osteoclasts. Zinc has a suppressive effect on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-induced osteoclastogenesis. Zinc transporter has been shown to express in osteoblastic and osteoclastic cells. Zinc protein is involved in transcription. The intake of dietary zinc causes an increase in bone mass. beta-Alanyl-L: -histidinato zinc (AHZ) is a zinc compound, in which zinc is chelated to beta-alanyl-L: -histidine. The stimulatory effect of AHZ on bone formation is more intensive than that of zinc sulfate. Zinc acexamate has also been shown to have a potent-anabolic effect on bone. The oral administration of AHZ or zinc acexamate has the restorative effect on bone loss under various pathophysiologic conditions including aging, skeletal unloading, aluminum bone toxicity, calcium- and vitamin D-deficiency, adjuvant arthritis, estrogen deficiency, diabetes, and fracture healing. Zinc compounds may be designed as new supplementation factor in the prevention and

  16. Mechanisms of mammalian zinc-regulated gene expression.

    Jackson, Kelly A; Valentine, Ruth A; Coneyworth, Lisa J; Mathers, John C; Ford, Dianne


    Mechanisms through which gene expression is regulated by zinc are central to cellular zinc homoeostasis. In this context, evidence for the involvement of zinc dyshomoeostasis in the aetiology of diseases, including Type 2 diabetes, Alzheimer's disease and cancer, highlights the importance of zinc-regulated gene expression. Mechanisms elucidated in bacteria and yeast provide examples of different possible modes of zinc-sensitive gene regulation, involving the zinc-regulated binding of transcriptional activators and repressors to gene promoter regions. A mammalian transcriptional regulatory mechanism that mediates zinc-induced transcriptional up-regulation, involving the transcription factor MTF1 (metal-response element-binding transcription factor 1), has been studied extensively. Gene responses in the opposite direction (reduced mRNA levels in response to increased zinc availability) have been observed in mammalian cells, but a specific transcriptional regulatory process responsible for such a response has yet to be identified. Examples of single zinc-sensitive transcription factors regulating gene expression in opposite directions are emerging. Although zinc-induced transcriptional repression by MTF1 is a possible explanation in some specific instances, such a mechanism cannot account for repression by zinc of all mammalian genes that show this mode of regulation, indicating the existence of as yet uncharacterized mechanisms of zinc-regulated transcription in mammalian cells. In addition, recent findings reveal a role for effects of zinc on mRNA stability in the regulation of specific zinc transporters. Our studies on the regulation of the human gene SLC30A5 (solute carrier 30A5), which codes for the zinc transporter ZnT5, have revealed that this gene provides a model system by which to study both zinc-induced transcriptional down-regulation and zinc-regulated mRNA stabilization.

  17. Apoptosis may underlie the pathology of zinc-deficient skin.

    Wilson, Dallas; Varigos, George; Ackland, M Leigh


    The trace element zinc is essential for the survival and function of all cells. Zinc deficiency, whether nutritional or genetic, is fatal if left untreated. The effects of zinc deficiency are particularly obvious in the skin, seen as an erythematous rash, scaly plaques, and ulcers. Electron microscopy reveals degenerative changes within keratinocytes. Despite the well-documented association between zinc deficiency and skin pathology, it is not clear which cellular processes are most sensitive to zinc deficiency and could account for the typical pathological features. We used the cultured HaCaT keratinocyte line to obtain insight into the cellular effects of zinc deficiency, as these cells show many characteristics of normal skin keratinocytes. Zinc deficiency was induced by growing cells in the presence of the zinc chelator, TPEN, or by growth in zinc-deficient medium. Growth of cells in zinc-deficient medium resulted in a 44% reduction of intracellular zinc levels and a 75% reduction in the activity of the zinc-dependent enzyme, 5'-nucleotidase, relative to the control cells. Over a period of 7 days of exposure to zinc-deficient conditions, no changes in cell viability and growth, or in the cytoskeletal and cell adhesion systems, were found in HaCaT cells. At 7 days, however, induction of apoptosis was indicated by the presence of DNA fragmentation and expression of active caspase-3 in cells. These results demonstrate that apoptosis is the earliest detectable cellular change induced by zinc deficiency in HaCaT keratinocytes. Our observations account for many of the features of zinc deficiency, including the presence of degenerate nuclei, chromatin aggregates and abnormal organization of keratin, that may represent the later stages of apoptosis. In summary, a major causal role for apoptosis in the pathology of zinc deficiency in the skin is proposed. This role is consistent with the previously unexplained diverse range of degenerative cellular changes seen at the

  18. Different Zinc Sources Have Diverse Impacts on Gene Expression of Zinc Absorption Related Transporters in Intestinal Porcine Epithelial Cells.

    Huang, Danping; Zhuo, Zhao; Fang, Shenglin; Yue, Min; Feng, Jie


    This study was conducted to investigate the effects of zinc sources on gene expression of zinc-related transporters in intestinal porcine epithelial cells (IPEC-1). IPEC-1 cells were treated with zinc glycine chelate (Zn-Gly), zinc methionine (Zn-Met), and zinc sulfate (ZnSO4), respectively, for measurement of cell viability. Then, the relative expression of zinc-related transporters in IPEC-1 in response to different zinc sources (50 μmol/L zinc) was measured. Zinc transporter SLC39A4 (ZIP4) expression was selectively silenced to assess the function of ZIP4 in inorganic and organic zinc absorption. The result showed that Zn-Gly and Zn-Met had lower cell damage compared with ZnSO4 on the same zinc levels. Different zinc sources improved the expression of metallothionein1 (MT1) and zinc transporter SLC30A1 (ZnT1) messenger RNA (mRNA) compared with the control (P zinc addition. MT1 and ZnT1 mRNA expressions in Zn-Gly and Zn-Met were higher than those in ZnSO4, and ZIP4 mRNA expression in Zn-Met was the lowest among three kinds of zinc sources (P zinc sources groups. Silencing of ZIP4 significantly decreased MT1 mRNA expression in ZnSO4 and Zn-Gly treatments, reduced zinc absorption rate, and increased DMT1 mRNA expression in ZnSO4 compared with negative control. In summary, different zinc sources could improve zinc status on IPEC-1 cells and organic zinc had lower cell damage compared with ZnSO4. Moreover, Zn-Gly and Zn-Met are more efficient on zinc absorption according to the expression of various zinc-related transporters MT1, ZIP4, ZnT1, and DMT1. ZIP4 played a direct role in inorganic zinc uptake, and the absorption of zinc in Zn-Gly depends on ZIP4 partly, while absorption of Zn-Met is less dependent on ZIP4.

  19. Coordinated Zinc Homeostasis Is Essential for the Wild-Type Virulence of Brucella abortus

    Sheehan, Lauren M.; Budnick, James A.; Roop, R. Martin


    ABSTRACT Metal homeostasis in bacterial cells is a highly regulated process requiring intricately coordinated import and export, as well as precise sensing of intracellular metal concentrations. The uptake of zinc (Zn) has been linked to the virulence of Brucella abortus; however, the capacity of Brucella strains to sense Zn levels and subsequently coordinate Zn homeostasis has not been described. Here, we show that expression of the genes encoding the zinc uptake system ZnuABC is negatively regulated by the Zn-sensing Fur family transcriptional regulator, Zur, by direct interactions between Zur and the promoter region of znuABC. Moreover, the MerR-type regulator, ZntR, controls the expression of the gene encoding the Zn exporter ZntA by binding directly to its promoter. Deletion of zur or zntR alone did not result in increased zinc toxicity in the corresponding mutants; however, deletion of zntA led to increased sensitivity to Zn but not to other metals, such as Cu and Ni, suggesting that ZntA is a Zn-specific exporter. Strikingly, deletion of zntR resulted in significant attenuation of B. abortus in a mouse model of chronic infection, and subsequent experiments revealed that overexpression of zntA in the zntR mutant is the molecular basis for its decreased virulence. IMPORTANCE The importance of zinc uptake for Brucella pathogenesis has been demonstrated previously, but to date, there has been no description of how overall zinc homeostasis is maintained and genetically controlled in the brucellae. The present work defines the predominant zinc export system, as well as the key genetic regulators of both zinc uptake and export in Brucella abortus. Moreover, the data show the importance of precise coordination of the zinc homeostasis systems as disregulation of some elements of these systems leads to the attenuation of Brucella virulence in a mouse model. Overall, this study advances our understanding of the essential role of zinc in the pathogenesis of

  20. Stunting prevalence, plasma zinc concentrations, and dietary zinc intakes in a nationally representative sample suggest a high risk of zinc deficiency among women and young children in Cameroon.

    Engle-Stone, Reina; Ndjebayi, Alex O; Nankap, Martin; Killilea, David W; Brown, Kenneth H


    Before initiating a mass zinc fortification program, this study assessed the prevalence of and risk factors for low zinc status among Cameroonian women and children. In a nationally representative survey, we randomly selected 30 clusters in each of 3 strata (North, South, and Yaoundé/Douala) and 10 households per cluster, each with a woman aged 15-49 y and a child aged 12-59 mo (n = 1002 households). Twenty-four-hour dietary recalls (with duplicates in a subset) and anthropometric measurements were conducted, and non-fasting blood was collected to measure plasma zinc concentration (PZC) and markers of inflammation. PZC was adjusted for methodologic factors (time of collection and processing, and presence of inflammation). The prevalence of stunting was 33% (32% South; 46% North; 13% Yaoundé/Douala). Among women, 82% had low adjusted PZC (Nutrition Consultative Group (IZiNCG), 29 and 41% of women had inadequate zinc intakes, assuming moderate and low bioavailability, respectively, but only 8% of children had inadequate zinc intake. Depending on the estimated physiologic zinc requirement applied, 17% (IZiNCG) and 92% (Institute of Medicine) of women had inadequate absorbable zinc intakes. Total zinc intakes were greatest in the North region, possibly because of different dietary patterns in this area. Zinc deficiency is a public health problem among women and children in Cameroon, although PZC and dietary zinc yield different estimates of the prevalence of deficiency. Large-scale programs to improve zinc nutrition, including food fortification, are needed.

  1. Intraprostatic injection of neutralized zinc in rats

    Fahim, M.S.; Wang, M.; Sutcu, M.F.; Fahim, Z.; Safron, J.A.; Ganjam, V.K. (Univ. of Missouri, Columbia (United States) Xian Medical University (China))


    Zinc has been implicated in steroid endocrinology of the prostate gland. The conversion of testosterone to dihydrotestosterone (DHT) by 5{alpha}-reductase enzyme is believed to express androgenic responses in the prostate. To note the effect of neutralized zinc on the prostate, 50 sexually mature rats, weighing 325 {plus minus} 20 grams, were divided into 5 groups as follows: (1) control, (2) sham, (3) castrated, (4) injected intraprostatically with 10 mg. neutralized zinc, and (5) injected intraprostatically with 20 mg. neutralized zinc. Results in the treated groups indicated significant reduction of prostate weights, 12% and 53% and histologically normal prostate; no significant change in weight and histological structure of testes, epididymides, and seminal vesicles; significant reduction in 5{alpha}-reductase activity and total protein and DNA concentrations in prostate tissue; and no significant effect on progeny of treated animals. These results suggest that direct application of neutralized zinc to the prostate offers a new modality for treatment of prostatitis without affecting spermatogenesis and testosterone production.

  2. Antioxidant role of zinc in diabetes mellitus.

    Cruz, Kyria Jayanne Clímaco; de Oliveira, Ana Raquel Soares; Marreiro, Dilina do Nascimento


    Chronic hyperglycemia statue noticed in diabetes mellitus favors the manifestation of oxidative stress by increasing the production of reactive oxygen species and/or by reducing the antioxidant defense system activity. Zinc plays an important role in antioxidant defense in type 2 diabetic patients by notably acting as a cofactor of the superoxide dismutase enzyme, by modulating the glutathione metabolism and metallothionein expression, by competing with iron and copper in the cell membrane and by inhibiting nicotinamide adenine dinucleotide phosphate-oxidase enzyme. Zinc also improves the oxidative stress in these patients by reducing chronic hyperglycemia. It indeed promotes phosphorylation of insulin receptors by enhancing transport of glucose into cells. However, several studies reveal changes in zinc metabolism in individuals with type 2 diabetes mellitus and controversies remain regarding the effect of zinc supplementation in the improvement of oxidative stress in these patients. Faced with the serious challenge of the metabolic disorders related to oxidative stress in diabetes along with the importance of antioxidant nutrients in the control of this disease, new studies may contribute to improve our understanding of the role played by zinc against oxidative stress and its connection with type 2 diabetes mellitus prognosis. This could serve as a prelude to the development of prevention strategies and treatment of disorders associated with this chronic disease.

  3. Zinc Leaching from Tire Crumb Rubber

    Rhodes, E. P.; Ren, J.; Mays, D. C.


    Recent estimates indicate that more than 2 billion scrap tires are currently stockpiled in the United States and approximately 280 million more tires are added annually. Various engineering applications utilize recycled tires in the form of shredded tire crumb rubber. However, the use of tire crumb rubber may have negative environmental impacts, especially when the rubber comes into contact with water. A review of the literature indicates that leaching of zinc from tire crumb rubber is the most significant water quality concern associated with using this material. Zinc is generally used in tire manufacturing, representing approximately 1.3% of the final product by mass. This study will report results from the U.S. Environmental Protection Agency’s (EPA’s) Synthetic Precipitation Leaching Procedure, batch leaching tests, and column leaching tests performed to quantify the process by which zinc leaches from tire crumb rubber into water. Results are interpreted with a first-order kinetic attachment/detachment model, implemented with the U.S. Agricultural Research Service software HYDRUS-1D, in order to determine the circumstances when zinc leaching from tire crumb rubber would be expected to comply with the applicable discharge limits. One potential application for recycled tires is replacing sand with tire crumb rubber in granular media filters used for stormwater pollution control. For this to be a viable application, the total zinc in the stormwater discharge must be below the EPA’s benchmark value of 0.117 mg/L.

  4. Relative Penetration of Zinc Oxide and Zinc Ions into Human Skin after Application of Different Zinc Oxide Formulations.

    Holmes, Amy M; Song, Zhen; Moghimi, Hamid R; Roberts, Michael S


    Zinc oxide (ZnO) is frequently used in commercial sunscreen formulations to deliver their broad range of UV protection properties. Concern has been raised about the extent to which these ZnO particles (both micronized and nanoparticulate) penetrate the skin and their resultant toxicity. This work has explored the human epidermal skin penetration of zinc oxide and its labile zinc ion dissolution product that may potentially be formed after application of ZnO nanoparticles to human epidermis. Three ZnO nanoparticle formulations were used: a suspension in the oil, capric caprylic triglycerides (CCT), the base formulation commonly used in commercially available sunscreen products; an aqueous ZnO suspension at pH 6, similar to the natural skin surface pH; and an aqueous ZnO suspension at pH 9, a pH at which ZnO is stable and there is minimal pH-induced impairment of epidermal integrity. In each case, the ZnO in the formulations did not penetrate into the intact viable epidermis for any of the formulations but was associated with an enhanced increase in zinc ion fluorescence signal in both the stratum corneum and the viable epidermis. The highest labile zinc fluorescence was found for the ZnO suspension at pH 6. It is concluded that, while topically applied ZnO does not penetrate into the viable epidermis, these applications are associated with hydrolysis of ZnO on the skin surface, leading to an increase in zinc ion levels in the stratum corneum, thence in the viable epidermis and subsequently in the systemic circulation and the urine.

  5. Oxidation and Condensation of Zinc Fume From Zn-CO2-CO-H2O Streams Relevant to Steelmaking Off-Gas Systems

    Bronson, Tyler M.; Ma, Naiyang; Zhu, Liang Zhu; Sohn, Hong Yong


    The objective of this research was to study the condensation of zinc vapor to metallic zinc and zinc oxide solid under varying environments to investigate the feasibility of in-process separation of zinc from steelmaking off-gas dusts. Water vapor content, temperature, degree of cooling, gas composition, and initial zinc partial pressure were varied to simulate the possible conditions that can occur within steelmaking off-gas systems, limited to Zn-CO2-CO-H2O gas compositions. The temperature of deposition and the effect of rapidly quenching the gas were specifically studied. A homogeneous nucleation model for applicable experiments was applied to the analysis of the experimental data. It was determined that under the experimental conditions, oxidation of zinc vapor by H2O or CO2 does not occur above 1108 K (835 °C) even for highly oxidizing streams (CO2/CO = 40/7). Rate expressions that correlate CO2 and H2O oxidation rates to gas composition, partial pressure of water vapor, temperature, and zinc partial pressure were determined to be as follows: Rate( mol/m2 s ) = 406 \\exp ( - 50.2 kJ/mol/RT )( p_Zn p_{CO2 - p_CO /K_{eq,CO2 ) mol/m2 × s Rate( mol/m2 s ) = 32.9 \\exp ( - 13.7 kJ/mol/RT )( p_Zn p_{H2 O - p_{H2 /K_{eq,H2 O ) mol/m2 × s It was proven that a rapid cooling rate (500 K/s) significantly increases the ratio of metallic zinc to zinc oxide as opposed to a slow cooling rate (250 K/s). SEM analysis found evidence of heterogeneous growth of ZnO as well as of homogeneous formation of metallic zinc. The homogeneous nucleation model fit well with experiments where only metallic zinc deposited. An expanded model with rates of oxidation by CO2 and H2O as shown was combined with the homogenous nucleation model and then compared with experimental data. The calculated results based on the model gave a reasonable fit to the measured data. For the conditions used in this study, the rate equations for the oxidation of zinc by carbon dioxide and water vapor as well

  6. Complexometric Titration of Zinc: An Analytical Chemistry Laboratory Experiment

    Novick, S. G.


    Complexometric titrations with EDTA have traditionally been performed in undergraduate analytical chemistry courses to determine the calcium or magnesium content of water. These titrations are performed at a basic pH, where the formation constants of Ca-EDTA and Mg-EDTA complexes are high. These types of problems are well-treated in the analytical chemistry textbooks. In contrast, treatment of metal ions whose EDTA complexes occur significantly at low pH (e.g., Zn2+, Fe3+, Cu2+, Ni2+, Pb2+, Al3+) is sparse. An incorrect conclusion can be reached by the student that practical EDTA titrations are only performed at high pH. In addition, widening the window of possible metal ions for complexometric titration affords the possibility of analyzing real world products, such as the cold lozenges discussed in the article.

  7. The changes of zinc transporter ZnT gene expression in response to zinc supplementation in obese women.

    Noh, Hwayoung; Paik, Hee Young; Kim, Jihye; Chung, Jayong


    Obesity is associated with an alteration in zinc metabolism. This alteration may be associated with changes in gene expression of zinc transporters. In this study, we examined the leukocyte expression of zinc transporter ZnTs in response to zinc supplementation in young obese women. Thirty-five young obese women (BMI ≥ 25 kg/m(2)), aged 18-28 years, were randomly assigned to two groups: a placebo group or a zinc group (30 mg zinc/day for 8 weeks). Usual dietary zinc intake was estimated from 3-day diet records. Serum zinc and urinary zinc concentrations were measured by atomic absorption spectrometry. Messenger RNA (mRNA) levels of leukocyte ZnT transporters were examined using quantitative real-time PCR. Expression levels of two ZnT transporters, ZnT1 and ZnT5, in obese women, increased significantly after zinc supplementation. At the end of the study, mRNA levels of ZnT1 and ZnT5 showed no correlation with serum zinc or urinary zinc concentration in obese women. In addition, a further study was conducted to identify whether the association between the gene expression levels of leukocyte ZnT1 and ZnT5 and dietary zinc intake remained consistent in 216 healthy young adults aged 20-29 years. A positive correlation between ZnT1 and dietary zinc intake (r = 0.181, P = 0.089) was also observed in healthy men although the significance was marginal. Taken together, these results show that the gene expression levels of ZnT1 and ZnT5 may be changed by zinc intake, suggesting that zinc supplementation could potentially restore ZnT transporter expression in obese women with altered zinc metabolism.

  8. Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples.

    Kasana, Shakhenabat; Din, Jamila; Maret, Wolfgang


    Discovering genetic causes of zinc deficiency has been a remarkable scientific journey. It started with the description of a rare skin disease, its treatment with various agents, the successful therapy with zinc, and the identification of mutations in a zinc transporter causing the disease. The journey continues with defining the molecular and cellular pathways that lead to the symptoms caused by zinc deficiency. Remarkably, at least two zinc transporters from separate protein families are now known to be involved in the genetics of zinc deficiency. One is ZIP4, which is involved in intestinal zinc uptake. Its mutations can cause acrodermatitis enteropathica (AE) with autosomal recessive inheritance. The other one is ZnT2, the transporter responsible for supplying human milk with zinc. Mutations in this transporter cause transient neonatal zinc deficiency (TNZD) with symptoms similar to AE but with autosomal dominant inheritance. The two diseases can be distinguished in affected infants. AE is fatal if zinc is not supplied to the infant after weaning, whereas TNZD is a genetic defect of the mother limiting the supply of zinc in the milk, and therefore the infant usually will obtain enough zinc once weaned. Although these diseases are relatively rare, the full functional consequences of the numerous mutations in ZIP4 and ZnT2 and their interactions with dietary zinc are not known. In particular, it remains unexplored whether some mutations cause milder disease phenotypes or increase the risk for other diseases if dietary zinc requirements are not met or exceeded. Thus, it is not known whether widespread zinc deficiency in human populations is based primarily on a nutritional deficiency or determined by genetic factors as well. This consideration becomes even more significant with regard to mutations in the other 22 human zinc transporters, where associations with a range of diseases, including diabetes, heart disease, and mental illnesses have been observed

  9. Properties of Zip4 accumulation during zinc deficiency and its usefulness to evaluate zinc status: a study of the effects of zinc deficiency during lactation.

    Hashimoto, Ayako; Nakagawa, Miki; Tsujimura, Natsuki; Miyazaki, Shiho; Kizu, Kumiko; Goto, Tomoko; Komatsu, Yusuke; Matsunaga, Ayu; Shirakawa, Hitoshi; Narita, Hiroshi; Kambe, Taiho; Komai, Michio


    Systemic and cellular zinc homeostasis is elaborately controlled by ZIP and ZnT zinc transporters. Therefore, detailed characterization of their expression properties is of importance. Of these transporter proteins, Zip4 functions as the primarily important transporter to control systemic zinc homeostasis because of its indispensable function of zinc absorption in the small intestine. In this study, we closely investigated Zip4 protein accumulation in the rat small intestine in response to zinc status using an anti-Zip4 monoclonal antibody that we generated and contrasted this with the zinc-responsive activity of the membrane-bound alkaline phosphatase (ALP). We found that Zip4 accumulation is more rapid in response to zinc deficiency than previously thought. Accumulation increased in the jejunum as early as 1 day following a zinc-deficient diet. In the small intestine, Zip4 protein expression was higher in the jejunum than in the duodenum and was accompanied by reduction of ALP activity, suggesting that the jejunum can become zinc deficient more easily. Furthermore, by monitoring Zip4 accumulation levels and ALP activity in the duodenum and jejunum, we reasserted that zinc deficiency during lactation may transiently alter plasma glucose levels in the offspring in a sex-specific manner, without affecting homeostatic control of zinc metabolism. This confirms that zinc nutrition during lactation is extremely important for the health of the offspring. These results reveal that rapid Zip4 accumulation provides a significant conceptual advance in understanding the molecular basis of systemic zinc homeostatic control, and that properties of Zip4 protein accumulation are useful to evaluate zinc status closely.

  10. Effect of Zinc supplementation on the Management of Acute ...

    Effect of Zinc supplementation on the Management of Acute Diarrhoea in Young ... Incidence and prevalence of diarrhea were compared between the groups. ... Supplementing the treatment of acute watery diarrhea with Zinc in just 2 cases ...

  11. Vitamin A, zinc, iodine, anemia and Anthropometric Status of ...



    Apr 2, 2012 ... of vitamin A, zinc, iron, iodine deficiency and anaemia among underprivileged 2 – 10 ... Anthropometric data (weight and height measurements) and ... serum and hair zinc levels were reported among children in southern and ...

  12. The Zinc Transport Systems and Their Regulation in Pathogenic Fungi.

    Jung, Won Hee


    Zinc is an essential micronutrient required for many enzymes that play essential roles in a cell. It was estimated that approximately 3% of the total cellular proteins are required for zinc for their functions. Zinc has long been considered as one of the key players in host-pathogen interactions. The host sequesters intracellular zinc by utilizing multiple cellular zinc importers and exporters as a means of nutritional immunity. To overcome extreme zinc limitation within the host environment, pathogenic microbes have successfully evolved a number of mechanisms to secure sufficient concentrations of zinc for their survival and pathogenesis. In this review, we briefly discuss the zinc uptake systems and their regulation in the model fungus Saccharomyces cerevisiae and in major human pathogenic fungi such as Aspergillus fumigatus, Candida albicans, and Cryptococcus gattii.

  13. Zinc, nitrogen and salinity interaction on agronomic traits and some ...



    Nov 23, 2011 ... study the response of canola to different nitrogen and zinc fertilizer levels under two doses ... moderately calcareous, low in nitrogen, low in organic matter and alkaline in reaction ...... Effect of foliar application of zinc, selenium ...

