WorldWideScience

Sample records for zero-valent iron particles

  1. Zero-valent iron nanoparticles preparation

    International Nuclear Information System (INIS)

    Oropeza, S.; Corea, M.; Gómez-Yáñez, C.; Cruz-Rivera, J.J.; Navarro-Clemente, M.E.

    2012-01-01

    Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH 3 ) 3 ) 2 ] 2 ] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH 3 ) 3 ) 2 ] 2 ]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH 3 ) 3 ) 2 ] 2 ] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.

  2. Zero-valent iron nanoparticles preparation

    Energy Technology Data Exchange (ETDEWEB)

    Oropeza, S. [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Corea, M., E-mail: mcoreat@yahoo.com.mx [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Gómez-Yáñez, C. [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Cruz-Rivera, J.J. [Universidad Autónoma de San Luis Potosí, Instituto de Metalurgia, Sierra Leona 550, San Luis Potosí, C.P. 78210 (Mexico); Navarro-Clemente, M.E., E-mail: mnavarroc@ipn.mx [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico)

    2012-06-15

    Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.

  3. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    Science.gov (United States)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  4. Synthesis of Zero Valent Iron Nanoparticles (nZVI and its Efficiency in Arsenic Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ali Reza Rahmani

    2011-03-01

    Full Text Available The aim of this study to synthesize nanoparticle zero valent iron and to determine its efficiency in arsenic removal from aqueous solutions. Nanoparticles were synthesized by reduction of ferric chloride using sodium borohydrid. The experiments were conducted in a batch system and the effects of pH, contact time, and the concentrations of arsenit, arsenat, and nano zero valent iron were investigated. SEM and XRD were applied for the determination of particle size and characterization of the nanoparticles synthesized. SEM results revealed that synthesized particles were of nano size (1-100 nanometers. At pH=7.0, 99% of arsenit and arsenat was removed when nano zero valent iron concentration was 1 (g L-1  over a retention time of  10 min. Based on the results obtained, the removal efficiency was enhanced with increasing nano zero valent iron dosage and reaction time, but decreased with increasing initial concentration and initial solution pH. The significant removal efficiency, high rate of process and short reaction time showed that iron nano particles are of a significant potential for the removal of arsenic from aqueous solutions.

  5. Degradation of simazine from aqueous solutions by diatomite-supported nanosized zero-valent iron composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhiming [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Zheng, Shuilin [School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Ayoko, Godwin A.; Frost, Ray L. [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia); Xi, Yunfei, E-mail: y.xi@qut.edu.au [Chemistry Discipline, Faculty of Science and Technology, Queensland University of Technology, 2 George Street, GPO Box 2434, Brisbane, Queensland 4001 (Australia)

    2013-12-15

    Graphical abstract: Nanosized zero-valent iron (nZVI) particles were deposited onto acid-leached diatomite through centrifugation or rotary evaporation. The synthesis schematic diagram and morphology of the prepared nZVI/diatomite composites are shown in the illustration. The removal efficiency for herbicide simazine by nZVI/diatomite composites was compared with that of the pristine nZVI and the commercial iron powder. -- Highlights: • Diatomite-supported nanosized zero-valent iron composite was synthesised. • The obtained composites were characterised by XRD, SEM–EDS, TEM and XPS. • The removal efficiency for simazine in water were studied. • The prepared composite showed potential prospects in environmental remediation. -- Abstract: A novel composite material based on deposition of nanosized zero-valent iron (nZVI) particles on acid-leached diatomite was synthesised for the removal of a chlorinated contaminant in water. The nZVI/diatomite composites were characterised by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. Compared with the pure nZVI particles, better dispersion of nZVI particles on the surface or inside the pores of diatom shells was observed. The herbicide simazine was selected as the model chlorinated contaminant and the removal efficiency by nZVI/diatomite composite was compared with that of the pristine nZVI and commercial iron powder. It was found that the diatomite supported nZVI composite material prepared by centrifugation exhibits relatively better efficient activity in decomposition of simazine than commercial Fe, lab synthesised nZVI and composite material prepared via rotary evaporation, and the optimum experimental conditions were obtained based on a series of batch experiments. This study on immobilising nZVI particles onto diatomite opens a new avenue for the practical application of nZVI and the diatomite-supported nanosized zero-valent

  6. Methods of preparation and modification of advanced zero-valent iron nanoparticles, their properties and application in water treatment technologies

    Science.gov (United States)

    Filip, Jan; Kašlík, Josef; Medřík, Ivo; Petala, Eleni; Zbořil, Radek; Slunský, Jan; Černík, Miroslav; Stavělová, Monika

    2014-05-01

    Zero-valent iron nanoparticles are commonly used in modern water treatment technologies. Compared to conventionally-used macroscopic iron or iron microparticles, the using of nanoparticles has the advantages given mainly by their generally large specific surface area (it drives their high reactivity and/or sorption capacity), small dimensions (it allows their migration e.g. in ground water), and particular physical and chemical properties. Following the applications of zero-valent iron particles in various pilot tests, there arose several critical suggestions for improvements of used nanomaterials and for development of new generation of reactive nanomaterials. In the presentation, the methods of zero-valent iron nanoparticles synthesis will be summarized with a special attention paid to the thermally-induced solid-state reaction allowing preparation of zero-valent iron nanoparticles in an industrial scale. Moreover, the method of thermal reduction of iron-oxide precursors enables to finely tune the critical parameters (mainly particle size and morphology, specific surface area, surface chemistry of nanoparticles etc.) of resulting zero-valet iron nanoparticles. The most important trends of advanced nanoparticles development will be discussed: (i) surface modification of nanomaterilas, (ii) development of nanocomposites and (iii) development of materials for combined reductive-sorption technologies. Laboratory testing of zero-valent iron nanoparticles reactivity and migration will be presented and compared with the field observations: the advanced zero-valent iron nanoparticles were used for groundwater treatment at the locality contaminated by chlorinated hydrocarbons (VC, DCE, TCE and PCE) and reacted nanoparticles were extracted from the sediments for their fate assessment. The authors gratefully acknowledge the support by the Technology Agency of the Czech Republic "Competence Centres" (project No. TE01020218) and the EU FP7 (project NANOREM).

  7. Ecotoxicity of nanoscale zero-valent iron particles – a review

    Directory of Open Access Journals (Sweden)

    José Tomás Albergaria

    2013-11-01

    Full Text Available The use of nanoscale zero-valent iron particles (nZVIs in the environmental remediation of water and soil is increasing. This increase is related to the higher reactivity and mobility of nZVIs compared with that of macro- or micro-sized iron particles. The introduction of nZVIs into the environment raises concerns related to their fate and effect on aquatic and terrestrial biota. Knowledge of these issues will allow a better understanding not only of the remediation process but also of the long-term effects and impact of nZVIs on ecosystems, leading to a safer and more efficient application of these particles. This paper presents the current state of play concerning the toxic effects of nZVIs on organisms at different stages of the food chain. The majority of studies show that nZVIs have a negative impact on bacteria, aquatic invertebrates, such as Daphnia mag-na, terrestrial organisms, such as Eisenia fetida, and seed germination. However, the number of published studies related to this issue is clearly insufficient. This reinforces the need for further research in order to specify the toxic concentrations of nZVIs that affect the most important target organisms. Furthermore, an evaluation of the effects of the coating of nanoparticles should also be pursued

  8. Application of Emulsified Zero-Valent Iron to Marine Environments

    Science.gov (United States)

    Brooks, Kathleen B.; Quinn, Jacqueline W.; Clausen, Christian A.; Geiger, Cherie L.

    2005-01-01

    Contamination of marine waters and sediments with heavy metals and dense non-aqueous phase liquids (DNAPLs) including chlorinated solvents, pesticides and PCBs pose ecological and human health risks through the contaminant's potential bioaccumulation in fish, shellfish and avian populations. The contaminants enter marine environments through improper disposal techniques and storm water run-off. Current remediation technologies for application to marine environments include costly dredging and off-site treatment of the contaminated media. Emulsified zero-valent iron (EZVI) has been proven to effectively degrade dissolved-phase and DNAPL-phase contaminants in freshwater environments on both the laboratory and field-scale level. However, the application to marine environments is only just being explored. This paper discusses the potential use of EZVI in brackish and saltwater environments, with supporting laboratory data detailed. Laboratory studies were performed in 2005 to establish the effectiveness of EZVI to degrade trichloroethylene (TCE) in saltwater. Headspace vials were setup to determine the kinetic rate of TCE degradation using EZVI in seawater. The reaction vials were analyzed by Gas Chromatographic/Flame Ionization Detection (GC/FID) for ethene production after a 48 day period using a GC/FID Purge and Trap system. Analytical results showed that EZVI was very effective at degrading TCE. The reaction by-products (ethene, acetylene and ethane) were produced at 71% of the rate in seawater as in the fresh water controls. Additionally, iron within the EZVI particles was protected from oxidation of the corrosive seawater, allowing EZVI to perform in an environment where zero-valent iron alone could not compete. Laboratory studies were also performed to establish the effectiveness of emulsified zero-valent metal (EZVM) to remove dissolved-phase cadmium and lead found in seawater. EZVM is comprised of a combination of magnesium and iron metal surrounded by the

  9. Remediation of Chlorpyrifos-Contaminated Soils by Laboratory-Synthesized Zero-Valent Nano Iron Particles: Effect of pH and Aluminium Salts

    Directory of Open Access Journals (Sweden)

    A. Vijaya Bhaskar Reddy

    2013-01-01

    Full Text Available Degradation of the insecticide chlorpyrifos in contaminated soils was investigated using laboratory synthesized zero-valent nano iron (ZVNI particles. The synthesized ZVNI particles were characterized as nanoscale sized by scanning electron microscopy (SEM and transmission electron microscopy (TEM. The zero-valent state (Fe0 of iron was confirmed by EDAX analysis and the morphology of the ZVNI particles was studied by XRD. Batch experiments were conducted by treating the chlorpyrifos contaminated soil with ZVNI, our results indicate that 90% of chlorpyrifos was degraded after 10 days of incubation. Only 32% degradation was observed with micro zero-valent iron (mZVI and no considerable degradation was attained without ZVNI. The degradation of chlorpyrifos followed the first-order kinetics with a rate constant and a half-life of 0.245 day−1 and 2.82 days, respectively. Degradation was monitored at two different pH values, that is, pH 10 and pH 4. Chlorpyrifos degradation rate constant increased as the pH decreases from 10 to 4. The corresponding rate constant and half-lives were 0.43 day−1 and 1.57days for pH 4, 0.18 day−1 and 3.65 days for pH 10. In addition, an attempt was made by augmenting Al2(SO43 with ZVNI and it was found that the degradation rate of chlorpyrifos was greatly enhanced and the rate constant was rapidly increased from 0.245 day−1 to 0.60 day−1. Hydrolysis and stepwise dechlorination pathway of chlorpyrifos with ZVNI was the dominant reaction.

  10. Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite

    International Nuclear Information System (INIS)

    Zboril, Radek; Andrle, Marek; Oplustil, Frantisek; Machala, Libor; Tucek, Jiri; Filip, Jan; Marusak, Zdenek; Sharma, Virender K.

    2012-01-01

    Highlights: ► Ferrate(VI) has been found to be highly efficient to decontaminate chemical warfare agents. ► Fast degradation of sulfur mustard, soman and compound VX by ferrate(VI). ► Nanoscale zero-valent iron particles are considerably less efficient in degradation of studied warfare agents compared to ferrate(VI). - Abstract: Nanoscale zero-valent iron (nZVI) particles and a composite containing a mixture of ferrate(VI) and ferrate(III) were prepared by thermal procedures. The phase compositions, valence states of iron, and particle sizes of iron-bearing compounds were determined by combination of X-ray powder diffraction, Mössbauer spectroscopy and scanning electron microscopy. The applicability of these environmentally friendly iron based materials in treatment of chemical warfare agents (CWAs) has been tested with three representative compounds, sulfur mustard (bis(2-chlorethyl) sulfide, HD), soman ((3,3′-imethylbutan-2-yl)-methylphosphonofluoridate, GD), and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX). Zero-valent iron, even in the nanodimensional state, had a sluggish reactivity with CWAs, which was also observed in low degrees of CWAs degradation. On the contrary, ferrate(VI)/(III) composite exhibited a high reactivity and complete degradations of CWAs were accomplished. Under the studied conditions, the estimated first-order rate constants (∼10 −2 s −1 ) with the ferrate(VI)/(III) composite were several orders of magnitude higher than those of spontaneous hydrolysis of CWAs (10 −8 –10 −6 s −1 ). The results demonstrated that the oxidative technology based on application of ferrate(VI) is very promising to decontaminate CWAs.

  11. Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite

    Energy Technology Data Exchange (ETDEWEB)

    Zboril, Radek, E-mail: zboril@prfnw.upol.cz [Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Andrle, Marek; Oplustil, Frantisek [Military Institute VOP-026 Sternberk, Division in Brno, Rybkova 8, 602 00 Brno (Czech Republic); Machala, Libor; Tucek, Jiri; Filip, Jan; Marusak, Zdenek [Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, 17. listopadu 1192/12, 771 46 Olomouc (Czech Republic); Sharma, Virender K., E-mail: vsharma@fit.edu [Chemistry Department, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States); Center of Ferrate Excellence, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901 (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Ferrate(VI) has been found to be highly efficient to decontaminate chemical warfare agents. Black-Right-Pointing-Pointer Fast degradation of sulfur mustard, soman and compound VX by ferrate(VI). Black-Right-Pointing-Pointer Nanoscale zero-valent iron particles are considerably less efficient in degradation of studied warfare agents compared to ferrate(VI). - Abstract: Nanoscale zero-valent iron (nZVI) particles and a composite containing a mixture of ferrate(VI) and ferrate(III) were prepared by thermal procedures. The phase compositions, valence states of iron, and particle sizes of iron-bearing compounds were determined by combination of X-ray powder diffraction, Moessbauer spectroscopy and scanning electron microscopy. The applicability of these environmentally friendly iron based materials in treatment of chemical warfare agents (CWAs) has been tested with three representative compounds, sulfur mustard (bis(2-chlorethyl) sulfide, HD), soman ((3,3 Prime -imethylbutan-2-yl)-methylphosphonofluoridate, GD), and O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothiolate (VX). Zero-valent iron, even in the nanodimensional state, had a sluggish reactivity with CWAs, which was also observed in low degrees of CWAs degradation. On the contrary, ferrate(VI)/(III) composite exhibited a high reactivity and complete degradations of CWAs were accomplished. Under the studied conditions, the estimated first-order rate constants ({approx}10{sup -2} s{sup -1}) with the ferrate(VI)/(III) composite were several orders of magnitude higher than those of spontaneous hydrolysis of CWAs (10{sup -8}-10{sup -6} s{sup -1}). The results demonstrated that the oxidative technology based on application of ferrate(VI) is very promising to decontaminate CWAs.

  12. Sulfur-Modified Zero-Valent Iron for Remediation Applications at DOE Sites - 13600

    Energy Technology Data Exchange (ETDEWEB)

    Fogwell, Thomas W. [Fogwell Consulting, P.O. Box 20221, Piedmont, CA 94620 (United States); Santina, Pete [SMI-PS, Inc., 2073 Prado Vista, Lincoln, CA 95648 (United States)

    2013-07-01

    Many DOE remediation sites have chemicals of concern that are compounds in higher oxidation states, which make them both more mobile and more toxic. The chemical reduction of these compounds both prevents the migration of these chemicals and in some cases reduces the toxicity. It has also been shown that zero-valent iron is a very effective substance to use in reducing oxygenated compounds in various treatment processes. These have included the treatment of halogenated hydrocarbons in the form volatile organic compounds used as solvents and pesticides. Zero-valent iron has also been used to reduce various oxidized metals such as chromium, arsenic, and mercury in order to immobilize them, decrease their toxicity, and prevent further transport. In addition, it has been used to immobilize or break down other non-metallic species such as selenium compounds and nitrates. Of particular interest at several DOE remediation sites is the fact that zero-valent iron is very effective in immobilizing several radioactive metals which are mobile in their oxidized states. These include both technetium and uranium. The main difficulty in using zero-valent iron has been its tendency to become inactive after relatively short periods of time. While it is advantageous to have the zero-valent iron particles as porous as possible in order to provide maximum surface area for reactions to take place, these pores can become clogged when the iron is oxidized. This is due to the fact that ferric oxide has a greater volume for a given mass than metallic iron. When the surfaces of the iron particles oxidize to ferric oxide, the pores become narrower and will eventually shut. In order to minimize the degradation of the chemical activity of the iron due to this process, a modification of zero-valent iron has been developed which prevents or slows this process, which decreases its effectiveness. It is called sulfur-modified iron, and it has been produced in high purity for applications in

  13. Zero-Valent Iron Permeable Reactive Barriers: A Review of Performance

    International Nuclear Information System (INIS)

    Korte, NE

    2001-01-01

    This report briefly reviews issues regarding the implementation of the zero-valent iron permeable reactive barrier (PRB) technology at sites managed by the U.S. Department of Energy (DOE). Initially, the PRB technology, using zero-valent iron for the reactive media, was received with great enthusiasm, and DOE invested millions of dollars testing and implementing PRBs. Recently, a negative perception of the technology has been building. This perception is based on the failure of some deployments to satisfy goals for treatment and operating expenses. The purpose of this report, therefore, is to suggest reasons for the problems that have been encountered and to recommend whether DOE should invest in additional research and deployments. The principal conclusion of this review is that the most significant problems have been the result of insufficient characterization, which resulted in poor engineering implementation. Although there are legitimate concerns regarding the longevity of the reactive media, the ability of zero-valent iron to reduce certain chlorinated hydrocarbons and to immobilize certain metals and radionuclides is well documented. The primary problem encountered at some DOE full-scale deployments has been an inadequate assessment of site hydrology, which resulted in misapplication of the technology. The result is PRBs with higher than expected flow velocities and/or incomplete plume capture

  14. Zero-valent iron particles embedded on the mesoporous silica–carbon for chromium (VI) removal from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Kun, E-mail: kunxiong312@gmail.com; Gao, Yuan [Chongqing Technology and Business University, Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, Chongqing Key Laboratory of Catalysis & Environmental New Materials (China); Zhou, Lin [Chengdu Radio and TV University (China); Zhang, Xianming [Chongqing Technology and Business University, Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, Chongqing Key Laboratory of Catalysis & Environmental New Materials (China)

    2016-09-15

    Nanoscale zero-valent iron (nZVI) particles were embedded on the walls of mesoporous silica–carbon (MSC) under the conditions of high-temperature carbonization and reduction and used to remove chromium (VI) from aqueous solution. The structure and textural properties of nZVI–MSC were characterized by the powder X-ray diffraction, transmission electron microscopy and N{sub 2} adsorption and desorption. The results show that nZVI–MSC has highly ordered mesoporous structure and large surface area, indistinguishable with that of MSC. Compared with the support MSC and iron particles supported on the activated carbon (nZVI/AC), nZVI–MSC exhibited much higher Cr(VI) removal efficiency with about 98 %. The removal process obeys a pseudo first-order model. Such excellent performance of nZVI–MSC could be ascribed to the large surface and iron particles embedded on the walls of the MSC, forming an intimate contact with the MSC. It is proposed that this feature might create certain micro-electrode on the interface of iron particles and MSC, which prevented the formation of metal oxide on the surface and provided fresh Fe surface for Cr(VI) removal.

  15. Degradation of simazine from aqueous solutions by diatomite-supported nanosized zero-valent iron composite materials.

    Science.gov (United States)

    Sun, Zhiming; Zheng, Shuilin; Ayoko, Godwin A; Frost, Ray L; Xi, Yunfei

    2013-12-15

    A novel composite material based on deposition of nanosized zero-valent iron (nZVI) particles on acid-leached diatomite was synthesised for the removal of a chlorinated contaminant in water. The nZVI/diatomite composites were characterised by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. Compared with the pure nZVI particles, better dispersion of nZVI particles on the surface or inside the pores of diatom shells was observed. The herbicide simazine was selected as the model chlorinated contaminant and the removal efficiency by nZVI/diatomite composite was compared with that of the pristine nZVI and commercial iron powder. It was found that the diatomite supported nZVI composite material prepared by centrifugation exhibits relatively better efficient activity in decomposition of simazine than commercial Fe, lab synthesised nZVI and composite material prepared via rotary evaporation, and the optimum experimental conditions were obtained based on a series of batch experiments. This study on immobilising nZVI particles onto diatomite opens a new avenue for the practical application of nZVI and the diatomite-supported nanosized zero-valent iron composite materials have potential applications in environmental remediation. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Removal of heavy metals using bentonite supported nano-zero valent iron particles

    Science.gov (United States)

    Zarime, Nur Aishah; Yaacob, Wan Zuhari Wan; Jamil, Habibah

    2018-04-01

    This study reports the composite nanoscale zero-valent iron (nZVI) which was successfully synthesized using low cost natural clay (bentonite). Bentonite composite nZVI (B-nZVI) was introduced to reduce the agglomeration of nZVI particles, thus will used for heavy metals treatment. The synthesized material was analyzed using physical, mineralogy and morphology analysis such as Brunnaer-Emmett-Teller (BET) surface area, Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) and X-ray Photoelectron Spectroscopy (XPS). The batch adsorption test of Bentonite and B-nZVI with heavy metals solutions (Pb, Cu, Cd, Co, Ni and Zn) was also conducted to determine their effectiveness in removing heavy metals. Through Batch test, B-nZVI shows the highest adsorption capacity (qe= 50.25 mg/g) compared to bentonite (qe= 27.75 mg/g). This occurred because B-nZVI can reduce aggregation of nZVI, dispersed well in bentonite layers thus it can provide more sites for adsorbing heavy metals.

  17. Removal of uranium from uranium plant wastewater using zero-valent iron in an ultrasonic field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Zhang, Libo; Peng, Jinhui; Ma, Aiyuan; Xia, Hong Ying; Guo, Wen Qian; Yu, Xia [Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming (China); Hu, Jinming; Yang, Lifeng [Nuclear Group Two Seven Two Uranium Industry Limited Liability Company, Hengyang (China)

    2016-06-15

    Uranium removal from uranium plant wastewater using zero-valent iron in an ultrasonic field was investigated. Batch experiments designed by the response surface methodology (RSM) were conducted to study the effects of pH, ultrasonic reaction time, and dosage of zero-valent iron on uranium removal efficiency. From the experimental data obtained in this work, it was found that the ultrasonic method employing zero-valent iron powder effectively removes uranium from uranium plant wastewater with a uranium concentration of 2,772.23 μg/L. The pH ranges widely from 3 to 7 in the ultrasonic field, and the prediction model obtained by the RSM has good agreement with the experimental results.

  18. DDT, DDD, AND DDE DECHLORINATION BY ZERO-VALENT IRON

    Science.gov (United States)

    Traditionally, destruction of DDT [1,1,1-trichIoro-2,2-bis(p-chlorophenyl)ethane] for environmental remediation required high-energy processes such as incineration. Here, the capability of powdered zero-valent iron to dechlorinate DDT and related compounds at room tempera...

  19. Hybrid composites of nano-sized zero valent iron and covalent organic polymers for groundwater contaminant degradation

    DEFF Research Database (Denmark)

    Mines, Paul D.; Byun, J.; Hwang, Yuhoon

    Zero valent iron is commonly used in a variety of treatment technologies (e.g. permeable reactive barriers), though recently a heavier focus has been placed on nano-sized zero valent iron (nZVI). Having superior reductive properties and large surface areas, nZVI is ideal for the degradation of ch...

  20. Remediation of U(VI)-contaminated water using zero-valent iron

    International Nuclear Information System (INIS)

    Abdelouas, A.; Gong, W.; Lutze, W.; Nuttall, E.

    1999-01-01

    We investigated the possibility of U(VI) reduction by zero-valent iron (Fe 0 ). We conducted batch experiments with granular iron and solutions containing 0.25 and 9.3 mg L -1 U(VI) at 24 deg C. The solution pH ranges between 2 and 9. In all experiments uranium removal was complete within several hours to several days regardless of the pH value. The reduced uranium precipitated as poorly crystallized hydrated uraninite, UO 2 .nH 2 O. The reduction of U(VI) to U(IV) by Fe 0 was found to be the principal mechanism of U removal from the solution. Other mechanisms such as U(VI) sorption on the newly formed Fe(III) hydroxides are insignificant. These results show that zero-valent iron can be used to remedy U-contaminated waters from uranium mines and mill tailings sites, the pH of which usually ranges between 2 and 9. (authors)

  1. Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: A comparative study

    International Nuclear Information System (INIS)

    Lee, Hongshin; Lee, Hye-jin; Kim, Hyung-Eun; Kweon, Jihyang; Lee, Byeong-Dae; Lee, Changha

    2014-01-01

    Highlights: • Oxidants from zero-valent iron were quantified in the presence of oxygen and EDTA. • The oxidant yields of nano- and microparticulate zero-valent iron were compared. • Microparticulate zero-valent iron produced higher oxidant yields. • The factors affecting the oxidant production from zero-valent iron were discussed. -- Abstract: In aqueous solution, zero-valent iron (ZVI, Fe 0 ) is known to activate oxygen (O 2 ) into reactive oxidants such as hydroxyl radical and ferryl ion capable of oxidizing contaminants. However, little is known about the effect of the particle size of ZVI on the yield of reactive oxidants. In this study, the production of reactive oxidants from nanoparticulate and microparticulate ZVIs (denoted as nZVI and mZVI, respectively) was comparatively investigated in the presence of O 2 and EDTA. To quantify the oxidant yield, excess amount of methanol was employed, and the formation of its oxidation product, formaldehyde (HCHO), was monitored. The concentration of HCHO in the nZVI/O 2 system rapidly reached the saturation value, whereas that in the mZVI/O 2 system gradually increased throughout the entire reaction time. The mZVI/O 2 system exhibited higher yields of HCHO than the nZVI/O 2 system under both acidic and neutral pH conditions. The higher oxidant yields in the mZVI/O 2 system are mainly attributed to the less reactivity of the mZVI surface with hydrogen peroxide (H 2 O 2 ) relative to the surface of nZVI, which minimize the loss of H 2 O 2 by ZVI (i.e., the two-electron reduction of H 2 O 2 into water). In addition, the slow dissolution of Fe(II) from mZVI was found to be partially responsible for the higher oxidant yields at neutral pH

  2. Removal of halogenated organic compounds in landfill gas by top covers containing zero-valent iron

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Winther, K.; Kjeldsen, Peter

    2000-01-01

    Transformation of gaseous CCl3F and CCl4 by zero-valent iron was studied in systems unsaturated with water under anaerobic conditionssin an N2 gas and in a landfill gas atmosphere. The transformation was studied in batch as well as flow-through column tests. In both systems, the transformation....... During continuous aerobic conditions, the transformation of CCl3F decreased toward zero. Model calculations show that use of zero-valent iron in landfill top covers is a potential treatment technology for emission reduction of halogenated trace compounds from landfills....

  3. The improvement of boron-doped diamond anode system in electrochemical degradation of p-nitrophenol by zero-valent iron

    International Nuclear Information System (INIS)

    Zhu Xiuping; Ni Jinren

    2011-01-01

    Boron-doped diamond (BDD) electrodes are promising anode materials in electrochemical treatment of wastewaters containing bio-refractory organic compounds due to their strong oxidation capability and remarkable corrosion stability. In order to further improve the performance of BDD anode system, electrochemical degradation of p-nitrophenol were initially investigated at the BDD anode in the presence of zero-valent iron (ZVI). The results showed that under acidic condition, the performance of BDD anode system containing zero-valent iron (BDD-ZVI system) could be improved with the joint actions of electrochemical oxidation at the BDD anode (39.1%), Fenton's reaction (28.5%), oxidation–reduction at zero-valent iron (17.8%) and coagulation of iron hydroxides (14.6%). Moreover, it was found that under alkaline condition the performance of BDD-ZVI system was significantly enhanced, mainly due to the accelerated release of Fe(II) ions from ZVI and the enhanced oxidation of Fe(II) ions. The dissolved oxygen concentration was significantly reduced by reduction at the cathode, and consequently zero-valent iron corroded to Fe(II) ions in anaerobic highly alkaline environments. Furthermore, the oxidation of released Fe(II) ions to Fe(III) ions and high-valent iron species (e.g., FeO 2+ , FeO 4 2− ) was enhanced by direct electrochemical oxidation at BDD anode.

  4. Toxicity of zero-valent iron nanoparticles to a trichloroethylene-degrading groundwater microbial community.

    Science.gov (United States)

    Zabetakis, Kara M; Niño de Guzmán, Gabriela T; Torrents, Alba; Yarwood, Stephanie

    2015-01-01

    The microbiological impact of zero-valent iron used in the remediation of groundwater was investigated by exposing a trichloroethylene-degrading anaerobic microbial community to two types of iron nanoparticles. Changes in total bacterial and archaeal population numbers were analyzed using qPCR and were compared to results from a blank and negative control to assess for microbial toxicity. Additionally, the results were compared to those of samples exposed to silver nanoparticles and iron filings in an attempt to discern the source of toxicity. Statistical analysis revealed that the three different iron treatments were equally toxic to the total bacteria and archaea populations, as compared with the controls. Conversely, the silver nanoparticles had a limited statistical impact when compared to the controls and increased the microbial populations in some instances. Therefore, the findings suggest that zero-valent iron toxicity does not result from a unique nanoparticle-based effect.

  5. A Study on Removal of Environmental Pollution Materials with Nano-scale Iron Particles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Ho; Ahn, Hong Ju

    2009-07-15

    In this study, a method of nano-sized iron particles with zero valent state was developed. Also, the optimum conditions for the synthesis of silica based micro-particles were obtained for micro particle analysis. Basic physical data for standard particles were obtained in various synthesis conditions for mass production. From the experiment of removal of Pb in the solution with iron particles with zero valent state, most of Pb was removed from the solution over pH 7, as a result of reaction of Pb with iron particles with zero valent state. Nano sized iron particles with zero valent state obtained from this study will be apply for removing heavy metals and radionuclides as well as waste treatment and remediation for contaminated materials in the environment.

  6. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    International Nuclear Information System (INIS)

    Weathers, Lenly J.; Katz, Lynn E.

    2002-01-01

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated

  7. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lenly J. Weathers; Lynn E. Katz

    2002-05-29

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated.

  8. Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron

    International Nuclear Information System (INIS)

    Son, Ahjeong; Schmidt, Carl J.; Shin, Hyejin; Cha, Daniel K.

    2011-01-01

    Anaerobic microbial mixed cultures demonstrated its ability to completely remove perchlorate in the presence of zero-valent iron. In order to understand the major microbial reaction in the iron-supported culture, community analysis comprising of microbial fatty acids and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques was performed for perchlorate reducing cultures. Analysis of fatty acid methyl esters (FAMEs) and subsequent principal component analysis (PCA) showed clear distinctions not only between iron-supported perchlorate reducing culture and seed bacteria, but also among perchlorate-reducing cultures receiving different electron donors. The DGGE pattern targeting the chlorite dismutase (cld) gene showed that iron-supported perchlorate reducing culture is similar to hydrogen-fed cultures as compared to acetate-fed culture. The phylogenetic tree suggested that the dominant microbial reaction may be a combination of the autotrophic and heterotrophic reduction of perchlorate. Both molecular and chemotaxonomic experimental results support further understanding in the function of zero-valent iron as an adequate electron source for enhancing the microbial perchlorate reduction in natural and engineered systems.

  9. Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ahjeong, E-mail: ason@auburn.edu [Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); Schmidt, Carl J. [Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716 (United States); Shin, Hyejin [Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849 (United States); Cha, Daniel K. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)

    2011-01-30

    Anaerobic microbial mixed cultures demonstrated its ability to completely remove perchlorate in the presence of zero-valent iron. In order to understand the major microbial reaction in the iron-supported culture, community analysis comprising of microbial fatty acids and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques was performed for perchlorate reducing cultures. Analysis of fatty acid methyl esters (FAMEs) and subsequent principal component analysis (PCA) showed clear distinctions not only between iron-supported perchlorate reducing culture and seed bacteria, but also among perchlorate-reducing cultures receiving different electron donors. The DGGE pattern targeting the chlorite dismutase (cld) gene showed that iron-supported perchlorate reducing culture is similar to hydrogen-fed cultures as compared to acetate-fed culture. The phylogenetic tree suggested that the dominant microbial reaction may be a combination of the autotrophic and heterotrophic reduction of perchlorate. Both molecular and chemotaxonomic experimental results support further understanding in the function of zero-valent iron as an adequate electron source for enhancing the microbial perchlorate reduction in natural and engineered systems.

  10. Reduction and Immobilization of Radionuclides and Toxic Metal Ions Using Combined Zero Valent Iron and Anaerobic Bacteria; FINAL

    International Nuclear Information System (INIS)

    Lenly J. Weathers; Lynn E. Katz

    2002-01-01

    The use of zero valent iron, permeable reactive barriers (PRBs) for groundwater remediation continues to increase. AN exciting variation of this technology involves introducing anaerobic bacteria into these barriers so that both biological and abiotic pollutant removal processes are functional. This work evaluated the hypothesis that a system combining a mixed culture of sulfate reducing bacteria (SRB) with zero valent iron would have a greater cr(VI) removal efficiency and a greater total Cr(VI) removal capacity than a zero valent iron system without the microorganisms. Hence, the overall goal of this research was to compare the performance of these types of systems with regard to their Cr(VI) removal efficiency and total Cr(VI) removal capacity. Both batch and continuous flow reactor systems were evaluated

  11. Investigation of washing and storage strategy on aging Of Mg-aminoclay (MgAC) coated nanoscale zero-valent iron (nZVI) particles

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Lee, Young-Chul; Mines, Paul D.

    2014-01-01

    The tendency towards agglomeration and oxidation of nanoscale zero-valent iron (nZVI) particles limits its application for in situ groundwater and soil remediation. Although the effect of surface coatings on nanoparticle stabilization has been commonly practiced, the effect of preparation...... correlations (r2 > 0.95, p one another. Pre-storage washing, followed by addition of MgAC, exhibits high stability as pre-storage washing, as well as high reactivity as post-storage washing. Here, it is found that the proper washing procedure is crucial in coated nZVI preparation...

  12. Aqueous phosphate removal using nanoscale zero-valent iron

    International Nuclear Information System (INIS)

    Almeelbi, Talal; Bezbaruah, Achintya

    2012-01-01

    Nanoscale zero-valent iron (NZVI) particles have been used for the remediation of a wide variety of contaminants. NZVI particles have high reactivity because of high reactive surface area. In this study, NZVI slurry was successfully used for phosphate removal and recovery. Batch studies conducted using different concentrations of phosphate (1, 5, and 10 mg PO 4 3− -P/L with 400 mg NZVI/L) removed ∼96 to 100 % phosphate in 30 min. Efficacy of the NZVI in phosphate removal was found to 13.9 times higher than micro-ZVI (MZVI) particles with same NZVI and MZVI surface area concentrations used in batch reactors. Ionic strength, sulfate, nitrate, and humic substances present in the water affected in phosphate removal by NZVI but they may not have any practical significance in phosphate removal in the field. Phosphate recovery batch study indicated that better recovery is achieved at higher pH and it decreased with lowering of the pH of the aqueous solution. Maximum phosphate recovery of ∼78 % was achieved in 30 min at pH 12. The successful rapid removal of phosphate by NZVI from aqueous solution is expected to have great ramification for cleaning up nutrient rich waters.

  13. Application of Recycled Zero-Valent Iron Nanoparticle to the Treatment of Wastewater Containing Nitrobenzene

    Directory of Open Access Journals (Sweden)

    Heon Lee

    2015-01-01

    Full Text Available Zero-valent iron (ZVI was synthesized using iron oxide, a byproduct of pickling line at a steel work. ZVI with a mean particle size of 500 nm was synthesized. The reaction activity of the synthesized ZVI was much higher than commercial ZVI. When applied to the decomposition of nitrobenzene (NB, the ZVI particles underwent corrosion and passivation oxide film formation, resulting in particle size decrease. The NB decomposition rate increased with increasing ZVI dosage level and with decreasing pH. The solution pH increased monotonously with increasing reaction duration, whereas the aniline concentration showed a maximum at 50 min. Based on the GC/MS analysis, NB is presumed to be reduced into aniline via reductive intermediates such as azobenzene and azoxybenzene. When combined with a subsequent biological process, the synthesized ZVI will be able to decompose NB in wastewater effectively.

  14. Removal of chromate in a permeable reactive barrier using zero-valent iron

    DEFF Research Database (Denmark)

    Kjeldsen, Peter; Locht, T

    2002-01-01

    Chromate is a commonly found groundwater contaminant. Permeable reactive barriers containing zero-valent iron as iron filings are able to remove the chromate by a combined reduction/precipitation reaction. However, due to the passivation of the reduction capability of the iron surfaces by the pre......). Mixing in sand had no significant enhancing effect on the removal capacity, in contrast to a pH adjustment of the groundwater to pH 4, which significantly increased the removal capacity....

  15. Analytical Characterisation of Nanoscale Zero-Valent Iron: A ...

    Science.gov (United States)

    Zero-valent iron nanoparticles (nZVI) have been widely tested as they are showing significant promise for environmental remediation. However, many recent studies have demonstrated that their mobility and reactivity in subsurface environments are significantly affected by their tendency to aggregate. Both the mobility and reactivity of nZVI mainly depends on properties such as particle size, surface chemistry and bulk composition. In order to ensure efficient remediation, it is crucial to accurately assess and understand the implications of these properties before deploying these materials into contaminated environments. Many analytical techniques are now available to determine these parameters and this paper provides a critical review of their usefulness and limitations for nZVI characterisation. These analytical techniques include microscopy and light scattering techniques for the determination of particle size, size distribution and aggregation state, and X-ray techniques for the characterisation of surface chemistry and bulk composition. Example characterisation data derived from commercial nZVI materials is used to further illustrate method strengths and limitations. Finally, some important challenges with respect to the characterisation of nZVI in groundwater samples are discussed. In recent years, manufactured nanoparticles (MNPs) have attracted increasing interest for their potential applications in the treatment of contaminated soil and water. In compar

  16. Dehalogenation of aromatic halides by polyaniline/zero-valent iron composite nanofiber: Kinetics and mechanisms

    CSIR Research Space (South Africa)

    Giri, S

    2016-03-01

    Full Text Available Dehalogenation of aryl halides was demonstrated using polyaniline/zero valent iron composite nanofiber (termed as PANI/Fe0) as a cheap, efficient and environmentally friendly heterogeneous catalyst. The catalyst was prepared via rapid mixing...

  17. Long-term Performance of Permeable Reactive Barriers Using Zero-valent Iron: An Evaluation at Two Sites

    National Research Council Canada - National Science Library

    Wilkin, Richard T; Puls, Robert W; Sewell, Guy W

    2002-01-01

    Research described in this research brief explores the geochemical and microbiological processes occurring within zero-valent iron treatment zones in permeable reactive barriers that may contribute...

  18. Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation

    Directory of Open Access Journals (Sweden)

    Min-Hee Jang

    2014-12-01

    Full Text Available Objectives Nanoscale zero-valent iron (nZVI particles are widely used in the field of various environmental contaminant remediation. Although the potential benefits of nZVI are considerable, there is a distinct need to identify any potential risks after environmental exposure. In this respect, we review recent studies on the environmental applications and implications of nZVI, highlighting research gaps and suggesting future research directions. Methods Environmental application of nZVI is briefly summarized, focusing on its unique properties. Ecotoxicity of nZVI is reviewed according to type of organism, including bacteria, terrestrial organisms, and aquatic organisms. The environmental fate and transport of nZVI are also summarized with regards to exposure scenarios. Finally, the current limitations of risk determination are thoroughly provided. Results The ecotoxicity of nZVI depends on the composition, concentration, size and surface properties of the nanoparticles and the experimental method used, including the species investigated. In addition, the environmental fate and transport of nZVI appear to be complex and depend on the exposure duration and the exposure conditions. To date, field-scale data are limited and only short-term studies using simple exposure methods have been conducted. Conclusions In this regard, the primary focus of future study should be on 1 the development of an appropriate and valid testing method of the environmental fate and ecotoxicity of reactive nanoparticles used in environmental applications and 2 assessing their potential environmental risks using in situ field scale applications.

  19. GROUND WATER REMEDIATION OF CHROMIUM USING ZERO-VALENT IRON IN A PERMEABLE REACTIVE BARRIER

    Science.gov (United States)

    A series of laboratory experiments were performed to elucidate the chromium transformation and precipitation reactions caused by the corrosion of zero-valent iron in water-based systems. Reaction rates were determined for chromate reduction in the presence of different types of ...

  20. Simple colorimetric assay for dehalogenation reactivity of nanoscale zero-valent iron using 4-chlorophenol

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Mines, Paul D.; Jakobsen, Mogens Havsteen

    2015-01-01

    Despite the wide application of nanoscale zero valent iron (nZVI) for the treatment of a plethora of pollutants through reductive reactions, reactivity evaluation of nZVI towards dehalogenation has not been standardized. In this light, it was desired to develop a simple colorimetric assay...

  1. Improvements in nanoscale zero-valent iron production by milling through the addition of alumina

    Energy Technology Data Exchange (ETDEWEB)

    Ribas, D. [Fundació CTM Centre Tecnològic de Manresa (Spain); Cernik, M. [Technical University of Liberec, Institute for Nanomaterials, Advanced Technologies and Innovation (Czech Republic); Martí, V.; Benito, J. A., E-mail: josep.a.benito@upc.edu [Fundació CTM Centre Tecnològic de Manresa (Spain)

    2016-07-15

    A new milling procedure for a cost-effective production of nanoscale zero-valent iron for environmental remediation is presented. Conventional ball milling of iron in an organic solvent as Mono Ethylene Glycol produces flattened iron particles that are unlikely to break even after very long milling times. With the aim of breaking down these iron flakes, in this new procedure, further milling is carried out by adding an amount of fine alumina powder to the previously milled solution. As the amount of added alumina increases from 9 to 54 g l{sup −1}, a progressive decrease of the presence of flakes is observed. In the latter case, the appearance of the particles formed by fragments of former flakes is rather homogeneous, with most of the final nanoparticles having an equivalent diameter well below 1 µm and with an average particle size in solution of around 400 nm. An additional increase of alumina content results in a highly viscous solution showing worse particle size distribution. Milled particles, in the case of alumina concentrations of 54 g l{sup −1}, have a fairly large specific surface area and high Fe(0) content. These new particles show a very good Cr(VI) removal efficiency compared with other commercial products available. This good reactivity is related to the absence of an oxide layer, the large amount of superficial irregularities generated by the repetitive fracture process during milling and the presence of a fine nanostructure within the iron nanoparticles.

  2. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Qiang, E-mail: kongqiang0531@hotmail.com [College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong (China); Ngo, Huu Hao [School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007 (Australia); Shu, Li [School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria 3216 (Australia); Fu, Rong-shu; Jiang, Chun-hui [College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong (China); Miao, Ming-sheng, E-mail: mingshengmiao@163.com [College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong (China)

    2014-08-30

    Highlights: • Zero-valent iron (ZVI) was used firstly to enhance the aerobic granulation. • ZVI significantly decreased the start-up time of the aerobic granulation. • ZVI had the function of enhancing organic material diversity identified by 3-D EEM. • ZVI could enhance the diversity of microbial community. - Abstract: This study elucidates the enhancement of aerobic granulation by zero-valent iron (ZVI). A reactor augmented with ZVI had a start-up time of aerobic granulation (43 days) that was notably less than that for a reactor without augmentation (64 days). The former reactor also had better removal efficiencies for chemical oxygen demand and ammonium. Moreover, the mature granules augmented with ZVI had better physical characteristics and produced more extracellular polymeric substances (especially of protein). Three-dimensional-excitation emission matrix fluorescence showed that ZVI enhanced organic material diversity. Additionally, ZVI enhanced the diversity of the microbial community. Fe{sup 2+} dissolution from ZVI helped reduce the start-up time of aerobic granulation and increased the extracellular polymeric substance content. Conclusively, the use of ZVI effectively enhanced aerobic granulation.

  3. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor

    International Nuclear Information System (INIS)

    Kong, Qiang; Ngo, Huu Hao; Shu, Li; Fu, Rong-shu; Jiang, Chun-hui; Miao, Ming-sheng

    2014-01-01

    Highlights: • Zero-valent iron (ZVI) was used firstly to enhance the aerobic granulation. • ZVI significantly decreased the start-up time of the aerobic granulation. • ZVI had the function of enhancing organic material diversity identified by 3-D EEM. • ZVI could enhance the diversity of microbial community. - Abstract: This study elucidates the enhancement of aerobic granulation by zero-valent iron (ZVI). A reactor augmented with ZVI had a start-up time of aerobic granulation (43 days) that was notably less than that for a reactor without augmentation (64 days). The former reactor also had better removal efficiencies for chemical oxygen demand and ammonium. Moreover, the mature granules augmented with ZVI had better physical characteristics and produced more extracellular polymeric substances (especially of protein). Three-dimensional-excitation emission matrix fluorescence showed that ZVI enhanced organic material diversity. Additionally, ZVI enhanced the diversity of the microbial community. Fe 2+ dissolution from ZVI helped reduce the start-up time of aerobic granulation and increased the extracellular polymeric substance content. Conclusively, the use of ZVI effectively enhanced aerobic granulation

  4. A novel conditioning process for enhancing dewaterability of waste activated sludge by combination of zero-valent iron and persulfate.

    Science.gov (United States)

    Zhou, Xu; Wang, Qilin; Jiang, Guangming; Liu, Peng; Yuan, Zhiguo

    2015-06-01

    Improvement of sludge dewaterability is crucial for reducing the costs of sludge disposal in wastewater treatment plants. This study presents a novel conditioning method for improving waste activated sludge dewaterability by combination of persulfate and zero-valent iron. The combination of zero-valent iron (0-30g/L) and persulfate (0-6g/L) under neutral pH substantially enhanced the sludge dewaterability due to the advanced oxidization reactions. The highest enhancement of sludge dewaterability was achieved at 4g persulfate/L and 15g zero-valent iron/L, with which the capillary suction time was reduced by over 50%. The release of soluble chemical oxygen demand during the conditioning process implied the decomposition of sludge structure and microorganisms, which facilitated the improvement of dewaterability due to the release of bound water that was included in sludge structure and microorganism. Economic analysis showed that the proposed conditioning process with persulfate and ZVI is more economically favorable for improving WAS dewaterability than classical Fenton reagent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Dechlorination of short chain chlorinated paraffins by nanoscale zero-valent iron.

    Science.gov (United States)

    Zhang, Zhi-Yong; Lu, Mang; Zhang, Zhong-Zhi; Xiao, Meng; Zhang, Min

    2012-12-01

    In this study, nanoscale zero-valent iron (NZVI) particles were synthesized and used for the reductive dehalogenation of short chain chlorinated paraffins (SCCPs) in the laboratory. The results show that the dechlorination rate of chlorinated n-decane (CP(10)) by NZVI increased with decreased solution pH. Increasing the loading of NZVI enhanced the dechlorination rate of CP(10). With an increase in temperature, the degradation rate increased. The reduction of CP(10) by NZVI was accelerated with increasing the concentration of humic acid up to 15 mg/L but then was inhibited. The dechlorination of CP(10) within the initial 18 h followed pseudo-first order rate model. The formation of intermediate products indicates a stepwise dechlorination pathway of SCCPs by NZVI. The carbon chain length and chlorination degree of SCCPs have a polynominal impact on dechlorination reactions. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron.

    Science.gov (United States)

    Klas, Sivan; Kirk, Donald W

    2013-05-15

    The removal of toxic arsenic species from contaminated waters by zero-valent iron (ZVI) has drawn considerable attention in recent years. In this approach, arsenic ions are mainly removed by adsorption to the iron corrosion products. Reduction to zero-valent arsenic on the ZVI surface is possible in the absence of competing oxidants and can reduce arsenic mobility and sludge formation. However, associated removal rates are relatively low. In the current study, simultaneous high reduction and removal rates of arsenite (H3AsO3), the more toxic and mobile environmentally occurring arsenic species, was demonstrated by reacting it with ZVI under limited aeration and relatively low pH. 90% of the removed arsenic was attached to the ZVI particles and 60% of which was in the elemental state. Under the same non-acidic conditions, only 40-60% of the removed arsenic was attached to the ZVI with no change in arsenic oxidation state. Under anaerobic conditions, reduction occurred but total arsenic removal rate was significantly lower and ZVI demand was higher. The effective arsenite removal under acidic oxygen-limited conditions was explained by formation of Fe(II)-solid intermediate on the ZVI surface that provided high surface area and reducing power. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Nanoporous networks as effective stabilisation matrices for nanoscale zero-valent iron and groundwater pollutant removal

    DEFF Research Database (Denmark)

    Mines, Paul D.; Byun, J.; Hwang, Yuhoon

    2015-01-01

    Nanoscale zero-valent iron (nZVI), with its reductive potentials and wide availability, offers degradative remediation of environmental contaminants. Rapid aggregation and deactivation hinder its application in real-life conditions. Here, we show that by caging nZVI into the micropores of porous ...

  8. Nanoscale zero-valent iron (nZVI) synthesis in a Mg-aminoclay solution exhibits increased stability and reactivity for reductive decontamination

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Lee, Young-Chul; Mines, Paul D.

    2014-01-01

    Nanoscale zero-valent iron (nZVI) has often been explored as a reductant for detoxification of pollutants in environmental clean-ups. Despite the large surface area and superior reactivity of nZVI, its limited stability is a major obstacle in applying nZVI for in situ subsurface remediation, e......ZVI particles with higher crystallinity were produced. Stability of nZVI particles were evaluated using a sedimentation test and a dynamic light scattering technique. The characteristic time increased from 6.71 to 83.8 min, and particle (aggregate diameter) size decreased from 5132 to 186 nm with increasing...

  9. Source zone remediation by zero valent iron technologies

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann

    at a fifth of these contaminated sites. These source zones pose a serious threat to soil and groundwater quality. Remediation of the heterogeneous source zones is challenging due to irregular downwards migration patterns in the subsurface, low aqueous solubility and matrix diffusion. To protect the soil...... and groundwater resources from long-term deterioration, the development of in situ technologies suitable for remediation of DNAPL is warranted. Currently, an array of aggressive in situ remediation technologies remediation exists. These technologies may be suitable under various site specific conditions; however......, most of them are limited by subsurface heterogeneities and/or the risk of inadvertent DNAPL displacement during field application. This thesis presents the results of an investigation of the potential for remediation of chlorinated solvent source zones by emerging zero valent iron (ZVI) based...

  10. Effect of magnetic field on the zero valent iron induced oxidation reaction

    International Nuclear Information System (INIS)

    Kim, Dong-hyo; Kim, Jungwon; Choi, Wonyong

    2011-01-01

    Highlights: → We investigate the zero valent iron induced oxidation in the presence of magnetic field. → The oxidative degradation of 4-chlorophenol is enhanced by the magnetic field. → ESR measurement confirms that more OH radicals are generated in the presence of magnetic field. → The magnetic field affects the mass transfer of O 2 and the recombination of radicals. - Abstract: The magnetic field (MF) effect on the zero valent iron (ZVI) induced oxidative reaction was investigated for the first time. The degradation of 4-chlorophenol (4-CP) in the ZVI system was employed as the test oxidative reaction. MF markedly enhanced the degradation of 4-CP with the concurrent production of chlorides. The consumption of dissolved O 2 by ZVI reaction was also enhanced in the presence of MF whereas the competing reaction of H 2 production from proton reduction was retarded. Since the ZVI-induced oxidation is mainly driven by the in situ generated hydroxyl radicals, the production of OH radicals was monitored by the spin trap method using electron spin resonance (ESR) spectroscopy. It was confirmed that the concentration of trapped OH radicals was enhanced in the presence of MF. Since both O 2 and Fe 0 are paramagnetic, the diffusion of O 2 onto the iron surface might be accelerated under MF. The magnetized iron can attract oxygen on itself, which makes the mass transfer process faster. As a result, the surface electrochemical reaction between Fe 0 and O 2 can be accelerated with the enhanced production of OH radicals. MF might retard the recombination of OH radicals as well.

  11. The removal of uranium onto carbon-supported nanoscale zero-valent iron particles

    Energy Technology Data Exchange (ETDEWEB)

    Crane, Richard A., E-mail: richardandrewcrane@gmail.com; Scott, Thomas [University of Bristol, School of Physics, Interface Analysis Centre (United Kingdom)

    2014-12-15

    In the current work carbon-supported nanoscale zero-valent iron particles (CS nZVI), synthesised by the vacuum heat treatment of ferric citrate trihydrate absorbed onto carbon black, have been tested for the removal of uranium (U) from natural and synthetic waters. Two types of CS nZVI were tested, one vacuum annealed at 600 °C for 4 h and the other vacuum annealed at 700 °C for 4 h, with their U removal behaviour compared to nZVI synthesised via the reduction of ferrous iron using sodium borohydride. The batch systems were analysed over a 28-day reaction period during which the liquid and nanoparticulate solids were periodically analysed to determine chemical evolution of the solutions and particulates. Results demonstrate a well-defined difference between the two types of CS nZVI, with greater U removal exhibited by the nanomaterial synthesised at 700 °C. The mechanism has been attributed to the CS nZVI synthesised at 700 °C exhibiting (i) a greater proportion of surface oxide Fe{sup 2+} to Fe{sup 3+} (0.34 compared to 0.28); (ii) a greater conversion of ferric citrate trihydrate [2Fe(C{sub 6}H{sub 5}O{sub 7})·H{sub 2}O] to Fe{sup 0}; and (iii) a larger surface area (108.67 compared to 88.61 m{sup 2} g{sup −1}). Lower maximum U uptake was recorded for both types of CS nZVI in comparison with the borohydride-reduced nZVI. A lower decrease in solution Eh and DO was also recorded, indicating that less chemical reduction of U was achieved by the CS nZVI. Despite this, lower U desorption in the latter stages of the experiment (>7 days) was recorded for the CS nZVI synthesised at 700 °C, indicating that carbon black in the CS nZVI is likely to have contributed towards U sorption and retention. Overall, it can be stated that the borohydride-reduced nZVI were significantly more effective than CS nZVI for U removal over relatively short timescales (e.g. <48 h), however, they were more susceptible to U desorption over extended time periods.

  12. Granular activated carbon with grafted nanoporous polymer enhances nanoscale zero-valent iron impregnation and water contaminant removal

    DEFF Research Database (Denmark)

    Mines, Paul D.; Uthuppu, Basil; Thirion, Damien

    2018-01-01

    Granular activated carbon was customized with a chemical grafting procedure of a nanoporous polymeric network for the purpose of nanoscale zero-valent iron impregnation and subsequent water contaminant remediation. Characterization of the prepared composite material revealed that not only was the...

  13. Data of furfural adsorption on nano zero valent iron (NZVI synthesized from Nettle extract

    Directory of Open Access Journals (Sweden)

    Mehdi Fazlzadeh

    2018-02-01

    Full Text Available Among various water and wastewater treatment methods, adsorption techniques are widely used to remove certain classes of pollutants due to its unique features. Thus, the aim of this data article is to synthesize zero valent iron nanoparticles (NZVI from Nettle leaf extract by green synthesis method as an environmentally friendly technique, and to evaluate it's efficiency in the removal of furfural from aqueous solutions. The data of possible adsorption mechanism and isotherm of furfural on the synthesized adsorbent are depicted in this data article. The data acquired showed that the adsorption trend follows the pseudo-second order kinetic model and that the Langmuir isotherm was suitable for correlation of equilibrium data with the maximum adsorption capacity of 454.4 mg/g. The information of initial furfural concentration, pH, adsorbent dosage and contact time effects on the removal efficiency are presented. Considering the findings data, the developed nanoparticle from Nettle leaf extract, as a low cost adsorbent, could be considered as promising adsorbent for furfural and probably similar organic pollutants removal from aqueous solutions. Keywords: Green synthesis method, Furfural, Nettle zero valent iron nanoparticles (NNZVI, Low cost adsorbents

  14. In field arsenic removal from natural water by zero-valent iron assisted by solar radiation

    International Nuclear Information System (INIS)

    Cornejo, Lorena; Lienqueo, Hugo; Arenas, Maria; Acarapi, Jorge; Contreras, David; Yanez, Jorge; Mansilla, Hector D.

    2008-01-01

    An in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 μg L -1 . Response surface method analysis was used to optimize the amount of zero-valent iron (steel wool) and the citrate concentration (lemon juice) to be used. The optimal conditions when using solar radiation to remove arsenic from natural water from the Camarones river are: 1.3 g L -1 of steel wool and one drop (ca. 0.04 mL) of lemon juice. Under these conditions, removal percentages are higher than 99.5% and the final arsenic concentration is below 10 μg L -1 . This highly effective arsenic removal method is easy to use and inexpensive to implement. - An in situ arsenic removal method applicable to highly contaminated waters by using zero-valent iron, citrate and solar radiation was developed

  15. Nanoscale zero-valent iron impregnation of covalent organic polymer grafted activated carbon for water treatment

    DEFF Research Database (Denmark)

    Mines, Paul D.; Uthuppu, Basil; Thirion, Damien

    2016-01-01

    The use of nanoscale zero valent iron (nZVI) has quickly become a leading research material for the treatment of typically hard to degrade contaminants found in groundwater. These contaminants include antibiotics, pesticides, halogenated organics, heavy metals, among others. However, the effectiv......The use of nanoscale zero valent iron (nZVI) has quickly become a leading research material for the treatment of typically hard to degrade contaminants found in groundwater. These contaminants include antibiotics, pesticides, halogenated organics, heavy metals, among others. However...... polymeric network already previously proven to stabilize nZVI and a long-standing water treatment material,1 activated carbon; we have developed an advanced material that allows for the not only the stabilization of nZVI, but also the improved degradation of various water contaminants. This was done...... by performing a series of surface modification techniques to the surface of the activated carbon, then physically grafting the covalent organic polymer to the carbon in a shell-like manner, and ultimately synthesizing nZVI in situ within the pores of both the activated carbon and the polymeric network. Not only...

  16. In field arsenic removal from natural water by zero-valent iron assisted by solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo, Lorena [Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapaca, Casilla 7-D, Arica (Chile); Laboratorio de Investigaciones Medioambientales de Zonas Aridas, LIMZA, Centro de Investigaciones del Hombre en el Desierto, CIHDE, Arica (Chile)], E-mail: lorenacp@uta.cl; Lienqueo, Hugo; Arenas, Maria [Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapaca, Casilla 7-D, Arica (Chile); Acarapi, Jorge [Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapaca, Casilla 7-D, Arica (Chile); Laboratorio de Investigaciones Medioambientales de Zonas Aridas, LIMZA, Centro de Investigaciones del Hombre en el Desierto, CIHDE, Arica (Chile); Contreras, David; Yanez, Jorge; Mansilla, Hector D. [Facultad de Ciencias Quimicas, Universidad de Concepcion, Casilla 160C, Concepcion (Chile)

    2008-12-15

    An in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 {mu}g L{sup -1}. Response surface method analysis was used to optimize the amount of zero-valent iron (steel wool) and the citrate concentration (lemon juice) to be used. The optimal conditions when using solar radiation to remove arsenic from natural water from the Camarones river are: 1.3 g L{sup -1} of steel wool and one drop (ca. 0.04 mL) of lemon juice. Under these conditions, removal percentages are higher than 99.5% and the final arsenic concentration is below 10 {mu}g L{sup -1}. This highly effective arsenic removal method is easy to use and inexpensive to implement. - An in situ arsenic removal method applicable to highly contaminated waters by using zero-valent iron, citrate and solar radiation was developed.

  17. Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions.

    Science.gov (United States)

    Li, Jie; Chen, Changlun; Zhang, Rui; Wang, Xiangke

    2015-06-01

    Nanoscale zero-valent iron particles supported on reduced graphene oxides (NZVI/rGOs) from spent graphene oxide (GO)-bound iron ions were developed by using a hydrogen/argon plasma reduction method to improve the reactivity and stability of NZVI. The NZVI/rGOs exhibited excellent water treatment performance with excellent removal capacities of 187.16 and 396.37 mg g(-1) for chromium and lead, respectively. Moreover, the NZVI/rGOs could be regenerated by plasma treatment and maintained high removal ability after four cycles. X-ray photoelectron spectroscopy analysis results implied that the removal mechanisms could be attributed to adsorption/precipitation, reduction, or both. Such multiple removal mechanisms by the NZVI/rGOs were attributed to the reduction ability of the NZVI particles and the role of dispersing and stabilizing abilities of the rGOs. The results indicated that the NZVI/rGOs prepared by a hydrogen/argon plasma reduction method might be an effective composite for heavy-metal-ion removal. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Removal of Perfluorinated Compounds From Water using Nanoscale Zero-Valent Iron

    DEFF Research Database (Denmark)

    Arvaniti, Olga S.; Hwang, Yuhoon; Andersen, Henrik Rasmus

    Perfluorinated Compounds (PFCs) are persistent micropollutants that have been detected in various environmental and biological matrices, worldwide. During the last decade, these compounds have also been detected in municipal wastewater and tap water. Due to the stability of C-F bond......, the application of biological and conventional physicochemical treatment methods does not seem to remove sufficient these compounds from water and wastewater. In the current study, the removal efficiency of four PFCs using three different types of nanoscale zero-valent iron (nZVI) was investigated. Influencing...... factors such as, initial pH solution, reaction temperature and nZVI dosage were also studied. According to the results, target compounds were removed in the presence of chemically synthesized nZVI modified with Mg-aminoclay (MgAC) than under commercial iron powder and chemically synthesized uncoated n...

  19. Investigation of Pb(II Removal from Aqueous Solutions Using Modified Nano Zero-Valent Iron Particles

    Directory of Open Access Journals (Sweden)

    Amirhossein Ramezanpoor

    2014-05-01

    Full Text Available This research was conducted in experimental scale with the aim of investigation effect of polyacrylic acid-stabilized zero-valent iron nanoparticles (PAA-nZVI on lead removal from aqueous solution. In this regards, NZVI was synthesized with polyacrylic acid and their size and morphological characteristics were examined via X-ray diffraction (XRD, Scanning Electron Microscopy (SEM and Fourier Transmission Infrared Spectroscopy (FTIR. To study the effect of PAA-nZVI on lead removal, pH of aqueous solution, contact time, PAA-NZVI concentration  and initial Pb(II concentration were considered as variables. Furthermore, the experimental data of Pb(II  removal were fitted using three kinetic models, namely Zero-order, First-order and Second-order.The results of experiments showed that maximum Pb(II removal efficiency was observed at pH=5, 15 min contact time and 5 g/L PAA-nZVI concentration. Moreover, the results of kinetic studies indicated that among all applied kinetic models, First-order kinetic model had more better prediction than other kinetic models ofPb(II removal. Based on the results of present research, PAA-NZVI is an efficient agent to remove Pb(II from aqueous solutions.

  20. Reductive Degradation of Perfluorinated Compounds in Water using Mg-aminoclay coated Nanoscale Zero Valent Iron

    OpenAIRE

    Arvaniti, Olga S.; Hwang, Yuhoon; Andersen, Henrik Rasmus; Stasinakis, Athanasios S.; Thomaidis , Nikolaos S.; Aloupi, Maria

    2015-01-01

    Perfluorinated Compounds (PFCs) are extremely persistent micropollutants that are detected worldwide. We studied the removal of PFCs (perfluorooctanoic acid; PFOA, perfluorononanoic acid; PFNA, perfluorodecanoic acid; PFDA and perfluorooctane sulfonate; PFOS) from water by different types of nanoscale zero-valent iron (nZVI). Batch experiments showed that an iron dose of 1 g•L-1 in the form of Mg-aminoclay (MgAC) coated nZVI, at an initial pH of 3.0 effectively removed 38 % to 96 % of individ...

  1. Kinetic and Thermodynamics of Methylene Blue Adsorption onto Zero Valent Iron Supported on Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Atyaf Khalid Hameed

    2016-08-01

    Full Text Available Zero valent iron supported on mesoporous silicanano particles (NZVI/MSNs was prepared by the aqueous phase borohydride reduction methods. Prior to the reduction, mesoporous silica nanoparticles (MSNs were prepared through the activation of fumed silica with concentrated HCl by refluxing at 90 °C. FTIR, XRD, FESEM, EDX and BET were used to characterize theadsorbents prepared. BET surface areas of MSNs, NZVI, and NZVI/MSNs were 126, 41, and 72 m2/g for, respectively. The performance of NZVI/MSNs as adsorbent was examined by adsorption of methylene blue (MB, performed in series of batch experiments. In the kinetic studies, pseudo first order and pseudo second order kinetic models were examined. The pseudo second order equation provided the best fit with the experimental data. Thermodynamic studies indicated that the adsorption process is endothermic with ΔH° was 90.53 kJ/mol. Positive ΔS° (300 J/mol and negative ΔG° (-6.42 kJ/mol was recorded, indicating the spontaneous of the adsorption process and naturally favorable. Copyright © 2016 BCREC GROUP. All rights reserved Received: 5th March 2016; Revised: 18th March 2016; Accepted: 18th March 2016 How to Cite: Hameed, A.K., Dewayanto, N., Dongyun, D., Nordin, M.R., Mohd Hasbi Ab. Rahim, M.H.A. (2016. Kinetic and Thermodynamics of Methylene Blue Adsorption onto Zero Valent Iron Supported on Mesoporous Silica. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (2: 250-261 (doi:10.9767/bcrec.11.2.443.250-261 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.2.443.250-261

  2. Antimony Adsorption from Zarshouran Gold Mineral Processing Plant Wastewater by Nano Zero Valent Iron Coated on Bentonite

    Directory of Open Access Journals (Sweden)

    nader nosrati

    2015-03-01

    Full Text Available The effluent from Zarshouran gold mineral processing plant contains high quantities of arsenic, antimony, mercury, and bismuth. These metals and metalloids are soluble in water and very toxic when they enter the environment. Their solubility in water causes the polluted area to extend beyond their point of origin. In this article, different methods of antimony removal from water and wastewater were reviewed and the zero-valent iron nanoparticles coated on Bentonite were selected as an effective and low cost material for removing antimony from wastewater. For the purposes of this study, zero-valent iron nanoparticles of 40-100 nanometers in size were synthesized by dropwise addition of sodium borohydride solution to an Iron (III aqueous solution at  ambient temperature and mixed with nitrogen gas. To avoid particle agglomeration and to enhance the product’s environmentally safe application, the  nanoparticles were coated on Bentonite and characterized by SEM/EDAX and BET. The experiments were carried out by intense mixing of the adsorbent with 10ml of real/synthtic wastewater samples in 20ml bottles.  The effects of pH, contact time, temperature, and adsorbent dosage on antimony removal efficiency were investigated under intense mixing using a magnetic mixer. Finally, the effluents were filtered upon completion of the experiments and used for atomic adsorption analysis. The results of the experiments showed that the adsorption isotherms of the synthesized nanoparticles obeyed the Langmuir and Freundlich models. The experiments carried out on real samples showed that antimony adsorption capacity for B-nZVI was 2.6 mg/g of the adsorbent and that the highest antimony removal efficiency was 99.56%.

  3. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A., E-mail: jimfield@email.arizona.edu

    2016-05-05

    Highlights: • Electron donor from zero-valent iron (ZVI) drives sulfate reduction to sulfide. • Sulfide converts soluble heavy metals into sulfide minerals. • Excess sulfide is sequestered by iron preventing discharge. • Corrosion of ZVI consumes acidity in acid rock drainage. • ZVI as reactive material outlasted limestone in removing heavy metals. - Abstract: This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor.

  4. Treatment of acid rock drainage using a sulfate-reducing bioreactor with zero-valent iron

    International Nuclear Information System (INIS)

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, James A.

    2016-01-01

    Highlights: • Electron donor from zero-valent iron (ZVI) drives sulfate reduction to sulfide. • Sulfide converts soluble heavy metals into sulfide minerals. • Excess sulfide is sequestered by iron preventing discharge. • Corrosion of ZVI consumes acidity in acid rock drainage. • ZVI as reactive material outlasted limestone in removing heavy metals. - Abstract: This study assessed the bioremediation of acid rock drainage (ARD) in flow-through columns testing zero-valent iron (ZVI) for the first time as the sole exogenous electron donor to drive sulfate-reducing bacteria in permeable reactive barriers. Columns containing ZVI, limestone or a mixture of both materials were inoculated with an anaerobic mixed culture and fed a synthetic ARD containing sulfuric acid and heavy metals (initially copper, and later also cadmium and lead). ZVI significantly enhanced sulfate reduction and the heavy metals were extensively removed (>99.7%). Solid-phase analyses showed that heavy metals were precipitated with biogenic sulfide in the columns packed with ZVI. Excess sulfide was sequestered by iron, preventing the discharge of dissolved sulfide. In the absence of ZVI, heavy metals were also significantly removed (>99.8%) due to precipitation with hydroxide and carbonate ions released from the limestone. Vertical-profiles of heavy metals in the columns packing, at the end of the experiment, demonstrated that the ZVI columns still had excess capacity to remove heavy metals, while the capacity of the limestone control column was approaching saturation. The ZVI provided conditions that enhanced sulfate reduction and generated alkalinity. Collectively, the results demonstrate an innovative passive ARD remediation process using ZVI as sole electron-donor.

  5. Effect of zero-valent iron and trivalent iron on UASB rapid start-up.

    Science.gov (United States)

    Wang, Jie; Fang, Hongyan; Jia, Hui; Yang, Guang; Gao, Fei; Liu, Wenbin

    2018-01-01

    In order to realize the rapid start-up of upflow anaerobic sludge blanket (UASB) reactor, the iron ion in different valence state was added to UASB. The results indicated that the start-up time of R3 (FeCl 3 ) was 48 h faster than that of R2 (zero-valent iron (ZVI)). It was because the FeCl 3 could rapidly promote granulation of sludge as a flocculant. However, ZVI released Fe 2+ through corrosion slowly, and then the Fe 2+ increased start-up speed by enhancing enzyme activity and enriching methanogens. In addition, the ZVI and FeCl 3 could promote hydrolysis acidification and strengthen the decomposition of long-chain fatty acids. The detection of iron ions showed that iron ions mainly existed in the sludge. Because the high concentration of Fe 2+ could inhibit anaerobic bacteria activity, excess Fe 3+ could be changed into iron hydroxide precipitation to hinder the mass transfer process of anaerobic bacteria under the alkaline condition. The FeCl 3 was suitable to be added at the initial stage of UASB start-up, and the ZVI was more fitted to be used in the middle stage of reactor start-up to improve the redox ability.

  6. Removal of basic dye from aqueous solutions using nano scale zero valent iron (NZVI) as adsorbent

    International Nuclear Information System (INIS)

    Khan, M. S.; Ahmad, A.; Bangash, F. K.; Shah, S. S.; Khan, P.

    2013-01-01

    Nano scale zero valent iron (NZVI) was synthesized and tested for the purification of waste water contaminated by the organic pollutants. In the present study removal of basic blue 3 dye was investigated by NZVI adsorbent. NZVI adsorbent was prepared in the presence of N/sub 2/ gas atmosphere by sodium boro- hydrate (NaHB/sub 4/) reduction method. The particle size of the prepared adsorbent was approximately in the range of 1 x 10/sup -2/nm to 2 x 10/sup -2/nm. The adsorption of basic blue 3 dyes was confirmed with various parameters such as ionic strength, contact time and initial dye concentrations. The experiments were carried out in a batch mode technique. The surface morphology was studied by SEM analysis technique. (author)

  7. Data of furfural adsorption on nano zero valent iron (NZVI) synthesized from Nettle extract

    OpenAIRE

    Fazlzadeh, Mehdi; Ansarizadeh, Mohammad; Leili, Mostafa

    2017-01-01

    Among various water and wastewater treatment methods, adsorption techniques are widely used to remove certain classes of pollutants due to its unique features. Thus, the aim of this data article is to synthesize zero valent iron nanoparticles (NZVI) from Nettle leaf extract by green synthesis method as an environmentally friendly technique, and to evaluate it's efficiency in the removal of furfural from aqueous solutions. The data of possible adsorption mechanism and isotherm of furfural on t...

  8. Cellulose nanocrystal zero-valent iron nanocomposites for groundwater remediation†

    Science.gov (United States)

    Bossa, Nathan; Carpenter, Alexis Wells; Kumar, Naresh; de Lannoy, Charles-François

    2018-01-01

    Zero-valent iron nanoparticles (nano-ZVIs) have been widely studied for in situ remediation of groundwater and other environmental matrices. Nano-ZVI particle mobility and reactivity are still the main impediments in achieving efficient in situ groundwater remediation. Compared to the nano-ZVI “coating” strategy, nano-ZVI stabilization on supporting material allows direct contact with the contaminant, reduces the electron path from the nano-ZVI to the target contaminant and increases nano-ZVI reactivity. Herein, we report the synthesis of nano-ZVI stabilized by cellulose nanocrystal (CNC) rigid nanomaterials (CNC-nano-ZVI; Fe/CNC = 1 w/w) with two different CNC functional surfaces (–OH and –COOH) using a classic sodium borohydride synthesis pathway. The final nanocomposites were thoroughly characterized and the reactivity of CNC-nano-ZVIs was assessed by their methyl orange (MO) dye degradation potential. The mobility of nanocomposites was determined in (sand/glass bead) porous media by utilizing a series of flowthrough transport column experiments. The synthesized CNC-nano-ZVI provided a stable colloidal suspension and demonstrated high mobility in porous media with an attachment efficiency (α) value of less than 0.23. In addition, reactivity toward MO increased up to 25% compared to bare ZVI. The use of CNC as a delivery vehicle shows promising potential to further improve the capability and applicability of nano-ZVI for in situ groundwater remediation and can spur advancements in CNC-based nanocomposites for their application in environmental remediation. PMID:29725541

  9. Mechanism insights into enhanced trichloroethylene removal using xanthan gum-modified microscale zero-valent iron particles.

    Science.gov (United States)

    Xin, Jia; Han, Jun; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf

    2015-03-01

    This report focuses on the enhancement in trichloroethylene (TCE) removal from contaminated groundwater using xanthan gum (XG)-modified, microscale, zero-valent iron (mZVI). Compared with bare mZVI, XG-coated mZVI increased the TCE removal efficiency by 30.37% over a 480-h experimental period. Because the TCE removal is attributed to both sorption and reduction processes, the contributions from sorption and reduction were separately investigated to determine the mechanism of XG on TCE removal using mZVI. The results showed that the TCE sorption capacity of mZVI was lower in the presence of XG, whereas the TCE reduction capacity was significantly increased. The FTIR spectra confirmed that XG, which is rich in hydrophilic functional groups, was adsorbed onto the iron surface through intermolecular hydrogen bonds, which competitively repelled the sorption and mass transfer of TCE toward reactive sites. The variations in the pH, Eh, and Fe(2+) concentration as functions of the reaction time were recorded and indicated that XG buffered the solution pH, inhibited surface passivation, and promoted TCE reduction by mZVI. Overall, the XG-modified mZVI was considered to be potentially effective for the in-situ remediation of TCE contaminated groundwater due to its high stability and dechlorination reactivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A Case Study of Using Zero-Valent Iron Nanoparticles for Groundwater Remediation

    Science.gov (United States)

    Xiong, Z.; Kaback, D.; Bennett, P. J.

    2011-12-01

    Zero-valent iron nanoparticle (nZVI) is a promising technology for rapid in situ remediation of numerous contaminants, including chlorinated solvents, in groundwater and soil. Because of the high specific surface area of nZVI particles, this technology achieves treatment rates that are significantly faster than micron-scale and granular ZVI. However, a key technical challenge facing this technology involves agglomeration of nZVI particles. To improve nZVI mobility/deliverability and reactivity, an innovative method was recently developed using a low-cost and bio-degradable organic polymer as a stabilizer. This nZVI stabilization strategy offers unique advantages including: (1) the organic polymer is cost-effective and "green" (completely bio-compatible), (2) the organic polymer is highly effective in stabilizing nZVI particles; and (3) the stabilizer is applied during particle preparation, making nZVI particles more stable. Through a funding from the U.S. Air Force Center for Engineering and the Environment (AFCEE), AMEC performed a field study to test the effectiveness of this innovative technology for degradation of chlorinated solvents in groundwater at a military site. Laboratory treatability tests were conducted using groundwater samples collected from the test site and results indicated that trichloroethene (main groundwater contaminant at the site) was completely degraded within four hours by nZVI particles. In March and May 2011, two rounds of nZVI injection were performed at the test site. Approximately 700 gallons of nZVI suspension with palladium as a catalyst were successfully prepared in the field and injected into the subsurface. Before injection, membrane filters with a pore size of 450 nm were used to check the nZVI particle size and it was observed that >85% of nZVI particles were passed through the filter based on total iron measurement, indicating particle size of <450 nm. During field injections, nZVI particles were observed in a monitoring well

  11. A Study of Efficiency of Zero-valent Iron Nanoparticles in Degradation of Trichlorethylene from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Samaneh Dehghan

    2016-12-01

    mg/l, and contact time= 86 min. The results of kinetic studies revealed that TCE degradation by nZVI follows first-order kinetic model. Conclusion: It is conclude that zero-valent iron nanoparticles have a good efficiency in the degradation of TCE. On the other hand, separation of these nanoparticles is simple due to its magnetism properties, which can improve the use of these nanoparticles. 