  14. Effect of zinc treatment on intestinal motility in experimentally ...


    meal and the mechanisms of action of zinc sulphate on motility were investigated. The effective ... The positive action of zinc in acute ..... of gastrointestinal motility by inhibiting acetylcholine ... activity in smooth muscle is initiated by a Ca2+-.

  15. The immune system and the impact of zinc during aging

    Haase Hajo


    Full Text Available Abstract The trace element zinc is essential for the immune system, and zinc deficiency affects multiple aspects of innate and adaptive immunity. There are remarkable parallels in the immunological changes during aging and zinc deficiency, including a reduction in the activity of the thymus and thymic hormones, a shift of the T helper cell balance toward T helper type 2 cells, decreased response to vaccination, and impaired functions of innate immune cells. Many studies confirm a decline of zinc levels with age. Most of these studies do not classify the majority of elderly as zinc deficient, but even marginal zinc deprivation can affect immune function. Consequently, oral zinc supplementation demonstrates the potential to improve immunity and efficiently downregulates chronic inflammatory responses in the elderly. These data indicate that a wide prevalence of marginal zinc deficiency in elderly people may contribute to immunosenescence.

  16. Concentrations of plasma copper and zinc and blood selenium in ...

    Department of Human and Animal Physiology, University of Stellenbosch, Stellenbosch 7600, ... Concentrations of plasma copper and zinc as well as blood selenium were determined in single and twin lambs ... of zinc within the body; notably.

  17. Oral zinc and common childhood infections--An update.

    Basnet, Sudha; Mathisen, Maria; Strand, Tor A


    Zinc is an essential micronutrient important for growth and for normal function of the immune system. Many children in developing countries have inadequate zinc nutrition. Routine zinc supplementation reduces the risk of respiratory infections and diarrhea, the two leading causes of morbidity and mortality in young children worldwide. In childhood diarrhea oral zinc also reduces illness duration and risk of persistent episodes. Oral zinc is therefore recommended for the treatment of acute diarrhea in young children. The results from the studies that have measured the therapeutic effect of zinc on acute respiratory infections, however, are conflicting. Moreover, the results of therapeutic zinc for childhood malaria also are so far not promising.This paper gives a brief outline of the current evidence from clinical trials on therapeutic effect of oral zinc on childhood respiratory infections, pneumonia and malaria and also of new evidence of the effect on serious bacterial illness in young infants.

  18. Modelling of copper and zinc adsorption onto zeolite

    H. Pavolová


    Full Text Available Adsorption of Cu(II and Zn(II ions from metallurgical solutions has been studied and the adsorption capacity of zeolite (Nižný Hrabovec, SK has been determined. Zeolites are characterized by relatively high sorption capacity, i.e. Cu(II and Zn(II can be removed even at relatively low concentrations. The experiments were realised in a batch system and evaluated using isotherms. According to the results of the experiments the adsorption equilibrium of Cu(II and Zn(II on zeolite was best described by Freundlich isotherm. The maximum sorption capacity was 1,48 and 1,49 mg/g for Cu(II and Zn(II, respectively. The experimental results of this study demonstrate that zeolite is suitable for adsorption of copper and zinc from aqueous solutions at low concentrations.

  19. Photonuclear reactions with Zinc: A case for clinical linacs

    Boztosun, I; Karakoç, M; Özmen, S F; Çeçen, Y; Çoban, A; Caner, T; Bayram, E; Saito, T R; Akdoğan, T; Bozkurt, V; Kuçuk, Y; Kaya, D; Harakeh, M N


    The use of bremsstrahlung photons produced by a linac to induce photonuclear reactions is wide spread. However, using a clinical linac to produce the photons is a new concept. We aimed to induce photonuclear reactions on zinc isotopes and measure the subsequent transition energies and half-lives. For this purpose, a bremsstrahlung photon beam of 18 MeV endpoint energy produced by the Philips SLI-25 linac has been used. The subsequent decay has been measured with a well-shielded single HPGe detector. The results obtained for transition energies are in good agreement with the literature data and in many cases surpass these in accuracy. For the half-lives, we are in agreement with the literature data, but do not achieve their precision. The obtained accuracy for the transition energies show what is achievable in an experiment such as ours. We demonstrate the usefulness and benefits of employing clinical linacs for nuclear physics experiments.

  20. Anti-ulcer activity of a slow-release zinc complex, zinc monoglycerolate (Glyzinc).

    Rainsford, K D; Whitehouse, M W


    A slow-release zinc complex, zinc monoglycerolate (ZMG) was examined for its potential gastroprotective activity in various gastric ulcer models. These models comprised (a) oral or parenteral non-steroidal anti-inflammatory drugs (NSAIDs) given to rats whose gastrointestinal mucosa was pre-sensitized by prior development of arthritis, oleyl alcohol-induced inflammation and cold exposure, (b) oral ethanol (12.5-100%) with and without added 4% HCl, (c) intraperitoneal reserpine (5 mg kg-1) in arthritic and normal rats and in normal mice, (d) oral NSAIDs given to mice in which acid and pepsin production was stimulated by co-administration of intraperitoneal bethanechol chloride (5 mg kg-1) to enhance ulcer development, and (e) NSAIDs given to carrageenan-inflamed rats to determine effects of ZMG on paw inflammation. In these models, ZMG given orally was effective in preventing development of gastric lesions, except with propionic acid NSAIDs; the effective doses being apparently dependent on the severity of the mucosal injury. In many of the models ZMG was superior to zinc sulphate and other zinc salts or metal ion complexes investigated but was slightly more effective or equipotent compared with zinc acexamate. ZMG did not impair the anti-oedemic effects of NSAIDs. ZMG is thus an effective agent in preventing ulcer development in a wide range of model systems and may be more effective than zinc salts because of the controlled slow-release of zinc from the complex.

  1. Nutritional assessment methods for zinc supplementation in prepubertal non-zinc-deficient children

    Márcia Marília Gomes Dantas Lopes


    Full Text Available Background: Zinc is an essential nutrient that is required for numerous metabolic functions, and zinc deficiency results in growth retardation, cell-mediated immune dysfunction, and cognitive impairment. Objective: This study evaluated nutritional assessment methods for zinc supplementation in prepubertal non-zinc-deficient children. Design: We performed a randomised, controlled, triple-blind study. The children were divided into a control group (10% sorbitol, n=31 and an experimental group (10 mg Zn/day, n=31 for 3 months. Anthropometric and dietary assessments as well as bioelectrical measurements were performed in all children. Results: Our study showed (1 an increased body mass index for age and an increased phase angle in the experimental group; (2 a positive correlation between nutritional assessment parameters in both groups; (3 increased soft tissue, and mainly fat-free mass, in the body composition of the experimental group, as determined using bioelectrical impedance vector analysis; (4 increased consumption of all nutrients, including zinc, in the experimental group; and (5 an increased serum zinc concentration in both groups (p<0.0001. Conclusions: Given that a reference for body composition analysis does not exist for intervention studies, longitudinal studies are needed to investigate vector migration during zinc supplementation. These results reinforce the importance of employing multiple techniques to assess the nutritional status of populations.

  2. Root-secreted nicotianamine from Arabidopsis halleri facilitates zinc hypertolerance by regulating zinc bioavailability.

    Tsednee, Munkhtsetseg; Yang, Shun-Chung; Lee, Der-Chuen; Yeh, Kuo-Chen


    Hyperaccumulators tolerate and accumulate extraordinarily high concentrations of heavy metals. Content of the metal chelator nicotianamine (NA) in the root of zinc hyperaccumulator Arabidopsis halleri is elevated compared with nonhyperaccumulators, a trait that is considered to be one of the markers of a hyperaccumulator. Using metabolite-profiling analysis of root secretions, we found that excess zinc treatment induced secretion of NA in A. halleri roots compared with the nonhyperaccumulator Arabidopsis thaliana. Metal speciation analysis further revealed that the secreted NA forms a stable complex with Zn(II). Supplying NA to a nonhyperaccumulator species markedly increased plant zinc tolerance by decreasing zinc uptake. Therefore, NA secretion from A. halleri roots facilitates zinc hypertolerance through forming a Zn(II)-NA complex outside the roots to achieve a coordinated zinc uptake rate into roots. Secretion of NA was also found to be responsible for the maintenance of iron homeostasis under excess zinc. Together our results reveal root-secretion mechanisms associated with hypertolerance and hyperaccumulation. © 2014 American Society of Plant Biologists. All Rights Reserved.

  3. Fabrications of zinc-releasing biocement combining zinc calcium phosphate to calcium phosphate cement.

    Horiuchi, Shinya; Hiasa, Masahiro; Yasue, Akihiro; Sekine, Kazumitsu; Hamada, Kenichi; Asaoka, Kenzo; Tanaka, Eiji


    Recently, zinc-releasing bioceramics have been the focus of much attention owing to their bone-forming ability. Thus, some types of zinc-containing calcium phosphate (e.g., zinc-doped tricalcium phosphate and zinc-substituted hydroxyapatite) are examined and their osteoblastic cell responses determined. In this investigation, we studied the effects of zinc calcium phosphate (ZCP) derived from zinc phosphate incorporated into calcium phosphate cement (CPC) in terms of its setting reaction and MC3T3-E1 osteoblast-like cell responses. Compositional analysis by powder X-ray diffraction analysis revealed that HAP crystals were precipitated in the CPC containing 10 or 30wt% ZCP after successfully hardening. However, the crystal growth observed by scanning electron microscopy was delayed in the presence of additional ZCP. These findings indicate that the additional zinc inhibits crystal growth and the conversion of CPC to the HAP crystals. The proliferation of the cells and alkaline phosphatase (ALP) activity were enhanced when 10wt% ZCP was added to CPC. Taken together, ZCP added CPC at an appropriate fraction has a potent promotional effect on bone substitute biomaterials.

  4. Clinical Aspects of Trace Elements: Zinc in Human Nutrition – Zinc Requirements

    Michelle M Pluhator


    Full Text Available The body requires certain levels of essential nutrients, such as zinc, to maintain life. Intake less than the required levels can cause impaired function, disease and death. Every essential nutrient has a unique range of tissue concentration and intake necessary for proper physiological and biochemical functioning. Many criteria have been used to set dietary intake levels for nutrients. For trace elements, however, a limited number of investigative approaches are currently employed by researchers due to inadequate information on individual requirements and intake levels. Further, a clear lack of satisfactory biochemical methods to measure zinc nutritional status continues to hinder formulation of dietary guidelines. Thus, many assumptions have to be made, and large safety margins have to be added to assumed daily requirements in order to compensate for this absence of information. Numerous barriers to a full understanding of what constitutes an adequate dietary recommendation for zinc still exist. Zinc is incompletely absorbed, and this absorption can be greatly influenced by the chemical form in which zinc is bound; interactions with other nutrients also affect absorption. Part three of this five-part review presents the current Canadian recommended nutrient intakes for zinc for various sex and age categories and provides a rationale for the suggested values. The important nutrient interactions that affect the bioavailability of zinc, including those with phytates, copper, cadmium, tin and iron, are discussed.

  5. 湿法炼锌银锌精矿综合回收新工艺研究%New Craft to Comprehensively Recycle from Silver- zinc Residue of Hydrometallurgy of Zinc

    郝文魁; 张旭; 王华; 聂炀; 梁龙伟; 刘永帅


    A floating silver - zinc residue of zinc leaching residue from a Southwest plant was used as raw materials. We proposed a new craft to recycle silver, zinc, sulfur comprehensively from silver - zinc residue of hydrometallurgy of zinc. We determine the craft parameters and verify the feasibility of craft to industrialize by small - scale experiment. The process is divided into three steps: mixed acid oxidative leaching, residue leaching by water, silver leaching. The total leaching rate of zinc is 99. 8% in the light of solution. The total leaching rate of silver is 87. 3% in the light of silver leaching solution. The sulfur is concentrated in the dregs, the situation is good.%以西南某锌厂的锌浸出渣的浮选银锌精矿为原料提出了综合回收湿法炼锌的银锌精矿中银、硫、锌的新工艺,确定了工艺参数,通过小型实验验证了工艺的可行性.该工艺分为:混酸氧化浸出、渣水浸、银浸出三步.最佳条件下锌总浸出率按液计99.8%,银总浸出率按液计87.3%,硫富集于渣中,情况较好.

  6. Zinc transformations in neutral soil and zinc efficiency in maize fertilization.

    Alvarez, Jose M; Gonzalez, Demetrio


    The effect of six Zn sources (Zn-phenolate, Zn-EDDHA, Zn-EDTA, Zn-lignosulfonate, Zn-polyflavonoid, and Zn-glucoheptonate) was studied by applying different Zn levels to a representative Calcic Haploxeralf neutral soil (the predominant clay is montmorillonite) in incubation and greenhouse experiments. Zinc soil behavior was evaluated by sequential DTPA and Mehlich-3 extraction procedures. In the incubation experiment, the highest percentage recovery values of Zn applied to soil occurred in the water-soluble plus exchangeable fraction (29%) in fertilization with 20 mg of Zn kg(-1) of Zn-EDTA fertilizer. In the greenhouse experiment with maize (Zea mays L.), a comparison of different Zn carriers showed that the application of six fertilizers did not significantly increase the plant dry matter yield among fertilizer treatments. The highest yield occurred when 20 mg of Zn kg(-1) was applied as Zn-EDDHA fertilizer (79.4 g per pot). The relative effectiveness of the Zn sources in increasing Zn concentration in plants was in the following order: Zn-EDTA (20 mg kg(-1)) > Zn-EDDHA (20 mg kg(-1)) approximately Zn-EDTA (10 mg kg(-1)) > Zn-EDDHA (10 mg kg(-1)) approximately Zn-phenolate (both rates) approximately Zn-polyflavonoid (both rates) approximately Zn-lignosulfonate (both rates) approximately Zn-glucoheptonate (both rates) > untreated Zn. The highest amounts of Zn taken up by the plants occurred when Zn was applied as Zn-EDTA fertilizer (20 mg kg(-1), 7.44 mg of Zn per pot; 10 mg kg(-1) Zn rate, 3.93 mg of Zn per pot) and when Zn was applied as Zn-EDDHA fertilizer (20 mg kg(-1) Zn rate, 4.66 mg Zn per pot). After the maize crop was harvested, sufficient quantities of available Zn remained in the soil (DTPA- or Mehlich-3-extractable Zn) for another harvest.

  7. Book review: Current perspectives on zinc deposits

    Kelley, Karen D.


    This book, published in 2015 by the Irish Association for Economic Geology (IAEG), is a compilation of papers and abstracts written by selected authors who attended the ZINC 2010 Conference in Cork, Ireland. Unlike most books produced each decade by the IAEG, which are focused primarily on achievements of the Irish and European mineral sectors, this book has a global perspective of a single commodity—zinc. As stated in the Preface, the theme of the conference and book was quite relevant for the IAEG because Ireland has the highest concentration of zinc per square kilometer on the planet. The book contains 7 full papers and 5 extended abstracts by keynote speakers, followed by 17 extended abstracts by other presenters, plus an Appendix (reprint) of a previously published paper.

  8. Effect of zinc on Entamoeba histolytica pathogenicity.

    Vega Robledo, G B; Carrero, J C; Ortiz-Ortiz, L


    The present study analyzes the effects of zinc on Entamoeba histolytica activity and on its pathogenicity. Metal activity was evaluated in vitro with regard to the parasite's viability, replication, and adhesion to epithelial cells and in vivo with regard to its pathogenicity. The results obtained in vitro show that zinc at 1.0 mM concentration does not affect amebic viability; however, it does decrease amebic replication and adhesion (P vivo studies performed on a model of experimental liver abscess in the hamster indicate that the intraperitoneal administration of a single dose of zinc at 48 h after the intrahepatic inoculation of amebic trophozoites significantly inhibits (P vivo as manifested by inhibition of amebic pathogenicity.

  9. Zinc sacrifical anode behavior at elevated temperatures

    Haney, E.G.


    Intergranular corrosion (IGC) and the passivation of cast sacrificial zinc anodes were investigated in the laboratory with substitute seawater at temperatures from 21 to 75/sup 0/C by impressed current techniques. Aluminum-bearing alloys show increasing penetration of grain boundaries with increasing temperature. As little as 0.012% Al added to special high grade (SHG) zinc can induce intergranular penetration at elevated temperatures. High purity zinc was tested as a function of iron content down to 4 ppm Fe at an anode current density of 2.7 A/m/sup 2/ (250 mA/ft/sup 2/). These anodes resisted IGC attack, but their tendency toward passivation in these tests precludes their use at high temperatures in seawater for optimum cathodic protection (CP).

  10. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C


    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs.

  11. Evaluating the cost-effectiveness of preventive zinc supplementation

    Fink, Günther; Heitner, Jesse


    Background Even though the WHO currently recommends zinc for diarrhea management, no consensus has been reached with respect to routine distribution of zinc for preventive reasons. We reviewed the health impact of preventive zinc interventions, and evaluated the relative cost effectiveness of currently feasible interventions. Methods Using the latest relative risk estimates reported in the literature, we parameterized a health impact model, and calculated the expected benefits of zinc supplem...

  12. Evaluating the cost-effectiveness of preventive zinc supplementation

    Fink, Günther; Heitner, Jesse


    Background: Even though the WHO currently recommends zinc for diarrhea management, no consensus has been reached with respect to routine distribution of zinc for preventive reasons. We reviewed the health impact of preventive zinc interventions, and evaluated the relative cost effectiveness of currently feasible interventions. Methods: Using the latest relative risk estimates reported in the literature, we parameterized a health impact model, and calculated the expected benefits of zinc suppl...

  13. Microwave-assisted additive free synthesis of nanocrystalline zinc oxide

    Bhatte, Kushal D.; Tambade, Pawan; Fujita, Shin-ichiro; Arai, Masahiko; Bhalchandra M. Bhanage


    An additive free synthesis of nanocrystalline zinc oxide using microwave technique is reported. Current methodology is faster, cleaner and cost effective compared with conventional method for the synthesis of zinc oxide nanocrystalline materials. The structure and morphology of nanocrystalline zinc oxide was investigated by TEM, XRD, EDAX, UV-Vis spectroscopy. The results demonstrate that microwave heating can produce polygonal zinc oxide within a short span of time.

  14. Effects of Dietary Copper and Zinc Supplementation on Growth Performance, Tissue Mineral Retention, Antioxidant Status, and Fur Quality in Growing-Furring Blue Foxes (Alopex lagopus).

    Liu, Zhi; Wu, Xuezhuang; Zhang, Tietao; Guo, Jungang; Gao, Xiuhua; Yang, Fuhe; Xing, Xiumei


    A 4×2 factorial experiment with four supplemental levels of copper (0, 20, 40, or 60 mg copper per kg dry matter) from copper sulfate and two supplemental levels of zinc (40 or 200 mg zinc per kg dry matter) from zinc sulfate was conducted to investigate the effects of dietary copper and zinc supplementation on growth performance, tissue mineral retention, antioxidant status, and fur quality in growing-furring blue foxes. One hundred and twenty healthy 15-week-old male blue foxes were randomly allocated to eight dietary treatments with 15 replicates per treatment for a 70-day trial from mid-September to pelting in December. The average daily gain and feed conversion ratio were increased with copper supplementation in the first 35 days as well as the overall period (Pzinc did not affect body gain (P>0.10) and feed intake (P>0.10) but improved feed conversion (Pzinc throughout the experiment. No copper×zinc interaction was observed for growth performance except that a tendency (P=0.09) was found for feed intake in the first 35 days. Supplementation of copper or zinc improved crude fat digestibility (Pzinc addition (Pzinc was affected only by dietary zinc addition (P0.05). However, the level of copper in the liver was increased with copper supplementation (Pzinc supplementation (P=0.08). Dietary zinc addition tended to increase the activity of alkaline phosphatase (P=0.07). The activities of copper-zinc superoxide dismutase and catalase tended to increase by copper (P=0.08) and zinc addition (P=0.05). Moreover, a copper×zinc interaction was observed for catalase in the experiment (Pzinc levels (Pzinc supplementation can improve growth by increasing feed intake and improving fat digestibility. Additionally, copper and zinc can enhance the antioxidant capacity of blue foxes. This study also indicates that additional zinc up to 200 mg/kg did not exert significant adverse effects on the copper metabolism of growing-furring blue foxes.

  15. Failure of zinc to prevent dysmorphogenesis of cultured rat conceptuses by anti-yolk sac antiserum

    Marlow, R.; Freeman, S.J.


    Day 10 rat conceptuses were cultured for 48h in the presence of either cadmium or anti-vesceral yolk sac antiserum (AVYS). Cadmium was embryotoxic at concentrations exceeding 0.25 ug/ml while AVYS caused embryonic dysmorphogenesis, particularly affecting the optic vesicles, at concentrations of 2 ul/ml and above. The effect of pretreatment with zinc on embryotoxicity caused by cadmium or AVYS was studied. Zinc ameliorated the effects of cadmium but had no effect on AVYS-induced embryonic abnormalities. In a second set of experiments inhibition of /sup 125/I-labelled PVP uptake by the yolk sac of cultured whole conceptuses was studied. Cadmium and AVYS both inhibited uptake compared to control cultures. Zinc again ameliorated the effect of cadmium but had no action against AVYS-induced inhibition. These results are in contrast to their previous findings using isolated cultured yolk sacs in which zinc ameliorated the inhibitory effects on /sup 125/I-labelled PVP uptake of both cadmium and AVYS. These data show that in experiments using the isolated cultured yolk sac and the intact cultured conceptus, a qualitatively different response in yolk sac behavior is observed under similar experimental conditions.

  16. Deficiencia de zinc y sus implicaciones funcionales



    Full Text Available El presente trabajo tiene por objeto revisar los aspectos teóricos y los estudios realizados en México que sugieren la existencia de la deficiencia moderada de zinc en niños de población rural, así como algunas de las consecuencias de dicha deficiencia en la salud. El zinc es un nutrimento indispensable para el organismo de los humanos y juega un papel importante en una serie de procesos metabólicos: participa en el sitio catalítico de varios sistemas enzimáticos; participa como ion estructural en membranas biológicas, y guarda una estrecha relación con la síntesis de proteínas, entre otras cosas. Es por esto que la deficiencia de zinc está asociada con consecuencias importantes en la salud y la funcionalidad de los individuos, especialmente durante las primeras etapas de la vida. De relevancia para México es la existencia de una deficiencia moderada de zinc en los niños y las consecuencias que ésta pueda tener en la salud de los mismos. Los estudios realizados sugieren que la deficiencia moderada de zinc se presenta asociada con la ingestión de dietas basadas en alimentos de origen vegetal, las cuales contienen cantidades importantes de inhibidores de la absorción de zinc. Este tipo de dietas se consume habitualmente en las zonas rurales y en la población marginal de las ciudades en el país. Entre las consecuencias más importantes de esta deficiencia se encontró un aumento en la presencia de enfermedades infecciosas, especialmente de diarrea, y posibles alteraciones en el desarrollo de la capacidad cognoscitiva.

  17. Chelating ionic liquids for reversible zinc electrochemistry.

    Kar, Mega; Winther-Jensen, Bjorn; Forsyth, Maria; MacFarlane, Douglas R


    Advanced, high energy-density, metal-air rechargeable batteries, such as zinc-air, are of intense international interest due to their important role in energy storage applications such as electric and hybrid vehicles, and to their ability to deal with the intermittency of renewable energy sources such as solar and wind. Ionic liquids offer a number of ideal thermal and physical properties as potential electrolytes in such large-scale energy storage applications. We describe here the synthesis and characterisation of a family of novel "chelating" ILs designed to chelate and solubilize the zinc ions to create electrolytes for this type of battery. These are based on quaternary alkoxy alkyl ammonium cations of varying oligo-ether side chains and anions such as p-toluene sulfonate, bis(trifluoromethylsulfonyl)amide and dicyanoamides. This work shows that increasing the ether chain length in the cation from two to four oxygens can increase the ionic conductivity and reduce the melting point from 67 °C to 15 °C for the tosylate system. Changing the anion also plays a significant role in the nature of the zinc deposition electrochemistry. We show that zinc can be reversibly deposited from [N(222(20201))][NTf2] and [N(222(202020201))][NTf2] beginning at -1.4 V and -1.7 V vs. SHE, respectively, but not in the case of tosylate based ILs. This indicates that the [NTf2] is a weaker coordinating anion with the zinc cation, compared to the tosylate anion, allowing the coordination of the ether chain to dominate the behavior of the deposition and stripping of zinc ions.

  18. hZIP1 zinc uptake transporter down regulation and zinc depletion in prostate cancer

    Kajdacsy-Balla André


    Full Text Available Abstract Background The genetic and molecular mechanisms responsible for and associated with the development and progression of prostate malignancy are largely unidentified. The peripheral zone is the major region of the human prostate gland where malignancy develops. The normal peripheral zone glandular epithelium has the unique function of accumulating high levels of zinc. In contrast, the ability to accumulate zinc is lost in the malignant cells. The lost ability of the neoplastic epithelial cells to accumulate zinc is a consistent factor in their development of malignancy. Recent studies identified ZIP1 (SLC39A1 as an important zinc transporter involved in zinc accumulation in prostate cells. Therefore, we investigated the possibility that down-regulation of hZIP1 gene expression might be involved in the inability of malignant prostate cells to accumulate zinc. To address this issue, the expression of hZIP1 and the depletion of zinc in malignant versus non-malignant prostate glands of prostate cancer tissue sections were analyzed. hZIP1 expression was also determined in malignant prostate cell lines. Results hZIP1 gene expression, ZIP1 transporter protein, and cellular zinc were prominent in normal peripheral zone glandular epithelium and in benign hyperplastic glands (also zinc accumulating glands. In contrast, hZIP1 gene expression and transporter protein were markedly down-regulated and zinc was depleted in adenocarcinomatous glands and in prostate intra-epithelial neoplastic foci (PIN. These changes occur early in malignancy and are sustained during its progression in the peripheral zone. hZIP1 is also expressed in the malignant cell lines LNCaP, PC-3, DU-145; and in the nonmalignant cell lines HPr-1 and BPH-1. Conclusion The studies clearly establish that hZIP1 gene expression is down regulated and zinc is depleted in adenocarcinomatous glands. The fact that all the malignant cell lines express hZIP1 indicates that the down

  19. Efficacy of highly bioavailable zinc from fortified water

    Galetti, Valeria; Kujinga, Prosper; Mitchikpè, C.E.S.; Zeder, Christophe; Tay, Fabian; Tossou, Félicien; Hounhouigan, Joseph D.; Zimmermann, Michael B.; Moretti, Diego


    Background: Zinc deficiency and contaminated water are major contributors to diarrhea in developing countries. Food fortification with zinc has not shown clear benefits, possibly because of low zinc absorption from inhibitory food matrices. We used a novel pointof-use water ultrafiltration device

  20. Comparative analysis of salivary zinc level in recurrent herpes labialis

    Faezeh Khozeimeh


    Conclusion: According to the results, zinc level is significantly lower in acute phase than in convalescent phase and significantly lower in both phases compared to healthy individuals,so determination of serum zinc level and prescribing zinc complement in low serum status has both treatmental and preventive effects in RHL patients.

  1. Reinvestigation of growth of 'L-valine zinc sulphate' crystal.

    Srinivasan, Bikshandarkoil R; Jyai, Rita N


    A reinvestigation of the growth of l-valine zinc sulphate crystal is reported. The slow evaporation of an aqueous solution containing l-valine and zinc sulphate heptahydrate results in the fractional crystallization of l-valine and not the organic inorganic hybrid nonlinear optical l-valine zinc sulphate crystal, as reported by Puhal Raj and Ramachandra Raja (2012).

  2. Efficacy of highly bioavailable zinc from fortified water

    Galetti, Valeria; Kujinga, Prosper; Mitchikpè, C.E.S.; Zeder, Christophe; Tay, Fabian; Tossou, Félicien; Hounhouigan, Joseph D.; Zimmermann, Michael B.; Moretti, Diego


    Background: Zinc deficiency and contaminated water are major contributors to diarrhea in developing countries. Food fortification with zinc has not shown clear benefits, possibly because of low zinc absorption from inhibitory food matrices. We used a novel pointof-use water ultrafiltration device

  3. Corrosion resistant mercury-free zinc anode battery

    Vu, V.; Hettwer, P.F.


    An electrochemical cell is described comprising a zinc electrode in an electrolyte solution. The electrode is formed from a zinc powder compacted to a density of about 6.5 g/cc or greater, whereby corrosion of the zinc electrode and the evolution of hydrogen gas therefrom during discharge are substantially suppressed.

  4. Hemimorphite Ores: A Review of Processing Technologies for Zinc Extraction

    Chen, Ailiang; Li, Mengchun; Qian, Zhen; Ma, Yutian; Che, Jianyong; Ma, Yalin


    With the gradual depletion of zinc sulfide ores, exploration of zinc oxide ores is becoming more and more important. Hemimorphite is a major zinc oxide ore, attracting much attention in the field of zinc metallurgy although it is not the major zinc mineral. This paper presents a critical review of the treatment for extraction of zinc with emphasis on flotation, pyrometallurgical and hydrometallurgical methods based on the properties of hemimorphite. The three-dimensional framework structure of hemimorphite with complex linkage of its structural units lead to difficult desilicification before extracting zinc in the many metallurgical technologies. It is found that the flotation method is generally effective in enriching zinc minerals from hemimorphite ores into a high-grade concentrate for recovery of zinc. Pure zinc can be produced from hemimorphite or/and willemite with a reducing reagent, like methane or carbon. Leaching reagents, such as acid and alkali, can break the complex structure of hemimorphite to release zinc in the leached solution without generation of silica gel in the hydrometallurgical process. For optimal zinc extraction, combing flotation with pyrometallurgical or hydrometallurgical methods may be required.

  5. Crosstalk between Zinc Status and Giardia Infection: A New Approach

    Humberto Astiazarán-García


    Full Text Available Zinc supplementation has been shown to reduce the incidence and prevalence of diarrhea; however, its anti-diarrheal effect remains only partially understood. There is now growing evidence that zinc can have pathogen-specific protective effects. Giardiasis is a common yet neglected cause of acute-chronic diarrheal illness worldwide which causes disturbances in zinc metabolism of infected children, representing a risk factor for zinc deficiency. How zinc metabolism is compromised by Giardia is not well understood; zinc status could be altered by intestinal malabsorption, organ redistribution or host-pathogen competition. The potential metal-binding properties of Giardia suggest unusual ways that the parasite may interact with its host. Zinc supplementation was recently found to reduce the rate of diarrhea caused by Giardia in children and to upregulate humoral immune response in Giardia-infected mice; in vitro and in vivo, zinc-salts enhanced the activity of bacitracin in a zinc-dose-dependent way, and this was not due to zinc toxicity. These findings reflect biological effect of zinc that may impact significantly public health in endemic areas of infection. In this paper, we shall explore one direction of this complex interaction, discussing recent information regarding zinc status and its possible contribution to the outcome of the encounter between the host and Giardia.

  6. Simultaneous recovery of zinc and manganese dioxide from household alkaline batteries through hydrometallurgical processing

    de Souza, Cleusa Cristina Bueno Martha; Tenório, Jorge Alberto Soares

    This paper describes the leaching experiments and the electrowinning tests to recover Zn and Mn from spent household alkaline batteries. After the dismantling of the batteries, the black powder was analyzed and found to contain 21 wt.% Zn and 45%wt. Mn. Therefore, it was considered that recovery of these metals would be interesting due to their relatively large amounts in this kind of waste. Batch laboratory experiments were carried out to develop an acid leaching procedure and to determine appropriate leaching conditions to maximize zinc extraction and to study the leaching behavior of Mn. An experimental study was undertaken to evaluate the feasibility of simultaneous recovery of zinc and particulate manganese dioxide using a laboratory cell. The results from these electrowinning experiments are also presented in this paper.

  7. The importance of zinc on osteoporotic bones

    Lima, I.; Lopes, R.T. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mail:;; Anjos, M.J. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail:; Farias, M.L.F. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Hospital Universitario. Servico de Endocrinologia]. E-mail:; Rosenthal, D. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho. Lab. de Fisiologia Endocrina]. E-mail:


    Zinc is an essential element that can be found in bones, such as calcium and phosphorus. It seems to have effects on growth, bone turnover and mineralization making its relationship with bones still opening. The goal of this study is, by XRF analysis, characterized bone samples, with and without pathology, in the trabecular region. For that purpose, it was used an XRF beam line at the Synchrotron Light National Laboratory (Campinas, Brazil). The results show that the profile of the zinc distribution and its concentration on femoral heads are strongly related to the associated pathology. (author)

  8. New separators for nickel-zinc batteries

    Sheibley, D. W.


    Flexible separators consisting of a substrate coated with a mixture of a polymer and organic and inorganic additives were cycle tested in nickel-zinc cells. By substituting a rubber-based resin for polyphenylene oxide in the standard inorganic-organic separator, major improvements in both cell life and flexibility were made. Substituting newsprint for asbestos as the substrate shows promise for use on the zinc electrode and reduces separator cost. The importance of ample electrolyte in the cells was noted. Cycle lives and the characteristics of these flexible, low-cost separators were compared with those of a standard microporous polypropylene separator.

  9. Zinc oxide interdigitated electrode for biosensor application

    Sin L., L.; Arshad, M. K. Md.; Fathil, M. F. M.; Adzhri, R.; M. Nuzaihan M., N.; Ruslinda, A. R.; Gopinath, Subash C. B.; Hashim, U.


    In biosensors, zinc oxide (ZnO) thin film plays a crucial role in term of stability, sensitivity, biocompatibility and low cost. Interdigitated electrode (IDE) design is one of the device architecture in biosensor for label free, stability and sensitivity. In this paper, we discuss the fabrication of zinc oxide deposited on the IDE as a transducer for sensing of biomolecule. The formation of APTES had increase the performance of the surface functionalization..Furthermore we extend the discuss on the surface functionalization process which is utilized for probe attachment onto the surface of biosensor through surface immobilization process, thus enables the sensing of biomolecules for biosensor application.

  10. Secondary structure and zinc ligation of human recombinant short-form stromelysin by multidimensional heteronuclear NMR.

    Gooley, P R; Johnson, B A; Marcy, A I; Cuca, G C; Salowe, S P; Hagmann, W K; Esser, C K; Springer, J P


    Stromelysin-1, a member of the matrix metalloendoprotease family, is a zinc protease involved in the degradation of connective tissue in the extracellular matrix. As a step toward determining the structure of this protein, multidimensional heteronuclear NMR experiments have been applied to an inhibited truncated form of human stromelysin-1. Extensive 1H, 13C, and 15N sequential assignments have been obtained with a combination of three- and four-dimensional experiments. On the basis of sequential and short-range NOEs and 13C alpha chemical shifts, two helices have been delineated, spanning residues Asp-111 to Val-127 and Leu-195 to Ser-206. A third helix spanning residues Asp-238 to Gly-247 is characterized by sequential NOEs and 13C alpha chemical shifts, but not short-range NOEs. The lack of the latter NOEs suggests that this helix is either distorted or mobile. Similarly, sequential and interstrand NOEs and 13C alpha chemical shifts characterize a four-stranded beta-sheet with three parallel strands (Arg-100 to Ile-101, Ile-142 to Ala-147, Asp-177 to Asp-181) and one antiparallel strand (Ala-165 to Tyr-168). Two zinc sites have been identified in stromelysin [Salowe et al. (1992) Biochemistry 31, 4535-4540]. The NMR spectral properties, including chemical shift, pH dependence, and proton coupling of the imidazole nitrogens of six histidine residues (151, 166, 179, 201, 205, and 211), invariant in the matrix metalloendoprotease family, suggest that these residues are zinc ligands. NOE data indicate that these histidines form two clusters: one ligates the catalytic zinc (His-201, -205, and -211), and the other ligates a structural zinc (His-151, -166, and -179). Heteronuclear multiple quantum correlated spectra and specific labeling experiments indicate His-151, -179, -201, -205, and -211 are in the N delta 1H tautomer and His-166 is in the N epsilon 2H tautomer.

  11. Ecotoxicological damage from zinc smelting at Palmerton, Pennsylvania

    Beyer, W. Nelson; Storm, Gerald L.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John


    The two zinc smelters at Palmerton, PA emitted huge amounts of contaminants ( 260,000 t of Zn, 3,300 t of Cd, 6,800 t of Pb) to the air and severely damaged the forest on Blue Mountain. The high Zn concentrations in soil killed tree seedlings by inhibiting root elongation. The result was a forest with too few young trees. When natural stresses such as fire challenged the forest, the forest failed to regenerate, and the exposed soil eroded down the steep slopes. Tree species that could sprout were favored over those that developed from seeds. As a result of high zinc concentrations, the lichen and moss communities were depauperate for at least 20 km along Blue Mountain. The denuded areas are in the process of being reclaimed with the addition of a mixture of fly ash and sewage sludge, which is seeded with grasses tolerant to the harsh conditions. In preliminary experiments, the fly ash and sewage sludge mixture was stable, despite the steepness of the slopes of the reclaimed sites on Blue Mountain. Zinc emissions reduced the decomposition rate of plant material on Blue Mountain. The partially decomposed litter, in particular, accumulated on the surface of the mineral soil. The populations of both microorganisms and arthropods were greatly reduced in soils near the smelters. Samples of litter collected from sites spanning 30 km were toxic to woodlice, and Zn was shown to be the toxic factor. A white-tailed deer examined had a very high renal Zn concentration and an articular lesion in one of its hind legs that closely resembled the lesions reported in Zn-poisoned horses. Zinc concentrations were regulated in wildlife tissues and were not reliable indicators of exposure, except in extreme cases. Two songbirds, a shrew, and several rabbits contained Pb concentrations that were suggested to be toxic. Shrews and ground-feeding songbirds accumulated relatively high concentrations of Pb. Exposure to Pb seemed to be related to the amount of soil that an animal ingests. Some

  12. Reduced serum zinc levels while improving growth of underweight school children in trial of zinc-fortified milk in Indonesia

    Endang Dewi Lestari


    Full Text Available Background Most children in low-income countries have inadequate dietary zinc. The study was aimed to demonstrate the effect of iron-zinc fortified milk in improving zinc status among underweight school children in Indonesia. Objective To evaluate the effects of milk fortification with zinc on serum zinc levels in underweight Indonesian school children. Methods A double-blind, randomized, controlled, communitybased study was conducted on 426 underweight children aged 7 to 9 years in several low economic income level elementary schools in Jakarta and Solo . Subjects were randomly allocated to receive either zinc-fortified milk (n= 217 or standard milk (n=209 for 6 months. The fortified milk provided an 2.38 mg zinc per day and the standard milk provided 0.88 mg zinc per day. Results Among underweight children, the prevalence of stunting with a height-for-age z-score < −2.0 SD was 39.7%. Almost all subjects (98% had zinc intake of less than 60% of the Indonesian recommended daily allowance (RDA for that particular age group. After receiving the milk intervention, mean serum zinc concentration declined significantly in both groups (from 13.50 + 3.05 μmol/L at baseline to 10.59 + 1.93 μmol/L, P< 0.05, but growth parameters (weight and height improved. Conclusion Reduced mean serum zinc levels were observed in children who received standard milk, as well as those who received zinc-fortified milk. These reduction in serum zinc levels may be a part of homeostatic control mechanim for improving the negative zinc balance in zinc pools, as a negative effect on linear growth was not observed. Larger clinical trials of adequate sample size need to be conducted in order to provide better understanding on zinc regulation among underweight school children. [Paediatr Indones. 2012;52:118-24].

  13. A case of transient zinc deficiency in a breast-fed preterm infant successfully treated with oral zinc supplementation: review of zinc metabolism and related diseases.

    Mandato, F; Rubegni, P; Buonocore, G; Fimiani, M


    A 15-week-old baby girl, born at the 29 week of gestation, presented with a four-week history of demarcated, erythematous, erosive and exudative patches on the perianal, perioral and acral areas. A clinical diagnosis of zinc deficiency was considered. Serum zinc level was decreased (0.5 mg/L; normal 0.70-1.50 mg/L), the mother's serum and milk had normal zinc values. The baby was started an empiric trial of oral zinc supplementation (3 mg zinc gluconate/kg body weight/ day) with complete healing of lesions after two weeks. Treatment was gradually withdrawn at six months of age with no relapse. Transient zinc deficiency due to increased zinc requirements in breast-fed mainly preterm infants is a condition similar to acrodermatitis enteropathica, an autosomal recessive disorder of enteric zinc absorption affecting almost exclusively not breast-fed infants. Early recognition of the disorder and introduction of zinc supplementation rapidly reverses transient zinc deficiency, that probably will become more and more frequent, because of the rising rate of premature infants with breast-feeding only.

  14. Improvement of copper vapor laser characteristics by zinc additive

    Shpenik, Yurij; Kelman, Volodymyr; Zhmenyak, Yurij


    The influence of Zn atom additive on ``pure'' copper vapor laser output characteristics was studied. Two-section discharge tube (DT) with an external heated Zn reservoir placed at the center between ceramic sections with Cu pieces was elaborated. The pulsed periodical longitudinal discharge was excited in the DT with Cu-Zn-Ne admixture by a traditional circuit using thyratron generator with resonant overcharge of a storage capacitor. Experimental investigations established that the width, energy and power of laser pulses increased when Zn atoms at appropriate temperature ˜ 500 ^oC of zinc containing reservoir diffuse into discharge. The registered increasing of pulse energy was up to 50% comparatively with the energy without additive with peak energy at ˜ 600 ^oC. Additional absorption experiments and modeling the absorption of Zn atom resonant line in the DT (taking into account Doppler and dispersion line broadening) consistent with the conclusion that not only optical resonant pumping by 213.9 nm Zn atom line, but other processes also might be taken into account to explain the influence effects (second kind collisions between resonance state zinc and metastable copper state atoms).

  15. Zinc hyperaccumulation and uptake by Potentilla griffithii Hook.

    Qiu, Rongliang; Fang, Xiaohang; Tang, Yetao; Du, Suojun; Zeng, Xiaowen; Brewer, Eric


    The ability of Potentilla griffithii Hook var. velutina Cardot to hypaeraccumulate zinc (Zn) was identified through field survey and hydroponic experiments. Our results showed that P. griffithii could be classified as a new Zn hyperaccumulator. Zn concentrations in the shoots of P. griffithii averaged 6250 mg kg(-1) (3870-8530 mg kg(-1)) growing in Zn-rich soils. The highest Zn concentration was observed in the leaves of P. griffithii at 22,990 mg kg(-1). The fact that P. griffithii was able to grow in a mining soil with a Zn concentration of 193,000 mg kg(-1) without showing a major sign of phytotoxicity demonstrated its high tolerance to Zn. When growing in hydroponic systems, P. griffithii accumulated a maximum 26700 mg kg(-1) zinc concentration in the shoots, indicating the ability of this species to effectively take up and translocate Zn. Translocation factors (the ratio of Zn concentration in shoot to root) of 1.1 to 1.6 were obtained. Compared to the control, dry biomass of P. griffithii in 160 mg L(-1) Zn treatment increased 66.6% (P hyperaccumulator provides a new plant species for the phytoremediation of contaminated soil and for the research on mechanisms of Zn hyperaccumulation in plants.

  16. Zinc Blotting Assay for Detection of Zinc-Binding Prolamin in Barley (Hordeum vulgare) Grain

    Uddin, Mohammad Nasir; Langkilde, Ane; Vincze, Éva


    In plants, zinc is commonly found bound to proteins. In barley (Hordeum vulgare), major storage proteins are alcohol-soluble prolamins known as hordeins, and some of them have the potential to bind or store zinc. 65Zn overlay and blotting techniques have been widely used for detecting zinc...

  17. The Limiting Phenomena at the Anode of the Electrowinning of Zinc from Zinc Chloride in a Molten Chloride Electrolyte

    Lans, S.C.


    The objective of this research is to investigate the possibilities and technological viability for the electrowinning of zinc from zinc chloride. This research contributes to development of an alternative process, because it provides: ⢠A clear understanding and overview of the present zinc

  18. The Limiting Phenomena at the Anode of the Electrowinning of Zinc from Zinc Chloride in a Molten Chloride Electrolyte

    Lans, S.C.


    The objective of this research is to investigate the possibilities and technological viability for the electrowinning of zinc from zinc chloride. This research contributes to development of an alternative process, because it provides: ⢠A clear understanding and overview of the present zinc industr

  19. Effectiveness of zinc fortified drinking water on zinc intake, status and morbidity of rural Kenyan pre-school children

    Kujinga-Chopera, P.


    Background: Zinc deficiency is considered a significant public health problem in preschool children in Africa together with infections such as diarrhea, which further deplete the body of zinc. Young children are more vulnerable to zinc deficiency due to increased requirements and fr

  20. The effect of inorganic and organic form of zinc on digestibility of nutrients in dairy cows in three stages of reproductive cycle

    Marie Balabánová


    Full Text Available The aim of our experiment was to compare the effect of feeding inorganic and organic forms of zinc in premix on the coefficient of digestibility of nutrients in the feeding ration for cows in three stages of reproductive cycle – 14 d before calving and 30 and 60 d after calving. The experiment was carried out on 19 Holstein cows that were divided into two groups. A control group of nine cows designated as “Inorganic zinc form” (IZF was fed a diet supplemented with mineral premix containing inorganic form of zinc (ZnO. An experimental group of ten cows designated as “Organic zinc form” (OZF had zinc oxide replaced with zinc fixed to methionine (Khei-chelate Zn powder 15% by Kheiron. The experiment was divided into three periods - the first period lasted from 14th day before calving until 2nd day after calving, the second period lasted from 3rd day to 30th day after calving and the third period lasted from 31st day to 60th day after calving. Cows were fed the diet based on maize silage, lucerne haylage, sugar beet pulp silage, grass or lucerne hay and concentrate containing premix with either inorganic or organic zinc form. During the experiment samples of feeding ration and faeces were taken in 3 intervals, it si on 14th day before calving, on 30th day and on 60th day after calving to determine nutrients content. Digestibility of nutrients was calculated using indicator method (ash insoluble in 3 M HCl.After feeding organic forms of zinc a tendency to higher digestibility of crude protein, fat, crude fiber, nitrogen-free extracts, ash and zinc was observed in cows regardless of stage of reproductive cycle. The digestibility of the zinc and fiber were the most increased. Digestibility of zinc in OZF on 14th day before calving was higher than in IZF (P < 0.05. Feeding of organic zinc forms had downward effect only on the digestibility of copper.




    Full Text Available Introduction. Zinc is an important trace mineral for human health specially in children. The zinc of nursing mothers affects on their milk and so health of their childs. This study assesses the serum zinc level in lactating women of Isfahan city. Methods. In a cross sectional study, 100 lactating women who were sited under care of Isfahan rural and urban health centers were selected by multistage cluster and simple random sampling. The food recall questionnair was completed and 10 ml blood sample was obtained from each subject. Serum zinc level was measered by atomic absorption. Results. Mean age of participants was 24.7 ± 4.9 years. Mean zinc concentration was 70.4±8.01 µg/dl. About 63 percent of subjects had serum zinc level less than 75 µg/dl (significant zinc deficiency and of this group 19/1 percent had severe zinc deficiency (less than 60 µg/dl. The mean of serum zinc level by BMI (< 20, 20-25, > 25 were 63.1, 70 and 75.7 (P < 0.0001. In person s that eat more frequency of meat and dairy products weekly, zinc levels were more than others (P < 0.01. Discussion. Zinc deficiency was common problem in lactating women of Isfahsn and this have harm effects on their childrens. Zinc deiifciency in children is one of causes responsible for growth retardation, suscebtibility to infections and learning disabilities. The nutrition of our people aren"t sufficient for lactating women"s needs. Other data indicated for zinc deficiency of soils. Planning such as fortification of soils, subside to meat the important source of zinc and using of zinc supplements for lactating women and other high risk groups must be done by responsible structures.

  2. Thermodynamics and kinetics of extracting zinc from zinc oxide ore by the ammonium sulfate roasting method

    Sun, Yi; Shen, Xiao-yi; Zhai, Yu-chun


    Thermodynamic analyses and kinetic studies were performed on zinc oxide ore treatment by (NH4)2SO4 roasting technology. The results show that it is theoretically feasible to realize a roasting reaction between the zinc oxide ore and (NH4)2SO4 in a temperature range of 573-723 K. The effects of reaction temperature and particle size on the extraction rate of zinc were also examined. It is found that a surface chemical reaction is the rate-controlling step in roasting kinetics. The calculated activation energy of this process is about 45.57 kJ/mol, and the kinetic model can be expressed as follows: 1 - (1 - α)1/3 = 30.85 exp(-45.57/ RT)· t. An extraction ratio of zinc as high as 92% could be achieved under the optimum conditions.

  3. Influence of concentration of zinc ions on electrocrystallization process of zinc

    ZHANG Zhao


    Cyclic voltammetry, chronoamperometry and scanning electron microscopy were employed to study the influence of Zn2+ ion concentration in electrolyte solutions on zinc electroplating process. The results show that, at high overpotentials, the nucleation of zinc is instantaneous, and nuclear density increases with the overpotentials increasing. While at low overpotentials, the zinc may be preferentially electrodeposited on surface inhomogeneities such as emergence points of edge, screw dislocations, atomic disorder, kink sites, or monoatomic steps, and no distinguished nucleation current can be observed. The major dissolution peak in cyclic voltammogram drifts positively due to the change of the rate-determining step of zinc electroplating processes from diffusion to the electrochemical reaction with the increase of Zn2+ ion concentration.

  4. Nickel doped zinc oxide nanoparticles produced by hydrothermal decomposition of nickel-doped zinc hydroxide nitrate

    Mohammad Yeganeh Ghotbi


    Zinc hydroxide nitrate,an anionic exchanger layered material,undoped as well as doped with 2-10% nickel,was synthesized by using a pH-controlled precipitation method.The layered materials were then used to produce the undoped and nickel-doped zinc oxides by hydrothermal-treatment.X-ray diffraction,Fourier transform infrared spectroscopy and scanning electron microscopy confirmed the formation of pure phase undoped and nickel-doped layered materials,as well as the products of the hydrothermaltreated materials,nanostructured zinc oxides.Optical studies of the nanostructured zinc oxides showed a decrease in band gap with increasing content of the doping agent,nickel.

  5. Synthetic silver oxide and mercury-free zinc electrodes for silver-zinc reserve batteries

    Smith, David F.; Gucinski, James A.