  12. Ecofriendly Synthesis of nano Zero Valent Iron from Banana Peel Extract

    Science.gov (United States)

    Sunardi; Ashadi; Budi Rahardjo, Sentot; Inayati

    2017-01-01

    In this study, nano Zero Valent Iron (nZVI) were synthesized from banana peel extract (BPE) and ferrous sulfate. During the synthesis of nZVI both the precursor and the reducing agent were mixed in a clean sterilized flask in 1:1 proportion. For the reduction of Fe ions, 5 ml of filtered BPE was mixed to 5 ml of freshly prepared 0.001 M - 0.005 M aqueous of FeSO4 solution with constant stirring at room temperature. Within a particular time change in colour from brown to black color obtained by nanoparticles synthesis. A systematic characterization of nZVI was performed using UV-Vis. UV-visible absorption is used to investigate SPR. Characteristic surface plasmon absorption band was observed at 210 nm for the black colored nZVI synthesized from 0.001-0.005 M ferrous sulfate with BPE concentration 5 ml. It has been found that the optimum concentration for the synthesis of nZVI is 0.001M Fe2+ ions. There is small decrease in the intensity of SPR band from 0.001 to 0.005 M. The characterization size of nZVI was performed using TEM. The result shows that formation of particles size of nZVI was more 100 nm.

  13. Ecofriendly Synthesis of nano Zero Valent Iron from Banana Peel Extract

    International Nuclear Information System (INIS)

    Sunardi; Ashadi; Rahardjo, Sentot Budi; Inayati

    2017-01-01

    In this study, nano Zero Valent Iron (nZVI) were synthesized from banana peel extract (BPE) and ferrous sulfate. During the synthesis of nZVI both the precursor and the reducing agent were mixed in a clean sterilized flask in 1:1 proportion. For the reduction of Fe ions, 5 ml of filtered BPE was mixed to 5 ml of freshly prepared 0.001 M – 0.005 M aqueous of FeSO 4 solution with constant stirring at room temperature. Within a particular time change in colour from brown to black color obtained by nanoparticles synthesis. A systematic characterization of nZVI was performed using UV-Vis. UV–visible absorption is used to investigate SPR. Characteristic surface plasmon absorption band was observed at 210 nm for the black colored nZVI synthesized from 0.001–0.005 M ferrous sulfate with BPE concentration 5 ml. It has been found that the optimum concentration for the synthesis of nZVI is 0.001M Fe 2+ ions. There is small decrease in the intensity of SPR band from 0.001 to 0.005 M. The characterization size of nZVI was performed using TEM. The result shows that formation of particles size of nZVI was more 100 nm. (paper)

  14. Magnetic solid phase extraction of typical polycyclic aromatic hydrocarbons from environmental water samples with metal organic framework MIL-101 (Cr) modified zero valent iron nano-particles.

    Science.gov (United States)

    Zhou, Qingxiang; Lei, Man; Wu, Yalin; Yuan, Yongyong

    2017-03-03

    Metal-organic framework material has been paid more attention because of its good physical and chemical properties. Nanoscale zero valent iron is also in the center of concern recently. Combination of their merits will give impressive results. Present study firstly synthesized a new magnetic nanomaterial nano-scale zero valent iron-functionalized metal-organic framworks MIL-101 (Fe@MIL-101) by co-precipitation method. The morphology and structure of the as-prepared Fe@MIL-101 were characterized by transmission electron microscopy and X-ray diffraction, etc. The experimental results showed that Fe@MIL-101 earned good adsorption ability to polycyclic aromatic hydrocarbons. The limits of detection of developed magnetic solid phase extraction were all below 0.064μgL -1 and precision can be expressed as relative standard deviation (RSD, %) and which was better than 4.4% (n=6). The real water analysis indicated that the spiked recoveries were satisfied, and Fe@MIL-101 earned excellent reusability. All these demonstrated that Fe@MIL-101 exhibited excellent adsorption capability to polycyclic aromatic hydrocarbons and would be a good adsorbent for development of new monitoring methods for environmental pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Tailoring the properties of a zero-valent iron-based composite by mechanochemistry for nitrophenols degradation in wastewaters.

    Science.gov (United States)

    Cagnetta, Giovanni; Huang, Jun; Lomovskiy, Igor O; Yu, Gang

    2017-11-01

    Zero-valent iron (ZVI) is a valuable material for environmental remediation, because of its safeness, large availability, and inexpensiveness. Moreover, its reactivity can be improved by addition of (nano-) particles of other elements such as noble metals. However, common preparation methods for this kind of iron-based composites involve wet precipitation of noble metal salt precursors, so they are often expensive and not green. Mechanochemical procedures can provide a solvent-free alternative, even at a large scale. The present study demonstrates that it is possible to tailor functional properties of ZVI-based materials, utilizing high-energy ball milling. All main preparation parameters are investigated and discussed. Specifically, a copper-carbon-iron ternary composite was prepared for fast degradation of 4-nitrophenol (utilized as model pollutant) to 4-aminophenol and other phenolic compounds. Copper and carbon are purposely chosen to insert specific properties to the composite: Copper acts as efficient nano-cathode that enhances electron transfer from iron to 4-nitrophenol, while carbon protects the iron surface from fast oxidation in open air. In this way, the reactive material can rapidly reduce high concentration of nitrophenols in water, it does not require acid washing to be activated, and can be stored in open air for one week without any significant activity loss.

  16. Study on degradation of nitrobenzene in groundwater using emulsified nano-zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jun, E-mail: dongjun@jlu.edu.cn; Wen, Chunyu, E-mail: 13756014702@163.com; Liu, Dengfeng, E-mail: 862337789@qq.com [Jilin University, College of Environment and Resources (China); Zhang, Wenjing, E-mail: zhangwj@caep.org.cn [Chinese Academy for Environmental Planning (CAEP) (China); Li, Jintong, E-mail: 1535448369@qq.com; Jiang, Hanjie, E-mail: 1932639992@qq.com; Qin, Chongwei, E-mail: 476158689@qq.com; Hong, Mei, E-mail: hongmei@jlu.edu.cn [Jilin University, College of Environment and Resources (China)

    2015-01-15

    Emulsified nano-zero-valent iron (EZVI) is a modified form of bare nanoiron with improved transportability and targetability for the remediation of organic-solvents polluted soil and groundwater. In this work, EZVI (50–150 nm) was prepared by coating an emulsified vegetable oil membrane on the surface of Fe nanoparticles. EZVI was well-dispersed and less aggregation was observed. Batch experiments were conducted in anaerobic conditions to investigate the kinetics of nitrobenzene reduction by EZVI and the influences of oil concentration, initial iron content, and initial pH. Results indicated that the kinetics of nitrobenzene reduction by EZVI followed a pseudo-first-order kinetics. The observed rate constant of nitrobenzene is 0.0942 min{sup −1}. The oil concentration of 1 and 2 % tended to be preferred concentrations. The rate of nitrobenzene degradation and aniline formation increased with increasing iron content. The low pH is favorable to the nitrobenzene reduction by EZVI.

  17. Persistence of commercial nanoscaled zero-valent iron (nZVI) and by-products

    International Nuclear Information System (INIS)

    Adeleye, Adeyemi S.; Keller, Arturo A.; Miller, Robert J.; Lenihan, Hunter S.

    2013-01-01

    The use of nanoscale zero-valent iron (nZVI) for in situ remediation of a wide scale of environmental pollutants is increasing. Bench and field pilot studies have recorded successful cleanup of many pollutants using nZVI and other iron-mediated nanoparticles. However, a major question remains unanswered: what is the long-term environmental fate of the iron nanoparticles used for remediation? We aged three types of commercial nZVI in different aqueous media, including a groundwater sample, under aerobic and anaerobic conditions for 28 days, and found that the bulk of the nZVI injected into polluted sites will end up in the sediment phase of the aquifer. This is mainly due to aggregation-induced sedimentation of the nZVI and the insoluble iron oxides formed when nZVI undergoes corrosion. Iron concentrations >500 g/kg were detected in sediment, a loading level of iron that may potentially affect some organisms and also reduce the permeability of aquifers. Dissolved and suspended iron concentrations initially surged when nZVI was applied, but iron decreased steadily in the supernatant and suspended sediment as the bulk of the iron partitioned into the sediment. Solution and surface chemistry of the iron species showed that nZVI remains reactive for more than 1 month, and that the reactivity of iron and its transformations are governed by environmental factors, including the presence of different ions, ionic strength, natural organic matter, and pH.

  18. Zero-Valent Metallic Treatment System and Its Application for Removal and Remediation of Polychlorinated Biphenyls (Pcbs)

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Brooks, Kathleen B. (Inventor)

    2012-01-01

    PCBs are removed from contaminated media using a treatment system including zero-valent metal particles and an organic hydrogen donating solvent. The treatment system may include a weak acid in order to eliminate the need for a coating of catalytic noble metal on the zero-valent metal particles. If catalyzed zero-valent metal particles are used, the treatment system may include an organic hydrogen donating solvent that is a non-water solvent. The treatment system may be provided as a "paste-like" system that is preferably applied to natural media and ex-situ structures to eliminate PCBs.

  19. Comparison of the Efficiencies of Zero-Valent Iron Nanoparticles and Stabilized Iron Nanoparticles for Nitrate Reduction from Polluted Waters

    Directory of Open Access Journals (Sweden)

    Fatemeh Nooralivand

    2015-12-01

    Full Text Available The present study was conducted to evaluate the feasibility of zero-valent iron nanoparticles (ZVIN for the removal of nitrate from aqueous solutions. For this purpose, bare zero-valent iron nanoparticles (bare-ZVIN and CMC-ZVIN were synthesized using the borohydride reduction method and their morphological characteristics were examined via scanning electron microscopy (SEM, X-ray diffraction (XRD, and Fourier Transmission Infrared Spectroscopy (FTIR. The effects of pH of the aqueous solution, initial nitrate concentration, ZVIN concentration, and contact time on nitrate reduction were investigated as operational parameters and the kinetics of nitrate reduction was studied in batch experiments. The results showed that 93.65% of nitrate was removed by stabilized nanoparticles at pH=6 while non-stabilized nanoparticles at pH=2 were able to remove 85.55% of the nitrate.Furthermore, nitrate reduction was enhanced by increasing ZVIN concentration and contact time while it was decreased as a result of increasing initial nitrate concentration. The major product of nitrate reduction at an acidic pH was found to be ammonium; at an alkaline pH, however, nitrate was converted to nitrogen and nitrite production dropped to less than 2%. Kinetic analysis demonstrated that denitrification of nitrate by the nanoparticles fitted well with first-order and second-order reaction models. The results also demonstrated that the stabilized ZVI nanoparticles were more effective than bare-ZVIN for nitrate reduction in aqueous solutions.

  20. Kinetics of nitrate adsorption and reduction by nano-scale zero valent iron (NZVI): Effect of ionic strength and initial pH

    DEFF Research Database (Denmark)

    Kim, Do-Gun; Hwang, Yuhoon; Shin, Hang-Sik

    2016-01-01

    Kinetic models for pollutants reduction by Nano-scale Zero Valent Iron (NZVI) were tested in this study to gain a better understanding and description of the reaction. Adsorption kinetic models and a heterogeneous catalytic reaction kinetic equation were proposed for nitrate removal and for ammon...

  1. Degradation of bis- p -nitrophenyl phosphate using zero-valent iron nanoparticles

    International Nuclear Information System (INIS)

    Valle-Orta, Maiby; Guerrero, Rubén Saldivar; Díaz, David; Dubé, Inti Zumeta; Quiñonez, José Luis Ortiz

    2017-01-01

    Phosphate esters are employed in some agrochemical formulations and have long life time in the Environment. They are neurotoxic to mammals and it is very difficult to hydrolyze them. It is easy to find papers in the literature dealing with transition metal complexes used in the hydrolysis processes of organophosphorous compounds. However, there are few reports related with degradation of phosphate esters with inorganic nanoparticles. In this work bis-4-nitrophenyl phosphate (BNPP) was used as an agrochemical agent model. The BNPP interaction with zero-valent iron nanoparticles (ZVI NPs), in aqueous media, was searched. The concentration of BNPP was 1000 times higher than the ZVI NPs concentration. The average size of the used iron nanoparticles was 10.2 ± 3.2 nm. The BNPP degradation process was monitored by means of UV-visible method. Initially, the BNPP hydrolysis happens through the P-O bonds breaking-off under the action of the ZVI NPs. Subsequently, the nitro groups were reduced to amine groups. The overall process takes place in 10 minutes. The reaction products were identified employing standard substances in adequate concentrations. The iron by-products were isolated and characterized by X-RD. These iron derivatives were identified as magnetite (Fe 3 O 4 ) and/or maghemite (γ-Fe 2 O 3 ) and lepidocrocite (γ-FeOOH). A suggested BNPP degradation mechanism will be discussed. (paper)

  2. Ferro zero: uma nova abordagem para o tratamento de águas contaminadas com compostos orgânicos poluentes Zero-valent iron: a new approach for treatment of waters contamined with organic pollutants

    Directory of Open Access Journals (Sweden)

    Wellington S. Pereira

    2005-02-01

    Full Text Available Anthropogenic pollution of groundwater and surface water has become a very serious environmental problem around the world. A wide range of toxic pollutants is recalcitrant to the conventional treatment methods, thus there is much interest in the development of more efficient remediation processes. Degradation of organic pollutants by zero-valent iron is one of the most promising approaches for water treatment, mainly because it is of low cost, easy to obtain and effective. After a general introduction to water pollution and current treatments, this work highlights the advances, applications and future trends of water remediation by zero-valent iron. Special attention is given to degradation of organochloride and nitroaromatic compounds, which are commonly found in textile and paper mill effluents.

  3. Zero-valent iron/iron oxide-oxyhydroxide/graphene as a magnetic sorbent for the enrichment of polychlorinated biphenyls, polyaromatic hydrocarbons and phthalates prior to gas chromatography-mass spectrometry.

    Science.gov (United States)

    Karamani, Anna A; Douvalis, Alexios P; Stalikas, Constantine D

    2013-01-04

    A composite magnetic material consisting of zero-valent iron, iron oxide-oxyhydroxide and graphene was synthesized and used successfully as a sorbent for the micro solid-phase extraction of PAHs, PCBs and phthalic acid esters. The components endow the composite with multiple characteristics such as adsorption capability and facile removal due to its magnetic properties. Due to the π-π electrostatic stacking property of graphene, the high specific surface area and the adsorption capability of both components, the resulting black flaky Fe(0)/iron oxide-oxyhydroxide/graphene composite showed high extraction efficiency for the target analytes from water samples. Compared with the neat graphene, the composite material has improved properties in terms of microextraction capabilities as both the hydrophobic graphene and zero-valent iron participate in the adsorption of the hydrophobic molecules. The precision from the extraction of all three groups of compounds was lower than 7% and the recoveries were from 90 to 93% from a spiked lake water sample. The high recoveries in relation to the low final volume of the desorption solvent ensure high preconcentration efficiency and a promising sorbent for analytical applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Fluidized bed bioreactors coupled to zero-valent iron filters for removal of high concentrations of perchloroethylene

    International Nuclear Information System (INIS)

    Poggi-Varaldo, H. M.; Herrera-Lopez, D.; Garcia-Mena, J.; Rios-Leal, E.

    2009-01-01

    The aim of this work was to evaluate the effect of coupling continuous bioreactors with zero-valent iron filters on removal of PCE. Two types of reactors with simultaneous electron acceptors were used: partially aerated methanogenic (PAM) and methanogenic-denitrifying (M-D). Lab-scale fluidized-bed reactors (FBBR) were operated as follows: PAM at λ=135 g COD/g O 2 and M-D at λ=9 g COD/g N-NO 3 with 80 mg/L of PCE in the influent. (Author)

  5. Graduated characterization method using a multi-well microplate for reducing reactivity of nanoscale zero valent iron materials

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Salatas, Apostolos; Mines, Paul D.

    2015-01-01

    Even though nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, quantification of nZVI reactivity has not yet been standardized. Here, we adapted colorimetric assays for determining reductive activity of n...... with different compounds, combined with the use of a multi-well microplate based color assay, promises to be a useful and simple tool in various nZVI related research topics....

  6. An Experimental Study of Micron-Size Zero-Valent Iron Emplacement in Permeable Porous Media Using Polymer-Enhanced Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Mart; Wietsma, Thomas W.; Covert, Matthew A.; Vermeul, Vince R.

    2005-12-22

    At the Hanford Site, an extensive In Situ Redox Manipulation (ISRM) permeable reactive barrier was installed to prevent chromate from reaching the Columbia River. However, chromium has been detected in several wells, indicating a premature loss of the reductive capacity in the aquifer. One possible cause for premature chromate breakthrough is associated with the presence of high-permeability zones in the aquifer. In these zones, groundwater moves relatively fast and is able to oxidize iron more rapidly. There is also a possibility that the high-permeability flow paths are deficient in reducing equivalents (e.g. reactive iron), required for barrier performance. One way enhancement of the current barrier reductive capacity can be achieved is by the addition of micron-scale zero-valent iron to the high-permeability zones within the aquifer. The potential emplacement of zero-valent iron (Fe0) into high-permeability Hanford sediments (Ringold Unit E gravels) using shear-thinning fluids containing polymers was investigated in three-dimensional wedge-shaped aquifer models. Polymers were used to create a suspension viscous enough to keep the Fe0 in solution for extended time periods to improve colloid movement into the porous media without causing a permanent detrimental decrease in hydraulic conductivity. Porous media were packed in the wedge-shaped flow cell to create either a heterogeneous layered system with a high-permeability zone in between two low-permeability zones or a high-permeability channel surrounded by low-permeability materials. The injection flow rate, polymer type, polymer concentration, and injected pore volumes were determined based on preliminary short- and long-column experiments.

  7. Effect of Stabilized Zero-Valent Iron Nanoparticles on Nitrate Removal from Sandy Soil

    Directory of Open Access Journals (Sweden)

    F. Nooralivand

    2016-02-01

    Full Text Available Introduction: During the recent decades, the use of N fertilizers has undeniable development regardless of their effects on the soil and environment. Increasing nitrate ion concentration in soil solution and then, leaching it into groundwater causes increase nitrate concentration in the water and raise the risk suffering from the people to some diseases. World health organization recommended maximum concentration level for nitrate and nitrite in the drinking water 50 and 3 mg/l, respectively. There are different technologies for the removal of nitrate ions from aqueous solution. The conventional methods are ion exchange, biological denitrification, reverse osmosis and chemical reduction. Using nanoscale Fe0 particles compared to other methods of nitrate omission was preferred because of; its high surface area, more reactive, lower cost and higher efficiency. More studies on the reduction of nitrate by zero-valent iron nanoparticles have been in aqueous solutions or in the soil in batch scale. Nanoparticles surface modified with poly-electrolytes, surfactants and polymers cause colloidal stability of the particles against the forces of attraction between particles and increases nanoparticle transport in porous media. The objectives of this study were to synthesize carboxymethyl cellulose stabilized zero-valent iron nanoparticles and consideration of their application for nitrate removal from sandy soil. Materials and Methods: The nanoparticles were synthesized in a lab using borohydride reduction method and their morphological characteristics were examined via scanning electron microscopy (SEM, X-ray diffraction (XRD and Fourier Transmission Infrared Spectroscopy (FTIR. Experiments were conducted on packed sand column (40 cm length and 2.5 cm inner diameter under conditions of different nanoparticle concentration (1, 2, and 3 g1-1and high initial NO3- concentration (150, 250, and 350 mgl-1. Homogeneous soil column was filled with the wet packed

  8. Inhibition of Nitrate Reduction by NaCl Adsorption on a Nano-Zero-Valent Iron Surface during a Concentrate Treatment for Water Reuse

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Kim, Dogun; Shin, Hang-Sik

    2015-01-01

    Nanoscale zero-valent iron (NZVI) has been considered as a possible material to treat water and wastewater. However, it is necessary to verify the effect of the matrix components in different types of target water. In this study, different effects depending on the sodium chloride (Na...

  9. Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Dongmei Zhou; Yujun Wang; Xiangdong Zhu; Shengyang Jin

    2011-01-01

    Transformation of polychlorinated biphenyls (PCBs) by zero-valent iron represents one of the latest innovative technologies for environmental remediation.The dechlorination of 4-chlorobiphenyl (4-C1BP) by nanoscale zero-valent iron (NZVI) in the presence of humic acid or metal ions was investigated.The results showed that the de chlorination of 4-CIBP by NZVI increased with decreased solution pH.When the initial pH value was 4.0,5.5,6.8,and 9.0,the de chlorination efliciencies of 4-C1BP after 48 hr were 53.8%,47.8%,35.7%,and 35.6%,respectively.The presence of humic acid inhibited the reduction of 4-ClBP in the first 4 hr,and then significantly accelerated the dechlorination by reaching 86.3% in 48 hr.Divalent metal ions,Co2+,Cu2+,and Ni2+,were reduced and formed bimetals with NZVI,thereby enhanced the dechlorination of 4-CIBP.The dechlorination percentages of 4-CIBP in the presence of 0.1 mmol/L Co2+,Cu2+ and Ni2+ were 66.1%,66.0% and 64.6% in 48 hr,and then increased to 67.9%,71.3% and 73.5%,after 96 hr respectively.The dechlorination kinetics of 4-CIBP by the NZVI in all cases followed pseudo-first order model.The results provide a basis for better understanding of the dechlorination mechanisms of PCBs in real environment.

  10. Reducing As availability in calcareous soils using nanoscale zero valent iron.

    Science.gov (United States)

    Azari, Prisa; Bostani, Abdol Amir

    2017-09-01

    Different methods, including the use of nanoscale zero-valent iron (NZVI), have been used to treat arsenic (As)-contaminated environments, with much less data on the use of NZVI in arsenic-calcareous-polluted soils. Accordingly, two different experiments were conducted to investigate the effects of NZVI on the removal of As from three different calcareous-polluted soils. In the first experiment, the effects of soil type (differing in the rate of clay particles and organic carbon including S1 (8.0 and 0.05%), S2 (20 and 0.2%), and S3 (20.5 and 0.8%)) and NZVI concentration (0, 50, and 100 g kg -1 of dry soil) on the removal of As extractable with distilled water were evaluated using a factorial design with three replicates. In the second experiment, the NZVI concentrations were reduced to 0, 2.5, 5.0, and 25 g kg -1 , and the NZVI contact time (0.5, 48, 96, 192, 384, and 768 h) was also tested. The analysis of variance in both experiments indicated the significant effects (P soils, with increasing NZVI concentration and contact time, the concentration of available As in the solution phase significantly decreased (P = 0.01). S3, due to a higher rate of organic matter, was less responsive to the NZVI treatments than the other soils. The effectiveness of the nanoremediation method, tested in this research work, on the stabilization of As in calcareous soils, is verified.

  11. Synergistic degradation of chlorinated hydrocarbons with microorganisms and zero valent iron

    Science.gov (United States)

    Schöftner, Philipp; Summer, Dorothea; Leitner, Simon; Watzinger, Andrea; Wimmer, Bernhard; Reichenauer, Thomas

    2016-04-01

    Sites contaminated with chlorinated hydrocarbons (CHC) are located mainly within build-up regions. Therefore in most cases only in-situ technologies without excavation of soil material can be used for remediation. This project examines a novel in-situ remediation method, in which the biotic degradation via bacteria is combined with abiotic degradation via zero-valent iron particles (ZVI). ZVI particles are injected into the aquifer where CHC-molecules are reductively dechlorinated. However Fe0 is also oxidized by reaction with water leading to generation of H2 without any CHC degradation. To achieve biotic degradation often strictly anaerobic strains of the bacteria Dehalococcoides are used. These bacteria can dechlorinate CHC by utilizing H2. By combining these processes the H2, produced during the anaerobic corrosion of Fe0, could be used by bacteria for further CHC degradation. Therefore the amount of used Fe0 and as a consequence also remediation costs could be reduced. Additionally the continuous supply of H2 could make the bacterial degradation more controllable. Different Fe0 particles (nano- and micro-scale) were tested for their perchloroethene (PCE) degradation rate and H2 production rate in microcosms. PCE-degradation rate by different bacterial cultures was investigated in the same microcosm system. In course of these experiments the 13C enrichment factors of the PCE degradation of the different particles and cultures were determined to enable the differentiation of biotic and abiotic degradation. Preliminary results showed, that the nano-scale particles reacted faster with PCE and water than their micro-scaled counterparts. The PCE degradation via micro-scaled particles lead to 13C enrichment factors in the range of -3,6 ‰ ± 0,6 to -9,5 ‰ ± 0,2. With one of the examined bacterial cultures a fast reduction of PCE to ethene was observed. Although PCE and TCE were completely degraded by this culture the metabolites DCE and VC could still be detected

  12. Synthesis of Highly Reactive Subnano-sized Zero-valent Iron using Smectite Clay Templates

    Science.gov (United States)

    Gu, Cheng; Jia, Hanzhang; Li, Hui; Teppen, Brian J.; Boyd, Stephen A.

    2010-01-01

    A novel method was developed for synthesizing subnano-sized zero-valent iron (ZVI) using smectite clay layers as templates. Exchangeable Fe(III) cations compensating the structural negative charges of smectites were reduced with NaBH4, resulting in the formation of ZVI. The unique structure of smectite clay, in which isolated exchangeable Fe(III) cations reside near the sites of structural negative charges, inhibited the agglomeration of ZVI resulting in the formation of discrete regions of subnanoscale ZVI particles in the smectite interlayer regions. X-ray diffraction revealed an interlayer spacing of ~ 5 Å. The non-structural iron content of this clay yields a calculated ratio of two atoms of ZVI per three cation exchange sites, in full agreement with the XRD results since the diameter of elemental Fe is 2.5 Å. The clay-templated ZVI showed superior reactivity and efficiency compared to other previously reported forms of ZVI as indicated by the reduction of nitrobenzene; structural Fe within the aluminosilicate layers was nonreactive. At a 1:3 molar ratio of nitrobenzene:non-structural Fe, a reaction efficiency of 83% was achieved, and over 80% of the nitrobenzene was reduced within one minute. These results confirm that non-structural Fe from Fe(III)-smectite was reduced predominantly to ZVI which was responsible for the reduction of nitrobenzene to aniline. This new form of subnano-scale ZVI may find utility in the development of remediation technologies for persistent environmental contaminants, e.g. as components of constructed reactive domains such as reactive caps for contaminated sediments. PMID:20446730

  13. Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates.

    Science.gov (United States)

    Gu, Cheng; Jia, Hanzhong; Li, Hui; Teppen, Brian J; Boyd, Stephen A

    2010-06-01

    A novel method was developed for synthesizing subnano-sized zero-valent iron (ZVI) using smectite clay layers as templates. Exchangeable Fe(III) cations compensating the structural negative charges of smectites were reduced with NaBH(4), resulting in the formation of ZVI. The unique structure of smectite clay, in which isolated exchangeable Fe(III) cations reside near the sites of structural negative charges, inhibited the agglomeration of ZVI resulting in the formation of subnanoscale ZVI particles in the smectite interlayer regions. X-ray diffraction revealed an interlayer spacing of approximately 5 A. The non-structural iron content of this clay yields a calculated ratio of two atoms of ZVI per three cation exchange sites, in full agreement with the X-ray diffraction (XRD) results since the diameter of elemental Fe is 2.5 A. The clay-templated ZVI showed superior reactivity and efficiency compared to other previously reported forms of ZVI as indicated by the reduction of nitrobenzene; structural Fe within the aluminosilicate layers was nonreactive. At a 1:3 molar ratio of nitrobenzene/non-structural Fe, a reaction efficiency of 83% was achieved, and over 80% of the nitrobenzene was reduced within one minute. These results confirm that non-structural Fe from Fe(III)-smectite was reduced predominantly to ZVI which was responsible for the reduction of nitrobenzene to aniline. This new form of subnanoscale ZVI may find utility in the development of remediation technologies for persistent environmental contaminants, for example, as components of constructed reactive domains such as reactive caps for contaminated sediments.

  14. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron

    International Nuclear Information System (INIS)

    Liu, C.-C.; Tseng, D.-H.; Wang, C.-Y.

    2006-01-01

    The surface characteristics of zero-valent iron (ZVI) and the efficiency of reductive dechlorination of trichloroethylene (TCE) in the presence of ferrous ions were studied. The experimental results indicated that the acid-washing of a metallic iron sample enhanced the efficiency of TCE degradation by ZVI. This occurred because acid-washing changed the conformation of oxides on the surface of iron from maghemite (γ-Fe 2 O 3 ) to the more hydrated goethite (α-FeOOH), as was confirmed by XPS analysis. However, when ferrous ions were simultaneous with TCE in water, the TCE degradation rate decreased as the concentration of ferrous ion increased. This was due to the formation of passive precipitates of ferrous hydroxide, including maghemite and magnetite (Fe 3 O 4 ), that coated on the surface of acid-washed ZVI, which as a result inhibited the electron transfer and catalytic hydrogenation mechanisms. On the other hand, in an Fe 0 -TCE system without the acid-washing pretreatment of ZVI, ferrous ions were adsorbed into the maghemite lattice which was then converted to semiconductive magnetite. Thus, the electrons were transferred from the iron surface and passed through the precipitates, allowing for the reductive dechlorination of TCE

  15. Arsenic Removal Efficiency in Aqueous Solutions Using Reverse Osmosis and Zero-Valent Iron Nanoparticles

    Directory of Open Access Journals (Sweden)

    Niloofar Saboori

    2018-01-01

    Full Text Available Arsenic is one of the most hazardous pollutants of water resources which threaten human health as well as animals. Therefore arsenic removal from water resources is the priority of health programs. There are several ways to remove arsenic. In this study, reverse osmosis and zero-valent iron nanoparticles methods have been used in a laboratory scale. To perform the test, the variables of temperature, arsenic concentration, pH, iron nanoparticle concentration and mixing time were considered. The results indicated that in both methods of reverse osmosis and iron nanoparticle, through increasing arsenic concentration, arsenic removal efficiency has been also increased. At concentration of 1.5 mg per litre in reverse osmosis method, the maximum efficiency was achieved by 98% and 95.2% removal of arsenic respectively. The effect of temperature and pH were similar in reverse osmosis; by increasing these two variables, arsenic removal percentage also increased. The highest removal rates of 95.98% and 95.56% were observed at pH 9 and Temperature 30oC respectively. The results indicated that in iron nanoparticles method the arsenic removal efficiency increases by increasing mixing time and temperature, while it decreases with increasing pH.

  16. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunde [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Zhou, Aiguo, E-mail: aiguozhou@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gan, Yiqun; Li, Xiaoqian [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2016-04-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO{sub 4}·{sup −}). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe{sup 0} activated persulfate. • The enrichment factors was independent of Fe{sup 0}, SO{sub 4}{sup 2−}, or HCO{sub 3}{sup −} concentration. • Cl{sup −} significantly influenced the carbon isotope fractionation.

  17. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    International Nuclear Information System (INIS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-01-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO_4·"−). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe"0 activated persulfate. • The enrichment factors was independent of Fe"0, SO_4"2"−, or HCO_3"− concentration. • Cl"− significantly influenced the carbon isotope fractionation.

  18. Mapping fracture flow paths with a nanoscale zero-valent iron tracer test and a flowmeter test

    Science.gov (United States)

    Chuang, Po-Yu; Chia, Yeeping; Chiu, Yung-Chia; Teng, Mao-Hua; Liou, Sofia Ya Hsuan

    2018-02-01

    The detection of preferential flow paths and the characterization of their hydraulic properties are important for the development of hydrogeological conceptual models in fractured-rock aquifers. In this study, nanoscale zero-valent iron (nZVI) particles were used as tracers to characterize fracture connectivity between two boreholes in fractured rock. A magnet array was installed vertically in the observation well to attract arriving nZVI particles and identify the location of the incoming tracer. Heat-pulse flowmeter tests were conducted to delineate the permeable fractures in the two wells for the design of the tracer test. The nZVI slurry was released in the screened injection well. The arrival of the slurry in the observation well was detected by an increase in electrical conductivity, while the depth of the connected fracture was identified by the distribution of nZVI particles attracted to the magnet array. The position where the maximum weight of attracted nZVI particles was observed coincides with the depth of a permeable fracture zone delineated by the heat-pulse flowmeter. In addition, a saline tracer test produced comparable results with the nZVI tracer test. Numerical simulation was performed using MODFLOW with MT3DMS to estimate the hydraulic properties of the connected fracture zones between the two wells. The study results indicate that the nZVI particle could be a promising tracer for the characterization of flow paths in fractured rock.

  19. Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions.

    Directory of Open Access Journals (Sweden)

    Wen Liang

    Full Text Available Application of zero-valent iron nanoparticles (nZVI for Zn²⁺ removal and its mechanism were discussed. It demonstrated that the uptake of Zn²⁺ by nZVI was efficient. With the solids concentration of 1 g/L nZVI, more than 85% of Zn²⁺ could be removed within 2 h. The pH value and dissolved oxygen (DO were the important factors of Zn²⁺ removal by nZVI. The DO enhanced the removal efficiency of Zn²⁺. Under the oxygen-contained condition, oxygen corrosion gave the nZVI surface a shell of iron (oxyhydroxide, which could show high adsorption affinity. The removal efficiency of Zn²⁺ increased with the increasing of the pH. Acidic condition reduced the removal efficiency of Zn²⁺ by nZVI because the existing H⁺ inhibited the formation of iron (oxyhydroxide. Adsorption and co-precipitation were the most likely mechanism of Zn²⁺ removal by nZVI. The FeOOH-shell could enhance the adsorption efficiency of nZVI. The removal efficiency and selectivity of nZVI particles for Zn²⁺ were higher than Cd²⁺. Furthermore, a continuous flow reactor for engineering application of nZVI was designed and exhibited high removal efficiency for Zn²⁺.

  20. Monothioarsenate Occurrence in Bangladesh Groundwater and Its Removal by Ferrous and Zero-Valent Iron Technologies.

    Science.gov (United States)

    Planer-Friedrich, Britta; Schaller, Jörg; Wismeth, Fabian; Mehlhorn, Judith; Hug, Stephan J

    2018-05-15

    In most natural groundwaters, sulfide concentrations are low, and little attention has been paid to potential occurrence of thioarsenates (As V S n -II O 4- n 3- with n = 1-4). Thioarsenate occurrence in groundwater could be critical with regard to the efficiency of iron (Fe)-based treatment technologies because previous studies reported less sorption of thioarsenates to preformed Fe-minerals compared to arsenite and arsenate. We analyzed 273 groundwater samples taken from different wells in Bangladesh over 1 year and detected monothioarsenate (MTA), likely formed via solid-phase zero-valent sulfur, in almost 50% of all samples. Concentrations ranged up to >30 μg L -1 (21% of total As). MTA removal by locally used technologies in which zero-valent or ferrous Fe is oxidized by aeration and As sorbs or coprecipitates with the forming Fe(III)hydroxides was indeed lower than for arsenate. The presence of phosphate required up to three times as much Fe(II) for comparable MTA removal. However, in contrast to previous sorption studies on preformed Fe minerals, MTA removal, even in the presence of phosphate, was still higher than that of arsenite. The more efficient MTA removal is likely caused by a combination of coprecipitation and adsorption rendering the tested Fe-based treatment technologies suitable for As removal also in the presence of MTA.

  1. Zero-valent iron for the removal of soluble uranium in simulated DOE site groundwater

    International Nuclear Information System (INIS)

    Bostick, W.D.; Jarabek, R.J.; Fiedor, J.N.

    1997-01-01

    Groundwater at the Bear Creek Valley Characterization Area, located at the Oak Ridge Y-12 Plant, is contaminated with regulated metals and volatile organic compounds (VOCs) due to former site activities and disposal practices. The contaminant of principle concern, from the perspective of protecting human health, is soluble uranium, which is present in some waters at concentrations up to a few parts-per-million. We present product speciation and relative reaction kinetics; for removal of soluble uranium under oxic and anoxic conditions with use of zero-valent iron. Under oxic conditions, U(VI) is rapidly and strongly sorbed to hydrous ferric oxide particulate (open-quotes rustclose quotes), whereas uranium is slowly and incompletely reduced to U(IV) under anoxic conditions

  2. The sorption of metal ions on nanoscale zero-valent iron

    Directory of Open Access Journals (Sweden)

    Suponik Tomasz

    2017-01-01

    Full Text Available The injection of the colloidal suspensions of nano-iron (nZVI into an aquifer is a novel method of removing metal ions from acidic water. In the batch tests, the equilibrium study of the sorption of metal ions, Cu(II and Zn(II, on Green Tea nanoscale Zero-Valent Ion (GT-nZVI was carried out. The sorption of metal ions on this reactive material was described using the Langmuir, Freundlich and Sips models. This last model described in a better way the sorption equilibrium in the tested range of concentrations and temperature. The value of determination coefficient (R2 for the Sips model, for copper and zinc, was 0.9735 to 0.9995, respectively. GT-nZVI has very good properties in removing Cu(II and Zn(II from acidic water. The high values of qmaxS, the maximum adsorption capacity in the Sips model, amounting to 348.0 and 267.3 mg/g for Cu(II and Zn(II, indicate the high adsorption capacity of GT-nZVI. The analyzed metals have good or very good affinity with GT-nZVI.

  3. Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.-C. [Graduate Institute of Environmental Engineering, National Central University, Chungli, Taiwan 32001 (China); Tseng, D.-H. [Graduate Institute of Environmental Engineering, National Central University, Chungli, Taiwan 32001 (China)]. E-mail: dhtseng@ncuen.ncu.edu.tw; Wang, C.-Y. [Graduate Institute of Environmental Engineering, National Central University, Chungli, Taiwan 32001 (China)

    2006-08-25

    The surface characteristics of zero-valent iron (ZVI) and the efficiency of reductive dechlorination of trichloroethylene (TCE) in the presence of ferrous ions were studied. The experimental results indicated that the acid-washing of a metallic iron sample enhanced the efficiency of TCE degradation by ZVI. This occurred because acid-washing changed the conformation of oxides on the surface of iron from maghemite ({gamma}-Fe{sub 2}O{sub 3}) to the more hydrated goethite ({alpha}-FeOOH), as was confirmed by XPS analysis. However, when ferrous ions were simultaneous with TCE in water, the TCE degradation rate decreased as the concentration of ferrous ion increased. This was due to the formation of passive precipitates of ferrous hydroxide, including maghemite and magnetite (Fe{sub 3}O{sub 4}), that coated on the surface of acid-washed ZVI, which as a result inhibited the electron transfer and catalytic hydrogenation mechanisms. On the other hand, in an Fe{sup 0}-TCE system without the acid-washing pretreatment of ZVI, ferrous ions were adsorbed into the maghemite lattice which was then converted to semiconductive magnetite. Thus, the electrons were transferred from the iron surface and passed through the precipitates, allowing for the reductive dechlorination of TCE.

  4. Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloroethane

    International Nuclear Information System (INIS)

    Wei, Yu-Ting; Wu, Shian-chee; Yang, Shi-Wei; Che, Choi-Hong; Lien, Hsing-Lung; Huang, De-Huang

    2012-01-01

    Highlights: ► Biodegradable surfactant stabilized nanoscale zero-valent iron (NZVI) is tested. ► Vinyl chloride and 1,2-dichloroethane are remediated by NZVI in the field. ► Multiple functions of biodegradable surfactants are confirmed. ► Biodegradable surfactants stabilize NZVI and facilitate the bioremediation. ► NZVI creates reducing conditions beneficial to an anaerobic bioremediation. - Abstract: Nanoscale zero-valent iron (NZVI) stabilized with dispersants is a promising technology for the remediation of contaminated groundwater. In this study, we demonstrated the use of biodegradable surfactant stabilized NZVI slurry for successful treatment of vinyl chloride (VC) and 1,2-dichloroethane (1,2-DCA) in a contaminated site in Taiwan. The biodegradable surfactant stabilized NZVI was coated with palladium and synthesized on-site. From monitoring the iron concentration breakthrough and distribution, it was found that the stabilized NZVI is capable of transporting in the aquifer at the test plot (200 m 2 ). VC was effectively degraded by NZVI while the 1,2-DCA degradation was relatively sluggish during the 3-month field test. Nevertheless, as 1,2-DCA is known to resist abiotic reduction by NZVI, the observation of 1,2-DCA degradation and hydrocarbon production suggested a bioremediation took place. ORP and pH results revealed that a reducing condition was achieved at the testing area facilitating the biodegradation of chlorinated organic hydrocarbons. The bioremediation may be attributed to the production of hydrogen gas as electron donor from the corrosion of NZVI in the presence of water or the added biodegradable surfactant serving as the carbon source as well as electron donor to stimulate microbial growth.

  5. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yankai [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China); Dong, Haoran, E-mail: dongh@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China); Zeng, Guangming; Tang, Lin; Jiang, Zhao; Zhang, Cong; Deng, Junmin; Zhang, Lihua; Zhang, Yi [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China)

    2017-01-05

    Highlights: • The interactions between various microbes and NZVI were summarized. • The adverse and positive effects of NZVI on the growth of microbes were reviewed. • The synergistic effects of NZVI and bacteria on pollutant removal were reviewed. • The effects of iron-reducing bacteria on the aged NZVI were reviewed. • Future challenges to study the interactions between NZVI and microbes are suggested. - Abstract: Nanoscale zero-valent iron (NZVI) particles, applied for in-situ subsurface remediation, are inevitable to interact with various microbes in the remediation sites directly or indirectly. This review summarizes their interactions, including the effects of NZVI on microbial activity and growth, the synergistic effect of NZVI and microbes on the contaminant removal, and the effects of microbes on the aging of NZVI. NZVI could exert either inhibitive or stimulative effects on the growth of microbes. The mechanisms of NZVI cytotoxicity (i.e., the inhibitive effect) include physical damage and biochemical destruction. The stimulative effects of NZVI on certain bacteria are associated with the creation of appropriate living environment, either through providing electron donor (e.g., H{sub 2}) or carbon sources (e.g., the engineered organic surface modifiers), or through eliminating the noxious substances that can cause bactericidal consequence. As a result of the positive interaction, the combination of NZVI and some microbes shows synergistic effect on contaminant removal. Additionally, the aged NZVI can be utilized by some iron-reducing bacteria, resulting in the transformation of Fe(III) to Fe(II), which can further contribute to the contaminant reduction. However, the Fe(III)-reduction process can probably induce environmental risks, such as environmental methylation and remobilization of the previously entrapped heavy metals.

  6. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review

    International Nuclear Information System (INIS)

    Xie, Yankai; Dong, Haoran; Zeng, Guangming; Tang, Lin; Jiang, Zhao; Zhang, Cong; Deng, Junmin; Zhang, Lihua; Zhang, Yi

    2017-01-01

    Highlights: • The interactions between various microbes and NZVI were summarized. • The adverse and positive effects of NZVI on the growth of microbes were reviewed. • The synergistic effects of NZVI and bacteria on pollutant removal were reviewed. • The effects of iron-reducing bacteria on the aged NZVI were reviewed. • Future challenges to study the interactions between NZVI and microbes are suggested. - Abstract: Nanoscale zero-valent iron (NZVI) particles, applied for in-situ subsurface remediation, are inevitable to interact with various microbes in the remediation sites directly or indirectly. This review summarizes their interactions, including the effects of NZVI on microbial activity and growth, the synergistic effect of NZVI and microbes on the contaminant removal, and the effects of microbes on the aging of NZVI. NZVI could exert either inhibitive or stimulative effects on the growth of microbes. The mechanisms of NZVI cytotoxicity (i.e., the inhibitive effect) include physical damage and biochemical destruction. The stimulative effects of NZVI on certain bacteria are associated with the creation of appropriate living environment, either through providing electron donor (e.g., H_2) or carbon sources (e.g., the engineered organic surface modifiers), or through eliminating the noxious substances that can cause bactericidal consequence. As a result of the positive interaction, the combination of NZVI and some microbes shows synergistic effect on contaminant removal. Additionally, the aged NZVI can be utilized by some iron-reducing bacteria, resulting in the transformation of Fe(III) to Fe(II), which can further contribute to the contaminant reduction. However, the Fe(III)-reduction process can probably induce environmental risks, such as environmental methylation and remobilization of the previously entrapped heavy metals.

  7. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater

    International Nuclear Information System (INIS)

    Han, Weijiang; Fu, Fenglian; Cheng, Zihang; Tang, Bing; Wu, Shijiao

    2016-01-01

    Highlights: • Acid-washed zero-valent iron and zero-valent aluminum were used in PRBs. • The time that removal efficiencies of heavy metal were above 99.5% can keep 300 h. • Removal mechanism of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was discussed. • Heavy metal ions were removed by reduction, adsorption, and co-precipitation. - Abstract: The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.

  8. Nanoscale Zero-Valent Iron for Sulfide Removal from Digested Piggery Wastewater

    Directory of Open Access Journals (Sweden)

    Sheng-Hsun Chaung

    2014-01-01

    Full Text Available The removal of dissolved sulfides in water and wastewater by nanoscale zero-valent iron (nZVI was examined in the study. Both laboratory batch studies and a pilot test in a 50,000-pig farm were conducted. Laboratory studies indicated that the sulfide removal with nZVI was a function of pH where an increase in pH decreased removal rates. The pH effect on the sulfide removal with nZVI is attributed to the formation of FeS through the precipitation of Fe(II and sulfide. The saturated adsorption capacities determined by the Langmuir model were 821.2, 486.3, and 359.7 mg/g at pH values 4, 7, and 12, respectively, for nZVI, largely higher than conventional adsorbents such as activated carbon and impregnated activated carbon. The surface characterization of sulfide-laden nZVI using XPS and TGA indicated the formation of iron sulfide, disulfide, and polysulfide that may account for the high adsorption capacity of nZVI towards sulfide. The pilot study showed the effectiveness of nZVI for sulfide removal; however, the adsorption capacity is almost 50 times less than that determined in the laboratory studies during the testing period of 30 d. The complexity of digested wastewater constituents may limit the effectiveness of nZVI. Microbial analysis suggested that the impact of nZVI on the change of microbial species distribution was relatively noticeable after the addition of nZVI.

  9. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Han, Weijiang [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); South China Institute of Environmental Science, MEP, Guangzhou 510655 (China); Fu, Fenglian, E-mail: fufenglian2006@163.com [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China); Cheng, Zihang; Tang, Bing; Wu, Shijiao [School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006 (China)

    2016-01-25

    Highlights: • Acid-washed zero-valent iron and zero-valent aluminum were used in PRBs. • The time that removal efficiencies of heavy metal were above 99.5% can keep 300 h. • Removal mechanism of Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} was discussed. • Heavy metal ions were removed by reduction, adsorption, and co-precipitation. - Abstract: The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+}) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed.

  10. Alkyl Bromides as Mechanistic Probes of Reductive Dehalogenation: Reactions of Vicinal Dibromide Stereoisomers with Zero-Valent Metals

    National Research Council Canada - National Science Library

    Totten, Lisa

    2000-01-01

    The mechanism through which zero-valent metals (most notably iron and zinc) reduce alkyl polyhalides in aqueous solution at room temperature was investigated using several stereoisomers of vicinal dibromides as probe compounds...

  11. An integrated technique using zero-valent iron and UV/H2O2 sequential process for complete decolorization and mineralization of C.I. Acid Black 24 wastewater

    International Nuclear Information System (INIS)

    Chang, M.-C.; Shu, H.-Y.; Yu, H.-H.

    2006-01-01

    The zero-valent iron (ZVI) reduction succeeds for decolorization, while UV/H 2 O 2 oxidation process results into mineralization, so that this study proposed an integrated technique by reduction coupling with oxidation process in order to acquire simultaneously complete both decolorization and mineralization of C.I. Acid Black 24. From the experimental data, the zero-valent iron addition alone can decolorize the dye wastewater yet it demanded longer time than ZVI coupled with UV/H 2 O 2 processes (Red-Ox). Moreover, it resulted into only about 30% removal of the total organic carbon (TOC), which was capable to be effectively mineralized by UV/H 2 O 2 process. The proposed sequential ZVI-UV/H 2 O 2 integration system cannot only effectively remove color and TOC in AB 24 wastewater simultaneously but also save irradiation power and time demand. Furthermore, the decolorization rate constants were about 3.77-4.0 times magnitude comparing with that by UV/H 2 O 2 process alone

  12. Application of coupled zero-valent iron/biochar system for degradation of chlorobenzene-contaminated groundwater.

    Science.gov (United States)

    Zhang, Xu; Wu, Yanqing

    2017-02-01

    A novel iron-carbon micro-electrolysis system, bamboo-derived biochar coupled with zero-valent iron (ZVI), was investigated for chlorobenzene (CB)-contaminated groundwater removal. Influences of initial pH value, mass ratio of the ZVI/Biochar, initial CB concentration and ionic strength of the ZVI/Biochar micro-electrolysis were studied. The results indicated that the increase of initial pH led to the decrease of the CB removal efficiency. While the optimum mass ratio of ZVI to biochar was 2:1, the improved initial concentration and reaction time were 33.68 mg/L and 4 h, respectively. When pH of 2, mass ratio of 2:1 and reaction time of 4 h were applied, the CB removal efficiency was 99.92%. Enhanced degradation of CB was observed with increased Cl - concentration. When the Cl - concentration of 1,000 mg/L and reaction time of 1 h were applied, the CB removal efficiency arrived at 98.2%. Additionally, considering that biochar is cost-effective and readily produced, the coupled ZVI/Biochar micro-electrolysis could represent an effective approach for the treatment of groundwater containing chlorinated organic compounds in the future.

  13. Polyelectrolyte multilayer film-assisted formation of zero-valent iron nanoparticles onto polymer nanofibrous mats

    International Nuclear Information System (INIS)

    Xiao Shili; Shi Xiangyang; Wu Siqi; Shen Mingwu; Guo Rui; Wang Shanyuan

    2009-01-01

    A facile approach that combines the electrospinning technique and layer-by-layer (LbL) assembly method has been developed to synthesize and immobilize zero-valent iron nanoparticles (ZVI NPs) onto the surface of nanofibers for potential environmental applications. In this approach, negatively charged cellulose acetate (CA) nanofibers fabricated by electrospinning CA solution were modified with bilayers composed of positively charged poly(diallyl-dimethyl-ammoniumchloride) (PDADMAC) and negatively charged poly(acrylic acid) (PAA) through electrostatic LbL assembly approach to form composite nanofibrous mats. The composite nanofibrous mats were immersed into the ferrous iron solution to allow Fe(II) ions to complex with the free carboxyl groups of PAA, and then ZVI NPs were immobilized onto the composite nanofibrous mats instantly by reducing the ferrous cations. Combined scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and thermogravimetry analysis demonstrated that the ZVI NPs are successfully synthesized and uniformly distributed into the polyelectrolyte (PE) multilayer films assembled onto the CA nanofibers. The present approach to synthesis ZVI NPs opens a new avenue to fabricating various materials with high surface area for environmental, catalytic, and sensing applications.

  14. Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism.

    Science.gov (United States)

    Zhang, Xin; Lin, Shen; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2011-05-01

    The use of nanoscale zero-valent iron (nZVI) to remediate contaminated groundwater is limited due to its lack of durability and mechanical strength. To address this issue, 20% (w/w) nZVI was loaded onto kaolinite as a support material (K-nZVI). More than 96% of Pb(2+) was removed from aqueous solution using K-nZVI at an initial condition of 500 mg/L Pb(2+) within 30 min under the conditions of 10 g/L of K-nZVI, pH 5.10 and a temperature of 30 °C. To understand the mechanism of removal of Pb(2+), various techniques were implemented to characterize K-nZVI. Scanning electron microscopy (SEM) indicated that K-nZVI had a suitable dispersive state with a lower aggregation, where the mean specific surface area and average particle size as determined by the BET-N(2) method and X-ray diffraction (XRD), were 26.11 m(2)/g and 44.3 nm, respectively. The results obtained from XRD, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) indicated that a small number of iron oxides formed on the surface of K-nZVI, suggesting that free Pb(2+) was adsorbed onto K-nZVI and subsequently reduced to Pb(0). Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Recovery of indium ions by nanoscale zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen; Su, Yiming [Tongji University, State Key Laboratory of Pollution Control and Resources Reuse (China); Wen, Zhipan [Wuhan Institute of Technology, School of Chemistry and Environmental Engineering (China); Zhang, Yalei; Zhou, Xuefei, E-mail: zhouxuefei@tongji.edu.cn; Dai, Chaomeng, E-mail: daichaomeng@tongji.edu.cn [Tongji University, State Key Laboratory of Pollution Control and Resources Reuse (China)

    2017-03-15

    Indium and its compounds have plenty of industrial applications and high demand. Therefore, indium recovery from various industrial effluents is necessary. It was sequestered by nanoscale zero-valent iron (nZVI) whose size mainly ranged from 50 to 70 nm. Adsorption kinetics and isotherm, influence of pH, and ionic strength were thoroughly investigated. The reaction process was well fitted to a pseudo second-order model, and the maximum adsorption capacity of In(III) was 390 mg In(III)/g nZVI similar to 385 mg In(III)/g nZVI at 298 K calculated by Langmuir model. The mole ratio of Fe(II) released to In(III) immobilized was 3:2, which implied a special chemical process of co-precipitation combined Fe(OH){sub 2} with In(OH){sub 3}. Transmission electron microscopy with an energy-disperse X-ray (TEM-EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize surface morphology, corrosion products, and valence state of indium precipitate formed on nanoparticles. The structural evolution changed from core-shell structure of iron oxide to sheet structure of co-precipitation, to sphere structure that hydroxide gradually dissolved as the pH decreased, and to cavity structures for the pH continually decreased. Furthermore, below pH 4.7, the In(III) enrichment was inhibited for the limited capacity of co-precipitation. Also, it was found that Ca{sup 2+} and HPO{sub 4}{sup 2−} have more negative influence on In(III) recovery compared with Na{sup +}, NO{sub 3}{sup −}, HCO{sub 3}{sup −}, and SO{sub 4}{sup 2−}. Therefore, the In(III) recovery can be described by a mechanism which consists of adsorption, co-precipitation, and reduction and was over 78% even after 3 cycles. The results confirmed that it was applicable to employ nZVI for In(III) immobilization.

  16. Electrochemical depassivation of zero-valent iron for trichloroethene reduction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang [Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083 (China); Jin, Song [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071 (United States); Advanced Environmental Technologies, LLC, Fort Collins, CO 80524 (United States); Fallgren, Paul H. [Department of Civil Engineering, University of Colorado Denver, Denver, CO 80217 (United States); Swoboda-Colberg, Norbert G. [Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071 (United States); Liu, Fei [Beijing Key Laboratory of Water Resources and Environmental Engineering, China University of Geosciences, Beijing 100083 (China); Colberg, Patricia J.S., E-mail: pczoo@uwyo.edu [Department of Civil and Architectural Engineering, University of Wyoming, Laramie, WY 82071 (United States)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Electrical current may depassivate ZVI and restore its capacity to reduce TCE. Black-Right-Pointing-Pointer Electrical current may defer or even prevent surface oxidation of ZVI. Black-Right-Pointing-Pointer Electrical current coupled with ZVI achieves greater TCE reduction than ZVI alone. - Abstract: Permeable reactive barriers (PRBs) composed of zero-valent iron (ZVI) are susceptible to passivation, resulting in substantially decreased rates of chlorinated solvent removal over time. In this study, the application of low electrical direct current (DC) to restore the reductive capacity of passivated ZVI was examined. Electrical current was applied to a laboratory column reactor filled with a mixture of pre-passivated ZVI and sand. Variable voltage settings (0-12 V) were applied through two stainless steel electrodes placed at the ends of the reactor. While only partial restoration of the reductive capacity of the passivated ZVI was observed, higher rates of trichloroethene (TCE) removal were always obtained when current was applied, and the rates of TCE removal were roughly proportional to the voltage level. Although differences were observed between the rates and extent of TCE removal within the column, it is noteworthy that TCE removal was not restricted to that region of the column where the electrons entered (i.e., at the cathode). While complete 'depassivation' of ZVI may be difficult to achieve in practice, the application of DC demonstrated observable restoration of reactivity of the passivated ZVI. This study provides evidence that this approach may significantly extend the life of a ZVI PRB.

  17. Electrochemical depassivation of zero-valent iron for trichloroethene reduction

    International Nuclear Information System (INIS)

    Chen, Liang; Jin, Song; Fallgren, Paul H.; Swoboda-Colberg, Norbert G.; Liu, Fei; Colberg, Patricia J.S.

    2012-01-01

    Highlights: ► Electrical current may depassivate ZVI and restore its capacity to reduce TCE. ► Electrical current may defer or even prevent surface oxidation of ZVI. ► Electrical current coupled with ZVI achieves greater TCE reduction than ZVI alone. - Abstract: Permeable reactive barriers (PRBs) composed of zero-valent iron (ZVI) are susceptible to passivation, resulting in substantially decreased rates of chlorinated solvent removal over time. In this study, the application of low electrical direct current (DC) to restore the reductive capacity of passivated ZVI was examined. Electrical current was applied to a laboratory column reactor filled with a mixture of pre-passivated ZVI and sand. Variable voltage settings (0–12 V) were applied through two stainless steel electrodes placed at the ends of the reactor. While only partial restoration of the reductive capacity of the passivated ZVI was observed, higher rates of trichloroethene (TCE) removal were always obtained when current was applied, and the rates of TCE removal were roughly proportional to the voltage level. Although differences were observed between the rates and extent of TCE removal within the column, it is noteworthy that TCE removal was not restricted to that region of the column where the electrons entered (i.e., at the cathode). While complete “depassivation” of ZVI may be difficult to achieve in practice, the application of DC demonstrated observable restoration of reactivity of the passivated ZVI. This study provides evidence that this approach may significantly extend the life of a ZVI PRB.

  18. Synergetic treatment of uranium-bearing waste water with sulfate reducing bacteria and zero-valent iron

    International Nuclear Information System (INIS)

    Zhou Quanyu; Tan Kaixuan; Zeng Sheng; Liu Dong

    2009-01-01

    The treatment of uranium-bearing wastewater from uranium mine and using microorganism to treat wastewater were paid much attention to environmental researchers. Based on column experiments, we investigated the potential using sulfate reducing bacteria (SRB) and zero-valent iron (ZVI) to synergetic treat contamination in wastewater such as sulfate, uranium, etc. SRB+ZVI can effectively remove contamination U(VI) and SO 4 2- in wastewater. The removal rate is 99.4% and 86.2% for U(VI) and SO 4 2- , respectively. The pH of wastewater can be basified to neutral. U(VI) and SO 4 2- as electron acceptor of sulfate reducing bacteria are removed by biological reduction. The corrosion of ZVI is benefit to enhance the pH of wastewater, forms anaerobic reducing environment, strengthens survival and metabolism reaction of SRB, and plays a synergetic enhancement. (authors)

  19. Charge state mapping of mixed valent iron and manganese mineral particles using Scanning Transmission X-ray Microscopy (STXM)

    International Nuclear Information System (INIS)

    Pecher, K.; Nealson, K.; Kneedler, E.; Rothe, J.; Meigs, G.; Warwick, T.; Tonner, B.

    2000-01-01

    The interfaces between solid mineral particles and water play a crucial role in partitioning and chemical transformation of many inorganic as well as organic pollutants in environmental systems. Among environmentally significant minerals, mixed-valent oxides and hydroxides of iron (e.g. magnetite, green rusts) and manganese (hausmanite, birnessite) have been recognized as particularly strong sorbents for metal ions. In addition, minerals containing Fe(II) have recently been proven to be powerful reductants for a wide range of pollutants. Chemical properties of these minerals strongly depend on the distribution and availability of reactive sites and little is known quantitatively about the nature of these sites. We have investigated the bulk distribution of charge states of manganese (Mn (II, III, IV)) and iron (Fe(II, III)) in single particles of natural manganese nodules and synthetic green rusts using Scanning Transmission X-ray SpectroMicroscopy (STXM). Pixel resolved spectra (XANES) extracted from stacks of images taken at different wave lengths across the metal absorption edge were fitted to total electron yield (TEY) spectra of single valent reference compounds. Two dimensional maps of bulk charge state distributions clearly reveal domains of different oxidation states within single particles of Mn-nodules and green rust precipitates. Changes of oxidation states of iron were followed as a result of reductive transformation of an environmental contaminant (CCl 4 ) using green rust as the only reductant

  20. Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil.

    Science.gov (United States)

    Gil-Díaz, M; Alonso, J; Rodríguez-Valdés, E; Gallego, J R; Lobo, M C

    2017-04-15

    Nanoscale zero valent iron (nZVI) particles obtained by different methods differ in their structure, which lead to different reactivity, and therefore a likely difference in the remediation efficiency. The present study compares the effectiveness of three commercial ZVI nanoparticles to immobilize As and Hg in two soils (A and B) collected from a brownfield highly contaminated by mining and metallurgy activities. Scarce data are available on the effectiveness of nZVI for Hg immobilization in soil. Two commercial nZVI slurries from Toda (RNIP and RNIP-D) and one from Nano Iron (25S) were used at different doses (1, 5 and 10%). The metal(loid) availability and mobility was evaluated with the TCLP test and Tessier extraction procedure. The influence of nZVI application on As and Hg speciation was also evaluated as well as its impact on soil pH, electrical conductivity and soil phytotoxicity to vetch germination. The three commercial nZVI particles significantly reduced As and Hg availability in the two soils studied, which led to a decrease in soil phytotoxicity. At the dose of 5% of nZVI a decrease of exchangeable-As higher than 70% was observed for both soils, whereas in the case of Hg, a higher dose of nZVI (10%) was necessary to achieve reductions of exchangeable-Hg between 63 and 90% depending on the type of nZVI and soil. No impact on soil pH and electrical conductivity was observed. The effectiveness of metal(loid) immobilization depended on type of nZVI, soil properties and metal(loid) characteristics. Nanoparticles from Nano Iron showed better results for As immobilization whereas RNIP nanoparticles were more effective for Hg. Overall, 25S at the dose of 5% resulted more effective than RNIP nanoparticles for the reduction of exchangeable-As (in the range of 6-14%), whereas RNIP and RNIP-D were 10 and 13% more effective, respectively, for the reduction of exchangeable-Hg at the dose of 10% in soil B. Thus, nZVI can be used for the remediation of highly As and

  1. Micro-electrolysis of Cr (VI) in the nanoscale zero-valent iron loaded activated carbon.

    Science.gov (United States)

    Wu, Limei; Liao, Libing; Lv, Guocheng; Qin, Faxiang; He, Yujuan; Wang, Xiaoyu

    2013-06-15

    In this paper we prepared a novel material of activated carbon/nanoscale zero-valent iron (C-Fe(0)) composite. The C-Fe(0) was proved to possess large specific surface area and outstanding reducibility that result in the rapid and stable reaction with Cr (VI). The prepared composite has been examined in detail in terms of the influence of solution pH, concentration and reaction time in the Cr (VI) removal experiments. The results showed that the C-Fe(0) formed a micro-electrolysis which dominated the reaction rate. The Micro-electrolysis reaches equilibrium is ten minutes. Its reaction rate is ten times higher than that of traditional adsorption reaction, and the removal rate of Cr reaches up to 99.5%. By analyzing the obtained profiles from the cyclic voltammetry, PXRD and XPS, we demonstrate that the Cr (VI) is reduced to insoluble Cr (III) compound in the reaction. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Enhancing the efficiency of zero valent iron by electrolysis: Performance and reaction mechanism.

    Science.gov (United States)

    Xiong, Zhaokun; Lai, Bo; Yang, Ping

    2018-03-01

    Electrolysis was applied to enhance the efficiency of micron-size zero valent iron (mFe 0 ) and thereby promote p-nitrophenol (PNP) removal. The rate of PNP removal by mFe 0 with electrolysis was determined in cylindrical electrolysis reactor that employed annular aluminum plate cathode as a function of experimental factors, including initial pH, mFe 0 dosage and current density. The rate constants of PNP removal by Ele-mFe 0 were 1.72-144.50-fold greater than those by pristine mFe 0 under various tested conditions. The electrolysis-induced improvement could be primarily ascribed to stimulated mFe 0 corrosion, as evidenced by Fe 2+ release. The application of electrolysis could extend the working pH range of mFe 0 from 3.0 to 6.0 to 3.0-10.0 for PNP removal. Additionally, intermediates analysis and scavengers experiments unraveled the reduction capacity of mFe 0 was accelerated in the presence of electrolysis instead of oxidation. Moreover, the electrolysis effect could also delay passivation of mFe 0 under acidic condition, as evidenced by SEM-EDS, XRD, and XPS analysis after long-term operation. This is mainly due to increased electromigration meaning that iron corrosion products (iron hydroxides and oxides) are not primarily formed in the vicinity of the mFe 0 or at its surface. In the presence of electrolysis, the effect of electric field significantly promoted the efficiency of electromigration, thereby enhanced mFe 0 corrosion and eventually accelerated the PNP removal rates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching.

    Science.gov (United States)

    Klimkova, Stepanka; Cernik, Miroslav; Lacinova, Lenka; Filip, Jan; Jancik, Dalibor; Zboril, Radek

    2011-02-01

    Acid mine water from in situ chemical leaching of uranium (Straz pod Ralskem, Czech Republic) was treated in laboratory scale experiments by zero-valent iron nanoparticles (nZVI). For the first time, nZVI were applied for the treatment of the real acid water system containing the miscellaneous mixture of pollutants, where the various removal mechanisms occur simultaneously. Toxicity of the treated saline acid water is caused by major contaminants represented by aluminum and sulphates in a high concentration, as well as by microcontaminants like As, Be, Cd, Cr, Cu, Ni, U, V, and Zn. Laboratory batch experiments proved a significant decrease in concentrations of all the monitored pollutants due to an increase in pH and a decrease in oxidation-reduction potential related to an application of nZVI. The assumed mechanisms of contaminants removal include precipitation of cations in a lower oxidation state, precipitation caused by a simple pH increase and co-precipitation with the formed iron oxyhydroxides. The possibility to control the reaction kinetics through the nature of the surface stabilizing shell (polymer vs. FeO nanolayer) is discussed as an important practical aspect. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Effectiveness and ecotoxicity of zero-valent iron nanoparticles during rhizoremediation of soil contaminated with Zn, Cu, Cd and diesel

    Directory of Open Access Journals (Sweden)

    Rafael G. Lacalle

    2018-04-01

    Full Text Available The remediation of soils simultaneously contaminated with organic and inorganic compounds is still a challenging task. The application of metallic nanoparticles, such as zero-valent iron nanoparticles (nZVI, for soil remediation is highly promising, but their effectiveness and potential ecotoxicity must be further investigated. In addition, the performance of nZVI when combined with other remediation strategies is a topic of great interest. Here, we present data on soil chemical (pseudo-total and CaCl2-extractable metal concentrations; petroleum hydrocarbon concentrations and biological properties (microbial properties and phytotoxicity after the application of nZVI to soil simultaneously contaminated with Zn, Cu, Cd and diesel, in the absence and presence of other remediation treatments such as the application of an organic amendment and the growth of Brassica napus plants. Soils were artificially contaminated with the abovementioned contaminants. Then, after an aging period of one month, nZVI were applied to the soil and, subsequently, B. napus seeds were sown. Plants were left to grow for one month. Soil samples were collected immediately after artificially contaminating the soil (T1, at sowing (T2 and at harvesting (T3. Overall, the application of nZVI had no effect on contaminant removal, nor on soil microbial parameters. In contrast, it did cause an indirect toxic effect on plant root elongation due to the interaction of nZVI with soil organic matter. These data are useful for researchers and companies interested in the effectiveness and ecotoxicity of zero-valent iron nanoparticles during the remediation of soil contaminated with metals and hydrocarbons, especially when combined with Gentle Remediation Options.

  5. Optimization of Reactive Blue 21 removal by Nanoscale Zero-Valent Iron using response surface methodology

    Directory of Open Access Journals (Sweden)

    Mahmood Reza Sohrabi

    2016-07-01

    Full Text Available Since Reactive Blue 21 (RB21 is one of the dye compounds which is harmful to human life, a simple and sensitive method to remove this pollutant from wastewater is using Nano Zero-Valent Iron (NZVI catalyst. In this paper, a Central Composite Rotatable Design (CCRD was employed for response surface modeling to optimize experimental conditions of the RB21 removal from aqueous solution. The significance and adequacy of the model were analyzed using analysis of variance (ANOVA. Four independent variables—including catalyst amount (0.1–0.9 g, pH (3.5–9.5, removal time (30–150 s and dye concentration (10–50 mg/L—were transformed to coded values and consequently second order quadratic model was built to predict the responses. The result showed that under optimized experimental conditions the removal of RB21 was over 95%.

  6. Enhanced removal of ethanolamine from secondary system of nuclear power plant wastewater by novel hybrid nano zero-valent iron and pressurized ozone initiated oxidation process.

    Science.gov (United States)

    Lee, Son Dong; Mallampati, Srinivasa Reddy; Lee, Byoung Ho

    2017-07-01

    Monoethanolamine (shortly ethanolamine (ETA)), usually used as a corrosion inhibitor, is a contaminant of wastewater from the secondary cooling system of nuclear power plants (NPPs) and is not readily biodegradable. We conducted various experiments, including treatments with nano zero-valent iron (nZVI), nano-iron/calcium, and calcium oxide (nFe/Ca/CaO) with ozone (O 3 ) or hydrogen peroxide (H 2 O 2 ) to reduce the concentration of ETA and to decrease the chemical demand of oxygen (COD) of these wastewaters. During this study, wastewater with ETA concentration of 7465 mg L -1 and COD of 6920 mg L -1 was used. As a result, the ETA concentration was reduced to 5 mg L -1 (a decrease of almost 100%) and COD was reduced to 2260 mg L -1 , a reduction of 67%, using doses of 26.8 mM of nZVI and 1.5 mM of H 2 O 2 at pH 3 for 3 h. Further treatment for 48 h allowed a decrease of COD by almost 97%. Some mechanistic considerations are proposed in order to explain the degradation pathway. The developed hybrid nano zero-valent iron-initiated oxidation process with H 2 O 2 is promising in the treatment of ETA-contaminated wastewaters.

  7. Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling

    Science.gov (United States)

    Morrison, Stan J.; Metzler, Donald R.; Dwyer, Brian P.

    2002-05-01

    Three treatment cells were operated at a site near Durango, CO. One treatment cell operated for more than 3 years. The treatment cells were used for passive removal of contamination from groundwater at a uranium mill tailings repository site. Zero-valent iron [Fe(0)] that had been powdered, bound with aluminosilicate and molded into plates was used as a reactive material in one treatment cell. The others used granular Fe(0) and steel wool. The treatment cells significantly reduced concentrations of As, Mn, Mo, Se, U, V and Zn in groundwater that flowed through it. Zero-valent iron [Fe(0)], magnetite (Fe 3O 4), calcite (CaCO 3), goethite (FeOOH) and mixtures of contaminant-bearing phases were identified in the solid fraction of one treatment cell. A reaction progress approach was used to model chemical evolution of water chemistry as it reacted with the Fe(0). Precipitation of calcite, ferrous hydroxide [Fe(OH) 2] and ferrous sulfide (FeS) were used to simulate observed changes in major-ion aqueous chemistry. The amount of reaction progress differed for each treatment cell. Changes in contaminant concentrations were consistent with precipitation of reduced oxides (UO 2, V 2O 3), sulfides (As 2S 3, ZnS), iron minerals (FeSe 2, FeMoO 4) and carbonate (MnCO 3). Formation of a free gas phase and precipitation of minerals contributed to loss of hydraulic conductivity in one treatment cell.

  8. Emplacement of zero-valent metal for remediation of deep contaminant plumes

    International Nuclear Information System (INIS)

    Hubble, D.W.; Gillham, R.W.; Cherry, J.A.

    1997-01-01

    Some groundwater plumes containing chlorinated solvent contaminants are found to be so deep that current in situ remediation technologies cannot be economically applied. Also, source zones are often found to be too deep for removal or inaccessible due to surface features. Plumes emanating from these sources require containment or treatment. Containment technologies are available for shallow sites (< 15 m) and are being developed for greater depths. However, it is important to advance the science of reactive treatment - both for cut off of plumes and to contain and treat source zones. Zero-valent metal technology has been used for remediation of solvent plumes at sites in Canada, the UK and at several industrial and military sites in the USA. To date, all of the plumes treated with zero-valent metal (granular iron) have been at depths less than 15 m. This paper gives preliminary results of research into methods to emplace granular iron at depths in the range of 15 to 60 m. The study included review of available and emerging methods of installing barrier or reactive material and the selection, preliminary design and costing of several methods. The design of a treatment system for a 122 m wide PCE plume that, immediately down gradient from its source, extends from a depth of 24 to 37 m below the ground surface is used as a demonstration site. Both Permeable Reactive Wall and Funnel-and-Gate trademark systems were considered. The emplacement methods selected for preliminary design and costing were slurry wall, driven/vibrated beam, deep soil mixing and hydrofracturing injection. For each of these methods, the iron must be slurried for ease of pumping and placement using biodegradable polymer viscosifiers that leave the iron reactive

  9. Investigation of the behaviour of zero-valent iron nanoparticles and their interactions with Cd2+ in wastewater by single particle ICP-MS.

    Science.gov (United States)

    Vidmar, Janja; Oprčkal, Primož; Milačič, Radmila; Mladenovič, Ana; Ščančar, Janez

    2018-04-12

    Zero-valent iron nanoparticles (nZVI) exhibit great potential for the removal of metal contaminants from wastewater. After their use, there is a risk that nZVI will remain dispersed in remediated water and represent potential nano-threats to the environment. Therefore, the behaviour of nZVI after remediation must be explored. To accomplish this, we optimised a novel method using single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) for the sizing and quantification of nZVI in wastewater matrices. H 2 reaction gas was used in MS/MS mode for the sensitive and interference-free determination of low concentrations of nZVI with a low size limit of detection (36nm). This method was applied to study the influence of different iron (Fe) loads (0.1, 0.25, 0.5 and 1.0gL -1 ) and water matrices (Milli-Q water, synthetic and effluent wastewater) on the behaviour of nZVI, their interactions with Cd 2+ and the efficiency of Cd 2+ removal. The aggregation and sedimentation of nZVI increased with settling time. Sedimentation was slower in effluent wastewater than in Milli-Q water or synthetic wastewater. Consequently, Cd 2+ was more efficiently (86%) removed from effluent wastewater than from synthetic wastewater (73%), while its removal from Milli-Q water was inefficient (19%). The trace amounts of Cd 2+ that remained in the remediated water were either dissolved or sorbed to residual nZVI. The results of the nanoremediation of effluent wastewater with varying Fe loads showed that sedimentation was faster at higher initial concentrations of nZVI. After seven days of settling, low concentrations of Fe remained in the effluent wastewater at Fe loads of 0.5gL -1 or higher, which could indicate that the use of nZVI in nanoremediation under the described conditions may not represent an environmental nano-threat. However, further studies are needed to assess the ecotoxicological impact of Fe-related NPs used for the nanoremediation of wastewaters. Copyright © 2018

  10. Assessment of Pb (II Removal from Aqueous Solutions by Ascorbic Acid-stabilized Zero-valent Iron Nanoparticles Using Response Surface Methodology (RSM

    Directory of Open Access Journals (Sweden)

    Mohaddeseh Savasari

    2017-07-01

    Full Text Available The growing pollution of water resources and the limited availability of water supplies have led to a growing interest by researchers to develop novel methods of water remediation and reuse. One such method is the use of ascorbic acid-stabilized zero-valent iron nanoparticles (AAS-ZVIN for the removal of lead (Pb from aqueous solutions. Using zero-valent iron nanoparticles stabilized with acid ascorbic under aerobic conditions, the present study was conducted to assess the efficiency of Pb removal from aqueous solutions and its optimization by the response surface methodology (RSM. For this purpose, use was made of the central composite design and the response surface methodology with the four input variables of ASS- ZVIN dose (0.5, 1, and 2 g L-1, pH (2, 5, and 7, contact time (5, 20, and 60 min, and initial Pb concentration (5, 10, and 20 mg L-1 to determine the optimal conditions for the process. Numerical optimization revealed that the optimum conditions for Pb removal (97.93% included an ASS-ZVIN dose of 2 g L-1, an initial Pb (II concentration of 25 mg L-1, a contact time of 60 min, and an initial solution pH of 7. The results also imply that not only does ASS-ZVIN offer a good potential for the remediation of water bodies contaminated with Pb, given its high reactivity for Pb removal, but that  the RSM optimization process can be successfully employed for the optimization of the process in question.