    Reserve activated silver oxide-zinc cells were constructed with synthetic silver oxide (Ag 2O) electrodes with Pb-treated zinc electrodes produced by a non-electrolytic process. The cells were tested before and after thermally accelerated aging. At discharge rates up to 80 mA cm -2, the discharge was limited by the Ag 2O electrode, with a coulombic efficiency between 89-99%. At higher rates, the cells are apparently zinc-limited. Test cells were artificially aged at 90°C for 19 h and discharged at 21°C at 80 mA cm -2. No capacity loss was measured, but a delayed activation rise time was noted (192 ms fresh vs. 567 ms aged). The delay is thought to be caused by zinc passivation due to the outgassing of cell materials.

  6. Zinc Transporters and Zinc Signaling: New Insights into Their Role in Type 2 Diabetes

    Myers, Stephen A.


    Zinc is an essential trace element that plays a vital role in many biological processes including growth and development, immunity, and metabolism. Recent studies have highlighted zinc’s dynamic role as a “cellular second messenger” in the control of insulin signaling and glucose homeostasis. Accordingly, mechanisms that contribute to dysfunctional zinc signaling are suggested to be associated with metabolic disease states including cancer, cardiovascular disease, Alzheimer’s disease, and dia...

  7. Height, zinc and soil-transmitted helminth infections in schoolchildren

    de Gier, Brechje; Mpabanzi, Liliane; Vereecken, Kim;


    Soil-transmitted helminth (STH) infections and zinc deficiency are often found in low- and middle-income countries and are both known to affect child growth. However, studies combining data on zinc and STH are lacking. In two studies in schoolchildren in Cuba and Cambodia, we collected data...... on height, STH infection and zinc concentration in either plasma (Cambodia) or hair (Cuba). We analyzed whether STH and/or zinc were associated with height for age z-scores and whether STH and zinc were associated. In Cuba, STH prevalence was 8.4%; these were mainly Ascaris lumbricoides and Trichuris...

  8. Height, zinc and soil-transmitted helminth infections in schoolchildren

    de Gier, Brechje; Mpabanzi, Liliane; Vereecken, Kim


    Soil-transmitted helminth (STH) infections and zinc deficiency are often found in low- and middle-income countries and are both known to affect child growth. However, studies combining data on zinc and STH are lacking. In two studies in schoolchildren in Cuba and Cambodia, we collected data...... on height, STH infection and zinc concentration in either plasma (Cambodia) or hair (Cuba). We analyzed whether STH and/or zinc were associated with height for age z-scores and whether STH and zinc were associated. In Cuba, STH prevalence was 8.4%; these were mainly Ascaris lumbricoides and Trichuris...

  9. West Mining Expanding Into Lead Zinc Smelting Industry


    <正>West Mining,China’s 2nd largest lead zinc miner(only next to Yunnan Jinding Zinc with an annual lead and zinc output of approx. 180,000 tons in metal content),has been put- ting efforts on the control of resources for years.Additionally,it has recently increased its investment on smelting business by holding shares of Bayanzhuoer Zijin for more zinc smelting asset.West Mining has just com- pleted the construction of its 60,000-ton zinc

  10. Competitive Complexation of Copper and Zinc by Sequentially Extracted Humic Substances from Manure Compost

    LIU Shuai; WANG Xu-dong; LU Li-lan; DIAO Shi-rong; ZHANG Jun-feng


    Chicken manure with similar content of copper and zinc was chosen to conduct a composting experiment to investigate the changes of organic carbon and humus substance complexed copper (HS-Cu) and zinc (HS-Zn), which were extracted by water (H2O), sodium hydroxide (NaOH), and sodium pyrophate-NaOH mixture (Na4P2O7-NaOH), sequentially. Distributions of copper and zinc in fulvic acids (FA) and humic acids (HA) in the three extracts were studied. During manure composting, the concentrations of copper and zinc increased from about 500 mg kg-' in the raw material to 1100 mg kg-1 in the final products. HS-Cu in H2O, NaOH, and Na4P2O7-NaOH extracts occupied 6.7, 26.7, and 19% averagely of total copper and HS-Zn represented 2.7, 13.7, and 17% averagely of total zinc in compost, respectively. In water extracts, both HA and FA mainly complexed with Cu and the mole ratio of Cu to Zn was 2.8 in HA fractions and was 2.6 in FA fractions, respectively. HA mainly complexed with copper, so that the ratios of HA-Cu to HA-Zn averaged 3.4 in NaOH extracts. FA had a similar potential to complex with copper and zinc, so that the ratio of FA-Cu to FA-Zn was close to 1. In Na4P2O7-NaOH extracts, HA or FA had a similar potential to complex with copper and zinc. The ratio of HS-Cu to HS-Zn was close to 1. With manure composting, Na4P2O7-NaOH extractable HS-Zn increased to a level as high as HS-Cu. This indicated that more and more stable complexes of HS-Zn were formed in the late decomposition period. The competition between copper and zinc to be complexed with humic substance became weaker and weaker with the decomposition process.

  11. Calcium And Zinc Deficiency In Preeclamptic Women

    Sultana Ferdousi


    Full Text Available Background: Pre-eclampsia is the most common medical complication of pregnancy associated withincreased maternal and infant mortality and morbidity. Reduced serum calcium and zinc levels arefound associated with elevated blood pressure in preeclampsia. Objective: To observe serum calciumand zinc levels in preeclamptic women. Methods: This cross sectional study was carried out in theDepartment of Physiology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka betweenJuly 2009 to June 2010. In this study, 60 pregnant women of preeclampsia, aged 18-39 years withgestational period more than 20th weeks were included as the study (group B. For comparison ageand gestational period matched 30 normotensive pregnant women control (group A were also studied.All the subjects were selected from Obstetric and Gynae In and Out patient Department of BSMMUand Dhaka Medical College Hospital. Serum calcium was measured by Colorimetric method and serumzinc was measured by Spectrophotometric method. Data were analysed by independent sample t testand Pearson’s correlation coefficient test. Results: Mean serum calcium and zinc levels weresignificantly (p<0.001 lower in study group than those of control group. Again, serum calcium andzinc showed significant negative correlation with SBP and DBP in preeclamptic women. Conclusion:This study concludes that serum calcium and zinc deficiency may be one of the risk factor ofpreeclampsia. Therefore, early detection and supplementation to treat this deficiency may reduce theincidence of preeclampsia.

  12. Zinc, Paint loss and Harmony in blue

    Andersen, Cecil Krarup; Taube, Michelle; Vila, Anna


    P.S. Krøyer’s late and most popular paintings have proven very difficult to preserve, and as zinc white has been known to cause structural problems in paintings, the authors investigate if the damage seen in the late paintings can be related to the use of this relatively new pigment. Eight...

  13. Zinc fate in animal husbandry systems.

    Romeo, A; Vacchina, V; Legros, S; Doelsch, E


    Zinc (Zn) is considered in animal production systems as both an essential nutrient and a possible pollutant. While it is generally supplemented at low levels in animal diets, with less than 200 mg kg(-1) in complete feeds, it is under scrutiny due to potential accumulation in the environment. This explains why international regulations limit maximum supplementation levels in animal feeds in a stricter way. This article gives an overview of the current knowledge on the fate of zinc in animal production systems, from animal diets to animal wastes. Some analytical methods can be used for the quantification and qualification of Zn chemical forms: X-ray crystallography, electrospray tandem mass spectrometry, separation techniques, hyphenated techniques… Analysis of chelated forms issued from complex matrices, like hydrolysed proteins, remains difficult, and the speciation of Zn in diluted carriers (premix and feed) is a challenge. Our understanding of Zn absorption has made progress with recent research on ZnT/Zip families and metallothioneins. However, fine-tuned approaches towards the nutritional and metabolic interactions for Zn supplementation in farm conditions still require further studies. The speciation of zinc in pig manure and poultry litter has been a priority as monogastric animals are usually raised under intensive conditions and fed with high quantities of trace minerals, leading to high animal density and elevated quantities of zinc from animal wastes.

  14. Magnesium removal in the electrolytic zinc industry

    Booster, J.L.


    Electrolytic zinc plants need to take measures to control the magnesium content in their process liquors, because the natural magnesium bleed does not balance the input from concentrates. Presently used methods are environmentally unfriendly (due to the production of large amounts of waste gypsum) o

  15. Magnesium removal in the electrolytic zinc industry

    Booster, J.L.


    Electrolytic zinc plants need to take measures to control the magnesium content in their process liquors, because the natural magnesium bleed does not balance the input from concentrates. Presently used methods are environmentally unfriendly (due to the production of large amounts of waste gypsum)

  16. Nicotianamine Secretion for Zinc Excess Tolerance

    Aarts, M.G.M.


    Plants acquire micronutrients such as iron (Fe), zinc (Zn), manganese, or copper from soil. These micronutrients are often not readily available and they need to be mobilized to the proper free ionic form in order to be taken up by plant roots. Perhaps the only exception to this is the uptake of Fe

  17. Zinc biofortification of cereals: problems and solutions

    Palmgren, Michael G; Clemens, Stephan; Williams, Lorraine E;


    The goal of biofortification is to develop plants that have an increased content of bioavailable nutrients in their edible parts. Cereals serve as the main staple food for a large proportion of the world population but have the shortcoming, from a nutrition perspective, of being low in zinc...

  18. Fibrous zinc anodes for high power batteries

    Zhang, X. Gregory

    This paper introduces newly developed solid zinc anodes using fibrous material for high power applications in alkaline and large size zinc-air battery systems. The improved performance of the anodes in these two battery systems is demonstrated. The possibilities for control of electrode porosity and for anode/battery design using fibrous materials are discussed in light of experimental data. Because of its mechanical integrity and connectivity, the fibrous solid anode has good electrical conductivity, mechanical stability, and design flexibility for controlling mass distribution, porosity and effective surface area. Experimental data indicated that alkaline cells made of such anodes can have a larger capacity at high discharging currents than commercially available cells. It showed even greater improvement over commercial cells with a non-conventional cell design. Large capacity anodes for a zinc-air battery have also been made and have shown excellent material utilization at various discharge rates. The zinc-air battery was used to power an electric bicycle and demonstrated good results.

  19. Photoemission studies of wurtzite zinc oxide.

    Powell, R. A.; Spicer, W. E.; Mcmenamin, J. C.


    The electronic structure of wurtzite zinc oxide, investigated over the widest possible photon energy range by means of photoemission techniques, is described. Of particular interest among the results of the photoemission study are the location of the Zn 3rd core states, the width of the upper valence bands, and structure in the conduction-band and valence-band density of states.

  20. Kinetics of the intestinal uptake of zinc acexamate in normal and zinc-depleted rats.

    Torres-Molina, F; Martínez-Coscollá, A; Gisbert, S; Quintana, E; Sendrós, S; Peris-Ribera, J E; Plá-Delfina, J M


    The uptake of zinc as acexamic acid salt in the small intestine of the anaesthetized rat was shown to be a two-phase process in normal animals. The first phase is rapid mucosal binding which satisfies the Freundlich isotherm equation and which involves about 30 per cent of the initially perfused zinc. The second phase was characterized as an apparent absorption step which obeys Michaelis-Menten and first-order combined kinetics, with the following parameters: Vm = 6.51 mg h-1; Km = 2.96 mg; ka = 0.306 h-1. In largely non-saturated conditions, an apparent global rate constant of about 2.50 h-1 was calculated. No significant interference due to endogenous zinc excretion into the small intestine was observed during the absorption period. In zinc-deficient animals, the two phases were not so well characterized. Binding was non-linear and apparent absorption efficiency was much greater at high zinc concentrations, so no evidence of saturable kinetics was found, thus confirming the hypothesis of a homeostatic zinc regulation mechanism.

  1. Effects of zinc on static and dynamic mechanical properties of copper-zinc alloy

    马志超; 赵宏伟; 鲁帅; 程虹丙


    The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37% (mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.

  2. Zinc finger peptide based optic sensor for detection of zinc ions.

    Verma, Neelam; Kaur, Gagandeep


    In the present work, polyacrylamide gel has been used as a matrix for the immobilization of zinc finger peptide and fluorescent dye acrydine orange on the micro well plate to fabricate the fluorescence based biosensor for the detection of zinc ions in milk samples. The fluorescent dye moves in the hydrophobic groove formed after folding of the peptide in the presence of zinc ions. Under optimized conditions, linear range was observed between 0.001µg/l to 10µg/l of Zinc ions, with a lowest detection limit of 0.001µg/l and response time of 5min. Presented biosensor has shown 20% decrease in fluorescent intensity values after 5 regenerations and stable for more than one month, stored at 4°C. Interference study with other metal ions like lead, cadmium and copper showed a negligible change in fluorescence intensity in comparison to zinc ions. Developed bio sensing system was found to be novel, quick, reliable, miniaturized, stable, reproducible and repeatable and specific for zinc ion, which has been applied to various milk samples.

  3. Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7.

    Taylor, Kathryn M; Hiscox, Stephen; Nicholson, Robert I; Hogstrand, Christer; Kille, Peter


    The transition element zinc, which has recently been identified as an intracellular second messenger, has been implicated in various signaling pathways, including those leading to cell proliferation. Zinc channels of the ZIP (ZRT1- and IRT1-like protein) family [also known as solute carrier family 39A (SLC39A)] transiently increase the cytosolic free zinc (Zn(2+)) concentration in response to extracellular signals. We show that phosphorylation of evolutionarily conserved residues in endoplasmic reticulum zinc channel ZIP7 is associated with the gated release of Zn(2+) from intracellular stores, leading to activation of tyrosine kinases and the phosphorylation of AKT and extracellular signal-regulated kinases 1 and 2. Through pharmacological manipulation, proximity ligation assay, and mutagenesis, we identified protein kinase CK2 as the kinase responsible for ZIP7 activation. Together, the present results show that transition element channels in eukaryotes can be activated posttranslationally by phosphorylation, as part of a cell signaling cascade. Our study links the regulated release of zinc from intracellular stores to phosphorylation of kinases involved in proliferative responses and cell migration, suggesting a functional role for ZIP7 and zinc signals in these events. The connection with proliferation and migration, as well as the activation of ZIP7 by CK2, a kinase that is antiapoptotic and promotes cell division, suggests that ZIP7 may provide a target for anticancer drug development.

  4. Environmental exposure of road borders to zinc

    Blok, J. [Royal Haskoning, P.O. Box 151, 6500 Ad Nijmegen (Netherlands)]. E-mail:


    The emissions of zinc along roads originating from tyre wear, corrosion of safety fence and other traffic-related sources have been quantified and validated by measured long-term loads in road run-off and airborne solids (drift) for 29 published case studies. The distribution pattern over the road border at various distances from the edge of the paved surface is assessed on the basis of 38 published case studies with measured concentrations in soil. For the impact assessment, the road border is differentiated into a zone that is part of the 'technosphere' and the 'target zone' beyond that technosphere that can be considered as part of the receiving environment. The 'technosphere' of the road includes the central reservation, the hard and the soft shoulder or, if one or both shoulders are not present, the so-called obstacle 'free zone' that is defined by road engineers. Pollution within the technosphere may require appropriate management of solid disposal and isolation from groundwater to prevent further distribution of pollutants to the environment. In the target zone along regional roads, the zinc load is about 4 mg/m{sup 2} year and this is of the same order of magnitude as that of atmospheric deposition in areas beyond the influence of roads (background). In the target zone along highways, the zinc load is increased in comparison to the background deposition. The average load of about 38 mg/m{sup 2} year is similar to that in fertilised agricultural land. Because most of the emitted zinc stays in the technosphere, the total amount entering this target zone along highways is limited. From the 140 tons of zinc per year that is released from tyre wear in The Netherlands, 64 tons is emitted in the urban area, 6.5 tons reaches to the target zones of all roads and only 1.1 tons of zinc will enter the target zone along highways. This amount will be further decreased by the application of porous asphalt in the near future. The

  5. The Emerging Role for Zinc in Depression and Psychosis

    Matthew A. Petrilli


    Full Text Available Zinc participation is essential for all physiological systems, including neural functioning, where it participates in a myriad of cellular processes. Converging clinical, molecular, and genetic discoveries illuminate key roles for zinc homeostasis in association with clinical depression and psychosis which are not yet well appreciated at the clinical interface. Intracellular deficiency may arise from low circulating zinc levels due to dietary insufficiency, or impaired absorption from aging or medical conditions, including alcoholism. A host of medications commonly administered to psychiatric patients, including anticonvulsants, oral medications for diabetes, hormones, antacids, anti-inflammatories and others also impact zinc absorption. Furthermore, inefficient genetic variants in zinc transporter molecules that transport the ion across cellular membranes impede its action even when circulating zinc concentrations is in the normal range. Well powered clinical studies have shown beneficial effects of supplemental zinc in depression and it important to pursue research using zinc as a potential therapeutic option for psychosis as well. Meta-analyses support the adjunctive use of zinc in major depression and a single study now supports zinc for psychotic symptoms. This manuscript reviews the biochemistry and bench top evidence on putative molecular mechanisms of zinc as a psychiatric treatment.

  6. Prediction of DNA-binding specificity in zinc finger proteins

    Sumedha Roy; Shayoni Dutta; Kanika Khanna; Shruti Singla; Durai Sundar


    Zinc finger proteins interact via their individual fingers to three base pair subsites on the target DNA. The four key residue positions −1, 2, 3 and 6 on the alpha-helix of the zinc fingers have hydrogen bond interactions with the DNA. Mutating these key residues enables generation of a plethora of combinatorial possibilities that can bind to any DNA stretch of interest. Exploiting the binding specificity and affinity of the interaction between the zinc fingers and the respective DNA can help to generate engineered zinc fingers for therapeutic purposes involving genome targeting. Exploring the structure–function relationships of the existing zinc finger–DNA complexes can aid in predicting the probable zinc fingers that could bind to any target DNA. Computational tools ease the prediction of such engineered zinc fingers by effectively utilizing information from the available experimental data. A study of literature reveals many approaches for predicting DNA-binding specificity in zinc finger proteins. However, an alternative approach that looks into the physico-chemical properties of these complexes would do away with the difficulties of designing unbiased zinc fingers with the desired affinity and specificity. We present a physico-chemical approach that exploits the relative strengths of hydrogen bonding between the target DNA and all combinatorially possible zinc fingers to select the most optimum zinc finger protein candidate.

  7. Zinc in thalassemic patients and its relation with depression.

    Moafi, Alireza; Mobaraki, Gholamhossein; Taheri, Seyed Sadr; Heidarzadeh, Abtin; Shahabi, Iraj; Majidi, Farshad


    Studies have shown that there is a relationship between zinc levels and depression. Thalassemic patients are at risk of zinc deficiency due to various causes including Desferal injection. The aim of this study, therefore, is to investigate hair zinc levels in thalassemic patients and their association with depression. For the purposes of this survey, 50 patients with major thalassemia between 10-20 years old were selected randomly. The patients' hair zinc concentration was compared with a control group of similarly aged healthy individuals. Simultaneously, their psychological status was evaluated with either the "Beck" or "Marya Kovacs" test (according to age) so that the relation between depression and zinc concentration could be assessed. The mean hair zinc concentration in patients was more than the controls (193.96 +/- 92.4 ppm vs 149.6 +/- 72.21 ppm). Zinc deficiency was present in 10% of the patients, and 52% had some degree of depression. There was a reverse correlation between zinc deficiency and blood transfusion rate (p < 0.05). Also, while there were more incidences of depression among the zinc deficient patients, the difference was not significant. Regarding the high prevalence of depression and insignificant relation to the zinc deficiency in these thalassemic patients, this research suggests the need for further consideration concerning patients' psychological status, the risk factors of zinc deficiency, as well as extended assessment into other causes of depression.

  8. The Essential Toxin: Impact of Zinc on Human Health

    Laura M. Plum


    Full Text Available Compared to several other metal ions with similar chemical properties, zinc is relatively harmless. Only exposure to high doses has toxic effects, making acute zinc intoxication a rare event. In addition to acute intoxication, long-term, high-dose zinc supplementation interferes with the uptake of copper. Hence, many of its toxic effects are in fact due to copper deficiency. While systemic homeostasis and efficient regulatory mechanisms on the cellular level generally prevent the uptake of cytotoxic doses of exogenous zinc, endogenous zinc plays a significant role in cytotoxic events in single cells. Here, zinc influences apoptosis by acting on several molecular regulators of programmed cell death, including caspases and proteins from the Bcl and Bax families. One organ where zinc is prominently involved in cell death is the brain, and cytotoxicity in consequence of ischemia or trauma involves the accumulation of free zinc. Rather than being a toxic metal ion, zinc is an essential trace element. Whereas intoxication by excessive exposure is rare, zinc deficiency is widespread and has a detrimental impact on growth, neuronal development, and immunity, and in severe cases its consequences are lethal. Zinc deficiency caused by malnutrition and foods with low bioavailability, aging, certain diseases, or deregulated homeostasis is a far more common risk to human health than intoxication.

  9. Evaluation of the serum zinc level in patients with vitiligo

    Majid Rostami Mogaddam


    Full Text Available Introduction : Vitiligo is an acquired, idiopathic disorder characterized by circumscribed depigmented macules and patches, which affects approximately 0.1–2% of the general population worldwide. Zinc is an essential trace element that is necessary for growth and development at all stages of life. Some studies have reported an association between serum zinc levels and vitiligo. Aim : To measure the serum zinc level in patients with vitiligo compared to healthy subjects. Material and methods : One hundred patients with vitiligo and 100 healthy controls were referred to our clinic. The two groups were matched for age and sex. Atomic absorption spectrophotometry was used to measure serum zinc levels. The statistical analysis was performed using SPSS software. Results : The mean serum level of zinc in vitiligo patients and controls was 80.11 ±17.10 µg/dl and 96.10 ±16.16 µg/dl, respectively. The serum zinc level in patients with vitiligo was significantly lower than in healthy controls (p = 0.0001. Conclusions : The results of our study revealed a significant association between vitiligo and serum zinc levels. A relative decrease in the serum zinc level in vitiligo patients can highlight the role of zinc in the pathogenesis of vitiligo, and large-scale studies need to be conducted to confirm these findings and assess the effect of oral zinc supplements in patients with low zinc levels.

  10. Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc.

    Iwanyshyn, Wendy M; Han, Gil-Soo; Carman, George M


    Zinc is an essential nutrient required for the growth and metabolism of eukaryotic cells. In this work, we examined the effects of zinc depletion on the regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Zinc depletion resulted in a decrease in the activity levels of the CDP-diacylglycerol pathway enzymes phosphatidylserine synthase, phosphatidylserine decarboxylase, phosphatidylethanolamine methyltransferase, and phospholipid methyltransferase. In contrast, the activity of phosphatidylinositol synthase was elevated in response to zinc depletion. The level of Aut7p, a marker for the induction of autophagy, was also elevated in zinc-depleted cells. For the CHO1-encoded phosphatidylserine synthase, the reduction in activity in response to zinc depletion was controlled at the level of transcription. This regulation was mediated through the UAS(INO) element and by the transcription factors Ino2p, Ino4p, and Opi1p that are responsible for the inositol-mediated regulation of UAS(INO)-containing genes involved in phospholipid synthesis. Analysis of the cellular composition of the major membrane phospholipids showed that zinc depletion resulted in a 66% decrease in phosphatidylethanolamine and a 29% increase in phosphatidylinositol. A zrt1Delta zrt2Delta mutant (defective in the plasma membrane zinc transporters Zrt1p and Zrt2p) grown in the presence of zinc exhibited a phospholipid composition similar to that of wild type cells depleted for zinc. These results indicated that a decrease in the cytoplasmic levels of zinc was responsible for the alterations in phospholipid composition.

  11. Effect of Phosphate on Zinc Transport in Lou Soil



    A study on the transport characteristics of zinc in lou soil with phosphate at different concentrations was carried out by the method of step input.The effects of phosphate and temperature on zinc transport were studied through analysing the diffusion-dipsersion coefficients(D) and the retardation factor(R) obtained by the program CXTFIT.The results showed that D decreased and R increased with increasig concentration of phosphate so that iv was difficult for zinc to break through the soil column,and zinc stopped to break through the column at high temperature.One order equation,double constant equation and the Elovich equation were all suitable for the escription of zinc dynamics.Effects of phosphate and temperature on zinc transport were further confirmed by the analysis on pseudo-thermodynamic parameters of zinc transport.

  12. Accelerating degradation rate of pure iron by zinc ion implantation

    Huang, Tao; Zheng, Yufeng; Han, Yong


    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  13. Preparation and Purification of Zinc Sulphinate Reagents for Organic Synthesis

    O’Hara, Fionn; Baxter, Ryan D.; O’Brien, Alexander G.; Collins, Michael R.; Dixon, Janice A.; Fujiwara, Yuta; Ishihara, Yoshihiro; Baran, Phil S.


    SUMMARY The present protocol details the synthesis of zinc bis(alkanesulphinate)s that can be used as general reagents for the formation of radical species. The zinc sulphinates described herein have been generated from the corresponding sulphonyl chlorides by treatment with zinc dust. The products may be used crude, or a simple purification procedure may be performed to minimize incorporation of water and zinc chloride. Elemental analysis has been conducted in order to confirm the purity of the zinc sulphinate reagents; reactions with caffeine have also been carried out to verify the reactivity of each batch that has been synthesized. Although the synthesis of the zinc sulphinate salts generally proceeds within 3 h, workup can take up to 24 h and purification can take up to 3 h. Following the steps in this protocol would enable the user to generate a small toolkit of zinc sulphinate reagents over the course of one week. PMID:23640168

  14. Predicting zinc binding at the proteome level

    Rosato Antonio


    Full Text Available Abstract Background Metalloproteins are proteins capable of binding one or more metal ions, which may be required for their biological function, for regulation of their activities or for structural purposes. Metal-binding properties remain difficult to predict as well as to investigate experimentally at the whole-proteome level. Consequently, the current knowledge about metalloproteins is only partial. Results The present work reports on the development of a machine learning method for the prediction of the zinc-binding state of pairs of nearby amino-acids, using predictors based on support vector machines. The predictor was trained using chains containing zinc-binding sites and non-metalloproteins in order to provide positive and negative examples. Results based on strong non-redundancy tests prove that (1 zinc-binding residues can be predicted and (2 modelling the correlation between the binding state of nearby residues significantly improves performance. The trained predictor was then applied to the human proteome. The present results were in good agreement with the outcomes of previous, highly manually curated, efforts for the identification of human zinc-binding proteins. Some unprecedented zinc-binding sites could be identified, and were further validated through structural modelling. The software implementing the predictor is freely available at: Conclusion The proposed approach constitutes a highly automated tool for the identification of metalloproteins, which provides results of comparable quality with respect to highly manually refined predictions. The ability to model correlations between pairwise residues allows it to obtain a significant improvement over standard 1D based approaches. In addition, the method permits the identification of unprecedented metal sites, providing important hints for the work of experimentalists.

  15. Zinc therapy for different causes of diarrhea

    Hafaz Zakky Abdillah


    Full Text Available Background The incidence of diarrhea in Indonesia has declined in the past five years. In spite of the increasing number of studies on the treatment for acute diarrhea, especially the use of zinc, it is not known if bacterial vs. non-bacterial etiology makes a difference in the reduction of severity of acute diarrhea in children on zinc therapy. Objective To assess the effect of zinc therapy in reducing the severity of acute bacterial and non-bacterial diarrhea. Methods We performed a cross-sectional study in the Secanggang District, Langkat Regency of North Sumatera, from August to November 2009 in children aged 2 months to 14 years. Microscopic stool examinations were undertaken to separate subjects into the acute bacterial or non-bacterial diarrhea groups. Both groups received 10 mg/day of zinc sulphate for subjects aged <6 months or 20 mg/day for those aged ≥6 months for 10 days. Measurement of disease severity was based on the frequency of diarrhea (times/day and the duration of diarrhea (hours after initial drug consumption. We performed independent T-test for statistical analysis. Results Sixty-two children participated in this study, with 31 children in the acute bacterial group, and the remainder in the non-bacterial group. There were no significant differences between the two groups in frequency of diarrhea (2.61 vs 2.70 times/day, respectively, P=0.27 or in duration of diarrhea (63.39 vs 66.68 hours, respectively, P=0.06. Conclusion Zinc is not more effective in reducing the severity of acute bacterial diarrhea compared to non-bacterial diarrhea in children. [Paediatr Indones. 2013;53:334-8.].

  16. Progress Report on the Cooperation Between NMIJ and PTB on Zinc Point Cells

    Widiatmo, J. V.; Rudtsch, S.; Yamazawa, K.


    The National Metrology Institute of Japan (NMIJ) and Physikalisch-Technische Bundesanstalt (PTB) have agreed to conduct a collaborative study on zinc point cells. An open-type zinc cell was prepared to act as a transfer cell in this collaboration, and cells were prepared for both institutes to perform experiments using a common cell during the collaboration. The experiments reflect concerns that both institutes have been studying independently over the past several years using an open-type cell. The concerns include the impurity effect, stability of the realized temperature, and the difference in the heat flux due to a change in the filling gas. A part of the zinc sample extracted during the fabrication of this cell was analyzed, and for the purpose of confirmation, the initial sample taken from the same lot as that used in the transfer cell was also analyzed. The stability of the transfer was evaluated from cell comparisons performed by NMIJ before and after the air transportation between PTB and NMIJ. PTB and NMIJ demonstrated an increase in temperature at the zinc point due to a change in the filling gas from argon to helium. The improvement using helium gas was found strongly to depend on the construction of the cell and the fixed-point furnace design. The analysis of the zinc sample confirmed a strong inhomogeneity of Pb and a contamination by some elements. Careful analysis for estimating the impurity effect on the temperature realized using the transfer cell was also conducted based on the latest studies to avoid an improper application of fixed-point correction.

  17. The influence of selenium and zinc addition in food on concentration of these elements in blood and milk, on somatic cells number and histological characteristics of cows udders

    Davidov Ivana; Cincović Marko R.; Radinović Miodrag; Erdeljan Mihajlo; Belić Branislava; Toholj Bojan; Stevančević Milenko


    The experiment included 30 cows of Holstein-Friesian breed, out of which 15 were receiving selenium and zinc in optimal doses before calving, while the others had never been supplemented with these micronutrients. There was analysed the concentration of selenium and zinc in blood and milk serum as well as the average number of somatic cells in corresponding lactation. After the cows exclusion from production, histological characteristics of cows udders were...

  18. Zinc transporters and their role in the pancreatic β‐cell

    Lemaire, Katleen; Chimienti, Fabrice; Schuit, Frans


    Abstract Zinc is an essential nutrient with tremendous importance for human health, and zinc deficiency is a severe risk factor for increased mortality and morbidity. As abnormal zinc homeostasis causes diabetes, and because the pancreatic β‐cell contains the highest zinc content of any known cell type, it is of interest to know how zinc fluxes are controlled in β‐cells. The understanding of zinc homeostasis has been boosted by the discovery of multiprotein families of zinc transporters, and ...

  19. Comparative pharmacokinetics of (/sup 65/Zn)zinc sulfate and (/sup 65/Zn)zinc pantothenate injected intravenously in rabbits

    Guillard, O.; Courtois, P.; Murai, P.; Ducassou, D.; Reiss, D.


    The pharmacokinetics of zinc sulfate were compared with those of a new zinc salt, pantothenate, in rabbits. Each salt was administered at a dosage of 3.3 microCi of zinc-65/kg of body weight. The measured pharmacokinetics of the two compounds responded to a two-compartment open model. The urinary elimination of the two salts was similar, as was their localization in the skin and fur, but zinc pantothenate was fixed by the liver to a lesser extent than was zinc sulfate.

  20. Zinc Deficiency in Latin America and the Caribbean.

    Cediel, Gustavo; Olivares, Manuel; Brito, Alex; Cori, Héctor; López de Romaña, Daniel


    Zinc deficiency affects multiple vital functions in the life cycle, especially growth. Limited information is available on the magnitude of zinc deficiency in Latin America and the Caribbean. To examine the latest available information on both the prevalence of zinc deficiency and the risk of zinc deficiency in Latin America and the Caribbean. The prevalence of zinc deficiency was identified through a systematic review looking for the latest available data on serum zinc concentrations from surveys or studies with national representativeness conducted in Latin America and the Caribbean. The risk of zinc deficiency in Latin America and the Caribbean was estimated based on dietary zinc inadequacy (according to the 2011 National Food Balance Sheets) and stunting in children under 5 years of age. Only four countries had available national biochemical data. Mexican, Colombian, Ecuadorian, and Guatemalan children under 6 years of age and women 12 to 49 years of age had a high prevalence of zinc deficiency (19.1% to 56.3%). The countries with the highest risk of zinc deficiency (estimated prevalence of inadequate zinc intake > 25% plus prevalence of stunting > 20%) were Belize, Bolivia, El Salvador, Guatemala, Haiti, Honduras, Nicaragua, and Saint Vincent and the Grenadines. Zinc dietary inadequacy was directly correlated with stunting (r = 0.64, p < .001). Prevalence data from the four available Latin America and Caribbean national surveys indicate a high prevalence of zinc deficiency in children under 6 years of age and women 12 to 49 years of age. High rates of both estimated zinc dietary inadequacy and stunting were also reported in most Latin America and Caribbean countries.

  1. Effect of zinc fortification on Cheddar cheese quality.

    Kahraman, O; Ustunol, Z


    Zinc-fortified Cheddar cheese containing 228 mg of zinc/kg of cheese was manufactured from milk that had 16 mg/kg food-grade zinc sulfate added. Cheeses were aged for 2 mo. Culture activity during cheese making and ripening, and compositional, chemical, texture, and sensory characteristics were compared with control cheese with no zinc sulfate added to the cheese milk. Compositional analysis included fat, protein, ash, moisture, zinc, and calcium determinations. The thiobarbituric acid (TBA) assay was conducted to determine lipid oxidation during aging. Texture was analyzed by a texture analyzer. An untrained consumer panel of 60 subjects evaluated the cheeses for hardness, off-flavors, appearance, and overall preference using a 9-point hedonic scale. Almost 100% of the zinc added to cheese milk was recovered in the zinc-fortified cheese. Zinc-fortified Cheddar cheese had 5 times more zinc compared with control cheese. Zinc-fortified cheese had higher protein and slightly higher fat and ash contents, whereas moisture was similar for both cheeses. Zinc fortification did not affect culture activity during cheese making or during the 2-mo aging period. The TBA value of control cheese was higher than that of zinc-fortified cheese at the end of ripening. Although zinc-fortified cheese was harder as determined by the texture analyzer, the untrained consumer panel did not detect differences in the sensory attributes and overall quality of the cheeses. Fortification of 16 mg/kg zinc sulfate in cheese milk is a suitable approach to fortifying Cheddar cheese without changing the quality of Cheddar cheese.

  2. Dietary intervention causes redistribution of zinc in obese adolescents.

    Freire, Simone Cardoso; Fisberg, Mauro; Cozzolino, Silvia Maria Franciscato


    Obese people tend to have low zinc circulation levels; this is not always related to zinc intake but can reflect the distribution of zinc in relation to the proportion of body fat and factors related to the inflammatory processes that cause obesity. The purpose of this study was to assess zinc distribution in 15 obese adolescent girls before and after a nutritional orientation program. Participants ranged from 14 to 18 years old (postpubescent) and had a body fat percent (BF%) of >35 %. Zinc nutritional status and other zinc-dependent parameters, such as superoxide dismutase (SOD) and insulin levels, were assessed by biochemical analysis of plasma and erythrocytes, salivary sediment, and urine. Samples were collected before and after 4 months of dietary intervention. Dual energy X-ray absorptiometry (DXA) was used to verify BF% both at the beginning and at the end of the study. Food consumption was assessed in ten individual food questionnaires throughout the study; food groups were separated on the questionnaires in the same way as suggested by some authors to develop the Healthy Eating Index (HEI) but with the addition of zinc. After 4 months of nutritional orientation, 78 % of the participants showed a decrease in BF%. Intraerythrocytic zinc increased over the study period, while salivary sediment zinc, SOD, insulin, and Zn urinary24 h/creatinine all decreased (p zinc intake throughout the study but participants did increase their consumption of fruits, dairy, and meats during the study (p zinc and decreased levels of SOD. There was also a statistically significant correlation between BF% and Zn urinary 24h/creatinine, and SOD. All these parameters were diminished at the end of the study. The dietary intervention for obese adolescent girls is effective with decrease of BF that led to the redistribution of zinc in the body as shown by the changes in erythrocytes, plasma, salivary, urine zinc, as well as the complementary parameters of insulin and SOD. These

  3. Environmental consequences of the inhibition in the hatching of pupae of Aedes aegypti by mercury, zinc, and chromium - the abnormal toxicity of zinc

    Abbasi, S.A.; Nipaney, P.C.; Soni, R.


    In continuation of our studies on the toxicity of heavy metals the authors report the impact of mercury (II), zinc (II), and chromium (VI) on hatching of the pupae of mosquito Aedes aegypti. The studies were carried out in terms of abnormal responses in swimming and flying, incompleteness of the metamorphosis and mortality - all with respect to controls. The toxicity trend with respect to the mortality of pupae in partially or completely hatched conditions, as also with respect to reduction in the number of pupae reaching the mosquito stage was Hg > Zn approx. = Cr. A comparison of lethal doze values of the metals obtained through present experiments with the levels allowable in irrigation waters, indicate that the permissible levels of zinc and chromium are higher by several orders of magnitude than the lowest lethal concentrations for pupae of A. aegypti. The studies thus point to a need for the revision of the existing standards.

  4. Effects of maternal mild zinc deficiency and different ways of zinc supplementation for offspring on learning and memory

    Xiaogang Yu


    Full Text Available Background: The effect of different ways of zinc supplementation on spatial learning and memory remains unclear. Objectives: This study aims to assess the effectiveness of two ways of zinc supplementation – oral use and intravenous transfusion – in zinc-deficient offspring rats on learning and memory. Design: Rats were randomly divided into six groups on the first day of pregnancy (n=12: control (CO, pair fed (PF, zinc deprived (ZD, oral zinc supplementation (OZS, injection zinc supplementation (IZS, and injection control. The offspring's spatial learning and memory were tested at postnatal day 35 using Morris water maze (MWM. Maternal rats’ serum zinc was measured at postnatal day 21, while pups’ serum zinc was measured at postnatal day 35. Results: Compared with the CO and PF groups, pups in ZD group spent more time finding the latent platform and swam longer distances (p0.05. However, compared with ZD groups, pups in IZS did not show any improvement in the indexes of MWM (p>0.05 although their zinc serum concentration increased significantly (p<0.05. Conclusions: These results indicate that mild zinc deficiency during pregnancy and lactation leads to the impairment of learning and memory function in offspring, and that OZS, instead of intravenous transfusion zinc supplementation, can recover the impairment of spatial learning and memory function.

  5. Prospective Zinc Solubilising Bacteria for Enhanced Nutrient Uptake and Growth Promotion in Maize (Zea mays L.

    Praveen Kumar Goteti


    Full Text Available Zinc (Zn is one of the essential micronutrients required for optimum plant growth. Substantial quantity of applied inorganic zinc in soil is converted into unavailable form. Zinc solubilising bacteria are potential alternates for zinc supplement. Among 10 strains screened for Zn solubilisation, P29, P33, and B40 produced 22.0 mm clear haloes on solid medium amended with ZnCO3. Similarly, P17 and B40 showed 31.0 mm zone in ZnO incorporated medium. P29 and B40 showed significant release of Zn in broth amended with ZnCO3 (17 and 16.8 ppm and ZnO (18 and 17 ppm, respectively. The pH of the broth was almost acidic in all the cases ranging from 3.9 to 6.1 in ZnCO3 and from 4.1 to 6.4 in ZnO added medium. Short term pot culture experiment with maize revealed that seed bacterization with P29 @ 10 g·kg−1 significantly enhanced total dry mass (12.96 g and uptake of N (2.268%, K (2.0%, Mn (60 ppm, and Zn (278.8 ppm.

  6. Prospective Zinc Solubilising Bacteria for Enhanced Nutrient Uptake and Growth Promotion in Maize (Zea mays L.).

    Goteti, Praveen Kumar; Emmanuel, Leo Daniel Amalraj; Desai, Suseelendra; Shaik, Mir Hassan Ahmed


    Zinc (Zn) is one of the essential micronutrients required for optimum plant growth. Substantial quantity of applied inorganic zinc in soil is converted into unavailable form. Zinc solubilising bacteria are potential alternates for zinc supplement. Among 10 strains screened for Zn solubilisation, P29, P33, and B40 produced 22.0 mm clear haloes on solid medium amended with ZnCO3. Similarly, P17 and B40 showed 31.0 mm zone in ZnO incorporated medium. P29 and B40 showed significant release of Zn in broth amended with ZnCO3 (17 and 16.8 ppm) and ZnO (18 and 17 ppm), respectively. The pH of the broth was almost acidic in all the cases ranging from 3.9 to 6.1 in ZnCO3 and from 4.1 to 6.4 in ZnO added medium. Short term pot culture experiment with maize revealed that seed bacterization with P29 @ 10 g·kg(-1) significantly enhanced total dry mass (12.96 g) and uptake of N (2.268%), K (2.0%), Mn (60 ppm), and Zn (278.8 ppm).

  7. The Efficacy of Zinc Administration in the Treatment of Primary Dysmenorrhea

    Batool Teimoori


    Full Text Available Objectives: Dysmenorrhea is a common complaint in women. Primary dysmenorrhea is defined as painful menstruation in the absence of pelvic disease and is caused by uterine contractions caused by prostaglandins released from the endometrium. Conventional treatments include nonsteroidal anti-inflammatory drugs and oral contraceptives. We sought to evaluate the efficacy of zinc supplementation in the treatment of primary dysmenorrhea.  Methods: Two-hundred participants with primary dysmenorrhea were randomized into one of two groups. The intervention group received zinc and mefenamic acid, and the control group received mefenamic acid and a placebo drug. After three months of treatment, changes in the incidence of dysmenorrhea and the degree of pain were measured in both groups.  Results: The mean pain score before administration of zinc and mefenamic acid in the intervention group was 5.3±1.8 and after treatment was 1.2±1.9 (p 0.050. We also found that 64% of case group and 33% of the control group did not experience dysmenorrhea after treatment (p < 0.001.  Conclusions: The use of a zinc supplement in combination with mefenamic acid was superior in reducing primary dysmenorrhea compared to mefenamic acid alone.

  8. Bioelectrical impedance vector analysis for evaluating zinc supplementation in prepubertal and healthy children

    Márcia Marília Gomes Dantas


    Full Text Available Background: The prevalence of abnormal nutritional status has increased in children and adolescents. Nutritional assessment is important for monitoring the health and nutritional status. Bioelectrical impedance vector analysis (BIVA combines changes in tissue hydration and structure and body composition that can be assessed. Objectives: The objective of this study was to use BIVA to evaluate nutritional status in 60 prepubertal children, aged between 8 and 9 years, supplemented with zinc, to detect possible changes in body composition. Design: We performed a randomized, controlled, triple-blind study. The children were divided into the control group (CG; sorbitol 10%, n=29 or the experimental group (EG; 10 mg Zn/day, n=31, and the duration of the experiment was 3 months. Anthropometric assessments were performed for all of the children. Results: The body mass index-for-age increased after oral zinc supplementation in the EG (p=0.005. BIVA indicated that the CG demonstrated a tendency for dehydration and decreased soft tissue and the EG demonstrated a tendency for increased soft tissue, primarily the fat-free mass. After analyses of BIVA ellipses, we observed that this method could detect improvements in body composition in healthy children supplemented with zinc. Conclusions: These results suggest that BIVA could be an auxiliary method for studying a small population undergoing zinc intervention.

  9. Epigenetic effects of dietary zinc on the porcine ZIP4 gene expression

    Diana Karweina


    Full Text Available Dietary zinc supplementation has been shown to improve piglets’ health. We examined, if the gut epithelial ZIP4 transporter is affected by the zinc concentration in the diet through epigenetic modifications of the ZIP4 gene. In an experiment with 30 piglets that were fed diets with 57 (LZn , 164 (NZn or 2425 (HZn mg zinc/kg feed over until four weeks, we found a reduced expression of the gene in the gut epithelium with higher zinc concentration in the feed (P ≤ 0.008. The methylation status of two CpGs in exon 2 and intron 2 were decreased in the LZn compared to the NZn group (P ≤ 0.01. The increase of the methylation at another CpG in exon 2 led to a decrease of the ZIP4 mRNA amount (P < 0.05. The fact, that only one CpG had a significant effect on ZIP4 expression, led us to the assumption that methylation changes play a minor role for the transcriptional regulation of ZIP4.

  10. Zinc bioleaching from an iron concentrate using Acidithiobacillus ferrooxidans strain from Hercules Mine of Coahuila, Mexico

    Núñez-Ramírez, Diola Marina; Solís-Soto, Aquiles; López-Miranda, Javier; Pereyra-Alférez, Benito; Rutiaga-Quiñónes, Miriam; Medina-Torres, Luis; Medrano-Roldán, Hiram


    The iron concentrate from Hercules Mine of Coahuila, Mexico, which mainly contained pyrite and pyrrhotite, was treated by the bioleaching process using native strain Acidithiobacillus ferrooxidans ( A. ferrooxidans) to determine the ability of these bacteria on the leaching of zinc. The native bacteria were isolated from the iron concentrate of the mine. The bioleaching experiments were carried out in shake flasks to analyze the effects of pH values, pulp density, and the ferrous sulfate concentration on the bioleaching process. The results obtained by microbial kinetic analyses for the evaluation of some aspects of zinc leaching show that the native bacteria A. ferrooxidans, which is enriched with a 9K Silverman medium under the optimum conditions of pH 2.0, 20 g/L pulp density, and 40 g/L FeSO4, increases the zinc extraction considerably observed by monitoring during15 d, i.e., the zinc concentration has a decrease of about 95% in the iron concentrate.

  11. Use of catalytic anodes for zinc electrowinning at high current densities from purified electrolytes

    Bestetti, M.; Ducati, U. [Polytechnic of Milan, Dept. of Applied Physical Chemistry, Milan (Italy); Kelsall, G.H. [T.H. Huxley School, Imperial College, London (United Kingdom); Li, G. [Cominco Research, Cominco Limited, Trail, British Columbia (Canada); Guerra, E. [Univ. of British Columbia, Dept. of Metals and Materials Engineering, Victoria, British Columbia (Canada)


    Substantial energy savings are possible in zinc electrowinning by substituting catalytic oxygen evolution anodes for conventional lead-silver anodes. However, it is well known that the harmful effects of impurities usually present in zinc electrolyte solutions limit the service life of catalytic anodes, though their purification by solvent extraction could obviate such problems. Laboratory-scale zinc deposition experiments, with synthetic electrolytes have been performed to determine the effects of current density, temperature, and electrolyte composition on cell voltages and current efficiencies. These data sets were used in an assessment of the optimum design parameters of the tank house. Zinc electrowinning at high current densities (higher than 2000 A/m{sup 2}) using catalytic anodes and purified solutions (e.g., by solvent extraction), is proposed as an alternative to the conventional process, which is based on lead-silver anodes working at relatively low current densities (ca. 500 A/m{sup 2}). Finally, a system for continuous deposition and stripping of the metal is discussed. (author)

  12. Bioavailability of Trace Elements in Beans and Zinc-Biofortified Wheat in Pigs

    Carlson, Dorthe; Nørgaard, Jan Værum; Torun, B


    , and diets incubated in distilled water at pH 4 and 38°C for 3 h. The bioavailability of zinc and copper of the three wheat types and the two bean-containing diets were evaluated in the pigs by collection of urine and feces for 7 days. The solubility of zinc was 34–63 %, copper 18–42 %, and iron 3......The objectives of this experiment were to study bioavailability of trace elements in beans and wheat containing different levels of zinc and to study how the water solubility of trace elements was related to the bioavailability in pigs. Three wheat and two bean types were used: wheat of Danish...... origin as a control (CtrlW), two Turkish wheat types low (LZnW) and high (HZnW) in zinc, a common bean (Com), and a faba bean (Faba). Two diets were composed by combining 81 % CtrlW and 19 % Com or Faba beans. Solubility was measured as the trace element concentration in the supernatant of feedstuffs...

  13. Effects of enhanced zinc and copper in drinking water on spatial memory and fear conditioning

    Chrosniak, L.D.; Smith, L.N.; McDonald, C.G.; Jones, B.F.; Flinn, J.M.


    Ingestion of enhanced zinc can cause memory impairments and copper deficiencies. This study examined the effect of zinc supplementation, with and without copper, on two types of memory. Rats raised pre- and post-natally on 10 mg/kg ZnCO3 or ZnSO4 in the drinking water were tested in a fear-conditioning experiment at 11 months of age. Both zinc groups showed a maladaptive retention of fearful memories compared to controls raised on tap water. Rats raised on 10 mg/kg ZnCO3, 10 mg/kg ZnCO3 + 0.25 mg/kg CuCl2, or tap water, were tested for spatial memory ability at 3 months of age. Significant improvements in performance were found in the ZnCO3 + CuCl2 group compared to the ZnCO3 group, suggesting that some of the cognitive deficits associated with zinc supplementation may be remediated by addition of copper. ?? 2005 Elsevier B.V. All rights reserved.

  14. Effect of Zinc Oxide Nanoparticles on Candida albicans of Human Saliva (in vitro study

    Suha T. Abd


    Full Text Available The potential use of zinc oxide and other metal oxide nanoparticles in biomedicine are gaining interest in the scientific and medical communities, largely due to the physical and chemical properties of these nanoparticles, therefore there is an urgent need to develop new classes of antimicrobial agents, and recent studies demonstrate that hold a considerable promises. Candida albicans were isolated from saliva of forty eight volunteers of both sexes their age range between 18-22 years and then purified and diagnosed according to morphological characteristic and biochemical tests. Different concentrations of ZnO NPs were prepared from the stock solution; all the experiments were conducted in vitro. Disk diffusion method was used to study the sensitivity of Candida albicans to different concentrations of zinc oxide nanoparticles in comparison to effect of de-ionized water. Candida albicans were sensitive to all cocentrations (0.01, 0.05, 0.1, 0.5, 1, 3 and 5.8 mg/ml of the zinc oxide nanoparticles solution in comparison to de-ionized water, revealing a highly significant difference in all concentrations. This study revealed that zinc oxide nanoparticles were effective against Candida albicans.

  15. High cycling stability of zinc-anode/conducting polymer rechargeable battery with non-aqueous electrolyte

    Guerfi, A.; Trottier, J.; Boyano, I.; De Meatza, I.; Blazquez, J. A.; Brewer, S.; Ryder, K. S.; Vijh, A.; Zaghib, K.