  11. Data of furfural adsorption on nano zero valent iron (NZVI) synthesized from Nettle extract.

    Science.gov (United States)

    Fazlzadeh, Mehdi; Ansarizadeh, Mohammad; Leili, Mostafa

    2018-02-01

    Among various water and wastewater treatment methods, adsorption techniques are widely used to remove certain classes of pollutants due to its unique features. Thus, the aim of this data article is to synthesize zero valent iron nanoparticles (NZVI) from Nettle leaf extract by green synthesis method as an environmentally friendly technique, and to evaluate it's efficiency in the removal of furfural from aqueous solutions. The data of possible adsorption mechanism and isotherm of furfural on the synthesized adsorbent are depicted in this data article. The data acquired showed that the adsorption trend follows the pseudo-second order kinetic model and that the Langmuir isotherm was suitable for correlation of equilibrium data with the maximum adsorption capacity of 454.4 mg/g. The information of initial furfural concentration, pH, adsorbent dosage and contact time effects on the removal efficiency are presented. Considering the findings data, the developed nanoparticle from Nettle leaf extract, as a low cost adsorbent, could be considered as promising adsorbent for furfural and probably similar organic pollutants removal from aqueous solutions.

  12. High temperature fluidized bed zero valent iron process for flue gas nitrogen monoxide removal

    International Nuclear Information System (INIS)

    Cheng, C.Y.; Chen, S.S.; Tang, C.H.; Chang, Y.M.; Cheng, H.H.; Liu, H.L.

    2008-01-01

    Nitrogen oxides (NO x ) are generated from a variety of sources, and are critical components of photochemical smog. Zero valent iron (ZVI) has been used to remove NO x in a number of studies. The ZVI process requires no extra chemicals or catalysts. In this study, a fluidized ZVI process for removing NO x from flue gases was proposed. The study examined the effects of temperature, ZVI dosage and influent NO concentrations, and observed the kinetic effects between the fluidized ZVI and NO x . A life cycle analysis of the process was also provided. The parametric analysis was conducted in a series of column studies using a continuous emissions monitoring system. Minimum fluidization velocity equations were provided, and the drag coefficient was determined. Capacities of ZVI for NO removal at different temperatures were calculated. Results of the study suggested that temperature, influent concentrations, and flow rates all influenced kinetic coefficients. Different temperatures resulted in different rates of NO removal. It was concluded that between 673 K and 773 K, almost complete NO removals were achieved. 14 refs., 2 tabs., 9 figs

  13. Ferro zero: uma nova abordagem para o tratamento de águas contaminadas com compostos orgânicos poluentes Zero-valent iron: a new approach for treatment of waters contamined with organic pollutants

    OpenAIRE

    Wellington S. Pereira; Renato S. Freire

    2005-01-01

    Anthropogenic pollution of groundwater and surface water has become a very serious environmental problem around the world. A wide range of toxic pollutants is recalcitrant to the conventional treatment methods, thus there is much interest in the development of more efficient remediation processes. Degradation of organic pollutants by zero-valent iron is one of the most promising approaches for water treatment, mainly because it is of low cost, easy to obtain and effective. After a general int...

  14. Well-Dispersed Nanoscale Zero-Valent Iron Supported in Macroporous Silica Foams: Synthesis, Characterization, and Performance in Cr(VI Removal

    Directory of Open Access Journals (Sweden)

    Chaoxia Zhao

    2017-01-01

    Full Text Available Well-dispersed nanoscale zero-valent iron (NZVI supported inside the pores of macroporous silica foams (MOSF composites (Mx-NZVI has been prepared as the Cr(VI adsorbent by simply impregnating the MOSF matrix with ferric chloride, followed by the chemical reduction with NaHB4 in aqueous solution at ambient atmosphere. Through the support of MOSF, the reactivity and stability of NZVI are greatly improved. Transmission electron microscopy (TEM results show that NZVI particles are spatially well-dispersed with a typical core-shell structure and supported inside MOSF matrix. The N2 adsorption-desorption isotherms demonstrate that the Mx-NZVI composites can maintain the macroporous structure of MOSF and exhibit a considerable high surface area (503 m2·g−1. X-ray photoelectron spectroscopy (XPS and powder X-ray diffraction (XRD measurements confirm the core-shell structure of iron nanoparticles composed of a metallic Fe0 core and an Fe(II/Fe(III species shell. Batch experiments reveal that the removal efficiency of Cr(VI can reach 100% when the solution contains 15.0 mg·L−1 of Cr(VI at room temperature. In addition, the solution pH and the composites dosage can affect the removal efficiency of Cr(VI. The Langmuir isotherm is applicable to describe the removal process. The kinetic studies demonstrate that the removal of Cr(VI is consistent with pseudo-second-order kinetic model.

  15. A combined process of adsorption and Fenton-like oxidation for furfural removal using zero-valent iron residue.

    Science.gov (United States)

    Li, Furong; Bao, Jianguo; Zhang, Tian C; Lei, Yutian

    2015-01-01

    In this study, the feasibility of using a combined adsorption and Fenton-like oxidation process (with zero-valent iron (ZVI) residue from heat wraps as an absorbent and catalyst) to remove furfural in the solution was evaluated. The influencing parameters (e.g. pH, H2O2 concentration, initial furfural concentration) and the reusability of ZVI residue (to replace the iron powder) were estimated. The ZVI residue was found to have much better adsorption effect on furfural at pH 2.0 compared with pH 6.7. For Fenton-like reaction alone with ZVI residue, the highest furfural removal of 97.5% was observed at the concentration of 0.176 mol/L H2O2, and all of the samples had >80% removal efficiency at different initial furfural concentrations of 2, 10, 20, 30 and 40 mmol/L. However, with a combined adsorption and Fenton-like oxidation, the removal efficiency of furfural was nearly 100% for all treatments. The ZVI residue used for furfural removal was much better than that of iron powder in the Fenton-like reaction at a seven-cycle experiment. This study suggests the combined process of adsorption and Fenton-like oxidation using ZVI residue is effective for the treatment of furfural in the liquid.

  16. Treatment of simulated wastewater containing Reactive Red 195 by zero-valent iron/activated carbon combined with microwave discharge electrodeless lamp/sodium hypochlorite.

    Science.gov (United States)

    Fu, Jie; Xu, Zhen; Li, Qing-Shan; Chen, Song; An, Shu-Qing; Zeng, Qing-Fu; Zhu, Hai-Liang

    2010-01-01

    A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaClO) and the combination of ZVI/AC-MDEL/NaClO was conducted. The preliminary results showed the two steps method of ZVI/AC-MDEL/NaClO had much higher degradation efficiency than both single steps. The final color removal percentage was nearly up to 100% and the chemical oxygen demand reduction percentage was up to approximately 82%. The effects of operational parameters, including initial pH value of simulated wastewater, ZVI/AC ratio and particle size of ZVI were also investigated. In addition, from the discussion of synergistic effect between ZVI/AC and MEDL/NaClO, we found that in the ZVI/AC-MEDL/NaClO process, ZVI/AC could break the azo bond firstly and then MEDL/NaClO degraded the aromatic amine products effectively. Reversing the order would reduce the degradation efficiency.

  17. Removal of Reactive Red 198 by Nanoparticle Zero Valent Iron in the Presence of Hydrogen Peroxide

    Directory of Open Access Journals (Sweden)

    Siroos Shojaei

    2017-04-01

    Full Text Available Although dyes are widely used in textile industries, they are carcinogenic, teratogenic and mutagenic. Industries discharge their wastewater containing a variety of colors into water resources and make harmful effect on the environment. The present study aims to Evaluate removal of reactive red 198 by nanoparticle zero valent iron (NZVI in the presence of hydrogen peroxide from aqueous solution. The effective parameters on the removal of dye such as the hydrogen peroxide concentration of NZVI, contact time, pH and dye concentration were investigated and optimized. According to the results, the combination of NZVI with hydrogen peroxide is more effective than single hydrogen peroxide. At pH = 4, contact time= 40 min, 200 M of hydrogen peroxide, dye concentration= 75 mg/L and concentration of NZVI 2g/L, color removal was achieved 91% approximately. Based on the results of experiments, using hydrogen peroxide- NZVI has high efficiency in removal of azo dye type.

  18. Removal of Cr(VI from Water Using a New Reactive Material: Magnesium Oxide Supported Nanoscale Zero-Valent Iron

    Directory of Open Access Journals (Sweden)

    Alessio Siciliano

    2016-08-01

    Full Text Available The chromium pollution of water is an important environmental and health issue. Cr(VI removal by means of metallic iron is an attractive method. Specifically, nanoscopic zero valent iron (NZVI shows great reactivity, however, its applicability needs to be further investigated. In the present paper, NZVI was supported on MgO grains to facilitate the treatments for remediation of chromium-contaminated waters. The performances and mechanisms of the developed composite, in the removal of hexavalent chromium, were investigated by means of batch and continuous tests. Kinetic studies, under different operating conditions, showed that reduction of Cr(VI could be expressed by a pseudo second-order reaction kinetic. The reaction rate increased with the square of Fe(0 amount, while it was inversely proportional to the initial chromium concentration. The process performance was satisfactory also under uncontrolled pH, and a limited influence of temperature was observed. The reactive material was efficiently reusable for many cycles without any regeneration treatment. The performances in continuous tests were close to 97% for about 80 pore volume of reactive material.

  19. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon.

    Science.gov (United States)

    Lewis, Ariel S; Huntington, Thomas G; Marvin-DiPasquale, Mark C; Amirbahman, Aria

    2016-05-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon

    Science.gov (United States)

    Lewis, Ariel S.; Huntington, Thomas G.; Marvin-DiPasquale, Mark C.; Amirbahman, Aria

    2016-01-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment.

  1. Study on treatment of coking wastewater by biofilm reactors combined with zero-valent iron process

    International Nuclear Information System (INIS)

    Lai Peng; Zhao Huazhang; Zeng Ming; Ni Jinren

    2009-01-01

    Experiments were conducted to investigate the behavior of the integrated system with biofilm reactors and zero-valent iron (ZVI) process for coking wastewater treatment. Particular attention was paid to the performance of the integrated system for removal of organic and inorganic nitrogen compounds. Maximal removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH 3 -N) and total inorganic nitrogen (TIN) were up to 96.1, 99.2 and 92.3%, respectively. Moreover, it was found that some phenolic compounds were effectively removed. The refractory organic compounds were primarily removed in ZVI process of the integrated system. These compounds, with molecular weights either ranged 10,000-30,000 Da or 0-2000 Da, were mainly the humic acid (HA) and hydrophilic (HyI) compounds. Oxidation-reduction and coagulation were the main removal mechanisms in ZVI process, which could enhance the biodegradability of the system effluent. Furthermore, the integrated system showed a rapid recovery performance against the sudden loading shock and remained high efficiencies for pollutants removal. Overall, the integrated system was proved feasible for coking wastewater treatment in practical applications

  2. Ochrobactrum anthropi used to control ammonium for nitrate removal by starch-stabilized nanoscale zero valent iron.

    Science.gov (United States)

    Zhou, Jun; Sun, Qianyu; Chen, Dan; Wang, Hongyu; Yang, Kai

    2017-10-01

    In this study, the hydrogenotrophic denitrifying bacterium Ochrobactrum anthropi was added in to the process of nitrate removal by starch-stabilized nanoscale zero valent iron (nZVI) to minimize undesirable ammonium. The ammonium control performance and cooperative mechanism of this combined process were investigated, and batch experiments were conducted to discuss the effects of starch-stabilized nZVI dose, biomass, and pH on nitrate reduction and ammonium control of this system. The combined system achieved satisfactory performance because the anaerobic iron corrosion process generates H 2 , which is used as an electron donor for the autohydrogenotrophic bacterium Ochrobactrum anthropi to achieve the autohydrogenotrophic denitrification process converting nitrate to N 2 . When starch-stabilized nZVI dose was increased from 0.5 to 2.0 g/L, nitrate reduction rate gradually increased, and ammonium yield also increased from 9.40 to 60.51 mg/L. Nitrate removal rate gradually decreased and ammonium yield decreased from 14.93 to 2.61 mg/L with initial OD 600 increasing from 0.015 to 0.080. The abiotic Fe 0 reduction process played a key role in nitrate removal in an acidic environment and generated large amounts of ammonium. Meanwhile, the nitrate removal rate decreased and ammonium yield also reduced in an alkaline environment.

  3. Nanoscale zero-valent iron incorporated with nanomagnetic diatomite for catalytic degradation of methylene blue in heterogeneous Fenton system.

    Science.gov (United States)

    Zha, Yiming; Zhou, Ziqing; He, Haibo; Wang, Tianlin; Luo, Liqiang

    2016-01-01

    Nanoscale zero-valent iron (nZVI) incorporated with nanomagnetic diatomite (DE) composite material was prepared for catalytic degradation of methylene blue (MB) in heterogeneous Fenton system. The material was constructed by two facile steps: Fe3O4 magnetic nanoparticles were supported on DE by chemical co-precipitation method, after which nZVI was incorporated into magnetic DE by liquid-phase chemical reduction strategy. The as-prepared catalyst was characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, magnetic properties measurement and nitrogen adsorption-desorption isotherm measurement. The novel nZVI@Fe3O4-diatomite nanocomposites showed a distinct catalytic activity and a desirable effect for degradation of MB. MB could be completely decolorized within 8 min and the removal efficiency of total organic carbon could reach to 90% after reaction for 1 h.

  4. The Effect of Vacuum Annealing of Magnetite and Zero-Valent Iron Nanoparticles on the Removal of Aqueous Uranium

    Directory of Open Access Journals (Sweden)

    R. A. Crane

    2013-01-01

    Full Text Available As-formed and vacuum annealed zero-valent iron nanoparticles (nano-Fe0 and magnetite nanoparticles (nano-Fe3O4 were tested for the removal of uranium from carbonate-rich mine water. Nanoparticles were introduced to batch systems containing the mine water under oxygen conditions representative of near-surface waters, with a uranyl solution studied as a simple comparator system. Despite the vacuum annealed nano-Fe0 having a 64.6% lower surface area than the standard nano-Fe0, similar U removal (>98% was recorded during the initial stages of reaction with the mine water. In contrast, ≤15% U removal was recorded for the mine water treated with both as-formed and vacuum annealed nano-Fe3O4. Over extended reaction periods (>1 week, appreciable U rerelease was recorded for the mine water solutions treated using nano-Fe0, whilst the vacuum annealed material maintained U at <50 μg L−1 until 4 weeks reaction. XPS analysis of reacted nanoparticulate solids confirmed the partial chemical reduction of UVI to UIV in both nano-Fe0 water treatment systems, but with a greater amount of UIV detected on the vacuum annealed particles. Results suggest that vacuum annealing can enhance the aqueous reactivity of nano-Fe0 and, for waters of complex chemistry, can improve the longevity of aqueous U removal.

  5. Pentachlorophenol dechlorination with zero valent iron: a Raman and GCMS study of the complex role of surficial iron oxides.

    Science.gov (United States)

    Gunawardana, Buddhika; Swedlund, Peter J; Singhal, Naresh; Nieuwoudt, Michel K

    2018-04-20

    The dechlorination of chlorinated organic pollutants by zero valent iron (ZVI) is an important water treatment process with a complex dependence on many variables. This complexity means that there are reported inconsistencies in terms of dechlorination with ZVI and the effect of ZVI acid treatment, which are significant and are as yet unexplained. This study aims to decipher some of this complexity by combining Raman spectroscopy with gas chromatography-mass spectrometry (GC-MS) to investigate the influence of the mineralogy of the iron oxide phases on the surface of ZVI on the reductive dechlorination of pentachlorophenol (PCP). Two electrolytic iron samples (ZVI-T and ZVI-H) were found to have quite different PCP dechlorination reactivity in batch reactors under anoxic conditions. Raman analysis of the "as-received" ZVI-T indicated the iron was mainly covered with the ferrous oxide (FeO) wustite, which is non-conducting and led to a low rate of PCP dechlorination. In contrast, the dominant oxide on the "as-received" ZVI-H was magnetite which is conducting and, compared to ZVI-T, the ZVI-H rate of PCP dechlorination was four times faster. Treating the ZVI-H sample with 1 N H 2 SO 4 made small change to the composition of the oxide layers and also minute change to the rate of PCP dechlorination. However, treating the ZVI-T sample with H 2 SO 4 led to the loss of wustite so that magnetite became the dominant oxide and the rate of PCP dechlorination increased to that of the ZVI-H material. In conclusion, this study clearly shows that iron oxide mineralogy can be a contributing factor to apparent inconsistencies in the literature related to ZVI performance towards dechlorination and the effect of acid treatment on ZVI reactivity.

  6. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hojeong [Division of Water and Environment, Korea Environment Institute (KEI), Seoul (Korea, Republic of); Hong, Hye-Jin; Jung, Juri; Kim, Seong-Hye [Dept. of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejon (Korea, Republic of); Yang, Ji-Won, E-mail: jwyang@kaist.ac.kr [Dept. of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejon (Korea, Republic of)

    2010-04-15

    Abstracts: Nowadays, many researchers have studied the environmental application of the nanoscale zero-valent iron (nZVI) and several field applications for the groundwater remediation have been reported. Still, there are many concerns on the fate and transport of the nZVI and the corresponding risks. To avoid such concerns, it was investigated to immobilize nZVI in a support and then it was applied to degrade trichloroethylene (TCE). The nZVI and palladium-doped nZVI (Fe(0)- and Fe/Pd-alginate) were immobilized in the alginate bead where ferric and barium ions are used as the cross-linking cations of the bead. According to TEM (transmission electron microscopy), the size of the immobilized ZVI was as small as a few nanometers. From the surface analysis of the Fe/Pd-alginate, it is found that the immobilized nZVI has the core-shell structure. The core is composed of single crystal Fe{sup 0}, while most of irons on the surface are oxidized to Fe{sup 3+}. When 50 g/L of Fe/Pd-alginate (3.7 g Fe/L) was introduced to the aqueous solution, >99.8% of TCE was removed and the release of metal from the support was <3% of the loaded iron. The removal of TCE by Fe/Pd-alginate followed pseudo-first-order kinetics. The observed pseudo-first-order reaction constant (k{sub obs}) of Fe/Pd-alginate was 6.11 h{sup -1} and the mass normalized rate constant (k{sub m}) was 1.6 L h{sup -1} g{sup -1}. The k{sub m} is the same order of magnitude with that of iron nanoparticles. In conclusion, it is considered that Fe/Pd-alginate can be used efficiently in the treatment of chlorinated solvent.

  7. Environmental application of millimetre-scale sponge iron (s-Fe{sup 0}) particles (I): Pretreatment of cationic triphenylmethane dyes

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming, E-mail: juyongming@scies.org [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Liu, Xiaowen, E-mail: liuxiaowen@scies.org [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Li, Zhaoyong; Kang, Juan; Wang, Xiaoyan; Zhang, Yukui; Fang, Jiande [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2015-02-11

    Graphical abstract: - Highlights: • Millimetric s-Fe{sup 0} particles effectively reduce BG, MG, CV, and EV dyes. • s-Fe{sup 0} displays similar contaminant removal efficiency compared to nZVI. • s-Fe{sup 0} shows greater economic advantages than nZVI, iron powder, and iron scurf. • The reductive mechanism of BG over s-Fe{sup 0} under US condition is elucidated. - Abstract: To investigate the removal capability of millimetric zero valent iron (mmZVI), sponge iron (s-Fe{sup 0}) particles were characterized with XRD, XPS, TEM, HRSEM and EDS techniques. Moreover, the roles of particle size, catalyst dosage, dye concentration, mixing conditions (e.g. ultrasound (US), stirring or shaking), and regeneration treatment were studied with the removal of cationic triphenylmethane dyes. Notably, the reduction process was also revealed as compared to nanoscale zero valent iron (nZVI), microscale iron power, and iron scurf. Furthermore, the reductive mechanism was exemplified with brilliant green. The results demonstrated that (1) the synergetic effect between US and s-Fe{sup 0} greatly enhanced the removal of dyes, (2) the dosage of preferred s-Fe{sup 0} (1–3 mm) particles was optimized as 30.0 g/L; (3) reuse cycles of s-Fe{sup 0} catalyst were enhanced with the assistance of diluted HCl solution; (4) the main degradation routes included the cleavage of conjugated structure reactions, N-de-ethylation reactions, hydroxylation reactions, the removal of benzene ring reactions, and opening ring reactions. Accordingly, the pretreatment of aqueous solution over s-Fe{sup 0} was hypothesized to achieve mainly through direct reduction reaction by electron transfer and indirect reductive reactions by the highly activated hydrogen atom. Additionally, decoration with noble metals was utilized to reveal the reaction mechanism.

  8. Nanomaterials application for heavy metals recovery from polluted water: The combination of nano zero-valent iron and carbon nanotubes. Competitive adsorption non-linear modeling.

    Science.gov (United States)

    Vilardi, Giorgio; Mpouras, Thanasis; Dermatas, Dimitris; Verdone, Nicola; Polydera, Angeliki; Di Palma, Luca

    2018-06-01

    Carbon Nanotubes (CNTs) and nano Zero-Valent Iron (nZVI) particles, as well as two nanocomposites based on these novel nanomaterials, were employed as nano-adsorbents for the removal of hexavalent chromium, selenium and cobalt, from aqueous solutions. Nanomaterials characterization included the determination of their point of zero charge and particle size distribution. CNTs were further analyzed using scanning electron microscopy, thermogravimetric analysis and Raman spectroscopy to determine their morphology and structural properties. Batch experiments were carried out to investigate the removal efficiency and the possible competitive interactions among metal ions. Adsorption was found to be the main removal mechanism, except for Cr(VI) treatment by nZVI, where reduction was the predominant mechanism. The removal efficiency was estimated in decreasing order as CNTs-nZVI > nZVI > CNTs > CNTs-nZVI* independently upon the tested heavy metal. In the case of competitive adsorption, Cr(VI) exhibited the highest affinity for every adsorbent. The preferable Cr(VI) removal was also observed using binary systems of the tested metals by means of the CNTs-nZVI nanocomposite. Single species adsorption was better described by the non-linear Sips model, whilst competitive adsorption followed the modified Langmuir model. The CNTs-nZVI nanocomposite was tested for its reusability, and showed high adsorption efficiency (the q max values decreased less than 50% with respect to the first use) even after three cycles of use. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Higher concentrations of nanoscale zero-valent iron (nZVI) in soil induced rice chlorosis due to inhibited active iron transportation

    International Nuclear Information System (INIS)

    Wang, Jie; Fang, Zhanqiang; Cheng, Wen; Yan, Xiaomin; Tsang, Pokeung Eric; Zhao, Dongye

    2016-01-01

    In this study, the effects of concentrations 0, 100, 250, 500, 750 and 1000 mg kg"−"1 of nanoscale zero-valent iron (nZVI) on germination, seedlings growth, physiology and toxicity mechanisms were investigated. The results showed that nZVI had no effect on germination, but inhibited the rice seedlings growth in higher concentrations (>500 mg kg"−"1 nZVI). The highest suppression rate of the length of roots and shoots reached 46.9% and 57.5%, respectively. The 1000mg kg"−"1 nZVI caused the highest suppression rates for chlorophyll and carotenoids, at 91.6% and 85.2%, respectively. In addition, the activity of antioxidant enzymes was altered by the translocation of nanoparticles and changes in active iron content. Visible symptoms of iron deficiency were observed at higher concentrations, at which the active iron content decreased 61.02% in the shoots, but the active iron content not decreased in roots. Interestingly, the total and available amounts of iron in the soil were not less than those in the control. Therefore, the plants iron deficiency was not caused by (i) deficiency of available iron in the soil and (ii) restraint of the absorption that plant takes in the available iron, while induced by (ⅲ) the transport of active iron from the root to the shoot was blocked. The cortex tissues were seriously damaged by nZVI which was transported from soil to the root, these were proved by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). This current study shows that the mechanism of iron deficiency in rice seedling was due to transport of active iron from the root to the shoot blocked, which was caused by the uptake of nZVI. - Highlights: • Higher concentrations of nZVI induced iron deficiency in rice seedlings visibly. • nZVI was taken in rice seedlings and transported form root to shoot. • The pathway of active iron transport from root to shoot was inhibited. • The cortex tissues

  10. Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes.

    Science.gov (United States)

    Singh, Ritu; Misra, Virendra; Singh, Rana Pratap

    2012-02-01

    The illegal disposal of tannery wastes at Rania, Kanpur has resulted in accumulation of hexavalent chromium [Cr(VI)], a toxic heavy metal in soil posing risk to human health and environment. 27 soil samples were collected at various depths from Rania for the assessment of Cr(VI) level in soil. Out of 27 samples, five samples had shown significant level of Cr(VI) with an average concentration of 15.84 mg Kg(-1). Varied doses of nanoscale zero-valent iron (nZVI) were applied on Cr(VI) containing soil samples for remediation of Cr(VI). Results showed that 0.10 g L(-1) nZVI completely reduces Cr(VI) within 120 min following pseudo first order kinetics. Further, to test the efficacy of nZVI in field, soil windrow experiments were performed at the contaminated site. nZVI showed significant Cr(VI) reduction at field also, indicating it an effective tool for managing sites contaminated with Cr(VI).

  11. Detoxification of PAX-21 ammunitions wastewater by zero-valent iron for microbial reduction of perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Se Chang; Cha, Daniel K. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Kim, Byung J. [U.S. Army Engineer Research and Development Center, Champaign, IL 61826-9005 (United States); Oh, Seok-Young, E-mail: quartzoh@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of)

    2011-08-30

    Highlights: {yields} Ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. {yields} DNAN is identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. {yields} Iron treatment not only removes energetic compounds but also eliminates the toxic constituents that inhibit the subsequent microbial process. - Abstract: US Army and the Department of Defense (DoD) facilities generate perchlorate (ClO{sub 4}{sup -}) from munitions manufacturing and demilitarization processes. Ammonium perchlorate is one of the main constituents in Army's new main charge melt-pour energetic, PAX-21. In addition to ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. In order to evaluate microbial perchlorate reduction as a practical option for the treatment of perchlorate in PAX-21 wastewater, we conducted biodegradation experiments using glucose as the primary sources of electrons and carbon. Batch experiments showed that negligible perchlorate was removed in microbial reactors containing PAX-21 wastewater while control bottles containing seed bacteria and glucose rapidly and completely removed perchlorate. These results suggested that the constituents in PAX-21 wastewater may be toxic to perchlorate reducing bacteria. A series of batch toxicity test was conducted to identify the toxic constituents in PAX-21 and DNAN was identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. It was hypothesized that pretreatment of PAX-21 by zero-valent iron granules will transform toxic constituents in PAX-21 wastewater to non-toxic products. We observed complete reduction of DNAN to 2,4-diaminoanisole (DAAN) and RDX to formaldehyde in abiotic iron reduction study. After a 3-day acclimation period, perchlorate in iron-treated PAX-21

  12. Impact of Subsurface Heterogeneities on nano-Scale Zero Valent Iron Transport

    Science.gov (United States)

    Krol, M. M.; Sleep, B. E.; O'Carroll, D. M.

    2011-12-01

    Nano-scale zero valent iron (nZVI) has been applied as a remediation technology at sites contaminated with chlorinated compounds and heavy metals. Although laboratory studies have demonstrated high reactivity for the degradation of target contaminants, the success of nZVI in the field has been limited due to poor subsurface mobility. When injected into the subsurface, nZVI tends to aggregate and be retained by subsurface soils. As such nZVI suspensions need to be stabilized for increased mobility. However, even with stabilization, soil heterogeneities can still lead to non-uniform nZVI transport, resulting in poor distribution and consequently decreased degradation of target compounds. Understanding how nZVI transport can be affected by subsurface heterogeneities can aid in improving the technology. This can be done with the use of a numerical model which can simulate nZVI transport. In this study CompSim, a finite difference groundwater model, is used to simulate the movement of nZVI in a two-dimensional domain. CompSim has been shown in previous studies to accurately predict nZVI movement in the subsurface, and is used in this study to examine the impact of soil heterogeneity on nZVI transport. This work also explores the impact of different viscosities of the injected nZVI suspensions (corresponding to different stabilizing polymers) and injection rates on nZVI mobility. Analysis metrics include travel time, travel distance, and average nZVI concentrations. Improving our understanding of the influence of soil heterogeneity on nZVI transport will lead to improved field scale implementation and, potentially, to more effective remediation of contaminated sites.

  13. Micron-Size Zero-Valent Iron Emplacement in Porous Media Using Polymer Additives: Column and Flow Cell Ex-periments

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Mart; Wietsma, Thomas W.; Covert, Matthew A.; Vermeul, Vince R.

    2006-03-20

    At the Hanford Site, an extensive In Situ Redox Manipulation (ISRM) permeable reactive barrier was installed to prevent chromate from reaching the Columbia River. However, chromium has been detected in several wells, indicating a premature loss of the reductive capacity in the aquifer. Laboratory experiments have been conducted to investigate whether barrier reductive capacity can be enhanced by adding micron-scale zero-valent iron to the high-permeability zones within the aquifer using shear-thinning fluids containing polymers. Porous media were packed in a wedge-shaped flow cell to create either a heterogeneous layered system with a high-permeability zone between two low-permeability zones or a high-permeability channel sur-rounded by low-permeability materials. The injection flow rate, polymer type, polymer concentration, and injected pore volumes were determined based on preliminary short- and long-column experiments. The flow cell experiments indicated that iron concentration enhancements of at least 0.6% (w/w) could be obtained using moderate flow rates and injection of 30 pore volumes. The 0.6% amended Fe0 concentration would provide approximately 20 times the average reductive capacity that is provided by the dithionite-reduced iron in the ISRM barrier. Calculations show that a 1-m-long Fe0 amended zone with an average concentration of 0.6% w/w iron subject to a groundwater velocity of 1 m/day will have an estimated longevity of 7.2 years.

  14. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent.

    Science.gov (United States)

    Pawlett, Mark; Ritz, Karl; Dorey, Robert A; Rocks, Sophie; Ramsden, Jeremy; Harris, Jim A

    2013-02-01

    Nanosized zero-valent iron (nZVI) is an effective land remediation tool, but there remains little information regarding its impact upon and interactions with the soil microbial community. nZVI stabilised with sodium carboxymethyl cellulose was applied to soils of three contrasting textures and organic matter contents to determine impacts on soil microbial biomass, phenotypic (phospholipid fatty acid (PLFA)), and functional (multiple substrate-induced respiration (MSIR)) profiles. The nZVI significantly reduced microbial biomass by 29 % but only where soil was amended with 5 % straw. Effects of nZVI on MSIR profiles were only evident in the clay soils and were independent of organic matter content. PLFA profiling indicated that the soil microbial community structure in sandy soils were apparently the most, and clay soils the least, vulnerable to nZVI suggesting a protective effect imparted by clays. Evidence of nZVI bactericidal effects on Gram-negative bacteria and a potential reduction of arbuscular mycorrhizal fungi are presented. Data imply that the impact of nZVI on soil microbial communities is dependent on organic matter content and soil mineral type. Thereby, evaluations of nZVI toxicity on soil microbial communities should consider context. The reduction of AM fungi following nZVI application may have implications for land remediation.

  15. Zero-valent iron pretreatment for detoxifying iodine in liquid crystal display (LCD) manufacturing wastewater

    International Nuclear Information System (INIS)

    Lee, J.W.; Cha, D.K.; Oh, Y.K.; Ko, K.B.; Song, J.S.

    2009-01-01

    This study investigated reductive transformation of iodine by zero-valent iron (ZVI), and the subsequent detoxification of iodine-laden wastewater. ZVI completely reduced aqueous iodine to non-toxic iodide. Respirometric bioassay illustrated that the presence of iodine increase the lag phase before the onset of oxygen consumption. The length of lag phase was proportional to increasing iodine dosage. The reduction products of iodine by ZVI did not exhibit any inhibitory effect on the biodegradation. The cumulative biological oxidation associated with iodine toxicity was closely fitted to Gompertz model. When iodine-laden wastewater was continuously fed to a bench-scale activated sludge unit, chemical oxygen demand (COD) removal efficiencies decreased from above 90% to below 80% along with a marked decrease in biomass concentration. On the other hand, the COD removal efficiency and biomass concentration remained constant in the integrated ZVI-activated sludge system. Respirometric bioassay with real iodine-laden LCD manufacturing wastewater demonstrated that ZVI was effective for detoxifying iodine and consequently enhancing biodegradability of wastewater. This result suggested that ZVI pretreatment may be a feasible option for the removal of iodine in LCD processing wastewater, instead of more costly processes such as adsorption and chemical oxidation, which are commonly in the iodine-laden LCD wastewater treatment facility

  16. Combined zero-valent iron and fenton processes for the treatment of Brazilian TNT industry wastewater

    International Nuclear Information System (INIS)

    Barreto-Rodrigues, Marcio; Silva, Flavio T.; Paiva, Teresa C.B.

    2009-01-01

    The environmental impact caused by the production of explosives made from nitroaromatic compounds such as 2,4,6-trinitrotoluene (TNT) is currently a major concern, mainly due to their toxic nature, a fact that makes these compounds highly harmful. This work evaluated a continual system treatment reactor (CSTR) consisting of column zero-valent iron and a system to promote a fenton reaction in order to create possible definitive routines for treating effluents originating from the TNT production process. The spectrophotometric results demonstrated that this combination of processes was highly efficient in promoting the removal of all the absorbed species at 290 nm and the visible region of the specter. The results also revealed that the combination of treatments was significantly efficient in terms of correcting the effluent's main parameters of relevance, mainly COD (95.5% reduction) and TNT concentration, whose total was converted into nitrous and phenolic compounds and, additionally, the acute toxicity was also significantly reduced (95%). These results indicate that the strategy can serve as an efficient option for effluent treatment, for release into the receiving body, or eventually for use as industrial reuse water.

  17. Continuous preparation of nanoscale zero-valent iron using impinging stream-rotating packed bed reactor and their application in reduction of nitrobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Weizhou, E-mail: jwz0306@126.com; Qin, Yuejiao [North University of China, Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering (China); Luo, Shuai [Virginia Polytechnic Institute and State University, Department of Civil and Environmental Engineering (United States); Feng, Zhirong; Liu, Youzhi [North University of China, Shanxi Province Key Laboratory of Higee-Oriented Chemical Engineering (China)

    2017-02-15

    Nanoscale zero-valent iron (nZVI) was continuously prepared by high-gravity reaction precipitation through a novel impinging stream-rotating packed bed (IS-RPB). Reactant solutions of FeSO{sub 4} and NaBH{sub 4} were conducted into the IS-RPB with flow rates of 60 L/h and rotating speed of 1000 r/min for the preparation of nZVI. As-prepared nZVI obtained by IS-RPB were quasi-spherical morphology and almost uniformly distributed with a particle size of 10–20 nm. The reactivity of nZVI was estimated by the degradation of 100 ml nitrobenzene (NB) with initial concentration of 250 mg/L. The optimum dosage of nZVI obtained by IS-RPB was 4.0 g/L as the NB could be completely removed within 10 min, which reduced 20% compared with nZVI obtained by stirred tank reactor (STR). The reduction of NB and production of aniline (AN) followed pseudo-first-order kinetics, and the pseudo-first-order rate constants were 0.0147 and 0.0034 s{sup −1}, respectively. Furthermore, the as-prepared nZVI using IS-RPB reactor in this work can be used within a relatively wide range pH of 1–9.

  18. Continuous preparation of nanoscale zero-valent iron using impinging stream-rotating packed bed reactor and their application in reduction of nitrobenzene

    Science.gov (United States)

    Jiao, Weizhou; Qin, Yuejiao; Luo, Shuai; Feng, Zhirong; Liu, Youzhi

    2017-02-01

    Nanoscale zero-valent iron (nZVI) was continuously prepared by high-gravity reaction precipitation through a novel impinging stream-rotating packed bed (IS-RPB). Reactant solutions of FeSO4 and NaBH4 were conducted into the IS-RPB with flow rates of 60 L/h and rotating speed of 1000 r/min for the preparation of nZVI. As-prepared nZVI obtained by IS-RPB were quasi-spherical morphology and almost uniformly distributed with a particle size of 10-20 nm. The reactivity of nZVI was estimated by the degradation of 100 ml nitrobenzene (NB) with initial concentration of 250 mg/L. The optimum dosage of nZVI obtained by IS-RPB was 4.0 g/L as the NB could be completely removed within 10 min, which reduced 20% compared with nZVI obtained by stirred tank reactor (STR). The reduction of NB and production of aniline (AN) followed pseudo-first-order kinetics, and the pseudo-first-order rate constants were 0.0147 and 0.0034 s-1, respectively. Furthermore, the as-prepared nZVI using IS-RPB reactor in this work can be used within a relatively wide range pH of 1-9.

  19. Aminoclay-templated nanoscale zero-valent iron (nZVI) synthesis for efficient harvesting of oleaginous microalga, Chlorella sp. KR-1

    DEFF Research Database (Denmark)

    Lee, Young-Chul; Lee, Kyubock; Hwang, Yuhoon

    2014-01-01

    Synthesis of aminoclay-templated nanoscale zero-valent iron (nZVI) for efficient harvesting of oleaginous microalgae was demonstrated. According to various aminoclay loadings (0, 0.25, 0.5, 1.0, 2.5, 5.0, and 7.5 aminoclay/nZVI ratios), the stability of nZVI was investigated as a function......ZVI composite (ratio 1.0) exhibited a highly positively charged surface (~+40 mV) and a ferromagnetic property (~30 emu/g). On the basis of these characteristics, oleaginous Chlorella sp. KR-1 was harvested within 3 min at a > 20 g/L loading under a magnetic field. In a scaled-up (24L) microalga harvesting...... process using magnetic rods, microalgae were successfully collected by attachment to the magnetic rods or by precipitation. It is believed that this approach, thanks to the recyclability of aminoclay-nZVI composites, can be applied in a continuous harvesting mode....

  20. The nanotoxicology of a newly developed zero-valent iron nanomaterial for groundwater remediation and its remediation efficiency assessment combined with in vitro bioassays for detection of dioxin-like environmental pollutants

    OpenAIRE

    Schiwy, Andreas Herbert

    2016-01-01

    The assessment of chemicals and new compounds is an important task of ecotoxicology. In this thesis a newly developed zero-valent iron material for nanoremediation of groundwater contaminations was investigated and in vitro bioassays for high throughput screening were developed. These two elements of the thesis were combined to assess the remediation efficiency of the nanomaterial on the groundwater contaminant acridine. The developed in vitro bioassays were evaluated for quantification of th...

  1. Reduction of chromate from electroplating wastewater from pH 1 to 2 using fluidized zero valent iron process

    International Nuclear Information System (INIS)

    Chen, S.-S.; Cheng, C.-Y.; Li, C.-W.; Chai, P.-H.; Chang, Y.-M.

    2007-01-01

    Fluidized zero valent iron (ZVI) process was conducted to reduce hexavalent chromium (chromate, CrO 4 2- ) to trivalent chromium (Cr 3+ ) from electroplating wastewater due to the following reasons: (1) Extremely low pH (1-2) for the electroplating wastewater favoring the ZVI reaction. (2) The ferric ion, produced from the reaction of Cr(VI) and ZVI, can act as a coagulant to assist the precipitation of Cr(OH) 3(s) to save the coagulant cost. (3) Higher ZVI utilization for fluidized process due to abrasive motion of the ZVI. For influent chromate concentration of 418 mg/L as Cr 6+ , pH 2 and ZVI dosage of 3 g (41 g/L), chromate removal was only 29% with hydraulic detention time (HRT) of 1.2 min, but was increased to 99.9% by either increasing HRT to 5.6 min or adjusting pH to 1.5. For iron species at pH 2 and HRT of 1.2 min, Fe 3+ was more thermodynamically stable since oxidizing agent chromate was present. However, if pH was adjusted to 1.5 or 1, where chromate was completely removed, high Fe 2+ but very low Fe 3+ was present. It can be explained that ZVI reacted with chromate to produce Fe 2+ first and the presence of chromate would keep converting Fe 2+ to Fe 3+ . Therefore, Fe 2+ is an indicator for complete reduction from Cr(VI) to Cr(III). X-ray diffraction (XRD) was conducted to exam the remained species at pH 2. ZVI, iron oxide and iron sulfide were observed, indicating the formation of iron oxide or iron sulfide could stop the chromate reduction reaction

  2. A new method to produce nanoscale iron for nitrate removal

    International Nuclear Information System (INIS)

    Chen, S.-S.; Hsu, H.-D.; Li, C.-W.

    2004-01-01

    This article proposes a novel technology combining electrochemical and ultrasonic methods to produce nanoscale zero valent iron (NZVI). With platinum placed in the cathode and the presence of the dispersion agent, 0.2g/l cetylpyridinium chloride (CPC), a cation surfactant, in the solution, the nanoscale iron particle was successfully produced with diameter of 1-20 nm and specific surface area of 25.4m 2 /g. The produced NZVI was tested in batch experiments for nitrate removal. The results showed that the nitrate reduction was affected by pH. Al low pH, nitrate was shown faster decline and more reduction in term of g NO 3 - -N/g NZVI. The reaction was first order and kinetic coefficients for the four pHs were directly related to pH with R 2 >0.95. Comparing with microscale zero-valent iron (45μm, 0.183m 2 /g), microscale zero-valent iron converted nitrate to ammonia completely, but NZVI converted nitrate to ammonia partially from 36.2 to 45.3% dependent on pH. For mass balance of iron species, since the dissolved iron in the solution was very low ( 2 O 3 was recognized. Thus the reaction mechanisms can be determined

  3. Uranium Removal from Groundwater by Permeable Reactive Barrier with Zero-Valent Iron and Organic Carbon Mixtures: Laboratory and Field Studies

    Directory of Open Access Journals (Sweden)

    Borys Kornilovych

    2018-06-01

    Full Text Available Zhovty Vody city, located in south-central Ukraine, has long been an important center for the Ukrainian uranium and iron industries. Uranium and iron mining and processing activities during the Cold War resulted in poorly managed sources of radionuclides and heavy metals. Widespread groundwater and surface water contamination has occurred, which creates a significant risk to drinking water supplies. Hydrogeologic and geochemical conditions near large uranium mine tailings storage facility (TSF were characterized to provide data to locate, design and install a permeable reactive barrier (PRB to treat groundwater contaminated by leachate infiltrating from the TSF. The effectiveness of three different permeable reactive materials was investigated: zero-valent iron (ZVI for reduction, sorption, and precipitation of redox-sensitive oxyanions; phosphate material to transform dissolved metals to less soluble phases; and organic carbon substrates to promote bioremediation processes. Batch and column experiments with Zhovty Vody site groundwater were conducted to evaluate reactivity of the materials. Reaction rates, residence time and comparison with site-specific clean-up standards were determined. Results of the study demonstrate the effectiveness of the use of the PRB for ground water protection near uranium mine TSF. The greatest decrease was obtained using ZVI-based reactive media and the combined media of ZVI/phosphate/organic carbon combinations.

  4. Integrated Nanozero Valent Iron and Biosurfactant-Aided Remediation of PCB-Contaminated Soil

    Directory of Open Access Journals (Sweden)

    He Zhang

    2016-01-01

    Full Text Available Polychlorobiphenyls (PCBs have been identified as environmental hazards for years. Due to historical issues, a considerable amount of PCBs was released deep underground in Canada. In this research, a nanoscale zero valent iron- (nZVI- aided dechlorination followed by biosurfactant enhanced soil washing method was developed to remove PCBs from soil. During nZVI-aided dechlorination, the effects of nZVI dosage, initial pH level, and temperature were evaluated, respectively. Five levels of nZVI dosage and two levels of initial pH were experimented to evaluate the PCB dechlorination rate. Additionally, the temperature changes could positively influence the dechlorination process. In soil washing, the presence of nanoiron particles played a key role in PCB removal. The crude biosurfactant was produced using a bacterial stain isolated from the Atlantic Ocean and was applied for soil washing. The study has led to a promising technology for PCB-contaminated soil remediation.

  5. Assessing the capacity of zero valent iron nanofluids to remediate NAPL-polluted porous media

    Energy Technology Data Exchange (ETDEWEB)

    Tsakiroglou, Christos, E-mail: ctsakir@iceht.forth.gr [Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences, Stadiou street, Platani, 26504 Patras (Greece); Terzi, Katerina; Sikinioti-Lock, Alexandra [Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences, Stadiou street, Platani, 26504 Patras (Greece); Department of Chemical Engineering, University of Patras, 26504 Patras (Greece); Hajdu, Kata; Aggelopoulos, Christos [Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences, Stadiou street, Platani, 26504 Patras (Greece)

    2016-09-01

    A variety of aqueous suspensions (nanofluids) of zero-valent nano-particles (nZVI) are prepared by wet chemistry techniques, their stability and longevity is evaluated by physic-chemical methods of characterization, and their reactivity toward the dechlorination of per-chloro-ethylene (PCE) is examined with tests in batch reactors. For assessing the mobility, longevity and reactivity of nZVI suspensions (nanofluids), under flow-through conditions, visualization multiphase flow and transport tests are performed on a glass-etched pore network. The nZVI breakthrough curves are constructed by measuring the transient variation of the iron concentration in the effluent with atomic absorption spectroscopy. The capacity of nZVI to remediate the bulk phase of PCE is quantified by detecting the mass loss rate of PCE ganglia trapped in glass-etched pore networks during the continuous injection of nZVI suspension or pure water. The nZVI injection in porous media is simulated as an advection- dispersion process by accounting for the attachment/detachment of nanoparticles on the pore-walls, and describing the kinetics of PCE dissolution and reaction by 1st order equations. Visualization experiments reveal that the gradual elimination of PCE ganglia by the injected nZVI is associated with the preferential “erosion” of the upstream interfacial regions. The step controlling the overall process kinetics might be either (i) the enhanced PCE dissolution or (ii) the direct reaction of bulk PCE with the nZVI deposited upon the ganglia interfaces. Inverse modeling of the experiments under the simplifying assumption of one active mechanism indicates that the estimated kinetic coefficients are increasing functions of the flow rate. - Highlights: • The PCE remediation by nZVI is studied with visualization tests on pore networks. • The remediation of PCE ganglia by nZVI follows a non-uniform “erosion” pattern. • The preferential erosion of the upstream interfacial regions of

  6. Performance of nanoscale zero-valent iron in nitrate reduction from water using a laboratory-scale continuous-flow system.

    Science.gov (United States)

    Khalil, Ahmed M E; Eljamal, Osama; Saha, Bidyut Baran; Matsunaga, Nobuhiro

    2018-04-01

    Nanoscale zero-valent iron (nZVI) is a versatile treatment reagent that should be utilized in an effective application for nitrate remediation in water. For this purpose, a laboratory-scale continuous-flow system (LSCFS) was developed to evaluate nZVI performance in removal of nitrate in different contaminated-water bodies. The equipment design (reactor, settler, and polisher) and operational parameters of the LSCFS were determined based on nZVI characterization and nitrate reduction kinetics. Ten experimental runs were conducted at different dosages (6, 10 and 20 g) of nZVI-based reagents (nZVI, bimetallic nZVI-Cu, CuCl 2 -added nZVI). Effluent concentrations of nitrogen and iron compounds were measured, and pH and ORP values were monitored. The major role exhibited by the recirculation process of unreacted nZVI from the settler to the reactor succeeded in achieving overall nitrate removal efficiency (RE) of >90%. The similar performance of both nZVI and copper-ions-modified nZVI in contaminated distilled water was an indication of LSCFS reliability in completely utilizing iron nanoparticles. In case of treating contaminated river water and simulated groundwater, the nitrate reduction process was sensitive towards the presence of interfering substances that dropped the overall RE drastically. However, the addition of copper ions during the treatment counteracted the retardation effect and greatly enhanced the nitrate RE. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Transport characteristics of nanoscale zero-valent iron carried by three different "vehicles" in porous media.

    Science.gov (United States)

    Su, Yan; Zhao, Yong S; Li, Lu L; Qin, Chuan Y; Wu, Fan; Geng, Nan N; Lei, Jian S

    2014-01-01

    This study investigated the transport properties of nanoscale zero-valent iron (Fe(0)) (nZVI) carried by three vehicles: water, sodium dodecyl sulfate (SDS) solution, and SDS foam. Batch experiments were conducted to assess the sedimentation capability of nZVI particles in these three vehicles. Column experiments were conducted to investigate the transport properties of nZVI in porous media formed with different sizes of sand (0.25 mm to 0.5 mm, 0.5 mm to 0.9 mm, and 0.9 mm to 1.4 mm). Three main results were obtained. First, the batch experiments revealed that the stabilities of nZVI particles in SDS solution and SDS foam were improved, compared with that of nZVI particles in water. Moreover, the sedimentation of nZVI in foam was closely associated with the foam drainage volume. The nZVI content in foam was similar to that in the original foaming suspension, and the nZVI particle distribution in foam became significantly more uniform at a stirring speed of 3000 r/min. Second, the transport of nZVI was enhanced by foam compared with water and SDS solution for 0.25 mm to 0.5 mm diameter sand. For sand with diameters of 0.5 mm to 0.9 mm and 0.9 mm to 1.4 mm, the mobility of nZVI carried by SDS solution was optimal, followed by that of nZVI carried by foam and water. Thus, the mobility of nZVI in finer sand was significantly enhanced by foam, compared with that in coarse sand. In contrast, compared with the bare nZVI suspension and nZVI-laden foam, the spatial distribution of nZVI particles carried by SDS solution was significantly uniform along the column length. Third, the SDS concentration significantly influenced the migration of nZVI in porous media. The enhancement in the migration of nZVI carried by SDS solution was greater at an SDS dose of 0.25% compared with that at the other three doses (0.2%, 0.5%, and 1%) for sand with a 0.25 mm to 0.5 mm diameter. Increased SDS concentrations positively affected the transport of nZVI by foam for sand with a

  8. Removal of selenite by zero-valent iron combined with ultrasound: Se(IV) concentration changes, Se(VI) generation, and reaction mechanism.

    Science.gov (United States)

    Fu, Fenglian; Lu, Jianwei; Cheng, Zihang; Tang, Bing

    2016-03-01

    In this paper, the performance and application of zero-valent iron (ZVI) assisted by ultrasonic irradiation for the removal of selenite (Se(IV)) in wastewater was evaluated and reaction mechanism of Se(IV) with ZVI in such systems was investigated. A series of batch experiments were conducted to determine the effects of ultrasound power, pH, ZVI concentration, N2 and air on Se(IV) removal. ZVI before and after reaction with Se(IV) was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Results indicated that ultrasound can lead to a significant synergy in the removal of Se(IV) by ZVI because ultrasound can promote the generation of OH and accelerate the advanced Fenton process. The primary reaction products of ZVI and Se(IV) were Se(0), ferrihydrite, and Fe2O3. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. DIRECT INFUSION ESI-MS APPLIED IN THE DETECTION OF BYPRODUCTS DUE TO REDUCTIVE DEGRADATION OF ACETAMIPRID BY ZERO-VALENT IRON

    Directory of Open Access Journals (Sweden)

    Jean C. Cruz

    2015-09-01

    Full Text Available This study investigated the reductive degradation of acetamiprid (5 mg L-1 in aqueous medium (at pH 2.0 induced by zero-valent iron (50 mg. The process was monitored using high-performance liquid chromatography (HPLC to determine the degradation rate as a function of reaction time, and direct infusion electrospray ionization mass spectrometry (DI-ESI-MS to search for (and potentially characterize any possible byproducts formed during degradation. The results obtained via HPLC showed that after 60 min, the degradation of the substrate reached nearly 100% in an acidic medium, whereas the mineralization rate (as determined by total organic carbon measurements was as low as 3%. Data obtained by DI-ESI-MS showed that byproducts were formed mainly by insertions of hydrogen atoms into the nitrile, imine, and pyridine ring moieties, in addition to the observation of chlorine substitution by hydrogen replacement (hydrodechlorination reactions.

  10. Inhibiting excessive acidification using zero-valent iron in anaerobic digestion of food waste at high organic load rates.

    Science.gov (United States)

    Kong, Xin; Wei, Yonghong; Xu, Shuang; Liu, Jianguo; Li, Huan; Liu, Yili; Yu, Shuyao

    2016-07-01

    Excessive acidification occurs frequently in food waste (FW) anaerobic digestion (AD) due to the high carbon-to-nitrogen ratio of FW. In this study, zero-valent iron (ZVI) was applied to prevent the excessive acidification. All of the control groups, without ZVI addition (pH∼5.3), produced little methane (CH4) and had high volatile fatty acids/bicarbonate alkalinity (VFA/ALK). By contrast, at OLR of 42.32gVS/Lreactor, the pH of effluent from the reactors with 0.4g/gVSFWadded of ZVI increased to 7.8-8.2, VFA/ALK decreased to <0.1, and the final CH4 yield was ∼380mL/gVSFWadded, suggesting inhibition of excessive acidification. After adding powdered or scrap metal ZVI to the acidogenic reactors, the fractional content of butyric acid changed from 30-40% to 0%, while, that of acetic acid increased. These results indicate that adding ZVI to FW digestion at high OLRs could eliminate excessive acidification by promoting butyric acid conversion and enhancing methanogen activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater

    Directory of Open Access Journals (Sweden)

    Kuen-Song Lin et al

    2008-01-01

    Full Text Available The main objectives of the present study were to investigate the chemical reduction of nitrate or nitrite species by zero-valent iron nanoparticle (ZVIN in aqueous solution and related reaction kinetics or mechanisms using fine structure characterization. This work also exemplifies the utilization of field emission-scanning electron microscope (FE–SEM, transmission electron microscopy (TEM, and x-ray diffraction (XRD to reveal the speciation and possible reaction pathway in a very complex adsorption and redox reaction process. Experimentally, ZVIN of this study was prepared by sodium borohydride reduction method at room temperature and ambient pressure. The morphology of as-synthesized ZVIN shows that the nearly ball and ultrafine particles ranged of 20–50 nm were observed with FE–SEM or TEM analysis. The kinetic model of nitrites or nitrates reductive reaction by ZVIN is proposed as a pseudo first-order kinetic equation. The nitrite and nitrate removal efficiencies using ZVIN were found 65–83% and 51–68%, respectively, based on three different initial concentrations. Based on the XRD pattern analyses, it is found that the quantitative relationship between nitrite and Fe(III or Fe(II is similar to the one between nitrate and Fe(III in the ZVIN study. The possible reason is due to the faster nitrite reduction by ZVIN. In fact, the occurrence of the relative faster nitrite reductive reaction suggested that the passivation of the ZVIN have a significant contribution to iron corrosion. The extended x-ray absorption fine structure (EXAFS or x-ray absorption near edge structure (XANES spectra show that the nitrites or nitrates reduce to N2 or NH3 while oxidizing the ZVIN to Fe2O3 or Fe3O4 electrochemically. It is also very clear that decontamination of nitrate or nitrite species in groundwater via the in-situ remediation with a ZVIN permeable reactive barrier would be environmentally attractive.

  12. Influence of structure of iron nanoparticles in aggregates on their magnetic properties

    Directory of Open Access Journals (Sweden)

    Rosická Dana

    2011-01-01

    Full Text Available Abstract Zero-valent iron nanoparticles rapidly aggregate. One of the reasons is magnetic forces among the nanoparticles. Magnetic field around particles is caused by composition of the particles. Their core is formed from zero-valent iron, and shell is a layer of magnetite. The magnetic forces contribute to attractive forces among the nanoparticles and that leads to increasing of aggregation of the nanoparticles. This effect is undesirable for decreasing of remediation properties of iron particles and limited transport possibilities. The aggregation of iron nanoparticles was established for consequent processes: Brownian motion, sedimentation, velocity gradient of fluid around particles and electrostatic forces. In our previous work, an introduction of influence of magnetic forces among particles on the aggregation was presented. These forces have significant impact on the rate of aggregation. In this article, a numerical computation of magnetic forces between an aggregate and a nanoparticle and between two aggregates is shown. It is done for random position of nanoparticles in an aggregate and random or arranged directions of magnetic polarizations and for structured aggregates with arranged vectors of polarizations. Statistical computation by Monte Carlo is done, and range of dominant area of magnetic forces around particles is assessed.

  13. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil.

    Science.gov (United States)

    El-Temsah, Yehia S; Sevcu, Alena; Bobcikova, Katerina; Cernik, Miroslav; Joner, Erik J

    2016-02-01

    Nano-scale zero-valent iron (nZVI) has been conceived for cost-efficient degradation of chlorinated pollutants in soil as an alternative to e.g permeable reactive barriers or excavation. Little is however known about its efficiency in degradation of the ubiquitous environmental pollutant DDT and its secondary effects on organisms. Here, two types of nZVI (type B made using precipitation with borohydride, and type T produced by gas phase reduction of iron oxides under H2) were compared for efficiency in degradation of DDT in water and in a historically (>45 years) contaminated soil (24 mg kg(-1) DDT). Further, the ecotoxicity of soil and water was tested on plants (barley and flax), earthworms (Eisenia fetida), ostracods (Heterocypris incongruens), and bacteria (Escherichia coli). Both types of nZVI effectively degraded DDT in water, but showed lower degradation of aged DDT in soil. Both types of nZVI had negative impact on the tested organisms, with nZVI-T giving least adverse effects. Negative effects were mostly due to oxidation of nZVI, resulting in O2 consumption and excess Fe(II) in water and soil. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Inhibition of nitrate reduction by NaCl adsorption on a nano-zero-valent iron surface during a concentrate treatment for water reuse.

    Science.gov (United States)

    Hwang, Yuhoon; Kim, Dogun; Shin, Hang-Sik

    2015-01-01

    Nanoscale zero-valent iron (NZVI) has been considered as a possible material to treat water and wastewater. However, it is necessary to verify the effect of the matrix components in different types of target water. In this study, different effects depending on the sodium chloride (NaCl) concentration on reductions of nitrates and on the characteristics of NZVI were investigated. Although NaCl is known as a promoter of iron corrosion, a high concentration of NaCl (>3 g/L) has a significant inhibition effect on the degree of NZVI reactivity towards nitrate. The experimental results were interpreted by a Langmuir-Hinshelwood-Hougen-Watson reaction in terms of inhibition, and the decreased NZVI reactivity could be explained by the increase in the inhibition constant. As a result of a chloride concentration analysis, it was verified that 7.7-26.5% of chloride was adsorbed onto the surface of NZVI. Moreover, the change of the iron corrosion product under different NaCl concentrations was investigated by a surface analysis of spent NZVI. Magnetite was the main product, with a low NaCl concentration (0.5 g/L), whereas amorphous iron hydroxide was observed at a high concentration (12 g/L). Though the surface was changed to permeable iron hydroxide, the Fe(0) in the core was not completely oxidized. Therefore, the inhibition effect of NaCl could be explained as the competitive adsorption of chloride and nitrate.

  15. Ultrasound-assisted activation of zero-valent magnesium for nitrate denitrification: identification of reaction by-products and pathways.

    Science.gov (United States)

    Ileri, Burcu; Ayyildiz, Onder; Apaydin, Omer

    2015-07-15

    Zero-valent magnesium (Mg(0)) was activated by ultrasound (US) in an aim to promote its potential use in water treatment without pH control. In this context, nitrate reduction was studied at batch conditions using various doses of magnesium powder and ultrasound power. While neither ultrasound nor zero-valent magnesium alone was effective for reducing nitrate in water, their combination removed up to 90% of 50 mg/L NO3-N within 60 min. The rate of nitrate reduction by US/Mg(0) enhanced with increasing ultrasonic power and magnesium dose. Nitrogen gas (N2) and nitrite (NO2(-)) were detected as the major reduction by-products, while magnesium hydroxide Mg(OH)2 and hydroxide ions (OH(-)) were identified as the main oxidation products. The results from SEM-EDS measurements revealed that the surface oxide level decreased significantly when the samples of Mg(0) particles were exposed to ultrasonic treatment. The surface passivation of magnesium particles was successfully minimized by mechanical forces of ultrasound, which in turn paved the way to sustain the catalyst activity toward nitrate reduction. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The effect of ascorbic acid-stabilized zero valent iron nanoparticles on the distribution of different forms of cadmium in three spiked soils

    Directory of Open Access Journals (Sweden)

    Mohaddese Savasari

    2017-01-01

    soils with three replications was studied were studied in an experiment of randomized completely design with a factorial arrangement of treatments consisting of AAS-ZVIN dosage (0, 0.5, 1 and 2 w/w %, Cd contamination levels (15 and 45 mg kg-1 in two time periods of 1 and 4 weeks in the three spiked soils. Moreover, the distribution of the chemical forms of Cd was determined using the sequential extraction method. Results Discussion: The results of this study show that zero valent iron nanoparticles can be sustained in the future by ascorbic acid under aerobic conditions in a laboratory that is to reduce the cadmium as a useful method, simple, fast and high performance in the decontamination of soils contaminated with lead that require further research to investigate other heavy elements. The results from the obtained SEM and XRD analyses indicated that AAS-ZVINs had the mean size of less than 50 nm, the maximum 2θ peak at 44.8°. Therefore, the particle size of ZVINs produced in this study, measured by SEM images, are less than 100 nm. Chain structure formations have been attributed to the magnetic interactions between the adjacent metal particles. Furthermore, there was an apparent separation between these ZVIN with a little aggregation. Results also showed that the DTPA-extractable Cd in three sandy, acid and calcareous spiked soils decreased with increasing of AAS-ZVIN dosages at both level of contaminations. The availability of Cd in sandy, acid and calcareous spiked soils at 15 and 45 mg kg-1 of contamination were 71 and 49.5 % and 47.52 and 49.47; and 36.05 and 61.3 percentages, respectively. Availability of Cd after four weeks application at two contamination level was also decreased significantly. The results of sequential extraction of sandy, acid and calcareous soils showed that with increasing the level of AAS-ZVIN application from 0 to 2 %, the soluble, exchangeable and carbonate-bound of Cd decreased but organic matter-bound, Fe/Mn oxides bound and

  17. Simultaneous addition of zero-valent iron and activated carbon on enhanced mesophilic anaerobic digestion of waste-activated sludge.

    Science.gov (United States)

    Wang, Tongyu; Qin, Yujie; Cao, Yan; Han, Bin; Ren, Junyi

    2017-10-01

    The performance of biogas generation and sludge degradation was studied under different zero-valent iron/activated carbon (ZVI/AC) ratios in detail in mesophilic anaerobic digestion of sludge. A good enhancement of methane production was obtained at the 10:1 ZVI/AC ratio, and the cumulative methane production was 132.1 mL/g VS, 37.6% higher than the blank. The methane content at the 10:1 ZVI/AC ratio reached 68.8%, which was higher than the blank (55.2%) and the sludge-added AC alone (59.6%). For sludge degradation, the removal efficiencies of total chemical oxygen demand (TCOD), proteins, and polysaccharides were all the highest at the 10:1 ZVI/AC ratio. The concentration of available phosphorus (AP) decreased after anaerobic digestion process. On the other hand, the concentrations of available nitrogen (AN) and available potassium (AK) increased after the anaerobic digestion process and showed a gradually decreasing trend with increasing ZVI/AC ratio. The concentrations of AN and AK were 2303.1-4200.3 and 274.7-388.3 mg/kg, showing a potential for land utilization.

  18. Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite

    International Nuclear Information System (INIS)

    Li, Zi-Jie; Wang, Lin; Yuan, Li-Yong; Xiao, Cheng-Liang; Mei, Lei; Zheng, Li-Rong; Zhang, Jing; Yang, Ju-Hua; Zhao, Yu-Liang; Zhu, Zhen-Tai; Chai, Zhi-Fang; Shi, Wei-Qun

    2015-01-01

    Highlights: • Uranium removal by ZVI-nps: independent of pH, the presence of CO 3 2− , humic acid, or mimic groundwater constituents. • Rapid removal kinetics and sorption capacity of ZVI-nps is 8173 mg U/g. • Two reaction mechanisms: sufficient Fe 0 → reductive precipitation as U 3 O 7 ; insufficient Fe 0 → hydrolysis precipitation of U(VI). • Fe/graphene composites: improved kinetics and higher U(VI) reduction ratio. - Abstract: Zero-valent iron nanoparticle (ZVI-np) and its graphene composites were prepared and applied in the removal of uranium under anoxic conditions. It was found that solutions containing 24 ppm U(VI) could be completely cleaned up by ZVI-nps, regardless of the presence of NaHCO 3 , humic acid, mimic groundwater constituents or the change of solution pH from 5 to 9, manifesting the promising potential of this reactive material in permeable reactive barrier (PRB) to remediate uranium-contaminated groundwater. In the measurement of maximum sorption capacity, removal efficiency of uranium kept at 100% until C 0 (U) = 643 ppm, and the saturation sorption of 8173 mg U/g ZVI-nps was achieved at C 0 (U) = 714 ppm. In addition, reaction mechanisms were clarified based on the results of SEM, XRD, XANES, and chemical leaching in (NH 4 ) 2 CO 3 solution. Partially reductive precipitation of U(VI) as U 3 O 7 was prevalent when sufficient iron was available; nevertheless, hydrolysis precipitation of U(VI) on surface would be predominant as iron got insufficient, characterized by releases of Fe 2+ ions. The dissolution of Fe 0 cores was assigned to be the driving force of continuous formation of U(VI) (hydr)oxide. The incorporation of graphene supporting matrix was found to facilitate faster removal rate and higher U(VI) reduction ratio, thus benefitting the long-term immobilization of uranium in geochemical environment

  19. Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron

    International Nuclear Information System (INIS)

    Cong, Xin; Xue, Nandong; Wang, Shijie; Li, Keji; Li, Fasheng

    2010-01-01

    Several experiments and a model were constructed using conventional granular zero-valent iron (ZVI) particles as the reducing agent to study the reductive dechlorination characteristics of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethane (DDTs) in soils from a former pesticide-manufacturing site. The results showed that ZVI had good ability for the reductive dechlorination for both HCHs and DDTs. The reductive dechlorination of HCHs and DDTs proceeded at different rates. The pseudo first-order constants of HCHs were greater than those of DDTs. The reductive dechlorination rates in a descending order were γ-HCH > δ-HCH > β-HCH > α-HCH > o,p'-DDT > p,p'-DDT > p,p'-DDE. To discuss the major influential factors over the reductive dechlorination rates of HCHs and DDTs by ZVI, 22 quantum chemical descriptors were computed with the density functional theory at B3LYP/6-31G * level, which characterizes different molecular structures and physicochemical properties of HCHs and DDTs. A polyparameter linear free energy relationship (LFER) model was established, which correlates the reductive dechlorination properties of pollutants with their structural descriptors. Using the partial least squares (PLS) analysis, an optimal two-parameter LFER model was established. q + and q Cl - were more important factors in determining the dechlorination rate of OCPs in the chemical reductive reaction. This optimal model was stable and had good predictability. The model study also showed that the coefficient value of q + was 0.511, which positively correlated with the reductive dechlorination rate constant, whereas q Cl - was negatively correlated with it. The reductive dechlorination rate of pollutants appears to be limited mainly by the rate of dissolution in the aqueous phase. This model can be used to explain the degradation potential of organochlorine pesticides (OCPs) and the trend of residues changing during the soil remediation. Therefore, the study is of

  20. Background species effect on aqueous arsenic removal by nano zero-valent iron using fractional factorial design.

    Science.gov (United States)

    Tanboonchuy, Visanu; Grisdanurak, Nurak; Liao, Chih-Hsiang

    2012-02-29

    This study describes the removal of arsenic species in groundwater by nano zero-valent iron process, including As(III) and As(V). Since the background species may inhibit or promote arsenic removal. The influence of several common ions such as phosphate (PO4(3-)), bicarbonate (HCO3-)), sulfate (SO4(2-)), calcium (Ca2+), chloride (Cl-), and humic acid (HA) were selected to evaluate their effects on arsenic removal. In particular, a 2(6-2) fractional factorial design (FFD) was employed to identify major or interacting factors, which affect arsenic removal in a significant way. As a result of FFD evaluation, PO4(3-) and HA play the role of inhibiting arsenic removal, while Ca2+ was observed to play the promoting one. As for HCO3- and Cl-, the former one inhibits As(III) removal, whereas the later one enhances its removal; on the other hand, As(V) removal was affected only slightly in the presence of HCO3- or Cl-. Hence, it was suggested that the arsenic removal by the nanoiron process can be improved through pretreatment of PO4(3-) and HA. In addition, for the groundwater with high hardness, the nanoiron process can be an advantageous option because of enhancing characteristics of Ca2+. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaolin, E-mail: lishaolin@tongji.edu.cn; Wang, Wei; Liang, Feipeng; Zhang, Wei-xian, E-mail: zhangwx@tongji.edu.cn

    2017-01-15

    Highlights: • nZVI is able to perform fast and simultaneous removal of different heavy metal ions. • Fast separation and seeding effect of nZVI facilities its application in wastewater. • A novel process of E{sub h}-controlled reactor, nZVI separator and reuse is proposed. • E{sub h}-controlled system and nZVI recirculation increase material efficiency of nZVI. • The process produces stable effluent and is effective in wastewater treatment. - Abstract: Treatment of wastewater containing heavy metals requires considerations on simultaneous removal of different ions, system reliability and quick separation of reaction products. In this work, we demonstrate that nanoscale zero-valent iron (nZVI) is an ideal reagent for removing heavy metals from wastewater. Batch experiments show that nZVI is able to perform simultaneous removal of different heavy metals and arsenic; reactive nZVI in uniform dispersion brings rapid changes in solution E{sub h}, enabling a facile way for reaction regulation. Microscope characterizations and settling experiments suggest that nZVI serves as solid seeds that facilitate products separation. A treatment process consisting of E{sub h}-controlled nZVI reaction, gravitational separation and nZVI recirculation is then demonstrated. Long-term (>12 months) operation shows that the process achieves >99.5% removal of As, Cu and a number of other toxic elements. The E{sub h}-controlled reaction system sustains a highly-reducing condition in reactor and reduces nZVI dosage. The process produces effluent of stable quality that meets local discharge guidelines. The gravitational separator shows high efficacy of nZVI recovery and the recirculation improves nZVI material efficiency, resulting in extraordinarily high removal capacities ((245 mg As + 226 mg-Cu)/g-nZVI). The work provides proof that nanomaterials can offer truly green and cost-effective solutions for wastewater treatment.

  2. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests

    International Nuclear Information System (INIS)

    Wang, Shengsen; Gao, Bin; Li, Yuncong; Creamer, Anne Elise; He, Feng

    2017-01-01

    Highlights: • Biochar supported nZVI (nZVI/BC) was synthesized. • nZVI/BC showed excellent As(V) removal efficiency in batch and CMR experiments. • 100% removal efficiency was achieved in CMRs. • Surface adsorption was the dominant removal mechanism. - Abstract: Arsenate (As(V)) removal ability by nanoscale zero-valent iron (nZVI) is compromised by aggregation of nZVI particles. In this work, pine derived biochar (PB) was used as a supporting material to stabilize nZVI for As(V) removal. The biochar supported nZVI (nZVI/BC) was synthesized by precipitating the nanoparticles on carbon surfaces. Experiments using batch and continuous flow, completely mixed reactors (CMRs) were carried out to investigate the removal of As(V) by the nZVI/BC from aqueous solutions. Batch experiments showed that nZVI/BC had high As(V) removal capacity in a wide range of pH (3–8). Kinetic data revealed that equilibrium was reached within 1 h and the isotherm data showed that the Langmuir maximum adsorption capacity of the nZVI/BC for As(V) at pH 4.1 was 124.5 g kg −1 . As(V) (100 mg L −1 ) adsorption in anoxic condition was about 8% more than in oxic conditions, where As(V) reduction was observed in anoxic condition. The performance of the nZVI/BC in flowing condition was evaluated in CMRs at influent As(V) concentrations of 2.1 and 5.5 mg L −1 and the adsorbent removed 100% and 90% of the As(V), respectively. Furthermore, the nZVI/BC composite is magnetic which facilitates collection from aqueous solutions.

  3. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengsen [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); Gao, Bin, E-mail: bg55@ufl.edu [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); Li, Yuncong [Tropical Research and Education Center, University of Florida, Homestead, FL 33031 (United States); Creamer, Anne Elise [Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); He, Feng [College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014 (China)

    2017-01-15

    Highlights: • Biochar supported nZVI (nZVI/BC) was synthesized. • nZVI/BC showed excellent As(V) removal efficiency in batch and CMR experiments. • 100% removal efficiency was achieved in CMRs. • Surface adsorption was the dominant removal mechanism. - Abstract: Arsenate (As(V)) removal ability by nanoscale zero-valent iron (nZVI) is compromised by aggregation of nZVI particles. In this work, pine derived biochar (PB) was used as a supporting material to stabilize nZVI for As(V) removal. The biochar supported nZVI (nZVI/BC) was synthesized by precipitating the nanoparticles on carbon surfaces. Experiments using batch and continuous flow, completely mixed reactors (CMRs) were carried out to investigate the removal of As(V) by the nZVI/BC from aqueous solutions. Batch experiments showed that nZVI/BC had high As(V) removal capacity in a wide range of pH (3–8). Kinetic data revealed that equilibrium was reached within 1 h and the isotherm data showed that the Langmuir maximum adsorption capacity of the nZVI/BC for As(V) at pH 4.1 was 124.5 g kg{sup −1}. As(V) (100 mg L{sup −1}) adsorption in anoxic condition was about 8% more than in oxic conditions, where As(V) reduction was observed in anoxic condition. The performance of the nZVI/BC in flowing condition was evaluated in CMRs at influent As(V) concentrations of 2.1 and 5.5 mg L{sup −1} and the adsorbent removed 100% and 90% of the As(V), respectively. Furthermore, the nZVI/BC composite is magnetic which facilitates collection from aqueous solutions.

  4. Formation of a barrier to groundwater contaminants by the injection of zero-valent iron colloids: Suspension properties

    International Nuclear Information System (INIS)

    Kaplan, D.I.; Cantrell, K.J.; Wietsma, T.W.

    1994-01-01

    Zero-valent iron (Fe 0 ) (metallic iron) is a strong chemical reductant that is capable of degrading several halogenated-hydrocarbon compounds (e.g., trichloroethene and tetrachloroethene) and chemically reducing several highly mobile oxidized oxyanions and oxycations to their immobile forms. A series of studies was undertaken to develop methods of injecting micrometer-sized Fe 0 colloids into the subsurface environment to form a chemical barrier to these highly mobile contaminants. Forming a barrier by means of this technique may have the distinct advantage over traditional trench-and-fill technologies: it may be safer, more cost-effective, and may be used at greater depths. Several commercially available Fe 0 colloids were evaluated. One type was selected for further study based on its small size (1 to 2 microm) and the presence of an organic coating. This organic coating was weathered away within 7 days by Hanford ground water (CaCO 3 system, pH 8.1) and exposed the chemically active Fe 0 -colloid surface. Through the use of surfactants in a low ionic strength solution, the length of time that these extremely dense (7.8 g cm -3 ) colloids remained in suspension increased as much as 250%. The efficiency of quartz-sand columns to remove surfactant-coated Fe 0 colloids appeared to be at least partially controlled by injection rate; the filter coefficient values at injection rates of 6, 124, and 248 ml min -1 were 0.30, 0.05, and 0.02 cm -1 , respectively. Studies are underway to develop further understanding of this relationship and to determine the interactive effect of influent colloid concentration and injection flow rate on colloid placement in aquifer sediments for barrier formation

  5. Artificial Intelligence Based Optimization for the Se(IV) Removal from Aqueous Solution by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron Composites.

    Science.gov (United States)

    Cao, Rensheng; Fan, Mingyi; Hu, Jiwei; Ruan, Wenqian; Wu, Xianliang; Wei, Xionghui

    2018-03-15

    Highly promising artificial intelligence tools, including neural network (ANN), genetic algorithm (GA) and particle swarm optimization (PSO), were applied in the present study to develop an approach for the evaluation of Se(IV) removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites. Both GA and PSO were used to optimize the parameters of ANN. The effect of operational parameters (i.e., initial pH, temperature, contact time and initial Se(IV) concentration) on the removal efficiency was examined using response surface methodology (RSM), which was also utilized to obtain a dataset for the ANN training. The ANN-GA model results (with a prediction error of 2.88%) showed a better agreement with the experimental data than the ANN-PSO model results (with a prediction error of 4.63%) and the RSM model results (with a prediction error of 5.56%), thus the ANN-GA model was an ideal choice for modeling and optimizing the Se(IV) removal by the nZVI/rGO composites due to its low prediction error. The analysis of the experimental data illustrates that the removal process of Se(IV) obeyed the Langmuir isotherm and the pseudo-second-order kinetic model. Furthermore, the Se 3d and 3p peaks found in XPS spectra for the nZVI/rGO composites after removing treatment illustrates that the removal of Se(IV) was mainly through the adsorption and reduction mechanisms.

  6. Remediation of persistent organic pollutant-contaminated soil using biosurfactant-enhanced electrokinetics coupled with a zero-valent iron/activated carbon permeable reactive barrier.

    Science.gov (United States)

    Sun, Yuchao; Gao, Ke; Zhang, Yun; Zou, Hua

    2017-12-01

    Zero-valent iron/activated carbon (Fe/C) particles can degrade persistent organic pollutants via micro-electrolysis and therefore, they may be used to develop materials for permeable reactive barriers (PRBs). In this study, surfactant-enhanced electrokinetics (EK) was coupled with a Fe/C-PRB to treat phenanthrene (PHE) and 2,4,6-trichlorophenol (TCP) co-contaminated clay soil. An environment-friendly biosurfactant, rhamnolipid, was selected as the solubility-enhancing agent. Five bench-scale tests were conducted to investigate the performance of EK-PRB on PHE and TCP removal from soil as well as the impact of pH and rhamnolipid concentration. The results show that both PHE and TCP, driven by electro-osmotic flow (EOF), moved toward the cathode and reacted with the Fe/C-PRB. Catholyte acidification and rhamnolipid concentration increase improved the removal efficiencies of PHE and TCP. The highest removal efficiency of PHE in soil column was five times the efficiency of the control group on which only EK was applied (49.89 versus 9.40%). The highest removal efficiency of TCP in soil column was 4.5 times the efficiency of the control group (64.60 versus 14.30%). Desorption and mobility of PHE and TCP improved with the increase of rhamnolipid concentration when this exceeded the critical micelle concentration. This study indicates that the combination of EK and a Fe/C-PRB is efficient and promising for removing persistent organic pollutants (POPs) from contaminated soil with the enhancement of rhamnolipid.

  7. Nanosized zero-valent iron as Fenton-like reagent for ultrasonic-assisted leaching of zinc from blast furnace sludge

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, Ivan, E-mail: ivan.mikhailov@misis.ru [National University of Science and Technology “MISiS”, 4 Leninskiy prospekt, Moscow, 119049 (Russian Federation); Komarov, Sergey [Tohoku University, 6-6-02 Aramaki Aza Aoba, Aoba-ku, Sendai, 980-8576 (Japan); Levina, Vera; Gusev, Alexander; Issi, Jean-Paul; Kuznetsov, Denis [National University of Science and Technology “MISiS”, 4 Leninskiy prospekt, Moscow, 119049 (Russian Federation)

    2017-01-05

    Highlights: • nZVI is used as Fenton-like reagent for activation of Zn leaching from the BFS. • nZVI has positive effect on kinetics of Zn leaching though with some loss of efficiency. • A complex ultrasonic-assisted method for BFS recycling is proposed. - Abstract: Ultrasonic-assisted sulphuric acid leaching combined with a Fenton-like process, utilizing nanoscale zero-valent iron (nZVI), was investigated to enhance the leaching of zinc from the blast furnace sludge (BFS). The leaching of iron (Fe) and zinc (Zn) from the sludge was investigated using Milli-Q water/BFS ratio of 10 and varying the concentration of hydrogen peroxide, sulphuric acid, the temperature, the input energy for ultrasound irradiation, and the presence or absence of nZVI as a Fenton reagent. The results showed that with 1 g/l addition of nZVI and 0.05 M of hydrogen peroxide, the kinetic rate of Zn leaching increased with a maximum dissolution degree of 80.2%, after 5 min treatment. In the absence of nZVI, the maximum dissolution degree of Zn was 99.2%, after 15 min treatment with 0.1 M of hydrogen peroxide. The rate of Zn leaching at several concentrations of hydrogen peroxide is accelerated in the presence of nZVI although a reduction in efficiency was observed. The loss of Fe was no more than 3%. On the basis of these results, the possible route for BFS recycling has been proposed (BFS slurry mixed with sulphuric acid and hydrogen peroxide is recirculated under ultrasonic irradiation then separated).

  8. Fundamental Studies of The Removal of Contaminants from Ground and Waste Waters Via Reduction By Zero-Valent metals

    International Nuclear Information System (INIS)

    Yarmoff, Jory A.; Amrhein, Christopher

    2002-01-01

    Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites, and in other areas of the U.S.. A potential remediation method is to react the contaminated water with zero-valent iron (ZVI). We are performing fundamental investigations of the interactions of the relevant compounds with Fe filings and single- and poly-crystalline surfaces. The aim of this work is to develop the physical and chemical understanding that is necessary for the development of cleanup techniques and procedures

  9. Effect of accelerated carbonation and zero valent iron on metal leaching from bottom ash.

    Science.gov (United States)

    Nilsson, M; Andreas, L; Lagerkvist, A

    2016-05-01

    About 85% of the ashes produced in Sweden originated from the incineration of municipal solid waste and biofuel. The rest comes from the thermal treatment of recycled wood, peat, charcoal and others. About 68% of all ashes annually produced in Sweden are used for constructions on landfills, mainly slopes, roads and embankments, and only 3% for construction of roads and working surfaces outside the landfills (SCB, 2013). Since waste bottom ash (BA) often has similar properties to crushed bedrock or gravel, it could be used for road constructions to a larger extent. However, the leaching of e.g. Cr, Cu, Mo, Pb and Zn can cause a threat to the surrounding environment if the material is used as it is. Carbonation is a commonly used pre-treatment method, yet it is not always sufficient. As leaching from aged ash is often controlled by adsorption to iron oxides, increasing the number of Fe oxide sorption sites can be a way to control the leaching of several critical elements. The importance of iron oxides as sorption sites for metals is known from both mineralogical studies of bottom ash and from the remediation of contaminated soil, where iron is used as an amendment. In this study, zero valent iron (Fe(0)) was added prior to accelerated carbonation in order to increase the number of adsorption sites for metals and thereby reduce leaching. Batch, column and pHstat leaching tests were performed and the leaching behaviour was evaluated with multivariate data analysis. It showed that leaching changed distinctly after the tested treatments, in particular after the combined treatment. Especially, the leaching of Cr and Cu clearly decreased as a result of accelerated carbonation. The combination of accelerated carbonation with Fe(0) addition reduced the leaching of Cr and Cu even further and reduced also the leaching of Mo, Zn, Pb and Cd compared to untreated BA. Compared with only accelerated carbonation, the Fe(0) addition significantly reduced the leaching of Cr, Cu and Mo

  10. Evaluation of the effects of nanoscale zero-valent iron (nZVI) dispersants on intrinsic biodegradation of trichloroethylene (TCE).

    Science.gov (United States)

    Chang, Y C; Huang, S C; Chen, K F

    2014-01-01

    In this study, the biodegradability of nanoscale zero-valent iron (nZVI) dispersants and their effects on the intrinsic biodegradation of trichloroethylene (TCE) were evaluated. Results of a microcosm study show that the biodegradability of three dispersants followed the sequence of: polyvinyl alcohol-co-vinyl acetate-co-itaconic acid (PV3A) > polyoxyethylene (20) sorbitan monolaurate (Tween 20) > polyacrylic acid (PAA) under aerobic conditions, and PV3A > Tween 20 > PAA under anaerobic conditions. Natural biodegradation of TCE was observed under both aerobic and anaerobic conditions. No significant effects were observed on the intrinsic biodegradation of TCE under aerobic conditions with the presence of the dispersants. The addition of PAA seemed to have a slightly adverse impact on anaerobic TCE biodegradation. Higher accumulation of the byproducts of anaerobic TCE biodegradation was detected with the addition of PV3A and Tween 20. The diversity of the microbial community was enhanced under aerobic conditions with the presence of more biodegradable PV3A and Tween 20. The results of this study indicate that it is necessary to select an appropriate dispersant for nZVI to prevent a residual of the dispersant in the subsurface. Additionally, the effects of the dispersant on TCE biodegradation and the accumulation of TCE biodegrading byproducts should also be considered.

  11. Zero-valent iron enhanced methanogenic activity in anaerobic digestion of waste activated sludge after heat and alkali pretreatment.

    Science.gov (United States)

    Zhang, Yaobin; Feng, Yinghong; Quan, Xie

    2015-04-01

    Heat or alkali pretreatment is the effective method to improve hydrolysis of waste sludge and then enhance anaerobic sludge digestion. However the pretreatment may inactivate the methanogens in the sludge. In the present work, zero-valent iron (ZVI) was used to enhance the methanogenic activity in anaerobic sludge digester under two methanogens-suppressing conditions, i.e. heat-pretreatment and alkali condition respectively. With the addition of ZVI, the lag time of methane production was shortened, and the methane yield increased by 91.5% compared to the control group. The consumption of VFA was accelerated by ZVI, especially for acetate, indicating that the acetoclastic methanogenesis was enhanced. In the alkali-condition experiment, the hydrogen produced decreased from 27.6 to 18.8 mL when increasing the ZVI dosage from 0 to 10 g/L. Correspondingly, the methane yield increased from 1.9 to 32.2 mL, which meant that the H2-utilizing methanogenes was enriched. These results suggested that the addition of ZVI into anaerobic digestion of sludge after pretreated by the heat or alkali process could efficiently recover the methanogenic activity and increase the methane production and sludge reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium (VI) removal.

    Science.gov (United States)

    Lv, Xiaoshu; Zhang, Yuling; Fu, Wenyang; Cao, Jiazhen; Zhang, Jiao; Ma, Hanbo; Jiang, Guangming

    2017-11-15

    Zero-valent iron nanoparticles (Fe 0 NPs) technologies are often challenged by poor dispersibility, chemical instability to oxidation, and mobility during processing, storage and use. This work reports a facile approach to synthesize Fe 0 NPs embedded reduced graphene oxide-alginate beads (Fe@GA beads) via the immobilization of pre-synthesized Fe 0 NPs into graphene oxide modified alginate gel followed by a modelling and in-situ reduction process. The structure/composition characterization of the beads finds that the graphene sheets and the Fe 0 NPs (a shape of ellipsoid and a size of beads. We demonstrate that these Fe@GA beads show a robust performance in aqueous Cr(VI) removal. With a optimized Fe and alginate content, Fe@GA bead can achieve a high Cr(VI) removal efficiency and an excellent mechanical strength. The initial Cr(VI) concentration, ionic strength, temperature and especially solution pH are all critical factors to control the Fe@GA beads performance in Cr(VI) removal. Fitness of the pseudo second-order adsorption model with data suggests adsorption is the rate-controlling step, and both Langmuir and Freundlich adsorption isotherm are suitable to describe the removal behavior. The possible Cr(VI) removal path by Fe@GA beads is put forward, and the synergistic effect in this ternary system implies the potentials of Fe@GA beads in pollutant removal from water body. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Termination of nanoscale zero-valent iron reactivity by addition of bromate as a reducing reactivity competitor

    Science.gov (United States)

    Mines, Paul D.; Kaarsholm, Kamilla M. S.; Droumpali, Ariadni; Andersen, Henrik R.; Lee, Wontae; Hwang, Yuhoon

    2017-09-01

    Remediation of contaminated groundwater by nanoscale zero-valent iron (nZVI) is widely becoming a leading environmentally friendly solution throughout the globe. Since a wide range of various nZVI-containing materials have been developed for effective remediation, it is necessary to determine an appropriate way to terminate the reactivity of any nZVI-containing material for a practical experimental procedure. In this study, bimetallic Ni/Fe-NPs were prepared to enhance overall reduction kinetics owing to the catalytic reactivity of nickel on the surface of nZVI. We have tested several chemical strategies in order to terminate nZVI reactivity without altering the concentration of volatile compounds in the solution. The strategies include surface passivation in alkaline conditions by addition of carbonate, and consumption of nZVI by a reaction competitor. Four halogenated chemicals, trichloroethylene, 1,1,1-trichloroethane, atrazine, and 4-chlorophenol, were selected and tested as model groundwater contaminants. Addition of carbonate to passivate the nZVI surface was not effective for trichloroethylene. Nitrate and then bromate were applied to competitively consume nZVI by their faster reduction kinetics. Bromate proved to be more effective than nitrate, subsequently terminating nZVI reactivity for all four of the tested halogenated compounds. Furthermore, the suggested termination method using bromate was successfully applied to obtain trichloroethylene reduction kinetics. Herein, we report the simple and effective method to terminate the reactivity of nZVI by addition of a reducing reactivity competitor.

  14. Nitrogen Atom Transfer From High Valent Iron Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D. [New Mexico State Univ., Las Cruces, NM (United States); Smith, Jeremy M. [Indiana Univ., Bloomington, IN (United States)

    2015-10-14

    This report describes the synthesis and reactions of high valent iron nitrides. Organonitrogen compounds such as aziridines are useful species for organic synthesis, but there are few efficient methods for their synthesis. Using iron nitrides to catalytically access these species may allow for their synthesis in an energy-and atom-efficient manner. We have developed a new ligand framework to achieve these goals as well as providing a method for inducing previously unknown reactivity.

  15. Aging study on carboxymethyl cellulose-coated zero-valent iron nanoparticles in water: Chemical transformation and structural evolution

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Haoran, E-mail: dongh@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China); Zhao, Feng; Zeng, Guangming; Tang, Lin; Fan, Changzheng; Zhang, Lihua; Zeng, Yalan; He, Qi; Xie, Yankai; Wu, Yanan [College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082 (China)

    2016-07-15

    Highlights: • The chemical transformation and structural evolution of CMC-nZVI were investigated. • CMC could slow down the aging rate of nZVI and alter the species transformation. • Fe{sub 3}O{sub 4} and/or γ-Fe{sub 2}O{sub 3} are the dominant corrosion products of bare nZVI after aging. • γ-FeOOH is the primary corrosion product of CMC-nZVI after aging. - Abstract: To assess the long-term fate and the associated risks of nanoscale zero-valent iron (nZVI) used in the water remediation, it is essential to understand the chemical transformations during aging of nZVI in water. This study investigated the compositional and structural evolution of bare nZVI and carboxymethyl cellulose (CMC) coated nZVI in static water over a period of 90 days. Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were used to characterize the corrosion products of nZVI and CMC-nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging, but the coating of CMC could slow down the aging rate of nZVI (as indicated by the slower drop in Fe{sup 0} intensity in XRD pattern). For the bare nZVI, magnetite (Fe{sub 3}O{sub 4}) and/or maghemite (γ-Fe{sub 2}O{sub 3}) are the dominant corrosion products after 90 days of aging. However, for the CMC-nZVI, the core-shell spheres collapses to acicular-shaped structures after aging with crystalline lepidocrocite (γ-FeOOH) as the primary end product. Moreover, more lepidocrocite present in the corrosion products of CMC-nZVI with higher loading of CMC, which reveals that the CMC coating could influence the transformation of iron oxides.

  16. Aging study on carboxymethyl cellulose-coated zero-valent iron nanoparticles in water: Chemical transformation and structural evolution

    International Nuclear Information System (INIS)

    Dong, Haoran; Zhao, Feng; Zeng, Guangming; Tang, Lin; Fan, Changzheng; Zhang, Lihua; Zeng, Yalan; He, Qi; Xie, Yankai; Wu, Yanan

    2016-01-01

    Highlights: • The chemical transformation and structural evolution of CMC-nZVI were investigated. • CMC could slow down the aging rate of nZVI and alter the species transformation. • Fe_3O_4 and/or γ-Fe_2O_3 are the dominant corrosion products of bare nZVI after aging. • γ-FeOOH is the primary corrosion product of CMC-nZVI after aging. - Abstract: To assess the long-term fate and the associated risks of nanoscale zero-valent iron (nZVI) used in the water remediation, it is essential to understand the chemical transformations during aging of nZVI in water. This study investigated the compositional and structural evolution of bare nZVI and carboxymethyl cellulose (CMC) coated nZVI in static water over a period of 90 days. Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy were used to characterize the corrosion products of nZVI and CMC-nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging, but the coating of CMC could slow down the aging rate of nZVI (as indicated by the slower drop in Fe"0 intensity in XRD pattern). For the bare nZVI, magnetite (Fe_3O_4) and/or maghemite (γ-Fe_2O_3) are the dominant corrosion products after 90 days of aging. However, for the CMC-nZVI, the core-shell spheres collapses to acicular-shaped structures after aging with crystalline lepidocrocite (γ-FeOOH) as the primary end product. Moreover, more lepidocrocite present in the corrosion products of CMC-nZVI with higher loading of CMC, which reveals that the CMC coating could influence the transformation of iron oxides.

  17. Zero-valent iron treatment of dark brown colored coffee effluent: Contributions of a core-shell structure to pollutant removals.

    Science.gov (United States)

    Tomizawa, Mayuka; Kurosu, Shunji; Kobayashi, Maki; Kawase, Yoshinori

    2016-12-01

    The decolorization and total organic carbon (TOC) removal of dark brown colored coffee effluent by zero-valent iron (ZVI) have been systematically examined with solution pH of 3.0, 4.0, 6.0 and 8.0 under oxic and anoxic conditions. The optimal decolorization and TOC removal were obtained at pH 8.0 with oxic condition. The maximum efficiencies of decolorization and TOC removal were 92.6 and 60.2%, respectively. ZVI presented potential properties for pollutant removal at nearly neutral pH because of its core-shell structure in which shell or iron oxide/hydroxide layer on ZVI surface dominated the decolorization and TOC removal of coffee effluent. To elucidate the contribution of the core-shell structure to removals of color and TOC at the optimal condition, the characterization of ZVI surface by scanning electron microscopy (SEM) with an energy dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) was conducted. It was confirmed that the core-shell structure was formed and the shell on ZVI particulate surface and the precipitates formed during the course of ZVI treatment consisted of iron oxides and hydroxides. They were significantly responsible for decolorization and TOC removal of coffee effluent via adsorption to shell on ZVI surface and inclusion into the precipitates rather than the oxidative degradation by OH radicals and the reduction by emitted electrons. The presence of dissolved oxygen (DO) enhanced the formation of the core-shell structure and as a result improved the efficiency of ZVI treatment for the removal of colored components in coffee effluents. ZVI was found to be an efficient material toward the treatment of coffee effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xingmao, E-mail: ma@engr.siu.edu [Civil and Environmental Engineering, Southern Illinois University Carbondale, IL 62901 (United States); Gurung, Arun [Civil and Environmental Engineering, Southern Illinois University Carbondale, IL 62901 (United States); Deng, Yang [Earth and Environmental Studies, Montclair State University, NJ 07403 (United States)

    2013-01-15

    Use of nano-scale zero valent iron (nZVI) for the treatment of various environmental pollutants has been proven successful. However, large scale introduction of engineered nanomaterials such as nZVI into the environment has recently attracted serious concerns. There is an urgent need to investigate the environmental fate and impact of nZVI due to the scope of its application. The goal of this study was to evaluate the toxicity and accumulation of bare nZVI by two commonly encountered plant species: cattail (Typha latifolia) and hybrid poplars (Populous deltoids × Populous nigra). Plant seedlings were grown hydroponically in a greenhouse and dosed with different concentrations of nZVI (0–1000 mg/L) for four weeks. The nZVI exhibited strong toxic effect on Typha at higher concentrations (> 200 mg/L) but enhanced plant growth at lower concentrations. nZVI also significantly reduced the transpiration and growth of hybrid poplars at higher concentrations. Microscopic images indicated that large amount of nZVI coated on plant root surface as irregular aggregates and some nZVI penetrated into several layers of epidermal cells. Transmission electron microscope (TEM) and scanning transmission electron microscope (STEM) confirmed the internalization of nZVI by poplar root cells but similar internalization was not observed for Typha root cells. The upward transport to shoots was minimal for both plant species. - Highlights: ► nZVI may exert phytotoxic effects on plants at concentrations (> 200 mg/L) often encountered in site remediation practices. ► nZVI deposits on plant root surface as aggregates and some could internalize in plant root cells. ► Plant uptake and accumulation of nZVI are plant species-dependent. ► Upward transport from roots to shoots was not observed.

  19. Effect of humic acid and transition metal ions on the debromination of decabromodiphenyl by nano zero-valent iron: kinetics and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lei; Liang, Bin; Fang, Zhanqiang, E-mail: sunmoon124@163.com; Xie, Yingying [South China Normal University, School of Chemistry and Environment (China); Tsang, Eric Pokeung [Guangdong Technology Research Centre for Ecological Management and Remediation of Water System (China)

    2014-12-15

    E-waste sites are one of the main sources of the pollutant decabromodiphenyl ether (BDE209); contaminated farmland and water bodies urgently need to be remediated. As a potential in situ remediation technology, nano zero-valent iron (nZVI) technology effectively removes PBDEs. However, the humic acid (HA) and heavy metals in the contaminated sites affect the remediation effects. In this study, we explored the influence of HA and transition metals on the removal of PBDEs by nZVI. The specific surface area and average size of the nZVI particles we prepared were 35 m{sup 2}/g and 50–80 nm, respectively. The results showed that HA inhibited the removal of PBDEs; as the concentration of HA increased, its inhibitory effect intensified and the k{sub obs} decreased. However, the three metal ions (Cu{sup 2+}, Co{sup 2+}, and Ni{sup 2+}) enhanced the removal of PBDEs. The enhancement effect was followed the order Ni{sup 2+} > Cu{sup 2+} > Co{sup 2+}. As the concentration of metal ions increased, the promotion effect improved. The synergistic effect of HA and the metal ions was manifested in the combination of the inhibitory effect and the enhancement effect. The values of the first-order kinetic constants (k{sub obs}) under the combined effect were between the values of the rate constants under the individual components. The inhibitory mechanism was the chemisorption of HA, i.e., the benzene carboxylic and phenolic hydroxyl groups in HA occupied the surfactant reactive sites of nZVI, thus inhibiting the removal of BDE209. The promotion mechanism of Cu{sup 2+}, Co{sup 2+}, and Ni{sup 2+} can be explained by their reduction to zero valence on the nZVI surface; furthermore, Ni{sup 2+} strongly affects the debromination and dehydrogenation of BDE209, leading to a stronger promotability than Cu{sup 2+}or Co{sup 2+}.

  20. Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater.

    Science.gov (United States)

    Sun, Yuqing; Lei, Cheng; Khan, Eakalak; Chen, Season S; Tsang, Daniel C W; Ok, Yong Sik; Lin, Daohui; Feng, Yujie; Li, Xiang-Dong

    2017-06-01

    Nanoscale zero-valent iron (nZVI) was tested for the removal of Cu(II), Zn(II), Cr(VI), and As(V) in model saline wastewaters from hydraulic fracturing. Increasing ionic strength (I) from 0.35 to 4.10 M (Day-1 to Day-90 wastewaters) increased Cu(II) removal (25.4-80.0%), inhibited Zn(II) removal (58.7-42.9%), slightly increased and then reduced Cr(VI) removal (65.7-44.1%), and almost unaffected As(V) removal (66.7-75.1%) by 8-h reaction with nZVI at 1-2 g L -1 . The removal kinetics conformed to pseudo-second-order model, and increasing I decreased the surface area-normalized rate coefficient (k sa ) of Cu(II) and Cr(VI), probably because agglomeration of nZVI in saline wastewaters restricted diffusion of metal(loid)s to active surface sites. Increasing I induced severe Fe dissolution from 0.37 to 0.77% in DIW to 4.87-13.0% in Day-90 wastewater; and Fe dissolution showed a significant positive correlation with Cu(II) removal. With surface stabilization by alginate and polyvinyl alcohol, the performance of entrapped nZVI in Day-90 wastewater was improved for Zn(II) and Cr(VI), and Fe dissolution was restrained (3.20-7.36%). The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in removal trends from Day-1 to Day-90 wastewaters was attributed to: (i) distinctive removal mechanisms of Cu(II) and Cr(VI) (adsorption, (co-)precipitation, and reduction), compared to Zn(II) (adsorption) and As(V) (bidentate inner-sphere complexation); and (ii) changes in solution speciation (e.g., from Zn 2+ to ZnCl 3 - and ZnCl 4 2- ; from CrO 4 2- to CaCrO 4 complex). Bare nZVI was susceptible to variations in wastewater chemistry while entrapped nZVI was more stable and environmentally benign, which could be used to remove metals/metalloids before subsequent treatment for reuse/disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Reaction pathway and oxidation mechanisms of dibutyl phthalate by persulfate activated with zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanxuan [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); Wan, Jinquan, E-mail: ppjqwan@scut.edu.cn [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Ma, Yongwen [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China); State Key Lab Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Yan [School of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China, Guangzhou 510640 (China)

    2016-08-15

    This study investigated reaction pathway and oxidation mechanisms of dibutyl phthalate (DBP) by persulfate (PS) activated with zero-valent iron (ZVI). The DBP degradation was studied at three pH values (acidic, neutral and basic) in the presence of different organic scavengers. Using a chemical probe method, both sulfate radical (SO{sub 4}·{sup −}) and hydroxyl radical (·OH) were found to be primary oxidants at pH 3.0 and pH 7.0, respectively while ·OH was the major specie to oxidize DBP at pH 11.0. A similar result was found in an experiment of Electron Spin Resonance spin-trapping where in addition to ·OH, superoxide radical (O{sub 2}·{sup −}) was detected at pH 11.0. The transformation of degradation products including dimethyl phthalate (DMP), diethyl phthalate (DEP), phthalic anhydride, and acetophenone exhibited diverse variation during the reaction processes. The phthalic anhydride concentration appeared to be maximum at all pHs. Another eleven intermediate products were also found at pH 3.0 by GC–MS and HPLC analysis, and their degradation mechanisms and pathways were proposed. It was suggested that dealkylation, hydroxylation, decarboxylation and hydrogen extraction were the dominant degradation mechanisms of DBP at pH 3.0. - Highlights: • Both SO{sub 4}{sup −}· and ·OH were found to be the major active species at pH 3.0 and pH 7.0. • ·OH and ·O2– were the primary oxidants pH 11.0. • The intermediate products were investigated as well as the degradation pathway. • Dealkylation, hydroxylation, decarboxylation, H-extraction were the major mechanisms.

  2. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron

    International Nuclear Information System (INIS)

    Du, Jingjing; Lu, Jinsuo; Wu, Qiong; Jing, Chuanyong

    2012-01-01

    Highlights: ► COPR remediation mechanism using nZVI was investigated. ► PHREEQC model calculation agreed well with our GANC experimental results. ► Incubation COPR and nZVI with >27% water content could reduce Cr(VI) in solids. ► Water content is the key factor to assist electron transfer between nZVI and COPR. - Abstract: Chromite ore processing residue (COPR) poses a great environmental and health risk with persistent Cr(VI) leaching. To reduce Cr(VI) and subsequently immobilize in the solid matrix, COPR was incubated with nanoscale zero-valent iron (nZVI) and the Cr(VI) speciation and leachability were studied. Multiple complementary analysis methods including leaching tests, X-ray powder diffraction, X-ray absorption near edge structure (XANES) spectroscopy, and X-ray photoelectron spectroscopy (XPS) were employed to investigate the immobilization mechanism. Geochemical PHREEQC model calculation agreed well with our acid neutralizing capacity experimental results and confirmed that when pH was lowered from 11.7 to 7.0, leachate Cr(VI) concentrations were in the range 358–445 mg L −1 which contributed over 90% of dissolved Cr from COPR. Results of alkaline digestion, XANES, and XPS demonstrated that incubation COPR with nZVI under water content higher than 27% could result in a nearly complete Cr(VI) reduction in solids and less than 0.1 mg L −1 Cr(VI) in the TCLP leachate. The results indicated that remediation approaches using nZVI to reduce Cr(VI) in COPR should be successful with sufficient water content to facilitate electron transfer from nZVI to COPR.

  3. Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of Direct Fast Black G in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xiaoying; Chen, Zhengxian [Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Zhou, Rongbing [Institute of Environ Sci and Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018 (China); Chen, Zuliang, E-mail: Zuliang.chen@unisa.edu.au [Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2015-01-15

    Graphical abstract: UV–visible spectra of DFBG solution using K-nZVI (1:1) nanoparticles. (a) Before reaction; (b) during reaction; (c) after reaction. - Highlights: • Kaolin-supported Fe{sup 0} nanoparticle (K-nZVI) was synthesized. • Degradation of Direct Fast Black by K-nZVI was studied. • K-nZVI was characterized by SEM, XRD, UV and FIIR. • Degradation mechanism of Direct Fast Black was proposed. - Abstract: Calcinated kaolin supported nanoscale zero-valent iron (K-nZVI) was synthesized and used for the removal of tetrad azo-group dye-Direct Fast Black G (DFBG) from aqueous solution. The results demonstrated that after reacting for 10 min with an initial concentration of DFBG 100 mg L{sup −1} (pH 9.49), 78.60% of DFBG was removed using K-nZVI, while only 41.39% and 12.56% of DFBG were removed using nZVI and kaolin, respectively. K-nZVI with a mass ratio of nZVI nanoparticles versus kaolin at 1:1 was found to have a high degree of reactivity. Furthermore, scanning electron microscopy (SEM) confirmed that nZVI was better dispersed when kaolin was present. XRD patterns indicated that iron oxides were formed after reaction. Fourier transforms infrared spectra (FTIR) and UV–visible demonstrated that the peak in the visible light region of DFBG was degraded and new bands were observed. Kinetics studies showed that the degradation of DFBG fitted well to the pseudo first-order model. The degradation of DFBG by K-nZVI was based on its adsorption onto kaolin and iron oxides, and subsequently reduction using nZVI was proposed. A significant outcome emerged in that 99.84% of DFBG in wastewater was removed using K-nZVI after reacting for 60 min.

  4. Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of Direct Fast Black G in aqueous solution

    International Nuclear Information System (INIS)

    Jin, Xiaoying; Chen, Zhengxian; Zhou, Rongbing; Chen, Zuliang

    2015-01-01

    Graphical abstract: UV–visible spectra of DFBG solution using K-nZVI (1:1) nanoparticles. (a) Before reaction; (b) during reaction; (c) after reaction. - Highlights: • Kaolin-supported Fe 0 nanoparticle (K-nZVI) was synthesized. • Degradation of Direct Fast Black by K-nZVI was studied. • K-nZVI was characterized by SEM, XRD, UV and FIIR. • Degradation mechanism of Direct Fast Black was proposed. - Abstract: Calcinated kaolin supported nanoscale zero-valent iron (K-nZVI) was synthesized and used for the removal of tetrad azo-group dye-Direct Fast Black G (DFBG) from aqueous solution. The results demonstrated that after reacting for 10 min with an initial concentration of DFBG 100 mg L −1 (pH 9.49), 78.60% of DFBG was removed using K-nZVI, while only 41.39% and 12.56% of DFBG were removed using nZVI and kaolin, respectively. K-nZVI with a mass ratio of nZVI nanoparticles versus kaolin at 1:1 was found to have a high degree of reactivity. Furthermore, scanning electron microscopy (SEM) confirmed that nZVI was better dispersed when kaolin was present. XRD patterns indicated that iron oxides were formed after reaction. Fourier transforms infrared spectra (FTIR) and UV–visible demonstrated that the peak in the visible light region of DFBG was degraded and new bands were observed. Kinetics studies showed that the degradation of DFBG fitted well to the pseudo first-order model. The degradation of DFBG by K-nZVI was based on its adsorption onto kaolin and iron oxides, and subsequently reduction using nZVI was proposed. A significant outcome emerged in that 99.84% of DFBG in wastewater was removed using K-nZVI after reacting for 60 min

  5. Applications of surface analysis in the environmental sciences: dehalogenation of chlorocarbons with zero-valent iron and iron-containing mineral surfaces

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, Molly M.; Carlson, Daniel L.; Vikesland, Peter J.; Kohn, Tamar; Grenier, Adam C.; Langley, Laura A.; Roberts, A. Lynn; Fairbrother, D. Howard

    2003-10-31

    Halogenated organic compounds are common pollutants in groundwater. Consequently, there is widespread interest in understanding the reactions of these compounds in the environment and developing remediation strategies. One area of ongoing research involves the reductive dechlorination of organohalides with zero-valent metals or metal sulfide minerals. These processes have been studied almost exclusively from the perspective of the aqueous phase. In this paper we illustrate the utility of surface analysis techniques, including electron spectroscopies, vibrational spectroscopies, and atomic force microscopy in elucidating the roles played by the surface. A dual analysis approach to the study of reductive dechlorination, combining traditional solution phase analysis with surface analytical techniques, also is demonstrated using a liquid cell coupled to an ultrahigh vacuum surface analysis chamber.

  6. Removal of Acid Red 18 dye from Aqueous Solutions Using Nanoscale Zero-Valent Iron

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Yari

    2015-08-01

    Full Text Available Background and Purpose:Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim was to evaluate the performance nanoscalezero-valent iron (NZVI in the removal of dye acid red 18 (AR18 from aqueous solutions. Materials and Methods:This study was conducted at the laboratory scale. In this study, the removal efficiency of AR18 from a synthetic solution by NZVI was investigated. As well as the effect of solution pH, dye concentration, the concentration of NZVI and contact time in decolorization efficiency was investigated. Results:The results show that in pH = 3, contact time of 80 minutes, dye concentration of 25 mg/l and concentration of NZVI of 2 g/l, the removal efficiency was about 94%. Conclusion:According to the results of experiments, NZVI has high efficiency in removal of AR18 from aqueous solution.

  7. Removal of residual functionalized ionic liquids from water by ultrasound-assisted zero-valent iron/activated carbon.

    Science.gov (United States)

    Zhou, Haimei; Lv, Ping; Qi, Hang; Ma, Jinqi; Wang, Jianji

    2018-03-02

    Numerous applications of ionic liquids (ILs) are often accompanied by the generation of aqueous wastes. Due to the high toxicity and poor biodegradability of ILs, effective chemical treatment is of great importance for their removal from aqueous solution. In this work, an ultrasound-assisted zero-valent iron/activated carbon (US-ZVI/AC) micro-electrolysis technique was used to degrade residual functionalized ILs, 1-butyl-3-methyl benzimidazolium bromide ([BMBIM]Br) and 1-allyl-3-methylimidazolium chloride ([AMIM]Cl) in aqueous solution, and the degradation degree, degradation kinetics and possible degradation pathways were investigated. It was shown that the degradation of these functionalized ILs was highly efficient in the US-ZVI/AC system, and the degradation degree was as high as 96.1% and 92.9% in 110 min for [BMBIM]Br and [AMIM]Cl, respectively. The degradation of [BMBIM]Br could be described by the second-order kinetics model, and [BMBIM] + was decomposed in two ways: (i) sequential cleavage of N-alkyl side chain of the cation produced three intermediates; (ii) the 2-positioned H atoms of the benzimidazolium ring were first oxidized, and then the imidazolium ring was opened. The degradation of [AMIM]Cl followed the first-order kinetics rule, and the 2,4,5-positioned H atoms of the imidazolium ring were oxidized to induce ring opening. In addition, the removal of total organic carbon was found to be >87%, which indicates that most of the ILs was mineralized in the degradation process. These results suggest that ultrasound-assisted ZVI/AC micro-electrolysis is highly effective for the removal of residual functionalized ILs from aqueous environment.

  8. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model.

    Science.gov (United States)

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A; Illman, Walter A

    2015-01-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Implementation of zero-valent iron (ZVI) into drinking water supply - role of the ZVI and biological processes.

    Science.gov (United States)

    Kowalski, Krzysztof P; Søgaard, Erik G

    2014-12-01

    Arsenic in drinking water is concerning millions of people around the world, even though many solutions to the problem have come up in recent years. One of the promising solutions for removing arsenic from water is by implementation of a zero-valent iron (ZVI) in the drinking water production. The purpose of this work was to study a treatment of As pollution based on the ZVI, aeration and sand filtration that was monitored for period of 45 months. In applied configuration and conditions ZVI was not able to remove arsenic alone, but it worked as a source of ferrous ions that during its oxidation enabled to co-precipitate arsenic compounds in the sand filter. The results show that after a lag phase of about 6 months, it was possible to achieve water production with an As content from 20 μg L(-1) to below 5 μg L(-1). The treatment also enabled to remove phosphates that were present in groundwater and affected As uptake by hindering its co-precipitation with Fe compounds. Determination of colony forming units on As amended agar helped to find arsenic resistant bacteria at each stage of treatment and also in the sand filter backwash sludge. Bacterial communities found in groundwater, containing low concentration of As, were found to have high As resistance. The results also indicate that the lag phase might have been also needed to initiate Fe ions release by corrosion from elemental Fe by help of microbial activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Removal of polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge by ultrasound combined zero-valent iron/EDTA/Air system.

    Science.gov (United States)

    Man, Xiaoyuan; Ning, Xun-An; Zou, Haiyuan; Liang, Jieying; Sun, Jian; Lu, Xingwen; Sun, Jiekui

    2018-01-01

    This paper proposes a combined ultrasound (US) and zero-valent iron/EDTA/Air (ZEA) system to remove polycyclic aromatic hydrocarbons (PAHs) from textile dyeing sludge. The removal efficiencies of 16 PAHs using ZEA, US/Air (air injected into the US process), and US/ZEA treatments were investigated, together with the effects of various operating parameters. The enhanced mechanisms of US and the role of reactive oxygen species (ROS) in removing PAHs in the US/ZEA system were explored. Results showed that only 42.5% and 32.9% of ∑16 PAHs were removed by ZEA and US/Air treatments respectively, whereas 70.1% were removed by US/ZEA treatment, (with favorable operating conditions of 2.0 mM EDTA, 15 g/L ZVI, and 1.08 w/cm 3 ultrasonic density). The US/ZEA system could be used with a wide pH range. US led to synergistic improvement of PAHs removal in the ZEA system by enhancing sludge disintegration to release PAHs and promoting ZVI corrosion and oxygen activation. In the US/ZEA system, PAHs could be degraded by ROS (namely OH, O 2 - /HO 2 , and Fe(IV)) and adsorbed by ZVI, during which the ROS made the predominant contribution. This study provides important insights into the application of a US/ZEA system to remove PAHs from sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Perchlorate reduction during electrochemically induced pitting corrosion of zero-valent titanium (ZVT)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chunwoo, E-mail: clee@doosanhydro.com [Department of Research and Development, Doosan Hydro Technology, Inc, Tampa, FL 33619 (United States); Batchelor, Bill [Zachry Department of Civil Engineering, Texas A and M University, College Station, TX 77840 (United States); Park, Sung Hyuk [Environmental and Engineering Research Team, GS Engineering and Construction Research Institute, Youngin, Kyunggi-do 449-831 (Korea, Republic of); Han, Dong Suk; Abdel-Wahab, Ahmed [Chemical Engineering Program, Texas A and M University at Qatar, Education City, Doha, PO Box 23874 (Qatar); Kramer, Timothy A.

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. Black-Right-Pointing-Pointer Perchlorate is effectively reduced to chloride by soluble titanium species. Black-Right-Pointing-Pointer Solution pH and surface area of ZVT showed negligible effects on rates of perchlorate reduction. - Abstract: Zero-valent metals and ionic metal species are a popular reagent for the abatement of contaminants in drinking water and groundwater and perchlorate is a contaminant of increasing concern. However, perchlorate degradation using commonly used reductants such as zero-valent metals and soluble reduced metal species is kinetically limited. Titanium in the zero-valent and soluble states has a high thermodynamic potential to reduce perchlorate. Here we show that perchlorate is effectively reduced to chloride by soluble titanium species in a system where the surface oxide film is removed from ZVT and ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. The pitting potential of ZVT was measured as 12.77 {+-} 0.04 V (SHE) for a 100 mM solution of perchlorate. The rate of perchlorate reduction was independent of the imposed potential as long as the potential was maintained above the pitting potential, but it was proportional to the applied current. Solution pH and surface area of ZVT electrodes showed negligible effects on rates of perchlorate reduction. Although perchlorate is effectively reduced during electrochemically induced corrosion of ZVT, this process may not be immediately applicable to perchlorate treatment due to the high potentials needed to produce active reductants, the amount of titanium consumed, the inhibition of perchlorate removal by chloride, and oxidation of chloride to chlorine.

  12. Perchlorate reduction during electrochemically induced pitting corrosion of zero-valent titanium (ZVT)

    International Nuclear Information System (INIS)

    Lee, Chunwoo; Batchelor, Bill; Park, Sung Hyuk; Han, Dong Suk; Abdel-Wahab, Ahmed; Kramer, Timothy A.

    2011-01-01

    Highlights: ► ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. ► Perchlorate is effectively reduced to chloride by soluble titanium species. ► Solution pH and surface area of ZVT showed negligible effects on rates of perchlorate reduction. - Abstract: Zero-valent metals and ionic metal species are a popular reagent for the abatement of contaminants in drinking water and groundwater and perchlorate is a contaminant of increasing concern. However, perchlorate degradation using commonly used reductants such as zero-valent metals and soluble reduced metal species is kinetically limited. Titanium in the zero-valent and soluble states has a high thermodynamic potential to reduce perchlorate. Here we show that perchlorate is effectively reduced to chloride by soluble titanium species in a system where the surface oxide film is removed from ZVT and ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. The pitting potential of ZVT was measured as 12.77 ± 0.04 V (SHE) for a 100 mM solution of perchlorate. The rate of perchlorate reduction was independent of the imposed potential as long as the potential was maintained above the pitting potential, but it was proportional to the applied current. Solution pH and surface area of ZVT electrodes showed negligible effects on rates of perchlorate reduction. Although perchlorate is effectively reduced during electrochemically induced corrosion of ZVT, this process may not be immediately applicable to perchlorate treatment due to the high potentials needed to produce active reductants, the amount of titanium consumed, the inhibition of perchlorate removal by chloride, and oxidation of chloride to chlorine.

  13. DEMONSTRATION OF IN SITU DEHALOGENATION OF DNAPL THROUGH INJECTION OF EMULSIFIED ZERO-VALIENT IRON AT LAUNCH COMPLEX 34 IN CAPE CANAVERAL AIR FORCE STATION, FLORIDA

    Science.gov (United States)

    The purpose of this project was to evaluate the technical and cost performance of emulsified zero-valent iron (EZVI) technology when applied to DNAPL contaminants in the saturated zone. This demonstration was conducted at Launch Complex 34, Cape Canaveral Air Force Station, FL, w...

  14. Copper increases reductive dehalogenation of haloacetamides by zero-valent iron in drinking water: Reduction efficiency and integrated toxicity risk.

    Science.gov (United States)

    Chu, Wenhai; Li, Xin; Bond, Tom; Gao, Naiyun; Bin, Xu; Wang, Qiongfang; Ding, Shunke

    2016-12-15

    The haloacetamides (HAcAms), an emerging class of nitrogen-containing disinfection byproducts (N-DBPs), are highly cytotoxic and genotoxic, and typically occur in treated drinking waters at low μg/L concentrations. Since many drinking distribution and storage systems contain unlined cast iron and copper pipes, reactions of HAcAms with zero-valent iron (ZVI) and metallic copper (Cu) may play a role in determining their fate. Moreover, ZVI and/or Cu are potentially effective HAcAm treatment technologies in drinking water supply and storage systems. This study reports that ZVI alone reduces trichloroacetamide (TCAcAm) to sequentially form dichloroacetamide (DCAcAm) and then monochloroacetamide (MCAcAm), whereas Cu alone does not impact HAcAm concentrations. The addition of Cu to ZVI significantly improved the removal of HAcAms, relative to ZVI alone. TCAcAm and their reduction products (DCAcAm and MCAcAm) were all decreased to below detection limits at a molar ratio of ZVI/Cu of 1:1 after 24 h reaction (ZVI/TCAcAm = 0.18 M/5.30 μM). TCAcAm reduction increased with the decreasing pH from 8.0 to 5.0, but values from an integrated toxic risk assessment were minimised at pH 7.0, due to limited removal MCAcAm under weak acid conditions (pH = 5.0 and 6.0). Higher temperatures (40 °C) promoted the reductive dehalogenation of HAcAms. Bromine was preferentially removed over chlorine, thus brominated HAcAms were more easily reduced than chlorinated HAcAms by ZVI/Cu. Although tribromoacetamide was more easily reduced than TCAcAm during ZVI/Cu reduction, treatment of tribromoacetamide resulted in a higher integrated toxicity risk than TCAcAm, due to the formation of monobromoacetamide (MBAcAm). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. In-situ Lead Removal by Iron Nano Particles Coated with Nickel

    Directory of Open Access Journals (Sweden)

    Mohammadreza Fadaei-tehrani

    2016-01-01

    Full Text Available This study investigates the potential of nano-zero-valent iron particles coated with nickel in the removal of lead (Pb2+ from porous media. For this purpose, the nano-particles were initially synthesized and later stablilized using the strach biopolymer prior to conducting batch and continuous experiments. The results of the batch experiments revealed that the reaction kinetics fitted well with the pseudo-first-order adsorption model and that the reaction rate ranged from 0.001 to 0.035 g/mg/min depending on solution pH and the molar ratio of Fe/Pb. Continuous experiments showed that lead remediation was mostly influenced not only by seepage velocity but also by the quantity and freshness of nZVI as well as the grain type of the porous media. Maximum Pb2+ removal rates obtained in the batch and lab models were 95% and 80%, respectively. Based on the present study, S-nZVI may be suggested as an efficient agent for in-situ remediation of groundwater contaminated with lead.

  16. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time.

    Science.gov (United States)

    Vítková, Martina; Rákosová, Simona; Michálková, Zuzana; Komárek, Michael

    2017-01-15

    Nano zero-valent iron (nZVI) is currently investigated as a stabilising amendment for contaminated soils. The effect of pH (4-8) and time (48 and 192 h) on the behaviour of nZVI-treated Pb-Zn and As-contaminated soil samples was assessed. Additionally, soil leachates were subsequently used to study the direct interaction between soil solution components and nZVI particles in terms of mineralogical changes and contaminant retention. A typical U-shaped leaching trend as a function of pH was observed for Cd, Pb and Zn, while As was released predominantly under alkaline conditions. Oxidising conditions prevailed, so pH was the key controlling parameter rather than redox conditions. Generally, longer contact time resulted in increased soluble concentrations of metal(loid)s. However, the stabilisation effect of nZVI was only observed after the direct soil leachate-nZVI interactions, showing enhanced redox and sorption processes for the studied metals. A significant decrease of dissolved As concentrations was observed for both experimental soils, but with different efficiencies depending on neutralisation capacity, organic matter content or solid fractionation of As related to the origin of the soils. Scorodite (FeAsO 4 ·2H 2 O) was predicted as a potential solubility-controlling mineral phase for As. Sorption of metal(loid)s onto secondary Fe- and Al-(oxyhydr)oxides (predicted to precipitate at pH > 5) represents an important scavenger mechanism. Moreover, transmission electron microscopy confirmed the retention of Zn and Pb under near-neutral and alkaline conditions by newly formed Fe oxides or aluminosilicates. This study shows that the efficiency of nZVI application strongly depends not only on soil pH-Eh conditions and contaminant type, but also on the presence of organic matter and other compounds such as Al/Fe/Mn oxyhydroxides and clay minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Removal of 4-chlorophenol from aqueous solution by granular activated carbon/nanoscale zero valent iron based on Response Surface Modeling

    Directory of Open Access Journals (Sweden)

    Majlesi Monireh

    2017-12-01

    Full Text Available The phenolic compounds are known as priority pollutants, even in low concentrations, as a result of their toxicity and non-biodegradability. For this reason, strict standards have been established for them. In addition, chlorophenols are placed in the 38th to 43th in highest priority order of toxic pollutants. As a consequence, contaminated water or wastewaters with phenolic compounds have to be treated before discharging into the receiving water. In this study, Response Surface Methodology (RSM has been used in order to optimize the effect of main operational variables responsible for the higher 4-chlorophenol removal by Activated Carbon-Supported Nanoscale Zero Valent Iron (AC/NZVI. A Box-Behnken factorial Design (BBD with three levels was applied to optimize the initial concentration, time, pH, and adsorbent dose. The characterization of adsorbents was conducted by using SEM-EDS and XRD analyses. Furthermore, the adsorption isotherm and kinetics of 4-chlorophenol on AC and AC/NZVI under various conditions were studied. The model anticipated 100% removal efficiency for AC/NZVI at the optimum concentration (5.48 mg 4-chlorophenol/L, pH (5.44, contact time (44.7 min and dose (0.65g/L. Analysis of the response surface quadratic model signified that the experiments are accurate and the model is highly significant. Moreover, the synthetic adsorbent is highly efficient in removing of 4-chlorophenol.

  18. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Airong, E-mail: liuairong@tongji.edu.cn; Liu, Jing; Han, Jinhao; Zhang, Wei-xian, E-mail: zhangwx@tongji.edu.cn

    2017-01-15

    Highlights: • A comprehensive study of corrosion products for nZVI under both oxic and anoxic conditions is performed. • Under anoxic conditions, the oxidation products contain a mixture of wustite (FeO), goethite (α-FeOOH) and akaganeite (β-FeOOH). • Under oxic conditions, the final products are mainly crystalline lepidocrocite (γ-FeOOH) with acicular-shaped structures. • Morphological and structural evolution of nZVI under both oxic and anoxic conditions are substantially different. - Abstract: Knowledge on the transformation of nanoscale zero-valent iron (nZVI) in water is essential to predict its surface chemistry including surface charge, colloidal stability and aggregation, reduction and sorption of organic contaminants, heavy metal ions and other pollutants in the environment. In this work, transmission electronic microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy are applied to study the compositional and structural evolution of nZVI under oxic and anoxic conditions. Under anoxic conditions, the core–shell structure of nZVI is well maintained even after 72 h, and the corrosion products usually contain a mixture of wustite (FeO), goethite (α-FeOOH) and akaganeite (β-FeOOH). Under oxic conditions, the core–shell structure quickly collapses to flakes or acicular-shaped structures with crystalline lepidocrocite (γ-FeOOH) as the primary end product. This work provides detailed information and fills an important knowledge gap on the physicochemical characteristics and structural evolution of engineered nanomaterials in the environment.

  19. Reversible formation of high-valent-iron-oxo-porphyrin intermediate in heme-based catalysis: revisiting the kinetic model for horseradish peroxidase.

    NARCIS (Netherlands)

    Haandel, van M.J.H.; Primus, J.L.; Teunis, C.; Boersma, M.G.; Osman, A.M.; Veeger, C.; Rietjens, I.M.C.M.

    1998-01-01

    Many heme-containing biocatalysts exert their catalytic action through the initial formation of so-called high-valent-iron-oxo porphyrin intermediates. For horseradish peroxidase the initial intermediate formed has been identified as a high-valent-iron-oxo porphyrin π-radical cation, called compound

  20. Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron

    International Nuclear Information System (INIS)

    Jiang, Chenghong; Xu, Xuping; Megharaj, Mallavarapu; Naidu, Ravendra; Chen, Zuliang

    2015-01-01

    To investigate the effect of nanoscale zero-valent iron (nZVI) on the growth of Paracoccus sp. strain and biodenitrification under aerobic conditions, specific factors were studied, pH, concentration of nitrate, Fe (II) and carbon dioxide. Low concentration of nZVI (50 mg/L) promoted both cell growth and biodegradation of nitrate which rose from 69.91% to 76.16%, while nitrate removal fell to 67.10% in the presence of high nZVI concentration (1000 mg/L). This may be attributed to the ions produced in nZVI corrosion being used as an electron source for the biodegradation of nitrate. However, the excess uptake of Fe (II) causes oxidative damage to the cells. To confirm this, nitrate was completely removed after 20 h when 100 mg/L Fe (II) was added to the solution, which is much faster than the control (86.05%, without adding Fe (II)). However, nitrate removal reached only 45.64% after 20 h, with low cell density (OD 600 = 0.62) in the presence of 300 mg/L Fe (II). Characterization techniques indicated that nZVI adhered to microorganism cell membranes. These findings confirmed that nZVI could affect the activity of the strain and consequently change the biodenitrification. - Highlights: • Biodenitrification by Paracoccus sp. in the presence of nZVI was studied. • Biodegradation was promoted at a low nZVI concentration. • Biodegradation was inhibited at a high nZVI concentration. • nZVI that adhered to microorganism cell membranes was characterized

  1. Inhibition or promotion of biodegradation of nitrate by Paracoccus sp. in the presence of nanoscale zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Chenghong; Xu, Xuping [School of Life Science, Fujian Normal University, Fuzhou 350108, Fujian Province (China); Megharaj, Mallavarapu; Naidu, Ravendra [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Chen, Zuliang, E-mail: Zuliang.chen@unisa.edu.au [School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province (China); Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2015-10-15

    To investigate the effect of nanoscale zero-valent iron (nZVI) on the growth of Paracoccus sp. strain and biodenitrification under aerobic conditions, specific factors were studied, pH, concentration of nitrate, Fe (II) and carbon dioxide. Low concentration of nZVI (50 mg/L) promoted both cell growth and biodegradation of nitrate which rose from 69.91% to 76.16%, while nitrate removal fell to 67.10% in the presence of high nZVI concentration (1000 mg/L). This may be attributed to the ions produced in nZVI corrosion being used as an electron source for the biodegradation of nitrate. However, the excess uptake of Fe (II) causes oxidative damage to the cells. To confirm this, nitrate was completely removed after 20 h when 100 mg/L Fe (II) was added to the solution, which is much faster than the control (86.05%, without adding Fe (II)). However, nitrate removal reached only 45.64% after 20 h, with low cell density (OD{sub 600} = 0.62) in the presence of 300 mg/L Fe (II). Characterization techniques indicated that nZVI adhered to microorganism cell membranes. These findings confirmed that nZVI could affect the activity of the strain and consequently change the biodenitrification. - Highlights: • Biodenitrification by Paracoccus sp. in the presence of nZVI was studied. • Biodegradation was promoted at a low nZVI concentration. • Biodegradation was inhibited at a high nZVI concentration. • nZVI that adhered to microorganism cell membranes was characterized.

  2. Dehalogenation of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyl by Bimetallic, Impregnated, and Nanoscale Zerovalent Iron

    Science.gov (United States)

    Zhuang, Yuan; Ahn, Sungwoo; Seyfferth, Angelia L.; Masue-Slowey, Yoko; Fendorf, Scott; Luthy, Richard G.

    2011-01-01

    Nanoscale zerovalent iron particles (nZVI), bimetallic nanoparticles (nZVI/Pd), and nZVI/Pd impregnated activated carbon (nZVI/Pd-AC) composite particles were synthesized and investigated for their effectiveness to remove polybrominated diphenyl ethers (PBDEs) and/or polychlorinated biphenyls (PCBs). Palladization of nZVI promoted the dehalogenation kinetics for mono- to tri-BDEs and 2,3,4-trichlorobiphenyl (PCB 21). Compared to nZVI, the iron-normalized rate constants for nZVI/Pd were about 2-, 3-, and 4-orders of magnitude greater for tri-, di-, and mono-BDEs, respectively, with diphenyl ether as a main reaction product. The reaction kinetics and pathways suggest an H-atom transfer mechanism. The reaction pathways with nZVI/Pd favor preferential removal of para-halogens on PBDEs and PCBs. X-ray fluorescence mapping of nZVI/Pd-AC showed that Pd mainly deposits on the outer part of particles, while Fe was present throughout the activated carbon particles. While BDE 21 was sorbed onto activated carbon composites quickly, debromination was slower compared to reaction with freely dispersed nZVI/Pd. Our XPS and chemical data suggest about 7% of the total iron within the activated carbon was zero-valent, which shows the difficulty with in-situ synthesis of a significant fraction of zero-valent iron in the micro-porous material. Related factors that likely hinder the reaction with nZVI/Pd-AC are the heterogenous distribution of nZVI and Pd on activated carbon and/or immobilization of hydrophobic organic contaminants at the adsorption sites thereby inhibiting contact with nZVI. PMID:21557574

  3. Impacts of zero valent iron, natural zeolite and Dnase on the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of swine manure.

    Science.gov (United States)

    Zhang, Junya; Sui, Qianwen; Zhong, Hui; Meng, Xiaoshan; Wang, Ziyue; Wang, Yawei; Wei, Yuansong

    2018-06-01

    This study investigated the fate of antibiotic resistance genes (ARGs) during mesophilic (mAD) and thermophilic digestion (tAD) of swine manure through zero valent iron (ZVI), natural zeolite and Dnase addition. Changes of microbial community, intI1, heavy metal resistance genes (MRGs) and virulence factors (VFs) were followed to clarify the influencing factors to ARGs reduction. Results showed that AD could realize ARGs reduction with tAD superior to mAD, and ZVI and natural zeolite could further enhance the reduction, especially for natural zeolite addition at mAD. The reduction efficiency of the relative abundance of ARGs was increased by 33.3% and 138.5% after ZVI and natural zeolite addition, respectively, but Dnase deteriorated ARGs reduction at mAD. Most of ARGs could be reduced effectively except sulII and tetM. Network analysis and partial redundancy analysis indicated that co-occurrence of MRGs followed by microbial community contributed the most to the variation of ARGs fate among treatments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The application of illite supported nanoscale zero valent iron for the treatment of uranium contaminated groundwater.

    Science.gov (United States)

    Jing, C; Landsberger, S; Li, Y L

    2017-09-01

    In this study, nanoscale zero valent iron I-NZVI was investigated as a remediation strategy for uranium contaminated groundwater from the former Cimarron Fuel Fabrication Site in Oklahoma, USA. The 1 L batch-treatment system was applied in the study. The result shows that 99.9% of uranium in groundwater was removed by I-NZVI within 2 h. Uranium concentration in the groundwater stayed around 27 μg/L, and there was no sign of uranium release into groundwater after seven days of reaction time. Meanwhile the release of iron was significantly decreased compared to NZVI which can reduce the treatment impact on the water environment. To study the influence of background pH of the treatment system on removal efficiency of uranium, the groundwater was adjusted from pH 2-10 before the addition of I-NZVI. The pH of the groundwater was from 2.1 to 10.7 after treatment. The removal efficiency of uranium achieved a maximum in neutral pH of groundwater. The desorption of uranium on the residual solid phase after treatment was investigated in order to discuss the stability of uranium on residual solids. After 2 h of leaching, 0.07% of the total uranium on residual solid phase was leached out in a HNO 3 leaching solution with a pH of 4.03. The concentration of uranium in the acid leachate was under 3.2 μg/L which is below the EPA's maximum contaminant level of 30 μg/L. Otherwise, the concentration of uranium was negligible in distilled water leaching solution (pH = 6.44) and NaOH leaching solution (pH = 8.52). A desorption study shows that an acceptable amount of uranium on the residuals can be released into water system under strong acid conditions in short terms. For long term disposal management of the residual solids, the leachate needs to be monitored and treated before discharge into a hazardous landfill or the water system. For the first time, I-NZVI was applied for the treatment of uranium contaminated groundwater. These results provide proof that I-NZVI has

  5. Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: Synthesis, characteristic, adsorption performance and mechanism.

    Science.gov (United States)

    Guo, Yige; Huang, Wenli; Chen, Bin; Zhao, Ying; Liu, Dongfang; Sun, Yu; Gong, Bin

    2017-10-05

    In this study, nano zero valent iron (NZVI) modified MCM-41-zeolite A (Fe-MCM-41-A) composite as a novel adsorbent was prepared by precipitation method and applied for tetracycline (TC) removal from aqueous solution. The adsorbent was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and N 2 -BET analysis. Hysteresis loops indicated that the sample has a desirable magnetic property and can be separated quickly. Adsorption studies were carried out to evaluate its potential for TC removal. Results showed that the optimal Fe-MCM-41-A dosage, initial pH and reaction time at initial TC concentration of 100mgL -1 solution are 1gL -1 , pH=5, and 60 min respectively, at which the removal efficiency of TC was 98.7%. The TC adsorption results fitted the Langmuir isotherm model very well and the adsorption process could be described by a pseudo-second-order kinetic model. A maximum TC adsorption capacity of 526.32mgg -1 was achieved. This study demonstrates that Fe-MCM-41-A is a promising and efficient material for TC adsorption from aqueous solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. One-pot synthesis of ternary zero-valent iron/phosphotungstic acid/g-C3N4 composite and its high performance for removal of arsenic(V) from water

    Science.gov (United States)

    Chen, Chunhua; Xu, Jia; Yang, Zhihua; Zhang, Li; Cao, Chunhua; Xu, Zhihua; Liu, Jiyan

    2017-12-01

    Ternary zero-valent iron/phos photungstic acid/g-C3N4 composite (Fe0@PTA/g-C3N4) was synthesized via photoreduction of iron (II) ions assisted by phosphotungstic acid (PTA) over g-C3N4 flakes. The as-prepared Fe0@PTA/g-C3N4 was investigated for removal of As(III) and As(V) species from water. The result showed that Fe0@PTA/g-C3N4 exhibited a better performance for As(V) removal than As(III) species from water, and the maximum adsorption capacity for As(V) was 70.3 mg/g, much higher than most of the reported adsorbents. As(V) removal by the Fe0@PTA/g-C3N4 adsorbent is mainly via a chemical process, synergistically occurring of reduction of As(V) and oxidation of Fe0. Moreover, the Fe0@PTA/g-C3N4 adsorbent showed effective As(V) removal from the simulated industrial wastewater and underground water. This study demonstrates that Fe0@PTA/g-C3N4 can be a potential adsorbent for As(V) removal due to its high performance, and simple one-pot synthesis process.

  7. Environmental application of millimeter-scale sponge iron (s-Fe(0)) particles (II): the effect of surface copper.

    Science.gov (United States)

    Ju, Yongming; Liu, Xiaowen; Liu, Runlong; Li, Guohua; Wang, Xiaoyan; Yang, Yanyan; Wei, Dongyang; Fang, Jiande; Dionysiou, Dionysios D

    2015-04-28

    To enhance the catalytic reactivity of millimeter-scale particles of sponge iron (s-Fe(0)), Cu(2+) ions were deposited on the surface of s-Fe(0) using a simple direct reduction reaction, and the catalytic properties of the bimetallic system was tested for removal of rhodamine B (RhB) from an aqueous solution. The influence of Cu(0) loading, catalyst dosage, particle size, initial RhB concentration, and initial pH were investigated, and the recyclability of the catalyst was also assessed. The results demonstrate that the 3∼5 millimeter s-Fe(0) particles (s-Fe(0)(3∼5mm)) with 5wt% Cu loading gave the best results. The removal of RhB followed two-step, pseudo-first-order reaction kinetics. Cu(0)-s-Fe(0) showed excellent stability after five reuse cycles. Cu(0)-s-Fe(0) possesses great advantages compared to nanoscale zero-valent iron, iron power, and iron flakes as well as its bimetals. The surface Cu(0) apparently catalyzes the production of reactive hydrogen atoms for indirect reaction and generates Fe-Cu galvanic cells that enhance electron transfer for direct reaction. This bimetallic catalyst shows great potential for the pre-treatment of recalcitrant wastewaters. Additionally, some oxides containing iron element are selected to simulate the adsorption process. The results prove that the adsorption process of FeOOH, Fe2O3 and Fe3O4 played minor role for the removal of RhB. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community

    Science.gov (United States)

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-03-01

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community.

  9. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community

    Science.gov (United States)

    Pan, Fei; Zhong, Xiaohan; Xia, Dongsheng; Yin, Xianze; Li, Fan; Zhao, Dongye; Ji, Haodong; Liu, Wen

    2017-01-01

    This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community. PMID:28300176

  10. Antimicrobial effects of zero-valent iron nanoparticles on gram-positive Bacillus strains and gram-negative Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Yi-Huang Hsueh

    2017-11-01

    Full Text Available Abstract Background Zero-valent iron nanoparticles (ZVI NPs have been used extensively for the remediation of contaminated soil and groundwater. Owing to their large active surface area, they serve as strong and effective reductants. However, the ecotoxicity and bioavailability of ZVI NPs in diverse ecological media have not been evaluated in detail and most studies have focused on non-nano ZVI or Fe0. In addition, the antimicrobial properties of ZVI NPs have rarely been investigated, and the underlying mechanism of their toxicity remains unknown. Results In the present study, we demonstrate that ZVI NPs exhibited significant toxicity at 1000 ppm against two distinct gram-positive bacterial strains (Bacillus subtilis 3610 and Bacillus thuringiensis 407 but not against two gram-negative strains (Escherichia coli K12 and ATCC11634. Specifically, ZVI NPs caused at least a 4-log and 1-log reductions in cell numbers, respectively, in the two Bacillus strains, whereas no change was detected in the two E. coli strains. X-ray photoelectron spectroscopy, X-ray absorption near-edge, and extended X-ray absorption fine structure spectra confirmed that Bacillus cells exposed to ZVI NPs contained mostly Fe2O3 with some detectable FeS. This finding indicated that Fe0 nanoparticles penetrated the bacterial cells, where they were subsequently oxidized to Fe2O3 and FeS. RedoxSensor analysis and propidium iodide (PI staining showed decreased reductase activity and increased PI in both Bacillus strains treated with a high (1000 ppm concentration of ZVI NPs. Conclusion Taken together, these data show that the toxicity of ZVI NPs was derived from their oxidative properties, which may increase the levels of reactive oxygen species and lead to cell death.

  11. Simultaneous adsorption and degradation of Zn(2+) and Cu (2+) from wastewaters using nanoscale zero-valent iron impregnated with clays.

    Science.gov (United States)

    Shi, Li-Na; Zhou, Yan; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2013-06-01

    Clays such as kaolin, bentonite and zeolite were evaluated as support material for nanoscale zero-valent iron (nZVI) to simultaneously remove Cu(2+) and Zn(2+) from aqueous solution. Of the three supported nZVIs, bentonite-supported nZVI (B-nZVI) was most effective in the simultaneous removal of Cu(2+) and Zn(2+) from a aqueous solution containing a 100 mg/l of Cu(2+) and Zn(2+), where 92.9 % Cu(2+) and 58.3 % Zn(2+) were removed. Scanning electronic microscope (SEM) revealed that the aggregation of nZVI decreased as the proportion of bentonite increased due to the good dispersion of nZVI, while energy dispersive spectroscopy (EDS) demonstrated the deposition of copper and zinc on B-nZVI after B-nZVI reacted with Cu(2+) and Zn(2+). A kinetics study indicated that removing Cu(2+) and Zn(2+) with B-nZVI accorded with the pseudo first-order model. These suggest that simultaneous adsorption of Cu(2+)and Zn(2+) on bentonite and the degradation of Cu(2+)and Zn(2+) by nZVI on the bentonite. However, Cu(2+) removal by B-nZVI was reduced rather than adsorption, while Zn(2+) removal was main adsorption. Finally, Cu(2+), Zn(2+), Ni(2+), Pb(2+) and total Cr from various wastewaters were removed by B-nZVI, and reusability of B-nZVI with different treatment was tested, which demonstrates that B-nZVI is a potential material for the removal of heavy metals from wastewaters.

  12. Capture and storage of hydrogen gas by zero-valent iron.

    Science.gov (United States)

    Reardon, Eric J

    2014-02-01

    Granular Fe(o), used to reductively degrade a variety of contaminants in groundwater, corrodes in water to produce H2(g). A portion enters the Fe(o) lattice where it is stored in trapping sites such as lattice defects and microcracks. The balance is dissolved by the groundwater where it may exsolve as a gas if its solubility is exceeded. Gas exsolution can reduce the effectiveness of the Fe(o) treatment zone by reducing contact of the contaminant with iron surfaces or by diverting groundwater flow. It also represents a lost electron resource that otherwise could be involved in reductive degradation of contaminants. It is advantageous to select an iron for remediation purposes that captures a large proportion of the H2(g) it generates. This study examines various aspects of the H2(g) uptake process and has found 1) H2(g) does not have to be generated at the water/iron interface to enter the lattice. It can enter directly from the gas/water phases, 2) exposure of granular sponge iron to H2(g) reduces the dormant period for the onset of iron corrosion, 3) the large quantities of H2(g) generated by nano-Fe(o) injected into a reactive barrier of an appropriate granular iron can be captured in the lattice of that iron, and 4) lattice-bound hydrogen represents an additional electron resource to Fe(o) for remediation purposes and may be accessible using physical or chemical means. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Synthesis and Characterization of Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO Composites Used for Pb(II Removal

    Directory of Open Access Journals (Sweden)

    Mingyi Fan

    2016-08-01

    Full Text Available Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO composites were prepared by chemical deposition method and were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, Raman spectroscopy, N2-sorption and X-ray photoelectron spectroscopy (XPS. Operating parameters for the removal process of Pb(II ions, such as temperature (20–40 °C, pH (3–5, initial concentration (400–600 mg/L and contact time (20–60 min, were optimized using a quadratic model. The coefficient of determination (R2 > 0.99 obtained for the mathematical model indicates a high correlation between the experimental and predicted values. The optimal temperature, pH, initial concentration and contact time for Pb(II ions removal in the present experiment were 21.30 °C, 5.00, 400.00 mg/L and 60.00 min, respectively. In addition, the Pb(II removal by nZVI/rGO composites was quantitatively evaluated by using adsorption isotherms, such as Langmuir and Freundlich isotherm models, of which Langmuir isotherm gave a better correlation, and the calculated maximum adsorption capacity was 910 mg/g. The removal process of Pb(II ions could be completed within 50 min, which was well described by the pseudo-second order kinetic model. Therefore, the nZVI/rGO composites are suitable as efficient materials for the advanced treatment of Pb(II-containing wastewater.

  14. In situ remediation-released zero-valent iron nanoparticles impair soil ecosystems health: A C. elegans biomarker-based risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying-Fei; Cheng, Yi-Hsien; Liao, Chung-Min, E-mail: cmliao@ntu.edu.tw

    2016-11-05

    Highlights: • Fe{sup 0} NPs induced infertility risk in C. elegans. • A C.elegans-based probabilistic risk assessment model is developed. • In situ remediation-released Fe{sup 0} NPs impair soil ecosystems health. - Abstract: There is considerable concern over the potential ecotoxicity to soil ecosystems posed by zero-valent iron nanoparticles (Fe{sup 0} NPs) released from in situ environmental remediation. However, a lack of quantitative risk assessment has hampered the development of appropriate testing methods used in environmental applications. Here we present a novel, empirical approach to assess Fe{sup 0} NPs-associated soil ecosystems health risk using the nematode Caenorhabditis elegans as a model organism. A Hill-based dose-response model describing the concentration–fertility inhibition relationships was constructed. A Weibull model was used to estimate thresholds as a guideline to protect C. elegans from infertility when exposed to waterborne or foodborne Fe{sup 0} NPs. Finally, the risk metrics, exceedance risk (ER) and risk quotient (RQ) of Fe{sup 0} NPs in various depths and distances from remediation sites can then be predicted. We showed that under 50% risk probability (ER = 0.5), upper soil layer had the highest infertility risk (95% confidence interval: 13.18–57.40%). The margins of safety and acceptable criteria for soil ecosystems health for using Fe{sup 0} NPs in field scale applications were also recommended. Results showed that RQs are larger than 1 in all soil layers when setting a stricter threshold of ∼1.02 mg L{sup −1} of Fe{sup 0} NPs. This C. elegans biomarker-based risk model affords new insights into the links between widespread use of Fe{sup 0} NPs and environmental risk assessment and offers potential environmental implications of metal-based NPs for in situ remediation.

  15. Fate of As(V)-treated nano zero-valent iron: determination of arsenic desorption potential under varying environmental conditions by phosphate extraction.

    Science.gov (United States)

    Dong, Haoran; Guan, Xiaohong; Lo, Irene M C

    2012-09-01

    Nano zero-valent iron (NZVI) offers a promising approach for arsenic remediation, but the spent NZVI with elevated arsenic content could arouse safety concerns. This study investigated the fate of As(V)-treated NZVI (As-NZVI), by examining the desorption potential of As under varying conditions. The desorption kinetics of As from As-NZVI as induced by phosphate was well described by a biphasic rate model. The effects of As(V)/NZVI mass ratio, pH, and aging time on arsenic desorption from As-NZVI by phosphate were investigated. Less arsenic desorption was observed at lower pH or higher As(V)/NZVI mass ratio, where stronger complexes (bidentate) formed between As(V) and NZVI corrosion products as indicated by FTIR analysis. Compared with the fresh As-NZVI, the amount of phosphate-extractable As significantly decreased in As-NZVI aged for 30 or 60 days. The results of the sequential extraction experiments demonstrated that a larger fraction of As was sorbed in the crystalline phases after aging, making it less susceptible to phosphate displacement. However, at pH 9, a slightly higher proportion of phosphate-extractable As was observed in the 60-day sample than in the 30-day sample. XPS results revealed the transformation of As(V) to more easily desorbed As(III) during aging and a higher As(III)/As(V) ratio in the 60-day sample at pH 9, which might have resulted in the higher desorption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater using a combined zero-valent iron (ZVI) reduction and Fenton oxidation process

    International Nuclear Information System (INIS)

    Shen, Jinyou; Ou, Changjin; Zhou, Zongyuan; Chen, Jun; Fang, Kexiong; Sun, Xiuyun; Li, Jiansheng; Zhou, Lin; Wang, Lianjun

    2013-01-01

    Highlights: • ZVI-Fenton process was conducted for DNAN producing wastewater pretreatment. • Transformation of nitro to amino group by ZVI overcomes the oxidative hindrance. • Subsequent Fenton process is efficient for the removal of aromatic compounds. • ABR-MBBR process is efficient for the polishing of ZVI-Fenton effluent. -- Abstract: A combined zero-valent iron (ZVI) reduction and Fenton oxidation process was tested for the pretreatment of 2,4-dinitroanisole (DNAN) producing wastewater. Operating conditions were optimized and overall performance of the combined process was evaluated. For ZVI process, almost complete reduction of nitroaromatic compounds was observed at empty bed contact time (EBCT) of 8 h. For Fenton process, the optimal pH, H 2 O 2 to Fe(II) molar ratio, H 2 O 2 dosage and hydraulic retention time (HRT) were found to be 3.0, 15, 0.216 mol/L and 5 h, respectively. After pretreatment by the combined ZVI-Fenton process under the optimal conditions, aromatic organic compound removal was as high as 77.2%, while the majority of COD remained to be further treated by sequent biological process. The combined anaerobic-aerobic process consisted of an anaerobic baffled reactor (ABR) and a moving-bed biofilm reactor (MBBR) was operated for 3 months, fed with ZVI-Fenton effluent. The results revealed that the coupled ZVI-Fenton-ABR-MBBR system was significantly efficient in terms of correcting the effluent's main parameters of relevance, mainly aromatic compounds concentration, COD concentration, color and acute toxicity. These results indicate that the combined ZVI-Fenton process offers bright prospects for the pretreatment of wastewater containing nitroaromatic compounds

  17. Non-pumping reactive wells filled with mixing nano and micro zero-valent iron for nitrate removal from groundwater: Vertical, horizontal, and slanted wells

    Science.gov (United States)

    Hosseini, Seiyed Mossa; Tosco, Tiziana; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2018-03-01

    Non-pumping reactive wells (NPRWs) filled by zero-valent iron (ZVI) can be utilized for the remediation of groundwater contamination of deep aquifers. The efficiency of NPRWs mainly depends on the hydraulic contact time (HCT) of the pollutant with the reactive materials, the extent of the well capture zone (Wcz), and the relative hydraulic conductivity of aquifer and reactive material (Kr). We investigated nitrate removal from groundwater using NPRWs filled by ZVI (in nano and micro scales) and examined the effect of NPRWs orientations (i.e. vertical, slanted, and horizontal) on HCT and Wcz. The dependence of HCT on Wcz for different Kr values was derived theoretically for a homogeneous and isotropic aquifer, and verified using particle tracking simulations performed using the semi-analytical particle tracking and pathlines model (PMPATH). Nine batch experiments were then performed to investigate the impact of mixed nano-ZVI, NZVI (0 to 2 g l-1) and micro-ZVI, MZVI (0 to 4 g l-1) on the nitrate removal rate (with initial NO3-=132 mg l-1). The NPRWs system was tested in a bench-scale sand medium (60 cm length × 40 cm width × 25 cm height) for three orientations of NPRWs (vertical, horizontal, and slanted with inclination angle of 45°). A mixture of nano/micro ZVI, was used, applying constant conditions of pore water velocity (0.024 mm s-1) and initial nitrate concentration (128 mg l-1) for five pore volumes. The results of the batch tests showed that mixing nano and micro Fe0 outperforms these individual materials in nitrate removal rates. The final products of nitrate degradation in both batch and bench-scale experiments were NO2-, NH4+, and N2(gas). The results of sand-box experiments indicated that the slanted NPRWs have a higher nitrate reduction rate (57%) in comparison with vertical (38%) and horizontal (41%) configurations. The results also demonstrated that three factors have pivotal roles in expected HCT and Wcz, namely the contrast between the hydraulic

  18. Integration of organohalide-respiring bacteria and nanoscale zero-valent iron (Bio-nZVI-RD): A perfect marriage for the remediation of organohalide pollutants?