    A non-aqueous zinc-polyaniline secondary battery was fabricated with polyaniline Emeraldine base as cathode and zinc metal as anode in an electrolyte consisting of 0.3 M zinc-bis(trifluoromethyl-sulfonyl)imide Zn(TFSI)2 dissolved in propylene carbonate. We observed that the formation of the battery required a prerequisite condition to stabilize the interfaces in order to maintain a stable capacity. The battery suffered from Zn dissolution which induces a competition between concurrent Zn dissolution and plating when the battery is in charge mode, and thus inefficient cycles are obtained. The capacity and coulombic efficiency of the battery depends on the charge-discharge rates. We propose cycling protocols at different rates to determine the steady-state rates of competing reactions. When the cell is cycled at ≥1 C rate, the coulombic efficiency improves. The maximum capacity and energy densities of the battery are 148 mAhg-1 and 127 mWhg-1, respectively for discharge at C/2. The battery was successively charged/discharged at constant current densities (1C rate), and high cycling stability was obtained for more than 1700 cycles at 99.8% efficiency. Zinc dissolution and self discharge of the battery were investigated after 24 h of standby. The investigation showed that the battery experiences a severe self-discharge of 48% per day.

  16. Dietary intake of Zinc, serum levels of Zinc and risk of gastric cancer: A review of studies

    Sayyed Saeid Khayyatzadeh


    Full Text Available Gastric cancer (GC is considered as most fourth common cancer in the world. Findings from animal, experimental and epidemiologic studies indicate that diet plays an important role in the etiology of stomach cancer. Among dietary factors, Zinc status has received great attention in recent years. The purpose of the present study was to review the association of serum levels of Zinc, dietary intake of Zinc and GC risk. A complete search was performed about the association of Zinc status and risk of GC was in databases electronic through such as ISI web of science, PubMed, Scopus, IrMedx and SID. Our results of current review suggest that dietary intake of Zinc and serum levels of Zinc are lower in GC patient. In other word, high serum levels of Zinc may be protective in GC risk. However, it seems further studies in particular epidemiological studies with large scale setting are required to reach a definite conclusion.

  17. Stability of zinc oxide nanofluids prepared with aggregated nanocrystalline powders.

    Leonard, J P; Chung, S J; Nettleship, I; Soong, Y; Martello, D V; Chyu, M K


    Aqueous zinc oxide (ZnO) suspensions were prepared using a two-step preparation method in which an aggregated nanocrystalline ZnO powder was dispersed in water using a polyelectrolyte. The fluid showed anomalously high thermal conductivity when compared with the Maxwell and Hamilton-Crosser predictions. However, analysis of the particle size distribution showed that the fluid contained aggregated 20 nm crystallites of ZnO with a high volume fraction of particles larger than 100 nm. Sedimentation experiments revealed that particles settled out of the stationary fluid over times ranging from 0.1 hours to well over 10,000 hours. The size of the particles remaining in suspension agreed well with predictions made using Stoke's law, suggesting flocculation was not occurring in the fluids. Finally, a new concept of nanofluid stability is introduced based on the height of the fluid, sedimentation, Brownian motion and the kinetic energy of the particles.

  18. Separation and speciation analysis of zinc from Flammulina velutipes

    Fang Liu


    Full Text Available Orthogonal experiment was applied to optimize the water extraction parameters of zinc from Flammulina velutipes, and then the extracts were separated by membrane filter (0.45 μm and D101 macroporous resin. Six different species of Zn were obtained and the Zn content of various species were determined by flame atomic absorption spectrometry. The optimized conditions for the extraction of Zn were: ratio of dried material to water, 1:30; extraction temperature, 75°C; extraction time, 120 minutes. About 34.43 μg Zn was extracted from 1 g dried F. velutipes powder under the optimal conditions. The recovery value for Zn was 96.5% with a low relative standard deviation. In addition, the content of the organic state of Zn was more than that of the inorganic state, and most of the organic state Zn was found in the polysaccharide and protein fractions.

  19. Catalase in testes and epididymidis of wistar rats fed zinc deficient diet

    Bedwal S


    Full Text Available Catalase activities have been evaluated in testes and caput and cauda epididymis of Wistar rats fed on zinc deficient diet for 2 and 4 weeks. The enzyme activity has been measured as chromic acetate formed by heating of dichromate (in acetic acid in presence of H 2 O 2 with perchromic acid as an unstable intermediate. Observed non-significant increase in catalase activity in testes as well as in caput and cauda epididymis of 2 weeks experiments has been related to low levels of H 2 O 2 produced in two organs whereas significant (P< 0.01/0.001 increase in catalase activity in 4-weeks experiments indicate for increased oxidative stress due to phagocytotic activity of Sertoli cells in testes and damaged spermatozoa in epididymis. Thus, zinc deficiency increases catalase activity in testes and epididymis.

  20. The electronic structure of co-sputtered zinc indium tin oxide thin films

    Carreras, Paz; Antony, Aldrin; Bertomeu, Joan [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, 08028 Barcelona (Spain); Gutmann, Sebastian [Department of Chemistry, University of South Florida, Tampa, Florida 33620 (United States); Schlaf, Rudy [Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States)


    Zinc indium tin oxide (ZITO) transparent conductive oxide layers were deposited via radio frequency (RF) magnetron co-sputtering at room temperature. A series of samples with gradually varying zinc content was investigated. The samples were characterized with x-ray and ultraviolet photoemission spectroscopy (XPS, UPS) to determine the electronic structure of the surface. Valence and conduction bands maxima (VBM, CBM), and work function were determined. The experiments indicate that increasing Zn content results in films with a higher defect rate at the surface leading to the formation of a degenerately doped surface layer if the Zn content surpasses {approx}50%. Furthermore, the experiments demonstrate that ZITO is susceptible to ultraviolet light induced work function reduction, similar to what was earlier observed on ITO and TiO{sub 2} films.

  1. High Temperature Solar Electrothermal Processing II. Zinc from Zinc Oxide.


    and filter were installed. Finally, the system was perfused with argon flowing at about 5 liters/minute. The heliostat was then set to track with the...we closed both doors, stowed the heliostat , and reopened the doors to provide good ventilation to the concentrator room. We then disconnected the...anodes are of the order 0.5 volt. The experiment was straightforward to about 1.2 volts; al- though the second-to-second precision was not great, as is

  2. Iron and zinc concentrations and /sup 59/Fe retention in developing fetuses of zinc-deficient rats

    Rogers, J.M.; Loennerdal, B.H.; Hurley, L.S.; Keen, C.L.


    Because disturbances in iron metabolism might contribute to the teratogenicity of zinc deficiency, we examined the effect of zinc deficiency on fetal iron accumulation and maternal and fetal retention of /sup 59/Fe. Pregnant rats were fed from mating a purified diet containing 0.5, 4.5 or 100 micrograms Zn/g. Laparotomies were performed on d 12, 16, 19 and 21 of gestation. Maternal blood and concepti were analyzed for zinc and iron. Additional groups of dams fed 0.5 or 100 micrograms Zn/g diet were gavaged on d 19 with a diet containing /sup 59/Fe. Six hours later maternal blood and tissues, fetuses and placentas were counted for /sup 59/Fe. Maternal plasma zinc, but not iron, concentration was affected by zinc deficiency on d 12. Embryo zinc concentration on d 12 increased with increasing maternal dietary zinc, whereas iron concentration was not different among groups. On d 16-21 plasma iron was higher in dams fed 0.5 micrograms Zn/g diet than in those fed 4.5 or 100 micrograms/g, whereas plasma zinc was lower in dams fed 0.5 or 4.5 micrograms Zn/g than in those fed 100 micrograms Zn/g diet. On d 19 zinc concentration in fetuses from dams fed 0.5 micrograms/g zinc was not different from that of those fed 4.5 micrograms/g zinc, and iron concentration was higher in the 0.5 microgram Zn/g diet group. The increase in iron concentration in zinc-deficient fetuses thus occurs too late to be involved in major structural teratogenesis. Although whole blood concentration of /sup 59/Fe was not different in zinc-deficient and control dams, zinc-deficient dams had more /sup 59/Fe in the plasma fraction.

  3. A conveniently prepared and hypersensitized small molecular fluorescent probe: Rapidly detecting free zinc ion in HepG2 cells and Arabidopsis.

    Gan, Xiaoping; Sun, Ping; Li, Hong; Tian, Xiaohe; Zhang, Baowei; Wu, Jieying; Tian, Yupeng; Zhou, Hongping


    In this paper, we reported a conveniently prepared fluorescent probe for zinc ions detection, which constructed by the condensation reaction between p-(benzothiazolyl)aniline with 4, 4- diethylaminesalicylaldehyde. The sensing ability of the probe toward zinc ions in vitro was tested by a series of UV-Vis and fluorescence spectroscopy studies, which showed that the probe possessed high sensitivity with a detection limit of 5.8nM and a rapid response time of 10s. We also carried out fluorescent bio-imaging of the probe for zinc ions in human liver hepatocellular carcinoma cells (HepG2), which showed that the probe could be utilized to detect the intracellular endogenous zinc ions visually without introducing external zinc sources. Meanwhile, co-staining experiment with organelle selective trackers was performed to illustrate that the probe could locate at endoplasmic reticulum. Finally, we successfully used it as a zinc ion developer in plant tissue, which clearly demonstrated the distribution of zinc ions in the growth stage of plant tissue. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Thermal treatment for recovery of manganese and zinc from zinc-carbon and alkaline spent batteries.

    Belardi, G; Lavecchia, R; Medici, F; Piga, L


    The aim of this paper is the recovery of manganese and zinc from a mixture of zinc-carbon and alkaline spent batteries, containing 40.9% of Mn and 30.1% of Zn, after preliminary physical treatment followed by removal of mercury. Separation of the metals has been carried out on the basis of their different boiling points, being 357°C and 906°C the boiling point of mercury and zinc and 1564°C the melting point of Mn(2)O(3). Characterization by chemical analysis, TGA/DTA and X-ray powder diffraction of the mixture has been carried out after comminution sieving and shaking table treatment to remove the anodic collectors and most of chlorides contained in the mixture. The mixture has been roasted at various temperatures and resident times in a flow of air to set the best conditions to remove mercury that were 400°C and 10 min. After that, the flow of air has been turned into a nitrogen one (inert atmosphere) and the temperatures raised, thus permitting the zinc oxide to be reduced to metallic zinc by the carbon present in the original mixture and recovered after volatilization as a high grade concentrate, while manganese was left in the residue. The recovery and the grade of the two metals, at 1000°C and 30 min residence time, were 84% and 100% for zinc and 85% and 63% for manganese, respectively. The recovery of zinc increased to 99% with a grade of 97% at 1200°C and 30 min residence time, while the recovery and grade of manganese were 86% and 87%, respectively, at that temperature. Moreover, the chlorinated compounds that could form by the combustion of the plastics contained in the spent batteries, are destroyed at the temperature required by the process.

  5. Phase transition and elastic properties of zinc sulfide under high pressure from first principles calculations

    Dai, Wei [Hubei Univ. of Education, Wuhan (China). Dept. of Physics and Electronics; Chinese Academy of Engineering Physics, Mianyang (China). Inst. of Fluid Physics; Song, Jin-Fan; Wang, Ping; Lu, Cheng; Lu, Zhi-Wen [Nanyang Normal Univ. (China). Dept. of Physics; Tan, Xiao-Ming [Ludong Univ., Yantai (China). Dept. of Physics


    A theoretical investigation on structural and elastic properties of zinc sulfide semiconductor under high pressure is performed by employing the first-principles method based on the density functional theory. The calculated results show that the transition pressure P{sub t} for the structural phase transition from the B3 structure to the B1 structure is 17.04 GPa. The calculated values are generally speaking in good agreement with experiments and with similar theoretical calculations. (orig.)

  6. Lead and silver extraction from waste cake from hydrometallurgical zinc production



    This paper presents the experimental results of the extraction of lead and silver from a lead–silver waste cake obtained in the process of hydrometallurgical zinc production. While controlling the pH value, the lead–silver cake was leached at a temperature close to boiling point in different concentrations of aqueous calcium chloride solutions. The experiments were performed applying different ratios between the mass of cake and the volume of the leaching agent under different durations of th...

  7. Nosotros y el cinc We and zinc

    D. I. Florea


    Full Text Available La Nutrición es la base de los procesos fisiológicos humanos. Una nutrición inadecuada puede inducir a la disfunción en eslabones de la cadena metabólica. Todos los nutrientes esenciales son imprescindibles y el déficit o exceso de cualquiera de ellos conlleva a efectos adversos en la salud. El cinc es un micronutriente extensamente demandado en el organismo, como lo demuestra la amplia diversidad de funciones biológicas que presenta. La ingesta de cinc presenta un gran margen en la población mundial actual, pudiendo ser de 7 mg/d en Reino Unido y llegando a 15 mg/d en EEUU, aunque por supuesto, las RDAs se fijan en función de la edad, sexo, situación fisiológica (embarazo, lactancia, etc., o enfermedad. Se conoce que el cinc es fundamental para la estructura y funcionamiento del DNA y así como de enzimas, coenzimas, hormonas, etc. La vida del cinc es corta, dado que la mayor cantidad se absorbe y rápidamente es transferida a depósitos, donde se almacena, por lo tanto la cantidad se cinc disponible en sangre puede no ser la cantidad "real". En el presente trabajo hemos realizado una breve revisión del paso del cinc por nuestro organismo, tratando desde su ingesta hasta su recorrido por la sangre tanto en personas sanas como enfermas.Nutrition is the basis of human physiological processes. Inadequate nutrition can lead to dysfunction in the metabolic chain links. One of the most important micronutrients is zinc, as evidenced by its wide range of carriers in the body. Zinc intake has a large margin in the current world population, may be 7 mg/d in the UK, reaching 15 mg/d in the U.S., although of course, the RDA's are set according to age, sex , physiological status (pregnancy, lactation, etc.., or disease. It is known that zinc is essential for the structure and function as well as DNA and enzymes, coenzymes, hormones and so on. Life is short, zinc, since the most rapidly absorbed and is transferred to tanks where it is stored, so

  8. Investigation of zinc biosorption by brewer's yeast cells

    Dodić Siniša N.


    Full Text Available The highest amount of zinc (= 90% is bound after 3 hrs of contact at low initial (total concentrations of zinc in suspension of yeast, 10-100 mg/l at 10-30°C. The equilibrium between bound and free zinc ions is established after 6 hrs of contact time, independently on the total zinc concentration in yeast milk. No bigger changes of content of zinc bound to brewer's yeast cells was determined at temperatures 10°C and 30°C. 40% of bound zinc in the equilibrium state is bound during the first 15 min of contact of zinc ions and brewer's yeast cells at all initial (total zinc concentrations in suspension of yeast both at 10°C and 30°C. The "KEKAM" equation can be used for the description of kinetics of zinc biosorption by waste brewer's yeast cells, for the ranges of zinc concentration 10-100 mg/l at 30°C (mean correlation coefficient 0,96 and 60,0-100 mg/l at 10°C (mean correlation coefficient 0,95.

  9. Oral zinc supplementation may improve cognitive function in schoolchildren.

    de Moura, José Edson; de Moura, Edna Nubia Oliveira; Alves, Camila Xavier; Vale, Sancha Helena de Lima; Dantas, Márcia Marília Gomes; Silva, Alfredo de Araújo; Almeida, Maria das Graças; Leite, Lúcia Dantas; Brandão-Neto, José


    Zinc is an important micronutrient for humans, and zinc deficiency among schoolchildren is deleterious to growth and development, immune competence, and cognitive function. However, the effect of zinc supplementation on cognitive function remains poorly understood. The purpose of our study was to evaluate the effect of oral zinc supplementation (5 mg Zn/day for 3 months) on the Full Scale Intelligence Quotient (FSIQ), Verbal Intelligence Quotient (VIQ), and Performance Intelligence Quotient (PIQ) using a Wechsler Intelligence Scale for Children (WISC-III). We studied 36 schoolchildren aged 6 to 9 years (7.8 ± 1.1) using a nonprobability sampling method. The baseline serum zinc concentrations increased significantly after zinc supplementation (p under basal conditions before and after zinc supplementation, and there was no difference in FSIQ according to gender or age. The results demonstrated that zinc improved the VIQ only in the Information Subtest (p = 0.009), although the supplementation effects were more significant in relation to the PIQ, as these scores improved for the Picture Completion, Picture Arrangement, Block Design, and Object Assembly Subtests (p = 0.0001, for all subtests). In conclusion, zinc supplementation improved specific cognitive abilities, thereby positively influencing the academic performance of schoolchildren, even those without marginal zinc deficiency.

  10. Identification of the Human Zinc Transcriptional Regulatory Element (ZTRE)

    Coneyworth, Lisa J.; Jackson, Kelly A.; Tyson, John; Bosomworth, Helen J.; van der Hagen, Eline; Hann, Georgia M.; Ogo, Ogo A.; Swann, Daniel C.; Mathers, John C.; Valentine, Ruth A.; Ford, Dianne


    Many genes with crucial roles in zinc homeostasis in mammals respond to fluctuating zinc supply through unknown mechanisms, and uncovering these mechanisms is essential to understanding the process at cellular and systemic levels. We detected zinc-dependent binding of a zinc-induced protein to a specific sequence, the zinc transcriptional regulatory element (ZTRE), in the SLC30A5 (zinc transporter ZnT5) promoter and showed that substitution of the ZTRE abrogated the repression of a reporter gene in response to zinc. We identified the ZTRE in other genes, including (through an unbiased search) the CBWD genes and (through targeted analysis) in multiple members of the SLC30 family, including SLC30A10, which is repressed by zinc. The function of the CBWD genes is currently unknown, but roles for homologs in metal homeostasis are being uncovered in bacteria. We demonstrated that CBWD genes are repressed by zinc and that substitution of the ZTRE in SLC30A10 and CBWD promoter-reporter constructs abrogates this response. Other metals did not affect expression of the transcriptional regulator, binding to the ZTRE or promoter-driven reporter gene expression. These findings provide the basis for elucidating how regulation of a network of genes through this novel mechanism contributes to zinc homeostasis and how the cell orchestrates this response. PMID:22902622

  11. Zinc and diabetes--clinical links and molecular mechanisms.

    Jansen, Judith; Karges, Wolfram; Rink, Lothar


    Zinc is an essential trace element crucial for the function of more than 300 enzymes and it is important for cellular processes like cell division and apoptosis. Hence, the concentration of zinc in the human body is tightly regulated and disturbances of zinc homeostasis have been associated with several diseases including diabetes mellitus, a disease characterized by high blood glucose concentrations as a consequence of decreased secretion or action of insulin. Zinc supplementation of animals and humans has been shown to ameliorate glycemic control in type 1 and 2 diabetes, the two major forms of diabetes mellitus, but the underlying molecular mechanisms have only slowly been elucidated. Zinc seems to exert insulin-like effects by supporting the signal transduction of insulin and by reducing the production of cytokines, which lead to beta-cell death during the inflammatory process in the pancreas in the course of the disease. Furthermore, zinc might play a role in the development of diabetes, since genetic polymorphisms in the gene of zinc transporter 8 and in metallothionein (MT)-encoding genes could be demonstrated to be associated with type 2 diabetes mellitus. The fact that antibodies against this zinc transporter have been detected in type 1 diabetic patients offers new diagnostic possibilities. This article reviews the influence of zinc on the diabetic state including the molecular mechanisms, the role of the zinc transporter 8 and MT for diabetes development and the resulting diagnostic and therapeutic options.

  12. Silicon and zinc biogeochemical cycles coupled through the Southern Ocean

    Vance, Derek; Little, Susan H.; de Souza, Gregory F.; Khatiwala, Samar; Lohan, Maeve C.; Middag, Rob


    Zinc is vital for the physiology of oceanic phytoplankton. The striking similarity of the depth profiles of zinc to those of silicate suggests that the uptake of both elements into the opaline frustules of diatoms, and their regeneration from these frustules, should be coupled. However, the zinc content of diatom opal is negligible, and zinc is taken up into and regenerated from the organic parts of diatom cells. Thus, since opaline frustules dissolve deep in the water column while organic material is regenerated in the shallow subsurface ocean, there is little reason to expect the observed close similarity between zinc and silicate, and the dissimilarity between zinc and phosphate. Here we combine observations with simulations using a three-dimensional model of ocean circulation and biogeochemistry to show that the coupled distribution of zinc and silicate, as well as the decoupling of zinc and phosphate, can arise in the absence of mechanistic links between the uptake of zinc and silicate, and despite contrasting regeneration length scales. Our simulations indicate that the oceanic zinc distribution is, in fact, a natural result of the interaction between ocean biogeochemistry and the physical circulation through the Southern Ocean hub. Our analysis demonstrates the importance of uptake stoichiometry in controlling ocean biogeochemistry, and the utility of global-scale elemental covariation in the ocean in understanding these controls.

  13. Dose-dependent effects of dietary zinc oxide on bacterial communities and metabolic profiles in the ileum of weaned pigs.

    Pieper, R.; Vahjen, W.; Neumann, K.; Geurts van Kessel, A.H.M.; Zentek, J.


    Pharmacological levels of zinc oxide (ZnO) can improve the health of weaning piglets and influence the intestinal microbiota. This experiment aimed at studying the dose-response effect of five dietary concentrations of ZnO on small intestinal bacteria and metabolite profiles. Fifteen piglets, weaned

  14. Effect of axial ligands on the spectroelectrochemical properties of zinc phthalocyanine films. In situ Raman and electroreflection spectra

    Palys, B.J.; Ham, van den D.M.W.; Otto, C.


    Electroreflection and Raman spectra (in situ and ex situ) of zinc phthalocyanine (ZnPc) films (80 nm thick) have been studied. Raman spectra were resonantly and preresonantly enhanced. Both electroreflection and Raman experiments reveal the homogeneous inclusion of electrolyte anions upon oxidation

  15. Predictors of plasma zinc concentrations in children with acute diarrhea.

    Strand, Tor A; Adhikari, Ramesh K; Chandyo, Ram K; Sharma, Pushpa R; Sommerfelt, Halvor


    Plasma and serum zinc concentrations are the most widely used markers of zinc status in individual persons and populations. The objective was to identify factors that influence plasma zinc concentrations during acute childhood diarrhea. This was a cross-sectional study of 1757 cases of acute diarrhea in 6-35-mo-old Nepalese children. The association between plasma zinc concentration and several clinical, anthropometric, socioeconomic, and biochemical variables was estimated in simple and multiple linear regression analyses. We observed a reduction in the mean plasma zinc concentration of 0.59 (95% CI: 0.44, 0.74) micro mol/L per degree ( degrees C) increase in axillary temperature. Having dysentery and an elevated plasma C-reactive protein concentration was also independently associated with lower plasma zinc. Children with clinical features of dehydration had higher plasma zinc concentrations than did those who were not dehydrated. Furthermore, a decrease in plasma albumin of 1 g/L was associated with a decrease in plasma zinc of 0.25 (95% CI: 0.21, 0.29) micro mol/L. The plasma albumin concentration confounded the associations between some clinical variables and plasma zinc, but the association between axillary temperature and dehydration on one hand and plasma zinc on the other was not substantially influenced by the albumin concentration. Moreover, the plasma zinc concentration increased with an increase in observed hemolysis. Dehydration, clinical and biochemical indicators of inflammation and hemolysis, and, when possible, plasma albumin concentrations should be taken into account when the plasma zinc concentration is used to estimate zinc status during episodes of diarrhea in childhood.

  16. Impact of a sacrificial anode as assessed by zinc accumulation in different organs of the oyster Crassostrea gigas: results from long- and short-term laboratory tests.

    Caplat, Christelle; Mottin, Elmina; Lebel, Jean-Marc; Serpentini, Antoine; Barillier, Daniel; Mahaut, Marie-Laure


    Sacrificial anodes made of zinc are currently used in marine environments to mitigate marine corrosion as part of CP systems of immerged metallic structures. The aim of this work was to study zinc bioconcentration in the oyster Crassostrea gigas by performing two in vivo tests during different time periods and at different zinc concentrations. The first test was conducted during a period of 10 weeks at a concentration of 0.53 ± 0.04 mg Zn L(-1) to simulate long-term exposure, and a second test was conducted during a 168-hour period at a concentration of 10.2 ± 1.2 mg Zn L(-1) to reproduce short-term exposure. In these experiments, the zinc source was an electrochemical device that included a sacrificial anode to mimic the in situ conditions. During the first 14 days of the long-term experiment, digestive glands of C oysters exhibited bioaccumulation of zinc that varied according to the oysters' reproductive cycle. Both a bioconcentration factor (BCF) of ≤ 13,397 and a zinc accumulation percentage of +297% of zinc occurred in this organ after 10 weeks. The results obtained from the short-term test showed a lower BCF of 405 but a faster bioaccumulation of zinc (starting from the first day) in the same organ. No mortality was observed in long-term assay, but 81.8% of the oysters died at the end of the short-term assay. These results demonstrate the great capacity of C. gigas to accumulate zinc released from the anode, especially when low concentrations are released, as in the case of anode dissolution used as CP. This study confirmed the necessity to monitor this zinc-contamination source in marine environments in relation to the usual oyster consumption by humans (especially in France). No implication for human health of this zinc-contamination source was demonstrated until now, and this was not the purpose of this study; however, zinc remains one of the most abundant nutritionally essential elements in the human body that may affect the human immune

  17. Cadmium and zinc activate adaptive mechanisms in Nicotiana tabacum similar to those observed in metal tolerant plants.