    Science.gov (United States)

    Wang, Shanquan; Chen, Siyuan; Wang, Yu; Low, Adrian; Lu, Qihong; Qiu, Rongliang

    2016-12-01

    Due to massive production and improper handling, organohalide compounds are widely distributed in subsurface environments, primarily in anoxic groundwater, soil and sediment. Compared to traditional pump-and-treat or dredging-and-disposal treatments, in situ remediation employing abiotic or biotic reductive dehalogenation represents a sustainable and economic solution for the removal of organohalide pollutants. Both nanoscale zero-valent iron (nZVI) and organohalide-respiring bacteria remove halogens through reductive dehalogenation and have been extensively studied and successfully applied for the in situ remediation of chloroethenes and other organohalide pollutants. nZVI and microbial reductive dehalogenation (Bio-RD) complement each other to boost reductive dehalogenation efficiency, suggesting that the integration of nZVI with Bio-RD (Bio-nZVI-RD) may constitute an even more promising strategy for the in situ remediation of organohalide pollutants. In this review, we first provide an overview of the current literature pertaining to nZVI- and organohalide-respiring bacteria-mediated reductive dehalogenation of organohalide pollutants and compare the pros and cons of individual treatment methods. We then highlight recent studies investigating the implementation of Bio-nZVI-RD to achieve rapid and complete dehalogenation and discuss the halogen removal mechanism of Bio-nZVI-RD and its prospects for future remediation applications. In summary, the use of Bio-nZVI-RD facilitates opportunities for the effective in situ remediation of a wide range of organohalide pollutants. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Simultaneous alleviation of cadmium and arsenic accumulation in rice by applying zero-valent iron and biochar to contaminated paddy soils.

    Science.gov (United States)

    Qiao, Jiang-Tao; Liu, Tong-Xu; Wang, Xiang-Qin; Li, Fang-Bai; Lv, Ya-Hui; Cui, Jiang-Hu; Zeng, Xiao-Duo; Yuan, Yu-Zhen; Liu, Chuan-Ping

    2018-03-01

    The fates of cadmium (Cd) and arsenic (As) in paddy fields are generally opposite; thus, the inconsistent transformation of Cd and As poses large challenges for their remediation. In this study, the impacts of zero valent iron (ZVI) and/or biochar amendments on Cd and As bioavailability were examined in pot trials with rice. Comparison with the untreated soil, both Cd and As accumulation in different rice tissues decreased significantly in the ZVI-biochar amendments and the Cd and As accumulation in rice decreased with increasing ZVI contents. In particular, the concentrations of Cd (0.15 ± 0.01 mg kg -1 ) and As (0.17 ± 0.01 mg kg -1 ) in rice grains were decreased by 93% and 61% relative to the untreated soil, respectively. A sequential extraction analysis indicated that with increasing Fe ratios in the ZVI-biochar mixtures, bioavailable Cd and As decreased, and the immobilized Cd and As increased. Furthermore, high levels of Fe, Cd, and As were detected in Fe plaque of the ZVI-biochar amendments in comparison with the single biochar or single ZVI amendments. The ZVI-biochar mixture may have a synergistic effect that simultaneously reduces Cd and As bioavailability by increasing the formation of amorphous Fe and Fe plaque for Cd and As immobilization. The single ZVI amendment significantly decreased As bioavailability, while the single biochar amendment significantly reduced the bioavailability of Cd compared with the combined amendments. Hence, using a ZVI-biochar mixture as a soil amendment could be a promising strategy for safely-utilizing Cd and As co-contaminated sites in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods.

    Science.gov (United States)

    El-Temsah, Yehia S; Joner, Erik J

    2013-06-01

    Nano-sized zero valent iron (nZVI) has been studied for in situ remediation of contaminated soil and ground water. However, little is known about its effects on organisms in soil and aquatic ecosystems. In this study, the effect of nZVI on degradation of DDT and its ecotoxicological effects on collembola (Folsomia candida) and ostracods (Heterocypris incongruens) were investigated. Two soils were used in suspension incubation experiments lasting for 7 and 30 d; a spiked (20 mg DDT kg(-1)) sandy soil and an aged (>50 years) DDT-polluted soil (24 mg DDT kg(-1)). These were incubated with 1 or 10 g nZVI kg(-1), and residual toxicity in soil and the aqueous phase tested using ecotoxicological tests with collembola or ostracods. Generally, addition of either concentration of nZVI to soil led to about 50% degradation of DDT in spiked soil at the end of 7 and 30 d incubation, while the degradation of DDT was less in aged DDT-polluted soil (24%). Severe negative effects of nZVI were observed on both test organisms after 7 d incubation, but prolonged incubation led to oxidation of nZVI which reduced its toxic effects on the tested organisms. On the other hand, DDT had significant negative effects on collembolan reproduction and ostracod development. We conclude that 1 g nZVI kg(-1) was efficient for significant DDT degradation in spiked soil, while a higher concentration was necessary for treating aged pollutants in soil. The adverse effects of nZVI on tested organisms seem temporary and reduced after oxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. In situ synthesis of zero-valent silver nanoparticles in polymethylmethacrylate under high temperature

    International Nuclear Information System (INIS)

    Xiong Yuanlu; Luo Guoqiang; Chen Cheng; Yuan Huan; Shen Qiang; Li Meijuan

    2012-01-01

    In this work, the silver nanoparticles were synthesized in polymethylmethacrylate (PMMA) matrix under high temperature with polyvinylpyrrolidone (PVP) as additional stabilizer and N,N-dimethylformamide (DMF) as reaction medium. The UV-vis spectroscopy and transmission electron microscopy (TEM) were adopted to investigate the growth and shape conversion of Ag nanoparticles with the lacking of additional Ag source. The results showed that the stable zero-valent Ag in PMMA was obtained successfully. Two types of Ag nanoparticles, single-crystal and twinned ones, could form in the initial period. While the twinned ones will gradually disappear along with the reaction processed, the single-crystal ones could survive and slowly grow by consuming the Ag atoms which were etched form twinned ones. The single-crystal ones will take shape conversion from sphere to nanocube with nearly the same particle size after the total disappearance of twinned ones. The size and shape of Ag nanoparticles can be well controlled by reaction time. The high viscosity PMMA matrix plays the important role of controlling the growth of the Ag nanoparticles, and the PVP takes the responsibility of the shape conversion.

  2. Rapid decolorization of textile wastewater by green synthesized iron nanoparticles.

    Science.gov (United States)

    Ozkan, Z Y; Cakirgoz, M; Kaymak, E S; Erdim, E

    2018-01-01

    The effectiveness of green tea (Camellia sinensis) and pomegranate (Punica granatum) extracts for the production of iron nanoparticles and their application for color removal from a textile industry wastewater was investigated. Polyphenols in extracts act as reducing agents for iron ions in aqueous solutions, forming iron nanoparticles. Pomegranate extract was found to have almost a 10-fold higher polyphenolic content than the same amount of green tea extract on a mass basis. However, the size of the synthesized nanoparticles did not show a correlation with the polyphenolic content. 100 ppm and 300 ppm of iron nanoparticles were evaluated in terms of color removal efficiency from a real textile wastewater sample. 300 ppm of pomegranate nanoscale zero-valent iron particles showed more than 95% color removal and almost 80% dissolved organic carbon removal. The degradation mechanisms are is considered to be adsorption and precipitation to a major extent, and mineralization to a minor extent.

  3. Identification of precipitates formed on zero-valent iron in anaerobic aqueous solutions

    International Nuclear Information System (INIS)

    Schuhmacher, T.; Odziemkowski, M.S.; Reardon, E.J.; Gillham, R.W.

    1997-01-01

    The formation of precipitates has been identified as a possible limitation in the use of granular iron for in situ remediation of groundwater. This study was undertaken to identify the precipitates that form on the iron surfaces under conditions of differing water chemistry. Two laboratory column tests were performed using 100 mesh, 99% pure electrolytic iron. A 120 mg/L calcium carbonate (CaCO 3 ) solution passed through one column and a 40 mg/L potassium bromide (KBr) solution through the other. The CaCO, treated iron formed a whitish gray coating on the first centimeter of the column but the KBr treated iron did not display any visible precipitates. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy were used to identify the precipitates. Calcium carbonate and ferrous carbonate (FeCO 3 ) phases were only present on the surface of the iron removed from the influent end of the column treated with a CaCO 3 solution. Iron surfaces analyzed from both the influent and the effluent end of the KBr treated iron and the effluent end of the CaCO 3 treated iron indicated the presence of magnetite (Fe 3 O 4 ) precipitates

  4. Identification of degradation products of ionic liquids in an ultrasound assisted zero-valent iron activated carbon micro-electrolysis system and their degradation mechanism.

    Science.gov (United States)

    Zhou, Haimei; Lv, Ping; Shen, Yuanyuan; Wang, Jianji; Fan, Jing

    2013-06-15

    Ionic liquids (ILs) have potential applications in many areas of chemical industry because of their unique properties. However, it has been shown that the ILs commonly used to date are toxic and not biodegradable in nature, thus development of efficient chemical methods for the degradation of ILs is imperative. In this work, degradation of imidazolium, piperidinium, pyrrolidinium and morpholinium based ILs in an ultrasound and zero-valent iron activated carbon (ZVI/AC) micro-electrolysis system was investigated, and some intermediates generated during the degradation were identified. It was found that more than 90% of 1-alkyl-3-methylimidazolium bromide ([Cnmim]Br, n = 2, 4, 6, 8, 10) could be degraded within 110 min, and three intermediates 1-alkyl-3-methyl-2,4,5-trioxoimidazolidine, 1-alkyl-3-methylurea and N-alkylformamide were detected. On the other hand, 1-butyl-1-methylpiperidinium bromide ([C4mpip]Br), 1-butyl-1-methylpyrrolidinium bromide ([C4mpyr]Br) and N-butyl-N-methylmorpholinium bromide ([C4mmor]Br) were also effectively degraded through the sequential oxidization into hydroxyl, carbonyl and carboxyl groups in different positions of the butyl side chain, and then the N-butyl side chain was broken to form the final products of N-methylpiperidinium, N-methylpyrrolidinium and N-methylmorpholinium, respectively. Based on these intermediate products, degradation pathways of these ILs were suggested. These findings may provide fundamental information on the assessment of the factors related to the environmental fate and environmental behavior of these commonly used ILs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Amoxicillin Oxidative Degradation Synthesized by Nano Zero Valent Iron

    Directory of Open Access Journals (Sweden)

    AR Yazdanbakhsh

    2016-03-01

    Full Text Available Introduction: Amoxicillin is one of the most important groups of pharmaceuticals that benefits humans and animals. However, antibiotics excertion in wastewaters and environment have emerged as a serious risk to the biotic environment, and their toxic effects can harm the organisms. Iron-based metallic nanoparticles have received special attention in regard with remediation of groundwater contaminants. In the typical nZVI-based bimetallic particle system, Fe acts as the reducing agent. Thus, the present study aimed to evaluate the synthesis and characteristics of nZVI in regard with degrading AMX. Methods: In this study, nZVI nanoparticles were synthesized using the liquid-phase reduction method by EDTA as a stabilizer material. Structure and properties of nanoparticles were characterized by BET, SEM, XRD and EDX analysis. A multi-variate analysis was applied using a response surface methodology (RSM in order to develop a quadratic model as a functional relationship between AMX removal efficiency and independent variables ( initial pH values, dosage of nZVI, contact time and amoxicillin concentration. The four independent variables of solution pH (2–10, AMX concentration (5-45mg/l, contact time (5-85 min and nanoparticles dose (0.25 – 1.25 g were transformed to the coded values. Results: The study results demonstrated that more than 69 % of AMX was removed by nZVI. The optimal AMX removal conditions using nZVI were found as 1.25 g of nZVI, pH 4, contact time of 80 min and concentration of 30 mg/l. Conclusions: The ability of nZVI in degradation of AMX revealed that these materials can serve as a potential nano material with respect to the environmental remediation.

  6. Use of Electrophoresis for Transporting Nano-Iron in Porous Media

    Science.gov (United States)

    Research was conducted to evaluate if electrophoresis could transport surface stabilized nanoscale zero-valent iron (nZVI) through fine grained sand with the intent of remediating a contaminant in situ. The experimental procedure involved determining the transport rates of poly...

  7. Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation.

    Science.gov (United States)

    Li, Pan; Song, Yuan; Wang, Shuai; Tao, Zheng; Yu, Shuili; Liu, Yanan

    2015-01-01

    The rate of reduction reactions of zero-valent metal nanoparticles is restricted by their agglomeration. Hydrodynamic cavitation was used to overcome the disadvantage in this study. Experiments for decolorization of methyl orange azo dye by zero-valent copper nanoparticles were carried out in aqueous solution with and without hydrodynamic cavitation. The results showed that hydrodynamic cavitation greatly accelerated the decolorization rate of methyl orange. The size of nanoparticles was decreased after hydrodynamic cavitation treatment. The effects of important operating parameters such as discharge pressure, initial solution pH, and copper nanoparticle concentration on the degradation rates were studied. It was observed that there was an optimum discharge pressure to get best decolorization performance. Lower solution pH were favorable for the decolorization. The pseudo-first-order kinetic constant for the degradation of methyl orange increased linearly with the copper dose. UV-vis spectroscopic and Fourier transform infrared (FT-IR) analyses confirmed that many degradation intermediates were formed. The results indicated hydroxyl radicals played a key role in the decolorization process. Therefore, the enhancement of decolorization by hydrodynamic cavitation could due to the deagglomeration of nanoparticles as well as the oxidation by the in situ generated hydroxyl radicals. These findings greatly increase the potential of the Cu(0)/hydrodynamic cavitation technique for use in the field of treatment of wastewater containing hazardous materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.; Cha, Judy J.; Reed, Bryan W.; Wessells, Colin D.; Kong, Desheng; Cui, Yi

    2012-01-01

    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  9. High-Density Chemical Intercalation of Zero-Valent Copper into Bi 2 Se 3 Nanoribbons

    KAUST Repository

    Koski, Kristie J.

    2012-05-09

    A major goal of intercalation chemistry is to intercalate high densities of guest species without disrupting the host lattice. Many intercalant concentrations, however, are limited by the charge of the guest species. Here we have developed a general solution-based chemical method for intercalating extraordinarily high densities of zero-valent copper metal into layered Bi 2Se 3 nanoribbons. Up to 60 atom % copper (Cu 7.5Bi 2Se 3) can be intercalated with no disruption to the host lattice using a solution disproportionation redox reaction. © 2012 American Chemical Society.

  10. Influence of synthesis parameters on iron nanoparticle size and zeta potential

    Science.gov (United States)

    Goldstein, Nikki; Greenlee, Lauren F.

    2012-03-01

    Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO4·7H2O or FeCl3), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05-0.9) and borohydride-to-iron (0.5-8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents.

  11. Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters via Reduction by Zero-Valent Metals

    International Nuclear Information System (INIS)

    Yarmoff, Jory A.; Amrhein, Christopher

    1999-01-01

    Contaminated groundwater and surface waters are a problem throughout the United States and the world. In many instances, the types of contamination can be directly attributed to man's actions. For instance, the burial of chemical wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater and surface water contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements (including radioisotopes) that are soluble and mobile in soils and aquifers. Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. Uranium is a particularly widespread contaminant at most DOE sites including Oak Ridge, Rocky Flats, Hanford, Idaho (INEEL), and Fernald. The uranium contamination is associated with mining and milling of uranium ore (UMTRA sites), isotope separation and enrichment, and mixed waste and TRU waste burial. In addition, the careless disposal of halogenated solvents, such as carbon tetrachloride and trichloroethylene, has further contaminated many groundwaters at these sites. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis at many DOE sites. Both in situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. We are performing fundamental investigations of the interactions of the relevant chlorinated solvents and trace element-containing compounds with single- and poly-crystalline Fe surfaces. The aim of this work is to develop th e fundamental

  12. Formulation design for target delivery of iron nanoparticles to TCE zones.

    Science.gov (United States)

    Wang, Ziheng; Acosta, Edgar

    2013-12-01

    Nanoparticles of zero-valent iron (NZVI) are effective reducing agents for some dense non-aqueous phase liquid (DNAPL) contaminants such as trichloroethylene (TCE). However, target delivery of iron nanoparticles to DNAPL zones in the aquifer remains an elusive feature for NZVI technologies. This work discusses three strategies to deliver iron nanoparticles to DNAPL zones. To this end, iron oxide nanoparticles coated with oleate (OL) ions were used as stable analogs for NZVI. The OL-coated iron oxide nanoparticles are rendered lipophilic via (a) the addition of CaCl2, (b) acidification, or (c) the addition of a cationic surfactant, benzethonium chloride (BC). Mixtures of OL and BC show promise as a target delivery strategy due to the high stability of the nanoparticles in water, and their preferential partition into TCE in batch experiments. Column tests show that while the OL-BC coated iron oxide nanoparticles remain largely mobile in TCE-free columns, a large fraction of these particles are retained in TCE-contaminated columns, confirming the effectiveness of this target delivery strategy. © 2013.

  13. Heterogeneous kinetics of the reduction of chromium (VI) by elemental iron

    International Nuclear Information System (INIS)

    Fiuza, Antonio; Silva, Aurora; Carvalho, Goreti; Fuente, Antonio V. de la; Delerue-Matos, Cristina

    2010-01-01

    Zero valent iron (ZVI) has been extensively used as a reactive medium for the reduction of Cr(VI) to Cr(III) in reactive permeable barriers. The kinetic rate depends strongly on the superficial oxidation of the iron particles used and the preliminary washing of ZVI increases the rate. The reaction has been primarily modelled using a pseudo-first-order kinetics which is inappropriate for a heterogeneous reaction. We assumed a shrinking particle type model where the kinetic rate is proportional to the available iron surface area, to the initial volume of solution and to the chromium concentration raised to a power α which is the order of the chemical reaction occurring at surface. We assumed α = 2/3 based on the likeness to the shrinking particle models with spherical symmetry. Kinetics studies were performed in order to evaluate the suitability of this approach. The influence of the following parameters was experimentally studied: initial available surface area, chromium concentration, temperature and pH. The assumed order for the reaction was confirmed. In addition, the rate constant was calculated from data obtained in different operating conditions. Digital pictures of iron balls were periodically taken and the image treatment allowed for establishing the time evolution of their size distribution.

  14. Artificial Neural Network Modeling and Genetic Algorithm Optimization for Cadmium Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO) Composites.

    Science.gov (United States)

    Fan, Mingyi; Li, Tongjun; Hu, Jiwei; Cao, Rensheng; Wei, Xionghui; Shi, Xuedan; Ruan, Wenqian

    2017-05-17

    Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites were synthesized in the present study by chemical deposition method and were then characterized by various methods, such as Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The nZVI/rGO composites prepared were utilized for Cd(II) removal from aqueous solutions in batch mode at different initial Cd(II) concentrations, initial pH values, contact times, and operating temperatures. Response surface methodology (RSM) and artificial neural network hybridized with genetic algorithm (ANN-GA) were used for modeling the removal efficiency of Cd(II) and optimizing the four removal process variables. The average values of prediction errors for the RSM and ANN-GA models were 6.47% and 1.08%. Although both models were proven to be reliable in terms of predicting the removal efficiency of Cd(II), the ANN-GA model was found to be more accurate than the RSM model. In addition, experimental data were fitted to the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherms. It was found that the Cd(II) adsorption was best fitted to the Langmuir isotherm. Examination on thermodynamic parameters revealed that the removal process was spontaneous and exothermic in nature. Furthermore, the pseudo-second-order model can better describe the kinetics of Cd(II) removal with a good R² value than the pseudo-first-order model.

  15. The role of zero valent iron on the fate of tetracycline resistance genes and class 1 integrons during thermophilic anaerobic co-digestion of waste sludge and kitchen waste.

    Science.gov (United States)

    Gao, Pin; Gu, Chaochao; Wei, Xin; Li, Xiang; Chen, Hong; Jia, Hanzhong; Liu, Zhenhong; Xue, Gang; Ma, Chunyan

    2017-03-15

    Activated sludge has been identified as a potential significant source of antibiotic resistance genes (ARGs) to the environment. Anaerobic digestion is extensively used for sludge stabilization and resource recovery, and represents a crucial process for controlling the dissemination of ARGs prior to land application of digested sludge. The objective of this study is to investigate the effect of zero valent iron (Fe 0 ) on the attenuation of seven representative tetracycline resistance genes (tet, tet(A), tet(C), tet(G), tet(M), tet(O), tet(W), and tet(X)), and the integrase gene intI1 during thermophilic anaerobic co-digestion of waste sludge and kitchen waste. Significant decrease (P  0.05) were found for all gene targets between digesters with Fe 0 dosages of 5 and 60 g/L. A first-order kinetic model favorably described the trends in concentrations of tet and intI1 gene targets during thermophilic anaerobic digestion with or without Fe 0 . Notably, tet genes encoding different resistance mechanisms behaved distinctly in anaerobic digesters, although addition of Fe 0 could enhance their reduction. The overall results of this research suggest that thermophilic anaerobic digestion with Fe 0 can be a potential alternative technology for the attenuation of tet and intI1 genes in waste sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Environmental application of millimetre-scale sponge iron (s-Fe{sup 0}) particles (III): The effect of surface silver

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); South China Subcenter of State Environmental Dioxin Monitoring Center, Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Yu, Yunjiang, E-mail: yuyunjiang@scies.org [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Wang, Xiaoyan [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Zhang, Sukun [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Liu, Runlong [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Fu, Jianping; Han, Jinglei; Fang, Jiande [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2015-12-15

    Highlights: • Direct reductive deposition reaction achieves surfaced decoration of s-Fe{sup 0} particles. • Ag{sup 0}-s-Fe{sup 0} displays similar removal efficiency of PCP as compared to bimetal of nZVI. • Ag{sup 0}-s-Fe{sup 0} can be utilized under mild reaction condition compared to bimetal of nZVI. • The catalytic mechanism over Ag{sup 0}-s-Fe{sup 0} under US condition is elucidated. - Abstract: To enhance the dechlorination reactivity of millimetric sponge iron (s-Fe{sup 0}), a facile one-pot method was used to decorate s-Fe{sup 0} with Ag{sup +} ions under ambient conditions. The results recorded by X-ray diffraction patterns, X-ray photoelectron spectra and high-resolution transmission electron microscopy demonstrated that the growth of Ag{sup 0} was dominated primarily by (1 1 1) plane with a mean length of ∼20 nm. The roles of Ag{sup 0} loading, catalyst dosage, particle size, initial pH and contaminant concentration were assessed during the removal of pentachlorophenol (PCP). Catalyst recyclability was also studied. The results revealed that 3–5 mm s-Fe{sup 0} particles with 5 wt% Ag{sup 0} loading exhibited the best performance with a dose of 3.0 g per 60 mL PCP solution. In addition, the dechlorination of PCP followed two-step, pseudo-first-order reaction kinetics, and Ag{sup 0}-s-Fe{sup 0} was advantageous compared with bimetals of nanoscale zero-valent iron, iron power and iron flakes. The dechlorination mechanism of PCP over Ag{sup 0}-s-Fe{sup 0} was attributed to the surface Ag{sup 0} decoration, which catalyzed the formation of reactive hydrogen atoms for indirect reaction, and the direct electron transfer via Fe–Ag{sup 0} galvanic cells for direct reaction. This suggests that Ag-based bimetals of s-Fe{sup 0} have great potential in the pretreatment of organic halogen compounds in aqueous solution.

  17. Influence of synthesis parameters on iron nanoparticle size and zeta potential

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, Nikki; Greenlee, Lauren F., E-mail: lauren.greenlee@nist.gov [National Institute of Standards and Technology, Materials Reliability Division (United States)

    2012-03-15

    Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO{sub 4}{center_dot}7H{sub 2}O or FeCl{sub 3}), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05-0.9) and borohydride-to-iron (0.5-8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents.

  18. Influence of synthesis parameters on iron nanoparticle size and zeta potential

    International Nuclear Information System (INIS)

    Goldstein, Nikki; Greenlee, Lauren F.

    2012-01-01

    Zero valent iron nanoparticles are of increasing interest in clean water treatment applications due to their reactivity toward organic contaminants and their potential to degrade a variety of compounds. This study focuses on the effect of organophosphate stabilizers on nanoparticle characteristics, including particle size distribution and zeta potential, when the stabilizer is present during nanoparticle synthesis. Particle size distributions from DLS were obtained as a function of stabilizer type and iron precursor (FeSO 4 ·7H 2 O or FeCl 3 ), and nanoparticles from 2 to 200 nm were produced. Three different organophosphate stabilizer compounds were compared in their ability to control nanoparticle size, and the size distributions obtained for particle volume demonstrated differences caused by the three stabilizers. A range of stabilizer-to-iron (0.05–0.9) and borohydride-to-iron (0.5–8) molar ratios were tested to determine the effect of concentration on nanoparticle size distribution and zeta potential. The combination of ferrous sulfate and ATMP or DTPMP phosphonate stabilizer produced stabilized nanoparticle suspensions, and the stabilizers tested resulted in varying particle size distributions. In general, higher stabilizer concentrations resulted in smaller nanoparticles, and excess borohydride did not decrease nanoparticle size. Zeta potential measurements were largely consistent with particle size distribution data and indicated the stability of the suspensions. Probe sonication, as a nanoparticle resuspension method, was minimally successful in several different organic solvents.

  19. Environmental application of millimeter-scale sponge iron (s-Fe{sup 0}) particles (II): The effect of surface copper

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming, E-mail: juyongming@scies.org [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Liu, Xiaowen, E-mail: liuxiaowen@scies.org [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Liu, Runlong; Li, Guohua; Wang, Xiaoyan; Yang, Yanyan; Wei, Dongyang; Fang, Jiande [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, Ohio 45221-0012 (United States)

    2015-04-28

    Highlights: • Facile reduction reaction achieves decoration of Cu{sup 0} onto the surface of s-Fe{sup 0}. • The removal efficiency of RhB over Cu{sup 0}–s-Fe{sup 0} was similar to that of Cu{sup 0}–nZVI. • Cu{sup 0}–s-Fe{sup 0} can operate under mild condition with lower cost compared to nZVI. • The reductive mechanism over Cu{sup 0}–s-Fe{sup 0} under US condition is also elucidated. - Abstract: To enhance the catalytic reactivity of millimeter-scale particles of sponge iron (s-Fe{sup 0}), Cu{sup 2+} ions were deposited on the surface of s-Fe{sup 0} using a simple direct reduction reaction, and the catalytic properties of the bimetallic system was tested for removal of rhodamine B (RhB) from an aqueous solution. The influence of Cu{sup 0} loading, catalyst dosage, particle size, initial RhB concentration, and initial pH were investigated, and the recyclability of the catalyst was also assessed. The results demonstrate that the 3 ∼ 5 millimeter s-Fe{sup 0} particles (s-Fe{sup 0}(3 ∼ 5 mm)) with 5 wt% Cu loading gave the best results. The removal of RhB followed two-step, pseudo-first-order reaction kinetics. Cu{sup 0}–s-Fe{sup 0} showed excellent stability after five reuse cycles. Cu{sup 0}–s-Fe{sup 0} possesses great advantages compared to nanoscale zero-valent iron, iron power, and iron flakes as well as its bimetals. The surface Cu{sup 0} apparently catalyzes the production of reactive hydrogen atoms for indirect reaction and generates Fe-Cu galvanic cells that enhance electron transfer for direct reaction. This bimetallic catalyst shows great potential for the pre-treatment of recalcitrant wastewaters. Additionally, some oxides containing iron element are selected to simulate the adsorption process. The results prove that the adsorption process of FeOOH, Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} played minor role for the removal of RhB.

  20. Cadmium removal from aqueous solution by green synthesis zero valent silver nanoparticles with Benjamina leaves extract

    Directory of Open Access Journals (Sweden)

    Khairia M. Al-Qahtani

    2017-12-01

    Full Text Available Cadmium (II is an important element used in various industries, however, it is a poisonous element that affects the health of plants, animals and humans alike. It’s very important to remove this element from contaminated waters. This study aims at synthesizing zero valent silver nanoparticles by environmentally ecofriendly method without using hazardous compounds (via green approach. In this work, silver nanoparticles were prepared using hot water for the Ficus tree (Ficus Benjamina leaf extract (FBLE. The size of crystalline for AgNPs was measured by UV–vis spectroscopy and flourier transform infrared (FTIR. The properties of nano-silver particles (AgNPs have been studied using scanning electron microscope (SEM. The capability of nanoparticles to remove Cd2+ from contaminated solution was then studied. Parameter like adsorbent dose, heavy metal concentration, pH, agitation speed and contact time were studied. Cadmium removal increased when the dosage of biosorbent increases, pH increased from 1 to 6, contact time from 5 to 40 and initial concentration of Cd decrease. Isotherm adsorption was also described by the Freundleich model with a constant correlation (R2 higher than 0.973.

  1. Removal of uranium (VI) from aqueous systems by nanoscale zero-valent iron particles suspended in carboxy-methyl cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, Ioana-Carmen, E-mail: ioana.popescu@icpmrr.ro [R and D National Institute for Metals and Radioactive Resources – ICPMRR Bucharest B-dul Carol I No. 70, Sector 2, 202917 Bucharest (Romania); Filip, Petru [C. D. Nenitescu Institute of Organic Chemistry, Splaiul Independentei 202B, Sector 6, 71141 Bucharest (Romania); Humelnicu, Doina, E-mail: doinah@uaic.ro [Al.I. Cuza University of Iasi, The Faculty of Chemistry, Bd. Carol-I No. 11, Iasi 700506 (Romania); Humelnicu, Ionel [Al.I. Cuza University of Iasi, The Faculty of Chemistry, Bd. Carol-I No. 11, Iasi 700506 (Romania); Scott, Thomas Bligh; Crane, Richard Andrew [Interface Analysis Centre, University of Bristol, 121 St. Michael’s Hill, Bristol BS2 8BS (United Kingdom)

    2013-11-15

    Carboxy-methyl-cellulose (CMC), a common “delivery vehicle” for the subsurface deployment of iron nanoparticles (INP) has been tested in the current work for the removal of aqueous uranium from synthetic water samples. A comparison of the removal of aqueous uranium from solutions using carboxy-methyl-cellulose with and without iron nanoparticles (CMC–INP and CMC, respectively) was tested over a 48 h reaction period. Analysis of liquid samples using spectrophotometry determined a maximum sorption capacity of uranium, Q{sub max}, of 185.18 mg/g and 322.58 mg/g for CMC and CMC–INP respectively, providing strong evidence of an independent aqueous uranium removal ability exhibited by CMC. The results point out that CMC provides an additional capacity for aqueous uranium removal. Further tests are required to determine whether similar behaviour will be observed for other aqueous contaminant species and if the presence of CMC within a INP slurry inhibits or aids the reactivity, reductive capacity and affinity of INP for aqueous contaminant removal.

  2. Artificial Neural Network Modeling and Genetic Algorithm Optimization for Cadmium Removal from Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (nZVI/rGO Composites

    Directory of Open Access Journals (Sweden)

    Mingyi Fan

    2017-05-01

    Full Text Available Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO composites were synthesized in the present study by chemical deposition method and were then characterized by various methods, such as Fourier-transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS. The nZVI/rGO composites prepared were utilized for Cd(II removal from aqueous solutions in batch mode at different initial Cd(II concentrations, initial pH values, contact times, and operating temperatures. Response surface methodology (RSM and artificial neural network hybridized with genetic algorithm (ANN-GA were used for modeling the removal efficiency of Cd(II and optimizing the four removal process variables. The average values of prediction errors for the RSM and ANN-GA models were 6.47% and 1.08%. Although both models were proven to be reliable in terms of predicting the removal efficiency of Cd(II, the ANN-GA model was found to be more accurate than the RSM model. In addition, experimental data were fitted to the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R isotherms. It was found that the Cd(II adsorption was best fitted to the Langmuir isotherm. Examination on thermodynamic parameters revealed that the removal process was spontaneous and exothermic in nature. Furthermore, the pseudo-second-order model can better describe the kinetics of Cd(II removal with a good R2 value than the pseudo-first-order model.

  3. Tetrylones: An Intriguing Class of Monoatomic Zero-valent Group 14 Compounds.

    Science.gov (United States)

    Majhi, Paresh Kumar; Sasamori, Takahiro

    2018-02-13

    Tetrylones (ylidones) represent a class of zero-valent group 14 compounds with the general formula EL 2 (E=C, Si, Ge, Sn, or Pb; L=neutral σ-donating ligand), wherein the tetrel atom, E(0), possess its four valence electrons in the form of two electron lone pairs, and is moreover coordinated by two ligands (L) via donor-acceptor interactions (L→E←L). This review focuses on the synthesis, structure, reactivity, and computational examination of the isolable heavier tetrylones (Si, Ge, Sn) that have been discovered recently. A comprehensive review on carbone chemistry is beyond the scope of this review. It should also be noted that tetrylones contain two different types of lone pairs, that is, one that exhibits p-type and one that exhibits s-type characteristics. Different behavior should thus be expected when these lone pairs react with Lewis acids. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preparation of a Bimetal Using Mechanical Alloying for Environmental or Industrial Use

    Science.gov (United States)

    Quinn, Jacqueline; Geiger, Cherie; Clausen, Christian

    2013-01-01

    simpler and cheaper than previously used methods for producing hydrogenation catalysts. Preferably, the hydrogenation catalyst is a bimetallic particle formed from a zero-valent iron or zero-valent magnesium particle coated with palladium that is impregnated onto a high-surface-area graphite support. The zero-valent metal particles should be microscale or nanoscale zero-valent magnesium or zero-valent iron particles. Other zero-valent metal particles and combinations may be used. Additionally, the base material may be selected from a variety of minerals including, but not limited to, alumina and zeolites. The catalytic metal is preferably selected from the group consisting of noble metals and transition metals, preferably palladium. The mechanical milling process includes milling the base material with a catalytic metal impregnated into a high-surface-area support to form the hydrogenation catalyst. In a preferred mechanical milling process, a zero-valent metal particle is provided as the base material, preferably having a particle size of less than about 10 microns, preferably 0.1 to 10 microns or smaller, prior to milling. The catalytic metal is supported on a conductive carbon support structure prior to milling. For example, palladium may be impregnated on a graphite support. Other support structures such as semiconductive metal oxides may also be used.

  5. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type.

    Science.gov (United States)

    Gomes, Helena I; Dias-Ferreira, Celia; Ottosen, Lisbeth M; Ribeiro, Alexandra B

    2015-07-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero valent iron particles in a two-compartment cell is tested and compared to a more conventional combination of electrokinetic remediation and nZVI in a three-compartment cell. In the new two-compartment cell, the soil is suspended and stirred simultaneously with the addition of zero valent iron nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used as windows sealants. Saponin, a natural surfactant, was also tested to increase the PCB desorption from soils and enhance dechlorination. Remediation of Soil 1 (with highest pH, carbonate content, organic matter and PCB concentrations) obtained the maximum 83% and 60% PCB removal with the two-compartment and the three-compartment cell, respectively. The highest removal with Soil 2 were 58% and 45%, in the two-compartment and the three-compartment cell, respectively, in the experiments without direct current. The pH of the soil suspension in the two-compartment treatment appears to be a determining factor for the PCB dechlorination, and this cell allowed a uniform distribution of the nanoparticles in the soil, while there was iron accumulation in the injection reservoir in the three-compartment cell. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Innocuous oil as an additive for reductive reactions involving zero valence iron

    International Nuclear Information System (INIS)

    Cary, J.W.; Cantrell, K.J.

    1994-11-01

    Reductive reactions involving zero valence iron appear to hold promise for in situ remediation of sites containing chlorinated hydrocarbon solvents and certain reducible metals and radionuclides. Treatment involves the injection of metallic iron and the creation of low levels of dissolved oxygen in the aqueous phase through oxidation of the metallic iron. The use of a biodegradable immiscible and innocuous organic liquid such as vegetable oil as an additive offers several intriguing possibilities. The oil phase creates a large oil-water interface that is immobile with respect to flow in the aqueous phase. This phase will act as a trap for chlorinated hydrocarbons and could potentially increase the reaction efficiency of reductive dehalogenation of chlorinated hydrocarbons by the metallic iron. When iron particles are suspended in the oil before injection they are preferentially held in the oil phase and tend to accumulate at the oil-water interface. Thus oil injection can serve as a mechanism for creating a stable porous curtain of metallic iron in the vadose to maintain a low oxygen environment which will minimize the consumption of the iron by molecular oxygen

  7. 改性零价铁降解多溴二苯醚的研究进展%Research progress on the degradation of polybrominated diphenyl ethers by modified zero valent iron

    Institute of Scientific and Technical Information of China (English)

    韩文亮; 陈海明; 陈兴童

    2017-01-01

    多溴二苯醚(PBDEs)是一类持久性有机污染物(POPs),其无害降解技术是一个研究热点.PBDEs的降解方法包括生物降解、光降解、电解降解、零价铁(ZVI)还原降解、Fenton试剂氧化降解等.其中,零价铁因其优良的还原性能,被逐渐应用于PBDEs等POPs的还原降解,但零价铁因比表面积小、易团聚、易氧化等缺点,需通过改性以改善其降解效果.本文重点从减小铁颗粒粒径、应用搭载系统、加入活性金属、添加表面活性剂、使用辅助手段(超声或微波等)等5个方面综述了改性零价铁降解PBDEs的研究进展,讨论了各改性方法的优缺点,介绍了卤代有机污染物脱卤产物的后续降解方法,并展望了今后的研究重点.%Green degradation of polybrominated diphenyl ethers (PBDEs),a class of persistent organic pollutants (POPs),is a research hot spot.The degradation methods of PBDEs include biodegradation,photolysis degradation,electrolysis degradation,zero valent iron (ZVI) reductive degradation and Fenton reagent oxidative degradation etc.Because of its excellent reductive capability,ZVI has been gradually applied to the reductive dehalogenation of PBDEs and other POPs.However,since there are so many weakness for the conventional ZVI,such as the limited specific surface area,easy aggregation and oxidation,modification of ZVI is needed to improve its degradation efficiency.Five modification approaches for ZVI were reviewed on the research progress of PBDEs degradation,such as reducing iron particle size,using carriers,supplementing with active metals,adding surfactants,and employing auxiliary means (ultrasound or microwave) etc.Advantages and disadvantages for each modification method were discussed.Moreover,the subsequent degradation methods of the dehalogenated products were also introduced,and perspective on the future research focus of modified ZVI were also discussed.

  8. High-valent iron (Fe(VI), Fe(V), and Fe(IV)) species in water: characterization and oxidative transformation of estrogenic hormones

    Czech Academy of Sciences Publication Activity Database

    Machalová-Šišková, K.; Jančula, Daniel; Drahoš, B.; Machala, L.; Babica, Pavel; Godoy Alonso, Paula; Trávníček, Z.; Tuček, J.; Maršálek, Blahoslav; Sharma, V. K.; Zbořil, R.

    2016-01-01

    Roč. 18, č. 28 (2016), s. 18802-18810 ISSN 1463-9076 R&D Projects: GA MPO FR-TI3/196 Institutional support: RVO:67985939 Keywords : high-valent iron species * estrogenic hormones * oxidative transformation Subject RIV: DJ - Water Pollution ; Quality Impact factor: 4.123, year: 2016

  9. Nanoscale zero valent supported by Zeolite and Montmorillonite: Template effect of the removal of lead ion from an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Arancibia-Miranda, Nicolás, E-mail: nicolas.arancibia@usach.cl [Facultad de Química y Biología, CEDENNA, Universidad de Santiago de Chile, USACH, Casilla 40, Santiago C.P. 33 (Chile); Baltazar, Samuel E. [Departamento de Física, CEDENNA, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago 9170124 (Chile); García, Alejandra [CIMAV, S.C. Alianza Norte 202, Carretera Monterrey-Aeropuerto Km 10, C.P. 66600, Apodaca Nuevo León (Mexico); University of Texas at San Antonio, Physics and Astronomy Department, One UTSA circle 78249, San Antonio, Texas (United States); Muñoz-Lira, Daniela [Facultad de Química y Biología, CEDENNA, Universidad de Santiago de Chile, USACH, Casilla 40, Santiago C.P. 33 (Chile); Facultad de Ciencias, Universidad de Chile, UCH, Las Palmeras 3425, Santiago 7800024 (Chile); Sepúlveda, Pamela; Rubio, María A. [Facultad de Química y Biología, CEDENNA, Universidad de Santiago de Chile, USACH, Casilla 40, Santiago C.P. 33 (Chile); Altbir, Dora [Departamento de Física, CEDENNA, Universidad de Santiago de Chile, USACH, Av. Ecuador 3493, Santiago 9170124 (Chile)

    2016-01-15

    Highlights: • The Z–nZVI and Mt–nZVI composites showed a high efficiency in the removal of Pb{sup 2+} present in aqueous solutions. • The fastest removal of Pb{sup 2+} was obtained with Mt–nZVI. • The adsorption intensity increased 300 times in the composites, respect to the pristine materials. • The magnetic behavior of the composites reveals a high presence of nZVI particles. • These composites have potential industrial and environmental applications. - Abstract: In this work, we have studied the Pb{sup 2+} sorption capacity of Zeolite (Z) and Montmorillonite (Mt) functionalized with nanoscale zero-valent iron (nZVI), at 50% w/w, obtained by means of an impregnating process with a solvent excess. The composites were characterized by several techniques including X-ray diffraction; scanning electron microscopy (SEM); BET area; isoelectric point (IEP); and, finally a magnetic response. Comparatively significant differences in terms of electrophoretic and magnetic characteristics were found between the pristine materials and the composites. Both structures show a high efficiency and velocity in the removal of Pb{sup 2+} up to 99.0% (200.0 ppm) after 40 min of reaction time. The removal kinetics of Pb{sup 2+} is adequately described by the pseudo second-order kinetic model, and the maximum adsorbed amounts (q{sub e}) of this analyte are in close accordance with the experimental results. The intraparticle diffusion model shows that this is not the only rate-limiting step, this being the Langmuir model which was well adjusted to our experimental data. Therefore, maximum sorption capacities were found to be 115.1 ± 11.0, 105.5 ± 9.0, 68.3 ± 1.3, 54.2 ± 1.3, and 50.3 ± 4.2 mg g{sup −1}, for Mt–nZVI, Z–nZVI, Zeolite, Mt, and nZVI, respectively. The higher sorption capacities can be attributed to the synergetic behavior between the clay and iron nanoparticles, as a consequence of the clay coating process with nZVI. These results suggest that both

  10. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: Effects of sorption, surfactants, and natural organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Man [Auburn University, Auburn, Alabama; He, Feng [ORNL; Zhao, Dongye [Auburn University, Auburn, Alabama; Hao, Xiaodi [Beijing University of Civil Engineering and Architecture

    2011-01-01

    Zero valent iron (ZVI) nanoparticles have been studied extensively for degradation of chlorinated solvents in the aqueous phase, and have been tested for in-situ remediation of contaminated soil and groundwater. However, little is known about its effectiveness for degrading soil-sorbed contaminants. This work studied reductive dechlorination of trichloroethylene (TCE) sorbed in two model soils (a potting soil and Smith Farm soil) using carboxymethyl cellulose (CMC) stabilized Fe-Pd bimetallic nanoparticles. Effects of sorption, surfactants and dissolved organic matter (DOC) were determined through batch kinetic experiments. While the nanoparticles can effectively degrade soil-sorbed TCE, the TCE degradation rate was strongly limited by desorption kinetics, especially for the potting soil which has a higher organic matter content of 8.2%. Under otherwise identical conditions, {approx}44% of TCE sorbed in the potting soil was degraded in 30 h, compared to {approx}82% for Smith Farm soil (organic matter content = 0.7%). DOC from the potting soil was found to inhibit TCE degradation. The presence of the extracted SOM at 40 ppm and 350 ppm as TOC reduced the degradation rate by 34% and 67%, respectively. Four prototype surfactants were tested for their effects on TCE desorption and degradation rates, including two anionic surfactants known as SDS (sodium dodecyl sulfate) and SDBS (sodium dodecyl benzene sulfonate), a cationic surfactant hexadecyltrimethylammonium (HDTMA) bromide, and a non-ionic surfactant Tween 80. All four surfactants were observed to enhance TCE desorption at concentrations below or above the critical micelle concentration (cmc), with the anionic surfactant SDS being most effective. Based on the pseudo-first-order reaction rate law, the presence of 1 x cmc SDS increased the reaction rate by a factor of 2.5 when the nanoparticles were used for degrading TCE in a water solution. SDS was effective for enhancing degradation of TCE sorbed in Smith Farm

  11. Uranium(VI) Reduction by Nanoscale Zerovalent Iron in Anoxic Batch Systems

    International Nuclear Information System (INIS)

    Yan, Sen; Hua, Bin; Bao, Zhengyu; Yang, John; Liu, Chongxuan; Deng, Baolin

    2010-01-01

    This study investigated the influences of pH, bicarbonate, and calcium on U(VI) adsorption and reduction by synthetic nanosize zero valent iron (nano Fe 0 ) particles under an anoxic condition. The results showed that about 87.1%, 82.7% and 78.3% of U(VI) could be reduced within 96 hours in the presence of 10 mM bicarbonate at pHs 6.92, 8.03 and 9.03, respectively. The rates of U(VI) reduction and adsorption by nano Fe 0 , however, varied significantly with increasing pH and concentrations of bicarbonate and/or calcium. Solid phase analysis by X-ray photoelectron spectroscopy confirmed the formation of UO 2 and iron (hydr)oxides as a result of the redox interactions between adsorbed U(VI) and nano Fe 0 . This study highlights the potential important role of groundwater chemical composition in controlling the rates of U(VI) reductive immobilization using nano Fe 0 in subsurface environments.

  12. Cryptic Role of Zero-Valent Sulfur in Metal and Metalloid Geochemistry in Euxinic Waters

    Science.gov (United States)

    Helz, G. R.

    2014-12-01

    Natural waters that are isolated from the atmosphere in confined aquifers, euxinic basins and sediment pore waters often become sulfidic. These waters are conventionally described simply as reducing environments. But because nature does not constrain their exposure to reducing equivalents (e.g. from organic matter) and oxidizing equivalents (e.g. from Fe,Mn oxides), these reducing environments in fact vary cryptically in their redox characteristics. The implications for trace metal and metalloid cycles are only beginning to be explored. The activity of zero-valent sulfur (aS0), a virtual thermodynamic property, is a potentially useful index for describing this variation. At a particular temperature and ionic strength, aS0 can be quantified from knowledge of pH and the total S(0) to total S(-II) ratio. Although data are incomplete, the deep waters of the Black Sea (aS0 ca. 0.3) appear to be more reducing than the deep waters of the Cariaco Basin (aS0 ca. 0.5) even though both are perennially sulfidic. An apparent manifestation is a greater preponderance of greigite relative to mackinawite in the Cariaco Basin. Interestingly, greigite is stable relative to mackinawite in both basins but predominates only at the higher aS0. Values of aS0 in sulfidic natural waters span the range over which Hg-polysulfide complexes gain predominance over Hg sulfide complexes. Competition between these ligands is thought to influence biological methylation, mercury's route into aquatic and human food chains. In sulfidic deep ground waters, the redox state and consequent mobility of As, a global human hazard, will depend on aS0. At intermediate sulfide concentrations, higher aS0 favors more highly charged and thus less mobile As(V) species relative to As(III) species despite the overall reducing characteristics of such waters. Helz, G.R. (2014) Activity of zero-valent sulfur in sulfidic natural waters. Geochem. Trans. In press.

  13. Synthesis of iron nanoparticles with poly(1-vinylpyrrolidone-co-vinyl acetate) and its application to nitrate reduction

    DEFF Research Database (Denmark)

    Lee, Nara; Choi, Kyunghoon; Uthuppu, Basil

    2014-01-01

    This study aimed to synthesize dispersed and reactive nanoscale zero-valent iron (nZVI) with poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP/VA), nontoxic and biodegradable stabilizer. The nZVI used for the experiments was prepared by reduction of ferric solution in the presence of PVP/VA with spe...

  14. Rapid and extensive debromination of decabromodiphenyl ether by smectite clay-templated subnanoscale zero-valent iron.

    Science.gov (United States)

    Yu, Kai; Gu, Cheng; Boyd, Stephen A; Liu, Cun; Sun, Cheng; Teppen, Brian J; Li, Hui

    2012-08-21

    Subnanoscale zerovalent iron (ZVI) synthesized using smectite clay as a template was utilized to investigate reduction of decabromodiphenyl ether (DBDE). The results revealed that DBDE was rapidly debrominated by the prepared smectite-templated ZVI with a reaction rate 10 times greater than that by conventionally prepared nanoscale ZVI. This enhanced reduction is plausibly attributed to the smaller-sized smectite-templated ZVI clusters (∼0.5 nm) vs that of the conventional nanoscale ZVI (∼40 nm). The degradation of DBDE occurred in a stepwise debromination manner. Pentabromodiphenyl ethers were the terminal products in an alkaline suspension (pH 9.6) of smectite-templated ZVI, whereas di-, tri-, and tetrabromodiphenyl ethers formed at the neutral pH. The presence of tetrahydrofuran (THF) as a cosolvent at large volume fractions (e.g., >70%) in water reduced the debromination rates due to enhanced aggregation of clay particles and/or diminished adsorption of DBDE to smectite surfaces. Modification of clay surfaces with tetramethylammonium (TMA) attenuated the colsovent effect on the aggregation of clay particles, resulting in enhanced debromination rates. Smectite clay provides an ideal template to form subnanoscale ZVI, which demonstrated superior debromination reactivity with DBDE compared with other known forms of ZVIs. The ability to modify the nature of smectite clay surface by cation exchange reaction utilizing organic cations can be harnessed to create surface properties compatible with various contaminated sites.

  15. Enhanced removal of Se(VI) from water via pre-corrosion of zero-valent iron using H2O2/HCl: Effect of solution chemistry and mechanism investigation.

    Science.gov (United States)

    Shan, Chao; Chen, Jiajia; Yang, Zhe; Jia, Huichao; Guan, Xiaohong; Zhang, Weiming; Pan, Bingcai

    2018-04-15

    Although the removal of Se(VI) from water by using zero-valent iron (ZVI) is a promising method, passivation of ZVI severely inhibits its performance. To overcome such issue, we proposed an efficient technique to enhance Se(VI) removal via pre-corrosion of ZVI with H 2 O 2 /HCl in a short time (15 min). The resultant pcZVI suspension was weakly acidic (pH 4.56) and contained abundant aqueous Fe 2+ . 57 Fe Mössbauer spectroscopy showed that pcZVI mainly consisted of Fe 0 (66.2%), hydrated ferric oxide (26.3%), and Fe 3 O 4 (7.5%). Efficient removal of Se(VI) from sulfate-rich solution was achieved by pcZVI compared with ZVI (in the absence and presence of H 2 O 2 ) and acid-pretreated ZVI. Moreover, the efficient removal of Se(VI) by pcZVI sustained over a broad pH range (3-9) due to its strong buffering power. The presence of chloride, carbonate, nitrate, and common cations (Na + , K + , Ca 2+ , and Mg 2+ ) posed negligible influence on the removal of Se(VI) by pcZVI, while the inhibitory effect induced by sulfate, silicate, and phosphate indicated the significance of Se(VI) adsorption as a prerequisite step for its removal. The consumption of aqueous Fe 2+ was associated with Se(VI) removal, and X-ray absorption near edge structure revealed that the main pathway for Se(VI) removal by pcZVI was a stepwise reduction of Se(VI) to Se(IV) and then Se 0 as the dominant final state (78.2%). Moreover, higher electron selectivity of pcZVI was attributed to the enhanced enrichment of Se oxyanions prior to their reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation

    International Nuclear Information System (INIS)

    Bezbaruah, Achintya N.; Shanbhogue, Sai Sharanya; Simsek, Senay; Khan, Eakalak

    2011-01-01

    Nanoscale zero-valent iron (NZVI) particles (10–90 nm) were encapsulated in biodegradable calcium-alginate capsules for the first time for application in environmental remediation. Encapsulation is expected to offers distinct advances over entrapment. Trichloroethylene (TCE) degradation was 89–91% in 2 h, and the reaction followed pseudo first order kinetics for encapsulated NZVI systems with an observed reaction rate constant (k obs ) of 1.92–3.23 × 10 −2 min −1 and a surface normalized reaction rate constant (k sa ) of 1.02–1.72 × 10 −3 L m −2 min −1 . TCE degradation reaction rates for encapsulated and bare NZVI were similar indicating no adverse affects of encapsulation on degradation kinetics. The shelf-life of encapsulated NZVI was found to be four months with little decrease in TCE removal efficiency.

  17. Remediation of Ni(2+)-contaminated water using iron powder and steel manufacturing byproducts.

    Science.gov (United States)

    Jin, Jian; Zhao, Wei-Rong; Xu, Xin-Hua; Hao, Zhi-Wei; Liu, Yong; He, Ping; Zhou, Mi

    2006-01-01

    Steel manufacturing byproducts and commercial iron powders were tested in the treatment of Ni(2+)-contaminated water. Ni2+ is a priority pollutant of some soils and groundwater. The use of zero-valent iron, which can reduce Ni2+ to its neural form appears to be an alternative approach for the remediation of Ni(2+)-contaminated sites. Our experimental data show that the removal efficiencies of Ni2+ were 95.15% and 94.68% at a metal to solution ratio of 20 g/L for commercial iron powders and the steel manufacturing byproducts in 60 min at room temperature, respectively. The removal efficiency reached 98.20% when the metal to solution ratio was 40 g/L for commercial iron powders. Furthermore, we found that the removal efficiency was also largely affected by other factors such as the pHs of the treated water, the length of time for the metal to be in contact with the Ni(2+)-contaminated water, initial concentrations of metal solutions, particle sizes and the amount of iron powders. Surprisingly, the reaction temperature appeared to have little effect on the removal efficiency. Our study opens the way to further optimize the reaction conditions of in situ remediation of Ni2+ or other heavy metals on contaminated sites.

  18. Zero-valent Fe confined mesoporous silica nanocarriers (Fe(0) @ MCM-41) for targeting experimental orthotopic glioma in rats

    Science.gov (United States)

    Shevtsov, M. A.; Parr, M. A.; Ryzhov, V. A.; Zemtsova, E. G.; Arbenin, A. Yu; Ponomareva, A. N.; Smirnov, V. M.; Multhoff, G.

    2016-01-01

    Mesoporous silica nanoparticles (MSNs) impregnated with zero-valent Fe (Fe(0) @ MCM-41) represent an attractive nanocarrier system for drug delivery into tumor cells. The major goal of this work was to assess whether MSNs can penetrate the blood-brain barrier in a glioblastoma rat model. Synthesized MSNs nanomaterials were characterized by energy dispersive X-ray spectroscopy, measurements of X-ray diffraction, scanning electron microscopy and Mössbauer spectroscopy. For the detection of the MSNs by MR and for biodistribution studies MSNs were labeled with zero-valent Fe. Subsequent magnetometry and nonlinear-longitudinal-response-M2 (NLR-M2) measurements confirmed the MR negative contrast enhancement properties of the nanoparticles. After incubation of different tumor (C6 glioma, U87 glioma, K562 erythroleukemia, HeLa cervix carcinoma) and normal cells such as fibroblasts and peripheral blood mononuclear cells (PBMCs) MSNs rapidly get internalized into the cytosol. Intracellular residing MSNs result in an enhanced cytotoxicity as Fe(0) @ MCM-41 promote the reactive oxygen species production. MRI and histological studies indicated an accumulation of intravenously injected Fe(0) @ MCM-41 MSNs in orthotopic C6 glioma model. Biodistribution studies with measurements of second harmonic of magnetization demonstrated an increased and dose-dependent retention of MSNs in tumor tissues. Taken together, this study demonstrates that MSNs can enter the blood-brain barrier and accumulate in tumorous tissues. PMID:27386761

  19. RCRA corrective measures using a permeable reactive iron wall US Coast Guard Support Center, Elizabeth City, North Carolina

    International Nuclear Information System (INIS)

    Schmithors, W.L.; Vardy, J.A.

    1997-01-01

    A chromic acid release was discovered at a former electroplating shop at the U.S. Coast Guard Support Center in Elizabeth City, North Carolina. Initial investigative activities indicated that chromic acid had migrated into the subsurface soils and groundwater. In addition, trichloroethylene (TCE) was also discovered in groundwater during subsequent investigations of the hexavalent chromium (Cr VI) plume. Corrective measures were required under the Resource Conservation and Recovery Act (RCRA). The in-situ remediation method, proposed under RCRA Interim Measures to passively treat the groundwater contaminants, uses reactive zero-valent iron to reductively dechlorinate the chlorinated compounds and to mineralize the hexavalent chromium. A 47 meter by 0.6 meter subsurface permeable iron wall was installed downgradient of the source area to a depth of 7 meters using a direct trenching machine. The iron filings were placed in the ground as the soils were excavated from the subsurface. This is the first time that direct trenching was used to install reactive zero-valent iron filings. Over 250 metric tons of iron filings were used as the reactive material in the barrier wall. Installation of the iron filings took one full day. Extensive negotiations with regulatory agencies were required to use this technology under the current facility Hazardous Waste Management Permit. All waste soils generated during the excavation activities were contained and treated on site. Once contaminant concentrations were reduced the waste soils were used as fill material

  20. Air pollution particles and iron homeostasis | Science ...

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, functional groups at the surface of retained particle complex iron available in the cell. In response to a reduction in concentrations of requisite iron, a functional deficiency can result intracellularly. Superoxide production by the cell exposed to a particle increases ferrireduction which facilitates import of iron with the objective being the reversal of the metal deficiency. Failure to resolve the functional iron deficiency following cell exposure to particles activates kinases and transcription factors resulting in a release of inflammatory mediators and inflammation. Tissue injury is the end product of this disruption in iron homeostasis initiated by the particle exposure. Elevation of available iron to the cell precludes deficiency of the metal and either diminishes or eliminates biological effects.General Significance: Recognition of the pathway for biological effects after particle exposure to involve a functional deficiency of iron suggests novel therapies such as metal supplementation (e.g. inhaled and oral). In addition, the demonstration of a shared mechanism of biological effects allows understanding the common clinical, physiological, and pathological presentation fol

  1. Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)–CO_3/Ca–U(VI)–CO_3 complexes

    International Nuclear Information System (INIS)

    Zhang, Zhibin; Liu, Jun; Cao, Xiaohong; Luo, Xuanping; Hua, Rong; Liu, Yan; Yu, Xiaofeng; He, Likai

    2015-01-01

    Highlights: • NZVI can be used for adsorbing U(VI)–CO_3 complexes. • Use of NZVI is feasible for remediation of uranium-contaminated soils. • The mechanism of U(VI)–CO_3 complexes adsorbing onto NZVI has been explained. - Abstract: The influence of U(VI)–CO_3 and Ca–U(VI)–CO_3 complexes on U(VI) adsorption onto red soil and nanoscale zero-valent iron (NZVI) was investigated using batch adsorption and fixed-bed column experiments to simulate the feasibility of NZVI as the reactive medium in permeable- reactive barriers (PRB) for in situ remediation of uranium-contaminated red soils. The adsorption capacity (q_e) and distribution constant (K_d) of NZVI and red soil decreased with increasing pH, dissolved carbonate and calcium concentrations, but the q_e and K_d values of NZVI were 5–10 times higher than those of red soil. The breakthrough pore volume (PV) values increased with the decrease of pH, dissolved carbonate and calcium concentration; however, the breakthrough PV values of the PRB column filled with 5% NZVI were 2.0–3.5 times higher than the 100% red soil column. The U(VI)–CO_3 complexes adsorbed onto the surface of red soil/NZVI (≡SOH) to form SO–UO_2CO_3"− or SO–UO_2 (CO_3)_2"3"−. XPS and XRD analysis further confirmed the reduction of U(VI) to U(IV) and the formation of FeOOH on NZVI surfaces. The findings of this study are significant to the remediation of uranium-contaminated red soils and the consideration of practical U(VI) species in the natural environment.

  2. Air-stable nZVI formation mediated by glutamic acid: solid-state storable material exhibiting 2D chain morphology and high reactivity in aqueous environment

    Science.gov (United States)

    Siskova, Karolina; Tucek, Jiri; Machala, Libor; Otyepkova, Eva; Filip, Jan; Safarova, Klara; Pechousek, Jiri; Zboril, Radek

    2012-03-01

    We report a new chemical approach toward air-stable nanoscale zero-valent iron (nZVI). The uniformly sized (approx. 80 nm) particles, formed by the reduction of Fe(II) salt by borohydride in the presence of glutamic acid, are coated by a thin inner shell of amorphous ferric oxide/hydroxide and a secondary shell consisting of glutamic acid. The as-prepared nanoparticles stabilized by the inorganic-organic double shell create 2D chain morphologies. They are storable for several months under ambient atmosphere without the loss of Fe(0) relative content. They show one order of magnitude higher rate constant for trichlorethene decomposition compared with the pristine particles possessing only the inorganic shell as a protective layer. This is the first example of the inorganic-organic (consisting of low-molecular weight species) double-shell stabilized nanoscale zero-valent iron material being safely transportable in solid-state, storable on long-term basis under ambient conditions, environmentally acceptable for in situ applications, and extraordinarily reactive if contacted with reducible pollutants, all in one.

  3. Theoretical Modelling of Immobilization of Cadmium and Nickel in Soil Using Iron Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vaidotas Danila

    2017-09-01

    Full Text Available Immobilization using zero valent using iron nanoparticles is a soil remediation technology that reduces concentrations of dissolved contaminants in soil solution. Immobilization of heavy metals in soil can be achieved through heavy metals adsorption and surface complexation reactions. These processes result in adsorption of heavy metals from solution phase and thus reducing their mobility in soil. Theoretical modelling of heavy metals, namely, cadmium and nickel, adsorption using zero valent iron nanoparticles was conducted using Visual MINTEQ. Adsorption of cadmium and nickel from soil solutions were modelled separately and when these metals were dissolved together. Results have showed that iron nanoparticles can be successfully applied as an effective adsorbent for cadmium and nickel removal from soil solution by producing insoluble compounds. After conducting the modelling of dependences of Cd+2 and Ni+2 ions adsorption on soil solution pH using iron nanoparticles, it was found that increasing pH of solution results in the increase of these ions adsorption. Adsorption of cadmium reached approximately 100% when pH ≥ 8.0, and adsorption of nickel reached approximately 100% when pH ≥ 7.0. During the modelling, it was found that adsorption of heavy metals Cd and Ni mostly occur, when one heavy metal ion is chemically adsorbed on two sorption sites. During the adsorption modelling, when Cd+2 and Ni+2 ions were dissolved together in acidic phase, it was found that adsorption is slightly lower than modelling adsorption of these metals separately. It was influenced by the competition of Cd+2 and Ni+2 ions for sorption sites on the surface of iron nanoparticles.

  4. Cl and C isotope analysis to assess the effectiveness of chlorinated ethene degradation by zero-valent iron: Evidence from dual element and product isotope values

    International Nuclear Information System (INIS)

    Audí-Miró, Carme; Cretnik, Stefan; Otero, Neus; Palau, Jordi; Shouakar-Stash, Orfan; Soler, Albert

    2013-01-01

    Highlights: ► TCE and cis-DCE Cl isotope fractionation was investigated for the first time with ZVI. ► A C–Cl bond is broken in the rate-limiting step during ethylene ZVI dechlorination. ► Dual C/Cl isotope plot is a promising tool to discriminate abiotic degradation. ► Product-related carbon isotopic fractionation gives evidence of abiotic degradation. ► Hydrogenolysis and β-dichloroelimination pathways occur simultaneously. - Abstract: This study investigated C and, for the first time, Cl isotope fractionation of trichloroethene (TCE) and cis-dichloroethene (cis-DCE) during reductive dechlorination by cast zero-valent iron (ZVI). Hydrogenolysis and β-dichloroelimination pathways occurred as parallel reactions, with ethene and ethane deriving from the β-dichloroelimination pathway. Carbon isotope fractionation of TCE and cis-DCE was consistent for different batches of Fe studied. Transformation of TCE and cis-DCE showed Cl isotopic enrichment factors (ε Cl ) of −2.6‰ ± 0.1‰ (TCE) and −6.2‰ ± 0.8‰ (cis-DCE), with Apparent Kinetic Isotope Effects (AKIE Cl ) for Cl of 1.008 ± 0.001 (TCE) and 1.013 ± 0.002 (cis-DCE). This indicates that a C–Cl bond breakage is rate-determining in TCE and cis-DCE transformation by ZVI. Two approaches were investigated to evaluate if isotope fractionation analysis can distinguish the effectiveness of transformation by ZVI as opposed to natural biodegradation. (i) Dual isotope plots. This study reports the first dual (C, Cl) element isotope plots for TCE and cis-DCE degradation by ZVI. The pattern for cis-DCE differs markedly from that reported for biodegradation of the same compound by KB-1, a commercially available Dehalococcoides-containing culture. The different trends suggest an expedient approach to distinguish abiotic and biotic transformation, but this needs to be confirmed in future studies. (ii) Product-related isotope fractionation. Carbon isotope ratios of the hydrogenolysis product cis

  5. Reactivity of Nanoscale Zero-Valent Iron in Unbuffered Systems: Effect of pH and Fe(II) Dissolution.

    Science.gov (United States)

    Bae, Sungjun; Hanna, Khalil

    2015-09-01

    While most published studies used buffers to maintain the pH, there is limited knowledge regarding the reactivity of nanoscale zerovalent iron (NZVI) in poorly buffered pH systems to date. In this work, the effect of pH and Fe(II) dissolution on the reactivity of NZVI was investigated during the reduction of 4-nitrophenol (4-NP) in unbuffered pH systems. The reduction rate increased exponentially with respect to the NZVI concentration, and the ratio of dissolved Fe(II)/initial NZVI was related proportionally to the initial pH values, suggesting that lower pH (6-7) with low NZVI loading may slow the 4-NP reduction through acceleration of the dissolution of NZVI particles. Additional experiments using buffered pH systems confirmed that high pH values (8-9) can preserve the NZVI particles against dissolution, thereby enhancing the reduction kinetics of 4-NP. Furthermore, reduction tests using ferrous ion in suspensions of magnetite and maghemite showed that surface-bound Fe(II) on oxide coatings can play an important role in enhancing 4-NP reduction by NZVI at pH 8. These unexpected results highlight the importance of pH and Fe(II) dissolution when NZVI technology is applied to poorly buffered systems, particularly at a low amount of NZVI (i.e., <0.075 g/L).

  6. Removal of Nitrate by Zero Valent Iron in the Presence of H2O2

    Directory of Open Access Journals (Sweden)

    M.R. Samarghandi

    2014-01-01

    Full Text Available Background & Aims: Nitrate is the oxidation state of nitrogen compounds, which is founded in water resources that contaminated by municipal, industrial and agricultural waste water. If nitrate leek in to ground water resources, it can cause health problems. Material and Methods: Removal of nitrate from ground water by iron powder in the presence of H2O2 was investigated. Experiments have been done by use of 250 ml of water samples containing 100 mg/L nitrate in various condition. Various parameters such as pH (3, 5, 7, 9, iron dosage (10, 15, 20, 30 g/L, initial H2O2 concentration (5, 10, 15, 20 ml/L and contact time (10-120 min. Results: Obtained results shows the removal of nitrate was increased by pH reduction, increment of iron mass and contact time. In addition, nitrate reduction was increased by increment of initial H2O2 concentration up to 15 ml/L. High removal was observed at pH=3, iron mass=30 g/L, contact time equal 120 min and H2O2 concentration=15 ml/L. At above condition, upon 98% of nitrate was removed. Conclusion: In summary, this method is simple, low cost and effective for removal of nitrate from ground water and industrial activity.

  7. Wastewater screening method for evaluating applicability of zero-valent iron to industrial wastewater

    International Nuclear Information System (INIS)

    Lee, J.W.; Cha, D.K.; Oh, Y.K.; Ko, K.B.; Jin, S.H.

    2010-01-01

    This study presents a screening protocol to evaluate the applicability of the ZVI pretreatment to various industrial wastewaters of which major constituents are not identified. The screening protocol consisted of a sequential analysis of UV-vis spectrophotometry, high-performance liquid chromatograph (HPLC), and bioassay. The UV-vis and HPLC analyses represented the potential reductive transformation of unknown constituents in wastewater by the ZVI. The UV-vis and HPLC results were quantified using principal component analysis (PCA) and Euclidian distance (ED). The short-term bioassay was used to assess the increased biodegradability of wastewater constituents after ZVI treatment. The screening protocol was applied to seven different types of real industrial wastewaters. After identifying one wastewater as the best candidate for the ZVI treatment, the benefit of ZVI pretreatment was verified through continuous operation of an integrated iron-sequencing batch reactor (SBR) resulting in the increased organic removal efficiency compared to the control. The iron pretreatment was suggested as an economical option to modify some costly physico-chemical processes in the existing wastewater treatment facility. The screening protocol could be used as a robust strategy to estimate the applicability of ZVI pretreatment to a certain wastewater with unknown composition.

  8. Total aerobic destruction of azo contaminants with nanoscale zero-valent copper at neutral pH: promotion effect of in-situ generated carbon center radicals.

    Science.gov (United States)

    Dong, Guohui; Ai, Zhihui; Zhang, Lizhi

    2014-12-01

    In this study, nanoscale zero-valent copper (nZVC) was synthesized with a facile solvothermal method and used for the aerobic removal of azo contaminants at neutral pH for the first time. We found that both Cu(I) and OH generated during the nZVC induced molecular oxygen activation process accounted for the rapid total destruction of azo contaminants in the nZVC/Air system, where nZVC could activate molecular oxygen to produce H2O2, and also release Cu(I) to break the -NN- bond of azo contaminants via the sandmeyer reaction for the generation of carbon center radicals. The in-situ generated carbon center radicals would then react with OH produced by the Cu(I) catalyzed decomposition of H2O2, resulting in the generation of low molecular weight organic acids and their subsequent mineralization. The indispensible role of Cu(I) catalyzed sandmeyer reaction and the promotion effect of in-situ generated carbon center radicals on the rapid total destruction of azo contaminants in the nZVC/Air system were confirmed by gas chromatography-mass spectrometry analysis. This study can deepen our understanding on the degradation of organic pollutant with molecular oxygen activated by zero valent metal, and also provide a new method to remove azo contaminants at neutral pH. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Iron solubility related to particle sulfur content in source emission and ambient fine particles.

    Science.gov (United States)

    Oakes, M; Ingall, E D; Lai, B; Shafer, M M; Hays, M D; Liu, Z G; Russell, A G; Weber, R J

    2012-06-19

    The chemical factors influencing iron solubility (soluble iron/total iron) were investigated in source emission (e.g., biomass burning, coal fly ash, mineral dust, and mobile exhaust) and ambient (Atlanta, GA) fine particles (PM2.5). Chemical properties (speciation and mixing state) of iron-containing particles were characterized using X-ray absorption near edge structure (XANES) spectroscopy and micro-X-ray fluorescence measurements. Bulk iron solubility (soluble iron/total iron) of the samples was quantified by leaching experiments. Major differences were observed in iron solubility in source emission samples, ranging from low solubility (iron solubility did not correspond to silicon content or Fe(II) content. However, source emission and ambient samples with high iron solubility corresponded to the sulfur content observed in single particles. A similar correspondence between bulk iron solubility and bulk sulfate content in a series of Atlanta PM2.5 fine particle samples (N = 358) further supported this trend. In addition, results of linear combination fitting experiments show the presence of iron sulfates in several high iron solubility source emission and ambient PM2.5 samples. These results suggest that the sulfate content (related to the presence of iron sulfates and/or acid-processing mechanisms by H(2)SO(4)) of iron-containing particles is an important proxy for iron solubility.

  10. Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)–CO{sub 3}/Ca–U(VI)–CO{sub 3} complexes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhibin [Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Nanchang 330013 (China); State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang 330013 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Nanchang 330013 (China); Liu, Jun [State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang 330013 (China); Cao, Xiaohong, E-mail: xhcao@ecit.cn [Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Nanchang 330013 (China); State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang 330013 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Nanchang 330013 (China); Luo, Xuanping [Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Nanchang 330013 (China); Hua, Rong; Liu, Yan [Key Laboratory of Radioactive Geology and Exploration Technology Fundamental Science for National Defense, East China Institute of Technology, Nanchang 330013 (China); State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology), Ministry of Education, Nanchang 330013 (China); Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Nanchang 330013 (China); Yu, Xiaofeng; He, Likai [Chemistry, Biological and Materials Sciences Department, East China Institute of Technology, Nanchang 330013 (China); and others

    2015-12-30

    Highlights: • NZVI can be used for adsorbing U(VI)–CO{sub 3} complexes. • Use of NZVI is feasible for remediation of uranium-contaminated soils. • The mechanism of U(VI)–CO{sub 3} complexes adsorbing onto NZVI has been explained. - Abstract: The influence of U(VI)–CO{sub 3} and Ca–U(VI)–CO{sub 3} complexes on U(VI) adsorption onto red soil and nanoscale zero-valent iron (NZVI) was investigated using batch adsorption and fixed-bed column experiments to simulate the feasibility of NZVI as the reactive medium in permeable- reactive barriers (PRB) for in situ remediation of uranium-contaminated red soils. The adsorption capacity (q{sub e}) and distribution constant (K{sub d}) of NZVI and red soil decreased with increasing pH, dissolved carbonate and calcium concentrations, but the q{sub e} and K{sub d} values of NZVI were 5–10 times higher than those of red soil. The breakthrough pore volume (PV) values increased with the decrease of pH, dissolved carbonate and calcium concentration; however, the breakthrough PV values of the PRB column filled with 5% NZVI were 2.0–3.5 times higher than the 100% red soil column. The U(VI)–CO{sub 3} complexes adsorbed onto the surface of red soil/NZVI (≡SOH) to form SO–UO{sub 2}CO{sub 3}{sup −} or SO–UO{sub 2} (CO{sub 3}){sub 2}{sup 3−}. XPS and XRD analysis further confirmed the reduction of U(VI) to U(IV) and the formation of FeOOH on NZVI surfaces. The findings of this study are significant to the remediation of uranium-contaminated red soils and the consideration of practical U(VI) species in the natural environment.

  11. Iron coated pottery granules for arsenic removal from drinking water.

    Science.gov (United States)

    Dong, Liangjie; Zinin, Pavel V; Cowen, James P; Ming, Li Chung

    2009-09-15

    A new media, iron coated pottery granules (ICPG) has been developed for As removal from drinking water. ICPG is a solid phase media that produces a stable Fe-Si surface complex for arsenic adsorption. Scanning electron microscopy (SEM) was used to document the physical attributes (grain size, pore size and distribution, surface roughness) of the ICPG media. Several advantages of the ICPG media such as (a) its granular structure, (b) its ability to absorb As via the F(0) coating on the granules' surface; (c) the inexpensive preparation process for the media from clay material make ICPG media a highly effective media for removing arsenic at normal pH. A column filtration test demonstrated that within the stability region (flow rate lower than 15L/h, EBCT >3 min), the concentration of As in the influent was always lower than 50 microg/L. The 2-week system ability test showed that the media consistently removed arsenic from test water to below the 5 microg/L level. The average removal efficiencies for total arsenic, As(III), and As(V) for a 2-week test period were 98%, 97%, and 99%, respectively, at an average flow rate of 4.1L/h and normal pH. Measurements of the Freundlich and Langmuir isotherms at normal pH show that the Freundlich constants of the ICPG are very close to those of ferric hydroxide, nanoscale zero-valent iron and much higher than those of nanocrystalline titanium dioxide. The parameter 1/n is smaller than 0.55 indicating a favorable adsorption process [K. Hristovski, A. Baumgardner, P. Westerhoff, Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media, J. Hazard. Mater. 147 (2007) 265-274]. The maximum adsorption capacity (q(e)) of the ICPG from the Langmuir isotherm is very close to that of nanoscale zero-valent indicating that zero-valent iron is involved in the process of the As removal from the water. The results of the toxicity characteristic leaching procedure (TCLP

  12. Iron coated pottery granules for arsenic removal from drinking water

    International Nuclear Information System (INIS)

    Dong Liangjie; Zinin, Pavel V.; Cowen, James P.; Ming, Li Chung

    2009-01-01

    A new media, iron coated pottery granules (ICPG) has been developed for As removal from drinking water. ICPG is a solid phase media that produces a stable Fe-Si surface complex for arsenic adsorption. Scanning electron microscopy (SEM) was used to document the physical attributes (grain size, pore size and distribution, surface roughness) of the ICPG media. Several advantages of the ICPG media such as (a) its granular structure, (b) its ability to absorb As via the F(0) coating on the granules' surface; (c) the inexpensive preparation process for the media from clay material make ICPG media a highly effective media for removing arsenic at normal pH. A column filtration test demonstrated that within the stability region (flow rate lower than 15 L/h, EBCT >3 min), the concentration of As in the influent was always lower than 50 μg/L. The 2-week system ability test showed that the media consistently removed arsenic from test water to below the 5 μg/L level. The average removal efficiencies for total arsenic, As(III), and As(V) for a 2-week test period were 98%, 97%, and 99%, respectively, at an average flow rate of 4.1 L/h and normal pH. Measurements of the Freundlich and Langmuir isotherms at normal pH show that the Freundlich constants of the ICPG are very close to those of ferric hydroxide, nanoscale zero-valent iron and much higher than those of nanocrystalline titanium dioxide. The parameter 1/n is smaller than 0.55 indicating a favorable adsorption process [K. Hristovski, A. Baumgardner, P. Westerhoff, Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: from nanopowders to aggregated nanoparticle media, J. Hazard. Mater. 147 (2007) 265-274]. The maximum adsorption capacity (q e ) of the ICPG from the Langmuir isotherm is very close to that of nanoscale zero-valent indicating that zero-valent iron is involved in the process of the As removal from the water. The results of the toxicity characteristic leaching procedure (TCLP) analysis

  13. Solubility of iron from combustion source particles in acidic media linked to iron speciation.

    Science.gov (United States)

    Fu, Hongbo; Lin, Jun; Shang, Guangfeng; Dong, Wenbo; Grassian, Vichi H; Carmichael, Gregory R; Li, Yan; Chen, Jianmin

    2012-10-16

    In this study, iron solubility from six combustion source particles was investigated in acidic media. For comparison, a Chinese loess (CL) dust was also included. The solubility experiments confirmed that iron solubility was highly variable and dependent on particle sources. Under dark and light conditions, the combustion source particles dissolved faster and to a greater extent relative to CL. Oil fly ash (FA) yielded the highest soluble iron as compared to the other samples. Total iron solubility fractions measured in the dark after 12 h ranged between 2.9 and 74.1% of the initial iron content for the combustion-derived particles (Oil FA > biomass burning particles (BP) > coal FA). Ferrous iron represented the dominant soluble form of Fe in the suspensions of straw BP and corn BP, while total dissolved Fe presented mainly as ferric iron in the cases of oil FA, coal FA, and CL. Mössbauer measurements and TEM analysis revealed that Fe in oil FA was commonly presented as nanosized Fe(3)O(4) aggregates and Fe/S-rich particles. Highly labile source of Fe in corn BP could be originated from amorphous Fe form mixed internally with K-rich particles. However, Fe in coal FA was dominated by the more insoluble forms of both Fe-bearing aluminosilicate glass and Fe oxides. The data presented herein showed that iron speciation varies by source and is an important factor controlling iron solubility from these anthropogenic emissions in acidic solutions, suggesting that the variability of iron solubility from combustion-derived particles is related to the inherent character and origin of the aerosols themselves. Such information can be useful in improving our understanding on iron solubility from combustion aerosols when they undergo acidic processing during atmospheric transport.

  14. Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles

    Science.gov (United States)

    Bridger, K.; Watts, J.; Tadros, M.; Xiao, Gang; Liou, S. H.; Chien, C. L.

    1987-04-01

    Uniform, cubic 0.05-μm iron oxide particles were formed by forced hydrolysis of ferric perchlorate. These particles were reduced to α-Fe by heating in hydrogen at temperatures between 300 and 500 °C. The effect of reduction temperature and various prereduction treatments on the microstructure of the iron particles will be discussed. Complete reduction to α-Fe was established by 57Fe Mössbauer spectroscopy and x-ray diffraction. Magnetic measurements on epoxy and polyurethane films containing these particles with various mass fractions gave coercivities as high as 1000 Oe. The relationship between the magnetic measurements and the microstructure will be discussed. Na2SiO3 is found to be the best coating material for the process of reducing iron oxide particles to iron.

  15. I. Hole-transporting dendrimers and their use in organic light-emitting devices (OLEDs) and II. Novel layered catalysts containing bipyridinium and zero-valent metal species

    Science.gov (United States)

    Koene, Shannon Carol

    A series of polyaromatic ether/ester dendrimers containing a hole transporting naphthylphenylbenzyl amine at the periphery and a variety of fluorescent dyes at the core has been studied in an effort to observe energy transfer in these species. The dyes incorporated in these dendrimers include 1,4-dihydroxyanthraquinone (quinizarin), Coumarin 343, and a benzopentathiophene. These dendrimers have been incorporated into both single layer and heterostructure organic light emitting devices (OLEDs). In the case of first generation dendrimer OLEDs, excimer/exciplex formation was predominant. In third generation dendrimers, complete energy transfer from the periphery to the dye at the core was observed both in photoluminescence spectra and electroluminescence in OLEDs. Dendrimers containing different dye cores can be combined to achieve color mixing/tuning. In addition, layered catalysts were prepared via both covalent and electrostatic means to achieve the catalytic production of hydrogen peroxide from hydrogen and oxygen. Covalent catalysts were prepared by first growing layers of zirconium and a bipyridinium containing bisphosphonate onto silica particles. Palladium and/or platinum was ion-exchanged into the structure and reduced to the zero valent metal by hydrogen gas. A second set of catalysts was prepared by electrostatically depositing polycations/polyanions onto carboxylate or amine functionalized polystyrene microspheres. Anionic colloidal particles were adsorbed to the polycationic surface. An octacationic viologen oligomer was used in an attempt to increase the affinity of adsorption of the Pd particles to the surface of the microspheres. Catalytic studies of both types of catalysts are herein reported.

  16. Synthesis and nature of heterogeneous catalysts of low-valent tungsten supported on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Brenner, A.; Hucul, D.A.

    1980-01-01

    Temperature-programed decomposition of catalysts prepared from zero-valent W(CO)/sub 6/ and alumina under rigorously air-free conditions showed a low-temperature carbon monoxide desorption peak at 110/sup 0/-172/sup 0/C, depending on alumina pretreatment, in which a relatively stable surface W(CO)/sub 3/ complex was formed; and a high-temperature carbon monoxide desorption peak at 257/sup 0/ to > 400/sup 0/C, which gave zero-valent tungsten if the ratio of hydroxyl groups of alumina to tungsten surface complexes was low, and hexavalent tungsten if the ratio was high. Up to about half the W(CO)/sub 6/ sublimated from the alumina during activation.

  17. Sustaining 1,2-Dichloroethane Degradation in Nanoscale Zero-Valent Iron induced Fenton system by using Sequential H2O2 Addition at Natural pH

    Science.gov (United States)

    Phenrat, T.; Le, T. S. T.

    2017-12-01

    1,2-Dichloroethane (1,2-DCA) is a prevalent subsurface contaminant found in groundwater and soil around the world. Nanoscale zero-valent iron (NZVI) is a promising in situ remediation agent for chlorinated organics. Nevertheless, 1,2-DCA is recalcitrant to reductive dechlorination using NZVI. Chemical oxidation using Fenton's reaction with conventional Fe2+ is a valid option for 1,2-DCA remediation with a major technical challenge, i.e. aquifer acidification is needed to maintain Fe2+ for catalytic reaction. In this work, NZVI Fenton's process at neutral pH was applied to degrade 1,2-DCA at high concentration (2,000 mg/L) representing dissolved 1,2-DCA concentration close to non-aqueous phase liquid source zone. Instead of using acidification to maintain dissolved Fe2+ concentration, NZVI Fenton's process is self-catalytic based on oxidative dissolution of NZVI in the present of H2O2. Interfacial H+ is produced at NZVI surface to provide appropriate local pH which continuously releases Fe2+ for Fenton's reaction. Approximately, 87% of 1,2-DCA was degraded at neutral pH with the pseudo first-order rate constant of 0.98 hour-1 using 10 g/L of NZVI and 200 mM of H2O2. However, the reaction was prohibited quickly within 3 hours presumably due to the rapid depletion of H2O2. The application of sequential H2O2 addition provided a better approach to prevent rapid inhibition via controlling the H2O2 concentration in the system to be sufficient but not excess, thus resulting in the higher degradation efficiency (the pseudo first-order rate constant of 0.49 hour-1 and 99 % degradation in 8 hours). Using NZVI with sequential H2O2 addition was also successful in degrading 1,2-DCA sorbed on to soil, yielding 99% removal of 1,2-DCA within 16 hours at the rate constant of 0.23 hour-1, around two times slower than in the system without soil presumably due to rate-limited 1,2-DCA desorption from soil. Mechanistic understanding of how sequential addition of H2O2, in comparison to

  18. Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae

    Czech Academy of Sciences Publication Activity Database

    Pádrová, K.; Lukavský, Jaromír; Nedbalová, L.; Čejková, A.; Cajthaml, Tomáš; Sigler, Karel; Vítová, Milada; Řezanka, Tomáš

    2015-01-01

    Roč. 27, č. 4 (2015), 1443-1451 ISSN 0921-8971 R&D Projects: GA TA ČR TE01020080; GA ČR(CZ) GAP503/11/0215; GA MŠk ED2.1.00/03.0110; GA ČR GA14-00227S; GA TA ČR TE01020218 Institutional support: RVO:67985939 ; RVO:61388971 Keywords : zero-valent iron * nanoparticles * cyanobacterium * lipid profile Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.372, year: 2015

  19. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Llaneza, Verónica [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States); Rodea-Palomares, Ismael [Univ. Autonoma de Madrid, Dept. de Biologia, Facultad de Ciencias (Spain); Zhou, Zuo [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States); Rosal, Roberto [Univ. de Alcalá, Dept. de Ingeniería Química (Spain); Fernández-Pina, Francisca [Univ. Autonoma de Madrid, Dept. de Biologia, Facultad de Ciencias (Spain); Bonzongo, Jean-Claude J., E-mail: bonzongo@ufl.edu [University of Florida, Engineering School of Sustainable Infrastructure and Environment, Department of Environmental Engineering Sciences (United States)

    2016-08-15

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe{sub 3}O{sub 4} and γ-Fe{sub 2}O{sub 3} NPs with particle sizes ranging from 20 to 50 nm, and Fe{sup 0}-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe{sup 0}-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe{sup 0}-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  20. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    International Nuclear Information System (INIS)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-01-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe_3O_4 and γ-Fe_2O_3 NPs with particle sizes ranging from 20 to 50 nm, and Fe"0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe"0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe"0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  1. Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

    Science.gov (United States)

    Llaneza, Verónica; Rodea-Palomares, Ismael; Zhou, Zuo; Rosal, Roberto; Fernández-Pina, Francisca; Bonzongo, Jean-Claude J.

    2016-08-01

    The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe3O4 and γ-Fe2O3 NPs with particle sizes ranging from 20 to 50 nm, and Fe0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

  2. Carbon-Supported Iron Oxide Particles

    DEFF Research Database (Denmark)

    Meaz, T.; Mørup, Steen; Koch, C. Bender

    1996-01-01

    A carbon black ws impregnated with 6 wt% iron using an aqueous solution of iron nitrate. The impregnated carbon was initially dried at 125 C. The effect of heating of the iron oxide phase was investigated at temperatures between 200 and 600 C using Mossbauer spectroscopy. All heat treatments were...... done in an oxygen-containing atmosphere. Ferrihydrite is formed and is stable at and below a temperature of 300 C. At 600 C small particles of maghemite is the dominant iron oxide. A transformation reaction is suggested....

  3. Effects of Metal Micro and Nano-Particles on hASCs: An In Vitro Model

    OpenAIRE

    Palombella, Silvia; Pirrone, Cristina; Rossi, Federica; Armenia, Ilaria; Cherubino, Mario; Valdatta, Luigi; Raspanti, Mario; Bernardini, Giovanni; Gornati, Rosalba

    2017-01-01

    As the knowledge about the interferences of nanomaterials on human staminal cells are scarce and contradictory, we undertook a comparative multidisciplinary study based on the size effect of zero-valent iron, cobalt, and nickel microparticles (MPs) and nanoparticles (NPs) using human adipose stem cells (hASCs) as a model, and evaluating cytotoxicity, morphology, cellular uptake, and gene expression. Our results suggested that the medium did not influence the cell sensitivity but, surprisingly...

  4. Effect of geochemical properties on degradation of trichloroethylene by stabilized zerovalent iron nanoparticle with Na-acrylic copolymer.

    Science.gov (United States)

    Chen, Meng-yi; Su, Yuh-fan; Shih, Yang-hsin

    2014-11-01

    Stable nanoscale zero-valent iron (NZVI) particles have been developed to remediate chlorinated compounds. The degradation kinetics and efficiency of trichloroethylene (TCE) by a commercial stabilized NZVI with Na-acrylic copolymer (acNZVI) were investigated and compared with those by laboratory-synthesized NZVI and carboxymethyl cellulose (CMC)-stabilized NZVI particles. Results show that the degradation of TCE by acNZVI was faster than that by NZVI and CMC-NZVI. Increase in temperature enhanced the degradation rate and efficiency of TCE with acNZVI. The activation energy of TCE degradation by acNZVI was estimated to be 23 kJ/mol. The degradation rate constants of TCE decreased from 0.064 to 0.026 min(-1) with decrease in initial pH from 9.03 to 4.23. Common groundwater anions including NO3(-), Cl(-), HCO3(-), and SO4(2-) inhibited slightly the degradation efficiencies of TCE by acNZVI. The Na-acrylic copolymer-stabilized NZVI, which exhibited high degradation kinetics and efficiency, could be a good remediation agent for chlorinated organic compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Degradation of bromothymol blue by 'greener' nano-scale zero-valent iron synthesized using tea polyphenols

    Science.gov (United States)

    A green single-step synthesis of iron nanoparticles using tea (Camellia sinensis) polyphenols is described that uses no added surfactants/polymers as a capping or reducing agents. The expeditious reaction between polyphenols and ferric nitrate occurs within few minutes at room te...

  6. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications

    Science.gov (United States)

    Saif, Sadia; Tahir, Arifa; Chen, Yongsheng

    2016-01-01

    Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI) and iron oxide (Fe2O3/Fe3O4) nanoparticles (NPs) and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles. PMID:28335338

  7. Green Synthesis of Iron Nanoparticles and Their Environmental Applications and Implications

    Directory of Open Access Journals (Sweden)

    Sadia Saif

    2016-11-01

    Full Text Available Recent advances in nanoscience and nanotechnology have also led to the development of novel nanomaterials, which ultimately increase potential health and environmental hazards. Interest in developing environmentally benign procedures for the synthesis of metallic nanoparticles has been increased. The purpose is to minimize the negative impacts of synthetic procedures, their accompanying chemicals and derivative compounds. The exploitation of different biomaterials for the synthesis of nanoparticles is considered a valuable approach in green nanotechnology. Biological resources such as bacteria, algae fungi and plants have been used for the production of low-cost, energy-efficient, and nontoxic environmental friendly metallic nanoparticles. This review provides an overview of various reports of green synthesised zero valent metallic iron (ZVMI and iron oxide (Fe2O3/Fe3O4 nanoparticles (NPs and highlights their substantial applications in environmental pollution control. This review also summarizes the ecotoxicological impacts of green synthesised iron nanoparticles opposed to non-green synthesised iron nanoparticles.

  8. Dechlorination of Hexachloroethane in Water Using Iron Shavings and Amended Iron Shavings: Kinetics and Pathways

    Directory of Open Access Journals (Sweden)

    D. L. Wu

    2014-01-01

    Full Text Available In contrast to previous studies which employed zero-valent iron powder, this paper investigated reductive dechlorination of hexachloroethane (HCA using iron shavings and bimetallic iron shavings modified with Cu, Ag, or Pd. Results clearly show that iron shavings offer superior reductive dechlorination of HCA. In addition, surface-normalized pseudo first-order dechlorination rates of 0.0073 L·m−2·h−1, 0.0136 L·m−2·h−1, 0.0189 L·m−2·h−1, and 0.0084 L·m−2·h−1 were observed in the presence of iron shavings (Fe0 and the bimetallic iron shavings Cu/Fe, Ag/Fe, and Pd/Fe, respectively. Bimetallic iron shavings consisting of Cu/Fe and Ag/Fe could greatly enhance the reductive reaction rate; Pd/Fe was used to achieve complete dechlorination of HCA within 5 hours. The additives of Ag and Pd shifted product distributions, and the reductive dechlorination of HCA occurred via β reductive elimination and sequential hydrogenolysis in the presence of all iron shavings. This study consequently designed a reaction pathway diagram which reflected the reaction pathway and most prevalent dechlorination products. Iron shavings are a common byproduct of mechanical processing plants. While the purity of such Fe metals may be low, these shavings are readily available at low costs and could potentially be used in engineering applications such as contamination control technologies.

  9. Preparation of nanoscale iron (oxide, oxyhydroxides and zero-valent) particles derived from blueberries: Reactivity, characterization and removal mechanism of arsenate.

    Science.gov (United States)

    Manquián-Cerda, Karen; Cruces, Edgardo; Angélica Rubio, María; Reyes, Camila; Arancibia-Miranda, Nicolás

    2017-11-01

    The application of iron nanoparticles (FeNPs) to the removal of various pollutants has received wide attention over the last few decades. A synthesis alternative to obtain these nanoparticles without using harmful chemical reagents, such as NaBH 4 , is the use of extracts from different natural sources that allow a lesser degree of agglomeration, in a process known as green synthesis. In this study, FeNPs were synthesized by 'green' (hereafter, BB-Fe NPs) and 'chemical' (hereafter, nZVI) methods. Extracts of leaves and blueberry shoots (Vaccinium corymbosum) were used as reducing agents for FeCl 3 ·6H 2 O solution in the green synthesis method. FeNPs were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), electrophoretic migration, Brunauer-Emmett-Teller (BET) surface area analysis and X-ray diffraction (XRD) and evaluated for the removal of As(V) from aqueous systems. In both synthesis methods, XRD analysis confirmed the presence of the different kinds of iron nanoparticles. SEM analysis showed that the average size of BB-Fe NPs was 52.4nm and that a variety of nanoparticles of different forms and associated structures, such as lepidocrocite, magnetite, and nZVI, were present, while the dimensions of nZVI were 80.2nm. Comparatively significant differences regarding the electrophoretic mobility were found between both materials pre- and post-sorption of As(V). The velocity of As(V) removal by BB-Fe NPs was slower than that by nZVI, reaching equilibrium at 120min compared to 60min for nZVI. The removal kinetics of As(V) were adequately described by the pseudo-second-order kinetic model, and the maximum adsorbed amounts of this analyte are in close accordance with the experimental results. The Langmuir-Freundlich model is in good agreement with our experimental data, where the sorption capacity of nZVI and BB-Fe NPs was found to be 52.23 ± 6.06 and 50.40 ± 5.90 (mg·g -1 ), respectively. The use of leaves of Vaccinium

  10. Air pollution particles and iron homeostasis

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  11. Inhibition of bacterial growth by iron oxide nanoparticles with and without attached drug: Have we conquered the antibiotic resistance problem?

    Science.gov (United States)

    Armijo, Leisha M.; Jain, Priyanka; Malagodi, Angelina; Fornelli, F. Zuly; Hayat, Allison; Rivera, Antonio C.; French, Michael; Smyth, Hugh D. C.; Osiński, Marek

    2015-03-01

    Pseudomonas aeruginosa is among the top three leading causative opportunistic human pathogens, possessing one of the largest bacterial genomes and an exceptionally large proportion of regulatory genes therein. It has been known for more than a decade that the size and complexity of the P. aeruginosa genome is responsible for the adaptability and resilience of the bacteria to include its ability to resist many disinfectants and antibiotics. We have investigated the susceptibility of P. aeruginosa bacterial biofilms to iron oxide (magnetite) nanoparticles (NPs) with and without attached drug (tobramycin). We also characterized the susceptibility of zero-valent iron NPs, which are known to inactivate microbes. The particles, having an average diameter of 16 nm were capped with natural alginate, thus doubling the hydrodynamic size. Nanoparticle-drug conjugates were produced via cross-linking drug and alginate functional groups. Drug conjugates were investigated in the interest of determining dosage, during these dosage-curve experiments, NPs unbound to drug were tested in cultures as a negative control. Surprisingly, we found that the iron oxide NPs inhibited bacterial growth, and thus, biofilm formation without the addition of antibiotic drug. The inhibitory dosages of iron oxide NPs were investigated and the minimum inhibitory concentrations are presented. These findings suggest that NP-drug conjugates may overcome the antibiotic drug resistance common in P. aeruginosa infections.

  12. Magnetic properties of magnetic liquids with iron-oxide particles - the influence of anisotropy and interactions

    DEFF Research Database (Denmark)

    Johansson, C.; Hanson, M.; Pedersen, Michael Stanley

    1997-01-01

    Magnetic liquids containing iron-oxide particles were investigated by magnetization and Mossbauer measurements. The particles were shown to be maghemite with a spontanious saturation magentization Ms = 320 kA m-1 at 200 K and a normalized high-field susceptibility x/M0 = 5.1x10-6 mkA-1, practically...... independent of temperature. Ms increases with decreasing temperature according to an effective Bloch law with an exponent larger than 1.5, as expected for fine magnetic particles. The model of magnetic particles with uniaxial anisotropy and the actual size distribution gives a consistent description...... of independent measurements of the temperature dependence of the hyperfine field and the isothermal magnetization versus field. From this an effective anisotropy constant of about 4.5x10 4 J m-3 is estimated for a particle with diameter 7.5 nm. The magnetic relaxation, as observed in zero...

  13. Iron oxide nanoparticle-micelles (ION-micelles for sensitive (molecular magnetic particle imaging and magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Lucas W E Starmans

    Full Text Available BACKGROUND: Iron oxide nanoparticles (IONs are a promising nanoplatform for contrast-enhanced MRI. Recently, magnetic particle imaging (MPI was introduced as a new imaging modality, which is able to directly visualize magnetic particles and could serve as a more sensitive and quantitative alternative to MRI. However, MPI requires magnetic particles with specific magnetic properties for optimal use. Current commercially available iron oxide formulations perform suboptimal in MPI, which is triggering research into optimized synthesis strategies. Most synthesis procedures aim at size control of iron oxide nanoparticles rather than control over the magnetic properties. In this study, we report on the synthesis, characterization and application of a novel ION platform for sensitive MPI and MRI. METHODS AND RESULTS: IONs were synthesized using a thermal-decomposition method and subsequently phase-transferred by encapsulation into lipidic micelles (ION-Micelles. Next, the material and magnetic properties of the ION-Micelles were analyzed. Most notably, vibrating sample magnetometry measurements showed that the effective magnetic core size of the IONs is 16 nm. In addition, magnetic particle spectrometry (MPS measurements were performed. MPS is essentially zero-dimensional MPI and therefore allows to probe the potential of iron oxide formulations for MPI. ION-Micelles induced up to 200 times higher signal in MPS measurements than commercially available iron oxide formulations (Endorem, Resovist and Sinerem and thus likely allow for significantly more sensitive MPI. In addition, the potential of the ION-Micelle platform for molecular MPI and MRI was showcased by MPS and MRI measurements of fibrin-binding peptide functionalized ION-Micelles (FibPep-ION-Micelles bound to blood clots. CONCLUSIONS: The presented data underlines the potential of the ION-Micelle nanoplatform for sensitive (molecular MPI and warrants further investigation of the Fib

  14. Ultrasmall iron particles prepared by use of sodium amalgam

    DEFF Research Database (Denmark)

    Linderoth, Søren; Mørup, Steen

    1990-01-01

    Ultrasmall magnetic particles containing iron have been prepared by reduction of iron ions by the use of sodium in mercury. Mössbauer studies at 12 K show that the magnetic hyperfine field is significantly larger than in bulk alpha-Fe, suggesting that an iron mercury alloy rather than alpha-Fe has...... been formed. The particles exhibit superparamagnetic relaxation above 120 K. Journal of Applied Physics is copyrighted by The American Institute of Physics....

  15. Rapid and controlled transformation of nitrate in water and brine by stabilized iron nanoparticles

    International Nuclear Information System (INIS)

    Xiong Zhong; Zhao Dongye; Pan Gang

    2009-01-01

    Highly reactive zero-valent iron (ZVI) nanoparticles stabilized with carboxymethyl cellulose (CMC) were tested for reduction of nitrate in fresh water and brine. Batch kinetic tests showed that the pseudo first-order rate constant (k obs ) with the stabilized nanoparticles was five times greater than that for non-stabilized counterparts. The stabilizer not only increased the specific surface area of the nanoparticles, but also increased the reactive particle surface. The allocation between the two reduction products, NH 4 + and N 2 , can be manipulated by varying the ZVI-to-nitrate molar ratio and/or applying a Cu-Pd bimetallic catalyst. Greater CMC-to-ZVI ratios lead to faster nitrate reduction. Application of a 0.05 M HEPES buffer increased the k obs value by 15 times compared to that without pH control. Although the presence of 6% NaCl decreased k obs by 30%, 100% nitrate was transformed within 2 h in the saline water. The technology provides a powerful alternative for treating water with concentrated nitrate such as ion exchange brine.

  16. Efficient degradation of trichloroethylene in water using persulfate activated by reduced graphene oxide-iron nanocomposite.

    Science.gov (United States)

    Ahmad, Ayyaz; Gu, Xiaogang; Li, Li; Lv, Shuguang; Xu, Yisheng; Guo, Xuhong

    2015-11-01

    Graphene oxide (GO) and nano-sized zero-valent iron-reduced graphene oxide (nZVI-rGO) composite were prepared. The GO and nZVI-rGO composite were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), energy-dispersive spectroscopy (EDS), and Raman spectroscopy. The size of nZVI was about 6 nm as observed by TEM. The system of nZVI-rGO and persulfate (PS) was used for the degradation of trichloroethylene (TCE) in water, and showed 26.5% more efficiency as compared to nZVI/PS system. The different parameters were studied to determine the efficiency of nZVI-rGO to activate the PS system for the TCE degradation. By increasing the PS amount, TCE removal was also improved while no obvious effect was observed by varying the catalyst loading. Degradation was decreased as the TCE initial concentration was increased from 20 to 100 mg/L. Moreover, when initial solution pH was increased, efficiency deteriorated to 80%. Bicarbonate showed more negative effect on TCE removal among the solution matrix. To better understand the effects of radical species in the system, the scavenger tests were performed. The •SO4(-) and •O2(-) were predominant species responsible for TCE removal. The nZVI-rGO-activated PS process shows potential applications in remediation of highly toxic organic contaminants such as TCE present in the groundwater. Graphical abstract Persulfate activated by reduced graphene oxide and nano-sized zero-valent iron composite can be used for efficient degradation of trichloroethylene (TCE) in water.

  17. Magnetic properties of carbonyl iron particles in magnetorheological fluids

    International Nuclear Information System (INIS)

    Gorodkin, S R; James, R O; Kordonski, W I

    2009-01-01

    Knowledge of the magnetic properties of dispersed magnetic particles is a prerequisite to the design an MR fluid with desired performance. A term specific susceptibility is introduced for characterization of particle susceptibility. The study was performed with the Bartington MS2B magnetic susceptibility system on small samples volume. Specific magnetic susceptibility of iron particles was found to be a linear function of median particle size. Structural change in the fluid, including particle organization, led to susceptibility drift and may affect fluid performance. It was shown that susceptibility data can be used for evaluation of the concentration of carbonyl iron particles in MR fluids.

  18. [Stabilization and long-term effect of chromium contaminated soil].

    Science.gov (United States)

    Wang, Jing; Luo, Qi-Shi; Zhang, Chang-Bo; Tan, Liang; Li, Xu

    2013-10-01

    Short-term (3 d and 28 d) and long-term (1 a) stabilization effects of Cr contaminated soil were investigated through nature curing, using four amendments including ferrous sulfide, ferrous sulfate, zero-valent iron and sodium dithionite. The results indicated that ferrous sulfide and zero-valent iron were not helpful for the stabilization of Cr(VI) when directly used because of their poor solubility and immobility. Ferrous sulfate could effectively and rapidly decrease total leaching Cr and Cr(VI) content. The stabilization effect was further promoted by the generation of iron hydroxides after long-term curing. Sodium dithionite also had positive effect on soil stabilization. Appropriate addition ratio of the two chemicals could help maintain the soil pH in range of 6-8.

  19. Biological reduction of iron to the elemental state from ochre deposits of Skelton Beck in Northeast England

    Directory of Open Access Journals (Sweden)

    Pattanathu K S M Rahman

    2014-06-01

    Full Text Available Ochre, consequence of acid mine drainage, is iron oxides-rich soil pigments that can be found in the water drainage from historic base metal and coal mines. The anaerobic strains of Geobacter sulfurreducens and Shewanella denitrificans were used for the microbial reduction of iron from samples of ochre collected from Skelton Beck (Saltburn Orange River, NZ 66738 21588 in Northeast England. The aim of the research was to determine the ability of the two anaerobic bacteria to reduce the iron present in ochre and to determine the rate of the reduction process. The physico-chemical changes in the ochre sample after the microbial reduction process were observed by the production of zero-valent iron which was later confirmed by the detection of elemental Fe in XRD spectrum. The XRF results revealed that 69.16% and 84.82% of iron oxide can be reduced using G. sulfurreducens and S. denitrificans respectively after 8 days of incubation. These results could provide the basis for the development of a biohydrometallurgical process for the production of elemental iron from ochre sediments.

  20. The Particle Shape of WC Governing the Fracture Mechanism of Particle Reinforced Iron Matrix Composites.

    Science.gov (United States)

    Li, Zulai; Wang, Pengfei; Shan, Quan; Jiang, Yehua; Wei, He; Tan, Jun

    2018-06-11

    In this work, tungsten carbide particles (WC p , spherical and irregular particles)-reinforced iron matrix composites were manufactured utilizing a liquid sintering technique. The mechanical properties and the fracture mechanism of WC p /iron matrix composites were investigated theoretically and experimentally. The crack schematic diagram and fracture simulation diagram of WC p /iron matrix composites were summarized, indicating that the micro-crack was initiated both from the interface for spherical and irregular WC p /iron matrix composites. However, irregular WC p had a tendency to form spherical WC p . The micro-cracks then expanded to a wide macro-crack at the interface, leading to a final failure of the composites. In comparison with the spherical WC p , the irregular WC p were prone to break due to the stress concentration resulting in being prone to generating brittle cracking. The study on the fracture mechanisms of WC p /iron matrix composites might provide a theoretical guidance for the design and engineering application of particle reinforced composites.

  1. Iron Mobilization from Particles as a Function of pH and Particle Source

    National Research Council Canada - National Science Library

    Rohrbough, James

    2000-01-01

    .... The work presented here shows the role pH can play in iron mobilization from particles. At low pH, bioavailability of iron can be greatly increased, and can be significantly decreased at higher pH...

  2. The magnetohydrodynamic force experienced by spherical iron particles in liquid metal

    International Nuclear Information System (INIS)

    Ščepanskis, Mihails; Jakovičs, Andris

    2016-01-01

    The paper contains a theoretical investigation of magnetohydrodynamic force experienced by iron particles (well-conducting and ferromagnetic) in well-conducting liquid. The investigation is performed by extending the Leenov and Kolin's theory to take into account the second-order effect. Therefore, the limits of the parent model are taken over to the present results. It is found that the effective conductivity of iron particles in liquid metal, which is important for practical application of the theoretically obtained force, is approximately equal to 1.5·10"6 S/m. The last result is obtained using a quasi-empirical approach – a comparison of experimental results with the results of the numerical simulation that was performed for various conductivities of the iron particles. - Highlights: • We found the expression of an MHD force experienced by a spherical iron particle in a liquid metal taking into account the second order effect additionally to Leenov & Kolin’s theoretical solution. • We found the effective conductivity of an iron particle in a liquid metal in quasi-empirical way equal to 1.5·10"6 S/m. • It is important to use the expression of an MHD force, which takes into account the second-order effect, as well as the correction for effective conductivity of a particle, to describe behaviour of iron particles in liquid metal flows, which are under influence or induced by the Lorentz force.

  3. Enhancement of iron content in spinach plants stimulated by magnetic nano particles

    Energy Technology Data Exchange (ETDEWEB)

    Yulianto, Agus; Astuti, Budi; Amalia, Saptaria Rosa [Physics Department, Faculty of Mathematics and Natural Science, Universitas Negeri Semarang (Indonesia)

    2016-04-19

    In our previous study, the iron content in spinach plants could be detected by magnetic susceptibility values. In the present work, magnetic nano particles were found from the iron sand. The magnetic nano particles are synthesis by using co-precipitation process and sol-gel technique. The stimulation of magnetic nano particles in the plant has been done by the provision of magnetic nano particles in growing media. After certain time, plant samples was characterized using susceptibility-meter MS2B and atomic absorption spectroscopy to measure the magnetic susceptibility and the amount of iron content that absorbed of the plant, respectively. The iron content in the spinach plants was increased when the magnetic nano particles was injected in the growing media.

  4. Removal of Nitrate from Aqueous Solutions by Starch Stabilized nano Zero-Valent Iron(nZVI

    Directory of Open Access Journals (Sweden)

    Kaveh Yaghmaeian

    2016-09-01

    Full Text Available Background and Objective: Nitrate is one of the inorganic anions derived as a result of oxidation of elemental nitrogen. Urban and industrial wastewater, animal and vegetable waste products in large cities that have organic nitrogen are excreted along the soil. The primary risk of Nitrate in drinking water occurs when nitrate in the gastrointestinal tract switch to nitrite. Nitrite causes the oxidation of iron in hemoglobin of red blood cells, result in red blood cells could not carry the oxygen, a condition called methemoglobinemia. Therefore, achieving the new technologies for nitrate removal is necessary. Material and Methods: The present study was conducted at laboratory Scale in non-continuous batches. Stabilized adsorbent was produced through reducing Iron sulfate by sodium borohydride (NaBH4 in presence of Starch (0.2W % as a stabilizer. At first, the effect of various parameters such as contact time (10-90min, pH (3-11, adsorbent dose (0.5-3 g/L and initial concentration of arsenate (50-250 mg/L were investigated on process efficiency. Freundlich and Langmuir isotherm model equilibrium constant, were calculated. Residual nitrate were measured by using the DR5000 spectrophotometer. Results: The optimum values based on RSM for pH, absorbent dose, contact time, and initial concentration of nitrate were 5.87, 2.25 g/L, 55.7 min, and 110.35 mg/L respectively. Langmuir isotherm with R2= 0.9932 for nitrate was the best graph for the experimental data. The maximum amount of nitrate adsorption was 138.88mg/g. Conclusion: Stabilized absorbent due to have numerous absorption sites and Fe0 as a reducing agent could have great potential in nitrate removal from water.

  5. Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants

    DEFF Research Database (Denmark)

    Gomes, Helena I.; Dias-Ferreira, Celia; Ottosen, Lisbeth M.

    2014-01-01

    Polychlorinated biphenyls (PCB) are persistent organic pollutants (POP) that strongly adsorb in soils and sediments. There is a need to develop new and cost-effective solutions for the remediation of PCB contaminated soils. The suspended electrodialytic remediation combined with zero valent iron......ZVI showed encouraging tendencies and a base is thus formed for further optimization towards a new method for remediation of PCB polluted soils....... nanoparticles (nZVI) could be a competitive alternative to the commonly adapted solutions of incineration or landfilling. Surfactants can enhance the PCB desorption, dechlorination, and the contaminated soil cleanup. In this work, two different surfactants (saponin and Tween 80) were tested to enhance PCB...

  6. Enhancement of aspirin capsulation by porous particles including iron hydrous oxide

    International Nuclear Information System (INIS)

    Saito, Kenji; Koishi, Masumi; Hosoi, Fumio; Makuuchi, Keizo.

    1986-01-01

    Polymer-coated porous particles containing aspirin as a drug were prepared and the release of rate of aspirin was studied. The impregnation of aspirin was carried out by post-graft polymerization, where methyl methacrylate containing aspirin was treated with porous particles including iron oxide, pre-irradiated with γ-ray form Co-60. Release of aspirin from modified particles was examined with 50 % methanol solution. The amount of aspirin absorbed in porous particles increased by grafting of methyl methacrylate. The particles treated with iron hydrous oxide sols before irradiation led to the increment of aspirin absorption. Diffusion of aspirin through the polymer matrix and the gelled layer was the limiting process in the aspirin release from particles. The rate of aspirin released from modified particles including iron hydrous oxide wasn't affected by the grafting of methyl methacrylate. (author)

  7. Motion of particles of non-zero rest masses exterior to ...

    African Journals Online (AJOL)

    In this article, we extend the metric tensor exterior to astrophysically real or imaginary spherical distributions of mass whose tensor field varies with polar angle only; to derive equations of motion for test particles in this field. The time, radial, polar and azimuthal equations of motion for particles of non-zero rest masses moving ...

  8. Degradação de corantes reativos pelo sistema ferro metálico/peróxido de hidrogênio Degradation of reactive dyes by the metallic iron/ hydrogen peroxide system

    Directory of Open Access Journals (Sweden)

    Cláudio Roberto Lima de Souza

    2005-03-01

    Full Text Available In this work the degradation of aqueous solutions of reactive azo-dyes is reported using a combined reductive/advanced oxidative process based in the H2O2/zero-valent iron system. At optimized experimental conditions (pH 7, H2O2 100 mg L-1, iron 7 g L-1 and using a continuous system containing commercial iron wool, the process afforded almost total discolorization of aqueous solutions of three reactive azo-dyes (reactive orange 16, reactive black 5 and brilliant yellow 3G-P at a hydraulic retention time of 2.5 min. At these conditions the hydrogen peroxide is almost totally consumed while the released total soluble iron reaches a concentration compatible with the current Brazilian legislation (15 mg L-1.

  9. Texture formation in iron particles using mechanical milling with graphite as a milling aid

    Energy Technology Data Exchange (ETDEWEB)

    Motozuka, S.; Hayashi, K. [Department of Mechanical Engineering, Gifu National College of Technology, 2236-2 Kamimakuwa, Motosu, Gifu 501-0495 (Japan); Tagaya, M. [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Morinaga, M. [Toyota Physical and Chemical Research Institute, 41-1, Yokomichi, Nagakute, Aichi 480-1192 (Japan)

    2015-09-15

    Crystallographically anisotropic platelet iron particles were successfully prepared using a conventional ball mill with addition of graphite (Gp) particles. The morphological and structural changes resulting from the milling were investigated using scanning electron microscopy and X-ray diffraction. The spherical iron particles were plastically deformed into platelet shapes during the milling. Simultaneously, it is suggested that the size of the Gp particles decreased and adhered as nanoparticles on the surface of the iron particles. The adhered Gp particles affected the plastic deformation behavior of the iron particles: the (001) planes of α-iron were oriented parallel to the particle face, and no preferred in-plane orientation was observed. This study not only details the preparation of soft magnetic metal particles that crystallographically oriented to enhance their magnetic properties but also provides new insight into the activities of the well-established and extensively studied mechanical milling method.

  10. Texture formation in iron particles using mechanical milling with graphite as a milling aid

    International Nuclear Information System (INIS)

    Motozuka, S.; Hayashi, K.; Tagaya, M.; Morinaga, M.

    2015-01-01

    Crystallographically anisotropic platelet iron particles were successfully prepared using a conventional ball mill with addition of graphite (Gp) particles. The morphological and structural changes resulting from the milling were investigated using scanning electron microscopy and X-ray diffraction. The spherical iron particles were plastically deformed into platelet shapes during the milling. Simultaneously, it is suggested that the size of the Gp particles decreased and adhered as nanoparticles on the surface of the iron particles. The adhered Gp particles affected the plastic deformation behavior of the iron particles: the (001) planes of α-iron were oriented parallel to the particle face, and no preferred in-plane orientation was observed. This study not only details the preparation of soft magnetic metal particles that crystallographically oriented to enhance their magnetic properties but also provides new insight into the activities of the well-established and extensively studied mechanical milling method

  11. Wood smoke particle sequesters cell iron to impact a biological effect.

    Science.gov (United States)

    The biological effect of an inorganic particle (i.e., silica) can be associated with a disruption in cell iron homeostasis. Organic compounds included in particles originating from combustion processes can also complex sources of host cell iron to disrupt metal homeostasis. We te...

  12. Effect of the addition of zero valent iron (Fe0) on the batch biological sulphate reduction using grass cellulose as carbon source

    CSIR Research Space (South Africa)

    Mulopo, J

    2013-09-01

    Full Text Available of grass cuttings and iron filings. Reactors A and B received twice as much grass (100 g) as C (50 g). Reactor A received no iron filings to act as a control, while reactors B and C received 50-g iron filings for the experimental duration. The results...

  13. Effect of particle size on iron nanoparticle oxidation state

    International Nuclear Information System (INIS)

    Lombardo, Jeffrey J.; Lysaght, Andrew C.; Goberman, Daniel G.; Chiu, Wilson K.S.

    2012-01-01

    Selecting catalyst particles is a very important part of carbon nanotube growth, although the properties of these nanoscale particles are unclear. In this article iron nanoparticles are analyzed through the use of atomic force microscopy and x-ray photoelectron spectroscopy in order to understand how the size affects the chemical composition of nanoparticles and thus their physical structure. Initially, atomic force microscopy was used to confirm the presence of iron particles, and to determine the average size of the particles. Next an analytical model was developed to estimate particle size as a function of deposition time using inputs from atomic force microscopy measurement. X-ray photoelectron spectroscopy analysis was then performed with a focus on the spectra relating to the 2p Fe electrons to study the chemical state of the particles as a function of time. It was shown that as the size of nanoparticles decreased, the oxidation state of the particles changed due to a high proportion of atoms on the surface.

  14. The Effect of the Concentration of Oxidant, Cr(VI), on the Iron Oxidation in Saline Water

    Science.gov (United States)

    Ahn, H.; Jo, H. Y.; Ryu, J. H.; Koh, Y. K.

    2014-12-01

    Deep geological disposal is currently considered as the most appropriate method to isolate high level radioactive wastes (HLRWs) from the ecosystem. If groundwater seeps into underground disposal facilities, water molecules can be dissociated to radicals or peroxides, which can oxidize metal canisters and HLRWs. The oxidized radionuclides with a high solubility can be dissolved in the groundwater. Some dissolved radionuclides can act as oxidants. The continuous radiolysis of water molecules, which results from continuous seepage of groundwater, can enable the continuous production of the radioactive oxidants, resulting in an increase in concentration of oxidants. In this study, the effect of oxidant concentration on iron oxidation in the presence of salt was evaluated. Zero valent iron (ZVI) particles were reacted with Cr(VI) solutions with initial Cr(VI) concentrations ranged from 50 to 300 mg/L in reactors. The initial pH and NaCl concentration were fixed at 3 and 0.5 M, respectively. An increase in the initial Cr(VI) concentration caused an increase in the rate and extend of H2 gas production. The decrement of Cr(VI) was increased as the initial Cr(VI) concentration was increased. The penetration of H+ ions in the presence Cl- ions through the passive film on the ZVI particles caused the reaction between H+ ions and ZVI particles, producing H2 gas and Fe2+ ions. The passive film was damaged during the reaction due to the eruption of H2 gas or peptization by Cl- ions. The Fe2+ ions were reacted with Cr(VI) ions in the solution, producing Fe(III)-Cr(III) (oxy)hydroxides on the passive film of ZVI particles or in the solution as colloidal particles. The Fe(III)-Cr(III) (oxy)hydroxides tends to be precipitated as colloidal particles at a high Cr(VI) concentration and precipitated on the passive film at a low Cr(VI) concentration. The passive film was repaired or thickened by additional formation of Fe(III)-Cr(III) (oxy)hydroxides at a lower Cr(VI) concentration.

  15. Surface carbon influences on the reductive transformation of TCE in the presence of granular iron.

    Science.gov (United States)

    Firdous, R; Devlin, J F

    2018-04-05

    To gain insight into the processes of transformations in zero-valent iron systems, electrolytic iron (EI) has been used as a surrogate for the commercial products actually used in barriers. This substitution facilitates mechanistic studies, but may not be fully representative of all the relevant processes at work in groundwater remediation. To address this concern, the kinetic iron model (KIM) was used to investigate sorption and reactivity differences between EI and Connelly brand GI, using TCE as a probe compound. It was observed that retardation factors (R app ) for GI varied non-linearly with influent concentrations to the columns (C o ), and declined significantly as GI aged. In contrast, R app values for EI were small and insensitive to C o , and changed minimally with iron aging. Moreover, although declines in the rate constants (k) and increases in the sorption coefficients were observed for both iron types, they were most pronounced in the case of EI. SEM scans of the EI surface before and after aging (90 days) established the appearance of carbon on the older surface. This work provides evidence that iron with a higher surface carbon content outperforms pure iron, suggesting that the carbon is actively involved in promoting TCE reduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Distinct kinetics and mechanisms of mZVI particles aging in saline and fresh groundwater: H2 evolution and surface passivation.

    Science.gov (United States)

    Xin, Jia; Tang, Fenglin; Zheng, Xilai; Shao, Haibing; Kolditz, Olaf; Lu, Xin

    2016-09-01

    Application of microscale zero-valent iron (mZVI) is a promising technology for in-situ contaminated groundwater remediation; however, its longevity is negatively impacted by surface passivation, especially in saline groundwater. In this study, the aging behavior of mZVI particles was investigated in three media (milli-Q water, fresh groundwater and saline groundwater) using batch experiments to evaluate their potential corrosion and passivation performance under different field conditions. The results indicated that mZVI was reactive for 0-7 days of exposure to water and then gradually lost H2-generating capacity over the next hundred days in all of the tested media. In comparison, mZVI in saline groundwater exhibited the fastest corrosion rate during the early phase (0-7 d), followed by the sharpest kinetic constant decline in the latter phases. The SEM-EDS and XPS analyses demonstrated that in the saline groundwater, a thin and compact oxide film was immediately formed on the surface and significantly shielded the iron reactive site. Nevertheless, in fresh groundwater and milli-Q water, a passive layer composed of loosely and unevenly distributed precipitates slowly formed, with abundant reactive sites available to support continuous iron corrosion. These findings provide insight into the molecular-scale mechanism that governs mZVI passivation and provide implications for long-term mZVI application in saline contaminated groundwater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Environmental transformations and ecological effects of iron-based nanoparticles.

    Science.gov (United States)

    Lei, Cheng; Sun, Yuqing; Tsang, Daniel C W; Lin, Daohui

    2018-01-01

    The increasing application of iron-based nanoparticles (NPs), especially high concentrations of zero-valent iron nanoparticles (nZVI), has raised concerns regarding their environmental behavior and potential ecological effects. In the environment, iron-based NPs undergo physical, chemical, and/or biological transformations as influenced by environmental factors such as pH, ions, dissolved oxygen, natural organic matter (NOM), and biotas. This review presents recent research advances on environmental transformations of iron-based NPs, and articulates their relationships with the observed toxicities. The type and extent of physical, chemical, and biological transformations, including aggregation, oxidation, and bio-reduction, depend on the properties of NPs and the receiving environment. Toxicities of iron-based NPs to bacteria, algae, fish, and plants are increasingly observed, which are evaluated with a particular focus on the underlying mechanisms. The toxicity of iron-based NPs is a function of their properties, tolerance of test organisms, and environmental conditions. Oxidative stress induced by reactive oxygen species is considered as the primary toxic mechanism of iron-based NPs. Factors influencing the toxicity of iron-based NPs are addressed and environmental transformations play a significant role, for example, surface oxidation or coating by NOM generally lowers the toxicity of nZVI. Research gaps and future directions are suggested with an aim to boost concerted research efforts on environmental transformations and toxicity of iron-based NPs, e.g., toxicity studies of transformed NPs in field, expansion of toxicity endpoints, and roles of laden contaminants and surface coating. This review will enhance our understanding of potential risks of iron-based NPs and proper uses of environmentally benign NPs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Implementation of fluidized granulated iron reactors in a chromate remediation process

    International Nuclear Information System (INIS)

    Müller, P.; Lorber, K.E.; Mischitz, R.; Weiß, C.

    2014-01-01

    A new approach concerning in-situ remediation on source (‘hot-spot’) decontamination of a chromate damage in connection with an innovative pump-and-treat-technique has been developed. Iron granulates show significant higher reduction rates, using fluidized bed conditions, than a literature study with a fixed bed installation of small-sized iron granules. First results from an abandoned tannery site concerning injections of sodium dithionite as a chromate reductant for the vadose zone in combination with a pump-and-treat-method, allying the advantages of granulated zero valent iron (ZVI), are reported. Reduction amounts of chromate have been found up to 88% compared with initial values in the soil after a soil water exchange of 8 pore volumes within 2.5 months. Chromate concentrations in the pumped effluent have been reduced to under the detection limit of 0.005 mg/L by treatment with ZVI in the pilot plant. - Highlights: • Fe-granules show high Cr(VI)-reduction rates using fluidized bed conditions. • No respective negligible passivation effects on the surface of the iron granulates. • P and T-method by using ZVI in a FBR is very effective for Cr(VI) remediation. • The process provides no increase in salinity of the treated effluent

  19. Redox-active media for permeable reactive barriers

    International Nuclear Information System (INIS)

    Sivavec, T.M.; Mackenzie, P.D.; Horney, D.P.; Baghel, S.S.

    1997-01-01

    In this paper, three classes of redox-active media are described and evaluated in terms of their long-term effectiveness in treating TCE-contaminated groundwater in permeable reactive zones. Zero-valent iron, in the form of recycled cast iron filings, the first class, has received considerable attention as a reactive media and has been used in about a dozen pilot- and full-scale subsurface wall installations. Criteria used in selecting commercial sources of granular iron, will be discussed. Two other classes of redox-active media that have not yet seen wide use in pilot- or full-scale installations will also be described: Fe(II) minerals and bimetallic systems. Fe(II) minerals, including magnetite (Fe 3 O 4 ), and ferrous sulfide (troilite, FeS), are redox-active and afford TCE reduction rates and product distributions that suggest that they react via a reductive mechanism similar to that which operates in the FeO system. Fe(II) species within the passive oxide layer coating the iron metal may act as electron transfer mediators, with FeO serving as the bulk reductant. Bimetallic systems, the third class of redox-active media, are commonly prepared by plating a second metal onto zero-valent iron (e.g., Ni/Fe and Pd/Fe) and have been shown to accelerate solvent degradation rates relative to untreated iron metal. The long-term effectiveness of this approach, however, has not yet been determined in groundwater treatability tests. The results of a Ni-plated iron column study using site groundwater indicate that a change in reduction mechanism (to catalytic dehydrohalogenation/hydrogenation) accounts for the observed rate enhancement. A significant loss in media reactivity was observed over time, attributable to Ni catalyst deactivation or poisoning. Zero-valent iron systems have not shown similar losses in reactivity in long-term laboratory, pilot or field investigations

  20. Optimization of Iron Oxide Tracer Synthesis for Magnetic Particle Imaging

    Directory of Open Access Journals (Sweden)

    Sabina Ziemian

    2018-03-01

    Full Text Available The optimization of iron oxide nanoparticles as tracers for magnetic particle imaging (MPI alongside the development of data acquisition equipment and image reconstruction techniques is crucial for the required improvements in image resolution and sensitivity of MPI scanners. We present a large-scale water-based synthesis of multicore superparamagnetic iron oxide nanoparticles stabilized with dextran (MC-SPIONs. We also demonstrate the preparation of single core superparamagnetic iron oxide nanoparticles in organic media, subsequently coated with a poly(ethylene glycol gallic acid polymer and phase transferred to water (SC-SPIONs. Our aim was to obtain long-term stable particles in aqueous media with high MPI performance. We found that the amplitude of the third harmonic measured by magnetic particle spectroscopy (MPS at 10 mT is 2.3- and 5.8-fold higher than Resovist for the MC-SPIONs and SC-SPIONs, respectively, revealing excellent MPI potential as compared to other reported MPI tracer particle preparations. We show that the reconstructed MPI images of phantoms using optimized multicore and specifically single-core particles are superior to that of commercially available Resovist, which we utilize as a reference standard, as predicted by MPS.

  1. Reciprocal classes of p-valently spirallike and p-valently Robertson functions

    Directory of Open Access Journals (Sweden)

    Shiraishi Hitoshi

    2011-01-01

    Full Text Available Abstract For p-valently spirallike and p-valently Robertson functions in the open unit disk U , reciprocal classes S p ( α , β , and C p ( α , β are introduced. The object of the present paper is to discuss some interesting properties for functions f(z belonging to the classes Sp(α,β and Cp(α,β . 2010 Mathematics Subject Classification Primary 30C45

  2. Enhancement of stability of various nZVI suspensions used in groundwater remediation with environmentally friendly organic stabilizers

    Science.gov (United States)

    Schmid, Doris; Wagner, Stephan; Velimirović, Milica; Laumann, Susanne; Micić, Vesna; Hofmann, Thilo

    2014-05-01

    The use of nanoscale zero-valent iron (nZVI) particles for in situ remediation of polluted soil and groundwater has been shown as one of the most promising techniques [1]. The success of this technology depends on the mobility, reactivity, and longevity of nZVI particles. The mobility of nZVI particles depends on the properties of the single particles, stability of the particle suspension, and the aquifer material [1,2]. In order to enhance the mobility of nZVI, the mobility-decisive properties of the nZVI particles in suspension such as concentration, size distribution, surface charge, and sedimentation rate have to be investigated and optimized. Previous studies showed that pristine nZVI particles aggregate rapidly in water, reducing the particles radius of influence after injection [3]. In order to prevent aggregation and sedimentation of the nZVI particles, and consequently improve the stability of nZVI suspension and therefore the mobility of the nZVI particles, surface stabilizers can be used to provide electrostatic repulsion and steric or electrosteric stabilization [3,4]. The objective of this lab-scale study is to investigate the potential for enhancing the stability of different nZVI suspensions by means of environmentally friendly organic stabilizers, including carboxymethyl cellulose, pectin, alginate, xanthan, and guar gum. The different nZVI particles used included pristine and polyacrylic acid-coated nZVI particles provided in suspension (Nanofer 25 and Nanofer 25S, respectively, NANOIRON s.r.o., Czech Republic), air-stable nZVI particles (Nanofer Star, (NANOIRON s.r.o., Czech Republic), and milled iron flakes (UVR-FIA, Germany). In order to study the enhancement of nZVI stability (1 g L-1 total iron) different concentrations of organic stabilizers (1-20 wt.%) were applied in these nZVI suspensions. Each nZVI suspension was freshly prepared and treated for 10 minutes with Ultra-Turrax (15 000 rpm) and 10 minutes ultrasonic bath prior to

  3. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2004-03-31

    In this reporting period, a fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of production since the reaction is highly exothermic. Consequently, heavy wax products must be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase FTS. The separation problem is further compounded by catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. Existing pilot-scale equipment was modified to include a filtration test apparatus. After undergoing an extensive plant shakedown period, filtration tests with cross-flow filter modules using simulant FTS wax slurry were conducted. The focus of these early tests was to find adequate mixtures of polyethylene wax to simulate FTS wax. Catalyst particle size analysis techniques were also developed. Initial analyses of the slurry and filter permeate particles will be used by the research team to design improved filter media and cleaning strategies.

  4. How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions.

    Science.gov (United States)

    Bedford, Robin B

    2015-05-19

    catalytic cycle. Meanwhile, the reactivity required of the lowest-oxidation-state species has been observed with model compounds in higher oxidation states, implying that there is no need to invoke such low oxidation states. While subzero-valent complexes do indeed act as effective precatalysts, it is important to recognize that this tells us that they are efficiently converted to an active catalyst but says nothing about the oxidation states of the species in the catalytic cycle. Zero-valent heterogeneous iron nanoparticles can be formed under typical catalytic conditions, but there is no evidence to suggest that homogeneous Fe(0) complexes can be produced under comparable conditions. It seems likely that the zero-valent nanoparticles act as a reservoir for soluble higher-oxidation-state species. Fe(II) complexes can certainly be formed under catalytically relevant conditions, and when bulky nucleophilic coupling partners are exploited, potential intermediates can be isolated. However, the bulky reagents act as poor proxies for most nucleophiles used in cross-coupling, as they give Fe(II) organometallic intermediates that are kinetically stabilized with respect to reductive elimination. When more realistic substrates are exploited, reduction or disproportionation to Fe(I) is widely observed, and while it still has not been conclusively proved, this oxidation state currently represents a likely candidate for the lowest one active in many iron-catalyzed cross-coupling processes.

  5. Plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids

    OpenAIRE

    Sedlačík, M.; Pavlínek, V.; Lehocký, M.; Mráček, A.; Grulich, O.; Švrčinová, P. (Petra); Filip, P. (Petr); Vesel, A.

    2011-01-01

    The aim of this paper is to document suitability of plasma-treated carbonyl iron particles as a dispersed phase in magnetorheological fluids. Surface-modified carbonyl iron particles were prepared via their exposure to 50% argon and 50% octafluorocyclobutane plasma. The X-ray photoelectron spectroscopy was used for analysis of chemical bonding states in the surface layer. Plasma-treated particles were adopted for a dispersed phase in magnetorheological (MR) fluids, and the MR behaviour was in...

  6. DLVO and XDLVO calculations for bacteriophage MS2 adhesion to iron oxide particles.

    Science.gov (United States)

    Park, Jeong-Ann; Kim, Song-Bae

    2015-10-01

    In this study, batch experiments were performed to examine the adhesion of bacteriophage MS2 to three iron oxide particles (IOP1, IOP2 and IOP3) with different particle properties. The characteristics of MS2 and iron oxides were analyzed using various techniques to construct the classical DLVO and XDLVO potential energy profiles between MS2 and iron oxides. X-ray diffractometry peaks indicated that IOP1 was mainly composed of maghemite (γ-Fe2O3), but also contained some goethite (α-FeOOH). IOP2 was composed of hematite (α-Fe2O3) and IOP3 was composed of iron (Fe), magnetite (Fe3O4) and iron oxide (FeO). Transmission electron microscope images showed that the primary particle size of IOP1 (γ-Fe2O3) was 12.3±4.1nm. IOP2 and IOP3 had primary particle sizes of 167±35nm and 484±192nm, respectively. A surface angle analyzer demonstrated that water contact angles of IOP1, IOP2, IOP3 and MS2 were 44.83, 64.00, 34.33 and 33.00°, respectively. A vibrating sample magnetometer showed that the magnetic saturations of IOP1, IOP2 and IOP3 were 176.87, 17.02 and 946.85kA/m, respectively. Surface potentials measured in artificial ground water (AGW; 0.075mM CaCl2, 0.082mM MgCl2, 0.051mM KCl, and 1.5mM NaHCO3; pH7.6) indicated that iron oxides and MS2 were negatively charged in AGW (IOP1=-0.0185V; IOP2=-0.0194V; IOP3=-0.0301V; MS2=-0.0245V). Batch experiments demonstrated that MS2 adhesion to iron oxides was favorable in the order of IOP1>IOP2>IOP3. This tendency was well predicted by the classical DLVO model. In the DLVO calculations, both the sphere-plate and sphere-sphere geometries predicted the same trend of MS2 adhesion to iron oxides. Additionally, noticeable differences were not found between the DLVO and XDLVO interaction energy profiles, indicating that hydrophobic interactions did not play a major role; electrostatic interactions, however, did influence MS2 adhesion to iron oxides. Furthermore, the aggregation of iron oxides was investigated with a modified XDLVO

  7. Bio-inspired Iron Catalysts for Hydrocarbon Oxidations

    Energy Technology Data Exchange (ETDEWEB)

    Que, Jr., Lawrence [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-03-22

    Stereoselective oxidation of C–H and C=C bonds are catalyzed by nonheme iron enzymes. Inspired by these bioinorganic systems, our group has been exploring the use of nonheme iron complexes as catalysts for the oxidation of hydrocarbons using H2O2 as an environmentally friendly and atom-efficient oxidant in order to gain mechanistic insights into these novel transformations. In particular, we have focused on clarifying the nature of the high-valent iron oxidants likely to be involved in these transformations.

  8. Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal

    Science.gov (United States)

    Wei, Yufen; Fang, Zhanqiang; Zheng, Liuchun; Tsang, Eric Pokeung

    2017-03-01

    Eichhornia crassipes (water hyacinth), a species of invasive weeds has caused serious ecological damage due to its extraordinary fertility and growth rate. However, it has not yet been exploited for use as a resource. This paper reported the synthesis and characterization of amorphous iron nanoparticles (Ec-Fe-NPs) from Fe(III) salts in aqueous extracts of Eichhornia crassipes. The nanoparticles were characterized by SEM, EDS, TEM, XPS, FTIR, DLS and the zeta potential methods. The characterization results confirmed the successful synthesis of amorphous iron nanoparticles with diameters of 20-80 nm. Moreover, the nanoparticles were mainly composed of zero valent iron nanoparticles which were coated with various organic matters in the extracts as a capping or stabilizing agents. Batch experiments showed that 89.9% of Cr(VI) was removed by the Ec-Fe-NPs much higher than by the extracts alone (20.4%) and Fe3O4 nanoparticles (47.3%). Based on the kinetics study and the XPS analysis, a removal mechanism dominated by adsorption and reduction with subsequently co-precipitation was proposed.

  9. Clearance of iron oxide particles in rat liver: effect of hydrated particle size and coating material on liver metabolism.

    Science.gov (United States)

    Briley-Saebo, Karen C; Johansson, Lars O; Hustvedt, Svein Olaf; Haldorsen, Anita G; Bjørnerud, Atle; Fayad, Zahi A; Ahlstrom, Haakan K

    2006-07-01

    We sought to evaluate the effect of the particle size and coating material of various iron oxide preparations on the rate of rat liver clearance. The following iron oxide formulations were used in this study: dextran-coated ferumoxide (size = 97 nm) and ferumoxtran-10 (size = 21 nm), carboxydextran-coated SHU555A (size = 69 nm) and fractionated SHU555A (size = 12 nm), and oxidized-starch coated materials either unformulated NC100150 (size = 15 nm) or formulated NC100150 injection (size = 12 nm). All formulations were administered to 165 rats at 2 dose levels. Quantitative liver R2* values were obtained during a 63-day time period. The concentration of iron oxide particles in the liver was determined by relaxometry, and these values were used to calculate the particle half-lives in the liver. After the administration of a high dose of iron oxide, the half-life of iron oxide particles in rat liver was 8 days for dextran-coated materials, 10 days for carboxydextran materials, 14 days for unformulated oxidized-starch, and 29 days for formulated oxidized-starch. The results of the study indicate that materials with similar coating but different sizes exhibited similar rates of liver clearance. It was, therefore, concluded that the coating material significantly influences the rate of iron oxide clearance in rat liver.

  10. An investigation of the possible influence of particles on the corrosion of iron in a sodium loop

    International Nuclear Information System (INIS)

    Polley, M.V.

    1975-11-01

    At the present time it is not possible to explain why the observed corrosion of iron in sodium loop experiments is so small if currently recommended values of the solubility of iron in sodium are accepted. One possible explanation investigated is that the concentration of dissolved iron in the sodium may be held very close to saturation by the presence of a large number of particles in the sodium. A model for pipe wall and particle mass transfer is presented and a computer programme, which calculates mass transfer rates whilst following the sodium around an iron loop, is described. Dissolved iron is assumed to condense on and dissolve from foreign parent particles present in the sodium since it is shown that homogeneous nucleation of pure iron particles is most unlikely to occur. Mass transfer, to both particles and pipe walls, is assumed to be diffusion controlled. Computed corrosion rates are presented as a function of particle size and number density, showing that corrosion of iron cannot be sufficiently inhibited by the presence of particles to reconcile calculations of iron corrosion rates, based on recommended solubility values, with observed corrosion rates. Alternative explanations of observed iron corrosion phenomena are discussed. (author)

  11. Health and Economic Impact of Switching from a 4-Valent to a 9-Valent HPV Vaccination Program in the United States.

    Science.gov (United States)

    Brisson, Marc; Laprise, Jean-François; Chesson, Harrell W; Drolet, Mélanie; Malagón, Talía; Boily, Marie-Claude; Markowitz, Lauri E

    2016-01-01

    Randomized clinical trials have shown the 9-valent human papillomavirus (HPV) vaccine to be highly effective against types 31/33/45/52/58 compared with the 4-valent. Evidence on the added health and economic benefit of the 9-valent is required for policy decisions. We compare population-level effectiveness and cost-effectiveness of 9- and 4-valent HPV vaccination in the United States. We used a multitype individual-based transmission-dynamic model of HPV infection and disease (anogenital warts and cervical, anogenital, and oropharyngeal cancers), 3% discount rate, and societal perspective. The model was calibrated to sexual behavior and epidemiologic data from the United States. In our base-case, we assumed 95% vaccine-type efficacy, lifelong protection, and a cost/dose of $145 and $158 for the 4- and 9-valent vaccine, respectively. Predictions are presented using the mean (80% uncertainty interval [UI] = 10(th)-90(th) percentiles) of simulations. Under base-case assumptions, the 4-valent gender-neutral vaccination program is estimated to cost $5500 (80% UI = 2400-9400) and $7300 (80% UI = 4300-11 000)/quality-adjusted life-year (QALY) gained with and without cross-protection, respectively. Switching to a 9-valent gender-neutral program is estimated to be cost-saving irrespective of cross-protection assumptions. Finally, the incremental cost/QALY gained of switching to a 9-valent gender-neutral program (vs 9-valent girls/4-valent boys) is estimated to be $140 200 (80% UI = 4200->1 million) and $31 100 (80% UI = 2100->1 million) with and without cross-protection, respectively. Results are robust to assumptions about HPV natural history, screening methods, duration of protection, and healthcare costs. Switching to a 9-valent gender-neutral HPV vaccination program is likely to be cost-saving if the additional cost/dose of the 9-valent is less than $13. Giving females the 9-valent vaccine provides the majority of benefits of a gender-neutral strategy. © The Author

  12. Evaluation of tumoral enhancement by superparamagnetic iron oxide particles: comparative studies with ferumoxtran and anionic iron oxide nanoparticles

    International Nuclear Information System (INIS)

    Brillet, P-Y.; Gazeau, F.; Luciani, A.; Bessoud, B.; Cuenod, C.-A.; Siauve, N.; Pons, J.-N.; Poupon, J.; Clement, O.

    2005-01-01

    This study was designed to compare tumor enhancement by superparamagnetic iron oxide particles, using anionic iron oxide nanoparticles (AP) and ferumoxtran. In vitro, relaxometry and media with increasing complexity were used to assess the changes in r2 relaxivity due to cellular internalization. In vivo, 26 mice with subcutaneously implanted tumors were imaged for 24 h after injection of particles to describe kinetics of enhancement using T1 spin echo, T2 spin echo, and T2 fast spin echo sequences. In vitro, the r2 relaxivity decreased over time (0-4 h) when AP were uptaken by cells. The loss of r2 relaxivity was less pronounced with long (Hahn Echo) than short (Carr-Purcell-Meiboom-Gill) echo time sequences. In vivo, our results with ferumoxtran showed an early T2 peak (1 h), suggesting intravascular particles and a second peak in T1 (12 h), suggesting intrainterstitial accumulation of particles. With AP, the late peak (24 h) suggested an intracellular accumulation of particles. In vitro, anionic iron oxide nanoparticles are suitable for cellular labeling due to a high cellular uptake. Conversely, in vivo, ferumoxtran is suitable for passive targeting of tumors due to a favorable biodistribution. (orig.)

  13. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction

    Czech Academy of Sciences Publication Activity Database

    Jeon, J.-R.; Murugesan, K.; Baldrian, Petr; Schmidt, S.; Chang, Y.-S.

    2016-01-01

    Roč. 38, APR 2016 (2016), s. 71-78 ISSN 0958-1669 Institutional support: RVO:61388971 Keywords : ZERO-VALENT IRON * POLYBROMINATED DIPHENYL ETHERS * CHEMICAL-BIOLOGICAL TREATMENT Subject RIV: EE - Microbiology, Virology Impact factor: 9.294, year: 2016

  14. Synthesis, Characterization and Application of Nano Lepidocrocite ...

    African Journals Online (AJOL)

    NICO

    Degradation of halogenated organic compounds using nanoparticles is one of the innovative ... way as the synthesis of nano zero-valent iron by using sodium .... +. −. 2и High. 2и Low. FWHM. Crystallite. /counts. /counts. /degree. /degree.

  15. Sustainable Zero-Valent Metal (ZVM Water Treatment Associated with Diffusion, Infiltration, Abstraction, and Recirculation

    Directory of Open Access Journals (Sweden)

    David D.J. Antia

    2010-09-01

    Full Text Available Socio-economic, climate and agricultural stress on water resources have resulted in increased global demand for water while at the same time the proportion of potential water resources which are adversely affected by sodification/salinisation, metals, nitrates, and organic chemicals has increased. Nano-zero-valent metal (n-ZVM injection or placement in aquifers offers a potential partial solution. However, n-ZVM application results in a substantial reduction in aquifer permeability, which in turn can reduce the amount of water that can be abstracted from the aquifer. This study using static diffusion and continuous flow reactors containing n-ZVM and m-ZVM (ZVM filaments, filings and punchings has established that the use of m-ZVM does not result in a reduction in aquifer permeability. The experimental results are used to design and model m-ZVM treatment programs for an aquifer (using recirculation or static diffusion. They also provide a predictive model for water quality associated with specific abstraction rates and infiltration/injection into an aquifer. The study demonstrates that m-ZVM treatment requires 1% of the weight required for n-ZVM treatment for a specific flow rate. It is observed that 1 t Fe0 will process 23,500 m3 of abstracted or infiltrating water. m-ZVM is able to remove >80% of nitrates from flowing water and adjust the water composition (by reduction in an aquifer to optimize removal of nitrates, metals and organic compounds. The experiments demonstrate that ZVM treatment of an aquifer can be used to reduce groundwater salinity by 20 –> 45% and that an aquifer remediation program can be designed to desalinate an aquifer. Modeling indicates that widespread application of m-ZVM water treatment may reduce global socio-economic, climate and agricultural stress on water resources. The rate of oxygen formation during water reduction [by ZVM (Fe0, Al0 and Cu0] controls aquifer permeability, the associated aquifer pH, aquifer Eh

  16. Effect of carbonyl iron particles composition on the physical characteristics of MR grease

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, Norzilawati, E-mail: mnorzilawati@gmail.com; Mazlan, Saiful Amri, E-mail: amri.kl@utm.my [Vehicle System Engineering, Malaysia – Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra (Jalan Semarak), Kuala Lumpur, 54000 (Malaysia); Ubaidillah, E-mail: ubaidillah@uns.ac.id [Vehicle System Engineering, Malaysia – Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra (Jalan Semarak), Kuala Lumpur, 54000 (Malaysia); Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A, Kentingan, Surakarta, 57126, Central Java, Surakarta (Indonesia)

    2016-03-29

    Magnetorheological (MR) grease is an extension of the study of magnetorheological materials. The MR grease can help to reduce the particles sedimentation problem occurred in the MR fluids. Within this study, an effort has been taken to investigate the effect of different weight compositions of carbonyl iron particles on the physical and chemical characteristics of the MR grease under off-state condition (no magnetic field). The MR grease is prepared by mixing carbonyl iron particles having a size range of 1 to 10 µm with commercial NPC Highrex HD-3 grease. Characterizations of MR grease are investigated using Vibrating Sample Magnetometer (VSM), Environmental Scanning Electron Microscopy (ESEM), Differential Scanning Calorimeter (DSC) and rheometer. The dependency of carbonyl iron particles weight towards the magnetic properties of MR grease and other characterizations are investigated.

  17. Comparison of Carbon XANES Spectra from an Iron Sulfide from Comet Wild 2 with an Iron Sulfide Interplanetary Dust Particle

    Science.gov (United States)

    Wirick, S.; Flynn, G. J.; Keller, L. P.; Sanford, S. A.; Zolensky, M. E.; Messenger, Nakamura K.; Jacobsen, C.

    2008-01-01

    Among one of the first particles removed from the aerogel collector from the Stardust sample return mission was an approx. 5 micron sized iron sulfide. The majority of the spectra from 5 different sections of this particle suggests the presence of aliphatic compounds. Due to the heat of capture in the aerogel we initially assumed these aliphatic compounds were not cometary but after comparing these results to a heated iron sulfide interplanetary dust particle (IDP) we believe our initial interpretation of these spectra was not correct. It has been suggested that ice coating on iron sulfides leads to aqueous alteration in IDP clusters which can then lead to the formation of complex organic compounds from unprocessed organics in the IDPs similar to unprocessed organics found in comets [1]. Iron sulfides have been demonstrated to not only transform halogenated aliphatic hydrocarbons but also enhance the bonding of rubber to steel [2,3]. Bromfield and Coville (1997) demonstrated using Xray photoelectron spectroscopy that "the surface enhancement of segregated sulfur to the surface of sulfided precipitated iron catalysts facilitates the formation of a low-dimensional structure of extraordinary properties" [4]. It may be that the iron sulfide acts in some way to protect aliphatic compounds from alteration due to heat.

  18. Mitigation of Irrigation Water Using Zero-Valent Iron Treatment

    Science.gov (United States)

    Significant problems have occurred in the U.S. with regard to the contamination of produce by pathogenic bacteria. Minimally processed produce lacks the processing and preparation hurdles, such as cooking, to aid in reduction or elimination of the occasional and incidental contamination that can le...