    Vera-Estrella, Rosario; Gómez-Méndez, María F; Amezcua-Romero, Julio C; Barkla, Bronwyn J; Rosas-Santiago, Paul; Pantoja, Omar


    Tobacco germinated and grew in the presence of high concentrations of cadmium and zinc without toxic symptoms. Evidence suggests that these ions are sequestered into the vacuole by heavy metal/H (+) exchanger mechanisms. Heavy metal hyperaccumulation and hypertolerance are traits shared by a small set of plants which show specialized physiological and molecular adaptations allowing them to accumulate and sequester toxic metal ions. Nicotiana tabacum was used to test its potential as a metal-accumulator in a glass house experiment. Seed germination was not affected in the presence of increasing concentrations of zinc and cadmium. Juvenile and adult plants could concentrate CdCl2 and ZnSO4 to levels exceeding those in the hydroponic growth medium and maintained or increased their leaf dry weight when treated with 0.5- or 1-mM CdCl2 or 1-mM ZnSO4 for 5 days. Accumulation of heavy metals did not affect the chlorophyll and carotenoid levels, while variable effects were observed in cell sap osmolarity. Heavy metal-dependent H(+) transport across the vacuole membrane was monitored using quinacrine fluorescence quenching. Cadmium- or zinc-dependent fluorescence recovery revealed that increasing concentrations of heavy metals stimulated the activities of the tonoplast Cd(2+) or Zn(2+)/H(+) exchangers. Immunodetection of the V-ATPase subunits showed that the increased proton transport by zinc was not due to changes in protein amount. MTP1 and MTP4 immunodetection and semiquantitative RT-PCR of NtMTP1, NtNRAMP1, and NtZIP1 helped to identify the genes that are likely involved in sequestration of cadmium and zinc in the leaf and root tissue. Finally, we demonstrated that cadmium and zinc treatments induced an accumulation of zinc in leaf tissues. This study shows that N. tabacum possesses a hyperaccumulation response, and thus could be used for phytoremediation purposes.

  18. Short-Term Subclinical Zinc Deficiency in Weaned Piglets Affects Cardiac Redox Metabolism and Zinc Concentration.

    Brugger, Daniel; Windisch, Wilhelm M


    Background: Subclinical zinc deficiency (SZD) represents the common zinc malnutrition phenotype. However, its association with oxidative stress is not well understood. The heart muscle may be a promising target for studying early changes in redox metabolism.Objective: We investigated the effects of short-term SZD on cardiac redox metabolism in weaned piglets.Methods: Forty-eight weaned German Large White × Landrace × Piétrain piglets (50% castrated males and 50% females; body weight of 8.5 kg) were fed diets with different zinc concentrations for 8 d. Measurements included cardiac parameters of antioxidative capacity, stress-associated gene expression, and tissue zinc status. Analyses comprised (linear, broken-line) regression models and Pearson correlation coefficients.Results: Glutathione and α-tocopherol concentrations as well as catalase, glutathione reductase, B-cell lymphoma 2-associated X protein, and caspase 9 gene expression plateaued in response to reduction in dietary zinc from 88.0 to 57.6, 36.0, 36.5, 41.3, 55.3, and 33.8 mg/kg, respectively (P report to our knowledge on the effects of SZD on redox metabolism. © 2017 American Society for Nutrition.

  19. Assimilation of zinc by Porcellio scaber (Isopoda, Crustacea) exposed to zinc

    Bibic, A.; Drobne, D.; Strus, J. [Univ. of Ljubijana (Slovenia)


    The ability of terrestrial isopods to accumulate high amounts of metals, to survive in industrially polluted areas and respond to environmental contaminants in a dose-dependent manner makes them one of the most favorite experimental organisms for terrestrial ecotoxicology. Understanding metal uptake, assimilation and loss by these animals is important to explain how they cope with polluted environments. Metal uptake depends on the rate of food consumption, on metal availability in the food, on the pH inside the gut and some other factors. Isopods respond to high metal concentrations in the food in different ways and try to avoid the negative effects of metal poisoning. Zinc is one of the metals present in high concentrations in industrially polluted areas. Zinc poisoning may be avoided by the regulation of the consumption rate, by behavioral response, by storing metals in the hepatopancreas as insoluble granules, and by fecal, and possibly urinary, excretion. Zinc in organisms is a constituent of more than 200 metalloenzymes and other metabolic compounds and assures stability of biological molecules and structures. High Zn levels in food cause a reduction of feeding rate, affect growth and reproduction, cause changes in the structure of the digestive glands and influence the duration of the molting cycle. The present study investigated zinc assimilation by Porcellio scaber exposed to leaves contaminated with radioactively labeled zinc at five different concentrations. 17 refs., 2 figs., 2 tabs.

  20. Deletion of the zupT gene for a zinc importer influences zinc pools in Cupriavidus metallidurans CH34.

    Herzberg, M; Bauer, L; Nies, D H


    Cupriavidus metallidurans strain CH34 accomplishes a high level of transition metal resistance by a combination of rather unspecific transition metal import and controlled efflux of surplus metals. Using the plasmid-free mutant strain AE104 that possesses only a limited number of metal efflux systems, cellular metal pools were identified as counterparts of these transport reactions. At low zinc concentrations strain AE104 took up Zn(II) until the zinc content reached an optimum level of 70,000 Zn(II) per cell in the exponential phase of growth, whereas a ΔzupT mutant lacking the zinc importer ZupT contained only 20,000 Zn(II)/cell, possibly the minimum zinc content. Mutant and parent cells accumulated up to 125,000 Zn(II) per cell at high (100 μM) external zinc concentrations (optimum zinc content). When the mutant strain Δe4, which has all the known genes for zinc efflux systems deleted, was cultivated in the presence of zinc concentrations close to its upper tolerance level (10 μM), these cells contained 250,000 Zn(II) per cell, probably the maximum zinc content. Instead of zinc, 120,000 cobalt or cadmium ions could also fill-up parts of this zinc pool, showing that it is in fact an undefined pool of divalent transition metal cations bound with low substrate specificity. Even when the cells contained sufficient numbers of total zinc, the zinc importer ZupT was required for important cellular processes, indicating the presence of a pool of tightly bound zinc ions, which depends on ZupT for efficient replenishment. The absence of ZupT led to the formation of inclusion bodies, perturbed oxidative stress resistance and decreased efficiency in the synthesis of the zinc-dependent subunit RpoC of the RNA polymerase, leading to RpoC accumulation. Moreover, when a czc allele for a zinc-exporting transenvelope efflux system CzcCBA was constitutively expressed in a ΔzupT mutant, this led to the disappearance of the CzcA protein and the central subunit of the protein

  1. Effect of zinc (Zn and auxin (IBA foliar application on phytohormonal variation and growth of corn (Zea mays L.

    Foad Moradi


    Full Text Available In order to assess corn responses to zinc compounds and auxin (Indole Butyric Acid foliar application in shoots and roots, a pot experiment was carried out in randomized complete block design in three replications. Results showed that, zinc and auxin increased auxin and abscisic acid concentration both in shoots and roots. Also, fresh and dry weight of shoot and root increased model to foliar application, because protein synthesis was increased. On the other hand, according to unusual case, auxin and ABA showed positive parallel variation both in shoot and root, but this relation was more noticable in shoots.

  2. Zinc Oxide Surge Arresters and HVDC 125kV-upgrade 500kV Converter Stations

    Shirakawa, Shingo; Kobayashi, Takayuki; Matsushita, Yoshinao; Sakai, Takehisa; Suzuki, Hironori; Ozaki, Yuzo

    Gapless Metal (Zinc) Oxide Surge Arresters for a.c. systems contribute to the insulation co-ordination based on the suppression of lightning surges and switching surges. These gapless metal oxide surge arresters using ZnO elements are effective to HVDC systems. This paper describes basic characteristics of ZnO (zinc oxide) elements for d.c. systems and applications of gapless surge arresters to HVDC 125kV frequency converters, HVDC 250kV, upgrade HVDC 500kV converter stations, and HVDC 500kV cables of Japan through the experience of developments and applications of gapless metal oxide surge arresters.

  3. Deposition and Characterization of Zinc Oxide Films

    Seniye KARAKAYA


    Full Text Available Zinc oxide (ZnO is suitable for optoelectronic applications due to its electrical and optical properties. The present work deals with the preparation and characterization of ZnO films deposited by the ultrasonic spray pyrolysis method. The starting solution was zinc acetate. Effects of substrate temperature on films properties have been investigated. Optical properties of the films have been characterized by investigating transmittance, absorbance and photoluminescence (PL spectra. Optical transmission spectrum shows that ZnO films have high transmission (about 80% in visible region for substrate temperatures at 350oC. Surface morphology of the films has also been analyzed by atomic force microscope (AFM. Four probes conductivity measurements have been used for electrical characterization. The resistivity of ZnO films increases with increasing substrate temperatures

  4. Synthesis of monoclinic zinc diphosphide single crystals

    Mowles, T.A.


    Monoclinic zinc diphosphide is a cheap, plentiful, direct-gap semiconductor with an optimum transition energy for solar absorption. Single crystals were grown from the vapor to be evaluated as a new photovoltaic material. Monoclinic and tetragonal crystal formed within evacuated quartz ampules that were charged with zinc and excess phosphorous and heated in a temperature gradient to give phosphorous pressures from 0.07 to 8.5 atmospheres. The monoclinic form melts incongruently near 990/sup 0/C. The tetragonal form is metastable; its growth is enhanced by impurities but retarded by high phosphorous pressures. The mechanism of the synthesis indicates that a tightly-controlled vapor deposition is possible and that high-quality thin films should form at temperatures from 950 to 990/sup 0/C at pressures below 10 atmospheres. By a modification of the technique, sesquizinc phosphide single crystals were grown for comparison.

  5. Iron and Zinc Exploitation during Bacterial Pathogenesis

    Ma, Li; Terwilliger, Austen; Maresso, Anthony W.


    Ancient bacteria originated from metal-rich environments. Billions of years of evolution directed these tiny single cell creatures to exploit the versatile properties of metals in catalyzing chemical reactions and biological responses. The result is an entire metallome of proteins that use metal co-factors to facilitate key cellular process that range from the production of energy to the replication of DNA. Two key metals in this regard are iron and zinc, both abundant on Earth but not readily accessible in a human host. Instead, pathogenic bacteria must employ clever ways to acquire these metals. In this review we describe the many elegant ways these bacteria mine, regulate, and craft the use of two key metals (iron and zinc) to build a virulence arsenal that challenges even the most sophisticated immune response. PMID:26497057

  6. Zinc-redox battery: A technology update

    Hollandsworth, R. P.

    Since 1977, scientists at Lockheed Missiles and Space Company, Inc., have been developing the Zinc-Redox Battery for large-scale electrical energy storage. The current state of technology for this battery has demonstrated a number of positive features: (1) high energy efficiency (82.6 +/- 4.4%) demonstrated for more than 754 cycles with a low-cost alpha-methyl styrene membrane; (2) minimal environmental concerns because the only toxic reactant is 2N sodium hydroxide, and thus low projected balance-of-plant costs; and (3) good cell performance over a wide range of discharge rates with cell IR being the main determinant of energy efficiency. Current studies have focused on zinc electrode performance parameters, high current density discharge evaluation, and low-cost membrane cycle-life performance.

  7. Effects of Different Zinc Species on Cellar Zinc Distribution, Cell Cycle, Apoptosis and Viability in MDAMB231 Cells.

    Wang, Yan-hong; Zhao, Wen-jie; Zheng, Wei-juan; Mao, Li; Lian, Hong-zhen; Hu, Xin; Hua, Zi-chun


    Intracellular metal elements exist in mammalian cells with the concentration range from picomoles per litre to micromoles per litre and play a considerable role in various biological procedures. Element provided by different species can influence the availability and distribution of the element in a cell and could lead to different biological effects on the cell's growth and function. Zinc as an abundant and widely distributed essential trace element, is involved in numerous and relevant physiological functions. Zinc homeostasis in cells, which is regulated by metallothioneins, zinc transporter/SLC30A, Zrt-/Irt-like proteins/SLC39A and metal-response element-binding transcription factor-1 (MTF-1), is crucial for normal cellular functioning. In this study, we investigated the influences of different zinc species, zinc sulphate, zinc gluconate and bacitracin zinc, which represented inorganic, organic and biological zinc species, respectively, on cell cycle, viability and apoptosis in MDAMB231 cells. It was found that the responses of cell cycle, apoptosis and death to different zinc species in MDAMB231 cells are different. Western blot analysis of the expression of several key proteins in regulating zinc-related transcription, cell cycle, apoptosis, including MTF-1, cyclin B1, cyclin D1, caspase-8 and caspase-9 in treated cells further confirmed the observed results on cell level.

  8. Zinc Status of Vegetarians during Pregnancy: A Systematic Review of Observational Studies and Meta-Analysis of Zinc Intake.

    Foster, Meika; Herulah, Ursula Nirmala; Prasad, Ashlini; Petocz, Peter; Samman, Samir


    Pregnant women are vulnerable to a low zinc status due to the additional zinc demands associated with pregnancy and foetal development. The present systematic review explores the relationship between habitual vegetarian diets and dietary zinc intake/status during pregnancy. The association between vegetarian diets and functional pregnancy outcome also is considered. A literature search was conducted of MEDLINE; PubMed; Embase; the Cochrane Library; Web of Science; and Scopus electronic databases up to September 2014. Six English-language observational studies qualified for inclusion in the systematic review. A meta-analysis was conducted that compared the dietary zinc intake of pregnant vegetarian and non-vegetarian (NV) groups; the zinc intake of vegetarians was found to be lower than that of NV (-1.38 ± 0.35 mg/day; p vegetarian nor NV groups met the recommended dietary allowance (RDA) for zinc. In a qualitative synthesis; no differences were found between groups in serum/plasma zinc or in functional outcomes associated with pregnancy. In conclusion; pregnant vegetarian women have lower zinc intakes than NV control populations and both groups consume lower than recommended amounts. Further information is needed to determine whether physiologic adaptations in zinc metabolism are sufficient to meet maternal and foetal requirements during pregnancy on a low zinc diet.

  9. A Photoluminescence Study of the Changes Induced in the Zinc White Pigment by Formation of Zinc Complexes.

    Artesani, Alessia; Gherardi, Francesca; Nevin, Austin; Valentini, Gianluca; Comelli, Daniela


    It is known that oil paintings containing zinc white are subject to rapid degradation. This is caused by the interaction between the active groups of binder and the metal ions of the pigment, which gives rise to the formation of new zinc complexes (metal soaps). Ongoing studies on zinc white paints have been limited to the chemical mechanisms that lead to the formation of zinc complexes. On the contrary, little is known of the photo-physical changes induced in the zinc oxide crystal structure following this interaction. Time-resolved photoluminescence spectroscopy has been applied to follow modifications in the luminescent zinc white pigment when mixed with binder. Significant changes in trap state photoluminescence emissions have been detected: the enhancement of a blue emission combined with a change of the decay kinetic of the well-known green emission. Complementary data from molecular analysis of paints using Fourier transform infrared spectroscopy confirms the formation of zinc carboxylates and corroborates the mechanism for zinc complexes formation. We support the hypothesis that zinc ions migrate into binder creating novel vacancies, affecting the photoluminescence intensity and lifetime properties of zinc oxide. Here, we further demonstrate the advantages of a time-resolved photoluminescence approach for studying defects in semiconductor pigments.

  10. The Marine Biogeochemistry of Zinc Isotopes


    dust (Niger) Sapropel (Mediterranean) 4* Deep-Sea Sediments * • Lobster Liver Mussel tissue Plankton Zooplankton Zinc ores * * * Sediment trap material...of natural plankton over large changes in nutrient concentrations in the Peru Upwelling Region. This suggests either that the isotope effect for Zn...hydrothermal fluids and minerals, cultured marine phytoplankton, natural plankton , and seawater. By measuring Zn isotopes in a diverse array of

  11. Impact properties of zinc die cast alloys

    Schrems, Karol K.; Dogan, Omer N.; Manahan, M.P. (MPM Technologies, Inc.); Goodwin, F.E. (ILZRO)


    Alloys 3, 5, AcuZinc 5, and ZA-8 were tested at five temperatures between -40 C and room temperature to determine impact properties. Izod impact energy data was obtained in accordance with ASTM D256. Unlike ASTM E23, these samples were tested with a milled notch in order to compare with plastic samples. In addition, flexural data was obtained for design use.

  12. Zinc Oxide Nanostructured Biosensor for Glucose Detection

    X. W.Sun; J.X. Wang; A. Wei


    Zinc oxide (ZnO) nanocombs were fabricated by vapor phase transport, and nanorods and hierarchical nanodisk structures by aqueous thermal decomposition. Glucose biosensors were constructed using these ZnO nanostructures as supporting materials for glucose oxidase (GOx) loading. These ZnO glucose biosensors showed a high sensitivity for glucose detection and high affinity of GOx to glucose as well as the low detection limit. The results demonstrate that ZnO nanostructures have potential applications in biosensors.

  13. Zinc finger protein Loz1 is required for zinc-responsive regulation of gene expression in fission yeast

    Corkins, Mark E.; May, Margot; Ehrensberger, Kate M.; Hu, Ya-Mei; Liu, Yi-Hsuan; Bloor, Sean D.; Jenkins, Blair; Runge, Kurt W.; Bird, Amanda J.


    In Schizosaccharomyces pombe, alcohol dehydrogenase 1 (Adh1) is an abundant zinc-requiring enzyme that catalyses the conversion of acetaldehyde to ethanol during fermentation. In a zinc-replete cell, adh1 is highly expressed. However, in zinc-limited cells, adh1 gene expression is repressed, and cells induce the expression of an alternative alcohol dehydrogenase encoded by the adh4 gene. In our studies examining this zinc-dependent switch in alcohol dehydrogenase gene expression, we isolated an adh1Δ strain containing a partial loss of function mutation that resulted in higher levels of adh4 transcripts in zinc-replete cells. This mutation also led to the aberrant expression of other genes that are typically regulated by zinc. Using linkage analysis, we have mapped the position of this mutation to a single gene called Loss Of Zinc sensing 1 (loz1). Loz1 is a 55-kDa protein that contains a double C2H2-type zinc finger domain. The mapped mutation that disrupts Loz1 function leads to an arginine to glycine substitution in the second zinc finger domain, suggesting that the double zinc finger domain is important for Loz1 function. We show that loz1Δ cells hyperaccumulate zinc and that Loz1 is required for gene repression in zinc-replete cells. We also have found that Loz1 negatively autoregulates its own expression. We propose that Loz1 is a unique metalloregulatory factor that plays a central role in zinc homeostasis in S. pombe. PMID:24003116

  14. Effect of Zinc Source on Hematological, Metabolic Parameters and Mineral Balance in Lambs.

    Aliarabi, Hassan; Fadayifar, Amir; Tabatabaei, Mohammad Mehdi; Zamani, Pouya; Bahari, Aliasghar; Farahavar, Abbas; Dezfoulian, Amir Hossein


    This experiment was conducted to study the effects of different sources of zinc (Zn) on blood metabolites and balances of some minerals in lambs. In the first part, 20 6-7-month-old lambs were randomly allotted to four treatments including (1) basal diet containing 22.47 mg Zn/kg DM without supplementary Zn (control), (2) basal diet + 40 mg Zn/kg DM as ZnSO4 (ZnSO4 40), (3) basal diet + 20 mg Zn/kg DM as Zn-proteinate (Zn-Pro 20), and (4) basal diet + 40 mg Zn/kg DM as Zn-proteinate (Zn-Pro 40). Blood samples were taken on days 0, 28, and 65 before morning feeding. In the second part, four lambs from each treatment were randomly transferred to metabolic cages to evaluate the effects of different sources of Zn on N, Zn, Fe, and Cu retentions. This trial consisted of 18 days, with the first 12 days as the adaptation period followed by 6 days of sample collection. The results of this study showed that the source of Zinc had no significant effect on the analyzed parameters. Average daily gain and feed efficiency were improved by Zn supplementation (P  0.05). Plasma Zn concentration, alkaline phosphatase (ALP) and bone-specific alkaline phosphatase (BALP) activity, and white blood cell and lymphocyte count differed significantly between control and Zn-supplemented groups (P  0.05). Zinc retention showed a significant difference between control and Zn-supplemented groups (P zinc retention in lambs. However, there were no significant differences between zinc sources used in this study.

  15. Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN.

    Jonathan E Foley

    Full Text Available BACKGROUND: Customized zinc finger nucleases (ZFNs form the basis of a broadly applicable tool for highly efficient genome modification. ZFNs are artificial restriction endonucleases consisting of a non-specific nuclease domain fused to a zinc finger array which can be engineered to recognize specific DNA sequences of interest. Recent proof-of-principle experiments have shown that targeted knockout mutations can be efficiently generated in endogenous zebrafish genes via non-homologous end-joining-mediated repair of ZFN-induced DNA double-stranded breaks. The Zinc Finger Consortium, a group of academic laboratories committed to the development of engineered zinc finger technology, recently described the first rapid, highly effective, and publicly available method for engineering zinc finger arrays. The Consortium has previously used this new method (known as OPEN for Oligomerized Pool ENgineering to generate high quality ZFN pairs that function in human and plant cells. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that OPEN can also be used to generate ZFNs that function efficiently in zebrafish. Using OPEN, we successfully engineered ZFN pairs for five endogenous zebrafish genes: tfr2, dopamine transporter, telomerase, hif1aa, and gridlock. Each of these ZFN pairs induces targeted insertions and deletions with high efficiency at its endogenous gene target in somatic zebrafish cells. In addition, these mutations are transmitted through the germline with sufficiently high frequency such that only a small number of fish need to be screened to identify founders. Finally, in silico analysis demonstrates that one or more potential OPEN ZFN sites can be found within the first three coding exons of more than 25,000 different endogenous zebrafish gene transcripts. CONCLUSIONS AND SIGNIFICANCE: In summary, our study nearly triples the total number of endogenous zebrafish genes successfully modified using ZFNs (from three to eight and suggests that OPEN

  16. Cadmium and zinc in pregnancy and lactation

    Lucis, O.J.; Lucis, R.; Shaikh, Z.A.


    Radioactive cadmium (/sup 109/Cd) and zinc (/sup 65/Zn) were injected subcutaneously into pregnant rats. More cadmium than zinc was found in the placentae. After birth, newborns showed detectable /sup 109/Cd only in liver, gastrointestinal tract, and in the brain tissue. Zinc 65 was present in all newborns' tissues. During lactation, highest output of /sup 65/Zn was in colostrum and, on subsequent days, /sup 65/Zn in milk declined rapidly. Cadmium 109 in milk was present in low concentration throughout the lactation period. Rats injected with /sup 109/Cd and /sup 65/Zn after parturition excreted these isotopes in milk in a similiar pattern. Newborns nursed on radioactive milk showed rapid absorption of /sup 65/Zn, whereas /sup 109/Cd accumulated primarily in the intestinal tract; a lesser quantity of /sup 109/Cd was deposited in the liver. In other organs, only /sup 65/Zn was found. The lactating mammary gland contained more /sup 109/Cd than /sup 65/Zn; after lactation, /sup 65/Zn was depleted, whereas /sup 109/Cd remained in mammary tissue.

  17. Antioxidant role of zinc in diabetes mellitus

    Kyria Jayanne Clímaco Cruz; Ana Raquel Soares de Oliveira; Dilina do Nascimento Marreiro


    Chronic hyperglycemia statue noticed in diabetes mellitus favors the manifestation of oxidative stress by increasing the production of reactive oxygen species and/or by reducing the antioxidant defense system activity. Zinc plays an important role in antioxidant defense in type 2 diabetic patients by notably acting as a cofactor of the superoxide dismutase enzyme, by modulating the glutathione metabolism and metallothionein expression, by competing with iron and copper in the cell membrane and by inhibiting nicotinamide adenine dinucleotidephosphate-oxidase enzyme. Zinc also improves theoxidative stress in these patients by reducing chronichyperglycemia. It indeed promotes phosphorylation ofinsulin receptors by enhancing transport of glucose intocells. However, several studies reveal changes in zincmetabolism in individuals with type 2 diabetes mellitusand controversies remain regarding the effect of zincsupplementation in the improvement of oxidative stressin these patients. Faced with the serious challengeof the metabolic disorders related to oxidative stressin diabetes along with the importance of antioxidantnutrients in the control of this disease, new studies maycontribute to improve our understanding of the roleplayed by zinc against oxidative stress and its connectionwith type 2 diabetes mellitus prognosis. This could serveas a prelude to the development of prevention strategiesand treatment of disorders associated with this chronicdisease.