  19. Degradation of Energetic Compounds using Zero-Valent Iron (ZVI)

    Science.gov (United States)

    2012-03-01

    aquatic plants, thermophilic biological regeneration of GAC, Fenton’s oxidation, electrolytic oxidation and anaerobic fluidized bed reactor. However...attack by oxygenase enzymes (Bruhn et al., 1987). Therefore, these energetic compounds are often removed from wastewater by costly physical-chemical... enzymes (Bruhn et al., 1987; Knackmuss, 1996). Chemical oxidation methods (e.g., advanced oxidation processes) are also ineffective because of the

  20. Ambient iron-mediated aeration (IMA) for water reuse.

    Science.gov (United States)

    Deng, Yang; Englehardt, James D; Abdul-Aziz, Samer; Bataille, Tristan; Cueto, Josenrique; De Leon, Omar; Wright, Mary E; Gardinali, Piero; Narayanan, Aarthi; Polar, Jose; Tomoyuki, Shibata

    2013-02-01

    Global water shortages caused by rapidly expanding population, escalating water consumption, and dwindling water reserves have rendered water reuse a strategically significant approach to meet current and future water demand. This study is the first to our knowledge to evaluate the technical feasibility of iron-mediated aeration (IMA), an innovative, potentially economical, holistic, oxidizing co-precipitation process operating at room temperature, atmospheric pressure, and neutral pH, for water reuse. In the IMA process, dissolved oxygen (O₂) was continuously activated by zero-valent iron (Fe⁰) to produce reactive oxygen species (ROS) at ambient pH, temperature, and pressure. Concurrently, iron sludge was generated as a result of iron corrosion. Bench-scale tests were conducted to study the performance of IMA for treatment of secondary effluent, natural surface water, and simulated contaminated water. The following removal efficiencies were achieved: 82.2% glyoxylic acid, ~100% formaldehyde as an oxidation product of glyoxylic acid, 94% of Ca²⁺ and associated alkalinity, 44% of chemical oxygen demand (COD), 26% of electrical conductivity (EC), 98% of di-n-butyl phthalate (DBP), 80% of 17β-estradiol (E2), 45% of total nitrogen (TN), 96% of total phosphorus (TP), 99.8% of total Cr, >90% of total Ni, 99% of color, 3.2 log removal of total coliform, and 2.4 log removal of E. Coli. Removal was attributed principally to chemical oxidation, precipitation, co-precipitation, coagulation, adsorption, and air stripping concurrently occurring during the IMA treatment. Results suggest that IMA is a promising treatment technology for water reuse. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Polyelectrolyte Properties in Mono and Multi-Valent Ionic Media: Brushes and Complex Coacervates

    Science.gov (United States)

    Farina, Robert M.

    Materials composed of polyelectrolytes have unique and interesting physical properties resulting primarily from their charged monomer segments. Polyelectrolytes, which exist in many different biological and industrial forms, have also been shown to be highly responsive to external environmental changes. Here, two specific polyelectrolyte systems, brushes and complex coacervates, are discussed in regards to how their properties can be tailored by adjusting the surrounding ionic environment with mono and multi-valent ions. End-tethered polyelectrolyte brushes, which constitute an interesting and substantial portion of polyelectrolyte applications, are well known for their ability to provide excellent lubrication and low friction when coated onto surfaces (e.g. articular cartilage and medical devices), as well as for their ability to stabilize colloidal particles in solution (e.g. paint and cosmetic materials). These properties have been extensively studied with brushes in pure mono-valent ionic media. However, polyelectrolyte brush interactions with multi-valent ions in solution are much less understood, although highly relevant considering mono and multi-valent counterions are present in most applications. Even at very low concentrations of multi-valent ions in solution, dramatic polyelectrolyte brush physical property changes can occur, resulting in collapsed chains which also adhere to one another via multi-valent bridging. Here, the strong polyelectrolyte poly(sodium styrene sulfonate) was studied using the Surface Forces Apparatus (SFA) and electrochemistry in order to investigate brush height and intermolecular interactions between two brushes as a function of multi-valent counterion population inside a brush. Complex coacervates are formed when polyanions and polycations are mixed together in proper conditions of an aqueous solution. This mixing results in a phase separation of a polymer-rich, coacervate phase composed of a chain network held together via

  2. Environmental Electrokinetics for a sustainable subsurface

    DEFF Research Database (Denmark)

    Lima, A.T.; Hofmann, A.; Reynolds, D.R.

    2017-01-01

    notably using zero-valent iron [ZVI]), enhanced in-situ bioremediation (EISB), phytoremediation, soil-washing, pump-and-treat, soil vapour extraction (SVE), thermal treatment, and excavation and disposal. Decades of field applications have shown that these techniques can successfully treat or control...

  3. Quantum-chemical consideration of extermal valent forms of actinides

    International Nuclear Information System (INIS)

    Ionova, G.V.; Pershina, V.G.; Spitsyn, V.I.

    1982-01-01

    Stability of valent forms of actinides that has not yet studied experimentally, is considered within the framework of quantum-chemical considerations. Oxidizing potentials E 0 for actinide elements are determined theoretically. A dependence of the definite valent state stability on relativistic effect is shown. A conclusion is made that oxidizing potential E 0 (4-5) for americium should be higher than E 0 (4-5) for plutonium. A relatively small oxidizing potential E 0 (4-5) for curium speaks about principle possibility of production of five-valent curium in solution, though it is less stable than the six-valent one. Oxidizing potential corresponding to transition of three-valent californium into the four-valent state should be less than the value adopted in literature. A relatively small oxidizing potential of californium E 0 (4-5) speaks about possible existence of five-valent californium in solution

  4. Treatment of Arsenic, Heavy Metals, and Acidity Using a Mixed ZVI-Compost PRB

    Science.gov (United States)

    A 30-month performance evaluation of a pilot permeable reactive barrier (PRB) consisting of a mixture of leaf compost, zero-valent iron (ZVI), limestone and pea gravel installed at a former phosphate fertilizer manufacturing facility was conducted. The PRB is designed to remove ...

  5. Imaging pathobiology of carotid atherosclerosis with ultrasmall superparamagnetic particles of iron oxide: an update.

    Science.gov (United States)

    Sadat, Umar; Usman, Ammara; Gillard, Jonathan H

    2017-07-01

    To provide brief overview of the developments regarding use of ultrasmall superparamagnetic particles of iron oxide in imaging pathobiology of carotid atherosclerosis. MRI is a promising technique capable of providing morphological and functional information about atheromatous plaques. MRI using iron oxide particles, called ultrasmall superparamagnetic iron oxide (USPIO) particles, allows detection of macrophages in atherosclerotic tissue. Ferumoxytol has emerged as a new USPIO agent, which has an excellent safety profile. Based on the macrophage-selective properties of ferumoxytol, there is increasing number of recent reports suggesting its effectiveness to detect pathological inflammation. USPIO particles allow magnetic resonance detection of macrophages in atherosclerotic tissue. Ferumoxytol has emerged as a new USPIO agent, with an excellent safety profile. This has the potential to be used for MRI of the pathobiology of atherosclerosis.

  6. Combined in situ zymography, immunofluorescence, and staining of iron oxide particles in paraffin-embedded, zinc-fixed tissue sections.

    Science.gov (United States)

    Haeckel, Akvile; Schoenzart, Lena; Appler, Franziska; Schnorr, Joerg; Taupitz, Matthias; Hamm, Bernd; Schellenberger, Eyk

    2012-01-01

    Superparamagnetic iron oxide particles are used as potent contrast agents in magnetic resonance imaging. In histology, these particles are frequently visualized by Prussian blue iron staining of aldehyde-fixed, paraffin-embedded tissues. Recently, zinc salt-based fixative was shown to preserve enzyme activity in paraffin-embedded tissues. In this study, we demonstrate that zinc fixation allows combining in situ zymography with fluorescence immunohistochemistry (IHC) and iron staining for advanced biologic investigation of iron oxide particle accumulation. Very small iron oxide particles, developed for magnetic resonance angiography, were applied intravenously to BALB/c nude mice. After 3 hours, spleens were explanted and subjected to zinc fixation and paraffin embedding. Cut tissue sections were further processed to in situ zymography, IHC, and Prussian blue staining procedures. The combination of in situ zymography as well as IHC with subsequent Prussian blue iron staining on zinc-fixed paraffin-embedded tissues resulted in excellent histologic images of enzyme activity, protease distribution, and iron oxide particle accumulation. The combination of all three stains on a single section allowed direct comparison with only moderate degradation of fluorescein isothiocyanate-labeled substrate. This protocol is useful for investigating the biologic environment of accumulating iron oxide particles, with excellent preservation of morphology.

  7. Characterization of iron speciation in urban and rural single particles using XANES spectroscopy and micro X-ray fluorescence measurements: investigating the relationship between speciation and fractional iron solubility

    OpenAIRE

    Oakes, M.; Weber, R. J.; Lai, B.; Russell, A.; Ingall, E. D.

    2012-01-01

    Soluble iron in fine atmospheric particles has been identified as a public health concern by participating in reactions that generate reactive oxygen species (ROS). The mineralogy and oxidation state (speciation) of iron have been shown to influence fractional iron solubility (soluble iron/total iron). In this study, iron speciation was determined in single particles at urban and rural sites in Georgia USA using synchrotron-based techniques, such as X-ray Absorption Near-Edge Structure (XANES...

  8. In vitro neurotoxic effects of 1 GeV/n iron particles assessed in retinal explants.

    Science.gov (United States)

    Vazquez, M E; Kirk, E

    2000-01-01

    The heavy ion component of the cosmic radiation remains problematic to the assessment of risk in manned space flight. The biological effectiveness of HZE particles has yet to be established, particularly with regard to nervous tissue. Using heavy ions accelerated at the AGS of Brookhaven National Laboratory, we study the neurotoxic effects of iron particles. We exposed retinal explants, taken from chick embryos, to determine the dose response relationships for neurite outgrowth. Morphometric techniques were used to evaluate the in vitro effects of 1 GeV/a iron particles (LET 148 keV/micrometer). Iron particles produced a dose-dependent reduction of neurite outgrowth with a maximal effect achieved with a dose of 100 cGy. Doses as low as 10-50 cGy were able to induce reductions of the neurite outgrowth as compared to the control group. Neurite generation is a more sensitive parameter than neurite elongation, suggesting different mechanism of radiation damage in our model. These results showed that low doses/fluences of iron particles could impair the retinal ganglion cells' capacity to generate neurites indicating the highly neurotoxic capability of this heavy charged particle.

  9. Arsenic removal with composite iron matrix filters in Bangladesh: a field and laboratory study.

    Science.gov (United States)

    Neumann, Anke; Kaegi, Ralf; Voegelin, Andreas; Hussam, Abul; Munir, Abul K M; Hug, Stephan J

    2013-05-07

    The main arsenic mitigation measures in Bangladesh, well-switching and deep tube wells, have reduced As exposure, but water treatment is important where As-free water is not available. Zero-valent iron (ZVI) based SONO household filters, developed in Bangladesh, remove As by corrosion of locally available inexpensive surplus iron and sand filtration in two buckets. We investigated As removal in SONO filters in the field and laboratory, covering a range of typical groundwater concentrations (in mg/L) of As (0.14-0.96), Fe (0-17), P (0-4.4), Ca (45-162), and Mn (0-2.8). Depending on influent Fe(II) concentrations, 20-80% As was removed in the top sand layer, but As removal to safe levels occurred in the ZVI-layer of the first bucket. Residual As, Fe, and Mn were removed after re-aeration in the sand of the second bucket. New and over 8-year-old filters removed As to iron matrix (CIM) of newer filters and predominantly magnetite in older filters. As mass balances indicated that users filtered less than reported volumes of water, pointing to the need for more educational efforts. All tested SONO filters provided safe drinking water without replacement for up to over 8 years of use.

  10. GROUND WATER ARSENIC AND METALS TREATMENT USING A COMBINATION COMPOST-ZVI PRB

    Science.gov (United States)

    A pilot permeable reactive barrier (PRB) consisting of a mixture of leaf compost, zero-valent iron (ZVI), limestone and pea gravel was installed at a former phosphate fertilizer manufacturing facility in Charleston, S.C. in September 2002. The PRB is designed to treat arsenic an...

  11. TREATMENT OF ARSENIC AND METALS IN GROUND WATER USING A COMPOST-ZVI PRB

    Science.gov (United States)

    A pilot permeable reactive barrier (PRB) consisting of a mixture of leaf compost, zero-valent iron (ZVI), limestone and pea gravel was installed at a former phosphate fertilizer manufacturing facility in Charleston, S.C. in September 2002. The PRB is designed to treat arsenic an...

  12. GROUND WATER ARSENIC AND METALS TREATMENT USING A COMBINATION COMPOST-ZVI PRB (ABSTRACT ONLY)

    Science.gov (United States)

    A pilot permeable reactive barrier (PRB) consisting of a mixture of leaf compost, zero-valent iron (ZVI), limestone and pea gravel was installed at a former phosphate fertilizer manufacturing facility in Charleston, S.C. in September 2002. The PRB is designed to treat arsenic an...

  13. Preparation and characterization of antibacterial Senegalia (Acacia) senegal/iron–silica bio-nanocomposites

    International Nuclear Information System (INIS)

    Şişmanoğlu, Tuba; Karakuş, Selcan; Birer, Özgür; Soylu, Gülin Selda Pozan; Kolan, Ayşen; Tan, Ezgi; Ürk, Öykü; Akdut, Gizem; Kilislioglu, Ayben

    2015-01-01

    Many studies that research bio-nanocomposites utilize techniques that involve the dispersion of strengthening components like silica, metal and metal oxides through a host biopolymer matrix. The biggest success factor for the bio-nanocomposite is having a smooth integration of organic and inorganic phases. This interattraction between the surfaces of inorganic particles and organic molecules are vital for good dispersion. In this study, a novel biodegradable antibacterial material was developed using gum arabic from Senegalia senegal (stabilizer), silica (structure reinforcer) and zero valent iron particles. Silica particles work to not only strengthen the mechanical properties of the Senegalia senegal but also prevent the accumulation of ZVI nanoparticles due to attraction between hydroxyl groups and FeO. The gum arabic/Fe–SiO 2 bio-nanocomposite showed effective antibacterial property against the Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Using Scanning electron microscopy, homogeneous dispersion and uniform particle size was viewed in the biopolymer. X-ray diffraction studies of iron particles organization in Senegalia senegal also showed that the main portion of iron was crystalline and in the form of FeO and Fe 0 . X-ray photoelectron spectroscopy was used to evaluate the chemical composition of the surface but no appreciable peak was measured for the iron before Ar etching. These results suggest that the surface of iron nanoparticles consist mainly of a layer of iron oxides in the form of FeO. Thermal gravimetric analysis was used to determine the thermal stability and absorbed moisture content.

  14. Preparation and characterization of antibacterial Senegalia (Acacia) senegal/iron–silica bio-nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Şişmanoğlu, Tuba; Karakuş, Selcan [Istanbul University, Faculty of Engineering, Department of Chemistry, 34320 Avcilar, Istanbul (Turkey); Birer, Özgür [Koç University, Department of Chemistry, Sarıyer 34450, Istanbul (Turkey); Koç University, KUYTAM Surface Science and Technology Center, Sarıyer 34450, Istanbul (Turkey); Soylu, Gülin Selda Pozan [Istanbul University, Faculty of Engineering, Department of Chemical Engineering, 34320 Avcilar, Istanbul (Turkey); Kolan, Ayşen; Tan, Ezgi; Ürk, Öykü; Akdut, Gizem [Istanbul University, Faculty of Engineering, Department of Chemistry, 34320 Avcilar, Istanbul (Turkey); Kilislioglu, Ayben, E-mail: ayben@istanbul.edu.tr [Istanbul University, Faculty of Engineering, Department of Chemistry, 34320 Avcilar, Istanbul (Turkey)

    2015-11-01

    Many studies that research bio-nanocomposites utilize techniques that involve the dispersion of strengthening components like silica, metal and metal oxides through a host biopolymer matrix. The biggest success factor for the bio-nanocomposite is having a smooth integration of organic and inorganic phases. This interattraction between the surfaces of inorganic particles and organic molecules are vital for good dispersion. In this study, a novel biodegradable antibacterial material was developed using gum arabic from Senegalia senegal (stabilizer), silica (structure reinforcer) and zero valent iron particles. Silica particles work to not only strengthen the mechanical properties of the Senegalia senegal but also prevent the accumulation of ZVI nanoparticles due to attraction between hydroxyl groups and FeO. The gum arabic/Fe–SiO{sub 2} bio-nanocomposite showed effective antibacterial property against the Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Using Scanning electron microscopy, homogeneous dispersion and uniform particle size was viewed in the biopolymer. X-ray diffraction studies of iron particles organization in Senegalia senegal also showed that the main portion of iron was crystalline and in the form of FeO and Fe{sup 0}. X-ray photoelectron spectroscopy was used to evaluate the chemical composition of the surface but no appreciable peak was measured for the iron before Ar etching. These results suggest that the surface of iron nanoparticles consist mainly of a layer of iron oxides in the form of FeO. Thermal gravimetric analysis was used to determine the thermal stability and absorbed moisture content.

  15. TREATMENT OF ARSENIC AND METALS IN GROUND WATER USING A COMPOST/ZVI PRB

    Science.gov (United States)

    A pilot permeable reactive barrier (PRB) consisting of a mixture of 30% yard waste compost, 20% zero-valent iron (ZVI), 5% limestone and 45% pea gravel by volume was installed at a former phosphate fertilizer manufacturing facility in Charleston, S.C. in September 2002. The pilo...

  16. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hui [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Shi, Xiangyang, E-mail: xshi@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); CQM - Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9000-390 Funchal (Portugal)

    2012-04-15

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  17. Enhanced dechlorination of trichloroethylene using electrospun polymer nanofibrous mats immobilized with iron/palladium bimetallic nanoparticles

    International Nuclear Information System (INIS)

    Ma, Hui; Huang, Yunpeng; Shen, Mingwu; Guo, Rui; Cao, Xueyan; Shi, Xiangyang

    2012-01-01

    Fe/Pd bimetallic nanoparticles (NPs) have held great promise for treating trichloroethylene (TCE)-contaminated groundwater, without the accumulation of chlorinated intermediates. However, the conventionally used colloidal Fe/Pd NPs usually aggregate rapidly, resulting in a reduced reactivity. To reduce the particle aggregation, we employed electrospun polyacrylic acid (PAA)/polyvinyl alcohol (PVA) polymer nanofibers as a nanoreactor to immobilize Fe/Pd bimetallic NPs. In the study, the water-stable PAA/PVA nanofibrous mats were complexed with Fe (III) ions via the binding with the free carboxyl groups of PAA for subsequent formation and immobilization of zero-valent iron (ZVI) NPs. Fe/Pd bimetallic NPs were then formed by the partial reduction of Pd(II) ions with ZVI NPs. The formed electrospun nanofibrous mats containing Fe/Pd bimetallic NPs with a diameter of 2.8 nm were characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, thermogravimetric analysis, and inductively coupled plasma-atomic emission spectroscopy. The Fe/Pd NP-containing electrospun PAA/PVA nanofibrous mats exhibited higher reactivity than that of the ZVI NP-containing mats or colloidal Fe/Pd NPs in the dechlorination of trichloroethylene (TCE), which was used as a model contaminant. With the high surface area to volume ratio, high porosity, and great reusability of the fibrous mats immobilized with the bimetallic NPs, the composite nanofibrous mats should be amenable for applications in remediation of various environmental contaminants.

  18. A study of the initiator concentration’s effect on styrene-divinylbenzene polymerization with iron particles

    Directory of Open Access Journals (Sweden)

    Bárbara M. da Conceição

    2011-01-01

    Full Text Available This paper describes the preparation of magnetic copolymer obtained from suspension polymerization of styrene (Sty and divinylbenzene (DVB in the presence of iron particles treated and not treated with oleic acid. The magnetic copolymers were characterized according to their morphology, particle size distribution and magnetic properties. The results show that incorporation of iron particles significantly changed the particles’ morphology. All samples presented higher saturation magnetization than the values reported in the literature and the particle size distribution was more monodisperse when the polymerization was conducted with 5%wt of benzoyl peroxide (BPO.

  19. Magnetic particles extracted from manganese nodules: Suggested origin from stony and iron meteorites

    Science.gov (United States)

    Finkelman, R.B.

    1970-01-01

    On the basis of x-ray diffraction and electron microprobe data, spherical and ellipsoidal particles extracted from manganese nodules were divided into three groups. Group I particles are believed to be derived from iron meteorites, and Group II particles from stony meteorites. Group III particles are believed to be volcanic in origin.

  20. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles

    NARCIS (Netherlands)

    Moonen, R.P.M.; van der Tol, P.; Hectors, S.J.C.G.; Starmans, L.W.E.; Nicolaij, K.; Strijkers, G.J.

    2015-01-01

    Purpose To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. Methods In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ. These comprise T1ρ and

  1. Spin-lock MR enhances the detection sensitivity of superparamagnetic iron oxide particles

    NARCIS (Netherlands)

    Moonen, Rik P. M.; van der Tol, Pieternel; Hectors, Stefanie J. C. G.; Starmans, Lucas W. E.; Nicolay, Klaas; Strijkers, Gustav J.

    2015-01-01

    To evaluate spin-lock MR for detecting superparamagnetic iron oxides and compare the detection sensitivity of quantitative T1ρ with T2 imaging. In vitro experiments were performed to investigate the influence of iron oxide particle size and composition on T1ρ . These comprise T1ρ and T2 measurements

  2. Iron speciation of airborne subway particles by the combined use of energy dispersive electron probe X-ray microanalysis and Raman microspectrometry.

    Science.gov (United States)

    Eom, Hyo-Jin; Jung, Hae-Jin; Sobanska, Sophie; Chung, Sang-Gwi; Son, Youn-Suk; Kim, Jo-Chun; Sunwoo, Young; Ro, Chul-Un

    2013-11-05

    Quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), known as low-Z particle EPMA, and Raman microspectrometry (RMS) were applied in combination for an analysis of the iron species in airborne PM10 particles collected in underground subway tunnels. Iron species have been reported to be a major chemical species in underground subway particles generated mainly from mechanical wear and friction processes. In particular, iron-containing particles in subway tunnels are expected to be generated with minimal outdoor influence on the particle composition. Because iron-containing particles have different toxicity and magnetic properties depending on their oxidation states, it is important to determine the iron species of underground subway particles in the context of both indoor public health and control measures. A recently developed analytical methodology, i.e., the combined use of low-Z particle EPMA and RMS, was used to identify the chemical species of the same individual subway particles on a single particle basis, and the bulk iron compositions of airborne subway particles were also analyzed by X-ray diffraction. The majority of airborne subway particles collected in the underground tunnels were found to be magnetite, hematite, and iron metal. All the particles collected in the tunnels of underground subway stations were attracted to permanent magnets due mainly to the almost ubiquitous ferrimagnetic magnetite, indicating that airborne subway particles can be removed using magnets as a control measure.

  3. 'Zero-time' detectors using microchannel plates for charged particle detection

    International Nuclear Information System (INIS)

    Girard, J.

    1977-01-01

    The mass identification of the reaction products detected in heavy ion nuclear reactions is generally obtained by the time-of-flight method. This method requires a device giving first the 'start' signal (zero time at the passage of the particle) and then the stop 'signal'. The interest lying in 'zero-time' detectors using a secondary electron emission has been considerably increased with using microchannel electron multipliers. Nevertheless such a device was shown to induce either fluctuations in the distance of flight or the use of detectors of different type in the 'start' and 'stop' channels respectively. In both cases, it remains an ambiguity as the access to time resolution, in the channel including the electron multiplier, is not direct and the effect of the different parameters on this resolution are masked. To palliate this drawback and study the qualities of microchannel plate multipliers in time measurement field, some devices mechanically and electronically symmetric have been developed. The resolution measurement in time of flight is obtained for electrons generated by the same particle and emitted from either side of a thin film. The distances of flight of the electrons on each side of the film are same, and so are the accelerating potentials. The microchannel electron multipliers and the processing electronic units are the same in each channel [fr

  4. Effect of Iron-Containing Intermetallic Particles on the Corrosion Behaviour of Aluminium

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2006-01-01

    The effect of heat treatment on the corrosion behaviour of binary Al-Fe alloys containing iron at levels between 0.04 and 0.42 wt.% was investigated by electrochemical measurements in both acidic and alkaline chloride solutions. Comparing solution heat-treated and quenched materials with samples...... with {100} facets, and are observed to contain numerous intermetallic particles. Fine facetted filaments also radiate out from the periphery of pits. The results demonstrate that the corrosion of "pure" 99.96% Al is thus dominated by the role of iron, which is the main impurity, and its electrochemical...... that had been subsequently annealed to promote precipitation of Al3Fe intermetallic particles, it was found that annealing increases both the cathodic and anodic reactivity. The increased cathodic reactivity is believed to be directly related to the increased available surface area of the iron...

  5. Removal of nitrate by zero-valent iron and pillared bentonite

    International Nuclear Information System (INIS)

    Li Jianfa; Li Yimin; Meng Qingling

    2010-01-01

    The pillared bentonite prepared by intercalating poly(hydroxo Al(III)) cations into bentonite interlayers was used together with Fe(0) for removing nitrate in column experiments. The obvious synergetic effect on nitrate removal was exhibited through uniformly mixing the pillared bentonite with Fe(0). In such a mixing manner, the nitrate was 100% removed, and the removal efficiency was much higher than the simple summation of adsorption by the pillared bentonite and reduction by Fe(0). The influencing factors such as bentonite type, amount of the pillared bentonite and initial pH of nitrate solutions were investigated. In this uniform mixture, the pillared bentonite could adsorb nitrate ions, and facilitated the mass transfer of nitrate onto Fe(0) surface, then accelerated the nitrate reduction. The pillared bentonite could also act as the proton-donor, and helped to keep the complete nitrate removal for at least 10 h even when the nitrate solution was fed at nearly neutral pH.

  6. MR imaging of abscess by use of lipid-coated iron oxide particles

    International Nuclear Information System (INIS)

    Chan, T.W.; Eley, C.G.S.; Kressel, H.Y.

    1990-01-01

    The authors of this paper investigate the potential application of lipid-coated iron oxide particles as an MR contrast agent for imaging inflammatory process by using a rat subcutaneous abscess model induced by turpentine. Ten male Sprague-Dawley rats received subcutaneous injections of 0.1 mL of turpentine in the flank. At 24-36 hours later, the rats developed a subcutaneous abscess of 1-1.8 cm. An intravenous injection of lipid-coated iron oxide particles, Ferrosome (Vestar) at doses of 25, 40, 100, 200 μg/kg was administered. The animals were imaged at 12-24 hours later on a 1.5-T magnet using a 3-inch (7.62-cm) surface coil. Two animals were also imaged 5 days later. T1-weighted, T2-weighted, and multiplanar gradient-recalled (MPGR) sequences were obtained. The abscess was then excised and examined with routine H-E and iron staining

  7. Decolourisation and degradation of reactive blue 2 by sulphate ...

    African Journals Online (AJOL)

    This work was performed to determine the influence of heat treatment on sewage sludge and addition of zero valent iron (ZVI) on the degradation and decolourisation of an anthraquinone dye, reactive blue 2 (RB 2). A consortium of sulphate reducing bacteria (SRB) in a biosulphidogenic batch reactor with biodigester ...

  8. Impurity model for mixed-valent Mn3+/Mn4+ ions

    International Nuclear Information System (INIS)

    Schlottmann, P.; Lee, K.

    1997-01-01

    Intermediate valent tri- and tetravalent manganese ions play an important role in LaMnO 3 -based systems. We consider a Mn impurity with five orbitals in cubic symmetry which hybridize with conduction electrons. The exchange interaction in the d shell maximizes the impurity spin. We study the valence of the Mn impurity as a function of the splitting of the e g to t 2g orbitals in zero magnetic field and for the totally spin-polarized state. The lifting of the degeneracy of the e g levels due to a small quadrupolar field, related to the Mn-O bond length or a Jahn-Teller effect, is also investigated. Possible implications on the magnetoresistance are discussed. copyright 1997 The American Physical Society

  9. Enhanced ozonation degradation of di-n-butyl phthalate by zero-valent zinc in aqueous solution: Performance and mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Gang [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710050 (China); State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Wang, Sheng-Jun [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Beijing General Municipal Engineering Design and Research Institute, Beijing 100082 (China); Ma, Jun, E-mail: majun@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China); Huang, Ting-Lin [School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710050 (China); Liu, Zheng-Qian, E-mail: liuzhengqian@gmail.com [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhao, Lei [School of Civil Engineering, Harbin Institute of Technology, Harbin 150090 (China); Su, Jun-Feng [State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (MARC), Tsinghua University, Beijing 100084 (China)

    2014-01-30

    Highlights: • ZVZ showed an obvious enhanced effect on DBP degradation in ozonation. • The recycling use of ZVZ resulted in the enhancement of DBP degradation. • The formed ZnO and reactive intermediates were responsible for the enhanced effect. • The enhanced effect on DBP degradation by ZVZ was also effective in actual waters. -- Abstract: Enhanced ozonation degradation of di-n-butyl phthalate (DBP) by zero-valent zinc (ZVZ) has been investigated using a semi-continuous reactor in aqueous solution. The results indicated that the combination of ozone (O{sub 3}) and ZVZ showed an obvious synergetic effect, i.e. an improvement of 54.8% on DBP degradation was obtained by the O{sub 3}/ZVZ process after 10 min reaction compared to the cumulative effect of O{sub 3} alone and O{sub 2}/ZVZ. The degradation efficiency of DBP increased gradually with the increase of ZVZ dosage, enhanced as solution pH increasing from 2.0 to 10.0, and more amount of DBP was degraded with the initial concentration of DBP arising from 0.5 to 2.0 mg L{sup −1}. Recycling use of ZVZ resulted in the enhancement of DBP degradation, because the newly formed zinc oxide took part in the reaction. The mechanism investigation demonstrated that the enhancement effect was attributed to the introduction of ZVZ, which could promote the utilization of O{sub 3}, enhance the formation of superoxide radical by reducing O{sub 2} via one-electron transfer, accelerate the production of hydrogen peroxide and the generation of hydroxyl radical. Additionally, the newly formed zinc oxide on ZVZ surface also contributed to the enhancement of DBP degradation in the recycling use of ZVZ. Most importantly, the O{sub 3}/ZVZ process was also effective in enhanced ozonation degradation of DBP under the background of actual waters.

  10. Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers

    International Nuclear Information System (INIS)

    Li Lin; Benson, Craig H.

    2010-01-01

    Ground water flow and geochemical reactive transport models were used to assess the effectiveness of five strategies used to limit fouling and to enhance the long-term hydraulic behavior of continuous-wall permeable reactive barriers (PRBs) employing granular zero valent iron (ZVI). The flow model accounted for geological heterogeneity and the reactive transport model included a geochemical algorithm for simulating iron corrosion and mineral precipitation reactions that have been observed in ZVI PRBs. The five strategies that were evaluated are pea gravel equalization zones, a sacrificial pre-treatment zone, pH adjustment, large ZVI particles, and mechanical treatment. Results of simulations show that installation of pea gravel equalization zones results in flow equalization and a more uniform distribution of residence times within the PRB. Residence times within the PRB are less affected by mineral precipitation when a pre-treatment zone is employed. pH adjustment limits the total amount of hydroxide ions in ground water to reduce porosity reduction and to retain larger residence times. Larger ZVI particles reduce porosity reduction as a result of the smaller iron surface area for iron corrosion, and retain longer residence time. Mechanical treatment redistributes the porosity uniformly throughout the PRB over time, which is effective in maintaining residence time.

  11. Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition.

    Science.gov (United States)

    Garg, Shikha; Wang, Kai; Waite, T David

    2017-05-16

    Impact of the organic exudate secreted by a toxic strain of Microcystis aeruginosa on the formation, aggregation, and reactivity of iron oxides that are formed on addition of Fe(II) and Fe(III) salts to a solution of the exudate is investigated in this study. The exudate has a stabilizing effect on the particles formed with decreased aggregation rate and increased critical coagulant concentration required for diffusion-limited aggregation to occur. These results suggest that the presence of algal exudates from Microcystis aeruginosa may significantly influence particle aggregation both in natural water bodies where Fe(II) oxidation results in oxide formation and in water treatment where Fe(III) salts are commonly added to aid particle growth and contaminant capture. The exudate also affects the reactivity of iron oxide particles formed with exudate coated particles undergoing faster dissolution than bare iron oxide particles. This has implications to iron availability, especially where algae procure iron via dissolution of iron oxide particles as a result of either reaction with reducing moieties, light-mediated ligand to metal charge transfer and/or reaction with siderophores. The increased reactivity of exudate coated particles is attributed, for the most part, to the smaller size of these particles, higher surface area and increased accessibility of surface sites.

  12. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation

    Energy Technology Data Exchange (ETDEWEB)

    Velimirovic, Milica; Schmid, Doris; Wagner, Stephan; Micić, Vesna; Kammer, Frank von der; Hofmann, Thilo, E-mail: thilo.hofmann@univie.ac.at

    2016-09-01

    Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a “green” agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation. - Highlights: • Rapid aggregation and sedimentation were observed in bare milled ZVI particles. • Agar agar improved the stability of milled ZVI particle suspensions. • Agar agar enhanced the transport of milled ZVI particles in heterogeneous sands. • Agar agar reduced the reactivity of milled ZVI particles towards TCE.

  13. Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation

    International Nuclear Information System (INIS)

    Velimirovic, Milica; Schmid, Doris; Wagner, Stephan; Micić, Vesna; Kammer, Frank von der; Hofmann, Thilo

    2016-01-01

    Submicron-scale milled zerovalent iron (milled ZVI) particles produced by grinding macroscopic raw materials could provide a cost-effective alternative to nanoscale zerovalent iron (nZVI) particles for in situ degradation of chlorinated aliphatic hydrocarbons in groundwater. However, the aggregation and settling of bare milled ZVI particles from suspension presents a significant obstacle to their in situ application for groundwater remediation. In our investigations we reduced the rapid aggregation and settling rate of bare milled ZVI particles from suspension by stabilization with a “green” agar agar polymer. The transport potential of stabilized milled ZVI particle suspensions in a diverse array of natural heterogeneous porous media was evaluated in a series of well-controlled laboratory column experiments. The impact of agar agar on trichloroethene (TCE) removal by milled ZVI particles was assessed in laboratory-scale batch reactors. The use of agar agar significantly enhanced the transport of milled ZVI particles in all of the investigated porous media. Reactivity tests showed that the agar agar-stabilized milled ZVI particles were reactive towards TCE, but that their reactivity was an order of magnitude less than that of bare, non-stabilized milled ZVI particles. Our results suggest that milled ZVI particles could be used as an alternative to nZVI particles as their potential for emplacement into contaminated zone, their reactivity, and expected longevity are beneficial for in situ groundwater remediation. - Highlights: • Rapid aggregation and sedimentation were observed in bare milled ZVI particles. • Agar agar improved the stability of milled ZVI particle suspensions. • Agar agar enhanced the transport of milled ZVI particles in heterogeneous sands. • Agar agar reduced the reactivity of milled ZVI particles towards TCE.

  14. Enhancement of Methane Concentration by Removing Contaminants from Biogas Mixtures Using Combined Method of Absorption and Adsorption

    OpenAIRE

    Al Mamun, Muhammad Rashed; Torii, Shuichi

    2017-01-01

    We report a laboratory scale combined absorption and adsorption chemical process to remove contaminants from anaerobically produced biogas using cafeteria (food), vegetable, fruit, and cattle manure wastes. Iron oxide (Fe2O3), zero valent iron (Feo), and iron chloride (FeCl2) react with hydrogen sulfide (H2S) to deposit colloidal sulfur. Silica gel, sodium sulfate (Na2SO4), and calcium oxide (CaO) reduce the water vapour (H2O) and carbon dioxide (CO2). It is possible to upgrade methane (CH4) ...

  15. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.

    Science.gov (United States)

    Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo

    2012-12-01

    In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Microstructure and hardness of WC-Co particle reinforced iron matrix surface composite

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2013-11-01

    Full Text Available In this study, a high Cr cast iron surface composite material reinforced with WC-Co particles 2-6 mm in size was prepared using a pressureless sand mold infiltration casting technique. The composition, microstructure and hardness were determined by means of energy dispersive spectrometry (EDS, electron probe microanalysis (EPMA, scanning electron microscope (SEM and Rockwell hardness measurements. It is determined that the obtained composite layer is about 15 mm thick with a WC-Co particle volumetric fraction of ~38%. During solidification, interface reaction takes place between WC-Co particles and high chromium cast iron. Melting and dissolving of prefabricated particles are also found, suggesting that local Co melting and diffusion play an important role in promoting interface metallurgical bonding. The composite layer is composed of ferrite and a series of carbides, such as (Cr, W, Fe23C6, WC, W2C, M6C and M12C. The inhomogeneous hardness in the obtained composite material shows a gradient decrease from the particle reinforced metal matrix composite layer to the matrix layer. The maximum hardness of 86.3 HRA (69.5 HRC is obtained on the particle reinforced surface, strongly indicating that the composite can be used as wear resistant material.

  17. Iron oxide nanotube layer fabricated with electrostatic anodization for heterogeneous Fenton like reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jun-Won; Park, Jae-Woo, E-mail: jaewoopark@hanyang.ac.kr

    2014-05-01

    Highlights: • Iron oxide nanotube was newly fabricated with potentiostatic anodization of Fe{sup 0} foil. • Cyanide was oxidized more effectively with the iron oxide nanotube and H{sub 2}O{sub 2}, resulting in fast oxidation of cyanide and cyanate. • This nanotube of Fe{sub 2}O{sub 3} on Fe{sup 0} metal can replace conventional particulate iron catalysts in Fenton-like processes. - Abstract: Iron oxide nanotubes (INT) were fabricated with potentiostatic anodization of zero valent iron foil in 1 M Na{sub 2}SO{sub 4} containing 0.5 wt% NH{sub 4}F electrolyte, holding the potential at 20, 40, and 60 V for 20 min, respectively. Field emission scanning electron microscopy and X-ray diffractometry were used to evaluate the morphology and crystalline structure of the INT film. The potential of 40 V for 20 min was observed to be optimal to produce an optimal catalytic film. Cyanide dissolved in water was degraded through the Fenton-like reaction using the INT film with hydrogen peroxide (H{sub 2}O{sub 2}). In case of INT-40 V in the presence of H{sub 2}O{sub 2} 3%, the first-order rate constant was found to be 1.7 × 10{sup −2} min{sup −1}, and 1.2 × 10{sup −2} min{sup −1} with commercial hematite powder. Degradation of cyanide was much less with only H{sub 2}O{sub 2}. Therefore, this process proposed in this work can be an excellent alternative to traditional catalysts for Fenton-like reaction.

  18. In Vitro Biocompatibility of Nanoscale Zerovalent Iron Particles (NZVI) Synthesized using tea-polyphenols.

    Science.gov (United States)

    A “green” protocol was used for the rapid generation of nanoscale zerovalent iron (NZVI) particles using tea polyphenols. The NZVI particles were subsequently examined for in vitro biocompatibility using the human keratinocyte cell (HaCaT) line as a skin exposure model. The cell...

  19. Metallorganic routes to nanoscale iron and titanium oxide particles encapsulated in mesoporous alumina: formation, physical properties, and chemical reactivity.

    Science.gov (United States)

    Schneider, J J; Czap, N; Hagen, J; Engstler, J; Ensling, J; Gütlich, P; Reinoehl, U; Bertagnolli, H; Luis, F; de Jongh, L J; Wark, M; Grubert, G; Hornyak, G L; Zanoni, R

    2000-12-01

    Iron and titanium oxide nanoparticles have been synthesized in parallel mesopores of alumina by a novel organometallic "chimie douce" approach that uses bis(toluene)iron(0) (1) and bis(toluene)titanium(0) (2) as precursors. These complexes are molecular sources of iron and titanium in a zerovalent atomic state. In the case of 1, core shell iron/iron oxide particles with a strong magnetic coupling between both components, as revealed by magnetic measurements, are formed. Mössbauer data reveal superparamagnetic particle behavior with a distinct particle size distribution that confirms the magnetic measurements. The dependence of the Mössbauer spectra on temperature and particle size is explained by the influence of superparamagnetic relaxation effects. The coexistence of a paramagnetic doublet and a magnetically split component in the spectra is further explained by a distribution in particle size. From Mössbauer parameters the oxide phase can be identified as low-crystallinity ferrihydrite oxide. In agreement with quantum size effects observed in UV-visible studies, TEM measurements determine the size of the particles in the range 5-8 nm. The particles are mainly arranged alongside the pore walls of the alumina template. TiO2 nanoparticles are formed by depositing 2 in mesoporous alumina template. This produces metallic Ti, which is subsequently oxidized to TiO2 (anatase) within the alumina pores. UV-visible studies show a strong quantum confinement effect for these particles. From UV-visible investigations the particle size is determined to be around 2 nm. XPS analysis of the iron- and titania- embedded nanoparticles reveal the presence of Fe2O3 and TiO2 according to experimental binding energies and the experimental line shapes. Ti4+ and Fe3+ are the only oxidation states of the particles which can be determined by this technique. Hydrogen reduction of the iron/iron-oxide nanoparticles at 500 degrees C under flowing H2/N2 produces a catalyst, which is active

  20. NMR relaxation induced by iron oxide particles: testing theoretical models.

    Science.gov (United States)

    Gossuin, Y; Orlando, T; Basini, M; Henrard, D; Lascialfari, A; Mattea, C; Stapf, S; Vuong, Q L

    2016-04-15

    Superparamagnetic iron oxide particles find their main application as contrast agents for cellular and molecular magnetic resonance imaging. The contrast they bring is due to the shortening of the transverse relaxation time T 2 of water protons. In order to understand their influence on proton relaxation, different theoretical relaxation models have been developed, each of them presenting a certain validity domain, which depends on the particle characteristics and proton dynamics. The validation of these models is crucial since they allow for predicting the ideal particle characteristics for obtaining the best contrast but also because the fitting of T 1 experimental data by the theory constitutes an interesting tool for the characterization of the nanoparticles. In this work, T 2 of suspensions of iron oxide particles in different solvents and at different temperatures, corresponding to different proton diffusion properties, were measured and were compared to the three main theoretical models (the motional averaging regime, the static dephasing regime, and the partial refocusing model) with good qualitative agreement. However, a real quantitative agreement was not observed, probably because of the complexity of these nanoparticulate systems. The Roch theory, developed in the motional averaging regime (MAR), was also successfully used to fit T 1 nuclear magnetic relaxation dispersion (NMRD) profiles, even outside the MAR validity range, and provided a good estimate of the particle size. On the other hand, the simultaneous fitting of T 1 and T 2 NMRD profiles by the theory was impossible, and this occurrence constitutes a clear limitation of the Roch model. Finally, the theory was shown to satisfactorily fit the deuterium T 1 NMRD profile of superparamagnetic particle suspensions in heavy water.

  1. Evaluation of iron oxide nanoparticle micelles for Magnetic Particle Imaging (MPI) of thrombosis

    NARCIS (Netherlands)

    Starmans, L.W.E.; Moonen, R.P.M.; Aussems-Custers, E.; Daemen, M.J.A.P.; Strijkers, G. J.; Nicolay, K.; Grüll, H.

    2015-01-01

    Magnetic particle imaging (MPI) is an emerging medical imaging modality that directly visualizes magnetic particles in a hot-spot like fashion. We recently developed an iron oxide nanoparticle-micelle (ION-Micelle) platform that allows highly sensitive MPI. The goal of this study was to assess the

  2. Tratamento de água subterrânea contaminada com compostos organoclorados usando ferro elementar e o reagente de Fenton Treatment of groundwater contaminated with chlorinated compounds using elemental iron and Fenton's reagent

    Directory of Open Access Journals (Sweden)

    Tatiana Langbeck de Arruda

    2007-01-01

    Full Text Available The remediation of groundwater containing organochlorine compounds was evaluated using a reductive system with zero-valent iron, and the reductive process coupled with Fenton's reagent. The concentration of the individual target compounds reached up to 400 mg L-1 in the sample. Marked reductions in the chlorinated compounds were observed in the reductive process. The degradation followed pseudo-first-order kinetics in terms of the contaminant and was dependent on the sample contact time with the solid reducing agent. An oxidative test with Fenton's reagent, followed by the reductive assay, showed that tetrachloroethylene was further reduced up to three times the initial concentration. The destruction of chloroform, however, demands an additional treatment.

  3. Interferometry with particles of non-zero rest mass: topological experiments

    International Nuclear Information System (INIS)

    Opat, G.I.

    1994-01-01

    Interferometry as a space-time process is described, together with its topology. Starting from this viewpoint, a convenient unified formalism for the phase shifts which arise in particle interferometry is developed. This formalism is based on a covariant form of Hamilton's action principle and Lagrange's equations of motion. It will be shown that this Lorentz invariant formalism yields a simple perturbation theoretic expression for the general phase shift that arises in matter-wave interferometry. The Lagrangian formalism is compared with the more usual formalism based on the wave propagation vector and frequency. The resulting formalism will be used to analyse the Sagnac effect, gravitational field measurements, and several Aharonov-Bohm-like topological phase shifts. Several topological interferometric experiments using particles of non-zero rest mass are discussed. These experiments involve the use of electrons, neutrons and neutral atoms. Neutron experiments will be emphasised. 45 refs., 15 figs

  4. Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Chiemi; Ushimaru, Kazunori [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Horiishi, Nanao [Bengala Techno Laboratory, 9-5-1006, 1-1 Kodai, Miyamae-ku, Kawasaki 216-0007 (Japan); Tsuge, Takeharu [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Kitamoto, Yoshitaka, E-mail: kitamoto.y.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-05-01

    Core–shell composite particles with biodegradability and superparamagnetic behavior were prepared using a Pickering emulsion for targeted drug delivery based on magnetic guidance. The composite particles were composed of a core of biodegradable polymer and a shell of assembled magnetic iron oxide nanoparticles. It was found that the dispersibility of the nanoparticles is crucial for controlling the core–shell structure. The addition of a small amount of dispersant into the nanoparticle's suspension could improve the dispersibility and led to the formation of composite particles with a thin magnetic shell covering a polymeric core. The composite particles were also fabricated with a model drug loaded into the core, which was released via hydrolysis of the core under strong alkaline conditions. Because the core can also be biodegraded by lipase, this result suggests that the slow release of the drug from the composite particles should occur inside the body. - Highlights: • Core−shell composites with biodegradability and magnetism are prepared. • O/W emulsion stabilized by iron oxide nanoparticles is utilized for the preparation. • The nanoparticle's dispersibility is crucial for controlling the composite structure. • Composites loading a model drug are also prepared. • The model drug is released with decomposition of the composites.

  5. Enhancing the reactivity of bimetallic Bi/Fe{sup 0} by citric acid for remediation of polluted water

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jianyu; Lee, Chung-Seop; Kim, Eun-Ju [School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of); Chang, Yoon-Young [Department of Environmental Engineering, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Chang, Yoon-Seok, E-mail: yschang@postech.ac.kr [School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784 (Korea, Republic of)

    2016-06-05

    Highlights: • A novel bismuth modified zero valent iron (Bi/Fe{sup 0}) was synthesized. • The Bi/Fe{sup 0} + CA(citric acid) + O{sub 2} system could produce ·OH and ·O{sub 2}{sup −}. • Some recalcitrant pollutants could be treated by Bi/Fe{sup 0} + CA + O{sub 2} in a short time. • The formation of Fe(III)-citric results in the generation of ·OH and ·O{sub 2}{sup −}. - Abstract: In this study, the environmentally benign citric acid (CA) was utilized to improve the aerobic degradation of 4-chlorophenol (4-CP) over bismuth modified nanoscale zero-valent iron (Bi/Fe{sup 0}). The characterization results revealed the existence of bismuth covering on the Fe{sup 0} surface under zero-valent state. And, the Bi/Fe{sup 0}-CA + O{sub 2} system performed excellent reactivity in degradation of 4-CP due to the generation of reactive oxygen species (ROS), which was confirmed by electron spin resonance (ESR) spectroscopy. After 30 min of reaction, 80% of 4-CP was removed using Bi/Fe{sup 0}-CA + O{sub 2} accompanying with high dechlorination rate. The oxidative degradation intermediates were analyzed by HPLC and LC-MS. We found that CA could promote the bismuth-iron system to produce much reactive oxygen species ROS under both aerobic and anaerobic conditions due to its ligand function, which could react with Fe{sup 3+} to form a ligand complex (Fe(III)Cit), accompanying with a considerable production of Fe{sup 2+} and H{sub 2}O{sub 2}. This study provides a new strategy for generating ROS on nZVI and suggests its application for the mineralization of many recalcitrant pollutants.

  6. Effectiveness of various sorbents and biological oxidation in the removal of arsenic species from groundwater

    NARCIS (Netherlands)

    Corsini, A.; Cavalca, L.; Muyzer, G.; Zaccheo, P.

    2014-01-01

    The AsIII and AsV adsorption capacity of biochar, chabazite, ferritin-based material, goethite and nano zero-valent iron was evaluated in artificial systems at autoequilibrium pH (i.e. MilliQ water without adjusting the pH) and at approximately neutral pH (i.e. TRIS-HCl, pH 7.2). At autoequilibrium

  7. Effects on nano zero-valent iron reactivity of interactions between hardness, alkalinity, and natural organic matter in reverse osmosis concentrate

    DEFF Research Database (Denmark)

    Hwang, Yuhoon; Shin, Hang-Sik

    2013-01-01

    , the influence of hardness, alkalinity, and organic matter on NZVI reactivity was evaluated by the response surface method (RSM). Hardness (Ca2 ) had a positive effect on NZVI reactivity by accelerating iron corrosion. In contrast, alkalinity (bicarbonate; HCO3-) and organic matter (humic acid; HA) had negative...... effects on NZVI reactivity due to morphological change to carbonate green rust, and to competitive adsorption of HA, respectively. The validity of the statistical prediction model derived from RSM was confirmed by an additional confirmation experiment, and the experimental result was within the 95......% confidential interval. Therefore, it can be said that the RSM model produced results that were statistically significant....

  8. Photoemission studies of mixed valent systems

    International Nuclear Information System (INIS)

    Parks, R.D.; Raaen, S.; denBoer, M.L.; Williams, G.P.

    1984-01-01

    Photoemission spectroscopy has been used to study a number of aspects of the mixed valent state (corresponding to non-integral 4f occupation) in rare earth systems. Deep core photoemission (e.g., from 3d or 4d levels) allows the measurement of the 4f occupancy and surface valence shifts, and, as well, the indirect measurement of the effect of solid state environment on the energy of hybridization between 4f electrons and conduction electrons. 4f-Derived photoemission has been used to study surface valance and chemical shifts and to infer the nature of the mixed valent ground state. A combination of 4f-derived photoemission and add-electron spectroscopy provides a measurement of the rf Coulomb correlation energy, an important parameter in the mixed valent problem. A review of these approaches will be presented, with emphasis on Ce-based systems, whose behavior falls outside the usual description of 4f-unstable systems

  9. Electrosynthèse assistée par ultrasons de nanoparticules de fer à valence zéro : étude de la croissance de dépôts et de leur dispersion par ondes acoustiques

    OpenAIRE

    Iranzo , Audrey

    2016-01-01

    This study concerns the coupling of the ultrasounds with the electrodeposition process for the synthesis of zero-valent iron nanoparticles; it is structured in two sections. The first focuses on the electrode substrate used for the iron electrodeposition and aims to determine its influence on both the deposit growth and its dispersion by ultrasonication. The interfacial and the adhesion energies of the deposit on the substrate (Y_(Fe/substrate) and W_(Fe/substrate) respectively) being related...

  10. Influence of particle size of wear metal on the spectrometric oil analysis programme (SOAP), demonstrated by the determination of iron by AAS

    Energy Technology Data Exchange (ETDEWEB)

    Klaegler, S.H.; Jantzen, E.

    1982-02-01

    The possibility that there might be a relation between particle size of wear metal and spectrometric determination, (e.g. of the iron content in used lubricating oils) has been examined. In this connection it had to be clarified from which particle size of the iron wear the Fe content determined by direct AAS (solution of the oil sample) is in agreement with the true value in the used oil. The determination of the absolute iron content was performed by a colorimetric method preceded by an incineration of the used oil. Contrary to other publications, in which work is based on spherical iron particles as a simulated wear, the test described here relates to true wear particles. To obtain the total iron wear from a gear oil it was filtered off from the used oil and afterwards separated into defined particle size ranges by a procedure specially developed for this purpose. The different groups of scaly particles, which were collected in this way, were then mixed homogeneously into fresh luboil samples according to their sizes. The determination of the iron content from these newly mixed luboil samples was carried out 1. by direct AAS, 2. by AAS after incineration of the oil samples and 3. by a colorimetric method (to obtain the absolute value of the iron content). The results showed a recovery of the iron of only 50% if the wear particles were bigger than about 2 ..mu..m. That means that the true value of the iron content in a used lubricating oil is found by direct AAS only if the particle size is <=1 ..mu..m.

  11. Iron Coordination and Halogen-Bonding Assisted Iodosylbenzene Activation

    DEFF Research Database (Denmark)

    Wegeberg, Christina; Poulsen de Sousa, David; McKenzie, Christine

    catalytic mixtures using soluble terminal oxygen transfer agents. Isolation of a reactive iron-terminal oxidant adduct, an unique Fe(III)-OIPh complex, is facilitated by strong stabilizing supramolecular halogen-bonding. L3-edge XANES suggests +1.6 for the average oxidation state for the iodine atom3......The iron complex of the hexadentate ligand N,N,N'-tris(2-pyridylmethyl)ethylendiamine-N'-acetate (tpena) efficiently catalyzes selective oxidations of electron-rich olefins and sulfides by insoluble iodosylbenzene (PhIO). Surprisingly, these reactions are faster and more selective than homogenous...... in the iron(III)-coordinated PhIO. This represents a reduction of iodine relative to the original “hypervalent” (+3) PhIO. The equivalent of electron density must be removed from the {(tpena)Fe(III)O} moiety, however Mössbauer spectroscopy shows that the iron atom is not high valent....

  12. ZVI (Fe0) desalination: catalytic partial desalination of saline aquifers

    Science.gov (United States)

    Antia, David D. J.

    2018-05-01

    Globally, salinization affects between 100 and 1000 billion m3 a-1 of irrigation water. The discovery that zero valent iron (ZVI, Fe0) could be used to desalinate water (using intra-particle catalysis in a diffusion environment) raises the possibility that large-scale in situ desalination of aquifers could be undertaken to support agriculture. ZVI desalination removes NaCl by an adsorption-desorption process in a multi-stage cross-coupled catalytic process. This study considers the potential application of two ZVI desalination catalyst types for in situ aquifer desalination. The feasibility of using ZVI catalysts when placed in situ within an aquifer to produce 100 m3 d-1 of partially desalinated water from a saline aquifer is considered.

  13. Channel flow and trichloroethylene treatment in a partly iron-filled fracture: Experimental and model results

    Science.gov (United States)

    Cai, Zuansi; Merly, Corrine; Thomson, Neil R.; Wilson, Ryan D.; Lerner, David N.

    2007-08-01

    Technical developments have now made it possible to emplace granular zero-valent iron (Fe 0) in fractured media to create a Fe 0 fracture reactive barrier (Fe 0 FRB) for the treatment of contaminated groundwater. To evaluate this concept, we conducted a laboratory experiment in which trichloroethylene (TCE) contaminated water was flushed through a single uniform fracture created between two sandstone blocks. This fracture was partly filled with what was intended to be a uniform thickness of iron. Partial treatment of TCE by iron demonstrated that the concept of a Fe 0 FRB is practical, but was less than anticipated for an iron layer of uniform thickness. When the experiment was disassembled, evidence of discrete channelised flow was noted and attributed to imperfect placement of the iron. To evaluate the effect of the channel flow, an explicit Channel Model was developed that simplifies this complex flow regime into a conceptualised set of uniform and parallel channels. The mathematical representation of this conceptualisation directly accounts for (i) flow channels and immobile fluid arising from the non-uniform iron placement, (ii) mass transfer from the open fracture to iron and immobile fluid regions, and (iii) degradation in the iron regions. A favourable comparison between laboratory data and the results from the developed mathematical model suggests that the model is capable of representing TCE degradation in fractures with non-uniform iron placement. In order to apply this Channel Model concept to a Fe 0 FRB system, a simplified, or implicit, Lumped Channel Model was developed where the physical and chemical processes in the iron layer and immobile fluid regions are captured by a first-order lumped rate parameter. The performance of this Lumped Channel Model was compared to laboratory data, and benchmarked against the Channel Model. The advantages of the Lumped Channel Model are that the degradation of TCE in the system is represented by a first

  14. Solventless synthesis of ruthenium nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    García-Peña, Nidia G. [Departmento de Tecnociencias, Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Cd. Universitaria A.P. 70-186, C.P. 04510 Coyoacán, México D.F. (Mexico); Redón, Rocío, E-mail: rredon@unam.mx [Departmento de Tecnociencias, Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Cd. Universitaria A.P. 70-186, C.P. 04510 Coyoacán, México D.F. (Mexico); Herrera-Gomez, Alberto [Estudios Avanzados del Instituto Politécnico Nacional, Campus Juriquilla, Querétaro (Mexico); Fernández-Osorio, Ana Leticia [FES-Cuautitlán, Universidad Nacional Autónoma de México, Edo. de Mexico (Mexico); Bravo-Sanchez, Mariela; Gomez-Sosa, Gustavo [Estudios Avanzados del Instituto Politécnico Nacional, Campus Juriquilla, Querétaro (Mexico)

    2015-06-15

    Graphical abstract: - Highlights: • Successful synthesis of Ru nanoparticles by a cheap, fast and solventless approach was achieved. • The zero-valent state as well as the by-product/impurity free of the mechanochemical obtained Ru nanoparticles was proven by XPS, TEM and XRD. • Compared to two other synthesis strategies, the above-mentioned synthesis was more suitable to obtain smaller particles with fewer impurities in shorter time. - Abstract: This paper presents a novel solventless method for the synthesis of zero-valent ruthenium nanoparticles Ru(0). The proposed method, although not entirely new in the nanomaterials world, was used for the first time to synthesize zero-valent ruthenium nanoparticles. This new approach has proved to be an environmentally friendly, clean, cheap, fast, and reproducible technique which employs low amounts of solvent. It was optimized through varying amounts of reducing salt on a determined quantity of precursor and measuring the effect of this variation on the average particle size obtained. The resulting products were fully characterized by powder XRD, TEM, HR-TEM, and XPS studies, all of which corroborated the purity of the nanoparticles achieved. In order to verify the advantages of our method over other techniques, we compared our nanoparticles with two common colloidal-synthesized ruthenium nanoparticles.

  15. Application of H2O2 and H2O2/Fe0 in removal of Acid Red 18 dye from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Nazari Shahram

    2013-08-01

    Full Text Available Background & Aims of the Study: Organic dyes with a complex structure are often toxic, carcinogenic, mutagenic, non-biodegradation and stable in the environment and if released to the environment without treatment can endanger the environment and human health. The aim of this study was to evaluate the performance of H2O2 and H2O2/Fe0 Iron in removal of dye Acid Red 18 from aqueous solutions. Materials & Methods: This study was conducted at the laboratory scale. In this study, the removal efficiency of Acid Red 18 from a synthetic solution by H2O2 and H2O2/Fe0 was investigated. As well as Effect of solution pH, dye concentration, Concentration of Nanoscale Zero-Valent Iron, H2O2 and contact time in decolorization efficiency was investigated. Results: Results show that in pH=3, Contact time of 80 minutes, dye concentration of 50 mg/l and Concentration of Nanoscale Zero-Valent Iron of 2 g/l and H2O2 concentration equal to 200 mmol/l, the removal efficiency was about 98%. Conclusions: According to the results of experiments, H2O2/Fe0 has high efficiency in removal of Acid Red 18 from aqueous solution.

  16. Fractional iron solubility of aerosol particles enhanced by biomass burning and ship emission in Shanghai, East China.

    Science.gov (United States)

    Fu, H B; Shang, G F; Lin, J; Hu, Y J; Hu, Q Q; Guo, L; Zhang, Y C; Chen, J M

    2014-05-15

    In terms of understanding Fe mobilization from aerosol particles in East China, the PM2.5 particles were collected in spring at Shanghai. Combined with the backtrajectory analysis, the PM2.5/PM10 and Ca/Al ratios, a serious dust-storm episode (DSE) during the sampling was identified. The single-particle analysis showed that the major iron-bearing class is the aluminosilicate dust during DSE, while the Fe-bearing aerosols are dominated by coal fly ash, followed by a minority of iron oxides during the non-dust storm days (NDS). Chemical analyses of samples showed that the fractional Fe solubility (%FeS) is much higher during NDS than that during DSE, and a strong inverse relationship of R(2)=0.967 between %FeS and total atmospheric iron loading were found, suggested that total Fe (FeT) is not controlling soluble Fe (FeS) during the sampling. Furthermore, no relationship between FeS and any of acidic species was established, suggesting that acidic process on aerosol surfaces are not involved in the trend of iron solubility. It was thus proposed that the source-dependent composition of aerosol particles is a primary determinant for %FeS. Specially, the Al/Fe ratio is poorly correlated (R(2)=0.113) with %FeS, while the apparent relationship between %FeS and the calculated KBB(+)/Fe ratio (R(2)=0.888) and the V/Fe ratio (R(2)=0.736) were observed, reflecting that %FeS could be controlled by both biomass burning and oil ash from ship emission, rather than mineral particles and coal fly ash, although the latter two are the main contributors to the atmospheric Fe loading during the sampling. Such information can be useful improving our understanding on iron solubility on East China, which may further correlate with iron bioavailability to the ocean, as well as human health effects associated with exposure to fine Fe-rich particles in densely populated metropolis in China. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Bonding in Heavier Group 14 Zero-Valent Complexes-A Combined Maximum Probability Domain and Valence Bond Theory Approach.

    Science.gov (United States)

    Turek, Jan; Braïda, Benoît; De Proft, Frank

    2017-10-17

    The bonding in heavier Group 14 zero-valent complexes of a general formula L 2 E (E=Si-Pb; L=phosphine, N-heterocyclic and acyclic carbene, cyclic tetrylene and carbon monoxide) is probed by combining valence bond (VB) theory and maximum probability domain (MPD) approaches. All studied complexes are initially evaluated on the basis of the structural parameters and the shape of frontier orbitals revealing a bent structural motif and the presence of two lone pairs at the central E atom. For the VB calculations three resonance structures are suggested, representing the "ylidone", "ylidene" and "bent allene" structures, respectively. The influence of both ligands and central atoms on the bonding situation is clearly expressed in different weights of the resonance structures for the particular complexes. In general, the bonding in the studied E 0 compounds, the tetrylones, is best described as a resonating combination of "ylidone" and "ylidene" structures with a minor contribution of the "bent allene" structure. Moreover, the VB calculations allow for a straightforward assessment of the π-backbonding (E→L) stabilization energy. The validity of the suggested resonance model is further confirmed by the complementary MPD calculations focusing on the E lone pair region as well as the E-L bonding region. Likewise, the MPD method reveals a strong influence of the σ-donating and π-accepting properties of the ligand. In particular, either one single domain or two symmetrical domains are found in the lone pair region of the central atom, supporting the predominance of either the "ylidene" or "ylidone" structures having one or two lone pairs at the central atom, respectively. Furthermore, the calculated average populations in the lone pair MPDs correlate very well with the natural bond orbital (NBO) populations, and can be related to the average number of electrons that is backdonated to the ligands. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles.

    Science.gov (United States)

    Li, Yujie; Wang, Wanyu; Zhou, Liqiang; Liu, Yuanyuan; Mirza, Zakaria A; Lin, Xiang

    2017-02-01

    Carboxymethyl cellulose (CMC) stabilized microscale iron sulfide (FeS) particles were synthesized and applied to remediate hexavalent chromium (Cr(VI)) spiked soil. The effects of parameters including dosage of FeS particles, soil moisture, and natural organic matter (NOM) in soil were investigated with comparison to iron sulfate (FeSO 4 ). The results show that the stabilized FeS particles can reduce Cr(VI) and immobilize Cr in soil quickly and efficiently. The soil moisture ranging from 40% to 70% and NOM in soil had no significant effects on Cr(VI) remediation by FeS particles. When molar ratio of FeS to Cr(VI) was 1.5:1, about 98% of Cr(VI) in soil was reduced by FeS particles in 3 d and Cr(VI) concentration decreased from 1407 mg kg -1 to 16 mg kg -1 . The total Cr and Cr(VI) in Toxicity Characteristic Leaching Procedure (TCLP) leachate were reduced by 98.4% and 99.4%, respectively. In FeS particles-treated soil, the exchangeable Cr fraction was mainly converted to Fe-Mn oxides bound fraction because of the precipitation of Cr(III)-Fe(III) hydroxides. The physiologically based extraction test (PBET) bioaccessibility of Cr was decreased from 58.67% to 6.98%. Compared to FeSO 4 , the high Cr(VI) removal and Cr immobilization efficiency makes prepared FeS particles a great potential in field application of Cr(VI) contaminated soil remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Removal of Perfluorinated Compounds From Water using Nanoscale Zero-Valent Iron

    OpenAIRE

    Arvaniti, Olga S.; Hwang, Yuhoon; Andersen, Henrik Rasmus; Nikolaos, Thomaidis S.; Athanasios, Stasinakis S.

    2014-01-01

    Perfluorinated Compounds (PFCs) are persistent micropollutants that have been detected in various environmental and biological matrices, worldwide. During the last decade, these compounds have also been detected in municipal wastewater and tap water. Due to the stability of C-F bond, the application of biological and conventional physicochemical treatment methods does not seem to remove sufficient these compounds from water and wastewater. In the current study, the removal efficiency of four ...

  20. Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective

    Directory of Open Access Journals (Sweden)

    Hedberg Yolanda

    2010-09-01

    Full Text Available Abstract Background Production of ferrochromium alloys (FeCr, master alloys for stainless steel manufacture, involves casting and crushing processes where particles inevitably become airborne and potentially inhaled. The aim of this study was to assess potential health hazards induced by inhalation of different well-characterized iron- and chromium-based particles, i.e. ferrochromium (FeCr, ferrosiliconchromium (FeSiCr, stainless steel (316L, iron (Fe, chromium (Cr, and chromium(IIIoxide (Cr2O3, in different size fractions using in vitro methods. This was done by assessing the extent and speciation of released metals in synthetic biological medium and by analyzing particle reactivity and toxicity towards cultured human lung cells (A549. Results The amount of released metals normalized to the particle surface area increased with decreasing particle size for all alloy particles, whereas the opposite situation was valid for particles of the pure metals. These effects were evident in artificial lysosomal fluid (ALF of pH 4.5 containing complexing agents, but not in neutral or weakly alkaline biological media. Chromium, iron and nickel were released to very low extent from all alloy particles, and from particles of Cr due to the presence of a Cr(III-rich protective surface oxide. Released elements were neither proportional to the bulk nor to the surface composition after the investigated 168 hours of exposure. Due to a surface oxide with less protective properties, significantly more iron was released from pure iron particles compared with the alloys. Cr was predominantly released as Cr(III from all particles investigated and was strongly complexed by organic species of ALF. Cr2O3 particles showed hemolytic activity, but none of the alloy particles did. Fine-sized particles of stainless steel caused however DNA damage, measured with the comet assay after 4 h exposure. None of the particles revealed any significant cytotoxicity in terms of cell death

  1. Characteristic lesions in mouse retina irradiated with accelerated iron particles

    International Nuclear Information System (INIS)

    Malachowski, M.J.; Philpott, D.E.; Corbett, R.L.; Tobias, C.A.

    1981-01-01

    A program is underway to determine the radiation hazards of HZE particles using the Bevalac, a heavy-ion accelerator at LBL. Our earlier work with helium, carbon, neon, and argon particles, and exposure to rats to HZE particles in space flight demonstrated some deleterious biological effects. TEM studies have shown that some visual cells were missing and dislocated; these were termed channel lesions. Recently obtained is evidence that a single iron HZE particle may affect a series of cells. Mice were irradiated with 0.1, 0.3, 1, 10, or 25 rad of 590 MeV/amu initial kinetic energy iron particles in groups of 10 animals per dose point. Irradiated and control animals were sacrificed at intervals from one week to two years postirradiation. The eye samples were dehydrated, critical points dried with freon, fractured, and Au-Pd coated for SEM, or plastic embedded, sectioned, and stained for TEM. Additionally, dry fractured samples viewed with the SEM were embedded in plastic, sectioned, and stained for the TEM. Characteristic tunnel shaped lesions were observed with the SEM. Stereo pairs showed tunnels of various lengths up to 100 μm. Light microscopy of serially cut sections from the same material had vacuoles (V) extending the same length. TEM of the same specimen and specimens prepared only for TEM exhibited large vacuoles, greater than or equal to 2 μm, in the inner segment (IS) and outer segment (OS) layers. Severe membrane disruption was found bordering the vacuoles and gross nuclear degeneration (ND) and loose tissue (LT) were seen in the outer nuclear layer (ONL). The number of lesions increased with increasing dose. Microscopy of the control retina failed to demonstrate similar lesions

  2. Enhanced antioxidation and microwave absorbing properties of SiO2-coated flaky carbonyl iron particles

    Science.gov (United States)

    Zhou, Yingying; Xie, Hui; Zhou, Wancheng; Ren, Zhaowen

    2018-01-01

    SiO2 was successfully coated on the surface of flaky carbonyl iron particles using a chemical bath deposition method in the presence of 3-aminopropyl triethoxysilane (APTES). The morphologies, composition, valence states of elements, as well as antioxidation and electromagnetic properties of the samples were characterized by scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and microwave network analyzer. TG curve shows the obvious weight gain of carbonyl iron was deferred to 360 °C after SiO2-coated, which can be ascribed to the exits of SiO2 overlayer. Compared with the raw carbonyl iron, SiO2-coated sample shows good wave absorption performance due to its impedance matching. The electromagnetic properties of raw and SiO2-coated carbonyl iron particles were characterized in X band before and after heat treatment at 250 °C for 10 h. It was established that SiO2-coated carbonyl iron demonstrate good thermal stability, indicating SiO2-coating is useful in the usage of microwave absorbers operating at temperature up to 250 °C.

  3. Magnetic properties of iron loaded MCM-48 molecular sieves

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Veronica R. [Centro de Investigacion y Tecnologia Quimica, Universidad Tecnologica Nacional, Facultad Regional Cordoba. Cordoba (Argentina); CONICET (Argentina); Oliva, Marcos I. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Cordoba (Argentina); IFEG-CONICET (Argentina); Vaschetto, Eliana G. [Centro de Investigacion y Tecnologia Quimica, Universidad Tecnologica Nacional, Facultad Regional Cordoba. Cordoba (Argentina); Urreta, Silvia E., E-mail: urreta@famaf.unc.edu.a [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Cordoba (Argentina); Eimer, Griselda A. [Centro de Investigacion y Tecnologia Quimica, Universidad Tecnologica Nacional, Facultad Regional Cordoba. Cordoba (Argentina); CONICET (Argentina); Silvetti, Silvia P. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Cordoba (Argentina)

    2010-11-15

    Mesoporous molecular sieves of MCM-48 type were loaded with iron by the wet impregnation method, using Fe(III) nitrate or Fe(II) sulfate aqueous solutions as Fe sources, to obtain a magnetic porous composite. The iron loaded materials were characterized by XRD, N{sub 2} adsorption and DRUV-vis and compared with the Si-MCM-48 host. Their magnetic properties were studied by measuring the hysteresis loops up to 1.5 T at different temperatures (5-300 K) and by magnetization vs. temperature curves following the conventional zero field cooling (ZFC) and field cooling (FC) protocols. Materials with high structure regularity and surface area are obtained, which exhibit a mixed paramagnetic and superparamagnetic behavior, arising in isolated iron ions inserted in the host framework, and in small iron oxide clusters or nanoparticles forming inside the pores, respectively. Larger hematite particles (8-13 nm) grown on the external surface provide a quite small ferromagnetic contribution to the hysteresis loop.

  4. Magnetic properties of iron loaded MCM-48 molecular sieves

    International Nuclear Information System (INIS)

    Elias, Veronica R.; Oliva, Marcos I.; Vaschetto, Eliana G.; Urreta, Silvia E.; Eimer, Griselda A.; Silvetti, Silvia P.

    2010-01-01

    Mesoporous molecular sieves of MCM-48 type were loaded with iron by the wet impregnation method, using Fe(III) nitrate or Fe(II) sulfate aqueous solutions as Fe sources, to obtain a magnetic porous composite. The iron loaded materials were characterized by XRD, N 2 adsorption and DRUV-vis and compared with the Si-MCM-48 host. Their magnetic properties were studied by measuring the hysteresis loops up to 1.5 T at different temperatures (5-300 K) and by magnetization vs. temperature curves following the conventional zero field cooling (ZFC) and field cooling (FC) protocols. Materials with high structure regularity and surface area are obtained, which exhibit a mixed paramagnetic and superparamagnetic behavior, arising in isolated iron ions inserted in the host framework, and in small iron oxide clusters or nanoparticles forming inside the pores, respectively. Larger hematite particles (8-13 nm) grown on the external surface provide a quite small ferromagnetic contribution to the hysteresis loop.

  5. Microbial nitrate removal in biologically enhanced treated coal gasification wastewater of low COD to nitrate ratio by coupling biological denitrification with iron and carbon micro-electrolysis.

    Science.gov (United States)

    Zhang, Zhengwen; Han, Yuxing; Xu, Chunyan; Ma, Wencheng; Han, Hongjun; Zheng, Mengqi; Zhu, Hao; Ma, Weiwei

    2018-04-21

    Mixotrophic denitrification coupled biological denitrification with iron and carbon micro-electrolysis (IC-ME) is a promising emerging bioprocess for nitrate removal of biologically enhanced treated coal gasification wastewater (BECGW) with low COD to nitrate ratio. TN removal efficiency in R1 with IC-ME assisted was 16.64% higher than R2 with scrap zero valent iron addition, 23.05% higher than R3 with active carbon assisted, 30.51% higher than R4 with only active sludge addition, 80.85% higher than R5 utilizing single IC-ME as control. Fe 2+ generated from IC-ME decreased the production of N 2 O and enriched more Nitrate-reducing Fe(Ⅱ) oxidation bacteria (NRFOB) Acidovorax and Thiobacillus, which could convert nitrate to nitrogen gas. And the presence of Fe 3+ , as the Fe 2+ oxidation product, could stimulate the growth of Fe(III)-reducing strain (FRB) that indicated by redundancy analysis. Microbial network analysis demonstrated FRB Geothrix had a co-occurrence relationship with other bacteria, revealing its dominant involvement in nitrate removal of BECGW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Synchrotron speciation data for zero-valent iron nanoparticles: Linear combination fitting table(#6) and figure(#9), and extended x-ray absorption fine structure figure(#10) and table(#7)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set encompasses a complete analysis of synchrotron speciation data for 5 iron nanoparticle samples (P1, P2, P3, S1, S2, and metallic iron) to include...

  7. Gum karaya (Sterculia urens) stabilized zero-valent iron nanoparticles: characterization and applications for the removal of chromium and volatile organic pollutants from water

    Czech Academy of Sciences Publication Activity Database

    Vinod, V.T.P.; Waclawek, S.; Senan, Ch.; Kupčík, Jaroslav; Pešková, K.; Černík, M.; Somashekarappa, H. M.

    2017-01-01

    Roč. 7, č. 23 (2017), s. 13997-14009 ISSN 2046-2069 R&D Projects: GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : nanoscale zerovalent iron * ray photoelectron-spectroscopy * groundwater remediation * hexavalent chromium * xanthan gum * guar gum * waste-water Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 3.108, year: 2016

  8. Genetic and biochemical investigations of the role of MamP in redox control of iron biomineralization in Magnetospirillum magneticum.

    Science.gov (United States)

    Jones, Stephanie R; Wilson, Tiffany D; Brown, Margaret E; Rahn-Lee, Lilah; Yu, Yi; Fredriksen, Laura L; Ozyamak, Ertan; Komeili, Arash; Chang, Michelle C Y

    2015-03-31

    Magnetotactic bacteria have evolved complex subcellular machinery to construct linear chains of magnetite nanocrystals that allow the host cell to sense direction. Each mixed-valent iron nanoparticle is mineralized from soluble iron within a membrane-encapsulated vesicle termed the magnetosome, which serves as a specialized compartment that regulates the iron, redox, and pH environment of the growing mineral. To dissect the biological components that control this process, we have carried out a genetic and biochemical study of proteins proposed to function in iron mineralization. In this study, we show that the redox sites of c-type cytochromes of the Magnetospirillum magneticum AMB-1 magnetosome island, MamP and MamT, are essential to their physiological function and that ablation of one or both heme motifs leads to loss of function, suggesting that their ability to carry out redox chemistry in vivo is important. We also develop a method to heterologously express fully heme-loaded MamP from AMB-1 for in vitro biochemical studies, which show that its Fe(III)-Fe(II) redox couple is set at an unusual potential (-89 ± 11 mV) compared with other related cytochromes involved in iron reduction or oxidation. Despite its low reduction potential, it remains competent to oxidize Fe(II) to Fe(III) and mineralize iron to produce mixed-valent iron oxides. Finally, in vitro mineralization experiments suggest that Mms mineral-templating peptides from AMB-1 can modulate the iron redox chemistry of MamP.

  9. Obtaining of iron particles of nanometer size in a natural zeolite

    International Nuclear Information System (INIS)

    Xingu C, E. G.

    2013-01-01

    The zeolites are aluminosilicates with cavities that can act as molecular sieve. Their crystalline structure is formed by tetrahedrons that get together giving place to a three-dimensional net, in which each oxygen is shared by two silicon atoms, being this way part of the tecto silicate minerals, its external and internal areas reach the hundred square meters for gram, they are located in a natural way in a large part of earth crust and also exist in a synthetic way. In Mexico there are different locations of zeolitic material whose important component is the clinoptilolite. In this work the results of three zeolitic materials coming from San Luis Potosi are shown, the samples were milled and sieved for its initial characterization, to know its chemical composition, crystalline phases, morphology, topology and thermal behavior before and after its homo-ionization with sodium chloride, its use as support of iron particles of nanometer size. The description of the synthesis of iron particles of nanometer size is also presented, as well as the comparison with the particles of nanometer size synthesized without support after its characterization. The characterization techniques used during the experimental work were: Scanning electron microscopy, X-ray diffraction, Infrared spectroscopy, specific area by means of BET and thermogravimetry analysis. (Author)

  10. Impact of protein pre-treatment conditions on the iron encapsulation efficiency of whey protein cold-set gel particles

    NARCIS (Netherlands)

    Martin, A.H.; Jong, G.A.H. de

    2012-01-01

    This paper investigates the possibility for iron fortification of food using protein gel particles in which iron is entrapped using cold-set gelation. The aim is to optimize the iron encapsulation efficiency of whey protein by giving the whey protein different heat treatment prior to gelation with

  11. Iron fertilization enhanced net community production but not downward particle flux during the Southern Ocean iron fertilization experiment LOHAFEX

    Digital Repository Service at National Institute of Oceanography (India)

    Martin, P.; Loeff, M.M.R. van der.; Cassar, N.; Vandromme, P.; d'Ovidio, F.; Stemmann, L.; Rengarajan, R.; Soares, M.A.; Gonzalez, H.E.; Ebersbach, F.; Lampitt, R.S.; Sanders, R.; Barnett, B.A.; Smetacek, V.; Naqvi, S.W.A.

    A closed eddy core in the Subantarctic Atlantic Ocean was fertilized twice with two tons of iron (as FeSO4), and the 300 km2 fertilized patch was studied for 39 days to test whether fertilization enhances downward particle flux...

  12. Transport of surface-modified iron nanoparticle in porous media and application to arsenic(III) remediation

    International Nuclear Information System (INIS)

    Kanel, Sushil Raj; Nepal, Dhriti; Manning, Bruce; Choi, Heechul

    2007-01-01

    The surface-modified iron nanoparticles (S-INP) were synthesized, characterized and tested for the remediation of arsenite (As(III)), a well known toxic groundwater contaminant of concern. The S-INP material was fully dispersed in the aqueous phase with a particle size distribution of 2-10 nm estimated from high-resolution transmission electron microscopy (HR-TEM). X-ray photoelectron spectroscopy (XPS) revealed that an Fe(III) oxide surface film was present on S-INP in addition to the bulk zero-valent Fe 0 oxidation state. Transport of S-INP through porous media packed in 10 cm length column showed particle breakthroughs of 22.1, 47.4 and 60 pore volumes in glass beads, unbaked sand, and baked sand, respectively. Un-modified INP was immobile and aggregated on porous media surfaces in the column inlet area. Results using S-INP pretreated 10 cm sand-packed columns containing ∼2 g of S-INP showed that 100 % of As(III) was removed from influent solutions (flow rate 1.8 mL min -1 ) containing 0.2, 0.5 and 1.0 mg L -1 As(III) for 9, 7 and 4 days providing 23.3, 20.7 and 10.4 L of arsenic free water, respectively. In addition, it was found that 100% of As(III) in 0.5 mg/L solution (flow rate 1.8 mL min -1 ) was removed by S-INP pretreated 50 cm sand packed column containing 12 g of S-INP for more than 2.5 months providing 194.4 L of arsenic free water. Field emission scanning electron microscopy (FE-SEM) showed S-INP had transformed to elongated, rod-like shaped corrosion product particles after reaction with As(III) in the presence of sand. These results suggest that S-INP has great potential to be used as a mobile, injectable reactive material for in-situ sandy groundwater aquifer treatment of As(III)

  13. Bound states and scattering lengths of three two-component particles with zero-range interactions under one-dimensional confinement

    International Nuclear Information System (INIS)

    Kartavtsev, O.I.; Malykh, A.V.; Sofianos, S.A.

    2008-01-01

    The universal three-body dynamics in ultracold binary gases confined to one-dimensional motion is studied. The three-body binding energies and the (2+1)-scattering lengths are calculated for two identical particles of mass m and a different one of mass m 1 , between which interactions are described in the low-energy limit by zero-range potentials. The critical values of the mass ratio m/m 1 , at which the three-body states arise and the (2+1)-scattering length equals zero, are determined both for zero and infinite interaction strength λ 1 of the identical particles. A number of exact results are enlisted and asymptotic dependences both for m/m 1 → infinity and λ 1 → -infinity are derived. Combining the numerical and analytical results, a schematic diagram showing the number of the three-body bound states and the sign of the (2+1)-scattering length in the plane of the mass ratio and interaction-strength ratio is deduced. The results provide a description of the homogeneous and mixed phases of atoms and molecules in dilute binary quantum gases

  14. Development of an integrated, in-situ remediation technology. Topical report for task No. 9. Part I. TCE degradation using nonbiological methods, September 26, 1994--May 25, 1996

    International Nuclear Information System (INIS)

    Shapiro, A.P.; Sivavec, T.M.; Baghel, S.S.

    1997-01-01

    Contamination in low-permeability soils poses a significant technical challenge for in situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low-permeability soils present at many contaminated sites. The technology is an integrated in situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is used to move the contaminants back and forth through those zones until the treatment is completed. The present Draft Topical Report for Task No. 9 summarizes laboratory investigations into TCE degradation using nonbiological methods. These studies were conducted by the General Electric Company. The report concentrates on zero valent iron as the reducing agent and presents data on TCE and daughter product degradation rates in batch experiments, column studies, and electroosmotic cells. It is shown that zero valent iron effectively degrades TCE in electroosmotic experiments. Daughter product degradation and gas generation are shown to be important factors in designing field scale treatment zones for the Lasagna trademark process

  15. EFFECT OF REACTIVE MATERIALS ON THE CONTENT OF SELECTED ELEMENTS IN INDIAN MUSTARD GROWN IN CR(VI-CONTAMINATED SOILS

    Directory of Open Access Journals (Sweden)

    Maja Radziemska

    2016-04-01

    Full Text Available Reactive materials represent a promising agent for environmental co-remediation. The research was aimed to determine the influence of hexavalent chromium in doses of 0, 25, 50, and 150 mg Cr(VI.kg-1 of soil as well as zero valent-iron, and lignite additives on the content of macroelements in the Indian mustard (Brassica juncea L.. The average accumulation of the analysed elements in Indian mustard grown in Cr(VI contaminated soil were found to follow the decreasing order Mg>Na>P>Ca>K. Soil contamination at 150 mg Cr(VI.kg-1 of soil led to the highest increase in magnesium, calcium, sodium, and potassium content in Indian mustard. The application of zero-valent iron had a positive influence on the average Na and K content of the tested plant. The application of lignite had a positive influence on the average magnesium, sodium and calcium content in the above-ground parts of the studied plant. In the non-amended treatments (without reactive materials, the increasing rates of chromium (VI had an explicitly positive effect on the content of phosphorous and sodium in Indian mustard.

  16. Particle Surface Hydrophobicity and the Dechlorination of Chloro-Compounds by Iron Sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang-Won, E-mail: spark3@uncc.edu; Kim, Sung-Kuk; Kim, Jeong-Bae; Choi, Sung-Woo [Keimyung University, Department of Environmental Science and Engineering (Korea, Republic of); Inyang, Hilary I. [University of North Carolina at Charlotte, Global Institute for Energy and Environmental Systems (United States); Tokunaga, Shuzo [National Institute of Advanced Industrial Science and Technology (Japan)

    2006-02-15

    Halogenated aliphatic compounds (HACs) can be reduced by iron sulfides in aqueous systems. Generally, the thermodynamics and kinetics of dehalogenation reactions are controlled by the mineralogical and particle surface characteristics of the iron sulfide, the composition of the HAC and reaction conditions such as component concentrations, pH and Eh. In this theoretical and experimental investigation of CCl{sub 4} and C{sub 2}Cl{sub 6} reduction by FeS and FeS{sub 2}, the roles of hydrophobic and hydrophilic sites on the iron sulfides were analyzed. Experimental data obtained through zeta potential measurements, were used along with the Gouy-Chapman model and the simple two-layer surface complexation model to relate iron sulfide surface hydroxyl densities to the degree of HAC dehalogenation. The surface hydroxyl site densities of FeS and FeS{sub 2} were found to be 0.11 sites/nm{sup 2} and 0.21 sites/nm{sup 2}, respectively. During the dehalogenation reaction process, CCl{sub 4} was found to decrease to its first intermediate product CHCl{sub 3} within the first 20 hours followed by a slower process of conversion to CH{sub 2}Cl{sub 2}. The results also show that FeS is less hydrated (more hydrophobic) than FeS{sub 2}. For CCl{sub 4} and C{sub 2}Cl{sub 6}, FeS is a better dehalogenator than FeS{sub 2}. These results imply that particle surface hydrophobicity is a critical factor in surface-mediated dehalogenation of chlorinated compounds.

  17. Influence of particle size and mineral phase in the analysis of iron ore slurries by Laser-Induced Breakdown Spectroscopy

    International Nuclear Information System (INIS)

    Michaud, Daniel; Leclerc, Remi; Proulx, Eric

    2007-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) was applied to the analysis of iron ore concentrates. The objective was to determine the influence of particle size and mineral phase on the LIBS signal. The LIBS spectra of hematite and magnetite ore concentrates were qualitatively indistinguishable from each other but magnetite yielded systematically less than hematite. This behavior could be set into an empirical equation to correct the iron peak intensities according to the level of magnetite in the analyzed sample. Similarly, an increase of the LIBS signal was observed as the particle size of the ore samples decreased. Again, an equation could be written down to correct the intensity of either iron or silicon in response to a variation of the average particle size of the ore concentrate. Using these corrections, proper response of the silicon signal against the concentration of silica in the samples was restored. The observed dependence of the strength of the iron signal upon the mineral phase is attributed to oxidation of magnetite into hematite

  18. Invasive pneumococcal infection despite 7-valent conjugated vaccine

    Directory of Open Access Journals (Sweden)

    Sebastien Joye

    2013-03-01

    Full Text Available Despite good cover with 7-valent vaccination, invasive pneumococcal infections may still be misdiagnosed and may lead to lifethreatening situations or death in young children. New serotypes are emerging and, therefore, clinicians must keep a high level of suspicion in young children regardless of their vaccination status. We report three cases of invasive pneumococcal infection due to new serotypes not covered by the 7-valent conjugated vaccine, two of which led children to death.

  19. Influence of Ligand Architecture in Tuning Reaction Bifurcation Pathways for Chlorite Oxidation by Non-Heme Iron Complexes

    NARCIS (Netherlands)

    Barman, Prasenjit; Faponle, Abayomi S; Vardhaman, Anil Kumar; Angelone, Davide; Löhr, Anna-Maria; Browne, Wesley R; Comba, Peter; Sastri, Chivukula V; de Visser, Sam P

    2016-01-01

    Reaction bifurcation processes are often encountered in the oxidation of substrates by enzymes and generally lead to a mixture of products. One particular bifurcation process that is common in biology relates to electron transfer versus oxygen atom transfer by high-valent iron(IV)-oxo complexes,

  20. Particle size dependence of zero-field microwave absorption in powdered Bi-Sr-Ca-Cu-O superconductors

    CERN Document Server

    Topacli, C

    1997-01-01

    The non-resonant magnetically modulated microwave response measurements of powdered Bi-Sr-Ca-Cu-O samples using the conventional EPR spectrometer are presented. After cooling in a near zero magnetic field, all samples exhibited a sharp (about 12-37 mu T) microwave absorption with applied magnetic field, superimposed on the widely observed and well explained broader minimum. The width of the absorption maximum is found to be dependent on the particle size. It becomes broader with decreasing particle size. The effects of particle size and field history on the peak are given in detail and some possible mechanisms to account for the observations are presented. (author)

  1. Effects of Metal Micro and Nano-Particles on hASCs: An In Vitro Model.

    Science.gov (United States)

    Palombella, Silvia; Pirrone, Cristina; Rossi, Federica; Armenia, Ilaria; Cherubino, Mario; Valdatta, Luigi; Raspanti, Mario; Bernardini, Giovanni; Gornati, Rosalba

    2017-08-03

    As the knowledge about the interferences of nanomaterials on human staminal cells are scarce and contradictory, we undertook a comparative multidisciplinary study based on the size effect of zero-valent iron, cobalt, and nickel microparticles (MPs) and nanoparticles (NPs) using human adipose stem cells (hASCs) as a model, and evaluating cytotoxicity, morphology, cellular uptake, and gene expression. Our results suggested that the medium did not influence the cell sensitivity but, surprisingly, the iron microparticles (FeMPs) resulted in being toxic. These data were supported by modifications in mRNA expression of some genes implicated in the inflammatory response. Microscopic analysis confirmed that NPs, mainly internalized by endocytosis, persist in the vesicles without any apparent cell damage. Conversely, MPs are not internalized, and the effects on hASCs have to be ascribed to the release of ions in the culture medium, or to the reduced oxygen and nutrient exchange efficiency due to the presence of MP agglomerating around the cells. Notwithstanding the results depicting a heterogeneous scene that does not allow drawing a general conclusion, this work reiterates the importance of comparative investigations on MPs, NPs, and corresponding ions, and the need to continue the thorough verification of NP and MP innocuousness to ensure unaffected stem cell physiology and differentiation.

  2. Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenjuan; Mu, Yi; Wang, Bingning; Ai, Zhihui, E-mail: jennifer.ai@mail.ccnu.edu.cn; Zhang, Lizhi

    2017-01-30

    Highlights: • Bimetallic iron-nickel nanoparticles possessed an enhanced performance on aerobic degradation of 4-CP. • Hydroxyl radicals were the major active species contributed to aerobic 4-CP degradation with nZVI. • Superoxide radicals predominated the 4-CP degradation in the nZVIN/Air process. • The 4-CP degradation pathways were dependent on the generated superoxide radicals in the nZVIN/Air process. - Abstract: In this study, we demonstrate that the bimetallic iron-nickel nanoparticles (nZVIN) possessed an enhanced performance in comparison with nanoscale zero-valent iron (nZVI) on aerobic degradation of 4-chlorophenol (4-CP). The 4-CP degradation rate constant in the aerobic nZVIN process (nZVIN/Air) was 5 times that in the classic nZVI counterpart system (nZVI/Air). Both reactive oxygen species measurement and inhibition experimental results suggested that hydroxyl radicals were the major active species contributed to aerobic 4-CP degradation with nZVI, on contrast, superoxide radicals predominated the 4-CP degradation in the nZVIN/Air process. High performance liquid chromatography and gas chromatography-mass spectrometer analysis indicated the intermediates of the nZVI/Air system were p-benzoquinone and hydroquinone, which were resulted from the bond cleavage between the chlorine and carbon atom in the benzene ring by hydroxyl radicals. However, the primary intermediates of 4-CP found in the nZVIN/Air system were phenol via the direct dechlorination by superoxide radicals, accompanying with the formation of chloride ions. On the base of experimental results, a superoxide radicals mediated enhancing mechanism was proposed for the aerobic degradation of 4-CP in the nZVIN/Air system. This study provides new insight into the role of bimetallic nickel on enhancing removal of organic pollutants with nZVI.

  3. Evaluation of parameters for particles acceleration by the zero-point field of quantum electrodynamics

    Science.gov (United States)

    Rueda, A.

    1985-01-01

    That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The classical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnrtic ZPE.

  4. Evaluation of parameters for particles acceleration by the zero-point field of quantum electrodynamics

    International Nuclear Information System (INIS)

    Rueda, A.

    1985-01-01

    That particles may be accelerated by vacuum effects in quantum field theory has been repeatedly proposed in the last few years. A natural upshot of this is a mechanism for cosmic rays (CR) primaries acceleration. A mechanism for acceleration by the zero-point field (ZPE) when the ZPE is taken in a realistic sense (in opposition to a virtual field) was considered. Originally the idea was developed within a semiclassical context. The calssical Einstein-Hopf model (EHM) was used to show that free isolated electromagnrtically interacting particles performed a random walk in phase space and more importantly in momentum space when submitted to the perennial action of the so called classical electromagnetic ZPE

  5. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater — Using humic acid and iron nano-sized colloids as test particles

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret

    2015-01-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution...

  6. Particle-two particle interaction in configuration space

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.

    1982-07-01

    The problem if three indentical particles with zero-range two-particle interaction is considered. An explicit expression for the effective potential between one particle and the remaining two-particle system is obtained in the coordinate representation. It is shown that for arbitrary energies, at small and, for zero energy, at large distances rho between the one particle and centre of mass of the other two particles the diagonal matrix element of the effective potential is attractive and proportional to 1/rho 2 . This property of the effective potenial explains both the Thomas singularity and the Efimov effect. In the case of zero total energy of the system the general form of the solution of the three-particle integral equation is found in configuration space. (orig.)

  7. Iron Mineral Catalyzed C-H Activation As a Potential Pathway for Halogenation Processes

    Science.gov (United States)

    Tubbesing, C.; Schoeler, H. F.; Benzing, K.; Krause, T.; Lippe, S.; Rudloff, M.

    2014-12-01

    Due to increasing drinking water demand of mankind and an expected climate change the impact of salt lakes and salt deserts will increase within the next decades. Furthermore, a rising sea level influences coastal areas like salt marshes and abets processes which will lead to elevated organohalogen formation. An additional increase of the global warming potential, of particle formation and stratospheric ozone depletion is expected. Understanding these multifaceted processes is essential for mankind to be prepared for these alterations of the atmosphere. For example, Keppler et al. (2000) described the production of volatile halogenated organic compounds via oxidation of organic matter driven by ferric iron. However, the formation of long-chained alkyl halides in salt lakes is yet undisclosed. Despite the relative "inertness" of alkanes a direct halogenation of these compounds might be envisaged. In 2005 Vaillancourt et al. discovered a nonheme iron enzyme which is able to halogenate organic compounds via generating the high valent ferryl cation as reaction center. Based on various publications about C-H activation (Bergman, 2007) we postulate a halogenation process in which an iron containing minerals catalyse the C-H bond cleavage of organic compounds in soils. The generated organic radicals are highly reactive towards halides connected to the iron complex. We suggest that next to diagenetically altered iron containing enzymes, minerals such as oxides, hydroxides and sulfides are involved in abiotic halogenation processes. We applied the amino acid methionine as organic model compound and soluble iron species as reactants. All samples were incubated in aqueous phases containing various NaCl concentrations. As a result various halogenated ethanes and ethenes were identified as reaction products. References Bergman, R. G. (2007) Nature, 446(7134) 391-393 Keppler, F., et al. (2000) Nature, 403(6767) 298-301 Vaillancourt, F. H., et al. (2005) Nature, 436(7054) 1191-1194

  8. Effect of groundwater geochemistry on pentachlorophenol remediation by smectite-templated nanosized Pd0/Fe0.

    Science.gov (United States)

    Jia, Hanzhong; Gu, Cheng; Li, Hui; Fan, Xiaoyun; Li, Shouzhu; Wang, Chuanyi

    2012-09-01

    Zero-valent iron holds great promise in treating groundwater, and its reactivity and efficacy depend on many surrounding factors. In the present work, the effects of solution chemistry such as pH, humic acid (HA), and inorganic ions on pentachlorophenol (PCP) dechlorination by smectite-templated Pd(0)/Fe(0) were systematically studied. Smectite-templated Pd(0)/Fe(0) was prepared by saturating the negatively charged sites of smectite clay with Fe(III) and a small amount of Pd(II), followed by borohydride reduction to convert Fe(III) and Pd(II) into zero-valent metal clusters. Batch experiments were conducted to investigate the effects of water chemistry on PCP remediation. The PCP dechlorination rate critically depends on the reaction pH over the range 6.0~10.0; the rate constant (k (obs)) increases with decreasing the reaction pH value. Also, the PCP remediation is inhibited by HA, which can be attributed to the electron competition of HA with H(+). In addition, the reduction of PCP can be accelerated by various anions, following the order: Cl(-) > HCO (3) (-) > SO (4) (2-) ~no anion. In the case of cations, Ca(2+) and Mg(2+) (10 mM) decrease the dechlorination rate to 0.7959 and 0.7798 from 1.315 h(-1), respectively. After introducing HA into the reaction systems with cations or/and anions, the dechlorination rates are similar to that containing HA alone. This study reveals that low pH and the presence of some anions such as Cl(-) facilitate the PCP dechlorination and induce the rapid consumption of nanosized zero-valent iron simultaneously. However, the dechlorination rate is no longer correlated to the inhibitory or accelerating effects by cations and anions in the presence of 10 mg/L HA.

  9. Preparation and characterization of hydroxyapatite-coated iron oxide particles by spray-drying technique

    Directory of Open Access Journals (Sweden)

    karina Donadel

    2009-06-01

    Full Text Available Magnetic particles of iron oxide have been increasingly used in medical diagnosis by magnetic resonance imaging and in cancer therapies involving targeted drug delivery and magnetic hyperthermia. In this study we report the preparation and characterization of iron oxide particles coated with bioceramic hydroxyapatite by spray-drying. The iron oxide magnetic particles (IOMP were coated with hydroxyapatite (HAp by spray-drying using two IOMP/HAp ratios (0.7 and 3.2. The magnetic particles were characterized by way of scanning electronic microscopy, energy dispersive X-ray, X-ray diffraction, Fourier transformed infrared spectroscopy, flame atomic absorption spectrometry,vibrating sample magnetometry and particle size distribution (laser diffraction. The surface morphology of the coated samples is different from that of the iron oxide due to formation of hydroxyapatite coating. From an EDX analysis, it was verified that the surface of the coated magnetic particles is composed only of HAp, while the interior containsiron oxide and a few layers of HAp as expected. The results showed that spray-drying technique is an efficient and relatively inexpensive method for forming spherical particles with a core/shell structure.As partículas de óxido de ferro têm sido extensivamente usadas em diagnósticos médicos como agente de contraste para imagem por ressonância magnética e na terapia do câncer, dentre estas, liberação de fármacos em sitos alvos e hipertermia magnética. Neste estudo nós reportamos a preparação e caracterização de partículas magnéticas de óxido de ferro revestidas com a biocerâmica hidroxiapatita. As partículas magnéticasde óxido de ferro (PMOF foram revestidas com hidroxiapatita por spray-drying usando duas razões PMOF/HAp (0,7 e 3,2. As partículas magnéticas foram caracterizadas por microscopia eletrônica de varredura, energia dispersiva de raios X, difração de raios X, espectroscopia de absorção no infra

  10. Dielectric Sensing of Toxic and Explosive Chemicals via Impedance Spectroscopy and Plasmonic Resonance

    Science.gov (United States)

    2017-05-07

    who thoroughly characterized the rapid decontamination of chemical warfare agents VX, soman (GD) and distilled mustard gas (HD)18. The work shows...Joshua J. Phillips, Jennifer R. Soliz, and Adam J. Hauser, “XMCD and Impedance Analysis of Fe2O3 Nanoparticles for Explosive and Chemical Warfare ...Virender K Sharma,"Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate (VI)/(III) composite" Journal of hazardous

  11. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating

    International Nuclear Information System (INIS)

    Qing Yuchang; Zhou Wancheng; Luo Fa; Zhu Dongmei

    2010-01-01

    The electromagnetic characteristics of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coatings were studied. The reflection loss of the coatings exceeds -10 dB at 8-18 GHz and -9 dB at 2-18 GHz when the coating thickness is 1 and 3 mm, respectively. The dielectric and magnetic absorbers filled coatings possess excellent microwave absorption, which could be attributed to the proper incorporate of the multi-polarization mechanisms as well as strong natural resonance. It is feasible to develop the thin and wideband microwave absorbing coatings using carbonyl iron particles and Si/C/N nano-powder.

  12. Microwave electromagnetic properties of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coating

    Science.gov (United States)

    Qing, Yuchang; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2010-02-01

    The electromagnetic characteristics of carbonyl iron particles and Si/C/N nano-powder filled epoxy-silicone coatings were studied. The reflection loss of the coatings exceeds -10 dB at 8-18 GHz and -9 dB at 2-18 GHz when the coating thickness is 1 and 3 mm, respectively. The dielectric and magnetic absorbers filled coatings possess excellent microwave absorption, which could be attributed to the proper incorporate of the multi-polarization mechanisms as well as strong natural resonance. It is feasible to develop the thin and wideband microwave absorbing coatings using carbonyl iron particles and Si/C/N nano-powder.

  13. Photo Degradation of Methyl Orange by Persulfate Activated with Zero Valent Iron

    Science.gov (United States)

    Munkoeva, V. A.; Sizykh, M. R.; Batoeva, A. A.

    2017-11-01

    The oxidative degradation of Methyl Orange (MO) subjected to direct photolysis (Solar) and various oxidative systems was studied. The comparative experiments have shown that MO conversion and mineralization increases in the following order: Solar ∼ Solar/Fe0 ∼ Solar/S2O82- influence of the main factors (duration of exposure, the ratio of initial concentrations of MO:S2O82-:Fe0, pH and temperature of the reaction medium) on the degree of MO conversion and mineralization was studied. The optimal pH and temperature of the reaction medium were 5.8 and 25°C, respectively. The rate of MO decomposition and mineralization increased proportionally to the initial concentration of the oxidant at the molar ratios [S2O82-] :[MO] ≤ 12. Judging by the nature of the kinetic curves, a further increase of this ratio is impractical. However, an increase in the oxidant concentration had a positive effect on the degrees of conversion and mineralization of total organic carbon (TOC). Thus, at the ratios of 12:1 and 48:1, the conversion efficiency of TOC was 23 and 60 %, respectively. The optimal concentration of Fe0 was 100 mg/l.

  14. Bactericidal effect of starch-stabilized zero-valent iron nanoparticles on Escherichia coli

    Directory of Open Access Journals (Sweden)

    Mohammad Mosaferi

    2016-01-01

    Conclusion: The present study showed that nonstabilized Fe 0 nanoparticles have higher bactericidal efficiency than that of S-NZVI. This investigation also suggests that NZVI can be used as an effective and strong agent for antimicrobial applications.

  15. Optimization of Nanoscale Zero-Valent Iron for the Remediation of Groundwater Contaminants

    Science.gov (United States)

    2012-03-22

    2010), pp. 2360-2370. [7] P.G. Tratnyek and R.L. Johnson, Nanotechnologies for environmental cleanup, Nano Today 1 (2006), pp. 44-48. [8] A.D...Venkatakrishnan, F. Gheorghiu, L. Walata, R. Nash, and W.X. Zhang, Nanotechnology takes roots, Civil Eng. 73 (2003), pp. 64-69. [16] A. Gavaskar, L. Tatar...nanoparticles with sodium carboxymethyl cellulose for catalytic reduction of para- nitrochlorobenzene in water, Desalination 271 (2011), pp. 11-19. [61] W.X

  16. Enhancement of stability and reactivity of nanosized zero-valent iron with polyhydroxybutyrate

    Czech Academy of Sciences Publication Activity Database

    Waclawek, S.; Chronopoulou, L.; Petrangeli Papini, M.; Vinod, V.T.P.; Palocci, C.; Kupčík, Jaroslav; Černík, M.

    2017-01-01

    Roč. 69, MAR (2017), s. 302-307 ISSN 1944-3994. [EDS Conference on Desalination for the Environment - Clean Water and Energy. Roma, 22.05.2016-26.05.2016] Institutional support: RVO:61388980 Keywords : Cr(VI) * nZVI * PHB * Remediation * Stabilization * VOC Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.631, year: 2016

  17. The impact of particle size, relative humidity, and sulfur dioxide on iron solubility in simulated atmospheric marine aerosols.

    Science.gov (United States)

    Cartledge, Benton T; Marcotte, Aurelie R; Herckes, Pierre; Anbar, Ariel D; Majestic, Brian J

    2015-06-16

    Iron is a limiting nutrient in about half of the world's oceans, and its most significant source is atmospheric deposition. To understand the pathways of iron solubilization during atmospheric transport, we exposed size segregated simulated marine aerosols to 5 ppm sulfur dioxide at arid (23 ± 1% relative humidity, RH) and marine (98 ± 1% RH) conditions. Relative iron solubility increased as the particle size decreased for goethite and hematite, while for magnetite, the relative solubility was similar for all of the fine size fractions (2.5-0.25 μm) investigated but higher than the coarse size fraction (10-2.5 μm). Goethite and hematite showed increased solubility at arid RH, but no difference (p > 0.05) was observed between the two humidity levels for magnetite. There was no correlation between iron solubility and exposure to SO2 in any mineral for any size fraction. X-ray absorption near edge structure (XANES) measurements showed no change in iron speciation [Fe(II) and Fe(III)] in any minerals following SO2 exposure. SEM-EDS measurements of SO2-exposed goethite revealed small amounts of sulfur uptake on the samples; however, the incorporated sulfur did not affect iron solubility. Our results show that although sulfur is incorporated into particles via gas-phase processes, changes in iron solubility also depend on other species in the aerosol.

  18. Chemical stabilization of metals in mine wastes by transformed red mud and other iron compounds: laboratory tests.

    Science.gov (United States)

    Ardau, C; Lattanzi, P; Peretti, R; Zucca, A

    2014-01-01

    A series of static and kinetic laboratory-scale tests were designed in order to evaluate the efficacy of transformed red mud (TRM) from bauxite refining residues, commercial zero-valent iron, and synthetic iron (III) hydroxides as sorbents/reagents to minimize the generation of acid drainage and the release of toxic elements from multi-contaminant-laden mine wastes. In particular, in some column experiments the percolation of meteoric water through a waste pile, alternated with periods of dryness, was simulated. Wastes were placed in columns together with sorbents/reagents in three different set-ups: as blended amendment (mixing method), as a bed at the bottom of the column (filtration method), or as a combination of the two previous methods. The filtration methods, which simulate the creation of a permeable reactive barrier downstream of a waste pile, are the most effective, while the use of sorbents/reagents as amendments leads to unsatisfactory results, because of the selective removal of only some contaminants. The efficacy of the filtration method is not significantly affected by the periods of dryness, except for a temporary rise of metal contents in the leachates due to dissolution of soluble salts formed upon evaporation in the dry periods. These results offer original information on advantages/limits in the use of TRM for the treatment of multi-contaminant-laden mine wastes, and represent the starting point for experimentation at larger scale.

  19. Internalization of annexin A5-functionalized iron oxide particles by apoptotic Jurkat cells

    NARCIS (Netherlands)

    van Tilborg, Geralda A. F.; Geelen, Tessa; Duimel, Hans; Bomans, Paul H. H.; Frederik, Peter M.; Sanders, Honorius M. H. F.; Deckers, Niko M.; Deckers, Roel; Reutelingsperger, Chris P. M.; Strijkers, Gustav J.; Nicolay, Klaas

    2009-01-01

    Apoptosis plays an important role in the etiology of various diseases. Several studies have reported on the use of annexin A5-functionalized iron oxide particles for the detection of apoptosis with MRI, both in vitro and in vivo. The protein annexin A5 binds with high affinity to the phospholipid

  20. Shape-Controlled Synthesis of Magnetic Iron Oxide@SiO₂-Au@C Particles with Core-Shell Nanostructures.

    Science.gov (United States)

    Li, Mo; Li, Xiangcun; Qi, Xinhong; Luo, Fan; He, Gaohong

    2015-05-12

    The preparation of nonspherical magnetic core-shell nanostructures with uniform sizes still remains a challenge. In this study, magnetic iron oxide@SiO2-Au@C particles with different shapes, such as pseduocube, ellipsoid, and peanut, were synthesized using hematite as templates and precursors of magnetic iron oxide. The as-obtained magnetic particles demonstrated uniform sizes, shapes, and well-designed core-shell nanostructures. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) analysis showed that the Au nanoparticles (AuNPs) of ∼6 nm were uniformly distributed between the silica and carbon layers. The embedding of the metal nanocrystals into the two different layers prevented the aggregation and reduced the loss of the metal nanocrystals during recycling. Catalytic performance of the peanut-like particles kept almost unchanged without a noticeable decrease in the reduction of 4-nitrophenol (4-NP) in 8 min even after 7 cycles, indicating excellent reusability of the particles. Moreover, the catalyst could be readily recycled magnetically after each reduction by an external magnetic field.

  1. Iron oxide nanoparticle-based magnetic resonance method to monitor release kinetics from polymeric particles with high resolution.

    Science.gov (United States)

    Chan, Minnie; Schopf, Eric; Sankaranarayanan, Jagadis; Almutairi, Adah

    2012-09-18

    A new method to precisely monitor rapid release kinetics from polymeric particles using super paramagnetic iron oxide nanoparticles, specifically by measuring spin-spin relaxation time (T(2)), is reported. Previously, we have published the formulation of logic gate particles from an acid-sensitive poly-β-aminoester ketal-2 polymer. Here, a series of poly-β-aminoester ketal-2 polymers with varying hydrophobicities were synthesized and used to formulate particles. We attempted to measure fluorescence of released Nile red to determine whether the structural adjustments could finely tune the release kinetics in the range of minutes to hours; however, this standard technique did not differentiate each release rate of our series. Thus, a new method based on encapsulation of iron oxide nanoparticles was developed, which enabled us to resolve the release kinetics of our particles. Moreover, the kinetics matched the relative hydrophobicity order determined by octanol-water partition coefficients. To the best of our knowledge, this method provides the highest resolution of release kinetics to date.

  2. Assessment of solid reactive mixtures for the development of biological permeable reactive barriers

    International Nuclear Information System (INIS)

    Pagnanelli, Francesca; Viggi, Carolina Cruz; Mainelli, Sara; Toro, Luigi

    2009-01-01

    Solid reactive mixtures were tested as filling material for the development of biological permeable reactive barriers for the treatment of heavy metals contaminated waters. Mixture selection was performed by taking into account the different mechanisms operating in sulphate and cadmium removal with particular attention to bioprecipitation and sorption onto the organic matrices in the mixtures. Suspensions of eight reactive mixtures were tested for sulphate removal (initial concentration 3 g L -1 ). Each mixture was made up of four main functional components: a mix of organic sources for bacterial growth, a neutralizing agent, a porous medium and zero-valent iron. The best mixture among the tested ones (M8: 6% leaves, 9% compost, 3% zero-valent iron, 30% silica sand, 30% perlite, 22% limestone) presented optimal conditions for SRB growth (pH 7.8 ± 0.1; E h = -410 ± 5 mV) and 83% sulphate removal in 22 days (25% due to bioreduction, 32% due to sorption onto compost and 20% onto leaves). M8 mixture allowed the complete abatement of cadmium with a significant contribution of sorption over bioprecipitation (6% Cd removal due to SRB activity). Sorption properties, characterised by potentiometric titrations and related modelling, were mainly due to carboxylic sites of organic components used in reactive mixtures.

  3. Pluriformity of inflammation in multiple sclerosis shown by ultra-small iron oxide particle enhancement

    NARCIS (Netherlands)

    Vellinga, M.M.; Oude Engberink, R.D.; Seewann, A.; Pouwels, P.J.W.; Wattjes, M.P.; van der Pol, S.M.A.; Pering, C.; Polman, C.H.; de Vries, H.E.; Geurts, J.J.G.; Barkhof, F.

    2008-01-01

    Gadolinium-DTPA (Gd-DTPA) is routinely used as a marker for inflammation in MRI to visualize breakdown of the blood-brain barrier (BBB) in multiple sclerosis. Recent data suggest that ultra-small superparamagnetic particles of iron oxide (USPIO) can be used to visualize cellular infiltration,

  4. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    Science.gov (United States)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  5. Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency.

    Science.gov (United States)

    Matuszewski, Lars; Persigehl, Thorsten; Wall, Alexander; Schwindt, Wolfram; Tombach, Bernd; Fobker, Manfred; Poremba, Christopher; Ebert, Wolfgang; Heindel, Walter; Bremer, Christoph

    2005-04-01

    To evaluate the effect of lipofection, particle size, and surface coating on labeling efficiency of mammalian cells with superparamagnetic iron oxides (SPIOs). Institutional Review Board approval was not required. Different human cell lines (lung and breast cancer, fibrosarcoma, leukocytes) were tagged by using carboxydextran-coated SPIOs of various hydrodynamic diameters (17-65 nm) and a dextran-coated iron oxide (150 nm). Cells were incubated with increasing concentrations of iron (0.01-1.00 mg of iron [Fe] per milliliter), including or excluding a transfection medium (TM). Cellular iron uptake was analyzed qualitatively at light and electron microscopy and was quantified at atomic emission spectroscopy. Cell visibility was assessed with gradient- and spin-echo magnetic resonance (MR) imaging. Effects of iron concentration in the medium and of lipofection on cellular SPIO uptake were analyzed with analysis of variance and two-tailed Student t test, respectively. Iron oxide uptake increased in a dose-dependent manner with higher iron concentrations in the medium. The TM significantly increased the iron load of cells (up to 2.6-fold, P .05). As few as 10 000 cells could be detected with clinically available MR techniques by using this approach. Lipofection-based cell tagging is a simple method for efficient cell labeling with clinically approved iron oxide-based contrast agents. Large particle size and carboxydextran coating are preferable for cell tagging with endocytosis- and lipofection-based methods. (c) RSNA, 2005.

  6. Treatment technology of low concentration uranium-bearing wastewater and its research progress

    International Nuclear Information System (INIS)

    Wei Guangzhi; Xu Lechang

    2007-01-01

    With growth of the discharged uranium-bearing wastewater capacity, a low cost and effective treatment technology is required to avoid transferring and diffusion of the radioactive nuclides. On the basis of analyses of the source and characteristics of the low-concentration uranium-bearing wastewater, the conventional treatment technologies, such as, flocculating settling, ion exchange, concentration, adsorption, and some innovatory technologies, such as, membrane, microorganism, phytoremediation and zero-valent iron technology are introduced. (authors)

  7. Nitrogen-doped graphene-wrapped iron nanofragments for high-performance oxygen reduction electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jang Yeol [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Kim, Na Young [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of); Shin, Dong Yun [Chungbuk National University, Department of Environmental Engineering (Korea, Republic of); Park, Hee-Young [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of); Lee, Sang-Soo [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Joon Kwon, S. [Korea Institute of Science and Technology, Nanophotonics Research Center (Korea, Republic of); Lim, Dong-Hee [Chungbuk National University, Department of Environmental Engineering (Korea, Republic of); Bong, Ki Wan [Korea University, Department of Chemical and Biological Engineering (Korea, Republic of); Son, Jeong Gon, E-mail: jgson@kist.re.kr [Korea Institute of Science and Technology, Photo-Electronic Hybrid Research Center (Korea, Republic of); Kim, Jin Young, E-mail: jinykim@kist.re.kr [Korea Institute of Science and Technology, Fuel Cell Research Center (Korea, Republic of)

    2017-03-15

    Transition metals, such as iron (Fe)- or cobalt (Co)-based nanomaterials, are promising electrocatalysts for oxygen reduction reactions (ORR) in fuel cells due to their high theoretical activity and low cost. However, a major challenge to using these metals in place of precious metal catalysts for ORR is their low efficiency and poor stability, thus new concepts and strategies should be needed to address this issue. Here, we report a hybrid aciniform nanostructures of Fe nanofragments embedded in thin nitrogen (N)-doped graphene (Fe@N-G) layers via a heat treatment of graphene oxide-wrapped iron oxide (Fe{sub 2}O{sub 3}) microparticles with melamine. The heat treatment leads to transformation of Fe{sub 2}O{sub 3} microparticles to nanosized zero-valent Fe fragments and formation of core-shell structures of Fe nanofragments and N-doped graphene layers. Thin N-doped graphene layers massively promote electron transfer from the encapsulated metals to the graphene surface, which efficiently optimizes the electronic structure of the graphene surface and thereby triggers ORR activity at the graphene surface. With the synergistic effect arising from the N-doped graphene and Fe nanoparticles with porous aciniform nanostructures, the Fe@N-G hybrid catalyst exhibits high catalytic activity, which was evidenced by high E{sub 1/2} of 0.82 V, onset potential of 0.93 V, and limiting current density of 4.8 mA cm{sup −2} indicating 4-electron ORR, and even exceeds the catalytic stability of the commercial Pt catalyst.

  8. Computational study of scattering of a zero-order Bessel beam by large nonspherical homogeneous particles with the multilevel fast multipole algorithm

    Science.gov (United States)

    Yang, Minglin; Wu, Yueqian; Sheng, Xinqing; Ren, Kuan Fang

    2017-12-01

    Computation of scattering of shaped beams by large nonspherical particles is a challenge in both optics and electromagnetics domains since it concerns many research fields. In this paper, we report our new progress in the numerical computation of the scattering diagrams. Our algorithm permits to calculate the scattering of a particle of size as large as 110 wavelengths or 700 in size parameter. The particle can be transparent or absorbing of arbitrary shape, smooth or with a sharp surface, such as the Chebyshev particles or ice crystals. To illustrate the capacity of the algorithm, a zero order Bessel beam is taken as the incident beam, and the scattering of ellipsoidal particles and Chebyshev particles are taken as examples. Some special phenomena have been revealed and examined. The scattering problem is formulated with the combined tangential formulation and solved iteratively with the aid of the multilevel fast multipole algorithm, which is well parallelized with the message passing interface on the distributed memory computer platform using the hybrid partitioning strategy. The numerical predictions are compared with the results of the rigorous method for a spherical particle to validate the accuracy of the approach. The scattering diagrams of large ellipsoidal particles with various parameters are examined. The effect of aspect ratios, as well as half-cone angle of the incident zero-order Bessel beam and the off-axis distance on scattered intensity, is studied. Scattering by asymmetry Chebyshev particle with size parameter larger than 700 is also given to show the capability of the method for computing scattering by arbitrary shaped particles.

  9. On New p-Valent Meromorphic Function Involving Certain Differential and Integral Operators

    Directory of Open Access Journals (Sweden)

    Aabed Mohammed

    2014-01-01

    Full Text Available We define new subclasses of meromorphic p-valent functions by using certain differential operator. Combining the differential operator and certain integral operator, we introduce a general p-valent meromorphic function. Then we prove the sufficient conditions for the function in order to be in the new subclasses.

  10. Gentamicin coated iron oxide nanoparticles as novel antibacterial agents

    Science.gov (United States)

    Bhattacharya, Proma; Neogi, Sudarsan

    2017-09-01

    Applications of different types of magnetic nanoparticles for biomedical purposes started a long time back. The concept of surface functionalization of the iron oxide nanoparticles with antibiotics is a novel technique which paves the path for further application of these nanoparticles by virtue of their property of superparamagnetism. In this paper, we have synthesized novel iron oxide nanoparticles surface functionalized with Gentamicin. The average size of the particles, concluded from the HR-TEM images, came to be around 14 nm and 10 nm for unmodified and modified nanoparticles, respectively. The magnetization curve M(H) obtained for these nanoparticles are typical of superparamagnetic nature and having almost zero values of coercivity and remanance. The release properties of the drug coated nanoparticles were studied; obtaining an S shaped profile, indicating the initial burst effect followed by gradual sustained release. In vitro investigations against various gram positive and gram negative strains viz Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis indicated significant antibacterial efficiency of the drug-nanoparticle conjugate. The MIC values indicated that a small amount like 0.2 mg ml-1 of drug capped particles induce about 98% bacterial death. The novelty of the work lies in the drug capping of the nanoparticles, which retains the superparamagnetic nature of the iron oxide nanoparticles and the medical properties of the drug simultaneously, which is found to extremely blood compatible.

  11. Gravity and Zero Point Energy

    Science.gov (United States)

    Massie, U. W.

    When Planck introduced the 1/2 hv term to his 1911 black body equation he showed that there is a residual energy remaining at zero degree K after all thermal energy ceased. Other investigators, including Lamb, Casimir, and Dirac added to this information. Today zero point energy (ZPE) is accepted as an established condition. The purpose of this paper is to demonstrate that the density of the ZPE is given by the gravity constant (G) and the characteristics of its particles are revealed by the cosmic microwave background (CMB). Eddies of ZPE particles created by flow around mass bodies reduce the pressure normal to the eddy flow and are responsible for the force of gravity. Helium atoms resonate with ZPE particles at low temperature to produce superfluid helium. High velocity micro vortices of ZPE particles about a basic particle or particles are responsible for electromagnetic forces. The speed of light is the speed of the wave front in the ZPE and its value is a function of the temperature and density of the ZPE.

  12. The effect of iron-ore particles on the metal content of the brown alga Padina gymnospora (Espirito Santo Bay, Brazil)

    International Nuclear Information System (INIS)

    Nassar, C.A.G.; Salgado, L.T.; Yoneshigue-Valentin, Y.; Amado Filho, G.M.

    2003-01-01

    Iron ore deposits mat be the source of metals found in the brown alga Padina gymnospora. - The iron-ore particles discharged by a pellet processing plant (Espirito Santo Bay, Brazil) cover the seabed of Camburi Beach and consequently, the epibenthic community. In order to determine the importance of the contribution of the iron-ore deposits to the metal concentration in macroalgae of Espirito Santo Bay, four methods of cleaning particulate material adhered to the surface of thalli were tested prior to metal tissue analysis (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) of Padina gymnospora. In addition, heavy metal concentrations were determined in individuals of P. gymnospora from a site (Frade Island) not affected by the iron-ore particles. The most efficient cleaning treatment, a combination of scraping and washing with an ethanol-seawater solution (NA+SC+ET) removed a number of particles on the surface of thalli 10 times higher than that observed in the control (C). Using this treatment, the total-metal concentrations were reduced by 78% for Fe and 50% for Al respect to the control. However, Fe, Al and Cu concentrations after treatment NA+SC+ET were significantly higher than those found at Frade Island. It is suggested that the iron-ore deposit might be a source for metal availability to macroalgae exposed to the dumped material at Espirito Santo Bay

  13. Grain size, morphometry and mineralogy of airborne input in the Canary basin: evidence of iron particle retention in the mixed layer

    Directory of Open Access Journals (Sweden)

    Alfredo Jaramillo-Vélez

    2016-09-01

    Full Text Available Aeolian dust plays an important role in climate and ocean processes. Particularly, Saharan dust deposition is of importance in the Canary Current due to its content of iron minerals, which are fertilizers of the ocean. In this work, dust particles are characterized mainly by granulometry, morphometry and mineralogy, using image processing and scanning northern Mauritania and the Western Sahara. The concentration of terrigenous material was measured in three environments: the atmosphere (300 m above sea level, the mixed layer at 10 m depth, and 150 m depth. Samples were collected before and during the dust events, thus allowing the effect of Saharan dust inputs in the water column to be assessed. The dominant grain size was coarse silt. Dominant minerals were iron oxy-hydroxides, silicates and Ca-Mg carbonates. A relative increase of iron mineral particles (hematite and goethite was detected in the mixed layer, reflecting a higher permanence of iron in the water column despite the greater relative density of these minerals in comparison with the other minerals. This higher iron particle permanence does not appear to be explained by physical processes. The retention of this metal by colloids or microorganisms is suggested to explain its long residence time in the mixed layer.

  14. Synthesis and characterization of iron nano particles for the arsenic removal in water

    International Nuclear Information System (INIS)

    Gutierrez M, O. E.

    2011-01-01

    The synthesis of iron nanoparticles for the removal of metallic ions in polluted waters has been during the last years study topic for different world organizations. This work presents a synthesis method of conditioned coal with iron nanoparticles starting from the use of leaves of pineapple crown, with the purpose of using it in arsenic removal processes in aqueous phase. For the synthesis of this material, the leaves of the pineapple crown were used like supports structure of the iron nanoparticles. First, the pyrolysis appropriate temperature was determined. For the preparation of the support material, this had contact with a ferric nitrate and hexamine solution, because the preparation of the material and the coal synthesis were realized during the pyrolysis process, where the hexamine molecules and the ferric nitrate react, causing the reduction of the iron particles and their dispersion on the support material, obtaining as product a conditioned coal with iron nanoparticles. For the characterization of the materials were used techniques as: Scanning electron microscopy, Transmission electron microscopy, X-Rays Diffraction), X-Ray photoelectron spectroscopy and Moessbauer spectroscopy; moreover was determined the isoelectric point and the density of surface sites. The arsenic sorption capacity of the materials was evaluated by means of the methodology type lots where was determined the sorption kinetics and isotherms in terms of arsenic concentration and mass. (Author)

  15. Study of the structural and magnetic properties of metallic iron-hematite particles for use in magnetorheological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Osorio Ospina, Diana Marcela; Castro Navas, Irvin Jadway [Universidad del Valle, Escuela de Ingenieria de Materiales (Colombia); Perez Alcazar, German Antonio; Tabares, Jesus Anselmo, E-mail: jesus_tabares_8@hotmail.com [Universidad del Valle, Departamento de Fisica (Colombia)

    2012-03-15

    Magnetorheological (MR) fluids are new iron-based materials, whose applications include brakes, dampers, clutches, shock absorbers systems and polishing of optical surfaces (lens and mirrors). They are dependent on the size and shape of particles as the magnetic properties. Interested in the possibility of using iron-rich powders, commonly used in nondestructive testing, ranging in size from a few {mu}m to about 200 {mu}m and lower cost than those commercially used for MR fluids, a study of the structural and magnetic properties of iron-rich metallic particles by X-ray diffraction (XRD) and Moessbauer spectroscopy (MS) at room temperature has been done. Powders, as received, were separated into particle sizes smaller than 20 {mu}m (sample A) and in the range of 20-38 {mu}m (sample B) because these are the sizes generally required for applications in MR fluids. The particles whose sizes exceed the above values were ground in a high energy planetary mill for 3 h, using different values of rotational speed/time: 200 rpm for one hour, a pause of 10 s, 140 rpm for one hour, pause 10 s and then 175 rpm during the last hour. These powders were sieved to obtain particles smaller than 20 {mu}m (sample C). According XRD results, in all samples, only {alpha}-Fe (lattice parameter a = 2,867(2) Angstrom-Sign ) and Fe{sub 2}O{sub 3} (lattice parameter a 5,037(1) Angstrom-Sign and c = 13,755(8) Angstrom-Sign ) were present. The Moessbauer spectra were fitted with two sextets. The hyperfine parameters values allowed us to assign the highest relative area spectrum (sextet) corresponding to {alpha}-Fe and the second one to Fe{sub 2}O{sub 3} in accord to the XRD results. Thus, the preparation method using mechanical milling for diminishing the size of the metallic particles allowed us to get particles with size and magnetic properties that could lead to potentially MR fluids applications.

  16. Study of the structural and magnetic properties of metallic iron-hematite particles for use in magnetorheological fluids

    International Nuclear Information System (INIS)

    Osorio Ospina, Diana Marcela; Castro Navas, Irvin Jadway; Pérez Alcázar, German Antonio; Tabares, Jesus Anselmo

    2012-01-01

    Magnetorheological (MR) fluids are new iron-based materials, whose applications include brakes, dampers, clutches, shock absorbers systems and polishing of optical surfaces (lens and mirrors). They are dependent on the size and shape of particles as the magnetic properties. Interested in the possibility of using iron-rich powders, commonly used in nondestructive testing, ranging in size from a few μm to about 200 μm and lower cost than those commercially used for MR fluids, a study of the structural and magnetic properties of iron-rich metallic particles by X-ray diffraction (XRD) and Mössbauer spectroscopy (MS) at room temperature has been done. Powders, as received, were separated into particle sizes smaller than 20 μm (sample A) and in the range of 20–38 μm (sample B) because these are the sizes generally required for applications in MR fluids. The particles whose sizes exceed the above values were ground in a high energy planetary mill for 3 h, using different values of rotational speed/time: 200 rpm for one hour, a pause of 10 s, 140 rpm for one hour, pause 10 s and then 175 rpm during the last hour. These powders were sieved to obtain particles smaller than 20 μm (sample C). According XRD results, in all samples, only α-Fe (lattice parameter a = 2,867(2) Å) and Fe 2 O 3 (lattice parameter a 5,037(1) Å and c = 13,755(8) Å) were present. The Mössbauer spectra were fitted with two sextets. The hyperfine parameters values allowed us to assign the highest relative area spectrum (sextet) corresponding to α-Fe and the second one to Fe 2 O 3 in accord to the XRD results. Thus, the preparation method using mechanical milling for diminishing the size of the metallic particles allowed us to get particles with size and magnetic properties that could lead to potentially MR fluids applications.

  17. Assessment of combined electro–nanoremediation of molinate contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Helena I., E-mail: hrg@campus.fct.unl.pt [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); CERNAS — Research Center for Natural Resources, Environment and Society, Escola Superior Agraria de Coimbra, Instituto Politecnico de Coimbra, Bencanta, 3045-601 Coimbra (Portugal); Fan, Guangping [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (ISSCAS), East Beijing Road, Nanjing 210008 (China); Mateus, Eduardo P. [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Dias-Ferreira, Celia [CERNAS — Research Center for Natural Resources, Environment and Society, Escola Superior Agraria de Coimbra, Instituto Politecnico de Coimbra, Bencanta, 3045-601 Coimbra (Portugal); Ribeiro, Alexandra B. [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2014-09-15

    Molinate is a pesticide widely used, both in space and time, for weed control in rice paddies. Due to its water solubility and affinity to organic matter, it is a contaminant of concern in ground and surface waters, soils and sediments. Previous works have showed that molinate can be removed from soils through electrokinetic (EK) remediation. In this work, molinate degradation by zero valent iron nanoparticles (nZVI) was tested in soils for the first time. Soil is a highly complex matrix, and pollutant partitioning between soil and water and its degradation rates in different matrices is quite challenging. A system combining nZVI and EK was also set up in order to study the nanoparticles and molinate transport, as well as molinate degradation. Results showed that molinate could be degraded by nZVI in soils, even though the process is more time demanding and degradation percentages are lower than in an aqueous solution. This shows the importance of testing contaminant degradation, not only in aqueous solutions, but also in the soil-sorbed fraction. It was also found that soil type was the most significant factor influencing iron and molinate transport. The main advantage of the simultaneous use of both methods is the molinate degradation instead of its accumulation in the catholyte. - Highlights: • Molinate is degraded in soil by zero valent iron nanoparticles (nZVI). • Higher contact time of nZVI with soil facilitates molinate degradation. • Soil type was the most significant factor influencing iron and molinate transport. • When using nZVI and EK molinate is not only transported to catholyte, but also degraded.

  18. A thermodynamically consistent quasi-particle model without temperature-dependent infinity of the vacuum zero point energy

    International Nuclear Information System (INIS)

    Cao Jing; Jiang Yu; Sun Weimin; Zong Hongshi

    2012-01-01

    In this Letter, an improved quasi-particle model is presented. Unlike the previous approach of establishing quasi-particle model, we introduce a classical background field (it is allowed to depend on the temperature) to deal with the infinity of thermal vacuum energy which exists in previous quasi-particle models. After taking into account the effect of this classical background field, the partition function of quasi-particle system can be made well-defined. Based on this and following the standard ensemble theory, we construct a thermodynamically consistent quasi-particle model without the need of any reformulation of statistical mechanics or thermodynamical consistency relation. As an application of our model, we employ it to the case of (2+1) flavor QGP at zero chemical potential and finite temperature and obtain a good fit to the recent lattice simulation results of Borsányi et al. A comparison of the result of our model with early calculations using other models is also presented. It is shown that our method is general and can be generalized to the case where the effective mass depends not only on the temperature but also on the chemical potential.

  19. A novel CMOS sensor with in-pixel auto-zeroed discrimination for charged particle tracking

    International Nuclear Information System (INIS)

    Degerli, Y; Guilloux, F; Orsini, F

    2014-01-01

    With the aim of developing fast and granular Monolithic Active Pixels Sensors (MAPS) as new charged particle tracking detectors for high energy physics experiments, a new rolling shutter binary pixel architecture concept (RSBPix) with in-pixel correlated double sampling, amplification and discrimination is presented. The discriminator features auto-zeroing in order to compensate process-related transistor mismatches. In order to validate the pixel, a first monolithic CMOS sensor prototype, including a pixel array of 96 × 64 pixels, has been designed and fabricated in the Tower-Jazz 0.18 μm CMOS Image Sensor (CIS) process. Results of laboratory tests are presented

  20. Submicrometric Iron Particles for the Removal of Pharmaceuticals from Water: Application to b-Lactam Antibiotics

    International Nuclear Information System (INIS)

    Ghauch, A.; Baydoun, H.; Tuqan, M.; Ayoub, Gh.; Naim, S.

    2011-01-01

    Sub-micrometric iron particles (Fe0) and amended Fe0 (Cu0Fe0) were tested for the aqueous removal of b-lactam antibiotics. Comparative batch experiments were performed separately on aqueous solutions of dicloxacillin (DCX), cloxacillin (CLX) and oxacillin (OXA). Three different initial concentrations (1, 5 and 10 mg L-1) and four different iron loads (r = 10, 20, 40 and 53 g L-1) were tested. Furthermore, two different mixing regimes were tested: (i) non-disturbed conditions, and (ii) vortex mixing. This experimental design enabled the confirmation of the crucial role of in-situ formed iron corrosion products (Fe oxides) on the removal process. The dynamic process of Fe oxides formation induces adsorption and enmeshment (sequestration or co-precipitation) of dissolved antibiotics. Results clearly delineated the superiority of Cu0Fe0 bimetallics compared to Fe0. For example, after 4 h of contact with iron particles at r = 40 g L-1, OXA, CLX and DCX (10 mg L-1 each) disappeared to an extent of 31, 46 and 71%. However, quantitative antibiotic removal (∼ 90%) was noticed when Cu0Fe0 bimetallic was used at lesser load (r = 20 g L-1) under vortex mixing. On the other hand, non-disturbed systems showed partial removal (∼ 25%) of antibiotics over 7 h of reaction at r = 10 g L-1 (Fe0) while almost complete removals were noticed for the Cu0Fe0 bimetallic system for the same metal load and period e.g. 75, 79 and 86% removal for OXA, CLX and DCX respectively. (author)

  1. Nanoenhanced Materials for Reclamation of Mine Lands and Other Degraded Soils: A Review

    Directory of Open Access Journals (Sweden)

    Ruiqiang Liu

    2012-01-01

    Full Text Available Successful mine soil reclamation facilitates ecosystem recovery, minimizes adverse environmental impacts, creates additional lands for agricultural or forestry uses, and enhances the carbon (C sequestration. Nanoparticles with extremely high reactivity and deliverability can be applied as amendments to improve soil quality, mitigate soil contaminations, ensure safe land–application of the conventional amendment materials (e.g., manures and biosolids, and enhance soil erosion control. However, there is no report on using nanoenhanced materials for mine soil reclamation. Through reviewing the up-to-date research results on using environment-friendly nanoparticles for agricultural soil quality improvement and for contaminated soil remediation, this paper synthesizes that these nanomaterials with high potentials for mine soil reclamation include zeolites, zero-valent iron nanoparticles, iron oxide nanoparticles, phosphate-based nanoparticles, iron sulfide nanoparticles and C nanotubes. Transport of these particles in the environment and their possible ecotoxicological effects are also discussed. Additionally, this article proposes a practical and economical approach to applying nanotechnology for mine soil reclamation: adding small amounts of nanoparticles to the conventional soil amendment materials and then applying the mixtures for soil quality improvements. Hence the cost of using nanoparticles is reduced and the benefits of both nanoparticles and the conventional amendment materials are harnessed.

  2. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    Science.gov (United States)

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.

  3. The transition probability and the probability for the left-most particle's position of the q-totally asymmetric zero range process

    Energy Technology Data Exchange (ETDEWEB)

    Korhonen, Marko [Department of Mathematics and Statistics, University of Helsinki, FIN-00014 (Finland); Lee, Eunghyun [Centre de Recherches Mathématiques (CRM), Université de Montréal, Quebec H3C 3J7 (Canada)

    2014-01-15

    We treat the N-particle zero range process whose jumping rates satisfy a certain condition. This condition is required to use the Bethe ansatz and the resulting model is the q-boson model by Sasamoto and Wadati [“Exact results for one-dimensional totally asymmetric diffusion models,” J. Phys. A 31, 6057–6071 (1998)] or the q-totally asymmetric zero range process (TAZRP) by Borodin and Corwin [“Macdonald processes,” Probab. Theory Relat. Fields (to be published)]. We find the explicit formula of the transition probability of the q-TAZRP via the Bethe ansatz. By using the transition probability we find the probability distribution of the left-most particle's position at time t. To find the probability for the left-most particle's position we find a new identity corresponding to identity for the asymmetric simple exclusion process by Tracy and Widom [“Integral formulas for the asymmetric simple exclusion process,” Commun. Math. Phys. 279, 815–844 (2008)]. For the initial state that all particles occupy a single site, the probability distribution of the left-most particle's position at time t is represented by the contour integral of a determinant.

  4. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor)

    2012-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  5. Multi-scale three-dimensional characterization of iron particles in dusty olivine: Implications for paleomagnetism of chondritic meteorites

    DEFF Research Database (Denmark)

    Einsle, Joshua F.; Harrison, Richard J.; Kasama, Takeshi

    2016-01-01

    Dusty olivine (olivine containing multiple sub-micrometer inclusions of metallic iron) in chondritic meteorites is considered an ideal carrier of paleomagnetic remanence, capable of maintaining a faithful record of pre-accretionary magnetization acquired during chondrule formation. Here we show how......-dimensional (3D) volume reconstruction of a dusty olivine grain, obtained by selective milling through a region of interest in a series of sequential 20 nm slices, which are then imaged using scanning electron microscopy. The data provide a quantitative description of the iron particle ensemble, including...... axes of the particles and the remanence vector imparted in different fields. Although the orientation of the vortex core is determined largely by the ellipsoidal geometry (i.e., parallel to the major axis for prolate ellipsoids and parallel to the minor axis for oblate ellipsoids), the core...

  6. Redox control of iron biomineralization in Magnetospirillum magneticum AMB-1

    Science.gov (United States)

    Jones, Stephanie Rhianon

    Magnetotactic bacteria have evolved complex subcellular machinery to construct linear chains of magnetite nanocrystals that allow the host cell to sense direction. Each mixed-valent iron nanoparticle is mineralized from soluble iron within a membrane-encapsulated vesicle termed the magnetosome, which serves as a specialized compartment that regulates the iron, redox, and pH environment of the growing mineral. In order to dissect the biological components that control this process, we have carried out genetic and biochemical studies of proteins proposed to function in iron mineralization in Magnetospirillum magneticum AMB-1. As iron biomineralization by magnetotactic bacteria represents a particularly interesting case for understanding how the production of nanomaterials can be programmed at the genetic level, we also apply synthetic biology techniques towards the production of new cellular materials and new cellular functions. As the production of magnetite requires both the formation of Fe(II) and Fe(III), the redox components of the magnetosome play an essential role in this process. Using genetic complementation studies, we show that the redox cofactors or heme sites of the two putative redox partners, MamP and MamT, are required for magnetite biomineralization in vivo and that removal of one or both sites leads to defects in mineralization. We develop and optimize a heterologous expression method in the E. coli periplasm to cleanly isolate fully heme-loaded MamP for biochemical studies. Spectrochemical redox titrations show that the reduction potential of MamP lies in a different range than other c-type cytochrome involved in either Fe(III) reduction or Fe(II) oxidation. Nonetheless, in vitro mineralization studies with MamP and Fe(II) show that it is able to catalyze the formation of mixed-valent Fe(II)/Fe(III) oxides such as green rust. Biomineralization also requires lattice-templating proteins that guide the growth of the functional crystalline material. We

  7. Simultaneous Monte Carlo zero-variance estimates of several correlated means

    International Nuclear Information System (INIS)

    Booth, T.E.

    1997-08-01

    Zero variance procedures have been in existence since the dawn of Monte Carlo. Previous works all treat the problem of zero variance solutions for a single tally. One often wants to get low variance solutions to more than one tally. When the sets of random walks needed for two tallies are similar, it is more efficient to do zero variance biasing for both tallies in the same Monte Carlo run, instead of two separate runs. The theory presented here correlates the random walks of particles by the similarity of their tallies. Particles with dissimilar tallies rapidly become uncorrelated whereas particles with similar tallies will stay correlated through most of their random walk. The theory herein should allow practitioners to make efficient use of zero-variance biasing procedures in practical problems

  8. Zero valent iron reduces toxicity and concentrations of organophosphate pesticides in contaminated groundwater

    DEFF Research Database (Denmark)

    Fjordbøge, Annika Sidelmann; Baun, Anders; Vastrup, Troels

    2013-01-01

    including synthesis intermediates and degradation products of organophosphates. The ZVI treatment showed that all the contaminants were degraded with the exception of two diesters (phosphorothioates). The most rapid reduction was found for methyl parathion, ethyl parathion and malathion, which had first...

  9. Emulsified Zero-Valent Nano-Scale Iron Treatment of Chlorinated Solvent DNAPL Source Areas

    Science.gov (United States)

    2010-04-01

    point (knot>~) $0 th~t tha tube hanqs cle~1 o( tha wei l C3&in9 1o14ll. fluml’ .., atar ttam tnc "’t ’ll by Of"H•tinq h.Jnd le •t a tate of o~t...Number Name Printed Name Printed Meeting Conducted By Supervisor Signature Protective Clothing / Equipment Chemical Hazards Physical Hazards

  10. Design and characterization of sulfide-modified nanoscale zerovalent iron for cadmium(II) removal from aqueous solutions

    Science.gov (United States)

    Lv, Dan; Zhou, Xiaoxin; Zhou, Jiasheng; Liu, Yuanli; Li, Yizhou; Yang, Kunlun; Lou, Zimo; Baig, Shams Ali; Wu, Donglei; Xu, Xinhua

    2018-06-01

    Nanoscale zero-valent iron (nZVI) has high removal efficiency and strong reductive ability to organic and inorganic contaminants, but concerns over its stability and dispersity limit its application. In this study, nZVI was modified with sulfide to enhance Cd(II) removal from aqueous solutions. TEM and SEM analyses showed that sulfide-modified nZVI (S-nZVI) had a core-shell structure of nano-sized spherical particles, and BET results proved that sulfide modification doubled the specific surface area from 26.04 to 50.34 m2 g-1 and inhibited the aggregation of nZVI. Mechanism analysis indicated that Cd(II) was immobilized through complexation and precipitation. Cd(II) removal rate on nZVI was only 32% in 2 h, while complete immobilization could be achieved in 15 min on S-nZVI, and S-nZVI with an optimal S/Fe molar ratio of 0.3 offered a cadmium removal capacity of about 150 mg g-1 at pH 7 and 303 K. The process of Cd(II) immobilization on S-nZVI was fitted well with pseudo-second-order kinetic model, and the increase of temperature favored Cd(II) immobilization, suggesting an endothermic process. The presence of Mg2+ and Ca2+ hindered Cd(II) removal while Cu2+ did the opposite, which led to the order as Cu2+ > control > Mg2+ > Ca2+. The removal rate of 20 mg L-1 Cd(II) maintained a high level with the fluctuation of environmental conditions such as pH, ion strength and presence of HA. This study demonstrated that S-nZVI could be a promising adsorbent for Cd(II) immobilization from cadmium-contaminated water.

  11. Magnetically tunable elasticity for magnetic hydrogels consisting of carrageenan and carbonyl iron particles.

    Science.gov (United States)

    Mitsumata, Tetsu; Honda, Atomu; Kanazawa, Hiroki; Kawai, Mika

    2012-10-11

    A new class of magnetoelastic gel that demonstrates drastic and reversible changes in storage modulus without using strong magnetic fields was obtained. The magnetic gel consists of carrageenan and carbonyl iron particles. The magnetic gel with a volume fraction of magnetic particles of 0.30 exhibited a reversible increase by a factor of 1400 of the storage modulus upon a magnetic field of 500 mT, which is the highest value in the past for magnetorheological soft materials. It is considered that the giant magnetoelastic behavior is caused by both high dispersibility and high mobility of magnetic particles in the carrageenan gel. The off-field storage modulus of the magnetic gel at volume fractions below 0.30 obeyed the Krieger-Dougherty equation, indicating random dispersion of magnetic particles. At 500 mT, the storage modulus was higher than 4.0 MPa, which is equal to that of magnetic fluids, indicating that the magnetic particles move and form a chain structure by magnetic fields. Morphological study revealed the evidence that the magnetic particles embedded in the gel were aligned in the direction of magnetic fields, accompanied by stretching of the gel network. We conclude that the giant magnetoelastic phenomenon originates from the chain structure consisting of magnetic particles similar to magnetic fluids.

  12. Theoretical Analyses of Superconductivity in Iron Based ...

    African Journals Online (AJOL)

    fire7-

    using double time temperature dependent Green's function formalism and a suitable decoupling approximation technique, we ... phenomenon of zero electric resistivity in mercury was soon followed by the observation of the superconducting state in ... The iron, Fe2+ forms tetrahedron within the layers. This means that, iron-.

  13. In Situ Wetland Restoration Demonstration

    Science.gov (United States)

    2016-06-01

    bituminous coal based activated carbon, 10% bentonite clay , and 85% aggregate by weight.  SediMiteTM – SediMiteTM is a proprietary composite...its associated marsh. Portions of the marsh associated with Canal Creek were used for landfilling of sanitary wastes and production waste disposal...u c ti o n i n P C B C o n c e n tr a ti o n ( % ) Treatment Replicate 1 Replicate 2 Powdered Activated Organo Clay Zero Valent Iron 1 stdev -270

  14. Rapid treatment of water contaminated with Atrazine and Parathion with sero-valent iron

    International Nuclear Information System (INIS)

    Rima, Jamil; Amine, Charbel; Ghauch, Antoine; Martin-Bouyer, Michel

    1999-01-01

    Full text.Experiments were conducted in order to assess the utility of fine-grained iron metal in the remediation of water contaminated with pesticides. The two pesticides that were chosen for this study were Atrazine and Parathion. batch procedures under water treatment conditions (ambient temperature and circumneutral pH) indicated that these pesticides degrade rapidly in the presence of iron powder (40-60 mes, 40 g/L). The decline in the concentration of pesticide was monitored by HPLC analysis supplemented with programmable multiwavelength UV/VIS detector. Experiments were run in buffered solutions. Tests were also performed on an industrial effluent solution containing a variety of pesticides. Our HPLC results indicating the disappearance of all the parent pollutants

  15. Simulation of magnetic hysteresis loops and magnetic Barkhausen noise of α-iron containing nonmagnetic particles

    International Nuclear Information System (INIS)

    Li, Yi; Li, Qiulin; Liu, Wei; Xu, Ben; Hu, Shenyang; Li, Yulan

    2015-01-01

    The magnetic hysteresis loops and Barkhausen noise of a single α-iron with nonmagnetic particles are simulated to investigate into the magnetic hardening due to Cu-rich precipitates in irradiated reactor pressure vessel (RPV) steels. Phase field method basing Landau-Lifshitz-Gilbert (LLG) equation is used for this simulation. The results show that the presence of the nonmagnetic particle could result in magnetic hardening by making the nucleation of reversed domains difficult. The coercive field is found to increase, while the intensity of Barkhausen noise voltage is decreased when the nonmagnetic particle is introduced. Simulations demonstrate the impact of nucleation field of reversed domains on the magnetization reversal behavior and the magnetic properties

  16. Accelerated dissolution of iron oxides in ice

    Directory of Open Access Journals (Sweden)

    D. Jeong

    2012-11-01

    Full Text Available Iron dissolution from mineral dusts and soil particles is vital as a source of bioavailable iron in various environmental media. In this work, the dissolution of iron oxide particles trapped in ice was investigated as a new pathway of iron supply. The dissolution experiments were carried out in the absence and presence of various organic complexing ligands under dark condition. In acidic pH conditions (pH 2, 3, and 4, the dissolution of iron oxides was greatly enhanced in the ice phase compared to that in water. The dissolved iron was mainly in the ferric form, which indicates that the dissolution is not a reductive process. The extent of dissolved iron was greatly affected by the kind of organic complexing ligands and the surface area of iron oxides. The iron dissolution was most pronounced with high surface area iron oxides and in the presence of strong iron binding ligands. The enhanced dissolution of iron oxides in ice is mainly ascribed to the "freeze concentration effect", which concentrates iron oxide particles, organic ligands, and protons in the liquid like ice grain boundary region and accelerates the dissolution of iron oxides. The ice-enhanced dissolution effect gradually decreased when decreasing the freezing temperature from −10 to −196 °C, which implies that the presence and formation of the liquid-like ice grain boundary region play a critical role. The proposed phenomenon of enhanced dissolution of iron oxides in ice may provide a new pathway of bioavailable iron production. The frozen atmospheric ice with iron-containing dust particles in the upper atmosphere thaws upon descending and may provide bioavailable iron upon deposition onto the ocean surface.

  17. Method for producing dysprosium-iron-boron alloy powder

    International Nuclear Information System (INIS)

    Camp, F.E.; Wooden, S.A.

    1989-01-01

    A method for producing a dysprosium-iron alloy adapted for use in the manufacture of rare-earth element containing, iron-boron permanent magnets, the method including providing a particle mixture comprising dysprosium oxide, iron and calcium, compacting the particle mixture to produce a consolidated article, heating the article for a time at temperature to form a metallic compound comprising dysprosium and iron and to form calcium oxide, producing a particle mass of -35 mesh from the compact, washing the particle mass with water at a temperature no greater than 10 0 C to react to the calcium and to the calcium oxide therewith to form a calcium hydroxide, while preventing oxidation of the particle mass, and removing the calcium hydroxide from the particle mass

  18. Iron free permanent magnet systems for charged particle beam optics

    International Nuclear Information System (INIS)

    Lund, S.M.; Halbach, K.

    1995-01-01

    The strength and astounding simplicity of certain permanent magnet materials allow a wide variety of simple, compact configurations of high field strength and quality multipole magnets. Here we analyze the important class of iron-free permanent magnet systems for charged particle beam optics. The theory of conventional segmented multipole magnets formed from uniformly magnetized block magnets placed in regular arrays about a circular magnet aperture is reviewed. Practical multipole configurations resulting are presented that are capable of high and intermediate aperture field strengths. A new class of elliptical aperture magnets is presented within a model with continuously varying magnetization angle. Segmented versions of these magnets promise practical high field dipole and quadrupole magnets with an increased range of applicability

  19. Iron oxides in human brain

    International Nuclear Information System (INIS)

    Cesnek, M.; Miglierini, M.; Lancok, A.

    2015-01-01

    It was confirmed that Moessbauer spectroscopy is an useful tool for measurement of biological tissues even if the concentration of iron in the samples is very low. Moessbauer spectra revealed a presence of particles with non-magnetic behaviour at room temperature. At temperature 4.2 K almost all particles exhibit magnetic behaviour. The rest of the particles still exhibits superparamagnetic behaviour what indicates that their blocking temperature is lower than 4.2 K. It was suggested that those might be very small haemosiderin particles. Parameters the sextet-like components suggest possible presence of goethite, akaganeit or ferrihydrite. Using synchrotron assisted XRD, it was not possible to reveal any iron relevant structural information due to very low concentration of iron atoms in samples. Atomic pairs with the highest contribution to PDF were revealed. All these atomic pairs are characteristic for biological materials. XRD measurement of extracted ferritin could reveal some helpful information about the iron structure. (authors)

  20. Theoretical Study of Spin Crossover in 30 Iron Complexes

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2016-01-01

    Spin crossover was studied in 30 iron complexes using density functional theory to quantify the direction and magnitude of dispersion, relativistic effects, zero-point energies, and vibrational entropy. Remarkably consistent entropy−enthalpy compensation was identified. Zero-point energies favor...