  18. Chemical enhancement of metallized zinc anode performance

    Bennett, J. [J.E. Bennett Consultants, Inc., Chardon, OH (United States)


    Galvanic current delivered to reinforced concrete by a metallized zinc anode was studied relative to the humidity of its environment and periodic direct wetting. Current decreased quickly at low humidity to values unlikely to meet accepted cathodic protection criteria, but could be easily restored by direct wetting of the anode. Thirteen chemicals were screened for their ability to enhance galvanic current. Such chemicals, when applied to the exterior surface of the anode, are easily transported by capillary action to the anode-concrete interface where they serve to maintain the interface conductive and the zinc electrochemically active. The most effective chemicals were potassium and lithium bromide, acetate, chloride and nitrate, which increased galvanic current by a factor of 2--15, depending on relative humidity and chloride contamination of the concrete. This new technique is expected to greatly expand the number of concrete structures which can be protected by simple galvanic cathodic protection, The use of lithium-based chemicals together with metallized zinc anode is also proposed for mitigation of existing problems due to ASR. In this case, lithium which prevents or inhibits expansion due to ASR can be readily injected into the concrete. A new process, electrochemical maintenance of concrete (EMC), is also proposed to benefit reinforced concrete structures suffering from chloride-induced corrosion.

  19. Zinc as an adjunct for childhood pneumonia - interpreting early results.

    Natchu, Uma Chandra Mouli; Fataki, Maulidi R; Fawzi, Wafaie W


    Zinc supplementation has been consistently shown to reduce the incidence of childhood pneumonia, but its effect on the course of pneumonia when administered as an adjunct to antibiotic therapy is still unclear. Three trials published to date have shown mixed results, and a recent trial from India raises the possibility that zinc may be detrimental in some circumstances. Study sites and designs differ, particularly in the timing of zinc treatment and in determining recovery from pneumonia, which can explain the differences in study findings. Serum zinc concentrations are unreliable indicators of zinc status, particularly during acute infectious illnesses. Subgroup analyses, especially using serum zinc levels, must be cautioned against. Future studies are needed that are large enough to be sufficiently powered to accommodate larger treatment failure rates, an issue that ongoing trials will hopefully address.

  20. Chemical treatment of zinc surface and its corrosion inhibition studies

    S K Rajappa; T V Venkatesha; B M Praveen


    The surface treatment of zinc and its corrosion inhibition was studied using a product (BTSC) formed in the reaction between benzaldehyde and thiosemicarbozide. The corrosion behaviour of chemically treated zinc surface was investigated in aqueous chloride–sulphate medium using galvanostatic polarization technique. Zinc samples treated in BTSC solution exhibited good corrosion resistance. The measured electrochemical data indicated a basic modification of the cathode reaction during corrosion of treated zinc. The corrosion protection may be explained on the basis of adsorption and formation of BTSC film on zinc surface. The film was binding strongly to the metal surface through nitrogen and sulphur atoms of the product. The formation of film on the zinc surface was established by surface analysis techniques such as scanning electron microscopy (SEM–EDS) and Fourier transform infrared spectroscopy (FTIR).

  1. Effects of tetracycline and zinc on selection of methicillin-resistant Staphylococcus aureus (MRSA) sequence type 398 in pigs

    Moodley, Arshnee; Nielsen, Søren Saxmose; Guardabassi, Luca


    An in vivo experiment was conducted to evaluate the effects of tetracycline and zinc on pig colonization and transmission of methicillin-resistant Staphylococcus aureus (MRSA) sequence type (ST) 398. Eight piglets naturally colonized with MRSA ST398 and 8 MRSA-negative piglets of the same age...... and breed were assigned to three groups treated with tetracycline and zinc (Group 1), zinc (Group 2) or tetracycline alone (Group 3) and one non-treated group (Group 4), each containing two MRSA-positive and two MRSA-negative animals. Two additional non-treated control groups composed of only MRSA......-positive (Group 5) and MRSA-negative (Group 6) animals were used to check for stability of MRSA carriage status. Nasal swabs and environmental wipes were collected on Days 0, 7, 14, and 21, and the occurrence of MRSA in each sample was quantified by bacteriological counts on Brilliance™ MRSA agar. Significantly...

  2. Purification of molybdenum oxide, growth and characterization of medium size zinc molybdate crystals for the LUMINEU program

    Shlegel V.N.


    Full Text Available The LUMINEU program aims at performing a pilot experiment on neutrinoless double beta decay of 100Mo using radiopure ZnMoO4 crystals operated as scintillating bolometers. Growth of high quality radiopure crystals is a complex task, since there are no commercially available molybdenum compounds with the required levels of purity and radioactive contamination. This paper discusses approaches to purify molybdenum and synthesize compound for high quality radiopure ZnMoO4 crystal growth. A combination of a double sublimation (with addition of zinc molybdate with subsequent recrystallization in aqueous solutions (using zinc molybdate as a collector was used. Zinc molybdate crystals up to 1.5 kg were grown by the low-thermal-gradient Czochralski technique, their optical, luminescent, diamagnetic, thermal and bolometric properties were tested.

  3. Recycling of the waste residue of Zinc%含锌废渣的再生利用



    According to the feature of precipitate of zinc chloride in spent catalyst, and Various experiments; washing with a small amount of Ammonia; removing chloride and Sulfate ions; reducing sediment volume of Zn(OH)2 by a large margin and after roasting, Zinc oxide feed additives and active zinc oxide that meet the standards would be developed.%文章根据废催化剂氯化锌沉淀物的特征,通过实验验证,氨水洗涤,脱除Cl-、SO42-,并大幅度降低Zn(OH)2沉淀物体积,再经过焙烧,可研制出合格的饲料添加剂氧化锌或者活性氧化锌。

  4. Purification of molybdenum oxide, growth and characterization of medium size zinc molybdate crystals for the LUMINEU program

    Shlegel, V N; Boiko, R S; Chapellier, M; Chernyak, D M; Coron, N; Danevich, F A; Decourt, R; Degoda, V Ya; Devoyon, L; Drillien, A; Dumoulin, L; Enss, C; Fleischmann, A; Gastaldo, L; Giuliani, A; Gros, M; Herve, S; Ivanov, I M; Kobychev, V V; Kogut, Ya P; Koskas, F; Loidl, M; Magnier, P; Makarov, E P; Mancuso, M; de Marcillac, P; Marnieros, S; Marrache-Kikuchi, C; Nasonov, S G; Navick, X F; Nones, C; Olivieri, E; Paul, B; Penichot, Y; Pessina, G; Plantevin, O; Poda, D V; Redon, T; Rodrigues, M; Strazzer, O; Tenconi, M; Torres, L; Tretyak, V I; Vasiliev, Ya V; Velazquez, M; Viraphong, O; Zhdankov, V N


    The LUMINEU program aims at performing a pilot experiment on neutrinoless double beta decay of 100Mo using radiopure ZnMoO4 crystals operated as scintillating bolometers. Growth of high quality radiopure crystals is a complex task, since there are no commercially available molybdenum compounds with the required levels of purity and radioactive contamination. This paper discusses approaches to purify molybdenum and synthesize compound for high quality radiopure ZnMoO4 crystal growth. A combination of a double sublimation (with addition of zinc molybdate) with subsequent recrystallization in aqueous solutions (using zinc molybdate as a collector) was used. Zinc molybdate crystals up to 1.5 kg were grown by the low-thermal-gradient Czochralski technique, their optical, luminescent, diamagnetic, thermal and bolometric properties were tested.

  5. Experimental and numerical investigation of shock-induced full vaporization of zinc

    Brannon, R.M.; Chhabildas, L.C.


    Prediction of the interaction between expanded vaporized debris and target materials for applications such as meteorite impact on space vehicles, ballistic penetration of armors, debris shield design, etc. demands an accurate treatment of the melting and vaporization process and the kinetics of liquid-vapor propagation. A systematic computational and experimental study is presented on shock-induced full vaporization of zinc resulting from record-high impact speeds recently achieved on the Sandia Hyper-Velocity Launcher. In these experiments, a thin target plate of zinc is impacted by a tantalum flier plate at speeds ranging from 8 to 10.1 km/s, producing pressures from 3 Mbar to over 5.5 Mbar and temperatures as high as 3,900 K. Such high pressures produce essentially full vaporization of the zinc because the thermodynamic release isentropes pass into the vapor dome near the critical point. To characterize vapor flow. the velocity history produced by stagnation of the zinc expansion products against a witness plate is measured with velocity interferometry. For each experiment, the time-resolved experimental interferometer record is compared with wavecode calculations using an analytical equation of state, called ANEOS, that is known to have performed well at lower impact speeds where vaporization is negligible. Significant discrepancies between experiment and calculation are shown to exist under conditions of the more recent higher impact speeds in excess of 7km/s. Numerical predictions underestimate witness-plate velocity for impact speeds up to about 9 km/s but overestimate witness-plate velocity for impact exceeding 9 km/s.

  6. Dynamic tafel factor adaption for the evaluation of instantaneous corrosion rates on zinc by using gel-type electrolytes

    Babutzka, M.; Heyn, A.


    Electrochemical corrosion measurements allow calculation of the instantaneous zinc corrosion rate via polarization resistances by using tafel factors. However, the determination of the actual tafel factor is problematic since it depends on the state of the formed zinc layers and the corrosion reactions taking place. Therefore, valid tafel factors are either determined in additional experiments via dynamic polarization or estimated by calculation. In most cases a constant value for tafel factors is assumed for simplification, without regard to the real conditions of the corroding system. Since naturally formed zinc layers are unstable using conventional test electrolyte solutions determination of tafel factors is hindered additionally and inaccurate interpretations can result. For some time now, the use of gel-type electrolytes in corrosion research has enabled minimally invasive investigation of zinc surface layers and thus offers new approaches to a scientifically proven determination of tafel factors. The paper presents a new method for the determination and evaluation of tafel factors using gel-type electrolytes and electrochemical frequency modulation technique (EFM). This relatively new electrochemical method offers the possibility to determine both polarization resistances and tafel factors within one measurement and in short measuring intervals. Starting from a comprehensive parameter study it is shown that a direct relationship between the two values exists that can be described mathematically. This contribution presents the determined tafel factors for the system gel-type electrolyte/zinc and discusses their applicability and their limits.

  7. A method optimization study for atomic absorption spectrophotometric determination of total zinc in insulin using direct aspiration technique

    Sadia Ata


    Full Text Available A sensitive, reliable and relative fast method has been developed for the determination of total zinc in insulin by atomic absorption spectrophotometer. This designed study was used to optimize the procedures for the existing methods. Spectrograms of both standard and sample solutions of zinc were recorded by measuring the absorbance at 213.9 nm for determination of total zinc. System suitability parameters were evaluated and were found to be within the limits. Linearity was evaluated through graphical representation of concentration versus absorbance. Repeatability (intra-day and intermediate precision (inter-day were assessed by analyzing working standard solutions. Accuracy and robustness were experimented from the standard procedures. The percentage recovery of zinc was found to be 99.8%, relative standard deviation RSD 1.13%, linearity of determination LOD 0.0032 μg/mL, and limit of quantization LOQ 0.0120 μg/mL. This developed and proposed method was then validated in terms of accuracy, precision, linearity and robustness which can be successfully used for the quantization of zinc in insulin.

  8. The Effect of Nitrogen and Zinc Levels on Essential Oil Yield and some Morphological Traits of Hypericum perforatums

    M.R. Zadeh Esfahlan


    Full Text Available To study the effects of nitrogen and zinc fertilizer on the morphological traits and essential oil yield of St. John’s wort (Hypericum perforatum a greenhouse experiment in a factorial randomized complete block design with three replications was conducted at University of Tabriz, Iran in 2012. Treatments consisted of three levels of zinc sulphate with a concentration of zinc fertilizer (zero, 3 and 6 parts per thousand and four levels of nitrogen fertilizer (zero, 50, 100, 150 kg/ha. One half of the fertilizers were applied 20 days after planting of plants and the rest 40 days after transplanting. Traits evaluated were plant height, inflorescence number, leaf area, plant fresh and dry weights and plant essential oil content. The results showed that the traits under study were affected by rate of fertilizer applications. Highest plant height, number of inflorescences, leaf area and essential oil yield were obtained by using 150 kg/ha of nitrogen and applying zinc with 0.006 concentration. Highest fresh and dry weights of above ground parts were also produced by using 150 kg/ha of nitrogen fertilizer along with zinc fertilizer 0.003.

  9. Visible-light-enhanced interactions of hydrogen sulfide with composites of zinc (oxy)hydroxide with graphite oxide and graphene.

    Seredych, Mykola; Mabayoje, Oluwaniyi; Bandosz, Teresa J


    Composites of zinc(oxy)hydroxide-graphite oxide and of zinc(oxy)hydroxide-graphene were used as adsorbents of hydrogen sulfide under ambient conditions. The initial and exhausted samples were characterized by XRD, FTIR, potentiometric titration, EDX, thermal analysis, and nitrogen adsorption. An increase in the amount of H(2)S adsorbed/oxidized on their surfaces in comparison with that of pure Zn(OH)(2) is linked to the structure of the composite, the relative number of terminal hydroxyls, and the kind of graphene-based phase used. Although terminal groups are activated by a photochemical process, the graphite oxide component owing to the chemical bonds with the zinc(oxy)hydroxide phase and conductive properties helps in electron transfer, leading to more efficient oxygen activation via the formation of superoxide ions. Elemental sulfur, zinc sulfide, sulfite, and sulfate are formed on the surface. The formation of sulfur compounds on the surface of zinc(oxy)hydroxide during the course of the breakthrough experiments and thus Zn(OH)(2)-ZnS heterojunctions can also contribute to the increased surface activity of our materials. The results show the superiority of graphite oxide in the formation of composites owing to its active surface chemistry and the possibility of interface bond formation, leading to an increase in the number of electron-transfer reactions.

  10. Effect of boron and zinc fertilization on white oats grown in soil with average content of these nutrients

    Deise Dalazen Castagnara


    Full Text Available The objective of this study was to evaluate the effect of fertilization with zinc or boron on the growth and dry matter production, nutritional value and accumulation of nutrients in white oats. The study comprised two experiments conducted in glasshouses, the first consisting of the application of four doses of zinc (0, 0.2, 0.4 and 0.6 mg/dm³ in the form of zinc sulphate (20% Zn, and the second consisting of the application of four doses of boron (0, 0.2, 0.4 and 0.6 mg/dm³ in the form of Borax (11% B. The experimental design in each case was a randomized block design, with five replicates. Fertilization with zinc and boron increased the growth of white oats, but had no significant effect on the nutritional value of the forage. Higher levels of absorption and accumulation of nutrients in plant tissues were observed following the application of boron and zinc at rates of up to 0.60 mg/dm³ of soil.

  11. Effect of Foliar Zinc Application on Yield, Physiological Traits and Seed Vigor of Two Soybean Cultivars under Water Deficit

    Somayeh KARAMI


    Full Text Available In order to study the effect of water deficit stress and zinc foliar application on yield, physiological traits and also on seed vigor and seedling emergence percentage in two soybean cultivars, an experiment was conducted as randomized complete block arrangement in split factorial design with three replications. The main factor was drought stress in three levels of optimal irrigation, withholding irrigation from vegetative growth stage and withholding irrigation from flowering stage; subordinate factors were the combination of foliar zinc application in three levels and two cultivars (‘L17’ and ‘Clark 63’. Water deficit stress obviously decreased the yield, soluble protein and chlorophyll content in leaves. Proline and soluble sugars content were significantly increased in response to stress. Water deficit stress increased antioxidant enzymes activity. Also, water deficit stress decreased the germination rate, radicle and plumule dry weight. Foliar application with zinc sulfate increased the yield, germination rate and percentage, radicle and plumule weight. Zinc prevented the harmful effects of stress which caused decreasing of leaf protein, chlorophyll content and increasing proline and carbohydrate accumulation. In general, foliar application of zinc decreased the harmful effects of oxidative stress due to water deficit stress and improved growth conditions of plants.

  12. Cadmium and zinc concentrations in fetal and maternal rat tissues after parenteral administration of cadmium during pregnancy

    Hazelhoff Roelfzema, W.; Roelofsen, A.M.; Herber, R.F.M.; Copius Peereboom-Stegeman, J.H.J.


    Cadmium (Cd) and zinc (Zn) concentrations were determined by solid sampling atomic absorption spectrometry (AAS) in rat maternal and fetal tissues after exposure to cadmium. Cadmium was administered subcutaneously as CdCl/sub 2/ in saline daily during pregnancy. Two experiments were performed. In expt. I we investigated the tissue concentration at day 19 (gestational age) after addministration of several doses: 0, 1.1, 2.2, 4.4, and 8.8 Cd/kg/day. In expt. II the course of the Cd and Zn concentrations during pregnancy was investigated by collecting samples at days 14, 16, 18 and 20, after daily injections of 4.4 Cd/kg. Cadmium concentrations in blood, maternal liver, placenta and fetal liver increased with dose and duration of exposure. Cadmium was heavily accumulated in the liver and transferred to the fetus only in small amounts. The zinc concentration in the maternal liver was positively correlated with the cadmium concentration. In the placenta the zinc concentration was not affected. Zinc in fetal liver was decreased from day 18 onward. Despite relatively high cadmium levels and decreased zinc levels in the fetus, we observed no adverse effects on various reproduction parameters, such as birth weights and obvious malformations.

  13. Response of maize to foliar application of zinc and azotobacter inoculation under different levels of urea fertilizer

    Esmaeili Mohammadali


    Full Text Available In order to investigate the effects of zinc and Azotobacter on maize production properties under different regime of urea as mineral fertilizer, an experiment was conducted at research field of Sari Agricultural Sciences and Natural Resources University during the cropping season of 2014. The nitrogen mineral fertilizer in 100, 200 and 300 amounts of kg urea ha-1, Azotobacter (inoculation and non-inoculation and foliar application of zinc (Zn1 = 1000 mg l-1 zinc sulfate, Zn2 = 500 mg l-1 zinc sulfate and Zn3 = 0 mg l-1 were considered as the applied treatments. Grain yield, biological yield (dry matter, and total protein content of each treatment were assessed. Results indicated that foliar applications of Zn had a significant effect on all studied traits. The highest grain yield was related to Zn1 treatment in each urea application and also between biological fertilizer treatments the highest yield was observed in inoculation treatment. Between all studied treatments the maximum grain yield (with 10.23 ton ha-1 was obtained through non-inoculation treatment × Zn1 for 300 kg urea ha-1. The highest biological yield was observed in Zn1 + inoculation treatment. There were no significant differences between Azotobacter inoculation and non-inoculation for each level of zinc applications in 300 kg urea ha-1 treatment. Finally, it might be concluded that using of mineral fertilizer could be reduced by combining some management strategies in maize production.

  14. Impact of residual elements on zinc quality in the production of zinc oxide

    N. Luptáková


    Full Text Available The paper is focused on zinc oxide manufacturing process. The present work deals with the character and morphology of the input material for the production of ZnO by the indirect pyrometallurgical process. Undesirable phases in the feedstock can be identified through profound recognition of the source material and the nature of its microstructure. If these compounds diffuse into the lining during thermal processes, they become the cause of stress in metallurgical ceramics. The emergence of these chemical reactions may subsequently affect the entire metallurgical zinc smelting process. The results obtained by analysis are used to minimize waste - zinc slag and to eliminate the conditions which enable the formation of the undesired product, thereby increasing the productivity of the ZnO production.

  15. Deficiencia de zinc y sus implicaciones funcionales Zinc deficiency and its functional implications



    Full Text Available El presente trabajo tiene por objeto revisar los aspectos teóricos y los estudios realizados en México que sugieren la existencia de la deficiencia moderada de zinc en niños de población rural, así como algunas de las consecuencias de dicha deficiencia en la salud. El zinc es un nutrimento indispensable para el organismo de los humanos y juega un papel importante en una serie de procesos metabólicos: participa en el sitio catalítico de varios sistemas enzimáticos; participa como ion estructural en membranas biológicas, y guarda una estrecha relación con la síntesis de proteínas, entre otras cosas. Es por esto que la deficiencia de zinc está asociada con consecuencias importantes en la salud y la funcionalidad de los individuos, especialmente durante las primeras etapas de la vida. De relevancia para México es la existencia de una deficiencia moderada de zinc en los niños y las consecuencias que ésta pueda tener en la salud de los mismos. Los estudios realizados sugieren que la deficiencia moderada de zinc se presenta asociada con la ingestión de dietas basadas en alimentos de origen vegetal, las cuales contienen cantidades importantes de inhibidores de la absorción de zinc. Este tipo de dietas se consume habitualmente en las zonas rurales y en la población marginal de las ciudades en el país. Entre las consecuencias más importantes de esta deficiencia se encontró un aumento en la presencia de enfermedades infecciosas, especialmente de diarrea, y posibles alteraciones en el desarrollo de la capacidad cognoscitiva.The purpose of this article is to review theoretical aspects and research performed in Mexico suggesting the existence of marginal zinc deficiency in rural children and its consequences on health. Zinc is an indispensable nutrient for humans since it plays an important role in several metabolic pathways: it participates in the catalytic site of several enzymes, as a structural ion of biological membranes and is

  16. Plasma in-liquid method for reduction of zinc oxide in zinc nanoparticle synthesis

    Amaliyah, Novriany; Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi; Kitamae, Tomohide


    Metal air-batteries with high-energy density are expected to be increasingly applied in electric vehicles. This will require a method of recycling air batteries, and reduction of metal oxide by generating plasma in liquid has been proposed as a possible method. Microwave-induced plasma is generated in ethanol as a reducing agent in which zinc oxide is dispersed. Analysis by energy-dispersive x-ray spectrometry (EDS) and x-ray diffraction (XRD) reveals the reduction of zinc oxide. According to images by transmission electron microscopy (TEM), cubic and hexagonal metallic zinc particles are formed in sizes of 30 to 200 nm. Additionally, spherical fiber flocculates approximately 180 nm in diameter are present.

  17. Growth mechanisms of zinc oxide and zinc sulfide films by mist chemical vapor deposition

    Uno, Kazuyuki; Yamasaki, Yuichiro; Tanaka, Ichiro


    The growth mechanisms of zinc oxide and zinc sulfide films by mist chemical vapor deposition (mist-CVD) were experimentally investigated from the viewpoint of mist behaviors and chemical reactions. The proper growth model, either vaporization or the Leidenfrost model, was studied by supplying two kinds of mists with different kinds of sources, such as H2 16O and H2 18O for ZnO growth and ZnCl2 and thiourea for ZnS growth. Moreover, the origin of the oxygen atoms of ZnO was investigated using a quantitative analysis. The role of chloro complex of zinc in the growth of ZnS from aqueous solutions was also examined by systematic studies.

  18. Kinetics of copper absorption in zinc-overload states and following the withdrawal of zinc supplement: the role of endogenous zinc status.

    Cossack, Z T; van den Hamer, C J


    Zinc (Zn), in therapeutic dosages, has been used to inhibit copper (Cu) absorption in patients with Wilson's disease. A series of experiments were conducted to substantiate the effects of high dosages of Zn on Cu absorption using the experimental animal model. In the first experiment, five groups of mice were fed five different levels of Zn: 6 ppm (basal diet), 30 ppm (control), 750 ppm, 1,000 ppm, and 2,400 ppm, for a period of 35 days. 64Cu-loading test was conducted to measure whole body retention (WBR) of 64Cu at the 10th, 14th, 21st, and 35th day. Results showed that the inhibition of 64Cu absorption by Zn is dose- and time-dependent. However, maximum inhibition occurred in mice fed 1,000 ppm of Zn, and no additional effect was observed in mice fed 2,400 ppm of Zn. In the second experiment, the distribution between the gastrointestinal tract (GIT) and gut-free carcass, of the retained dose of 64Cu, was measured in controls and in the group fed 750 ppm of Zn. While WBR of 64Cu was significantly lower (p less than 0.01) in mice fed 750 ppm of Zn, the distribution of the retained dose was not affected. In the third experiment, a group of mice was fed 30 ppm of Zn for a period of 70 days (control), and a second group was fed 1,000 ppm of Zn for the first 35 days (repletion), after which they were switched to the basal diet (6 ppm) for the following 35 days (depletion). WBR of 64Cu was conducted in intervals throughout the experimental period.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Monodispersed Zinc Oxide Nanoparticle-Dye Dyads and Triads

    Gladfelter, Wayne L. [Univ. of Minnesota, Minneapolis, MN (United States); Blank, David A. [Univ. of Minnesota, Minneapolis, MN (United States); Mann, Kent R. [Univ. of Minnesota, Minneapolis, MN (United States)


    events at a fundamental level. This was combined with the synthesis of a broad range of sensitizers that provide systematic variation of the energetics, excited state dynamics, structure and interfacial bonding. The key is that the monodisperse nature and high dispersibility of the ZnO NCs made these experiments reproducible; in essence, the measurements were on discrete molecular species rather than on the complicated mixtures that resulted from the typical fabrication of functional photovoltaic cells. The monodispersed nature of the NCs also allowed the use of quantum confinement to investigate the role of donor/acceptor energetic alignment in chemically identical systems. The results added significantly to our basic understanding of energy and charge transfer events at molecule-semiconductor interfaces and will help the R&D community realize zinc oxide's full potential in solar cell applications.

  20. Zinc oxide's hierarchical nanostructure and its photocatalytic properties

    Kanjwal, Muzafar Ahmed; Sheikh, Faheem A.; Barakat, Nasser A. M.


    In this study, a new hierarchical nanostructure that consists of zinc oxide (ZnO) was produced by the electrospinning process followed by a hydrothermal technique. First, electrospinning of a colloidal solution that consisted of zinc nanoparticles, zinc acetate dihydrate and poly(vinyl alcohol) w...... technique was used. Methylene blue dihydrate was used to check the photocatalytic ability of the produced nanostructures. The results indicated that the hierarchical nanostructure had a better performance than the other form....